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ABSTRACT 

This dissertation consists of three independent studies associated with maritime 

transportation changes. It aims to provide policy implications regarding cost studies, 

impact of COVID-19, and digitization in maritime transportation.  

Despite their indispensability to international trade, no comprehensive review of 

maritime and airline freight cost analysis has ever been conducted. The first study 

reviews and summarizes cost modelling, studies investigate these two industries and 

classifies the models into item-based cost formulations and aggregated cost 

formulations. We further compare the different models in order to identify general cost 

forms within the two industries. We also analyze how these cost models evolve over 

time and provide frequently used databases. This study also explains the underlying 

justifications for model specification, and outlines future research directions in cost 

modelling of these two industries.    

The recent experience of lockdowns during COVID-19 highlights the prolonged impact 

a pandemic could have on ports and the shipping industry. The second study uses port 

call data derived from the Automatic Identification System (AIS) reports from the 

world’s 30 largest container ports to quantify both the immediate and long-term impact 

of national COVID-19 lockdown policies on global shipping flows. The analysis uses 

the Difference-in-Difference (DID) and combined regression discontinuity design 

(RDD)-DID models to represent the effects of lockdown policies. The combination of 

RDD and DID models is particularly effective because it can mitigate time trends in the 

data, e.g., the Chinese New Year effect on Chinese ports. This study further examines 

the potential shock propagation effects, namely, how lockdown policy in one country 

(i.e., China) can affect the number of port calls in other countries. We categorize ports 
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in other countries into a high-connectivity (with Chinese ports) group and a low-

connectivity group, using a proposed connectivity index with China derived from 

individual vessel trajectories obtained from the AIS data. The results provide a clearly 

measurable picture of the kinds of trade shocks and consequent pattern changes in port 

calls over time caused by responses to lockdown policies of varying levels of stringency. 

We further document the existence of significant shock propagation effects. As the risk 

of pandemics rises in the twenty-first century, these results can be used by policy 

makers to assess the potential impact of different levels of lockdown policy on the 

maritime industry and trade flows more broadly.  

In the digital era, major shipping lines are developing instant quote and online booking 

platforms. As one of the first attempts to investigate the post-event effects of this trend, 

the third study evaluates how a shipping line’s online quote platform impacts its shipper 

portfolio and the ordered container volume. In order to control for unobserved, time-

varying effects that could be correlated with the platform’s implementation, we apply 

the regression discontinuity design (RDD) method to the import trade data from 2016 

to 2019 of a top shipping line that released its platform in August 2018. We also adopt 

global polynomial regression and local liner regression so as to control for the effects 

of different polynomial time trends, and to test different bandwidths of effect time. Our 

findings suggest that, overall, the container volume assigned to the shipping line 

declined slightly after the online platform was launched. The container orders of small 

shippers with monthly container volume of less than 5 TEUs increases by 3.97 TEU on 

average after online platform adoption. The volume of assigned containers from other 

shippers, meanwhile, declines.  

On the whole, this dissertation provides useful insights for stakeholders in shipping 

industry. Researchers in maritime transportation can learn from the cost studies in air 
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freight transportation to better understand the main economic characteristics of costs. 

Understanding the effect of lockdown on container port calls helps maritime players to 

manage their capacity during lockdowns more effectively and to respond more flexibly 

to changing demand in seaborne transportation. These findings of online quote platform 

on container orders hold fruitful implications for shipping lines. A significant increase 

in the number of small shippers and their container volumes demonstrate administrative 

cost saving and risk mitigation for a shipping line. However, it also leads to possible 

loss of large customers.  
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Chapter 1 Introduction 

1.1 Background  

Maritime transportation is regarded as the backbone of global trade and the global 

economy, often dubbed the “life blood of world trade”. The shipping industry is 

developed along with different changes in its history, and these changes have brought 

different impacts to the industry. Some of these changes transform shipping industry by 

providing a free trade environment, reducing greenhouse gas emissions (GHG) and 

creating laws and regulations. Other changes have devastating impacts on maritime 

transportation, leading to disruption in port operations, bankruptcy of shipping 

companies and shrinking trade volumes. It is important for shipping stakeholders 

including the International Maritime Organization (IMO), governments, shipowners, 

shipbuilders, port operators, and shippers etc. to cope with these changes by better 

understanding their impacts. We divide the changes into three categories: policies, 

external shocks, technological innovations.  

Policies have greatly impacted maritime transportation. The international maritime and 

transport laws, such as The Rotterdam Rules, provide mandatory standards of 

international conventions in maritime transportation. To fight against climate change 

and cut GHG emissions from maritime transportation, IMO has adopted a set of 

international mandatory measures to improve ships’ energy efficiency since 2011. The 

IMO 2020 regulation which limits sulphur in ships’ fuel oil to a maximum 0.5% has 

been in force since 1 January 2020. Ship operators, shipowners and other stakeholder 

took measures to comply with this rule several years ago (Li, 2019). Maritime 

transportation has undergone considerable expansion in recent decades, thanks to the 

different types of trade agreements. The WTO reduces tariff barriers and provides a 



2 

 

framework for trade liberalization since China has been a member of WTO on 11 

December 2001 (Parameswaran, 2004). 

External shocks sometime have damaged maritime transportation hard. Natural 

disasters (e.g. the Kobe earthquake in 1994), COVID-19 pandemic, financial crisis (e.g. 

the US financial crisis of the early 1990s, the 2007-2008 financial crisis), oil crisis in 

1973, the nationalization and subsequent closure of the Suez Canal in 1956, etc. have 

great impact on maritime transportation. Political developments may disrupt shipping 

market to some extent, such as wars (the Korean War started in 1950; the Gulf War in 

August 1990; the Russia-Ukraine war started in 2022). 

Technological innovations have dramatically transformed maritime transportation. To 

begin with, the steam engines free ships from dependence on the wind and increase 

sailing speed overwhelmingly (Atkinson et al., 2018). Second, iron hulls replace 

wooden sailing ships and allowed much larger vessels to be built (Geels, 2002). Third, 

screw propellers make vessels more seaworthy (Bourne, 1852). Fourth, the deep-sea 

cable network allows traders and shipowners to communicate across the world (Fornari 

and WHOI, 2003). Fifth, containerization drastically cut transportation cost by reducing 

time spent to loading and uploading ships in ports (Guerrero and Rodrigue, 2014). 

Nowadays, maritime transportation actively embraces digitalization to adapt to this new 

technology world (Sanchez-Gonzalez et al., 2019). 

The study will help to enrich the toolboxes in studying the shipping changes. In 

particular, it can help the industry stakeholders to have a better understanding of the 

cost formulation/model in maritime transportation and air freight transportation, the 

COVID-19 impact on container port calls, as well as the shippers booking behavior 

changes caused by online quote platform.  
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1.2 Problem Statement and Objectives  

The cost study has always been the focus of transportation economies. Maritime 

transportation is an ancient industry compared to other modes (air, rail and road), but 

the cost studies are less than other industries. This is due to limited knowledge of cost. 

The cost study in maritime transportation begins with the cost allocation derived from 

management accounting, such as capital cost, crew cost, fuel cost, port cost, cargo 

handling cost etc. The basic objective of this kind of cost study is to identify major cost 

items in order to evaluate and estimate a company’s or an industry’s operating costs at 

different level of aggregation. With the development of theory of cost function, 

researchers learn from the cost function adopted from other transportation modes, like 

log-log cost function, linear cost function, semiology cost function, and translog cost 

function. Those cost functions establish the relationship between cost and traffic 

volumes, input prices, operational characteristics, and network size. They are used to 

evaluate the economic characteristics of costs and identify their key determinants. For 

example, the existence of economics of scale and economies of density have been 

studies in maritime transportation. 

The cost studies in maritime transportation surges, due to the availability of cost data 

and development of cost functions. Drewry shipping release shipping operating costs 

annual review and forecast to facilitate researchers with detailed cost data. Combining 

the cost data at company level with the output, input prices, operational characteristics 

allow the establishment of cost function in maritime transportation. Whereas it lacks a 

comprehensive review of cost studies in maritime transportation. We summarize and 

compare cost studies in maritime and air freight transportation using air freight as a 

benchmark. The reason is that both air freight and maritime are long-haul transportation 

and play an indispensable role in international trade.  
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The first objective of this thesis is to summarize and compare the differences in the 

specifications and the characteristics of cost studies in the maritime and air freight 

transportation and explore the reasons causing the differences. 

China is the first country to implement stringent national lockdown in early 2020 

(Chinese New Year holiday) to contain a viral breakout. Some factories in China 

reduced or stopped production, with disruptions in logistics as well as the supply of raw 

materials and components (Tahir and Masood, 2020). As a result, the demand for 

maritime transportation has contracted due to low export volumes. Additionally, crew 

change restrictions and labor shortages at ports have led shipping companies to skip 

some Chinese ports (Alamoush et al., 2022). China overwhelmingly dominates the 

global container ports rankings. Of the top 10 container ports, seven are in China: 

Shanghai, Ningbo-Zhoushan, Shenzhen, Guangzhou-Nansha, Qingdao, Tianjin and 

Hong Kong (Alphaliner, 2022). How the lockdown in China effect container port calls 

in China deserves evaluation. Besides, little is known about the propagation effect of 

Chinese lockdown on container port calls in other countries.  

The propagation effect (or the so-called ripple effect) refers to the spread of a disruption 

throughout multiple echelons, typically occurring in banking study (Giannetti and Saidi, 

2019), financial crisis (Brunnermeier and Oehmke, 2013), and supply chain (Hosseini 

and Ivanov, 2020). The complex and vast voyages routes constitute a huge maritime 

traffic network, especially in container shipping. Once the port in a country or region 

is interrupted, it will lead to corresponding delays or suspensions of subsequent ports. 

In this study, we aim to evaluate how the lockdown policies effect the number of port 

calls in their own countries and other countries.  

Beginning with the first lockdown in China, other countries and cities continued to 

implement lockdown throughout 2020. We call the large-scale lockdowns outside 
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China the second lockdown, mainly announced on 18 March 2020 and implemented in 

Asia, Europe and North America. By then, China has almost ended the lockdown.  

Production has gradually resumed in China, compared with other countries that have 

reduced production due to the second lockdown. In order to mitigate these effects going 

forward, it is crucial to define the exact effects of lockdown measures for policymakers. 

To help shipowners, shippers, shipbuilders and policy makers make rational 

anticipation of the effect of COVID-19 on maritime transport and recover from 

disruptions, it is crucial to have a good understanding of how the COVID-19 pandemic 

affect maritime transport. Thus, the second objective of this thesis is to examine the 

effect of national lockdown policies on maritime transportation by analyzing the port 

call data of the world’s largest 30 container ports. We aim to tackle two specific research 

questions: 1) What is the impact of national lockdown policies on local port calls, both 

in the short term (i.e., one or two weeks) and long term (i.e., four to six weeks)? 2) Is 

there evidence of disruption propagation effects on ports across different regions?  (ii) 

To evaluate how container port calls are affected by COVID-19 and compare the 

different patterns between Chinese ports, Asia ports and European and US ports; to find 

the underlying reasons causing the differences among different regions. 

As a traditional-driven industry, maritime transportation actively embraces the new 

technologies, such as EDI, blockchain, IoT, and artificial intelligence. But online quote 

platform that have been adopted by other industries decades ago has not been embraced 

by the maritime transportation as quickly as others. The COVID-19 pandemic has 

disrupted maritime transportation to some extent, but it has also accelerated the 

digitization progress and innovation of the industry. By 2022, eight of the top 10 

container carriers have developed online quote platforms for customers to get quotes 

online and secure a space for their freight, compared with only two or three in 2018. 
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Two years after the online quote platform was implemented, about half of Maersk’s 

customers are now booking online, rather than booking via email or telephone (Wackett, 

2022).  

The third objective of this thesis is to evaluate how a shipping line’s online quote 

platform impacts its shipper portfolio and the ordered container volume. Specifically, 

this study investigates: (a) whether an online quote platform affects the volume of 

containers ordered by different shippers, and (b) how shippers react after the release of 

an online quote platform by a shipping line.   

1.3 Dissertation Overview 

The remainder of this dissertation is organized as follows. Chapter 2 reviews existing 

studies relevant to cost studies in air freight transportation and maritime transportation, 

COVID-19 and maritime transport, DID and RDD application in COVID-19 and 

transportation studies, and new technology adoption in maritime transportation field.  

In Chapter 3 to 5, the three studies corresponding to the three research objectives are 

analyzed respectively.  

Chapter 3 first summarize the cost studies in air freight transportation and maritime 

transportation, respectively. Then, we compare the cost studies of the two industries 

and summarize the development of cost studies and the most frequently used databases 

for cost studies.   

Chapter 4 adopts both DID and RDD-DID methods to quantify the immediate and long-

term impact of national COVID-19 lockdown policies on global shipping flows. We 

further examine the potential shock propagation effects, namely, how lockdown policy 

in one country can affect the number of port calls in other countries.  
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Chapter 5 evaluates how a shipping line’s online quote platform impacts its shipper 

portfolio and the ordered container volume. Both local linear regression and global 

polynomial regression of RDD methods are applied to control for the unobserved, time-

varying effects that could be correlated with the platform implementation.  

Chapter 6 concludes the key findings and proposes recommendations for future 

research. 
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Chapter 2 Literature Review 

In this chapter, we first present the review research in cost studies in the transportation 

field. Secondly, we summarize the COVID-19 and maritime transport; and, DID and 

RDD-DID application in COVID-19 and transportation studies. Lastly, we show the 

related study in digitization of maritime transportation and RDD application from 

previous studies.  

2.1 Cost Studies in Air Freight Transportation and Maritime 

Transportation 

While we are not aware of any general review of the item-based cost formulation in the 

transportation industry, several papers review the modelling and estimation approach 

of the aggregated cost formulation. Jara-Diaz (1982a) review transportation cost 

functions from a methodological perspective, especially their characterization and 

treatment of transportation output. Some define transportation production, discuss how 

to theoretically derive the transportation cost function from a transportation production 

function, and summarize functional forms of transportation costs (Jara-Diaz, 1982b; 

Winston, 1985). Others review the application of cost functions in estimating 

economies of scale (EOS) and economies of density (EOD), assess their efficiency, and 

their efficiency decomposition (Oum and Waters, 1996; Basso et al., 2011). All of these 

reviews take a general view and mainly focus on road (truck and bus), rail, and air 

transportation. In the case of air transportation, the focus of previous literature review 

has centered on passenger airlines. Notably, no scholars have reviewed the cost studies 

of maritime and air freight transportation, or compared the cost modelling of these two 

long-haul freight transportation modes.  

2.2 Related Studies in COVID-19 and Maritime Transportation 
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This section briefly reviews two strands of literature that are related to our study, namely, 

COVID-19 and maritime transport; and, DID and RDD-DID application in COVID-19 

and transportation studies. 

2.2.1 COVID-19 and Maritime Transport 

COVID-19 has significantly affected global supply chains and maritime transportation 

in 2020. Researchers have mainly used the comparative analysis method to examine 

the economic indicators of 2020 against those from the same period in previous years 

in order to assess the impact of COVID-19 on maritime transport (see, for example, 

UNCTAD, 2020; Millefiori et al., 2020; EMSA, 2020; Depellegrin et al., 2020; 

Alamoush et al., 2022). The indicators used mainly include port calls, volume of cargo 

carried, deployed capacity, cumulative navigated miles, and time in ports.  

UNCTAD (2020) use the AIS data from the first 24 weeks of 2020 to estimate how 

COVID-19 affects port calls and the container liner shipping connectivity index. This 

study found that during the first half of 2020, global ship calls contracted by 8.7% 

compared with the number of ship calls in the first half of 2019. In another study, 

Cumulative Navigated Miles (CNM) and the number of active and idle ships are 

derived from AIS in order to measure the global maritime mobility change between 

2016 and 2020 (Millefiori et al., 2020). The dataset contains more than 50,000 

commercial ships across the globe, and the analysis of this data reveals that CNM 

declines significantly across all categories of commercial shipping from March to June 

of 2020. These results suggest that the number of idle ships increases significantly 

across all types of ships globally in the first six months of 2020. EMSA (2020) issues 

a report evaluating the impact of COVID-19 on shipping traffic using data mainly from 

the Union Maritime Information and Exchange System. This study finds that the 

number of vessel calls at EU ports declines by 12.3% in the first 52 weeks of 2020 
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compared to the same period in the previous year. Depellegrin et al. (2020) estimate the 

impact of one national lockdown on maritime traffic in the Veneto Region of Italy. The 

AIS data culled for this study covered fishing vessels, passenger ships, tanker and cargo 

vessels and compared shipping traffic from March to April in 2017 and 2020. The 

results showed that vessel activity decreased by 69% during the lockdown. Zhu et al. 

(2020) use monthly container port calls and berthing time data derived from the AIS 

from January to April 2020, and select Shanghai, Ningbo-Zhoushan and Tianjin as 

sample ports. When they compare the data from 2020 with that from the previous year, 

they find that the number of ships arriving at Chinese ports is not significantly affected; 

but, the average berthing time of ships at port decreases significantly from January to 

April 2020. Notteboom et al. (2021) evaluate and compare the disruptions and 

resilience caused by COVID-19 and financial crisis in 2008.  

Using global port call as a proxy of demand, Michail and Melas (2020) estimate how 

freight rates (dry bulk, clean, and dirty tankers) have been affected by rapid changes in 

the macro-economic environment. They adopt both GARCH and Vector 

Autoregression (VAR) specifications for the purposes of their analysis. The 

independent variables are global calls, China calls, the world total confirmed cases, 

Shanghai Composite Index, and the S&P 500. Dependent variables are the Baltic Clean 

Tanker Index (BCTI), Baltic Dry Index (BDI), and Baltic Dirty Tanker Index (BDTI). 

The daily data covers the period from January 3, 2019 to June 1, 2020. They find that 

that freight rates are negatively related to the number of coronavirus cases, while global 

port calls are significantly, positively related with freight rates. In summary, the 

comparative data analysis method and related econometric methods (GARCH, VAR) 

have been popularly adopted in evaluating the impact of COVID-19 on maritime 

transport. Since the initial COVID-19 lockdown coincided with the Chinese New Year, 
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however, comparative analysis and time series analysis (e.g., GARCH, VAR) 

techniques cannot isolate the impact of COVID-19 lockdown policy on port call 

changes from those associated with Chinese New Year. Therefore, quasi-experimental 

research design methods including DID and RDD models may more accurately allow 

researchers to examine the real impact of COVID-19 lockdown policy on maritime 

activities. 

2.2.2 DID and RDD Application in COVID-19 and Transportation Studies 

The DID model is a quasi-experimental research design that researchers frequently use 

to study causal relationships in transportation. It measures not only the differences of 

outcome between a treatment group and the control group, but also the differences 

between the pre-treatment period and the post-treatment period. Fang et al. (2020) apply 

DID to study the impact of the lockdown on human mobility in Wuhan. They collect 

city-pair population migration data and the intra-city population movement data from 

Baidu Migration. The data covers 22 days before and 38 days after the city lockdown 

on January 23, 2020. In order to eliminate the Spring Festival effect, the data from the 

same lunar calendar period in 2019 is included in the analysis as the control group. 

They find that the lockdown reduces inflows to Wuhan by 76.98%, outflows from 

Wuhan by 56.31%, and movement within Wuhan by 55.91%. DID has also been used 

to estimate the impact of COVID-19 lockdowns on the decline in motor traffic collision 

(Vandoros, 2021) and in road traffic-related deaths and injuries (Oguzoglu, 2020).  

In the maritime domain, Baldwin and Evenett (2020) use a DID model and AIS data to 

investigate the impact of the COVID-19 pandemic and the subsequent policy response 

on shipping activity in Norway. As March 12, 2020 is the day when Norwegian 

government implemented restrictions on movement and activity, the authors select five 

weeks prior to and five weeks after March 12th across the years 2020, 2019, 2018 in the 
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DID model. In general, in 2020 the number of ships drops by 6% compared to the 

change observed in previous years. The authors’ contention is that national restrictions 

on sea transportation are responsible for the decline in shipping activity during the 

pandemic. The authors combine information from vessels departing from Norway with 

cross-country information on crew change restrictions to further assess the hypothesis. 

They find that voyages to destinations where crew changes are prohibited are down by 

almost 20% for container ships, as compared to a decline of 6% to destinations which 

imposed milder restrictions, such as screening rules.  

An RDD model is also a quasi-experimental design to study the causal effects of 

interventions. When an intervention happens, it is regarded as a cutoff, or threshold. 

RDD estimates the average treatment effect by comparing the observations that lie 

closely on either side of the threshold. RDD has been adopted to examine the effect of 

the COVID-19 lockdown and reopening on the daily movement of individuals (Ding et 

al., 2021). The authors record the number of daily steps of 815 Chinese adults living in 

Shanghai before, during and after the lockdown as a measure of movement during each 

of these periods. At the beginning of the lockdown, it is observed that the average daily 

step count drops sharply by 3,796 steps. Subsequently, the daily step count increases 

by an average of 34 steps/day until the end of the lockdown. On the other side of the 

globe, Barnes et al. (2020) use the RDD method to estimate the lockdown’s effect on 

mobility and traffic accidents in the state of Louisiana. They collect data from Google 

Community Mobility reports and Uniform Traffic Crash Reports from the Louisiana 

Department of Transportation and Development (LaDOTD). They also adopt the RDD-

DID method to control for changes over the same period in 2019. They find that the 

stay-at-home order causes a significant decrease in mobility, as measured through road 

traffic.  
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To summarize, previous studies mainly use the DID or RDD methods to estimate the 

impact of lockdowns on human mobility, using either step-monitoring or traffic 

accidents as a proxy for individual movement. The impact of lockdowns on maritime 

transport, on the other hand, has most often been investigated using the comparative 

analysis methods described above, and less frequently through more rigorous statistical 

methods like RDD or DID models that can give a more precise account of this causal 

relationship. 

2.3 Digitization of Maritime Transportation 

Our study evaluates the adoption of technological innovation in maritime transportation, 

and in particular, the effect of the online quote platform. In order to do this, we adopt 

the post-event, quasi-experimental, pretest-posttest method known as RDD.  

Digital technologies are being used to increase competitiveness and enhance 

operational efficiency in maritime transportation. The new technology trends that will 

transform maritime transportation include artificial intelligence, sensor technology, 

robotics and 3D printing, big data and IoT, autonomous control, augmented reality, ship 

propulsion systems, cloud computing, and advanced materials (Justyna, 2021; Pedro-

Luis et al., 2019). Scholars summarize the drivers, success factors, pitfalls, barriers and 

future research directions to digital transformation in the maritime transportation sector 

(Tijan et al., 2021; Fruth and Teuteberg, 2017; Tsvetkova et al., 2021; Babica et al., 

2019). Digital technology has greatly improved the efficiency of maritime 

transportation, such as ship design and shipbuilding, vessel navigation, port operation 

and communication between different stakeholders (World bank, 2020). But online 

quote platforms are not adopted by maritime transportation as quickly as other 

industries such as air transportation, and hotel bookings.  
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The majority of studies evaluating the adoption of new technologies (including of 

digital products) in maritime transportation mainly focus on the analysis of influencing 

factors. For example, Mondragon et al. (2017) show that government legislation and 

dominant organizations have great influence on the adoption of information and 

communications technology (ICT). Yang (2019) finds that customs clearance and 

management, the digitalizing and streamlining of paperwork, overall standardisation, 

and platform development dimensions positively affect the decision to use block chain 

technology in maritime transport. In collecting data from an online survey of trucking 

operators, Chen et al. (2020) find that risk tolerance has a positive effect on the adoption 

of a cargo-truck matching system. Zeng et al. (2020) identify that industry 

characteristics, the systems’ information confidentiality, supply chain trade partners’ 

power, governmental power, and the ownership structure of an organization are critical 

factors affecting the adoption of open platforms for container booking, and more 

generally, in adopting the technology-organization-environment (TOE) framework. 

