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Abstract

In many clinical and epidemiological studies, investigators are interested in testing the

presence of association between an outcome variable and covariates of interest. Such

analyses are often complicated by missing data. When variables of interest are missing

for some subjects, it is desirable to use observed auxiliary variables, which are sometimes

high-dimensional, to impute or predict the missing values to improve statistical efficiency.

Although many methods have been developed for prediction using high-dimensional vari-

ables, it is challenging to perform valid inference based on the predicted values. In this

dissertation, we propose novel association testing methods involving missing data with

the goal of detecting relevant predictors for outcomes of interest.

We first focus on parametric models and develop an association test for an outcome

variable and a partially missing covariate, where the missing values can be predicted using

a set of high-dimensional auxiliary variables. The proposed analysis consists of a model

selection step and a testing step. Specifically, in the first step, we select a subset of aux-

iliary variables and fit a regression model of the covariate of interest against the selected

features. In the second step, we perform the score test for the covariate in the outcome

model under the full likelihood, which includes both the outcome model and the miss-

ing covariate model. We then extend the proposed method to a class of semiparametric

transformation models for potentially right-censored survival outcomes. We propose a

supremum test, where we consider multiple choices of transformation functions, perform
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individual score test under each outcome model, and take the supremum of the individual

test statistics as the proposed test statistic. We show that the proposed testing procedure

improves the test performance when the outcome model is unknown.

The validity and advantages of the proposed methods are demonstrated both theo-

retically and numerically. We establish the asymptotic properties of the proposed test

statistics under regularity conditions and show the validity of the tests under data-driven

model selection procedures. We evaluate the proposed methods through extensive simu-

lation studies, and show their superior performances over some existing methods. Real

data analyses are carried out on major cancer genomic studies.
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Chapter 1

Introduction

1.1 Statistical Analysis of Genomic Data

Statistical analysis with genomic data has been an area of considerable interest in the past

decades, with a major goal of understanding complex human diseases and revealing the

underlying biological mechanisms. This era of genomic study has seen some revolutionary

advances in high-throughput technologies, such as microarray, whole-genome sequencing,

single-cell sequencing, and RNA sequencing. We are now equipped with various types

of genomic data, including DNA methylation, RNA expression, copy number alteration

and protein expression, on a large number of subjects. This burst of genomic data poses

challenges as well as opportunities on clinicians and researchers to gain a deeper under-

standing about disease mechanisms at a molecular level, and subsequently develop better

prevention, diagnosis and treatment strategies. It is essential to develop valid and effec-

tive statistical approaches to utilize the information from different genomic measurements

to investigate the relationships between genomic variables and interested outcomes, such

as cancer phenotypes.

Here we give a brief introduction about some commonly studied types of genomic

data.
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DNA alteration DNA, or deoxyribonucleic acid, is the molecule that carries genetic

information in all living things. The alterations in DNA sequences can lead to functional

consequences. Genetic diseases, such as human cancers, are commonly driven by DNA

alterations. DNA alterations can take several forms, such as single nucleotide polymor-

phisms, copy number variation and chemical modification.

RNA expression RNA, or ribonucleic acid, is composed of nucleotides. RNA plays an

essential role in multiple physiological processes such as coding, decoding and regulation

of gene expressions. The process of producing RNA from DNA is called transcription. The

messenger RNA (mRNA) can further convey genetic information from RNA to protein;

this process is termed translation. Another type of RNA, microRNA (miRNA), is a class

of non-coding RNA molecules that does not involve in protein synthesis but regulates gene

expression at the post-transcriptional level. miRNAs present diverse expression patterns

and regulate various biologic processes.

Protein Protein is the basic cellular component in an organism and is involved in almost

every biological process. Following transcription and translation, the functions of a protein

are modulated by a set of post-translational modifications, including phosphorylation and

methylation. Changes in protein expression level have been shown to be highly correlated

with tumor progression.

One primary interest in genomic studies is to identify genomic features that are associ-

ated with outcomes of interest. This is of particular relevance to the field of cancer study,

where one of the most important and fundamental objectives is to gain more insight into

the molecular and genetic basis of cancer. Human diseases are influenced by a large num-

ber of factors including inherited variation, gene mutation and environmental exposures.

The environmental exposures, along with sex and age are regularly studied and found to

be associated with such diseases, but limited amount of risk can be explained by these fac-
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tors. Various studies have demonstrated that genomic factors are of moderate importance

in risk of diseases (Rosenwald et al., 2002; Rosenwald et al., 2003; Metzeler et al., 2008;

Kim et al., 2013). For instance, Rosenwald et al. (2002) conducted a study of the diffuse

large B-cell lymphoma (DLBCL), which is one of the most common types of lymphoma

worldwide. The patients were grouped into three subgroups on the basis of gene ex-

pressions and presented significant differences on the overall survival after chemotherapy.

Metzeler et al. (2008) studied the prognostic properties of gene expressions identified by

the supervised principle component analysis (Bair et al., 2004) in cytogenetically normal

acute myeloid leukemia, and developed a gene signature to predict the overall survival.

One limitation of the above studies is that the conducted analyses only include a single

type of genomic measurements, under most scenarios, the gene expressions.

In recent years, increasing efforts have been made to integrative analysis to detect

important genomic features influencing human diseases, especially with the advent of

multi-platform genomic data. Integrative analysis refers to the analysis that combines

multiple types of data under a unified framework. For example, Bussey et al. (2006)

performed an analysis on a panel of 60 human cancer cell lines to study the relationships

among DNA copy number, mRNA expression and drug sensitivity. Shen et al. (2009)

developed an integrative clustering method to incorporate different data types. Kristensen

et al. (2012) studied the breast cancer heterogeneity by integrating different layers of

molecular data into the analysis. Wong et al. (2019a) proposed a statistical method based

on boosting to effectively integrate multiple layers of genomic information for predicting

survival time. It has been argued that using multiple types of genomic data to explore

associations between genomic features and outcomes of interest can be more powerful

than using a single type of genomic measurements for several reasons. First, aggregation

of information obtained across data types can enrich association signals and thus improve

statistical efficiency. Individual feature analysis is usually inefficient because the activities
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of one type of genomic features can only explain a part of the biological process underlying

particular phenotypes. Further, integrative analysis can capture the interactive effects of

multiple genomic features. Human complex diseases may depend on not only individual

type of genomic features but also interactions among different types of genomic features.

By including multiple data types into analysis, we are able to capture the indirect effects

of genomic features on a phenotype through other genomic features. For example, Pollack

et al. (2002) found a positive correlation between the variation in gene copy number and

variation in gene expression in breast cancer cells. Finally, individual feature analysis can

be vulnerable to unobserved information. There are situations that one type of data is

subject to missing, the missing values can be inferred from other types of data by the

underlying associations among them.

Although integrative analysis has demonstrated its great potential in revealing the

complex molecular architecture of human diseases, the joint analysis of multiple data

types must tackle some statistical challenges. One problem in genomic studies is missing

data, arising due to costs or other constraints. This poses challenges on conventional

statistical methods that do not accommodate missing data. Another critical issue is that

the dimension of genomic variables is large when multiple data types are considered in

the analysis. Many existing methods are not applicable to high-dimensional data. New

statistical methods that can account for the problem of missing data and high dimen-

sionality need to be studied. In this dissertation, we seek to develop novel statistical

methods to identify the associations between partially observed genomic variables and

outcomes of interest, where another set of high-dimensional genomic data is available for

the prediction of the missing values.
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1.2 Survival Analysis

In cancer genomic studies, the outcome of interest is often an event time, such as time to

death since initial diagnosis, time to tumor progression, and response time to a medical

treatment. One common feature presented in time-to-event data is censoring, which arises

when the event is only known to have occurred in a certain period of time. Typical types

of censoring include right censoring, interval censoring, and left censoring. In survival

analysis, it is of interest to ascertain the relationship between the time-to-event outcome

and some variables, including clinical characteristics and genomic features, and formulate

the effects of the covariates on the survival time.

The proportional hazards model (Cox, 1972) is widely used in survival analysis. Let

T denote the survival time. Given a subject with covariates X, the hazard function of T ,

or instantaneous rate of occurrence of the event, is specified by

λ(t | X) = λ(t) exp(αTX),

where λ(·) is an unknown baseline hazard function and α is a vector of regression pa-

rameters. It is easy to see that the hazard ratio between two subjects is constant over

time. Cox (1972, 1975) proposed to estimate α by maximizing the partial likelihood,

and the advantage of the partial likelihood method is that the estimation of the non-

parametric baseline hazard function is avoided. Breslow (1972) suggested an estimation

approach for the nonparametric baseline hazard function using the joint likelihood func-

tion involving parameters α and λ. The asymptotic properties of the maximum partial

likelihood estimator and the Breslow estimator of the cumulative baseline hazard function

are established in Andersen and Gill (1982) via the counting-process martingale theory.

Another commonly used model in survival analysis is the proportional odds model

(Pettitt, 1982; Bennett, 1983a, 1983b; Dabrowska & Doksum, 1988). Under this model,
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the odds ratio of the survival probabilities between two subjects is constant over time,

while the hazard ratio converges to one as t goes to infinity rather than staying constant.

The proportional odds model assumes that

−logit{S(t | X)} = g(t) +αTX,

where logit(x) = log{x/(1 − x)}, g(t) is an arbitrary increasing function, and S(t | X)

is the survival function given covariates X. Bennett (1983b) proposed to estimate α

by maximizing the likelihood function with g(t) = φ log t, where φ is some nonnegative

parameter. Bennett’s estimator of α is the maximum profile likelihood estimator with

the nuisance parameter φ estimated out. Maximum likelihood estimation (MLE) for the

proportional odds model was studied by Murphy et al. (1997).

Both the proportional hazards model and the proportional odds model are special

cases of the transformation model. Under the transformation model, the cumulative

hazard function for T conditional on X takes the form

Λ(t | X) = G{Λ(t) exp(αTX)}, (1.1)

where Λ(·) is an unknown increasing function in [0, τ ] with Λ(0) = 0, G(·) is a prespecified

transformation function that is strictly increasing with G(0) = 0, and τ is the end-of-study

time. For example, we can consider the class of Box-Cox transformations

G(x) =

 {(1 + x)ρ − 1}/ρ for ρ > 0,

log(1 + x) for ρ = 0,

where ρ is a prespecified transformation parameter. In this family, ρ = 1 corresponds to

the proportional hazards model, and ρ = 0 corresponds to the proportional odds model.
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Alternatively, we can consider the class of logarithmic transformations

G(x) =

 r−1 log(1 + rx) for r > 0,

x for r = 0,

where r is a prespecified transformation parameter. Clearly, the choices of r = 0 and

r = 1 yield the proportional hazards model and the proportional odds model, respectively.

Under (1.1), the model of T can be expressed as a linear transformation model, with

logΛ(T ) = −αTX + ϵ,

where ϵ is an error term with P (ϵ < t) = 1− exp[−G{exp(t)}]. Particularly, the choices

of the extreme value distribution with P (ϵ < t) = 1 − exp{− exp(t)} and the standard

logistic distribution with P (ϵ < t) = exp(t)/{1 + exp(t)} yield the proportional hazards

model and the proportional odds model, respectively.

For semiparametric transformation models, Cheng et al. (1995) proposed a general-

ized estimating equation to estimate α with right-censored survival data. They used the

inverse weight of the Kaplan-Meier estimator for the survival function of the censoring

variable to adjust the censoring under the assumption that the censoring distribution

is independent of covariates. Chen et al. (2002) relaxed such an assumption and pro-

posed an estimator of α using a general estimating equation in terms of counting pro-

cess notations, which can be reduced to the partial likelihood score equation under the

proportional hazards model. Zeng and Lin (2007) and Zeng et al. (2016) studied non-

parametric maximum likelihood estimation (NPMLE) methods with right-censored data

and interval-censored data, respectively, and showed that the estimators are consistent

and asymptotically efficient. Efficient expectation-maximization (EM) algorithms were

developed for the computation of the proposed NPMLE.
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1.3 Incomplete Data Analysis

One complication in statistical analysis is the presence of missing data. For example,

in sample surveys, it is common that some participants do not answer all questions due

to refusal or other reasons. Missing data are also commonly encountered in longitudi-

nal studies such as clinical trials, where some subjects may drop out before the end of

study. The problem of missing data is especially prevalent in large scale genomic stud-

ies, where multiple types of genomic data are collected on a large number of subjects,

often over different locations and time periods. For example, in The Cancer Genome At-

las (TCGA) (https://cancergenome.nih.gov/), over 11,000 subjects with 33 cancer types

were measured for multiple types of genomic data, including DNA methylations, muta-

tions, RNA expressions, and protein expressions, but protein expressions were not mea-

sured for a substantial number of subjects. As another example, in the Trans-Omics for

Precision Medicine (TOPMed) program (https://www.nhlbi.nih.gov/research/resources/

nhlbi-precision-medicine-initiative/topmed), whole-genome sequencing data are available

on hundreds of thousands of subjects, but other types of genomic data, such as RNA

sequencing, methylation, and metabolites, are available for only tens of thousands of sub-

jects or fewer. The missing data problem arises when one attempts to analyze these data

under a unified framework.

Rubin (1976) presented a general taxonomy of missing data mechanism based on the

propensity of missing data. To formalize this problem, let Z = (Z1, . . . , ZK)
T denote the

study variable with dimension K. Let R = (R1, . . . , RK)
T denote the indicator vector

where Rj (j = 1, . . . , K) takes value one or zero depending on whether the corresponding

element in Z is observed or not, defined by

Rj =


1 if Zj is observed,

0 if Zj is missing.
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Then the data can be partitioned as Z = (Zobs,Zmis), where Zobs = {Zj : Rj = 1} is the

observed part of Z, and Zmis = {Zj : Rj = 0} is the missing part of Z. Let p(R | Z)

denote the conditional distribution of R given Z. If R and Z are independent, then

p(R | Z) = p(R), and the data is missing completely at random (MCAR). In this case,

there are no systematic differences between observed data and missing data. One example

is the situation that patients drop out clinical trials because of personal reasons that have

nothing to do with the issues under study. The second type of missing mechanism is

missing at random (MAR), where R does not depend on the missing values of Z given

the observed values of Z, which we write as p(R | Zmis,Zobs) = p(R | Zobs). Two-

phase sampling study is a classical MAR situation, where the outcome and inexpensive

covariates are observed for all subjects in phase 1, and then a sub-group of subjects is

selected for measurements on expensive covariates in phase 2 based on the results of phase

1. Lastly, data are said to be missing not at random (MNAR) if the missingness depends

on the missing values. For example, consider a survey about income. MNAR would occur

if participants refuse to respond because of their levels of income. Among the three types

of missing mechanism, MNAR is the weakest assumption while MCAR is the strongest.

Various methods have been developed in the past decades for statistical analysis with

missing data (Ibrahim et al., 2005; Little & Rubin, 2019). A naive approach to handle

missing data is to perform a complete-case analysis, where subjects with missing data

are discarded. Such an approach is obviously inefficient because information of partially

observed subjects would be discarded. In addition, the complete-case analysis is gener-

ally invalid under situations other than MCAR, since the complete cases need not to be

a representative sample from the population, and consequently substantial bias may be

introduced to the estimation. An alternative approach is single imputation, where the

missing values are imputed by plausible values based on the observed data, and conven-

tional methods are then applied to the imputed dataset. However, although estimation
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based on imputed data may be more efficient than a complete-case analysis, conven-

tional inferential procedures based on (singly) imputed data are generally invalid. Rubin

(1987) mentioned that the standard error estimator from the single imputation method

is systematically underestimated because the uncertainty from the imputation process

is not incorporated into the analysis. More sophisticated statistical methods to handle

missing data can be broadly classified into three categories, namely the likelihood-based

approach, the multiple imputation (MI) approach, and the inverse-probability weighting

(IPW) approach.

1.3.1 Likelihood-Based Approach

The method of maximizing the observed data likelihood is often used in regression analysis

with missing data. The observed data likelihood is obtained by finding the marginal

distribution of the observed data resulting from the integration of the joint distribution

of full data over the missing variables. Let Z1, . . . ,Zn denote n independent realizations

of Z with probability density function f(Z;θ), where θ is the vector of parameters of

interest. Let Ri (i = 1, . . . , n) denote the indicator vector corresponding to Zi. The

likelihood based on the observed data {(Zobs,i,Ri), i = 1, . . . , n} is given by

Lobs(θ) =
n∏
i=1

∫
f(Zi;θ)p(Ri | Zi) dν(Zmis,i),

where ν is some dominating measure for Zmis,i. Under scenarios that (a) the probability

function p(Ri | Zi) does not involve parameter θ, and (b) the missing mechanism is

MAR or MCAR, the missingness is considered to be ignorable (Rubin, 1976) because

p(Ri | Zi) = p(Ri | Zobs,i). In this case, the missing data probability function can be

factored out from the likelihood function. Specifically, we can write the observed data
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likelihood as

Lobs(θ) =
n∏
i=1

∫
f(Zi;θ)p(Ri | Zobs,i) dν(Zmis,i)

=
n∏
i=1

∫
f(Zi;θ) dν(Zmis,i)×

n∏
i=1

p(Ri | Zobs,i).

Therefore, likelihood inference can be conducted by considering only the likelihood for

Z1, . . . ,Zn and not the missing mechanism.

Since the observed data likelihood is obtained by integrating the full data likelihood

over the missing values of Z, it is usually difficult to maximize the likelihood function with

standard methods. The EM algorithm (Dempster et al., 1977) is an iterative numerical

technique often used to compute the MLE from the observed data likelihood function.

It consists of two steps: (1) the E-step computes the expectation of log-likelihood of

θ given the observed data and some initial value of θ; (2) the M-step maximizes the

expectation from the previous step to find an estimator of θ. The two steps are iterated

until convergence.

The likelihood-based methods have been extensively studied with different parametric

models in the presence of missing data. Fuchs (1982) derived the MLE for the parameters

of log-linear models with missing data. Little and Schluchter (1985) applied it to mixed

continuous and categorical variables with missing values by combining the multivariate

normal model for continuous variables and multinomial model for categorical data into

the analysis. Ibrahim (1990) developed an EM algorithm for generalized linear models

with missing discrete covariates, and later extended this method to incomplete categor-

ical covariates in survival analysis (Lipsitz & Ibrahim, 1996), and continuous or mixed

categorical and continuous covariates with missingness (Ibrahim et al., 1999). The para-

metric model approach, albeit convenient and easy to implement, is sensitive to model

misspecification. Many efforts have been made to semiparametric likelihood methods
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in which the missing covariate model or the missing data mechanism is assumed to be

nonparametric. For example, Lawless et al. (1999) studied the semiparametric methods

with a nonparametric missing covariate model where the missingness depends on a strat-

ification outcome variable, and the asymptotic properties of the semiparametric MLE of

parameters of interest is established in Breslow et al. (2003). Chatterjee et al. (2003) pro-

posed a pseudoscore estimator for two-phase designs. Zhang and Rockette (2005, 2006)

considered a semiparametric likelihood approach with a generalized linear outcome model

and an unspecified covariate model when some variables MAR. Zhao et al. (2009) studied

the problem where covariates and/or responses are missing by design, and proposed a

semiparametric likelihood estimation method with nonparametric assumptions about the

conditional distribution of missing covariate given some always observed variables. Kim

and Yu (2011) proposed semiparametric estimators with nonignorable nonresponse data

by considering a semiparametric logistic regression model for the response probability.

1.3.2 Multiple Imputation Approach

The MI approach was first proposed by Rubin (1978) for complex surveys with missing-

ness. The basic idea of MI is to create multiple complete datasets by filling in the missing

entries with imputed values based on the observed data. Similar to the single imputation

method, MI has the practical advantage of allowing the standard complete-date methods

to be used on the imputed datasets. Moreover, the MI method improves on the single

imputation method by producing more accurate variance estimator.

The procedure of MI involves three steps: imputation, estimation, and pooling of re-

sults. In the step of imputation, multiple copies of missing values, say M , are generated

from a posterior predictive distribution of the missing values conditional on the observed

data. In each dataset, the missing values are replaced by the imputed values. In the

estimation step, standard complete-data methods can be applied to analyze each com-
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pleted dataset, which leads to M estimated parameters θ̂m and corresponding estimated

variance Wm for m = 1, . . . ,M . The results from each analysis will differ because of the

variability introduced by the imputation process. In the last step, all the results are com-

bined to obtain a single set of results. Specifically, the pooled estimator of θ is obtained

by taking the average of the M estimators from previous step:

θ̂ =
1

M

M∑
m=1

θ̂m.

The variance estimator of θ̂ is derived using Rubin’s rules (Rubin, 1987):

V̂ = W + (1 +
1

M
)B,

where W = 1
M

∑M
m=1Wm is the within imputation variance, and B = 1

M−1

∑M
m=1(θ̂m −

θ̂)(θ̂m−θ̂)T is the between imputation variance. The between imputation variance caused

by the differences in the imputed values across M datasets reflects the uncertainty of the

missing data.

1.3.3 Inverse-Probability Weighting Approach

An alternative class of methods to deal with missing data is by weighting the complete

cases with the inverse of the probability of being non-missing (Zhao & Lipsitz, 1992;

Robins et al., 1994). The likelihood-based methods under some scenarios can ignore

the missing mechanism when performing inference on the parameter of interest. On the

contrary, the IPW approach directly involves the missing mechanism.

Let µ(Z;θ) be some estimating function for θ based on the full data, for example,

the score function in a parametric model. The estimating equation that would be solved
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to estimate the regression parameter is given by

n∑
i=1

µ(Zi;θ) = 0.

We say that the estimating function is valid if E{µ(Z;θ0)} = 0 with θ0 being the true

value of θ. Define ri = 1 if Zi is fully observed, and ri = 0 otherwise. The complete-

case analysis corresponds to solving the estimating equation with fully observed cases∑n
i=1 riµ(Zi;θ) = 0, which is invalid unless the missing data is MCAR. The IPW ap-

proach corrects the bias of a complete-case analysis by reweighting each complete case by

the probability of being observed pi(Z) = P (ri = 1 | Zi). The estimating equation is in

the form of
n∑
i=1

ri
pi(Z)

µ(Zi;θ) = 0.

For example, if the missingness is related with sex, and male subjects are less likely to re-

spond, then the inverse probability term would up-weight the male cases and down-weight

the female cases to reflect the entire population. In practice, the missing mechanism is

usually unknown and needs to be estimated. The estimate of pi(Z) can be obtained, for

example, by a logistic regression of ri on some always observed covariates in Zi. However,

the estimator of θ under IPW approach can be biased if the model of missing mechanism

is misspecified, and the estimator is generally inefficient because only the information

contained in the complete cases is used. To improve efficiency, Robins et al. (1994, 1995)

proposed the augmented inverse probability approach by including the additional infor-

mation contained in the incomplete cases into the analysis. The augmented estimating

equation takes the form of

n∑
i=1

{
ri

pi(Z)
µ(Zi;θ) +

(
1− ri

pi(Z)

)
η(Zobs,i;θ)

}
= 0,
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where η(Zobs;θ) is some function of the observed data that takes the place of µ for

incomplete cases. Rotnitzky and Robins (1995) showed that the optimal estimator of θ

is obtained when η(Zobs;θ) = E{µ(Z;θ) | Zobs}. Another advantage of the augmented

estimating equation is that the resulting estimator is doubly robust in the sense that it

is consistent when either the missing mechanism model or the distribution of the missing

covariates, but not necessarily both, is correctly specified (Bang & Robins, 2005; Kang &

Schafer, 2007).

1.3.4 Association Testing for Incomplete Data

Despite extensive studies on regression analysis with missing data, association testing

with incomplete data has received less attention. Although association testing typically

can be done under a regression framework, the testing problem should not be treated

as a trivial special case. There are issues of interest in hypothesis testing that are not

pertinent under a general regression analysis framework. First, in estimation, strong as-

sumptions concerning the distribution of the incomplete variables are usually made to

ensure desirable theoretical properties, such as consistency of the estimators. By con-

trast, in hypothesis testing, we are primarily concerned with the theoretical properties

of estimators under the null hypothesis (or contiguous alternatives), and correct specifi-

cation of the full model is not required for a test to be valid. As a result, much more

relaxed model assumptions could be considered for association tests than for regression

analyses in general. Second, estimation is generally performed under specific models. On

the other hand, in hypothesis testing, we may only be interested in the existence of as-

sociation between a covariate and an outcome variable, not necessarily under particular

models.

For illustration, let Y denote the response variable, S denote the covariate of interest

that might be missing, X denote a vector of other covariates. Let R be the indicator of
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whether S is observed, i.e., R = 1 if S is observed, and R = 0 otherwise. Assume that

Y | (X, S) ∼ f(Y ;αTX + βS, ζ), where α and β are the regression parameters, and ζ

is a set of nuisance parameters, and S | X ∼ g(S | X; ξ), where ξ is a parameter vector.

For a sample of size n, the observed data consist of {(Yi,X i, RiSi, Ri) : i = 1, . . . , n}. We

are interested in testing the null hypothesis H0 : β = 0.

To perform association tests with missing genotype data, Hu et al. (2015) considered

a linear regression model and a logistic regression model for quantitative Y and binary

Y , respectively, on S and X, and proposed a score test based on imputed genotype data.

