
 

 

 
Copyright Undertaking 

 

This thesis is protected by copyright, with all rights reserved.  

By reading and using the thesis, the reader understands and agrees to the following terms: 

1. The reader will abide by the rules and legal ordinances governing copyright regarding the 
use of the thesis. 

2. The reader will use the thesis for the purpose of research or private study only and not for 
distribution or further reproduction or any other purpose. 

3. The reader agrees to indemnify and hold the University harmless from and against any loss, 
damage, cost, liability or expenses arising from copyright infringement or unauthorized 
usage. 

 

 

IMPORTANT 

If you have reasons to believe that any materials in this thesis are deemed not suitable to be 
distributed in this form, or a copyright owner having difficulty with the material being included in 
our database, please contact lbsys@polyu.edu.hk providing details.  The Library will look into 
your claim and consider taking remedial action upon receipt of the written requests. 

 

 

 

 

 

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 

http://www.lib.polyu.edu.hk 



DEFENDING AGAINST ADVANCED 
DDOS ATTACKS 

MIU TUNG NGAI 

MPhil 

The Hong Kong Polytechnic University 

2022 





The Hong Kong Polytechnic University 

Department of Computing 

Defending Against Advanced DDoS Attacks 

Miu Tung Ngai 

A thesis submitted in partial fulfilment of the 
requirements for the degree of Master of Philosophy 

Aug 2021 



 

  



CERTIFICATE OF ORIGINALITY 

I hereby declare that this thesis is my own work and that, to the best of my 
knowledge and belief, it reproduces no material previously published or written, 
nor material that has been accepted for the award of any other degree or diploma, 
except where due acknowledgement has been made in the text. 

__________________________ (Signed) 

__________________________ (Name of student) Miu Tung Ngai 





Abstract

Distributed denial of service (DDoS) attacks have been a severe threat to
the Internet for decades. Although many detection and defense mechanisms
have been proposed, the attackers always attempt to evade the detection
by adopting various sophisticated approaches. In this thesis, we investigate
such advanced DDoS attacks from three aspects. First, we inspect applica-
tion layer DDoS attacks because their attack requests can be the same as
benign ones for evasion and exhaust the computational resources of target
servers. Specifically, we first design a new approach to model users’ browsing
behaviors and use it to differentiate between attacks and benign visits at both
session and page level. Then, we develop an effective defense system named
SkyShield that leverages the sketch data structure to detect and mitigate
application-layer DDoS attacks quickly. Second, network layer volumetric
attacks are becoming even more popular with the emergence of the DDoS-as-
a-service economy, and most attacks are launched abruptly. Hence, a defense
system should adopt an effective process to detect and mitigate the attacks
as soon as possible. Since different DDoS protection services (DPS) adopt
diverse defense strategies, we characterize the Border Gateway Protocol
(BGP)-based DPSes by proposing a machine learning based approach to ana-
lyze BGP update messages. Third, to better understand the trends of DDoS
amplification attacks, we deploy DDoSTrap, a high-performance honeypot to
collect data and report interesting observations after analyzing 4-year data.
We conducted extensive experiments to evaluate the proposed approaches,
and the experimental results demonstrate their effectiveness. Moreover, our
findings shed light on the trends of DDoS attacks and the design of effective
DDoS attack mitigation schemes.
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1Introduction

Distributed denial of service (DDoS) attacks have been a severe threat to
the Internet for decades. Although many detection and defense mechanisms
have been proposed[68, 78, 89, 100], the attackers always attempt to evade
the detection by adopting various sophisticated approaches. For example, the
application layer DDoS (app-layer DDoS) attacks against web servers grow
rapidly and bring victims with great revenue losses [68, 78, 89, 100]. They
attempt to disrupt legitimate access to application services by exhausting
the target’s resources and masquerading flash crowds with numerous benign
requests. Flash crowd refers to the scenario that a popular website service
is unavailable due to massive visitors simultaneously accessing it[96]. The
stealthiness of app-layer DDoS attacks makes most signature-based intrusion
prevention systems ineffective. Moreover, compared to network-layer DDoS
attacks, app-layer DDoS attacks usually consume less bandwidth and thus
are more stealthier[20].

In this thesis, we first investigate how to detect and defend against app-layer
DDoS attacks. Generally speaking, there are four types of app-layer flooding
attacks [97]. First, session flooding attacks exhaust bandwidth resources
by high session connection request rates. Second, request flooding attacks
consume bandwidth resources with massive requests per session. Third,
asymmetric attacks exhaust computational resources through high-workload
requests. Fourth, slow request/response attacks consume connection re-
sources by forcing the server to hold massive established connections. The
inherent difference between DDoS flooding attacks and the flash crowd is
the intention of users’ behaviors reflected by their access patterns. Therefore,
accurately estimating users’ intentions through access pattern analysis is the
key to detecting HTTP flooding attacks. Hence, we propose a new approach
to model users’ browsing behaviors based on the access logs recorded at the
webserver and use it to detect app-layer DDoS attacks at both the session
level and the page level for the sake of reducing the false positive rate and
improving the performance.

Moreover, to defend against app-layer DDoS attacks, the increasingly high-
speed network links demand an efficient data structure to efficiently process
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a huge volume of network traffic. The sketch data structure can efficiently es-
timate the original signals by aggregating high dimensional data streams into
fewer dimensions, making it very suitable for DDoS attack detection [26]. A
series of sketch-based approaches have been proposed for anomaly detection
in large-scale network traffic [36, 73, 81, 80, 35, 25]. Since sketches contain
no direct information about the malicious hosts, they cannot be directly used
to mitigate attacks. To tackle this problem, several efficient reverse hashing
schemes have been proposed to infer the IP addresses of malicious hosts
from reversible sketches [73, 79, 48]. These studies attempt to retrieve
anomalous keys either by using reverse hashing methods or by storing parts
of the keys. However, these methods are either computation-intensive or
storage-demanding, limiting their applications in intrusion prevention sys-
tems. The challenge of designing a sketch-based defense system lies in the
coordination between the detection and mitigation of attacks. First, since
network traffic is inherently dynamic in the real environment, a proper mea-
sure of network traffic is essential for accurate anomaly detection. Second,
when an attack occurs, it needs to identify malicious hosts without affecting
legitimate users’ access accurately. Third, since most attacks are launched
abruptly, the defense system should be able to detect and mitigate the attack
as soon as possible. To address these challenges, we propose SkyShield, a
new defense system based on sketches to defend against app-layer DDoS
attacks. Akin to previous studies, SkyShield exploits the random aggregation
property of sketches to improve its capability. Differently, SkyShield mitigates
the attacks without retrieving the exact IP addresses of malicious hosts, thus
avoiding the intensive computation process. The rationality of this scheme is
the fact that attacks are usually persistent. Therefore, the abnormal sketch
could be reused to facilitate the identification of malicious hosts by examining
whether an incoming host is the one that caused the anomaly in the previous
detection cycle. This avoids the reverse calculation of malicious hosts and
thus greatly improves the efficiency of the system.

Besides examining app-layer DDoS attacks, we also investigate network layer
volumetric attacks, which have been threatening the infrastructure of the
Internet for decades and become even more popular with the emergence of
the DDoS-as-a-service economy [60, 34, 71], from a new perspective. Specif-
ically, the DDoS protection services (DPS) providers [32] usually conduct
traffic cleansing through traffic diversion, which allows traffic to be routed
through the DPS infrastructure, either always-on or on-demand. There are
two main approaches to divert traffic, including the Domain Name System

2 Chapter 1 Introduction



(DNS)-based method and Border Gateway Protocol (BGP)-based method.
The former diverts network traffic through proper configuration of Domain
Name Servers or anycast techniques. The latter diverts traffic towards the
DPS infrastructure for scrubbing by announcing/withdrawing specific IP sub-
nets. Although recent studies have measured the DNS-based approach [15],
little is known about the behavior of BGP-based DPS. To fill the gap, we first
study BGP anomalies by collecting a number of DDoS attacks and disaster
events that are reported to cause abnormal BGP dynamics as well as the BGP
update messages during the reported period from the Route views project.
Then, we design a machine learning-based method to determine whether or
not the BGP anomalies are caused by DDoS attacks. If a DDoS attack event is
identified, we conduct an in-depth analysis of the BGP traffic to characterize
how BGP-based DPS leverages BGP to mitigate the attack.

In addition to investigate known app-layer DDoS attacks and volumetric
attacks, we also conduct an empirical study on the DDoS amplification attacks
by deploying a honeypot named DDoSTrap to collect data. By analyzing
the data collected over the past four years, we obtain a number of new
observations, such as the distribution of attack duration and victims, and the
new bit-and-piece attack, etc.

In summary, we have made the following contributions in this thesis:

• We propose a new approach to model users’ browsing behaviors and
use it to differentiate between application-layer attacks and benign
visits at session level and page level. We evaluate the performance of
our detection method based on a dataset of real DDoS attacks collected
from a busy commercial web server.

• We propose a sketch-based system to detect and mitigate application-
layer DDoS attacks, which employs the abnormal sketch to facilitate
the detection of malicious hosts of an ongoing attack. We evaluate its
effectiveness using actual attack data collected from large-scale web
server clusters.

