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On one hand, the interactive, complicated system environment of a construction site renders 

the conventional site layout planning and scheduling techniques inadequate in coping with 

the materials handling system design in construction. On the other hand, simulation provides 

a promising solution to construction planning by predicting the future state of a real system 

from computer model based experiments. However, the complexity and time requirement 

involved in constructing a simulation model along with the difficulty in decoding simulation 

output data keep practicing engineers from employing simulation tools in practice. In an 

attempt to facilitate simulation application in construction, this thesis research has (1) 

formalized the procedure of setting up a construction operations simulation model in 

accordance with the Simplified Discrete-Event Simulation Approach (SDESA) and (2) 

experimented with data mining and knowledge discovery from the data produced by valid 

construction simulations by applying Artificial Neural Networks (ANN). 

 

Implementation and validation of the research findings are based on a real world case for 

improving the effectiveness of the materials handling system on a precast viaduct 

construction project in Hong Kong. How to apply the simulation methodology of SDESA is 

elaborated and illustrated step by step, with the case study. Particular emphasis is placed on 
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the procedures of establishing a simulation model, the validation of the simulation model, 

the design of simulation experiments, and the analysis of simulation results.  

 

With the same case of simulation modeling, this research further demonstrates the 

application of neural networks (NN)-based sensitivity analysis in support of construction 

operations simulation modeling. Four input factors relevant to operations and logistics 

planning in site are identified and assessed, namely (1) the number of trailer trucks rented 

for hauling segments, (2) one-batch vs. two-batch precast segment delivery modes, (3) the 

proportion of segments placed in the remote storage area, and (4) the haul duration from the 

remote storage area to the working span. The NN-generalized input sensitivity information 

was corroborated by experienced site managers and engineers, which in turn (1) helped 

validate the operations simulation model, (2) provided valuable insight into the behavior of 

the operations simulation model, and (3) enhanced the understanding of the real construction 

system. 

 

On the case study project, the field managers were convinced of the functionality and 

effectiveness of the artificial intelligence integrated construction simulation method being 

proposed. They took advantage of findings from the research in designing the actual 

materials handling system. In short, it is hoped that by implementing the simplified, 

intelligent construction simulation method as developed, practicing engineers would be 

capable and confident to draw up the best construction plan that would lead to the 

enhancement of cost-effectiveness and productivity in the field.  
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1. INTRODUCTION 

1.1. Problem Statement and Research Objectives 

Construction planning is the most crucial, knowledge-intensive, ill-structured, and 

challenging phase in the project development cycle due to the complicated, interactive, and 

dynamic nature of construction processes (Halpin and Riggs 1992). The complex 

interactions among resources on the construction site and various constraints in the harsh 

construction environment hamper a systemic, detailed, and cost-effective approach to 

construction process planning and control. The present common practice of construction 

planning is the use of a critical path method (CPM) based schedule in the form of an 

activity-time 2D bar chart (Gantt chart) on both long term (i.e. the whole project period) and 

short term basis (i.e. the month/week ahead or even particular days). Nevertheless, lack of 

resource and spatial considerations in a CPM plan has resulted in the difficulty of 

identifying mistakes of the construction plan and the inconsistency of interpreting the 

project schedule (Koo and Fischer, 2000). As a result, field managers have been relying on 

rules of thumb, past experience and intuition to draw up action plans in response to different 

situations in reality. 

 

Simulation entails the creation of a computer model of the real system based on real life 

statistics and operations. The methodology of discrete-event simulation, which concerns 

‘‘the modeling of a system as it evolves over time by a representation in which the state 

variables change only at a countable number of points in time’’ (Law and Kelton 2000). It 

has been researched to analyze and design construction operations for over three decades 

(Martinez & Ioannou 1999) for (1) productivity level estimation for complicated processes, 
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(2) improved scheduling for repetitive processes, and (3) planning adequate resource 

assignment that minimizes time and cost (Gonzales-Quevedo et al. 1993). 

 

Ever since the inception of CYClic Operation Network (CYCLONE) technology (Halpin 

1977), simulation models for typical construction systems have been delivered as electronic 

realistic prototypes for engineers to experiment on, aimed to boost the field operations 

productivity, efficiency, and bring in monetary saving. Nonetheless, operations simulation 

has lagged CPM and other types of scheduling packages in acceptance and implementation 

in the construction industry (Paulson 1995; Shi and AbouRizk 1997) and has remained 

largely software exercises at the academic and experimental level (McCahill and Bernold 

1993). The main obstacles to widespread use of simulation by construction practitioners are 

identified to be (1) the complexity of the simulation methodologies and (2) the difficulty in 

extracting management insight and tactics from the simulation outputs. 

 

The complexity of the simulation methodologies not only requires the construction 

practitioners to go through a painful, long learning curve but also consumes unreasonably 

long time to construct valid simulation models in tackling construction management 

problems. For some simulation methodologies, modelers have to possess both programming 

skills and advanced statistics knowledge in forming models even for simple construction 

operations (such as earth moving). Although many research endeavors have been devoted to 

developing simplified construction simulation methodologies, to date, construction 

simulation remains largely difficult to learn and inefficient to apply.  

 

As an attempt to make construction operations simulation as easy as applying critical path 

scheduling, Lu (2003) adapted existing event- and activity-based simulation algorithms into 

a simple, effective construction simulation technique, called the Simplified Discrete-Event 
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Simulation Approach (SDESA). SDESA was extended to allow the site layout definition of 

a construction system, and to synchronize the operations modeling in a dynamic 

construction system with the construction site layout planning (Lu et al. 2003). Some 

previous case studies have proven that SDESA can capture most construction operations 

details with simple modeling notations and concise schematic models. However, the 

uniqueness in simulation strategy justifies the formation of a SDESA model setup 

procedure which is aligned with practical modeling needs in construction and the 

simulation functionalities of SDESA. Therefore, the first objective of this research is to 

formalize SDESA model setup procedure based on the experience gained from previous 

practical operations simulation case studies. 

 

To further enhance the applicability of construction simulation, the conversion of 

simulation output data into useful information is facilitated by taking advantage of the 

latest advances in the research of Artificial Neural Network (ANN). Unlike the 

conventional regression methods, ANN allows the mapping of a number of inputs to 

multiple outputs without increasing data processing effort. The capabilities of handling a 

large amount of data at a time and approximating complicated, non-linear relationships 

within a system make ANN an ideal tool in construction research, such as applications on 

structural analysis, soil property prediction, and productivity estimation. In this research, 

ANN is integrated to construction simulation to map the relationships between various 

influential factors (e.g. resource configuration, material arrivals) and the overall 

performance indicators of a construction system (e.g. productivity, resource utilization). The 

ANN model is trained with data resulting from simulation experiments. We can further 

perform sensitivity analysis on ANN such that the significance of each input factor in 

relation to the operations system performance can be estimated. With the simple and explicit 

presentations (e.g. chart or table) of the sensitivity analysis results, construction 
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professionals, who may not be familiar with simulation modeling or ANN at all, can benefit 

from construction simulation in making sound decisions. 

 

1.2. Research Framework 

This research attempts to improve the existing construction operations simulation 

technology by (1) formalizing of the SDESA model setup procedure and (2) developing a 

simulation-based knowledge-discovering method by ANN integration (Figure 1.1). The 

following Section 1.2.1. and 1.2.2. provide more comprehensive descriptions on the 

background, motivation, as well as the methodology of this research. In Section 1.2.3., the 

background of the demonstrative case study, in which the proposed methodologies were 

successfully implemented, is introduced. 

Simulation 
Experiments 
using SDESA 

Setup 
Model 

New 
Knowledge 

Enabled by 
ANN integration

Simplified by 
Formalization  

Figure 1.1: Research Framework 

 
 

1.2.1. Formalization of Construction Operations Modeling 

Procedures  

Martinez and Ioannou (1999) examined the implicit characteristics of discrete-event 

simulation systems commonly used in construction and grouped them into three general 

strategies, i.e., activity scanning, event scheduling, and process interaction. Activity 
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Scanning (AS) and Process Interaction (PI) were identified as the two main strategies most 

commonly adopted, while Event Scheduling (ES) was viewed as an accessory to the former 

two. Each simulation strategy views a real-world system from a particular perspective (Pidd 

1998, Zhang et al. 2005b) and has a strong impact on the thought process that leads to model 

development as well as on the way a model is presented to the computer (Evans 1989).  

 

AS models are set up from the point of view of activities and the conditions under which 

they take place. Hence, AS is believed to be suitable for modeling complex operations 

system in which many resources with distinct properties collaborate to trigger activities 

(Hooper 1986). For simulation advancement, AS scans activities for time eligibility and 

other start conditions, and then executes the activities that are due to happen. (Zhang et al. 

2005b) The well-known construction simulation approach CYCLONE is a typical AS 

simulation approach. To set up an AS model, the modeler follows a standard modeling 

procedure: (1) identify activities in the system, (2) list the start-up conditions for each 

activity, (3) draw activities in blocks and conditions in circle shapes, (4) link activity blocks 

and condition circles according to the construction logic, (5) initialize the system by 

assigning simulation entities (or called tokens, representing the initial system state) to 

condition circles. The schematic model composed by the activity blocks and condition 

circles is called Activity-Cycle-Diagram (ACD).  

 

ACD model facilitates the communication between construction practitioners and modelers, 

and provides an intermediate medium to convert the conceptual model into the digital model. 

Figure 1.2 depicts the relationship between the conceptual model, ACD, and the digital 

model. Using a simple concreting operations as an example, modelers who adopt an ACD 

based simulation approach first identify the activities (e.g. Unload Concrete to Barrow) and 

their corresponding activation conditions (e.g. Full Truck and Barrow available), then these 
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activities nodes and condition nodes are organized into a complete ACD model (Figure 1.2) 

before inputting it into the simulation program. 

 

 
Figure 1.2: Converting a Construction Operations System into an ACD Digital Model 

 
The brevity of the modeling notations and clear modeling procedures exonerate the 

modelers from tedious coding and considerably shorten the learning time for modeling. 

However, the inherent difficulty in characterizing resources in ACD based model imposes 

constraints on its applicability. This difficulty is due to the interchangability of token 

identity in ACD based model, in which the meaning of an entity keeps changing when it 

flows from one QUEUE node to another. For instance, if the QUEUE node is defined as the 

number of empty trucks, then the entities in this node represent empty trucks; but if the next 

QUEUE node means soil units arrived, the identity of the entities will change into soil unit. 

The instability of token identity hinders modelers from characterizing a token with 

properties. As a result, (1) the model size may be enlarged as more nodes are required to 

represent different properties or statuses of a resource, (2) the accuracy of the model may be 

compromised by neglecting some resource properties, and (3) additional programming and 

extended features may be inserted to the simulation system for the ease of resource property 



7 

definition. Some recent developments are STROBOSCOPE (Martinez 1996) and RISim 

(Chua and Li 2001), which used different means to allow the inclusion of resource 

properties. However, the added features inevitably compromised AS modeling the brevity 

and simplicity. 

 

Looking at the operations from a different view point, Process Interaction (PI) modeling 

strategy differentiates scarce resource and production unit (or customer waiting for service). 

A production unit arrives, undergoes some processing facilitated by scarce resources, and 

exits the system. PI based simulation has been implemented manufacture and services 

enterprises throughout the world; such a simulation strategy can successfully improve the 

design and operation of complex systems (Diamond et al. 2002). Despite the success of it in 

manufacturing and service industry, PI modeling strategy is unfeasible to be directly applied 

to model construction operation system (Lu and Wong 2005). The reasons can be partly 

attributed to (1) the project nature that construction is a project-oriented business that 

produces unique products and (2) the product in construction is stationary, while the 

production facilities are mobile (Ortega and Bisgaard 2000). Additionally, the differences 

between construction and manufacturing make PI modeling strategy difficult to apply on 

construction operations system in which the production unit is no more obvious as in an 

industrial system (Martinez & Ioannou 1999). 

 

As an attempt to improve construction operations simulation from its basic modeling 

strategy, Lu (2003) combined the strengths of both PI and Activity Scanning (AS)  into an 

adapted PI simulation approach - the Simplified Discrete-Event Simulation Approach 

(SDESA) by viewing a construction system as a group of material handling workflows. To 

shorten the learning curve, SDESA models are designed to use simple simulation flowcharts. 

To form a SDESA model, modelers first break down the operations system into work flows 
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(i.e. production lines in a manufacture system), then they enrich the definition of the work 

flows by adding resources, flow entities, and resource transit information to produce a 

complete SDESA model (Figure 1.3). 

 

 
Figure 1.3: Converting a Construction Operations System into a SDESA Digital Model 

 
 

Just like other AS based simulation methods, SDESA also needs a systematic modeling 

procedure that leads a construction engineer to define work flows of a construction operation 

system and form a SDESA model step by step. A systematic and efficient SDESA modeling 

procedure is developed from the present thesis research. At the mean time, the definition of 

material-handling work flows in SDESA simulation makes it natural to combine the site 

layout planning into the modeling procedure. The process and site layout integrated SDESA 

model is conducive to studying the dynamic, interactive, and complicated relationships 

between resources and technology constraints associated with the site operations. 
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1.2.2. Discovering Knowledge Hidden in Simulation Outputs by 

Artificial Neural Network 

Based on experiments on the valid SDESA simulation model, the subsequent NN sensitivity 

analysis is intended to gain insights and deriving new knowledge on the real system for 

work efficiency enhancements. Sensitivity analysis in the context of simulation modeling, as 

given by Law and Kelton (2000), is to find out which of possibly many parameters and 

structural assumptions have the greatest effect on a performance measure. Often, procedures 

for seeking the optimum of a target output can be facilitated and informed by the knowledge 

of input sensitivity of a model. 

 

The traditional sensitivity analysis method is to apply regression techniques onto a set of 

input-output data collected from running simulation experiments and further to estimate the 

input sensitivity by determining the partial derivatives of the regression equations. This 

method relies heavily on the regression model’s validity, corroborated by analysis of 

variability, normality, heteroskedaciticity, correlated residual (Draper and Smith 1998).An 

independent input-output regression analysis is required for each output measure of concern 

(Porta Nova and Wilson 1989). Additionally, the regression approach does not well address 

the uncertainty of inputs and outputs, due to the stochastic nature of simulation modeling. 

Although substantial research has been undertaken into developing more efficient ways of 

sensitivity analysis for simulation, including the perturbation-analysis method (the single-

run sensitivity-estimation method based on likelihood ratios (Kleijen & Rubinstein 1996)), 

and the use of light-traffic theory for queuing simulations (Simon 1989), a surrogate method 

for queuing networks (Vazquez-Abad & Kushner 1993), the procedures are still tedious and 

convoluted, as the simulation model is required to execute repeatedly to evaluate and 

observe the model’s response (changes in outputs).   



10 

 

ANN mimics the learning process in the human brain to generalize an artificial intelligence 

model from observing patterns within historical data as provided on a complicated problem. 