Specifically, the score statistic under H0 takes the form

U =
n∑
i=1

{Yi − h(α̂TX i)}S̃i,

where h(x) = x for the linear model of Y , and h(x) = ex/(1 + ex) for the logistic model

of Y , α̂ is the estimator of α under the null hypothesis, and S̃i is the imputed value of Si

if Ri = 0 and the observed value of Si, otherwise. They also proposed a robust variance

estimator for U that properly accounts for the differential quality between observed and

imputed genotypes. Under outcome-dependent sampling designs, Derkach et al. (2015)

and Lawless (2018) proposed to model the variable with missing values and studied the

score test based on the full likelihood. The full likelihood function for the observed data

is given by

L(α, β, ζ, ξ) =
∏
Ri=1

f(Yi | X i, Si;α, β, ζ)g(Si | X i; ξ)×
∏
Ri=0

f1(Yi | X i;α, β, ζ, ξ),

where f1(Y | X;α, β, ζ, ξ) is the probability density function of Y given X. The score

statistic for β is

Uβ(α̂, ζ̂, ξ̂) =
n∑
i=1

A(Yi,X i; α̂, ζ̂)
{
RiSi + (1−Ri)Ê(Si | X i)

}
,
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where (α̂, ζ̂, ξ̂) are estimators of (α, ζ, ξ) under H0, Ê(S | X) =
∫
sg(s | X; ξ̂) dν(s),

and A(Y,X;α, ζ) = ∂ log f(Y ; t + αTX, ζ)/∂t|t=0. Derkach et al. (2015) treated g(·)

as nonparametric and required X to be discrete. Lawless (2018) assumed parametric

models for the missing variable S on X. Under extreme phenotype sampling designs

in genetic association studies, Bjørnland et al. (2018) considered a similar model-based

score test and a complete-case score test based on the conditional likelihood given the

sampling mechanism. Wong et al. (2019b) proposed to model the incomplete variable

semiparametrically and developed a score test that is robust against misspecification of

the missing variable model. The proposed score statistic of Wong et al. (2019b) is similar

to that of Derkach et al. (2015) and Lawless (2018) with the posterior mean of S given

X replaced by the imputed value of S.

In many applications, there often exist auxiliary variables that are associated with the

missing covariate or correlated with the missingness. Auxiliary variables refer to variables

that are available for all subjects but not included in the main analysis. By incorporating

auxiliary variables into the analysis framework, the analysis performance may be improved

by reducing bias and increasing efficiency. Collins et al. (2001) discussed two auxiliary

variable selection strategies with ML and MI procedures. One is inclusive strategy by

including a large amount of auxiliary variables into the missing data analysis. The other

one is restrictive strategy, which uses few or no auxiliary variables. They conclude that

the inclusive strategy is recommended since it reduces the chances of omitting variables

correlated with the missing covariate or the cause of missingness and have substantial

gains in terms of both bias and efficiency. Collins et al. (2001) also mentioned that the

MNAR mechanism can be converted to MAR mechanism by adding auxiliary variables

into the analysis model, the reason is that the auxiliary variables enter into the model

as observed variables, and can help to eliminate the relationship between outcome vari-

able and the missing covariate part. Graham (2003) developed two structural equation
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models to incorporate auxiliary variables without affecting the substantive interpretation

of the parameters, and adopted MLE for estimation. Hardt et al. (2012) studied the

performances of MI with different choices of auxiliary variables and found that too many

auxiliary variables can potentially lead to biased estimators. They suggested that the

number of auxiliary variables included in the imputation model should be no more than

one third of the number of cases with complete data.

1.4 High-Dimensional Data Analysis

With the fast developments in high-throughput technologies, we often encounter data

that are high-dimensional in biomedical studies, where the number of variables p is larger

than the sample size n. For example, in the DLBCL study (Rosenwald et al., 2002),

hundreds of thousands of genetic variants such as gene expressions were collected from

240 patients. Under such regimes, classical statistical methods often fail to provide valid

estimation or prediction. Consider a linear regression model

Y = βTX + ϵ, (1.2)

where Y is the response variable, X is a p-vector of covariates, β = (β1, . . . , βp)
T is a

p-vector of regression parameters, and ϵ is a random error term with mean zero. For

simplicity, we assume that X and Y are centered. Let (Yi,X i) for i = 1, . . . , n denote n

independent realizations of (Y,X). In low-dimensional settings, an estimator of β can be

obtained by

β̂ = arg min
β

n∑
i=1

(Yi − βTX i)
2.

The above problem has an explicit solution provided that
∑n

i=1X iX
T
i is invertible. Under

the scenario of n < p, the least-squares estimator of β is no longer well-defined. To
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deal with the large number of variables, it is common to use penalization methods to

simultaneously select variables and estimate coefficients.

1.4.1 Estimation Methods with High-Dimensional Data

The objective of variable selection is to identify a subset of variables that are relevant to

the response variable. Conventional variable selection methods include forward selection

and backward selection. In forward selection, the initial model has only the intercept

term and variables are then iteratively added until some statistical criterion is satisfied.

The backward selection method starts with the full model and removes variables with

least importance until meeting some criterion. However, the backward selection method

is not applicable for high-dimensional data, and both methods suffer from low prediction

accuracy (Harrell et al., 1996). An alternative approach is the best subset selection by

choosing a subset of variables that minimizes some criterion from all possible combinations

of the variables. It is computationally infeasible for high-dimensional data because there

are 2p candidate models to consider.

In the past decades, penalization methods have been extensively studied in the liter-

ature because of their advantages in computation. To encourage sparsity, a penalty term

is employed on the regression parameters so that a large number of regression coefficients

could be shrunk to zero. The least absolute shrinkage and selection operator (lasso) is

introduced in the seminal work of Tibshirani (1996), and the estimator is defined as

β̂lasso = arg min
β

n∑
i=1

(Yi − βTX i)
2 + λ

p∑
j=1

|βj|,

where λ is a nonnegative regularization/tuning parameter. The second term on the right-

hand side of the above equation is termed ℓ1 penalty. The first term on the right-hand

side above measures the goodness-of-fit and tends to be smaller when more variables are
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included, while the ℓ1 penalty term measures the model complexity and increases as more

variables enter into the model. The lasso performs variable selection in the way that some

estimated coefficients can be shrunk to exactly zero with large enough λ. The larger value

of λ leads to more shrinkage. Lasso is closely related to the bridge regression (Frank &

Friedman, 1993; Fu, 1998) with bridge penalty function λ
∑p

j=1 |βj|q for 0 < q ≤ ∞. The

choice of q = 1 corresponds to the lasso, and q = 2 to the ridge regression. Although

lasso obtains high prediction accuracy by applying shrinkage to the coefficients due to

the bias-variance trade-off, there is no guarantee in the consistency of variable selection

except under some simple settings (Meinshausen & Bühlmann, 2006). In order to achieve

consistent variable selection in lasso, a nontrivial condition is usually required (Zhao &

Yu, 2006).

To overcome this problem, Zou (2006) developed the adaptive lasso in which the ℓ1

penalty is replaced by a weighted version. Specifically, the adaptive lasso estimator is

given by

β̂adalasso = arg min
β

n∑
i=1

(Yi − βTX i)
2 + λ

p∑
j=1

wj|βj|,

where w = 1/|β̂|γ is the vector of weights that adjusts the size of shrinkage to each

coefficient, where γ ≥ 0, and β̂ is a consistent initial estimator of β such as the least-

squares estimator. Moreover, the adaptive lasso possesses the oracle property with fixed

p in the sense that the penalized estimators are asymptotically equivalent to the esti-

mators obtained by the true model without penalization, whereas the lasso does not.

Huang et al. (2008) further explored the oracle property of adaptive lasso when p is

larger than n by considering a different weight vector ω with the jth element ωj =

|
∑n

i=1X
2
ij/

∑n
i=1XijYi|γ, where Xij is the jth element of X i.

The lasso and adaptive lasso are essentially convex optimization problems, and some

considered non-convex penalty functions. One prominent example is the smoothly clipped

absolute deviation (SCAD) proposed by Fan and Li (2001). The SCAD estimator is in
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the form of

β̂SCAD = arg min
β

n∑
i=1

(Yi − βTX i)
2 + pλ(β),

with the derivative of the penalty defined by

p′λ(u) = λ
{
I(u ≤ λ) +

(aλ− u)+
(a− 1)λ

I(u > λ)
}
,

for some a > 2 and nonnegative λ. Fan and Li (2001) showed that the SCAD estimator

enjoys the oracle property. A similar penalty called minimax concave penalty (MCP) is

proposed by Zhang (2010) with p′λ(u) = 1− u/(aλ) for a > 0.

When the variables are predefined into groups, it is useful to consider the group lasso

(Yuan & Lin, 2006). Suppose that there are L groups. The group lasso estimator is

defined by

β̂grouplasso = arg min
β

1

2

n∑
i=1

(Yi − βTX i)
2 + λ

L∑
l=1

√
ρl‖βl‖2,

where √
ρl accounts for the varying group size, and βl denotes the coefficients of X i’s in

the l-th group for l = 1, . . . , L. The group lasso penalty performs like the lasso penalty

on the group level, and the coefficients within a group could all shrunk to be zeros with

appropriate λ. When there is only one variable within each group, the group lasso reduces

to lasso.

Another variable selection method for high-dimensional data is screening based on

some association measurements between individual predictors and response. Unlike pe-

nalization methods, screening measures the effect of each variable individually and rank

the variables by the measurements. The sure independence screening (SIS) procedure

proposed by Fan and Lv (2008) is based on the marginal correlation of X and Y . A

subset of relevant features is determined by the rank of marginal correlations, and defined

as

M = {1 ≤ j ≤ p : |ωj| is among the first d largest of all},
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where ωj is the empirical correlation coefficient of Y and the jth component of X, and

d is some integer smaller than p. The SIS procedure reduces the dimension of predictors

from a large scale to a moderate size. The probability of all the important variables are

included in the final submodel tends to one, which is known as the sure screening property.

Other examples of screening methods include rank correlation screening (Li et al., 2012a)

and distance correlation screening (Li et al., 2012b).

1.4.2 High-Dimensional Inference

For high-dimensional data, estimation and selection methods are widely available. The

problem of inference, however, remains relatively less explored and challenging. A major

difficulty of such a problem is to find the limiting distribution of estimators. Recent

work on the area of high-dimensional inference can be roughly divided into two classes:

methods that make inference of parameters in the full, high-dimensional regression model,

and methods that make inference under a (randomly) selected model.

The methods that make inference of parameters in the full model are often based on

debiased estimators (Bühlmann, 2013; Zhang & Zhang, 2014; van de Geer et al., 2014;

Javanmard & Montanari, 2014a, 2014b) or decorrelated score functions (Ning & Liu, 2017;

Li et al., 2021). Consider the lasso estimator β̂lasso. The inference of β constructed around

β̂lasso would be problematic since the lasso estimator is a biased estimator of β. Zhang and

Zhang (2014) proposed to correct the bias of the lasso estimators by a low-dimensional

projection method in order to form valid confidence intervals for individual regression

coefficients. van de Geer et al. (2014) extended the method of Zhang and Zhang (2014) to

generalized linear models with convex loss function and established asymptotic efficiency

for the debiased estimators. Ning and Liu (2017) provided a general framework for high-

dimensional inference based on the decorrelated score functions, the proposed method is

applicable to generalized linear models and additive hazards model. The aforementioned
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methods are all performed under the sparsity assumption that only a few predictors have

contributions to the response.

The second class of methods studies the post-selection inference problem. It is well-

known that in general, conventional inferential procedures, such as the F test and the t

test, on a selected model are invalid, because the parameters to be estimated or tested

arise from a data-driven model selection procedure and are “random”. Specifically, let

K∗ ⊂ {1, . . . , p} denote the (random) set of indices of the selected variables, K denote the

observed value of K∗, and XK denote the elements of X indexed by K. Instead of the

full model (1.2), we consider the following model

Y = βT
KXK + ϵ̃, (1.3)

where βK is the vector of the regression coefficients corresponding to predictors in XK,

and ϵ̃ is an error term. The true value of the regression parameter in the sub-model (1.3)

is βK0 = arg minβK
E‖Y −βT

KXK‖2, which is generally not the same as the corresponding

components of the true value of β in the full model (1.2). This is because the regression

coefficients in the full model (1.2) measure the effect of a given variable on Y conditional

on the other p− 1 variables, whereas the coefficients in the model (1.3) capture the effect

of a variable in XK on Y , adjusted for the other variables in the selected model. Another

concern is that the target βK changes with the model selection procedure and thus is

random. The randomness lies in the choice of which parameters to estimate instead of

the parameters themselves. The subset of parameters to be estimated and draw inference

on can be expressed as {βK,j : K ⊂ {1, . . . , p}, j ∈ K}. We wish to form inferences for the

parameters βK∗,j in the model K∗ selected. For instance, suppose there exists a confidence

interval CK∗,j such that

P (βK∗,j ∈ CK∗,j) ≥ 1− α,
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where α is the significance level. However, the event inside the probability is not well-

defined because for j /∈ K, the parameter βK,j is undefined.

To deal with the above issues, one approach is to perform conditional inference for

the model parameters given the model selection event. In specific, we may consider a

confidence interval CK,j such that for any j ∈ K, we have

P (βK,j ∈ CK,j | K∗ = K) ≥ 1− α.

Lee et al. (2016) considered a model selected by lasso and derived valid confidence intervals

of the lasso coefficients conditional on the selection event. Tibshirani et al. (2016) carried

out valid inferences after the forward stepwise regression, least angle regression, and the

lasso selection events. Tian et al. (2018) considered a similar problem with unknown noise

level in the regression model. This approach is dependent on distributional assumptions

and is applicable only when the model is selected based on a prespecified formal selection

procedure, such as forward selection and lasso.

An alternative approach is to develop uniformly valid inferential procedures that can

be used after arbitrary model selection. Similarly, we require that the confidence interval

satisfies

P (βK∗,j /∈ CK∗,j for any j ∈ K∗) ≤ α.

This is different from the conditional inference methods since the confidence interval is

universally valid after any model selection procedures. Berk et al. (2013) constructed

post-selection inference (PoSI) for linear regression coefficients in the submodel (1.3), the

simultaneous inference is valid under all possible model selection events instead of a par-

ticular selection procedure such as lasso. This approach is later extended to the problem

of prediction (Bachoc et al., 2019) and to misspecified non-linear settings (Bachoc et al.,

2020). These PoSI-based methods can be computationally NP-hard. Kuchibhotla et al.
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(2020) provided computationally efficient inferences for coefficients that are valid under

arbitrary model selection and allow misspecification of the regression model. Such proce-

dures are based on uniform tail probability inequalities and thus are often conservative.

1.5 Outline of Dissertation

In this dissertation, we focus on the association between partially observed genomic fea-

tures and outcomes of interest in genomic studies. We develop new statistical testing

methods that integrate multiple data types to detect relevant risk factors, and investi-

gate and understand their relationships with the disease outcomes. The remaining of the

dissertation is organised as follows.

In Chapter 2, we consider the association test problem between a phenotype and

an incomplete covariate, where the incomplete covariate may be associated with po-

tentially high-dimensional auxiliary variables. We consider a MAR scenario, where the

missing mechanism may depend on the outcome of interest and observed covariates, and

a complete-case analysis or a single imputation approach is generally invalid. We de-

velop a two-step test procedure that integrates high-dimensional auxiliary variables and

identifies important genomic features associated with the phenotype outcome. We model

the missing covariate against a subset of auxiliary variables, and construct the score test

for the covariate effect on the outcome variable. We show that the proposed test proce-

dure, though derived by assuming a prespecified covariate model, is valid even when the

selection event of the auxiliary variables is random.

In Chapter 3, we consider right-censored survival outcomes and extend the approach

proposed in Chapter 2 to semiparametric outcome models. We specify the link between

the survival outcome and the covariates using a transformation model, which includes the

proportional hazards model and the proportional odds model as special cases. We propose

a new testing method by considering multiple choices of the transformation functions to
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improve test efficiency when the outcome model is unknown. We show that the type I

error of the proposed test is preserved, even when the outcome model and/or the missing

covariate model is misspecified. We establish the asymptotic normality of the proposed

test statistic under some regularity conditions.

In Chapter 4, we make a brief summary of the dissertation and discuss some future

research directions.
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Chapter 2

Score Tests with an Incomplete

Covariate in Parametric Regression

Models

2.1 Model and the Post-Selection Score Test

Consider an outcome of interest Y , a covariate of interest S, a vector of other covariates

X, and a potentially high-dimensional vector of auxiliary variables A. For example, in

genomic studies, Y may represent a disease phenotype, S may represent a genomic variable

of interest, X may represent clinical or demographic variables, and A may represent

other types of genomic or environmental variables collected in the study. The vector of

covariates X includes a constant component of 1. Assume that

Y | (X, S) ∼ FY (;α
TX + βS), (2.1)

where α and β are regression parameters, and FY is a distribution function such that

for some known function µ(·), E[{Y − µ(αTX + βS)}(XT, S)T] = 0 at the true values
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of α and β. This formulation includes as special cases the linear regression model, with

µ(x) = x, and the logistic regression model, with µ(x) = ex/(1 + ex). The parameter β

captures the effect of S on Y given X. In cancer genomic studies, we typically set X to

be clinical or demographic variables and do not include mediator variables in the effect

of S on Y (such as downstream variables of S) in X. In this case, β represents the total

effect of S after accounting for clinical/demographic covariates. We do not assume an

explicit model for S but allow an arbitrary association structure with (X,A). Because

the major purpose of fitting the model of S is to predict missing S values, we can set A

to be (potential) predictive variables of S.

Suppose that S may be missing, and let R be the indicator of whether S is observed.

Specifically, R = 1 if S is observed, and R = 0 otherwise. We assume that R is condition-

ally independent of (S,A) given (Y,X). This missing mechanism is common in two-phase

studies, where the outcome Y and basic covariates X are measured for all subjects in

the first phase, and subjects with certain outcome or covariate values are selected to be

measured for an expensive covariate S in the second phase. We do not allow R to depend

directly on A, because the auxiliary variables, though completely observed, may not be

selected into the model of S. If R depends on a component of A that is associated with

S and is not selected, then the missing mechanism becomes not at random. For a sample

of size n, the observed data consist of {(Yi,X i,Ai, RiSi, Ri) : i = 1, . . . , n}. The assumed

relationships among these variables are illustrated in Figure 2.1.

A S Y

X R

Figure 2.1: Relationships among the completely and incompletely observed variables.
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We wish to test the null hypothesis H0 : β = 0. Due to the presence of missing data,

we propose to fit a working model of S on (X,A) and adopt the score test based on

the full model (including both the models of Y and S). Fitting a working model of S

against (X,A) allows us to utilize information about the missing S values contained in

the auxiliary variables and is generally more efficient than ignoring the auxiliary variables.

The score test is considered, instead of the Wald test and the likelihood-ratio test, because

it only involves estimation under the null hypothesis, whereas the other two tests involve

estimation under the alternative hypothesis. Note that estimation under the alternative

hypothesis is more challenging because the likelihood generally involves an integration

without a closed-form expression.

Because A is potentially high-dimensional, maximum likelihood estimation for the

model of S may be infeasible. Also, the model of S is only of secondary interest, so

full specification of the model may not be necessary. Therefore, we propose a two-step

approach, where in the first step, we select a low-dimensional subset of A into the model

of S, and in the second step, we perform a score test based on the model of Y and a

working model of S.

In the first step, we perform variable selection on A. Let K∗ be a general model

selection operator, such that for an m-vector of outcome variables Y and an (m × p)-

matrix of covariates Z, K∗(Y ,Z) : Rm × Rm×p → Cp, where Cp is the collection of

subsets of {1, . . . , p}. For example, for marginal screening (Fan & Lv, 2008; Fan & Song,

2010) with a quantitative outcome variable and standardized Z, K∗ can be defined as

K∗ : (Y ,Z) 7→ {j : |YTZj| > λ}, where λ is a tuning parameter, and Zj is the jth column

of Z. Likewise, for lasso (Tibshirani, 1996),

K∗ : (Y ,Z) 7→
{
j : γ̂j 6= 0, where (γ̂1, . . . , γ̂p)

T = arg min
γ

(
‖Y − Zγ‖2 + λ‖γ‖1

)}
.

We use this operator to select a model for S based on the residual S− γ̂T
XX and A, where
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γ̂X ≡ (
∑n

i=1RiX iX
T
i )

−1
∑n

i=1RiX iSi is the least-squares estimator of S on X using the

subjects with R = 1. The selected components of A are K∗(S −Xγ̂X ,A), where S is a

vector that consists of {Si : Ri = 1}, and X and A are matrices that consist of rows of

{X i : Ri = 1} and {Ai : Ri = 1}, respectively. For simplicity of presentation, we write

K∗ = K∗(S −Xγ̂X ,A) and let K be the observed value of K∗.

Let WK denote the vector that consists of X and the components of A indexed by K.

In the second step, we fit model (2.1) and the working model S = γT
KWK + δ under the

null hypothesis H0, where δ is a mean-zero error term, and γK is a vector of regression pa-

rameters. In particular, we estimate γK by γ̂K ≡ (
∑n

i=1RiWK,iW
T
K,i)

−1
∑n

i=1RiWK,iSi,

the least-squares estimator using the subjects with observed S values. Let α̂ be the Z-

estimator of α under H0, such that
∑n

i=1

{
Yi − µ(α̂TX i)

}
X i = 0. The (scaled) score

statistic for β is

Uβ(α̂, γ̂K) =
1

n1/2

n∑
i=1

{
Yi − µ(α̂TX i)

}{
RiSi + (1−Ri)γ̂

T
KWK,i

}
.

Note that this coincides with the imputation-based score statistic, that is, the score

statistic when the missing values of S are imputed by the estimated mean γ̂T
KWK.

To obtain an asymptotic size α test, we need to derive the asymptotic distribu-

tion of Uβ(α̂, γ̂K∗) under H0. This is highly challenging, because the model selection

event {K∗ = K} is random, and the usual arguments based on the Taylor’s series ex-

pansion of the score statistic do not apply. Nevertheless, as we establish in Section

2.2, Uβ(α̂, γ̂K∗), properly scaled by a variance term that can be consistently estimated

by an empirical sum-of-squares estimator, is asymptotically normal. In particular, the

variance term resembles that derived based on the usual Taylor’s series expansion on

the score statistic. Let α0 be the true value of α, and for a given selected model

K, define γ0K ≡ arg minγ E{R(S − γTWK)
2} as the true value of γK. Let Iαα =

E{µ′(αT
0X)XXT}, Iβα = −E[µ′(αT

0X)X{RS+(1−R)γT
0KWK}], Iγγ = E(RWKW

T
K),
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and Iβγ = E[{Y − µ(αT
0X)}(1 − R)WK], where µ′ denotes the first derivative of µ. If

the model K is prespecified, then the Taylor’s series expansion of Uβ(α̂, γ̂K) at (α0,γ0K)

yields

Uβ(α̂, γ̂K) =
1

n1/2

n∑
i=1

[
{Yi − µ(αT

0X i)}
{
RiSi + (1−Ri)γ

T
0KWK,i + IT

βαI
−1
ααX i

}
+ IT

βγI
−1
γγWK,iRi(Si − γT

0KWK,i)
]
+ op(1) (2.2)

under regularity conditions. Based on this expansion, we can estimate the asymptotic

variance of Uβ(α̂, γ̂K) by σ̂2(K) = n−1
∑n

i=1{σ̂i(K)− σ(K)}2, where

σ̂i(K) = {Yi − µ(α̂TX i)}
{
RiSi + (1−Ri)γ̂

T
KWK,i + Î

T
βαÎ

−1

ααX i

}
+ Î

T
βγ Î

−1

γγWK,iRi(Si − γ̂T
KWK,i),

σ(K) = n−1
∑n

i=1 σ̂i(K), and Îαα, Îβα, Îβγ, and Îγγ, are the empirical counterparts of

Iαα, Iβα, Iβγ, and Iγγ , respectively, with the expectations replaced by empirical means

and true parameters replaced by estimators. We can show that even though this vari-

ance term is derived based on fixed K, Uβ(α̂, γ̂K∗)/σ̂(K∗) converges to the standard nor-

mal distribution under H0. Therefore, for an asymptotic size α test, we reject H0 if

Uβ(α̂, γ̂K∗)2/σ̂2(K∗) > χ2
1,α.

The proposed test does not require correct specification of the models of Y and S.

For the outcome model, we only require that E[{Y − µ(αT
0X)}(XT, S)T] = 0 under the

null hypothesis, because an empirical variance estimator is used instead of a model-based

estimator. For the covariate model, as detailed in Section 2.2, we require the associa-

tion structure between S and X to be correctly specified but allow arbitrary association

between S and A; correct specification of the association between S and X is generally

needed (Derkach et al., 2015; Lawless, 2018). The association structure between S and
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A affects the power of the test but not its validity under the null hypothesis.

2.2 Asymptotic Properties of the Post-Selection Score

Test

For any K, let γ0X and γ0A,K be the subvectors of γ0K that correspond to X and the

selected components of A, respectively. Define

σ2
1(K) =Var

[
ϵ
{
RS + (1−R)γT

0KWK + IT
βαI

−1
ααX

}]
σ2
2(K) =Var

[
(γT

0X + IT
βαI

−1
αα)

{
E(ϵ | R,X)X − E(ϵX | R)

}
+
{

E(ϵ | R,X)− E(ϵ | R)
}
γT
0A,KAK

+
{

E(ϵ | R,X) + IT
βγI

−1
γγWK

}
R(S − γT

0KWK)
]

σ2
3(K) =Var

{
(γT

0X + IT
βαI

−1
αα)E(ϵX | R) + E(ϵ | R)γT

0A,KAK

}
,

where ϵ = Y −µ(αT
0X), and let σ2(K) =

∑3
k=1 σ

2
k(K). Let ‖ ·‖ψξ

be an Orlicz norm, such

that ‖X‖ψξ
= inf{η > 0 : E(e|X|ξ/ηξ) ≤ 2}, and ‖ · ‖ be the Euclidean norm. We assume

the following conditions. Some conditions involve a generic positive constant M .

(C1) For some ξ ∈ (0, 2], ‖Y ‖ψξ
+ ‖S‖ψξ

+ maxj ‖Aj‖ψξ
< M . The covariate X is

bounded, so that P (‖X‖ < M) = 1. Also, the estimator α̂ is strongly consistent un-

der β = 0, µ(·) is twice continuously differentiable, and λmin[E{µ′(αT
0X)XXT}] >

M−1, where λmin(C) denotes the minimum eigenvalue of the matrix C.

(C2) There exists a sequence of collections of models Ωn, such that P (K∗ ∈ Ωn) → 1,

supK∈Ωn
|K| = O(nτ ), and log |Ωn| = O(nκ), where τ and κ are constants that satisfy

τ < 4ξ/(5ξ+12), 5τ/4+3κ/ξ < 1, and τ+4κ/ξ < 1, and |C| denotes the cardinality

of the set C. Also, infK∈Ωn λmin{E(RWKW
T
K)} > M−1, supK∈Ωn

E{(γT
0KWK)

4} <
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M , and infK∈Ωn σ
2(K) > M−1.