From the inter- and intra-organizational perspective, the pressure from trade partners 

and leading organizations, as well as organizational compatibility are the main factors 

that influence the adoption of an e-booking system in container shipping (Zeng et al., 

2021). These studies thus give us detailed insight into the array of factors that 

incentivize participants at all levels of the supply chain to adopt technological 

innovations. It deserves notice that, most of these studies identify the factors after the 

shipping companies adopting the new technology. It belongs to the post-event study of 

new technology adoption. In summary, previous studies mainly focus on identifying 

factors that influence the new technology adoption, our study measures how new 

technology changes customers behaviour. As the adoption of online quote platforms 

has increased in the shipping industry, it has started to attract the attention of 
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researchers in recent years. Zeng et al., (2020) summarize five channels by which to 

book cargo space on a ship: (1) Traditional approaches such as email and telephone; (2) 

Classical inter-organizational information systems such as the Electronic Data 

Interchange (EDI); (3) Online quote platforms developed by freight forwarders; (4) 

Online quote platform developed by shipping lines (such as Quick Quotes developed 

by Hapag-Lloyd); (5) Third-party booking platforms developed by tech start-ups, like 

ASIASHEX and Freightos. Hu et al. (2019) assess the impact of an online quote 

platform on a shipping line’s revenue. They develop a yield optimisation model based 

on the expected marginal revenue between long-term contract shippers and scattered 

consigners who reserve space via an online quote platform. The simulation results 

suggest that an online quote platform improves the liner’s revenue. Sun et al. (2021) 

construct a two-stage game model that considers an ES channel (a shipping e-commerce 

platform and spot market) and a CS channel (contract and spot markets) in order to 

study shippers’ ordering decisions and a liner company’s pricing strategy. They find 

that the demand gap between high- and low-demand seasons, the allocated capacity 

within each channel, and the unit compensation cost all play an important role in 

determining whether a strategy is win-win or not. In contrast to the literature on the 

incentives of shipping lines, our current understanding of the behavior and incentive 

structures of the consigners looking to buy cargo space is far more limited. Our study 

aims to build on the foundations laid out here and clarify shippers’ responses to the 

adoption of online quote platforms. 

The tool we have selected for the purposes of our study, the RDD model, is a quasi-

experimental, pretest-posttest method of studying the causal effects of interventions, 

and can be broadly applied to an analysis of a wide variety of interventions and their 

consequences. For instance, the RDD method is frequently used to study the effect of 
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policy interventions on air quality, given the effective date of US gasoline content 

regulations as the threshold (Auffhammer and Kellogg, 2011; Davis, 2008). Burger et 

al. (2014) adopt RDD in order to evaluate whether bans on hand-held cell phone use 

reduce accidents. Lang and Siler (2013) measure the effect of energy efficiency projects 

on energy consumption, using the implementation date of the project as the threshold. 

Zhang et al. (2020) gauge the effects of emissions control area policy on sulphur 

dioxide concentrations in Shanghai, and use the establishment date of the Emission 

Control Area (ECA) as the threshold. In this study, we argue that the launch date of the 

online platform is an appropriate threshold for us to adopt this method as a means of 

investigating the effects of an online quote platform on shippers’ booking behaviour.  

To summarize, previous studies mainly explore the factors influencing the effect of 

online platforms using the TOE framework. The data used in these studies is collected 

either from surveys or interviews, which is subjective to some extent (Hoffmann et al., 

2021). The impact of an online quote platform on shippers’ booking behaviour has not 

yet been investigated using rigorous statistical methods with post-event data, which can 

give a more precise account of this causal relationship. To our knowledge, this is the 

first attempt to evaluate empirically the impact of online quote platforms on changes of 

consigners’ booking behaviour.   

2.4 Summary 

This chapter provides a comprehensive summary of previous studies regarding cost 

study in transportation sector, COVID-19 and maritime transportation, digitization of 

maritime transportation. Besides, the DID and RDD application in COVID-19 and 

transportation are also introduced. We also clarify the research gap after each 
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subsection. The next three chapters will explain in detail how to fill the research gaps, 

covering the data and methodologies used, empirical results, and discussions.  
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Chapter 3 A Comparative Analysis of Cost Studies in Maritime 

and Air Freight Transportation 

3.1 Introduction 

Cost study has attracted great attention from researchers and industry personnel alike in both 

maritime and air freight transportation. One primary objective of cost study is to identify major 

cost items (or components) in order to evaluate and estimate a company’s or an industry’s 

operating costs at different levels of aggregation. While the cost of a voyage or a trip can be 

determined by summing up all the cost items incurred during a specific expedition, costs at 

higher levels of aggregation (such as the route level, the regional level, or even the company 

level) must be determined by adding up both the associated travel costs and the other costs not 

attributable to a particular voyage or trip. Airlines and shipping companies alike attach great 

importance to cost estimation because it supports their operational and strategic decisions. For 

example, route development decisions rely on the knowledge of a vessel’s voyage cost or an 

aircraft’s trip cost along the route under consideration. The focus of such analysis is to estimate 

individual cost items via a pre-defined formula or through rules associated with either a set of 

given aircraft (or ship) parameters or operational parameters, and these cost items can be added 

up to obtain the voyage or trip cost, or even the company’s total operating cost (TOC). This 

type of costing exercise is a prerequisite of any advanced analysis that establishes the 

relationship between a set of costs and their key determinants. In this study, we classify this 

stream of studies as item-based cost formulation. 

Another objective of cost analysis is to better understand the main economic characteristics of 

costs and identify their key determinants, such as scale, traffic density, vessel size, and trip 

distance, among others. For example, there has long been interest in the existence of EOS and 

EOD among both maritime and air freight operators. The existence (or nonexistence) of these 
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features has implications for the unit costs of network expansion and alliance formation, as 

well as decisions related to vessel or aircraft size and service frequency. The quantification of 

EOS and EOD can help policymakers to better understand the potential improvements in cost 

efficiency via forming alliances or mergers between operators, which is one important 

consideration for approving such business decisions. EOS and EOD are commonly measured 

by estimating firm-level cost functions with an econometric approach. Those cost functions 

establish the relationship between cost and traffic volumes (output), input prices, operational 

characteristics, and network size in log-log or translog forms. We consider the cost analysis 

undertaken by those studies to be aggregated cost formulation.  

The first study summarizes and compares cost studies in maritime and air freight transportation 

conducted from the 1960s to the 2010s, an analysis made possible due to the similarities 

between their operation. Both maritime shipping and air freight are long-haul transportation, 

and both play an indispensable role in international trade. Both shipping companies and airlines 

are asset-heavy businesses with terminal and line-haul activities, and profitability is largely 

affected by the utilization of assets (especially vessels and aircraft) and their load factors. In 

this study, we will review and summarize the common cost items and their formulation 

methods in item-based cost formulation, as well as the general functional forms of aggregated 

cost formulation. We believe this can help transport operators and policymakers to determine 

the most appropriate method of estimating costs. To our knowledge, the focus of research in 

the maritime industry is somewhat different from that in air freight transportation. This study 

thus also provides a comparison between these two foci of research and enriches the analytical 

toolbox of cost studies across the two industries. Moreover, our evolutionary approach sheds 

light on fruitful future directions for cost study in the maritime and air freight transportation 

industries.  
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The rest of the study is organized as follows: in Section 3.2 and Section 3.3, we review and 

summarize the cost studies of air freight and maritime transportation, respectively. As both 

passenger aircraft and freighters (all-cargo airplanes) are widely used to carry air freight, in 

addition to all-cargo airlines (such as Polar Air) and integrators (air express operators), we also 

include studies on passenger and combination airlines into the review.1 In Section 3.4, we 

discuss the similarities and differences between cost studies of air freight and maritime 

transportation, and examine whether certain general functional forms can be applied to 

modelling costs in the two industries. Section 3.5 investigates how cost studies evolve over 

time and summarizes the databases commonly used to study shipping and aviation costs. We 

draw conclusions and illustrate future research directions in Section 3.6.  

3.2 Cost Studies in Air Freight Transportation 

3.2.1 Item-based Cost Formulation 

Since the 1960s, air transportation organizations, airlines, and large aircraft manufacturing 

companies have developed methodologies by which to calculate the direct operating cost (DOC) 

of aircraft. As its name implies, the DOC only includes costs directly linked to the operation 

of the aircraft or the flight. The Air Transport Association (ATA) proposed the first set of 

empirical equations with which to estimate DOC in 1967, and these are the foundation of all 

the other methods, as the cost components included in the ATA method, (depreciation, 

insurance, flight crew, maintenance, and fuel) are included in almost all later-proposed methods. 

Later, American Airlines (AA) proposed the AA method in 1980, and Lufthansa proposed the 

DLH method in 1982. Since then, the AEA method (proposed by the Association of European 

Airlines in 1985) has been accepted as the basis for European aircraft DOC comparisons. 

Airbus Industries proposed the AI method in 1989. The most recent method was proposed by 

 
1 Passenger airlines rely on a passenger aircraft’s belly space for cargo business, while combination carriers use 

both the belly space of passenger aircraft and freighters to ship cargo. 
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NASA in 1995 (Liebeck et al., 1995). Table 3.1 below summarizes the components of DOC 

that are included in different methods. Obviously, the estimated DOC is largely affected by the 

inclusion and exclusion of specific cost items. In their application of the ATA, AEA, and 

NASA methods to the same Airbus and Boeing aircraft, Ali and Al-Shamma (2014) find that 

AEA generates the highest DOC value, due to the different definitions of DOC. As a result, the 

maintenance cost accounts for 20-25% of DOC for ATA, 8% for NASA, and less than 1% for 

AEA. 

Table 3-1 Components of DOC in different methods 

Cost component ATA 

(1967) 

AA 

(1980) 

DLH 

(1982) 

AEA 

(1989) 

AI 

(1989) 

NASA 

(1995) 

Depreciation 

   based on aircraft price 

   based on spare parts 

 

√ 

√ 

 

√ 

 

 

√ 

√ 

 

√ 

√ 

 

√ 

√ 

 

√ 

√ 

Insurance √ √ √ √ √ √ 

Flight crew √ √ √ √ √ √ 

Maintenance √ √ √ √ √ √ 

Fuel √ √ √ √ √ √ 

Interest   √ √ √ √ 

Flight attendants  √ √ √ √ √ 

Landing fee  √ √ √ √ √ 

Navigation fee  √ √ √ √ √ 

Ground handling fee  √ √ √   

 

Although most methods include similar cost components, the functional form of each 

component can differ across methods. Usually, each cost component is formulated with three 

types of variables: aircraft variables, operational variables, and price variables. Aircraft 

variables indicate the characteristics of the aircraft, such as the number of seats, the cost of 

engines or the airframe, the number of engines, etc. Operational variables are closely related to 

the usage of the aircraft, and include stage length (flight distance), number of flight crews 

(pilots), annual block hours (number of hours in use), number of trips per year, block speed 

(average speed over the distance from the departure gate to the destination parking spot), 

among others. Price variables mainly refer to the market-based price index, and integrate 
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insurance rates, interest rates and fuel prices. In addition to these variables, cost equations may 

include certain constant parameters, the values of which are specified by researchers through 

regression analysis. For example, NASA (1995) sets the landing fee as 2.2 times the maximum 

landing weight for domestic operations and 6.25 times the maximum take-off gross weight for 

international operations. AEA (1989) meanwhile uses 7.8 as the multiplier for both domestic 

and international operations.  

Table 3.2 compares the variables used in the ATA and NASA methods. The variables and 

functional forms are quite similar for most cost items, such as flight crew, and insurance, 

although the assumed values of the constant parameters can be quite different. The variables 

and functional forms differ significantly between these two methods for other cost items, such 

as depreciation and fuel, even though both methods produce similar fuel cost.  

 

 

 

 

 

 

 

 

 

 

 

 



23 

 

Table 3-2 Variables in the formulation of the ATA and NASA methods 

Items ATA (1967) NASA (1995) 

Depreciation 

   based on aircraft price 

   based on spare parts 

Aircraft cost  

Block speed  

Block hours  

Stage length  

Aircraft cost  

Depreciation period  

Residual value  

 

Insurance Aircraft cost  

Insurance rate  

Aircraft cost  

Insurance rate 

Flight crew Maximum take-off weight 

Block hours  

Maximum take-off weight 

Block hours 

Maintenance Airframe/engine labor cost (number of 

engines, takeoff thrust of one engine) 

Airframe/engine material cost (airframe 

purchase cost, flight time, block time, block 

speed) 

Engine maintenance overhead (proportional 

to airframe/engine labor cost) 

Airframe/engine labor cost 

Airframe/engine material cost 

Engine maintenance overhead 

Fuel Block fuel (fuel consumption of a trip per 

engine) 

Number of engines  

Unit cost of fuel and oil 

Block fuel 

Fuel price 

Interest N/A Aircraft cost  

Interest rate  

Block hours 

Flight attendants N/A Number of seats 

Cost per block hour 

Block hours 

Landing fee N/A Maximum landing weight or 

Maximum take-off weight 

Navigation fee N/A Maximum take-off weight  

 

When formulating individual cost items, the variables and functional forms are chosen based 

on the knowledge of aircraft operation, the availability of data, and the patterns observed in 

historical data; the constant parameters, on the other hand, are usually estimated through 

statistical analysis. For example, Harries (2005) takes a data-driven approach and uses simple 

statistical tools in order to facilitate the formulation of cost items. Unlike the studies discussed 

in Section 3.2.2, which apply generalized econometric models with multiple determinants and 

sophisticated estimation methods, Harries’ approach relies on simple regression analysis in 

order to discover the relationship between a cost item and a key variable, and to determine the 
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parameter values. For example, by using a 1999 dataset of 46 passenger and 21 cargo airlines 

in the United States, Harries (2005) found that the flight crew cost per block hour has a positive 

relationship with the maximum take-off weight (MTOW) of the aircraft, and is also affected 

by route and airline characteristics. Thus, the flight crew cost is modelled as:  

𝐹𝑙𝑖𝑔ℎ𝑡 𝑐𝑟𝑒𝑤 𝑐𝑜𝑠𝑡 =  𝛼 × 𝛽 × 𝑀𝑇𝑂𝑊𝛾 × 𝐵𝑙𝑜𝑐𝑘 𝐻𝑜𝑢𝑟 (3-1) 

The first three terms indicate the flight crew cost per block hour, where 𝛼  is a parameter 

determined by the region of operation, the airline business model (regional versus major 

airlines), and crew size. 𝛽 is an airline-specific parameter, which provides a constant scalar 

adjustment for all aircraft belonging to the same airline. 𝛾 captures the nonlinear relationship 

between the flight crew cost per block hour and MTOW. All three parameters are obtained via 

simple regression analysis of the 1999 dataset in order to produce the final formulation of this 

cost item.  

These formulations of individual cost items are particularly essential when evaluating and 

comparing different aircraft models and designs in terms of DOC (Ali and Al-Shamma, 2014). 

For example, NASA (1995) allows the comparison of the DOC of a 225-seat, passenger, 

subsonic aircraft with engines using 1995 technology and the same aircraft with engines using 

2005 technology. This kind of comparison is relevant both when making aircraft purchasing 

and route development decisions. In building upon previous ATA and NASA methods, Chao 

and Hsu (2014) develop a model that formulates cost items incurred during the cargo 

transportation process of freighters. These items include the air cargo terminal cost, as well as 

the costs of aircraft operation, maintenance, crew, and fuel among others. They use this model 

to explore the optimal payload and flying distance of various aircraft under different fuel prices. 

Apart from adding up the cost items in order to obtain the DOC, an alternative method is to 

estimate the trip cost as a function of several key variables. For instance, Swan and Adler (2006) 
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propose a simple trip cost function (with reference to the DOC formulation) for passenger 

aircraft, in which they model the trip cost as a function of stage length and seat capacity. The 

trip cost for certain types of passenger aircraft can also be estimated as a function of MTOW 

(Ali and Al-Shamma, 2014). We do not, however, find any study that constructs trip cost 

functions for air cargo. 

Theoretically, one can obtain the aggregated (airline-level) costs by adding up the DOC of all 

the individual flights estimated using the abovementioned methods. In many cases, however, 

this is either impossible to achieve due to the unavailability of disaggregated data, or 

unnecessary due to the nature of the research questions. Some accounting approaches have 

been developed that provide a rough (but reasonably good) estimation of costs at a higher level 

of aggregation. For example, Bießlich et al. (2018) develop a model of airline-level annual total 

operating cost (TOC) by adding together eight DOC items and four indirect operating cost 

(IOC) items at the company level. IOC includes costs that are not directly associated with 

operating the aircraft, such as the costs of passenger service, aircraft servicing, traffic servicing, 

reservations and sales, advertising and promotion, and general administration, to name several. 

Each cost item is calculated by multiplying the company-level quantity of the cost item used 

per year and the price of the cost item. That is,  

𝑇𝑂𝐶 = ∑ 𝑞𝑖𝑝𝑖

12

𝑖=1

 

(3-2) 

where 𝑞𝑖 is the quantity of cost item 𝑖 and 𝑝𝑖 is the price of cost item 𝑖. For example, the fuel 

cost is calculated by multiplying the total amount of fuel consumed and the cost per litre of 

fuel. The maintenance cost is calculated by multiplying the number of annual block hours by 

the unit maintenance cost per block hour. The model’s accuracy is demonstrated by comparing 

the financial data of AirAsia X and KLM. The results show that the model is more accurate for 
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KLM (3% underestimated) than for AirAsia X (19% overestimated). As shown in Section 3.3.1, 

this accounting approach is widely applied in estimating cost items in maritime shipping, while 

it seems less popular in air transport. 

3.2.2 Aggregated Cost Formulation 

In air freight transportation studies, log-log and translog regression are the econometric 

specifications broadly applied in aggregated cost formulations of the relationship between 

airline-level costs and various potential influencing factors.  

3.2.2.1 Log-log cost function 

The log-log cost function considers a linear relationship among log-transformed variables. It 

can be viewed as the log-transformed Cobb-Douglas function, and is generally written in the 

following form: 

𝑙𝑛𝐶 = 𝛼 + ∑ 𝛽𝑖𝑙𝑛𝑉𝑖

𝑛

𝑖=1
 

(3-3) 

where C stands for the airline-level costs (such as TOC and the total aircraft operating cost). 

𝑉𝑖 (𝑖 = 1, … 𝑛) indicates an independent variable 𝑖 that may affect the airline’s total cost, and 

may include factors such as output (transported freight), the input prices (labour, fuel, capital, 

material), the load factor (LF), the average stage length (ASL), and the network size (usually 

measured by the number of points served (NPS)), among others.  

Table 3.3 summarizes the studies that apply a log-log cost function in order to examine 

influential factors in airline-level costs. The findings of these studies tend to show that LF and 

aircraft utilisation are negatively related to airlines’ operating costs (Mayer and Scholz, 2012; 

Zuidberg, 2014). Fuel price, ASL, depreciation cost per unit of traffic, labour price, and the 

landing fee are positively related to airline operating cost (Mayer and Scholz, 2012).  
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Table 3-3 Summary of studies using a log-log cost function 

 Kiesling and Hansen (1993) Lakew (2014) Mayer and Scholz (2012) Zuidberg (2014)             

Airline type Integrator (FedEx) Integrator (FedEx and UPS) All-cargo and combination airlines Passenger and combination airlines 

Research question Study the cost structure Study the cost structure Identify influential factors in airline 

expenses  

Identify determinants of airline 

expenses  

Dependent variable Total cost  Total cost Total aircraft operating cost  Average operating cost per aircraft 

movement 

Independent 

variables 

Output RTM RTM --- --- 

Input prices 

Fuel price 

Labour price 

Fuel price 

Labour price 

Materials price 

Fuel price 

Labour cost 

Depreciation 

Average landing fee 

Fuel price 

Labour price 

Operation 

characteristics 

 

ASL 

LF 

NPS 

ASL 

LF 

NPS 

ASL 

LF 

ASL 

LF 

NPS 

Fleet variables --- --- --- Aircraft size, aircraft age, aircraft 

utilization, fleet commonality 

Other variables Time trend --- --- Time trend 

Main findings 

EOD:2.36~4.07,   

EOS:0.54~0.62 

EOD: FedEx: 1.75~3.15 

           UPS: 2.06~3.07, 

EOS: FedEx: 1.45~2.72 

          UPS: 2.04~3.46 

Fuel price, labour price, depreciation 

cost per unit of traffic, and ASL are 

positively related to aircraft operating 

cost; LF and aircraft utilisation are 

negatively related. 

LF and aircraft utilization are 

negatively related to the operating cost 

of each movement. Aircraft size has no 

statistically significant relationship to 

operating cost per movement. 

Notes: RTM = Revenue ton-miles
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3.2.2.2 Translog cost function 

The translog cost function is the most popular cost function in the transportation industry (Oum 

and Waters, 1996). The widespread application of the translog cost function is due to its flexible 

functional form, which provides the second-order approximation to any general cost function 

(Caves et al., 1984). The translog cost function with one output (𝑄), the prices of 𝑛 inputs (𝑃𝑖), 

the network size (𝑁), operation characteristics (𝑍), and time trend (𝑡), is generally written in 

the following way: 

𝑙𝑛𝐶 = 𝛼0 + 𝛽𝑄𝑙𝑛 𝑄 + ∑ 𝛽𝑖

𝑛

𝑖=1
𝑙𝑛 𝑃𝑖 + 𝛽𝑍𝑙𝑛 𝑍 + 𝛽𝑁𝑙𝑛 𝑁 + 𝛽𝑡𝑡 

        +
1

2
𝛾𝑄(𝑙𝑛 𝑄)2 +

1

2
∑ ∑ 𝛾𝑖𝑗 𝑙𝑛 𝑃𝑖 𝑙𝑛 𝑃𝑗

𝑛
𝑗=1

𝑛
𝑖=1 +

1

2
𝛾𝑍(𝑙𝑛 𝑍)2 +

1

2
𝛾𝑁(𝑙𝑛 𝑁)2 +

1

2
𝛾𝑡𝑡2 

        + ∑ 𝛾𝑄𝑖 𝑙𝑛 𝑄 𝑙𝑛 𝑃𝑖
𝑛
𝑖=1 + 𝛾𝑄𝑍 𝑙𝑛 𝑄 𝑙𝑛 𝑍 + 𝛾𝑄𝑁 𝑙𝑛 𝑄 𝑙𝑛 𝑁 + 𝛾𝑄𝑡𝑡 𝑙𝑛 𝑄 

        + ∑ 𝛾𝑍𝑖 𝑙𝑛 𝑍 𝑙𝑛 𝑃𝑖
𝑛
𝑖=1 + ∑ 𝛾𝑁𝑖 𝑙𝑛 𝑁 𝑙𝑛 𝑃𝑖

𝑛
𝑖=1 + ∑ 𝛾𝑡𝑖𝑡 𝑙𝑛 𝑃𝑖

𝑛
𝑖=1  

        +𝛾𝑍𝑁 𝑙𝑛 𝑍 𝑙𝑛 𝑁 + 𝛾𝑍𝑡𝑡 𝑙𝑛 𝑍 + 𝛾𝑁𝑡𝑡 𝑙𝑛 𝑁 

(3-4) 

where 𝛾𝑖𝑗 = 𝛾𝑗𝑖, ∑ 𝛽𝑖
𝑛
𝑖=1 = 1 and ∑ 𝛾𝑖𝑗

𝑛
𝑖=1 = ∑ 𝛾𝑄𝑖

𝑛
𝑖=1 = ∑ 𝛾𝑍𝑖

𝑛
𝑖=1 = ∑ 𝛾𝑁𝑖

𝑛
𝑖=1 = ∑ 𝛾𝑡𝑖

𝑛
𝑖=1 = 0.   