ANN model can be used as a decision support tool for factor analysis, pattern recognition, 

classification and prediction on new scenarios in the problem domain (Lu et al. 2005). ANN 

is gaining popularity as a data mining approach that supplements the data warehouse, the 

enterprise resource planning (ERP) system for creating business intelligence. The ANN 

model - which was calibrated on the input-output data obtained from simulation - can be 

viewed as a function to substitute the simulation model itself for system performance 

prediction. Moreover, such a function also facilitates the simulation model sensitivity 

analysis, which guides the construction practitioners with sound decisions, and ultimately 

leads to the best arrangements on the simulated operations system. Compared with a 

regression model, the undistorted artificial neural network (ANN) sensitivity analysis 

technique (Lu et al. 2005) is able to map a set of inputs onto multiple outputs simultaneously, 

and capable to take into account the uncertainty dimension for one simulation output (for 

example, taking the mean and standard deviation of a simulation output variable as ANN 

outputs). This is deemed particularly useful and significant to sensitivity analysis for 

simulation modeling. 
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1.2.3. Implementation and Validation: the Precast Viaduct 

Construction Case Study 

A precast viaduct construction project in Hong Kong is used to demonstrate the proposed 

methodologies as for (1) formalization of the SDESA modeling procedures; and (2) 

integration of Artificial Neural Network (ANN) with simulation. In this case study, the 

material inventory problem in the precast viaduct project is firstly described, then the 

application of SDESA simulation methodology is elaborated to illustrate the design and 

evaluation of the materials handling system in the precast viaduct construction. Particular 

emphasis is placed on the procedures of establishing a simulation model, the validation of 

the simulation model, the design of simulation experiments, and the analysis of simulation 

results (Chan and Lu 2005). Finally, the simulation experiment output data is used to train 

an ANN model which is capable of encoding the input-output relationships of the operations 

system by sensitivity analysis. 

 

1.3. Research Methodologies 

To establish a systematic modeling procedure for SDESA, most of the established discrete 

event simulation methodologies were reviewed. Several construction simulation 

methodologies, such as CYCLONE (Halpin 1977) and STROBOSCOPE (Martinez 1996), 

were studied in terms of their model setup procedures, functionality, and limitations. Then 

the functionality of the in-house simulation platform of SDESA was reviewed in detail. The 

simulation elements in SDESA (including the Flow Entities, Resources, and Locations ) 

were defined clearly in terms of their usages, characteristics and application circumstances. 

The functionalities of all SDESA model elements and the proposed modeling procedure 

were illustrated and documented in the SDESA User’s Guide based on the experience 
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gained in applying SDESA in different real projects. Typical site operations in Hong Kong 

were covered in these applications, the knowledge generated from the simulation was fed 

back to site personnel for better site management decisions. Finally, possible improvements 

of the existing SDESA system are identified for improvements in future research. 

 

For the integration of ANN with construction simulation, the ANN technique was studied at 

the application level and some recent developments of this technique were reviewed. The 

simulation output data generated in the case of precast viaduct installation were used in 

training, validating, and verifying the ANN model. And finally, the SensitivityNN (Lu 2001) 

tool was studied and applied in training ANN model and conducting sensitivity analysis, 

which transfers the simulation output data into explicit and immediately applicable 

construction operations management knowledge.  

 

1.4. Dissertation Structure 

Chapter 1 introduces the motivation, and the objectives of the research. It also discusses the 

observed weaknesses of conventional Activity Scanning (AS) based construction simulation 

methodologies, and presents the brief idea of the proposed systematic modeling procedure 

for SDESA as well as the integrated Artificial Neural Network (ANN) simulation approach 

for simulation knowledge discovery.  

 

Chapter 2 gives literature review on the existing approaches for operations simulation and 

ANN, with particular focus on construction applications. This chapter can help readers to 

understand more on the development of construction simulation and shed light on the 

motivation for this research. 
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Chapter 3 introduces the formalized ANN-integrated simulation modeling methodology. 

The frame work of how to employ the ANN to facilitate the knowledge discovery from 

simulation and the site-layout planning integrated simulation modeling procedures are 

presented. A typical earth-moving example is used in this chapter to illustrate the modeling 

procedure application. 

 

Chapter 4 shows the implementation of this research on a local (Hong Kong) viaduct 

construction project. The operations system concerned in the viaduct construction project 

was modeled following the proposed modeling procedure and the simulation results 

collected were used to train an ANN model. This chapter demonstrates the applicability and 

usefulness of this research in practical settings. The last chapter (Chapter 5) concludes the 

research by recapitulating the contributions and giving suggestions for future research 

directions 
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2. LITERATURE REVIEW 

2.1. Introduction 

The objective of this research project is to (1) formalize the Simplified Discrete-Event 

Simulation Approach (SDESA) modeling procedures and (2) facilitate the knowledge 

discovery from simulation output by integrating Artificial Neural Network (ANN) with 

simulation. This literature review chapter provides background on construction simulation 

and ANN.  

 

Section one is about construction simulation which reviews the development history of 

construction simulation on its simplicity and functionality enhancement, and the inherent 

limitation of Activity-Cycle-Diagram (ACD) simulation approach.  

 

Section two reviews the applications of ANN on construction and gives a brief review on the 

invention and development of ANN. There is also a summary of ANN application research 

in construction in recent years. The summary of the ANN applications explains the reasons 

of ANN’s popularity in construction and the most common application settings of ANN. 

 

The last section places its focus on the ANN applications on construction simulation. This 

chapter reviews different approaches of ANN and construction simulation integration and 

gives comments to each of these approaches. 
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2.2. Construction Simulation 

Discrete-event simulation is a powerful method to imitate the behavior of a real-world 

system over time by modeling repetitive processes in which durations of operations are 

stochastic and many resources interact (Law & Kelton 2000). It keeps track of the changes 

of the state of a system occurring at discrete points in time (Pidd 1992) and experiments 

with the system on a computer through a digital process model (Prisker 1986). The statistical 

data generated from the experiments provides users with insight into system’s resource 

application, interactions, and constraints (Tommelein et al. 1994).  

 

Though discrete-event simulation has been around for decades, this technique has not gained 

widespread use in industry. It is in part because (1) existing implementations did not 

represent many of the relevant characteristics of project components or construction 

resources, and (2) it is tedious to collect and assemble all required input data and to 

construct simulation networks (Tommelein et al. 1994). 

 

CYCLONE (short for CYClic Operation Network, developed for construction operations 

simulation by Dr. Halpin at the University of Maryland in the early 1970s) is probably the 

best-known discrete event simulation system used in construction. Compared with the 

general simulation tools available (e.g. SLAM II) at that time, CYCLONE is much more 

simplified and easier to learn. It uses only a small set of modeling elements and lends itself 

well to system modeling in the construction context. Since the inception of CYCLONE, 

many enrichments based on the blueprint of CYCLONE have been proposed to extend its 

merits, including INSIGHT (Kalk 1980), MICROCYCLONE (Lluch & Halpin 1982; Halpin 

1989), and UM-Cyclone (Ioannou 1988), DISCO (Huang and Halpin 1993), and 

STROBOSCOPE (Martinez and Ioannou 1999). The more recently developed “offspring” of 
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CYCLONE is STROBOSCOPE (Martinez 1996), which is a programmable and extensible 

simulation system designed for modeling complex construction operations. Nevertheless, 

none of these tools has gained widespread use in construction industry because of the 

limitations of these simulation methodologies in representing the characteristics of a real 

project, or the difficulty of applications in developing a valid simulation model (Tommelein 

et al. 1994; Paulson 1995).  

 

With the objective of making the simulation of construction operations as easy as applying 

critical path scheduling, Shi (1999) developed Activity-Based Construction simulation 

method (ABC) to simplify the construction simulation by using one single element 

“activity” for modeling general construction processes −which is analogous to Critical Path 

Method (CPM).  ABC is composed of the modeling module (ABC-Mod) and the simulation 

module (ABC-Sim). Similar to the activity-cycle diagram (ACD) of a CYCLONE model, 

ABC-Mod is a static schematic model which assists modelers to portray a real system with 

an ABC-compatible diagram by using only activity blocks and arrows to represent the 

operations logic.  Yet, ABC carries the same shortfall of other PI modeling methods in 

coping with how to represent a resource’s transit between various locations. Upon 

completing one activity, resource entities −which are shared by various activities− are 

generally released to the resource pool before being reallocated; as such, it is difficult and 

complicated to model the transit duration of resources between different activity locations 

with ABC. Zhang et al. (2002) mounted an animation layer on the ABC to visualize the 

queuing status and dynamic resource movements with icons, which, however, does not 

enhance the accuracy and flexibility of ABC in regard to modeling resource transit between 

site locations.   
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Another attempt in construction simulation simplification is the development of Simphony, 

which provides an integrated simulation environment for tailoring Special Purpose 

Simulation (SPS) templates, resulting in domain-specific, tailor-made simulation tools 

within a relatively short time (Hajjar and AbouRizk 1999; AbouRizk and Mohammad 2000). 

Despite the fact that SPS tools can facilitate the adoption of simulation by simulation 

novices in the construction field, customizing a stand-alone SPS tool still requires a large 

initial investment of time and resources. The designing, coding, and testing of the SPS tool 

entail the close collaboration of a construction expert with knowledge and experience in a 

special construction domain and a computer simulation expert.  

 

These attempts of construction simulation simplification help shorten the modeling time by 

reducing the number of simulation notations or by providing tailor-made icons for model 

setup. However, the inherit limitations of simulation in portraying the real construction 

operations has not been investigated. One of the inherit limitations of Activity-Cycle-

Diagram (ACD) based simulation is the difficulty of including activity location and site 

layout information in the model. To date, unless sophisticated model settings were involved, 

typical ACD based simulation tools, such as CYCLONE and most of its extensions, can 

only handle the “space” dimension in an implicit way (e.g. set one token as one parking bay) 

and disallowed a “tight coupling” approach that draws on simulation for evaluating site 

layout alternatives. 

 

However, it is obvious that activity location and site layout consideration is essential to 

construction planning. Insufficient work space available in site results in productivity loss, 

potential safety hazards and poor-quality work (Riley and Sanvido 1995). And a good layout 

of transit paths and storage spaces on site for handling materials also contributes to the 

efficiency of overall construction operations (Li et al 2001). In general, how to place 
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temporary facilities within the confines of a construction site so as to achieve efficiency and 

safety in the movement of resources is referred to as the site layout planning problem. The 

current practice of site layout planning largely relies on a planner’s experience and common 

sense (Tam et al. 2002). The complicated space needs for production activities change as 

construction work progresses, which highly depends on the activities, equipment, and 

material involved (Tommelein et al. 1992). Different needs of space use including material 

deliveries, staging areas, and locations of major equipment and plants on site are usually 

foreseen and plotted in a two-dimensional chart at the beginning of a project and will not be 

updated until the project reaches the next phase of construction (Riley and Sanvido 1997). 

 

Some researchers have proposed different approaches trying to integrate the space 

dimension into the construction simulation. Choo and Tommelein (1999) proposed the 

WorkMovePlan model consisting of (1) the site layout tier, (2) the physical flow tier, and (3) 

the process flow tier; their idea was to integrate the three tiers for linkage with process 

simulation modeling so as to quantitatively assess site layout alternatives. Yet, the linkage of 

simulation with the WorkMovePlan remained as “loose coupling”, only to provide input to a 

separate undertaking of simulation modeling. Tommelein (1999) applied a simulation model 

−built with the STROBOSCOPE software− to investigate the amount of time construction 

workers spent traveling and waiting to receive service at a temporary facility (tool rooms). It 

is noted that much learning and modeling time was entailed in building the simulation model. 

Hand-coding efforts were required in linking up the simulation and site layout models. 

Therefore, an interface with a graphical package (such as CAD) describing the product as 

well as the layout characteristics can lend significant support to simulation modeling (Xu et 

al 2003).  On a concrete dam construction project, Zhong et al. (2004) applied the 

geographic information system (GIS) to inform a CYCLONE model with the travel distance 

and quantity data. Their integrated system also featured 3D-animation for detecting 
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simulation logic errors and reporting simulation results. So far, such interfaces between 

product and process models have only been instrumental in facilitating data exchange as of 

soil information and travel route information in earthmoving simulation applications. 

Another related work was the VITASCOPE system developed by Kamat and Martinez 

(2001) to enable accurate 3D visualization of specific construction operations modeled with 

STROBOSCOPE −spatially and chronologically. Applying VITASCOPE requires the 

knowledge of the syntax of a special marker language and is limited to depict the motion of 

resources and the states of completion on a constructed facility in a local area. Zhang et al 

(2005a) described the integration of a cell space model with a CYCLONE simulation model 

for bridge decking operations. The cell space model divides space into cells and the change 

of each cell’s state over time reflects the space occupancy by a resource or an activity. As 

pointed out by Zhang et al (2005a), a tight coupling of CYCLONE with the space model is 

difficult due to the absence of a site layout representation in CYCLONE’s schematic model 

and the lack of flexibility for assigning attributes to resource entities in a CYCLONE model.  

 

Based on the modified process-interaction simulation paradigm, Lu (2003) developed a 

simple, effective construction simulation technique, called the simplified discrete-event 

simulation approach (SDESA). Besides the formation of a process flowchart model being 

simplified, SDESA is also capable to link its simulation model to a 3D site layout view 

produced with computer graphics, so as to use the site layout view as the animation 

backdrop in visualizing the operations being simulated and verifying simulation results. The 

process mapping and simulation methodology formalized in this research is essentially an 

extension of SDESA by explicitly defining activity locations in the site space and 

incorporating the site layout model in the generation of an operations simulation model. The 

main characteristics of SDESA are summed up below: 
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• Differing from the manufacturing-oriented PI, work flows in SDESA are not limited 

to linear processes (production-line work flow), and accordingly, the associated flow 

entities are not limited to product units (e.g. units of material, parts). Some 

construction resources (e.g. vehicles) can be readily identified as flow entities 

undergoing a close looping of activities (i.e. vehicle-loop work flow), as long as 

such resources are interchangeable and are bound to one work flow instead of being 

shared by multiple work flows. The vehicle-loop work flows are commonplace in 

construction and also constitute basic resource cycles in forming a CYCLONE 

model. Flow entities associated with all the work flows in a model are organized into 

one queuing structure, which is dynamically manipulated by the simulation 

executive according to the SDESA algorithm. 

 

• In a SDESA simulation model, resource entities are classified into non-disposable 

(manpower/machinery resources) and disposable resources (material or information 

units that are generated by one activity and requested by another; they can constitute 

part of resource availability constraints in matching resources for invoking activities). 

All resources are organized in the resource entity queue of the model, which is the 

equivalent of the resource pool in a PI model. Note SDESA uses the disposable 

resources to logically connect multiple work flows in a construction system. 