(C3) The probability P (R = 1 | Y,X) > M−1 almost surely.

(C4) Under β = 0, the residual (S − γT
0XX) and X are independent, and A is indepen-

dent of (Y,X).

(C5) The models selected based on the estimated residuals (Si − γ̂T
XX i)i:Ri=1 and the

actual residuals (Si − γT
0XX i)i:Ri=1 are such that

P
{
K∗(S − X γ̂X ,A) 6= K∗(S − Xγ0X ,A)

}
= o(1)

and

sup
K∈Ωn

P
{
K∗(S − X γ̂X ,A) = K

}
P
{
K∗(S − Xγ0X ,A) = K

} < M.

(C6) For a random sample of size m, let S̃ = (S1, . . . , Sm)
T, X̃ = (X1, . . . ,Xm)

T, and

Ã = (A1, . . . ,Am)
T. The random variable

sup
K∈Ωm

∣∣∣∣P
{
K∗(S̃ − X̃γ0X , Ã) = K | Ã

}
P
{
K∗(S̃ − X̃γ0X , Ã) = K

} − 1

∣∣∣∣
converges to 0 in mean as m→ ∞.

Remark 2.1. Condition (C1) imposes constraints on the tail probabilities of the observed

variables. With ξ = 1 or ξ = 2, we assume each component of (Y, S,A) to be sub-

exponential or sub-Gaussian, respectively. To maintain a flexible model for Y , we assume

that X is bounded. Desired theoretical results could be obtained by only requiring

maxj ‖Xj‖ψξ
< M , but additional conditions on µ would be required. Condition (C2)

allows the set of “possibly-selected models” Ωn to grow exponentially with n and the

size of the selected model to increase at a polynomial rate of n. For example, for ξ =
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2, we allow supK∈Ωn
|K| = O(n1/4) and |Ωn| = O{exp(n1/4)}. Note that if the model

selection procedure yields consistent selection, then Ωn can be chosen to be a singleton

set, consisting only of the true model. In our setting, we allow the model selection event

to be genuinely random even when n increases to infinity. Condition (C3) ensures that a

nonvanishing portion of subjects have observed S.

Remark 2.2. Condition (C4) requires that S exhibits a linear association structure with

X and that (Y,X) are independent of the auxiliary variables. This guarantees that

(Y,X) are independent of the model selection event, which is based on the residuals in

the model of S and the auxiliary variables. In cancer genomic studies where X represents

demographic variables and A represents genomic variables (such as gene expressions in the

tumor), X and A are plausibly independent. In general, because X is low-dimensional,

the independence between A and X can be (approximately) achieved by projecting com-

ponents of A to the orthogonal complement of the span of X or functions of X. The

independence between A and Y can be relaxed to allow some auxiliary variables that

are not associated with S to depend on Y ; the technical formulation of the relaxed con-

dition is deferred to Appendix 1. For marginal screening, the relaxed condition allows

the auxiliary variables not in any models in Ωn to depend on Y (and X). Requiring the

(potentially) selected auxiliary variables to be independent of Y is quite reasonable under

the null hypothesis, because these variables are generally associated with S. If they are

also associated with Y , then except at some specific parameter values, S and Y would be

marginally associated, and the null hypothesis does not hold.

Remark 2.3. Conditions (C5) and (C6) impose mild conditions on the model selection

operator. Condition (C5) requires that the model selected based on the estimated residu-

als and that selected based on the actual residuals are asymptotically equal. This is easily

satisfied, because the least-squares estimator γ̂X is consistent. Condition (C6) requires

that the marginal probability of selecting a model is asymptotically equal to the condi-
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tional probability of the same event given the auxiliary variables. This is true of common

model selection operators, which select a model based on the association between the out-

come and the covariates, and the covariates alone do not contain information about the

model selection event. We discuss the verification of these conditions under a marginal

screening procedure in Section 2.6.2.

We impose conditions on the number of possibly-selected models instead of the total

number of auxiliary variables, because the former is directly relevant to the asymptotic

distribution of the score statistic. Nevertheless, for a given maximal selected model size

qn ≡ supK∈Ωn
|K|, we have

rn ≡ |Ωn| ≤
qn∑
s=1

(
pn
s

)
≤

(
epn
qn

)qn

,

where pn is the total number of auxiliary variables. The condition on rn is satisfied if

log pn = O(nκ−τ ), with κ and τ satisfying the inequalities in condition (C2). In fact, if

most auxiliary variables are only weakly associated with S, then rn could be much smaller

than the above upper bound.

We have the following results.

Theorem 2.1. Under conditions (C1)–(C6) and H0, Uβ(α̂, γ̂K∗)/σ(K∗) converges weakly

to the standard normal distribution.

Theorem 2.2. Under conditions (C1)–(C6) and H0,

E
{

sup
K∈Ωn

|σ̂2(K)− σ2(K)|
}
= o(1).

Remark 2.4. Theorem 2.1 states that the scaled score statistic, which is derived from

a randomly selected model, converges in distribution to a standard normal distribution

marginally. A key step in the proof is to show that the score statistic can be (asymp-
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totically) written as a sum of independent variables that are mean zero conditional on

the model selection event and possibly other components of the observed data. Then,

we can employ the Lindeberg approach to the proof of the central limit theorem to es-

tablish the desired result. Theorem 2.2 states that the scaling term of the score statistic

in Theorem 2.1 can be uniformly consistently estimated by the proposed sum-of-squares

estimator over the set of possibly-selected models Ωn.

Combining the above results, we have the following corollary.

Corollary 2.1. Under conditions (C1)–(C6) and H0, Uβ(α̂, γ̂K∗)/σ̂(K∗) converges weakly

to the standard normal distribution.

We outline the proof of Theorem 2.1 here and relegate the complete proofs of The-

orems 2.1 and 2.2 to Section 2.6.5. By a version of the portmanteau theorem (Pollard,

2002, p. 177), it suffices to prove that for any function g with bounded derivatives up to

the third order,

E
[
g
{Uβ(α̂, γ̂K∗)

σ(K∗)

}]
→ E{g(Z)}, (2.3)

where Z is a standard normal variable. The first step of the proof is to expand Uβ(α̂, γ̂K)

as

1

n1/2

n∑
i=1

{
ϵi − E(ϵ | Ri,X i)

}{
RiSi + (1−Ri)γ

T
0KWK,i + IT

βαI
−1
ααX i

}
+

1

n1/2

n∑
i=1

[
(γT

0X + IT
βαI

−1
αα)

{
E(ϵ | Ri,X i)X i − E(ϵX | Ri)

}
+
{

E(ϵ | Ri,X i)− E(ϵ | Ri)
}
γT
0A,KAK,i +

{
E(ϵ | Ri,X i) + IT

βγI
−1
γγWK,i

}
Ri(Si − γT

0KWK,i)

]
+

1

n1/2

n∑
i=1

{
(γT

0X + IT
βαI

−1
αα)E(ϵX | Ri) + E(ϵ | Ri)γ

T
0A,KAK,i

}
+ op(1)

≡ 1

n1/2

n∑
i=1

U1i(K) +
1

n1/2

n∑
i=1

U2i(K) +
1

n1/2

n∑
i=1

U3i(K) + op(1),
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where the op(1) terms converge in mean to zero uniformly over K ∈ Ωn. As a result, the

left-hand side of (2.3) can be written as

∫
K∈Ωn

E
[
g
{
n−1/2

n∑
i=1

U1i(K) + U2i(K) + U3i(K)

σ(K)

}∣∣∣K∗ = K
]

dPK∗(K) + o(1), (2.4)

where PK∗ is the probability measure of K∗.

The main argument of the proof is to show that n−1/2
∑n

i=1 Uki(K) for k = 1, 2, 3

in (2.4) can in turn be replaced by normal variables. Note that conditional on O1 ≡

(Ri, Si,WK,i)i=1,...,n, U11(K), . . . , U1n(K) are mean zero and independent. For i = 1, . . . , n,

let

Ũ1i(K) =Var(ϵ | Ri,X i)
1/2

{
RiSi + (1−Ri)γ

T
0KWK,i + IT

βαI
−1
ααX i

}
Z1i,

where Z11, . . . , Z1n are i.i.d. standard normal random variables that are independent of

the observed data. Because the first and second moments of U1i and Ũ1i given O1 match

and {K∗ = K} is implied by O1, the moments given {K∗ = K} also match. We then use

Lindeberg’s telescoping argument for the central limit theorem (Chung, 2001, p. 211) to

show that n−1/2
∑n

i=1 U1i(K) in (2.4) can be replaced by n−1/2
∑n

i=1 Ũ1i(K). We further

show that the term can be replaced by a normal variable with mean zero and variance

σ2
1(K).

Next, we show that under condition (C5), the event {K∗ = K} in the conditional

expectation in (2.4) can be replaced by {K∗
0 = K}, where K∗

0 ≡ K∗
0(S − Xγ0X ,A) is the

selected model based on the actual residual (S−γT
0XX). Then, we note that {K∗

0 = K} is

implied by O2 ≡ (Ri,Ai, Si − γT
0XX i)i=1,...,n, and conditional on O2, U21(K), . . . , U2n(K)

are mean zero and independent; under this conditional probability space, the random

element in U2i(K) is X i. We can similarly show that n−1/2
∑n

i=1 U2i(K) in (2.4) can be

replaced by a normal variable with mean zero and variance σ2
2(K).
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Finally, we show that after n−1/2
∑n

i=1 U1i(K) and n−1/2
∑n

i=1 U2i(K) are replaced by

normal variables, the conditional expectation in (2.4) can be replaced by a marginal

expectation under condition (C6). It is easy to see that U31(K), . . . , U3n(K) are mean

zero and independent, and thus n−1/2
∑n

i=1 U3i(K) can be replaced by a normal variable

with mean zero and variance σ2
3(K). Combining the above results, we conclude that the

variable in the function g in (2.4) can be replaced by a standard normal variable, and the

desired result follows.

In the conventional argument for the asymptotic distribution of the score statistic,

we expand Uβ(α̂, γ̂K) as in (2.2), and the asymptotic normality of the score statistic

(given X and A) follows from the central limit theorem. However, conditional on the

model selection event {K∗ = K}, (Si − γT
0KWK,i)i=1,...,n are dependent, and the central

limit theorem does not apply. In our proof, instead of relying on the independence of

(Si − γT
0KWK,i)’s, we establish the asymptotic normality based on the (conditional) in-

dependence and mean-zero property of functions of X i’s given the model selection event.

2.3 Simulation Studies

Let X = (X1, . . . , X5)
T, where (X1, X2, X3) are mean-zero multivariate normal variables

with Cov(Xj, Xk) = 0.5|j−k| (j, k = 1, 2, 3), X4 ∼ Bernoulli(0.1), X5 ∼ Bernoulli(0.2),

and X4 and X5 are independent of each other and (X1, X2, X3). Let A be a p-vector of

independent standard normal variables. We set S = γT
XX+γT

AA+γT
A,2A

2+δ, where A2

is a p-vector of the squared components of A, δ is standard normal, γX = (0.1, . . . , 0.1)T,

and γA,2 is 0.1 at the first 5 components and 0 elsewhere. We considered two different

values of γA. In Setting 1, we set γA to be 0.25 at the first 20 components and 0 at

the remaining components, whereas in Setting 2, we set γA to be 0.25 at the first 20

components, 0.02 at the subsequent 80 components, and 0 at the remaining components.

In Setting 1, the model is sparse, and a small number of auxiliary variables have strong

38



effects on S. In Setting 2, the model contains a mixture of strong and weak signals from

the auxiliary variables.

We considered a quantitative and a binary outcome variable Y . For the quantitative

outcome, we set Y = αTX+βS+ϵ, where ϵ is standard normal, and α = (1,−1, 1,−1, 1)T.

For the binary outcome, we set logit{P (Y = 1 | X, S)} = −2.2+αTX + βS, where α is

the same as that under the linear model; the proportion of subjects with Y = 1 is about

15–20%. We considered two missing-data mechanisms. The first mechanism is missing

completely at random (MCAR), where the missing-data status is independent of other

variables. The second mechanism is missing at random (MAR), where for the quantita-

tive outcome, an equal number of subjects at the two extreme tails of the distribution of

Y were selected to have observations on S, whereas for the binary outcome, all subjects

with Y = 1 were selected, and a fraction of subjects with Y = 0 were selected to attain

the desired missing proportion. We considered sample sizes of n = 500 and 1000 and

numbers of auxiliary variables of p = 200, 500, 1000, 1500, and 2000. For the alterna-

tive hypothesis, we set β = 2n−1/2 and 6n−1/2 for the quantitative and binary outcome

variables, respectively. For each setting, we simulated 100,000 and 10,000 replicates for

β = 0 and β 6= 0, respectively.

We compare the performance of five tests: (1) the standard score test using complete

data only; (2) the standard score test with missing data imputed under a working linear

model of S on X and components of A selected using marginal screening, where a com-

ponent of A is selected if its absolute empirical correlation with S − γ̂T
XX among the

subjects with complete data is larger than a certain threshold; (3) the score test based on

the full likelihood with a working linear model of S against X alone; (4) the proposed

test, where the working model of S is selected in the same way as (2); and (5) the score

test based on the full likelihood with a linear model of S against X and the components

of A that are associated with S. We refer to methods (1)–(5) as the complete-case anal-

39



ysis, the simple imputation method, the covariate-only method, the proposed method,

and the true model method, respectively. In the simple imputation, proposed, and true

model methods, only first-order terms of A are in the working models, so none of the

models is “correct”. Nevertheless, according to our theory, the proposed method is still

valid under such misspecification. For the simple imputation and proposed methods,

the threshold for screening is selected using BIC. For the covariate-only and true model

methods, the variance of the score statistic is estimated using the proposed empirical

sum-of-squares estimator instead of the usual estimator based on the second derivative

of the log-likelihood. This is for ease of comparison with the proposed method, and the

two variance estimators are asymptotically equivalent. The true model method is a gold

standard but is not practical, because it requires knowledge of the relevant predictors of

S.

The results under a missing proportion of 60% are plotted in Figures 2.2 and 2.3,

and the results under a missing proportion of 30% are plotted in Figures 2.4 and 2.5 in

Section 2.6.6; the power of methods that inflate the type I error is not presented. The

significance level is set to be 0.05. Under missing at random and the linear outcome

model, both the complete-case analysis and simple imputation method inflate the type

I error, because they underestimate the variance of the score statistic. The covariate-

only method and the true model method preserve the type I error; they do not involve

model selection, and their validity follows from a conventional argument. The proposed

method, despite involving model selection variability, preserves the type I error; in fact,

under Setting 2, any given model is selected at most 0.006% and 3.804% of the times

over all simulation replicates with sample size 500 and 1000, respectively. The pattern

of results under missing at random and the binary outcome model are similar, but the

complete-case analysis preserves the type I error due to the validity of inference based

on the prospective likelihood under a case-control study and the logistic regression model
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(Prentice & Pyke, 1979). Under missing completely at random, all methods preserve the

type I error.

Under the alternative hypothesis, the simple imputation method under missing at

random has relatively high power due to underestimation of the variance of the score

statistic; this is similar for the complete-case analysis under missing at random and the

logistic outcome model. Under settings where the complete-case analysis preserves the

type I error, the complete-case analysis and the covariate-only method have similar power,

because both methods do not incorporate information of the auxiliary variables. As

expected, the proposed method utilizes information about the missing data contained in

the auxiliary variables and tends to yield higher power than the covariate-only method.

The power gain from the incorporation of auxiliary variables can be small or even negative

when the number of auxiliary variables p is much larger than the (effective) sample size∑n
i=1Ri. In this case, the variable selection procedure cannot effectively identify the

relevant auxiliary variables. This results in the inclusion of many noise variables into the

working model of S, which in turn results in a worse fit than the covariate-only model

that has no noise variables.

The true model method tends to have high power, because it uses the true model of

S. Nevertheless, it is less powerful than the proposed method in some scenarios under

Setting 2. This is because the true model contains many auxiliary variables with weak

signals, and the extra information contained in the variables does not compensate the

variability involved in the estimation of their effects. This illustrates that even when the

true model is known, it may be desirable to perform variable selection and retain only

the variables with strong signals.
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Figure 2.2: Rejection probabilities under a missing proportion of 60% and the null hy-
pothesis.
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Figure 2.3: Rejection probabilities under a missing proportion of 60% and the alternative
hypothesis.
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2.4 A Real Study

We analyzed a dataset of patients with colorectal adenocarcinoma from TCGA (The

Cancer Genome Atlas Network, 2012), available at http://gdac.broadinstitute.org/. In

the study, demographic and clinical data, including age at diagnosis, sex, and tumor stage,

as well as genomic data, including the expressions of RNA and protein, were measured.

After removing subjects with missing clinical data, the sample size is 600. The expressions

of 18,068 genes, measured by RNA sequencing, are available for most subjects. The

expressions of 204 proteins or phospho-proteins are available for only 78.2% of the subjects.

We focused on the association between individual protein expressions and tumor stage.

We set the outcome variable to be tumor stage, dichotomized into stage I/II and stage

III/IV, with respective proportions of 0.56 and 0.44. In a single analysis, we set the

covariate of interest S to be the expression of a protein or phospho-protein. We set sex

and age at diagnosis to be the covariates in X and set gene expressions as auxiliary

variables. In the resulting model, β represents the association between a protein and

tumor stage for subjects with given age and sex. Note that the auxiliary variables are

plausibly independent of X, as required by condition (C4). The gene expression data are

incomplete, and we impute the missing values using k-nearest neighbor imputation with

k = 10. We set the auxiliary variables A to be the top 200 principal components of the

gene expressions; they appear to be more predictive than the individual gene expressions.

We performed the proposed test with the working model of S selected by the correlation-

based marginal screening procedure in the simulation studies, and the screening threshold

was selected by BIC. For comparison, we performed the score test using complete data

only and the covariate-only method described in the simulation studies.

A total of 46 proteins were identified to be significantly associated with tumor stage at

α = 0.05 under at least one of the three tests. Among the significant proteins, 76% have

smaller p-values under the proposed method than the complete-case analysis, and 78%
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have smaller p-values under the proposed method than the covariate-only method. Many

of the proteins that are more significant under the proposed method have been identified

to be related to the progression of colorectal adenocarcinoma; the significant proteins and

some relevant references are given in Table 2.1 in Section 2.6.6. This suggests that the

proposed method is more powerful than the other two methods.

To investigate whether the power gain stems from the auxiliary variables, we inspect

the relationship between the significance level and the variation explained by the gene

expressions in the protein models. For a given protein, we let Z1 and Z2 be the indicators

of whether the proposed method yields a smaller p-value than the complete-case analysis

and the covariate-only method, respectively. Let R2 be the coefficient of partial determi-

nation of the gene expressions, that is, the percentage of variation explained by the gene

expressions given that sex and age are in the model. Among the significant proteins, the

sample correlation between Z1 and R2 and that between Z2 and R2 are 0.32 and 0.22, re-

spectively. In addition, we classify each protein into one of two groups based on whether it

is more significant under the proposed method than the complete-case analysis. Then, we

test the difference in mean of R2 between the two groups using the two-sample Wilcoxon

test, and the p-value is 0.0381. A similar analysis comparing the proposed method and

the covariate-only method yields a p-value of 0.1271. The results suggest that proteins

with better fit of the imputation model tend to have higher power gain, especially when

compared with the complete-case analysis.

2.5 Discussion

In this chapter, we consider the association test between an outcome variable and an

incomplete covariate, where the missing covariate values could be imputed using high-

dimensional auxiliary variables. We propose a simple two-step procedure that does not

involve accounting for the variability of model selection in the first step and prove that such
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a procedure is asymptotically valid. This is in contrast with the conventional statistical

intuition that standard inferential procedures on selected models are invalid and proper

adjustments are needed (Fithian et al., 2014; Lee et al., 2016). In the current setting, the

model that involves variable selection is only of secondary interest. Although the fit of

this model would affect the power of the test, the variability of model selection does not

affect the asymptotic distribution of the score statistic.

A linear working model is assumed for the incomplete covariate S, but the validity of

the score test does not depend on the correctness of this model. In fact, as demonstrated

in the simulation studies, a simple working model may yield higher power than the true

model when the latter is complex and involves many unknown parameters. Nevertheless,

we require S to exhibit a linear association with the low-dimensional covariates X in

the outcome model. To relax this assumption, one may instead assume a nonparametric

association between S and X (Derkach et al., 2015).

We focus on the asymptotic property of the score test under the null hypothesis.

Evaluation of the asymptotic power of the test under contiguous alternatives is highly

challenging, because the power depends on specifics of the model selection operator. The

evaluation is even more complicated when R depends on Y , in which case the missing

mechanism for the data on (S,X,A) is not at random. To provide some insights to

the power gain from the auxiliary variables, we evaluate the power under prespecified,

fixed-dimensional sets of auxiliary variables in Section 2.6.3. Under missing completely

at random, inclusion of more auxiliary variables always increases the (asymptotic) power.

Although the power generally does not have a simple form under missing at random, nu-

merical evaluations suggest that the power tends to increase with the number of auxiliary

variables. One should note, however, that these results are asymptotic and may not apply

when the number of auxiliary variables is large compared to the sample size.

One possible extension is by considering more general outcome models. In this work,
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we consider a parametric model of the phenotype outcome. However, in cancer genomic

studies such as TCGA, some outcomes of interest are (possibly censored) time to events,

such as time to cancer progression or death. It is of interest to consider semiparametric

survival models for univariate or recurrent event times.

2.6 Technical Details and Additional Results

2.6.1 Relaxation of Condition (C4)

Let Mn ≡ {j : j ∈ K for some K ∈ Ωn} be the collection of all “possibly selected”

auxiliary variables and MC
n be its complement. Let S and X be the vector or matrix of

the values of Si and X i for subjects with Ri = 1 as defined in Section 2.1, and AMn be

the matrix that consists of rows of {AMn,i : Ri = 1}. For any given (S,X ,AMn), let

K(S,X ,AMn) be the collection of models that could be selected under the given data

values, that is,

K(S,X ,AMn) =
{
K : K∗{S−X γ̂X , (AMn , ÃMC

n
)} = K for some ÃMC

n
∈ R(

∑
iRi)×(pn−|Mn|)

}
.

For any K ∈ Ωn, define

K =
{
M : M ∈ K(S̃, X̃ , ÃMn) for some (S̃, X̃ , ÃMn) such that K ∈ K∗(S̃, X̃ , ÃMn)

}
.

We can understand K as the collection of models that are “close” to K: there exist

auxiliary variable values ÃMn that are compatible with the selection of K as well as

the selection of other elements of K. For marginal screening, because the selection of

components of AMn depends only on (S,X ,AMn) but not AMC
n
, K consists of models

that include variables in K along with a subset of variables in AMC
n
.

We can replace condition (C4) in Theorems 2.1 and 2.2 and Corollary 2.1 by

47



(C4’) Under β = 0, the residual (S − γT
0XX) and the covariate X are independent, and

AMn is independent of (Y,X). Also,
∑

K∈Ωn
P (K∗ 6= K,K∗ ∈ K) → 0.

For marginal screening, elements of {K : K ∈ Ωn} are mutually exclusive. The second

part of condition (C4’) is automatically satisfied, because

∑
K∈Ωn

P (K∗ 6= K,K∗ ∈ K) = P
( ⋃

K∈Ωn

{K∗ 6= K,K∗ ∈ K}
)
≤ P (K∗ /∈ Ωn) → 0.

2.6.2 Model Selection Events Under Marginal Screening

We discuss the model selection events and how conditions (C5) and (C6) can be estab-

lished under a marginal screening procedure. Let S be an outcome of interest, X be a

set of low-dimensional covariates, and A ≡ (A1, . . . , Apn)
T be a set of high-dimensional

covariates. The observed data consist of (Si,X i,Ai)i=1,...,n; suppose that there are no

missing data. For simplicity of presentation, suppose that A is mean zero and uncor-

related with X; otherwise we can replace each component of A by its projection onto

the orthogonal complement of the span of the observed X in the sequel. Consider a

marginal screening procedure, such that the jth component of A is selected if and only if∣∣n−1/2
∑n

i=1(Si− γ̂T
XX i)Aij

∣∣ > λn, where λn is a selection threshold, and γ̂X is the least-

squares estimator of γX . Let γ0X = E(XXT)−1E(XS) and ρnj = Cov(S − γT
0XX, Aj).

For j = 1, . . . , pn, we write

1

n1/2

n∑
i=1

(Si − γ̂T
XX i)Aij

=n1/2ρnj +
1

n1/2

n∑
i=1

{
(Si − γT

0XX i)Aij − ρnj
}
− 1

n1/2
(γ̂X − γ0X)

T
n∑
i=1

X iAij.
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Under condition (C1), we can show that for any diverging sequence kn,

P
{∣∣∣ 1

n1/2
(γ̂X − γ0X)

T
n∑
i=1

X iAij

∣∣∣ > kn

}
≲ exp

{
−Mkmin(1,ξ)/2

n

}
and

P
[∣∣∣ 1

n1/2

n∑
i=1

{
(Si − γT

0XX i)Aij − ρnj
}∣∣∣ > kn

]
≲ exp

(
−Mkξ/2n

)
for j = 1, . . . , pn and some large enough constant M , where A ≲ B means that A ≤ CB

for some positive constant C. If we choose λn � (log pn)2/ξ, then

P

[
sup

j=1,...,pn

∣∣∣∣ 1

n1/2

n∑
i=1

{
(Si − γT

0XX i)Aij − ρnj − (γ̂X − γ0X)
TX iAij

}∣∣∣∣ > λn

]
→ 0.

If there exists a model Kn such that minj∈Kn |ρnj| � λnn
−1/2 � maxj /∈Kn |ρnj|, then Kn is

selected with probability going to 1. In this case, there is no model selection variability,

and conditions (C5) and (C6) are clearly satisfied with Ωn = {Kn}.

