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Abstract 

 

Cycling has received more and more attention in urban and transport planning in recent 

years. As an active transport mode, cycling does not only relieve traffic congestion and 

reduce vehicle emissions, but also improves the well-being of society. Despite the 

benefits for health and environment, bicyclists are vulnerable to injuries and mortalities 

in road crashes. It is crucial to identify the influencing factors that affect the bicycle crash 

risk. Therefore, effective countermeasures can be implemented to improve overall bicycle 

safety. 

 

In this study, effects of policy interventions on bicycle travel and safety are examined, 

based on comprehensive traffic and crash data. For example, policy interventions 

including low emission zone, congestion charging scheme, and public bicycle rental 

scheme are considered. The propensity score matching method is applied to account for 

the effects of confounding factors like built environment and population socio-

demographics. Results indicate that bicycle travel increases remarkably after the 

implementation of low emission zone, especially for short and intermediate bicycle trips. 

However, bicycle crash frequencies also increase after the introduction of congestion 

charging and public bicycle rental schemes. 

  

On the other hand, association between built environment, population socio-

demographics, road network configuration, traffic characteristics, and bicycle crash 

frequency at zonal level is measured, with which the bicycle crash exposure is accounted. 

For example, bicycle usage data from the public bicycle rental system is used to estimate 

the bicycle crash exposure. In addition, a weighted shortest path approach is proposed to 

estimate the bicycle distance travelled, with which the configuration of cycle lane network 

and safety perception of bicyclists are considered. Results indicate that bicycle crash 

frequency model that incorporates bicycle distance travelled as exposure is superior to 

those using bicycle time travelled and bicycle trip frequency as exposure. Furthermore, 

factors including land use, bicycle infrastructure, population density, gender, age, median 

household income, and weather condition are found to affect bicycle crash frequency, 

after controlling for the effects of unobserved heterogeneity and spatial correlation. 
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Last but not least, advanced statistical and deep learning models are developed to resolve 

the prevalent problems in safety analysis. For example, a multivariate Poisson-lognormal 

regression model is developed to account for the correlation between the frequencies of 

different bicycle crash types. Furthermore, imbalanced crash data and boundary crash 

problems are resolved using the deep learning approaches including augmented 

variational autoencoder and crash feature-based allocation methods. Results indicate that 

crash frequency models developed using the aforementioned approaches have better 

prediction performances. More importantly, more influencing factors can be identified. 

  

To sum up, findings of this study can enhance the understanding on the roles of 

environmental, physical, social, and political factors in bicycle travel and safety. This 

should shed light on the optimal urban planning, engineering design, and transport policy 

that can promote bicycle travel and improve bicycle safety in the long run. 

 

(464 words)  
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Chapter 1 Introduction  

 

1.1 Background 

 

Sustainable urban development has struggled with the problem of car dependency. Air 

pollution, climate change, traffic congestion, unsafe roads, and poor physical health are 

just a few of the issues it causes (Ruiz-Padillo et al., 2018, Johnson and Silveria, 2014). 

Therefore, it is paramount to promote alternative modes of transportation, such as public 

transit, cycling, and walking. Cycling has been increasingly marketed as a sustainable 

mode of transportation. It improves overall social well-being in addition to reducing 

traffic congestion and emissions associated with traffic (Li et al., 2019, Guo et al., 2018b). 

Throughout the world, numerous cycling-friendly transport policies have been 

implemented in recent years. As an example, residents of Greater London have suggested 

that they were inspired to start cycling by the London Cycle Hire (LCH) programme, 

which was launched in July 2010. (ITV, 2014). Cycle Superhighways, designed to offer 

cyclists safer, faster, and more direct journeys through the city, were implemented from 

outer London into and across central London in company with the launch of the cycle 

hire program. Transport for London (TfL, 2018) reported that between 2015 and 2017, 

the average number of daily bicycle trips in London increased by 3.9%. Specifically, 

approximately 25% of bicycle trips occurred in Central London. In certain areas of 

Central London, bicycles constituted a notably high proportion of commuter trips. In 

2016, 65% of commuters at Torrington Place travelled by bicycle (55% at Tooley Street 

and 48% at Southwark Bridge). 

 

Although the advantages of cycling are well-documented, bicycle safety could be a major 

concern. The same road infrastructure and facilities that are used by cars, buses, and 

trucks must frequently be shared by cyclists. Bicyclists are indeed more susceptible to 

severe injury and fatality on the road since they are not protected by their vehicles (Davis 

and Pless, 2001). According to the World Health Organization (WHO), over one-third of 

road traffic fatalities involve pedestrians and cyclists (WHO, 2018). As an illustration, 

the European Union reported that approximately 8% of road fatalities involved bicyclists, 

whereas in the Netherlands, this figure reached 24%. (Lajunen et al., 2016). According to 
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the National Highway Traffic Safety Administration (NHTSA), between 2007 and 2017, 

there were approximately 8,028 fatalities involving bicyclists, representing an increase of 

approximately 11.70 % (NHTSA, 2019). Despite the fact that road safety in the United 

Kingdom has improved significantly, with fatalities decreasing by 49% from 2000 to 

2012, to a total of 1,637. The total number of cyclists killed or seriously injured increased 

by 21% during the same period, evidencing an inverse trend (Talbot et al., 2014). In 

addition to public health, road accidents can result in financial losses (Esiyok et al., 2005). 

The property damage at the scene of an accident, as well as the high costs of emergency 

treatment and medical care, could push a family into poverty, especially in developing 

countries (Hijar et al., 2003). For instance, bicycle accident victims incur 20-fold higher 

medical expenses than patients treated and released from the emergency department 

(Gaither et al., 2018). 

 

In recent years, researchers and practitioners have focused on the long-term improvement 

of bicycle safety. Understanding the effects of environmental, physical, social, and 

political factors on bicycle travel and crashes is instrumental for developing a safer 

cycling environment. Nonetheless, a number of concerns and issues remain unclear. The 

subsequent section introduces the research gaps in the existing literature that inspired this 

thesis and, in turn, defines the study objectives. 

 

1.2 Motivations  

 

This thesis aims to evaluate bicycle travel and safety from the policy interventions, built 

environment, population characteristics, and modelling issues. It is of great importance 

to assess the effect of policy interventions, built environment, and population 

characteristics on bicycle travel. Since the bicycle travel demand could affect bicycle 

safety. It is crucial to identify the relationship between contributory factors, bicycle travel 

and bicycle safety. Last but not least, the crash frequency model issues should be 

addressed to well assess the effects of risk factors on the occurrence of bicycle crashes. 

 

This thesis is first motivated by the causal relationship between policy intervention, 

bicycle travel, and bicycle safety. Numerous studies have evaluated the effects of 
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contributing factors on bicycle travel (McNeil et al., 2018; Garca-Palomares et al., 2012; 

Li et al., 2018; 2019; Santos and Shaffer, 2004). Population characteristics, the built 

environment, and bicycle infrastructure are among the influencing factors. Several studies 

have found, however, that policy interventions can also influence bicycle travel. Public 

bike-sharing systems (Li et al., 2019; Midgley, 2011; Fishman et al., 2014), bicycle 

highway infrastructures (Li et al., 2018), mass transit systems (Gu et al., 2019; Bakó et 

al., 2020), and congestion charging schemes (Santos and Shaffer, 2004) were among the 

policy interventions considered. However, the effects of traffic emission interventions 

were rarely studied. In fact, such interventions can also promote the transition to greener 

modes of transportation. Moreover, policy interventions can indirectly affect road safety 

by influencing other factors, such as traffic volume, which plays a crucial role in the 

occurrence of crashes. For instance, Elvik and Vaa (2004) stated that when traffic volume 

is increased by 100%, the number of crashes would increase by 80% and 20% for injury 

and fatal crashes, respectively. As a consequence, one of the pertinent questions that 

arises is whether the number of bicycle crashes will rise as a result of the implementation 

of policy interventions, considering more bicyclists are on the roads? 

 

To better quantify the likelihood of bicycle crash involvement and interpret the risk posed 

by various entities, it is necessary to measure crash exposure. In previous studies, 

population or population density was frequently used as a proxy for exposure at the 

macroscopic scale, particularly for active transportation modes such as walking and 

bicycling (Cottrill and Thakuriah, 2010; Siddiqui et al., 2012; Lee et al., 2015a; Wang et 

al., 2017; Sze et al., 2019). Additionally, some studies have utilised total bicycle track 

length as a proxy for bicycle crash exposure (Wei and Lovegrove, 2013; Siddiqui et al., 

2012). They do not, however, account for the variation in bicycle travel between 

individuals. Alternately, several studies have adopted bicycle count (Miranda-Moreno et 

al., 2011; Blaizot et al., 2013; Guo et al., 2018a; Nordback et al., 2013), bicycle time 

travelled (BTT), and bicycle distance travelled (BDT) (Mindell et al., 2012; Blizot et al., 

2013; Poulos et al., 2015) as the exposure measures for bicycle crash frequency models. 

On the basis of comprehensive traffic count data, annual average traffic flow (AADT) 

and vehicle kilometre travelled (VKT) can be used to estimate the exposure (Pei et al., 

2012). However, data regarding bicycle counts are rarely available. On the basis of self-
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reported data, bicycle crash exposure may be measured using retrospective and 

prospective approaches. However, they are subject to self-selection bias. Moreover, an 

extensive household travel survey can be costly and time-consuming. Due to the pressing 

need for research to advance the estimation of exposure in the bicycle safety analysis, this 

subject is of considerable interest to us in this case. 

 

The ultimate purpose of this thesis relates to advanced statistical and deep learning models 

for safety analysis. Three modelling issues, namely correlations between various crash 

types, excessive zero observations, and the boundary crash problem, will be explored.  

 

Considering the prevalence of zonal safety analysis, numerous crash models have been 

devised to investigate the relationship between crash frequency and potential influencing 

factors. Several studies have examined the possible correlation between counts of 

different crash types (Lee et al., 2015b; Ma et al., 2008; Pei et al., 2016; Tunaru, 2002; 

Park and Lord, 2007; Yasmin and Eluru, 2016; Zhan et al., 2015; Zhao et al., 2018). 

However, the majority of them focused on crashes involving only motor vehicles and the 

correlation between crashes of varying degrees of severity. In fact, the effects of potential 

factors on the frequency of bicycle crashes can vary depending on the type of collision 

(Guo et al., 2018a; Ma et al., 2008; Park and Lord, 2007). For instance, bicycle 

infrastructure is more sensitive to bicycle-only crashes than accidents involving bicycle-

vehicle (De Rome et al., 2014; Teschke et al., 2014; Beck et al., 2016). Therefore, bicycle 

crash frequency models need to incorporate multivariate correlations. 

 

A second concern relates to the excessive zero observations in the safety analysis. Crash 

is a rare occurrence, as is commonly understood. This gives rise to the issue of the 

unbalanced crash and non-crash cases during the development of crash frequency models 

(Abdel-Aty et al., 2004). Prior studies indicated that imbalanced crash data could 

contribute to bias in parameter estimation and inadequate model fit (Miaou, 1994, 

Shankar et al., 1997). In addition, it can adversely impact the identification of crash 

explanatory factors (Pei et al., 2016, Yu et al., 2020, Cai et al., 2020, Washington et al., 

2011). In this context, statistical and data-driven approaches were widely utilised (Lee 

and Mannering, 2002, Shankar et al., 2003, Huang et al., 2008, Chen et al., 2018, 
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Malyshkina and Mannering, 2010; Yang et al., 2018; Cai et al., 2020). Nevertheless, there 

are drawbacks associated with these approaches as well. For instance, statistical 

approaches frequently encounter sample size, missing data, and data inconsistency 

problems. For data-driven approaches, improved performance is possible. However, 

challenges associated with variable correlations, training stability, robustness, and 

adaptability should be addressed. More importantly, the abovementioned data-driven 

approaches cannot handle complicated structure data since all data variables are assumed 

to be real-valued. Consequently, the purpose of this thesis is to revisit such a prevalent 

problem in the safety analysis. The finding should shed light on the development of 

bicycle crash frequency models for researchers and practitioners. 

 

In the conventional safety analysis, traffic and crash data are frequently aggregated at 

census tracts, street blocks, and traffic analysis zones, which are commonly delineated by 

roads and other physical entities (Lovegrove and Sayed, 2006; Quddus, 2008; Siddiqui 

and Abdel-Aty, 2012; Abdel-Aty et al., 2011; Dong et al., 2014, 2015). Therefore, a 

considerable portion of crashes would occur at or close to the boundaries of geographical 

units, notably when the roads are used to delineate various units. These crashes are also 

referred to as boundary crashes (Siddiqui and Abdel-Aty, 2012; Wang et al., 2012; Lee 

et al., 2014). In general, a boundary crash is assigned to a geographical unit based on 

spatial proximity, regardless of its correlation with the unit's environmental, traffic, or 

population characteristics. Therefore, the results of parameter estimation of the crash 

frequency model would be biased. In prior research, mathematical techniques such as 

half-and-half (Sun, 2009; Wei, 2010), collision density ratio (Cui et al., 2015), multiple 

membership multilevel modelling approach (Park et al., 2020, 2022), and iterative 

method (Zhai et al., 2018) were adopted. However, these approaches do not consider the 

individual crash characteristics (e.g., injury severity), which might be correlated with 

environmental, traffic, and road user characteristics of the corresponding geographical 

unit. To develop an effective bicycle crash frequency model for the relationship between 

risk factors and bicycle safety, it is necessary to comprehend the effects of boundary 

crashes. 
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1.3 Objectives 

 

In response to the existing concerns elaborated in Section 1.2, the objective of this thesis 

can be given as follows: 

 

(1) Effects of policy interventions on bicycle travel and safety 

 

• To investigate the causal relationship between policy interventions, bicycle travel, 

and bicycle safety utilising designed empirical studies. Specifically, an advanced 

causal inference tool, the propensity score matching method (PSM), will be applied 

to account for the confounding effects of factors such as built environment and 

population socio-demographics. 

 

(2) Effects of built environment and population characteristics on bicycle travel and safety 

 

• To estimate the association between built environment, population characteristics, 

and bicycle crash frequency, with the bicycle crash exposure is accounted.  

 

• To develop a weighted shortest path approach for modelling bicycle routing choices 

and estimating bicycle distance travelled (BDT). 

 

• To investigate the role of bicycle crash exposure in bicycle safety analysis, 

accounting for the effects of built environment and population characteristics. 

 

(3) Advanced statistical and deep learning methods for safety analysis 

   

• To examine the association between bicycle crash frequency and possible 

explanatory factors, with which the correlation between different bicycle crash types 

is considered. 

 

• To propose a deep learning approach to address the issue of excessive zero 

observations in the safety analysis. 



 

7 

 

 

• To propose a deep learning approach for allocating boundary crashes to develop 

effective crash frequency models. 

 

It is expected that the findings of this thesis will benefit transport operators in decision-

making regarding the management of bicyclists. In addition, it can strengthen the 

prevailing understanding of bicycle travel and safety and provide valuable insights into 

relevant countermeasures, such as bicycle infrastructures, traffic management and 

control, and education and enforcement strategies, which can enhance the safety culture 

and awareness of bicyclists. Resultantly, bicycle safety can be bolstered in the long run. 

 

1.4 Thesis organization 

 

The remainder of the thesis is organized as follows, and Figure 1.1 outlines the 

interconnections of the chapters. First, the background and literature reviews are 

summarized. Then, the effect of policy intervention, built environment and population 

characteristics on bicycle travel and safety is investigated. Afterwards, modelling issues, 

including multivariate correlations, excessive zero observation and boundary crash 

problem, will be addressed using advanced technologies. The specific contents are as 

follows: 

 

Chapter 2 reviews the literature on various aspects of bicycle travel and safety studies, 

including factors influencing bicycle travel, factors impacting bicycle safety, and analytic 

methodologies for bicycle travel and safety. 

 

Chapter 3 introduces the cross-sectional and causal inference model applied in the 

following chapters. 

 

Chapter 4 assesses the effects of policy intervention on bicycle travel. The London Ultra-

Low Emission Zone (ULEZ), a form of policy intervention, is taken into consideration. 

In particular, the effects of the ULEZ on bike-sharing usage will be evaluated, 

encapsulating overall usage, usage by trip duration, and usage by trip destination. 
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Chapter 5 explores the effects of policy interventions on bicycle safety. Consideration is 

given to policy interventions, including the London congestion charging scheme (LCC) 

and the London cycling hiring system (LCH). Specifically, the effects of the LCC and 

LCH on the frequency and severity of bicycle crashes could be illustrated. 

 

Chapter 6 focuses on the association between built environment, population 

characteristics and bicycle travel (i.e., bicycle crash exposure). For instance, ridership 

data (frequency and duration) from the London cycling hiring system (LCH) are 

employed to estimate the bicycle crash exposure. Moreover, separate bicycle crash 

frequency models would be developed for different seasons, i.e. from May to October 

(warm season) and November to April (cold season), factoring in the behaviour of 

bicyclists in different weather conditions. 

 

Chapter 7 seeks to propose a weighted shortest path method, with which the configuration 

of the cycle lane network and safety perception of bicyclists are considered. Thus, bicycle 

routing will be modelled, and the bicycle distance travelled (BDT) for each trip can be 

estimated based on origin and destination data. Furthermore, it would be investigated 

what roles the three exposure measures, i.e. bicycle trips, bicycle time travelled (BTT), 

and BDT, play in the analysis of bicycle safety, with account for the effects of built 

environment and population characteristics. 

 

Chapter 8 measures the relationships between bicycle crash frequency and possible risk 

factors, with which the correlation between bicycle-vehicle and bicycle-bicycle crashes 

are considered. The effects of road network characteristics, including road network 

connectivity and accessibility, on bicycle crash frequencies are also considered, in 

addition to population demographics, household characteristics, built environments, and 

traffic characteristics. 

 

Chapter 9 proposes a deep learning approach, augmented variational autoencoder, to 

address the issue of excessive zero observations for crash frequency models by generating 

synthetic crash data. A conventional data synthesis technique, synthetic minority 
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oversampling technique-nominal continuous, is also considered for comparison with 

model prediction and factor interpretations, respectively, to assess the performance of the 

proposed approach.   

 

Chapter 10 proposes a deep learning approach, crash feature-based allocation method, to 

resolve the boundary crash problem for macro-level crash frequency. Again, two 

conventional boundary crash allocation methods, including half-and-half and iterative 

assignment approaches, are considered for comparison from model prediction and factor 

interpretations, respectively. 

 

Chapter 11 concludes the thesis with a summary of the findings, implications, limitations, 

and future research directions. 
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Figure 1.1 Structure of the thesis 
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Chapter 2 Literature review 

 

2.1 Factors affecting bicycle travel 

 

Bicycle travel can be characterized by population characteristics, built environment, 

bicycle infrastructure, and policy strategy. (Trapp et al., 2011; Campbell et al., 2016; 

García-Palomares et al., 2012; Gutiérrez et al., 2020; Li et al., 2018; Gu et al., 2019; Bakó 

et al., 2020). 

 

Population and socio-demographics are essential factors for bicycle travel. However, 

effects can be varied considerably with geographical regions. For example, male bicycle 

usage is higher than female in the United Kingdom and United States (Heinen, et al., 

2010; Trapp et al., 2011; Li et al., 2019). This could be attributed to the difference in 

safety perception between males and females (Handy, 2011; Heesch et al., 2012). 

However, there is no significant difference in bicycle usage between males and females 

in the Netherlands (Prati et al., 2019). In addition, there is no consistent finding on 

association between age and bicycle usage (Heinen et al., 2010). In general, bike usage 

of adolescents, children, and the elderly is less than that of their counterparts because they 

are more dependent (Campbell et al., 2016; Rixey, 2013; Wang et al., 2019a). In the 

United Kingdom and the United States, bicycle usage drops remarkably starting from 

middle age. In contrast, bicycle usage drops only starting from age 70 in the Netherlands 

(Götschi et al., 2015; Pucher et al., 2011). Furthermore, household income and education 

level can also affect bicycle usage. For instance, low-income populations are less willing 

to cycle in the United Kingdom and Australia, despite the equitable bicycle infrastructure 

(Heesch et al., 2012). Differently, low-income populations have been found to cycle more 

or no less than higher-income populations in the United States (Pucher et al., 2011). 

 

As for the effects of the built environment, previous studies indicated that bicycle usage 

is associated with land use. To be specific, bike usage in industrial and commercial areas 

is generally higher than that in other areas (García-Palomares et al., 2012; Gutiérrez et 

al., 2020; Faghih-Imani et al., 2014; Zhang et al., 2017; Kim et al., 2012), even that they 

can be modified by time and weather conditions (Campbell et al., 2016; Gebhart and 
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Noland, 2014). For instance, a study by Kim et al. (2012) found that bicycle usage in 

commercial areas is around 15 times higher than that in residential areas in fine weather 

conditions. On the other hand, bicycle travel in the green area is also higher than that in 

other areas (Li et al., 2018, 2019; Kim et al., 2012). For instance, more than 31% of cycle 

hire journeys are made for leisure purposes in London (TfL, 2015). In addition, city size 

and terrain can also affect bicycle travel (Eren and Uz, 2020). Although many studies 

have indicated that the relationship between development density and bicycle demand 

was linear, a non-linear relationship was revealed in Australia (Boulange et al., 2017; 

Kerr et al., 2016). 

 

Furthermore, road network characteristics include road density (Zhang et al., 2017; 

García-Palomares et al., 2012), connectivity (Cervero et al., 2009), intersection density 

(Ding et al., 2021a), and road geometry design (Sener et al., 2009; Chen et al., 2017; 

Casello and Usyukov., 2014) can all affect the bicycle travel. Also, bike usage is sensitive 

to the design, development and management of bicycle infrastructure. For example, the 

presence of bicycle lanes (Li et al., 2018; Romanillos et al., 2018), cycle superhighways 

(Ding et al., 2020), and configuration (i.e., a separation between bicycles and motor 

vehicles, speed limit, road signs and markings, etc.) (Sener et al., 2009) of bicycle 

network can affect the safety perception and route choice of bicyclists, and therefore the 

bicycle usage. Zhang et al. (2017) employed a multiple linear regression model to 

examine the possible influencing factors to bicycle usage in Zhongshan, China. Results 

indicated that bike usage is positively associated with the length of bike lanes while 

negatively associated with the distance to the city centre. Li et al. (2018) explored the 

effects of the Cycle Superhighway on the use of the London cycle hiring system (LCH). 

The results suggested a significant increase of 27.1% in the average ridership of the LCH 

within the affected area. In addition, density (Li et al., 2019; Ding et al., 2021a) and 

capacity (Faghih-Imani et al., 2014) of docking stations can also affect bicycle usage. 

Moreover, accessibilities of public transport, including buses (Li et al., 2018; Ding et al., 

2021a) and rail transit (Gu et al., 2019; Bakó et al., 2020; Eren and Uz., 2021), are also 

positively associated with the bike usage. For instance, a higher ridership is often 

observed for bike docking stations located in the area with high public transit demand 

since cycles as a feeder mode for public transport (Jäppinen et al., 2013). 
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A few studies also have evaluated the effects of policy intervention on bicycle usage. For 

instance, Li et al. (2019) explored the effects of dockless bike-sharing systems on London 

cycle hire (LCH) usage. The results suggested a significant reduction in the average 

weekly usage of the LCH dicking station caused by the dockless bike-sharing system. 

Also, the operation of the mass transit system can significantly affect bicycle travel (Gu 

et al., 2019; Bakó et al., 2020). In addition, several studies found that congestion charging 

scheme which aims to reduce motor vehicles also has positive effects on bike usage 

(Santos and Shaffer., 2004). In recent years, traffic emission intervention, low emission 

zone, has been implemented worldwide. Previous studies on low emission zone mainly 

focused on air quality, human health, and car ownership (Wolff, 2014; Gehrsitz, 2017; 

Margaryan, 2021; Browne et al., 2005; Ellison et al., 2013). For instance, Gehrsitz (2017) 

and Margaryan (2021) found a favourable accumulative effect of low emission zone on 

human health. In accordance with the vehicle emission model established by Transport 

for London (TfL), concentrations of PM10 and NOX were reduced by 2% and 4%, 

respectively, within the low emission zone (Kelly and Kelly, 2009). Last but not least, 

low emission zones can shift the transportation mode to “greener” vehicles, especially in 

highly developed urban cities like London (Peters et al., 2021; Ellison et al., 2013; Ding 

et al., 2022a). However, effects of low emission zone on bike usage are rarely 

investigated. Indeed, private car users may shift to cycling when travelling within/into 

low emission zone to avoid the high toll. Table 2.1 Summarizes the contributory factors 

to bicycle travel. 

 

Table 2.1 Some examples of contributory factors to bicycle travel 

Categories  Influencing factors Reference 

Population and 

socio-demographics 

Gender, age, household 

income 

Heinen et al., 2010; Trapp et al., 

2011; Li et al., 2019; Campbell et 

al., 2016; Rixey et al., 2013; 

Heesch et al., 2012; Pucher et al., 

2010 
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Built environment  

Land use, weather 

conditions, city size and 

terrain 

García-Palomares et al., 2012; 

Gutiérrez et al., 2020; Faghih-

Imani et al., 2014; Zhang et al., 

2017; Kim et al., 2012 

Road network 

characteristics 

Road density, 

connectivity, intersection 

density, road geometry 

design, bicycle 

infrastructures, public 

transport 

Zhang et al., 2017; García-

Palomares et al., 2012; Cervero et 

al., 2009; Ding et al., 2021a; 

Sener et al., 2009; Chen et al., 

2017; Casello and Usyukov., 

2014; Li et al., 2018 

Policy interventions 

Dockless bike-sharing 

system, mass transit 

system 

Li et al., 2019; Gu et al., 2019; 

Bakó et al., 2020 

 

2.2 Factors affecting bicycle safety 

 

Bicycle is a popular transport mode for short-distance trips, both commuting and leisure 

travel, especially for people who do not have access to a private car, e.g. adolescents, 

children and the elderly (Lajunen et al., 2016; Vanparijs et al., 2015). Many studies have 

been carried out to identify the possible risk factors for bicycle crashes. Factors 

considered are environmental, traffic attributes, and population and household 

characteristics (Siddiqui et al., 2012; Wei and Lovegrove, 2013; Chen, 2015; Pulugurtha 

and Thakur, 2015; Guo et al., 2018a, b). 

 

For the environmental factors, land use, built environment and road infrastructures can 

affect bicycle safety. For example, a study by Chen (2015) indicated that mixed land use 

could increase the bicycle crash risk. In particular, the likelihood of bicycle crashes in 

industrial and commercial areas is higher than that of other land uses. It could be 

attributed to the conflicts between motor vehicles, bicycles and pedestrians 

(Narayanamoorthy et al., 2013). In addition, environmental factors, including landscape 

and weather conditions, can also affect the level of service and safety of bicyclists 

(Vanparijs et al., 2015; Xing et al., 2019; Zhai et al., 2019a; Fournier et al., 2017; El-Assi 
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et al., 2017). For the effect of traffic management and control attributes, increase in 

bicycle crash frequency is found to be associated with the increase in the density of 

intersections (Siddiqui et al., 2012; Wei and Lovegrove, 2013; Pulugurtha and Thakur, 

2015), traffic signal (de Geus et al., 2012; Chen, 2015), presence of cycle lanes (Reynolds 

et al., 2009; Hamann and Peek-Asa, 2013; Wei and Lovegrove, 2013; Chen et al., 2016), 

and presence of on-street parking (Wei and Lovegrove, 2013; Vandenbulcke et al., 2014). 

However, the findings abovementioned are not consistent and vary across different 

studies. For instance, Chen et al. (2012) suggested that the presence of cycle lanes did not 

lead to additional bicycle crashes but a possible increase in bicycle activities. 

 

Personal demographic, socioeconomics, household characteristics and population 

profiles all affect the bicycle crash frequency. In particular, bicycle crash involvement 

rates of adolescents, children and the elderly are higher than that of other bicyclists. 

Additionally, their involvement rates in single bicycle crashes are particularly high 

(Rodgers, 1995; Tin Tin et al., 2010; Siddiqui et al., 2012; Ghekiere et al., 2014). Lack 

of sufficient skills and non-compliance with relevant guidelines are correlated to the high 

accident rates of adolescents and children (Mandic et al., 2018; Chong et al., 2017). For 

older bicyclists, the elevated crash rate could be attributed to the degradation of cognitive 

performance and mobility (Noland and Quddus, 2004; Vanparijs et al., 2015). For the 

effect of gender, studies indicated that the fatality rate of the male cyclist is higher than 

that of the female counterpart (Rodgers, 1995; Beck et al., 2007; Mindell et al., 2012; Wei 

and Lovegrove, 2013; Vanparijs et al., 2015; Guo et al., 2018b). This might be because 

male bicyclists are generally more aggressive and have a tendency to violate traffic 

controls. For the socioeconomics and household characteristics, previous studies 

indicated that household income could affect bicycle ownership, travel behaviour and, 

therefore, bicycle crash involvement (Siddiqui et al., 2012; Guo et al., 2018a). Table 2.2 

Summarizes the contributory factors to bicycle safety. 
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Table 2.2 Some examples of contributory factors to bicycle safety 

Categories  Influencing factors Reference 

Population and 

socio-

demographics 

Population, gender, 

age, household 

income 

Rodgers, 1995; Tin Tin et al., 2010; 

Ghekiere et al., 2014; Noland and 

Quddus, 2004; Vanparijs et al., 2015; 

Siddiqui et al., 2012; Guo et al., 2018a 

Built environment  

Land use, weather 

conditions, 

landscape, traffic 

flows 

Chen, 2015; Vanparijs et al., 2015; Xing 

et al., 2019; Zhai et al., 2019a; Fournier 

et al., 2017; El-Assi et al., 2017 

Road infrastructure 

Intersection density, 

traffic signal, cycle 

lanes, parking 

Siddiqui et al., 2012; Wei and 

Lovegrove, 2013; Pulugurtha and 

Thakur, 2015; de Geus et al., 2012  

 

For the association measure between bicycle crash frequency and possible influencing 

factors, it is necessary to consider the exposure to facilitate the accurate assessment and 

effective comparison. For example, cycling activities can vary across different built 

environments and road infrastructures. A study by Chipman et al. (1993) has warned that 

different exposure measures could lead to different estimation results. In the literature, 

population or population density were often used to proxy the exposure at the 

macroscopic level, especially for active transportation modes like pedestrian and bicycle 

(Cottrill and Thakuriah, 2010; Siddiqui et al., 2012; Wang et al., 2017; Sze et al., 2019). 

Also, some studies have applied the total bicycle track length to proxy the bicycle crash 

exposure (Wei and Lovegrove, 2013; Siddiqui et al., 2012). However, these studies did 

not account for the differences in traffic flow between different roads and cycling 

activities between different population groups. To get rid of this, some studies adopted 

bicycle trips (Miranda-Moreno et al., 2011; Guo et al., 2018b), vehicular traffic volume 

(Beck et al., 2007; Hamann and Peek-Asa, 2013; Wei and Lovegrove, 2013), bicycle time 

travelled (BTT) and bicycle distance travelled (BDT) (Mindell et al., 2012; Poulos et al., 

2015) as the exposure measure in bicycle crash analysis. Unlike the vehicle crash analysis, 

automated bicycle counts are often unavailable to estimate bicycle exposure. To measure 

the bicycle exposure, a possible way is to investigate the travel behaviour (in terms of 
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bicycle trip, BTT and BDT) of a specific bicyclist group using the questionnaire survey 

(Poulos et al., 2015). However, accuracies of the survey data, especially for time and 

distance travelled, are subject to recall bias. Several studies have estimated bicycle 

exposure using actual bike counts (Guo et al., 2018; El-Esawey et al., 2015). For instance, 

Guo et al (2018) adopted more than 810,000 hourly volumes (covers more than 70% of 

Vancouver’s bike network) to estimate bike safety exposure. Table 2.3 shows the data 

collection methods of bicycle exposures in the previous studies. 

 

Table 2.3 Some examples of bicycle exposure measures 

Reference Design  Methodology  Exposure  

Rodgers et al., 1995 Retrospective Telephone questionnaire  BTT 

Aultman and 

Kaltenecker, 1999 
Retrospective Questionnaire and map  BDT  

Thornley et al., 2008 Retrospective Questionnaire  BTT 

Vandenbulcke et al., 

2009 
Retrospective National travel survey BTT and BDT 

Bacchieri et al., 2010 Retrospective Face to face interview BTT  

Lusk et al., 2011 Retrospective Automated traffic counts  BDT 

Tin Tin et al., 2010 Retrospective National travel survey BTT 

Blazizot et al., 2013 Retrospective 
Regional household 

travel survey 

Bicycle trips; 

BTT; BDT 

Hoffman et al., 2010 Prospective Online questionnaire BDT 

Johnson et al., 2010 Prospective Video camera  BTT 

De Geus et al., 2012 Prospective  Online questionnaire 
Bicycle trips; 

BTT; BDT 

Sayed et al., 2013 Prospective  Video camera Bicycle trips 

 

In contrast, bicycle trips, origin and destination data are more reliable. However, exposure 

measures also are limited to bicycle trips and bicycle time travelled. Therefore, it may be 

possible to estimate the bicycle distance travelled based on the shortest path between the 

origin and destination of each trip (Zacharias, 2005; Pucher and Buehler, 2006; Larsen 

and El-Geneidy, 2011). For the route choice decision of motor vehicle drivers, common 



 

18 

 

influencing factors are monetary cost, travel time and reliability. However, for the route 

choice decision of bicyclists, some other factors including road environment and level of 

service should also be considered (Ehrgott et al., 2012; Yang and Mesbah, 2013; Chen et 

al., 2017; Sener et al., 2009). For example, previous studies indicated that bicyclists tend 

to choose routes with fewer traffic signals and stop signs to avoid frequent stop-and-go 

(Heinen et al., 2010; Menghini et al., 2010; Stinson and Bhat, 2003). In addition, 

bicyclists tend to avoid interactions with pedestrians and motor vehicles by choosing 

routes with fewer crosswalks and roadside parking (Stinson and Bhat, 2003; Yang and 

Mesbah, 2013). Furthermore, road geometric designs, including gradient, crossfall and 

road surface condition, are also associated with the bicycle route choice (Sener et al., 

2009; Chen et al., 2017; Casello and Usyukov, 2014). 