 

• The SDESA executive program marshals two dynamic queuing structures (namely, 

the flow entity queue and the resource entity queue) on first-in-first-out basis, so as 

to advance the simulation clock and execute activities that satisfy the logical and 

resource-availability constraints as specified by the modeler in the network diagram 

model. 
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2.3. Artificial Neural Network Applications in Construction 

Artificial Neural Networks (ANN) are inspired by the structure and functions of brain 

neurons of the human brain. ANN considers Processing Elements (PE) as the basic unit (i.e. 

neurons in a neural network) and mimics the neural system by having a large number of 

connections between these PE. Each of these PE has N inputs and 1 output for signal 

transmission. PE does not execute instructions alone but responds to the inputs from 

connected PEs. Similar to the learning process of a human brain, a certain amount of 

learning examples are presented to the ANN during training process, in which the weight 

values associated with inter-PE connections are modified until the ANN is capable to 

generate the expected output (Hegazy et al. 1994). 

 

The first Artificial Neural Networks (ANN) model can be traced back to the cybernetics and 

automate studies by McCulloch and Pitts in 1943. ANN is under the umbrella of Artificial 

Intelligence (AI). However, the development of ANN lagged behind the development of 

other AI development, such as expert system and robotics despite their parallel start since 

the early 1950s and until people had realized the high maintenance cost and the limitations 

in achieving intelligence of other AI approaches (Gallant 1988, Wasserman 1989). 

Therefore, after the early slow development, there has been a growing interest of ANN 

research, resulting in an increasing number of applications in civil engineering since the mid 

1980s (Flood & Kartam 1994).  

 

Several important reasons are highlighted by Flood and Kartam (1994) which makes ANN 

appealing to civil engineering applicants: 

1) the ability of ANN in learning and generalizing from examples is superior to 

conventional regression models 
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2) the ability of ANN in generating “solutions”  even the input data contains errors or is 

incomplete 

3) once the ANN model is trained, short time is needed in response to a new question 

4) relatively less demanding in the speed and memory of a computer as compared with 

other AI approach (this factor was especially significant in 1980s) 

 

ANN applications in civil engineering domain published over the past two decades were 

studied, including journals and conference proceedings. The review results (in Appendix) 

contribute to the understanding on ANN methodologies and the application trend of ANN in 

construction domain.  

 

Figure 2.1 summarizes the applications of ANN in different research areas within the civil 

engineering domain. It can be observed that most of the ANN applications are around 

construction management, including productivity estimation (43%) and tendering (10%). It 

is believed that the construction management problems, which involve many complicated 

factors and intertwined relationships, can be handled by ANN more effectively than 

conventional quantitative or heuristic methods. Other ANN applications relate to structural 

analysis (23%), geotechnical related problems (10%), and maintenance management (10%). 
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Figure 2.1: Applications of ANN on Different Research Areas in Civil Engineering Domain 

 
 

Figure 2.2 presents proportions of different ANN algorithms in the civil engineering related 

applications. It is found that Back-Propagation Neural Network (BPNN) approach 

(Rumelhart et al. 1986) is the most commonly used (up to 83%) in search. The finding is 

consistent with Moselhi & Eldeen (2000) and Adeli (2001) that BPNN is the most 

commonly used type of ANN for civil engineering applications. The popularity of BPNN 

applications in the construction field is ascribed to its close analogy to the regression 

technique and its capability of approximating high-dimensional and nonlinear functions (Lu 

et al. 2001).  
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Figure 2.2: The Use of Neural Networks Approaches in the Construction Research 

 

 

2.4. Artificial Neural Network and Construction Simulation 

As for the applications of ANN in connection with construction simulation, the underlying 

approaches for integrating ANN with simulation can differ and they can be classified into 

three categories (Figure 2.3). The first approach replaces statistical distributions with ANN 

models in representing the uncertainty of input data for the simulation model (Chao and 

Skibniewski 1994; Hajjar et al. 1998). The second approach replaces the core simulation 

engine (i.e. the simulation event advancing mechanism) by ANN to update the state of the 

simulated system in order to speed up the simulation run (Flood and Worley 1995). The 

third approach (Zoe et al. 2002; Chao and Skibniewski 1994) suggests training ANN model 

by simulation results and uses the trained ANN model to approximate a complicated 

simulation model.  
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Figure 2.3: Three Different Integrating Approaches of Artificial Neural Networks and Simulation 

 
 

The First Approach 

Chao and Skibniewski (1994) trained a neural network for earthmoving productivity 

estimation. Their research used Artificial Neural Networks (ANN) to mimic the real 

excavator operations and generate more descriptive activity duration distribution for the 

simulation model. The ANN trained based on the observation data from a physical excavator 

is then embedded into an earthmoving CYCLONE model. The trained ANN translates 

multiple input factors (i.e. the digging depth and the orientation of the excavator) into a 

simple activity duration distribution. Another similar research by Hajjar et al. (1998) 

proposed a generic approach for integrating neural networks with simulation. An earth 

moving model was setup in which the productivity of the excavator in the model was 

dynamically linked to a trained neural network model which was trained by site observation 

data. The trained neural network model recalled the excavator’s productivity during the 

simulation run and the change of the working environment was reflected as the work 

environment parameters were part of the neural network input. The proposed integration of 

ANN with simulation replaced the conventional Monte Carlo sampling in providing more 

interactive and dynamic activity duration approximation. Nevertheless, the proposed NN 

model duration estimation is incapable to fully reflect the activity productivity fluctuation 

due to operation variations in that only the mean value of the duration is generated.  
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The Second Approach 

Flood and Worley (1995) proposed a neural network based method for construction 

simulation aiming to speed up the simulation execution through parallel computer 

processing. They used radial-Gaussian neural networks to form different modules to mimic 

subsystems in a construction operations system. Similar to a recursive function, the core 

neural network module was designed to recall its output to the module itself such that the 

previous state would be reflected in the next state of the simulation model. A typical earth-

moving operations system was used to demonstrate the viability of the proposed approach. 

Flood and Worley’s approach is undeniably the most complete integration such that the 

modularized ANN completely replaced the discrete-event simulation engine. However, such 

replacement presents difficulty in the model validation as the integrated ANN modules are 

much more complicated to verify than conventional simulation models. Moreover, the 

proposed approach is incapable to generate and recall other operations information (e.g. 

resource utilization) except duration, which hinders the exploration on the simulated system 

in different aspects. Additionally, a large amount of training and validation on data can 

hardly be collected in reality. As such, the training and validation of the ANN simulation 

model inevitably rely on the conventional discrete-event simulation method in obtaining 

data. 

 

The Third Approach 

Zou et al. (2002) proposed a neural network embedded Monte Carlo simulation approach to 

account for uncertainty in water quality modeling. The Monte Carlo simulation was used to 

generate random inputs and the corresponding outputs were calculated by a mathematical 

model to form a dataset. Then the dataset were used to train an ANN model in order to 

replace the complicated mathematical model by simple ANN mapping. However, in this 
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research, simulation is only used for sampling data and does not have a close coupling or 

interaction with the ANN.  

 

Lu et al. (2001) deduced the partial derivative between the ANN input and output in 

establish an ANN model to estimate the productivity of spool fabrication. The approach is 

relatively accurate in identifying the significant factors with the input and output ranges 

were normalized before analysis.  In this research, sensitivity analysis of Back-Propagation 

Neural Network (BPNN) as proposed in Lu et al. (2001) is used to gain insight into the 

BPNN which is trained with the construction simulation experiment data. This kind of 

ANN-simulation integration ease both simulation model validation and ANN model training, 

as noise-free data for calibrating ANN can be obtained from the valid simulation model. At 

the same time, ANN sensitivity analysis is conducive to understanding the behavior of the 

simulation model and further verifying the simulation. 
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2.5. Chapter Summary 

Simulation provides a good alternative to assist construction managers in decision making. 

However, established construction simulation tools (such as CYCLONE) are still found 

difficult to model many operations which commonly occur in a construction site.  This has 

called for further research to make construction simulation more straightforward or more 

flexible. Nevertheless, the stagnation of promoting construction simulation to industry 

practitioners leads to the rethinking of the inherent simulation paradigm of the CYCLONE-

like simulation tools. The weakness of AS simulation paradigm is identified such that the 

“space” (or site layout) dimension is hard to be included in a natural manner in this 

paradigm. Therefore, the adoption of the alternative PI simulation paradigm is considered. 

The first task of this research is to formalize the modeling procedure suitable to Simplified 

Discrete-Event Simulation Approach (SDESA), which is based on an adapted PI simulation 

paradigm. The new modeling procedure will seamlessly consider activity locations and site 

layout planning in forming a SDESA simulation model. 

 

The previous Artificial Neural Networks (ANN) application research efforts have fully 

demonstrated the advantages of ANN. Based on the literature review, it can be found that 

ANN is capable of handling large amounts of data and perform function approximation or 

prediction well without demanding substantial computing resources and modeling efforts. 

The research on integrating ANN with simulation in the past suggested several various ways 

of integration. However, it can be observed that “using simulation output data to train an 

ANN model to make ANN an approximating tool of the simulation model” is relatively 

practical and useful as the precision of the ANN modeling depends on the availability of a 

large amount of training data which can be provided from simulation output. Meanwhile, 
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ANN-based sensitivity analysis helps in understanding the behavior of a complicated 

simulation model. 

 

3. FORMALIZED ANN-INTEGRATED SIMULATION 

MODELING METHODOLOGY 

3.1. Introduction  

To improve the productivity of a construction operation, the existing practice relies on 

human intuitive judgment and experience. A scientific and systematic method for operations 

design and analysis has been called for to enhance construction operation productivity. The 

desired method should be (1) easy to pick up by industry practitioners, (2) flexible in 

handling diversified construction operations, (3) efficient to generate decision-support 

information in short time. The simulation modeling procedure proposed in this research 

provides engineers with a straight-forward and systematic means to describe common 

construction operations. The valid simulation model resulting from the proposed procedure 

can be used to estimate the responses of the operations system under different operation 

settings (e.g. different resource configurations, site-layout arrangements, construction 

methods). To amplify the usefulness of the simulation model, an Artificial Neural Networks 

(ANN), which can accurately map highly complicated relationships among multiple inputs 

to multiple outputs, can translate the experiment data from the simulation experiment to 

managerial knowledge in terms of input sensitivity measures. Eventually, the critical input 

factors identified can facilitate the seeking of the optimum operation setting and the 

managerial knowledge derived can be directly applied in improving construction 

management (Figure 3.1). 
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Figure 3.1: Flow Chart for the ANN-Integrated Simulation Method 

 

3.2. The Framework of the ANN-integrated Simulation 

Modeling Method 

The formalized ANN-integrated simulation modeling method includes three steps, they are:  

 (1) Setup simulation model for experimenting with postulated scenarios on computers,  

 (2) Train an ANN using the simulation experiment data, and  

 (3) Perform ANN sensitivity analysis.  

 

The first step – “Setup simulation model”– is recognized as a bottleneck of the proposed 

ANN-integrated simulation modeling method. It is hard to find one construction operations 

modeling approach which is cost-effective while fully satisfying construction practical needs, 

although simulation has been researched for long time in improving its simplicity and 

applicability. To expedite the construction simulation, an innovative simulation modeling 

procedure synchronized with site layout planning is proposed in this research, which will be 

presented in detail with step by step demonstrations in the last section in this chapter. 
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When a valid simulation model is formed, a series of simulation experiments can be 

launched to examine the simulated operations system. The output data collected from the 

simulation experiments will be used for the training of the ANN model. The simulation 

output data is presented to the ANN model for the tuning of the network’s linkage weights 

until the ANN is “fit” enough to make accurate output predictions. The ANN training 

algorithms and application methodologies are already well established in the literature. The 

Back Propagation Neural Network (BPNN) is recommended and adopted in this research.  

 

The well trained ANN is capable of approximating the simulation output so as to allow non-

simulation specialist to take advantage of simulation without conducting further simulation 

experiments. Moreover, and more importantly, the significance of each input factor toward 

the construction performance can be readily revealed by the established ANN sensitivity 

analysis procedure. Compared with a regression model, an ANN model is able to map a set 

of inputs onto multiple outputs simultaneously. ANN’s convenience in handling multiple 

outputs at one time also makes it possible to take into account the uncertainty dimension for 

one simulation output, which is deemed particularly useful and significant to sensitivity 

analysis on a simulation modeling. The sensitivity analysis based on ANN adds value to 

construction simulation by converting the discrete simulation experiment records into 

valuable information for construction management in terms of both designing the optimum 

operation setting and assisting in making the sound action plans.  

 

Since the invention of ANN, several different sensitivity analysis approaches were proposed 

to assist acquirement of insights from it (Craven & Shavlik 1994). For instance, Knowles 

(1997) added up the absolute value of weights from one input node to every hidden 

processing element in an ANN model trained for pipe installation productivity estimation. 

The total weight value of the connections to an input nodes is used to gauge the importance 
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of the corresponding input node. Li et al. (1999) adopted a heuristic approach, which was 

first proposed by Fu (1994), to extract rules from a trained ANN and try to explain how the 

construction markup percentage was suggested by the NN. Sinha and McKim (2000) used 

statistic analysis methods to identify the dominant factors of an ANN model trained for 

construction organization effectiveness measurement. However, these methods were found 

to be either inaccurate in rule extraction from ANN or constrained to handle only simple 

small-scale ANN networks. Adopting the sensitivity analysis approach, Lu et al. (2005) 

made use of a trained ANN to account for the relative effects of each input factor upon the 

target outputs in undistorted terms. Compared with a regression model, an ANN model is 

able to map a set of inputs onto multiple outputs simultaneously. ANN’s convenience in 

handling multiple outputs at one time also makes it possible to take into account the 

uncertainty dimension for one simulation output, which is deemed particularly useful and 

significant to sensitivity analysis for simulation modeling.  

 

Because ANN approaches have been well established in the literature, this dissertation will 

not present the training algorithms and application mechanisms of ANN. However, ANN 

application will be demonstrated in a local viaduct construction case study in the next 

chapter. The remainder of this chapter presents the process mapping and simulation 

methodology for integrating site layout and operations planning in construction. A simple 

earth-moving case is used to demonstrate the application of the new methodology, resulting 

in the generation of a SDESA simulation model. The complete application of ANN-

Integrated simulation modeling will be given in Chapter 4, which resorts to a real-world 

project for problem definition, data collection, simulation modeling, and ANN sensitivity 

analysis of the resultant simulation model.  
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3.3. Process Mapping and Simulation Modeling Method  

Work space needs on activities change as construction work progresses and highly depend 

on the activities, equipment, and material involved (Tommelein et al. 1992). Insufficient 

work space available in site causes productivity loss, potential safety hazards and poor-

quality work (Riley and Sanvido 1995). A good layout of resource transit paths and 

temporary storage spaces on site for handling materials is always critical to the efficiency of 

overall construction operations (Li et al 2001). In order to include the spatial consideration 

in term of activity location and site layout in simulation, this research proposes a systematic 

procedure to seamlessly synchronize the process modeling and the site layout modeling for 

construction planning. A general-purpose, flowchart-based simulation modeling 

methodology is linked to a site layout model to formulate an integrated simulation model for 

studying the dynamic, interactive, and complicated relationships between (1) the 

resource/technology constraints associated with the site operations and (2) the spatial 

constraints imposed by the site layout.  