• We propose a machine learning-based approach to identify DDoS events
by analyzing BGP update messages and investigate the behaviors of
BGP-based DPS after DDoS attacks occur in terms of BGP manipulation.
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• We deploy a high-performance honeypot named DDoSTrap to capture
DDoS amplification attacks and obtain a number of new observations
by analyzing the data collected in the past 4 years.

The thesis is organized as follows. Chapter 2 gives an overview of DDoS
attacks and defense mechanisms. Chapter 3 presents our approach to model
users’ browsing behaviors and differentiate between application-layer attacks
and benign visits. Chapter 4 introduces our sketch-based system for detecting
and mitigating application-layer DDoS attacks. Chapter 5 describes our study
on the behaviors of BGP-based DPS. Chapter 6 reports our honeypot for
capturing amplification DDoS attacks and a number of new observations.
Charter 7 concludes the thesis with future work.
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2Literature Review

We first introduce DDoS attacks and then describe the related studies on the
detection of application layer and network layer DDoS attacks.

2.1 DDoS attacks

DDoS attacks could be roughly classified into two categories: network-layer
DDoS attacks and app-layer attacks. Network-layer DDoS attacks abuse the
compromised devices and computers to generate a massive volume of traffic
to exhaust the bandwidth resource, causing network congestion to impact
victims’ services. According to the latest record from Cloudflare, the peak
size of DDoS attacks was up to 2.5Tbps in 2022 Q3 [13]. Such kind of
traffic volume impacts a victim’s services, damages network infrastructure
and causes a regional outage of internet services. For example, on 2016
October 21, a 1Tbps DDoS attack hit the Domain Name Service(DNS) of Dyn
company that provides services on Internet intelligence, domain services,
traffic management, message management, and Domain Name Service(DNS).
It caused the unavailability of the DNS service of Dyn. This further results in
difficulties connecting numerous websites (such as Amazon, BBC, CNN, etc.)
for many users. During the attack, the traffic going to other DNS providers
increased dramatically and thus caused widespread network congestion [74].
Besides, attackers abuse public access services to launch reflection attacks. We
divide such attacks into amplification attacks and non-amplification attacks.
By launching amplification attacks, attackers abuse amplifiers, , such as
DNS, CHARGEN, SSDP, and NTP servers, to enlarge the attack traffic to
congest the victim’s network[76, 37, 28, 82, 18]. For many of these protocols,
attackers can use an internet-wide scan to find millions of amplifiers [37, 28].
Non-amplification attacks will not magnify the reflected traffic, such as TCP
SYN-ACK reflection attacks [1]. The attacker sends a TCP SYN packet with
a spoofed IP address to a server. After receiving it, the server replies to the
spoofed IP address with a TCP SYN-ACK packet.

Application layer (app-layer) attacks affect online services and also cause
victims with great revenue losses[68, 78, 89, 100]. They usually exploit
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the victim’s vulnerabilities to exhaust application resources. For example,
when launching slow POST attacks, the attackers exploit the HTTP header
Content-Length field by setting it to a large value but sending data very
slowly. Since the target web server will wait for the data, its memory will
be consumed [91]. Meanwhile, such attacks exhaust connection resources
by forcing the server to hold massive established connections. Finally, the
victim’s online service either reaches out of memory or fails to establish a
new TCP connection causing a denial of service.

The stealthiness of app-layer DDoS attacks makes most signature-based
intrusion prevention systems ineffective. Compared with the botnet-induced
volumetric attacks that generate a significant amount of traffic, app-layer
DDoS attacks usually consume less bandwidth and are stealthier[20]. For
instance, HTTP attacks against a web application. The attackers attempt to
exhaust server resources by generating valid, countless HTTP requests or
sessions [91]. The most commonly used method to launch such attacks is
HTTP GET flooding. Attackers can either initialize a large number of valid
sessions or send a large number of requests in a single session to inundate
the victim’s web servers with answer requests. The process forces servers
to allocate maximum traffic resources so legitimate requests cannot reach
them. What’s worse, masquerading flash crowds with numerous benign
requests. Flash crowd refers to the scenario that a popular website service is
unavailable due to massive visitors simultaneously accessing it[96]. Unlike
HTTP GET flooding example, due to a valid HTTP request needing to establish
a complete TCP connection so that we can identify the source IP addresses, it
will generate an HTTP request to the victim service with a single IP address
fastly. For instance, over a thousand requests with a single source IP address
in a minute that identify as abnormal web browsing behavior. However,
flash crowd uses massive source IP addresses to send valid HTTP requests
simultaneously. As a result, victims become challenging to filter malicious
requests but easy to block legitimate traffic correctly [33].

2.2 Detection of application layer DDoS
attacks

The methods for detecting app-layer DDoS attacks can be roughly classified
into three categories. The first scheme employs the Turing test to auto-
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matically tell computers and humans apart. Kandula et al. [33] proposed
an anomaly detection method by graphical test to identify malicious hosts
quickly. This method can effectively protect web servers from DDoS attacks
that masquerade flash crowds. Rangasamy et al. [67] designed a puzzle
authentication mechanism to determine whether a client is suspicious or
not. However, these methods bring users extra burdens, which reduce the
QoS [64]. Moreover, they prevent the access of legitimate robot crawlers,
thus going against Search Engine Optimization (SEO). What’s worse, the
CAPTCHA itself may become the attack target of adversaries [27, 87, 93].
To reduce the impacts of the Turing test, Sivabalan et al. [75] encouraged
using one of the above methods to detect suspicious users only when the
server load exceeds a predefined threshold. The second scheme employs
machine-learning methods to detect the anomalies caused by DDoS attacks
[44]. Such methods are shown as practical and light-weight for real-time web
server anomaly detection. However, the computational cost for the genetic
algorithm is expensive, which results in a high training time for the model.
To solve this problem, the authors developed an extended fuzzy C-means
(E-FCM) algorithm to fulfill clustering tasks [45].The third scheme focuses
on modeling the profiles of normal user behavior. Then any deviations from
the normal profiles are determined as an anomaly. Xie et al. use the hidden
semi-Markov model (HSMM) to characterize the access pattern of normal
behaviors [88, 90, 92, 89]. This scheme can detect novel types of attacks.
However, the implementation of the HSMM model is very complex, and it
needs some prior knowledge of the website page structure, which is unavail-
able or hard to collect. Yatagai et al. propose HTTP-GET flood detection
techniques based on analysis of page access behavior [95]. They offer two
detection algorithms, one focusing on a browsing order of pages and the
other focusing on a correlation with browsing time to page information size.
Lee et al. introduce a sequence-order-independent method to detect potential
application layer attacks [40].

2.3 Detection of network layer DDoS
attacks

Network-layer DDoS attacks with Tbps traffic have become the new normal
on the internet [14]. It is easy to detect such attacks due to their huge volume
of traffic but difficult to defeat them due to limited bandwidth resources. How
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to distribute the attack traffic is one of the major issues to handling massive
volumetric attacks. DPS providers with sufficient bandwidth resources will
distribute attack traffic to different sites by leveraging BGP protocol [32].

Sketch techniques have already been widely used in the detection of DDoS
attacks. Barford et al. [6] found that the detection of a sharp increase
in the local variance of the filtered network traffic is an effective way of
exposing anomalies. Ganguly et al. [25] proposed a novel sketch-based data-
streaming algorithm for robust and real-time DDoS attack detection in large
ISP networks. Tang et al. [81, 80] developed an efficient online flooding
attack detection scheme by integrating sketch techniques with Hellinger
distance. Su et al. [77] proposed a weighted k-NN clustering method to
detect DoS attacks in real-time. They employed a different genetic algorithm
to select significant features to discriminate malicious requests. Schweller et
al. [73] proposed an efficient reverse hashing scheme to infer the IP addresses
of malicious hosts from reversible sketches. Salem et al. [79] proposed a
flooding attack detection method using a multiple layer reversible sketch. Liu
et al. [48] proposed a two-level approach for scalable and accurate DDoS
attack detection by exploiting the asymmetry of the attack traffic. These
methods attempt to retrieve the anomalous keys either by reverse hashing
methods or by storing parts of keys, either computation-intensive or storage
consumptive.