 

Nevertheless, the perceived safety risk can play an important role, as much as distance 

and time, in the bicycle route choice (Hopkinson and Wardman, 1996; Broach et al., 2012; 

Ehrgott et al., 2012). Possible factors that may affect the perceived safety risk of bicyclists 

are vehicular traffic flow and speed (Menghini et al., 2010; González et al., 2016). For 

instance, bicyclists tend to ride on roads with less vehicular traffic and lower speed limits 

(Sener et al., 2009). In addition, the presence of bicycle infrastructures and facilities, 

including cycle lanes, cycle tracks, intersection crossing markings and corner refuge 

islands, is associated with the increase in bicycle use (Barnes et al., 2006; Sener et al., 

2009; Deliali et al., 2020). Figure 2.1 depicts the typical bicycle facilities, including (a) 

segregated cycle lane, (b) designated cycle lane, (c) shared bus and cycle lane, and (d) 

shared cycle lane and footpath. Several studies were conducted to examine the 

relationship between bicycle facilities and bicycle route choice (Broach et al., 2012). 

Results indicated that bicyclists generally prefer segregated cycle lanes to designated 

cycle lanes. The shared cycle lanes are the least preferred choice (Jensen, 2007; Winters 

and Teschke, 2010). Moreover, directness and connectivity of the bicycle infrastructures 

can also affect bicycle use. It is necessary to provide a direct and uninterrupted route for 

bicyclists to reach their desired destinations (Stinson and Bath, 2003). Last but not least, 

the presence of protected intersections can improve the safety perception of bicyclists 

since the vehicular traffic is physically separated from the bicycles (Deliali et al., 2020). 
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(a) Segregated cycle lane 

(Source: 

http://www.walkbikecupertino.org/new_wbc

/index.php/2019/02/20/separated-bicycle-

lanes-coming-to-mcclellan-road/)   

 

(b) Designated cycle lane 

(Source: https://ourhamilton.co.nz/on-the-

move/council-take-steps-to-improve-cycle-

lane-safety/ 

 

(c) Shared bus and cycle lane 

(Source: https://future-

economics.com/2019/03/24/bike-bus-lanes-

can-i-interest-you-in-a-time-share/) 

 

(d) Shared cycle lane and footpath 

(Source: 

https://www.brooklynpaper.com/breaking-

away-city-panel-green-lights-protected-

pulaski-bike-lane/) 

 

Figure 2.1 Illustrations of typical bicycle facilities 

 

http://www.walkbikecupertino.org/new_wbc/index.php/2019/02/20/separated-bicycle-lanes-coming-to-mcclellan-road/
http://www.walkbikecupertino.org/new_wbc/index.php/2019/02/20/separated-bicycle-lanes-coming-to-mcclellan-road/
http://www.walkbikecupertino.org/new_wbc/index.php/2019/02/20/separated-bicycle-lanes-coming-to-mcclellan-road/
https://ourhamilton.co.nz/on-the-move/council-take-steps-to-improve-cycle-lane-safety/
https://ourhamilton.co.nz/on-the-move/council-take-steps-to-improve-cycle-lane-safety/
https://ourhamilton.co.nz/on-the-move/council-take-steps-to-improve-cycle-lane-safety/
https://future-economics.com/2019/03/24/bike-bus-lanes-can-i-interest-you-in-a-time-share/
https://future-economics.com/2019/03/24/bike-bus-lanes-can-i-interest-you-in-a-time-share/
https://future-economics.com/2019/03/24/bike-bus-lanes-can-i-interest-you-in-a-time-share/
https://www.brooklynpaper.com/breaking-away-city-panel-green-lights-protected-pulaski-bike-lane/
https://www.brooklynpaper.com/breaking-away-city-panel-green-lights-protected-pulaski-bike-lane/
https://www.brooklynpaper.com/breaking-away-city-panel-green-lights-protected-pulaski-bike-lane/
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In addition to the factors mentioned above, effects of policy interventions on bicycle 

safety also should be investigated. Policy interventions can affect the bicycle exposure 

and, in turn, contribute to the occurrence of bicycle crashes. In the literature, a 

considerable body of studies have been conducted to evaluate the effects of policy 

interventions on road safety (Hyatt et al., 2009; Quddus, 2008; Noland et al., 2008; Li et 

al., 2017; Jones et al., 2008; Lord et al., 2005). Results suggested that policy interventions 

can indirectly affect road safety by affecting traffic flows, speed and other factors. In 

particular, traffic volume is the most crucial factor affecting road safety in both the short- 

and long run. For instance, the number of crashes could be significantly increased with 

the traffic volume if other environmental conditions remain unchanged (Golob and 

Recker, 2001; Martin, 2002; Dixit et al., 2011; Lord et al., 2005). As mentioned in 

Chapter 2.1, policy interventions, including congestion charging and public bicycle rental 

schemes, can stimulate the bicycle usage. For instance, 49% of LCH users are encouraged 

by the scheme to start cycling in London (ITV, 2014). However, their effects on bicycle 

safety are rarely examined.    

 

With regard to the congestion charging scheme, not only the favourable effects on 

vehicular speed, traffic flow and vehicle emission, but also the safety influences could be 

revealed after the introduction of congestion charging (TfL, 2005). Congestion charging 

can effectively relieve the traffic congestion by reducing the overall traffic volume, 

shortening the travel time and increasing vehicular speed. This could in turn affect road 

safety levels (Xie and Olszewski, 2011; Lord et al., 2005). Studies indicated that motor 

vehicle crashes were reduced after the congestion charging scheme was introduced in 

London (Green et al., 2016; Quddus, 2008; Noland et al., 2008). However, the number of 

bicycle casualties increased (13.3%) simultaneously (Li et al., 2012). Yet, it was not well 

studied whether such an increase was attributed to the increase in bicycle trips or other 

factors like traffic volume, vehicle mix and vehicular speed. 

 

A few studies have attempted the safety effects of the cycle hire scheme, and their 

findings are controversial. For example, the presence of cycle hire scheme is found to be 

associated with reduced risk of bicycle injuries. The likelihoods of fatal and severe 

injuries of bike-share users are lower than that of other bicyclists (Fishman and Schepers, 
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2016; Fishman and Schepers, 2018). In contrast, road users tend to consider the bicycle 

unsafe in general, considering the bicycles' vulnerability, instability and invisibility. 

Hence, safety concern is an issue that hinders the adoption of the cycle hire scheme 

(Nikitas et al., 2014; Sun, 2018; Hess and Schubert, 2019). Nevertheless, rigorous 

analysis of bicycle crash risk associated with bike-sharing is crucial to decision-makers 

regarding the introduction and expansion of the cycle hire scheme. 

 

2.3 Analytic methods for bicycle travel and safety 

 

2.3.1 Bike demand prediction model 

 

The spatial granularity for bike demand prediction can generally be stratified into three 

classes, macroscopic level (Ermagun et al., 2018; Giot and Cherrier, 2014), mesoscopic 

level (Zhou, 2015; Bao et al., 2017; Liu et al., 2016), and microscopic level (Faghih-

Imani et al., 2014; Rixey., 2013; Li et al., 2015; Yang et al., 2016). The macroscopic and 

mesoscopic studies estimate average bicycle demand for the whole city and clusters of 

docking stations or bicyclist groups. In the microscopic studies, time-series trends of 

bicycle demand at individual docking stations are modelled. Although the bicycle demand 

prediction at the finer spatial granularity level can facilitate the fleet management of a 

dock-based bike-sharing system, microscopic prediction at the station level is more 

challenging, as compared to macroscopic and mesoscopic models, considering that the 

bicycle demand is highly dynamic and context-dependent. For the time horizon, bicycle 

demand prediction models at different time scales, including hourly (Gao and Lee, 2019; 

Faghih-Imani et al., 2014), daily (Wang et al., 2016), weekly (Schneider et al., 2009; 

Sohrabi et al., 2020), and monthly (Rixey, 2013), are established. Accurate real-time 

bicycle demand prediction at a smaller time scale is crucial for dynamic bicycle re-

positioning and balancing (Lin et al., 2019; Feng et al., 2018). 

 

In recent years, machine learning approaches, including decision tree (VE and Cho, 

2020), support vector machine (Sathishkumar et al., 2020), Bayesian network (Froehlich 

et al., 2009), and neural network (Xu et al., 2018a) models, were applied to predict the 

bicycle demand. In addition, to account for the effects of temporal, spatial and semantic 
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correlations in bicycle demand, deep learning approaches, including convolutional neural 

networks (CNNs) (Ruffieux et al., 2017), recurrent neural networks (RNNs) (Chen et al., 

2019; Chen et al., 2020a; Pan et al., 2019; Ljubenkov et al., 2020), graph convolutional 

networks (GCNs) (Kim et al., 2019; Ke et al., 2021), and their variants (Lin et al., 2018; 

Yang et al., 2020; Wang and Kim, 2018; Yang et al., 2020), were applied. Although 

superior predictive performance can be achieved, especially for real-time demand 

forecast, causal inferences of bicycle demand and its influencing factors are limited 

(Karlaftis and Vlahogianni, 2011; Yang et al., 2020). 

 

In contrast, parametric and non-parametric statistical models were often adopted to 

predict the macroscopic and mesoscopic level bicycle demand at a greater time scale, 

with account for the effects of influencing factors (Corcoran et al., 2014; Rudloff and 

Lackner, 2014; Rixey, 2013; Kaltenbrunner et al., 2010). For example, count data models, 

including Poisson and negative binomial regression, were applied to model the seasonal 

and weather effects on the demand for dock-based bike sharing (Corcoran et al., 2014; 

Rudloff and Lackner, 2014). To account for the non-stationary temporal variations in the 

bicycle demand modelling and forecast, time-series models including autoregressive 

moving average (ARMA), autoregressive integrated moving average (ARIMA), and their 

variants were adopted (Kaltenbrunner et al., 2010). However, policy interventions are 

complicated and impact bicycle travel indirectly. The causal relationship is sometimes 

too indirect to estimate. In this case, the conventional statistical approaches mentioned 

above may not be applicable. 

 

2.3.2 Crash frequency model 

 

(1) Conventional models  

 

Assessing the effects of possible risk factors on crash frequency, a great number of crash 

frequency models have been adopted in the safety literature. For instance, Poisson and 

Negative Binomial regression approaches were commonly used (Yao and Loo, 2016; 

Wong et al., 2007; Turner et al., 2006). To allow for parsimonious specification, a panel 

mixed negative binomial model (PMNB) was proposed (Bhowmik et al., 2019). PMNB 
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has good model fit as conventional multivariate negative binomial model. It should be 

noted that the crash frequency models mentioned above are global models, variable from 

these models are forced to have the same effect on all units and zones (Amoh-Gyimah et 

al., 2016). Indeed, some of the many factors affecting the crash occurrence are not 

observable, or the necessary data may not be able to collect. If these unobservable factors 

are correlated to the observed factors, bias estimation and inference could be drawn. Thus, 

random parameter models were proposed to account for unobserved heterogeneities. 

Compared with the fix-parameter model, the random-parameter models allow the 

coefficients of exogenous variables to vary across the individual observations. Although 

the random-parameter models can achieve better goodness-of-fit, the estimation 

computation is often more complex due to the specific distribution of concerned 

variables. 

 

(2) Multivariate models 

 

Crash data can be divided into different categories by mode type and crash severity. For 

instance, motorized and non-motorized modes are two of the most common categories 

for crash classification by involved modes. Crash severity can be categorized into three 

severity levels, namely fatal crash, severe injury crash, and slight injury crash, in 

accordance with the degree of injury of the most seriously injured person in a crash. 

Previous studies have proved that the effects of possible factors on crash frequencies can 

also vary with collision types (Guo et al., 2018a; Ma et al., 2008; Park and Lord, 2007). 

Therefore, it is worth modelling the crash frequency by different collision types (Guo et 

al., 2018a; Pei et al., 2016). Separate modelling of univariate crash frequency lacks a 

comprehensive understanding of crash occurrence since the correlation between different 

collision types is not considered. Such correlation could result in biased parameter 

estimation (Ye et al., 2009; Ma et al., 2008). To this end, multivariate models, such as the 

multivariate Poison lognormal model, were developed to simultaneously model the crash 

frequencies of different types, with which a generalized correlation structure is allowed, 

and over-dispersion is accounted for (Park and Lord, 2007; El-Basyouny and Sayed, 

2009). However, the correlation between bicycle crash frequencies of different types was 

rarely considered in the literature. Previous studies mainly focused on the crashes 
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involving motor vehicles only, and the correlation between crashes of different severity 

levels (Ma et al., 2008; Pei et al., 2016; Tunaru, 2002; Park and Lord, 2007; Yasmin and 

Eluru, 2016; Zhan et al., 2015; Zhao et al., 2018). 

 

(3) Models for excessive zero observations  

 

Crash frequency model is often subject to excessive zero observation because of the rare 

nature of crashes. To resolve the excess zero problem, one possible way is to accumulate 

more crash cases by aggregating the data with respect to time (e.g., months and years) 

and space (e.g., census tracts, traffic analysis zones and counties) (Lord and Mannering, 

2010; Mannering and Bhat, 2014; Zeng et al., 2017). On the other hand, alternative 

statistical approaches, including zero-inflated Poisson, zero-inflated negative binomial, 

zero-state Markov switching count-data models, and panel data mixed logit models, could 

be applied to model the crash occurrence with excessive zero observations (Lee and 

Mannering, 2002; Shankar et al., 2003; Huang et al., 2008; Chen et al., 2018; Malyshkina 

and Mannering, 2010). In addition, Pei et al. (2016) attempted the problem of imbalanced 

crash data by reproducing sets of balanced crash and non-crash cases using a 

mathematical simulation approach – bootstrap resampling. Results indicated that standard 

errors of the crash frequency model estimated using the bootstrapping approach could be 

reduced. Hence, the precision of parameter estimation could be enhanced. However, 

conventional statistical approaches are often subject to sample size, missing data, and data 

inconsistency problems (Mannering, 2018; Mannering et al., 2020). 

 

In recent years, there has been an increasing interest in applying data-driven approaches 

in road safety analysis, particularly when dealing with complicated data structures in 

crash frequency and severity models (Mannering et al., 2020). For instance, several 

studies have applied under-sampling and under-reporting techniques to resolve the 

problem of unbalanced crash data, with which the excessive zero crash cases are removed 

(Wang et al., 2019a; Wang et al., 2019b; Yamamoto and Shankar, 2004; Yamamoto et 

al., 2008). However, under-sampling technique can also result in information loss because 

of the elimination of non-crash cases. It would then bias the parameter estimation (Yang 

et al., 2018; Cai et al., 2020; Johnson and Khoshgoftaar, 2019). Alternately, it is possible 
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to resolve the problem of unbalanced crash data using over-sampling (increasing the 

number of crash cases) techniques, e.g., synthetic minority over-sampling technique and 

generative adversarial network method (Goodfellow et al., 2014; Yuan et al., 2019; Basso 

et al., 2018; Li et al., 2020). Compared with other data generators like governing 

equations for physics-based models, synthetic data generators are more appropriate for 

the crash frequency models, where the relationship between outcome, environment, 

traffic, and behavioural variables is complicated. It may not be straightforward for causal 

analysis with empirical data (Yu et al., 2020; Goodfellow et al., 2014; Cai et al., 2020). 

 

Although advanced data mining, artificial intelligent, machine learning and neural 

network methods can model the training data very well, some may be subject to 

overfitting problems when there are too many parameters (Chawla et al., 2004; Yu et al., 

2020; Schlögl et al., 2019). This can bias the parameter estimation of variables in crash 

occurrence and severity analyses (Mannering et al., 2020). Also, problems including 

unobserved heterogeneity, temporal instability and spatial dependency should be 

considered (Mannering, 2018). For instance, the data generation process of the synthetic 

minority over-sampling technique method cannot capture the correlations between 

explanatory variables (He and Garcia, 2009; Cai et al., 2020). Loss in model accuracy 

may occur in the training process of the generative adversarial network method. To this 

end, an alternative approach – variational autoencoder framework was proposed. This 

method can improve the data augmentation and compression performances and achieve 

stable learning accuracy in the learning process (Yang et al., 2017; Razavi et al., 2019; 

Walker et al., 2017). In addition, such methods can regularize the encoding distribution 

in the training process and ensure that the latent space is continuous for sample 

reconstruction (Boquet et al., 2020), and enhance the data generation performance (Islam 

et al., 2021). Nevertheless, it should be noted that a critical assumption of the 

abovementioned synthetic methods is that all variables in the data should be real-valued. 

They are not capable of handling categorical and nominal data. 

 

(4) Models for the boundary crash allocation  
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One possible way to compensate for the boundary effect is to aggregate the boundary 

crashes into the neighbourhoods (Cui et al., 2015; Zhai et al., 2018; Siddiqui and Abdel-

Aty, 2012). Before that, one critical issue is the identification of possible boundary 

crashes. The manual inspection is time-consuming and requires massive human resources 

(Cui et al., 2015). A better solution is to recognize the boundary crashes by constructing 

a buffer zone along the regional boundary. Crashes in the buffer zones are known as 

“boundary crashes” and “interior crashes” otherwise. In previous studies, width of the 

buffer zone ranged from 200 feet to 350 feet, depending on the configuration and scale 

of geographical units (Ivan et al., 2006; Siddiqui and Abdel-Aty, 2012; Zhai et al., 2018). 

To this end, mathematical approaches like the curve slope method (Siddiqui and Abdel-

Aty, 2012) and entropy-based histogram threshold method (Cui et al., 2015) were adopted 

to estimate the optimal buffer zone width. 

 

Then, it is crucial to assign the boundary crashes correctly to respective geographical 

units (Siddiqui and Abdel-Aty, 2012; Wang et al., 2012; Lee et al., 2014). For example, 

the half-and-half approach was adopted for boundary crash allocation (Sun, 2009; Wei, 

2010). Boundary crashes were evenly allocated to all neighbouring geographical units, 

regardless of the ratios of crash and exposure of the units. Indeed, the spatial distribution 

of crashes around boundaries should be differential, and the neighbouring zone also 

hardly has an equal effect on the boundary crashes. To improve the prediction 

performance, ratios of the metrics, including road length, vehicle kilometre, and crash 

density in neighbouring geographical units, were adopted for boundary crash allocation 

(Wei, 2010; Cui et al., 2015). However, such methods fail to account for the crash 

mechanism and potential risk factors fully. The occurrence of crashes is quite complicated 

that associated with many influencing factors, including the population and household 

characteristics, land use, built environment, and traffic attributes (Siddiqui and Abdel-

Aty, 2012; Wei and Lovegrove, 2013; Abdel-aty et al., 2011; Dong et al., 2014, 2015; 

Mannering, 2018; Mannering et al., 2016). It might be reasonable to allocate the boundary 

crashes based on the crash predisposing agents. Therefore, an iterative approach was 

proposed to allocate the boundary crashes based on crash predisposing agents, i.e., 

expected crashes (Zhai et al., 2018). Furthermore, a weighting factor, which is correlated 

with macro-level environmental, traffic, and road user characteristics of each 
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geographical unit, can be adopted for boundary crash allocation (Wang and Huang, 2016; 

Lee et al., 2017; Wang et al., 2017; Cai et al., 2018). Last but not least, the multiple 

membership multilevel modelling approach can be adopted by simultaneously correlating 

the weights with the characteristics of multiple geographical units (Park et al., 2020, 

2022). Despite that the methods mentioned above can address the boundary crashes very 

well, without taking into account the features of individual crashes, all of them failed to 

achieve the individual level crash assignment. 

 

2.4 Concluding remarks  

 

This chapter demonstrates the results of the literature survey on bicycle travel and safety 

studies. There are several research gaps identified in the literature, which are listed as 

follows: 

 

(1) Previous studies have revealed the effects of population characteristics, built 

environment, bicycle infrastructure, and policy intervention on bicycle travel. As for the 

policy interventions, results indicated that interventions like bicycle hiring schemes, 

congestion charging zone, mass transit systems, and cycle superhighways could 

significantly affect bicycle usage. However, the causal link between policy interventions 

and bicycle safety was rarely investigated. In addition, various engineering measures and 

policy strategies have been initiated to mitigate the hazardous effects of vehicle 

emissions. These interventions also are expected to influence bicycle travel. To the best 

of our knowledge, its effects on bicycle usage have not yet been revealed. 

 

(2) To better quantify the potential of bicycle crash involvement and interpret the risk of 

different entities, it is necessary to measure the crash exposure. In previous studies, 

bicycle exposures adopted were bicycle flow counts, bicycle trips, bicycle time travelled 

(BTT), and bicycle distance travelled (BDT), which were measured using retrospective 

and prospective surveys. Regardless of the sampling framework and survey design, data 

may be subject to recall and selection biases. In addition, an extensive household travel 

survey can be expensive and time-consuming. Some recent studies proposed to estimate 

bicycle exposure using actual bike counts. Therefore, a possible approach for estimating 
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bicycle exposure is proposed in this thesis using a detailed transaction record of a public 

bicycle rental system. Although this system covered most bicycle trips, exposure 

measures are limited to bicycle trips and BTT. Therefore, bicycle routing choice should 

be considered, and the BDT can be estimated based on the origin and destination data of 

each trip. 

 

(3) Prior studies have identified the environment, traffic and road user factors that affect 

the risk of bicycle-related crashes. However, it is rare that difference in their effects on 

the risk amongst different bicycle crash types is investigated. Indeed, bicycle crashes 

could present different collision types due to the difference in the built environments and 

traffic features. Furthermore, there is a possible correlation between counts of different 

crash types. Therefore, the shared unobserved factors across collision types should be 

considered when modelling. 

 

(4) Although advanced statistical methods can be applied to model the zero-inflated crash 

data, they are not plausible to resolve the imbalanced data problem. Alternatively, 

machine learning approaches can be applied to balance the crash dataset, including 

synthetic minority over-sampling technique, generative adversarial network, bootstrap 

resampling, and random under-sampling methods. Nevertheless, these data synthesis 

approaches also have deficiencies, including correlations between variables (synthetic 

minority over-sampling technique method), training stability (generative adversarial 

network), robustness (random under-sampling) and flexibility (bootstrap resampling). In 

light of these weaknesses in previous research in this area, this thesis seeks to contribute 

to the research literature by developing an advanced synthetic approach to the problem of 

unbalanced crash data in the safety analysis. 

 

(5) In preceding studies, mathematical approaches like half-and-half, collision density 

ratio, iterative method, and multiple membership multilevel modelling approach were 

adopted to compensate for the boundary crash problem. However, these approaches did 

not consider the individual crash characteristics, which should correlate with the 

corresponding geographical unit's environmental, traffic, and road user characteristics. 

Association between crash frequency and influencing factors could be modified by 
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covariates like injury severity and collision mode. Hence, it is necessary to account for 

the crash characteristics when allocating the boundary crashes. 
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Chapter 3 Methodology 

 

This chapter introduces formulations of the cross-sectional models and causal inference 

model applied in this thesis. Also, various assessment criteria for model performance are 

presented.  

 

3.1 Cross-sectional model  

 

3.1.1 Poisson regression model 

 

Poisson regression method is often applied to model the crash frequency because of the 

random and non-negative nature of crash data. The mean and variance of Poisson 

distribution are assumed to be equal (Yao and Loo, 2016; Wong et al., 2007; Turner et 

al., 2006). Probability of having 𝑦 crash in the 𝑖𝑡ℎ unit and period 𝑡 can be written as,  

 

           𝑃(y𝑖𝑡|μ𝑖𝑡) =
exp(−μ𝑖𝑡)(μ𝑖𝑡)y𝑖𝑡

y𝑖𝑡!
      𝑖, 𝑡 = 0,1,2 ⋯ 𝑛            (3.1) 

 

Where 𝐸(y𝑖𝑡) = μ𝑖𝑡 be the expected number of crashes. 

 

Also, a generalized linear model with a Poisson distribution is given as, 

 

                        ln(μ𝑖𝑡) = 𝛽0 + 𝑥𝑖𝑡
𝑇 ∙ 𝛽                       (3.2) 

 

Where x𝑖𝑡 is the column vector of exogenous variables corresponding to the 𝑖𝑡ℎ unit 

at period 𝑡, 𝛽 is a vector of parameters, and 𝛽0 is the constant term. 

 

3.1.2 Negative binomial regression model 

 

Various factors, including data clustering and misspecification of the model, can lead to 

over-dispersion (i.e., the variance is greater than the mean). Over-dispersion is primarily 
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due to the nature of crash data, which are subject to Bernoulli trails. When over-dispersion 

exists, the negative binomial regression approach (NB) should be used (Mannering et al., 

2016; Wong et al., 2007; Lord and Mannering, 2010). 

 

The negative binomial regression model is also known as the Poisson-gamma model, 

which can be derived by incorporating an error term that follows the gamma distribution 

into the probability density function. The functional form of the negative binomial 

regression model is given by, 

 

                        ln(μit) = 𝛽0 + 𝑋𝑖𝑡
𝑇 ∙ 𝛽 + 𝜀𝑖                    (3.3) 

 

Where 𝜀𝑖  is the Gamma distributed error with mean 1 and variance α . Thus, the 

probability density function of the negative binomial regression model can be given by 

the following equation, 

 

                 𝑃(y𝑖𝑡) =
Γ(y𝑖𝑡+𝛼−1)

y𝑖𝑡Γ(𝛼−1)
(

𝛼−1

𝛼−1+μ𝑖𝑡
)

𝛼−1

(
μ𝑖𝑡

𝛼−1+μ𝑖𝑡
)

y𝑖𝑡

              (3.4) 

 

Where the Γ(∙) is subjected to the Gamma distribution and the 𝛼 is the over-dispersion 

parameter.  

 

3.1.3 Correlated random parameter model 

 

Since not all possible influencing factors are available, the unobserved heterogeneity 

could bias the parameter estimations and model fit. Previous studies have proved that the 

conventional negative binomial regression and Poisson regression models failed to deal 

with the unobserved heterogeneity (Mannering and Bhat, 2014). To account for the effect 

of unobserved heterogeneity, random parameter models were developed for crash 

prediction models (Mannering et al., 2016). Unlike the fixed-parameter model, random 

parameter models allow factors to varying across the study entities (Train, 2009). Thus, 

parameter 𝛽 of Equation (3.3) is assumed to be randomly distributed with, 
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                                    𝛽𝑖 =  𝛽 + 𝜑𝑖                                (3.5)    

                                                

Where 𝜑𝑖 is normally distributed with mean of 1 and variance of 𝜎2. 

 

Therefore, the probability of crash occurrence in Equation (3.4) is calculated as: 

 

                          𝑃(y𝑖𝑡) = ∫ 𝑃(y𝑖𝑡|𝛽) 𝑓(𝛽)𝑑𝛽                 (3.6) 

 

It should be noted that the above formulations assume that the random parameters are 

independent of each other. However, there may be possible correlations between random 

parameters. Therefore, correlated parameter approach was proposed (Caliendo et al., 

2019; Venkataraman et al., 2011; Venkataraman et al., 2013; Saeed et al., 2019; Meng et 

al., 2021). To be specific, the random parameter is assumed to follow a multivariate 

normal distribution given by, 

 

                             𝛽𝑖 =  𝑏 + 𝑉𝑤𝑖                        (3.7)  

                                       

                               𝑏 = [

𝛽1

𝛽2

⋮
𝛽𝐼

]                           (3.8)     

  

                        𝑉 = [

(𝜎1)2

⋮ ⋱
𝜎𝑗,1 ⋯ (𝜎𝑗)2

]                     (3.9)     

 

Where 𝑏 denotes the mean vector, 𝑉 denotes the variance-covariance matrix, j is the 

number of random parameters, and 𝑤𝑖 is the randomly and independently distributed 

uncorrelated vector. 

 

3.1.4 Multivariate Poisson-lognormal model 
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To better understand the calculation of the multivariate Poisson-lognormal model, the 

conventional univariate Poisson-lognormal model is first introduced as follows, 

 

Let 𝑌𝑖 denote the number of crashes at entity 𝑖 (𝑖 = 1,2, ⋯ , 𝐼), where 𝑌𝑖 follows a 

Poisson distribution with parameter 𝜃𝑖, 

 

                               𝑌𝑖~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃𝑖)                     (3.10) 

 

To account for over-dispersion, an error term 𝜀𝑖 that follows normal distribution is added 

to the regression equation as,  

 

                           ln(𝜃𝑖) = 𝛽0 + ∑ 𝛽𝑗
𝐽
𝑗=1 𝑋𝑗𝑖 + 𝜀𝑖             (3.11) 

 

                               𝜀𝑖~𝑁𝑜𝑟𝑚𝑎𝑙 (0, 𝜎𝜀)                  (3.12) 

 

Where 𝑋𝑗𝑖  is the value of 𝑗𝑡ℎ  explanatory variable for entity i; 𝛽0  is the model 

intercept, 𝛽𝑗  are the coefficient for the explanatory variables; 𝜎𝜀  denotes the extra 

Poisson Variance. 

 

For the multivariate Poisson-lognormal model, crash count can be stratified into K 

classes. Let 𝑌𝑖
𝑘 denote the number of crashes at entity 𝑖 (𝑖 = 1,2, ⋯ , 𝑁) of crash type 

𝑘 (𝑘 = 1,2, ⋯ , 𝐾). Then, equation (3.10) can be modified as, 

 

                              y𝑖
𝑘~𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜃𝑖

𝑘)                     (3.13) 

 

Also, probability of 𝑦𝑖
𝑘 is given by, 

 

  𝑃𝑟{𝑦𝑖
𝑘|𝜃𝑖

𝑘} = 𝑒 − 𝜃𝑖
𝑘 𝜃

𝑖

𝑘𝑦𝑖
𝑘

𝑦𝑖
𝑘!

                   (3.14)   

                    

𝜃𝑖
𝑘 = 𝜇𝑖

𝑘𝑒𝜀𝑖
𝑘
                        (3.15)    
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                     ln (𝜃𝑖
𝑘) = 𝛽0

𝑘 + ∑ 𝛽𝑗
𝑘𝐽

𝑗=1 𝑋𝑗𝑖 + 𝜀𝑖
𝑘 , 𝑗 = 1,2,3, ⋯ , 𝐽    (3.16)   

 

Where 𝜀𝑖
𝑘 denotes the normally distributed multivariate error with 𝜀𝑖

𝑘~𝑁𝑘(0, ∑), 

 

𝜀𝑖 = (
𝜀𝑖

1

⋮
𝜀𝑖

𝑘
)                         (3.17)                                                        

 

  ∑ = (

𝜎11 ⋯ 𝜎11

⋮ ⋮ ⋮
𝜎𝐾1 ⋯ 𝜎𝐾𝐾

)                    (3.18)     

                         

Where the diagonal parameter 𝜎𝑘𝑘 is the variance of 𝜀𝑖
𝑘, and the off-diagonal parameter 

𝜎𝑘,𝑙(𝑘 ≠ 𝑙) represents the covariance of 𝜀𝑖
𝑘 and 𝜀𝑖

𝑙 respectively. 

 

In this thesis, the proposed multivariate Poisson-lognormal regression model will be 

solved using the full Bayesian inference. For the full Bayesian estimates, priors for the 

model parameters, including coefficients and covariance matrix for the error term, should 

be specified. To this end, prior for the parameter would be given by Norm (0, 104) and 

that for the error term would be given by a Wishart prior, respectively (Guo et al., 2019). 

Then, the Markov Chain Monte Carlo (MCMC) simulation would be applied to estimate 

the posterior distribution of parameters using the WinBUGS software. To assess the 

model convergence, three common approaches: (1) two separate chains with different 

initial values; (2) Brooks-Gelamn-Rubin (BGR) value being less than 1.2 (Brooks and 

Gelman, 1998); and (3) MCMC trace plots of the parameters, would be adopted. 

Specifically, the first 40,000 iterations would be excluded in the burn-in period, and the 

subsequent 60,000 iterations would be used for parameter estimation. 

 

3.1.5 Assessment of the model performance 
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To make comparisons of the performances between different models, two indicators, 

Akaike information criterion (AIC) and Bayesian information criterion (BIC), were 

commonly applied for evaluating the goodness-of-fit of the random parameter models 

(Washington et al., 2011; Hilbe, 2011). AIC and BIC can be written as, 

 

                         𝐴𝐼𝐶 =  −2 ln(𝐿) + 2𝑘                    (3.19) 

 

 

                         𝐵𝐼𝐶 = ln(𝑛)𝑘 − 2ln (𝐿)                   (3.20) 

 

Where 𝐿  is the maximized value of the likelihood function; 𝑛  is the number of 

observations and 𝑘 is the number of parameters considered respectively. 

 

The deviance of information criterion (DIC) is introduced for model assessment and 

comparison for Bayesian inference (Spiegelhalter et al., 2014), which is calculated as, 

 

                       𝐷𝐼𝐶 =  2𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ − 𝐷(𝜃)̅̅ ̅̅                     (3.21) 

 

Where 𝐷(𝜃)̅̅ ̅̅ ̅̅ ̅ is the mean of the posterior deviance D(θ), 𝐷(𝜃)̅̅ ̅̅  is the deviance at the 

mean of posterior parameters. The deviance D(θ) of the model at the values of the 

parameter θ is calculated by, 

 

                          D(θ) = −2log (P(𝑦̂|θ))                  (3.22) 

 

3.2 Causal inference model 

 

For the policy intervention evaluation, it is crucial to estimate the outcome of the same 

entity if the “policy intervention” had not been implemented. For randomized control 

trials like clinical experiments, direct comparison between treated and perfect “control” 

units may be plausible. Sufficient control over all possible confounding factors can be 

achieved. However, it may not be the case for empirical studies (Wood et al., 2015; Li et 

al., 2018). To this end, an empirical-based treatment-control effectiveness evaluation 
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method – propensity score matching method (PSM) – can be adopted. In the PSM 

framework, a control group similar to the treated group, considering a set of observed 

covariates that affect the conditional probability of receiving policy intervention, would 

be identified. Thus, similarity between treated and control groups can be addressed, while 

the bias attributed to all observed confounding factors can be eliminated (Li et al., 2019). 

PSM approach is more efficient than the conventional treatment-control matching method 

since a single performance metric – propensity score – can be used to proxy the effects 

of all observed covariates that affect the conditional probability of “policy intervention”. 

Therefore, the difference in the outcomes between treated and control groups is mainly 

attributed to the policy intervention. 

 

Let 𝑦𝑖(𝐷𝑖) denotes the outcome (e.g., bicycle usage) of unit i, where 𝑖 = 1, ⋯ 𝑁 and N 

is the total number of analysis units. 𝐷𝑖  is treatment indicator, with 𝐷𝑖  = 1 if unit i 

receives the “policy intervention” and 𝐷𝑖 = 0 otherwise.  