 

3.3.1. Terminology Definitions 

Construction operations entail moving materials (dirt, concrete, steel, wood), precast or 

prefabricated components and assembling them into the final building products at specific 

locations in the site. This is facilitated with manpower and machinery resources and dictated 

by product designs (i.e. the blueprint drawings) and construction technologies (i.e. technical 

specifications prescribing activity sequences and quality standards). The resource-driven 

nature of construction engineering presents the distinct challenge of modeling the dynamic 

allocation, transit, and matching of an assortment of construction resources 

(manpower/machinery/material) at certain activity locations, subject to the space, resource 

and technology constraints. Executing activities in a construction system is in general 
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contingent on the availability of all required resources and subject to all relevant 

logical/technological constraints. Thus, the characteristics of a construction operation make 

it difficult to be described and modeled in a systematical way. Hence, one key objective of 

this research is to give guidance on how to identify and organize scattered activities and 

dynamic resources into workflows for easy formation of a construction operations 

simulation model.  

 

The workflow defined in SDESA is close to the production cycle defined in Method 

Productivity Delay Model (MPDM), which is a productivity measuring and evaluating 

method for construction systems proposed by Adrian and Boyer (1976) in 1970’s. The first 

step in applying MPDM is to collect the production cycle duration and productivity delay 

data. Then productivity indexes, such as the ideal productivity and the method productivity, 

are calculated based on the collected data. The calculation results along with the site 

observation data help engineers to the gauge the construction activity performance and 

identify the critical delay factors. MPDM provides construction firms with a simple means 

to perform productivity measurement and evaluation. Nevertheless, the manual data 

collection and assumptions of the analysis limit its applications to simple construction 

operations. Moreover, MPDM is incapable to perform activity productivity estimation for 

postulated (i.e. not existent yet) construction operations systems as the reliability of the 

method is highly dependent on accurate and actual operation data. However, MPDM has 

established a systematic framework for portraying a construction system with production 

units, resources, activities, and workflows. 

 

According to Adrian and Boyer (1976), a workflow (termed as production cycle in Method 

Productivity Delay Model (MPDM)) is a group of construction activities involved in the 

handling, processing, or moving of a flow entity (termed as production unit in MPDM), 
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which is facilitated by scarce resource (termed as leading resource in MPDM). A flow 

entity is an amount of work descriptive of the production which can easily be visually 

measured flowing around the work flow. Typical examples of flow entities are (1) a scraper 

of soil being transported and dumped, (2) a bucket of concrete being poured, and (3) a 

precast segment being installed. By observing the flow entities in a construction operations 

system, a modeler can define workflows such that each workflow handles only one distinct 

type of flow entities. Usually, the method productivity reflects the sufficiency of the 

resource provision in an operation system. Typical examples of leading resources include (1) 

loaders for earth moving; (2) a tower crane for the pouring of concrete; (3) a lifter for 

precast element installation. Although MPDM is only concerned with one leading resource 

in site observations, SDESA allows the considerations of multi-resource for each activity in 

order to portray the practical work situation. Taking the typical earth-moving operation as an 

example, the truck-load (i.e. soil carried by trucks) is the flow entity; the loaders which load 

the trucks are the resource; and the work cycle of moving soil from the cut site to the dump 

site forms the workflow.  

 

3.3.2. Build up the Complete SDESA Model 

The general steps for process mapping and simulation modeling with SDESA are as follows: 

 

Step 1: Breakdown the construction operations system into workflows and mark down all 

the key locations by hollow circles in a site layout plan.  

 

Step 2: Mark a production activity with a square node around its corresponding location 

circle; while a transit activity is denoted with a thick arrow linking two location circles 

corresponding with the origin and destination locations. There could be some additional 
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precedence relationships between production activities defined at the same location cycle 

and the precedence logic between these activities should be clearly specified.  

 

Step 3: Initialize the quantity and arrival times of Flow Entity (FE) associated with each 

work flow in a diamond block connecting to the first activity of each work flow.  

 
 
Step 4: Allocate the resources to activities and initialize the type and quantity of resources 

in the resource pool. Note both the available time and the current location of each resource 

in the resource pool are initialized prior to the start of simulation, which are continuously 

traced and dynamically updated in order to reflect the current state of the system as 

simulation proceeds. Disposable Resource (DR) representing the intermediate products or 

signals is defined and used for linking up activities in different work flows. DR may be 

generated at the end of the activity or initialized in the resource pool before the dynamic run.  

 

Step 5: Specify activity times as constants or distributions. Alternatively, a transit activity’s 

duration can be defined as the travel distance divided by the resource’s moving speed. The 

travel distance can be directly informed by the site layout model (e.g. the Euclidean distance 

between the center points of two location circles), while uncertainties −relating to (1) 

conditions of the resources involved and (2) activity interruptions due to interfering traffic in 

the site or other environmental factors− can be contained within a statistical distribution 

which describes the resource’s moving speed.  

 

Step 6: Specify any additional transit times as incurred by resources in serving different 

activities at various locations in the resource transit information system (RTIS), in which 

information of resource transit from one location to the other is specified. During simulation, 

RTIS will be queried for updating the state variables of the system. As such, the model 
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structure can be considerably streamlined, and the model definition significantly simplified 

in comparison with an Activity Cycle Diagram (ACD) modeling approach (such as 

CYCLONE).  

 

Step 7: Automatically map location circles in each work flow onto their corresponding 

positions in a site layout model so as to complete the formulation of the simulation model in 

a site layout view. In the prototype computer platform of SDESA, a production activity is 

represented as a square block placed at a location circle and a transit activity with a line 

section connecting two location circles. Since more than one activity may overlap in space, 

we apply different color schemes onto the square block (or the line section) so as to 

distinguish different activities and highlight the currently activated ones in the animation of 

the dynamic process simulation. 

 

3.4. Small Illustrating Example 

To illustrate the above terminology definitions and modeling procedures, let us consider a 

simple earth-moving operation case: at the cut, a pusher and a scraper work together to 

push-load soil into the scraper’s bowl. The pusher then backtracks for loading the next 

scraper, and the scraper hauls a soil unit (i.e. one scraperful) to the fill, dumps, spreads, and 

then returns to the cut. Once 20 push-loads are completed, the pusher moves toward the side 

and trims the side. After side trimming, the pusher then moves back to continue push-

loading scrapers. Each scraper handles a soil unit of 20 m3. The objective is to find the 

optimum number of scrapers that match one pusher tractor in moving 10,000 m3 from the 

cut to the fill. Figure 3.2 illustrates the problem statement and shows the ACD model in the 

CYCLONE form. 
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Figure 3.2: Typical Earth-Moving Operations and the Corresponding CYCLONE Model 

 

The modeling procedures being proposed are applied step by step as follows: 

 

Step 1: In this case, two workflows can be readily identified as “the earth moving” 

workflow and the “side trimming” workflow. By tracing the movement of a scraper, the 

modeler can circle the key locations in the site space where a scraper performs the “earth 

moving” work flow and define their coordinates in the site space, including “Push Point 

Start”, “Push Point Finish”, “Dump Site” (Figure 3.3). In addition, in order to realize the 

logic of trimming side during earthmoving, one location “Side” is marked for the “side 

trimming” workflow. 
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Figure 3.8: Formulation of Simulation Model in Site Layout View 

 
 
 

3.5. Chapter Summary 

Integrating Artificial Neural Networks (ANN) to simulation helps analyze simulation results 

and make available simulation-generated knowledge to non-simulation specialists. The 

ANN-based sensitivity analysis also facilitates the identification of controlling factors upon 

the output variables by (1) shedding light on the reasoning logic, and (2) gaining insight into 

the problem definition. In this chapter, the framework of how to amplify the benefit from 

construction simulation by using ANN to sublimate discrete simulation output data into 

valuable management knowledge are presented.  

 

To facilitate the use of simulation in conducting operations planning and evaluating site 

layout alternatives in construction, a generic process mapping and simulation methodology 

is proposed. The proposed modeling procedure explicitly defines activity locations in the 

site space and hence incorporates the site layout model in the generation of an operations 

simulation model. Following the modeling steps, the process model (flowchart) is developed 

and then linked with a site layout model so as to automatically generate the simulation 
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model in the site layout view. The underlying simulation engine program (SDESA) draws 

on site layout information and resource transit information system from the simulation 

model definition to trace and update the state variables (such as resources’ available time 

and current location) during simulation. The simulation model development and validation 

is also simplified through visualization and animation of the dynamic site operations in the 

site layout context.  

 

In short, the proposed formalized ANN-integrated simulation modeling method provides 

construction practitioners with a scientific and systematic method for operations method 

improvement, which is (1) easy to pick up by industry practitioner, (2) flexible in handling 

diversified construction operations, (3) efficient enough to generate insightful information in 

short time. Also, the site layout planning synchronized simulation methodology can 

simplifying the modeling of typical, repetitive construction processes and potentially 

augments conventional approaches for site layout planning and materials handling system 

design. 
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4. IMPLEMENTATION – Precast Viaduct Construction 

4.1. Introduction 

The proposed simulation modeling methodology coupled with Artificial Neural Networks 

(ANN) analysis of simulation output described in the previous chapter was applied on a 

precast viaduct construction project for the effectiveness improvement of the materials 

handling system on site. This chapter first describes the material inventory problem in the 

precast viaduct project, followed by the elaboration of how to apply the simulation 

methodology as illustrated with the case study of designing, evaluating the materials 

handling system in precast viaduct construction. Particular emphasis is placed on the 

procedure of establishing a simulation model and the design of simulation experiments. 

Then, the data collected from the simulation experiments based on the valid simulation 

model established were analyzed by graphical analysis methods. After that, the ANN 

modeling and ANN based sensitivity analysis were performed to quantify the effects of each 

input factor upon the output measures of performance.  
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4.2. Background of the Case Study 

The Deep Bay Link North project connects to the Shenzhen Western Corridor - the artery to 

link Hong Kong with the city of Shenzhen – the fast-growing manufacturing and business 

hub in southern China. The main scope of contract is to construct a 4.2 km long Deep Bay 

Link mainline consisting of at-grade concrete road and viaduct, which is built of precast 

segmental box girders and crosses over existing main roads and railways (such as Castle 

Peak Road, Kolwloon Canton Railway, Light Rail Transit, and West Rails). The client is the 

Highways Department of the Hong Kong SAR Government. The contract value totaled to 

HK$1,716 million (US$220 million), and the construction period was October 2003 - 

October 2005. Gammon Construction Ltd (GCL) was appointed as the main contractor, 

under whom more than 70 subcontractors were employed.  

 

On the Deep Bay Link North Project, the stepping girder precast construction method was 

utilized to erect over 227 spans of post-tensioned viaduct in order to minimize the 

interferences with the existing traffic on the roads and railways crossing the viaduct under 

erection. A complete cycle of one span viaduct erection comprises three main phases: 

namely, (1) placing the precast segments in positions as designed by use of a giant gantry 

riding over two piers of the current span, (2) concreting the stitching joints plus post-

tensioning the segments, and (3) advancing the stepping girder to the next span by using a 

group of powerful hydraulic jacks. Figure 4.1 shows the giant gantry of the stepping girder.  
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Figure 4.1: The Giant Gantry of the Stepping Girder for Erecting Precast Segments 

 
 
 

4.3. The Simulation Objective 

The precast segments were fabricated in the neighboring Guangdong province of the 

mainland China and only allowed to be hauled to the Hong Kong site during the night time 

− which was restricted by the highway traffic regulations. In some locations along the 

viaduct, the workface area under the span was spacious enough to store all the segments 

within the handy reach of the crew, while for many other spans, it became too narrow to 

freely move a heavy-duty crane around, let alone to stock up the bulky precast segments 

(12m x 2.5m x 2.8m each; Figure 4.2).  
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Figure 4.2: Bulky Precast Segments (12m x 2.5m x 2.8m Each) Temporarily Stored around the 

Working Span 

 
 
As a matter of fact, such congestion problems are commonplace in precast construction with 

several activities concurring near the workface area, presenting safety hazards and 

hampering construction productivity (Low and Choong 2001). Therefore, the site 

management realized that it was ineffective and unsafe to strive for sufficient storage space 

for accommodating up to seventeen precast segments in the close vicinity of many spans 

under construction. To alleviate the congestion around the temporary storage area under a 

working span, an alternative solution was to partially store the precast segments at a 

relatively remote storage area, as illustrated in Figure 4.3.  

 

However, in postulating such alternatives, it was not straightforward to address two 

questions: (1) how far the remote storage area would be located to ensure a smooth, efficient 

segment erection process; (2) how many precast segments could be stored there such that the 

targeted cycle duration would be maintained. Note, any disruption to the site progress would 

translate into considerable losses; for instance, any logistical hiccups in supplying the 
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precast segments might disrupt the rhythm of construction, potentially leaving the specialist 

crew (manpower and plant) idle for considerable time. As a result, the five-day cycle 

duration for erecting one current span would be prolonged. Further, this might cause a 

negative ripple effect on the progress of the succeeding spans and the completion of the 

whole project. According to the Critical Path Method (CPM) plan obtained from the site, the 

tasks concerning the precast segment installation resided along the critical path of the project 

schedule. As such, a one-day delay to the target cycle duration on a particular span would 

potentially lead to a one-day extension to the contract period, subjecting the contractor to 

paying for liquidated damages.  

 

 
Figure 4.3: Alternative Materials Handling System Design: the Precast Segments Partially Stored at 

a Relatively Remote Storage Area and then Hauled to the Working Span Using Tractors 

 

In designing the materials handling system for the precast viaduct project, four relevant 

factors were identified and their effects on the cycle duration for installing one span viaduct 

were assessed through simulation modeling and simulation-based experiments. The four 

controlling factors identified are (1) the storage capacity of the remote storage area which 

supplemented the temporary storage area immediate to the working span, (2) the positioning 

of the remote storage area, (3) the number of tractors rented for hauling precast segments 
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from both the temporary and remote storage areas to the working span, and (4) the batches 

and times of the precast segment deliveries (the precast supplier delivered all the segments 

for one span in one batch before site erection operations started or in two batches over the 

first two nights of the five-day cycle.)  

 

 

4.4. Mapping the Operations to SDESA Simulation Model 

This simulation study is based on (1) the direct site observation of the precast segment 

installation cycles, (2) the interviews with the experienced site staff, and (3) the assessment 

of site records (such as the method statement, the work schedule, the daily report) during 

July/August 2004. The following information was obtained as model inputs: (1) the CAD 

illustrations for the construction operations and processes; (2) the brief work breakdown 

structure; (3) the resource requirements for activities; (4) the activity durations; (5) the 

resource availability and working hour constraints; and (6) the working hours and process 

interruptions. Note, the working hours (08:00 ~ 23:00 in two shifts, Mon ~ Sat) and regular 

activity interruptions (i.e. lunch/dinner breaks, non-working hours at night) applied to all the 

site activities, except for the activity of curing of the “stitching” concrete (twelve hours). 