There are a number of studies on the mitigation of DDoS attacks. Filter-based
approaches use ubiquitously deployed filters to block unwanted traffic [36,
33, 75]. Capability based mechanisms focus on controlling resource usage by
clients [4, 49, 90, 94]. Clients have to obtain servers’ explicit permissions
before transmitting packets. Traffic from authorized or privileged clients
with valid capability permissions is served with a higher priority during an
attack. Liu et al. [50] compared the effectiveness of filters-based methods
to that of capabilities-based ones. They find both filters and capabilities are
highly effective DDoS defense mechanisms, but neither is more effective in
all types of DDoS attacks. Several studies utilize proxy nodes between clients
and protected hosts to absorb and filter out attack traffic. Wang et al. [85]
proposed a moving target defense mechanism that defends authenticated
clients against Internet service DDoS attacks. The scheme employs a group
of dynamic proxy nodes that relay traffic between protected servers and
authenticated clients.
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Many studies have been conducted to detect the instability or pathological
behaviors of the BGP dynamics. Labovitz et al. [38] investigated the BGP
routing messages and found that the volume of routing updates is more
redundant than expected. Besides, they revealed several unexpected trends
of both forwarding instability and routing policy fluctuations. Deshpande
et al. [21] proposed an online instability detection architecture that applies
statistical pattern recognition techniques to detect the instabilities of BGP
dynamics. They found that features like AS path length and AS path edit
distance are very effective in modeling the behaviors of the Internet topology.
Chang et al. [12] proposed an algorithm to identify inter-domain path-
change events from streams of BGP updates. Feldmann et al. [24] proposed
a methodology to identify the origin of routing instability from BGP updates.
Several studies utilize statistical pattern recognition techniques to detect
the instabilities of BGP routing dynamics [38, 42, 21]. Al-Rousan et al. [3]
employed the support vector machine (SVM) and Hidden Markov Models
(HMMs) to detect and classify BGP anomalies. Their method achieves good
performance in detecting BGP anomalies. Some studies examine the impacts
brought by historical events such as blackouts, cable cuts, worms, prefix-
hijacking attacks, etc. Cowie et al. [17] analyzed the global BGP routing
instabilities caused by the Code Red II and Nimda worms that occurred in
July and September 2001, respectively. They also examined the impacts
of the blackouts in 2003 on Internet connectivity and traffic routing in the
region [16]. They found that the impact was more severe than publicly
revealed in the blacked-out region. Li et al. [43] analyzed the BGP behavior
during large-scale power outages from a perspective of both the global and
prefix levels. They found there was an increase in the number of withdrawals
at the global level. Consequently, there was a sharp decrease in the number
of edges and nodes at the prefix level. LaPerriere [39] studied the effect of
Taiwan Earthquake fiber cuts from a service provider view. Different from
them, we focus on the disruptions caused by DDoS attacks and the impacts
of different DPS policies. There are also studies on classifying BGP traffic
data into normal and abnormal. Prakash et al. [65] developed an analysis
tool named BGP-lens which can find patterns in BGP updates and identify
anomalies in these patterns. Zhang et al. [99] proposed a signature-based
detection methods to detect BGP anomalies in BGP UPDATES. Zhang et
al. [98] proposed an instance-learning framework to identify BGP traffic
anomalies based on wavelets. Li et al. [41] proposed a measurement tool
called I-seismograph to measure the deviation of BGP dynamics from its
normalcy. Caesar et al. [11] designed a BGP health inference system to
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localize the root causes of routing changes using only BGP update information,
which can determine the BGP routing dynamics on the location of potential
ASes and the types of routing events. Noroozian et al. [61] performed an
in-depth investigation and explanation of DDoS attacks victimization patterns.
They found that the bulk of the victims is users in access networks rather than
in hosting networks. However, they fail to provide a uniform approach to
analyzing the causes of these observed anomalies in BGP traffic. We employ
the detection method proposed in [41] to detect abnormal BGP dynamics.
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3A Multilevel Detection of Application
Layer DDoS Attacks

This chapter introduces our approach to model users’ browsing behaviors
and to differentiate between app-layer attacks and benign visits at session
level and page level as well as the evaluation result.

3.1 User access patterns

The intention of the visits can be used to distinguish illegitimate users from
normal ones [88]. It could be well inferred from user access patterns on
the website. We first design a page chain data structure, based on which we
model user access patterns. Then, we calculate the likelihood of a session to
measure the normality of the browsing behavior.

In an HTTP session, the user browses the website by jumping from one web
page to another. Hence, the order of the main pages clicked by a user reflect
some relations between these pages. We assume that in a single session the
next page a user will browse only depends on the current browsing page, and
employ the Markov Chain Model to model user access patterns. The Markov
property of user access patterns has been validated in [46]. We further use a
directed weighted graph to represent the Markov Chain, where each node
represents a main page and the weights of the edge represent the transition
probabilities from one page to another. Formally, the transition probability
from page i to page j is defined as

N∑
j=1

p(i|j) = nij∑N
j=1 nij

, (3.1)

where nij is the number of observations that page i is followed by page j in
a single session; N is the total number of pages. Notably, the user access
patterns are used to characterize the browsing behavior of aggregated users
in a website. The user access patterns are trained based on the page chain
data structure to be introduced as follows.
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When a browser loads a page, it firstly resolves a dependency graph to
determine the request order of associated objects [9, 47, 59, 86]. Therefore,
a web request sequence is usually composed of main pages followed by series
of associated objects. We adopt the HTTP ON/OFF model to characterize the
web browsing behavior. In the “ON” state, the browser sends out a number
of requests for the main page and its associated objects. The “OFF” state
represents users’ page reading period and no request is sent. A schematic
diagram of the ON/OFF model is presented in Fig. 3.1. In a browsing
session, the user follows a series of hyper-links either provided by the current
browsing page or fetched from outside the page such as the navigation tools
or the favorites of the browser. We also observe that some object request
sequences (mainly images) do not follow main pages. In this case we use a
Null page to represent the main page.

Fig. 3.1: The HTTP ON/OFF model

Based on the ON/OFF model, we design a page chain data structure to profile
the click-streams in an HTTP session. We define an HTTP session as the
complete browsing process of a user in the website. A closing indicator of
an HTTP session is that the maximum HTTP OFF time is greater than a
predefined threshold Tmax (1800s in this thesis). In addition, the main pages
are followed by a series of associated objects (AOs), which are requested by
the browser automatically. Besides main pages, all the objects are indexed in
advance and only the indexes are stored in the data structure for memory
efficiency. Since the time intervals between consecutive clicked pages also
reflect some aspects of users’ browsing patterns, we also store the starting
and end times of a browsing session in the data structure. Accordingly, as
shown in Fig. 3.2, the page chain structure is defined as below:
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1. A main page (MP) is primarily an html document whose content type is
text/html with links to other objects.

2. The time interval between two consecutive main pages is the difference
between the requests’ timestamps and equals to the sum of the HTTP
ON time and the HTTP OFF time of the preceding page.

3. A page chain is a series of main pages whose time intervals are not
greater than Tmax. That is, τi < Tmax, i = 1, 2, . . . , k − 1.

Fig. 3.2: The page chain data structure

The data structure is constructed based on the access logs recorded at the
server end. It allows us to learn user access patterns for detection.

3.2 Multilevel Detection

3.2.1 Session level

Since user access patterns are extracted from the aggregate browsing behav-
iors recorded at the server end, we assume that attackers could not know the
access pattern of users. Consequently, the page orders of attacking sequences
are quite different from that of normal ones. To evaluate the divergence of
attacking sequences from normal ones, we define the likelihood of a session
and use it to evaluate the normality of a request sequence. We denote a
session as {MP1,MP2, . . . ,MPn}, where n is the length of the session rep-
resenting the number of main pages. Then, the likelihood of the session is
defined as

L = p(MP1)
n−1∏
i=1

p(MPi|MPi+1), (3.2)
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where p(MP1) is the probability of page MP1, and p(MPi|MPi+1) is the
transition probability from the ith to (i+ 1)th page. For computation conve-
nience, we use the logarithmic likelihood as the metric to determine whether
a session is normal or not. That is,

lnL = ln p(MP1) +
n−1∑
i=1

ln p(MPi|MPi+1) (3.3)

3.2.2 Page level

The likelihood of a session detects abnormal behaviors at session level. How-
ever, there are many sessions containing only one main page. The likelihood
metric is ineffective to these sessions. Moreover, the likelihood method will
take a long time to detect an anomaly if comprised hosts request a large
quantity of associated objects (e.g. images). Thus, we propose a detection
method at the page level, and each main page usually contains several associ-
ated objects. Although a browser resolves a dependency graph to determine
the request order of associated objects, browsers do not load image objects
synchronously. Thus the order of associated objects is not important to the
evaluation of main pages. Lee et al. proposed an sequence order independent
method to detect anomaly [40]. However, they also emphasized that the
sequence order is unsuitable for profiling browsing behaviors.

Different from their method, we propose a clustering based method to find
abnormal page requests. Considering the cache mechanism which is sup-
ported by most browsers, there may be some absences of associated objects
in a page request. Therefore we represent a request page by an object vector
which indicates the absence of associated objects. Formally, suppose there
are Nk page requests for page k. Each page request contains a series of
associated objects with arbitrary orders. We represent page k by a binary
object vector M{0,1}

k = {w1, w2, . . . , wn}, where the terms in the vector are
the objects following the page and wi is the corresponding weight of the
ith objects, wi = 1 if the object i is requested following the request of the
main page, otherwise wi = 0. All the object vectors corresponding to the
requests of page k are stacked to form the feature matrix M. Since the
object matrix is highly redundant, we adopt the principal component analysis
(PCA) to transform the samples to new coordinates consisting of principal
component. To do PCA analysis, we first calculate the mean vector µ0 and
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the covariance matrix C, where µ0 = (∑N
i=1 wi)/n and C = XXT/n, where

X = (w1 − µ0, . . . , wn − µ0). Let uj denote the jth most significant eigenvec-
tor and U the significant principal components. We form the matrix T by
normalizing the rows of U, that is to set tij = uij/f

√∑
k u

2
kj. Each row of T

corresponds to a point in the high dimensional space. We then employ the
DBSCAN clustering method [7] to classify the points into different categories,
and regard the outliers of these points as anomalies.