 

Then, the effect of policy intervention on unit i can be given by, 

 

                         𝛿𝑖 = 𝑦𝑖 (1) − 𝑦𝑖  (0)                     (3.23) 

 

Hence, parameter of interest is average treatment effect (ATT) of all treated units. It can 

be given by, 

 

              𝛿𝐴𝑇𝑇 = 𝐸(𝛿|𝐷 = 1) = 𝐸(𝑌(1)|𝐷 = 1) − 𝐸(𝑌(0)|𝐷 = 1)    (3.24) 

 

To guarantee the validity and reliability of PSM, three assumptions given as follows must 

hold true (Rosenbaum and Rubin, 1983): 

 

• Assumption 1: Stable Unit Treatment Value Assumption (SUTVA) 

 

SUTVA requires that the policy intervention does not have any effect on the units other 

than the treated units. 
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• Assumption 2: Conditional Independence Assumption (CIA) 

 

CIA assumes that probability of the outcome is independent of the policy intervention, 

and all observed factors are controlled for. It can be described as, 

 

                        (𝑌(1), 𝑌(0)) ⊥ 𝑇|𝑋                       (3.25) 

 

• Assumption 3: Common Support Condition (CSC) 

 

CSC is also known as overlap assumption. It ascertains that there is a sufficient overlap 

for the characteristics of treated and control units for matching. It can be given by, 

 

                       0 < 𝑃(𝑇 = 1|𝑋) < 1                     (3.26) 

 

 

To implement PSM approach, propensity score of every unit is first calculated using the 

conventional discrete outcome approaches including logit and Probit models (Smith, 

1997; Guo et al., 2018a). An early study indicated that there was no significant difference 

in the estimation results between the two models (Smith, 1997). In this study, logit model 

is adopted to calculate the propensity score and is specified as follow, 

 

                     𝑃(𝑇 = 1|𝑋) =
𝐸𝑋𝑃(𝛼+𝛽′𝑋)

1+𝐸𝑋𝑃(𝛼+𝛽′𝑋)
                   (3.27) 

 

Where 𝛼 is the intercept and 𝛽′ is the vector of parameters for covariates X. 

 

After estimating the propensity score, a control group is constructed for each treated unit. 

In conventional studies, multiple matching algorithms are considered for assessment 

purpose. In this thesis, four common matching algorithms: (1) K-nearest neighbours 

matching; (2) caliper and radius matching; (3) kernel and local linear matching; and (4) 

stratification and interval matching, are adopted for the construction of control groups 

(Heinrich et al., 2010). 
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Finally, effect of policy intervention can be estimated by comparing the difference in the 

outcomes between treated group and corresponding control group. In this thesis, the effect 

will be estimated using the software package Psmatch2 of STATA (Leuven and Sianesi, 

2003). 
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Chapter 4 Effect of policy intervention on bicycle travel 

 

4.1 Introduction 

 

Previous studies have evaluated the effects of policy intervention on bicycle usage. Policy 

interventions include bike-sharing system, mass transit system, cycle highway 

infrastructure, and congestion charging schemes were considered. However, effects of 

traffic emission interventions on bicycle usage are rarely investigated.  

 

Traffic emission, as one of the major contributors of greenhouse gas (GHG) emission, 

has been an alarming problem in sustainable urban development. Traffic emissions can 

pose severe chronic health issues and thus increase the risks of morbidity and mortality 

of drivers, commuters, and people living near the roadways (Zhong and Bushell, 2017). 

Various engineering measures and policy strategies have been initiated to mitigate the 

hazardous effects of vehicle emissions. For example, Ultra-Low Emission Zone (ULEZ) 

was introduced in London to encourage commuters to switch to green transportation 

modes, including public transportation, cycling, and walking. In accordance with a report 

published by the Greater London Authority (GLA) (2019), CO2, NO2 and NOx emissions 

were reduced by 6%, 37%, and 35%, respectively, after the introduction of ULEZ. 

 

ULEZ was introduced in London in April 2019. The boundary of ULEZ is the same as 

that of the central London Congestion Charging (LCC) scheme. The total area of ULEZ 

is 21 km2 (equivalent to 1.3% of the total area of Greater London). There are 25 Middle 

Super Output Areas (MSOAs) and about 260,000 residents (0.44% of the total population 

of the Greater London) in ULEZ. MSOA is the basic geographical unit established for 

population census in the United Kingdom. The average population of an MSOA is around 

10,392. Figure 4.1 illustrates the boundary of ULEZ. Driver or owner of a motor vehicle 

that does not meet the relevant emission standards would be charged when entering ULEZ 

(TfL, 2019). Table 4.1 summarizes the emission limits and charges of ULEZ. The charge 

is £12.50 per day for light vehicles including private cars, motorcycles, and light goods 

vehicles (with gross vehicle weight within 3,500 kg), and £100 per day for heavy vehicles 
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including medium and heavy goods vehicles (with gross vehicle weight more than 3,500 

kg), and buses (with gross vehicle weight more than 5,000 kg) respectively. 

 

 

Figure 4.2 Illustration of Ultra-Low Emission Zone 

 

Table 4.1 Emission limits and fees of ULEZ 

Vehicle Class Emission Limit Fee/per day 

Private cars  

Petrol: Euro 4 

 

CO: 1.0g/km 

THC: 0.10g/km 

NOx: 0.08g/km 

£12.50 

Diesel: Euro 6 

CO: 0.50g/km 

HC + NOx: 0.17g/km 

NOx: 0.08g/km 

PM: 0.005g/km 

PN: 6.0*10^11#/km 

Light goods vehicles (up 

to 3,500 kg)  

Petrol: Euro 4 

CO: 2.27g/km 

THC: 0.16g/km 

NOx: 0.11g/km £12.50 

Diesel: Euro 6 
CO: 0.740g/km 

HC + NOx: 0.215g/km 
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NOx: 0.125g/km 

PM: 0.0045g/km 

PN: 6.0*10^11#/km 

Motorcycles and mopeds 
Euro 3 for 

NOx 
NOx: 0.15g/km  £12.50 

Medium and heavy goods 

vehicles (over 3,500 kg)  

Euro 6 for 

NOx and PM 

NOx: 1.2g/kWh 

PM: 0.01g/kWh 
£100 

Buses (over 5,000 kg) 
Euro 6 for 

NOx and PM 

WHSC Note 1 

NOx: 0.4g/kWh  

PM: 0.01g/kWh 

WHTC Note 2 

NOx: 0.46g/kWh 

PM: 0.01g/kWh 

£100 

Note 1: WHSC refers to World Harmonized Stationary Cycle 

Note 2: WHTC refers to World Harmonized Transient Cycle 

 

In addition to the mitigation of vehicle emissions, ULEZ can also relieve the traffic 

congestion in Central London (GLA, 2019). For instance, overall traffic entering Central 

London was reduced by 3% to 9% from May to September 2019, compared with the same 

period in 2018. Cycling, as a green transportation mode, not only helps to relieve traffic 

congestion and reduce vehicle emissions but also improves the overall social well-being 

(Li et al., 2019; Guo et al., 2018b; Huang et al., 2020). As such, it is hypothesized that 

private car users may shift to other transportation modes like public transportation and 

cycling to avoid the high charges of ULEZ. Therefore, it is possible that the bicycle 

demand would increase. According to a recent London survey, 65% of respondents 

indicated that they would switch to other transportation modes because of ULEZ. In 

addition, 17% of mode shifts were cycling (Green Car Congress, 2020). This study 

contributes to the literature by evaluating the effect of the ULEZ on the usage of public 

bike sharing in London. To account for the possible confounding factors, the PSM 

approach is applied to establish the appropriate control group for each treatment unit (i.e., 

docking station within ULEZ). 
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The remainder of this chapter is structured as follows. The study design is described in 

Section 4.2. The estimation results of PSM are presented and discussed in Section 4.3 and 

Section 4.4. Section 4.5 concludes the study with a summary of findings and future 

research directions. 

 

4.2 Study design 

 

4.2.1 Covariates affecting bike sharing usage 

 

Validity of the PSM model depends on the unconfoundedness assumption. Despite that 

the unconfoundedness assumption may not be assessed directly, the effects of 

confounding factors can be eliminated using the relevant covariates that affect the 

conditional probability of receiving treatment, i.e., ULEZ. Choice of covariates, which is 

often data-driven, may affect the reliability and accuracy of effectiveness evaluation. 

Hence, a rule of thumb is to include all observed covariates, regardless of their 

significance to the “treatment”, that may affect the outcome. In contrast, one should note 

that the precision of estimation can be reduced when a covariate that is not relevant to the 

outcome is included (Brookhart et al., 2006). To this end, a stepwise approach can be 

adopted to select covariates. 

 

In the proposed PSM model, the observation unit is bicycle docking station of the London 

cycle hiring system (LCH). LCH scheme was launched in central London in July 2010. 

There were 5,000 bicycles and 315 docking stations. By 2018, the number of bicycles and 

docking stations increased to 11,500 and 750, respectively (TfL, 2018). Locations of 

bicycle docking stations are shown in Figure 4.2. Outcome variable is bike sharing usage 

(i.e., number of borrow transactions per station in the study period). Information on bike 

sharing usage is obtained from Transport for London (TfL). Data includes borrow (origin) 

and return (destination) stations, start time, end time, and loan period are available. Study 

period is May 2019 to October 2019. 

 

Since the inclusion criteria of ULEZ is not known, covariates are selected based on 

preceding studies on the association between public bike sharing demand and influencing 
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factors. For example, population density, socio-demographics (i.e., gender, age), and 

household characteristics can affect bicycle demand. Therefore, they should be 

considered in the matching process (Trapp et al., 2011; Li et al., 2019). Such information 

can be obtained from the Office for National Statics (ONS) database of the United 

Kingdom. 

 

In addition, built environment, land use, and transport facilities can also affect bicycle 

demand (Trapp et al., 2011; Campbell et al., 2016; García-Palomares et al., 2012). 

Information on the proportion of different land use types, i.e., residential area, commercial 

and office area, industrial area, green area, and road area, can be obtained from the Greater 

London Authority (GLA) database. On the other hand, information on road network 

characteristics (e.g., road density, road type, and intersection density), traffic flow (annual 

average daily traffic (AADT)), transport facilities (e.g., bus stop, railway station, and 

Cycle Superhighway) can be obtained from Department for Transport (DfT) database. In 

the United Kingdom, urban roads are categorized into three classes: Class A roads, Class 

B roads, and minor roads. Class A roads refer to major arterials, Class B roads refer to 

minor arterials and collector roads, and minor roads refer to local streets, respectively. 

 

The aforementioned population socio-demographic, land use, and transport facilities data 

are aggregated at MSOA level, where a bicycle docking station is located, using 

geographical information system (GIS) technique. For the bike sharing usage data, they 

represent that of bicycle docking station. Table 4.2 summarizes the covariates considered 

in the proposed PSM model. 

 

Table 4.2 Summary statistics of the sample 

Factor Attribute Mean S.D. Min. Max. 

Number of observations = 699 (bicycle docking stations) 

Bike sharing 

usage 
Number of transactions 7,118 5,153 492 48,533 

Population 

density 
Population per km2 59.53 57.38 3.05 320.27 

Gender Proportion of male 0.52 0.03 0.46 0.58 
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Factor Attribute Mean S.D. Min. Max. 

Proportion of female 0.48 0.03 0.39 0.55 

Age 
Proportion of age above 64 0.11 0.04 0.03 0.24 

Proportion of age below 16 0.28 0.06 0.15 0.47 

Income  
Annual average household 

income (€) 
56,980 8748.8 38,500 75,500 

Land use  

Proportion of residential area 0.15 0.07 0.04 0.36 

Proportion of business and 

office area 
0.24 0.14 0.01 0.50 

Proportion of green area 0.29 0.16 0.05 0.74 

Proportion of road, railway 

and footpath area 
0.32 0.08 0.15 0.77 

Road density 

Class A road (km per km2) 3.75 1.84 0.07 9.89 

Class B road (km per km2) 0.77 0.85 0 5.13 

Minor road (km per km2) 1.07 1.17 0 4.46 

Intersection 

density 
Intersection per km2 0.39 0.35 0.02 2.54 

Traffic flow Annual average daily traffic 22,894 5,340 14,920 31,106 

Cycle 

superhighway 

Length of cycle 

superhighway (km) 
0.37 0.52 0 1.87 

Density of bus 

stop 
Bus stop per km2 0.03 0.03 0 0.14 

Density of 

railway station 
Railway station per km2 0.01 0.03 0 0.20 

 

4.2.2 Treatment and control groups 

 

PSM method is recognized as a “data-hungry” approach. For each treated unit, a 

considerable number of control units are required to establish the matched control group. 

Therefore, sufficient overlap between treatment and control groups can be ascertained. In 

this study, a total of 699 bicycle docking stations are considered. Treated units (210 
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docking stations) refer to those within the ULEZ, and control units (489) refer to those 

outside the ULEZ. Figure 4.2 illustrates the spatial distributions of treated and control 

units. It is worth noting that the average bike sharing usage of treated units (7,949.2) was 

remarkably higher than that of control units (6,727.8) before implementing the PSM 

approach. This could be attributed to the possible confounding factors like network 

connectivity since ULEZ is located in central London. Hence, more frequent cycling 

activities are expected (Quintero et al., 2013). Nevertheless, effects of confounding 

factors could be accommodated, at least partially, using the proposed PSM method. 

 

 

Figure 4.2 Distributions of docking stations 

 

4.3 Estimation results of PSM 

 

Prior to the estimation of the effect of ULEZ on bicycle demand, it is necessary to 

establish an appropriate control group for each treated unit using the PSM approach. 

Firstly, validity of the proposed PSM model would be assessed using the balancing test. 

A factor attribute of the treatment unit and corresponding control group is unbalanced 

when the t-statistic is significant. Table 4.3 presents the result of balancing test. Results 

indicate that attributes including traffic flow (t = -14.04), residential area (-10.04), road 
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area (5.08), proportion of age above 64 (3.27), and proportion of age below 16 (-2.39) are 

unbalanced prior to propensity score matching. Despite that, bias attributed to the 

difference in attributes between treatment and control groups can be mitigated after 

matching. All covariates are balanced. Hence, conditional independence assumption 

(CIA) holds true. 

 

Then, probability distributions of propensity score of treatment and control groups are 

established to testify the overlap assumption. Overlap area in the frequency distribution 

of propensity score indicates ‘common support’. As shown in Figure 4.3, there is 

sufficient overlap for treatment and control groups. All treated and control units are within 

common support area. Hence, common support condition assumption holds true. In 

addition, propensity scores of treated units are higher (left skewed) than those of untreated 

units. Such phenomenon is reasonable as the propensity score implies the probability for 

a unit being treated. 

 

Table 4.3 Results of balancing test for treatment and control groups 

Covariate  
Unmatched (U)/ 

Matched (M) 

Mean % reduction t-test 

Treatment Control % bias bias 
t-

statistic 
p-level 

Income 
U 57,023 56,962 0.7 

-20.8 
0.08 0.933 

M 57,023 56,950 0.9 0.32 0.930 

Proportion of age 

above 64 

U 0.116 0.105 26.8 
92.4 

3.27 0.001** 

M 0.116 0.116 2.0 0.21 0.830 

Proportion of age 

below 16 

U 0.278 0.290 -18.4 
-2.3 

-2.39 0.017* 

M 0.278 0.270 18.8 1.91 0.046 

Log (Traffic flow) 
U 4.275 4.379 -122.3 

90.7 
-14.04 0.001** 

M 4.275 4.282 -11.3 -1.41 0.158 

Log (Population) 
U 3.984 3.986 -1.8 

-220.8 
-0.21 0.830 

M 3.984 3.991 -5.9 -1.41 0.495 

Proportion of 

residential area 

U 0.111 0.164 -92.1 
88.0 

-10.04 0.001** 

M 0.111 0.105 11.0 1.38 0.167 
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Proportion of road 

area 

U 0.346 0.314 45.8 
70.3 

5.08 0.001** 

M 0.346 0.356 -13.6 -0.95 0.344 

Density of bus 

station 

U 0.026 0.028 -8.2 
94.5 

-0.98 0.329 

M 0.026 0.026 -0.5 -0.05 0.959 

* and ** denote statistical significance at the 5% and 1% levels respectively. 

 

 

Figure 4.3 Results of overlap test 

 

Multiple matching algorithms are considered to ascertain the robustness of estimation 

results. For instance, five typical matching algorithms, including K-nearest neighbours 

(K=1), K-nearest neighbours (K=3), K-nearest neighbours (K=5), kernel matching 

(bandwidth=0.05), and radius matching (caliper=0.05), are considered. As shown in 

Table 4.4, bicycle demand of treated units is 15.4% higher than that of control units 

before matching. Estimation results among the five matching algorithms are comparable 

(24.9% to 27.9% higher for the treated unit). This implies that the estimation results are 

independent of the matching algorithm. Indeed, robustness of the results could be 

assessed pragmatically using this approach (Caliendo and Kopeinig, 2005). In the 
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subsequent analysis, kernel matching algorithm (with the greatest t-statistic among the 

five matching algorithms) would be adopted to estimate the treatment effect. 

 

Table 4.4 Effects of ULEZ on overall bike sharing usage 

Matching algorithm Treatment Control Difference S.E. 
t-

statistic 

% 

change  

Unmatched 7,949.15 6,727.83 1,221.32 421.01 2.90 15.4%** 

K-nearest neighbours 

matching (K=1) 
7,949.15 5,791.19 2,157.96 1,026.39 2.10 27.1%* 

K-nearest neighbours 

matching (K=3) 
7,949.15 5,973.69 1,975.45 848.78 2.33 24.9%*  

K-nearest neighbours 

matching (K=5) 
7,949.15 5,882.37 2,066.79 811.18 2.55 26.0%* 

Kernel matching 7,949.15 5,728.27 2,220.88 688.79 3.22 27.9%** 

Radius matching 7,949.15 5,759.44 2,189.71 686.94 3.19 27.5%** 

* and ** denote statistical significance at the 5% and 1% levels respectively. 

 

4.4 Effects on bike sharing usage 

 

4.4.1 Effect on bike sharing usage by trip duration  

 

Two membership subscription options are available for the LCH scheme: (i) 2 pounds for 

24-hour access; and (ii) 90 pounds for 365-day access. All journeys up to 30 minutes are 

free of charge within the access period. The charge would increase by 2 pounds for each 

additional 30 minutes. Therefore, it would be crucial to evaluate the variation in the 

effects of ULEZ on bicycle demand by trip duration. As shown in Table 4.5, estimation 

is stratified into three: (i) trip shorter than 15 minutes, (ii) trip from 15 to 30 minutes, and 

(iii) trip longer than 30 minutes. Results indicate that there are 25.3% and 28.8% increases 

in short (within 15 minutes) and intermediate (15 to 30 minutes) bicycle trips after the 

implementation of ULEZ. This indicates that the introduction of ULEZ can stimulate 

bicycle demand. Hence, shift to green transportation mode can be promoted (Peters et al., 
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2021; Ellison et al., 2013). It could be because of the behavioural changes of residents 

within ULEZ (avoid emission charges by shifting to cycling) and the expansion of bicycle 

infrastructures, i.e., Cycle Superhighways (Ding et al., 2021a, b). For instance, eight 

Cycle Superhighways have been introduced in London since 2008. This should provide 

safer, faster and more direct routes for cyclists travelling in central London (Li et al., 

2018). Also, commuters might not prefer long bicycle journeys (Li et al., 2019). Hence, 

there is no significant change in the demand for long (more than 30 minutes) bicycle trips. 

 

Table 4.5 Effects of ULEZ on bike sharing usage by trip duration 

Trip duration Matching Treatment Control Difference S.E. 
t-

statistic 
% change 

Shorter than 

15 minutes 

Unmatched 4,978.97 4,258.26 720.71 255.69 2.82 
25.3%** 

Matched 4,978.97 3,718.54 1,260.43 421.37 2.99 

15 to 30 

minutes 

Unmatched 2,162.06 1,854.78 307.28 140.82 2.18 
28.8%** 

Matched 2,162.06 1,540.34 621.72 230.37 2.70 

Longer than 

30 minutes 

Unmatched 808.11 614.78 193.33 111.51 1.73 
 41.9% (IS) 

Matched 808.11 469.38 338.74 178.69 1.90 

* and ** denote statistical significance at the 5% and 1% levels respectively; IS denotes 

insignificant.  

 

4.4.2 Effect on bike sharing usage by trip destination 

 

Effects of ULEZ on bike sharing usage by trip destination are also assessed. Hence, 

estimation is stratified into two: (i) return (destination) station within ULEZ; and (ii) 

return station outside ULEZ. As shown in Table 4.6, an increase (44.8%) in bicycle 

demand is significant for journeys ended within ULEZ. This could be attributed to the 

frequent travel activities in the area (García-Palomares et al., 2012; Gutiérrez et al., 2020; 

Faghih-Imani et al., 2014). For example, commercial, office, shopping and green areas 

constitute 57% of the land area of ULEZ. The increase in bicycle demand is incremental 

for the journeys that ended outside ULEZ (16.1%), although it is insignificant. Findings 
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should be indicative to the optimal bicycle relocation strategy that can enhance the level 

of service of the bike-sharing system. 

 

Table 4.6 Effects of ULEZ on bike sharing usage by trip destination 

Trip 

destination 
Matching Treatment Control Difference S.E. 

t-

statistic 

% 

change 

Within 

ULEZ  

Unmatched 3,278.77 2,038.86 1,239.90 201.71 6.15 
44.8%** 

Matched 3,278.76 1,808.55 1,470.22 324.68 4.53 

Outside 

ULEZ 

Unmatched 4,670.38 4,688.97 -18.58 248.12 -0.07 16.1% 

(IS) Matched 4,670.38 3,919.72 750.66 412.55 1.82 

* and ** denote statistical significance at the 5% and 1% levels respectively; IS denotes 

insignificant.  

 

4.4.3 Effect on trip duration by trip destination 

 

Effects of ULEZ on bicycle trip duration are also estimated. As shown in Table 4.7, no 

significant change is found for bicycle trip duration after implementing ULEZ, regardless 

of trip destination. It could be because bicycle trip duration is more closely related to the 

attributes like bicycle network characteristics (i.e., connectivity), real-time weather and 

traffic conditions (Li et al., 2018; Jappinen et al., 2013). Relevant information is, 

however, not available in the current study. Therefore, it is worth exploring the 

moderating effects of traffic control and management on the association between ULEZ 

and bicycle trip duration when more comprehensive information is available in future 

research. 

 

Table 4.7 Effects of ULEZ on bicycle trip duration (minute) by trip destination 

Trip 

destination   
Matching Treatment Control Difference S.E. 

t-

statistic 
% change 

Overall  
Unmatched 19.37 20.51 -1.14 0.43 -2.62 

-0.03% (IS) 
Matched 19.37 20.00 -0.63 0.74 -0.87 

Unmatched 20.48 21.16 -0.67 0.61 -1.11 1.4% (IS) 
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Within 

ULEZ 
Matched 20.48 20.19 0.29 1.01 0.29 

Outside 

ULEZ 

Unmatched 18.98 20.94 -1.96 0.45 -4.39 
-7.2% (IS) 

Matched 18.98 20.34 -1.37 0.75 -1.82 

* and ** denote statistical significance at the 5% and 1% levels respectively; IS denotes 

insignificant.  

 

4.5 Concluding remarks  

 

In this study, effects of ULEZ on bicycle demand (in terms of bike sharing usage) are 

examined using PSM approach. For each treatment unit, a set of control group is 

established considering the covariates including population density, socio-demographics, 

land use, and transport facilities. Results indicate that bicycle demand significantly 

increase after the introduction of ULEZ. In particular, increases in short (within 15 

minutes) and intermediate (15 to 30 minutes) bicycle trips are more remarkable, compared 

to long bicycle trips (more than 30 minutes). In addition, results also indicate that number 

of bicycle trips ended within ULEZ increase remarkably. However, no significant change 

can be found for the number of bicycle trips ended outside ULEZ and bicycle trip 

duration. 

 

Findings of this study can be subjected to the effects of unobserved factors that are not 

considered in the proposed PSM model because of the availability of required 

information. For instance, seasonal variation and weather conditions can also affect the 

cyclists’ travel behaviour. It is worth exploring the moderation effect of other 

confounding factors on bicycle demand when more comprehensive data are available in 

future study. Furthermore, data adopted are transaction records of the LCH scheme. This 

can be limited to the penetration rate of commuters in the study area. Hence, it is also 

worth investigating the effect of ULEZ on bicycle route choice and cycling distance in 

future study.  
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Chapter 5 Effect of policy intervention on bicycle safety  

 

5.1 Introduction  

 

In recent years, many policy interventions have been introduced to promote cycling 

around the world. Take London cycle hiring (LCH) program as an example, residents in 

London suggested that they were inspired by the LCH that was launched in July 2010 to 

start cycling (ITV, 2014). In 2010, there were 5,000 bicycles and 315 docking stations 

for the LCH program. By 2018, the number of bicycles increased to 11,500, and the 

number of docking stations increased to 750, respectively. The location of LCH docking 

stations is shown in Figure 5.1. Previous studies on cycle hire schemes mainly focused 

on travel behaviour, transport mode share and environmental benefits (Li et al., 2019; 

Fishman et al., 2014; Zhang et al., 2017; Campbell et al., 2016). It was rare that the effect 

of the cycle hire scheme on bicycle safety was investigated. Bicycle safety is an important 

metric affecting bicycle network planning and design. Indeed, bicyclists are vulnerable to 

road injuries compared with motor vehicle occupants (Nikitas et al., 2014). We 

hypothesize that the overall bicycle crash may increase after the introduction of the LCH 

program since there are more new bicyclists on the roads. For instance, 49% of LCH users 

were encouraged by the scheme to start cycling in London (ITV,2014). Hence, it is of 

essence to evaluate the effect of the LCH scheme on bicycle safety. 
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Figure 5.1 Locations of bicycle docking stations in London 

 

On the other hand, some of the LCH docking stations are in the congestion charging area. 

London Congestion Charging scheme (LCC) was introduced in February 2003. LCC 

covered an area of 21 km2 (also shown in Figure 5.1) and accounted for about 1.3% of 

the total area of Greater London. A few studies indicated that congestion charging was 

associated with reducing motor vehicle crashes but increasing bicycle crashes (Li et al., 

2012). Therefore, it would be interesting to examine the role and impact of multiple 

policies on bicycle safety. 

 

In this study, the Propensity Score Matching (PSM) method is applied to evaluate the 

influences of policy interventions (i.e. cycle hire and congestion charging schemes) on 

bicycle crashes, with which the effects of confounding factors are accounted using a 

systematically established ‘control’ group. Findings of this study are indicative to the 

decision making of transport planners that can improve the design of bicycle network and 

enhance the overall bicycle safety. 

 

This chapter is organized as follows. Section 5.2 illustrates the study design, including 

data collection and selection of treated and control groups. Section 5.3 and Section 5.4 
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presents the analysis results and discussions respectively. Finally, concluding remarks 

and study limitations are summarized in Section 5.5.  

 

5.2 Study design  

 

5.2.1 Covariates affecting bicycle safety 

 

As mentioned in chapter 4, validity of PSM largely depends on the unconfoundedness 

assumption. Unfortunately, level of confoundedness is not assessable. To avoid the 

violation of unconfoundedness assumption, all observed covariates, regardless of their 

significance to the “treatment”, that may affect the outcome should be considered when 

calculating the propensity score. In this study, as the outcome is bicycle crash frequency, 

possible factors contributing to bicycle safety will be considered to achieve optimal 

precision and minimize the bias when estimating the propensity score (Brookhart et al., 

2006). 

 

In this study, observation unit is Lower Super Output Area (LSOA). LSOA is the primary 

unit of population census, home affairs administration and election in the United 

Kingdom. Each LSOA has a population of 1,500 on average. One of the ‘interventions’ 

under investigation is the LCC scheme, which is in force from 7:00 am to 6:00 pm on 

weekdays. Hence, bicycle crashes that occurred in the evenings and on the weekends 

would be excluded in the subsequent analysis. Bicycle crash data is obtained from the 

Department for Transport (DfT) dataset. It provides information on crash location, 

casualty age, gender and vehicle type of every bicycle crash involving personal injury. 

 

In this study, covariates are primarily derived from those revealed in conventional bicycle 

crash prediction models. Hence, the possible covariates, including population 

characteristics, built environment, and transport infrastructures, are considered (Li et al., 

2012; Wang et al., 2017; Guo et al., 2018b; Sze et al., 2019; Guo et al., 2019). Information  

on population demographic and socioeconomic characteristics (i.e. genders, age, and 

household income) are obtained from the Office for National Statics (ONS) database. 
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Land use (i.e. residential, commercial, green area and transport infrastructure) data is 

obtained from the Greater London Authority (GLA) database and transport network data  

(i.e. Class A road, Class B road and minor road lengths, traffic volume, bicycle flow and  

bus stop, etc.) is obtained from the DfT database. Table 5.1 summarizes the covariates 

considered in the proposed PSM model. 

 

Table 5.1 Summary statistics of the sample 

Factor Attribute Mean S.D. Min. Max. 

Number of observations = 333 (LSOA) 

Bicycle crash 

frequency 

Total bicycle crash  3.06 6.01 0 132 

Killed and severely injured 

crash 
0.45 1.10 0 21 

Slightly injured crash 2.61 5.16 0 111 

Population 

density 

Population per km2 
13.06 5.98 0.62 49.85 

Gender 
Proportion of male 0.50 0.03 0.40 0.63 

Proportion of female 0.50 0.03 0.37 0.60 

Age 
Proportion of age above 64 0.09 0.04 0.02 0.21 

Proportion of age below 16 0.16 0.05 0.03 0.33 

Income  
Annual average household 

income (€) 
50,626 18,444 26,140 153,420 

Land use  

Proportion of residential area 23.50 12.09 2.29 202.59 

Proportion of business and 

office area 
27.58 49.24 0.48 1,041 

Proportion of green area 70.75 92.11 4.39 1,291 

Proportion of road, railway and 

footpath area 
49.54 49.44 7.46 672.11 

Road density 

Class A road (km per km2) 4.29 3.01 0 18.21 

Class B road (km per km2) 0.60 1.44 0 13.40 

Minor road (km per km2) 0.75 1.27 0 6.60 

Traffic flow Annual average daily traffic 16,110 11,847 42.5 108,828 
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Factor Attribute Mean S.D. Min. Max. 

Bicycle flow 
Annual average daily bicycle 

flow 
825 787 0 5,458 

Density of bus 

stop 

Bus stop per km2 
0.04 0.03 0 0.22 

Cycle 

superhighway 

Length of Cycle Superhighway 

(km) 
1.41 1.45 0 6.22 

 

5.2.2 Treatment and control groups 

 

333 LSOAs are considered in this study. As shown in Table 5.2, LCC was imposed in 33 

LSOAs, and LCH was introduced in 132 LSOAs, respectively. Since PSM is a ‘data-

hungry’ approach that a large sample of treated and control units is required, as shown in 

Table 5.2, 201 LSOAs that have no LCH nor LCC are considered to ensure sufficient 

overlap (Wood and Donnell, 2017). To increase the sample size, two-year data (i.e. 2011 

and 2012) are used. Therefore, a total number of analysis unit is 666. This study will 

evaluate the safety effect of LCH only (Analysis I) and marginal safety effect of LCC on 

LCH (Analysis II). For Analysis I, treated units refer to those with LCH only, and control 

units refer to those with neither LCH nor LCC imposed, respectively. For Analysis II, 

treated units refer to those with both LCH and LCC and control units refer to those with 

LCH only, respectively. This justifies the Stable Unit Treatment Value assumption 

(SUTVA). Figure 5.2 illustrates the spatial distributions of treated and control units for 

the two analyses. 

 

Table 5.2 Study design of proposed analysis 

Characteristics of LSOA 
Number of 

LSOA 

Analysis 

I. LCH only II. Marginal effect of LCC 

LCH only 99 Treated units Untreated units 

LCH and LCC 33 N/A Treated units 

Neither LCH nor LCC 201 
Untreated 

units 
N/A 
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 Figure 5.2 Distribution of LSOA by policy interventions 

 

5.3 Estimation results of PSM 

 

Prior to the evaluation of policy intervention on bicycle crash incidence, it is necessary 

to construct an appropriate ‘control’ group for every ‘treated’ unit using PSM approach. 

Firstly, a balancing test would be conducted to assess the validity of PSM, so that the 

propensity to receive ‘treatment’ is independent of the outcome. Table 5.3 presents the 

results of balancing test. As shown in Table 5.3, the ‘treated’ and ‘control’ groups were 

imbalanced for all covariates at the 5% significance level before matching (U- 

Unmatched). Favourably, bias in effectiveness evaluation can be eliminated by refining 

the control groups using the proposed matching algorithm. The ‘treated’ and ‘control’ 

groups are balanced for all covariates after matching (i.e. M - Matched). This justifies the 

Conditional Independence Assumption (CIA). 
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Table 5.3 Results of balancing test for treatment and control groups 

Covariate 

Unmatched 

(U)/ 

Matched (M) 

Mean % reduction t-test 

Treatm

ent 
Control 

% 

bias 
bias t-statistic p-level 

Income 
U 49,514 45,063 35.7 

97.0 
3.90 0.000* 

M 49,514 49,646 -1.1 -0.09 0.928 

Population 

density 

U 13.12 13.23 -1.9 -

566.3 

-0.21 0.836 

M 13.12 13.90 -13.0 -1.20 0.233 

Male 
U 0.499 0.493 25.4 

60.5 
2.86 0.004* 

M 0.499 0.501 -10.0 -0.92 0.359 

Age above 

64 

U 0.089 0.089 0.4 
-2082 

0.04 0.965 

M 0.089 0.086 8.6 0.84 0.401 

Age under 

16  

U 0.162 0.183 -44.4 
91.6 

-4.78 0.000* 

M 0.162 0.161 3.7 0.35 0.730 

Business and 

office area 

U 25.26 19.00 22.2 
74.1 

2.29 0.023* 

M 25.26 23.64 5.8 0.39 0.695 

Road area 
U 47.15 45.63 4.0 -

102.9 

0.42 0.678 

M 47.15 44.07 8.1 0.76 0.447 

Green area 
U 71.52 88.11 -17.3 

80.0 
-1.95 0.052 

M 71.52 74.82 -3.5 -0.36 0.717 

Class A road 
U 4.479 3.771 23.3 

38.8 
2.62 0.009* 

M 4.479 4.046 14.3 1.41 0.160 

Class B road 
U 0.489 0.604 -8.0 

60.9 
-0.83 0.405 

M 0.489 0.534 -3.1 -0.36 0.719 

Minor road 
U 0.493 1.001 -41.2 

75.7 
-4.17 0.000* 

M 0.493 0.618 -10.0 -1.17 0.243 

Traffic flow 
U 18,103 14,559 29.5 

65.5 
3.21 0.001* 

M 18,103 19,327 -10.2 -0.80 0.426 

Bicycle flow 
U 880.3 561.3 49.8 

92.0 
5.57 0.000* 

M 880.3 854.8 4.0 0.33 0.744 

U 0.069 0.024 21.4 74.3 2.53 0.012* 
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Covariate 

Unmatched 

(U)/ 

Matched (M) 

Mean % reduction t-test 

Treatm

ent 
Control 

% 

bias 
bias t-statistic p-level 

Cycle 

Superhighwa

y 

M 0.069 0.058 5.5 0.44 0.661 

* Statistical significance at the 5% level 

 

Additionally, validity of PSM can be assessed graphically based on the propensity score 

distributions of treated and control groups. Overlap area in the frequency distribution of 

propensity score indicates ‘common support’. Units in the region of common support are 

referred to as ‘on support’ and ‘off-support’ otherwise. As shown in Figure 5.3, overlaps 

of treated and control groups are enough, and all units are ‘on support’. Hence, the 

Common Support Condition (CSC) assumption is justified. 