Table 3-4 summarizes the studies that use firm-level translog cost functions. In general, similar 

independent variables are used in translog and log-log cost functions. Classical economic 

theory assumes a single output for the cost function, but multiple outputs are common in the 

transportation industry. This is less an issue for all-cargo airlines and integrators, as RTM or 

revenue tonne-kilometre (RTK) is the single output. Cargo and passenger transportation, 

however, occur simultaneously for passenger airlines and combination carriers. Oum and Yu 

(1998) identify five types of outputs for combination airlines, which are scheduled passenger 

service (measured in revenue passenger-kilometres, RPK), scheduled freight service (measured 

in RTK), mail service (measured in RTK), non-scheduled services (measured in RTK), and 
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incidental service (non-airline business).2 The lion’s share of the total operating costs cannot 

be accurately attributed to an individual output, such as passenger or cargo. As a result, it is 

more reasonable to model the total cost with multiple outputs instead of developing a separate 

cost model for cargo alone when studying passenger and combination carriers. The multi-

output nature of the transportation industry thus makes the specification of the cost function 

different from the classical cost function (Oum and Waters, 1996). Oum and Waters (1996) 

describe two approaches to dealing with multiple outputs. The first is to increase the number 

of outputs to be evaluated on the right-hand side of the translog cost function. For example, 

Oum and Zhang (1991) and Keeler and Formby (1994) consider the five outputs of passenger 

airlines in the translog cost function. The other approach is to develop an aggregate measure 

of outputs, such as an output index by combining several different categories of outputs into 

one output (Baltagi et al., 1995; Oum and Yu, 1998). 

 

2 Incidental services refer to a carrier's non-airline business, including catering services, ground handling, aircraft 

maintenance, reservation services for other airlines, technology sails, consulting services, hotel business, etc.  
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Table 3-4 Summary of studies using the translog cost function 

Notes: aCapital-materials is a multilateral index that aggregate capital and materials.  bCapacity is measured as the sum of the annual flows (in dollars) spent on flight equipment, 

ground property, and equipment. It is a measure of the capacity to produce output in any given year. cCapital here refers to capital services. This variable is similar to the 

operation characteristics (NPS and ASL). It is a quasi-fixed factor and consists of two parts: rental price, and the depreciation cost. 

 

 

 

 Caves et al. 

(1984) 

Bauer 

(1990) 

Gillen et al. 

(1990) 

Kumbhakar 

(1991) 

Oum and Zhang 

(1991) 

Atkinson and 

Cornwell (1994) 

Airline type US passenger airlines US passenger 

airlines 

Canadian passenger 

airlines 

US passenger airlines Canadian passenger 

airlines 

US passenger airlines 

Research question Distinguish EOS and EOD 

and explain why small, 

local airlines can compete 

with large, trunk airlines 

Decompose TFP 

growth of airlines 

Compare the cost 

structure of Canadian 

airlines 

Apply a cost function 

to evaluate technical 

and allocative 

inefficiencies 

Study the cost 

function of Canadian 

passenger airlines 

Estimate technical 

efficiency of airlines 

Dependent variable Total cost, variable cost Total cost Total cost Total cost   Total cost Total cost 

Independent 

variables   

Output Aggregated output RTM, 

RPM 

Scheduled RPK, RTK Aggregated output Passenger, 

Freight, 

Charter 

Capacity ton miles 

(CTM) 

Input price 

Labour price 

Fuel price 

Capital-materialsa 

Labour price 

Fuel price 

Capital price 

Material price 

Labour price 

Fuel price 

Capital price 

Material price 

Labour price 

Fuel price 

Capital price 

Labour price 

Fuel price 

Material price 

Labour price 

Fuel price 

Capital price 

Material price 

Operation 

characteristics 

ASL 

NPS 

LF 

ASL 

LF 

ASL 

NPS 

ASL 

NPS 

LF 

ASL 

NPS 

ASL 

QUAL 

Technical change Time trend, firm dummy Time trend Time trend Time trend Time trend Time trend 

Other variables Capacityb --- --- --- Capitalc --- 

Main 

findings 

EOD Total cost: 1.243 

Variable cost: 1.179 

--- 1.21 --- 1.301 --- 

EOS Total cost: 1.068 

Variable cost: 0.988 

1 0.97 1 1 1.35 
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Notes: RPM = Revenue passenger-miles; RPK = Revenue passenger-kilometres; RTK = Revenue tonne-kilometres; ASM = Available seat-miles; ATMF = Available ton-

miles of freight 

 Keeler and Formby 

(1994) 

Baltagi et al.  

(1995) 

Oum and Yu  

(1998) 

Onghena et al.  

(2014) 

Roberts  

(2014)  

Balliauw et al.  

(2018) 

Airline type US passenger airlines US passenger airlines Worldwide passenger 

airlines and 

combination airlines 

US integrators (UPS 

and FedEx) 

US integrators (UPS 

and FedEx) and 

passenger airlines 

US integrators (FedEx 

and UPS) and all-cargo 

airlines (Polar Air 

Cargo, etc.)  

Research question Compare the cost 

structure of airlines 

before and after 

deregulation 

Analyse the cost 

change for US airlines 

before and after 

deregulation 

Compare the cost 

competitiveness of 

major airlines 

Analyse the cost 

change for US airlines   

before and after 

deregulation 

Compare the cost 

competitiveness of 

major airlines 

Compare the cost 

structure and cost 

efficiency of US all-

cargo carriers 

Dependent variable Total cost Variable cost Variable cost Total cost Total cost Total cost 

Independent 

variables   

Output ASM 

ATMF 

RPM 

RTM  

Aggregated output RTK RTK RTM 

Input price 

Labour price 

Fuel price 

Capital price 

Other inputs 

Labour price 

Fuel price 

Material price 

Labour price 

Fuel price 

Capital price 

Labour price 

Fuel price 

Capital price 

Material price 

Labour price 

Fuel price 

Capital price 

Material price 

Labour price 

Fuel price 

Capital price 

Material price 

Operation 

characteristics 

 

ASL ASL 

NPS 

LF 

ASL 

NPS 

ASL 

NPS 

ASL 

NPS 

LF 

ASL 

NPS 

LF 

Technical 

change 

--- Time trend Time trend Time trend Time trend Time trend 

Other 

variables 

Traffic density Capital --- --- --- --- 

Main 

findings 

EOD Greater than 1 1.04 --- 4.525 FedEx: 1.60 

UPS: 3.02 

 

Integrator: 1.66 

Non-integrator: 1.34 

Pooled: 1.29 

EOS 1.03 0.93 --- 3.077 FedEx: 0.87 

UPS: 0.81 

 

Integrator: 1.63 

Non-integrator: 1.21 

Pooled: 1.22 
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Both the log-log and translog functional forms are widely applied in order to measure and 

distinguish EOS and EOD. Airlines provide services over a network of geographically 

distributed points (Caves et al., 1984), and as a result an airline’s size has two dimensions, 

namely, output (the amount of cargo and passengers carried over the distance flown) and 

network size. EOS is defined as the reduction in unit cost due to the proportional increase in 

output and network size, keeping traffic density constant. EOD is defined as a reduction in unit 

cost caused by an increase in output over a fixed network size (Caves et al., 1984). Based on 

these definitions, including both network size (N) and output (Q) in the cost function can help 

to distinguish between EOS and EOD, after controlling for other factors. EOS is calculated as 

the inverse of the sum of the elasticities of total cost with respect to output and network size. 

EOD is equivalent to the inverse of the elasticity of total cost with respect to output. That is,   

where ε𝑄 is the elasticity of total cost with respect to output, and ε𝑁 is the elasticity of total 

cost with respect to network size. An above (or below) unity EOS implies economies (or 

diseconomies) of scale, because the total cost increases slower (or faster) than the proportional 

increase in output and network size, leading to a decline in unit cost. Similarly, when EOD is 

above (or below) one, we say that there exist economies (or diseconomies) of density. 

According to Tables 3-3 and 3-4, a strong EOD has been found in passenger airlines and all-

cargo airlines (and integrators) (Keeler and Formby, 1994; Baltagi et al., 1995; Onghena et al., 

2014; Roberts, 2014; Balliauw et al., 2018). In contrast, EOS has a wide range, from 0.54 to 

3.46 for all-cargo carriers (Kiesling and Hansen, 1993; Lakew, 2014; Onghena et al., 2014). 

For combination airlines, EOS fluctuates around 1, from 0.93 (Baltagi et al., 1995) to 1.35 

(Atkinson and Cornwell, 1994). Balliauw et al. (2018) ascertain that the EOS and EOD of 

integrators are greater than for non-integrators. 

𝐸𝑂𝑆 =
1

ε𝑄 + ε𝑁
            𝐸𝑂𝐷 =

1

ε𝑄
 

     (3-5) 
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In addition to measuring EOS and EOD, log-log and translog cost functions are used to estimate 

cost efficiency and decompose it into technical efficiency and allocative efficiency. A cost 

function is theoretically a frontier that represents the minimum expense necessary to produce 

a given level of output with given input prices and existing production technology (Mundlak 

and Volcani, 1973). Traditional econometric methods for estimating cost functions also assume 

that all firms are successful in reaching this efficient frontier. In fact, however, not all firms are 

equally efficient. Therefore, the average relationship estimated by the log-log and the translog 

cost functions does not reflect the efficient cost frontier. Cost efficiency is defined as the ratio 

of the minimum feasible cost to the observed expenditure.  

Stochastic frontier analysis (SFA) has also been frequently utilized to measure the cost 

efficiency of firms or industries (Schmidt and Lovell, 1979). We denote the cost efficiency of 

a typical airline as 𝐶𝐸. Suppose the efficient cost, given (𝑄, 𝑃, 𝑁, 𝑍), is 𝐶∗ = 𝐶(𝑄, 𝑃, 𝑁, 𝑍). 

According to Farrell (1957), the input-based measure of cost efficiency is defined as 

where 𝐶∗ = 𝐶(𝑄, 𝑃, 𝑁, 𝑍) ∙ exp {𝑣𝑗}  is the stochastic cost frontier. 𝐶(𝑄, 𝑃, 𝑁, 𝑍) is 

deterministic and is common to all carriers, and exp {𝑣𝑗} is a carrier-specific random part 

which captures the effects of random shocks on carrier 𝑗. Thus, the cost efficiency of carrier 𝑗 

becomes 

If we consider a single-output cost frontier with the log-log functional form, then the stochastic 

cost frontier of carrier 𝑗 can be written as 

𝐶𝐸 =
𝐶∗

𝐶
 , where 0 < 𝐶𝐸 ≤ 1      (3-6) 

𝐶𝐸 =
𝐶(𝑄, 𝑃, 𝑁, 𝑍) ∙ exp {𝑣𝑗}

𝐶
 

     (3-7) 
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where 𝑣𝑗 is random noise, and 𝑢𝑗 is the cost inefficiency component. 

Equation (6) can then be written as  

Using Equations (5) and (7), the cost efficiency can be derived as  

Any departure from cost efficiency has two potential sources: technical inefficiency and 

allocative inefficiency (Farrell, 1957). Technical inefficiency results from a failure to produce 

the maximum possible output with the given set of inputs. Allocative inefficiency arises from 

the choice of sub-optimal input proportions, given input prices and marginal productivities 

(Kumbhakar, 1991). Both technical inefficiency and allocative inefficiency can be derived 

from the cost function (Kopp and Diewert, 1982). Balliauw et al. (2018) find that integrators 

like FedEx and UPS have lower technical efficiency compared with non-integrated, all-cargo 

carriers. UPS performs better than FedEx in terms of technical efficiency, with a score close to 

100% versus 88% (Roberts, 2014). 

Another application is to calculate and decompose the total factor productivity (TFP) growth 

of airlines. Total factor productivity growth can be decomposed into several items, as shown 

below: 

𝑙𝑛𝐶 = 𝛽0 + 𝛽𝑄𝑙𝑛𝑄 + ∑ 𝛽𝑖𝑙𝑛𝑃𝑖

𝑛

𝑖=1
+ 𝛽𝑍𝑙𝑛𝑍 + 𝛽𝑁𝑙𝑛𝑁 + 𝑣𝑗 + 𝑢𝑗 

     (3-8) 

ln𝐶 = 𝐶(𝑄, 𝑃, 𝑁, 𝑍) + 𝑣𝑗 + 𝑢𝑗      (3-9) 

𝐶𝐸 = exp {−𝑢𝑗}    (3-10) 

𝑇𝐹𝑃̇ = (1 − ε𝑄)�̇� + �̇� + �̇� − ε𝑍�̇� − ε𝑁�̇� + ∑ (
𝑝𝑖𝑥𝑖

𝐶

𝑛

𝑖=1
− ε𝑖)𝑃�̇� 

   (3-11) 



 

35 

 

where ε𝑍 and ε𝑁 are the elasticities of total cost with respect to operational characteristics and 

network size, respectively. Equation (3-11) shows that TFP growth can be decomposed into 

terms related to ε𝑄 , changes in technical and allocative efficiencies (�̇� and �̇�), changes in 

operational characteristics and network size, and a residual price effect term (Bauer, 1990).  

3.3 Cost Studies in Maritime Transportation 

3.3.1 Item-based Cost Formulation 

Unlike air freight transportation, the field of maritime shipping has not reached a high level of 

consensus on cost classification. Consequently, researchers classify costs in their own way 

when evaluating the costs of a voyage. One common approach is to divide costs into voyage 

fixed costs and freight variable costs (Chow and Chang, 2011; Ting and Tzeng, 2013). The 

freight variable cost changes along with freight volume, while the voyage fixed cost is 

independent of freight volume. Table 3-5 shows a variety of cost classifications applied in the 

studies reviewed here. Shintani et al. (2007) divide the voyage cost into ship related costs and 

port related costs. Cullinane (1999) divide the cost of liner shipping into daily operating costs, 

daily fuel costs, and daily capital costs.  

Table 3-5 Methods of classifying voyage cost 

Cost components Detailed cost items References 

Daily operating cost Insurance, administration cost, crew cost, repair and 

maintenance cost 
Cullinane (1999) 

Daily capital cost  

Daily fuel cost  

Ship related costs Ship depreciation cost, insurance cost, crew cost, interest, 

repair and maintenance cost, fuel cost 
Shintani et al. 

(2007) 
Port related costs Port entry cost, cargo handling cost 

Operating cost Crew cost, insurance, administration cost 

Stopford (2009) 

Cargo handling costs Cargo handling costs, cargo loading charges, cargo 

discharge costs, cargo claims cost 

Voyage costs Fuel cost, port charges, canal dues, tugs and pilotage 

Maintenance cost  

Capital costs  
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Voyage fixed costs Port charges, bunker costs, container ship costs, 

administration fees 

Chow and Chang 

(2011)  

Ting and Tzeng 

(2013) 
Freight variable costs Handling costs, container costs, transshipment costs, 

shipping agency commission charges, other costs 

Operating cost Repair and maintenance cost, insurance, administration 

cost, crew cost 

Xu et al. (2018) 
Capital cost  

Fuel cost  

Canal tolls   

Icebreaker fees  

Despite the lack of broader agreement, three approaches are widely used in combination to 

model individual cost items in maritime transportation (Table 3-6). First, regression analysis is 

adopted in order to formulate the relationship between certain cost items and key cost 

determinants. For example, the capital cost has been estimated as a function of ship size (DWT, 

surface area, volume) (Thorburn, 1960; Jansson and Shneerson, 1987), but the fitness of the 

linear regression model has been shown to be low (with 𝑅2 being 0.34).  Cullinane and Khanna 

(1999) improved the fitness of the regression model by regressing the logged ship contract 

price on the logged ship capacity in nominal TEU (NTEU), and obtained a higher 𝑅2 (0.93) in 

their analysis of a dataset of 153 vessels. The daily operating cost is generally calculated as a 

function of ship size (Janssona and Shneerson, 1987; Heaver, 1968; Goss and Mann, 1974). 

While fuel cost is a multiplication of the fuel price by the fuel consumption rate, the latter is 

usually considered as a function of sailing speed in various non-linear forms. The parameters 

of these fuel consumption functions are derived from regression analysis (Wang and Meng, 

2012; Ronen, 1982; Gorbett et al., 2009; Fagerholt et al., 2010; Yin et al., 2014). Cullinane and 

Khanna (1999) assume the daily fuel oil consumption is determined by the installed brake 

horsepower (bhp), and bhp is a function of NTEU that is estimated through regression analysis. 

A ship’s other daily costs are represented by a linear function of TEU capacity through 

regression analysis, using data from the Drewry Market Report (Shintani et al., 2007).  

In the second approach, some cost items are collectively approximated as a proportion of 

another cost item. Repair and maintenance fees, insurance fees, administrative costs, and crew 
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costs are collectively categorized as operating costs. The operating cost is estimated as a 

proportion of the capital cost, and the assumed proportion varies significantly. Tran and Haasis 

(2015) assume 16% for an 11000 TEU container ship, and 52% for a 1200 TEU ship; Zhao et 

al. (2016) suppose approximately 80% for a 4,800 TEU ship; Zhang et al. (2016) post 56% for 

a 13,892 TEU ship, while Xu et al. (2018) assume 50% for all ship sizes. An alternative method 

is to divide the operating cost into crew costs and other costs. These other costs are assumed to 

collectively approximate 3-5% of the capital cost (Cullinane and Khanna, 1999; Gilman, 1983; 

Pearson, 1988; Ryder and Chappell, 1979).  

Third and finally, some cost items are calculated via an accounting approach by multiplying 

the quantity of the cost item by the price of the cost item. For instance, the crew cost is obtained 

by multiplying the number of crews and the salary per crew, and the number of crew numbers 

is assumed based on the ship size. The port cost is determined by number of port calls and port 

entry cost per call.  
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Table 3-6 The modelling of maritime cost items in the literature 

Cost items Model Methods Authors 

Capital cost ln(𝑠ℎ𝑖𝑝 𝑝𝑟𝑖𝑐𝑒) = 4.8097 + 0.759ln (𝑁𝑇𝐸𝑈) Regression Cullinane and Khanna (1999) 

Annual capital cost = new building price/depreciation 

period 

Accounting 

 

Xu et al. (2018) 

Operating cost (crew cost + other 

cost) 

Crew cost = crew numbers ⁎ salary per crew Accounting Cullinane and Khanna (1999) 

𝐷𝑎𝑖𝑙𝑦 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 𝑓(𝑠ℎ𝑖𝑝 𝑠𝑖𝑧𝑒) Regression Jansson and Shneerson (1987), Heaver (1968) 

Goss and Mann (1974) 

𝑂𝑡ℎ𝑒𝑟 𝑐𝑜𝑠𝑡 = 0.035 ∗ 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 Approximation  Cullinane and Khanna (1999) 

𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑛𝑔 𝑐𝑜𝑠𝑡 = 0.5 ∗ 𝑐𝑎𝑝𝑖𝑡𝑎𝑙 𝑐𝑜𝑠𝑡 Approximation Xu et al. (2018) 

Fuel cost = Daily fuel consumption * 

fuel price, or  

Fuel cost =  𝑓(𝑣) * fuel price 

𝑓(𝑣) is daily fuel consumption at speed v 

𝑓(𝑣) = 𝑎 ∗ 𝑣3 

𝑎 is estimated with cubic regression  

 

 

Regression 

 

Ronen (1982), Gorbett et al. (2009), Fagerholt 

et al. (2010), Yin et al. (2014) 

𝑓(𝑣) = 𝑎 ∗ 𝑣𝑏 

𝑎 and 𝑏 are estimated for each vessel with fractional 

rational regression  

 

Regression 

 

Wang and Meng (2012), Du et al. (2011) 

𝑓(𝑣) = 𝑎 ∗ 𝑒(𝑏∙𝑣) 

𝑎 and b are estimated for each vessel with exponential 

regression  

 

Regression 

 

Westarp (2020) 

Daily fuel consumption = installed bhp * SFOC * 

utilization * 24/1000000, where 𝑙𝑛(𝑏ℎ𝑝) = 𝑎 +
𝑏 𝑙𝑛(𝑁𝑇𝐸𝑈), and a and b are estimated with regression 

 

Regression 

 

Cullinane and Khanna (1999) 

 

 Other daily ship costs 𝐶 = 6.54 ∗ 𝑇𝐸𝑈 + 1422.52 Regression Shintani et al. (2007) 

Port cost Port cost = port entry cost per call * number of port calls Accounting Shintani et al. (2007)  

Handling cost of laden containers Handling cost = Handling cost per laden container * 

number of containers 

Accounting Shintani et al. (2007) 

Handling cost of empty containers Handling cost per empty container ⁎ number of empty 

containers 

Accounting Brouer et al. (2011), Wang (2013), Huang et 

al. (2015) 

Canal cost Canal tolls Accounting Xu et al. (2018) 

Notes: SFOC = Specific fuel oil consumption;  𝐶 means a ship’s other daily costs.
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Once the cost models are established and the individual cost components are evaluated, the 

voyage cost can be obtained by adding the cost components together, according to the 

classifications provided in Table 3-5 in order to address various research questions. For 

example, the voyage cost can be converted to the cost per unit of cargo (per ton or per TEU), 

and this unit cost can be compared with ship size in order to assess the economies of ship size 

(Cullinane, 1999; Stopford, 2009). Taking container ships as an example, certain costs (such 

as capital costs, operating expenses, and fuel costs) do not increase proportionally with an 

increase in container ship capacity. As a result, larger container ships enjoy the economies of 

ship size. As the size of the ship increases beyond a certain level, however, the economy of 

ship size diminishes (Stopford, 2009). By comparing the voyage costs, one can also assess the 

economic feasibility of a certain route, such as the Northern Sea Route (Xu et al., 2018).  