3.3 Experiments

3.3.1 Dataset

Table 3.1: Summary of the dataset

Date Requests Users Max. RR1 Min. RR1 Suspected IPs

2015/12/29 30,933,159 30,242 283 20 845
2015/12/30 32,202,986 32,886 290 18 1023
2015/12/31 30,850,731 31,063 341 19 1139

Total 93,986,876 74,773 - - 1270

RR1 is the abbreviate of request rate with a time unit of second.

In stead of using simulated attacking data, we conduct experiments to evalu-
ate our detection method based on real attacking data recorded by a targeted
commercial web server. The dataset contains three days (Dec. 29-31, 2015)
access logs. Table 3.1 lists a brief summary of the dataset. We can see that
the victim experienced attacks with similar strength in the observed three
days. The total number of unique users is much less than the sum of the
number of unique users observed in each day. This indicates that a large
number of compromised hosts persistently attacked the victim in all three
days. The request rate is defined as the number of requests received by the
server in a time unit. The maximum and minimum of the request rates are
also listed in the table. The server suffered the strongest attack on December
31, which has a maximum request rate as high as 341 requests per seconds.
Different from all previous reported DDoS attacks, the attack only persisted
for one minutes. However, such attack comes out repeatedly (see Fig. 3.6).
We also list the number of suspected IPs blocked by the operator due to the
high consumption of resources such as bandwidth, CPUs, and memory.
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3.3.2 Performance evaluation

Since the dataset contains both normal and attack requests, it is hard to
differentiate them for training the model, and thus we select the guaranteed
normalized data to prevent deviation. Specifically, we obtain the guaranteed
normal data using the following criterion: users who browse the website
only in one session and the session length is between 2 to 100; Moreover, the
repetition of a single page should not exceed 2. This results in a moderate
dataset with 15,730 users and 10,089,497 requests. As expected, the access
patterns are closely related to the web structure, which exhibits hierarchical
clusters. We apply hierarchical cluster methods on the transition matrix of
the trained access patterns, and the results are shown in Fig. 3.3. We only
present the results of the top 80 most accessed pages, which dominate 90% of
the total requests. The website has a total of 8464 pages and 14036 objects.
Then, we use the transition matrix to calculate the likelihood of all sessions,
and the results versus the session length are shown in Fig. 3.4. It shows that
there are some outliers for different session lengths, demonstrating that our
methods can distinguish the abnormal sessions from the normal ones.

Fig. 3.3: Hierarchical structure of the website
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Fig. 3.4: Likelihoods of sessions versus session length

Fig. 3.5: Anomaly detection at the page level

For each request of the main page, we construct an object vector according
to the following objects. For presentation convenience, the object vectors
are decomposed into 2D points by principal component analysis. Fig. 3.5
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Table 3.2: Detection results

Detection methods TP rate (%) FP rate (%)

Likelihood method 99.32 2.69
Clustering method 97.16 2.52
Combined method 99.81 2.71

HsMM 95.13 1.92
SOI method 93.7 3.86

presents the detection results of four selected pages. It is shown that Page
1 and 2 are under heavy attacks. Compared to Page 1 and 2, Page 3 and 4
have more diverse access patterns. This indicates that Page 3 and 4 contains
much more cache-able content. These results are consisted with the insight
analysis of the pages.

We use the true positive rate(TP) and false positive rate(FP) to evaluate the
detection method. Table 3.2 shows that TP rate has the highest rate at the
session level, indicating it can detect most of the suspected IPs blocked by
the operator of the server. However, this method also results in a higher
false-positive rate compared to the clustering method. We also combined
the likelihood and the clustering method to trigger an alarm, which could
achieve a higher accuracy on the cost of a high FP rate. We also compared
our method with the state-of-art methods. It shows that the hidden semi-
Markov model (HsMM) detection method [90] has both lower TP and FP
rates. The HsMM uses a hidden state to estimate the browsing page while we
directly obtain the browsing page by the file type of requested content. The
sequence-order-independent (SOI) method [40] achieves a relatively lower
detect accuracy but a higher FP rate because the SOI method is unable to
detect the anomaly at the session-level.

Following [75], we conducted statistical experiments to further evaluate
the effectiveness of our method further. Let nt be the number of requests
received by the server in a time unit, which is plotted in Fig. 3.6. We observed
that the server suffered periodic pulsing DDoS attacks, which result in the
comb-shape. Fig. 3.7 shows the request rate after filtering out the attack
traffic based on the detection results of the combined method. We can see
that the detection method is effective in reducing the burden of the server. In
addition, it is noticeable that the request rate varies periodically, suggesting
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Fig. 3.6: Original request rate

that detection methods should avoid the impacts of fluctuations raised by
such periodicity.

Fig. 3.7: The request rate after the attack traffic is removed.

It has been reported that the access frequency of pages follows the Zipf
distribution. We compute some statistics of the collected data, and the
results are shown in Fig. 3.8. The original data violates the Zipf distribution
at both the head and tail of the distribution. The filtered data obeys the
Zipf distribution at the tail after we filter the attacking request. Hence, the
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violation at the tail may be caused by attacking requests, and the violation at
the head may be due to the requests to some extremely popular web pages.

Fig. 3.8: Page access frequency distributions

Fig. 3.9: Time interval distributions

Another common characteristic of web browsing behavior is that the browsing
time for each page follows Pareto distribution. Fig. 3.9 shows the distribution
of the inter-request times between two consecutive accessed pages. We can
see that there are some fluctuations for the unfiltered data, indicating that the
server suffered DDoS attacks by a large volume of requests with common time
intervals. However, the inter-access time of the filtered data indeed follows
Pareto distribution, demonstrating the effectiveness of our methods.
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Fig. 3.10: Session length distributions

The session length, defined as the number of requested pages in the session,
affects the likelihood of the session. Fig. 3.10 plots the distribution of session
length. It is shown that the unfiltered data contains very long sessions, which
are caused by periodically repeated attacks. The unfiltered data also contains
some unexpected high probability session lengths around 40, indicating that
the attackers may also use sophisticated access patterns in the attack besides
repeating the requests. The session length of the filtered data follows Pareto
distribution, which is consistent with the results in [31].

3.4 Summary

We propose a new mechanism to detect app-layer DDoS attacks by modeling
users’ browsing behaviors according to the access log at the sever end and to
differentiate between app-layer attacks and benign visits at session level and
page level. The experimental results on the real dataset show the effectiveness
of our approach. The content of this chapter is published in [56].
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4A Sketch-Based Defense Against
Application Layer DDoS Attacks

This chapter introduces our sketch-based system to detect and mitigate app-
layer DDoS attacks. We first introduce the background knowledge of sketches
and bloom filters and then describe the architecture and major components.
After that, we present the implementation and the evaluation result.

4.1 Sketches and bloom filters

A sketch is a type of data structure composed of H hash tables of size K.
It is used to efficiently estimate the original signals by aggregating high
dimensional data streams into fewer dimensions. Fig. 4.1 shows a diagram
of the sketch data structure.

Fig. 4.1: A diagram of the sketch data structure

The incoming data stream is composed of pairwise items encompassing a
key and an associated value. Each row of the sketch is associated with an
independent hash function to index the incoming keys. When a pairwise
item (key, value) arrives, the data in the bucket corresponding to the key is
updated by the value.
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A sketch is an approximation tool to efficiently estimate a signal by sacrificing
tolerable accuracy. Due to the randomization of hash functions, the distribu-
tion of values in each hash table is relatively stable for normal network traffic.
Therefore, sketches are capable of detecting significant changes in massive
data streams, such as high-volume network traffic [36]. We adopt the sketch
techniques for anomaly detection and malicious hosts identification.

A Bloom filter is a space-efficient data structure for set membership queries.
It employs an array of m bits to represent a set. Fig. 4.2 illustrates a diagram
of the Bloom filter data structure. A Bloom filter employs k independent hash
functions h1, h2, · · · , hk with a range {1, 2, · · · ,m} to represent a set S =
{e1, e2, · · · , en}. For each element e ∈ S, the bit at the location indicated
by hi(e), 1 ≤ i ≤ k are set to 1. A bit can be set to 1 for multiple times. To
query if an element e is in the set S, the bits at locations indicated by hi(e),
1 ≤ i ≤ k are checked. The element is supposed to be in the set with high
probability if all checked bits equal 1 and not if otherwise.

Fig. 4.2: A diagram of the sketch data structure

A Bloom filter may also lead to a negligible false positive rate. A false positive
means that an element being checked is mistakenly determined by the above
criteria whereas it is actually not in the set. It is caused by conflicts of keys
that occasionally share common hashing results for all hash functions. The
false positive rate can be decreased by carefully adjusting the number of hash
functions based on the cardinal of the set and the size of the bit-array [8]. We
employ Bloom filters to implement the black and white lists that are utilized
to filter requests from malicious hosts.