 

 

Figure 5.3 Results of overlap test 

 

5.4 Safety effects of LCH and LCC schemes 

 

0 .2 .4 .6 .8
Propensity Score

Untreated Treated



 

60 

 

5.4.1 Safety effect of LCH scheme 

 

Table 5.4 illustrates the estimation results of the effect of LCH on (i) overall bicycle 

crash; (ii) killed and severely injured (KSI) bicycle crash; and (iii) slightly injured bicycle 

crash. As shown in Table 5.4, overall bicycle crash (37.7%) and slightly injured crash 

(31.8%) increased significantly when LCH is implemented, both at the 5% level, after 

controlling the possible confounding factors using PSM. It could be because of the 

increase in cyclists on the roads. Indeed, 49% of bicyclists in London admitted that they 

were encouraged to cycle by the LCH (ITV, 2014). To this end, we also evaluated bicycle 

usage changes in the treated LSOAs. As shown in Table 5.5, the increase in bicycle usage 

(when LCH was present) is remarkable at the 5% level. Such an increase in bicycle usage 

(37.3%) is comparable to overall and slight bicycle crashes (32-38%, as shown in Table 

5.4). This justified that the unfavourable safety effect by LCH could be attributed to the 

increase in bicyclists on the roads (TfL, 2018). Moreover, the results indicated no 

significant difference in the occurrence of KSI bicycle crash between treated and control 

LSOAs. It could be because most bicycle docking stations are in the area where the speed 

limits are usually lower than 30 mph. Therefore, it is unlikely that the injury risk be 

elevated (Li and Graham, 2016). 

 

Table 5.4 Effect of LCH on bicycle crash incidence 

Outcome  Sample Treated Untreated Difference 
Standard 

error 

t-

statistic 

% 

change 

Overall 

bicycle 

crash 

Unmatched  3.10 1.74 1.35 0.21 6.32 

37.7%* 
Matched 3.10 2.25 0.85 0.28 3.01 

Slight 

bicycle 

crash 

Unmatched  2.61 1.51 1.10 0.18 5.98 

31.8%* 
Matched 2.61 1.98 0.63 0.24 2.62 

KSI 

bicycle 

crash 

Unmatched  0.48 0.23 0.25 0.06 4.08 

IS  
Matched 0.48 0.27 0.22 0.08 1.64 

* Statistical significance at the 5% level; IS denotes insignificant.  
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Table 5.5 Results of PSM for bicycle usage (LCH only) 

Outcome  Sample Treatment Control Difference S.E. t-stat 
% 

change 

Bicycle 

usage 

Unmatched  980 561 418 63.0 6.65 
37.3%* 

Matched 980 713 266 83.4 3.20  

* Statistically significant at the 5% level 

 

5.4.2 Safety effect of LCC scheme 

 

Some LSOAs have both LCH and LCC schemes introduced. Since traffic flow patterns 

and speed could be changed in areas with LCC, it is crucial to estimate the marginal effect 

of LCC on bicycle crashes. As shown in Table 5.6, the marginal effects of LCC on overall 

bicycle crash (59.1%) and slightly injured bicycle crash (57.8%) are significant, both at 

the 5% level. However, as shown in Table 5.7, the traffic volume in the LSOAs that have 

both LCC and LCH is 21% lower than that have LCH only. This could be because of the 

dramatic increase in bicycles in the treated LSOAs (74.9%, as shown in Table 5.7) 

because of the mode shift after the introduction of the congestion charge (Li et al., 2012; 

Xie and Olszewski, 2011; Tang, 2016). Again, increase in KSI bicycle crash (66%) can 

be observed, though it is not significant. It could be because of the expansion of the 

bicycle infrastructure, particularly the Cycle Superhighways in the area (Li et al., 2017). 

 

Table 5.6 Marginal effect of LCC on bicycle crash 

Outcome  Sample Treated Untreated Difference 
Standard 

error 

t-

statistic 

% 

change 

Overall 

bicycle 

crash 

Unmatched  5.92 3.11 2.81 0.58 4.84 

59.1%* 
Matched 5.92 3.72 2.20 0.87 2.52 

Slight 

bicycle 

crash 

Unmatched  5.02 2.61 2.42 0.50 4.83 

57.8%* 
Matched 5.02 3.18 1.84 0.74 2.48 

Unmatched  0.89 0.51 0.38 0.14 2.84 IS 
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KSI 

bicycle 

crash 

Matched 0.89 0.54 0.36 0.19 1.85 

* Statistical significance at the 5% level; IS denotes insignificant. 

 

Table 5.7 Results of PSM for traffic flow and bicycle usage (LCH and LCC) 

Outcome  Sample Treatment Control Difference S.E. t-stat 
% 

change 

AADT 
Unmatched  14916 16857 -1941 1508 -1.29 

-21.3%* 
Matched 14684 18670 -3985 1862 -2.14 

Bicycle 

usage 

Unmatched  1572 912 669 116 5.74 
74.9%* 

Matched 1572 898 673 153 4.38 

* Statistically significant at the 5% level 

 

5.5 Concluding remarks 

 

Policy interventions, including bicycle infrastructure development and bicycle sharing 

scheme, have been implemented worldwide to promote bicycle use. In London, a public 

bicycle hiring scheme (LCH) was introduced in 2010. Despite the public bicycle rental 

system effectively promoting green transport and improving the physical well-being of 

the community (Zhang and Mi, 2018; Ding et al., 2020), the safety effects of bicycle 

sharing were rarely investigated. This study contributes to the literature by estimating the 

effects of LCH on bicycle crash incidence, with which the possible confounding factors 

are considered using the PSM approach. Results of this study indicated that both the 

overall (38%) and slight bicycle crashes (32%) in areas with LCH introduced are 

remarkably higher than those with no LCH. However, no significant effect on KSI bicycle 

crash could be revealed. This could be attributed to effective traffic control measures and 

the development of bicycle infrastructures. 

 

Moreover, this study also contributes to the literature by exploring the marginal effect of 

the London congestion charging scheme (LCC) on the LCH. Our results suggested that 

numbers of overall (59.1%) and slight bicycle crash (57.8%) in the areas with both LCC 
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and LCH introduced are remarkably higher than those with LCH only. It could be because 

of the possible mode shift (to active transport modes including cycling and walking) 

because of the congestion charging scheme (Li et al., 2012; Noland et al., 2008). Also, no 

significant changes could be found in the KSI bicycle crash. 

 

The above findings are indicative to the decision-making of transport planners, 

particularly striking the balance between environmental benefit, physical health, traffic 

safety and societal impact when promoting green transport. However, it is noteworthy 

that the current approach does not consider the differences in crashes between the treated 

and control groups that might exist before the introductions of LCH and LCC. The 

extended study is worth exploring the mediation effects by possible factors before and 

after the interventions. Moreover, possible influences by the weather conditions and 

seasonal effects on the association are not considered in this study. Indeed, some 

covariates have different associations with crashes depending on the season and weather 

conditions. It is worth exploring the interactions by weather conditions on the safety effect 

of the bicycle sharing scheme when more comprehensive data are available in future 

studies (Ding et al., 2020). 

 

Findings of this study can be subjected to the effects of unobserved factors that are not 

considered in the proposed PSM model because of the availability of required 

information. For instance, seasonal variation and weather conditions can also affect the 

cyclists’ travel behaviour. 
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Chapter 6 Effect of built environment and population 

characteristics on bicycle travel 

 

 

6.1 Introduction 

 

Cycling is increasingly promoted as a sustainable transport mode. However, bicyclists 

are more vulnerable to fatality and severe injury in road crashes, compared to vehicle 

occupants. Identifying the contributory factors to crashes and injuries involving bicyclists 

is necessary. Therefore, effective engineering countermeasures can be developed to 

enhance the overall safety of bicyclists and promote the bicycle mode. 

 

Many studies have investigated the effects of built environment and bicycle facilities on 

bicycle crash frequency at the macro-level using cross-sectional models (Siddiqui et al., 

2012; Narayanamoorthy et al., 2013; Chen, 2015; Guo et al., 2018b). To evaluate the 

bicycle crash risk, it is necessary to estimate the exposure (i.e. quantifying the crash 

potential of bicyclists). For vehicle crashes, annual average traffic flow (AADT) and 

vehicle kilometre travelled (VKT), based on comprehensive traffic count data, can be 

used to estimate the exposure (Pei et al., 2012). However, bicycle count data are rarely 

available. Bicycle crash exposure may be measured using retrospective and prospective 

approaches based on self-report data. They are, however, subjected to self-selection 

problems. This study attempts to address the problem of how to accurately measure 

bicycle crash exposure based on the revealed bicycle trip data of a public bicycle rental 

system.  

 

Additionally, effects of possible land use, built environment and bicycle infrastructure 

attributes on bicycle crash incidence are investigated. For example, Cycle Superhighway 

(‘Superhighway’) was introduced in London in the early 2010s, targeted to provide 

cyclists with safer, faster and more direct journeys through the city (Li et al., 2018). In 

this study, we aim to measure the association between possible factors and bicycle crash 

frequency at the zonal level, using the integrated crash, environment, population profile 

and traffic data of London in 2012-2013. A random parameter negative binomial model 
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would be developed to measure the association. Particularly, effect of the presence of 

Cycle Superhighway on bicycle crash risk will be considered. Moreover, separate bicycle 

crash prediction models would be developed for different seasons, i.e. from May to 

October and from November to April, considering the bicyclists’ behaviour under 

different weather conditions. 

 

Reminder of this chapter is organized as follows. Data is described in Section 6.2. Section 

6.3 and Section 6.4 presents the analysis results and discussions, respectively. Finally, 

concluding remarks and study limitations are summarized in Section 6.5. 

 

6.2 Data 

 

6.2.1 Study area 

 

Figure 6.1 illustrates the boundary of the study area under investigation. The study area 

covers several Inner London Boroughs like the City of London, Islington, Hackney, 

Tower Hamlets and Westminster, etc. The geographical area was 49.1 km2, and the total 

population was 0.76 million in 2017. Similar to other global cities, cycling has recently 

become increasingly popular in London. In 2017, average daily bicycle trip was 30,170 

in the study area. It constituted 2% of overall trips (TfL, 2018). Bicycles in London can 

generally be classified into three types: (i) privately owned bicycles, (ii) public bicycle 

rental systems (with docking stations), e.g. Santander Bike (i.e., LCH) and (iii) dockless 

bicycle sharing systems, e.g. moBike, Ofo and Urbo (Li et al., 2019). The LCH 

constituted 74% of overall bicycle trips in the study area (TfL, 2018). There are over 750 

docking stations of the LCH in the study area. Therefore, bicycle exposure is estimated 

based on the ridership data of the LCH. Locations of the docking stations of the LCH are 

shown in Figure 6.2. Four Superhighways, e.g. CS2, CS3, CS7 and CS8, were opened in 

the study area during the period 2010-2013 (Li et al., 2018). There are three major cycle 

track or lane types: (i) segregated one-way cycle track, (ii) segregated two-way cycle 

track and (iii) non-segregated (one-way) cycle lane. The network map and typical layouts 

of Superhighways are illustrated in Figure 6.1 and Figure 6.3, respectively. 
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Figure 6.1 Location of the study area 

 

 

Figure 6.2 Locations of bicycle docking stations in the study area 

(Source: https://kitchen2018blog.blogspot.com/2018/02/boris-bikes-map.html) 

 

 

 

 

 

https://kitchen2018blog.blogspot.com/2018/02/boris-bikes-map.html
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(a) 

Segregated one-way cycle 

track 

(b)  

Segregated two-way cycle 

track 

(c)  

Non-segregated cycle 

lane 

 Figure 6.3 Illustrations of Cycle Superhighway 

(Source: https://en.wikipedia.org/wiki/Cycle_Superhighway_3 ; 

https://www.newcivilengineer.com/archive/new-cycle-superhighway-mooted-21-09-

2017/; https://www.geograph.org.uk/photo/2372620) 

 

6.2.2 Sample 

 

Similar to the zone system adopted in Chapter 4, MSOAs are adopted in this study. 

Information on bicycle crash incidence, bicycle exposure, land use, road infrastructures, 

demographic and socioeconomics, and household attributes are matched into the 

corresponding MSOA using the Geographical Information System (GIS) technique. 

Specifically, bicycle crash data during the period from 2012 to 2013 is obtained from the  

Greater London Authority (GLA) collision data extract. Also, information on land use is 

available in the GLA’s dataset. Information on socio-demographics and households in 

Greater London is available from the Office for National Statistics (ONS) census dataset. 

In addition, Department for Transport (DfT) dataset provides the transport network data. 

 

In summary, frequencies of bicycle crash of 88 MSOAs in 2012-2013 are modelled. 

Sample size of the proposed model is 176. There were 2,795 bicycle crashes in the study 

area in the observation period. To consider the effect of bicycle infrastructure on bicycle 

https://en.wikipedia.org/wiki/Cycle_Superhighway_3
https://www.newcivilengineer.com/archive/new-cycle-superhighway-mooted-21-09-2017/
https://www.newcivilengineer.com/archive/new-cycle-superhighway-mooted-21-09-2017/
https://www.geograph.org.uk/photo/2372620
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crash incidence, the length of Superhighways in every MSOA is also included in the 

model. Table 6.1 summarizes the distribution of the variables considered. 

 

Table 6.1 Summary statistics of the sample 

Category Factor Attribute Mean S.D. Min. Max. 

Outcome Frequency of bicycle crash 15.88 18.17 2 144 

Road 

infrastructure 

Road density (km per km2) 6.14 2.59 0.86 13.09 

Cycle superhighway (km) 0.37 0.52 0 1.87 

Land use 

Proportion for residential 0.20 0.09 0.05 0.42 

Proportion for commercial 0.23 0.10 0.05 0.51 

Proportion for green area 0.20 0.12 0.02 0.60 

Proportion for transport 

facilities 
0.37 0.06 0.24 0.55 

Demographics 

Population density (per km2) 19.52 7.23 3.05 35.8 

Gender 

Proportion of 

male 
0.51 0.025 0.454 0.61 

Proportion of 

female 
0.49 0.025 0.39 0.55 

Age 

Proportion of 

age above 64 
0.10 0.03 0.03 0.24 

Proportion of 

others 
0.90 0.03 0.76 0.96 

Socio-

economics 

Race 

Proportion of 

white 
0.53 0.08 0.34 0.69 

Proportion of 

others 
0.47 0.08 0.31 0.66 

Median annual household 

income (€) 
71,369 28,673 37,130 174,960 

Household 

type 

Proportion of 

couple with 

children 

0.11 0.03 0.05 0.20 



 

69 

 

Proportion of 

others 
0.89 0.03 0.80 0.95 

Exposure 

Total annual 

bicycle usage 

time (hour) 

Overall 31,141 31,483 2,498 165,577 

May to October 

only 
20,500 21,082 1,006 110,520 

November to 

April only 
10,641 10,802 880 59,813 

Total annual 

bicycle use 

frequency 

Overall 87,946 81,980 7,049 476,329 

May to October 

only 
54,768 51,755 5,014 289,498 

November to 

April only 
33,178 31,803 2,016 186,831 

AADT 20,365 11,404 4,306 62,889 

 

6.3 Estimation results  

 

First, the multi-collinearity test is conducted to assess the correlations between the 

independent variables. Results indicate that the variance inflation factor (VIF) are less 

than five for all independent variables. Therefore, all candidate variables are considered 

appropriate. 

 

6.3.1 Overall model 

 

In this study, random parameter negative binomial model is applied to measure the 

association between bicycle crash frequency and possible risk factors, considering the 

effect of bicycle exposure. Table 6.2 shows the results of parameter estimation. Three 

exposure measures considered are population (Model 0), bicycle use time (model 1) and 

bicycle use frequency (Model 2). 

 

As shown in Table 6.2, AIC and BIC of Model 1 are the lowest among the three models. 

Hence, model using bicycle use time as the exposure measure is considered. Model using 

population as exposure is underperformed since it does not account for the difference in 
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travel patterns among individuals (Guo et al., 2018b; Wang et al., 2017; Lee et al., 2015a). 

On the other hand, studies also indicated that it was appropriate to indicate bicycle safety 

using relative risk (RR) with respect to travel distance and travel time (Mindell et al., 

2012; Vanparijs et al., 2015). Hence, it can be expected model using bicycle use time as 

the exposure can achieve better goodness of fit. 

 

Results indicate that road density, green area and commercial area, population, age, 

gender, household income and race contribute to bicycle crash frequency at the 5% 

significance level. For instance, increases in road density (parameter = 0.04), proportion 

of green area (1.14), proportion of commercial area (1.60), proportion of elderly (6.49), 

proportion of male (13.58), median annual household income (0.001), and proportion of 

white (0.03) are associated with the increase in bicycle crash frequency. Also, the random 

effects of demographic and socioeconomic characteristics on crash incidence are 

significant at the 5% level. However, no evidence can be established for the association 

between bicycle crashes, Cycle Superhighways, household composition and traffic 

volume. No obvious association between bicycle crashes and traffic volume is revealed 

could be because of the “safety in number” effect. In other words, the number of bicycle 

crash does not necessarily increase proportionately with the increase in traffic volume 

(Bjornskau et al., 2015). 
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Table 6.2 Results of parameter estimation of overall bicycle crash prediction model 1 

Category Factor 
Model 0 Model 1 Model 2 

Coefficients T-stat Coefficients T-stat Coefficients T-stat 

Constant  -21.05** -6.65 -17.59** -6.40 -18.50** -6.79 

Road 

infrastructure 

Cycle Superhighway IS -- IS -- IS -- 

Road density 0.07** 3.62 0.04* 2.31 0.05* 2.19 

Land use 

Proportion of green area 1.25** 3.32 1.14** 3.43 1.56** 3.27 

Proportion of commercial area 
Mean 1.50** 

3.60 1.60** 3.89 1.87** 3.55 
S.D. (9.86**) 

Demographic 

Log (population) 
Mean 

9.02** 4.39 
1.80** 

4.19 
1.39* 

2.56 
S.D. (12.08**) (6.76**) 

Proportion of age above 64 
Mean 

5.40** 3.11 6.49** 4.39 
6.19** 

3.55 
S.D. (0.72^) 

Proportion of male 
Mean 14.57** 

8.51 
13.58** 

8.30 13.74** 6.81 
S.D. (0.36**) (0.38**) 

Socio-

economics 

Median annual household income <0.001* 2.36 <0.001* 2.03 <0.001^ 1.83 

Proportion of white 
Mean 

0.03** 4.64 
0.03** 

5.24 
0.03** 

3.64 
S.D. (<0.001^) (0.002**) 
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Proportion of couple with children -0.04** -2.61 IS -- IS -- 

Exposure 

Total annual bicycle use frequency     2.98** 4.63 

Total annual bicycle use time (hour)   2.00** 4.38   

Log (AADT) IS -- IS -- IS -- 

Goodness-of-

fit 

AIC 1150.43 1136.17 1144.64 

BIC 1194.99 1186.19 1194.66 

^, * and ** denote statistical significance at the 10%, 5% and 1% levels respectively; IS denotes insignificant.1 
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6.3.2 Segregated Models    

 

Considering the possible interferences by seasonal effects on the association between 

bicycle crash incidence and contributory factors, separate bicycle crash prediction models 

for different seasons: (i) warm season, i.e. May to October and (ii) cold season, i.e. 

November to April, are developed. Table 6.3 presents the results of parameter estimation 

of separate models. Consistent with the overall model results, factors including 

commercial area, population, elderly, gender and race are significantly correlated to 

bicycle crash frequency, at the 5% level, in both the warm and cold seasons. Again, the 

random effects of demographic and socioeconomic characteristics on crash incidence are 

significant at the 5% level. However, ‘Superhighway’ is significant only in the cold 

season (parameter = -0.18), and ‘green area’ is significant only in the warm season (1.22).      
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Table 6.3 Results of parameter estimation results of separate model 

Category Factor 
Warm Season Cold Season 

Coefficients T-stat Coefficients T-stat 

Constant  -18.57** -6.11 -17.59** -6.40 

Road infrastructure 
Cycle Superhighway IS -- -0.18* -2.43 

Road density 0.08** 2.91 0.08** 3.37 

Land use 
Proportion of green area 1.22** 3.01 IS -- 

Proportion of commercial area 1.88** 3.23 1.53** 3.37 

Demographic 

Log (population) 
Mean 2.52** 

3.75 
1.29* 

2.24 
S.D. (2.92**) (22.99**) 

Proportion of age above 64 
Mean 6.75** 

3.51 4.84* 2.57 
S.D. (0.13*) 

Proportion of male 
Mean 12.99** 

5.57 
13.28** 

5.67 
S.D. (0.17*) (0.17*) 

Socio-economics 

Median annual household income IS -- IS -- 

Proportion of white 
Mean 

0.03** 3.94 
0.03** 

4.35 
S.D. (0.01**) 

Proportion of couple with children IS -- IS -- 

Exposure Log (AADT) IS -- IS -- 
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Bicycle use time (hour) 1.13* 1.99 1.81** 3.22 

Goodness-of-fit 
AIC 1014.47 897.48 

BIC 1064.50 947.51 

* and ** denote statistical significance at the 5% and 1% levels respectively; IS denotes insignificant. 
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6.4 Discussions 

 

6.4.1 Seasonal effect 

 

There is a remarkable variation in the usage of rental bicycles (LCH) across months. 

Figure 6.4 illustrates the monthly bicycle rental counts in the study area in 2012 and 

2013. As shown in Figure 6.4, bicycle usage distribution is similar to the mean daily 

maximum temperature. In particular, average monthly bicycle usage (ranging from 

557,142 to 771,428) in the period from May to October (with mean daily maximum 

temperature ranging from 61℉ to 73℉) was remarkably higher than that (ranging from 

282,857 to 454,285) in the period from November to April (with mean daily maximum 

temperature ranging from 48℉ to 59℉). We may consider the commuters who cycle even 

in the cold season as regular bicyclists, while those who only cycle in the warm season as 

casual bicyclists. As revealed in the crash statistics in 2012-2013, the total number of 

bicycle crashes in the warm season (1,680) was remarkably higher than that in the cold 

season (1,115). A possible reason is that there are more bicyclists in the warm season. 

Indeed, it is believed that casual bicyclists, who are expected to ride more in the warm 

season, usually ride for leisure purposes (TfL, 2018). That is why the proportion of green 

area is positively correlated to the bicycle crash frequency in the warm season only (as 

revealed in Table 6.3). Therefore, it is necessary to implement effective education and 

promotion measures to enhance the safety awareness and perception of casual bicyclists, 

particularly children, adolescents and the elderly. On the other hand, presence of Cycle 

Superhighway is negatively associated with the bicycle crash frequency in the cold season 

only. This justifies the safety benefit of upgrading bicycle infrastructure, particularly for 

more skilful regular bicyclists. Nevertheless, it is worth exploring the seasonal trend using 

the disaggregated model for every month or season when comprehensive data is available 

in the extended study. 
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Figure 6.4 Monthly bicycle use frequency and daily maximum temperature in London 

 

6.4.2 Road infrastructure 

 

For the road network characteristic, road density is found to be positively associated with 

bicycle crash frequency both in overall and separate models. For instance, the number of 

bicycle crashes would be increased by 28% when road density is increased by 100%. This 

could be attributed to the increase in potential interactions between bicycles and motor 

vehicles (Wong et al., 2007; Li et al., 2018). The presence of Cycle Superhighway has a 

favorable effect on bicycle crash frequency in the cold season. It could be attributed to 

the increase in driver awareness and safety perception when travelling through the Cycle 

Superhighway. As illustrated in Figures 6.3(a), 6.3(b) and 6.3(c), coloured asphalt 

pavements are applied for the cycle track and cycle lane along the Cycle Superhighway. 

However, no evidence can be established for significant correlation between bicycle crash 

frequency and presence of Cycle Superhighway for the overall and warm season models. 

It could be because most Cycle Superhighways are non-segregated (see Figure 6.3(c)). 

Also, casual bicyclists, who are usually less skilful, are expected to ride more in the warm 

seasons (Sze et al., 2011). The favourable effect of coloured pavement on drivers’ safety 

awareness could be offset. This finding implies that better designs of Cycle 
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Superhighway, such as physical separation between the bicycle lane and (motor) traffic 

lane, would be essential to enhance bicycle safety. 

 

6.4.3 Land use 

 

Results indicate that proportion of commercial area is positively associated with bicycle 

crash frequency. This could be attributed to the frequent pick-up and drop-off activities 

on the roadsides in the commercial area. Therefore, potential bicycle crash risk could 

increase (Wong et al., 2007). Additionally, increase in the proportion of green area is 

associated with the increase in bicycle crash frequency, particularly in the warm season. 

It could be attributed to the access to green area for recreational purpose of casual 

bicyclists in the warm season (Chen, 2015; Guo et al., 2018a). Moreover, commercial 

(commercial, office and shopping), green area (public park and plantation) and utility 

(highway) could constitute 80% of the study area (Lubbock, 1963). It is important to 

enhance the safety level in these areas where pedestrian, bicycle and vehicular traffic 

flows are high. As shown in Figure 6.5, bicycle crashes are widely distributed in the study 

area. Bicycle facilities, including segregated bicycle tracks, designed crossing, and 

bicycle signals, could have been introduced at the hot spots of bicycle crashes, especially 

in the commercial and green areas. Yet, it is worth exploring the effects of weather 

conditions, e.g. rain, strong wind, fog and snow, etc., on the frequency and severity of 

bicycle crash, when comprehensive real-time weather data are available (Wen et al., 2019; 

Zhai et al., 2019a; Xing et al., 2019). 
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Figure 6.5 Distribution of bicycle crash by MSOA in the analysis period 

 

6.4.4 Demographic and socioeconomics 

 

We also consider the safety effects of population demographic, socioeconomics and 

household attributes (Mindell et al., 2012; Wei et al., 2013; Ghekiere et al., 2014). 

Overall, population is positively associated with bicycle crash frequency. However, there 

is heterogeneity in the population effect based on demographic and socioeconomic 

characteristics. For instance, increase in the proportion of elderly (age above 64) is 

associated with the increase in bicycle crash frequency. This could be attributed to the 

degradation of cognitive performance and impaired mobility of the elderly. Then, the 

crash likelihood might increase (Palamara and Broughton, 2013). Also, the increase in 

male proportion is associated with the increase in bicycle crash frequency. This might be 

because male commuters are generally more aggressive and tend to commit convicted 

travel behaviour (Guo et al., 2018b). Furthermore, the proportion of white race, which 

constituted over 75% of the overall population in Greater London, is positively associated 

with bicycle crashes. Again, there are heterogeneities for the effects of male and race on 

bicycle crash incidence. This implies the variations in safety perception and behaviours 
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among male and people of the same race. It can be attributed to the differences in 

education level, cultural background and family influences, which are not captured in the 

prediction model, among the people in the same group. For example, higher education 

people are more risk averse and have a lower tendency to violate traffic rules (Sami et al., 

2013; Hung et al., 2011). These findings are indicative to the targeted safety education 

and promotion strategies that can enhance the safety perception of vulnerable road user 

groups (TfL, 2018). For the household attribute, results indicate that increase in medium 

household income by 100% is correlated to the increase in bicycle crash by 19%. Yet, 

current results only indicate the correlation between bicycle crash frequency and 

characteristics of residents. It is worth exploring the relationship between population 

demographic & socioeconomics, bicyclist behaviour and potential crash risk when 

comprehensive information on bicyclists’ safety perception is available in the future 

survey. 

 

6.5 Concluding remarks 

 

This study examines the relationship between possible risk factors and bicycle crash 

frequency at the zonal level, using the population census, land use, traffic, bicycle use 

and crash data of Greater London in 2012-2013. Random parameter negative binomial 

regression approach is adopted. Crash exposures are estimated based on the frequency 

and duration of usage of a public bicycle rental system in London. 

 

Results indicate that the model using the duration of bicycle use as the exposure measure 

is superior to that using the frequency of bicycle use or population. It can be expected as 

the duration of bicycle use is a better proxy to infer the potential interactions between 

bicycles and motor vehicles on the roads. Additionally, road density, bicycle facilities, 

land use, demographic, socioeconomics and household attributes are found to be 

associated with bicycle crash incidence. It is indicative to the development of 

infrastructure, traffic management and enforcement strategies that can mitigate the 

hazards to bicyclists on roads. In particular, the London Cycle Superhighway network, 

which has favorable effect on bicycle safety, could have been extended. Also, better 

traffic management and control measures can be implemented to mitigate the risk of 
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bicyclists in commercial areas, where roadside pick-up & drop-off activities and 

interactions between bicycles and motor vehicles are frequent. Furthermore, separate 

bicycle crash prediction models are developed for different seasons. It is believed that the 

characteristics and travel behaviour of bicyclists are different across different time 

periods. Casual bicyclists could ride more frequently for recreation purpose in the warm 

season. That is why proportion of green area is positively associated with bicycle crash 

frequency in the warm season only. This is indicative to the effective education and 

promotion strategies that can enhance the safety perception and awareness of bicyclists, 

especially those of vulnerable groups. Yet, it is worth exploring the contributory factors 

to the safety perception and, therefore, bicyclists' behaviour and crash risk. Moreover, the 

bicycle exposure adopted in this study is limited to the usage data of a public bicycle 

rental system. However, the system only records the origin and destination (i.e. docking 

station) of a bicycle trip. It is worth exploring to use bicycle travel distance as a proxy of 

bicycle crash exposure when comprehensive and extensive bicycle counts are available 

in the future study. 
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Chapter 7 Effect of built environment and population 

characteristics on bicycle safety 

 

7.1 Introduction 

 

Bicycle safety has received more and more attention in recent years. Studies have been 

conducted to identify the possible factors including built environment and bicycle 

facilities (Guo et al., 2018b; Wei and Lovegrove., 2013; Chen et al.,2016), population 

and household characteristics (Ghekiere et al., 2014; Vanparijs et al., 2015; Guo et al., 

2018a), land use (Chen, 2015) and traffic attributes (Wei and Lovegrove., 2013) that may 

affect the bicycle safety. To better quantify the potential of bicycle crash involvement and 

interpret the risk of different entities, it is necessary to measure the crash exposure. In 

previous studies, bicycle exposures adopted were bicycle flow counts, bicycle trips 

(Miranda-Moreno et al., 2011), bicycle time travelled (BTT), and bicycle distance 

travelled (BDT) (Mindell et al., 2012; Poulos et al., 2015) which were measured using 

retrospective and prospective surveys. Regardless of the sampling framework and survey 

design, data may be subject to recall and selection biases. In addition, an extensive 

household travel survey can be expensive and time-consuming. In chapter 6, the 

transaction records of the London public bicycle rental system were used to estimate the 

bicycle crash exposure. Although this system covered most bicycle trips in London, 

exposure measures were limited to bicycle trips and BTT (Ding et al., 2020). 

 

In London, two Cycle Superhighways were introduced in 2010. They provided faster, 

safer, and more direct routes for bicyclists. The Cycle Superhighways are completely 

separated from the trafficable roads and footpaths. In addition, segregated crossings are 

provided at the intersections (Rayaprolu et al., 2020). The minimum width is 4 meters for 

a bi-directional Cycle Superhighway (European Cyclists’ Federation, 2014). Currently, 

there are six Cycle Superhighways in London (Li et al., 2018). As illustrated in Figure 

7.1, the total road length in London is 6,139 km. Cycle lanes (known as ‘cycleways’) are 

present on 8.1% (i.e. 496 km) of the roads. Overall, the total length of Cycle 

Superhighways in London is 77 km. Since the bicyclists do not only consider the path 
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distance, but also the perceived safety and level-of-service when choosing the routes, it 

is expected that one would prefer the Cycle Superhighways to the traditional cycleway. 

The roads that have no cycle lane are expected to be the least preferred. 

 

 

Figure 7.1 Illustration of London road network  

 

In this study, the bicycle routing will be modelled, and the BDT will be estimated based 

on the origin and destination data of each trip of the London public bicycle rental system. 

Unlike vehicle drivers, bicyclists generally consider multiple objectives, including travel 

time and safety, when choosing the route (Ehrgott et al., 2012). Two path analysis models: 

(a) the simple shortest path model (SPM) that incorporates the effect of path distance only 

and (b) the weighted shortest path model (WSPM) that incorporates the effects of path 

distance and perceived safety level, in the route choices are proposed in this study. Then, 

the negative binomial regression models will be applied to assess the performances of the 

proposed bicycle path analysis models. Moreover, the associations between bicycle 

crashes, various exposure measures (bicycle trips, BDT and BTT) and potential 

influencing factors will be estimated. Findings of this study would indicate the suitability 

of different bicycle exposure measures. Also, it can improve the understanding on the 

role of exposure in the bicycle safety analysis. 
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This chapter is organized as follows. Section 7.2 and Section 7.3 describes the bicycle 

path analysis and data collection. Analysis results are then given in Section 7.4. Finally, 

the policy implications are discussed in Section 7.5 and the concluding remarks are given 

in Section 7.6.  

 

7.2 Bicycle path analysis 

 

In this study, the bicycle transaction records obtained from the London public bicycle 

rental system (i.e., LCH) are used to estimate the BDT. The dataset records the start time, 

end time, origin and destination of each bicycle trip. Then, the path of each trip would be 

determined using the SPM method. Considering the preferences of bicyclists to different 

bicycle infrastructures, the WSPM is also proposed to model the bicycle path. The model 

formulations of SPM and WSPM are given as follows. 

 

7.2.1 Simple shortest path model (SPM) 

 

In this model, the shortest path is determined using the Dijkstra’s algorithm, assuming 

that a bicyclist would consider the path distance only in the route choice decision (Deng 

et at., 2012; Wang, 2012; Sedeño-noda and Colebrook, 2019; Liu and Chen, 2010). The 

key steps are given as follows. 

 

Step 1: Let V denote the set of vertices of the road network in the algorithm. Denote Cij 

as the weight that is assigned to the arc connecting Vi and Vj given by 

 

          𝐶𝑖𝑗 = {
∞, if no path between 𝑉𝑖 and 𝑉𝑗  

𝑑𝑖, otherwise
                    (7.1) 

 

Where di denotes the distance of the shortest path originated from the vertex i, and is 

given by 

 

𝑑𝑖 = 𝐿𝑖𝑗                       (7.2) 
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Where Lij is the connection distance between Vi and Vj. 