In certain optimization problems, the objective is to minimize the voyage cost. As a result, 

instead of evaluating the voyage cost numerically, the voyage cost is modelled as a function of 

a few decision variables, such as sailing speed, the number of ships, and the number of empty 

containers (Wang and Meng, 2017). Some optimization problems may even require the 

evaluation of additional cost items that are traditionally excluded from the voyage cost 

classifications provided in Table 3-5. For example, because of trade imbalances, empty 

containers accumulate in import-oriented ports and need to be repositioned to export-oriented 

ports. The costs associated with these empty containers, including loading, unloading, 

repositioning and storing, are then included in the voyage cost (Francesco et al., 2009; Huang 

et al., 2015). Some studies take the ship repositioning cost into account if a ship reposition 

happens during the voyage (Wang, 2013). Containers’ transshipment costs and penalty costs 

for a delay are also considered in container transhipment problems (Reinhardt and Pisinger, 

2012; Bell et al., 2013).  
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3.3.2 Aggregated Cost Formulation 

The number of studies that use sophisticated econometric models is much smaller in maritime 

shipping than in air transportation. Unlike air transportation research, in which aggregated cost 

formulations are mainly applied to firm-level analysis, the maritime field has applied 

aggregated cost formulation to different levels of aggregation, including at the voyage level, 

the vessel level and the firm level. There are four widely used functional forms, namely, the 

linear cost function, the semilog cost function, the log-log cost function, and the translog cost 

function. 

3.3.2.1 Voyage-level linear and semilog cost functions  

At the voyage level, the focus is on estimating the cost of a voyage. Pirrong (1992) is the only 

voyage-level study that we are aware of. He adopts the linear and semilog cost functions in 

order to investigate the cost structure of container ships, and he finds that competition between 

liner shipping companies is inefficient. The linear and semilog cost functions can be written in 

a general format as follows: 

where 𝐶 is the cost of a voyage, and 𝑉𝑖  (𝑖 = 1, . . , 𝑛) refers to 𝑛 variables listed in Table 3-7 

which may affect the voyage cost.  

3.3.2.2 Vessel-level translog cost function  

As shown in Table 3-7, vessel-level cost modelling is used to study the cost structure of tankers 

(Talley et al., 1986) and bulkers (Tolofari et al., 1987). In the studies that we reviewed, the 

translog cost function with one output (𝑄) and 𝑛 input-related variables (𝑃𝑖) is specified as:  

𝐶 = 𝛼 + ∑ 𝛼𝑖𝑉𝑖

𝑛

𝑖=1

+ 휀 
   (3-12) 

𝑙𝑛(𝐶) = 𝛼 + ∑ 𝛼𝑖𝑉𝑖

𝑛

𝑖=1

+ 휀 
   (3-13) 
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where 𝛾𝑖𝑗 = 𝛾𝑗𝑖, ∑ 𝛽𝑖
𝑛
𝑖=1 = 1, and ∑ 𝛾𝑖𝑗

𝑛
𝑖=1 = ∑ 𝛾𝑖

𝑛
𝑖=1 = 0.  

Outputs are either measured by tanker capacity (in dead weight tonnage, or DWT) or ton-miles 

of bulkers. The input-related variables include the prices of inputs (e.g., labor, maintenance, 

lubricating oil) and the number of inputs used (e.g., barrels of fuel consumed). As the cost 

function is estimated at the vessel-level, we can obtain ship-size elasticity from the estimated 

model. Similar to the estimation of economies of scale or density, one can estimate economies 

of ship size by taking the inverse of the ship-size elasticity. In fact, Talley et al. (1986) find 

that economies of ship size diminish as ships become larger. 

𝑙𝑛𝐶 = 𝛼0 + 𝛽𝑄𝑙𝑛 𝑄 + ∑ 𝛽𝑖

𝑛

𝑖=1
𝑙𝑛 𝑃𝑖 +

1

2
𝛾𝑄(𝑙𝑛 𝑄)2 +

1

2
∑ ∑ 𝛾𝑖𝑗 𝑙𝑛 𝑃𝑖 𝑙𝑛 𝑃𝑗

𝑛

𝑗=1

𝑛

𝑖=1

+ ∑ 𝛾𝑖 𝑙𝑛 𝑄 𝑙𝑛 𝑃𝑖

𝑛

𝑖=1
 

   (3-14) 
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Table 3-7  Summary of studies of vessel-level and voyage-level cost functions 

 Talley et al. (1986) Tolofari et al. (1987) Pirrong (1992) 

Research question How ship size of a given type affects a tanker 

ship’s operating cost 

Study the translog cost function of bulkers and 

tankers 

Study the cost structure of container ships to 

evaluate the market structure of liner shipping 

industry through core theory 

Cost function Vessel-level translog Vessel-level translog Voyage-level linear and semilog 

Dependent variable Daily operating cost of a tanker ship Total cost of a vessel Voyage cost  

Independent variables Output (DWT) 

Average daily wage and subsistence per crew 

member 

Average other, daily, labor-related costs 

(except wage and subsistence) per crew 

member 

Average barrels of fuel consumed per day 

Output (Ton-miles) 

Labour price 

Maintenance price 

Lubricating oil price 

Capital cost 

Amount of cargo carried eastbound 

Amount of cargo carried westbound 

Number of empty containers 

Ship-type dummy variables 

Main findings  Ship-size elasticities vary with ship size; ship 

size economies for large ships may disappear  

Discusses elasticities with respect to factor 

prices and factor substitutability 

Because of the existence of avoidable cost, 

competition between liner shipping companies 

is inefficient 
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3.3.2.3 Firm-level log-log and translog cost functions  

At the firm level, all studies are based on container liners (Table 3-8) and are similar to the case 

of air transportation cost analysis, in that they apply both log-log (Tran and Haasis, 2015) and 

translog (Wu, 2009, 2012; Wu and Lin, 2015) cost functions. The log-log cost function is 

generally written in the following form: 

where 𝐶 is the growth rate of a shipping line’s total cost, and 𝑉𝑖 (𝑖 = 1, … 𝑛) are the growth 

rates of 𝑛 cost determinants, such as ship size, fleet capacity, slot utilization and oil prices (Tran 

and Haasis, 2015).  

The translog cost function with one output ( 𝑄 ), prices of 𝑛  inputs ( 𝑃𝑖 ), operational 

characteristics (𝑍) and time trend (𝑡), is generally written in the following way: 

where 𝛾𝑖𝑗 = 𝛾𝑗𝑖, ∑ 𝛽𝑖
𝑛
𝑖=1 = 1, and ∑ 𝛾𝑖𝑗

𝑛
𝑖=1 = ∑ 𝛾𝑄𝑖

𝑛
𝑖=1 = ∑ 𝛾𝑍𝑖

𝑛
𝑖=1 = ∑ 𝛾𝑡𝑖

𝑛
𝑖=1 = 0.  

 

 

𝑙𝑛𝐶 = 𝛼 + ∑ 𝛽𝑖𝑙𝑛𝑉𝑖

𝑛

𝑖=1
 

   (3-15) 

𝑙𝑛𝐶 = 𝛼0 + 𝛽𝑄𝑙𝑛 𝑄 + ∑ 𝛽𝑖

𝑛

𝑖=1
𝑙𝑛 𝑃𝑖 + 𝛽𝑍𝑙𝑛 𝑍 + 𝛽𝑡𝑡 

        +
1

2
𝛾𝑄(𝑙𝑛 𝑄)2 +

1

2
∑ ∑ 𝛾𝑖𝑗 𝑙𝑛 𝑃𝑖 𝑙𝑛 𝑃𝑗

𝑛
𝑗=1

𝑛
𝑖=1 +

1

2
𝛾𝑍(𝑙𝑛 𝑍)2 +

1

2
𝛾𝑡𝑡2 

        + ∑ 𝛾𝑄𝑖 𝑙𝑛 𝑄 𝑙𝑛 𝑃𝑖
𝑛
𝑖=1 + 𝛾𝑄𝑍 𝑙𝑛 𝑄 𝑙𝑛 𝑍 + 𝛾𝑄𝑡𝑡 𝑙𝑛 𝑄 

        + ∑ 𝛾𝑍𝑖 𝑙𝑛 𝑍 𝑙𝑛 𝑃𝑖
𝑛
𝑖=1 + ∑ 𝛾𝑡𝑖𝑡 𝑙𝑛 𝑃𝑖 + 𝛾𝑍𝑡𝑡 𝑙𝑛 𝑍𝑛

𝑖=1  

 

   (3-16) 
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Table 3-8 Summary of firm-level cost functions for container shipping

 

 
Tran and Haasis (2015) Wu (2009) Wu (2012) Wu and Lin (2015) 

Research question Find the most influential factors 

on container shipping liners’ 

expenses 

Determine optimal slot capacity 

so as to minimize costs 

Measure the capacity utilization 

ratio for a shipping line 

Measure the TFP growth of a 

shipping line 

Cost function Log-log Translog Translog Translog 

Dependent variable Growth rate of total cost Variable cost Total cost Total cost 

Independent 

variables   

Output --- Total TEUs TEU-mile TEU-mile 

Input price 

Growth rate of oil price Labour price 

Fuel price 

Material price 

Labour price 

Fuel price 

Capital price 

Material price 

Labour price 

Fuel price 

Capital price 

Material price 

Operational 

characteristics 

 

Growth rate of fleet capacity 

Growth rate of average ship size 

Growth rate of slot utilization 

Growth rate of oil price 

Growth rate of freight rate 

TEU-miles 

Total slot capacity 

Slot capacity per ship 

Total slot capacity 

Slot capacity per ship 

Technical 

change 

--- Technology index Technology index Time trend 

Main findings 

Slot utilization, fleet capacity, 

freight rate, and oil price are 

positively related to the growth 

rate of total cost  

Container shipping lines with 

deep-sea service routes are 

likely to deliberately hold excess 

capacity 

Fleet capacities as a whole are 

underutilized 

Scale economies and ship size 

economies play the dominant 

roles in improving TFP growth 
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3.4 Comparison of Cost Studies in Maritime and Air Freight 

Transportation 

After reviewing the above cost studies in air freight and maritime transportation, we 

find that they not only share similar cost items, but also adopt similar methods (e.g., 

regression analysis and accounting approaches) in order to model the designated cost 

items. Simultaneously, we can also identify specific differences in the approaches to 

estimating cost between the two transportation modes. For example, the log-log cost 

function and translog cost function are applied at the voyage and ship levels in maritime 

transportation, but are only used at company level for air freight. Figure 3-1 summarizes 

and compares the cost models of the two industries.   

 

 

 

Figure 3-1 Comparison of cost models in air freight and maritime transportation 

 Air freight 

transportation 

 Maritime 

transportation 

Item-based cost 

formulation 

Item-based cost 

formulation 

Aggregated 

cost 

Aggregated 

1. Evaluate economic 

suitability of new 

voyages / routes for 

operators 

2. Compare the DOC 

of competing aircraft 

models and designs 

 

1. Common cost 

items  

2. Regression and 

accounting methods 

 

 

Application 

Cost item 

1. Firm-level log-log cost 

function 

2. Firm-level translog cost 

function 

 

 

1.Calculate TFP growth rate 
2. Calculate EOS, EOD 

3. Efficiency analysis  

 

Application 

Cost function 

1. Evaluate economic 

suitability of new 

voyages / routes for 

operators 

2. Model relevant cost 

components in 

optimization problems 

at voyage level  
 

 

1. Common cost items  

2. Special cost items 

3. Regression, 

accounting, and 

approximation methods 
 

 

Application 

Cost item 

1.Calculate TFP growth rate 
2. Find optimal fleet capacity 

and measure its utilization  

3. Quantify economies of ship 

size 

 

Application 

1. Voyage-level linear and 

semilog cost function 

2. Vessel-level translog cost 

function  

3. Firm-level log-log and 

translog cost functions 

 

Cost function 
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Table 3-9 maps and compares the major cost items found in airlines’ DOC analysis 

with the major cost items found in studies of shipping companies’ voyage costs. It can 

be observed that many cost items are common to these two transportation modes, 

including capital costs, carrier and cargo insurance, carrier crew costs, fuel costs, 

maintenance costs, and station costs. The same cost item may incorporate different 

elements, however, or have a different nature, depending on the industry. For example, 

a shipping company’s station cost mainly takes the form of payments to seaports, and 

includes port charges for the usage of seaport facilities (including docking and wharfage 

charges, pilotage, towage, etc.), and cargo handling fees collected by the seaport. In 

contrast, airlines’ station costs include not only payments to airports for various 

services and facilities, but also costs associated with the ground staff employed by the 

airlines. The cost of cargo-related services provided by the airport (such as storage, 

handling, and special service fees) are also commonly included in the station cost. 

In addition to the common cost items listed in Table 3-9, a number of specialized cost 

items are identified in the form of mode-specific costs and other costs. For example, 

ships will incur canal fees and congestion costs when passing through the Suez or the 

Panama Canals. The expenses of breaking ice when sailing across the Arctic Ocean, as 

well as the cost of safety equipment and guards when transiting through zones with a 

high risk of piracy are all specific to ships and irrelevant to air transportation. 

Traditionally, the administration cost is included in the voyage cost in maritime 

transportation, while it is excluded from DOC in air freight transportation. 

Although maritime shipping and air freight transportation have almost identical cost 

items, they differ somewhat in their modelling approaches. Cost items in air freight 

transportation are more sophisticated and elaborately modelled than in shipping. Each 

DOC item in air freight transportation is generally a function of aircraft variables (e.g., 
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cost of airframe, number of engines), operational variables (e.g., stage length, block 

speed), price variables, and constant parameters (derived from regression analysis). 

While the simpler accounting approach is also used in air transportation studies, 

regression analysis is dominant. On the other hand, the approximation and accounting 

methods are heavily utilized in maritime transportation cost analysis. Regression 

analysis is mainly used to model fuel and capital costs with much simpler functional 

forms than air transportation.   

Table 3-9 Cost items in maritime and air freight transportation 

Notes:  a Carrier refers to ship and aircraft operators.  

b Paid to station staff for handling cargo, packing and materials, station accommodation costs, 

storekeepers’ pay, etc.c Levied by an airport for cargo related service, and includes storage, handling, 

and special service fees, among others. dAdministration cost: Overhead cost for the voyage 

management. 

Sources: Stopford (2009); Morrell and Klein (2011). 

 

One common application of modelling and estimating cost items is to obtain the cost 

of a voyage (or trip) and the cost of a route. Such knowledge helps shipping companies, 

aircraft manufacturers, and airlines to evaluate the economic suitability of new services, 

Cost items Sea Air 

Capital Depreciation Depreciation 

Carriera and cargo insurance Hull and machinery insurance; third 

party insurance; other voluntary 

insurance 

Flight equipment insurance; cargo 

insurance 

Carrier crew Salaries and wages, pensions, 

insurance, victuals, and repatriation 

expenses 

Pay and allowances, pensions, 

insurance, travelling 

Fuel Bunker and marine diesel oil cost Fuel cost 

Maintenance Inspections, repairs, extraordinary 

dry-dockings, and classification 

survey costs 

Direct maintenance labour, 

maintenance material, and overhead 

for both the airframe and engines 

Station cost Seaport fee: cargo handling fee 

(loading, discharging costs and cargo 

claims); docking and wharfage 

charges; pilotage; towage, etc. 

Airline station staff costb: pay, 

allowances and expenses.  

Airport fee: landing charges; cargo 

feesc; security, parking and hangar 

charges, etc. 

Mode-specific cost Canal dues, ice-breaking cost --- 

Other cost Administration costd Navigation cost 
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routes, or aircraft (Xu et al., 2018; Liebeck et al., 1995), and to choose the optimal ship 

or aircraft size to invest in and operate (Chao and Hsu, 2014; Stopford, 2009). Aircraft 

manufacturers and airlines use DOC, not only for comparisons of cost for different 

types of aircraft, but also to make predictions about the actual operating cost of an 

aircraft in service with a specific airline. As for maritime scholars and shipping 

operators, adding up cost items is popularly used to obtain voyage cost as an objective 

function in order to minimize voyage costs.   

In studies that develop aggregated cost formulations, log-log cost and translog cost 

functions are the two general forms applied in order to model total costs in both 

industries. In air freight transportation, total cost tends to be analysed at the airline level, 

while in maritime transportation, aggregated cost formulations are also modelled at the 

voyage and vessel levels. The dependent and independent variables included in the 

econometric specifications are similar in studies across both industries, but differences 

still exist. For example, network size is usually included in cost functions for air freight 

transportation, but not in the cost functions of maritime shipping. Moreover, container 

liners in general only have one single output (TEU-miles), while multiple outputs are a 

common issue when modelling costs for combination airlines and passenger airlines, 

as passenger, freight, and mail services are jointly offered by these airlines and their 

costs cannot be easily separated. Finally, both industries use the translog cost model to 

calculate TFP growth rate. Studies in air freight transportation, however, focus more on 

the existence of EOS, EOD, and cost efficiency, while studies in maritime 

transportation are more interested in finding optimal fleet capacity and measuring that 

capacity utilization. As network size is not included in the cost functions for maritime 

shipping, little has been done to quantify EOS and EOD. Instead, economies of ship 

size have been studied widely with vessel-level cost functions, while we only find one 
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paper in airfreight transportation (i.e., Zuidberg, 2014) that explicitly estimates the 

economies of aircraft size. This study finds that large aircraft size is not associated with 

low unit cost. 

3.5 Evolution of Cost Studies and Data Availability 

With the development of econometric techniques (e.g., the use of translog functions 

since the 1970s), the broad application of optimization methods since 1997, and the 

increase in general data availability, cost studies in the maritime and aviation industries 

have evolved over time. In this section, we summarize the development of cost studies 

and the most frequently used databases for cost studies. 

3.5.1 Evolution of Cost Studies  

We use Figure 3-2 to display the development of cost studies in air freight and maritime 

transportation since the 1960s. For item-based cost formulations in the field of air 

freight transportation, the DOC items were formulated as early as 1967 by the ATA, 

and then followed by a series of refinements. There was no major methodological 

development until Harries (2005), who proposed a data-driven method. Then, Bießlich 

et al. (2018) used accounting methods to calculate cost items at the airline level. By 

contrast, the item-based cost formulation method has not changed dramatically in the 

field of maritime transportation research since 1960. Although the item-based cost 

formulation appeared in air freight transportation earlier than in maritime transportation, 

the total number of studies in maritime transportation is significantly larger than that in 

air freight transportation. In terms of application, item-based cost formulation was 

adopted in air freight transportation in order to compare two aircraft prior to 2000, and 

this approach was also applied to the evaluation of airline-level cost items. In maritime 

transportation research conducted before 2000, the item-based cost formulation was 



 

50 

 

broadly used to calculate cost per TEU or cost per DWT in order to demonstrate the 

economies of ship size. After 2000, the stylized modelling of individual cost items has 

been broadly developed to formulate an objective function that can be used in 

optimization problems to minimize voyage costs. Since then, the number of studies has 

begun to increase dramatically.  
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Figure 3-2 Evolution of cost studies 

The expansion of aggregated cost formulation research was triggered by the appearance 

of flexible forms of economic cost functions (e.g., translog cost function) in the early 

1980s. Due to the availability of airline annual cost data from the Civil Aeronautics 

Board (Caves et al., 1984), firm-level cost functions have been widely developed and 

applied in order to study the EOS and EOD of passenger and combination carriers since 

1984. The US federal law requires most American airlines (whether publicly listed or 

privately owned) to report their financial and operating information to the United States 

Department of Transport (USDOT) on a monthly, quarterly, and annual basis. As a 

result, USDOT Form 41 became a source of comprehensive cost data in 1990. In 1993, 

Kiesling and Hansen (1993) adopted the log-log cost function in order to calculate the 

EOS and EOD of UPS. Since 2012, studies on the firm-level cost functions of cargo 
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airlines have increased, and the research focus in cost functions has gradually shifted 

from passenger and combination airlines to all-cargo airlines and integrators. By 

contrast, shipowners are reluctant to release their cost details at company level (Tolofari 

et al., 1987). As a result, maritime researchers rely on voyage-level and vessel-level 

cost data collected from surveys and synthesised from regression analysis conducted 

before 1993. The first firm-based translog cost function appeared in 2009, and the data 

was collected from the annual financial statements of three container shipping lines. 

The research focus related to these cost functions has shifted from quantifying 

economies of ship size towards finding the optimal fleet capacity and measuring its 

utilization. 

3.5.2 Data and Data Quality 

Data plays a crucial role in cost studies: As Oum and Waters (1996) have noted, cost 

models are useless if the data are of poor quality. Table 3-10 lists frequently used 

databases in studying air freight transportation costs, and Table 3-11 summarizes the 

databases for maritime shipping research.  

The USDOT provides a comprehensive database of airlines’ financial and traffic data. 

Form 41 Financial Data covers Schedule P-5.2 (a quarterly DOC itemization for US 

airlines) and Schedule P-7 (the total operating expenses, comprising DOC and IOC 

items). Schedule P-5.2 provides detailed information on DOC at the aircraft level, such 

as total air hours, air days assigned, air fuel issued, depreciation, and flying operations, 

to name a few items. Form 41 Traffic T-100 contains monthly airline traffic information. 

It includes origin airports, destination airports, aircraft type, aircraft hours, and LF, 

among other details. The US Air Carrier Traffic and Capacity Statistics by Aircraft 

Type T-2 provides ASL, LF, NPS, and either RTK or RTM. Researchers usually 

combine the Schedule P-5.2 financial data with the T-2 traffic data in order to estimate 



 

52 

 

cost functions, because they each include several traffic elements. In addition, Schedule 

P-5.2 can also be merged with the T-100 and T-2 forms in order to obtain airline-aircraft 

level data. Figure 3-3 shows the relationship between Schedule P-5.2, T-2 and T-100.  

 

Notes: ASM = Available Seat Miles; RPM = Revenue Passenger Miles; RAM = Revenue Aircraft Miles; 

RDP = Revenue Departures Performed 

Figure 3-3 Airline traffic and financial data (T2, P-5.2, T-100), with key attributes  

Apart from the DOT Form 41, the International Civil Aviation Organization (ICAO) 

also provides monthly, quarterly, and annual series of traffic, fleet, personnel, and 

financial data from airlines (Table 3-10). The Air Transport Reporting (ATR) Forms 

from ICAO cover information about flight origin and destination, traffic information 

divided by flight stage, fleet and personnel information, airline financial data, airport 

traffic data, airport financial data, air navigation services financial data, en-route service 

traffic statistics, and fuel consumption. The ICAO data is thus very similar to that 

collected by DOT Form 41. Airlines’ financial reports also include cost data useful to 

researchers. Still, in many cases these official databases need to be supplemented with 

other data sources in order to empirically estimate an aggregated cost formulation. One 
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of these frequently used supplemental data sources is the average annual oil price, 

collected from the Europe Brent Spot price FOB and published by US Energy 

Information Administration (Zuidberg, 2014; Chao and Hsu, 2014).  