The main difference between sketches and Bloom filters is their data repre-
sentations, which are determined by their different applications. Sketches are
used to store a summary of large-scale data streams in situations where it is
costly to store the whole data. The storage unit of a sketch is determined by
the types of values to be stored (e.g. an unsigned integer for frequency count).
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By contrast, Bloom filters are used for efficient set membership queries. The
storage unit is one bit and multiple true-value bits combined together indicate
the existence of an element in the set with high probability.

The common of the two data structures lies in the usage of hash functions.
The principle behind both data structures is the power of randomness that
stems from hashing algorithms. Specifically, we employ sketches to detect
the occurrences of attacks and Bloom filters to serve as black and white lists.
Both of them have IP addresses as input keys.

4.2 System overview

We propose SkyShield, an effective defense system to quickly detect and
mitigate application layer DDoS attacks. Fig. 4.3 depicts the process of
SkyShield. It is deployed behind a network firewall that will filter out
malformed HTTP requests, and the process consists of two phases, namely,
mitigation and detection.

Fig. 4.3: The process of SkyShield

In the mitigation phase, SkyShield employs two Bloom filters, including a
whitelist (B1) and a blacklist (B2) to filter incoming requests. The whitelist
(resp. blacklist) contains the legitimate (resp. malicious) hosts that are
confirmed by the CAPTCHA techniques. Normal requests verified by the
whitelist are passed to the detection phase directly whereas malicious requests
verified by the blacklist are filtered and logged. The remaining requests are
inspected based on the abnormal sketch S3. The rationality behind this
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scheme is that malicious hosts need to send numerous requests persistently
to launch effective app-layer DDoS attacks. Therefore, SkyShield can identify
malicious hosts without reversely calculating their IP addresses. Detailed
mitigation method is described in chapter 4.3.

For a suspicious request, SkyShield first examines whether its origin is in the
whitelist. If not, the host will be checked by the CAPTCHA module. If the
host passes the CAPTCHA test, it will be added to the whitelist. Otherwise, it
will be added to the blacklist. Since only suspicious hosts are tested by the
CAPTCHA, only parts of legitimate users might be affected. Additionally, to
prevent blacklisted users from being blocked forever, both the blacklist and
whitelist are emptied periodically. Initially, B1, B2 and S3 are set to be empty
and no hosts are suspected and filtered.

In the detection phase, SkyShield exploits the divergence between two
sketches S1 and S2 as a signal to detect anomalies that are caused by nu-
merous requests originated from malicious hosts. SkyShield conducts the
detection cyclically with a fixed time interval ∆T , which is an adjustable
parameter. By adjusting ∆T , the system can balance the trade-off between
the attack mitigation speed and the detection accuracy. In each detection
cycle, all incoming requests are aggregated into S1, with the source IP ad-
dresses as input keys. The backup sketch S2 stores the results of S1 in the last
normal detection cycle. At the end of each detection cycle, the divergence
d(S1, S2) between S1 and S2 is calculated. If d(S1, S2) exceeds a threshold
θt, the system is supposed to suffer an attack and an alarm is raised. If an
anomaly is detected, S2 will not be updated anymore. This guarantees that
the current sketch is always compared with a normal pattern. Alternatively,
S3 will be updated by S1 and the abnormal buckets are calculated. When the
alarm is lifted, S2 will be updated by S1 again at the end of each detection
cycle and S3 is emptied. The detection method is detailed in chapter 4.4.

4.3 Attack mitigation

Locating Abnormal Buckets
When an anomaly is detected, SkyShield needs to locate the abnormal buckets
that cause the sharp change in the divergence between S1 and S2. Since
incoming requests are mapped to every row of a sketch, the abnormal buckets
for every row of the sketch are calculated.
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SkyShield classifies the top g buckets with the largest request volumes as
abnormal ones. Since attackers usually employ more malicious hosts (or bots)
to generate a larger number of requests in a short time, we define the value
of g as a function of the volume of the total requests. Denote the i-th row
of S3 as a vector 〈ni1, ni2, ..., niK〉, where nij is the value of the j-th bucket
in the i-th row. Let Ni = ∑K

j=1 nij represent the volume of total requests in a
detection cycle. Then the value of g is defined as:

g = b(lnNi)rc, (4.1)

where r is an adjustable parameter. When g is calculated, the indexes of
abnormal buckets in the i-th row are obtained as:

Ai = {j|nij ≥ n′ig}, (4.2)

where n′ig is the g-th largest value in vi . The abnormal buckets in other rows
are obtained similarly.

Identifying Malicious Hosts
SkyShield further employs these obtained abnormal buckets to identify ma-
licious hosts. We denote the abnormal buckets set for row i as Ai and the
bucket index of a specific IP address in row i as hi(IP ), respectively. If
hi(IP ) ∈ Ai is true for all i = 1, 2, ..., H, then we label the IP address as
suspicious and the host will be verified by the CAPTCHA module.

Fig.4.4 demonstrates the flow chart of the identification procedure. The
mitigation module first checks whether the host is in the whitelist or blacklist.
If not, check the host against S3. Then test the suspicious host through
graphic puzzles. If the host passes the test, it is added to the whitelist and
the associated requests are passed to the detection phase. Otherwise, the
corresponding host will be added to the blacklist and the associated requests
are filtered and logged. The employment of the whitelist guarantees that
legitimate users will not be checked by the CAPTCHA module repeatedly.
Since the compromised hosts may become normal and the legitimate hosts
may be controlled by attackers after a period of time, we clean the blacklist
and the whitelist periodically with a longer interval than the detection cycle.
In this report we set 100 ∆T (i.e., 2000s) as the default clean period. The
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Fig. 4.4: The flow chart of the identification procedure

reason for selecting this value is that 80% of the DDoS attack intervals last
less than 1081 seconds [83]. It is worth noting that the cleaning of the
blacklist and whitelist will not affect the detection accuracy because the clean
period is much longer than the detection cycle. Even if an attack lasts longer
than the clean period, SkyShield will recapture the attacking hosts, just like
at the start of a new attack. We can also choose a much longer clean period
(e.g., a day or even a week) to block malicious hosts longer period of time.

The rationale behind the mitigation scheme is that malicious hosts detected
in the current detection cycle are likely to appear in the next detection cycle.
Attackers can evade the system by violating this assumption. However, such
an attempt will greatly increase the cost of an effective attack.

4.4 Anomaly detection

Divergence of Sketches
We employ the divergence between S1 and S2 as a signal to detect the oc-
currence of an attack. This metric is selected according to the observation
that the distribution of bucket values in a sketch for normal network traffic is
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stable. It is worth noting that this stability does not contradict the dynamic
meaning of the network describing the uncertainty of a single request (in-
cluding source IP address, request time, body size, etc.). Although the total
network traffic of all normal users is usually stable in a short period of time,
the request rate of each user may vary greatly. Since the sketch maps the
request rate of a single user into a single bucket, network dynamics will affect
the measure of divergence between the sketches.

To mitigate the impact of network dynamics, we propose a novel calcula-
tion of sketch divergences. We denote the i-th row of a sketch as a vector
〈ni1, ni2, ..., niK〉 , where nij is the value of the j-th bucket in the i-th row
of a sketch. Let Ni = ∑K

j=1 nij represent the volume of all requests. We
define a probability vector as Pi = 〈pi1, pi2, ..., piK〉 for the corresponding
row, where pij = nij/Ni measures the probability that an incoming request
is mapped into the j-th bucket by the i-th hash function. The divergence
between two probability vectors could be measured by their Hellinger Dis-
tance (HD). Given two discrete probability vectors Pi = 〈pi1, pi2, ..., piK〉 and
Qi = 〈qi1, qi2, ..., qiK〉 , the Hellinger distance is defined as

d(Pi, Qi) = 1√
2

√√√√√ K∑
j=1

(
√
pij −

√
qij)2, (4.3)

However, it is not appropriate to use such a distance to measure the diver-
gence between the two sketches, because the uncertainty of the source IP
address in the dynamic network traffic makes the probability distribution
in each row of the sketch change drastically, therefore, the unpredictable
divergences Will cause a high false positive rate. False alarm rate. What’s
worse, since the last normal sketch is stored as the baseline of the normality
when an anomaly is detected, using the original Helinger distance between
the two probability vectors may result in continuous false alarms even after
the actual attack stops.

To solve this problem, we propose computing the Hellinger distance of
two sorted probability vectors instead of the original vectors. Specifically,
we first sort the probability vectors in a descending order, and then we
have P ′i = 〈pi(1), pi(2), ..., pi(K)〉 and Q′i = 〈qi(1), qi(2), ..., qi(K)〉, where
pi(1) ≥ pi(2) ≥ · · · ≥ pi(K) and qi(1) ≥ qi(2) ≥ · · · ≥ qi(K)〉. The improved
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divergence between Pi and Qi is calculated by the Hellinger distance between
P ′i and Q′i :

d′(Pi, Qi) = d(P ′i, Q′i) = 1√
2

√√√√√ K∑
j=1

(
√
pi(j)−

√
qi(j))2, (4.4)

According to Equation (4.4), we can calculate the divergence between the
corresponding hash tables of two sketches.

Fig. 4.5: Different divergences of sketches versus the time.