Alternatively, suppose that n1/2ρnj = λn − cj for j = 1, . . . , qn and n1/2|ρnj| � λn

for j = qn + 1, . . . , pn, where c1, . . . , cqn are uniformly bounded constants. In this case,

the (marginal) signal strength and the selection threshold are of the same order, and the

selection event of Aj may be nondegenerate. Let Znj = n−1/2
∑n

i=1

{
(Si − γT

0XX i)Aij −

ρnj
}

and bnj = −n−1/2(γ̂X − γ0X)
T ∑n

i=1 X iAij. The selection probability of Kn ⊂

{1, . . . , qn} is

P
(
Znj + bnj > cj for j ∈ Kn, Znj + bnj < cj for j ∈ {1, . . . , qn} \ Kn

)
+O(pne

−Mλ
ξ/2
n ).

Condition (C5) requires that the models selected based on the actual residuals and the

estimated residuals are equal asymptotically. Let Ωn be the collection of all subsets of

{1, . . . , qn}, K∗ = {j : |n−1/2
∑n

i=1(Si− γ̂T
XX i)Aij| > λn}, and K∗

0 = {j : |n−1/2
∑n

i=1(Si−
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γT
0XX i)Aij| > λn}. We have

P (K∗ 6= K∗
0)

≤P (K∗ 6= K∗
0,K∗ ∈ Ωn,K∗

0 ∈ Ωn) + P (K∗ /∈ Ωn,K∗
0 /∈ Ωn)

≤P
(
∪qnj=1 [{j ∈ K∗, j /∈ K∗

0} ∪ {j ∈ K∗
0, j /∈ K∗}]

)
+O{pn exp(−Mλξ/2n )}

≤ qn max
j=1,...,qn

{
P (Znj > cj, Znj + bnj < cj) + P (Znj < cj, Znj + bnj > cj)

}
+ o(1). (2.5)

For any diverging sequence kn and j = 1, . . . , qn, we have

P (Znj > cj, Znj + bnj < cj)

≤P (Znj > cj, Znj − n−1/2kn < cj) + P (n1/2|bnj| > kn)

=P (Znj < cj + n−1/2kn)− P (Znj < cj) + P (n1/2|bnj| > kn)

=
∂

∂ϵ
P (Znj < cj + ϵ)

∣∣∣
ϵ=ϵ̃
n−1/2kn +O[exp{−Mkmin(1,ξ)/2

n }], (2.6)

where ϵ̃ is some value within (0, n−1/2kn). Because Znj converges to the normal distri-

bution, the derivative term on the right-hand side above is bounded. Under the given

conditions on qn, we can find kn such that n−1/2knqn + qn exp{−Mk
min(1,ξ)/2
n } = o(1).

Under this choice of kn and combining (2.5) and (2.6), we have P (K∗ 6= K∗
0) → 0.

To derive the second part of condition (C5), let Ψn = {supj=1,...,qn n
1/2|bnj| < kn} for

some diverging sequence kn. For K ∈ Ωn, let K− = {1, . . . , qn} \ K. We have

P (K∗ = K) ≤P (Znj + bnj > cj for j ∈ K, Znj + bnj < cj for j ∈ K−,Ψn)

+ P (K∗ /∈ Ωn) + P (ΨC
n )

=P (K∗
0 = K) +O{pn exp(−Mλξ/2n )}+O[qn exp{−Mkmin(1,ξ)/2

n }]

+ n−1/2kn

qn∑
k=1

∂

∂ϵk
P (Znj > cj + ϵj for j ∈ K, Znj < cj + ϵj for j ∈ K−)

∣∣∣
ϵ=ϵ̃
,
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where ϵ̃ = (ϵ̃1, . . . , ϵ̃qn) such that |ϵ̃k| < n−1/2kn. Note that each term in the summation on

the right-hand side above is of the same order as P (K∗
0 = K). Again, by an appropriate

choice of kn, we have supK∈Ωn
P (K∗ = K)/P (K∗

0 = K) → 1.

Condition (C6) requires that P (K∗ = K | A) and P (K∗ = K) are equal asymptotically

over K ∈ Ωn. Let σ2
j (Aj) = Var(S − γT

0XX | Aj)A2
j . Note that

P (K∗ = K | A) =P
(
Z̃nj > c̃j for j ∈ K, Z̃nj < c̃j for j ∈ K− | A

)
+ o(1),

where Z̃nj = {n−1
∑

i σ
2
j (Aij)}−1/2Znj and c̃j = {n−1

∑
i σ

2
j (Aij)}−1/2cj. Based on a

similar expansion as the above, the first term on the right-hand side above is

P
(
Z̃nj > c̃0j for j ∈ K, Z̃nj < c̃0j for j ∈ K− | A

)
+ n−1/2kn

qn∑
k=1

∂

∂ϵk
P
(
Z̃nj > c̃0j + ϵj for j ∈ K, Z̃nj < c̃0j + ϵj for j ∈ K− | A

)
|ϵ=ϵ̃

+O

[
P
{

sup
j=1,...,qn

n1/2|c̃j − c̃0j| > kn

}]
,

where c̃0j = [E{σ2
j (Aj)}]−1/2cj. If σ2

j (Aj) ≲ Adj for some d ≥ 2 and σ2
j (Aj) is bounded

away from zero, then P{n1/2|c̃j− c̃0j| > kn} ≲ exp(−Mk
ξ/d
n ). Condition (C6) can then be

established by noting that the first term above converges to a limit that does not depend

on A, and the second and third terms converge to 0 faster than the first term under an

appropriate choice of kn.

2.6.3 Evaluation of Power

We evaluate the power of the score test under a prespecified set of auxiliary variables.

According to (2.2), the score statistic can be expanded as n−1/2
∑n

i=1Ψ(ℓβ,i, ℓ
T
α,i, ℓ

T
γ,i)

T +

op(1), where Ψ = (1, IT
βαI

−1
αα, I

T
βγI

−1
γγ ), ℓβ,i = {Yi − µ(αT

0X i)}{RiSi + (1−Ri)γ
T
0KWK,i},

ℓα,i = {Yi − µ(αT
0X i)}X i, and ℓγ,i = Ri(Si − γT

0KWK,i)WK,i. Let (ℓβ, ℓα, ℓγ) be
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(ℓβ,i, ℓα,i, ℓγ,i) for a generic subject. Under a contiguous alternative of β = βn = n−1/2b for

some constant b, the score test statistic converges to a noncentral chi-square distribution

with the noncentrality parameter

C = lim
n→∞

[n1/2Ψ{E(ℓβ),E(ℓα)T,E(ℓγ)T}T]2

ΨE{(ℓβ, ℓT
α , ℓ

T
γ )

⊗2}ΨT , (2.7)

where a⊗2 = aaT for any vector a. We evaluate C under different missing mechanisms

and outcome models.

First, consider the linear model Y = αTX + βS + ϵ, where E(ϵ | X, S,A) = 0 and

Var(ϵ | X, S,A) = σ2. Consider an extreme-tail sampling scheme, such that R = I(Y ∈

Ω) with Ω = (−∞, C2) ∪ (C1,∞) for some constants C2 < C1. Under the contiguous

alternative,

n1/2E(ℓβ) =n1/2E{ϵR(S − γT
0KWK)}+ bE[S{RS + (1−R)γT

0KWK}].

The first expectation on the right-hand side above is

E{ϵI(Y ∈ Ω)(S − γT
0KWK)}

=E
[
(S − γT

0KWK)E{ϵI(αT
0X + βnS + ϵ ∈ Ω) | WK, S}

]
= βnE

[
(S − γT

0KWK)
2 ∂

∂t
E{ϵI(t+αT

0X + ϵ ∈ Ω) | WK}
∣∣
t=0

]
+ o(n−1/2)

= βnE{(S − γT
0KWK)

2h1(X)}+ o(n−1/2),

where h1(X) = (C1 − αT
0X)fϵ(C1 − αT

0X) − (C2 − αT
0X)fϵ(C2 − αT

0X), and fϵ is the

density of ϵ. Thus,

n1/2E(ℓβ) → bE{(S − γT
0KWK)

2h1(X)}+ bE[S{RS + (1−R)γT
0KWK}].
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Similarly,

n1/2E(ℓγ) → bE
{
h2(X)(S − γT

0KWK)
2WK

}
,

where h2(X) = fϵ(C1 − αT
0X) − fϵ(C2 − αT

0X). Simple algebraic manipulations yield

n1/2E(ℓα) = bE(SX). With h3(X) = E{ϵI(ϵ ≤ C2 − αT
0X or ϵ ≥ C1 − αT

0X)} and

h4(X) = P (ϵ ≤ C2 − αT
0X) + P (ϵ ≥ C1 − αT

0X), Iβγ = −E{h3(X)WK} and Iγγ =

E{h4(X)WKW
T
K}. Combining the above results, we can derive that (the limit of) the

numerator of C is

b2
(

E
{
(S − γT

0KWK)
2h1(X)

}
+ E

[
(S − γT

0XX){γT
0KWK + h4(X)(S − γT

0KWK)}
]

− E
{
h3(X)WK

}TE
{
h4(X)WKW

T
K
}−1E

{
h2(X)(S − γT

0KWK)
2WK

})2

,

where γ0X = E(XXT)−1E(XS). Note that under the contiguous alternative, the limit

of the denominator of C is equal to that under the null. The denominator is

Var(ℓβ + IT
βαI

−1
ααℓα + IT

βγI
−1
γγ ℓγ)

=E
[
ϵP⊥

X{RS + (1−R)γT
0KWK} − E

{
h3(X)WK

}TE
{
h4(X)WKW

T
K
}−1

R(S − γT
0KWK)WK

]2
,

where P⊥
X denotes the projection onto the orthogonal space of X, i.e., P⊥

X(T ) = T −

XTE(XXT)−1E(XT ) for any random variable T .

When S is missing completely at random, Iβγ = 0. In this case, the numerator of C

is

b2
(

E
[
S{RS + (1−R)γT

0KWK}
]
− γT

0XE
[
X{RS + (1−R)γT

0KWK}
])2

= b2
[
pRE

{
P⊥
X(S)

}2
+ (1− pR)E

{
P⊥
X(γ

T
0KWK)

}2
]2
,
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where pR = P (R = 1). The denominator of C is

Var(ℓβ + IT
βαI

−1
ααℓα) = σ2E

[
P⊥
X

{
RS + (1−R)γT

0KWK
}]2

,

We have

C =
b2
[
pRE

{
P⊥
X(S)

}2
+ (1− pR)E

{
P⊥
X(γ

T
0KWK)

}2]2
σ2E

[
P⊥
X

{
RS + (1−R)γT

0KWK
}]2 .

Following the arguments in Section S.4 of Wong et al. (2019b), we can show that a test

with a larger set of auxiliary variables has a larger noncentrality parameter and thus is

more powerful.

Next, consider the logistic regression model logit{P (Y = 1 | X, S)} = αTX + βS. In

this case, µ(x) = ex/(1 + ex) and µ′(x) = ex/(1 + ex)2. For a case-control study, we can

set R = 1 − (1 − Y )ω, where ω is a Bernoulli variable that is independent of the data

with P (ω = 1) = pω. In this case, the numerator of C is

b2
{

E
{
µ′(αT

0X)S2
}
− pωE

{
µ(αT

0X)µ′(αT
0X)(S − γT

0KWK)
2
}

− E
(
µ′(αT

0X)X[pR(X)S + {1− pR(X)}γT
0KWK]

)TE
{
µ′(αT

0X)XXT}−1E
{
µ′(αT

0X)SX
}

− p2ωE
{
µ′(αT

0X)WK
}TE

{
pR(X)WKW

T
K
}−1E

{
µ′(αT

0X)(S − γT
0KWK)

2WK
}}2

,

where pR(X) = P (R = 1 | X) = 1− pω/(1 + eα
T
0 X). The denominator of C is

Var(ℓβ + IT
βαI

−1
ααℓα + IT

βγI
−1
γγ ℓγ)

=E
[
{Y − µ(αT

0X)}P̃⊥
X{RS + (1−R)γT

0KWK}

− pωE
{
µ′(αT

0X)WK
}TE{pR(X)WKW

T
K}−1R(S − γT

0KWK)WK

]2
,

where P̃⊥
X(T ) = T −XTE{µ′(αT

0X)XXT}−1E{µ′(αT
0X)XT} for any random variable
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T .

When S is missing completely at random, Iβγ = 0. The denominator of C simplifies

to

Var(ℓβ + IT
βαI

−1
ααℓα) = E

[
µ′(αT

0X)P̃⊥
X{RS + (1−R)γT

0KWK}
]2
.

The numerator of C is

b2
(
pRE

[
µ′(αT

0X){P̃⊥
X(S)}2

]
+ (1− pR)E

[
µ′(αT

0X){P̃⊥
X(γ

T
0KWK)}2

])2

.

Therefore, the noncentrality parameter under MCAR is

C =
b2
(
pRE

[
µ′(αT

0X){P̃⊥
X(S)}2

]
+ (1− pR)E

[
µ′(αT

0X){P̃⊥
X(γ

T
0KWK)}2

])2
E
[
µ′(αT

0X)P̃⊥
X{RS + (1−R)γT

0KWK}
]2 .

As in the linear model, the power increases as the set of auxiliary variables expands.

Based on the limiting distribution of the score test statistic established above, we

can evaluate the power of the test under different sets of auxiliary variables. We consider

Setting 2 in the simulation studies in Section 2.3. We plot the asymptotic power under the

linear and logistic regression models, with auxiliary variables A1, . . . , Aq for q = 1, . . . , 200

in Figure 2.6. As expected, under MCAR, the power increases as more auxiliary variables

are included into the model. The same pattern holds for the two MAR mechanisms

considered.

2.6.4 Additional Theoretical Results

Before proving the theorems, we present the following lemmas. All lemmas are stated

under the null hypothesis H0.
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Lemma 2.1. Under conditions (C1)–(C3), the inequalities

sup
K∈Ωn

∥∥∥γ̂K − γ0K

∥∥∥ > C1

{(t+ log rn + qn
n

)1/2

+
qn(logn)2/ξ(t+ log rn + qn)

2/ξ

n

}
,

sup
K∈Ωn

∥∥∥Î−1

γγ Îβγ − I−1
γγ Iβγ

∥∥∥ > C1

{(t+ log rn + qn
n

)1/2

+
qn(logn)2/ξ(t+ log rn + qn)

2/ξ

n

}
, and

sup
K∈Ωn

∥∥∥Îβα − Iβα

∥∥∥ > C1

{(t+ log rn
n

)1/2

+
q
1/2
n (logn)1/ξ(t+ log rn)1/min(1,ξ)

n

}

hold with probability at most C2e
−t for large enough n and t, where C1 and C2 are positive

constants.

Let

σ̂2
1(K) =

1

n

n∑
i=1

Var(ϵ | Ri,X i)
{
RiSi + (1−Ri)γ

T
0KWK,i + IT

βαI
−1
ααX i

}2

σ̂2
2(K) =

1

n

n∑
i=1

Var
[
(γT

0X + IT
βαI

−1
αα)

{
E(ϵ | Ri,X)X − E(ϵX | Ri)

}
+
{

E(ϵ | Ri,X)− E(ϵ | Ri)
}
γT
0A,KAK,i

+
{

E(ϵ | Ri,X) + IT
βγI

−1
γγWK,i

}
Ri(Si − γT

0KWK,i) | Ri,Ai, Si − γT
0XX i

]
σ̂2
3(K) =

1

n

n∑
i=1

Var
{
(γT

0X + IT
βαI

−1
αα)E(ϵX | R) + E(ϵ | R)γT

0A,KAK,i | Ai

}
.

Lemma 2.2. Under conditions (C1)–(C4), for large enough n and t,

P

[
sup
K∈Ωn

3∑
k=1

∣∣σ̂2
k(K)− σ2

k(K)
∣∣ > C1

{(t+ log rn
n

)1/2

+
qn(logn)2/ξ(t+ log rn)2/ξ

n

}]
≤ C2e

−t,

where C1 and C2 are positive constants.

Lemma 2.3. Under conditions (C1)–(C4),

E
{

sup
K∈Ωn

∣∣∣∣ 1

n1/2

n∑
i=1

(Î
T
βγ Î

−1

γγ − IT
βγI

−1
γγ )WK,iRi(Si − γT

0KWK,i)

∣∣∣∣} = o(1).
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Lemma 2.4. Assume that conditions (C1)–(C3) hold. For Uki and Ũki (k = 1, 2, 3; i =

1, . . . , n) defined in the proof of Theorem 2.1,

P

[
3∑

k=1

sup
K∈Ωn

1

n3/2

n∑
i=1

(
|Uki|3 + |Ũki|3

)
> C1

{
(t+ log rn)1/2

n
+
q
3/2
n (logn)6/ξ(t+ log rn)6/ξ

n3/2

}]

is smaller than C2e
−t for large enough n and t, where C1 and C2 are positive constants.

The proofs of Lemmas 2.1–2.4 and Theorem 2.2 involve Theorem A.1 of Kuchibhotla

et al. (2018), which is restated here for the convenience of the reader. We have relabelled

some quantities to be consistent with the notations in this chapter.

Lemma 2.5. Suppose Q1, . . . ,Qn are mean zero independent random vectors in Rk such

that for some a > 0 and Kn,k > 0, max1≤i≤n max1≤j≤k ‖Qij‖ψa ≤ Kn,k, where Qij is the

jth component of Qi. Define

Γn,k ≡ max
1≤j≤k

1

n

n∑
i=1

E(Q2
ij).

Then for any t ≥ 0, with probability at least 1− 3e−t,

max
1≤j≤k

∣∣∣∣ 1n
n∑
i=1

Qij

∣∣∣∣ ≤ 7
[Γn,k{t+ log(2k)}

n

]1/2
+
CaKn,k{log(2n)}1/a{t+ log(2k)}1/T1(a)

n
,

where T1(a) = min{a, 1} and Ca is a constant depending only on a.

Proof of Lemma 2.1. Let W = (XT,AT)T and W i = (XT
i ,A

T
i )

T for i = 1, . . . , n.

Let ÎC,γγ = n−1
∑n

i=1RiW iW
T
i , ÛC,γ = n−1

∑n
i=1RiSiW i, IC,γγ = E(RWW T), and

UC,γ = E(RSW ). Let p be the dimension of W and Θn = {b ∈ Rp : ‖b‖ ≤ 1, bKC =

0 for some K ∈ Ωn}, where bKC denotes the subvector of b that corresponds to the com-
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ponents of A not in K. Note that

sup
K∈Ωn

∥∥γ̂K − γ0K
∥∥ = sup

b∈Θn

∣∣bT(Î
−1

C,γγÛC,γ − I−1
C,γγUC,γ)

∣∣
≤

supb∈Θn

∣∣bT(ÛC,γ −UC,γ)
∣∣+ supb∈Θn

∣∣bT(ÎC,γγ − IC,γγ)b
∣∣‖γ0K‖

infK∈Ωn λmin{E(RWKW
T
K)} − supb∈Θn

∣∣bT(ÎC,γγ − IC,γγ)b
∣∣

whenever infK∈Ωn λmin{E(RWKW
T
K)} > supb∈Θn

∣∣bT(ÎC,γγ − IC,γγ)b
∣∣; this inequality fol-

lows from the proof of Theorem 3.1 in Kuchibhotla et al. (2018). Let N (ϵ,Θn) be an

ϵ-net of Θn and Ns(ϵ) be an ϵ-net of {b ∈ Rs : ‖b‖ ≤ 1} for s ≥ 1. We have

|N (ϵ,Θn)| ≤ rn|Nqn(ϵ)|, which is in turn smaller than rn(1 + ϵ−1)qn by Lemma 4.1 of

Pollard (1990). From expression (21) of Kuchibhotla et al. (2018), we have

sup
b∈Θn

∣∣bT(ÛC,γ −UC,γ)
∣∣ ≤ 2 sup

b∈N (1/2,Θn)

∣∣bTÛC,γ − bTUC,γ

∣∣.
We place a probability bound on the right-hand side above using Lemma 2.5, with Qij =

RiSib
T
j W i, bj being the jth element of N (1/2,Θn), k = |N (1/2,Θn)|, and a = ξ/2. Note

that

‖RiSib
TW i‖ψξ/2

≲ ‖Si‖ψξ
‖bT

j W i‖ψξ
≲ q1/2n ,

where the first inequality follows from (3.5) of Kuchibhotla and Chakrabortty (2018).

Therefore, with probability at most 3e−t,

sup
b∈N (1/2,Θn)

∣∣bTÛC,γ − bTUC,γ

∣∣
>M1

[{t+ log(2rn) + qn
n

}1/2

+
q
1/2
n {log(2n)}2/ξ{t+ log(2rn) + qn}2/ξ

n

]
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for any t > 0 and some positive constant M1. Likewise,

sup
b∈Θn

∣∣bT(ÎC,γγ − IC,γγ)b
∣∣ ≤ 2 sup

b∈N (1/4,Θn)

∣∣bTÎC,γγb− bTIC,γγb
∣∣,

and with probability at most 3e−t,

sup
b∈N (1/4,Θn)

∣∣bTÎC,γγb− bTIC,γγb
∣∣

>M2

[{t+ log(2rn) + qn
n

}1/2

+
qn{log(2n)}2/ξ{t+ log(2rn) + qn}2/ξ

n

]

for any t > 0 and some positive constantM2. By condition (C2), infK∈Ωn λmin{E(RWKW
T
K)}

is bounded away from 0. Also,

Var(RS) ≥ Var(RγT
0KWK) ≥ λmin{E(RWKW

T
K)}‖γ0K‖2 − {E(RγT

0KWK)}2

uniformly over K. Because |E(RγT
0KWK)| and Var(RS) are bounded above and the

eigenvalues of E(RWKW
T
K) are bounded below over K ∈ Ωn, supK∈Ωn

‖γ0K‖2 is bounded.

We conclude that for any t > 0, the probability of the event

sup
K∈Ωn

∥∥γ̂K − γ0K
∥∥ > M3

[{t+ log(2rn) + qn
n

}1/2

+
qn{log(2n)}2/ξ{t+ log(2rn) + qn}2/ξ

n

]

is bounded by M4e
−t for some positive constants M3 and M4, and the first result follows.

The second result can be proved analogously.

For the third result, let Î2,βα = −n−1
∑n

i=1 µ
′(αT

0X i)(1−Ri)W iX
T
i and I2,βα be its

expected value. Let Ξn = {γ ∈ Rp : γK = γ0K,γKC = 0 for some K ∈ Ωn}. We have

sup
K∈Ωn

∥∥Îβα − Iβα
∥∥
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≤
∥∥∥ 1
n

n∑
i=1

µ′(αT
0X i)X iRiSi − E

{
µ′(αT

0X)XRS
}∥∥∥+ sup

γ∈Ξn

∥∥γTÎ2,βα − γTI2,βα

∥∥.
Clearly, the first term on the right-hand side above is of order n−1/2. By Lemma 2.5,

sup
γ∈Ξn

∥∥γTÎ2,βα − γTI2,βα

∥∥
>M5

[{t+ log(2rn)
n

}1/2

+
q
1/2
n {log(2n)}1/ξ{t+ log(2rn)}1/min(1,ξ)

n

]

with probability at most 3e−t for any t > 0 and some positive constant M5. The desired

result follows.

Proof of Lemma 2.2. Let σ̂2
1i(K) be the ith term in the summation in σ̂2

1(K) (i = 1, . . . , n).

Because

σ2
1(K) =E

(
Var

[
ϵ
{
RS + (1−R)γT

0KWK + IT
βαI

−1
ααX

}
| R,S,X,A

])
=E

[
Var

(
ϵ | R,X

){
RS + (1−R)γT

0KWK + IT
βαI

−1
ααX

}2
]
,

the expectation of σ̂2
1i(K) is equal to σ2

1(K) for i = 1, . . . , n. Under condition (C1),

‖σ̂2
1i(K)‖ψξ/2

≲ qn uniformly over K ∈ Ωn. By Lemma 2.5,

sup
K∈Ωn

∣∣∣ 1
n

n∑
i=1

σ̂2
1i(K)− σ2

1(K)
∣∣∣

>M1

[{t+ log(2rn)
n

}1/2

+
qn{log(2n)}2/ξ{t+ log(2rn)}2/ξ

n

]

with probability at most 3e−t for any t > 0 and some positive constant M1. Therefore,

the desired probability bound holds for supK∈Ωn
|σ̂2

1(K)− σ2
1(K)|.

To show the result for σ̂2
2(K), we note that the term in the conditional variance in

the definition of σ̂2
2(K) has conditional expectation zero given (R,A, S − γT

0XX). By
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condition (C4), X is independent of (S−γT
0XX), so that E{E(ϵ | R,X)X −E(ϵX | R) |

R,A, S − γT
0XX} = 0 and E{E(ϵ | R,X)− E(ϵ | R) | R,A, S − γT

0XX} = 0. Also,

E
{

E(ϵ | R = 1,X) + IT
βγI

−1
γγWK | R = 1,A, S − γT

0XX
}
= 0. (2.8)

To see this, let W̃K = WK − (0T,E(AT
K))

T, and note that

IT
βγI

−1
γγw =E{ϵ(1−R)W̃K}TE(RW̃KW̃

T
K)

−1{w − (0T,E(AT
K))

T}

≡ Ĩ
T
βγ Ĩ

−1

γγ {w − (0T,E(AT
K))

T}

for any vector w of appropriate dimension. With X = (1, X̃
T
)T, we have Ĩβγ = −P (R =

1)(E1(ϵ),E1(ϵX̃
T
),0T)T, where E1 denotes expectation given R = 1, and

Ĩγγ = P (R = 1)


1 E1(X̃

T
) 0

E1(X̃) E1(X̃X̃
T
) 0

0 0 E1[{AK − E(AK)}{AK − E(AK)}T]

 .