Table 3-10 Databases used frequently in air freight transportation cost analysis 

US DOT Form 41 ICAO statistics program 

(ATR Forms) 

Cost items reported in 

airlines’ financial reports 

Aircraft operating expenses: 

DOC: 

⎯ Flight crew 

⎯ Fuel 

⎯ Maintenance 

⎯ Depreciation 

⎯ Aircraft rental 

⎯ Other flight costs 

IOC: 

⎯ Passenger services 

⎯ Aircraft servicing  

⎯ Traffic services 

⎯ Reservations and sales  

⎯ Advertising and publicity  

⎯ Transport-related expenses 

Traffic data: 

Carrier 

Aircraft type 

Available capacity 

Aircraft hours 

Revenue ton miles (RTMs) 

Available ton miles (ATMs) 

Aircraft operating costs: 

Flight crew 

Fuel 

Insurance 

Rental cost 

Other expenses 

Depreciation 

Landing and associated airport 

charges 

Air navigation charges 

Station expenses 

Passenger services 

General and administrative 

Ticketing, sales, and 

promotion 

Other operating expenses 

 

 

Traffic data: 

Origin 

Destination 

Fleet information 

Airport traffic data 

Salaries and employee 

benefits 

Rentals and landing fees 

Depreciation and 

amortization 

Fuel 

Maintenance and repairs 

 

Table 3-11 summarizes the databases used in maritime cost studies. Among all of those 

listed, the Clarkson’s Shipping Intelligence Network is one of the most widely used 

databases. It includes a wide range of data, covering information from fleets, 

shipowners, and builders to orderbooks, sales, and freight rates. Lloyd's List 

Intelligence provides detailed information on vessels, shipping companies, and ports. 

The Shipping Operating Costs Annual Review and Forecast provided by Drewry 

Shipping provides a complete annual assessment of ship operating costs. The report 

covers major ship types and their different sizes, including container, dry bulk, oil, 

chemical, LNG, LPG, general cargo, reefer, ro-ro, and car carrier categories. It also 
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includes the assessment of ship operating costs by main cost heading (e.g., insurance) 

and sub-cost component (e.g., hull and machinery insurance) in terms of vessel age 

(newbuild, 5, 10, 15, and 20 years) at the date of the report’s publication. Also available 

in the report are historical trends, annual ship operating costs, and annual projections 

of total ship operating costs. With the increasing quality of Automatic Identification 

System (AIS) data, which provides real-time ship position information and individual 

ship data (Yang, et al., 2019), ship voyage costs can be estimated based on the 

operational characteristics derived from AIS, such as voyage distance and speed 

(Andersson and Ivehammar, 2017). In addition to the databases mentioned above, 

researchers also collect cost data from surveys and from annual financial statements of 

listed shipping companies. 

Table 3-11 Databases used frequently in maritime transportation cost analysis 

Clarkson’s Shipping 

Intelligence Network 

Drewry Shipping: Shipping 

Operating Costs Annual 

Review and Forecast 

Annual financial statements 

of listed shipping companies 

Newbuild price 

Second-hand ship price 

Freight rate 

Other data: 

Shipowner 

Fleet 

Builders 

Orderbook 

Capital markets 

Sales 

Manning 

Insurance 

Stores and spares 

Lubricants 

Repairs, maintenance, and dry 

docking 

Management and 

administration 

Vessel operating expenses 

Voyage expenses 

General and administrative 

expenses 

Depreciation and amortization 

 

3.6 Remarks 

Cost modelling is an essential tool in both maritime and air freight transportation 

research that is used for strategic decision making. Chapter 3 is one of earliest attempts 

to review and summarise the cost models most frequently applied in existing literature 

in both of these fields. We classify the cost studies into two categories: item-based cost 

formulation and aggregated cost formulation.  
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In item-based cost formulation, air freight and maritime shipping research shares many 

common items, such as capital costs, carrier crew costs, fuel costs, and maintenance 

costs, among others. Regression analysis and accounting approaches are both 

commonly used in formulating the cost items for both industries; however, maritime 

transportation cost analysis also adopts the approximation method. We find that the 

application of item-based cost formulation also differs between the two industries. For 

maritime transportation, the item-based cost formulation is commonly used to assess 

economies of ship size, to evaluate the economic feasibility of a new route, or to 

formulate an objective function for a cost optimization problem. As for air freight 

transportation, the item-based cost formulation is widely employed in order to obtain 

the DOC that can then be used for the comparative analysis of several aircraft, explore 

the optimal payload for various aircraft types, and the appropriate flying distances in 

the face of fuel price fluctuations.   

In regard to aggregated cost formulation, we identify two general function forms, the 

log-log cost and translog cost functions. These forms are applied solely at the company 

level for air transportation cost analysis. In the field of maritime transportation research, 

it is also used at the vessel and voyage levels. In aviation, the scholars adopt these 

functions primarily to calculate EOS and EOD, estimate cost efficiency, decompose the 

TFP growth rate, and demonstrate the factors that affect airlines’ total cost. In maritime 

transportation, the primary application of these functions is to find the optimal fleet 

capacity, measure fleet utilization, and quantify economies of ship size.  

With the development of econometric techniques and the improvement in data 

availability, the study of cost in the air freight and maritime industries has evolved over 

time. Several aviation associations proposed formulas with which to calculate cost 

elements of DOC as early as 1967. Today, the USDOT publishes airline level cost data, 
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making the econometric modelling of aggregated costs of airlines, and the subsequent 

cost efficiency analysis feasible. On the other hand, the lack of a standard cost database 

hinders the similar development of maritime transportation cost research.   
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Chapter 4 Quantifying the Impact of Pandemic Lockdown 

Policies on Global Port Calls 

4.1 Introduction 

The spread of the COVID-19 virus has brought severe effects on global society and the 

world economy due to the policy responses of national leaders. Governments have 

implemented unprecedented national lockdown policies (dubbed the Great Lockdown 

by the IMF) to contain the spread of the virus since early 2020. While effective in 

slowing down the spread of the virus, these containment measures have negatively 

affected economies around the world and, particularly, the global supply chain which 

relies on freight transportation. Disruptions caused by the pandemic on supply chains 

are often characterized by the existence of disruption with unpredictable scaling effects 

and few warning signs; the existence of the ripple effect (i.e., disruption propagations) 

accompanying the spread of the virus; wide geographical coverage; and, disruptions in 

demand, supply and logistics infrastructures simultaneously (Ivanov, 2020; Notteboom 

et al., 2021). Needless to say, ensuring the functioning of supply chain and 

transportation networks is critical for economic development, as much of it is enabled 

and powered by freight transportation (Loske, 2020). Among all the categories of 

freight transport, maritime freight alone moves over 80% of the volume of world trade 

(UNCTAD, 2019), which further underscores the importance of maritime transport in 

trade and development.  

The impact of the COVID-19 outbreaks and associated national lockdown policies on 

the maritime transport industry is seen as unprecedented in that lockdowns deal 

multiple blows to the industry on two fronts simultaneously (Heiland and Ulltveit-Moe, 

2020). On the one hand, the industry faces a contraction in demand for seaborne 
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transportation due to the Great Lockdown. A massive number of production facilities 

have been shut down across countries and sectors, leading to collapsing demand for 

transport services and subsequently cancelled voyages. On the other hand, shipping 

companies also face novel regulations as countries have implemented direct restrictions 

on port access and sea transport. For instance, some countries have banned marine 

vessels from sailing into certain ports, which has forced such vessels to change their 

original destinations. Sometimes, the entry of vessels has been prohibited because their 

last ports of call happened to be located in a country with a high risk of epidemic spread. 

Countries have also implemented rules concerning crew changes and seafarers’ 

mobility on incoming ships. It should further be noted that these restrictions affect not 

only the imposing countries and shipping companies, but also all of their trading 

partners (Heiland and Ulltveit-Moe, 2020). 

In order to mitigate these effects going forward, it is crucial to define the exact effects 

of lockdown measures for policymakers. The objective of this research is thus to 

examine the effect of national lockdown policies on maritime transportation by 

analyzing the port call data of the world’s largest 30 container ports. After the initial 

spread of COVID-19, there have been two waves of large-scale national lockdowns 

around the world in the first half of 2020. The first lockdown was announced in China 

on 23 January 2020 (i.e., Week 4 in 2020), and the second one was announced on 18 

March 2020 (i.e., Week 12 in 2020), mainly in Asia, Europe, and North America. With 

this in mind, we aim to tackle two specific research questions: 1) What is the impact of 

national lockdown policies on local port calls, both in the short term (i.e., one or two 

weeks) and long term (i.e., four to six weeks)? 2) Is there evidence of disruption 

propagation effects on ports across different regions? Heiland and Ulltveit-Moe (2020) 

have pointed out that the propagation effect of local disruptions through the liner 
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shipping network can be detrimental and long-lasting. Little is known, however, about 

how the shock propagates, and to what extent. In order to address these questions, a 

Difference-in-Difference (DID) model is proposed to measure the impact of national 

lockdowns on the number of port calls in the medium to long term. The DID model is 

widely used for analyzing average medium to long term effects of social policies, 

making it a well-adapted tool for our analysis. For the first question, we quantify the 

immediate effect of national lockdowns on port calls through a combined regression 

discontinuity design (RDD)-DID model of the data collected from a few weeks pre- 

and post- lockdown. The combination of RDD and DID models can thus mitigate the 

time trend in the data, especially as it relates to the effect of the Chinese New Year on 

ports. In order to answer the second question, specifically how lockdown policy in 

China might affect port calls in other countries, we first categorize ports in other 

countries into a high-connectivity (with Chinese ports) group and a low-connectivity 

group; we do this by using a proposed connectivity index. Then, we separately examine 

the impact of Chinese lockdown on each of the different port groups.  

Recent studies have evaluated the impact of COVID-19 on transportation by comparing 

indicators of 2020 with those of the same period in previous years with (quasi-) 

experimental research methods, such as DID and RDD (Vandoros, 2021; Barnes et al., 

2020). We aim to extend the analysis to ports and address the potential problems when 

applying the (quasi-) experimental method to our research objective, e.g., separating 

the effect of Chinese New Year from that of COVID-19 on ports. Concretely, our 

contribution is three-fold: First, by applying the quasi-experimental research methods, 

e.g., DID and RDD models, we provide a method to isolate the impact of COVID-19 

lockdown policy on port call changes clearly from those associated with the Chinese 

New Year. The method can exclude the noise and give more reliable results compared 
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to comparative analysis or time series analysis that have been commonly used in 

existing literature. Second, we propose a new port connectivity measurement method 

based on dynamic ship data extracted from the Automatic Identification System (AIS) 

data. The data is particularly useful, as it can provide near real-time information on 

maritime transport and trade. Third, by taking port connectivity into consideration, we 

also identify the propagation effects of one country’s lockdown policy on the shipping 

activities of other countries, which has not been addressed before. Our results provide 

significant guidance for policy makers when drafting national lockdown policies, and 

help diverse groups of stakeholders to understand and estimate the impact of lockdown 

policies, both at local and global levels. 

The remainder of the study is structured as follows: Section 4.2 introduces data and 

methodology. Section 4.3 reports the direct lockdown effects on ports in certain 

countries, while Section 4.4 takes shock propagation into consideration and examines 

the indirect lockdown effects. Section 4.5 provides policy suggestions based on these 

empirical results, and Section 4.6 concludes the study.  

4.2  Data and Methodology 

This section first presents the analytical framework, our construction of weekly port 

call data drawn from the AIS. Then the DID and RDD-DID models are introduced.  

The analytical framework is provided in Figure 4.1. To begin with, we gauge the direct 

effect of the first lockdown on Chinese top seven container ports and the direct effect 

of the second lockdown on the top ten ports in other countries. Next, we separately 

examine the indirect effects of Chinese lockdown on high-connectivity Asian ports, 

high-connectivity European ports, and low-connectivity ports.  
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Lockdown Effect

Second Lockdown (2020.3.16)

Direct Effect Indirect Effect

Chinese top 7 

container ports

Top 16 ports in other 

countries

First Lockdown (2020.1.23)

Low-connectivity 

ports (3 ports)

High-connectivity 

ports (13 ports)

High-connectivity Asia 

ports (10 ports)

High-connectivity 

European ports (3 ports)

Top 10 ports in countries 

under second lockdown

Direct Effect

 

Figure 4-1 Analytical framework 

4.2.1 Data 

We selected for analysis the world’s 30 largest container ports (measured in terms of 

throughput) located in countries that implemented lockdown policies during the period 

from January 2020 to March 2020. Among them, as shown in Table 4.1, seven Chinese 

ports were affected by the lockdown policy implemented in China in January 2020, 

including Shanghai, Shenzhen, Ningbo-Zhoushan, Guangzhou, Qingdao, Tianjin, and 

Xiamen. Ten other ports worldwide were affected by lockdown policies in their 

respective countries in March 2020, including Rotterdam, Port Klang, Antwerp, Los 

Angeles, Tanjung Pelepas, Hamburg, New York, Colombo, Bremerhaven, and 
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Piraeus.3 We use port call as the indicator, because it is broadly treated as demand and 

port traffic proxy of port in previous studies (UNCTAD, 2020; Michail and Melas, 2020; 

Baldwin and Evenett, 2020). The necessary time windows from before and after the 

lockdown announcements were selected based on trends in the number of port calls and 

the results of a parallel trend test, which will be discussed in subsequent sections. 

Table 4-1 Ports affected by two waves of lockdown policy 

 Time Scope Ports affected 

First wave of 

lockdown 
January 2020 China 

Shanghai, Shenzhen, Ningbo-Zhoushan, 

Guangzhou, Qingdao, Tianjin, Xiamen 

Second wave of 

lockdown 
March 2020 

Europe, Asia, 

and America 

Rotterdam, Port Klang, Antwerp, Los 

Angeles, Tanjung Pelepas, Hamburg, 

New York, Colombo, Bremerhaven, 

Piraeus 

The AIS data can track individual ship movements and provide specific information, 

including a ship’s identity, location, speed, and draft, among other details. (Yang et al., 

2019). Combined with vessel information from Lloyd’s List Intelligence, including 

IMO number and vessel type, we can derive dynamic movement records for any given 

container ship.  

The following criteria are, moreover, used to identify port calls: every time a ship stays 

within 30 km of any port for more than 1 hour with speed less than 1 knot will be 

considered as one port call for that port. If the ship is mooring at the overlapping region 

of several ports, then the nearest port will be chosen.  

 
3  World Shipping Council: https://www.worldshipping.org/about-the-industry/global-trade/top-50-

world-container-ports 
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Notably, the first wave of lockdowns in China was implemented on January 23, 2020, 

just before the Chinese New Year, which is often characterized by a reduced numbers 

of port calls at Chinese ports during this time period. Due to the coincidence of the 

lockdown policy and the Chinese New Year holiday, we need to first identify the reason 

for the decrease in port calls. Figure 4.2 plots the weekly port calls in the selected seven 

Chinese ports during the 2019 and 2020 Chinese New Year periods, respectively. It can 

be observed that port calls went down significantly during the Chinese New Year period 

in both years. In order to remove the Chinese New Year effect on port calls data and to 

obtain the pure lockdown effect, we selected the same period of port calls data for both 

2019 and 2020 (i.e., six weeks before and after the Chinese New Year) for the DID 

model. 

 

Figure 4-2 Port calls data of seven Chinese ports during 2019 and 2020 Chinese New 

Year Period 

Notes: The 2019 week number represents the actual week number in 2019; Week 0 (starting 24 

December 2018) represents Week 52 of 2018, that is, the last week in 2018. In 2019, the 

Chinese New Year began in Week 6 (starting 04 February 2019). For 2020, the week number 

represents the actual week number in 2020, and Week 0 (starting 23 December 2019), Week -

1 (starting 16 December 2019), Week -2 (starting 09 December 2019) represent Week 52, Week 

51 and Week 50 in 2019, respectively; that is, the last three weeks in 2019. In 2020, the Chinese 

New Year celebration took place in Week 4 (starting 20 January 2020). 

 

We propose a connectivity index between each port in other countries and Chinese ports 

in order to measure their connectivity. Specifically, for every ship, we obtain the time 

series of sequential port calls through AIS data based on the method described before. 
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Then, for each port under investigation, we use the following equation to calculate a 

port c’s connectivity index with Chinese ports.  

𝐶𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑣𝑖𝑡𝑦𝑐 =  ∑ 𝑌𝑖 ⋅ (∑ 𝐶𝑗

𝑚

𝑗=1
)

𝑛

𝑖=1

 
(4-1) 

where 𝑛 is the total number of global ships’ port call time series in 2019. 𝑌𝑖 equals 1 if 

this time series of port calls contains port c and 0 otherwise. In this equation, 𝑚 is the 

number of port calls in one ship’s time series, and 𝐶𝑗 is a dummy variable which takes 

a value of 1 if the port call is a Chinese port and takes a value of 0 otherwise. 

4.2.2 Difference-in-Difference Model 

The DID model has been broadly applied to quantify the effect of an experimental 

treatment by comparing the average change in the outcome variable over time in control 

and treatment groups, respectively, thus eliminating the effects of extraneous factors 

and selection bias (Meng et al., 2018; Alemi et al., 2018). In our study, the ports in the 

control group and treatment group are the same. We distinguish the treatment and 

control group in terms of the occurrence time (year of 2019 and 2020). The port call in 

2019 is used as control group and the port call in 2020 is selected as the treatment group. 

The following DID model is constructed: 

𝑊𝑖,𝑐 = 𝛽0 + 𝛽1𝑌𝑒𝑎𝑟𝑖 + 𝛽2𝑇𝑖 + 𝛽3𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 + 𝜇𝑖 + 𝜌𝑐 + 𝜖𝑖,𝑐 (4-2) 

𝑻𝒊 is a dummy variable that takes the value of 1 after the intervention (lockdown) date 

and 0 before the intervention. For Chinese ports, it is 1 after the 4th week and 0 before 

the 4th week of 2020; it is 1 after the 6th week and 0 before the 6th week of 2019. For 

ports in other countries, the dummy variable takes the value of 1 after the 12th week of 

the years of 2019 and 2020, and 0 before the 12th week. Table 4-2 shows the value of 

𝑻𝒊 on different dates. 𝒀𝒆𝒂𝒓𝒊 is a dummy variable that takes the value of 1 in 2020, and 
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0 in 2019. The model includes port fixed effect 𝝆𝒄 as well as week fixed effect 𝝁𝒊 to 

control the port and time variance. 𝜷𝟎  reflects the baseline average. 𝜷𝟏  reflects the 

difference of port calls between the years of 2019 and 2020 before the lockdown 

implementation (it is the week 4 for 2020 and the week 6 for 2019). 𝜷𝟐 represents the 

time trend in control group (port calls of 2019). 𝜷𝟑  indicates the average effect of 

lockdown on affected ports. 

Table 4-2 Value of 𝑻𝒊 on different dates 

𝑇𝑖 2019 2020 

Chinese ports 
Pre-week 6 Post-week 6 Pre-week 4 Post-week 4 

0 1 0 1 

Other ports 
Pre-week 12 Post-week 12 Pre-week 12 Post-week 12 

0 1 0 1 

For the DID model, our key assumption is that without the lockdown policy, the port 

calls data would have changed in the same way as the previous year, i.e., a parallel trend 

assumption. In order to ensure the validity of this assumption, we also perform a parallel 

trend test through an event study model, which is detailed in Section 4.2.4.   

4.2.3 Regression-Discontinuity-Design (RDD)-DID Model  

In order to further quantify the immediate effect caused by lockdown policies, we 

propose an RDD-DID model. The proposed model builds on the RDD model, which 

can estimate potential breaks in a relatively short time period around the policy 

intervention date (Brodeur et al., 2020). We assume the lockdown announcement date 

as the cutoff, then week i can be considered in the treatment group if week i is after the 

date; otherwise, week i is in the control group. The equation is given by: 

𝑊𝑖,𝑐 = 𝛽0 + 𝛽1𝑇𝑖+𝜇𝑖 + 𝜌𝑐 (4-3) 
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where 𝑊𝑖,𝑐 is the number of port calls in affected port c in week i. We define 𝑇𝑖 = 1 if 

week i is after the lockdown announcement, 0 otherwise; and the week fixed effect is 

represented by 𝜇𝑖. 𝛽1 is the immediate change measurement that we are interested in. 

Applying nonparametric estimation on Eq. (4-3), a running variable 𝐷 is defined as the 

absolute distance in weeks from the lockdown policy implementation date; the value is 

negative for the weeks before and positive for the weeks after the lockdown, while the 

week of the lockdown implementation is set at 0. The lockdown implementation 

dummy 𝑇𝑖 is defined in a similar way as in the DID model. The RDD regression 

equation is written as: 

𝑊𝑖,𝑐 = 𝛽0 + 𝛽1𝑇𝑖 + 𝛽2𝑓(𝐷𝑖) + 𝛽3𝑇𝑖 ⋅ 𝑓(𝐷𝑖)+𝛽4𝑊𝑖−1,𝑐 + 𝜇𝑖 + 𝜌𝑐 (4-4) 

   

where 𝑓(𝐷𝑖) is a polynomial function of 𝐷𝑖, which interacts with 𝑇𝑖, and can be used to 

allow for different effects on either side of the cutoff date, and 𝑓(0) = 0. 𝑊𝑖−1,𝑐 is the 

port calls data the week before, which eliminates any self-regression effects. Our 

regression model uses polynomials of order one. As for the other independent variables, 

we include the same controls as in the DID model. 𝛽1 indicates the immediate effect of 

the lockdown announcement on port calls data in the lockdown announcement week 

aside from self-regression.  

In order to eliminate the time trend in the data from Chinese ports for each of the two 

years selected, we propose the RDD-DID model. This allows us to remove the effects 

of Chinese New Year and accurately estimate the true effects of the lockdown on 

maritime freight. In the RDD-DID model, we first calculate data breaks in 2019 and 

2020, respectively; the port call break in 2019 can be related to the Chinese New Year. 
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We then take the difference between the 2020 break and the 2019 break to obtain the 

port calls break caused purely by COVID-19 lockdown policy.  

The RDD-DID model can be written as follows:  

𝑊𝑖,𝑐 = 𝛽0 + 𝛽1𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 + 𝛽2𝑓(𝐷𝑖) ⋅ 𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 + 𝛽4𝑓(𝐷𝑖) ⋅ 𝑇𝑖

+ 𝛽5𝑇𝑖+𝛽6𝑊𝑖−1,𝑐 + 𝜇𝑖 + 𝜌𝑐 + 𝜖𝑖,𝑐 

(4-5) 

where we include the same control variables as in the RDD model. 𝛽5 indicates the 

immediate break of port calls data in 2019, and (𝛽1 + 𝛽5) indicates the break in 2020. 

The immediate effect of the lockdown policy on port calls is measured by 𝛽1.  

4.2.4 Event Study and Parallel Trend Tests 

To choose appropriate analysis time window and verify the validation of DID models, 

we perform an event study to test the parallel trends in the data used in the DID models 

and RDD-DID models; we also test for adaptation effects to the lockdown, namely, 

how trends in port calls changed after the lockdown announcement. The event study 

model can be written as follows:  

𝑊𝑖,𝑐 =  ∑ 𝛼𝑘𝐸𝑘,𝑐 ⋅ 𝑌𝑒𝑎𝑟𝑖

𝑘

+ ∑ 𝛽𝑘𝐸𝑘,𝑐

𝑘

+𝜇𝑖 + 𝜌𝑐 + 𝜖𝑖,𝑐 
(4-6) 

where 𝐸𝑘,𝑐 are a group of k dummy variables that represent weeks in the DID and RDD-

DID models, which take a value of 1 for week k and 0 for the other weeks. The week 

before the lockdown announcement (treatment) is the reference period. The estimated 

coefficients of the 𝐸𝑘,𝑐 dummies (𝛼𝑘) should therefore be interpreted as being in week 

𝑘, the effect difference between two years.  