Fig.4.5 shows the comparison between the original and improved Hellinger
distance of the hash table of one of our datasets. We can see that the improved
divergence is much lower and more stable than the original divergence. This
benefits from the randomness of the hash algorithm, the sorting probability
distribution of the hash table is more predictable for normal network traffic.

Dynamic Threshold Estimation
Since network traffic is dynamic in nature and fluctuates continuously over
long time scales, using a constant threshold for detection will result in many
false positives. Hence, we employ the Exponential Weighted Moving Average
(EWMA) method [58] to obtain the adaptive threshold. However, if we use
the average divergence of the hash tables for detection in the two sketches, a
large deviation of any single hash table pair may result in a large deviation
of the average deviation, resulting in a higher false alarm rate. In fact, we

30 Chapter 4 A Sketch-Based Defense Against Application Layer DDoS Attacks



tend to be conservative. Therefore, we propose a Multiple Independent
Exponential Weighted Moving Average(MIEWMA) method to compensate the
fluctuations caused by individual hash tables. Specifically, denote d(i)

t as the
calculated divergence between the i-th hash tables in S1 and S2 at time t, d̂(i)

t

as the estimated divergence for time t according to historical observations,
and d̂(i)

t+1 as the estimated divergence for time t + 1. Then we have

d̂
(i)
t+1 = αd

(i)
t + (1− α)d̂(i)

t , (4.5)

et = |d̂(i)
t − d

(i)
t |, (4.6)

σ2
t+1 = βe2

t + (1− β)σ2
t , (4.7)

θ
(i)
t+1) = d̂

(i)
t+1 + λσt+1, (4.8)

where θ(i)
(t+1) is the calculated threshold at time t + 1 for the i-th hash table,

α, β, and λ are adjustable parameters. Since the app-layer DDoS attacks will
overwhelm the victim server in seconds with numerous malicious requests, it
will greatly disturb the probability vectors of S1. Therefore, if d(i)

t+1 > θ
(i)
t+1 for

all i = 1, 2, . . . , H, then an alarm is raised. Fig.4.5 also shows the thresholds
of the hash tables used for different calculations of the hash divergence. We
can see that the new definition of Hellinger distance is more stable than the
original threshold.

When an alarm is issued, SkyShield will perform two actions to protect the
normal baseline. On the one hand, S2 will not be updated by S1, so the
sketch of the next detection cycle will always be compared with the normal
mode. On the other hand, the threshold will not be updated until the alarm
is lifted. This protects the threshold from attacks.
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4.5 Implementation

Architecture
Fig.4.6 show the implementation architecture of SkyShield. We adopt parallel
techniques to hash incoming requests from hosts with multiple cores to
improve efficiency. When the detection module finds an abnormality, it
passes the abnormal sketch to the mitigation module. After the mitigation
module receives the abnormal sketch, it will identify malicious hosts and
filter out all requests from these hosts.

Fig. 4.6: The implementation architecture of SkyShield

Parameter Configurations
We use the modular hash functions which are randomly selected from a
universal family H = {ha,b}, where ha,b is defined as

ha,b(x) = (ax+ b) mod p, (4.9)

where a, b are randomly selected positive integers, and p is the largest prime
less than K and m for the sketches and Bloom filters, respectively. For
example, for sketches with K = 212, we set p = 4093. For Bloom filters with
m = 222, we set p = 4, 194, 301. This hashing method generates uniformly
distributed values of input keys, and thus yields negligible impact on the
accuracy of the system.

Selection of Hash Functions
Since the effectiveness of SkyShield depends on the proper configurations of
the parameters, we provide guidelines for determining the proper configura-
tion of the parameters.

1) Sketch’s Parameters: A sketch has two parameters, namely the number of
hash functions H and the hash table size K. We configure H and K to satisfy
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two constraints. The first constraint stems from the requirement of a low
FPR. Let the total number of IP addresses be N and the numbers of abnormal
buckets detected in each row of S3 be |A1|, |A2|, . . . , |AH|, respectively.

Then the FPR for completely random hashing is N
∏i=H

i=1 |Ai|
KH approximately,

where |Ai| � K is the cardinal of set Ai . Since we take the top g buckets
with the largest number of requests as abnormal ones in each hash table, the
ratio between the number of abnormal buckets for each row and the size of
hash tables K is fixed Denoting the fixed ratio by τ , we can obtain the false
positive rate as NτH , where 0 < τ � 1. For a given constant false positive
rate bound ε ≥ NτH , we have

H ≥ lnN − ln ε
− ln τ , (4.10)

For example, if N = 232, ε = 10−5, and τ = 0.01, we have H ≥ 7.32, and thus
H = 8 is a suitable choice for the above condition. The second constraint
is to choose a proper value of K such that the size of the sketch H x K

is small enough to fit the sketch into fast memory in order for updates to
be performed at high speed. In this report we set K = 212 following [73].
With an unsigned integer as a bucket, each sketch consumes 64KB memory.
2) Bloom Filter’s Parameters: A Bloom filter has two parameters, namely
the number of hash functions k and the hash table size m. Given a set S
containing n elements and a Bloom filter with parameters k and m, after all
elements of S are hashed into the Bloom filter, the probability that a specific
bit is still 0 is

p = (1− 1
m

)kn ≈ e−kn/m, (4.11)

The probability of a false positive is

f = (1− P )k = (1− e−kn/m)k, (4.12)

By minimizing f as a function of k, we obtain
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k = m

n
ln 2, (4.13)

Then, the false positive rate f = (1/2)k = (0.6185)m/n. Above analyses show
that the false positive can be significantly reduced by a sufficiently large
m, which consumes more memory storage. Given a positive rate ε > f , we
have

f = (1/2)k = (1/2)m
n

ln 2 ≤ ε, (4.14)

Solving the above inequality we get

m ≥ n log2(1/ε)
ln 2 n log2 e log2(1/ε), (4.15)

According to the fact that most botnets have tens of thousands of compro-
mised hosts, we assume that n = 105. Given a false positive rate ε = 10−5, we
have that m ≥ n log2 e log2(1/ε) ≈ 2396264.6. Therefore, m = 222 is a proper
choice. Since k = m

n
ln 2 ≈ 14.5, we set k = 15. The parameters are also

applicable to the whitelist Bloom filter. Each Bloom filter consumes about
16KB memory.

In practice, the intrinsic FPR of sketches and Bloom filters are relatively
small compared to the FPR caused by the detection mechanism of the system
itself. For instance, the intrinsic FPR of a sketch with parameters H = 8 and
K = 212 is expected to be two or three orders of magnitude smaller than that
caused by the detection system (10−5 vs. 10−2).

3) MIEWMA’s Parameters: Each EWMA method has three parameters,
namely the damping coefficient α, the variance damping coefficient β, and
the threshold damping coefficient λ. The parameter α determines the mem-
ory of the EWMA model (i.e., the weight of “elder” data in the calculation of
EWMA). A larger α implies that the most recent data is more important in
the estimate of next values. The value of α is suggested between 0.2 and 0.3
[30]. The parameter β is used to smooth the estimates of the variances and
the value is suggested to be smaller than 0.5 [30].
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Different from the parameters α and β, the parameter λ directly influences
the obtained thresholds. Therefore, the value of λ is more important than
that of α and β. It is suggested that the value of λ is either set to 3 or 1.96 in
order to obtain the X-sigma control limits. We evaluate the impact of λ in a
much wider range as we prefer a lower FPR.

4) Other Parameters: There are two other important parameters, namely the
detection time interval ∆T and the parameter r that determines the number
of abnormal buckets g in a hash table. The parameter ∆T determines the
response time of the system. Small ∆T empowers fast detection of attacks on
the cost of frequent divergence calculations between S1 and S2. However, this
may result in high computation consumption. In addition, short detection
intervals may also result in insufficient statistics of network traffic and thus
increases the false alarm rate.

We employ the parameter r and use Equation (4.1) to dynamically adjust the
number of abnormal buckets in a hash table. The parameter r determines
the number of abnormal buckets to be selected when an anomaly is detected.
It influences the true positive rate (TPR), false positive rate (FPR), and the
detection accuracy in the following detection cycles. Since the value of g is
much smaller than the hash table size K, the impact of the parameter r is
similar to that of g. To lower the FPR, we can set the number of abnormal
buckets g to be sufficiently small by decreasing the value of r . However, it
may increase the number of false negatives. When we increase the value of g,
the probability of falsely discriminating a legitimate host increases. Moreover,
when the value of K and the detection interval ∆T are fixed, a small g will
lead to a long mitigation phase as we only filter out a limited number of
malicious hosts in a single detection cycle. We empirically determine the
values of ∆T and r based on the collected datasets.

Table 4.1 summarizes the parameters of SkyShield and their default values,
which are optimized by empirical experiments.
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Table 4.1: Default Value of the parameters in SkyShield

Parameters Description Default

Sketch H Number of hash functions 8
K Size of hash tables 214

Bloom filter k Number of hash functions 15
m Size of Bloom filters 222

EWMA α Damping coefficient 0.3
β Variance Damping coefficient 0.4
λ Threshold damping coefficient 0.6

Others ∆T Detection time intervals 20s
τ An intermediate parameter 2.0

4.6 Experiments

In this section, we first describe the collection of datasets, and then report
the extensive evaluation results of SkyShield using the real datasets.