Therefore,

IT
βγI

−1
γγE(WK | R = 1,A, S − γT

0XX)

= −
(

E1(ϵ) E1(ϵX̃
T
)
) 1 E1(X̃

T)

E1(X̃) E1(X̃X̃
T
)


−1 1

E1(X̃)

 = −E1(ϵ),

and that (2.8) holds. We have

E
[{

E(ϵ | R,X) + IT
βγI

−1
γγWK

}
R(S − γT

0KWK) | R,A, S − γT
0XX

]
= 0,

so that E{σ̂2
2i(K)} = σ2

2(K), where σ̂2
2i(K) is the ith term in the summation in σ̂2

2(K) (i =
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1, . . . , n). The probability bound for supK∈Ωn
|σ̂2

2(K)− σ2
2(K)| can be established using a

similar argument as the above. Likewise, we can establish the bound for supK∈Ωn
|σ̂2

3(K)−

σ2
3(K)| using a similar argument.

Proof of Lemma 2.3. Let Ψn = {(b1, b2) ∈ Rp × Rp : ‖b1‖ ≤ 1, (b1)KC = 0, b2 =

γ0K for some K ∈ Ωn}. We have

sup
K∈Ωn

∣∣∣∣ 1

n1/2

n∑
i=1

(Î
T
βγ Î

−1

γγ − IT
βγI

−1
γγ )WK,iRi(Si − γT

0KWK,i)

∣∣∣∣
≤n1/2 sup

K∈Ωn

∥∥ÎT
βγ Î

−1

γγ − IT
βγI

−1
γγ

∥∥ sup
(b1,b2)∈Ψn

∣∣∣∣ 1n
n∑
i=1

bT
1W iRi(Si − bT

2W i)

∣∣∣∣
≤ 2n1/2 sup

K∈Ωn

∥∥ÎT
βγ Î

−1

γγ − IT
βγI

−1
γγ

∥∥ sup
(b1,b2)∈N (1/2,Ψn)

∣∣∣∣ 1n
n∑
i=1

bT
1W iRi(Si − bT

2W i)

∣∣∣∣, (2.9)

where N (1/2,Ψn) is a (1/2)-net of Ψn under the distance d(a, b) = ‖a1−b1‖+I(a2 6= b2)

for a ≡ (a1,a2) and b ≡ (b1, b2) in Ψn; by the arguments in the proof of Lemma 2.1,

|N (ϵ,Ψn)| ≤ rn(1 + ϵ−1)qn . For any (b1, b2) ∈ Ψn, we have E{bT
1W iRi(Si − bT

2W i)} = 0

for i = 1, . . . , n. By Lemma 2.5,

sup
(b1,b2)∈N (1/2,Ψn)

∣∣∣∣ 1n
n∑
i=1

bT
1W iRi(Si − bT

2W i)

∣∣∣∣
>M1

[{t+ log(2rn) + qn
n

}1/2

+
qn{log(2n)}2/ξ{t+ log(2rn) + qn}2/ξ

n

]

with probability at most 3e−t for any t > 0 and some positive constant M1. Therefore,

by Lemma 2.1, the right-hand side of (2.9) is bounded above by

M2n
1/2

[{t+ log(2rn) + qn
n

}1/2

+
qn{log(2n)}2/ξ{t+ log(2rn) + qn}2/ξ

n

]2
with probability at least 1−M3e

−t for any t > 0 and some positive constants M2 and M3.

By condition (C2), the above expression tends to 0, and thus the desired result holds.
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Proof of Lemma 2.4. Recall that U1i =
{
ϵi − E(ϵ | Ri,X i)

}{
RiSi + (1 − Ri)γ

T
0KWK,i +

IT
βαI

−1
ααX i

}
, and note that supK∈Ωn

‖U3
1i‖ψξ/6

≲ q
3/2
n . By Lemma 2.5,

sup
K∈Ωn

{ 1

n

n∑
i=1

|U1i|3 − E(|U11|3)
}

>M1

[{t+ log(2rn)
n

}1/2

+
q
3/2
n {log(2n)}6/ξ{t+ log(2rn)}6/ξ

n

]

with probability at most 3e−t for any t > 0 and some positive constant M1. Because

E(|U11|3) is uniformly bounded over K ∈ Ωn,

1

n3/2
sup
K∈Ωn

n∑
i=1

|U1i|3 > M2

[{t+ log(2rn)}1/2
n

+
q
3/2
n {log(2n)}6/ξ{t+ log(2rn)}6/ξ

n3/2

]

with probability at most M3e
−t for any t > 0 and some positive constants M2 and M3.

Recall that U2i is equal to

(γT
0X + IT

βαI
−1
αα)

{
E(ϵ | Ri,X i)X i − E(ϵX | Ri)

}
+
{

E(ϵ | Ri,X i)− E(ϵ | Ri)
}
γT
0A,KAK,i

+
{

E(ϵ | Ri,X i) + IT
βγI

−1
γγWK,i

}
Ri(Si − γT

0KWK,i),

and note that ‖IT
βγI

−1
γγWK‖ is bounded, so

∥∥U3
2i

∥∥
ψξ/3

=O
(
1 +

∥∥γT
0A,KAK,i

∥∥3

ψξ
+
∥∥Si − γT

0KWK,i
∥∥3

ψξ

)
≲ q3/2n .

By Lemma 2.5,

sup
K∈Ωn

{ 1

n

n∑
i=1

|U2i|3 − E(|U21|3)
}

>M4

[{t+ log(2rn)
n

}1/2

+
q
3/2
n {log(2n)}3/ξ{t+ log(2rn)}3/ξ

n

]
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with probability at most 3e−t for any t > 0 and some positive constant M4. Because

E(|U21|3) is uniformly bounded over K ∈ Ωn,

1

n3/2
sup
K∈Ωn

n∑
i=1

|U2i|3 > M5

[{t+ log(2rn)}1/2
n

+
q
3/2
n {log(2n)}3/ξ{t+ log(2rn)}3/ξ

n3/2

]

with probability at most M6e
−t for any t > 0 and some positive constants M5 and M6.

Similar arguments show that the same bound applies to the terms involving Ũ1i, Ũ2i, U3i,

and Ũ3i.

2.6.5 Proofs of Theorems 2.1 and 2.2

Proof of Theorem 2.1. We first prove the theorem under conditions (C1)–(C6) and then

consider the relaxation of condition (C4) to condition (C4’). Let ϵi = Yi − µ(αT
0X i) for

i = 1, . . . , n. For any fixed K, we can write

Uβ(α̂, γ̂K)

=
1

n1/2

n∑
i=1

{
Yi − µ(α̂TX i)

}{
RiSi + (1−Ri)γ̂

T
KWK,i

}
=

1

n1/2

n∑
i=1

[
ϵi
{
RiSi + (1−Ri)γ

T
0KWK,i + Î

T
βαÎ

−1

ααX i

}
+ Î

T
βγ Î

−1

γγWK,iRi(Si − γT
0KWK,i)

]
− 1

2n1/2

n∑
i=1

µ′′(α̃TX i)(α̂−α0)
TX iX

T
i (α̂−α0)

{
RiSi + (1−Ri)γ

T
0KWK,i

}
− 1

n1/2

n∑
i=1

{µ(α̂TX i)− µ(αT
0X i)}(1−Ri)W

T
K,i(γ̂K − γ0K)

=
1

n1/2

n∑
i=1

[
ϵi
{
RiSi + (1−Ri)γ

T
0KWK,i + IT

βαI
−1
ααX i

}
+ IT

βγI
−1
γγWK,iRi(Si − γT

0KWK,i)
]
+ op(1),
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where α̃ is some value between α̂ and α0. The third equality follows from the conver-

gence of γ̂K, α̂, Îαα, and Îβα to the true values (by Lemma 2.1 and condition (C1))

and the convergence of n−1/2
∑n

i=1(Î
T
βγ Î

−1

γγ − IT
βγI

−1
γγ )WK,iRi(Si − γT

0KWK,i) to zero (by

Lemma 2.3). Note that the op(1) term converges in mean to zero uniformly over K ∈ Ωn.

The first term on the right-hand side above can be written as

1

n1/2

n∑
i=1

{
ϵi − E(ϵ | Ri,X i)

}{
RiSi + (1−Ri)γ

T
0KWK,i + IT

βαI
−1
ααX i

}
+

1

n1/2

n∑
i=1

[
(γT

0X + IT
βαI

−1
αα)

{
E(ϵ | Ri,X i)X i − E(ϵX | Ri)

}
+
{

E(ϵ | Ri,X i)− E(ϵ | Ri)
}
γT
0A,KAK,i

+
{

E(ϵ | Ri,X i) + IT
βγI

−1
γγWK,i

}
Ri(Si − γT

0KWK,i)

]
+

1

n1/2

n∑
i=1

{
(γT

0X + IT
βαI

−1
αα)E(ϵX | Ri) + E(ϵ | Ri)γ

T
0A,KAK,i

}
≡ 1

n1/2

n∑
i=1

U1i +
1

n1/2

n∑
i=1

U2i +
1

n1/2

n∑
i=1

U3i.

Note that U1i, U2i, and U3i generally depend on the selected model K.

By a version of the portmanteau theorem (Pollard, 2002, p. 177), it suffices to show

that for any g ∈ C3
B,

E
[
g
{Uβ(α̂, γ̂K∗)

σ(K∗)

}]
→ E{g(Z)}, (2.10)

where Z is a standard normal random variable. Based on the above results and the

mean-value theorem,

E
[
g
{Uβ(α̂, γ̂K∗)

σ(K∗)

}]
=

∫
E
[
g
{Uβ(α̂, γ̂K)

σ(K)

}
| K∗ = K

]
dPK∗(K)

65



=

∫
K∈Ωn

E
[
g
{ 1

n1/2

n∑
i=1

U1i + U2i + U3i

σ(K)

}
| K∗ = K

]
dPK∗(K) + o(1),

(2.11)

where PK∗ is the probability measure of K∗. We adopt an argument similar to Lindeberg’s

telescoping argument for the central limit theorem (Chung, 2001, p. 211). For i =

1, . . . , n, let

Ũ1i =Var(ϵ | Ri,X i)
1/2

{
RiSi + (1−Ri)γ

T
0KWK,i + IT

βαI
−1
ααX i

}
Z1i,

where Z11, . . . , Z1n are i.i.d. standard normal random variables that are independent of

the observed data. Let V1i = Ũ11 + · · ·+ Ũ1,i−1 + U1,i+1 + · · ·+ U1n for i = 1, . . . , n. Note

that

E
[
g
{ 1

n1/2

n∑
i=1

U1i + U2i + U3i

σ(K)

}
− g

{ 1

n1/2

n∑
i=1

Ũ1i + U2i + U3i

σ(K)

}
| K∗ = K

]
=

n∑
i=1

E
[
g
{V1i +∑

j U2j +
∑

j U3j + U1i

σ(K)n1/2

}
− g

{V1i +∑
j U2j +

∑
j U3j + Ũ1i

σ(K)n1/2

}
| K∗ = K

]
=

1

σ(K)n1/2

n∑
i=1

E
[
g′
{V1i +∑

j U2j +
∑

j U3j

σ(K)n1/2

}
(U1i − Ũ1i) | K∗ = K

]
+

1

2σ(K)2n

n∑
i=1

E
[
g′′
{V1i +∑

j U2j +
∑

j U3j

σ(K)n1/2

}
(U2

1i − Ũ2
1i) | K∗ = K

]
+

1

6σ(K)3n3/2

n∑
i=1

E
{
g′′′(a)U3

1i − g′′′(ã)Ũ3
1i | K∗ = K

}
(2.12)

for some variables a and ã. By construction, U1i and Ũ1i are independent of V1i and∑
j(U2j + U3j) given O1 ≡ (Ri, Si,X i,Ai)i=1,...,n. The expectation in the first term on

the right-hand side of (2.12) is

E
(

E
[
g′
{V1i +∑

j U2j +
∑

j U3j

σ(K)n1/2

}
| O1,K∗ = K

]
E(U1i−Ũ1i | O1,K∗ = K) | K∗ = K

)
= 0,
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because E(U1i − Ũ1i | O1,K∗ = K) = E(U1i − Ũ1i | O1) = 0. Likewise, the second term

on the right-hand side of (2.12) is 0, because the conditional second moments of U1i and

Ũ1i given O1 match (i = 1, . . . , n). For K ∈ Ωn, the right-hand side of (2.12) is bounded

above by

ζ1n ≡Mn−3/2

n∑
i=1

E
{

sup
K∈Ωn

(
|U1i|3 + |Ũ1i|3

)
| K∗ = K

}
for some positive constant M . By Lemma 2.4,

∫
Ωn
ζ1n dPK∗ → 0.

Next, we show that U2i’s in (2.11) can be similarly replaced by normal random vari-

ables. Let Ũ2i be

Var
[
(γT

0X + IT
βαI

−1
αα)

{
E(ϵ | Ri,X)X − E(ϵX | Ri)

}
+
{

E(ϵ | Ri,X)− E(ϵ | Ri)
}
γT
0A,KAK,i

+
{

E(ϵ | Ri,X) + IT
βγI

−1
γγWK,i

}
Ri(Si − γT

0KWK,i) | Ri,Ai, Si − γT
0XX i

]1/2
Z2i

for i = 1, . . . , n, where Z21, . . . , Z2n are i.i.d. standard normal random variables that

are independent of the observed data and Z11, . . . , Z1n. Note that the above conditional

variance is taken with respect to X. We wish to show that

∫
Ωn

E
[
g
{ n∑

i=1

Ũ1i + U2i + U3i

n1/2σ(K)

}
− g

{ n∑
i=1

Ũ1i + Ũ2i + U3i

n1/2σ(K)

}
| K∗ = K

]
dPK∗(K) = o(1).

(2.13)

Note that n−1/2
∑n

i=1 Ũ1i can be written as σ̂1(K)Z1, where Z1 is a standard normal

random variable independent of the observed data. By linear expansion of σ̂1(K) at

σ1(K), the left-hand side of (2.13) is

∫
Ωn

E
[
g
{n1/2σ1(K)Z1 +

∑
i(U2i + U3i)

n1/2σ(K)

}
− g

{n1/2σ1(K)Z1 +
∑

i(Ũ2i + U3i)

n1/2σ(K)

}
| K∗ = K

]
dPK∗(K) (2.14)
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up to an additive term bounded above by sup |σ(K)−1g′|E{supK∈Ωn
|σ̂1(K) − σ1(K)|Z1},

which tends to 0 by Lemma 2.2. For any bounded variable B, we have

∫
Ωn

E(B | K∗ = K)− E(B | K∗
0 = K) dPK∗(K)

=

∫
Ωn

E{BI(K∗
0 6= K∗) | K∗ = K} dPK∗(K)−

∫
Ωn

E{BI(K∗
0 6= K∗) | K∗

0 = K} dPK∗(K)

≤ sup |B|
{
1 + sup

K∈Ωn

P (K∗ = K)

P (K∗
0 = K)

}
P (K∗

0 6= K∗) = o(1),

where K∗
0 = K∗(S −Xγ0X ,A), and the last equality follows from condition (C5). There-

fore, the event {K∗ = K} in the conditional expectation in (2.14) can be replaced by

{K∗
0 = K}.

Let V2i = Ũ21 + · · ·+ Ũ2,i−1 + U2,i+1 + · · ·+ U2n for i = 1, . . . , n. The term inside the

integration of the left-hand side of (2.13) is up to a vanishing term equal to

n∑
i=1

E
[
g
{V2i + n1/2σ1(K)Z1 + U2i +

∑
j U3j

σ(K)n1/2

}
− g

{V2i + n1/2σ1(K)Z1 + Ũ2i +
∑

j U3j

σ(K)n1/2

}
| K∗

0 = K
]

=
1

σ(K)n1/2

n∑
i=1

E
[
g′
{V2i + n1/2σ1(K)Z1 +

∑
j U3j

σ(K)n1/2

}
(U2i − Ũ2i) | K∗

0 = K
]

+
1

2σ(K)2n

n∑
i=1

E
[
g′′
{V2i + n1/2σ1(K)Z1 +

∑
j U3j

σ(K)n1/2

}
(U2

2i − Ũ2
2i) | K∗

0 = K
]

+
1

6σ(K)3n3/2

n∑
i=1

E
{
g′′′(b)U3

2i − g′′′(̃b)Ũ3
2i | K∗

0 = K
}

(2.15)

for some variables b and b̃. Let O2 = (Ri,Ai, Si−γT
0XX i)i=1,...,n. Since the event {K∗

0 = K}

is implied by O2, we have

E
[
g′
{V2i + n1/2σ1(K)Z1 +

∑
j U3j

σ(K)n1/2

}
(U2i − Ũ2i) | K∗

0 = K
]
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=E
(

E
[
g′
{V2i + n1/2σ1(K)Z1 +

∑
j U3j

σ(K)n1/2

}
| O2,K∗

0 = K
]
E(U2i − Ũ2i | O2) | K∗

0 = K
)
= 0.

Likewise, the second term on the right-hand side of (2.15) is zero because the conditional

second moments of U2i and Ũ2i match. By Lemma 2.4, the third term on the right-hand

side of (2.15) is bounded by some positive variable ζ2n such that
∫
Ωn
ζ2n dPK∗ → 0, and

(2.13) holds.

Let Ũ3i = Var{(γT
0X + IT

βαI
−1
αα)E(ϵX | R) + E(ϵ | R)γT

0A,KAK,i | AK,i}1/2Z3i for

i = 1, . . . , n, where Z31, . . . , Z3n are i.i.d. standard normal variables that are independent

of the observed data and (Z1i, Z2i)i=1,...,n. Similarly, we wish to show that

∫
Ωn

E
[
g
{ n∑

i=1

Ũ1i + Ũ2i + U3i

n1/2σ(K)

}
− g

{ n∑
i=1

Ũ1i + Ũ2i + Ũ3i

n1/2σ(K)

}
| K∗ = K

]
dPK∗(K) = o(1).

(2.16)

Write n−1/2
∑n

i=1 Ũ2i = σ̂2(K)Z2, where Z2 is a standard normal random variable inde-

pendent of the observed data and Z1. By the mean-value theorem and Lemma 2.2, the

left-hand side of (2.16) is

∫
Ωn

E
[
g
{n1/2σ1(K)Z1 + n1/2σ2(K)Z2 +

∑n
i=1 U3i

n1/2σ(K)

}
− g

{n1/2σ1(K)Z1 + n1/2σ2(K)Z2 +
∑n

i=1 Ũ3i

n1/2σ(K)

}
| K∗

0 = K
]

dPK∗(K) + o(1).

Then, we show that the conditional expectation above can be replaced by a marginal

expectation. For any bounded function h of (R, Ã), where R ≡ (R1, . . . , Rn) and Ã ≡

(A1, . . . ,An), we have

E{h(R, Ã) | K∗
0 = K}

=

∫ ∑
r

h(r,a)P (R = r | Ã = a,K∗
0 = K)fA(a | K∗

0 = K) dλ(a)
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=

∫ ∑
r

h(r,a)
P (K∗

0 = K | Ã = a,R = r)P (R = r)fA(a)

P (K∗
0 = K)

dλ(a)

=E{h(R, Ã)}+
∫ ∑

r

h(r,a)
{P (K∗

0 = K | Ã = a,R = r)

P (K∗
0 = K)

− 1
}
P (R = r)fA(a) dλ(a),

where fA is the density of Ã with respect to some dominating measure λ. By condition

(C6), the second term on the right-hand side above converges to 0 uniformly over K ∈ Ωn.

Let V3i = Ũ31 + · · · + Ũ3,i−1 + U3,i+1 + · · · + U3n for i = 1, . . . , n. The term inside the

integration of the left-hand side of (2.16) is up to a vanishing term equal to

n∑
i=1

E
[
g
{V3i + n1/2σ1(K)Z1 + n1/2σ2(K)Z2 + U3i

σ(K)n1/2

}
− g

{V3i + n1/2σ1(K)Z1 + n1/2σ2(K)Z2 + Ũ3i

σ(K)n1/2

}]
.

Based on an expansion similar to (2.12) and (2.15), we can show that the above expression

tends to 0 by Lemma 2.4 and the fact that the first two moments of U3i and Ũ3i match.

Combining the above results, we have

E
[
g
{ n∑

i=1

U1i + U2i + U3i

n1/2σ(K)

}
| K∗ = K

]
= E

[
g
{ n∑

i=1

Ũ1i + Ũ2i + Ũ3i

n1/2σ(K)

}
| K∗ = K

]
+ o(1)

= E
[
g
{σ1(K)Z1 + σ2(K)Z2 + σ3(K)Z3

σ(K)

}]
+ o(1)

uniformly over K ∈ Ωn, where Z3 is a standard normal random variable independent of

Z1, Z2, and the observed data. Because σ1(K)Z1 + σ2(K)Z2 + σ3(K)Z3 is normal with

mean 0 and variance σ2(K), the desired convergence (2.10) follows.

We consider the relaxation of condition (C4). Under condition (C4’), (Y,X) may

depend on some auxiliary variables, and E(U1i− Ũ1i | O1), E(U2
1i− Ũ2

1i | O1), E(U2i− Ũ2i |

O2), and E(U2
2i− Ũ2

2i | O2) may be nonzero. Nevertheless, the selection probability of the

auxiliary variables that are associated with (Y,X) vanishes, so that similar arguments
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apply with O1 and O2 redefined to not include those dependent components of A. For

any bounded random variable B,

∫
Ωn

E(B | K∗ = K)− E(B | K∗ ∈ K) dPK∗(K)

=

∫
Ωn

{
E(B | K∗ = K)− E(B | K∗ ∈ K,K∗ 6= K)

}
P (K∗ 6= K | K∗ ∈ K) dPK∗(K)

≤ 2 sup |B|
∑
K∈Ωn

P (K∗ 6= K,K∗ ∈ K)
P (K∗ = K)

P (K∗ ∈ K)

≤ 2 sup |B|
∑
K∈Ωn

P (K∗ 6= K,K∗ ∈ K) = o(1).

Therefore, the event {K∗ = K} in the conditional expectation on the right-hand side of

(2.11) can be replaced by K∗ ∈ K. The original arguments can then be applied to this

updated version of (2.11), with O1 replaced by (Ri, Si,X i,AMn,i)i=1,...,n and O2 replaced

by (Ri,AMn,i, Si − γT
0XX i)i=1,...,n.

Proof of Theorem 2.2. Let σ̂0i(K) = ϵi{RiSi+(1−Ri)γ
T
0KWK,i+IT

βαI
−1
ααX i}+IT

βγI
−1
γγWK,iRi(Si−

γT
0KWK,i) for i = 1, . . . , n and σ̂2

0(K) = n−1
∑n

i=1 σ̂
2
0i(K). Note that n−1

∑n
i=1{σ̂i(K) −

σ(K)}2 is equal to

1

n

n∑
i=1

{
σ̂i(K)− σ̂0i(K) + σ̂0i(K)

}2 − σ(K)2

=
1

n

n∑
i=1

σ̂2
0i(K) +

2

n

n∑
i=1

{
σ̂i(K)− σ̂0i(K)

}
σ̂0i(K) +

1

n

n∑
i=1

{
σ̂i(K)− σ̂0i(K)

}2 − σ(K)2.

(2.17)

Using the arguments in the proof of Lemma 2.2, we can show that the first term on the

right-hand side of (2.17) converges in mean to σ2
0(K) uniformly over K ∈ Ωn. We then

show that the remaining terms in the expression converge in mean to 0 uniformly. Note
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that

1

n

n∑
i=1

{
σ̂i(K)− σ̂0i(K)

}
σ̂0i(K)

=
1

n

n∑
i=1

[
{Yi − µ(αT

0X i)}
(
Î

T
βαÎ

−1

αα − IT
βαI

−1
αα

)
X i +

(
Î

T
βγ Î

−1

γγ − IT
βγI

−1
γγ

)
WK,iRi(Si − γT

0KWK,i)

− µ′(αT
0X i)(α̂−α0)

TX i

{
RiSi + (1−Ri)γ

T
0KWK,i + Î

T
βαÎ

−1

ααX i

}
+ {Yi − µ(αT

0X i)}(γ̂K − γ0K)
T(1−Ri)WK,i − Î

T
βγ Î

−1

γγWK,iRi(γ̂K − γ0K)
TWK,i

− 1

2
µ′′(α̃TX i)(α̂−α0)

TX iX
T
i (α̂−α0)

{
RiSi + (1−Ri)γ

T
0KWK,i + Î

T
βαÎ

−1

ααX i

}
− {µ(α̂TX i)− µ(αT

0X i)}(1−Ri)W
T
K,i(γ̂K − γ0K)

]
σ̂0i(K).

Consider n−1
∑n

i=1{Yi − µ(αT
0X i)}

(
Î

T
βαÎ

−1

αα − IT
βαI

−1
αα

)
X iσ̂0i(K). We have

sup
K∈Ωn

∣∣∣∣ 1n
n∑
i=1

{Yi − µ(αT
0X i)}

(
Î

T
βαÎ

−1

αα − IT
βαI

−1
αα

)
X iσ̂0i(K)

∣∣∣∣
≤ sup

K∈Ωn

∥∥∥ÎT
βαÎ

−1

αα − IT
βαI

−1
αα

∥∥∥ sup
K∈Ωn

∥∥∥ 1
n

n∑
i=1

{Yi − µ(αT
0X i)}X iσ̂0i(K)

∥∥∥. (2.18)

By Lemma 2.1, the first term on the right-hand side above is bounded by

M1

{(t+ log rn
n

)1/2

+
q
1/2
n (logn)1/ξ(t+ log rn)1/min(1,ξ)

n

}

with probability at least 1 −M2e
−t for any t > 0 and some positive constants M1 and

M2. Also, we have

sup
K∈Ωn

∥∥∥ 1
n

n∑
i=1

{Yi − µ(αT
0X i)}X iσ̂0i(K)

∥∥∥
≤ sup

K∈Ωn

∥∥∥ 1
n

n∑
i=1

{Yi − µ(αT
0X i)}X iσ̂0i(K)− E

[
{Yi − µ(αT

0X i)}X iσ̂0i(K)
]∥∥∥

+ sup
K∈Ωn

∥∥∥E
[
{Yi − µ(αT

0X i)}X iσ̂0i(K)
]∥∥∥.
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Under conditions (C1) and (C2), supK∈Ωn
‖E[{Yi − µ(αT

0X i)}X iσ̂0i(K)]‖ = O(1). Since

‖{Yi − µ(αT
0X i)}X iσ̂0i(K)‖ψξ/3

≲ q
1/2
n , by Lemma 2.5,

sup
K∈Ωn

∥∥∥ 1
n

n∑
i=1

{Yi − µ(αT
0X i)}X iσ̂0i(K)− E

[
{Yi − µ(αT

0X i)}X iσ̂0i(K)
]∥∥∥

≤M3

[{t+ log(2rn)
n

}1/2

+
q
1/2
n {log(2n)}3/ξ{t+ log(2rn)}3/ξ

n

]

with probability at least 1−3e−t for large enough n and t and some positive constant M3.