For an ideal dataset used in both the DID and RDD-DID models, the effect difference 

of the weeks before the lockdown treatment should not be significant, which would 
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indicate that the port calls trend in 2019 and 2020 would have stayed the same without 

the lockdown announcement.  

 

4.3 Empirical Results of Direct Lockdown Effects 

4.3.1 Descriptive Analysis 

We begin our analysis by examining port call data within the six week period before 

and after the beginning of lockdowns in 2020 in seven critical Chinese ports (the 

lockdown policy was announced in the Chinese New Year week, that is, Week 4). At 

first glance, port calls at these harbors experienced a relatively sharp decrease after the 

lockdown date, and kept decreasing for about three weeks before beginning to recover.  

Figure 4-3 plots the trends around the Chinese New Year date for both 2019 and 2020. 

In both years, there were a sharp decrease in port call data around the Chinese New 

Year, but in 2020, the declining trend lasted for a longer time, which may have been 

caused by the lockdown policy.  

 

Figure 4-3 Total port calls at seven Chinese ports around the 2019 and 2020 Chinese 

New Year 

Notes: The week number in the figure above shows the relative weeks between the actual week 

and the Chinese New Year week. Week 0 represents the Chinese New Year week, that is actual 
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Week 6 in 2019 (starting February 4, 2019) and actual Week 4 in 2020 (starting January 

20, 2020). 

 

As for the top container ports in other countries that announced a lockdown policy in 

Week 12 of 2020 (refer to Table 4-1 for affected ports and lockdown policy), Figure 4-

4 shows the port call changes in these ports from Week 7 to Week 16 in 2019 and 2020. 

The decrease in port calls around the lockdown announcement in 2020 can thus be 

observed against the trends of the prior year.  

 

Figure 4-4 Total port calls at other countries’ ports during the sampling period (Week 

7-Week 16 in 2019 and 2020) 

Notes: The week number here represents the actual week number in 2019 and 2020. For these 

countries, the lockdown policy was implemented in Week 12 in 2020 (starting 16 March 

2020). 

4.3.2 Results of Direct Lockdown Effects on Chinese Ports 

The direct lockdown effects on Chinese ports calculated using the DID model and 

RDD-DID models are presented in Table 4-3. To gauge the average effect of lockdown 

on Chinese ports, we apply the DID estimator. We select data from four weeks before 

and after the Chinese New Year in 2019 and 2020 as our estimation time window, based 

on the parallel trend tests outlined in Section 4.4. The DID estimator is significantly 

negative at the 10% significance level, indicating that the lockdown policy in China 

had a significant impact on port calls at Chinese ports. The results show that the number 
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of port calls in the top seven Chinese ports decreased by 21.5 per week, or 13.0% on 

average (in 2019, the average number of weekly port calls at these Chinese ports is 165). 

On the other hand, using the same study period, the RDD-DID estimator is not 

significant, indicating that after taking Chinese New Year effect into account, Chinese 

lockdown policy did not cause an immediate port call break near the lockdown date; 

this suggests rather, that the effect of lockdowns was gradual in magnitude. 

Table 4-3 The direct effects of lockdown on Chinese ports 

Notes: The results in the above table are estimated based on Eqs. (4-2) and (4-5) for the DID 

model and RDD-DID model, respectively. Coefficient estimates for 𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 are presented. 

Standard errors are reported in parenthesis. The symbols *, ** and *** indicate significance 

at 10%, 5% and 1% levels respectively. The treatment group for the DID model and RDD-

DID model is four weeks before and after 2020 Chinese New Year, while the control group is 

four weeks before and after 2019 Chinese New Year, respectively. 

 

4.3.3 Results of Direct Lockdown Effects on Other Ports 

In order to test the direct lockdown effect on ports in other countries during the second 

wave of national lockdowns, we apply the same DID and RDD-DID models. We select 

the time span from four weeks before the lockdown announcement to four weeks after 

that date. As verified in the parallel trend tests in Section 4.3.4, during this time period 

port call data at these ports in 2020 was not affected by the mid-January Chinese 

 DID model RDD-DID model 

Time period week -4 – week 3 week -4 – week 3 

𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 -21.536* 16.437 

 (10.90) (9.77) 

Port FE Yes Yes 

Year and week FE Yes Yes 

Autoregressive Effect No Yes 

N 112 112 

adj. R2 0.959 0.977 
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lockdown, illustrating the same trend as 2019 before lockdown. Estimators of the DID 

and RDD-DID models indicate that there was an immediate and significant decrease in 

port call data at these ports at the start of lockdowns, although the magnitude of the 

effect was moderate at best, as presented in Table 4-4. Within four weeks of the 

announcement of lockdown policies, the average port call levels of these harbors 

decreased by 3.3 per week (or 4.5%) compared to before (in 2019, the average weekly 

port calls at these ports is 73.75). 

Table 4-4 The direct effects of lockdown on other ports 

 DID model RDD-DID model 

Time period week -4 – week 3 week -4 – week 3 

𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 -3.300** -4.225** 

 (1.59) (1.83) 

Port FE Yes Yes 

Year and week FE Yes Yes 

Autoregressive Effect No Yes 

N 160 160 

adj. R2 0.979 0.980 

Notes: The results in the above table are estimated based on Eqs. (4-2) and (4-5) for the DID 

model and RDD-DID model, respectively. Coefficient estimates for 𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 are presented. 

Standard errors are reported in parenthesis. The symbols *, ** and *** indicate significance 

at 10%, 5% and 1% levels respectively. The treatment group for the DID model and RDD-

DID model is four weeks before and after 2020 Chinese New Year, while the control group is 

four weeks before and after 2019 Chinese New Year, respectively. 

 

4.3.4 Event Study and Parallel Trend Tests for Direct Lockdown Effects 

In order to confirm the validity our DID and RDD-DID models presented above, we 

perform an event study based on Eq. (4-6). The purpose of this is to test the common 

trend assumption, namely, that the same port call trends existed in 2020 before the 

announcement of lockdowns as in 2019. 
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Specifically, for Chinese ports, we perform an event study on port calls in 2019 and 

2020 from five weeks before and after the Chinese New Year. The corresponding 

results are shown in Figure 4-5. As modelled below, the 95% confidence intervals for 

coefficients before the Chinese New Year all include zero, indicating that the trends in 

2019 and 2020 from before the Chinese New Year can be considered identical.  

The results of the event study model for ports affected by the second lockdown wave 

in March 2021 are shown in Figure 4-6. The time range is from five weeks before the 

lockdown date to five weeks after the date. As can be seen in the graph, in Week 7 (the 

fifth week before the lockdown date), there is a significant difference in port call data 

between 2019 and 2020, which violates the common trend assumption between the 

treatment and control group before the policy intervention. Thus, we only use a four-

week time span for our direct effect DID and RDD-DID models across all ports 

examined in order to retain consistency. As depicted in Figures 4-5 and 4-6, the four-

week time span satisfies the common trend assumption and confirms the validity of the 

DID and RDD-DID models.   

 

Figure 4-5 Coefficient plots for DID and RDD-DID models analyzing the direct 

lockdown effects on Chinese ports during the first wave of lockdown 

Notes: Based on Eq. (4-6). Current week refers to the cutoff week (lockdown announcement 

week). The last week before the treatment (pre_1) is the reference week.  
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Figure 4-6 Coefficient plots for DID and RDD-DID models analyzing the direct 

lockdown effects on international ports affected by the second wave of lockdowns 

Notes: Based on Eq. (4-6). Current week refers to the cutoff week (lockdown announcement 

week). The last week before the treatment (pre_1) is the reference week. 

 

4.4 Empirical Results of Indirect Lockdown Effects  

In order to further examine port call changes in the ports affected by the second wave 

of lockdowns, Figure 4-7 plots port calls for these ports from Week 1 to Week 16 of 

2020. As seen, there seems to be an unexpected break in most of these port calls around 

Week 7 in 2020 (i.e., about three weeks after the start of the Chinese lockdown policy). 

Considering that it takes about two to three weeks for international container ships to 

travel across continents, the Chinese lockdown policy may also have affected these 

ports indirectly through the container shipping network. 

Next, we examine this potential indirect lockdown effect, namely, how lockdown 

policy in one country can affect port calls in other countries through the container 

shipping network. In order to formally examine this shock propagation effect, we first 

classify ports based on their connectivity to Chinese ports. Then, we run the DID and 

RDD-DID models separately on high-connectivity and low-connectivity groups, using 

the date when the effects of the Chinese lockdown propagated to each group as the 

policy intervention date. 
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Figure 4-7 Port calls at ports affected by the second wave of lockdown from Week 1 to 

Week 16 of 2020 

Notes: The week number represents the actual week number in 2020. For these countries, the 

lockdown policy was implemented in Week 12 (starting from March 16, 2020). 

 

4.4.1 Connectivity with China 

Based on the trends in port calls shown in Figure 4-7, we hypothesize that the impact 

of lockdown policy in China on port calls in other countries varied across ports due to 

different connectivity levels with Chinese ports. To verify this point, we categorize 

ports in other countries into a high-connectivity (with Chinese ports) group and a low-

connectivity group by using a proposed connectivity index introduced in Section 4.2. 

Based on each port’s connectivity index and the port location, we grouped these ports 

into three categories for further analysis, as shown in Table 4-5. The standard for being 

a high connectivity port is that the number of ship visits between this port and Chinese 

ports in 2019 is more than 2,000. 
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Table 4-5 Classification of ports in other countries with connectivity index and location 

High-Connectivity Ports 
Low-Connectivity Ports 

Asian Ports European Ports 

Pusan (16138), Hong Kong (14313), 

Singapore (13952), Port Klang (7852), 

Tanjung Pelepas (5605), Ho Chi Minh 

(4916), Manila (4156), Colombo (3835), 

Mina Jabal Ali (3459), Jakarta (2688) 

Rotterdam (3275), 

Hamburg (2166), 

Antwerp (2161), 

New York (1602), 

Bremerhaven (1095), 

Piraeus (1798), 

Notes: Connectivity is in parentheses. 

 

4.4.2 Empirical Analysis of High Connectivity Ports 

Figure 4-8 plots the total port calls in high-connectivity ports in 2019 and 2020 around 

the Chinese New Year week, respectively. Two weeks after the Chinese New Year, the 

trends in port calls in 2019 and 2020 varied significantly: while the number of port calls 

in 2019 recovered quickly to the same level as before the Chinese New Year, port calls 

in 2020 remained at a low level for about three more weeks before showing signs of 

recovery. This indicates that the effect of Chinese lockdown policy almost certainly 

propagated to other ports with high connectivity to Chinese ports. Considering the 

different propagation times along the global shipping network (i.e., the amount of time 

necessary for propagation would be longer for cross-regional routes and shorter for 

intra-regional routes), we separately investigate the propagation effects on high-

connectivity ports in Asia and Europe. 
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Figure 4-8 Total port calls in high-connectivity ports in 2019 and 2020 around Chinese 

New Year 

Notes: The week number in this figure represents the relative weeks between the actual week 

and the Chinese New Year week. Week 0 represents the week of Chinese New Year, that is 

Week 6 in 2019 (starting February 4, 2019) and Week 4 in 2020 (starting January 20, 2020).  

 

4.4.2.1 Empirical Analysis of High-connectivity Asian Ports 

The total number of port calls at Asian high-connectivity ports in 2019 and 2020 are 

plotted in Figure 4-9. As seen from the chart, there exists a significant difference 

between 2019 and 2020 port calls. In 2019, from two weeks after the Chinese New Year, 

the port calls gradually increased to the same level as before the New Year. Alternatively, 

in 2020, the number of port calls at these Asian ports continued to decline, due to the 

propagation effects of China’s lockdown. Therefore, it is reasonable to use two weeks 

as the shock propagation time from China to other high-connectivity ports in Asia after 

the lockdown announcement in China. In the subsequent model set up for Asian ports, 

we use two weeks after the Chinese implementation of lockdown as the cutoff point. 
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Figure 4-9 Total port calls in high-connectivity ports in Asia in 2019 and 2020 around 

Chinese New Year 

Notes: Refer to the notes for Figure 4-8. The black line in week 2 indicates that Chinese 

lockdown effects propagated to high-connectivity ports in Asia two weeks after the policy’s 

announcement. 

Table 4-6 shows the DID and RDD-DID model estimation results for Asian high-

connectivity ports. Different time spans are considered. Specifically, we consider port 

calls that are four, three, and two weeks before and after the cutoff point so as to 

examine the impact duration of the shock propagation effect. In the DID models, the 

coefficient of the models with a four-week span is significant at the 1% level, indicating 

that the propagation effect of Chinese lockdown policy led to a relatively prolonged 

decrease in port calls at high-connectivity Asian ports. Using the four-week span, the 

average number of port calls in high-connectivity Asian ports decreased by 8.23. The 

coefficients of all RDD-DID models examined and DID models with a shorter span are 

not significant, suggesting that this effect is neither short-term nor immediate.  
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Table 4-6 DID and RDD-DID estimation results for high-connectivity Asian ports 

 DID model  RDD-DID model  

Time period week 0 – week 3 week -1 – week 4 week -2 – week 5 week 0 – week 3 week -1 – week 4 week -2 – week 5 

𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 -3.900 -6.200 -8.225*** 5.935 7.673 3.017 
 (27.54) (3.49) (2.89) (15.31) (9.19) (6.50) 

Port FE Yes Yes Yes Yes Yes Yes 

Year and week FE Yes Yes Yes Yes Yes Yes 

Autoregressive Effect No No No Yes Yes Yes 

N 80 120 160 80 120 160 

adj. R2 0.371 0.985 0.987 0.985 0.986 0.988 

Notes: Results are estimated based on Eqs. (4-2) and (4-5) for the DID model and RDD-DID model respectively. The symbols *, ** and *** indicate 

significance at 10%, 5% and 1% levels respectively. The week number in the table represents the relative weeks between the actual week and the week of 

Chinese New Year. Week 0 represents the Chinese New Year week, that is Week 6 in 2019 and Week 4 in 2020. The policy intervention (cutoff) time is 

Week 2 (two weeks after the Chinese New Year considering the propagation time) in 2019 and 2020. The treatment group for the DID model and RDD-DID 

model is four, three, and two weeks before and after the policy intervention in 2020; the control group is the same period in 2019. 
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4.4.2.2 Empirical Analysis of High-connectivity European Ports 

We further examine the propagation effects of Chinese lockdown policy on European 

ports. Figure 4-10 shows the port call data in these ports around the Chinese New Year 

in both 2019 and 2020. As seen below, these ports experienced a sharp decline in port 

calls three weeks following the Chinese lockdown, but recovered quickly. At first 

glance, the impact seems to be rather severe and short-lived. Based on the graph below, 

as well as the voyage durations between China and Europe, we identify Week 3 after 

China’s implementation of lockdowns as the cutoff point for the subsequent statistical 

analysis using DID and RDD-DID models.  

 
Figure 4-10 Total port calls in high-connectivity ports in Europe in 2019 and 2020 

around Chinese New Year 

Notes: Refer to the notes in Figure 4-8. The line in Week 3 indicates that the effects of the 

Chinese lockdown propagated to high-connectivity ports in Europe three weeks later. 

 

The DID and RDD-DID estimation results for high-connectivity European ports (with 

a cutoff week of three weeks after the announcement of lockdowns in China) are 

presented in Table 4-7. Models with different time spans are also examined. The 

coefficients of the RDD-DID models under different bandwidths and DID models with 

shorter bandwidth are all significant, indicating that at three weeks after the Chinese 

lockdown, port calls in high-connectivity European ports experienced a sharp and 
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immediate drop. As for the DID model, however, when using a four-week and a three-

week span, the coefficient is not significant, suggesting that the drop in port calls 

recovered quickly and that the propagation effect only lasted for two to three weeks in 

high-connectivity European ports. The coefficient of the two-week span DID model 

indicates that the Chinese lockdown policy led to the reduction of port calls by 16.83 

on average in high-connectivity European ports.  
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Table 4-7 DID and RDD-DID estimation results for high-connectivity European ports 

Notes: Refer to the notes for Table 4-5. The symbols *, ** and *** indicate significance at 10%, 5% and 1% levels respectively. The policy intervention (cutoff) 

time is Week 3 (three weeks after the Chinese New Year considering the propagation time) in 2019 and 2020. The treatment group for the DID model and RDD-

DID model is four, three, and two weeks before and after the policy intervention date in 2020; the control group is the same period in 2019.

 DID model  RDD-DID model 

Time period week 1 – week 4 week 0 – week 5 week -1 – week 6 week 1 – week 4 week 0 – week 5 week -1 – week 6 

𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 -16.833*** -9.556* -6.583 -57.222 -61.383*** -43.497*** 
 (5.75) (5.03) (3.93) (33.46) (14.38) (9.82) 

Port FE Yes Yes Yes Yes Yes Yes 

Year and week FE Yes Yes Yes Yes Yes Yes 

Autoregressive 

Effect 

No No No Yes Yes Yes 

N 24 36 48 24 36 48 

adj. R2 0.926 0.916 0.928 0.940 0.946 0.949 
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4.4.3 Empirical Analysis of Low-connectivity Ports 

As for low-connectivity ports, after the implementation of lockdowns in China, port 

calls at these ports did not exhibit any obvious decreasing trend, as evidenced by Figure 

4-11. 

 

Figure 4-11 Total port calls in low-connectivity ports in 2019 and 2020 around Chinese 

New Year 

Notes: The week number in this figure represents the relative weeks between the actual week 

and the week of Chinese New Year week. Week 0 represents the Chinese New Year week, that 

is Week 6 in 2019 and Week 4 in 2020. 

 

In order to empirically test the effect of China’s lockdowns on these ports, we run the 

DID and RDD-DID models on port calls in low-connectivity ports using two weeks 

after the implementation of Chinese lockdown policy as the cutoff, considering the 

average voyage duration of container ships. The results are presented in Table 4-8. As 

seen below, none of the coefficients in the DID and RDD-DID models are significant 

at the 10% level. Therefore, we conclude that there exists no significant propagation 

impact on these low-connectivity ports.  

As a short summary, we find the coefficient of DID model is significant with four-week 

span for high-connectivity Asian ports and the results of the three RDD-DID models 

are not significant for these ports. It means that the Chinese lockdown policy leads to a 

relatively prolonged reduction in port calls in high-connectivity Asian ports. 
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Meanwhile, the coefficients of DID models with two-week span and three-week span 

and RDD-DID models with three-week span and four-week span are all significant for 

high-connectivity European port. It indicates that port calls in high-connectivity 

European ports experienced a sharp and relatively prolonged drop. We find that the 

coefficients of all DID models are not significant for the low-connectivity ports. It 

means that there exists no significant propagation effect on these low-connectivity ports. 
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Table 4-8 DID and RDD-DID estimation results for low-connectivity ports 

 

 

 

 

 

 

 

 

 

Notes: Refer to the notes for Table 4-5. The symbols *, ** and *** indicate significance at 10%, 5% and 1% levels respectively. The policy intervention (cutoff) 

time is Week 2 (two weeks after the Chinese New Year considering the propagation time) in 2019 and 2020. The treatment group for the DID model and RDD-

DID model is four, three, and two weeks before and after the policy intervention date in 2020; the control group is the same period in 2019. 

 

 

 

 

 

 DID model  RDD-DID model 

Time period week 0 – week 3 week -1 – week 4 week -2 – week 5 week 0 – week 3 week -1 – week 4 week -2 – week 5 

𝑇𝑖 ⋅ 𝑌𝑒𝑎𝑟𝑖 1.167 0.778 0.333 11.290 15.016 4.196 
 (3.57) (3.03) (2.56) (12.95) (7.90) (6.25) 

Port FE Yes Yes Yes Yes Yes Yes 

Year and week FE Yes Yes Yes Yes Yes Yes 

Autoregressive Effect No No No Yes Yes Yes 

N 24 36 48 24 36 48 

adj. R2 0.802 0.805 0.799 0.801 0.824 0.796 
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4.4.4 Event Study and Parallel Trend Tests for Indirect Lockdown Effects 

Similar to Section 4.3.4, we perform a further event study based on Eq. (4-6) on port calls for 

all three groups of ports to confirm the validity of the proposed models. The corresponding 

coefficient plots are presented in Figures 4-12, 4-13, 4-14. As shown in the graphs, from four 

weeks before each model’s cutoff point to the cutoff point, the 95% confidence intervals for 

coefficients all include 0, thus indicating that there is no significant difference between the 

control group (2019 data) and the treatment group (2020 data) before the indirect effect of 

Chinese lockdown policy kicks in. Therefore, the application for DID and RDD-DID models 

using a four-week span can be justified. 

 

Figure 4-12 Coefficient plots for DID and RDD-DID models analyzing the indirect lockdown 

effect in high-connectivity Asian ports 

Notes: Based on Eq. (4-6). Current week refers to the cutoff week, i.e., two weeks after the Chinese 

lockdown. The last week before the current week (pre_1) is the reference week.  

 

Figure 4-13 Coefficient plots for DID and RDD-DID models analyzing the indirect lockdown 

effect in high-connectivity European ports 

Notes: Based on Eq. (4-6). Current week refers to the cutoff week, i.e., three weeks after the Chinese 

lockdown. The last week before the current week (pre_1) is the reference week. 
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Figure 4-14 Coefficient plots for DID and RDD-DID models analyzing the indirect lockdown 

effects in low-connectivity ports 

Notes: Refer to the notes for Figure 4-12. 

 

We acknowledge the estimation bias may exist without controlling some external effects, such 

as the international trade. However, we believe the effect is minor as the results of event study 

demonstrate that the port calls in 2019 and 2020 have the same trends without the lockdown 

announcement. 

4.5 Implications 

The results above clearly show that the direct impact of national COVID-19 lockdowns on 

local port calls varied across regions. The impact on Chinese ports tended, on average, to be 

strong with no immediate break; the effects on the other ports under investigation were less 

severe in magnitude, with an immediate break after the lockdown announcement. The reason 

for the non-existence of an immediate break in the data for Chinese ports is that, after the 

sudden outbreak of COVID-19 in China in January 2021, it took time for container lines to 

realize the severity of the COVID-19 pandemic and adjust their capacity accordingly. On the 

other hand, container lines appear to have been more responsive during the second wave of 

national lockdowns, given the experience of the first lockdown wave.  

The difference in impact magnitude is mainly because the level of stringency of the lockdown 

policies varied between China and the rest of the world, and, consequently, the nature of 

disruptions brought about by those policies is different. As Notteboom et al. (2021) pointed out, 
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the response to COVID-19 has been characterized by several sequential phases from a supply 

chain perspective. The first phase started from mid-January 2020, with hard lockdown 

measures announced in China (mandatory stay-at-home orders with few exceptions), causing 

a major supply shock. Most of the workforce and major industrial production facilities were 

suddenly affected, resulting in a sharp drop in Chinese port throughput due to the combined 

effects of reduced export volume and limited workforce in ports.  

The second phase started in mid-March 2020 as different lockdown policies were implemented 

globally, leading to dampened global demand for transoceanic shipping due to lower industrial 

and consumer confidence. Thus, the disruption in the second phase for the countries 

investigated in this study was mainly considered as the result of a demand shock. On the one 

hand, the lockdown policies implemented in the Asian and European countries under 

investigation were often more moderate, compared to those in China. Thus, production of those 

regions was not as heavily influenced. On the other hand, demand for most consumer products 

witnessed a drastic decline except for certain essential goods (e.g., food and medicines). 