 

The observed erection cycle of the precast segments started when a tractor hauled the first 

segment from a staging area in the site (a temporary storage close to the current span) to the 

workface area under the current span. The spreader beam (a mechanical hoist attached to the 

stepping girder) hoisted the segment off the tractor’s trailer to its designed position and 

finished the erection cycle after the segment was placed in position and firmly locked onto 

the hanging bars of the stepping girder. Once all the segments (14 segments for the observed 

span) of the current span were placed, epoxy was used to glue them together, also serving as 
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a lubricant to facilitate the segment installation and forming watertight joints as the epoxy 

hardened. The gaps between the end segments and the piers were then stitched with ready-

mixed concrete. Adequate curing of the “stitching” concrete required 12 hours before all the 

precast segments could be post-tensioned into one complete span of viaduct. At last, the 

stepping girder was disengaged from the current span for advancing to the next one.  

 

The modeling steps for the precast viaduct installation are explained in detail below: 

 

Step 1: Breakdown Operations System into Workflows and Identify Key Locations  

The precast segment is readily identified as the flow entity in this viaduct construction 

operation. Two types of resources carry the segments horizontally and vertically 

respectively, namely (1) the tractors which carry the segments from storage areas (either the 

temporary or remote storages) and (2) the spreader beam mounted on the gantry which 

offloads a segment from a tractor to its designed level and position. For the ease of 

simulation experiment, the segment hauling processes from the remote storage area and the 

temporary storage area are broken down into two work flows. The key locations identified 

along these two workflows are marked with circles in a bird’s eye view shown in Figure 4.4. 

 
 

Figure 4.4: Illustration for the Segment Hauling Work Exercises 
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Similarly, the key locations of the segment erection are identified as the segment unloading 

spot under the span and the temporary hanging position along the gantry. These key 

locations are marked with circles shown in Figure 4.5 . 

 

 
Figure 4.5: Illustration for the Segment Erecting 

 

Another auxiliary workflow on post-erection operations is considered to complete the 

simulation model for one span work cycle. The job order for post-erection operations (i.e. 

the completion work after the temporarily hanging all segments on the gantry) is defined as 

the flow entity. 

 

Step 2: Assign Activities on the Key Locations 

At the temporary storage area, a tractor (TRT) hooks up a trailer loaded with one segment at 

the temporary storage area. Then the tractor hauls the segment from the temporary storage 

area to the working span. When the parking bay (PB) under the span is empty, the tractor 

pulls in and parks under the working span for unloading the segment. Upon the segment is 

lifted up by the spreader beam of the gantry, the tractor leaves the parking bay. In a similar 

way, the second work flow for hauling segments from the remote storage area to the 

working span can be interpreted. The transit and production activities of the segment hauling 

workflows are represented by thick arrows and square boxes respectively in Figure 4.6.  
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Figure 4.8: Complete SDESA Model for the Segment Installation Operations in Activity-On-Node 

Style 

 
 

All the resources that need to be matched and used on each activity are identified. In Figure 

4.8, , “1 TRT” marked at the top left corner of Activity “1: Hook up to Tractor”, means a 

tractor (TRT) is required in executing the activity; the tractor is released until the end of the 

activity “4: Leave the ParkBay”, which marked at its top right corner of that activity with “1 

TRT”. Similarly, the unoccupied parking bay (PB) is the essential resource to trigger the 

start of the activity “3: Park under working span” and it is released together with the tractor 

at the end of Activity “4: Leave the ParkBay”. Note, the prefix “+” indicates the disposable 

resource, which represents an intermediate product or signal linking different work flows. 

For instance, “1 +TRT-LS” marked above the activity “4: Leave the ParkBay” denotes a 

“tractor leaving signal” generated by the activity “10: Lift up Segment to HB” in the 

segment erection work flow. Another disposable resource “+SEG-PB” produced upon the 

activity “3:Park under working span” represents the precast segment which has been 

delivered to the parking bay. The disposable resource “+SEG-PB” is requested to trigger the 

activity “9: Grab up” in the segment-erecting work flow. The activity “9: Grab up” requires 

both the gantry and a segment delivered to the parking bay, which is symbolized as “+SEG-

PB”. The disposable resource “+TRT-LS”, which is generated at the end of the “10: Lift up 
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segment to HB” activity, would invoke the “Leave the parkbay” activities in the two 

segment hauling work flows. Finally, the accumulation of fourteen “+SEG-LK” disposable 

resources, representing  that fourteen segments have been temporarily locked to the gantry, 

triggers the start of the post-erection operations, which is modeled by six activities 

(Activities 13 through 18) in relation to the “stitching” concreting and post tensioning work 

in completing a span (Figure 4.8). 

 

Next, the type and quantity of resources in the resource pool are defined and the initial 

resource provisions are configured. According to the actual situation, one gantry, one 

parking bay under the working span, plus three tractors are initialized in the resource pool of 

the SDESA model while the quantities of the three disposable resources (“+SEG-PB”, 

“+TRT-LS” and “+SEG-LK”) are set to zero at the initial state of the simulation (see the 

RESOURCES table in Figure 4.8). 

 



56 

Step 5: Specify Activities Durations 

Specify activity times for each activity in statistical distributions based on the site 

observations, site daily records, operations method statement, and proposed schedule 

program (Table 4.1).  

 
Table 4.1: Summary of the Activity Durations for the Segment Installation Operation 

Durations in Hour 
# Activities 

Distribution Type Low Mean Upper 

1 Hook up to Tractor Constant  0.03  

2 Haul Segment from TSA to Work Span Triangular 0.03 0.05 0.06 

3 Park under Working Span Uniform 0.07  0.08 

4 Leave the ParkBay Constant  0.01  

5 R-Hook up to Tractor Constant  0.03  

6 Haul Segment from RSA to Work Span Constant Varied in scenarios 

7 R-Park under Working Span Uniform 0.07  0.08 

8 R-Leave the ParkBay Constant  0.01  

9 Grab Up Constant  0.01  

10 Lift Up Segment to HB Triangular 0.13 0.18 0.33 

11 Lock to HB Uniform 0.17  0.23 

12 Reposit to Parking Bay Uniform 0.05  0.08 

13 Stick Segments Triangular 6.02 6.58 6.72 

14 Install Stitching Formwork Triangular 4.00 6.00 7.00 

15 Concrete Stitching Triangular 1 1.5 2 

16 Curing Stitching Constant  12  

17 Load Transfer Uniform 7  7.5 

18 Clear span & launch to the next span Uniform 20  21 
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Step 6: Specify Resource Transit Time 

The time incurred in the resource transit between activities in different work flows is not 

included in any transit activity but is defined in a datasheet format in SDESA - the Resource 

Transit Information System (RTIS).  For the tractors, upon releasing them from the parking 

bay after unloading, they return to one of the two storage areas. The corresponding transit 

time distributions are specified in the RTIS of the SDESA model (Figure 4.9). Similar to 

activity duration distributions, the transit time distributions are queried and sampled during 

simulation for updating the current location and available time of the tractors, following the 

simulation algorithm of SDESA. 

 
Figure 4.9: Screen Capture of the Resource Transit Information System (RSIT) in SDESA 

 
 
 
Step 7: Animation of the Dynamic Process Simulation 

Map the activity location definitions onto their corresponding positions in a site layout 

model so as to complete the formulation of the simulation model in the site layout view. In 

the dynamic process animation, the currently activated activities are highlighted by 

thickened lines or blocks, while moving resources are represented with circular dots, 

illustrated in Figure 4.10. 
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(1) two tractors are 

hauling segments from 
temporary storage area 

(TSA) to parking bay (PB) 
 

 
 

(2) spreader beam is 
lifting one segment 

 
 

 
(3) one of the tractors is 

returning to remote 
storage area (RSA) while 

the spreader beam is being 
lowered 

 
 

(4) two tractors are 
hauling segments from 

RSA to PB 

 
 

Figure 4.10: Animation Snapshots of the SDESA Model Mapped in the Site Layout View for the 
Segment Installation Operation. 
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4.5. Model Validation 

In this case study, the visualized simulation outputs in terms of simulation animation as well 

as the cross-checking between actual and simulation operations performance indexes 

provide evidences for validating the simulation model. First, an animation based on a single 

run of the SDESA model replayed the actual segment installation processes (Figure 4.10). 

To further validate the simulation model, 100 Monte Carlo runs of the SDESA model were 

conducted, resulting in (1) the average total cycle duration of 103.61 hours −which is 

equivalent to 08:00 am in Day 5, and (2) the probability of completing the total cycle before 

the lunch break of Day 5 being about 60% − which was inferred from the cumulative 

distribution function (CDF) polygon for the total cycle time derived from simulation (Figure 

4.11). In brief, the SDESA model under the base case scenario is validated as a close parallel 

of the actual site operations and provides a straightforward means for postulating and 

assessing alternative material inventory strategies. 

 

 
Figure 4.11: The CDF and Statistical Analysis of the Simulation Outputs: the Total Cycle Time for 

Erecting One Span of Viaduct 
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4.6. Experiment Design and Output Analysis 

The objective of the simulation experiment design is to evaluate the sensitivity of the total 

cycle duration to the various segment storage strategies in regard to (1) the number of 

segments stored at the remote storage area, (2) the transit time from the remote storage area 

to the working span, and (3) the number of tractors rented.  

 

Note, in order to simplify the experiment design, the following assumptions are made as 

advised by the site personnel: (1) all the segments of one span can be delivered in one batch 

before site erection operations starts; (2) in simulation, the precast segments stored at the 

temporary storage area are firstly hauled to the working span for installation, followed by 

hauling the segments stored at the remote storage area; and (3) to avoid double handling, the 

segments in the remote storage area will be hauled directly to the working span for 

installation and the temporary storage area will not serve as an intermediate buffer. 

 

Twenty scenarios were postulated and simulated on computer, which are listed in Table 4.2. 

Each scenario is a unique configuration in terms of the number of segments stored at the 

remote storage area, the transit time from the remote storage area to the working span, and 

the number of tractors used. The mean and 80th percentile of the total cycle duration for each 

scenario collected from 100 Monte Carlo simulation runs are the main performance indices 

of the simulation. The column SME, an abbreviation for Segment Mobilization Effort, is 

defined as the product of (1) the number of segments remotely stored and (2) the haul time 

from the RSA to the working span, and represents the effort spent on segment transportation 

from the remote storage area. 
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Table 4.2: Summary of Input and Output Factors for Simulation Experiments 

Scenario 
No. of 

Delivery 
Batch 

Rented 
Tractors 

Remotely 
Stored 

Segments 

Tractor 
Transit 
Time 

Mean Cycle 
Duration 

(hr) 

80th Percentile 
Cycle Duration 

(hr) 
SME 

1 1 2 0 N/A 103.61 113.63 0 

2 4 105.38 114.12 1.32 

3 7 106.02 114.11 2.00 

4 10 106.00 114.32 2.31 

5 

1 2 

14 

0.33 hr 

(20 min) 

106.61 114.28 3.00 

6 4 108.47 114.78 3.30 

7 7 111.51 116.27 3.50 

8 10 113.26 116.44 4.62 

9 

1 2 

14 

0.50 hr 

(30 min) 

114.15 116.56 5.00 

10 4 112.72 116.53 5.25 

11 7 115.70 116.87 7.00 

12 10 116.47 117.17 7.50 

13 

1 2 

14 

0.75 hr 

(45 min) 

116.61 117.12 10.50

14 10 104.89 114.09 5.00 

15 
1 3 

14 

0.50 hr 

(30 min) 105.78 113.99 7.00 

16 4 108.38 114.51 3.00 

17 
1 3 

7 

0.75 hr 

(45 min) 109.36 114.72 5.25 

18 2 0 N/A 116.74 117.19 0 

19 2 14 0.75 hr 116.74 117.19 10.50

20 

2 

3 0 N/A 116.74 117.17 0 

 
 

From Table 4.2, it can be observed that the overall trend in the first 13 scenarios (given two 

tractors are available for hauling segments) is that the mean cycle duration prolongs either as 

the number of segments at the remote storage area increases or as the remote storage area is 

placed farther away from the site. Scenario 13, in which all the fourteen segments are 

assumed to be stored at the remote storage area with the transit time being 45 min, extends 

the mean cycle time to 116.61 hours, 13 hours longer than the one in the base case (i.e. 

Scenario 1), in which all the segments are initially placed in the temporary storage area. 

Three tractors were provided in Scenario 14 to 17. Simulation results show that if one more 
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tractor can be rented, the remote storage area can be located within 30 minutes journey time 

from the working span) without considerably cycle duration extension. The last 3 scenarios 

portray the operations with the two-batch-delivery of segments (the first batch of 7 segments 

are delivered on the night before the operations starts; and the second batch of 7 segments 

are delivered on the night of the first day). The simulation results show that two batches of 

delivery will lead to 116.74 hours of the mean cycle time independent of the number of 

tractor rented and the segment storage strategy. This indicates that (1) two batches of 

delivery will lead to the cycle-time overrun of one-span viaduct installation, and (2) even 

renting more tractors cannot shorten the total work hours for all storage settings.  

 

To alleviate the congestion around the working span, a comprehensive analysis was 

launched to obtain more in-depth management insight from the simulation data. A surface 

plot is prepared for the first 13 scenarios in Figure 4.12. The surface plot correlates the mean 

cycle time with the number of segments remotely stored (denoted by the “SegNo.-T2” axis) 

and the haul time (denoted by the “Dist-T2” axis). It is observed that the slope against the 

“SegNo.-T2” dimension is not as steep as the one against the “Dist-T2” dimension. This 

indicates that the number of segments held in the remote storage area has less pronounced 

effect on prolonging the total cycle duration than the tractor haul time. Additionally, a 

threshold plane −intersecting the surface plot at the total cycle time of 109 hours (i.e. the end 

of lunch break on Day 5)−  can be taken as the boundary that sets feasible scenarios apart 

from those infeasible ones: all the dots beneath the threshold plane can be regarded as 

feasible.  
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Figure 4.12: 3D-Surface Plot 3D-Surface Plot of the Mean Total Cycle Duration (Mean. Cyc. Dur.) 
against the Number of Segments Stored at the RSA (SegNo.) and Transit Time from the RSA to the 

Working Span (Dist.) (top); Time Line for Mapping Continuous Working Hours into Standard 
Time Format (bottom) 

 

Figure 4.13 shows the contour plot for the mean of the total cycle time. The X-axis and the 

Y-axis of the contour chart are the “SegNo.-T2” and “Dist-T2” respectively, and different 

hatching patterns indicate different ranges of the total cycle time. In the contour plot for the 

mean total cycle duration, more than 70% of the area (Dist × SegNo) is hatched with the 

patterns “< 104” or “104-109”. In addition, if the haul duration between the RSA and the 

working span is less than 0.4 hour (24 min), it is highly possible that the total cycle time, on 

average, stays under the target of 109, even if all the 14 segments are remotely stored. On 

the other hand, if the number of segments stored in the RSA is less than 4, the chance of 

meeting the total cycle duration target is high, even if the segments are stored as far as 0.7 

hours (42 min) away from the working span. Also note that once the number of segments 

stored in the RSA exceeds 4 while the haul distance exceeds 0.4 hour, it is highly likely that 

the total cycle ends beyond 109 hours but still within 119 hours, i.e. between dinner of Day 
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5 and the end of Day 5. The contour plot for the mean total cycle time also contains about 

10% of the area hatched as “<104”, revealing that the average total cycle duration could 

possibly fall within four working days (note the simulation time of 104 hours corresponds 

with 8:00 am on Day 5, i.e. the start of Day 5 or the end of Day 4). The information shown 

in the contour plot can be interpreted into two regards: (1) It is certain that the work cycle 

will finish after the lunch (>109 hours) but before the dinner break of Day 5 (<119 hours); 

(2) Over 5 segments stored at the RSA combined with longer than half an hour tractor-

transit duration will extend the total cycle time over 116 hours (i.e. finish after the dinner of 

Day 5). 