Datasets
We collect the datasets from a large-scale web cluster that manages the traffic
of about 200 customer websites. Fig.4.7 illustrates the architecture of the
cluster that employs NGINX servers as reverse proxies to serve the customer
websites.

Fig. 4.7: The architecture of the reverse proxy cluster

The load of reserve proxies is scheduled by IP-hash based balancers, and thus
the deterministic balancers will handle requests from a specific source IP
address. The balancers record all processed requests in the access log. The
cluster also includes a CAPTCHA module to test whether an incoming request
is malicious. In order to reduce the impact on QoE, the CAPTCHA module
is configured to work in sampling mode, and the incoming request is tested
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with a probability of 0.01. Requests that fail the test will be recorded in the
mitigation log. Since attacking hosts usually send a large number of requests,
the possibility of CAPTCHA module testing malicious hosts is very high. For
instance, the probability that the host has sent more than 200 requests to
be recorded in the mitigation log is greater than 1 − (1 − 0.01)200 = 0.886.
Therefore, most of the attacking hosts are contained in the mitigation logs.
We extracted the IP addresses in the mitigation logs and regarded it as the
basic fact of the attacking host.

We obtained three datasets from the cluster, each of which contains access
logs for three days, and reported an attack in the middle day based on
the customer’s report. We also extracted mitigation logs during the corre-
sponding period of these datasets. In the following experiments, we refer to
dataset date from 2015/08/14 to 16 as Dataset1508, the date dataset from
2016/03/16 to 18 as Dataset1603, and the date dataset from 2016/04/13
to 15 Called Dataset1604, respectively. Table 4.2 briefly describes these
datasets. The second column lists the number of requests in each dataset.
By combining the requests in the normal access log with the requests in
the mitigation log, the total number of requests can be obtained. The huge
difference in the total number of requests is caused by seasonal tides and
different attack traffic. The 3rd and 4th columns respectively list the number
of different hosts and different malicious hosts (mal-hosts).

Table 4.2: Summary of the datasets

Dataset # of requests # of hosts # of mal-hosts

Dataset1508 84, 992, 781 329, 827 53, 387
Dataset1603 131, 778, 807 408, 119 92, 446
Dataset1604 56, 725, 591 297, 780 43, 274

Parameter Evaluation
We employ the true positive rate (TPR), false positive rate (FPR), and the
ratio of filtered malicious requests to the total number of attack requests
(Fraction) as the criteria for evaluating the impact of parameters on SkyShield
performance. The True Positive Rate (TPR) measures the proportion of
attacking hosts that are correctly identified as malicious by SkyShield. The
false positive rate (FPR) measures the proportion of benign hosts that are
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incorrectly identified as malicious by SkyShield. By adjusting the value of a
parameter within an appropriate range, while keeping other parameters as
default values, the influence of the parameter can be evaluated.

1) Impact of MIEWMA’s Parameters: Fig.4.8 shows the α evaluation results
based on three data sets. Each subfigure contains three lines, where red
represents FPR, black represents TPR, and blue represents the fraction of
malicious requests that have been filtered. The results show that the impact
of the parameter α on the detection result is negligible, because the attack
usually causes the divergence between the normal sketch and the abnormal
sketch to change sharply and hence the detection results are not sensitive to
the weights of history data in the calculation of the EWMA statistic.

Fig. 4.8: Impact of parameter α. (a) Dataset1508. (b) Dataset1603. (c)
Dataset1604

The evaluation results of the parameter β are shown in Fig.4.9. According to
the evaluation results, we set α to 0.3 and β to 0.4 as their defaults.

Fig. 4.9: Impact of parameter β . (a) Dataset1508. (b) Dataset1603. (c)
Dataset1604

Fig.4.10 demonstrates the results of λ’s evaluation. We can see that the
detection results are very sensitive to changes in λ. Both TPR and FPR
decrease with the increase of λ. This is due to the fact that a larger λ will
result in a higher threshold and therefore a higher tolerance for divergence
changes. Subsequently, the system became more conservative to issue alarms
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and could allow more real attacking hosts to pass, resulting in a decrease
in TPR. Meanwhile, once an alert is issued, it will also give green light to
more benign hosts that may be mistaken for malicious. This explains the
downward trend of FPR. In practice, operators usually want a lower FPR to
maintain a higher QoE, provided that the attack does not significantly affect
the availability of the service. Therefore, we select λ = 6.0 as the default
value in SkyShield.

Fig. 4.10: Impact of parameter λ. (a) Dataset1508. (b) Dataset1603. (c)
Dataset1604

2) The impact of ∆T and r : Fig.4.11 shows the impact of ∆T . The results
show that the FPR of all datasets decreases monotonously with the increase
of T. As ∆T increases, TPR first increases monotonically when ∆T ≤ 20s,
and then drops sharply when ∆T > 20s. However, the fraction of filtered
malware is always significant and robust to changes in ∆T . Considering all
these factors, we select ∆T = 20s as the default detection interval.

Fig. 4.11: Impact of parameter ∆T . (a) Dataset1508. (b) Dataset1603. (c)
Dataset1604

Fig.4.12 depicts the evaluation results of r. The results demonstrates that
both TPR and FPR increase with the increase of r. As r increases, more
buckets will be classified as abnormal. Thus, more malicious hosts and
legitimate hosts are filtered out, resulting in an increase in TPR and FPR. As
analyzed above, we would like to find a balance between a higher TRP and
a lower FPR. According to the evaluation results, we select r = 2.0 as the
default value in SkyShield.
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Fig. 4.12: Impact of parameter r. (a) Dataset1508. (b) Dataset1603. (c)
Dataset1604

It is worth noting that the fractions of filtered malicious requests are always
above a significant percentage in all experiments. Therefore, SkyShield is
effective in preventing the protected system from being overwhelmed by
numerous malicious requests.

Evaluation of the effectiveness of mitigating various DDoS attacks
Since SkyShield aims to reduce attack traffic as soon as possible when there
is an app-layer DDoS attack, we have evaluated its effectiveness in filtering
malicious requests. We simulate the real network environment by replaying
the original request flow. The request rate is defined as the number of
requests in the detection cycle. Fig. 4.13 to 4.15 present the relationship
between request rates and time for the three datasets. In each subfigure, the
blue line represents the original request rate, and the red line represents the
request rate filtered by SkyShield.

Fig.4.13 (a) shows that the cluster suffered a flood attack at 2015-08-15
04:21, and was quickly overwhelmed by a large number of requests. Fig.4.13
(b) illustrates the detailed information during the attack from 04:00 to 06:00
on 2015-08-15. We can see that the cluster has suffered five attacks during
this period. The peak request rate of attack traffic was around 290,000
request per second. For all attack waves, SkyShield can reduce the over-
whelming request rate to a reasonable level in about two or three detection
cycles (i.e., less than 1 minute). Fig.4.13 (c) display the detailed information
at the beginning of Dataset1508. The filtered curve will follow the original
curve for a long time, which indicates that the false alarm rate of SkyShield
is low.

Fig.4.14 (a) illustrates an overview of the request rate of Dataset1603. The
peak request rate of attack traffic was around 18,000 request per second.
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Fig. 4.13: Experimenal results of Dataset1508. (a) Request rate overview. (b) Detail
of the attack. (c) Detail of the start

Unlike the short-term overwhelming attack shown against Dataset1508,
the attack in Dataset1603 persisted much longer. In addition, the total
request volume is relatively small and volatile, which shows that SkyShield
faces challenges. The results showed that the system suffered a slow attack
in three days. However, SkyShield can still effectively reduce the request
rate to a reasonable level. Fig.4.14 (b) display the details of the attack on
Dataset1603.

Fig.4.14 (c) shows the beginning of the dataset 1603. As shown in the
black frame, we can see that the rate of attack requests increases very slowly.
However, SkyShield will still detect anomalies, thus mitigating malicious
requests. This is because SkyShield can detect changes in the distribution
of request numbers in the sketch, so that it can identify malicious hosts that
have caused an abnormal increase in the request rate.

Fig. 4.14: Experimenal results of Dataset1603. (a) Request rate overview. (b) Detail
of the attack. (c) Detail of the start

Fig.4.15 (a) shows the request rate of Dataset1604. The peak request rate
of attack traffic was around 23,000 request per second. It can be seen that
the system encountered a low request rate attack within a 30 minute interval
of three days. In-depth knowledge of the original access log indicated that
the attack was targeted at one of the web servers hosted in the cluster.
Presumably, this attack was caused by slow rate crawlers that visited the site
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at regular intervals. Fig.4.15 (b) is the detail of the attack on Dataset1604.
There is an obvious spike on the filtered request rate curve, and within
only one detection cycle, the curve returns to its normal level. Fig.4.15
(c) illustrates the start of details of Dataset1604. The results verify the
effectiveness of our system in mitigating such suspense traffic. However,
these crawlers may be benign users, such as search engines or even partners.
The deployment of SkyShield forces these users to change their access policies
to avoid being filtered.