Compared to a supply shock, a demand shock generally happens gradually, as it takes time for 

individual consumer behaviours to become observable in the aggregate. Considering the 

differences between lockdown policies and the nature of the shock, container lines adopted 

slightly different capacity adjustment strategies, which was then reflected in changes in the 

number of port calls. In response to the first wave of lockdowns in China characterized by hard 

lockdown measures and an induced production shock, container lines reacted (after a slight 

delay) by significantly reducing the number of vessels calling at Chinese ports. On the other 

hand, during the second wave of lockdowns characterized by moderate lockdown measures 

and an induced demand shock, container lines took more prompt yet moderate port call 

reduction measures due to the reduction in demand. Therefore, we observe a significant drop 

in port calls with no immediate break at Chinese ports during the first wave of lockdowns in 
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China, while the decrease in port calls at ports affected by the second wave of lockdown is less 

severe in magnitude, with an immediate break after the lockdown announcement. 

The second major implication is that through the interconnected global shipping network, a 

local shock in one country can propagate to other regions and becomes a global shock. The 

results presented here show that, in February 2020, port calls at those ports with high levels of 

connectivity to Chinese ports were significantly affected by Chinese lockdown policies, with a 

time lag of two to three weeks, depending on the voyage duration of a container ship. The 

indirect shock of China’s lockdown on close neighbours varied slightly from that on highly 

connected ports in distant regions. There was no significant immediate break in the number of 

port calls to Asian countries with high connectivity to Chinese ports, while a significant break 

did exist in European ports with high connectivity to Chinese ports, as evidenced by the RDD-

DID model results.  

These effects can largely be attributed to the capacity adjustment strategies implemented by 

container lines, which led to shock propagations throughout the global network. Container lines 

nowadays are better at capacity management, compared to decades past. In order to cope with 

declining demand for seaborne transportation amid the COVID-19 outbreak, container lines 

implemented blank sailings, a term used to describe the situation in which a vessel skips a port 

call along its route or an entire journey is cancelled. By doing so, container lines could reduce 

the fleet supply available in the market, thus maintaining a reasonable level of freight rate and 

vessel utilization. After the lockdown announcement in China at the end of January 2020, 

container lines reacted by implementing the first wave of blank sailings in February 2020. 

Specifically, around 36% of Asia-to-Europe and 28% of transpacific shipping capacity was 

withdrawn during that period. Considering the sailing time between China and Europe, these 

effects were only realized in European ports by the end of February 2020. From April to May 

2020, around 11% of the world’s container fleets were idle (Notteboom et al., 2021). The 
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impact of blank sailing was more visible in ports located in the major long-haul trading routes 

(e.g., from Asia to Europe). The empirical results also confirm that blank sailings due to 

Chinese lockdown policies had a significant and immediate effect on European ports at the end 

of February 2020. The immediate impact of blank sailings on Asian ports, however, were not 

significant due to the substitution phenomenon between Chinese ports and adjacent Asian ports. 

When port operations were significantly disrupted due to a limited workforce, certain container 

volumes originally destinated for China were diverted to adjacent ports like Pusan Port which, 

in a way, compensated for the port call losses due to blank sailings at these adjacent ports. 

Nonetheless, on average, port calls declined in Asian ports with high connectivity to Chinese 

ports in February 2020. 

The results carry significant implications for policy makers, port operators, and container lines. 

During a pandemic outbreak, any sudden changes in demand and supply can be quickly 

reflected in shipping and port activities. Thus, weekly port call statistics can serve as a timely 

and high-frequency economic indicator that reflects a country’s trade flow changes in real time. 

The impact of various lockdown measures demonstrated here on changes in both local and 

global port call numbers can provide an additional source of information for policy makers 

when crafting lockdown policies. Policy makers can make more informed decisions, weighing 

the different levels of supply and demand shocks brought by lockdown policies with different 

levels of stringency and their associated immediate and longer-term impacts on trade volume 

changes. For port operators, understanding the potential impact of local lockdowns on local 

port call changes help them adjust port operations in a more timely manner. In addition, the 

lockdown policies in other regions may also affect the port calls of local ports due to the 

propagation effect, thus port operators need to prepare in advance for the possible port call 

changes, such as increasing connectivity to regions without shock.     From the perspective of 

container lines, the results presented here can help them understand the effects of blank sailing 
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on the broader global liner network. Furthermore, the findings on the impact of national 

lockdown policies on local port call numbers provide decision support for container lines to 

better manage their capacity and adjust their network service arrangement, by considering 

various lockdown policies in different ports across the globe. To better manage capacity, 

container lines can adopt parallel service to maintain connectivity through the alliance network 

and allocate idle vessels to longer routes to maintain higher ship utilization rates. 

 

4.6 Remarks 

The recent COVID-19 pandemic response highlights the prolonged impact that a similar 

pandemic outbreak could have on ports and shipping. This study quantifies both the immediate 

and longer-term impact of COVID-19 national lockdown policies on port calls in major 

international container ports using DID and RDD-DID models. The results show that lockdown 

policies with different levels of stringency can lead to different types of trade shocks and, 

consequently, different patterns in changes in the numbers of port calls. We further document 

the existence of significant shock propagation effects. Specifically, we find that the initial 

lockdown in China induced container lines to take up capacity adjustment strategies so as to 

cope with a decline in seaborne transport demand. This response in turn created propagation 

effects from Chinese ports through the global container shipping network to harbors in the rest 

of the world with a high degree of connectivity to Chinese ports. 

The existing studies compare port call data for the same period in 2019 and 2020 to quantify 

overall changes in port calls caused by COVID-19. Alternatively, we account for the impact 

from Chinese New Year in our model, so our results eliminate the seasonal changes in port calls 

around Chinese New Year and can capture the pure changes in port calls in short term due to 

pandemic lockdowns. Unlike the existing studies that gauge the impact of COVID-19 on 

certain regions, we also measure the propagation effect of container shipping from China to 
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Europe and the United States referring to their connectivity to Chinese ports. 

This research contributes to the literature on the impact of pandemic outbreaks on the 

transportation sector. First, an analytical framework is proposed to evaluate the impact of 

national lockdown policies on both local port calls and global port calls through propagation 

effects. The framework is based on DID and RDD-DID models that can evaluate both the 

immediate break and the longer-term impact of a policy. Results can be used by policy makers 

to assess the potential impact of different levels of lockdown policies during pandemic 

outbreaks on the maritime industry and trade flows in the longer term and on a broader scale. 

Maritime players can also use the findings to better manage their capacity and cope with 

changing demand for seaborne transportation. Second, our study also constructs weekly, high-

frequency port call data for global ports, which provides a timely picture of changes in shipping 

activity, as well as trade flow changes. The exact shock propagation mechanism can be further 

investigated in future research. 
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Chapter 5 Effect of Online Quote Platform on Container 

Orders 

5.1 Introduction 

Online quote platforms, which have become prevalent in many industries, including aviation, 

the hotel industry, and perhaps most notably, in car insurance, have also gained traction in the 

container shipping industry. Unlike other cargo transportation modes such as air and rail, which 

have a relatively small transport capacity, container shipping lines generally require both a 

higher cargo volume and a greater level of ship utilization (due to the ultra-large size of 

container ships), so as to achieve the breakeven point. Traditionally, in order to ensure the high 

utilisation of each ship, the majority of slots are allocated to larger shippers with an existing 

service contract, or Minimum Quantity Commitment (MQC), which is a minimum space 

protection commitment between the shipper and the shipping line. Shipping lines also rely on 

freight forwarders and non-vessel-operating common carriers (NVOCCs), which book space 

on ships in large quantities at low rates and subsequently sell space to shippers in smaller 

amounts, to consolidate cargoes from individual, local shippers. Only a minority of slots are 

put on the open market for scattered shippers, and the sale of this remainder is known as a spot 

market. 

For smaller companies seeking to book one of these spaces on the spot market, the traditional 

booking process is labour-intensive and inefficient. Shippers usually have to request space via 

email or telephone, and multiple conversations are often necessary in order to confirm space 

and negotiate the freight rate and other charges. The managing director of the digital channel 

for Hapag-Lloyd (one of the top five shipping lines), said that salespeople send 300 quotes per 

day to small shippers for every five bookings received (Johnson, 2018). This results in high 

administrative costs for relatively low returns. Small and medium-sized shippers frequently 
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join shipper associations or gravitate toward ordering space from freight forwarders or 

NVOCCs because they have less bargaining power in the market and are unable to secure space 

directly from the shipping lines. Freight forwarders who have MQCs with a shipping line act 

as an intermediary in order to provide various logistics services to these small and diffuse 

shippers.  

Online quote platforms offer the potential for changing this state of affairs, as these mediums 

offer a range of new and complimentary services, including faster ocean transits, booking 

guarantees, space protection, fixed prices, and the further integration of land-side logistics into 

the supply chain. These platforms appear to particularly benefit those small and medium-sized 

consigners that do not have a close relationship with a shipping line, and whose cargo priority 

always comes last. Quicargo (2021) conducted a survey in 2020 and found that compared with 

the traditional quotation process, the real-time pricing provided by the online quote platform 

led to a cost-saving of up to 31% for small shippers on European routes. At the same time, 

although shipping lines may wish to digitise their businesses so as to differentiate their services 

and reshape the boundaries of the industry, most hesitate to abandon existing commercial 

practices and adopt online quote platforms. Among the shipping lines, only the top ones, such 

as Maersk, MSC, CMA CGM, Hapag-Lloyd, Zim, Evergreen, COSCO, OOCL, ONE etc, have 

adopted online quote platforms, others remain on the fence. On the one hand, shipping 

companies are reluctant to expose their freight rates to the public for fear of their business being 

commoditised. By developing a proprietary online quote platform, one firm’s transparency in 

setting freight rates could pose a threat to liner companies seeking to protect their rate’s opacity 

and their bargaining position. In the same vein, the offline booking process also protects 

demand secrets from leaking to competitors. Shipping companies also do not want to 

jeopardize their relationships with big volume shippers by having to commoditize their prices.  
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Despite the resistance of some of the major shipping companies, however, online quote 

platforms are merely an extension of a process already underway. As digitally savvy freight 

forwarders have entered the market, shipping lines can no longer protect freight rate 

information. As freight forwarders have become adept at leveraging application programming 

interfaces (API) to aggregate and publish freight rates online already, the customary opacity 

surrounding rates cannot be preserved much longer in the market. Established freight 

forwarders, such as Kuehne + Nagel, have already launched their own instant quote and 

booking platforms to support their NVOCC subsidiaries. Some third-party start-ups have also 

developed electronic booking platforms for shippers to find and compare freight rates by 

aggregating quotes from major shipping lines and other NVOCCs, such as ASIASHEX. In 

response, shipping lines are being more or less compelled to adopt online quote platforms in 

order to avoid being outflanked in the digital realm. Hapag-Lloyd was one of the first shipping 

lines to offer shippers an instant quote service in August 2018, followed by COSCO, CMA 

CGM, and Maersk. As other shipping lines have also released online quote platforms in the 

past three years, it is worth exploring the impact of this development and how consigners’ 

purchasing behaviour has changed in response.  

Many studies have been conducted to explore the means and the factors that affect the adoption 

of digital products and technologies in maritime transportation. Few, however, investigate the 

post-event effects, that is, how online quote platforms have changed shippers’ booking 

behaviour. Fewer still have done so on the basis of new methods such as regression 

discontinuity design (RDD) and industrial dataset (instead of surveys or interviews). In order 

to fill this research gap, we will empirically evaluate the impact of online quote platforms on 

consigners’ booking behaviour, with the latest released data from shipping lines. Specifically, 

this research investigates: (a) whether an online quote platform affects the volume of containers 

ordered by different shippers, and (b) how shippers react after the release of an online quote 
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platform by a shipping line. We adopt a quasi-experimental method by using monthly ordering 

data from a top shipping line that was collected between 2016 and 2019. The implementation 

of the online booking platform by this shipping line is treated as the intervention.    

The structure of this study is presented as follows: the specifications of the RDD are introduced 

in Section 5.2. The data and their properties are given in Section 5.3. Section 5.4 discusses the 

findings and implications. Finally, Section 5.5 concludes this study.  

5.2 Methodology  

A growing number of studies have adopted RDD as a means to evaluate the causal effects of 

policy interventions (Lee, 2008). RDD distinguishes between the impact of the implemented 

policy and other continuous influencing factors, both those observed and unobserved (Zhang 

et al., 2020). Lee and Lemieux (2010) summarize two reasons for its popularity: (1) The 

assumptions required for RDD are relatively milder when compared to other non-experimental 

approaches; (2) The causal inferences from RDD are potentially more reliable than other 

methods. RDD, with time as the running variable, can reduce bias through incorporating 

control variables, assuming that the unobserved time-varying factors correlated with the 

running variable (time) may have a great impact on the regression results. There are two types 

of strategies for controlling the unobserved time-varying factors, namely, global polynomial 

regression and local linear regression (Burger et al., 2014; Hausman and Rapson, 2018).  

Global polynomial regression uses all of the observations in the dataset. The regression 

includes different functional forms of the running variable (time), such as linear, quadratic, and 

cubic, so as to minimize bias. Local linear regression, meanwhile, approaches the estimation 

of the treatment effect as a local randomization, and restricts the analysis to observations 

located near the cut-point. The functional form of the running variable (time) is linear, 

according to this method. Global polynomial regression and local linear regression thus differ 
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in both their datasets and regression models. Specifically, the purpose of global polynomial 

regression is to find the optimal function to fit the full set of data, while local linear regression 

tries to find the optimal dataset that will fit a linear regression (Jacob et al., 2012). Since the 

global polynomial regression utilises all the data points within a given set, it generally has 

greater precision than local linear regression.  

As for our problem, it is difficult to distinguish whether the observed change in the assigned 

container volume is due to the implementation of the online quota platform or to change over 

time, considering the broad timespan of data. Thus, adopting global polynomial regression may 

actually lead to a larger bias. On the other hand, although local linear regression may have a 

smaller bias through a progressive narrowing of the data to a relatively small bandwidth 

(Imbens and Lemieux, 2008), the estimation accuracy may be affected due to the inclusion of 

far fewer observations. Therefore, we apply both strategies for more reliable results.  In this 

study, we first adopt panel data regression as a benchmark model. Then, we conduct global 

polynomial and local linear regressions of RDD in order to investigate the long-term and short-

term effects of the online quote platform’s launch within the selected window. 

We follow the most adopted form of the classic RDD (e.g., Shin, 2021; Merkel and Lindgren, 

2022) and incorporate specific variables within the shipping context when formulate the basic 

panel data specification of RDD. It is presented as follows: 

𝑇𝐸𝑈𝑖𝑡 = 𝛼 + 𝛽 × 𝑂𝑛𝑙𝑖𝑛𝑒𝑡 + 𝛾1𝑇𝐸𝑈𝑖(𝑡−1) + 𝛾2𝑂𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑖𝑡 + 𝛾3𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑡 + 𝑆𝑖 + 𝑌𝑡 + 𝑀𝑡 + 𝜖𝑖𝑡 (5-1) 

where 𝑇𝐸𝑈𝑖𝑡 ……  𝑇𝐸𝑈𝑖(𝑡−1)  is the one-order lag of 𝑇𝐸𝑈𝑖𝑡 . 𝑂𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑖𝑡  is the quantity of 

container volume that shipper 𝑖 booked from other shipping lines in the period 𝑡. This variable 

is used to control for shipper 𝑖's demand on other carriers in period 𝑡, thus helps eliminate the 

effect from different demand changes across shippers. 𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑡  is the assigned container 

volume of all shippers on the shipping line in time 𝑡. This variable controls for all shippers’ 
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demand on the carrier we studied in time 𝑡, to remove the effect from market demand change 

on the carrier. The shipper fixed effects (𝑆𝑖), the year fixed effects (𝑌𝑡), and the month fixed 

effects (𝑀𝑡) are also included, while  𝜖𝑖𝑡 is an error term. 

Global polynomial regression discontinuity design uses all the observations in our sample to 

estimate the change in container volume. A flexible, global, nth order polynomial time trend 

𝑓(𝑡) is added to Eq (5-1), as shown below: 

𝑇𝐸𝑈𝑖𝑡 = 𝛼 + 𝛽 × 𝑂𝑛𝑙𝑖𝑛𝑒𝑡 + 𝑓(𝑡) + 𝛿𝑋𝑡 + 𝜖𝑖𝑡 (5-2) 

where the additional control variables in Eq (5-1) are collapsed into 𝑋𝑡 . The function 𝑓(𝑡) 

controls the unobserved factors that evolve with time (that is, are time-varying) and are 

uncorrelated to the online platform’s implementation. As long as 𝑓(𝑡) is continuous at the 

release month, 𝛽  measures the magnitude of the discontinuity in container volume at the 

release date. Different functional forms of the time trend (e.g., linear, quadratic, cubic, quartic, 

and quintic) are used to minimise any bias in the regression model. 

Local linear regression of the RDD method estimates the treatment effect as a local 

randomization, and limits the analysis to observations near the cut-point. We thus narrow the 

observed time period pre- and post-launch date of the online platform so as to disentangle the 

effect of the online quote platform from the effect of other, unobserved time-varying factors 

that influence shippers’ container volumes. The local, linear RDD model is presented as 

follows: 

𝑇𝐸𝑈𝑖𝑡 = 𝛼 + 𝛽 × 𝑂𝑛𝑙𝑖𝑛𝑒𝑡 + 𝑓(𝑡) + 𝛿𝑋𝑡 + 𝜖𝑖𝑡 (5-3) 

A linear time trend 𝑓(𝑡) is here added to Eq (5-1). We vary the bandwidth between 15 months 

(68% of our data), 12 months (56% of our data), 9 months (42% of our data), and 6 months 

(29% of our data), with separate linear trends 𝑓(𝑡) on either side of the implementation month.  
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In this study, we first estimate the overall impact of the online quote platform on all shippers, 

and then we use global polynomial RDD and local linear RDD models to evaluate the impact 

on various shippers according to their size. We check the robustness of our results in the 

following two ways: First, we use the linear, quadratic, cubic, quartic, and quintic time trends 

in the global polynomial regression; second, we apply local linear RDD with 15-month, 12-

month, 9-month, and 6-month bandwidths.  

5.3 Data 

We obtain the container order data of US import trade from a shipping company, which 

provides each bill of lading (B/L) from 2016 to 2019, including carrier name, carrier code, port 

of departure, port of arrival, shipper, consignee, container size, type of cargo, TEUs, etc., 

except for the rate-related information. Corresponding vessel details are also included in the 

database, including vessel number, and vessel name.  

In international container shipping, the top 10 shipping line groups accounted for 84.7% of the 

world’s capacity in 2020 (Alphaliner, 2021). These major shipping lines may be generally more 

willing to develop online quote platforms, considering that the amount saved from manual 

booking covers the costs of the online booking platform’s development and cyber security. An 

overview of the U.S. import shipment data is provided in Table 5-1. Hapag-Lloyd, which we 

use for this study, ranked fifth among all shipping lines, with a total TEU of approximately 12 

million.  
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Table 5-1 U.S. import data of shipping lines from 2016 to 2019 

 Carrier Carrier Code Total TEU Number of B/L 

1 MSC MSCU 20,285,952 6,690,632 

2 ONE ONEY 19,912,706 8,494,418 

3 Maersk  MAEU 14,783,558 5,389,428 

4 Ever Green  EGLV 13,415,909 5,438,550 

5 Hapag-Lloyd HLCU 12,385,154 5,563,816 

6 CMA CMG  CMDU 12,122,895 4,525,406 

7 COSCO  COSU 12,067,226 3,697,658 

8 APL APLU 8,807,350 3,623,232 

9 OOCL  OOLU 8,701,926 2,976,170 

10 Yang Ming YMLU 6,740,738 2,539,492 

11 Others Others 28,272,426  10,882,212 

 

A couple of shipping lines have released proprietary online quote platforms since 2018. Among 

them, Hapag-Lloyd was the first to release Quick Quotes in August 2018. We selected Hapag-

Lloyd for this study because, among all shipping lines, only it provides sufficient observations 

for analysis. The online quote platform Quick Quotes achieved great success after its launch. 

Figure 5-1 shows that, after the release of Quick Quotes, the proportion of shippers booked 

with Hapag-Lloyd to the total number of shippers in the market increased from 9.58% to 

11.42%. The proportion of container volume booked from Hapag-Lloyd to the total number of 

containers on the market also increased from 8.16% to 9.14%. Hapag-Lloyd’s annual report 

from 2020 indicates that, when Quick Quotes was released in 2018, the TEU booked through 

Quick Quotes accounted for 5.2% of the company’s total assigned containers. This proportion 

further increased to 7.9% in 2019, and 11.1% in 2020, accounting for 1.3 million of TEUs 

(Hapag Lloyd, 2020).  

 



 

100 

 

 

Figure 5-1 Market share of Hapag-Lloyd before and after online quote platform release 

In order to conduct empirical analysis, we clean the raw data on shipments via the following 

process: First, we delete the shipper’s names and codes displayed as “N/A” and “1,” as the 

shippers do not wish their data to be released. Next, we only use the observations of 

containerised dry shipment, excluding the data on reefer, tank, and hazardous materials 

shipments. These awkward cargoes require more document processing, and online quote 

platforms generally do not provide services to these special containers as of yet. Last, we 

aggregate the monthly data by shippers. In total, 276,618 observations remain after this 

cleaning of the database. The total number of shippers is 57,755. Figure 5-2 shows the 

schematic illustration of data cleaning. 
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Figure 5-2 Schematic illustration of data cleaning 

The shippers of Hapag-Lloyd are both numerous and scattered. Table 5-2 shows the 

distribution of Hapag-Lloyd consigner in terms of assignment size from January 2016 to 

December 2019, after cleaning the dataset. Frequency in Table 5-2 refers to the number of 

times shippers ordered containers from Hapag-Lloyd. If the frequency is equal to 1, it means 

the shipper has booked only once within the studied period; thus, out of 57,755 shippers, 

approximately 52.3% (30,192) booked only once within 48 months. In contrast, only 281 

shippers ordered 48 times, meaning that they assigned a container to Hapag-Lloyd every month. 