 

 
Figure 4.13: Contour Plots of the Mean Total Cycle Duration  

 
 
The simulation results were summed up into simple, straightforward terms for passing on to 

the project team of the participating contractor, as follows: 

When the temporary storage area near the working span is not adequate to accommodate 

all the fourteen segments, the site manager should locate a remote storage area within 25 

min transit time (inclusive of any disruptions or delays caused by other ongoing site 

activities). Thus, the 4.5-day cycle time target can be achieved by renting two tractors, 

regardless of the number of segments stored at the remote storage area. In case the remote 
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storage area has to be placed beyond 30 min transit time but below 45 min due to practical 

constraints, it is recommended that the number of segments stored at the remote storage 

area be limited under four so as to hit the target cycle time; alternatively, one more tractor 

need be rented if more than four segments must be remotely stored. 

 

To process the simulation output via linear regression technique, an index represent the 

segment transportation effort from the remote storage area is defined. The Segment 

Mobilization Effort (SME) is defined as the product of the number of segments stored at the 

RSA and the journey duration required to haul one segment from RSA to the working span. 

The SME values for different cases of the first 13 scenarios (2 tractors rented) are listed in 

Table 4.2. The mean total cycle duration is correlated against the SME factor in Figure 7. 

The overall trend of the mean cycle duration is observed to be positively proportional to the 

SME, in spite of noted non-linear fluctuations. The relationship between the mean cycle 

duration and the factor SME is approximated by a dotted trend line (Figure 4.14) in order to 

generalize simulation knowledge and provide direct application of the simulation knowledge 

in the mean cycle duration estimation. Obviously the linear model is not a close fit of the 

complicated, non-linear relationships inherent in the problem. This justifies the use of ANN. 
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Figure 4.14: Chart of Mean Total Cycle Duration against the Segment Mobilization Effort (SME) 

with a dotted Trend Line 

 

 

4.7. Apply ANN Method on this Case Study 

In the previous section, the simulation experiment data was analyzed by conventional 

graphical analysis methods and useful management knowledge can be achieved. The 

knowledge as inferred from the simulation output records was summarized to facilitate the 

design of the optimum site storage area and tractor resource provision. In this section, the 

Artificial Neural Network (ANN) method was applied to build an ANN model which can 

approximate the input and output relationships of the simulation model. At the same time, it 

can evaluate the importance of each input factor and eventually help the site personnel 

identify those critical factors. 
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To build an ANN model, as stated in Chapter 3, the first step is to prepare the training data. 

40 scenarios were prepared for the ANN model training. The 20 scenarios listed in Table 4.2 

are part of the data prepared. Table 4.3 summarizes the relevant ranges and the data types 

for input factors and the output.  

 
 

Table 4.3:  Summary of the Input and Output Data Types and Ranges 

Input Factors Data Type Min. Max. Range 

No. of Tractors Symbolic 2 3 1 

Delivery Mode Symbolic 1 2 1 

% of Segments at RSA Continuous 0% 100% 100% 

Mean RSA Travel Duration (hr.) Continuous 0 0.75 0.75 

Output Factors Data Type Min. Max. Range 

Mean Cycle Duration Continuous 103.16 116.71 13.13 

 
 

A single-hidden-layer back-propagation neural network (BPNN) with sigmoid activation 

functions was calibrated to map the relationships between the four input factors and the 

mean cycle time obtained from the simulation experiments. The 40 scenarios, or 40 records, 

were randomly divided into 3 subsets: a training set (24 cases), a testing set (10 cases), and a 

validation set (6 cases). The datasets were then fed into the SensitivityNN program for the 

ANN model training. By trial and error, the number of hidden nodes, the learning rate, the 

momentum, and the training iteration number are determined as given in Table 4.4. 

 
Table 4.4: The Configuration of the Best Data Splits 

Items Optimum Values 

No. of Hidden Nodes 14 

Learning Rate 0.8 

Momentum Rate 0.4 

Training Iterations 15841 
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ANN’s prediction accuracies on the Training, Test, & Validation datasets were plotted in the 

scatter plots (Figure 4.15). The results indicate that the ANN’s outputs were highly 

correlated with the simulation outputs by the correlation coefficients (R, stated next to the 

title of each scatter plot in Figure 4.15) are all close to 1 in three sets of records. Thus, the 

ANN model is capable to approximate the simulation model by capturing its input-output 

relationships.  
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Figure 4.15: Actual Outputs versus Model Outputs of the Training set, Testing set, and Validation 
set in Approximating the Mean of Total Cycle Duration 

 
 
The significance of each input factor upon the model output on the trained ANN model was 

determined as the partial derivative-based sensitivity measures suggested by Lu et al. (2005). 

Figure 4.16 shows the sensitivity measures of the four input factors. The bars in the chart 

represents the mean relative sensitivity measures, which are defined as the adjusted partial 

derivatives with respect to a change of 10% of the relevant range for a continuous input 

factor or the step value for a symbolic or discrete input factor. The relative sensitivity 

measures are intended to eliminate distortions on the absolute measures due to differences 

that exist between input factors in terms of input ranges, unit of measure, and data types. 

Note the step values for the first two factors (No. of tractor & Delivery mode) are both equal 

to 1. Factor 3 (% of segments at RSA) ranges from 0% to 100% in the data set, and Factor 4 

(Mean Remote Storage Area Travel Duration) ranges from 0 to 0.75 hour.  
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Figure 4.16: Sensitivity Measures for Input Factors of the Trained Neural Networks 

 
As shown in Figure 4.16, the ranking of four input factors by relative sensitivity indicates 

that Factor 4: the duration required to haul a segment from the Remote Storage Area (RSA) 

and Factor 2: the delivery mode exert a larger impact on the total cycle duration (a 

sensitivity measure of 0.6923, and 0.6068 respectively). Factor 1: the number of tractors 

rented and Factor 3: the number of segments stored at the RSA are relatively less sensitive, 

with sensitivity measure being 0.2608 and 0.2266 respectively. The results are compatible 

with the simulation experiment analysis results obtained in the previous section, which states 

that the construction duration is relatively more sensitive to delivery mode and the distance 

between the RSA and the working span. 

 

Effective approximation of the simulation model and sound sensitivity analysis results 

demonstrate that the proposed ANN-Simulation integration method can successfully 

facilitate the knowledge discovering process in construction engineering. 
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4.8. Chapter Summary 

In this chapter, a case study for the effectiveness improvement of the materials handling 

system in a precast viaduct construction project was presented. The simulation modeling and 

the integration of Artificial Neural Networks (ANN) to simulation are elaborated step by 

step. The implementation of the proposed ANN-simulation integration method shows that 

construction simulation can provide practicing engineers with supportive operations insight 

and effective decision support. And the proposed ANN-simulation integration method can 

speed up and simplify the knowledge discovery process from simulation for site operations 

management. The simple application procedure of the proposed ANN-simulation integration 

allows junior engineers without much experience to make informative and sound 

construction management decisions. 
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5. CONCLUSIONS 

5.1. Summary of this Research 

Although construction simulation has demonstrated a high potential of assisting construction 

practitioners in making sound decisions, the difficulty in simulation modeling and 

translating simulation outputs into practical knowledge has hindered the promotion of 

construction simulation, leaving site management stranded in making decisions by intuition 

and experience. In an attempt to simplify the modeling process, much research has been 

conducted on reducing the modeling effort and shortening the learning curve. However, 

practical applications of the simulation modeling methodologies proposed in the past are 

still very limited. This research has proposed a systematical modeling procedure by 

representing the site situation with a simulation model in an intuitive and natural manner. 

The proposed simulation methodology provides modelers with great flexibility and 

robustness, while simplifying notations in modeling.  

 

By integrating Artificial Neural Networks (ANN) with simulation, the proposed AI-

integrated construction simulation method facilitates the knowledge discovering process 

from simulation modeling. Enabled by the learning capability of ANN, a simulated system 

can be approximated by ANN and knowledge from simulation can be decoded into practical 

management insight via the ANN sensitivity analysis.  

 

5.2. Research Contributions 

The research contributions are not only limited to the formalization of the ANN-simulation 

integration methodology. Demonstrating the practical value of the proposed approach via 
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the implementation in a real project is another important contribution to promoting the 

application of both simulation and artificial intelligence in construction engineering. The 

following summarizes the contributions of this research in regard to: (1) formalizing the 

construction simulation modeling method based on Simplified Discrete-Event Simulation 

Approach (SDESA) and (2) facilitating the knowledge discovery from simulation by ANN 

integration. 

 

5.2.1. Contributions to Construction Simulation Method 

Shortening the Learning Curve and Reducing the Application Effort 

Viewing the construction operations system as a material handling system, the proposed 

simulation modeling dissembles the construction operations into workflows and maps a real 

site operations system into a SDESA model by following simple steps. The proposed 

modeling procedure guides construction practitioners to identify workflows within a 

construction operation system and naturally couple the site layout planning to the process 

model. The formalized modeling procedure not only shortens their learning curve of 

simulation modeling but also reduces the time and effort for applying SDESA.  

 

Coupling Site Layout Planning with Simulation Modeling 

The proposed modeling procedure highlights the movement of material and resources, 

assisting modelers to couple the site layout planning with the construction process modeling. 

The proposed modeling by SDESA places activities on predefined key locations on a virtual 

site layout plan. When dynamic simulation runs, the SDESA executive program traces the 

movements of material and resources; automatically generates and records the resource 

transit time. Finally, the interactions between resources, activities, and site locations are 

describe and captured by the simulation model in a simple and natural manner. 



73 

 

5.2.2. Contributions to Integrating Artificial Neural Networks to 

Construction Simulation  

Mining Knowledge from Construction Simulation 

Translating simulation outputs into more intuitive and understandable charts or equations 

can cost enormous analysis time and effort even for experienced modelers or analysts. This 

research proposed an ANN-simulation integration approach to mine knowledge from 

simulation. The simulation outputs are analyzed by an ANN model until the simulated 

system response can be accurately approximated by the trained ANN model. The learning 

ability of ANN allows non-simulation specialists to share the benefits from construction 

simulation. Moreover, through the integration of ANN with simulation, the sophisticated 

and tedious sensitivity analysis can be alleviated by ANN. The ANN sensitivity analysis 

explores the trained ANN model and determines the significance of each input factor. 

 

5.3. Future Research Directions 

1) Simulation Modeling Simplification 

The systematized modeling procedure proposed in this research has set a good foundation 

for automated simulation modeling. The standard procedure is already capable to assist 

modelers to convert an observed real operations system into a SDESA simulation model. It 

is highly possible that simulation modeling can be further simplified in the near future. A 

tool (e.g. a natural language cognation program or digital picture or video conversion 

methods) can be researched in capturing operations information about the construction 

process and then generating the simulation model.  
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2) From One-Dimension Simulation Entity to Three-Dimension Simulation Entity 

The coupling of site layout planning with a process simulation model as proposed in this 

research ties activities to one to two stationary key location points. Also the resource entities 

and flow entities are only represented by dimensionless icons in the existing SDESA 

simulation platform. It is suggested to extend the functionality to include the resource 

dimension definition and resource collision detection. These extensions in simulation 

functionality will enrich the appeal and function of simulation. It is anticipated that in the 

near future, the construction simulation will step into a new era and the benefits simulation 

brings to the construction engineering and management will be enormous. 

 

5.4. Closure 

In summary, the proposed AI-integrated construction simulation modeling methodology 

offers a new perspective of construction simulation. By the proposed modeling 

procedure, modelers can now explicitly consider the site layout configuration during 

modeling the construction process. The integration of Artificial Neural Networks (ANN) 

with operations simulation allows users to map and explore the significance of each 

input factor. With the proposed methodology, construction practitioners can be more 

proactive in addressing construction management challenges by taking advantage of 

computers, as the study and application of simulation have already been made simpler 

and better structures. The future work is suggested to extend the work in this research. It 

is hoped that the suggestions can give support to the future development of simulation 

for the construction industry. This research and following work will pave the way for 
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promoting simulation in the construction industry and improving its productivity and 

competitiveness. 
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1 1991 Neural Networks as Tools in Construction 
Osama Moselhi; 
Tarek Hegazy; 

Paul Fazio 

J. CEM 
(ASCE) 

Paper Summary: 
Being an introduction of ANN for the practitioners and researchers in construction field, this 
paper gives fundamental information about ANN. The usages, basic mechanisms, characteristics, 
and some common terminologies of ANN were introduced. A brief comparison between some 
common ANN paradigms was also delivered in a table. A simple BPNN application was used to 
demonstrate the design, training, and recalling of the NN. Some potential ANN applications 
were suggested at the end of the paper. 
 
Applications: 

1) Optimum markup estimation under 
different bid situations 

Data Collection: 
• Literatures (3 papers) 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
-Input: 3 nodes (no. of competitors, estimated 
mean bidding price, s.d. of bidding prices) 
-Hidden: 6 nodes in 1 layer (Discrete [0,1] 
function) 
-Output: 3 nodes (optimum markup stayed in 
the 3 literatures respectively) 
 

 

2 1994 Neural Networks in Civil Engineering. 
I: Principles and Understanding 

Ian Flood; 
Nabil Kartam 

J. Comp. CE 
(ASCE) 

Paper Summary: 
This is another ANN introduction paper for construction engineers and researchers. Beyond the 
usages and potential applications of ANN, this paper came across the principle and theory 
behind ANN to novices. The training and recall mechanism of ANN were explained from the 
mathematical perspective through illustrative figures. ANN architectures and the corresponding 
learning parameters were also presented.  
 
Applications: 

1) Determining whether a cantilever will 
damaged by bending moment induced 
by two simple point loads  

Data Collection: 
• Hand calculation 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
-Input: 2 nodes (loading at the free-end and 
middle of the cantilever respectively) 
-Hidden: 3 nodes in 1 layer (sigmoid function) 
-Output: 1 node (failure or not) 
 

 



 

 

3 1994 Neural Networks in Civil Engineering. 
II: Systems and Application 

Ian Flood; 
Nabil Kartam 

J. Comp. CE 
(ASCE) 

Paper Summary: 
This is a companion paper to the previous one (2). In this paper, the basic characteristics of 
neural networks and the variety of systems available were identified. The significance of these 
characteristics in solving different classes of problems is considered. The authors suggested that 
modularized NN can be linked together (serially or in parallel) and form to deal with different 
types of problems. Suggestion was make on using ANN to perform the construction simulation 
which is conventionally done by Monte-Carlo discrete-event approach. 
 