 

Step 2: Let Vs be the source vertex which is labelled. Estimate the distance between Vs 

and other unlabelled vertices one by one, then an end vertex Vp will be identified when 

 

                   𝑑𝑝 = 𝑚𝑖𝑛{𝑑𝑖|𝑉𝑝 ∈ 𝑉 − 𝑆}                         (7.3) 

 

Where dp is the distance of the shortest path from the source vertex to the end vertex, S is 

the set of labelled vertices of the shortest path, and (V-S) refers to all unlabelled vertices 

that are not ‘visited’ yet. 

 

Step 3: When Vp = Vt, then dp is the distance of the shortest path from Vs to the end point 

Vt, and the searching process can be stopped. Otherwise, assess another end point by, 

   

              𝑑𝑖 = 𝑚𝑖𝑛{𝑑𝑖, 𝑑𝑘 + 𝑙𝑘𝑗}, 𝑉𝑝 ∈ 𝑉 − 𝑆, 𝑉𝑘 ∈ 𝑆              (7.4) 

 

Step 4: Repeat step 2 and step 3 until Vp = Vt. 

 

7.2.2 Weighted shortest path model (WSPM) 

 

As mentioned above, not only the path distance, but also the perceived safety and level 

of service are considered in the bicycle route choice. In this study, it is assumed that Cycle 

Superhighway and cycleway are preferred by the bicyclists. Therefore, a weighted 

shortest path method (WSPM) is proposed, with which different weights are assigned to 

Cycle Superhighways, cycleway and other roads (that have no cycle lanes) respectively 

in the algorithm. As illustrated in Table 7.1, three different scenarios of weight allocation 

are considered: (i) WSPM1: Cycle Superhighway is preferred, and there is no difference 

between the cycleway and other roads; (ii) WSPM2: Cycle Superhighway is the most 

preferred, followed by the cycleway, and other roads are the least preferred; (iii) WSPM3: 

Similar to WSPM2, just the differences in the weights are magnified. Figure 7.2 shows 

an example of the bicycle path choice based on different WSPMs. 
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Table 7.1 Setting of different weighted shortest path model 

Model    

Road type 

(A) Cycle 

Superhighway 
 (B) Cycleway  (C) Other roads 

WSPM1 WA   > WB = WC 

WSPM2 WA > WB > WC 

WSPM3 WA >> WB >> WC 

 

 

 

(a) WSPM1 versus WSPM2 

 

(b) WSPM2 versus WSPM3 

Figure 7.2 Bicycle path choices using different WSPM  

 

7.3 Data 

 

The area of interest of this study is the same as that in chapter 6 (see Figure 6.1). The 

observation unit of bicycle crash analysis is the Lower Super Output Area (LSOA) in 

London. A total of 289 LSOAs are selected. Specifically, bicycle crash data between 2015 

and 2016 are obtained from the Greater London Authority (GLA) collision data extract. 

Land use, population characteristics, traffic flow, and road infrastructure are explanatory 

variables considered. These can be obtained from the Office for National Statistics (ONS) 

census dataset and Department for Transport (DfT) dataset. 

 

Furthermore, to examine bicyclist travel behaviour (i.e. trips and time), the transaction 

records of the London Public Bicycle Rental system - LCH – in the period between 2015 
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and 2016 are used. The data from multiple sources are mapped to the corresponding 

Lower Super Output Area (LSOA) using the geographical information system (GIS) 

approach. Table 7.2 summarizes the characteristics of the LSOAs. 

 

Table 7.2 Summary statistics of the sample 

Category Factor Attribute Mean S. D. Min. Max. 

Outcome Frequency of bicycle crash 5.13 5.83 1 38 

Land use 

Proportion for residential 0.15 0.07 0.02 0.36 

Proportion for commercial 0.25 0.14 0.01 0.56 

Proportion for green area 0.28 0.16 0.03 0.77 

Proportion for transport 

facilities 
0.32 0.16 0.03 0.77 

Population 

characteristics 

Population density (per 

km2) 
14.28 7.36 0.86 39.77 

Population 1,298 464 1,077 3,351 

Gender 

Proportion of 

male 
0.52 0.03 0.45 0.65 

Proportion of 

female 
0.48 0.04 0.35 0.55 

Age 

Proportion of age 

above 64 
0.11 0.05 0.02 0.3 

Proportion of 

others 
0.89 0.05 0.7 0.98 

IMD (Index of Multiple 

Deprivation) 
24.49 10.46 6.06 53.20 

Exposure 

Annual BTT (hour) 10,297 13,434 163 14,912 

Annual bicycle trips 28,035 28,748 544 236,240 

VKT 45,849 78,965 51 712,666 

 

 

7.4 Estimation results 
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7.4.1 Estimation of BDTs 

 

Figure 7.3 and Table 7.3 illustrate the results of BDT estimations using SPM and 

WSPMs, respectively. As depicted in Figure 7.3(a), the BDTs seem evenly distributed 

across the whole study area, when the simple shortest path method is used. As expected, 

when higher weights are assigned to the cycleway (i.e. WSPM2) and Cycle Superhighway 

(i.e. WSPM3) in the bicycle path choice analysis, the BDTs would concentrate to the 

areas that have more cycleway (see Figure 7.3(b)) and Cycle Superhighway (see Figure 

7.3(c)). Among the three WPSMs, as shown in Table 7.3, the total estimated BDT is the 

highest (annual average bicycle distance travelled of 159,600 km per unit) for the 

WPSM3, followed by the WPSM2 (150,100 km per unit) and then the WPSM1 (146,600 

km per unit). This could be attributed to the higher operating speeds of Cycle 

Superhighways and cycleway. Therefore, the total estimated BDT tends to be higher 

given the same travel time. 

 

  

(a) SPM (b) WSPM1 
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(c) WSPM2 (d) WSPM3 

Figure 7.3 Distributions of BDTs by LSOA 

 

Table 7.3 Estimation results of BDTs by LSOA (103 km) 

Model Mean Standard Deviation Maximum  Minimum  

SPM 133.6 145.3  1,351.4  0.3  

WSPM1 146.6 158.6  1,368.6  0.3  

WSPM2 150.1  162.3  1,376.7  0.4  

WSPM3 159.6  173.4  1,582.3  0.5  

 

7.4.2 Bicycle crash analysis 

 

To eliminate the heteroscedasticity among the variables, variables including population 

and VKT are logarithmically transformed prior to the parameter estimation (Quddus, 

2008). On the other hand, the multi-collinearity test is conducted to assess the correlations 

between the independent variables. Results indicate that the variance inflation factor 

(VIF) are less than five for all independent variables. Therefore, all candidate variables 

are considered appropriate. 

 

(1) BDTs as exposure (SPM versus WSPM) 

 

Since the over-dispersion is prevalent for the data (mean = 5.13 and variance = 33.98), 

the bicycle crash prediction models, with which the BDTs are used to proxy the bicycle 

crash exposure, are established using the negative binomial regression model. Table 7.4 

illustrates the model estimation results. As shown in Table 7.4, bicycle crash prediction 

models that incorporate the BDTs estimated by the WSPM are superior to that using the 

SPM, in accordance with the values of AIC and BIC, regardless of the weights assigned 

to cycleway and Cycle Superhighway. WSPM2 has the best model fit, with the lowest 

values of AIC (1268.48) and BIC (1305.46). In addition, differences in AIC and BIC 

between WSPM2 and SPM are all greater than 10 (Fabozzi et al., 2014). This implies that 

it is appropriate to assign a higher weight to Cycle Superhighway in bicycle route choice 
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and safety analysis. Also, the over-dispersion parameter (0.172) of WSPM2 is significant 

at the 5% level. Therefore, it is appropriate to adopt the NB regression model. The 

marginal effects of BDTs on the bicycle crash frequency are also estimated (see Table 

7.5). As shown in Table 7.5, bicycle crash frequency is more sensitive to the BDTs that 

are estimated using the WSPM as compared to that using the SPM. 1% increase in BDT 

is correlated with 0.47-0.70% increase in bicycle crash frequency when the WSPM is 

used. On the other hand, 1% increase in BDT is correlated with 0.11% increase in bicycle 

crash frequency when the SPM is used. 
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Table 7.4 Results of bicycle crash prediction models using BDTs as exposure  

Category Factor 
WSPM1 WSPM2 WSPM3 SPM 

Coefficient t-stat Coefficient t-stat Coefficient t-stat Coefficient t-stat 

Constant -11.04** -6.31 -10.98** -6.45 -11.27** -6.45 -10.79** -6.13 

Land use 
Proportion of commercial area 2.41** 4.52 2.18** 4.17 2.37** 4.52 2.60** 4.89 

Proportion of green area 1.16** 2.80 1.05** 2.60 1.15** 2.81 1.24** 3.23 

Population characteristics 

log (population) 1.51** 3.12 1.38** 2.90 1.53** 3.19 1.58** 3.23 

Proportion of age above 64 IS -- IS -- IS -- IS -- 

Proportion of male 5.77** 5.11 5.49** 4.98 5.69** 5.06 5.95** 5.22 

IMD IS -- IS -- IS -- IS -- 

Exposure 
log (VKT) 0.63** 7.01 0.59** 6.87 0.62** 7.21 0.64** 7.21 

BDT (km) 0.08* 1.92 0.14** 3.70 0.10** 2.48 0.02 0.53 

Over-dispersion parameter alpha 0.189 0.172 0.186 0.197 

Goodness-of-fit 
AIC 1279.07 1268.48 1276.65 1282.45 

BIC 1315.05 1305.46 1312.64 1318.43 

 * and ** denote statistical significance at the 5% and 1% levels respectively; IS denotes insignificant. 
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Table 7.5 Marginal effects of BDTs on bicycle crash frequency 

Model  Elasticity  p-value 

SPM 0.11 0.596 

WSPM1 0.47 0.035 

WSPM2 0.70 0.000 

WSPM3 0.49 0.014 

 

(2) Bicycle trip, BTT and BDT as exposures 

 

Three bicycle crash prediction models incorporating bicycle trips, BTT and BDT 

respectively, as exposure are also developed using the negative binomial regression 

model (see Table 7.6). As shown in Table 7.6, Model 3, which incorporates BDT as the 

exposure, has the best model fit with the lowest values of AIC and BIC. Again, there are 

remarkable differences in AIC and BIC between Model 3 and Model 2 (both greater than 

ten). This indicates that the model using BDT as the exposure is preferred. Table 7.6 also 

shows that factors including road density, green area, commercial area, population and 

gender significantly affect the bicycle crash frequency at the 1% level. Such finding is 

consistent with that of many previous studies (Ding et al., 2020; Guo et al., 2018a; Chen, 

2015; Wei and Lovegrove, 2013). Specifically, increases in the proportion of green area 

(1.05), proportion of commercial area (2.18), log (population) (1.38), proportion of male 

(5.49), log (VKT) (0.59) are associated with the increase in bicycle crash frequency. 

However, effects of IMD and proportion of elderly on bicycle crash frequency are 

insignificant. 
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Table 7.6 Results of bicycle crash prediction models with different exposures 1 

Category Factor 
Model 1 Model 2 Model 3 

coefficient t-stat coefficient t-stat coefficient t-stat 

Constant -10.80** -6.28 -10.78** -6.19 -10.98** -6.45 

Land use 
Proportion of commercial area 2.32** 4.41 2.39** 4.48 2.18** 4.17 

Proportion of green area 1.16** 2.86 1.16** 2.82 1.05** 2.60 

Population characteristics 

log (population) 1.46** 3.05 1.48** 3.05 1.38** 2.90 

Proportion of age above 64 IS -- IS -- IS -- 

Proportion of male 5.55** 4.95 5.61** 4.92 5.49** 4.98 

IMD IS -- IS -- IS -- 

Exposure 

log (VKT) 0.59** 6.76 0.61** 7.01 0.59** 6.87 

Bicycle trips   0.10** 2.06   

BTT (hour) 0.13** 3.10     

BDT (km)     0.14** 3.70 

Over-dispersion parameter alpha 0.182 0.189 0.172 

Goodness-of-fit 
AIC 1274.49 1278.56 1268.48 

BIC 1309.29 1315.52 1305.46 

 ** denotes statistical significance at the 1% level; IS denotes insignificant.2 
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Again, we have estimated the marginal effects of different exposures on bicycle crashes 

(see Table 7.7). As shown in Table 7.7, bicycle crash frequency is more sensitive to the 

BDT (WSPM2), as compared to bicycle trips and BTT. 1% increase in BDT is associated 

with 0.70% increase in bicycle crash frequency. On the other hand, 1% increase in bicycle 

trips and BTT is associated with 0.53% and 0.66% increases in bicycle crash frequencies, 

respectively. 

 

Table 7.7 Parameter estimates for the effects of exposures on bicycle crash frequency 

Exposure Elasticity  p-value  

BTT 0.66 0.002 

Bicycle trips   0.53 0.025 

BDT (WSPM2)  0.70 0.000 

 

7.5 Discussions 

 

In previous studies, it is rare that bicycle crash exposure is incorporated into the bicycle 

crash prediction model, limited to the reliable bicycle count data. Taking the advantage 

of the availability of bicycle trip data obtained from the public bicycle rental system, we 

adopt various path analysis approaches to estimate the BDT as bicycle crash exposure. 

 

7.5.1 SPM versus WSPM in estimating BDT 

 

For the estimation of BDT, results indicate that the WSPM is superior to the SPM. Such 

result is reasonable since the SPM assumes that the bicyclists only consider path distance 

when making route choice decisions. In contrast, the WSPM assigns different weights to 

different bicycle facilities. For example, higher weights are assigned to the cycleway and 

Cycle Superhighway, considering the fact that bicyclists would consider the connectivity, 

directness, environmental quality and safety when planning the travel routes (Ehrgott et 

al., 2012; Broach et al., 2012; Hopkinson and Wardman, 1996). 

 

Among the WSPMs, WSPM1 has the worst model performance with the highest values 

of AIC and BIC. It is because such assignment approach is contradicting with 
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conventional wisdom that the perceived safety level of the cycleway is higher than that 

of the roads that have no cycle lane. Indeed, the revealed safety level of the former is 28% 

higher than that of the latter. Additionally, many studies also indicated that the bicyclists 

are more willing to ride on the cycleway (Lusk et al., 2011, Broach et al., 2012; Winters 

and Teschke, 2010). Nevertheless, the bicycle crash frequency models that incorporate 

the BDT based on WSPM2 (WA>WB>WC) is superior to that based on WSPM3 

(WA>>WB>>WC). The latter hypothesizes that preferences toward cycleway and Cycle 

Superhighways are more substantial. It implies that the bicyclists would give up the safety 

and level of service by riding on the roads with no cycle lane only if the time saving 

and/or the reduction in total travel distance was considerable. However, such speculation 

might be controversial. 

 

Indeed, several studies indicate that there is no noticeable difference in traffic safety 

among cycleway, Cycle Superhighways and other roads with no cycle lane (Li et al., 

2017). It could be because of the heterogeneity in the preference among the bicyclists. 

For example, even the occasional bicyclists generally prefer the cycleway and Cycle 

Superhighways, the commuting cyclists may have some other considerations (i.e. route 

directness and attractiveness) when making the route choice (Ehrgott et al., 2012; Howard 

and Burns, 2001). Moreover, studies also show that the cycleway is not always considered 

more desirable than a wider arterial road for experienced bicyclists (Taylor and 

Mahmassani, 1996; Heinen et al., 2010). Furthermore, factors like gender can also affect 

safety perception and bicycle route choice (Sener et al., 2009; Stinson and Bhat, 2003). It 

is, therefore, worth exploring the effects of individual characteristics and trip purpose on 

the association between route choice and road attributes using the bicyclist survey in 

future studies. 

 

7.5.2 Bicycle crash exposures 

 

We also assess the use of bicycle trips, BTT, and BDT as exposures in the bicycle crash 

analysis. Results indicate that bicycle crash frequency model using the BDT as the 

exposure provides the best model fit. It is because trip distance is more sensitive to the 

interactions between bicycle and other road users, and therefore potential traffic conflicts, 
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as compared to trip frequency (Pei et al., 2012). Indeed, there is no noticeable difference 

in the elasticities between BTT and BDT (see Table 7.7). 

 

In this study, factors including land use, population characteristics and traffic conditions 

that affect the bicycle crash frequency at zonal level are considered. Results show that the 

proportion of commercial area (2.18) and green area (1.05) are positively associated with 

bicycle crashes. This can be attributed to the frequent pick-up and drop-off activities at 

the roadsides in the commercial area (Ding et al., 2020). As for the effect of green area, 

it is not surprising since considerable portion (31%) of bicyclists in London report that 

they ride for recreation purposes (TfL., 2015). In addition, log (VKT) (0.59) is positively 

associated with bicycle crashes. It is consistent with the previous studies (Alkahtani et al., 

2018), since the interactions between vehicles and bicycles can increase with the traffic 

volume. Furthermore, the increase in the proportion of male (5.49) is associated with the 

increase in bicycle crash frequency. This can be attributed to the difference in safety 

perception and cycling behaviours among different bicyclist groups (Guo et al., 2018b). 

Nevertheless, the current study is limited to the average effect of built environment on 

bicycle safety at the macroscopic level (i.e. LSOA). It is worth exploring the moderating 

effect of geometric design and road environment on the association between bicycle 

crashes and BTT and BDT, when detailed crash, traffic and environment data at the 

microscopic level is available in the future study. On the other hand, it is worth noting 

that crash occurrence is rare. It is often necessary to accumulate more bicycle crashes 

over a considerable period when evaluating the safety effect of an intervention. To this 

end, it is possible to evaluate the bicycle safety level using appropriate surrogate safety 

measures, e.g. conflicts (Sayed et al., 2013; Kassim et al., 2014; Strauss et al., 2017; Guo 

et al., 2020). 

 

7.6 Concluding remarks 

 

To assess the bicycle crash risk of different entities and better interpret the relationship 

between bicycle safety and possible risk factors, it is necessary to have reliable exposure 

measures such as bicycle count number, bicycle trips, BTT, and BDT. Unlike vehicular 

crash analysis, extensive bicycle counts are often not available. In chapter 6, detailed 
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transaction data of the London public bicycle rental system was available to estimate the 

bicycle crash exposure (i.e., BTT and bicycle trips) at the zonal level, using the data on 

bicycle trip, origin and destination (Ding et al., 2020). In this study, we revisit the topic 

of bicycle crash exposure by estimating the BDT of each trip using the shortest path 

method. Considering the effects of safety perception, attitudes and preferences to 

different bicycle infrastructures on bicycle route choice, a modified path analysis 

approach – weighted shortest path method (WSPM) – is proposed. 

 

Results indicate that the bicycle crash frequency model that adopts BDT as the exposure 

is superior, compared to that using bicycle trips and BTT as the exposures. For instance, 

safety effects of land use, population characteristics and traffic conditions on bicycle 

crash frequency are identified. In addition, the bicycle crash frequency models that adopt 

BDTs estimated using the WSPM apparently have better model fit, compared to that using 

the SPM. For instance, when the differences between the preferences toward Cycle 

Superhighway, cycleway and other roads are moderate, the best model fit can be attained. 

This justify that bicyclists do not only consider path distance, but also other factors such 

as level of service and perceived safety when choosing the routes (Ehrgott et al., 2012; 

Broach et al., 2012). Yet, this study does not consider the bicycle crash severity. In the 

future study, heterogeneity in the bicycle crash risk by collision type and injury severity 

would be investigated. 
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Chapter 8 A multivariate Poisson-lognormal model for the 

correlation in bicycle safety analysis 

 

8.1 Introduction 

 

Although cycling has benefits to environment and physical health, bicyclists are 

vulnerable road users. Prior studies have identified the environment, traffic and road user 

factors that affect the risk of bicycle-related crashes (Ding et al., 2020, 2021a; Guo et al., 

2018a). However, it is rare that difference in their effects on the risk among different 

bicycle crash types to be investigated. Indeed, effects of possible factors on bicycle crash 

frequencies can also vary with collision type (Guo et al., 2018a; Park and Lord, 2007). 

For example, presence of bicycle infrastructure is more sensitive to bicycle-only crashes, 

as compared to bicycle-vehicle crashes (De Rome et al., 2014; Teschke et al., 2014; Beck 

et al., 2016). It is necessary to account for multivariate correlation in the bicycle crash 

frequency models. 

 

In addition, road network characteristics can affect travel behaviour in terms of trip 

frequency, path choice, travel time and travel distances, and therefore crash exposure 

(Zhang et al., 2015; Pei et al., 2016; Quddus, 2008). Hence, it is necessary to consider 

road network characteristics in the bicycle crash frequency model. Although previous 

studies have examined the effects of road network characteristics like street connectivity, 

number of intersections, length of bicycle lanes, and road classes on bicycle crash 

frequencies (Yasmin and Eluru, 2016; Osama and Sayed, 2017; Kamel and Sayed, 2021). 

It is rare that the effect of road network accessibility on bicycle crash risk is considered 

(Marshall and Garrick, 2010; Wei and Lovegrove, 2012; Guo et al., 2018a). 

 

This study aims to examine the effects of possible factors on the frequencies of different 

bicycle crash types, i.e., bicycle-vehicle and bicycle-bicycle crashes. Crash data from 

middle layer super output areas (MSOA) of London in 2018 and 2019 are used. Then, 

multivariate Poisson-lognormal regression approach is applied to measure the 

association, with which multivariate correlation between bicycle-vehicle and bicycle-
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bicycle crashes is accommodated. Furthermore, effects of road network characteristics in 

terms of connectivity and accessibility are also considered. Findings should shed light on 

the design of road infrastructure, and implementation of traffic management and control 

measures that can reduce the bicycle crash risk. 

 

Reminder of this chapter is organized as follows. Section 8.2 describes the method of data 

collection. Parameter estimation results and discussions are given in Section 8.3 and 

Section 8.4, respectively. Section 8.5 provide the study recommendation and concluding 

remarks. 

 

8.2 Data 

 

The area of interest of this study is the same as that in chapter 6 (see Figure 6.1). 

Observation unit is Middle Layer Super Output Area (MSOA) in London. In this study, 

population socio-demographics, land use, road network, traffic flow, and bicycle crash 

data of London in 2018 and 2019 are used. In total, there are four types of bicycle crashes: 

bicycle-vehicle, bicycle-bicycle, bicycle-pedestrian, and single bicycle crashes. 

However, counts of bicycle-pedestrian and single bicycle crashes are extremely low 

(Myhrmann et al., 2021; Olesen et al., 2021). Therefore, only bicycle-vehicle and bicycle-

bicycle crashes are considered. Overall, 3,743 bicycle-related crashes (3,622 bicycle-

vehicle and 121 bicycle-bicycle crashes) are considered. 

 

In this study, effect of road network topology on bicycle crash frequency is also 

considered. For example, morphological parameters, including connectivity and 

accessibility of MSOAs, are estimated using space syntax theory (Hillier and Hanson, 

1984; Hillier, 1996). Specifically, connectivity refers to the number of direct 

neighbouring roads that intersect with a given axial road. High connectivity indicates 

more possibilities for the roads to intersect with each other in the network. On the other 

hand, accessibility can be estimated by measuring the degree of integration of the 

network. A poorly integrated point is a location that requires more steps (spaces) to reach 

from a starting point. Integration is proportional to the reciprocal of mean depth of the 

network. In space syntax, depth refers to the topological distance between points (nodes). 
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In general, depth can be represented by global depth (D), local depth (LD), and mean 

depth (MD) which are given by, 

 

                        𝐷𝑟 = ∑ 𝑑𝑟𝑠
𝑡
𝑟=1,𝑠=1                             (8.1) 

 

                       𝐿𝐷𝑟 = ∑ 𝑑𝑟𝑠
𝑡
𝑟=1,𝑠=1,𝑑𝑟𝑠≤3                         (8.2) 

 

                         𝑀𝐷𝑟 =
𝐷𝑟

𝑡−1
                                (8.3) 

 

Where 𝑑𝑟𝑠 refers to the shortest topological distance between node r and s, and 𝑡 refers 

to the total number of nodes respectively. 

 

Then, accessibility (global integration) of the network can be estimated by, 

 

                         𝐼𝑟 =
𝑡−2

2(𝑀𝐷𝑟−1)
                              (8.4) 

 

Spatial distribution of average connectivity and accessibility of the study area are shown 

in Figure 8.1 and Figure 8.2 respectively. In addition, Table 8.1 summarizes the data 

used.  
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Figure 8.1 Spatial distribution of average connectivity 

 

Figure 8.2 Spatial distribution of average accessibility  
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Table 8.1 Summary statistics of the sample 

Category Factor Attribute Mean S.D. Min. Max. 

Bicycle-related 

crash 

Bicycle-

vehicle crash 

Number of 

bicycle-vehicle 

crash per year 

14.15 14.59 0 127 

Bicycle-

bicycle crash 

Number of 

bicycle-bicycle 

crash per year 

0.47 0.93 0 6 

Exposure 

Population 

density 

Population per 

square 

kilometre 

64.32 54.52 3.22 280.10 

Traffic flow 

Annual 

average daily 

traffic 

22,023 15,088 1687 96,825 

Population 

socio-

demographics 

Gender 

Proportion of 

male 
0.51 0.02 0.46 0.58 

Proportion of 

female 
0.49 0.02 0.42 0.54 

Age 

Proportion of 

people above 

age 64 

0.10 0.04 0.03 0.24 

Proportion of 

people below 

age 16 

0.28 0.06 0.15 0.47 

Income  

Average 

annual 

household 

income (€) 

56,152 8,640 39,800 75,500 

Land use 
Residential 

area  

Proportion of 

residential area 
0.16 0.07 0.04 0.36 
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Category Factor Attribute Mean S.D. Min. Max. 

Business and 

office area 

Proportion of 

business and 

office area 

0.18 0.12 0.01 0.50 

Green area 
Proportion of 

green area 
0.34 0.14 0.05 0.74 

Road area 

Proportion of 

road, railway, 

and footpath 

area 

0.32 0.08 0.15 0.77 

Road network 

characteristics 

Road density 

Class A road 

(km per km2) 
3.44 1.94 0.16 9.89 

Class B road 

(km per km2) 
0.78 0.92 0 5.13 

Minor road 

(km per km2) 
0.86 0.95 0 4.46 

Connectivity  
Average 

connectivity 
2.33 0.47 0.96 3.20 

Accessibility  
Average 

accessibility 
621.90 77.09 425.10 812.40 

Bus stop 

density 

Bus stop per 

square 

kilometre 

0.03 0.02 0 0.14 

Railway 

station 

density 

Railway 

station per 

square 

kilometre 

0.01 0.03 0 0.20 

Intersection 

density 

Intersection 

per square 

kilometre 

0.39 0.35 0.02 2.54 

 



 

104 

 

8.3 Estimation results 

 

In this study, two types of bicycle-related crash, namely bicycle-vehicle crash and 

bicycle-bicycle crash, will be modelled simultaneously using the proposed multivariate 

Poisson-lognormal model (i.e., K = 2). A multi-collinearity test would be conducted to 

ensure that all variables considered are independent. For instance, the variance inflation 

factor (VIF) for all variables should be less than five. 

 

 

Table 8.2 and Table 8.3 present the parameter estimation results of multivariate and 

univariate Poisson-lognormal regression models. As shown in Table 8.2 and Table 8.3, 

difference in DIC between multivariate Poisson-lognormal model (1910.81) and 

univariate Poisson-lognormal models (1514.33 + 416.78 = 1931.11) is greater than ten. 

This justifies that proposed multivariate Poisson-lognormal regression model 

significantly outperforms the counterpart. In addition, Table 8.4 present the results of 

hyper parameter estimation of multivariate Poisson-lognormal regression model. As 

shown in Table 8.4, variance and covariance of errors are all significantly greater than 

zero. This justifies the existence of over-dispersion. Furthermore, correlation coefficient 

(𝜌12) is significantly greater than zero. This indicates the prevalence of multivariate 

correlation between the counts of different crash types. 

 

As shown in Table 8.2, factors like bicycle usage, traffic volume, household income, 

residential area, road density, accessibility, and intersection density can affect the bicycle-

vehicle crash frequency at the 5% level of significance. On the other hand, factors include 

bicycle usage, household income, road density, connectivity, accessibility, railway 

station, and intersection density can affect the bicycle-bicycle crash frequency at the 5% 

level of significance. 

 

For the crash exposure, bicycle usage is positively associated with both bicycle-vehicle 

(coefficient = 0.32) and bicycle-bicycle crashes (0.25). Also, traffic volume is negatively 

associated with bicycle-vehicle crash (-0.22). In contrast, there is no significant effect for 

traffic volume on bicycle-bicycle crash. For the population characteristics, household 

income is positively associated with both bicycle-vehicle (0.09) and bicycle-bicycle 
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crashes (0.38). For the built environment, bicycle-vehicle crash frequency in residential 

area (-2.42) is lower than that in other areas. However, there is no significant effect for 

land use on bicycle-bicycle crash.  

 

For the road network characteristics, Class B road density (0.008) and accessibility (0.89) 

are positively associated with both bicycle-vehicle and bicycle-bicycle crashes. Also, 

connectivity (1.55) and railway station density (10.95) are positively associated with 

bicycle-bicycle crash. However, there is no significant effect for connectivity and railway 

station density on bicycle-vehicle crash. Furthermore, effects of intersection density on 

bicycle-vehicle crash (0.08) and bicycle-bicycle crash (-0.60) are opposite. 

 

 

 

 



 

106 

 

Table 8.2 Results of parameter estimation of multivariate Poisson-lognormal model 

Category Variable 
Bicycle-vehicle crash Bicycle-bicycle crash 

Mean SD 95%BCI Mean SD 95%BCI 

Intercept Intercept IS IS 

Exposure 

ln (Bicycle usage) 0.32 0.03 0.25 0.37 0.25 0.12 0.03 0.44 

ln (Population) IS IS 

ln (AADT) -0.22 0.17 -0.50 -0.01 IS 

Population socio-demographics Average annual household income 0.09 0.09 0.02 0.15 0.38 0.69 0.14 0.31 

Land use Residential area -2.42 0.62 -3.41 -1.37 IS 

Road network characteristics 

Class B road density 0.008 0.04 0.01 0.15 0.04 0.13 0.01 0.08 

Connectivity IS 1.55 0.29 1.09 2.08 

Accessibility 0.89 0.52 0.18 2.04 2.46 1.65 0.18 5.69 

Railway station density IS 10.95 3.55 5.17 16.82 

Intersection density 0.08 0.14 0.23 0.32 -0.60 0.32 -1.14 -0.09 

Goodness-of-fit 

𝐷̅ 1715.69 

𝐷̂ 1520.57 

𝑃𝐷 195.12 

DIC 1910.81 

 IS denotes insignificant. 



 

107 

 

Table 8.3 Results of parameter estimation of Poisson-lognormal model 

Category Variable 
Bicycle –vehicle crashes Bicycle-bicycle crashes 

Mean SD 95%BCI Mean SD 95%BCI 

Intercept Intercept -4.15 1.59 -6.44 -1.51 -11.78 6.38 -22.67 -2.00 

Exposure 
ln (Bicycle usage) 0.31 0.06 0.22 0.40 0.33 0.13 0.12 0.56 

ln (Population) 0.34 0.17 0.06 0.58 IS 

Land use Residential area -2.43 0.60 -3.42 -1.45 IS 

Road network 

characteristics 

Class A road density 0.05 0.02 0.01 0.08 IS 

Class B road density 0.08 0.04 0.01 0.15 IS 

Connectivity IS 1.64 0.29 1.18 2.14 

Accessibility 1.172 0.65 0.02 2.20 3.98 1.8 0.54 6.84 

Railway station density IS 8.70 3.18 3.45 13.86 

Intersection density IS -0.65 0.32 -1.19 -0.15 

Goodness-of-fit 

𝐷̅ 1332.7 402.03 

𝐷̂ 1151.1 387.27 

𝑃𝐷 181.62 14.76 

DIC 1514.33 416.78 

IS denotes insignificant. 
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Table 8.4 Hyper-parameter estimation for multivariate Poisson-lognormal model 

Parameter Mean  SD 95%BCI 

𝜌12 (𝜌21) 0.99 0.01 0.98 0.99 

𝜎11
2 0.26 0.03 0.21 0.32 

𝜎22
2 0.33 0.14 0.12 0.56 

𝜎12
2(𝜎21

2) 0.28 0.07 0.17 0.40 

 

8.4 Discussions 

 

8.4.1 Bicycle crash exposures 

 

As expected, bicycle usage is positively associated with bicycle-vehicle and bicycle-

bicycle crashes (Ding et al., 2020, 2021a). In contrast, traffic volume is negatively 

associated with bicycle-vehicle crash. This might be explained by the compensation 

theory where drivers adopt more cautious driving behavior to compensate for the 

increased crash propensity arising from a complex driving environment (Chen et al., 

2021). Therefore, risk of possible vehicle-bicycle collision reduces. Indeed, speed limit 

of 20 miles per hour was imposed in central London (Dumbaugh and Rae, 2009; Guerra 

et al., 2020). Furthermore, it could be understood that bicycle-bicycle crash should not be 

sensitive to traffic volume. Hence, there is no significant effect for traffic volume on 

bicycle-bicycle crash.  

 

8.4.2 Demographic and socioeconomics 

 

Effects of population demographics (i.e., gender and age) and socioeconomics (household 

income) on bicycle-related crash are investigated. Results indicate that household income 

is positively associated with both bicycle-vehicle and bicycle-bicycle crashes. Such 

finding is consistent with that of previous studies (Ding et al., 2020; Guo et al., 2018a). 

This should be indicative to targeted road safety education and promotional strategies that 

can increase the safety awareness of bicyclists, and therefore reduce the bicycle crash 

risk. 
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8.4.3 Land use 

 

Effects of land use (i.e., residential, commercial and office, industrial, green area, and 

road area) on bicycle-related crash are examined. Results indicate that proportion of 

residential area is negatively associated with bicycle-vehicle crash. However, there is no 

significant effect for residential area on bicycle-bicycle crash. This could be attributed to 

the implementation of local area traffic management scheme and traffic calming measures 

in the residential area. This should imply more physical separations between bicycles and 

vehicles, and reduction in traffic speed. Therefore, risk of bicycle-vehicle crash would be 

reduced (Zhang et al., 2013). 

 

8.4.4 Road network characteristics 

 

Last but not least, road network characteristics including road density, connectivity, 

accessibility, transit station, and intersection density are also considered. In particular, 

Class B road density is positively associated with bicycle-related crashes. In contrast, 

there is no significant effect for Class A road density on bicycle-related crashes. This 

could be attributed to the difference in design standards and specifications among 

different road types. In particular, Class B roads are the minor arterial and collector roads. 