Notably, 96% of the shippers included in our dataset booked less than 24 times.  
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Table 5-2 Hapag-Lloyd’s shipper distribution 

Frequency Observations Unique shippers Frequency Observations Unique shippers 

1 30,192 30,192 25 3,800 152 

2 14,046 7,023 26 4,186 161 

3 11,349 3,783 27 3,591 133 

4 10,544 2,636 28 3,724 133 

5 9,330 1,866 29 3,741 129 

6 9,222 1,537 30 3,660 122 

7 8,512 1,216 31 3,627 117 

8 7,808 976 32 2,816 88 

9 7,083 787 33 3,729 113 

10 6,640 664 34 2,720 80 

11 6,699 609 35 3,640 104 

12 6,300 525 36 2,628 73 

13 5,694 438 37 2,923 79 

14 5,418 387 38 2,280 60 

15 5,730 382 39 2,886 74 

16 5,648 353 40 3,160 79 

17 5,117 301 41 2,583 63 

18 5,112 284 42 2,562 61 

19 5,282 278 43 3,182 74 

20 5,080 254 44 2,684 61 

21 4,389 209 45 3,465 77 

22 4,818 219 46 2,944 64 

23 4,600 200 47 3,666 78 

24 4,320 180 48 13,488 281 

   Total 276,618 57,755 

 

Furthermore, we note that Hapag-Lloyd shippers are generally small in scale. Table 5-2 

illustrates the Hapag-Lloyd’s monthly TEU composition of assignment sizes from January 

2016 to December 2019. Among the 276,618 observations, approximately 45% of bookings 

are for less than 5 TEUs, while 17% are bookings of 5-10 TEUs, about 30% are bookings of 

10 to 100 TEUs, 5% are bookings of 100 to 1000 TEUs, and less than 1% are bookings of more 

than 1,000 TEUs. Table 5-3 gives the descriptive statistics of the variables.  
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Table 5-3 Descriptive statistics of the variables 

 

By interviewing Hapag-Lloyd senior managers, we divided the 57,755 shippers into five 

groups based on their average monthly booking size, that is, small shippers, medium shippers, 

large shippers, extra-large shippers, and largest shippers. Table 5-4 shows the five shipper 

groups and their corresponding average monthly booking volume range. It is noted that Hapag-

Lloyd shippers are generally small in scale. Approximately 65% of shippers have an average 

monthly booking volume of less than 5 TEUs, i.e. small shippers, while 17% are from medium 

shippers (5-10 TEUs). 

Table 5-4 Shipper size distribution 

Shipper group Average monthly 

booking volume 

(TEU) 

Number of shippers 

(Proportion) 

Number of 

observations 

Small shippers  (0,5] 37,647 (65.18%) 85,264 

Medium shippers (5-10] 9,846 (17.05%) 61,425 

Large shippers (10-20] 5,483 (9.49%) 50,499 

Extra-large 

shippers  

(20-50] 3,240 (5.61%) 45,420 

Largest shippers 50+ 1,539 (2.66%) 34,010 

 

5.4 Result Analysis and Discussion 

In this section, we first conduct a basic panel data regression and global polynomial regression 

of RDD in order to gauge the effect of the online quote platform on monthly container volume 

allocated by different shippers. Next, we adopt the global polynomial regression model to 

estimate the effect of the online quote platform on different shipper groups. Finally, we apply 

local linear regression, which can reduce bias by narrowing the bandwidth from 15 months to 

6 months for each of the five shipper groups.  

Variable Observations Mean Std. Dev. Min Max 

𝑇𝐸𝑈𝑖𝑡 276,618 30.16 97.11 1 3,920 
𝑂𝑛𝑙𝑖𝑛𝑒𝑡 276,618 0.389 0.488 0 1 
𝑇𝐸𝑈𝑖(𝑡−1) 276,618 47.43 124.7 1 3,844 
𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑡 276,618 261,590 38,469 191,841 321,955 
𝑂𝐶𝑎𝑟𝑟𝑖𝑒𝑟𝑖𝑡 276,618 171.7 918.6 1 48,035 
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5.4.1 Result Analysis  

Figure 5-3 plots the monthly number of assigned containers for all shippers from January 2016 

to December 2019, including the date of the online quote platform’s implementation. The dots 

in Figure 5-3 represent the total number of assigned containers per month, and the lines show 

the polynomial fit of order 2. The vertical lines in the figure indicate the launch of the online 

quote platform. Notably, there is a sharp decrease in volume that can be observed around the 

initial month of the online quote platform’s release.  

  

Figure 5-3 Quadratic time trend of container volume before and after the online quote 

platform’s implementation 

 

Table 5-5 presents the results of the basic panel data (monthly) regression with the different 

polynomial time trends. Shipper fixed effect, year fixed effect, and month fixed effect are 

controlled in these regressions and hereafter. On average, we find that a shipper reduces its 

order of containers by about 2.86 TEUs with a linear time trend, and by about 2.99 TEUs with 

a quadratic time trend (both are significant at the 1% significance level), after the online 

platform is put into use. The coefficients of time trends larger than the cubic are not significant. 
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Next, we investigate the effect of the online quote platform on the different groups of 

consigners. 

Table 5-5 Estimates of the online quote platform effect on the monthly volume of containers 

ordered 

Note: Standard errors are in parentheses. The symbol *, **, and *** indicate significance at 10%, 5%, and 1% 

levels, respectively.  

Table 5-6 displays the regression results for different shipper groups (on their monthly 

container volume). For a large consigner, at the 10% significance level, we find only a tiny 

increase of 0.61 TEUs in their assigned container volume. The assigned container volume of 

the largest shippers decreases by 7.39 TEUs, significant at the 1% significance level. In 

summary, the overall decrease in container volume shown in Table 5-5 mainly results from a 

drop in orders from the largest shippers.  

 

 

 

 

 

 

Time trend None Linear Quadratic Cubic Quartic Quintic  

Online -2.855*** -2.855*** -2.985*** -2.088* -0.208 0.363 

 (0.83) (0.83) (0.84) (1.14) (1.44) (1.47) 

OCarrier 0.040*** 0.040*** 0.040*** 0.040*** 0.040*** 0.040*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

TEU(t-1) 0.547*** 0.547*** 0.547*** 0.547*** 0.547*** 0.547*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Carrier 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 0.000*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) 

Constant -58.540 -63.273 -66.008 -70.307 -69.933 -70.415 

 (51.35) (51.44) (51.49) (51.62) (51.62) (51.62) 

Observations 116,694 116,694 116,694 116,694 116,694 116,694 

R2 0.537 0.537 0.537 0.537 0.537 0.537 
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Table 5-6 The effect of the online quote platform on different shipper groups: global linear 

regression 

 Small Medium Large Extra-large Largest 

Online 0.133 0.030 0.610* -0.580 -7.394*** 

 (0.09) (0.16) (0.32) (0.67) (2.86) 

OCarrier 0.019*** 0.014*** 0.024*** 0.040*** 0.040*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

TEU(t-1) 0.013 0.113*** 0.224*** 0.375*** 0.651*** 

 (0.01) (0.01) (0.01) (0.00) (0.00) 

Carrier 0.000*** 0.000 0.000** 0.000*** 0.000*** 

 (0.00) (0.00) (0.00) (0.00) (0.00) 

Constant 1.803** -0.642 -4.879 -24.131 -268.663 

 (0.80) (3.70) (10.22) (16.88) (282.13) 

N 19,801 32,755 34,685 36,173 30,627 

R2 0.177 0.265 0.331 0.388 0.444 
Note: Standard errors are in parentheses. The symbols *, **, and *** indicate significance at 10%, 5%, and 1% 

levels, respectively.  

 

Table 5-7 presents the RDD estimates from the global polynomial regression for different 

shipper groups. After controlling for the fixed effects of the shipper, the year, and the month, 

the results indicate that a medium shipper also shows a slight reduction of 0.46 TEUs in 

container volume assigned to Hapag-Lloyd with a cubic time trend, at the 10% significance 

level. For an extra-large shipper, the monthly average number of containers assigned declines 

significantly, by approximately 1.34 TEUs at the 5% significance level with a linear time trend, 

and by about 1.61 TEUs at the 10% significance level with a quadratic time trend. A consigner 

from the largest shipper group has an average decrease of 8.58 TEUs and 8.84 TEUs with linear 

and quadratic time trends, respectively, at the 1% significance level. For the small and large 

groups, we find no significant change in their monthly assigned container volume with different 

polynomial time trends. In short, the global polynomial regression models indicate that the 

medium, extra-large, and largest shippers decrease their number of containers allocated to 

Hapag-Lloyd after the introduction of an online booking platform.   

 



 

107 

 

Table 5-7 Estimates of the effect of HLCU online platform on the monthly volume of containers 

ordered by shippers 

Note: Standard errors are in parentheses. The symbols *, **, and *** indicate significance at 10%, 5%, and 1% 

levels, respectively.   

 

Finally, Table 5-8 shows the estimates with bandwidths of 15 months, 12 months, 9 months, 

and 6 months, respectively, with a linear time trend. The assignment of a small shipper 

increases by 3.97 TEUs within a 9-month bandwidth at the 10% significance level. A medium 

shipper decreases its volume of containers booked from Hapag-Lloyd by 8.05 TEUs within a 

6-month bandwidth at the 10% significance level. An extra-large shipper witnesses a sharp 

drop of about 28.66 TEUs within a 9-month bandwidth at the 5% significance level. Both the 

extra-large and the largest shippers allocate less container volume to Hapag-Lloyd within a 15-

month bandwidth, but reduce their orders by different amounts. Specifically, an extra-large 

shipper reduces its volume of containers by about 1.84 TEUs, while the largest shipper reduces 

its order by 7.63 TEUs, both at the 5% significance level. In summary, small shippers see an 

Shippers Variable 
Time Trend 

Linear Quadratic Cubic Quartic Quintic  

Small online -0.009 -0.057 -0.160 -0.072 -0.094 

  (0.14) (0.14) (0.19) (0.23) (0.23) 

 N 9,273 9,273 9,273 9,273 9,273 

 R2 0.025 0.026 0.026 0.027 0.027 

Medium online -0.116 -0.229 -0.463* 0.059 -0.099 

  (0.20) (0.20) (0.27) (0.33) (0.34) 

 N 21,427 21,427 21,427 21,427 21,427 

 R2 0.038 0.038 0.038 0.039 0.039 

Large  online 0.579 0.467 0.199 0.532 0.358 

  (0.36) (0.37) (0.49) (0.62) (0.63) 

 N 26,840 26,840 26,840 26,840 26,840 

 R2 0.081 0.082 0.082 0.082 0.082 

Extra-large online -1.341* -1.605** -1.209 0.259 0.685 

  (0.72) (0.72) (0.98) (1.25) (1.28) 

 N 30,841 30,841 30,841 30,841 30,841 

 R2 0.226 0.227 0.227 0.227 0.227 

Largest online -8.578*** -8.835*** -5.326 -0.771 1.012 

  (2.97) (2.99) (4.13) (5.32) (5.43) 

 N 28,313 28,313 28,313 28,313 28,313 

 R2 0.556 0.556 0.556 0.556 0.556 
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increase in their assignments to Hapag-Lloyd within the 9-month interval. Medium shippers 

reduce the volume of containers assigned to Hapag-Lloyd in the short-term. The extra-large 

and largest shippers, however, decrease the volume of containers purchased from Hapag-Lloyd 

over a relatively long period. 

Table 5-8 Estimates of the effect of the HLCU online platform on the monthly volume of 

containers ordered by shippers: local linear regression 

Note: Standard errors are in parentheses. The symbols *, **, and *** indicate significance at 10%, 5%, and 1% 

levels, respectively.  

Overall, this empirical study finds an increase in container volume booked by small shippers 

as a result of the release of the online quote platform in the short term. The medium, extra-

large, and largest shippers, however, decrease container volume that they order from Hapag-

Lloyd for a relatively longer period.  

5.4.2 Discussion  

Perhaps the most interesting discovery from our regressions is that the overall container volume 

assigned to the shipping line decreases after the online quote platform is launched. This decline 

Shippers  6 months 9 months 12 months 15 months 

Small online 1.688 3.973* -0.219 -0.186 

  (2.92) (2.10) (0.26) (0.17) 

 N 2,716 3,987 5,336 6,609 

 R2 0.186 0.057 0.040 0.026 

Medium online -8.048* -1.410 -0.070 -0.264 

  (4.38) (3.15) (0.38) (0.23) 

 N 6,555 9,459 12,282 15,032 

 R2 0.183 0.066 0.056 0.049 

Large online -10.468 -5.776 1.208* 0.673 

  (7.75) (5.78) (0.69) (0.41) 

 N 8,104 11,798 15,364 18,876 

 R2 0.048 0.050 0.066 0.050 

Extra-large online -22.690 -28.661** -1.427 -1.835** 

  (15.38) (11.55) (1.35) (0.81) 

 N 9,126 13,452 17,632 21,715 

 R2 0.118 0.154 0.170 0.179 

Largest online -106.778 -72.339 8.281 -7.683** 

  (68.82) (50.28) (5.82) (3.42) 

 N 8,676 12,643 16,480 20,175 

 R2 0.188 0.279 0.346 0.405 
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in container volume ordered by the largest consigners cannot be offset by the increasing 

container volume ordered by the small shippers, either. Notably, however, the decrease in 

assignments does not indicate a corresponding reduction in revenue, as the large shipper always 

enjoy discounted prices due to their greater bargaining leverage vis-à-vis the shipping line.  

For small shippers, the increase in booking volume can be attributed to the fact that they are 

more flexible and thus more prepared to switch to online quote platforms already provided by 

freight forwarders. In addition, the special services provided by online quote platforms, such 

as real-time pricing and space protection, are more attractive to small shippers that have less 

bargaining power relative to larger shippers like freight forwarders and NVOCCs. Large 

shippers including freight forwarders and NVOCCs book space directly from shipping lines 

via bulk discounts, and then provide services to small shippers at a mark-up in order to earn a 

profit. Regardless of whether the platform is provided by an intermediary (such as a freight 

forwarder) or directly through the shipping line, online booking provides small consigners with 

more options, and is thus an attractive alternative to the current methods of booking space.  

For larger shippers, the decision of some small shippers to split from them and buy space 

independently may lead to the decline of the larger shipper’s assignment. In addition, the no-

show penalties charged through an online quote platform can also cause decreases in their 

assignments. Indeed, larger shippers often face supply chain delays due to manufacturing, 

trucking, and equipment issues. In peak season, as a strategy to secure shipment for their cargo, 

larger shippers deliberately reserve space from multiple shipping lines, which eventually leads 

to a large number of cancellations. Due to their greater bargaining power, shipping lines will 

generally not charge them for a no-show. The larger shippers prevail at this game and impose 

the costs and risks of cancellation on the shipping lines. In response to the likelihood of 

cancellation, shipping lines also overbook, sometimes causing larger shippers’ cargo to be left 

behind. In the traditional business model, it has become a standard practice for shipping lines 
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not to penalise larger shippers for failure to adhere to their contract. This vicious circle makes 

accurate demand forecasting difficult, and contributes to the inefficient operation of shipping 

lines. Online booking platforms, by forcing larger shippers to compete more directly with 

smaller consigners and to bear some of the costs of inaccurate demand forecasting through 

penalties, may thus discourage shippers from overpurchasing cargo space.  

These empirical results thus carry significant implication for shipping lines. Online quote 

platform provides access to some undiscovered segments, such as small and medium-sized 

shippers. A significant increase in the number of containers and volume from small shippers 

demonstrates significant savings in administrative costs for shipping lines. This is likely 

because the online quote platform reduces the number of salespeople required to provide 

service and improves the general efficiency of the quote compilation process. The increase in 

the number of small shippers via the online quote platform also increases the diversity of 

shipping line customers, thereby reducing a line’s financial risk. In day-to-day operations, 

many shipping lines prefer greater diversity in shippers, and may assign quotas so as to limit 

the order volumes of individual larger shippers and thus prevent any sudden shortfall from one 

shipper. Furthermore, freight forwarders currently provide end-to-end services to these small 

and disparate shippers. In order to persuade small and diffuse shippers to book directly with 

the shipping lines and maintain their loyalty, major shipping companies have strategically 

leveraged the logistics services of their subsidiary logistics companies in order to provide 

competing end-to-end services (Maersk, 2021). Finally, online quote platforms can also 

increase the revenue of shipping lines, because they attract more small shippers into booking 

directly with the line, and the freight rates quoted are higher than those offered to larger 

shippers, who usually receive bulk discounts.  
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5.5 Remarks 

In this study, we investigate the effects of online quote platform on shippers’ booking 

behaviour. We treat the implementation of the online quote platform as a quasi-experiment, 

applying RDD with panel data. In order to control for the unobserved time-varying effects that 

could also be correlated with the changes in container volume, we adopt two regression 

discontinuity models: a highly flexible, global polynomial model, and a local linear regression 

design. The U.S. import trade data of a top shipping line, gathered over the period from January 

2016 to December 2019, is used for the empirical test. Our study finds that, during the time 

period and across all shippers, on average, the online quote platform causes a reduction in 

container volume ordered. This reduction mainly results from the decline in volume reserved 

by large shippers, while the online quote platform attracts more small and scattered shippers, 

with an average contracted volume of less than 5 TEUs per month. This result is believable, 

given the fact that the booking platform entices smaller shippers to split from freight forwarders 

and book cargo space from the shipping line directly. The medium and extra-large shippers 

reduce container booking volume over a relatively longer period. These findings hold fruitful 

implications for shipping lines and shippers alike as they seek to develop appropriate marketing 

strategies. Shipping lines may find it advantageous to develop proprietary quote platforms in 

order to better control their own risk and increase their revenue. Small shippers can leverage 

their bargaining power when choosing whether to use an online platform provided by a 

shipping line or by a freight forwarding company. For larger shippers, the no-show penalties 

discourage them from over-purchasing cargo space.  
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Chapter 6 CONCLUSIONS AND FUTURE WORK 
 

6.1 Conclusions 

In this thesis, we conduct three studies to evaluate shipping industry changes. We briefly 

summarize the main findings of the three studies as follows.  

In the first study, we review and summarize the cost models most frequently applied in 

maritime transportation and air freight transportation. We first classify the cost studies into two 

categories: item-based cost formulation and aggregated cost formulation. We find that the two 

industries share many common items and adopt both regression analysis and accounting 

approaches to formulate the cost items. But the application of item-based cost formulation 

differs between the two industries. In regard to aggregate cost formulation, log-log cost 

function and translog cost function are two general functional forms applied in the two 

industries, but at different levels. For air freight transportation, they are adopted at the company 

level, while for maritime transportation, they are also used at the vessel and voyage level.  The 

primary application of these functions is to calculate EOS and EOD, estimate cost efficiency, 

decompose the TFP growth in air freight transportation. In maritime transportation, they are 

used to find the optimal fleet capacity, measure fleet utilization, and quantify economies of 

ship size.  

In the second study, we take the Chinese New Year into account and use the DID and RDD-

DID methods to quantify the impact of pandemic lockdown policy on global port calls. Using 

the port call data of both Chinese ports and foreign ports in 2019 and 2020, we gauge both the 

immediate and longer-term impact. For direct lockdown effect, we find that the Chinese 

lockdown policy did not cause an immediate port call near the lockdown date of Chinese ports, 

thus the effect of lockdowns is gradual in magnitude, but cause an immediate and significant 

decrease in port call data of other ports. For indirect lockdown effects, we classify the ports in 
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other counties into a high-connectivity (with Chinese ports) group and a low-connectivity 

group based on their connectivity index and location. We find the Chinese lockdown policy 

leads to a relatively prolonged reduction in port calls in high-connectivity Asian ports and 

results in a sharp and relatively prolonged drop of port calls in high-connectivity European 

ports. There exists no significant propagation effect on the low-connectivity ports. 

In the third study, we investigate the effects of online quote platform on shippers’ booking 

behaviour. We treat the implementation of the online quote platform as a quasi-experiment, 

applying RDD with panel data. The U.S. import trade data of a top shipping line, gathered over 

the period from January 2016 to December 2019, is used for the empirical test. Our study finds 

that, during the time period and across all shippers, on average, the online quote platform causes 

a reduction in container volume ordered. This reduction mainly results from the decline in 

volume reserved by large shippers, while the online quote platform attracts more small and 

scattered shippers, with an average contracted volume of less than 5 TEUs per month. This 

result is believable, given the fact that the booking platform entices smaller shippers to split 

from freight forwarders and book cargo space from the shipping line directly. These findings 

hold fruitful implications for shipping lines and shippers alike as they seek to develop 

appropriate marketing strategies. Shipping lines may find it advantageous to develop 

proprietary quote platforms in order to better control their own risk, while shippers can leverage 

their relative bargaining power when choosing whether to use an online platform provided by 

a line or by a freight forwarding company.  

6.2 Future Work 

For the first study, we propose several potential directions for future research. For air freight 

transportation, the item-based cost formulations developed in previous literature mainly focus 

on passenger aircraft, while analysis of cargo aircrafts lags behind. As these two types of 
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aircraft can have very different cost items and even different functional forms for the same 

item, it is inappropriate and inaccurate to simply apply the item-based cost formulation of 

passenger aircraft to cargo aircraft. With the swift development in air freight transportation due 

to the booming of e-commerce, it is worthwhile to develop dedicated cost formulas for cargo 

aircraft that can assist aircraft manufacturers, airlines and policymakers to make decisions. In 

addition, as the proportion of belly cargo in passenger aircraft continues to increase, the 

allocation of trip-level costs and company-level costs between passengers and cargo is also an 

urgent question for passenger airlines and worth further study. Airlines currently use a fleet 

assignment model for assigning aircraft types to flights and for scheduling flight departures so 

as to minimize operating costs in passenger air transportation (Rexing et al., 2000). It will be 

interesting to adopt similar methods so as to minimize the aircraft-specific operating cost of 

cargo aircrafts.  

As data availability and data quality in the maritime industry continues to improve significantly, 

future research may enrich current cost studies with more detailed cost data. For example, 

maritime researchers may be able to estimate cost items at the voyage level more precisely with 

the detailed information harvested by AIS. Previous studies have also adopted the translog cost 

function in order to study the cost structures of independent shipping lines. As shipping 

alliances become increasingly dominant in the market, it will become necessary to investigate 

how shipping alliances affect firm-level cost functions. Moreover, the economies of network 

size have rarely been explored in the field of maritime transportation from the perspective of 

aggregated cost formulation, an area of research well established in the study of airline freight 

transportation. In terms of economies of density, by referring to the field of air freight 

transportation research, the maritime scholar can take network size into consideration by 

including the number of seaports served in the aggregated cost formulation. Future researchers 

in both fields should also continue to look to the contrasts in focus and emphasis between their 
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disciplines in order to find new approaches to cost formulation as databases and mathematical 

methods evolve. 

The second study can be further improved with more available company (shipping line) level 

data. For example, the shipping cancellation data combined with the change of port call can 

help to reveal more details of strategies adopted by the shipping line during the lockdown, such 

as, the preference of shipping lines to ports, the network effect and etc., which have important 

implications on managing shipping capacity. Integrating our findings from this study with port 

performance data such as congestion, berthing time, and etc., researchers can also investigate 

port’s resilience ability during shock with appropriate methods, such as dynamical system 

model and network theory. 

While our results provide a great deal of insight, we also acknowledge the limitations of the 

third study. First, we are unable to identify which transactions were booked through the online 

quote platform and which via traditional channels. Further extensions of the data collection 

may require capturing the difference in booking channels. With this information, we would be 

able to analyse more granular changes in shippers’ booking behaviour as they switch from 

email and phone conversations to online quote platforms. Second, this study does not take 

shipper characteristics into account. It would be both interesting and useful to find out, for 

example, how freight forwarders, NVOCCS, and cargo shippers react differently to an online 

quote platform. Third, we notice the difference in carriers’ operational and marketing strategies. 

It will be interesting to compare the influence of online quote platform on container orders 

across different carriers. These are questions that require further exploration, and we believe 

that our study opens the path to other, fruitful lines of inquiry. 
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