Applications: 

Conceptual usage of ANN on construction 
simulation 
 

ANN Architectures: 
N/A 

 

4 1994 Estimating Construction Productivity: 
Neural-Network-Based Approach 

Li-Chung Chao; 
M. J. Skibniewski 

J. Comp. CE 
(ASCE) 

Paper Summary: 
This paper shows an ANN application on excavator productivity estimation. The training data of 
the ANN was collected from a simulation program (CYCLONE) in an excavation and hauling 
operation (i.e. simple earth moving operation). It is noted that the duration of the excavation 
activity in the simulation model was the output of another ANN module which was trained by 
the data collected by the observations of a robotic desktop excavator. 
 
Applications: 

1) Predict the excavation cycle time due 
to the excavator’s arm motions and 
soil condition 

2) Predict the Productivity of a excavator 
in a earth moving operations system  

Data Collection: 
1) Observed from a robotic desktop 

excavator 
2) Simulation model of the earth moving 

operations system 
ANN Paradigm adopted: 

• BPNN 

ANN Architectures: 
1) Excavation cycle time estimation 
-Input: 4 nodes (arm swing angle, horizontal 
reach, vertical position, and soil type) 
-Hidden: 16 nodes in 1 layer (sigmoid 
function) 
-Output: 1 node (excavation cycle time) 
 
2a) Productivity of an excavator w/o reposition 
-Input: 5 nodes (mean & s.d. of excavation 
cycle time, mean & s.d. of truck activity time, 
no. of truck) 
-Hidden: 15 nodes in 1 layer (sigmoid 
function) 
-Output: 2 nodes (mean & s.d. of excavator’s 
Productivity) 
 
2b) Productivity of an excavator with 
reposition  
-Input: 8 nodes (5 same as (2a), probability, 
mean, & s.d. of excavator’s reposition) 
-Hidden: 48 nodes in 1 layer (sigmoid 
function) 
-Output: same as (2a) 
 



 

 

5 1995 An Artificial Neural Network Approach 
to Discrete-Event Simulation 

Ian Flood; 
Kenneth Worley 

AI for EDAM 
(Cambridge U. 

Pr) 
Paper Summary: 
This paper (related to paper 2 & 3) present an ANN based approach for construction simulation 
aiming to speed up the simulation process by parallel processing. Modularized NN were 
assembled to form a construction model. Similar to a recurring function the output of the NN 
(future state of the simulation) was looped back to the NN as its input (the preceding simulation 
state). A simple earth moving example was used to demonstrate their proposed research 
approach. However, the training neural network based simulation model was relied on a 
conventional discrete-event simulation model (ICONS). 
 
Applications: 

1) Using NN to approximate the dumping 
time interval of  a typical earth-
moving system with different no. of 
scraper provided 

Data Collection: 
• A simulation model established in a 

commercial package called ICONS 
ANN Paradigm adopted: 

• Radial Gaussian NN 

ANN Architectures: 
2 NN modules were linked together to do the 
simulation approximation: 
M1) Scraper haul duration generator 
-Input: 3 nodes (mean, s.d. of hauling duration, 
& an assigned random seed) 
-Hidden: 100 nodes in 1 layer (Radial 
Gaussian) 
-Output: 1 node (scraper haul duration) 
M2) Core simulation approximating NN 
-Input: 6~10 nodes (no. of dozer, dozer return 
dur., scraper hauling dur., other input is for 
feedback of the NN itself) 
-Hidden: 300 nodes in 1 layer (Radial 
Gaussian) 
-Output: 1 node (dump time interval) 
 

 

6 1997 Neural Network Model for Estimating 
Construction Productivity 

Jason Portas; 
S. M. AbouRizk 

J. CEM 
(ASCE) 

Paper Summary: 
This research applied the ANN technique on construction productivity estimation. The training 
data was collected by the interviews of construction practitioners with standard questionnaire. 
Th output of the ANN is separated into 12 productivity levels, instead of the single point 
estimation. It is shown that incorrect prediction rate can be reduced using this classification 
output approach. 
 
Applications: 

1) Construction productivity estimation 
Data Collection: 

• Questionnaire  
ANN Paradigm adopted: 

• BPNN  
Commercial packages adopted: 

• Neuralworks Professional II Plus 
• Visual Basic 
• Neurowindows library of NN 
•  

ANN Architectures: 
-Input: 55 nodes (half of the factors are about 
the site activity & environment and the rest 
about the project management) 
-Hidden: 30 nodes in 1 layer (sigmoid 
function) 
-Output: 12 nodes (12 levels of construction 
productivity) 
 



 

 

7 1998 Neural Network Model for Parametric 
Cost Estimation of Highway Projects 

Tarek Hegazy; 
Amr Ayed 

J. CEM 
(ASCE) 

Paper Summary: 
This paper uses ANN to perform parametric cost estimation for highway projects. 18 actual 
cases of highway projects in Canada were used as the source of training data. The authors use an 
Excel spreadsheet to setup the ANN model and 3 different techniques (BP delta-rule; Excel 
internal optimizer; & GA optimizer) were compared in optimizing the ANN weights. In this case 
study, Excel internal optimizer outperformed the traditional BP-delta-rule in this case and was 
the best among the others. 
 
Applications: 

1) parametric cost estimation for highway 
projects 

Data Collection: 
• 18 actual cases of highway projects in 

Canada 
ANN Paradigm adopted: 

• BPNN 
Commercial packages adopted: 

• NeuroShell2 for BP-delta-rule 
• MS Excel & its internal solver  
• GeneHunter 1995 for GA optimization 

 

ANN Architectures: 
-Input: 10 nodes (identified project factors 
which affect the highway construction cost) 
-Hidden: 5 nodes in 1 layer (sigmoid function) 
-Output: 1 node (highway construction cost) 
 

 

8 1998 Artificial Neural Network Approach for 
Pavement Maintenance 

A. M. Alsugair; 
A. A. Al-Qudrah 

J. Comp. CE 
(ASCE) 

Paper Summary: 
This paper presents an ANN application on pavement maintenance for selecting the optimum 
repair action for defected pavement. The training data was collected by visual inspection for the 
road network together with consulting the human experts.  
 
Applications: 

1) Pavement maintenance and repair 
action decision 

Data Collection: 
• visual inspection & expert consultancy 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
-Input: 12 nodes (12 types of observable road 
distresses) 
-Hidden: 28 nodes in 1 layer (sigmoid 
function) 
-Output: 5 nodes (5 maintenance and repair 
options: thin overlay, thick overlay, 
strengthening, localized maintenance, & do 
nothing) 
 

 



 

 

9 1998 Construction Labor Productivity 
Modeling with Neural Networks 

Rifat Sonmez; 
J. E. Rowings 

J. CEM 
(ASCE) 

Paper Summary: 
This paper use the data set collected from 8 building projects in Iowa to estimate the labor 
productivity. The productivity of three common site activities: (1) concrete pouring, (2) 
formworking, & (3) troweling were studied. Before the ANN training, the parsimonious model 
technique was used to eliminate unnecessary input features. Finally, simple factor sensitivity 
analysis was performed.  
 
Applications: 

1) Construction labor productivity 
modeling  

Data Collection: 
• 8 building project in Iowa from 1992 ~ 

1994 
ANN Paradigm adopted: 

• BPNN 

ANN Architectures: 
2 NN were formed for each kind of activity. 
The first & second NN use (2n+1) & 
{(0.5n+1) or (n+1)} respectively as the no. of 
hidden nodes where n is the no. of input 
nodes. 
Concrete Pouring : 
-Input: 5 nodes (from parsimonious model) 
-Hidden: 13 & 4 nodes in 1 layer  
-Output: 1 node (production rate) 
Formworking : 
-Input: 2 nodes (from parsimonious model) 
-Hidden: 5 & 3 nodes in 1 layer  
-Output: 1 node (production rate) 
Troweling : 
-Input: 2 nodes (from parsimonious model) 
-Hidden: 5 & 3 nodes in 1 layer  
-Output: 1 node (production rate) 
 

 

10 1998 Integrating Neural Network with Special 
Purpose Simulation 

Dany Hajjar; 
S. M. AbouRizk; 

Kevin Mather 
WSC 

Paper Summary: 
This paper presents an attempt of integrating ANN to simulation. An ANN model is first trained 
to approximate the excavation duration for different types of soil. The trained ANN is then 
linked dynamically to the virtual GIS system which generation soil data when excavators 
moving around during simulation. A typical earth moving example was used to illustrate, in 
broad-brush, the proposed approach.  
 
Applications: 

1) Prediction of excavation productivity  
Data Collection: 

• An informal survey of project 
personnel 

ANN Paradigm adopted: 
• BPNN 
•  

ANN Architectures: 
-Input: 13 nodes (7 about soil condition, 6 
about the working condition of the excavator) 
-Hidden: 4 nodes in 1 layer (sigmoid 
function) 
-Output: 1 node (predicted productivity) 
 



 

 

11 1999 Subsurface Characterization Using 
Artificial Neural Network and GIS 

S. Gangopadhyay; 
T. R. Gautam; 
A. D. Gupta 

J. Comp. CE 
(ASCE) 

Paper Summary: 
This paper proposes a method for characterizing the subsurface using ANN & GIS. Training 
data are collected from the distribution of aquifer materials from monitoring well litho-logic 
logs. The predicted subsurface profile generated by the trained ANN was then compared with 
available geological sections underlying the Bangkok city for ANN validation. 
 
Applications: 

1) Subsurface Characterization 
(estimating the underground soil strata 
profile) 

Data Collection: 
• Litho-logic logs form 60 monitoring 

wells 
ANN Paradigm adopted: 

• BPNN 

ANN Architectures: 
-Input: 14 nodes (Coordinate X, Y, soil 
property of the well in 12 different levels) 
-Hidden: 5 nodes in 1 layer (sigmoid function) 
-Output: 3 nodes (decision of the soil type: 
clay, sand, or other material) 
 

 

12 1999 Comparison of Case-Based Reasoning 
and Artificial Neural Networks 

David Arditi; 
O. B. Tokdemir 

J. Comp. CE 
(ASCE) 

Paper Summary: 
Two different techniques ANN & case-based reasoning (CBR) were compared in construction 
litigation outcome prediction. A simple BPNN was setup for the comparison by a commercial 
package, called Brainmaker. The authors concluded that CBR is more suitable for predicting 
construction litigation outcome. 
 
Applications: 

1) Predict construction litigation outcome 
by input features about the cases 

Data Collection: 
• Appellate court records from 

WESTLAW (a computer-assisted on-
line legal research service) 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
-Input: 45 x 2 = 90 nodes (45 features about 
the cases, e.g. whether CPM records are 
available?) 
-Hidden: NO MENTIONED (sigmoid 
function) 
-Output: 6 nodes (each one stands for one kind 
of predicted outcome) 
 

 



 

 

13 1999 ANN-Based Mark-up Estimation System 
with Self-Explanatory Capacities 

H. Li 
L. Y. Shen 

P. E. D. Love 
CEM 

Paper Summary: 
The paper investigates the use of the KT-1 method for automatically extracting rules from a 
trained ANN. Using KT-1 method, the trained neural network is searched through layer by layer 
to seek confirming rule and/or disconfirming rule from hidden nodes or output nodes. However, 
it is obvious that the rule is impractical for large ANN and cannot guarantee informative 
explanations for all cases. Other rule extraction methods, such as (1) the decomposition 
approach, & (2) the pedagogical approach were introduced. 
 
Applications: 

1) Mark-up estimation  
Data Collection: 

• From 30 successful bidding examples 
of building projects from a local 
contractor 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
1) Mark-up estimation 
-Input: 10 nodes (Market, Competitors, Cash 
required, Overhead rate, Current workload, 
Labor availability, Project type, Size, 
Location, Complexity) 
-Hidden: 3 nodes (represent Economic, 
Company, & Project respectively)  
-Output: 1 node (Mark-up Percentage) 
 
 

 

14 2000 Construction Simulation Using Parallel 
Computing Environments 

Nabil Kartam; 
Ian Flood Auto. in Constr. 

Paper Summary: 
This paper (related to paper 2, 3, & 5) introduces different methods to implement construction 
simulation. The conventional serial-algorithms (e.g. event list & activity scanning) was 
challenged to be memory consuming and low speed. The authors proposed the parallel-
algorithms by using NN as an activity duration generator which estimates durations based on the 
work environment inputs. The NN estimated durations then input to a recursive NN which 
generates the next event time based on the last event time. However, the training data of the NN 
could inevitably provided by conventional serial-algorithms simulation model as the training and 
validating data can hardly be found in real operations. 
 
Applications: 

1) Mimic the simulation process of a 
typical earth-moving operations 

Data Collection: 
• Discrete-event simulation model 

(ICONS) 
ANN Paradigm adopted: 

• Radial-Gaussian Model 

ANN Architectures: 
1) Excavation duration estimation 
-Not mentioned 
 
2) Core simulation recursive NN 
-Input: 7 nodes  
-Hidden: 300 (Gaussian function) 
-Output: 1 node (predicted excavation 
duration) 
 

 



 

 

15 2000 Classification of Defects in Sewer Pipes 
Using Neural Networks 

O. Moselhi 
T. Shehab-Elden 

J. Infrastr. 
Systms. 

Paper Summary: 
This paper presents an automated system designed for detecting defects in underground sewer 
pipes and focuses primarily on the application of neural networks in the classification of those 
defects. This paper provides quite detail descriptions on the history, mechanism, and 
characteristics of ANN. 
 
Applications: 

1) detecting defects in underground sewer 
pipes 

Data Collection: 
• Images from CCTV recorder  

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
1) Formworking 
-Input: Many nodes (for the image converted 
matrix) 
-Hidden: 32 nodes in 1 layer (several different  
functions were tried)  
-Output: 1 node (defected or not) 
 
 

 

16 2001 Sensitivity Analysis of Neural Networks in 
Spool Fabrication Productivity Studies 

Ming Lu; 
S. M. AbouRizk; 
U. H. Hermann 

J. Comp. CE 
(ASCE) 

Paper Summary: 
This paper presents a approach for the BPNN sensitivity analysis mapping the significance of 
each input to the ANN output. Methodology inspired from the regression analysis was developed 
such that the partial derivative was applied to explore the normalized input-output relationship. 
The BPNN and the proposed sensitivity analysis technique were demonstrated by the case study 
of pipe spool fabrication productivity estimation. 
 
Applications: 

1) productivity estimation of pipe spool 
fabrication 

Data Collection: 
• Company’s various transaction 

systems (e.g. labor cost or material 
tracking system) and questionnaires 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
-Input: 19 nodes (features about the job, 
material, and labor arrangement) 
-Hidden: 19 nodes (sigmoid function) 
-Output: 1 node (labor hour per pipe spool 
unit) 
 

 



 

 

17 2001 Neural Networks for Predicting 
Properties of Concretes with Admixtures 

W. P. S. Dias; 
S. P. Pooliyadda 

Constr. & Buildg. 
Materials 

Paper Summary: 
This paper presents an ANN application on concrete strength prediction based on different 
prescriptions of admixture. An exponential multiple regression model was compared with the 
ANN. Sensitivity analysis was performed by graphical method. 
 