They usually have lower standard for geometric design like horizontal curves, road width, 

super elevation, and sight distance. Hence, Class B roads should be more sensitive to 

bicycle crash, compared to the counterpart. In addition, intersection density is positively 

associated with bicycle-vehicle crash. This could be because of the higher chance of 

bicycle-vehicle interactions at the intersections (Wong et al., 2007). In contrast, 

intersection density is negatively associated with bicycle-bicycle crash. This could be 

because of the elevated safety awareness of bicyclists when they are approaching the 

intersections, and thus the risk of bicycle-bicycle conflict would be reduced (Vlakveld et 

al., 2021). Furthermore, density of railway station is positively associated with bicycle-

bicycle crash. This could be attributed to frequent loading and unloading activities near 

the major public transport hubs (Li et al., 2018, 2019). 
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For the network topology, average connectivity is positively associated with bicycle-

bicycle crash. Also, average accessibility is positively associated with both bicycle-

vehicle and bicycle-bicycle crashes. This could be attributed to the bicyclist’s route choice 

behaviour since the well-connected paths are usually more preferred. Therefore, frequent 

bicycle activities are expected in the well-integrated areas (Quintero et al., 2013). This is 

particularly true in central London, where both congestion charging scheme and public 

bicycle rental scheme are imposed (Li et al., 2019; Ding et al., 2021b). 

 

8.5 Concluding remarks 

 

This study aims to investigate the effects of possible factors on bicycle crash frequency, 

with which possible correlation between different bicycle crash types is accommodated 

using multivariate Poisson-lognormal approach. Results indicate that proposed 

multivariate model outperforms conventional univariate model, in term of DIC value. For 

instance, factors like bicycle usage, household income, road density, and accessibility are 

positively associated with both bicycle-vehicle and bicycle-bicycle crashes. In contrast, 

traffic volume and proportion of residential area are negatively associated with bicycle-

vehicle crash only. There is no significant effect for traffic volume and land use on 

bicycle-bicycle crash. Furthermore, connectivity and railway station are positively 

associated with bicycle-bicycle crash only. There is no significant effect for connectivity 

and railway station on bicycle-vehicle crash. 

 

Nevertheless, some limitations of this study should be highlighted. For instance, problem 

of excessive zero observations may exist in bicycle-bicycle crashes. This could result in 

bias in parameter estimation and poor model fit. Therefore, it is worth investigating for 

the use of data-driven approaches to resolve the problem of unbalanced crash data (Zhao 

et al., 2018; Shankar et al., 1997; Ding et al., 2022b). Furthermore, effect of temporal 

instability on the association could have been considered if the observation period had 

been extended. 
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Chapter 9 A deep generative approach for excessive zero 

observation in safety analysis 

 

9.1 Introduction  

 

Road safety has long been recognized as a major public health and social issue worldwide 

(Pei et al., 2016; Elamrani et al., 2020). In 2016, there were about 1.35 million road 

fatalities and over 20 million road injuries round the world. Road crashes are expected to 

become the fifth leading cause of death by 2030 (WHO, 2018). Crash frequency models 

are often established to measure the relationship between crash occurrence and possible 

explanatory factors. Therefore, effective countermeasures can be implemented to mitigate 

related crash risk and improve overall road safety. 

 

It is well recognized that crashes are rare events. This gives rise to the problem of 

unbalanced crash and non-crash cases when developing the crash frequency models 

(Abdel-Aty et al., 2004). For instance, imbalanced data problems may also have existed 

in the proposed bicycle crash frequency models in the previous chapters. Prior studies 

indicated that excess zero observations can result in bias in parameter estimation and poor 

model fit (Miaou, 1994; Shankar et al., 1997). In addition, it can have adverse impact on 

the identification of crash explanatory factors (Pei et al., 2016; Yu et al., 2020; Cai et al., 

2020; Washington et al., 2011). 

 

Although advanced statistical methods and data-driven approaches have developed to 

model the zero-inflated crash data. These approaches also have deficiencies including 

sample size, data inconsistency problems, correlations between variables, training 

stability, robustness and flexibility. In particular, the existed synthetic methods assumed 

that all variables in the data should be real-valued. They are not capable of handling 

categorical and nominal data. To this end, a deep generative approach – augmented 

variational autoencoder – is proposed to generate synthetic crash data for the association 

measure between crash and possible explanatory factors. This approach is characterized 

by a factorized generative model and refined objective function. For instance, the 
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generative model can handle heterogeneous data including real-valued, nominal and 

ordinal distributions. On the other hand, the refined objective function can control for the 

random effect by better recognizing both the zero-crash and non-zero crash cases. In this 

study, comprehensive traffic and crash data of multiple distribution types in Hong Kong 

between 2014 and 2016 are used. To assess the data generation performance of the 

proposed augmented variational autoencoder method, a conventional data synthesis 

technique (synthetic minority oversampling technique-nominal continuous) is also 

considered. Findings of this study should shed light on both researchers and practitioners 

for the development of bicycle crash frequency models, with which the problem of 

excessive zero observations is prevalent when highly disaggregated traffic and crash data 

by time and space are used. 

 

The reminder of this chapter is organized as follows. Proposed augmented variational 

autoencoder method is described in Section 9.2. Procedure of data preparation is 

described in Section 9.3. Then, results and discussions are presented in Section 9.4 and 

Section 9.5, respectively. Lastly, key findings are summarized in Section 9.6. 

 

9.2 Augmented variational autoencoder 

 

(1) Variational Autoencoder method 

 

Variational Autoencoder method is a deep generative model based on highly-structured 

homogeneous data generation. It can exploit the correlations between variables and 

capture the complicated dependencies between samples (Yang et al., 2017; Razavi et al., 

2019; Walker et al., 2017). Previous studies suggested that the variational autoencoder 

method is capable of generation and generalization since the distributions of latent 

variables are restrained to a specific paradigm. Therefore, a completely new dataset can 

be generated from the latent space (Boquet et al., 2020). 

 

Let 𝐗 = {𝒙𝑖}𝑖=1
𝑁  denotes a dataset consisting of 𝑁 observations, each observation 𝒙 ∈

ℝ𝑚  denotes a 𝑚-dimensional vector, with which the value of every element is real 

number. In this study, a vector represents the values of different traffic and crash attributes 
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of an entity. To generate a realistic sample, a critical step is to correctly learn the ground-

truth distribution of 𝒙. Let 𝑝(𝒙|𝜃) denotes the conditional probability of 𝒙 given 𝜃, 

then the classical parameter estimation problem can be given by, 

 

                            𝜃 = arg max
𝜃

𝑝(𝐗|𝜃)                      (9.1) 

 

To estimate the parameters, maximum likelihood estimation and maximum a posterior 

estimation approaches are commonly used (Lord and Mannering, 2010). However, as 

𝑝(𝐗|𝜃) is often non-convex, estimation of 𝜃  can be hindered. To this end, a latent 

variable 𝒛 ∈ ℝ𝑑 (𝑑 ≪ 𝑚) proposed by Kingma and Welling (2013) can be applied to 

resolve the non-convex problem, using variational inference approach. In particular, 

latent variable 𝒛 denotes a low-dimensional system, and 𝒙 can be generated from 𝒛 in 

a random process. Therefore, conditional probability of 𝒙  can be estimated by 

integrating 𝑝(𝒙|𝒛, 𝜃)  with respect to a prior distribution of 𝒛  using the following 

formulation, 

 

                         𝑝(𝒙|𝜃) = ∫ 𝑝(𝒙|𝒛, 𝜃)𝑝(𝒛)𝑑𝒛                 (9.2)                

 

However, marginal likelihood of Equation 9.2 is intractable. Computation time for the 

simulation-based optimization solutions can be considerable. To overcome the problem, 

as shown in Figure 9.1, an ensemble paradigm proposed by Kingma and Welling (2013) 

can be used to solve the optimization problem. In particular, generative and recognition 

models are set out to determine the posterior distribution of 𝑝(𝒛|𝒙, 𝜃) , where (1) 

generative model 𝑝(𝒙|𝒛, 𝜃)  can produce the reconstructed sample based on the 

conditional probability distribution of latent vector 𝒛  and (2) recognition model 

𝑞(𝒛|𝒙, 𝜑)  can produce the latent vector 𝒛  based on the conditional probability 

distribution of input vector 𝒙 respectively. 
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Figure 9.1 Framework of VAE Method 

 

Kullback–Leibler divergence 𝐷𝐾𝐿(∙) is applied to measure the degree of approximation 

by the recognition model 𝑞(𝒛|𝒙, 𝜑) to the posterior distribution 𝑝(𝒛|𝒙, 𝜃). Kullback–

Leibler divergence is specified as, 

 

                             min
𝑞(𝒛)

𝐷𝐾𝐿(𝑞(𝒛)|𝑝(𝒛|𝒙))                  (9.3) 

 

Based on Equation 9.3, a variational lower bound of the likelihood of having a sample 

can be derived by, 

 

              log 𝑝(𝒙) ≥ −{𝐷𝐾𝐿(𝑞(𝒛|𝒙)|𝑝(𝒛)) − 𝔼𝑞(𝒛|𝒙)[log 𝑝(𝒙|𝒛)]}      (9.4) 

 

The estimate given by Equation 9.4 can also be defined as the Evidence Lower Bound. 

The first term on the right side of Equation is the Kullback–Leibler divergence between 

the recognition model and posterior distribution, and the second term is the expected 

value of reconstruction error. 

 

As the ultimate objective is to maximize the marginal likelihood, the objective function 

defined in Equation 9.3 can be converted into the maximization of the evidence lower 

bound (i.e., minimization of the magnitude of the evidence lower bound which is 

negative) with respect to 𝜃 and 𝜑 using the deep neural networks approach (Kingma 

and Welling, 2013; Rezende et al., 2014) specified as, 
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          min
𝜃,𝜑

ℒ(𝜃, 𝜑) = −𝔼𝑞(𝒛|𝒙,𝜑)(log𝑝(𝒙|𝒛, 𝜃)) + 𝐷𝐾𝐿(𝑞(𝒛|𝒙, 𝜑)||𝑝(𝒛))    (9.5)       

 

(2) Augmented Variational Autoencoder method 

 

The variational autoencoder method is recognized as a powerful generator for the 

synthesis of homogeneous data with which all variables are constrained to have the same 

distribution type (normally multivariate Gaussian distribution) and the parameters of 

probability density function are optimized using the deep neural networks method 

(Boquet et al., 2020). However, for a typical crash dataset, variables can be of different 

types, e.g., continuous, nominal, and ordinal. The above mentioned variational 

autoencoder method is not capable of processing heterogeneous data. To resolve the 

problem, the generative model in the variational autoencoder method is modified by 

factorizing the unified conditional probability density function into several variable-

specific probability functions, as shown in Figure 9.2. To be specific, let 𝐗 = {𝒙𝑖}𝑖=1
𝑁  

denote a heterogeneous crash dataset. Each variable 𝒙 ∈ ℝ𝑚 in the sample dataset can 

either be continuous, categorical or ordinal in the modified generative model, therefore, 

probability function 𝒉𝑚 of each parameter can be independently characterized using the 

deep neural networks method with the specification given by,  

 

                           𝑝(𝒙|𝒛) = ∏ 𝑝(𝒙𝑘|𝒛)𝑘                       (9.6) 

 

Where 𝑝(𝒙𝑘|𝒛) is referred as the generation of the 𝑘-th variable in crash dataset.  

 

 

 

Figure 9.2 The modified generative model 
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With the factorization structure of the generative model, each variable in the crash dataset 

can be characterized by an appropriate probability function. Notably, the structure of 

recognition model in the variational autoencoder method remains unchanged. This 

ensures that the latent space can accommodate the variations in the interactions between 

variables.  

 

Generally, objective function of the generative model is determined using non-zero crash 

cases. However, road crash is a random event. Entities that are identical can have different 

numbers of crashes. Hence, it is crucial to incorporate the zero crash cases into the crash 

frequency models. Therefore, the proposed models can better recognize the crash 

occurrences, given that the data misspecification problem is avoided.  

 

Let 𝐘 = {𝒚𝑖}𝑖=1
𝑈  denote the zero-crash dataset and 𝒚𝑖 refers to the i-th observation. In 

the training stage, the zero-crash cases are fed into the recognition model to derive the 

latent variables 𝒗 ∈ ℝ𝑚. Previous studies showed that a latent space can be used to detect 

the anomalous inputs from a normal sample (Xu et al., 2018b; Park et al., 2018). 

Therefore, the latent variables of the zero-crash dataset are used for the estimation of 

centroid given by,  

                              𝒗̅ =
∑ 𝒗𝑖

𝑈
𝑖=1

𝑈
                           (9.7) 

 

With the latent space, the generative model is capable of synthesizing crash dataset that 

has excessive zero-crash observations, given that the difference in the distributions 

between the recognition model and the latent space of zero-crash cases is immense 

enough. Therefore, Kullback–Leibler divergence between 𝑞(𝒛|𝒙, 𝜑)  and 𝑝(𝒗̅)  is 

specified as the distance metric 𝛼 given by, 

 

                        𝛼 = 𝐷𝐾𝐿(𝑞(𝒛|𝒙, 𝜑)|𝑝(𝒗̅))                     (9.8) 

 

Where 𝛼  can be regarded as a regularization term or penalty factor that can avoid 

overfitting of the crash data, with which the original and zero-crash datasets are similar.  
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Therefore, it can increase the robustness and degree of intelligent of the generative model. 

Eventually, the optimization problem given by Equation 9.5 is modified as, 

 

     min
𝜃,𝜑

ℒ(𝜃, 𝜑) = −𝔼𝑞(𝒛|𝒙,𝜑)(log𝑝(𝒙|𝒛, 𝜃)) + 𝐷𝐾𝐿(𝑞(𝒛|𝒙, 𝜑)|𝑝(𝒛)) − 𝛼  (9.9)           

 

To estimate the model parameters 𝜃  and 𝜑 , the augmented variational autoencoder 

model is implemented using the multilayer perceptron approach. 

 

• Generative model 

 

For every variable 𝒙𝑘 of the crash dataset, the probability density function is calibrated 

using the multilayer perceptron approach. The generative processes for a few common 

data types (e.g., real-valued, count, nominal, and ordinal) are given as follows. 

 

(a) Real-valued data: Gaussian distribution is adopted to characterize the real-valued data 

specified as, 

 

𝑝(𝒙𝑘) = 𝒩(𝒙𝑘|𝜇𝑘(𝒛), 𝜎𝑘
2(𝒛))          (9.10) 

 

Where 𝜇𝑘(𝒛) and 𝜎𝑘
2(𝒛) refer to the mean and variance of Gaussian distribution, that 

can be generated by the three-layer multilayer perceptron. 

 

(b) Count data: Poisson distribution is adopted to characterize the count data specified as, 

 

𝑝(𝒙𝑘) = Poisson(𝒙𝑘|𝜆𝑘(𝒛)) =
𝜆𝑘(𝒛)𝒙𝑘exp (−𝜆𝑘(𝒛))

𝒙𝑘!
       (9.11) 

 

Where 𝜆𝑘(𝒛)  refers to the mean of Poisson distribution, with which the mean is 

determined using the three-layer multilayer perceptron with learnable parameters 𝜃𝑘 

specified as,  

𝜆𝑘(𝒛) = 𝑓𝜃𝑘
(𝒛)             (9.12) 
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(c) Nominal data: Given that there are Q possible discrete outcomes, probability of having 

outcome r is determined using the logit function specified as,  

 

𝑝(𝒙𝑘 = 𝑟) =
exp (−𝜋𝑟(𝒛))

∑ exp (−𝜋𝑞(𝒛))
𝑄
𝑞=1

          (9.13) 

 

Which the parameters [𝜋1(𝒛), 𝜋2(𝒛), ⋯ , 𝜋𝑄(𝒛)]  are determined using a three-layer 

multilayer perceptron.  

 

(d) Ordinal data: Probability of having the outcome r is determined using the ordered logit 

technique specified as, 

 

𝑝(𝒙𝑘 = 𝑟) = 𝑝(𝒙𝑘 ≤ 𝑟) − 𝑝(𝒙𝑘 ≤ 𝑟 − 1)     (9.14) 

 

And 

 

𝑝(𝒙𝑘 ≤ 𝑟) =
1

1+exp(−(𝜔𝑟(𝒛)−𝜓𝑘(𝒛)))
       (9.15) 

 

Where 𝜔𝑟(𝒛) is the threshold of the observable outcome 𝑟, 𝜓𝑘(𝒛) is the unobserved 

outcome of 𝒙𝑘, and the parameters [𝜓𝑘(𝒛), 𝜔1(𝒛), 𝜔2(𝒛), ⋯ , 𝜔𝑅−1(𝒛)] are determined 

using a three-layer multilayer perceptron. 

 

• Recognition model 

 

For the crash dataset 𝒙 , assume that the posterior inference is 𝑞(𝒛|𝒙, 𝜑) =

𝒩(𝒛|𝝁𝒛, 𝑑𝑖𝑎𝑔(𝝈𝒛
2)). Then, a three-layer multilayer perceptron is deployed to determine 

the vectors of mean 𝝁𝒛 and diagonal covariance 𝝈𝒛
2 as follows, 

 

                           [𝝁𝒛, 𝝈𝒛
2] = 𝑓𝜑(𝒙)                       (9.16) 
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Note that latent variable 𝒛 is extracted from the recognition 𝑞(𝒛|𝒙, 𝜑). However, as the 

conventional optimizer - stochastic gradient descent – is not capable of estimating the 

differential of sample operator (Bottou, 2010), a re-parameterization trick is adopted to 

extract the differentiable samples from 𝑞(𝒛|𝒙, 𝜑) (Kingma and Welling, 2013). 

 

The size of unobserved layers of the above mentioned multilayer perceptron is set at 2𝑚. 

As the prior and posterior of latent variable 𝒛 both follow the Gaussian distribution, the 

objective function can be refined as follows, 

 

min
𝜃,𝜑

ℒ(𝜃, 𝜑) = − ∑ (∏ log 𝑝(𝒙𝑘|𝒛𝑗)𝑚
𝑘=1 )𝐽

𝑗=1 −
1

2
∑ (1 + log 𝜎𝑖

2 − 𝜇𝑖
2 − 𝜎𝑖

2)𝑚
𝑖=1 − 𝛼  (9.17) 

 

Where 𝐽  denotes the number of sampling of 𝒛 , and 𝜇𝑖  and 𝜎𝑖
2  are the 𝑖 -th 

components of 𝝁𝒛 and 𝝈𝒛
2 . 

 

To synthesize the crash dataset, a vector 𝒙∗ of 𝑚 elements with normally distributed 

noise on the ground-truth crash dataset 𝒙 is denoted as the input of the generative model. 

The model output is a reconstructed vector 𝒙∗̂ that has the same data structure as 𝒙∗. To 

control for the random effect in the recognition of non-zero crash and zero-crash cases, a 

generative likelihood 𝜌 is defined to indicate the case classification accuracy as, 

 

𝜌 = ∑ (∏ log 𝑝(𝒙𝑘|𝒛𝑗)𝑚
𝑘=1 )𝐽

𝑗=1               (9.18) 

 

Where 𝒙∗  denotes the non-zero crash cases when 𝜌 > 0.5, and the zero-crash cases 

when otherwise. 

 

To testify the capability of data generation of the proposed augmented variational 

autoencoder method, a conventional data generative approach - synthetic minority 

oversampling technique-nominal continuous - is also considered. Synthetic minority 

over-sampling technique is a classical over-sampling approach. However, it can process 

the real-valued data only. Therefore, an alternative approach - synthetic minority 

oversampling technique-nominal continuous has been proposed. This approach can 
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generate synthetic data for a combination of real-valued and nominal data (Chawla et al., 

2002). For real-valued data, k-nearest neighbours are generated based on the minority 

class (i.e., non-zero crash observations). Then, a new sample can be created using the k-

neighbours. In this study, K is set at 5, in accordance with the prior studies (Cai et al., 

2020; Yuan et al., 2019). For nominal data, difference can be determined based on the 

standard deviations of real-valued data of the minority class. 

 

To assess the capability of the proposed augmented variational autoencoder method for 

data generation, Jensen-Shannon divergence (JS) can be applied (Lin, 1991; Fuglede and 

Topose, 2004). JS divergence evaluates the difference in the probability distributions 

between the synthesized and original data. It can be given by, 

 

     JSD(𝑃||𝑄) =
1

2
∑ 𝑃(𝑋𝑖) log (

2𝑃(𝑋𝑖)

𝑃(𝑋𝑖)+𝑄(𝑋𝑗)
) +

1

2
∑ 𝑄(𝑋𝑗)log (

2𝑄(𝑋𝑗)

𝑃(𝑋𝑖)+𝑄(𝑋𝑗)
)     (9.19) 

 

𝑀 =
1

2
(𝑃 + 𝑄)          (9.20) 

 

Where P and Q denote the probability mass functions of original data 𝑋𝑖 and synthesized 

data 𝑋𝑗, respectively. 

 

9.3 Data 

 

In this study, crash and traffic data in Hong Kong in the period between 2014 and 2016 

are used. Traffic count data are available from the Annual Traffic Census (ATC) database. 

ATC covers 88.5% (i.e., 1860 km) of all trafficable roads in Hong Kong. Of the roads 

covered, 89 road segments have detailed traffic counts by hour of the day and vehicle 

type. As shown in Figure 9.3, the road segments under investigation are widely 

distributed in the whole territory. In the ATC system, the road segments are defined in 

such a way (e.g., between major intersections) that the geometric design and traffic flow 

characteristics are homogeneous along each segment (Pei et al., 2016). 
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Figure 9.3 Locations of the road segments under investigation 

 

On the other hand, crash data and roadway inventory data are available from the Transport 

Information System (TIS) and Hong Kong Road Network Database respectively. In the 

TIS, information on the location, date and time, and crash severity of every crash 

involving personal injury are available. In Hong Kong, crashes can be categorized into 

three severity levels, namely fatal crash, severe injury crash, and slight injury crash, in 

accordance with the degree of injury of the most seriously injured person in a crash. Since 

the fatal and severe injury crashes are rare, they are combined into one single group, 

namely fatal and severe injury crashes. In the Hong Kong Road Network Database, 

information on road class, number of lanes, lane width, horizontal and vertical alignment, 

intersection control, and speed limit of every road segment are available. In this study, 

information on crash incidence, traffic flow, and roadway characteristics are mapped to 

the corresponding road segments under investigation using the geographical information 

system technique. 

 

In the ATC dataset, annual average hourly traffic flow in the 16-hour period between 7.00 

am and 11.00 pm on weekdays are available. This study only considers the crashes 

occurred in the concerned time periods. Total number of observations is 89 (road 

segment) x 16 (hour) x 3 (year) = 4,272. Of the 4,272 observations, 2,020 (47.3%) have 
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zero crash. For fatal and severe injury crashes, 3,858 (90.3%) have zero crash. Problem 

of excessive zero observations is more prevalent for fatal and severe injury crashes. Table 

9.1 summarizes the data used in this study. As shown in Table 9.1, not all variables are 

real-valued. For example, total and fatal and severe injury crash frequencies are count 

data, road class is nominal, and speed limit is ordinal. 

 

Table 9.1 Summary statistics of the sample 

Variable Mean S.D. Min. Max. Data type 

Total crash 0.83 1.28 0 22 Count 

Fatal and severe injury crash 0.11 0.34 0 3 Count 

Road length (km) 2.97 3.47 0.08 19.08 Real-valued 

Lane width (m) 3.62 0.52 2.70 6.20 Real-valued 

Intersection density (per km) 1.90 3.10 0 13.73 Real-valued 

Log (traffic flow) 3.21 0.46 0.67 4.01 Real-valued 

Road class (1 = Major road; 0 = 

otherwise) 
0.92 0.27 0 1 Nominal 

Presence of bus lane (1 = Yes; 0 = 

otherwise) 
0.16 0.36 0 1 Nominal 

Number of lanes  4.85 2.32 2 12 Ordinal 

Speed limit (km/h) 64.63 13.09 30 100 Ordinal 

 

9.4 Estimation results  

 

Separate analyses are conducted for (i) total crashes; and (ii) fatal and severe injury 

crashes. Specifically, the problem of unbalanced crash data is more prevalent for fatal and 

severe injury crashes. For total crashes, frequency models based on original and synthetic 

data are compared to justify the suitability of the proposed data generative method. For 

fatal and severe injury crashes, frequency models based on the balanced data are 

developed. Hence, explanatory factors that affect the occurrence of fatal and severe injury 

crashes would be identified. 
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9.4.1 Temporal stability 

 

Temporal stability of crash frequency models is also assessed. For instance, the likelihood 

ratio test is conducted to examine the temporal stability across different time periods (i.e., 

year), using the formulation given as (Washington et al., 2011), 

 

                   𝜒2 = −2[𝐿𝐿(𝛽𝑚1𝑚2
) − 𝐿𝐿(𝛽𝑚1

)]                 (9.21)    

                     

Where 𝐿𝐿(𝛽𝑚1𝑚2
) is the log-likelihood at convergence for the converged parameters 

of the time period m1 using the data from the time period m2, and 𝐿𝐿(𝛽𝑚1
) is the log-

likelihood at convergence for the converged parameters of the time period 𝑚1. 

 

Null hypothesis of the test is that the parameters are constant across different years. Table 

9.2 illustrates the results of likelihood ratio tests. As shown in Table 9.2, for total crashes, 

three out of six chi-square statistics are significant at the 5% level. For fatal and severe 

injury crashes, three out of six chi-square statistics are significant, again at the 5% level. 

This implies that temporal instability should be considered when modelling the crash 

frequency. Hence, separate crash frequency models for different years should be 

established. 

 

Table 9.2 Results of likelihood ratio test 

Total crashes 

Year 2014 2015 2016 

2014 N/A 
12.25 (5) 

[0.031] 

7.57 (5) 

[0.181] 

2015 
10.85 (6) 

[0.093] 
N/A 

84.48 (4) 

[<0.001] 

2016 
38.95 (6) 

[<0.001] 

5.65 (5) 

[0.342] 
N/A 

Fatal and severe injury crashes 

Year 2014 2015 2016 
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2014 N/A 
1.91 (2) 

[0.385] 

8.12 (2) 

[0.017] 

2015 
4.71 (3) 

[0.007] 
N/A 

5.22 (3) 

[0.156] 

2016 
9.86 (2) 

[0.194] 

25.81 (4) 

[<0.001] 
N/A 

Note: Degrees of freedom in the parenthesis and significant levels in the brackets 

 

9.4.2 Total crashes 

 

To assess the performance of proposed data generation method, total crash frequency 

models based on synthetic and original data are established. Specifically, the zero-crash 

cases remain unaltered, and the non-zero crash cases are synthesized using different deep 

learning approaches (Scenario 1 – Original data; Scenario 2 – Synthetic data using 

augmented variational autoencoder method; and Scenario 3 – Synthetic data using 

synthetic minority oversampling technique-nominal continuous method). As shown in 

Table 9.3, for each dataset, sample size, number of zero-crash case, and number of non-

zero crash case remain unchanged in the data generation process. For the performance 

assessment, both statistical fit and inferences of the explanatory factors are considered 

(Pei et al., 2016; Yu et al., 2020). 

 

Table 9.3 Number of observations 

Dataset Scenario 1 Scenario 2 Scenario 3 

2014 

Zero crash 

case 
758 758 758 

Non-zero 

crash case 
666 

666 

(Synthetic data) 

666 

(Synthetic data) 

Sample size 1424 1424 1424 

2015 
Zero crash 

case 
737 737 737 
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Dataset Scenario 1 Scenario 2 Scenario 3 

Non-zero 

crash case 
687 

687 

(Synthetic data) 

687 

(Synthetic data) 

Sample size 1424 1424 1424 

2016 

Zero crash 

case 
751 751 751 

Non-zero 

crash case 
673 

673 

(Synthetic data) 

673 

(Synthetic data) 

Sample size 1424 1424 1424 

 

To assess the prediction accuracy of the proposed crash frequency models, the dataset is 

stratified into two: (i) training (80%), and (ii) test data (20%) (Gooch et al., 2018). As 

over-dispersion is prevalent, negative binomial regression approach is adopted. 

Additionally, random parameter approach is used to account for the effect of unobserved 

heterogeneity. 

 

Table 9.4 summaries the results of prediction accuracy assessment based on root mean 

square error (RMSE) and mean absolute error (MSE) (Huo et al., 2020). As shown in 

Table 9.4, there is no significant difference in the root mean square error and mean 

absolute error between the models based on original data (Scenario 1) and synthetic data 

using the augmented variational autoencoder method (Scenario 2), for all datasets. 

However, the mean absolute error and root mean square error of the model based on 

synthetic data using the synthetic minority oversampling technique-nominal continuous 

method (Scenario 3) are remarkably higher than those using the augmented variational 

autoencoder method (Scenario 2) in general. This justifies the capability of the proposed 

deep generative approach. Figure 9.4 (a)-(h) illustrates the distributions of original data, 

synthetic data using the augmented variational autoencoder method, and synthetic data 

using the synthetic minority oversampling technique-nominal continuous method, for 

2014 dataset. As shown in Figure 9.4(a)-(h), deviations of distributions of synthetic data 

based on the augmented variational autoencoder method from that of original data are 
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much smaller, compared to that based on the synthetic minority oversampling technique-

nominal continuous method, for all variables. 

 

Table 9.4 Prediction accuracy of total crash frequency models 

Dataset Scenario 1 Scenario 2 Scenario 3 

2014 
MSE 0.923 0.938 1.042 

RMSE 1.187 1.269 1.395 

2015 
MSE 0.844 0.881 0.997 

RMSE 1.060 1.123 1.264 

2016 
MSE 0.938 0.959 1.045 

RMSE 1.202 1.276 1.421 

 

 

    

(a) Road length (b) Lane width 

    

(c) Intersection density (d) Traffic flow 
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(e) Road class (f) Presence of bus lane 

    

(g) Number of lane (h) Speed limit 

 

Figure 9.4 Distributions of synthesized data (2014) 

 

Table 9.5 presents the results of Jensen-Shannon divergence. As shown in Table 9.5, 

values of the Jensen-Shannon divergence of synthetic data based on the augmented 

variational autoencoder method are comparable to that based on the synthetic minority 

oversampling technique-nominal continuous method, for the real-valued variables 

including road length, intersection density, and log (traffic flow). This implies that both 

data generation approaches are capable of synthesizing simple real-valued data. However, 

the augmented variational autoencoder method is superior to the synthetic minority 

oversampling technique-nominal continuous method for the real-valued data that have 

multi-modal distributions (with remarkably smaller Jensen-Shannon divergence and as 

indicated in Figure 9.4) such as average lane width. As also shown in Table 9.5, the 

augmented variational autoencoder method is superior for the nominal and ordinal 

variables including road class, presence of bus lane, number of lanes, and speed limit. 
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Table 9.5 Jensen-Shannon divergence of synthetic data based on data generation 

approaches 

Variable 

2014 2015 2016 

Scenario 

2 

Scenario 

3 

Scenario 

2 

Scenario 

3 

Scenario 

2 

Scenario 

3 

Road length 0.014 0.020 0.015 0.019 0.012 0.022 

Lane width 0.012 0.058 0.010 0.064 0.012 0.056 

Intersection 

density 
0.008 0.014 0.011 0.016 0.007 0.016 

Log (traffic 

flow) 
0.009 0.013 0.007 0.020 0.008 0.017 

Road class 0.002 0.006 0.002 0.007 0.003 0.006 

Presence of bus 

lane 
0.001 0.005 0.002 0.008 0.001 0.006 

Number of lanes 0.005 0.056 0.007 0.061 0.006 0.060 

Speed limit 0.021 0.037 0.025 0.049 0.020 0.047 

 

Table 9.6 illustrates the results of parameter estimation for total crash frequency using 

correlated random parameter negative binomial regression method. As shown in Table 

9.6, over-dispersions are significant at the 5% level in all models. Results of the total 

crash frequency models based on original and synthetic data are given as follows.  

 

• Scenario 1 

 

As shown in Table 9.6, effects of road length, lane width, and traffic flow are randomly 

distributed. For instance, road length is positively associated with total crash frequency 

(marginal effect: 0.05 to 0.07) at the 1% level of significance. Such the effect is randomly 

distributed in all years. In addition, traffic flow is positively associated with total crash 

frequency (marginal effect: 0.15 to 0.66) at the 1% level of significance. Such effect is 

randomly distributed in 2014 and 2016. Furthermore, lane width is negatively associated 

with total crash frequency (marginal effect: -0.34 to -0.11) at the 1% level of significance 

in 2015 and 2016. Again, such effect is randomly distributed in 2015.  
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Table 9.7 illustrates the results of Cholesky matrix for the correlations between random 

parameters. As shown in Table 9.7, there are negative correlations between the random 

parameters of traffic flow and road length in 2014 (-0.719) and 2016 (-0.350). This 

implies that the effects of random components of traffic flow and road length are mixed. 

On the other hand, there is negative correlation between the random parameters of road 

length and lane width in 2015 (-0.936). 

 

As also shown in Table 9.6, effects of intersection density, road class and number of lanes 

on total crash frequency are fixed. For instance, intersection density is negatively 

associated with total crash frequency (marginal effect: -0.02) at the 5% level of 

significance in 2014 only. In addition, total crash risk of major road is significantly higher 

than that of minor road (marginal effect: 0.39) at the 5% level in 2014 only. Furthermore, 

number of lanes is positively associated with total crash frequency (marginal effect: 0.06) 

at the 1% level of significance in 2014 only. Nevertheless, effects of presence of bus lane 

and speed limit on total crash frequency are not significant in all three years. 

 

• Scenario 2 and Scenario 3 

  

As shown in Table 9.6, goodness-of-fit, in term of Akaike information criterion (AIC) 

and Bayesian information criterion (BIC), amongst the models based on original data 

(Scenario 1), synthetic data using the augmented variational autoencoder method 

(Scenario 2), and synthetic data using the synthetic minority oversampling technique-

nominal continuous method (Scenario 3) are comparable. However, effects of 

explanatory factors as revealed in the crash frequency model based on original data are 

similar to that based on synthetic data using the augmented variational autoencoder 

method (Scenario 2) only. For the latter (i.e., Scenario 2), effects of traffic flow, road 

length and lane width on total crash frequency are randomly distributed. In addition, as 

also shown in Table 9.7, there are negative correlations between the random parameters 

of traffic flow and road length in 2014 (-0.674) and 2016 (-0.409), and between those of 

road length and lane width in 2015 (-0.952). Furthermore, consistent with Scenario 1, 

effects of intersection density, road class and number of lanes on total crash frequency 
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are fixed. For instance, intersection density is negatively associated with total crash 

frequency at the 5% level of significance, total crash frequency of major road is 

significantly higher than that of minor road at the 5% level, and number of lanes is 

positively associated with total crash frequency at the 1% level of significance in 2014 

only. Finally, effects of speed limit and presence of bus lane on total crash frequency are 

not significant in all years. Above finding justifies that the proposed the augmented 

variational autoencoder method can generate crash data that have similar inferences, 

compared with that based on the original data. In contrast, effects of explanatory factors 

as revealed in the crash frequency models based on synthetic data using the synthetic 

minority oversampling technique-nominal continuous method (Scenario 3) and original 

data (Scenario 1) are different. For example, effects of the factors including road class, 

speed limit and presence of bus lane on total crash frequency as revealed in Scenario 3 

are different from that in Scenario 1 and Scenario 2.  