Under the rates of qn and rn given in condition (C2), we conclude that the left-hand side

of (2.18) converges to 0 in mean uniformly over K ∈ Ωn. Similar arguments show that

sup
K∈Ωn

∣∣∣∣ 1n
n∑
i=1

{σ̂i(K)− σ̂0i(K)}σ̂0i(K)

∣∣∣∣
≤M4

[
t+ log(2rn) + qn

n
+
q
5/2
n {log(2n)}6/ξ{t+ log(2rn) + qn}6/ξ

n2

]

with probability at least 1−M5e
−t for large enough n and t, where M4 and M5 are some

positive constants. Therefore, by condition (C2), the second term on the right-hand side

of (2.17) converges to 0 in mean uniformly over K ∈ Ωn. Similar arguments show that

the third and fourth terms in that expression also converge to 0 in mean uniformly over

K ∈ Ωn. The desired result follows.

2.6.6 Additional Numerical Results

Table 2.1: Rejection probabilities and references of significant pro-

teins in the TCGA colorectal adenocarcinoma analysis

Protein Proposed

Method

Complete-

case

Covariate-

only

Reference

IRS1 4.53E−08 2.17E−06 1.57E−06 Esposito et al. (2012)
Caspase-7_cleavedD198 5.87E−07 1.17E−05 3.24E−06 N/A

Continued on next page
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Table 2.1 – Continued from previous page
Protein Proposed

Method

Complete-

case

Covariate-

only

Reference

eIF4E 9.60E−06 1.26E−04 8.45E−05 Diab-Assaf et al. (2015)
c-Myc 1.14E−05 1.80E−04 1.42E−04 Erisman et al. (1988)
Cyclin_E1 8.89E−05 3.21E−04 2.28E−04 Qi et al. (2015)
p38_MAPK 2.50E−04 7.13E−04 7.76E−04 Thyagarajan et al.

(2010)
XRCC1 4.45E−04 2.31E−03 2.29E−03 Huang et al. (2013)
GAB2 4.79E−04 8.98E−04 7.46E−04 Ding et al. (2015)
Paxillin 6.78E−04 5.02E−03 4.83E−03 Zhao et al. (2015)
PREX1 7.84E−04 9.32E−04 8.09E−04 N/A
Bcl-2 8.22E−04 1.14E−03 9.82E−04 Hague et al. (1994)
Bax 8.53E−04 3.47E−04 2.87E−04 Pryczynicz et al. (2014)
PKC-delta_pS664 1.19E−03 2.95E−03 3.27E−03 N/A
YB-1 1.53E−03 6.36E−03 6.02E−03 Tsofack et al. (2011)
NF-kB-p65_pS536 1.78E−03 3.64E−03 3.48E−03 N/A
GATA3 1.93E−03 4.52E−03 4.42E−03 Wang et al. (2020)
Rictor_pT1135 3.64E−03 1.23E−02 1.17E−02 N/A
HER3 4.81E−03 1.60E−02 1.58E−02 Kountourakis et al.

(2006)
PRAS40_pT246 5.94E−03 9.35E−03 9.12E−03 N/A
GAPDH 6.85E−03 1.38E−02 1.30E−02 Tang et al. (2012)
INPP4B 7.15E−03 1.51E−02 1.80E−02 Yang et al. (2020)
YAP_pS127 7.70E−03 3.43E−02 3.81E−02 N/A
4E-BP1 7.93E−03 1.69E−02 1.70E−02 Diab-Assaf et al. (2015)
FASN 8.06E−03 5.14E−02 5.18E−02 N/A
Tuberin 8.20E−03 8.90E−03 9.46E−03 N/A
CDK1_pY15 8.29E−03 7.78E−02 8.36E−02 N/A
p53 1.36E−02 5.46E−02 5.30E−02 Rodrigues et al. (1990)
Dvl3 1.40E−02 1.07E−02 1.01E−02 N/A
MAPK_pT202_Y204 1.56E−02 4.97E−02 5.03E−02 N/A
S6_pS240_S244 1.96E−02 4.53E−02 4.27E−02 N/A
PKC-alpha 2.04E−02 4.72E−02 5.00E−02 N/A
Rab25 2.27E−02 2.59E−02 2.52E−02 Nam et al. (2010)
Rb 2.69E−02 1.40E−02 1.57E−02 Yamamoto et al. (1999)
Chk1 3.10E−02 6.42E−02 7.11E−02 Bertoni et al. (1999)
Src_pY527 3.13E−02 6.58E−02 7.24E−02 N/A

Continued on next page
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Table 2.1 – Continued from previous page
Protein Proposed

Method

Complete-

case

Covariate-

only

Reference

ARID1A 3.29E−02 1.59E−02 1.40E−02 Wei et al. (2014)
GATA6 3.51E−02 4.43E−02 4.32E−02 Belaguli et al. (2010)
p70S6K_pT389 3.62E−02 3.30E−02 3.73E−02 N/A
TSC1 4.10E−02 3.48E−02 3.78E−02 N/A
4E-BP1_pT70 4.23E−02 2.31E−02 2.34E−02 N/A
CDK1 4.36E−02 7.11E−02 7.73E−02 Gan et al. (2017)
Akt 4.52E−02 5.09E−02 4.99E−02 Agarwal et al. (2013)
PKC-pan_BetaII_pS660 4.87E−02 4.45E−02 4.74E−02 N/A
LKB1 5.23E−02 1.79E−02 2.07E−02 He et al. (2014)
eEF2K 5.31E−02 1.07E−02 1.05E−02 N/A
MEK1_pS217_S221 6.58E−02 4.17E−02 4.42E−02 N/A
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Figure 2.4: Rejection probabilities under a missing proportion of 30% and the null hy-
pothesis.
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Figure 2.5: Rejection probabilities under a missing proportion of 30% and the alternative
hypothesis.
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Figure 2.6: Asymptotic power over different numbers of auxiliary variables.
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Chapter 3

Score Tests with an Incomplete

Covariate in Semiparametric Models

for Censored Data

3.1 Methodology

Let T denote an event time, S a covariate of interest, X a vector of other covariates,

and A a potentially high-dimensional vector of auxiliary variables. Assume that the

cumulative hazard function of T conditional on (X, S) takes the form

Λ(t | X, S) = G{Λ(t) exp(αTX + βS)}, (3.1)

where Λ(·) is an unknown increasing function in [0, τ ] with Λ(0) = 0, G(·) is a prespec-

ified transformation function that is strictly increasing with G(0) = 0, and α and β are

regression parameters, and τ is the end-of-study time. Under (3.1), the model of T can
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be expressed as a linear transformation model, with

logΛ(T ) = −αTX − βS + ϵ,

where ϵ is an error term with P (ϵ < x) = 1−exp[−G{exp(x)}]. Thus, β can be interpreted

as the linear effect of the covariate S on a transformation of T .

Suppose that the survival time is possibly right-censored at C, which is assumed to be

independent with (T, S,A) given X. Let Y = min(T,C) and ∆ = I(T ≤ C), where I(·)

is the indicator function. Also, suppose that S may be missing, and let R be the indicator

of whether S is observed, i.e., R = 1 if S is observed, and R = 0 otherwise. We assume

that R is conditionally independent of (S,A) given (T,C,X). Under this assumption, S

is missing at random. The observed data from a random sample of n subjects consist of

(Yi,∆i,X i,Ai, RiSi, Ri) for i = 1, . . . , n.

3.1.1 Imputation Score Test

Under the transformation model (3.1), we are interested in testing the null hypothesis

H0 : β = 0, that the covariate of interest S does not have an effect on the (transformed)

hazard of T . Since S is subject to missing, we propose to first fit a working model of

S against (X,A) and impute the missing values of S based on the model. Because the

auxiliary variables A may be high-dimensional, we propose to select a low-dimensional

subset of the components of A to construct the model of S. Correct specification of the

model of S is not necessary, since the model is only of secondary interest. Suppose A

is p-dimensional. We choose a subset K ⊂ {1, . . . , p}, and let WK denote the vector

that consists of X and the components of A indexed by K. We fit a working model of

S = γT
KWK + δ, where δ is a mean-zero error term, and γK is a vector of regression

parameters.
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We then perform a score test based on the outcome model (3.1) and the selected

working model of S. The reason that we choose the score test over the Wald test and the

likelihood ratio test is that the score test is performed under the null hypothesis, and the

estimating procedure is much simpler. Let f(Y | X, S; β,α,Λ) and g(S | WK;γK) denote

the density functions of Y and S, respectively. The log-likelihood function concerning

parameters (β,α,Λ,γK) is

logL(β,α,Λ,γK) =
n∑
i=1

Ri

{
log f(Yi | X i, Si; β,α,Λ) + log g(Si | WK,i;γK)

}
+

n∑
i=1

(1−Ri) log
∫
f(Yi | X i, s; β,α,Λ)g(s | WK,i;γK) ds. (3.2)

We propose to estimate γK by solving
∑n

i=1Ri(Si − γT
KWK,i)WK,i = 0, and let γ̂K

denote the estimator. We only use the subjects with Ri = 1 because f(Y | X, S) does

not involve S under H0, so subjects with Ri = 0 do not contribute to the estimation of

γK. We adopt the nonparametric maximum likelihood approach of Zeng and Lin (2007)

to estimate α and Λ under H0. Here, we treat Λ as a step function with jumps only at

the observed survival times. Let t1 < · · · < tm denote the set of observed survival times

with m being the number of unique observed survival times, and λk be the jump size at

tk for k = 1, . . . ,m. The log-likelihood function pertaining to (α,Λ) is

n∑
i=1

∆i

[
logG′

{
exp(αTX i)

∑
tk≤Yi

λk

}
+ logλk(i) +αTX i

]
−G

{
exp(αTX i)

∑
tk≤Yi

λk

}
,

(3.3)

where k(·) is a map defined on {i = 1, . . . , n : ∆i = 1} such that λk(i) is the jump size at

time Yi, and G′(·) is the first derivative of G(·).

Let ζ̂ ≡ (α̂, λ̂1, . . . , λ̂m) be the maximizer of (3.3), and let ζ = (α, λ1, . . . , λm). Also,

let ξi(ζ) = exp(αTX i)
∑

tk≤Yi λk, Gi(ζ) = G{ξi(ζ)}, and G′′(·) denote the second deriva-
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tive of G(·). The (scaled) score statistic for β is

Uβ(ζ̂, γ̂K) =n−1/2

n∑
i=1

{
∆i +∆i

G′′
i (ζ̂)

G′
i(ζ̂)

ξi(ζ̂)−G′
i(ζ̂)ξi(ζ̂)

}{
RiSi + (1−Ri)γ̂

T
KWK,i

}
.

Let α0 and Λ0 denote the true values of α and Λ, respectively. Let ζ0 = (α0, λ0,1, . . . , λ0,m),

where λ0,k = Λ0(tk) − Λ0(tk−1) for k = 1, . . . ,m with t0 = 0. For a given K, de-

fine γ0K ≡ arg minγ E{R(S − γTWK)
2} as the true value of γK. Define functions

ψ(t) = G′′(t)/G′(t) and η(t) = ψ′(t) = G′′′(t)/G′(t) − {G′′(t)/G′(t)}2 with G′′′(·) be-

ing the third derivative of G(·). The Taylor’s series expansion of Uβ(ζ̂, γ̂K) at (ζ0,γ0K)

yields

Uβ(ζ̂, γ̂K)

=n−1/2

n∑
i=1

{
∆i +∆iψi(ζ0)ξi(ζ0)−G′

i(ζ0)ξi(ζ0)
}{
RiSi + (1−Ri)γ

T
0KWK

}
+ Î

T
βγ Î

−1

γγWK,iRi(Si − γT
0KWK,i) + Î

T
βζ Î

−1

ζζ U ζ,i + op(1) (3.4)

under some regularity conditions, where the expressions of Îζζ , Îβζ , Îγγ and Îβγ are given

in Section 3.6.1, U ζ,i = (UT
α,i, Uλ1,i, . . . , Uλm,i)

T,

Uα,i =
{
∆i +∆iψi(ζ0)ξi(ζ0)−G′

i(ζ0)ξi(ζ0)
}
X i,

and Uλk,i (k = 1, . . . ,m) is the derivative of the ith term of log-likelihood function with

respect to the jump λk:

Uλk,i =
I(Yi = tk)∆k

λ0,k
+ I(Yi ≥ tk)

{
∆iψi(ζ0)−G′

i(ζ0)
}

exp(αT
0X i).

Based on this expansion, we can estimate the asymptotic variance of Uβ(ζ̂, γ̂K) by
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σ̂2(K) = n−1
∑n

i=1{σ̂i(K)− σ(K)}2, where

σ̂i(K) =
{
∆i +∆iψi(ζ̂)ξi(ζ̂)−G′

i(ζ̂)ξi(ζ̂)
}{
RiSi + (1−Ri)γ̂

T
KWK

}
+ Î

T
βγ Î

−1

γγWK,iRi(Si − γ̂T
KWK,i) + Î

T
βζ Î

−1

ζζ Û ζ,i,

σ(K) = n−1
∑n

i=1 σ̂i(K), and Û ζ,i is U ζ,i with true parameters replaced by estimators.

Note that the true parameters in Îζζ , Îβζ , Îγγ and Îβγ are replaced by estimators in the

definition of σ̂i(K). For an asymptotic size α test, we reject H0 if U2
β(ζ̂, γ̂K)/σ̂

2(K) ≥ χ2
1,α.

The proposed test is robust in the sense that it preserves the type I error under

the null hypothesis without requirement of fully correct specifications of the model of

S and the model of Y , because the proposed empirical variance estimator is derived

using sum of squares, instead of a model-based estimator. By contrast, full-likelihood

based methods that rely on the second derivative of log-likelihood function to estimate

the variance of score statistic need extra assumptions to assure the test validity. For

example, misspecification of either the outcome model or the missing covariate model can

affect the type I error of the likelihood-based score test (Lawless, 2018).

3.1.2 Supremum Test

The above proposed score test is based on knowledge of the true transformation function

G. In practice, however, the function may not be known, and misspecification of G

can result in power loss. We propose a supremum test that combines the results from

multiple choices of G to improve power. Let {G(j), j = 1, . . . , q} be a set of monotonically

increasing transformation functions with G(j)(0) = 0. For a particular choice of G = G(j),

the density function of T given (X, S) is in the form of

f (j)(t | X, S;α, β,Λ)

= exp
[
−G(j){Λ(t) exp(αTX + βS)}

]
G(j)′{Λ(t) exp(αTX + βS)}λ(t) exp(αTX + βS),
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where λ(t) = dΛ(t)/dt. Define α
(j)
0 , β(j)

0 and Λ
(j)
0 to be the values that solve the following

equations simultaneously with probability one:

E
{∂ log f (j)(T | X, S;α, β,Λ)

∂(α, β)
| X, S

}
= 0,

E
[∂ log f (j){T | X, S;α, β,Λ + ϵ

∫
h(s) dΛ(s)}

∂ϵ

∣∣∣
ϵ=0

| X, S
]
= 0 for ‖h‖V ≤M,

where ‖h‖V is the total variation of h(t) in [0, τ ], and M is some positive constant. In

the supremum test, we extend the null hypothesis to H ′
0 : β

(j)
0 = 0 for j = 1, . . . , q. One

sufficient condition for H ′
0 to hold is when S is independent of Y given X. Let ζ̂

(j)
denote

the nonparametric maximum likelihood estimator under β(j) = 0 and transformation

function G(j). Let U (j)
β (ζ̂

(j)
, γ̂K) and σ̂(j)(K) denote the corresponding score statistic and

estimated standard deviation, respectively. Define

Zmax(ζ̂, γ̂K) = max
1≤j≤q

|Z(j)(ζ̂
(j)
, γ̂K)|, (3.5)

where Z(j)(ζ̂
(j)
, γ̂K) = U

(j)
β (ζ̂

(j)
, γ̂K)/σ̂

(j)(K). For notational convenience, we abbreviate

Z(j)(ζ̂
(j)
, γ̂K) and U

(j)
β (ζ̂

(j)
, γ̂K) as Ẑ(j) and Û

(j)
β , respectively. The advantage of using

the supremum test statistic Zmax(ζ̂, γ̂K) lies in that it takes the uncertainty of the link

between the outcome Y and the covariates under consideration. Intuitively, the supremum

test statistic reflects how large a test statistic can be across several outcome models under

the null hypothesis H ′
0. The test statistic would tend to be away from zero if β(j) under

at least one of the transformation functions is nonzero.

We approximate the distribution of
(
Ẑ(1), . . . , Ẑ(q)

)
by a multivariate normal with

mean 0 and variance V̂ (K) and then approximate the distribution of Zmax(ζ̂, γ̂K) by the

absolute maximum of the multivariate normal random vector. The variance matrix V̂ (K)
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is a (q × q)-matrix with diagonal elements 1 and the (j, k)th element in the form of

V̂jk(K) =
1

nσ̂(j)(K)σ̂(k)(K)

n∑
i=1

(
Û

(j)
β,i −

1

n

n∑
i′=1

Û
(j)
β,i′

)(
Û

(k)
β,i −

1

n

n∑
i′=1

Û
(k)
β,i′

)
, j, k = 1, . . . , q,

where Û (j)
β,i is the ith term in the summation of Û (j)

β for i = 1, . . . , n and j = 1, . . . , q.

To obtain an asymptotic size α test, we use the Monte Carlo method to construct the

empirical critical value of the test. The algorithm is as follows:

1. Generate M i.i.d. random samples (z(1)m , . . . , z
(q)
m ),m = 1, . . . ,M from a multivariate

normal distribution with mean 0 and variance V̂ (K);

2. Compute the test statistic Tm from the mth sample: Tm = max1≤j≤q |z(j)m |;

3. Reject H ′
0 if Zmax(ζ̂, γ̂K) is larger than the (1− α)th quantile of (T1, . . . , TM).

3.2 Asymptotic Theory

In this section, we consider the asymptotic property of the score statistic under multiple

choices of the transformation function G, with the single G as a special case. Let Iζζ ,

Iβζ , Iγγ and Iβγ denote the expectations of Îζζ , Îβζ , Îγγ and Îβγ, respectively. Suppose

that the transformation functions G(j), j = 1, . . . , q are continuously differentiable up to

the forth order. This holds for both the proportional hazards model G(x) = x and the

proportional odds model G(x) = log(1 + x). Define

U
(j)
β (K) =

{
∆+∆ψ(j)(ζ

(j)
0 )ξ(ζ

(j)
0 )−G(j)′(ζ

(j)
0 )ξ(ζ

(j)
0 )

}
×

{
RS + (1−R)γT

0KWK
}
+ (I

(j)
βγ )

T(I(j)
γγ )

−1WKR(S − γT
0KWK)

+ (I
(j)
βζ )

T(I
(j)
ζζ )

−1U
(j)
ζ
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for j = 1, . . . , q, where ψ(j), I
(j)
βγ , I

(j)
γγ , I

(j)
βζ , I

(j)
ζζ and U

(j)
ζ are ψ, Iβγ, Iγγ, Iβζ , Iζζ and U ζ ,

respectively, under G(j). Let Ûβ(K) =
(
Û

(1)
β , . . . , Û

(q)
β

)T; note that the right-hand side

implicitly depends on K.

Here, we show that under some regularity conditions, Σ−1/2(K)Ûβ(K) converges to a

multivariate normal distribution under H ′
0 even when K is chosen randomly, where Σ(K)

is defined in the proof of Theorem 3.1. To precisely state the theoretical result, let K∗

be a general model selection operator, such that for an m-vector of outcome variables Y

and an (m × p)-matrix of covariates Z, K∗(Y ,Z) : Rm × Rm×p → Cp, where Cp is the

collection of subsets of {1, . . . , p}. Suppose that the model for S is selected based on

the residual S − γ̂T
XX and A, where γ̂X ≡ (

∑n
i=1RiX iX

T
i )

−1
∑n

i=1RiX iSi is the least-

squares estimator of S on X using the subjects with R = 1. The selected components of

A are K∗(S −Xγ̂X ,A), where S is a vector that consists of {Si : Ri = 1}, and X and

A are matrices that consist of rows of {X i : Ri = 1} and {Ai : Ri = 1}, respectively. For

simplicity of presentation, we write K∗ = K∗(S −Xγ̂X ,A). Therefore, K can be viewed

as the observed value of K∗.

Let ‖ · ‖ψξ
be an Orlicz norm, such that ‖X‖ψξ

= inf{η > 0 : E(e|X|ξ/ηξ) ≤ 2}, and

‖ · ‖ be the Euclidean norm. Define the set

H = { (hα, hΛ) : hα ∈ R|X|, hΛ is a function with bounded variation on [0, τ ];

‖hα‖ ≤ 1, ‖hΛ‖V ≤ 1},

where |X| is the dimension of covariate X. Also, we define a neighborhood of the true

parameter (α0,Λ0), denoted by L, as

L =
{
(α,Λ) : ‖α−α0‖+ sup

t∈[0,τ ]
|Λ(t)− Λ0(t)| < ϵ0

}

for a very small constant ϵ0. We establish the asymptotic property of Ûβ(K∗) under the
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following conditions. Some conditions involve a generic positive constant M .

(C1) For some ξ ∈ (0, 2], ‖S‖ψξ
+ maxj ‖Aj‖ψξ

< M . The covariate X is bounded, so

that P (‖X‖ < M) = 1.

(C2) There exists a sequence of collections of models Ωn, such that P (K∗ ∈ Ωn) → 1,

supK∈Ωn
|K| = O(nν), and log |Ωn| = O(nκ), where ν and κ are constants that satisfy

ν < 3ξ/(4ξ+8), κ < 1/2, and 4ν/3+8κ/(3ξ) < 1, and |C| denotes the cardinality of

the set C. Also, infK∈Ωn λmin{E(RWKW
T
K)} > M−1, supK∈Ωn

E{(γT
0KWK)

4} < M ,

where λmin(C) denotes the minimum eigenvalue of the matrix C. In addition,

infK∈Ωn λmin{Σ(K)} > M−1.

(C3) The probability P (R = 1 | Y,X) > M−1 almost surely.

(C4) Under β = 0, the residual (S − γT
0XX) and X are independent, and A is indepen-

dent of (Y,X).

(C5) The models selected based on the estimated residuals (Si − γ̂T
XX i)i:Ri=1 and the

actual residuals (Si − γT
0XX i)i:Ri=1 are such that

P
{
K∗(S − X γ̂X ,A) 6= K∗(S − Xγ0X ,A)

}
= o(1)

and

sup
K∈Ωn

P
{
K∗(S − X γ̂X ,A) = K

}
P
{
K∗(S − Xγ0X ,A) = K

} < M.

(C6) For a random sample of size m, let S̃ = (S1, . . . , Sm)
T, X̃ = (X1, . . . ,Xm)

T, and

Ã = (A1, . . . ,Am)
T. The random variable

sup
K∈Ωm

∣∣∣∣P
{
K∗(S̃ − X̃γ0X , Ã) = K | Ã

}
P
{
K∗(S̃ − X̃γ0X , Ã) = K

} − 1

∣∣∣∣
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converges to 0 in mean as m→ ∞.

(C7) The parameter value α
(j)
0 (j = 1, . . . , q) lies in the interior of a known compact

set, and Λ
(j)
0 (j = 1, . . . , q) is continuously differentiable with positive derivatives in

[0, τ ]. Also, with probability one, P (C ≥ τ | X, S) > M−1 and P (T ≥ τ | X, S) >

M−1.

(C8) The class of functions {U (j)(α,Λ)[hα, hΛ] : (α,Λ) ∈ L, (hα, hΛ) ∈ H}, with

U (j)(α,Λ)[hα, hΛ] defined in Section 3.6.2, is Donsker for j = 1, . . . , q. Also,

the operator (W (j)
α (hα, hΛ),W

(j)
Λ (hα, hΛ)) defined in Section 3.6.2 is invertible for

j = 1, . . . , q.

Remark 3.1. Conditions (C1)–(C6) are adopted from Chapter 2. Condition (C7) is

standard for semiparametric survival models. Condition (C8) essentially consists of as-

sumptions for the Z-estimator master theorem (Theorem 3.3.1 of van der Vaart and Well-

ner (1996)), which guarantees the asymptotic normality of (α̂(j), Λ̂(j)) for j = 1, . . . , q.

We directly assume the required conditions instead of proving the conditions based on

properties of the true model, because we do not assume the form of the true model. If

we assume that one of the transformation model is true, then we may prove the desired

results from conditions on the true model along the lines of, for example, Zeng et al.

(2008).

The following theorem establishes the asymptotic normality of the score statistic under

a random model selection event.

Theorem 3.1. Under conditions (C1)–(C8) and H ′
0, Σ−1/2(K∗)Ûβ(K∗) converges weakly

to the standard multivariate normal distribution.
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3.3 Simulation Studies

Let X = (X1, . . . , X5)
T, where (X1, X2, X3) are mean-zero multivariate normal variables

with Cov(Xj, Xk) = 0.5|j−k| (j, k = 1, 2, 3), X4 ∼ Bernoulli(0.25), X5 ∼ Bernoulli(0.35),

and X4 and X5 are independent of each other and (X1, X2, X3). Let A be a p-vector of

independent standard normal random variables. We set S = γT
XX + γT

AA + δ, where

δ is standard normal, and γX = (0.1, . . . , 0.1)T. We set γA to be 0.25 at the first 20

components and 0 at the remaining components.