Applications: 

1) Predicting the strength and slump of 
concrete 

Data Collection: 
• 3 batching plants 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
1) For Ready-Mixed Concrete (RMC) 
-Input: 4 nodes (cement/water, total mix/water, 
coarse/fine agg., & retardant/cement ratio) 
-Hidden:  NO MENTIONED 
-Output: 2 nodes (slump and strength) 
 
2) For High Strength Concrete (HSC) 
-Input: 5 nodes (cement+silica/water, total 
mix/water, coarse/fine agg., plasticizer/total, & 
silica-fume /cement ratio) 
-Hidden: NO MENTIONED 
-Output: 2 nodes (slump and strength) 
 

 

18 2001 
Development of the Approximate 

Analytical Model for the Stub-girder 
using Neural Networks 

Seung Chang Lee; 
Sung Kwon Park; 

Byung Hai Lee 

Computers. & 
Structures 

Paper Summary: 
This paper describes an ANN application on stub-girder system structural analysis. Fairly 
comprehensive information, from the architecture to the training & testing procedure, about 
ANN was given in the paper. Three ANN models, including two girder systems with point load 
and one with uniform distributed load, were setup for demonstration. 
Applications: 

1) structure analysis of simple stub-girder 
system 

Data Collection: 
• Finite element analysis software 

package LUSAS 
ANN Paradigm adopted: 

• BPNN 

ANN Architectures: 
1) point load case -1 
-Input: 3 nodes (stub length, first open length, 
second open length) 
-Hidden: 4 nodes (sigmoid function) 
-Output: 1 node (maximum deflection) 
 
2) point load case -2 
-Input: 3 nodes (concrete slab strength, stub 
strength, main girder strength) 
-Hidden: 4 nodes (sigmoid function) 
-Output: 1 node (maximum deflection) 
 
3) Uniform distributed load case 
-Input: 7 nodes (loading, length, spacing, 
depth, & width of stub, depth of girder) 
-Hidden: 11 nodes (sigmoid function) 
-Output: 4 nodes (maximum deflection, 
bending moment, shear stress, axial force) 



 

 

19 2001 Preliminary Design System for Concrete 
Box Girder Bridges 

Z. Zhao 
W. He 

S. C. Fan 

J. Comp. CE 
(ASCE) 

Paper Summary: 
A neural network-based design system for concrete box girder bridges is presented in this paper. 
The system employs two knowledge extraction techniques (1) the RBFNN to derive design 
knowledge of the parameters having a clear input and output mapping; and (2) the fuzzy 
approach to provide feasible types of cross sections and longitudinal sections. The knowledge 
acquisition model described in this paper was actually the factor sensitivity analysis technique. 
 
Applications: 

1) Preliminary design of concrete box 
girder bridges  

Data Collection: 
• From 256 concrete box girder bridges 

built in various countries 
ANN Paradigm adopted: 

• BPNN & RBFNN 

ANN Architectures: 
-Input: 9 nodes 
-Hidden: 13 - 14 nodes  
-Output: 9 nodes  
 

 

20 2001 Estimating Labor Production Rates for 
Industrial Construction Activities 

S. AbouRizk 
P. Knowles 

U. R. Hermann 
CEM 

Paper Summary: 
This paper presents an ANN application on labor production estimation for industrial 
construction tasks such as welding and pipe installation. A two-stage ANN was used for the 
prediction. The first-stage ANN classes the data into typical and non-typical, while the second-
stage ANN performs the productivity estimation. The research shows that the training and 
testing error of an ANN model can be reduced if data can be clustered properly.   
 
Applications: 

1) Labor production rates prediction 
Data Collection: 

• From 27 industrial construction 
projects 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
1st stage 
-Input: 6 nodes (mainly work conditions) 
-Hidden: 10 nodes in 2 groups in 1 layer 
(Kohonen layer) 
-Output: 2 nodes (typical and non-typical) 
 
2nd stage 
-Input: 6 nodes (mainly work conditions) 
-Hidden: 35 nodes in 1 layer  
-Output: 14 node (13 classes and 1 point 
prediction) 

 



 

 

21 2001 
Application of Neural Network Model to 
Forecast Short-Term Pavement Crack 

Condition: Florida Case Study 

Z. Lou 
M. Gunaratne 

J. J. Lu 
B Dietrich 

J. Infrastr. 
Systms. 

Paper Summary: 
This paper presents the BPNN application on forecasting the short-term time variation of crack 
index (CI) of Florida’s highway network. The BPNN models can learn the historical crack 
progression trend from the CI database and accurately forecasting future CI values. It is worthy 
to note that the neural network model concerned was designed in a time-series approach that the 
crack index prediction of the last iteration will be the input of the next iteration.  
 
Applications: 

1) Forecast the short-term time variation 
of crack index for Florida’s highway 
network 

Data Collection: 
• From the pavement performance 

database in the Florida Department of 
Transportation (20 years, 139421 
historical CI survey data) 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
-Input: 7 nodes (including one CI(t): CI value 
from previous turn) 
-Hidden: 12 nodes  
-Output: 1 node (CI(t+1)) 
 

 

22 2002 
Neural Network Embedded Monte Carlo 
Approach  for Water Quality Modeling 
under Input Information Uncertainty 

R. Zou 
W. S. Lung 

H. Guo 

J. Comp. CE 
(ASCE) 

Paper Summary: 
This research used the Monte Carlo randomness simulate the uncertainly in water quality 
modeling and the statistical distributed data is used as data set for training and testing of an 
ANN. The target output of the data set was provided by conventional numerical calculation. The 
ANN mapped the calculation input and output so that users can bypass the complicated 
calculation steps.  
 
Applications: 

1) Water quality modeling 
Data Collection: 

• Numerical model: Total Phosphorus 
Model 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
1st stage 
-Input: 3 nodes (settling velocity, recycling 
velocity, burial velocity) 
-Hidden: 6 nodes in 1 layer 
-Output: 1 node (Total phosphorus) 
 
 

 
 



 

 

23 2002 
Predictions of Design Parameters in 

Civil Engineering Problems Using SLNN 
with a Single Hidden RBF Neuron 

S. Rajasekaran; 
R. Amalraj 

Computers. & 
Structures 

Paper Summary: 
This paper introduced the single hidden neuron Radial Basis Function (RBFNN) in solving civil 
engineering problems. Although the authors did not sufficiently explain what is RBFNN, the 
training procedure (i.e. searching of the center and effective width of the hidden node) of a 
RBFNN was illustrated clearly. After the training and validation, the RBFNN can even be 
converted into an instantly applicable equation which helps to understand the problem. 
 
Applications: 

1) Classification of soils 
2) Determination of compressive strength 

and workability of concrete 
3) Ultimate shear strength of RC beam 

prediction 
Data Collection: 

1) Not given 
2) Not given 
3) Previous research by Sanad & Saka 

(2001) 
ANN Paradigm adopted: 

• RBF 
Commercial packages adopted: 

• Matlab 
 

ANN Architectures: 
1) Classification of soils 
-Input: 6 nodes (soil color, gravel%, sand%, 
fine particles%, Liquid limit, Plastic limit) 
-Hidden: 1 nodes  
-Output: 1 nodes (soil type) 
 
2) Determination of compressive strength and 
workability of concrete 
-Input: 5 nodes (Sand/Cement, Coarse 
agg/Cement, Water/Cement, Silica Fume%, 
Plasticizer%) 
-Hidden: 1 node 
-Output: (a) 1 node (Concrete strength) 
               (b) 1 node (Workability) 
 
3) Ultimate shear strength of RC beam 
prediction 
-Input: 9 nodes (not mentioned) 
-Hidden: 1 node  
-Output: 1 node (ultimate shear strength) 
 

 

24 2002 Artificial Neural Networks Model for 
Predicting Excavator Productivity 

C. M. Tam; 
T. K. L. Tong; 
Sharon L. Tse 

Engrg., Constr. & 
Arch. Mangmt. 

Paper Summary: 
This paper applied ANN on excavator productivity prediction. The hidden layer adopted 3 
different types of threshold (activation) functions, and sigmoid function was adopted at the 
output layer. However, how this special setting affect the ANN model was missing in the paper.  
 
Applications: 

1) Prediction of excavation productivity  
Data Collection: 

• Data of excavation scenarios from 
Edward & Holt (2000) 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
-Input: 4 nodes (digging depth, swing angle, 
machine capacity, operation environment) 
-Hidden: 9 nodes in 1 layer (3 x Gaussian, 3 x 
Gaussian Complement, 3 x tanh)  
-Output: 1 sigmoid function output node 
(predicted excavation cycle time) 
 



 

 

25 2003 The use of GA-ANNs in the Modeling of 
Compressive Strength of Cement Mortar 

Sedat Akkurt; 
Serhan Ozdemir; 
Gokmen Tayfur; 

Burak Akyol 

Cement & 
Concrete 
Research 

Paper Summary: 
This paper presents an ANN application on cement mortar strength prediction. Genetic 
Algorithms (GA) was used to sort the training and testing data. Cement mortar compressive 
strength against different input factors were plotted for sensitivity analysis. 
 
Applications: 

1) cement mortar compressive strength 
prediction  

Data Collection: 
• Data from a cement plant in Turkey 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
-Input: 20 nodes (15 about mortar ingredient, 2 
about the set time, 2 about the particle size, 1 
about the size of the compression surface) 
-Hidden: 20 nodes in 1 layer (sigmoid 
function)  
-Output: 1 node (predicted compressive 
strength) 
 

 

26 2004 Use of BPNN for Landslide Monitoring: a 
Case Study in the Higher Himalaya 

K. M.  Neaupane; 
S. H. Achet Engrg. Geology 

Paper Summary: 
This research applied ANN for landslide monitoring in Himalaya. A 2-hidden-layer BPNN was 
adopted in this case study. 
 
Applications: 

1) Predict land movement by the raining 
and geotechnical data 

Data Collection: 
• Published technical report by the 

Water Induced Disaster Prevent 
Technical Center in Nepal 

ANN Paradigm adopted: 
• BPNN 

Commercial packages adopted: 
• Matlab 

 

ANN Architectures: 
-Input: 6 nodes (Antecedent rainfall, rainfall 
intensity, infiltration coefficient, shear 
strength, groundwater level, slope steepness) 
-Hidden-I: 5 nodes in 1 layer (sigmoid 
function)  
-Hidden-II: 9 nodes in 1 layer (both node no. 
in layer I&II were by trial-and-error) 
-Output: 1 node (predicted slope movement) 
 

 



 

 

27 2004 RBF neural Networks for the Prediction 
of Building Interference Effects 

Aishe Zhang; 
Ling Zhang 

Computers. & 
Structures 

Paper Summary: 
This paper presents the application of RBFNN on estimating the resultant wind force on a 
building under the interference by a nearby building. This paper provides a good introduction to 
RBF novices because the geometrical meaning of the RBF and the basic training procedures 
were all articulated in it. 
 
Applications: 

1) Estimate the resultant wind force on a 
building under the interference by a 
nearby building  

Data Collection: 
• Data from some previous literatures 

ANN Paradigm adopted: 
• RBF 

ANN Architectures: 
-Input: 4 nodes (Relative orientation of the 
two buildings in X-Y plane, height ratio, 
ground roughness) 
-Hidden: 8 nodes (trial from 4~25)  
-Output: 1 node (Interference Factor) 
 

 

28 2005 Pile Construction Productivity 
Assessment 

Tarek M. Zayed ; 
Daniel W. Halpin 

J. CEM 
(ASCE) 

Paper Summary: 
This paper presents an ANN application on pile construction productivity assessment. As up to 
10 output features were expected, the authors breakdown one ANN into two for the ease of 
training. 
 
Applications: 

1) Pile construction productivity 
assessment 

Data Collection: 
• Questionnaires to contractors 

ANN Paradigm adopted: 
• BPNN 

Commercial packages adopted: 
• Matlab 

 

ANN Architectures: 
1) 1st ANN 
-Input: 7 nodes (3 about the soil, 4 about the 
piling method) 
-Hidden: 20 nodes in 1 layer (sigmoid 
function)  
-Output: 5 node (drilling time, cage time, 
funnel time, tremie time, pouring time) 
 
2) 2nd ANN 
-Input: 7 nodes (3 about the soil, 4 about the 
piling method) 
-Hidden: 50 nodes in 1 layer (sigmoid 
function)  
-Output: 5 node (Adjust axis time, moving 
time, overall productivity, drilling cost, total 
cost) 
 

 



 

 

29 2006 Neural Networks for Estimating the 
Productivity of Concreting Activities 

A. S. Ezeldin; 
L. M. Sharara 

J. CEM / 
TecNote. 
(ASCE) 

Paper Summary: 
This paper presents an ANN application on productivity estimation for concreting related 
activities, including formworking, steel fixing, and concrete pouring (in three different ANN 
models). The source data was collected from questionnaire was separated and used for the 
training of the three ANN models. 
 
Applications: 

1) Productivity estimation for 3 types of 
concreting related activities 

Data Collection: 
• Questionnaires 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
1) Formworking 
-Input: 12 nodes (selected from the 20 
common features about the project and work 
environment) 
-Hidden: 22 nodes in 1 layer (sigmoid 
function)  
-Output: 1 node (predicted productivity) 
 
2) Steel fixing 
-Input: 10 nodes (selected from the 20 
common features about the project and work 
environment) 
-Hidden: 15 nodes in 1 layer (sigmoid 
function)  
-Output: 1 node (predicted productivity) 
 
3) Concrete pouring 
-Input: 11 nodes (selected from the 20 
common features about the project and work 
environment) 
-Hidden: 51 nodes in 1 layer (sigmoid 
function)  
-Output: 1 node (predicted productivity) 
 

 



 

 

30 2006 
Applying Undistorted Neural Network 

Sensitivity Analysis in Iris Plant 
Classification & Construction 

Productivity Prediction 

Ming Lu; 
Daniel S. Yeung; 
Wing W. Y. Ng 

Soft Computing 

Paper Summary: 
This paper presents an ANN application on iris plant classification and construction productivity 
prediction. The ANN was applied to the iris plant classification which was trained by a standard 
dataset in order to validate the proposed sensitivity analysis methodology and the concreting 
productivity prediction in Hong Kong respectively. The source data about the concreting 
productivity was collected from the quality control records of five building construction projects 
in Hong Kong. The proposed approach helped the authors to identified the significant factors to 
concreting productivity.  
 
Applications: 

1) Iris plant classification  
2) Construction productivity prediction 

Data Collection: 
1) UCI-IRIS dataset from the UCI 

Machine Learning Repository 
2) quality control records from five 

building construction projects in Hong 
Kong 

ANN Paradigm adopted: 
• BPNN 

ANN Architectures: 
1) Iris plant classification 
-Input: 4 nodes (sepal length & width, petal 
length & width) 
-Hidden: NO MENTIONED  
-Output: 1 node (predicted class) 
 
2) Construction productivity prediction 
-Input: 5 nodes (Pour size, supply of concrete, 
slump, pour location, pouring formwork 
shape) 
-Hidden: NO MENTIONED 
-Output: 1 node (predicted productivity) 
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