 

Table 9.6 Results of parameter estimation for total crashes 

Variable 

Scenario 1 Scenario 2 Scenario 3 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

2014 

Constant  -2.11** N/A -2.73** N/A -1.50** N/A 

Road length  
Mean 0.10** 0.07 0.10** 0.07 0.09** 0.06 

S.D. 2.41** N/A 2.21** N/A 0.09** N/A 

Lane width  IS IS IS IS IS IS 

Intersection 

density  

Mean 
-0.03* -0.02 -0.03* -0.02 

-0.04** -0.03 

S.D. 0.04** N/A 

Log (Traffic 

flow) 

Mean 0.21** 0.15 0.38** 0.25 
0.38** 0.27 

S.D. 0.08** N/A 0.14** N/A 

Road class 0.57* 0.39 0.48* 0.31 IS IS 

Presence of bus lane IS IS IS IS -0.52** -0.37 

Number of lanes 0.09** 0.06 0.08** 0.05 0.05* 0.03 

Speed limit IS IS IS IS IS IS 
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Variable 

Scenario 1 Scenario 2 Scenario 3 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

Number of 

observations  
1424 1424 1424 

Mean 0.83 0.83 0.83 

Variance 1.62 1.62 1.51 

Over-dispersion 

parameter 
2.854** 4.363** 7.989** 

Log likelihood at 

convergence 
-1711.15 -1705.60 -1704.74 

AIC 3.11 3.12 3.12 

BIC 50.46 50.47 50.47 

2015 

Constant  -0.73 N/A -0.92 N/A -1.68** N/A 

Road length  
Mean 0.08** 0.05 0.09** 0.06 0.12** 0.08 

S.D. 2.13** N/A 2.06** N/A 2.18** N/A 

Lane width  
Mean -0.51** -0.34 -0.46** -0.30 -0.25** -0.16 

S.D. 0.12** N/A 0.15** N/A 0.14** N/A 

Intersection density  IS IS IS IS IS IS 

Log (Traffic flow) 0.57** 0.38 0.65** 0.43 0.86** 0.54 

Road class IS IS IS IS IS IS 

Presence of bus lane IS IS IS IS -0.63** -0.39 

Number of lanes IS IS IS IS IS IS 

Speed limit IS IS IS IS -0.01** -0.01 

Number of 

observations 
1424 1424 1424 

Mean 0.83 0.83 0.80 

Variance 1.65 1.65 1.41 
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Variable 

Scenario 1 Scenario 2 Scenario 3 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

Over-dispersion 

parameter 
3.04** 2.96** 3.617** 

Log likelihood at 

convergence 
-1688.81 -1690.63 -1613.14 

AIC 3.14 3.13 3.23 

BIC 50.49 50.49 50.58 

2016 

Constant  -3.23** N/A -3.45** N/A -2.94** N/A 

Road length  
Mean 0.08** 0.05 0.08** 0.05 0.11** 0.07 

S.D. 2.66** N/A 2.36** N/A 1.94** N/A 

Lane width  -0.18** -0.11 -0.17** -0.13 IS IS 

Intersection density  IS IS IS IS IS IS 

Log (Traffic 

flow) 

Mean 1.04** 0.66 1.01** 0.63 1.02** 0.66 

S.D. 0.50** N/A 0.15** N/A 0.19** N/A 

Road class IS IS IS IS IS IS 

Presence of bus lane IS IS IS IS -0.42** -0.27 

Number of lanes IS IS IS IS IS IS 

Speed limit IS IS IS IS -0.01** -0.01 

Number of 

observations 
1424 1424 1424 

Mean 0.83 0.83 0.84 

Variance 1.61 1.61 1.56 

Over-dispersion 

parameter 
4.87** 5.51** 5.71** 

Log likelihood at 

convergence 
-1697.73 -1688.64 -1719.02 

AIC 3.13 3.14 3.10 
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Variable 

Scenario 1 Scenario 2 Scenario 3 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

BIC 50.48 50.49 50.45 

* and ** denote statistical significance at the 5% and 1% levels respectively; IS denotes 

insignificant 

 

Table 9.7 Cholesky matrix for the correlations between random parameters  

2014 

 

Scenario 1 Scenario 2 Scenario 3 

Road 

length 

Log 

(Traffic 

flow) 

Log 

(Traffic 

flow) 

Road 

length 

Road 

length 

Intersection 

density 

Road length 

2.41 

(201.90) 

[1.000] 

-0.06 

(-4.06) 

[-0.719] 

2.21 

(214.56) 

[1.000] 

-0.08 

(-5.89) 

[-0.674] 

0.09 

(149.52) 

[1.000] 

-0.03 

(-2.65) 

[-0.756] 

Log (Traffic 

flow) 

-0.06 

(-4.06) 

[-0.719] 

0.06 

(5.55) 

[1.000] 

-0.08 

(-5.89) 

[-0.674] 

0.11 

(11.03) 

[1.000] 

N/A N/A 

Intersection 

density  
N/A N/A N/A N/A 

-0.03 

(-2.65) 

[-0.756] 

0.03 

(2.34) 

[1.000] 

2015 

 Scenario 1 Scenario 2 Scenario 3 

 
Road 

length 

Lane 

width 

Road 

length 

Lane 

width 

Road 

length 
Lane width 

Road length 

2.13 

(202.42) 

[1.000] 

-0.11 

(-7.75) 

[-0.936] 

2.06 

(194.83) 

[1.000] 

-0.14 

(-9.58) 

[-0.952] 

2.18 

(155.06) 

[1.000] 

-0.08 

(-5.02) 

[-0.599] 

Lane width 
-0.11 

(-7.75) 

0.04 

(4.14) 

-0.14 

(-9.58) 

0.04 

(4.52) 

-0.08 

(-5.02) 

0.11 

(9.98) 
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[-0.936] [1.000] [-0.952] [1.000] [-0.599] [1.000] 

2016 

 

Scenario 1 Scenario 2 Scenario 3 

Road 

length 

Log 

(Traffic 

flow) 

Road 

length 

Log 

(Traffic 

flow) 

Road 

length 

Log (Traffic 

flow) 

Road length 

2.66 

(262.62) 

[1.000] 

-0.48 

(-3.10) 

[-0.350] 

2.36 

(243.69) 

[1.000] 

-0.06 

(-4.30) 

[-0.409] 

1.94 

(162.74) 

[1.000] 

-0.16 

(-10.54) 

[-0.826] 

Log (Traffic 

flow) 

-0.48 

(-3.10) 

[-0.350] 

0.13 

(11.96) 

[1.000] 

-0.06 

(-4.30) 

[-0.409] 

0.14 

(14.11) 

[1.000] 

-0.16 

(-10.54) 

[-0.826] 

0.11 

(11.53) 

[1.000] 

Note: t-statistics in the parenthesis and correlation coefficients in the brackets 

 

To sum up, crash frequency model based on synthetic (heterogeneous) data using the 

proposed augmented variational autoencoder method has comparable model fit and 

inferences, relative to that based on original data. Despite that the statistical fit among the 

models based on the above data generation approaches (i.e., Scenario 2 and Scenario 3), 

the proposed augmented variational autoencoder method is more precise for data 

generation, by incorporating a factorized generative model and a refined loss function. 

For instance, the factorized generative model is capable of sophisticated data structures 

like extreme-valued and multi-modal distributions (He and Garcia, 2009; Cai et al., 2020). 

Even that there may be incremental increase in model complexity, the proposed 

augmented variational autoencoder method can mitigate the misspecification problem by 

incorporating excessive zero-crash observations into the refined loss function. 

Nevertheless, goodness of fit among the models based on synthetic data using augmented 

variational autoencoder and synthetic minority oversampling technique-nominal 

continuous methods are comparable. It is not surprising as the model efficiency of the 

synthetic minority oversampling technique-nominal continuous method is well justified 

(Cai et al., 2020; Yuan et al., 2019). 
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9.4.3 Fatal and severe injury crashes 

 

Since fatal and severe injury crashes are extremely rare, fatal and severe injury crash 

frequency models are often subject to unbalanced crash data (Pei et al., 2016). In this 

study, ratio of non-zero fatal and severe injury crash to zero-crash cases is 1:9 only. To 

this end, the proposed augmented variational autoencoder method is adopted to balance 

the crash data, prior to the estimation of fatal and severe injury crash frequency models. 

In previous studies, ratio of 1:4 (non-zero crash to zero-crash cases) is commonly adopted 

for data balancing (Roshandel et al., 2015; Shi and Abdel-Aty, 2015; Yuan et al., 2019) 

since the marginal improvement in statistical fit is incremental for the increase in the ratio 

beyond 1:4 (Roshandel et al., 2015; Zheng et al, 2010). Therefore, ratio of 1:4 is also 

adopted in this study. For instance, the fatal and severe injury crash frequency models 

based on original and balanced data (Scenario 4 – Original data: Correlated random 

parameter Poisson regression1; Scenario 5 – Original data: Correlated random parameter 

zero-inflated Poisson regression; and Scenario 6 – Balanced data: Correlated random 

parameter Poisson regression) are established. As shown in Table 9.8, model based on 

balanced data using the augmented variational autoencoder method (scenario 6) has 

superior model fit, in term of AIC and BIC. Additionally, as shown in Table 9.10, 

prediction accuracy, in terms of root mean square error and mean absolute error, of the 

model based on balanced data is better than that based on original data (Scenario 4 and 

Scenario 5). In addition, model based on balanced data can reveal more significant fatal 

and severe injury crash explanatory factors. For example, road length, traffic flow, 

intersection density and presence of bus lane are positively associated with fatal and 

severe injury crash frequency, and lane width and speed limit are negatively associated 

with fatal and severe injury crash frequency, respectively. Furthermore, effects of 

nominal and ordinal variables, i.e., presence of bus lane, number of lanes and speed limit, 

are less likely to be revealed in the model based on original crash data. Last but not least, 

correlations between the random parameters are considered. As shown in Table 9.9, there 

are negative correlations between the random parameters of road length and lane width 

 
1 Results of over-dispersion test indicate that the over-dispersion parameter for fatal and severe injury 

crash data is not significant at the 5% level. Therefore, correlated random parameter Poisson regression 

method is applied. 
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in 2015 (-0.967), and road length and traffic flow in 2016 (-0.886) respectively. Overall, 

estimation results indicate that crash frequency model based on the proposed augmented 

variational autoencoder approach is the best among the candidate models, with respect to 

the statistic fit, predictive performance, and identification of possible explanatory factors. 

 

Table 9.8 Results of parameter estimation for fatal and severe injury crashes 

Variable 

Scenario 4 Scenario 5 Scenario 6 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

2014 

Constant  -3.96** N/A -3.93** N/A -2.65** N/A 

Road length  
Mean 

0.10** 0.01 
0.15** 0.002 0.14** 0.03 

S.D. 1.80** N/A 0.08** N/A 

Lane width  IS IS IS IS IS IS 

Intersection density  IS IS 0.13** 0.002 0.05** 0.01 

Log (Traffic flow) IS IS 0.47** 0.006 0.28** 0.06 

Road class IS IS IS IS IS IS 

Presence of 

bus lane 

Mean 
IS IS IS IS 0.50** 0.11 

S.D. 

Number of lanes IS IS IS IS IS IS 

Speed limit IS IS IS IS -0.01** -0.01 

Number of 

observations 
1424 1600 

Mean 0.10 0.27 

Variance 0.10 0.27 

Over-dispersion 

parameter 
IS (0.315) IS (0.0001) 

Ratio of ‘zero-crash’ 

to ‘non-zero crash’ 

cases 

1:10 1:4 
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Variable 

Scenario 4 Scenario 5 Scenario 6 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

Log likelihood at 

convergence 
-454.70 -486.94 -1034.80 

AIC 5.76 5.62 4.11 

BIC 53.11 52.97 52.51 

2015 

Constant  -0.56 N/A 0.65 N/A -0.09 N/A 

Road length  
Mean 

0.09** 0.01 
0.10** 0.002 0.10** 0.04 

S.D. 2.99** N/A 1.87** N/A 

Lane width  
Mean 

-0.85** -0.10 -0.67** -0.01 
-0.41** -0.11 

S.D. 0.11** N/A 

Intersection 

density  
Mean -0.13** -0.01 -0.15** -0.002 IS IS 

Log (Traffic flow) IS IS IS IS IS IS 

Road class IS IS IS IS IS IS 

Presence of bus lane IS IS IS IS 0.27** 0.07 

Number of lanes IS IS IS IS 0.08** 0.03 

Speed limit IS IS IS IS -0.02* -0.01 

Number of 

observations 
1424 1647 

Mean 0.12 0.316 

Variance 0.12 0.298 

Over-dispersion 

parameter 
IS (0.259) IS (0.0002) 

Ratio of ‘zero-crash’ 

to ‘non-zero crash’ 

cases 

1:9 1:4 
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Variable 

Scenario 4 Scenario 5 Scenario 6 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

Log likelihood at 

convergence 
-507.47 -534.38 -1142.29 

AIC 5.54 5.43 3.92 

BIC 52.89 52.78 52.58 

2016 

Constant  -4.49** N/A -4.45* N/A -2.48** N/A 

Road length  
Mean 

0.09** 0.01 
0.10** 0.001 0.10** 0.02 

S.D. 2.79** N/A 2.30** N/A 

Lane width  IS IS IS IS IS IS 

Intersection density  IS IS IS IS IS IS 

Log (Traffic 

flow) 

Mean 
0.69** 0.07 IS IS 

0.46** 0.11 

S.D. 0.10** N/A 

Road class IS IS IS IS IS IS 

Presence of bus lane IS IS IS IS 0.54** 0.13 

Number of lanes IS IS IS IS IS IS 

Speed limit IS IS -0.02** -0.0003 -0.01** -0.004 

Number of 

observations 
1424 1600 

Mean 0.10 0.27 

Variance 0.10 0.27 

Over-dispersion 

parameter 
IS (0.285) IS (0.0002) 

Ratio of ‘zero-crash’ 

to ‘non-zero crash’ 

cases 

1:10 1:4 

Log likelihood at 

convergence 
-454.34 -462.62 -1023.43 
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Variable 

Scenario 4 Scenario 5 Scenario 6 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

AIC 5.76 5.72 4.14 

BIC 53.11 53.07 52.53 

* and ** denote statistical significance at the 5% and 1% levels respectively; IS denotes 

insignificant 

 

Table 9.9 Cholesky matrix for the correlation between random parameters (Scenario 6) 

2015 

 Road length Lane width 

Road length 

1.87 

(139.20) 

[1.000] 

-0.11 

(-5.13) 

[-0.967] 

Lane width 

-0.11 

(-5.13) 

[-0.967] 

0.03 

(2.20) 

[1.000] 

2016 

 Road length Log (Traffic flow) 

Road length 

2.30 

(176.06) 

[1.000] 

-0.09 

(-4.17) 

[-0.886] 

Log (Traffic flow) 

-0.09 

(-4.17) 

[-0.886] 

0.05 

(2.12) 

[1.000] 

Note: t-statistics in the parenthesis and correlation coefficients in the brackets 

 

Table 9.10 Prediction accuracy of the fatal and severe injury crash frequency models 

Dataset Scenario 4 Scenario 5 Scenario 6 

2014 
MAE 0.54 0.42 0.38 

RMSE 0.95 0.88 0.81 
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2015 
MAE 0.50 0.41 0.39 

RMSE 0.99 0.85 0.75 

2016 
MAE 0.49 0.44 0.40 

RMSE 0.91 0.87 0.79 

 

9.5 Discussions 

 

9.5.1 Road geometry designs 

 

As shown in the Table 9.8, road length is positively associated with fatal and severe 

injury crash frequency (marginal effect: 0.02 to 0.04) at the 1% level of significance. Such 

finding is consistent with that of previous studies (Venkataraman et al., 2013; Huang et 

al., 2016; Guo et al., 2018a). Additionally, effect of road length on the fatal and severe 

injury crash frequency is randomly distributed (with standard deviation of 0.08 to 2.30). 

This could be attributed to the variations in geometric design, i.e., vertical and horizontal 

curvatures, along a road segment. Furthermore, lane width is negatively associated with 

fatal and severe injury crash frequency in 2015 (marginal effect: -0.11) only. This is 

because defensive driving maneuvers in emergency are more plausible when the road 

space increases (Pei et al., 2016; Wong et al., 2007). Again, effect of lane width on the 

fatal and severe injury crash frequency is randomly distributed in 2015. 

 

9.5.2 Traffic controls 

 

For the effects of traffic control, results indicate that presence of bus lane (marginal effect: 

0.07 to 0.13) is positively associated with fatal and severe injury crash frequency. This 

could be attributed to the increase in possible interactions between buses and other 

vehicles (Pei et al., 2012). Additionally, intersection density is positively associated with 

fatal and severe injury crash frequency (marginal effect: 0.01) at the 1% level of 

significance in 2014 only. This may be attributed to the prevalence of traffic conflicts at 

the intersections (Wong et al., 2007). Furthermore, speed limit is negatively associated 

with fatal and severe injury crash frequency in all years. This is because drivers tend to 
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be more cautious when driving on the roads that have higher speed limits (Behnood and 

Mannering, 2017; Mannering, 2009; Zhang et al., 2021; Wang et al., 2021).  

 

9.5.3 Traffic conditions 

 

For the effect of traffic condition, traffic flow is positively associated with fatal and severe 

injury crash frequency in 2014 (marginal effect: 0.06) and 2016 (0.11) only. This could 

be attributed to the higher likelihood of vehicle interactions under high traffic flow 

condition. In addition, effect of traffic flow on fatal and severe injury crash frequency is 

randomly distributed in 2016 (standard deviation: 0.10). Furthermore, number of lanes is 

positively associated with fatal and severe injury crash frequency in 2015 only (marginal 

effect: 0.03). This may be attributed to the increase in possible vehicle interactions when 

number of lanes increase (Pei et al., 2016). Nevertheless, effect of road class on fatal and 

severe injury crash frequency is not significant. 

 

9.5.4 Correlations between random parameters 

 

Table 9.9 illustrates the correlation estimates between random parameters of the fatal and 

severe crash frequency model based on balanced data. As shown in Table 9.9, there is 

negative correlation (−0.967) between the random parameters of road length and lane 

width in 2015. This implies that variations in the effects of road length and lane width 

change in opposite directions. Random part of road length indicates the possible 

environmental heterogeneity along a road segment, while that of lane width indicates the 

possible driver heterogeneity. The heterogeneous effects of road length and lane width 

offset that of each other. As also shown in Table 9.9, there is negative correlation 

(−0.886) between the random parameters of road length and traffic flow in 2016. Again, 

this implies that the variations in the effects of road length and traffic flow change in 

opposite directions. Random part of traffic flow indicates the temporal heterogeneity 

within an hour. The heterogeneous effects of road length and traffic flow offset that of 

each other. The counterbalances of heterogeneous effects of road length, traffic flow, and 

lane width could be attributed to risk compensation of driver (Mannering and Bhat, 2014). 
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Hence, effect of environmental heterogeneity of the road segment may diminish when 

temporal and driver heterogeneities are prevalent. 

 

9.6 Concluding remarks 

 

Crash frequency model is often subject to excessive zero observation because of the rare 

nature of crashes. To address the problem of imbalanced crash data, a deep learning 

method - Augmented Variational Autoencoder – is proposed to tackle the unbalanced data 

problem by incorporating a factorized generative model into the objective function and 

over-sampling of non-zero crash cases, using the crash data in Hong Kong as a case study. 

Specifically, the crash data is stratified into two by crash severity level, i.e., total crashes 

and fatal and severe injury crashes. 

 

First of all, data generation performances of the proposed augmented variational 

autoencoder method, together with another conventional technique – synthetic minority 

oversampling technique-nominal continuous method, are assessed for the total crashes. 

Prediction performance and inferences of the total crash frequency models based on 

original and synthetic data are assessed. Results indicate that prediction accuracy, in terms 

of RMSE and MAE, of the crash frequency model based on synthetic data using the 

proposed augmented variational autoencoder method is comparable to that based on 

original data. Additionally, the proposed method can synthesize heterogeneous data. 

Distributions of synthetic data based on the proposed method are consistent to that of 

original data, especially for those that have sophisticated data structure. Furthermore, the 

crash frequency model based on synthetic data using the proposed method can reveal 

more significant explanatory factors, compared to that using the conventional synthetic 

minority oversampling technique-nominal continuous method. Also, correlation between 

random parameters is considered. 

 

Then, data balancing performance of the proposed augmented variational autoencoder 

method is assessed for the fatal and severe injury crashes, which are of extremely rare 

nature. Results indicate that model fit, prediction accuracy, and inferences of the fatal and 

severe injury crash frequency models based on balanced crash data using the proposed 
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augmented variational autoencoder method are superior, compared to that based on 

original data. For instances, road length, traffic flow, intersection density, number of lanes 

and presence of bus lane are positively associated with the fatal and severe injury crash 

frequency, while lane width and speed limit are negatively associated with the fatal and 

severe injury crash frequency, respectively. In addition, there are possible correlations 

between the random parameters of road length, traffic flow, and lane width. 

 

To sum up, the proposed augmented variational autoencoder method can address the 

unbalance problem of heterogeneous data. Yet, this study also has limitations. Aggregated 

crash data are applied in the proposed crash frequency models. It may not be capable of 

capturing the time-series (i.e., daily and seasonal) variations in the association between 

crash and possible explanatory factors. In the future study, it is worth exploring the effect 

of temporal correlation on data generation and association measure when high resolution 

data are available. Also, it is worth exploring the efficiency of the proposed method on 

data balancing for the crash data with omitted variables, heteroscedasticity, and 

endogeneity issues. Furthermore, the proposed augmented variational autoencoder 

method could be limited to a few contextual (e.g., road geometry) variables. It is worth 

exploring to consider the environment, traffic, and behavioural variables in the data 

generating process when comprehensive traffic and safety data are available in the future. 
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Chapter 10 A deep learning approach for boundary crash 

problem in safety analysis 

 

10.1 Introduction  

 

The prevalent zonal safety analysis attracts growing interest. A great number of crash 

frequency models were developed to measure the associations between crash frequency 

and possible explanatory factors (Guo et al., 2018a; Wei and Lovegrove, 2013; Chen et 

al 2016; Ding et al., 2020). Countermeasures that target road safety at zonal levels can be 

implemented to avoid crashes and improve overall road safety. In the zonal safety 

analysis, crashes are often aggregated as per certain finite spatial units, such as traffic 

analysis zones, Greater Vancouver neighbourhoods in Canada, wards of London, or 

census tracts (Lovegrove and Sayed, 2006; Quddus, 2008; Siddiqui and Abdel-Aty, 

2012). A considerable proportion of crashes may occur at or near the boundary of 

geographical units. Such crashes, also known as boundary crashes, can correlate with the 

explanatory variables of neighbouring geographical units, regardless of the spatial 

proximity. Therefore, previous studies encountered a fundamental problem of boundary 

crash allocations in the data preparation. 

 

In preceding studies, mathematical approaches like half-and-half (Sun, 2009; Wei, 2010), 

collision density ratio (Cui et al., 2015) and iterative method (Zhai et al., 2018) were 

developed. However, these approaches did not consider the individual crash 

characteristics (e.g., crash severity), which should, in turn, correlate with the 

environmental, traffic, and road user characteristics of the corresponding geographical 

unit. 

 

The main objective of this study is to resolve the boundary crash problem for macro-level 

crash frequency model by giving due consideration of individual crash characteristics in 

boundary crash allocation using the proposed approach. For example, association 

between crash frequency and influencing factors could be modified by covariates like 

injury severity, and collision mode (Ostrom and Eriksson, 1993; Pei et al., 2016; Ding et 
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al., 2020; Su et al., 2021). Hence, it is necessary to account for the crash characteristics 

when allocating the boundary crashes. In addition, crash analysis is often subject to 

incomplete and missing data. A viable way to handle the missing data is to eliminate the 

entries with missing values. However, this may systematically bias the parameter 

estimation (Miaou, 1994; Shankar et al., 1997). To this end, a deep learning approach – 

crash feature-based allocation method – is developed for the allocation of boundary 

crashes. Specifically, an integrated augmented masked autoencoder and support vector 

data description approach is adopted for the recognition of crash pattern, while the 

incomplete crash entries are masked, for crash feature-based boundary crash allocation of 

macro-level bicycle crash frequency models (He et al., 2016; Lu et al., 2021). 

 

The reminder of this chapter is organized as follows. Section 10.2 describes the 

formulation of crash feature-based allocation. Then, data preparation is described in 

Section 10.3. Then, results and discussions are presented in Section 10.4 and Section 10.5, 

respectively. Lastly, key findings are summarized in Section 10.6. 

 

10.2 Crash feature-based allocation 

 

(1) Augmented masked autoencoder method 

 

In chapter 9, a modified deep generative approach – augmented variational autoencoder 

method – was adopted to generate heterogeneous traffic and crash data for crash 

frequency model. Two connected neural networks: (a) encoder for the transformation of 

original data into a latent space and (b) decoder for the recovery of data from the coded 

space, were established. However, capability of augmented variational autoencoder 

method is subject to the vanilla neural networks (Kipf and Welling, 2016; Lu et al., 2022) 

and missing data (Johnson and Khoshgoftaar, 2019; Cai et al., 2020). To this end, a novel 

pattern recognition approach – augmented masked autoencoder method is proposed to 

complement the missing data (He et al., 2021; Dosovitskiy et al., 2020). 

 

Figure 10.1 depicts the proposed augmented masked autoencoder method. Let 𝒙 

denotes the original data and 𝒙+ (assume half of the observations (He et al., 2021; Lu et 
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al., 2021)) denotes all observed variables including land use, road network, socio-

demographics, and crash severity (Siddiqui and Abdel-Aty, 2012; Zhai et al., 2018). 

Then, encoding of the latent space 𝒛𝑝 would be given by,  

 

                           𝒛𝑝 = 𝑓𝑒(𝒙+, 𝜑)                          (10.1)  

                                           

Where 𝑓𝑒(∙) is the neural network, 𝜑 is the vector of learnable parameters. 

 

Furthermore, the mask tokens characterized by learnable neurons 𝒛𝑚 can be integrated 

with 𝒛𝑝  to constitute a complete hidden vector 𝒛 . These mask tokens enable the 

Augmented Masked Autoencoder method to learn from the incomplete crash data by 

substituting the missing properties with learnable neurons, and therefore enlarge the 

receptive field of hidden layer to absorb more crash information. Hence, output of the 

decoder can be given by, 

 

                             𝒙̃ = 𝑓𝑑(𝒛, 𝜃)                         (10.2)         

                                 

Where 𝜃 is the vector of learnable parameters for decoder.  
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Figure 10.1 Framework of proposed augmented masked autoencoder method 

 

(2) Support vector data description 

 

In this study, support vector data description approach is adopted for the crash feature-

based allocation (Tax and Duin, 2004). Let 𝑘𝑖 (𝑖 = 1, … , 𝑁) denotes the latent space of 

geographical unit 𝑖 and the minimized error function is given by, 

 

                               𝐹(𝑅, 𝒂) = 𝑅2                       (10.3) 

 

Where 𝒂 refers to the centre of hypersphere and R refers to the radius of hypersphere. 

 

With the constraints, 

 

                             ‖𝑘𝑖 − 𝒂‖ ≤ 𝑅2, ∀𝑖                     (10.4)   

 

To relax the constraints of outliers, the error function can be modified as, 

 

                          𝐹(𝑅, 𝒂) = 𝑅2 + 𝐶 ∑ 𝜉𝑖𝑖                    (10.5) 
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Where 𝐶 is a penalty factor that controls the relative importance of errors. 

 

Furthermore, a Lagrange function that characterizes the objective function for optimal 

crash allocation is given by, 

 

𝐿(𝑅, 𝒂, 𝛼𝑖, 𝛾𝑖, 𝜉𝑖) = 𝑅2 + 𝐶 ∑ 𝜉𝑖𝑖 − ∑ 𝛼𝑖𝑖 {𝑅2 + 𝜉𝑖 − (‖𝑘𝑖‖
2 − 2𝑎 ∙ 𝑘𝑖 + ‖𝑎‖2)} −

∑ 𝜉𝑖𝛾𝑖𝑖                                                               (10.6)       

 

Where 𝛼𝑖 and 𝛾𝑖 are Lagrange multipliers. 

 

Finally, 𝑑𝑢, distance from the centre 𝒂 of a crash embedded latent space 𝒛𝑢 for the 

test data can be estimated using the following expression, 

 

              𝑑𝑢  = (𝒛𝑢 ∙ 𝒛𝑢) − 2 ∑ 𝛼𝑖𝑖 (𝑘𝑖 ∙ 𝒛𝑢) + ∑ 𝛼𝑖𝛼𝑗(𝑘𝑖 ∙ 𝑘𝑗)𝑖,𝑗       (10.7)                 

 

A crash would be allocated to geographical unit i only if 𝑑𝑢 is less than 𝑅2. Such 

process is iterative until all boundary crashes are assigned. 

 

10.3 Data 

 

10.3.1 Sample 

 

Same study area of chapter 6 (see Figure 6.1) is used in this study. Specifically, built 

environment, road network, population, traffic and bicycle crash data from 289 Lower 

Layer Super Output areas (LSOAs) in London in the year 2017-2019 would be used. To 

estimate the bicycle crash exposure, transaction records of London’s public cycle hire 

scheme – LCH– are used (Ding et al., 2020). In summary, Sample size of the proposed 

model is 867. Above data are mapped into the corresponding Lower Layer Super Output 

Areas (LSOA) using the geographical information system technique. Table 10.1 provides 

the descriptive statistics of the sample. 
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Table 10.1 Summary statistics of the sample 

Category Variable Mean 
Standard 

deviation 
Min. Max. 

Exposure 

Bicycle usage 23,116 20,866 352 122,980 

Annual average 

daily traffic 
17,405 14,104 282 104,745 

Socio-

demographics  

Population 1,989 547 984 4,499 

Proportion of age 65 

or above 
0.11 0.05 0.02 0.29 

Proportion of male 0.51 0.03 0.42 0.64 

Median household 

income (€) 
26,145 11,752 6,063 57,935 

Land use 

Proportion of 

residential area 
0.17 0.07 0.03 0.46 

Proportion of 

commercial area 
0.20 0.12 0.01 0.56 

Proportion of green 

area 
0.31 0.15 0.03 0.82 

Proportion of road 

area 
0.32 0.08 0.10 0.77 

Road network 

characteristics  

Road density (km 

per km2) 
6.93 3.96 0.11 22.16 

Cycle path density 

(km per km2) 
0.06 0.09 0 0.84 

Intersection density 

(per km2) 
0.11 0.08 0.001 0.72 

Connectivity  2.24 0.83 0.12 4.00 

Global integration  628.60 88.37 421.20 843.32 

Crash 

characteristics 

Proportion of fatal 

bicycle crash 
0.002 0.03 0 0.50 
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Proportion of severe 

bicycle crash 
0.16 0.26 0 1.00 

Proportion of slight 

bicycle crash 
0.84 0.27 0 1.00 

Proportion of male 

bicyclist involved 
0.73 0.32 0 1.00 

Note: Number of observations = 289 Lower Layer Super Output Area x 3 year = 867 

 

10.3.2 Buffer zones and boundary crashes 

 

In this study, optimal buffer zones are set out based on the cumulative distribution of 

boundary crashes (Siddiqui and Abdel-Aty, 2012). As shown in Figure 10.2, starting 

from 40 meters, the curve slopes tended to be almost flat compared with that between 0 

and 40 meters. Therefore, width of buffer zones is set at 40 metres. To this end, of the 

4,811 bicycle crashes, 2,909 (60.5%) are considered as boundary crashes and 1,902 

(39.5%) are interior crashes respectively. However, it should be noted that boundary 

buffer could be varied based on the history crash data and study areas. Buffer distance of 

40 meters is not a unique threshold for the discrimination between interior or boundary 

crashes. 
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Figure 10.2 Cumulative distribution of crash with respect to the width of buffer zones  

 

In addition, mathematical simulation is adopted to evaluate the performance of proposed 

crash feature-based allocation method. For example, as shown in Figure 10.3, two 

crashes (no. 8 and no. 9) are classified as boundary crashes and seven are interior crashes 

when the width of buffer zone is set at 40 metres. Crash no. 8 and no. 9 are treated as the 

“controls” for the mathematical simulation. When the width of buffer zone increases, 

some interior crashes would be reconsidered as “boundary crashes” (i.e., crash no. 2, no. 

4, and no. 6 as shown in Figure 10.3). Then, proposed approach is applied to allocate 

such boundary crashes, considering the individual crash characteristics. Table 10.2 

summarizes the match percentages that determine how closely the boundary crash 

allocation and original interior crashes match with each other. As shown in Table 10.2, 

there are negligible changes in the match percentages when the width of buffer zone 

increases. This should justify the consistency of the proposed crash allocation method.   
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Figure 10.3 Illustration of buffer zone, boundary crashes, and interior crashes 

 

Table 10.2 Match percentages of crash feature-based allocation and interior crashes 

Width of buffer zone (change) Boundary crashes allocated Match percentage 

50 metres (+10 metres) 3,079 94.9% 

60 metres (+20 metres) 3,178 94.9% 

70 metres (+30 metres) 3,322 95.1% 

80 metres (+40 metres) 3,345 95.1% 

90 metres (+50 metres) 3,358 95.3% 

100 metres (+60 metres) 3,367 94.9% 

 

10.4 Estimation results 

 

In this study, macro-level bicycle crash frequency models are established using correlated 

random parameters approach, with which boundary crash problem is accounted. For 

example, proposed crash feature-based, iterative, and half-and-half allocation methods 

are considered. Performance of the proposed crash feature-based allocation method is 
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testified based on prediction performance, model fit, and influencing factors identified of 

the crash frequency models.  

 

10.4.1 Temporal stability 

 

The temporal stability is firstly examined using a likelihood ratio test (See Equation 9.21). 

As shown in Table 10.3, strong temporal instabilities between the estimated models were 

detected, with significant chi-square statistics at the 5% level. This implies that separate 

models should be developed to comprehensively understand the effects of factors on the 

bicycle crash frequency. Therefore, separate bicycle crash frequency models are 

established for year 2017, 2018 and 2019, respectively. 