We considered three failure time models:

Model 1: Λ(t | X, S) = Λ(t) exp(αTX + βS);

Model 2: Λ(t | X, S) = log{1 + Λ(t) exp(αTX + βS)};

Model 3: T = exp(−αTX − βS) + ϵ, where ϵ ∼ Exp(1).

We set α = (0.2,−0.2, 0.2,−0.2, 0.2)T and Λ(t) = 0.01t. Model 1 and Model 2 are the

proportional hazards model and proportional odds model, respectively. The censoring

time C was generated from an exponential distribution with the mean chosen to yield a

censoring rate of about 50% − 60%. We considered two missing-data mechanisms. The

first mechanism is missing completely at random (MCAR), where the missing-data status

is independent of other variables. The second mechanism is missing at random (MAR),

where we first randomly select 20% of the subjects into a subgroup, who will have observed

S. For subjects outside the subgroup, we select a fraction of subjects with censored event

time to have missing S to attain the desired missing proportion. If the missing proportion

is not attained by setting all censored subjects to have missing S, then a subset of subjects

with observed event time will also be selected. We considered sample sizes of n = 500

and 1000, and numbers of auxiliary variables of p = 200, 500, 1000 and 1500. For the

alternative hypothesis, we set β = 3n−1/2 for Models 1 and 2, and β = 1.5n−1/2 for Model
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3. For each setting, we simulated 50,000 and 10,000 replicates for β = 0 and β 6= 0,

respectively.

In the first study, we consider the performance of the proposed test under a given

transformation model. We compare the performance of six tests: (1) the standard score

test using complete data only; (2) the standard score test with missing values imputed

under a working linear model of S on X and components of A selected using marginal

screening, where a component of A is selected if its absolute empirical correlation with

S − γ̂T
XX among the subjects with complete data is larger than a certain threshold; (3)

Lawless (2018)’s score test based on the full likelihood with a working linear model of S

against X only; (4) Lawless (2018)’s score test based on the full likelihood with the same

model of S as (2); (5) the proposed test, where the working model of S is selected in the

same way as (2); and (6) the score test based on the full likelihood with a linear model of

S against X and the components of A that are associated with S. We refer to methods

(1)–(6) as the complete-case analysis, the simple imputation method, the covariate-only

analysis, the Lawless method, the proposed method, and the true model method. For

methods (2), (4) and (5), the threshold for screening is selected using BIC. For the true

model method, the variance of the score statistic is estimated using the proposed empirical

variance estimator. For all methods, we fit the correct failure time model under Models

1 and 2, and under Model 3, we fit both the proportional hazards and proportional odds

models.

The results under a missing proportion of 60% are plotted in Figures 3.1 and 3.2,

and the results under a missing proportion of 30% are presented in Section 3.6.4; for

methods that inflate the type I error, their performance under the alternative hypothesis

is not presented. In the figures, we use PH and PO to represent the proportional hazards

model and the proportional odds model, respectively. The significance level is set to be

0.05. Under Models 1 and 2 with sample size 1000, all methods preserve the type I error.
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Theoretically, the complete-case analysis and the simple imputation method would inflate

the type I error under MAR, but the empirical results do not exhibit such a pattern under

the current setting. Under Model 3, the complete-case analysis, the simple imputation

method, the covariate-only analysis, and the Lawless method generally inflate the type I

error, because these methods estimate the variance based on the second derivative of the

log-likelihood, which is misspecified in this setting. Under the alternative hypothesis, the

Lawless method and the simple imputation method under Models 1 and 2 have relatively

high power since both methods underestimate the variance of test statistic. As expected,

the proposed method utilizes information about missing data contained in the auxiliary

variables tends to yield higher power than the covariate-only method.

In the second study, we investigate the supremum test under the same simulation

settings. The supremum test is performed with q = 2, G(1)(x) = x, and G(2)(x) =

log(1 + x). For comparison, we also present the results of the proposed single-model

score test with the proportional hazards model and the proportional odds model. The

results under a missing proportion of 60% are plotted in Figures 3.3 and 3.4, and the

results under a missing proportion of 30% are presented in Section 3.6.4. All three tests

preserve the type I error under all three models. Under Models 1 and 2, the supremum

test does not lose much power compared with the single-model test with the correct model

specification. Under Model 3, the power of the supremum test is substantially larger than

that of the single-model test with the proportional hazards model. The power of the single-

model test with the proportional odds model is slightly larger than that of the supremum

test, probably because Model 3 is close to a proportional odds model. However, the

supremum test is never more than 15% less efficient than the single-model tests, whereas

the single-model tests may have substantial efficiency loss due to model misspecification.

This illustrates that even when the outcome model is unknown or misspecified, we can

perform the supremum test to achieve a relatively high power.

91



Figure 3.1: Study 1 - Rejection probabilities under a missing proportion of 60% and the
null hypothesis.
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Figure 3.2: Study 1 - Rejection probabilities under a missing proportion of 60% and the
alternative hypothesis.
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Figure 3.3: Study 2 - Rejection probabilities under a missing proportion of 60% and the
null hypothesis.

Figure 3.4: Study 2 - Rejection probabilities under a missing proportion of 60% and the
alternative hypothesis.
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We conducted an additional simulation study with a mixture of strong and weak

signals of the auxiliary variables. We set γA to be 0.25 at the first 20 components, 0.02

at the subsequent 80 components, and 0 at the remaining components. The results are

summarized in Section 3.6.4. By results not presented, similar to the results of study

1, the proposed method presents good performance under this setting, too. Under the

alternative hypothesis, the true model method tends to have high power. Nevertheless,

the proposed method is more powerful than the true model method under some scenarios.

This is because the true model contains many auxiliary variables with weak signals, and

the extra information contained in the variables does not compensate the variability

involved in the estimation of their effects.

3.4 Real Data Analysis

3.4.1 TCGA: Bladder Urothelial Carcinoma

We analyze a dataset of patients with bladder urothelial carcinoma (BLCA) from TCGA

(The Cancer Genome Atlas Network, 2014). In the study, most subjects had available

clinical variables, including sex, age at diagnosis, time to tumor progression and time

to death since initial diagnosis. The expressions of 18224 genes, generated by RNA

sequencing, are measured for most subjects. The expressions of 208 proteins or phospho-

proteins are available for 82% of the subjects. After removing subjects with missing

clinical data, the sample size is 348. The median follow-up time was about 1.3 years, and

about 49% of the patients were lost to follow-up before tumor progression or death.

We aim to identity protein expressions that are associated with the time to tumor

progression or death, whichever occurs first. The covariates in X include age at diagnosis,

sex and stage N. In the sample, 26.44% patients are female. Stage N is classified into N0

(64.08%), N1(12.93%), N2(21.26%) and N3(1.72%) and is represented by a single variable
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Table 3.1: Rejection probabilities and references of significant proteins in the TCGA
bladder urothelial carcinoma analysis.

Protein
expression

Proposed
method

Complete-case Covariate-only Reference
PH PO PH PO

GATA3 3.40E−05 1.12E−04 5.00E−05 1.04E−04 4.40E−05 Higgins et al. (2007)
Src 1.48E−04 8.20E−04 4.86E−04 8.33E−04 4.62E−04 Xu et al. (2021)
TAZ 1.80E−04 1.38E−03 5.51E−04 1.09E−03 4.32E−04 Gao et al. (2014)

with values 0, 1, 2, and 3, respectively. In a single analysis, we set the covariate of interest

S to be the expression of a protein or phospho-protein. We set the gene expressions as

auxiliary variables. About 6% of the gene expression values are missing, and we impute

them using k-nearest neighbor imputation with k = 10.

We perform the supremum test with q = 2 and the two transformation functions corre-

sponding to the proportional hazards and proportional odds models. The working model

of S is selected in two steps: first, we select 1000 gene expressions by the correlation-based

marginal screening procedure, and then we perform lasso on the selected gene expressions;

the tuning parameter in lasso is selected by BIC. For comparison, we also perform the

complete-case analysis and the covariate-only method described in the simulation studies

under the proportional hazards and proportional odds models.

Under a (family-wise) significance level of 0.05 and the Bonferroni correction, i.e.,

an individual significance level of 0.05/208 = 0.00024, 3 proteins are identified to be

significantly associated with progression-free survival time under at least one of the five

tests. All of the 3 protein expressions are more significant under the proposed method

than under other methods with either outcome model. Also, the 3 protein expressions

have been identified to be related to the progression of bladder urothelial carcinoma in

previous studies. The p-values under all methods of the significant protein expressions

and some relevant references are given in Table 3.1.
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3.4.2 METABRIC

We also apply the proposed method to analyze the data from the METABRIC study (Cur-

tis et al., 2012) to investigate the association between gene expressions and the time to

tumor progression or death of breast cancer patients. The data are available through the

cBioPortal for Cancer Genomics (https://www.cbioportal.org/study/summary?id=brca_

metabric). The study contains data of clinical variables, gene expressions and copy num-

ber alterations (CNAs). For the analysis, we select patients with subtypes Luminal A

and Luminal B as study subjects. Also, we select the 1500 genes with largest variances

as the study variables. After removing subjects with missing clinical data, the sample

size is 1119. The median follow-up time was about 119 months, and 35% of the patients

were lost to follow-up before tumor progression or death. We artificially introduce 50%

of missingness with the MAR mechanism described in the simulation studies for the gene

expressions to demonstrate the proposed method.

The covariates in X include age at diagnosis, Her2 status, indicator of chemotherapy,

indicator of hormone therapy, and indicator of radiotherapy. Her2 status is classified into

loss (6.08%), neutral (77.57%) and gain (16.35%) and is represented by a single variable

with values 0, 1 and 2. In a single analysis, we set the covariate of interest S to be a

single gene expression. We set the CNAs as auxiliary variables. For each CNA, if there

exists another CNA such that they have more than 95% same values, then we delete it

from the analysis. After deletion, the dimension of CNA is 385.

We perform the supremum test with q = 2 and the two transformation functions corre-

sponding to the proportional hazards and proportional odds models. The working model

of S is selected by lasso, and the tuning parameter is selected using BIC. For comparison,

we include the results under the complete-case analysis and the covariate-only method

described in the simulation studies with the proportional hazards and proportional odds

models. Also, we perform score test using all available gene expressions under the pro-
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Table 3.2: Rejection probabilities of significant gene expressions in the METABRIC data
analysis.

Gene
expression

Proposed
method

Complete-data Complete-case Covariate-only

PH PO PH PO PH PO

CDCA5 2.92E−03 7.60E−06 7.57E−08 3.30E−02 1.24E−02 1.51E−02 1.37E−02
FAM164A 4.44E−03 2.30E−05 2.16E−05 1.44E−02 3.68E−02 3.17E−02 3.74E−02
S100P 4.39E−03 4.47E−05 3.87E−06 3.15E−03 6.02E−03 9.66E−03 9.31E−03
NFKBIZ 6.50E−03 2.73E−04 1.99E−05 1.35E−02 7.01E−03 3.08E−02 9.39E−03
PTTG1 4.08E−03 7.41E−05 2.22E−05 6.85E−02 1.73E−02 6.33E−02 2.06E−02
CCNB2 9.80E−05 1.50E−04 9.71E−06 8.40E−04 1.38E−04 1.07E−03 2.06E−04
AURKA 1.24E−02 7.94E−04 2.04E−05 1.07E−01 3.56E−03 5.85E−02 1.10E−02

portional hazards and proportional odds models, and we refer it as the complete-data

analysis. The results of complete-data analysis can be viewed as the gold standard since

it contains no missing values of S and thus no variability caused by the imputation process

is introduced.

There are 7 gene expressions identified to be significantly associated with progression-

free survival time at the (Bonferroni-corrected) significance level of 0.05/1500 = 3.33 ×

10−5 under the complete-data analysis with either outcome model. Among these gene

expressions, all of them are most significant under the complete-data analysis with the

proportional odds model, 5 are more significant under the proposed method than under

the complete-case analysis and the covariate-only method with either outcome model.

This suggests that the proposed method is more powerful than the other two methods.

The p-values under all methods of the significant gene expressions are given in Table 3.2.

3.5 Discussion

In this chapter, we develop a score test to detect the presence of association between a

potentially right-censored survival outcome and an incomplete covariate, where the miss-

ing values of the incomplete covariate can be imputed using high-dimensional auxiliary
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variables. We propose to select a subset of auxiliary variables before performing the score

test. The transformation model of survival outcome is considered to relax distributional

assumptions on the outcome variable. We propose a supremum test that considers mul-

tiple outcome models to improve power. We show that the proposed score statistic is

asymptotically normal. Our theoretical development only requires that S is linearly as-

sociated with covariates X, and the validity of the score test does not depend on the

correctness of the working model.

In the proposed method, the model of Y can be misspecified without compromising

the validity of the test. The proposed score test preserves the type I error with or without

correct specification of the outcome model since the variance of score statistic is derived

using sum of squares of the individual score statistics instead of the second derivative of

the log-likelihood. As expected, when the outcome model is misspecified, the power is

adversely affected. The loss in power is relatively small according to the second simulation

study.

Our work can be extended in the following directions. First, the survival data consid-

ered in this chapter is right-censored. It is of interest to consider other types of censoring,

such as interval censoring, where the event of interest is known only to occur within a

time interval. For example, in HIV/AIDS studies, blood samples are taken from study

subjects periodically to look for evidence of HIV sero-conversion. Then one subject’s event

time is only known to fall between two blood drawings. Second, in the current study, the

time-to-event outcome is univariate. In genomic studies, we may encounter multivariate

survival data, where each subject may experience more than one event. In that case, the

interested events may be correlated with each other. We may consider modelling a joint

survival function and performing a score test for multiple parameters.
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3.6 Technical Details and Additional Results

3.6.1 The Derivative Terms in the Score Statistic

Define Îζζ =

Îαα Îαλ

Î
T
αλ Îλλ

, where

Îαα = − 1

n

n∑
i=1

{
∆ηi(ζ0)ξi(ζ0)

2 +∆iψi(ζ0)ξi(ζ0)−G′′
i (ζ0)ξi(ζ0)

2 −G′
i(ζ0)ξi(ζ0)

}
X iX

T
i ,

(Îαλ)k = − 1

n

n∑
i=1

I(Yi ≥ tk)
{
∆iηi(ζ0)ξi(ζ0) + ∆iψi(ζ0)−G′′

i (ζ0)ξi(ζ0)−G′
i(ζ0)

}
× exp(αT

0X i)X i, k = 1, . . . ,m.

Note that Îλλ is a (m×m)-matrix with the (j, k)th element as

(Îλλ)jk =


− 1
n

∑n
i=1

[
− ∆j

λ2j
+ I(Yi ≥ tj)

{
∆iηi(ζ0)−G′′

i (ζ0)
}

exp(2αT
0X i)

]
if k = j,

− 1
n

∑n
i=1 I{Yi ≥ max(tk, tj)}

{
∆iηi(ζ0)−G′′

i (ζ0)
}

exp(2αT
0X i) if k 6= j.

Define Îβζ = (Î
T
βα, Î

T
βλ)

T, where

Îβα =
1

n

n∑
i=1

{
∆iηi(ζ0)ξi(ζ0)

2 +∆iψi(ζ0)ξi(ζ0)

−G′′
i (ζ0)ξi(ζ0)

2 −G′
i(ζ0)ξi(ζ0)

}{
RiSi + (1−Ri)γ

T
0KWK,i

}
X i,

(Îβλ)k =
1

n

n∑
i=1

I(Yi ≥ tk)
{
∆iηi(ζ0)ξi(ζ0) + ∆iψi(ζ0)−G′′

i (ζ0)ξi(ζ0)−G′
i(ζ0)

}
exp(αT

0X i)

×
{
RiSi + (1−Ri)γ

T
0KWK

}
, k = 1, . . . ,m.
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Also, we define

Îγγ =
1

n

n∑
i=1

RiWK,iW
T
K,i,

Îβγ =
1

n

n∑
i=1

{
∆i +∆iψi(ζ0)ξi(ζ0)−G′

i(ζ0)ξi(ζ0)
}
(1−Ri)WK,i.

3.6.2 Proof of Theorem 3.1

For simplicity, we suppress the transformation function index j in the following arguments.

Let Gi(α,Λ) = G{ξi(α,Λ)} with ξi(α,Λ) =
∫ Yi
0

exp(αTX i) dΛ(s). The (scaled) score

statistic for β can be written as

Uβ(α̂, Λ̂, γ̂K) =n−1/2

n∑
i=1

{
∆i +∆i

G′′
i (α̂, Λ̂)

G′
i(α̂, Λ̂)

ξi(α̂, Λ̂)−G′
i(α̂, Λ̂)ξi(α̂, Λ̂)

}
×

{
RiSi + (1−Ri)γ̂

T
KWK,i

}
≡ n−1/2

n∑
i=1

µ1,i(α̂, Λ̂){RiSi + (1−Ri)γ̂
T
KWK,i

}
.

Define

IβΛ(s) = E
[
µ′
1(α0,Λ0) exp(αT

0X)
{
RS + (1−R)γT

0KWK
}
I(s ≤ Y )

]
,

where µ′
1 is the first derivative of µ1. Note that we can also write

Iβα = E
[
µ′
1(α0,Λ0)ξ(α0,Λ0)X

{
RS + (1−R)γT

0KWK
}]
,

Iβγ = E
{
µ1(α0,Λ0)(1−R)WK

}
.

Let ÎβΛ(s) be the empirical counterpart of IβΛ(s), with the expectations replaced by em-

pirical means. We suppress the argument s in the notation when there are no ambiguities.

For notational convenience, we denote µ1(α0,Λ0) and µ1(α̂, Λ̂) by µ1 and µ̂1, respectively.
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To prove Theorem 3.1, we need to derive the limiting distribution of
√
n(α̂−α0, Λ̂−

Λ0). Let ℓ(α,Λ) be the log-likelihood for the survival model under H0 for a generic

subject, that is,

ℓ(α,Λ) = ∆
{

logλ(Y ) +αTX + logG′(α,Λ)
}
−G(α,Λ).

We define the differentiation of ℓ(α,Λ) along
(
hα,

∫
hΛ(s) dΛ(s)

)
as a map from L to

ℓ∞(H):

U(α,Λ)[hα, hΛ] :=
d
dϵℓ

(
α+ ϵhα,Λ + ϵ

∫
hΛ(s) dΛ(s)

)∣∣∣
ϵ=0

=∆{hT
αX + hΛ(Y )}+∆ψ(α,Λ) exp(αTX)

∫
{hT

αX + hΛ(s)} dΛ(s)

−G′(α,Λ) exp(αTX)

∫
{hT

αX + hΛ(s)} dΛ(s).

Clearly, P
{
U(α0,Λ0)[hα, hΛ]

}
= 0, where P{g(x)} = E{g(x)} for any measurable func-

tion g(x). By Taylor’s series expansion, we have

P
{
U(α̂, Λ̂)(hα, hΛ)− U(α0,Λ0)[hα, hΛ]

}
=P

(
(α̂−α0)

TX

[
∆
{
ψ(α0,Λ0) exp(αT

0X) + η(α0,Λ0) exp(2αT
0X)Λ0(Y )

}
−

{
G′(α0,Λ0) exp(αT

0X) +G′′(α0,Λ0) exp(2αT
0X)Λ0(Y )

}]∫ Y

0

{hT
αX + hΛ(s)} dΛ0(s)

+

∫ τ

0

I{s ≤ Y }
[{

∆ψ(α0,Λ0)−G′(α0,Λ0)
}

exp(αT
0X){hT

αX + hΛ(s)}

+
{
∆η(α0,Λ0)−G′′(α0,Λ0)

}
exp(2αT

0X)

∫ Y

0

{hT
αX + hΛ(t)} dΛ0(t)

]
d(Λ̂− Λ0)(s)

)
+ o(1)

≡ (α̂−α0)
TW α(hα, hΛ) +

∫ τ

0

WΛ(hα, hΛ)(s) d(Λ̂− Λ0)(s) + o(1).

With the above arguments, we can use Theorem 3.3.1 of van der Vaart and Wellner (1996)

to prove the weak convergence of
√
n(α̂ − α0, Λ̂ − Λ0), following the arguments of Zeng
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et al. (2008). The result is stated in Lemma 3.1 in Section 3.6.3.

We now turn to the proof of Theorem 3.1.

Proof of Theorem 3.1. First we consider the score statistic U
(j)
β (α̂(j), Λ̂(j), γ̂K) for j =

1, . . . , q. For simplicity, we suppress the index j when the content is clear. Note that for

any fixed K, the Taylor’s series expansion of Uβ(α̂, Λ̂, γ̂K) at (α0,Λ0,γ0K) is

Uβ(α̂, Λ̂, γ̂K)

=
1

n1/2

n∑
i=1

[
µ1,i

{
RiSi + (1−Ri)γ

T
0KWK,i

}
+ Î

T
βα(α̂−α0)

+

∫ τ

0

ÎβΛ(s) d(Λ̂− Λ0)(s) + Î
T
βγ Î

−1

γγWK,iRi(Si − γT
0KWK,i)

]
+ op(1)

=
1

n1/2

n∑
i=1

[
µ1,i{RiSi + (1−Ri)γ

T
0KWK,i}+ IT

βα(α̂−α0)

+

∫ τ

0

IβΛ(s) d(Λ̂− Λ0)(s) + IT
βγI

−1
γγWK,iRi(Si − γT

0KWK,i)
]
+ op(1)

=
1

n1/2

n∑
i=1

[
µ1,i

{
RiSi + (1−Ri)γ

T
0KWK,i + q̃T

αX i

}
+ µ2,i + IT

βγI
−1
γγWK,iRi(Si − γT

0KWK,i)
]

+ op(1), (3.6)

where

µ2,i =∆iq̃Λ(Y ) + ∆i
G′′
i (α0,Λ0)

G′
i(α0,Λ0)

exp(αT
0X i)

∫ τ

0

I(s ≤ Yi)q̃Λ(s) dΛ0(s)

−G′
i(α0,Λ0) exp(αT

0X i)

∫ τ

0

I(s ≤ Yi)q̃Λ(s) dΛ0(s),

and (q̃α, q̃Λ) = (W α,WΛ)
−1(Iβα, IβΛ); the existence of the inverse is guaranteed by con-

dition (C8). The second equality follows from the convergence of γ̂K, Îβα and ÎβΛ to the

true values (by Lemma 3.2 presented below) and the convergence of n−1/2
∑n

i=1(Î
T
βγ Î

−1

γγ −

IT
βγI

−1
γγ )WK,iRi(Si−γT

0KWK,i) to zero (by Lemma 3.4 presented below). The third equal-

ity follows from the convergence of α̂ and Λ̂ to the true values (by Lemma 3.1 presented
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below). The first term on the right-hand side of (3.6) can be written as

1

n1/2

n∑
i=1

[{
µ1,i − E(µ1 | Ri,X i)

}{
RiSi + (1−Ri)γ

T
0KWK,i + q̃T

αX i

}
+
{
µ2,i − E(µ2 | Ri,X i)

}]
+

1

n1/2

n∑
i=1

[
(γT

0X + q̃T
α)
{

E(µ1 | Ri,X i)X i − E(µ1X | Ri)
}

+
{

E(µ1 | Ri,X i)− E(µ1 | Ri)
}
γT
0A,KAK,i

+
{

E(µ1 | Ri,X i) + IT
βγI

−1
γγWK,i

}
Ri(Si − γT

0KWK,i) +
{

E(µ2 | Ri,X i)− E(µ2 | Ri)
}]

+
1

n1/2

n∑
i=1

{
(γT

0K + q̃T
α)E(µ1X | Ri) + E(µ1 | Ri)γ

T
0A,KAK,i + E(µ2 | Ri)

}
≡ 1

n1/2

n∑
i=1

U1i +
1

n1/2

n∑
i=1

U2i +
1

n1/2

n∑
i=1

U3i,

where γ0X and γ0A,K are the subvectors of γ0K that correspond to X and the selected

components of A, respectively. Note that U1i, U2i and U3i generally depend on the selected

model K. Now we reintroduce the index j = 1, . . . , q for the transformation function. Let

U
(j)
1i , U (j)

2i and U
(j)
3i be U1i, U2i and U3i computed under G(j), respectively. The score

statistic under β(j) = 0 and G(j) can be written as

U
(j)
β (α̂(j), Λ̂(j), γ̂K) =

1

n1/2

n∑
i=1

U
(j)
1i +

1

n1/2

n∑
i=1

U
(j)
2i +

1

n1/2

n∑
i=1

U
(j)
3i + op(1).

Let U ki =
(
U

(1)
ki , . . . , U

(q)
ki

)T for k = 1, 2 and 3. For j, l = 1, . . . , q and k = 1, 2 and 3,

define σ2(jl)
k (K) = Cov

(
U

(j)
ki , U

(l)
ki

)
. Let Σk(K) =

(
σ
2(jl)
k (K)

)
j,l=1,...,q

for k = 1, 2 and 3, and

Σ(K) =
∑3

k=1Σk(K).

By the Cramer-Wold Device, we only need to show that tTΣ−1/2(K∗)Ûβ(K∗) converges

to a standard normal distribution for any vector t ∈ Rq. By a version of the portmanteau
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theorem (Pollard, 2002, p.177), it suffices to show that for any g ∈ C3
B,

E
[
g
{
tTΣ−1/2(K∗)Ûβ(K∗)

}]
→ E{g(Z)}, (3.7)

where Z is a standard normal random variable. Based on the above results and the

mean-value theorem,

E
[
g
{
tTΣ−1/2(K∗)Ûβ(K∗)

}]
=

∫
E
[
g
{
tTΣ−1/2(K)Ûβ(K)

}
| K∗ = K

]
dPK∗(K)

=

∫
K∈Ωn

E
[
g
{ 1

n1/2

n∑
i=1

tTΣ−1/2(K)(U 1i +U 2i +U 3i)
}
| K∗ = K

]
dPK∗(K) + o(1),

(3.8)

where PK∗ is the probability measure of K∗.

For i = 1, . . . , n, let

Ũ 1i =Var
(
U 1 | Ri,X i, Si,Ai

)1/2
Z1i,

where Z11, . . . ,Z1n are i.i.d. standard multivariate normal variables that are independent

of the observed data. Let V 1i = Ũ 11 + · · ·+ Ũ 1,i−1 +U 1,i+1 + · · ·+U 1n for i = 1, . . . , n.