 

Table 10.3 Likelihood ratio tests for temporal stability 

Year 2017 2018 2019 

2017 N/A 
52.46 (28) 

[0.004] 

49.21 (26) 

[0.005] 

2018 
53.88 (30) 

[0.005] 
N/A 

51.73 (28) 

[0.005] 

2019 
45.20 (28) 

[0.025] 

55.25 (30) 

[0.003] 
N/A 

Note: Degrees of freedom in the parentheses and significant levels in the brackets 

 

10.4.2 Crash frequency model based on different allocation methods 

 

Also, a multi-collinearity test is conducted to assess the correlations between independent 

variables. Values of variance inflation factor (VIF) are less than five for all variables. 

Table 10.4 presents the results of parameter estimation of the bicycle crash frequency 

models. As shown in Table 10.4, prediction performances, in terms of root mean square 

error (RMSE) and mean absolute error (MSE), of the models based on crash feature-based 

allocation method are remarkably better than that of the counterparts, even that the 

improvements in model fit (in terms of AIC and BIC) may not be obvious. Also, more 
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influencing factors that affect the bicycle crash frequency can be identified. This justifies 

the use of proposed approach for individual boundary crash allocation when developing 

macro-level crash frequency models. Based on the results of parameter estimation, 

bicycle usage, traffic flow, population, male, road density, and global integration are 

positively associated with bicycle crashes. In contrast, median household income, 

residential area, and intersection density are negatively associated with bicycle crashes. 

 

Table 10.5 illustrates the estimates of correlations between random parameters. As shown 

in Table 10.5, there are positive correlations between the random parameters of male and 

residential area in year 2017 (0.926) and 2019 (0.839).  

 

Table 10.4 Results of parameter estimation of bicycle crash frequency models 

Variable 

Crash feature-based 

allocation 
Iterative allocation 

Half and half 

allocation 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

2017 

Constant  -17.52** N/A -20.97** N/A -19.03** N/A 

Ln (Bicycle usage) 0.20* 0.29 0.23* 0.22 0.25** 0.22 

Ln (Annual average 

daily traffic) 
0.29* 0.44 0.39** 0.38 0.36** 0.32 

Ln (Population) IS IS IS IS IS IS 

Age 65 or above  IS IS IS IS IS IS 

Male 
Mean 6.58** 9.79 2.87** 7.61 

7.59** 6.68 
S.D. 4.08** N/A 2.87** N/A 

Median household 

income 
IS IS IS IS IS IS 

Residential 

area 

Mean -5.73** -8.52 -5.17** -4.96 -6.31** -5.03 

S.D. 2.59** N/A 2.38** N/A 1.12** N/A 

Road area IS IS IS IS IS IS 

Road density 0.06* 0.09 0.06* 0.06 0.06* 0.06 
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Variable 

Crash feature-based 

allocation 
Iterative allocation 

Half and half 

allocation 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

Cycle path density IS IS IS IS IS IS 

Intersection density -4.12** -6.12 -5.48** -5.26 -5.71** -5.03 

Ln (Global 

integration) 
1.67* 2.48 IS IS 1.44* 1.26 

Over-dispersion 

parameter 
1.45** 1.73** 3.07** 

Log-likelihood at 

convergence 
-1680.79 -1209.77 -1129.22 

AIC 9.15 9.80 9.94 

BIC 53.10 53.76 53.90 

MAE 0.22 0.31 0.36 

RMSE 0.39 0.49 0.58 

2018 

Constant  -9.46 N/A -12.58 N/A -11.64* N/A 

Ln (Bicycle usage) 0.43** 0.17 0.43** 0.18 0.30* 0.17 

Ln 

(Annual 

average 

daily 

traffic) 

Mean 0.28* 0.11 0.34* 0.14 0.30* 0.17 

S.D. 1.42** N/A 2.29** N/A 3.17** N/A 

Ln (Population) IS IS IS IS IS IS 

Age 65 or above IS IS IS IS IS IS 

Male 8.93** 3.48 9.19** 3.90 9.81** 5.62 

Median household 

income 
-0.07** -0.03 IS IS IS IS 

Residential area -5.65** -2.20 -6.01** -2.55 -6.33** -3.63 
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Variable 

Crash feature-based 

allocation 
Iterative allocation 

Half and half 

allocation 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

Road area IS IS IS IS IS IS 

Road density IS IS IS IS IS IS 

Cycle path density IS IS IS IS IS IS 

Intersection density -7.11** -2.77 -8.79** -3.73 -7.85** -4.50 

Ln (Global 

integration) 
IS IS IS IS IS IS 

Over-dispersion 

parameter 
1.07** 1.05** 1.43** 

Log-likelihood at 

convergence 
-1140.53 -890.07 -802.57 

AIC 9.92 10.42 10.62 

BIC 53.88 54.37 54.58 

MAE 0.20 0.29 0.35 

RMSE 0.37 0.48 0.57 

2019 

Constant  -20.95** N/A -21.10** N/A -20.47** N/A 

Ln (Bicycle usage) 0.19* 0.18 0.21** 0.19 0.20** 0.20 

Ln (Annual average 

daily traffic) 
IS IS IS IS IS IS 

Ln (Population) 0.74* 0.72 0.73** 0.64 0.67** 0.65 

Age 65 or above IS IS IS IS IS IS 

Male 
Mean 6.28* 6.07 

5.59** 4.96 
5.75 5.61 

S.D. 1.78* N/A 3.30 N/A 

Median household 

income 
IS IS IS IS IS IS 

Residential 

area 

Mean -6.37** -6.17 -6.13** -5.44 
-4.70 -4.59 

S.D. 2.66** N/A 1.01* N/A 
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Variable 

Crash feature-based 

allocation 
Iterative allocation 

Half and half 

allocation 

Coefficient 
Marginal 

effect 
Coefficient 

Marginal 

effect 
Coefficient 

Marginal 

effect 

Road area IS IS IS IS IS IS 

Road density 0.07** 0.06 0.05** 0.04 0.05* 0.04 

Cycle path density IS IS IS IS IS IS 

Intersection density -4.78** -4.62 -3.83** -3.40 -3.94** -3.85 

Ln (Global 

integration) 
1.71** 1.65 1.63** 1.45 1.63** 1.59 

Over-dispersion 

parameter 
2.25** 5.66** 3.86** 

Log-likelihood at 

convergence 
-1250.15 -964.77 -886.35 

AIC 9.74 10.26 10.43 

BIC 53.69 54.21 54.38 

MAE 0.21 0.32 0.38 

RMSE 0.37 0.51 0.59 

* and ** denote statistical significance at the 5% and 1% levels respectively; IS denotes 

insignificant 

 

Table 10.5 Cholesky matrix for the correlations between random parameters (crash 

feature-based allocation) 

2017 

 

Crash feature-based 

allocation 
Iterative allocation 

Half and half 

allocation 

Male 
Residential 

area 
Male 

Residential 

area 
Male 

Residential 

area 

Male 

4.08 

(12.70) 

[1.000] 

2.40 

(2.42) 

[0.926] 

2.87 

(8.98) 

[1.000] 

2.12 

(2.14) 

[0.889] 

N/A N/A 
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Residential 

area 

2.40 

(2.42) 

[0.926] 

0.98 

(2.24) 

[1.000] 

2.12 

(2.14) 

[0.889] 

1.09 

(2.33) 

[1.000] 

N/A N/A 

2019 

 Male 
Residential 

area 
Male 

Residential 

area 
Male 

Residential 

area 

Male 

1.78 

(5.51) 

[1.000] 

2.24 

(2.05) 

[0.839] 

N/A N/A N/A N/A 

Residential 

area 

2.24 

(2.05) 

[0.839] 

1.44 

(3.14) 

[1.000] 

N/A N/A N/A N/A 

Note: t-statistics in the parentheses and correlation coefficients in the brackets 

 

10.5 Discussions 

 

10.5.1 Bicycle crash exposures 

 

For the bicycle crash exposure, bicycle crash frequency is positively associated with 

bicycle usage (all years) and traffic flow (year 2017 and 2018 only). This is consistent 

with the findings of previous studies. For example, it is effective to estimate the bicycle 

crash exposure using the bicycle usage data from the public bicycle sharing system (Ding 

et al., 2020, 2021c). In addition, increase in traffic flow can result in more frequent 

bicycle-vehicle interactions and conflicts (Wong et al., 2007). However, effect of traffic 

flow on bicycle crash frequency is random (year 2018 only). This may be because of the 

heterogeneity of road design and environment (Mannering, 2018; Meng et al., 2021). 

Furthermore, population is positively associated with bicycle crash frequency (year 2019 

only). This is consistent with the findings of previous studies (Siddiqui and Abdel-Aty, 

2012; Vanparijs et al., 2015). 
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10.5.2 Demographic and socioeconomics 

 

For the population socio-demographics, bicycle crash frequency is positively associated 

with the proportion of male (all years). This could be attributed to the difference in safety 

perception between male and female. Hence, male bicyclists are more likely involved in 

a crash (Guo et al., 2018a; Ding et al., 2020). Just, effect of the proportion of male is 

random (year 2017 and 2019 only). On the other hand, median household income is 

negatively associated with bicycle crash frequency (year 2018 only). This could be 

because members of higher income households tend to be risk-averse. Hence, safe cycling 

behaviour and use of protective devices like helmet are more prevalent (Chen et al., 

2020b; Zhu et al., 2021). 

 

10.5.3 Built environments  

 

For the built environment, bicycle crash frequency decreases with residential area (all 

years). This could be attributed to the implementation of effective local area traffic 

management and traffic calming measures that can mitigate the vehicle-bicycle conflicts. 

Also, space allocation for motorized and non-motorized traffic could have been optimized 

(Su et al., 2021). Just, the effect of residential area is random (year 2017 and 2019 only). 

This could be because of the heterogeneity of socio-cultural characteristics, risk 

communication, and public education, which are usually not observed in the population 

census. 

 

10.5.4 Road network characteristics  

 

For the road network characteristics, bicycle crash frequency increases with road density 

(year 2017 and 2019 only). This could be attributed to the increase in vehicle-bicycle 

conflicts, especially when there are limited separations between motorized and non-

motorized traffic (Wong et al., 2007; Li et al., 2018; Ding et al., 2020). In addition, bicycle 

crash frequency increases with the level of global integration (year 2017 and 2019 only). 

This could be attributed to the increase in vehicle-bicycle conflicts when the degree of 
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network connection increases (Guo et al., 2018a). However, bicycle crash frequency 

decreases with intersection density (all years). This might be because of the compensatory 

strategy of drivers and bicyclists. For example, safety awareness would increase and 

travelling speed would reduce when one approaches an intersection (Mannering and Bhat, 

2014; Chen et al., 2020b). Despite that bicycle lane is recognized to be effective in 

improving the safety perception of bicyclists. Effect of bicycle path density on bicycle 

crash is not significant. This could be because of the heterogeneity of geometric design 

and physical separation between motorized and non-motorized traffic of different bicycle 

paths in the network. Hence, favourable safety effect of bicycle path could have been 

offset (Li et al., 2017, 2018; Ding et al., 2021c). 

 

10.5.5 Correlations between random parameters 

 

Last but not least, there is positive correlation between the random parameters of male 

and residential area. This could be because the heterogeneity of gender effect could be 

magnified by that of road environment. For example, variations in safety perception and 

risk-taking behaviour could be more rigorous when the street layout is changed and the 

local area traffic management is implemented (Zhu et al., 2022). 

 

10.6 Concluding remarks 

 

To enhance overall bicycle safety, macro-level bicycle crash frequency models have been 

developed to identify influencing factors that affect the bicycle crash risk, and implement 

optimal urban planning and traffic management measures (Wei and Lovegrove, 2013; 

Ding et al., 2020, 2021c). However, boundary crash problem is prevalent when the 

boundaries of geographical units are delineated by roads. Thus, parameter estimation 

results of crash frequency models can be biased (Zhai et al., 2018; Cui et al., 2015; 

Siddiqui and Abdel-Aty, 2012). It is necessary to develop an effective method for the 

allocation of boundary crashes to neighbouring geographical units. In this study, a deep 

learning approach is developed for boundary crash allocation. For example, crash features 

are considered using the integrated Augmented Masked Autoencoder and Support Vector 

Data Description methods. 
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An illustrative case study using the population, land use, traffic and bicycle crash data 

from 289 Lower Layer Super Output areas in London is conducted. Cumulative 

distribution of boundary crash with respect to the width of buffer zone of boundary is 

estimated. Thus, optimal width of the buffer zone is set at 40 metres. Also, match 

percentages between the allocated crashes and interior crashes (classified by spatial 

proximity) are assessed. Consistency of the proposed crash feature-based allocation 

method is justified. In addition, performances of crash frequency models using correlated 

random parameters method based on proposed crash feature-based allocation, iterative, 

and half-and-half methods are compared. Results indicate that prediction performances 

of the crash frequency models based on crash feature-based allocation method are better 

than that using iterative and half-and-half methods. Also, more influencing factors that 

affect the bicycle crash frequency are identified. For example, bicycle and traffic flow, 

gender, household income, land use, and road network configuration can affect the macro-

level bicycle crash frequency. Also, there are significant correlations between the random 

effects of gender and land use. 

 

Nevertheless, this study also has limitations. First, association between bicycle crash 

frequency and influencing factors can be modified by time period. There are considerable 

variations in bicyclist behaviour across different seasons and weather conditions (Ding et 

al., 2020). Hence, it is worth exploring the effects of temporal variation on boundary crash 

allocation and parameter estimation when high resolution weather and traffic data, in 

short time intervals, are available in the future study (Xing et al., 2019). In addition, 

parameter estimation results may vary with the configuration and scale of geographical 

units. It is necessary to account for the effect of geographical configuration when 

allocating the boundary crashes (Zhai et al., 2019b).  
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Chapter 11 Conclusions and recommendations 

 

11.1 Summary 

 

This dissertation seeks to deepen knowledge of bicycle travel and safety. The study has 

contributed to the body of literature by strengthening the exploration of a number of 

fundamental issues. Firstly, the effects of policy interventions on bicycle travel and safety 

are investigated using a sophisticated inference method known as propensity score 

matching. Secondly, associations between the built environment, population 

characteristics, traffic characteristics, and bicycle safety are evaluated to account for the 

exposure to bicycle crashes. Then, a weighted shortest path approach incorporating the 

effects of path distance and perceived safety level is proposed for estimating bicycle travel 

distance. Finally, advanced statistical and deep learning models are developed to address 

the prevalent issues in (bicycle) safety analysis, such as the correlation between different 

crash types, excessive zero observations, and boundary crash problems. Overall, the 

findings can contribute to a greater understanding of the roles of environmental, traffic, 

and human factors in bicycle travel and safety. Therefore, the optimal urban planning, 

engineering design, and transportation policy can be implemented to encourage bicycle 

travel and enhance bicycle safety over time. 

 

Chapter 2 reviews the literature concerning bicycle travel and safety from diverse angles. 

First, a summary of factors that contribute to bicycle travel is presented. Despite the fact 

that a number of studies have been conducted to evaluate the effects of policy 

interventions, rarely has the impact of traffic emission interventions been studied. In fact, 

the introduction of traffic emission interventions can also motivate the shift to greener 

modes of transportation, e.g., public transportation, cycling, and walking. Second, the 

safety effects of built environments, population and socioeconomic factors, and traffic 

characteristics on bicycle crash frequency are revealed. For the effects of policy 

intervention on bicycle safety, there was a discernible lack of research. The causal 

relationships between policy interventions, bicycle travel, and bicycle safety are 

ambiguous. In addition, accurate bicycle exposure data are essential for quantifying the 

probability of bicycle crash involvement and interpreting the risk for various entities. 
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Since bicycle counts are limited, bicycle exposures are generally challenging to measure. 

Prior studies commonly utilized prospective and retrospective approaches, which may be 

susceptible to recall and section biases. Lastly, modelling for safety analysis is concluded. 

Several research gaps are acknowledged. For instance, the differences in potential 

influencing factors on the risk of various types of bicycle crashes are rarely studied. 

Possible correlations between different types of bicycle crashes should be considered. In 

addition, excessive zero observations and boundary crash issues should be highlighted 

when developing (bicycle) crash frequency models. Overall, the aforementioned research 

gaps motivate the work performed in Chapters 3 to 10. 

 

Chapter 3 formulates and elaborates the methodologies of the models adopted in this 

dissertation, including the random-parameter Poisson regression model, the random-

parameter negative binomial regression model, the correlated random-parameter models, 

the multivariate Poisson-lognormal regression, and the propensity score matching 

approach. 

 

To mitigate the hazardous effects of vehicle emissions, numerous engineering measures 

and policy strategies have been implemented. After the implementation of the Ultra-Low 

Emission Zone(ULEZ) in London, CO2, NO2 and NOx emissions were reduced by 6%, 

37%, and 35%, respectively. In addition to reducing vehicle emissions in Central London, 

ULEZ can also relieve traffic congestion (GLA, 2019). Cycling, as a green mode of 

transportation, not only helps to alleviate traffic congestion and reduce vehicle emissions, 

but also improves social well-being. As such, it is reckoned that private car users may 

switch to cycling to avoid steep fees of ULEZ. In Chapter 4, the effects of ULEZ on the 

utilization of bike-sharing services in London are examined. To account for the 

confounding effects of other factors, a propensity score matching strategy is adopted. 

Bike usage data from 699 bicycle docking stations between May and October of 2019 is 

obtained. The results indicate that bicycle demand significantly increases after the 

introduction of ULEZ. Specifically, increases in short (less than 15 minutes) and 

intermediate (between 15 and 30 minutes) bicycle trips are more considerable than 

increases in long bicycle trips (more than 30 minutes). In addition, the results indicate a 

remarkable increase in the number of bicycle trips that ended within the ULEZ. The 
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findings of this study should be indicative of the decision-making of transport planners 

and engineers, particularly with regard to the policy strategies that can enhance the level 

of service provided by bike-sharing systems. 

 

In Chapter 5, we attempt to evaluate the effects of policy intervention on bicycle safety, 

drawing from the data from 333 Lower Super Output Area (LSOA) in London from 

2011–2012. Policy interventions, including the London Cycle Hire (LCH) and the 

London congestion charge (LCC) schemes, are considered. Since cyclists are more 

susceptible to road injuries, it is hypothesized that the total number of bicycle crashes 

may increase after the LCH and LCC programs are implemented, as there will be more 

bicyclists on the roads. Once again, a PSM approach is applied. Consequently, the effects 

of confounding factors can be eliminated by systematically establishing an "control" 

group. According to the results, areas with LCH introduced have substantially higher rates 

of overall (38%) and minor bicycle crashes (32%) compared to areas without LCH. 

However, there was no discernible effect on the KSI bicycle crash. In addition, the 

marginal effect of LCC is estimated. The numbers of overall (59.1%) and minor bicycle 

crashes (57.8%) are significantly higher in areas with both LCC and LCH than in areas 

with only LCH. Moreover, the KSI bicycle crash evidenced no notable changes. 

 

To assess the risk of bicycle crashes, it is necessary to estimate exposure measures. On 

the basis of comprehensive traffic count data, annual average traffic flow (AADT) and 

vehicle kilometre travelled (VKT) can be leveraged to estimate the exposure for vehicle 

crashes (Pei et al., 2012). However, bicycle count data are rarely available. In Chapter 6, 

we tackle the conundrum of accurate measurement of bicycle crash exposure based on 

the bicycle trip data of a public bicycle rental system. A random parameter negative 

binomial model is developed to measure the association between potential factors and 

bicycle crash frequency at the zonal level, taking bicycle exposure into account. 

Moreover, separate bicycle crash frequency models are developed for the warm season 

and the cold season. Therefore, the behaviour of cyclists in various weather conditions 

could be considered. The model adopting bicycle use time as the exposure measure, 

according to the results, is superior to its counterparts (such as the population and bicycle 

usage frequency) with the lowest AIC and BIC. It is discovered that road density, bicycle 
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facilities, land use, demographic, socioeconomic, and household attributes are associated 

with bicycle crash incidence. Notably, the presence of a Cycle Superhighway and the 

proportion of green area can have seasonal effects on the frequency of bicycle crashes. 

 

In Chapter 6, transaction records from the London public bicycle rental system are utilised 

to estimate bicycle crash exposure. Although this system covered the majority of bicycle 

trips in London, exposure measurements are confined to bicycle trips and bicycle travel 

time (BTT). The bicycle distance travelled (BDT) exposure measure is unavailable. The 

shortest path method (SPM) and the weighted shortest path method (WSPM) are proposed 

in Chapter 7 to model the bicycle path selection and estimate the BDT. In particular, the 

proposed WSPMs consider the effects of path distance and perceived safety level on 

routing decisions. Initially, bicycle crash frequency models are developed that utilise 

BDTs as the exposure estimate derived from SPM and WSPM. The results indicate that 

bicycle crash frequency models that incorporate BDTs using WSPM deliver a superior 

model fit. In addition, three exposure measures are evaluated, including bicycle trips, 

BTT, and BDT. The results prove that the bicycle crash frequency model with BDTs as 

the exposure outperforms those with bicycle trips and BTT as the exposures. The findings 

of this study should be indicative of the development of bicycle crash frequency models. 

Furthermore, based on reliable estimates of bicycle exposures, it should facilitate an 

understanding of the roles of environmental, traffic, and cyclist factors in bicycle crash 

risk. 

 

Prior studies have identified the environmental, traffic, and road user factors that 

influence the risk of bicycle-related crashes. However, differences in their effects on risk 

among various bicycle crash types are rarely investigated. For example, there may be a 

correlation between the counts of various crash types. In Chapter 8, a multivariate 

Poisson-lognormal regression method is applied to explore the relationship between 

bicycle crash frequencies and potential explanatory factors, with the correlation between 

bicycle-vehicle and bicycle-bicycle crashes in London in 2018 and 2019 being 

considered. Additionally, the effects of road network characteristics (e.g., connectivity 

and accessibility) on bicycle crash frequency are considered. In terms of metrics like DIC, 

the results depict that the proposed multivariate Poisson-lognormal model performs 
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superiorly to the conventional univariate Poisson-lognormal models. Moreover, variables 

such as population socioeconomics, land use, and road network characteristics can be 

identified as influencing factors on bicycle crash risk. For instance, the effects of traffic 

flow, residential area, network connectivity, and intersection density on crash counts vary 

between bicycle-vehicle and bicycle-bicycle crashes. The findings of this study are 

applicable to the implementation of corrective measures that can improve bicycle safety 

in the long term. 

 

Due to the infrequency of crashes, crash frequency models are recurrently subject to an 

excess of zero observational data. Chapter 9 proposes a deep generative approach — 

augmented variational autoencoder — to resolve the predicament of imbalance of crash 

data. This approach features a factorized generative model and a refined objective 

function. For example, the generative model is able to process heterogeneous data, such 

as those with real-valued, nominal, and ordinal distributions. The refined objective 

function, on the other hand, can control the random effect by better identifying both the 

zero-crash and non-zero-crash cases. To evaluate the efficacy of the proposed method, 

comprehensive traffic and crash data of multiple distribution types in Hong Kong from 

2014 to 2016 are utilised. Specifically, separate analyses are conducted for total crashes, 

and fatal and severe injury crashes, respectively. For total crashes, the parameter 

estimation results of the crash frequency model based on synthetic data using the 

augmented variational autoencoder method were closer to those based on original data in 

terms of statistical fit, prediction accuracy, and identified explanatory factors than those 

based on synthetic data using the synthetic minority oversampling technique-nominal 

continuous method. Zero-crash observations are prevalent for fatal and severe injury 

crashes, with a 9-to-1 ratio of zero-crash to non-zero-crash cases. Utilising the proposed 

augmented variational autoencoder method, crash data is first balanced. Then, fatal and 

severe injury crash frequency models are estimated by applying correlated random 

parameter models and original and balanced data, respectively.  With the lowest RMSE, 

the lowest MAE, and the highest number of crash explanatory factors identified, the fatal 

and severe injury crash frequency model based on balanced data outperforms its 

counterpart. The ability to identify the correlation between the random parameters is even 

more significant. The findings of this study should shed light on the development of 
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bicycle crash frequency models for both researchers and practitioners, as the problem of 

excessive zero observations is prevalent when highly disaggregated traffic and crash data 

by time and space is used. 

 

In the conventional safety analysis, traffic and crash data are frequently aggregated at the 

census tract, street block, and traffic analysis zone levels, which are typically delineated 

by roads and other physical entities. A significant proportion of crashes may occur at or 

near the boundaries of geographic units. Such crashes, also defined as boundary crashes, 

can correlate with the explanatory variables of neighbouring geographical units 

irrespective of their spatial proximity. The ambiguous allocation of boundary crashes may 

have an effect on the performance of crash frequency models, resulting in the estimation 

of erroneous parameters. In Chapter 10, a crash feature-based allocation method based on 

deep learning is developed for the allocation of boundary crashes. In the crash allocation 

process, for instance, crash severity and bicyclist characteristics are factored in. To assess 

the performance of the proposed method, an illustrative case study is conducted using 

built environment, population, traffic, and bicycle crash data from 289 Lower Super 

Output Area (LSOA) in London during the period of 2017-2019. High matching 

percentages of boundary crash allocation are possible, as indicated by the results. 

Furthermore, in terms of RMSE and MAE, the prediction performances of crash 

frequency models based on the proposed crash feature-based allocation method are 

superior to those based on conventional boundary crash allocation methods such as half-

and-half and iterative assignment approaches. Last but not least, it is possible to identify 

additional macroscopic-level factors that affect bicycle crash frequency. The findings 

should be evident in the spatial safety analysis for various geographical configurations. 

 

11.2 Main findings and contributions 

 

The main findings of this thesis are concluded as follows: 

 

(1) Effects of policy interventions on bicycle travel and safety 
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Capitalising on an advanced causal inference tool - the propensity score matching method 

- causal links between policy intervention, bicycle travel, and bicycle safety are evaluated. 

For instance, favourable effects of the low emission zone (e.g., ULEZ) on bicycle usage 

are revealed. In addition, the results suggest that bike-sharing and congestion pricing 

schemes can affect the volume and speed of traffic on the road, causing a rise in the 

frequency of bicycle crashes, particularly those resulting in slight injuries. 

 

(2) Advance the estimation of exposure in the bicycle safety analysis 

 

Adopting ridership data from a public bicycle rental system, a valid method for measuring 

bicycle exposures is proposed in this thesis to better quantify the crash potential of 

bicyclists. The proposed bicycle measure demonstrates its superiority over conventional 

exposure surrogates (e.g., population). Although the public bicycle rental system covers 

the vast majority of bicycle trips, exposure measurements are restricted to bicycle trips 

and bicycle time travelled (BTT). To this end, a weighted shortest path approach (WSPM) 

is proposed to estimate the bicycle distance travelled (BDT), taking into account the 

configuration of the cycle lane network and the safety perception of bicyclists. Bicycle 

crash frequency models that incorporate BDTs using WSPM exhibit a superior model fit 

than their counterparts, i.e., bicycle trips and BTT. 

 

(3) Risk factors to different bicycle crash types 

 

A multivariate Poisson-lognormal regression model is constructed to account for the 

correlation between the frequencies of various types of bicycle crashes. Results indicate 

that the proposed multivariate Poisson-lognormal model outperforms conventional 

univariate Poisson-lognormal models. In addition, the differing effects of risk factors on 

various types of bicycle crashes are identified. For instance, the effects of traffic flow, 

residential area, network connectivity, and intersection density on crash counts vary 

between bicycle-vehicle and bicycle-bicycle crashes. 

 

(4) Excessive zero observations in crash frequency model  
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An advanced deep learning approach, the augmented variational autoencoder method, is 

proposed to resolve the imbalanced crash data with excessive zero observations. The 

findings reveal that the proposed method can effectively resolve the challenge of 

imbalance in heterogeneous data sets. In comparison to other conventional approaches, 

the proposed method has two advantages: first, it can factorise a unified probability 

density function to accommodate multiple data types, i.e., interval, nominal, and ordinal, 

in the data generation process; and second, it can generate an intermediate representation 

for diverse combinations of zero and non-zero crash cases when formulating the objective 

function. 

 

(5) Boundary crash problem in crash frequency model  

 

An advanced assignment method, the crash feature-based allocation method, is suggested 

by considering individual crash characteristics in boundary crash allocation to resolve the 

boundary crash problem for the macro-level crash frequency model. High matching 

percentages of boundary crash allocation are achievable, according to the results. In 

addition, prediction performances of the crash frequency models based on the proposed 

method, in terms of the RMSE and MAE, are superior to those of the models based on 

conventional assignment approaches. Furthermore, additional significant risk factors can 

be identified. 

 

This thesis is able to make contributions to vulnerable road user (i.e. bicyclists) 

management and educational strategies, traffic controls, bicycle infrastructures, and 

enforcement strategies that can enhance the safety awareness of bicyclists and reduce 

their long-term crash risk based on the results of the proposed research questions. 

Following are some of the potential ramifications of the aforementioned findings. For 

instance, (i) engineering solutions such as bicycle warning signs and road markings can 

be put into place in policy intervention areas considering the rise in cycling activity. They 

not only boost the efficiency of traffic flow, but also enhance bicycle safety overall. (ii) 

Better design of Cycle Superhighways and cycle lanes, such as physical separation 

between bicycle lanes and (motor vehicle) traffic lanes, would be required to optimise 

bicycle safety. (iii) Effective education and promotion strategies that can enhance the 
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safety perception and awareness of vulnerable groups should be bolstered in light of the 

growing ageing problem in society. (iv) Accident-prone locations, such as railway 

stations and intersections, can be the target of enforcement measures and awareness 

programmes. Consequently, road safety awareness and adherence to traffic regulations 

can be improved. (v) Effects of risk factors vary across different bicycle crashes. For 

instance, traffic volume and proportion of residential areas are inversely related to 

bicycle-vehicle crashes only. Correspondingly, local area traffic management, such as 

traffic calming, low-speed zones, and cycle priority traffic signals, can be implemented 

to reduce bicycle-vehicle conflicts and the associated crash risk. 

 

11.3 Limitations  

 

Despite the contributions to the literature described in the above paragraphs, this research 

should be interpreted in the context of the limitations. Firstly, in the causal inference 

analysis, the conditional independence assumption (CIA) may not hold if unobserved 

factors that may influence the outcomes are not included. When more extensive pre-

treatment data are available, the difference-in-difference (DID) method based on the 

propensity score matching approach (PSM) can be applied. Given that differences in their 

effects on outcomes are time-invariant, the DID matching estimator can reduce the bias 

arising from differences between treatment and control groups. Moreover, the PSM 

method utilised in this thesis is incapable of adjusting for spatial correlation effects. This 

may have an impact on the estimation of policy intervention effects. 

 

Secondly, the bicycle exposure adopted in this thesis is limited to the usage data of the 

London public bicycle rental system, i.e., LCH. Despite the fact that the bike system 

constitutes over 70 % of bicycle trips in the study area, parameter estimation results may 

be subject to bias due to possible differences in the behaviours between different bicyclist 

groups. Furthermore, we only consider the impact of Cycle Superhighways and 

cycleways on bicycle route selection. Indeed, perceptions of safety can vary between 

individuals and travel purposes. When necessary data is available, it is worthwhile to 

investigate the factors, such as bicycle infrastructure, weather conditions, traffic volume, 

and bicyclists' perceptions of safety, that may influence bicycle exposure. 
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There are also limitations in the proposed models. The proposed multivariate model, for 

instance, only discusses bicycle-vehicle and bicycle-bicycle crashes. When more 

comprehensive crash data becomes available in the future, risk factors for bicycle-

pedestrian and bicycle-only crashes should be further investigated. In the proposed 

augmented variational autoencoder, each latent variable is modelled independently, and 

correlations between variables are not considered in the data synthesis procedure. Future 

research may employ a hierarchical paradigm to address this issue. For the proposed 

boundary crash allocation method, the mask rate for the proposed augmented masked 

autoencoder method in this study, which is derived from previous studies, is assumed to 

be 0.5. It is worthwhile to estimate the optimal mask rate that can optimise individual 

crash allocation. 

 

11.4 Recommendations for future research 

 

Section 11.1 and 11.2 has outlined the contributions of this thesis regarding the bicycle 

travel and safety. Nonetheless, the current work can be expanded in the future. The 

following are the recommendations for future research in three aspects. 

 

11.4.1 Dynamic effects of policy intervention 

 

It is rare that the variation in the effect of policy interventions is examined. The magnitude 

of an intervention effect can vary over time and space (Gao and Lee, 2019). Admittedly, 

it takes time for the public to recognise and adjust to a new infrastructure, transportation 

service, or traffic control and management policy. Likewise, policy intervention may have 

spatial spillover effects on travel behaviour and related performance attributes. In light of 

the above, it is critical to study the dynamic effects of policy interventions on bicycle 

travel and safety when more detailed data regarding time and space are available.  

 

11.4.2 Perception survey 
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The safety perception of bicyclists may also exert considerable impacts on road safety. 

When more detailed knowledge of the psychological and physiological information of 

bicyclists is available, it would be advisable to study the possible impacts of latent 

characteristics on the likelihood of bicycle crashes in addition to a few demographic and 

socioeconomic factors. For instance, a stated preference survey can be created to gain 

knowledge regarding the cyclists' attitudes toward transportation infrastructures, modes 

of transportation, and traffic features. Long-term crash risk reduction for bicyclists can 

be greatly facilitated by enforcement and strategies that create a safe or desirable 

environment for bicyclists. 

 

11.4.3 Multilevel modelling of bicycle crash 

 

The current study focuses on the relationship between bicycle crash frequency, exposure 

and possible risk factors at the zonal level. Crash frequency models at the microscopic 

level are required to reveal the effects of road geometries and designs on cycling safety. 

Both individual and regional characteristics are important predictors of bicycle crash 

frequency. Evidently, risk factors at different levels may result in counteracting 

influences (Tseloni et al., 2002; Tin Tin et al., 2013). Therefore, it will be beneficial to 

conduct multilevel bicycle crash modelling. Additionally, the effect of route uncertainty 

on the association measure can be incremental. In a future study, it would be worthwhile 

to explore how the variation in route choice affects the space-time development of bicycle 

trip distance and, as a result, the exposure of cyclists to the risk of crashes at the 

microscopic level, e.g. road segment. 

 

11.4.4 Interactions between risk factors 

 

Interaction is present when two or more objects affect one another. In a statistical model, 

interaction is a term in which the effect of two (or more) variables is not additive. In other 

words, the effect of factor A plus the effect of factor B is different from the effect of 

factors A and B combined. It is essential to account for such interaction effects to avoid 
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poor model performance. In the future study, it is worth assessing the mediated effects of 

some of the covariates on bicycle crash risk through their effects on bike exposure.  
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