Note that

E
[
g
{ 1

n1/2

n∑
i=1

tTΣ−1/2(K)(U 1i +U 2i +U 3i)
}

− g
{ 1

n1/2

n∑
i=1

tTΣ−1/2(K)(Ũ 1i +U 2i +U 3i)
}
| K∗ = K

]
=

n∑
i=1

E
[
g
{tTΣ−1/2(K)

n1/2

(
V 1i +

∑
j

U 2j +
∑
j

U 3j +U 1i

)}

105



− g
{tTΣ−1/2(K)

n1/2

(
V 1i +

∑
j

U 2j +
∑
j

U 3j + Ũ 1i

)}
| K∗ = K

]
=

tTΣ−1/2(K)

n1/2

n∑
i=1

E
[
g′
{tTΣ−1/2(K)

n1/2

(
V 1i +

∑
j

U 2j +
∑
j

U 3j

)}
(U 1i − Ũ 1i) | K∗ = K

]
+

1

2n

n∑
i=1

E
(
g′′
{tTΣ−1/2(K)

n1/2

(
V 1i +

∑
j

U 2j +
∑
j

U 3j

)}
×

[
{tTΣ−1/2(K)U 1i}2 − {tTΣ−1/2(K)Ũ 1i}2

]
| K∗ = K

)
+

1

6n3/2

n∑
i=1

E
[
g′′′(a){tTΣ−1/2(K)U 1i}3 − g′′′(ã){tTΣ−1/2(K)Ũ 1i}3 | K∗ = K

]
(3.9)

for some variables a and ã. By construction, U 1i and Ũ 1i are independent of V 1i and∑
j(U 2j + U 3j) given O1 ≡ (Ri, Si,X i,Ai)i=1,...,n. The expectation in the first term on

the right-hand side of (3.9) is

E
(

E
[
g′
{tTΣ−1/2(K)

n1/2

(
V 1i +

∑
j

U 2j +
∑
j

U 3j

)}
| O1,K∗ = K

]
× E(U 1i − Ũ 1i | O1,K∗ = K) | K∗ = K

)
= 0,

because E(U 1i − Ũ 1i | O1,K∗ = K) = E(U 1i − Ũ 1i | O1) = 0. Likewise, the second term

on the right-hand side of (3.9) is 0, because the conditional second moments of U 1i and

Ũ 1i given O1 match (i = 1, . . . , n). For K ∈ Ωn, the right-hand side of (3.9) is bounded

above by

q∑
j=1

ζ
(j)
1n =

q∑
j=1

Mn−3/2

n∑
i=1

E
{

sup
K∈Ωn

(
|U (j)

1i |3 + |Ũ (j)
1i |3

)
| K∗ = K

}

for some positive constant M . By Lemma 3.5 presented below,
∫
Ωn
ζ
(j)
1n dPK∗ → 0 for

j = 1, . . . , q.

Next, we show that U 2i’s in (3.8) can be similarly replaced by normal random vari-
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ables. Define

Ũ 2i = Var(U 2 | Ri,Ai, Si − γT
0XX i)

1/2Z2i

for i = 1, . . . , n, where Z21, . . . ,Z2n are i.i.d. standard multivariate normal random

variables that are independent of the observed data and Z11, . . . ,Z1n. Note that the

above conditional variance is taken with respect to X. We wish to show that

∫
Ωn

E
[
g
{ n∑

i=1

tTΣ−1/2(K)

n1/2
(Ũ 1i +U 2i +U 3i)

}
− g

{ n∑
i=1

tTΣ−1/2(K)

n1/2
(Ũ 1i + Ũ 2i +U 3i)

}
| K∗ = K

]
dPK∗(K) = o(1). (3.10)

Note that n−1/2
∑n

i=1 Ũ 1i can be written as Σ1/2
1 (K)Z1, where Z1 is a standard multivari-

ate normal random variable independent of the observed data. Let K∗
0 = K∗(S−Xγ0X ,A).

By the proof of Theorem 2.1, the event {K∗ = K} in the conditional expectation in (3.10)

can be replaced by {K∗
0 = K}. Let V 2i = Ũ 21 + · · · + Ũ 2,i−1 + U 2,i+1 + · · · + U 2n for

i = 1, . . . , n. The term inside the integration of the left-hand side of (3.10) is up to a

vanishing term equal to

n∑
i=1

E
[
g
{tTΣ−1/2(K)

n1/2

(
V 2i + n1/2Σ

1/2
1 (K)Z1 +U 2i +

∑
j

U 3j

)}
− g

{tTΣ−1/2(K)

n1/2

(
V 2i + n1/2Σ

1/2
1 (K)Z1 + Ũ 2i +

∑
j

U 3j

)}
| K∗

0 = K
]

=
tTΣ−1/2(K)

n1/2

n∑
i=1

E
[
g′
{tTΣ−1/2(K)

n1/2

(
V 2i + n1/2Σ

1/2
1 (K)Z1 +

∑
j

U 3j

)}
(U 2i − Ũ 2i) | K∗

0 = K
]

+
1

2n

n∑
i=1

E
(
g′′
{tTΣ−1/2(K)

n1/2

(
V 2i + n1/2Σ

1/2
1 (K)Z1 +

∑
j

U 3j

)}
×

[
{tTΣ−1/2(K)U 2i}2 − {tTΣ−1/2(K)Ũ 2i}2

]
| K∗

0 = K
)

+
1

6n3/2

n∑
i=1

E
[
g′′′(b){tTΣ−1/2(K)U 2i}3 − g′′′(̃b){tTΣ−1/2(K)Ũ 2i}3 | K∗

0 = K
]

(3.11)
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for some variables b and b̃. Let O2 = (Ri,Ai, Si−γT
0XX i)i=1,...,n. Since the event {K∗

0 = K}

is implied by O2, we have

E
[
g′
{tTΣ−1/2(K)

n1/2

(
V 2i + n1/2Σ

1/2
1 (K)Z1 +

∑
j

U 3j

)}
(U 2i − Ũ 2i) | K∗

0 = K
]

=E
(

E
[
g′
{tTΣ−1/2(K)

n1/2

(
V 2i + n1/2Σ

1/2
1 (K)Z1 +

∑
j

U 3j

)}
| O2,K∗

0 = K
]

× E(U 2i − Ũ 2i | O2) | K∗
0 = K

)
= 0.

Likewise, the second term on the right-hand side of (3.11) is zero because the conditional

second moments of U 2i and Ũ 2i match. By Lemma 3.5 presented below, the third term

on the right-hand side of (3.11) is bounded by
∑q

j=1 ζ
(j)
2n such that

∫
Ωn
ζ
(j)
2n dPK∗ → 0, and

(3.10) holds.

Let Ũ 3i = Var(U 3 | AK,i)
1/2Z3i for i = 1, . . . , n, where Z31, . . . ,Z3n are i.i.d.

standard multivariate normal variables that are independent of the observed data and

(Z1i,Z2i)i=1,...,n. By arguments similar to the proof of Theorem 2.1, we can show that

∫
Ωn

E
[
g
{ n∑

i=1

tTΣ−1/2(K)

n1/2
(Ũ 1i + Ũ 2i +U 3i)

}
− g

{ n∑
i=1

tTΣ−1/2(K)

n1/2
(Ũ 1i + Ũ 2i + Ũ 3i)

}
| K∗ = K

]
dPK∗(K) = o(1). (3.12)

Combining the above results, we have

E
[
g
{ n∑

i=1

tTΣ−1/2(K)

n1/2
(U 1i +U 2i +U 3i)

}
| K∗ = K

]
=E

[
g
{ n∑

i=1

tTΣ−1/2(K)

n1/2
(Ũ 1i + Ũ 2i + Ũ 3i)

}
| K∗ = K

]
+ o(1)

=E
[
g
{
tTΣ−1/2(K)(Σ

1/2
1 (K)Z1 +Σ

1/2
2 (K)Z2 +Σ

1/2
3 (K)Z3)

}]
+ o(1)
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uniformly over K ∈ Ωn, where Z2 is a standard multivariate normal random variable inde-

pendent of the observed data and Z1, and Z3 is a standard normal random variable inde-

pendent of Z1, Z2, and the observed data. Because Σ1/2
1 (K)Z1+Σ

1/2
2 (K)Z2+Σ

1/2
3 (K)Z3

is multivariate normal with mean 0 and variance Σ(K), the desired convergence (3.7) fol-

lows.

3.6.3 Additional Theoretical Results

For simplicity, Lemma 3.1, Lemma 3.2, Lemma 3.4 and Lemma 3.5 are stated under

the null hypothesis H0 and a known transformation function G. The arguments for

G(j), j = 1, . . . , q under H ′
0 are essentially the same. Lemma 3.3 is stated under the null

hypothesis H ′
0.

Lemma 3.1. Suppose that there exists (hα, hΛ) ∈ H such that (W α(hα, hΛ),WΛ(hα, hΛ)) =

(qα, qΛ), then under conditions (C1), (C7) and (C8), we have

√
n
{
qT
α(α̂−α0) +

∫ τ

0

qΛ(s) d(Λ̂− Λ0)(s)
}
= −

√
n(Pn − P)U(α0,Λ0)[q̃α, q̃Λ] + op(1),

where qα = Iβα, qΛ = IβΛ and (q̃α, q̃Λ) = (W α,WΛ)
−1(qα, qΛ).

Lemma 3.2. Under conditions (C1)–(C3), the inequalities

sup
K∈Ωn

∥∥∥γ̂K − γ0K

∥∥∥ > C1

{(t+ log rn + qn
n

)1/2

+
qn(logn)2/ξ(t+ log rn + qn)

2/ξ

n

}
,

sup
K∈Ωn

∥∥∥Î−1

γγ Îβγ − I−1
γγ Iβγ

∥∥∥ > C1

{(t+ log rn + qn
n

)1/2

+
qn(logn)2/ξ(t+ log rn + qn)

2/ξ

n

}
,

sup
K∈Ωn

∥∥∥Îβα − Iβα

∥∥∥ > C1

{(t+ log rn
n

)1/2

+
q
1/2
n (logn)1/ξ(t+ log rn)1/min(1,ξ)

n

}
, and

sup
K∈Ωn

sup
0≤s≤τ

∣∣∣ÎβΛ(s)− IβΛ(s)
∣∣∣

> C1

[
(tqn)

1/2

n1/4
+
{t+ logn+ log(2rn)

n

}1/2

+
q
1/2
n {log(2n)}1/ξ{t+ logn+ log(2rn)}1/min(1,ξ)

n

]
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hold with probability at most C2e
−t for large enough n and t, where C1 and C2 are positive

constants.

For j, l = 1, . . . , q, we have

Cov
{
U

(j)
β (α̂(j), Λ̂(j), γ̂K), U

(l)
β (α̂(l), Λ̂(l), γ̂K)

}
=Cov

{ 1

n1/2

n∑
i=1

(U
(j)
1i + U

(j)
2i + U

(j)
3i ),

1

n1/2

n∑
i=1

(U
(l)
1i + U

(l)
2i + U

(l)
3i )

}
=

3∑
k=1

Cov
( 1

n1/2

n∑
i=1

U
(j)
ki ,

1

n1/2

n∑
i=1

U
(l)
ki

)
,

where the last equality follows because the cross terms are zero. To see this, consider

k = 1 and k′ = 2. We have

Cov
( 1

n1/2

n∑
i=1

U
(j)
1i ,

1

n1/2

n∑
i=1

U
(l)
2i

)
=E

{
Cov

( 1

n1/2

n∑
i=1

U
(j)
1i ,

1

n1/2

n∑
i=1

U
(l)
2i | O1

)}
+ Cov

{
E
( 1

n1/2

n∑
i=1

U
(j)
1i | O1

)
,E

( 1

n1/2

n∑
i=1

U
(l)
2i | O1

)}
= 0,

because E(U (j)
1i | O1) = 0, and U

(l)
2i is constant given O1. Analogously, the other cross

terms are zero.

For j, l = 1, . . . , q, define

σ̂
2(jl)
1 (K) =

1

n

n∑
i=1

E
(
U

(j)
1i U

(l)
1i | Ri,X i, Si,Ai

)
σ̂
2(jl)
2 (K) =

1

n

n∑
i=1

E
(
U

(j)
2i U

(l)
2i | Ri,Ai, Si − γT

0XX i

)
σ̂
2(jl)
3 (K) =

1

n

n∑
i=1

E
(
U

(j)
3i U

(l)
3i | AK,i

)
.
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Lemma 3.3. Under conditions (C1)–(C4), for j, l = 1, . . . , q, and large enough n and t,

P

[
sup
K∈Ωn

3∑
k=1

∣∣σ̂2(jl)
k (K)− σ

(2jl)
k (K)

∣∣ > C1

{(t+ log rn
n

)1/2

+
qn(logn)2/ξ(t+ log rn)2/ξ

n

}]
≤C2e

−t,

where C1 and C2 are positive constants.

Lemma 3.4. Under conditions (C1)–(C4),

E
{

sup
K∈Ωn

∣∣∣∣ 1

n1/2

n∑
i=1

(Î
T
βγ Î

−1

γγ − IT
βγI

−1
γγ )WK,iRi(Si − γT

0KWK,i)

∣∣∣∣} = o(1).

Lemma 3.5. Assume that conditions (C1)–(C3) hold. For Uki and Ũki (k = 1, 2, 3; i =

1, . . . , n) defined in the proof of Theorem 3.1,

P

[
3∑

k=1

sup
K∈Ωn

1

n3/2

n∑
i=1

(
|Uki|3 + |Ũki|3

)
> C1

{
(t+ log rn)1/2

n
+
q
3/2
n (logn)3/ξ(t+ log rn)3/ξ

n3/2

}]

is smaller than C2e
−t for large enough n and t, where C1 and C2 are positive constants.

The proofs of Lemmas 3.3 and 3.4 are analogous to the arguments in Section 2.6.4,

and we omit the proofs here.

Proof of Lemma 3.1. The result follows from Theorem 3.3.1 of van der Vaart and Wellner

(1996).

Proof of Lemma 3.2. We refer the proofs of the first to the third results to Section 2.6.4.
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For the forth result, let ζm = {0, τ
m
, 2τ
m
, . . . , τ} for m = n1/2, so

sup
K∈Ωn

sup
0≤s≤τ

∣∣∣ÎβΛ(s)− IβΛ(s)
∣∣∣

≤ sup
K∈Ωn

sup
s∈ζm

∣∣∣ÎβΛ(s)− IβΛ(s)
∣∣∣+ sup

K∈Ωn

sup
s,s′:|s−s′|≤τ/m

∣∣∣ÎβΛ(s)− ÎβΛ(s
′)
∣∣∣

+ sup
K∈Ωn

sup
s,s′:|s−s′|≤τ/m

∣∣∣IβΛ(s)− IβΛ(s
′)
∣∣∣. (3.13)

The second term on the right-hand side of (3.13) can be written as

sup
K∈Ωn

sup
s,s′:|s−s′|≤τ/m

∣∣∣ 1
n

n∑
i=1

ÎβΛ,i
{
I(s ≤ Yi)− I(s′ ≤ Yi)

}∣∣∣
≤ sup

K∈Ωn

sup
s,s′:|s−s′|≤τ/m

∣∣∣( 1
n

n∑
i=1

Î2βΛ,i

)1/2[ 1
n

n∑
i=1

{
I(s ≤ Yi)− I(s′ ≤ Yi)

}2
]1/2∣∣∣

= sup
K∈Ωn

( 1
n

n∑
i=1

Î2βΛ,i

)1/2

× sup
s,s′:|s−s′|≤τ/m

[ 1
n

n∑
i=1

{
I(s ≤ Yi)− I(s′ ≤ Yi)

}2
]1/2

,

where ÎβΛ,i = µ′
1i exp(αT

0X i){RiSi + (1 − Ri)γ
T
0KWK,i}, and the inequality follows from

the Cauchy-Schwarz inequality. Note that

sup
K∈Ωn

1

n

n∑
i=1

Î2βΛ,i > M1

[
qn +

{t+ log(2rn)
n

}1/2

+
qn{log(2n)}1/ξ{t+ log(2rn)}2/ξ

n

]

with probability at most 3e−t for any t > 0 and some positive constant M1, following the

arguments in Section 2.6.5. Let Ik denote the interval
[
(k−2)τ
m

, kτ
m

)
for k = 2, . . . ,m. Since

I(s ≤ Yi)− I(s′ ≤ Yi) takes value 1 if Yi is between s and s′, and takes value 0 otherwise,

we have

P
(

sup
s,s′:|s−s′|≤τ/m

[ 1
n

n∑
i=1

{
I(s ≤ Yi)− I(s′ ≤ Yi)

}2
]1/2

>
( t

m

)1/2)
=P

[
sup

s,s′:|s−s′|≤τ/m

1

n

n∑
i=1

I{min(s, s′) ≤ Yi < max(s, s′)} > t

m

]
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≤P
{

sup
k=1,...,m

1

n

n∑
i=1

I(Yi ∈ Ik) >
t

m

}
≤m sup

k=1,...,m
P
{ 1

n

n∑
i=1

I(Yi ∈ Ik) >
t

m

}
,

for any positive t. Let p = P (Yi ∈ Ik). By Bernstein’s inequality, we have

P
{ 1

n

n∑
i=1

I(Yi ∈ Ik) >
t

m

}
≤ exp

{
−

n2( t
m
− p)2/2

np+ n( t
m
− p)/3

}
.

Note that p ≤ sups∈[0,τ ] fY (s)/m, where fY is the density of Y ; the supremum is finite

under condition (C7). Then

P
(

sup
s,s′:|s−s′|≤τ/m

[ 1
n

n∑
i=1

{
I(s ≤ Yi)− I(s′ ≤ Yi)

}2
]1/2

>
( t

m

)1/2)
≤m exp

{
− n

2

(t− sup fY )2
m(t/2 + 2 sup fY /3)

}
≲ e−t

for large enough t. Thus

sup
K∈Ωn

sup
s,s′:|s−s′|≤τ/m

∣∣∣ 1
n

n∑
i=1

ÎβΛ,i
{
I(s ≤ Yi)− I(s′ ≤ Yi)

}∣∣∣
>M2t

1/2

[
qn
n1/2

+
{t+ log(2rn)

n2

}1/2

+
qn{log(2n)}1/ξ{t+ log(2rn)}2/ξ

n3/2

]1/2

with probability at most 3e−t for any t > 0 and some positive constant M2. Clearly,

because the derivative of IβΛ is bounded, supK∈Ωn
sups,s′:|s−s′|≤τ/m

∣∣∣IβΛ(s) − IβΛ(s
′)
∣∣∣ =

O(m−1). Using Lemma 2.5 again, we have

sup
K∈Ωn

sup
s∈ζm

∣∣∣ÎβΛ(s)− IβΛ(s)
∣∣∣

>M3

[{t+ logn+ log(2rn)
n

}1/2

+
q
1/2
n {log(2n)}1/ξ{t+ logn+ log(2rn)}1/min(1,ξ)

n

]
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with probability at most 3e−t. Combining the above results yield the desired result.

Proof of Lemma 3.5. Recall that U1i =
{
µ1,i−E(µ1 | Ri,X i)

}{
RiSi+(1−Ri)γ

T
0KWK,i+

q̃T
αX i

}
+
{
µ2,i − E(µ2 | Ri,X i)

}
. Note that

∥∥U3
1i

∥∥
ψξ/3

= O
(
1 +

∥∥RiSi + (1−Ri)γ
T
0KWK,i + q̃T

αX i

∥∥3

ψξ

)
≲ q3/2n .

By Lemma 2.5,

sup
K∈Ωn

{ 1

n

n∑
i=1

|U1i|3 − E(|U11|3)
}

>M1

[{t+ log(2rn)
n

}1/2

+
q
3/2
n {log(2n)}3/ξ{t+ log(2rn)}3/ξ

n

]

with probability at most 3e−t for any t > 0 and some positive constant M1. Because

E(|U11|3) is uniformly bounded over K ∈ Ωn,

1

n3/2
sup
K∈Ωn

n∑
i=1

|U1i|3 > M2

[{t+ log(2rn)}1/2
n

+
q
3/2
n {log(2n)}3/ξ{t+ log(2rn)}3/ξ

n3/2

]

with probability at most M3e
−t for any t > 0 and some positive constants M2 and M3.

Recall that U2i is equal to

(γT
0X + q̃T

α)
{

E(µ1 | Ri,X i)X i − E(µ1X | Ri)
}
+
{

E(µ1 | Ri,X i)− E(µ1 | Ri)
}
γT
0A,KAK,i

+
{

E(µ1 | Ri,X i) + IT
βγI

−1
γγWK,i

}
Ri(Si − γT

0KWK,i) +
{

E(µ2 | Ri,X i)− E(µ2 | Ri)
}

and note that ‖IT
βγI

−1
γγWK‖ is bounded, so

∥∥U3
2i

∥∥
ψξ/3

=O
(
1 +

∥∥γT
0A,KAK,i

∥∥3

ψξ
+
∥∥Si − γT

0KWK,i
∥∥3

ψξ

)
≲ q3/2n .
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By Lemma 2.5,

sup
K∈Ωn

{ 1

n

n∑
i=1

|U2i|3 − E(|U21|3)
}

>M4

[{t+ log(2rn)
n

}1/2

+
q
3/2
n {log(2n)}3/ξ{t+ log(2rn)}3/ξ

n

]

with probability at most 3e−t for any t > 0 and some positive constant M4. Because

E(|U21|3) is uniformly bounded over K ∈ Ωn,

1

n3/2
sup
K∈Ωn

n∑
i=1

|U2i|3 > M5

[{t+ log(2rn)}1/2
n

+
q
3/2
n {log(2n)}3/ξ{t+ log(2rn)}3/ξ

n3/2

]

with probability at most M6e
−t for any t > 0 and some positive constants M5 and M6.

Similar arguments show that the same bound applies to the terms involving Ũ1i, Ũ2i, U3i,

and Ũ3i.

3.6.4 Additional Numerical Results
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Figure 3.5: Study 1 - Rejection probabilities under a missing proportion of 30% and the
null hypothesis.
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Figure 3.6: Study 1 - Rejection probabilities under a missing proportion of 30% and the
alternative hypothesis.
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Figure 3.7: Study 2 - Rejection probabilities under a missing proportion of 30% and the
null hypothesis.

Figure 3.8: Study 2 - Rejection probabilities under a missing proportion of 30% and the
alternative hypothesis.
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Figure 3.9: Study 3 - Rejection probabilities under a missing proportion of 30% and the
null hypothesis.
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Figure 3.10: Study 3 - Rejection probabilities under a missing proportion of 30% and the
alternative hypothesis.

120



Figure 3.11: Study 3 - Rejection probabilities under a missing proportion of 60% and the
null hypothesis.
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Figure 3.12: Study 3 - Rejection probabilities under a missing proportion of 60% and the
alternative hypothesis.
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Chapter 4

Conclusion

In this dissertation, we have studied the score tests to investigate the association be-

tween an outcome variable and an incomplete covariate with different types of outcomes.

We propose a novel methodology to conduct association analysis of data with high-

dimensional genomic variables, which is applicable to a wide range of cancer genomic

studies such as TCGA and METABRIC. We provide theoretical and numerical results for

parametric and semiparametric outcome models in Chapter 2 and Chapter 3, respectively.

In Chapter 2, we consider a parametric model for the outcome variable. Since the

covariate of interest is subject to missing, we propose to select a subset of auxiliary vari-

ables and fit a regression model of the incomplete covariate against the selected variables.

We then perform inference on the parameter of interest using the selected model based

on the observed data. The proposed method is not restricted to a specific model selection

procedure, and no assumptions on the correctness of the selected model are made. In

fact, we show that the variability of model selection does not affect the asymptotic distri-

bution of the test statistic. The proposed method presents better statistical performance

in terms of efficiency by including the high-dimensional auxiliary variables into analysis.

In the simulation studies, we show superior identification performance of the proposed

method compared with several other methods. In the real data analysis of TCGA colorec-
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tal adenocarcinoma, we find notable number of protein markers that have been reported

in earlier studies. We also discover some potential candidates that are worth further

investigation.

In Chapter 3, we consider a semiparametric transformation model for a right-censored

survival outcome variable. We adopt the two-step test procedure proposed in Chapter 2

to capture the association between a time-to-event outcome and an incomplete covariate.

We provide a flexible framework in which multiple transformation functions are taken

into consideration. Specifically, we perform a single-model score test under each transfor-

mation function, and then combine the results to form a supremum score test to account

for the uncertainty of the outcome model. We conduct extensive simulation studies and

demonstrate the superiority of the proposed method over some existing approaches. We

apply the proposed method to the TCGA data of bladder urothelial carcinoma and the

METABRIC dataset, and identify important genomic signatures relevant with the time

to tumor progression or death.

For further research, we can consider several directions. First, in both work, the

covariate of interest S is one-dimensional. In many situations, however, we are interested

in testing whether or not a group of covariates has effect on the outcome variable. One

may adopt the variance component test to test for the effect of a covariate set. The

advantage of the variance component test is that it takes the correlation among covariates

into account.

Second, in our proposed framework, only a low-dimensional subset of auxiliary vari-

ables is used to impute the missing data, and the imputation model is fitted using least-

squares estimation. It is of interest to consider a general imputation procedure that

involves many auxiliary variables based on some regularized estimators, such as lasso,

elastic net, and boosting. Such imputation procedures may be more accurate when many

auxiliary variables are weakly associated with the incomplete covariate. The theoretical
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development would be highly challenging, because the regularized estimators may not

have closed-form expressions, and the dimension of the working model could be high.

Third, we have focused on hypothesis testing, and the theoretical results are developed

under the null hypothesis. One may consider estimation and inference of the outcome

model. In this case, the two-step procedure is invalid, because the missing mechanism

would depend on S through its dependence with Y , and estimation of the model of S

using only the subjects with observed data would be inconsistent. Also, one generally

needs to account for the selection variability of the model of S using the methods of, for

example, Taylor and Tibshirani (2018).
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