Fig. 4.15: Experimenal results of Dataset1604. (a) Request rate overview. (b) Detail
of the attack. (c) Detail of the start

Fig.4.16 depicts the relationship between the number of hosts in the blacklist
and time. In this experiment, we block each detected malicious host with
100∆T (i.e., 2000s) instead of clearing the blacklist, which may provide us
an insight into how bots cooperate with each other to launch an attack. The
results showed that during the attack, the number of hosts blacklisted by
Dataset 1603 was much smaller than the number of hosts blacklisted by
Dataset 1508. Compared with other datasets, Dataset1604 has the least
number of blacklisted hosts and fluctuates greatly. This is because most
blacklisted hosts are crawlers. These crawlers simultaneously send a large
number of requests to specific Web servers at regular intervals of 30 minutes.
Since the blacklist is periodically cleared, fluctuations are caused by the
release and recapture of these crawlers. We also conducted experiments
to evaluate the number of blocked hosts with another cleanup period of
150∆T (i.e., 3000s). We obtain very similar results but with higher number
of blocked hosts. In addition, the scores of TPR, FPR, and filtered malicious
requests are also close to the results shown in Table 4.3, indicating that the
choice of clearing time has a limited impact on the performance of SkyShield.
We ignored these results because they are very similar to the results shown
in Fig.4.16 and Table 4.3.
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Fig. 4.16: The number of hosts in the blacklist versus the time. (a) Dataset1508.
(b) Dataset1603. (c) Dataset1604

Table 4.3: PERFORMANCE OF SKYSHIELD WITH DEFAULT PARAMETERS

Dataset TPR% FPR(%) Fraction (%)

Dataset1508 76.4 3.45 99.1
Dataset1603 38.9 1.77 94.0
Dataset1604 65.6 3.67 99.9

The above experimental results validate that SkyShield can quickly detect
and mitigate various types of app-layer DDoS attacks. Table 4.3 lists the
percentages of TPR, FPR, and filtered malicious requests for different datasets
with default optimal parameters. It shows that the TPR of Dataset1603 is
much lower than the TPR of the other two datasets. This is because compared
with the other two data sets, the attack duration in Dataset1603 is longer
and the attack intensity is weaker. This results in a more even distribution
of requests in the detection cycle than other requests. In addition, the
number of abnormal buckets is a function of the number of requests. Hence,
fewer buckets are discriminated suspicious and fewer hosts are blocked for
Dataset1604 and Dataset1508 since their request volumes are smaller than
that of Dataset1603. Overall, the fraction of filtered malicious requests for
Dataset1603 is still above 94%.

We compared the performance of SkyShield with the original HD distance and
the improved one. Fig.4.17 demonstrates the obtained results. Fig.4.17(a)
and Fig.4.17(c) show that with the new HD distance, both TPR and fractions
are improved. Although the new HD distance may cause an increase in
FPR, as shown in Fig.4.17(b), this increase is negligible compared to the
benefits of TPR (Note the placement of the decimal points in Fig.4.17(b)).
This increase is due to the new HD distance sorting the request numbers in
the sketch before calculating the distance, so it is more sensitive than the
original distance.
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Fig. 4.17: Performance comparison between the original and the improved Hellinger
Distances. (a) TPR. (b) FPR. (c) FRA

Evaluation of the efficiency of processing the large volume of requests
The efficiency of SkyShield is mainly affected by the number of hash func-
tions.

Fig. 4.18: The throughput of the system in a single thread

To evaluate SkyShield’s capability to handle large-scale flooding attacks, we
defined throughput as the number of requests processed by the system per
second. The processing time is mainly consumed by the calculation of the
hash function. Fig.4.18 shows the throughput as a function of the number
of hash functions in a single CPU core. We can see that the throughput is a
reciprocal function of the number of hash functions, which can be presented
as:

f(x) = a

x
, (4.16)
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Where a is the parameter to be estimated.

The least squares fitting method method obtains an a = 529,500. According
to the above analysis, SkyShield totally needs 23 hash functions, which
results in a throughput slightly greater than 23,000 requests per second. The
calculations of different hash functions are independent and thus can be
paralleled with multiple cores. For instance, if we use four cores for hashing,
each core processes six hash functions, and the throughput can be as high as
88,250 requests per second. Note that all incoming traffic are wellformed
HTTP requests and thus such a request rate is relative high. Therefore, the
system is capable of handling large-scale flooding attacks.

Summary: SkyShield is efficient in handling a large volume of HTTP re-
quests.

Performance of Mitigating Flash Crowd Mimicking Attacks
App-layer DDoS attacks utilize legitimate HTTP requests to overwhelm vic-
tims. To make matters worse, attackers prefer to launch attacks during flash
crowd events or mimicking flash crowd events to avoid detection. We employ
WorldCup98 data [5] to validate the effectiveness of SkyShield. The reason
for using this data set is that it has a similar scenario with our application,
and it is guaranteed that all requests in this data set are normal. We invite
readers to refer to [5] for a detailed description of the data.

We conduct two experiments. The first goal is to test whether SkyShield
interferes with normal user access during flash crowd incidents. In the
experiment, we applied SkyShield to WorldCup98 data and checked whether
an alarm was issued. Fig.4.19(a) shows that when the website experienced
four waves of flash crowds, SkyShield dose not issue any alarms on the
original WorldCup98 data from 1998/6/28 to 30. Even in the case of a sharp
increase in the number of requests, SkyShield will not detect any anomalies,
because the sharp increase in the number of flash crowds is caused by
the simultaneous access of many normal users, and these hosts are evenly
mapped into the sketch data structure. Since all hosts send a similar number
of requests, the values in the buckets of the sketch are evenly distributed,
therefore the divergence between the sketches in two consecutive detection
cycles is small and steady, resulting in no alarms in the flash crowds.
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Fig. 4.19: Performance of SkyShield in flash crowd mimicking attacks. (a) The
original data. (b) The combined data. (c) Insight of the combined data

A second experiment is conducted to test whether SkyShield can effectively
detect attacks that occur during flash crowd events. In this experiment,
we combined Dataset1603 data with WorldCup98 data for 3 days from
1998/6/28 to 30 to simulate app-layer DDoS attacks that occurred during
a Flash crowd event. Fig.4.19(b) demonstrates the detection result of the
synthetic data. The results show that SkyShield can effectively mitigate
attack requests. Fig.4.19(c) illustrates a detailed view of the time interval
from 16:00 to 20:00 for the second day, which is the period of the largest
flash crowd. The results showed that there was an obvious attack from
Dataset1603 at 18:40:00. However, SkyShield will still detect anomaly
and mitigate the attack within a short period of time, which indicate that
SkyShield can effectively mitigate DDoS attacks even during flash crowd. We
also combine other types of attacks with flash crowd, and all experiments
have proven the effectiveness of SkyShield. We omit these results for space
concerns.

Comparison with the State-of-the-Art Methods
We qualitatively compare SkyShield with two state-of-the-art methods, namely
the approach based on the Hidden semi-Markov Model (HsMM) [90, 89,
92] and the approach based on the Transductive Confidence Machines for
K-Nearest Neighbors (TCM-KNN) [45].

The HsMM-based method profiles behavior of normal users, and regards
any deviation from the normal profile as anomaly. Entropy is used to detect
potential app-layer DDoS attacks. By correctly configuring the parameters,
the HsMM method can achieve a FPR as low as 1.5% and a detection rate
of about 90%. However, this model requires frequent updates with a stable
and low-volume Web workload. In addition, the training of the model is
computationally intensive, and the training data should be recollected to
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maintain its freshness. This greatly limits the application of the HsMM
method in real-time DDoS attack detection. Additionally, the HsMM model
requires priori knowledge of website page structure, which can be daunting
at times. The wide use of dynamic web pages makes this problem even more
worse. Compared with the HsMM method, SkyShield can mitigate the attack
faster, and the parameter configuration of SkyShield is much easier.

The TCM-KNN method is designed as a light-weight DDoS attack detection
scheme for Web servers. The reported TPR and FPR were 99.53% and 1.93%,
respectively. This method employs a new objective measurement as the
input features, and utilizes the Genetic Algorithm based instance selection
method to improve real-time detection performance. However, the training
of the model is still expensive, although the author subsequently developed
an extended fuzzy C-means algorithm to solve this problem, even for the
improved version [45]. What’s worse, the model cannot adapt to network
dynamics. A model trained on data in a specific time period may not be
suitable for detecting anomalies that occur in other time periods. Compared
with the TCM-KNN model, SkyShield is also lightweighted and detect DDoS
attacks against Web servers in real time. SkyShield uses a novel measure
of sketch divergence which is stable to network dynamics. The number of
abnormal buckets is adapted to the amount of requests, thus in an intensive
attack more malicious requests will be filtered.

Compared with the above method, SkyShield’s TPR is relatively low. However,
the main goal of SkyShield is to guarantee the availability of services in the
event of a sudden overwhelming attack on the system. Although only partial
malicious hosts are detected, the attack traffic can be reduced by more than
94%. Therefore, SkyShield can effectively defend against app-layer DDoS
attacks, and can well prevent Web servers from being overwhelmed by severe
flooding attacks.

4.7 Summary

We design and implement a new defense system named SkyShield by taking
advantages of the sketch techniques to identify malicious hosts efficiently
and leveraging other techniques including Bloom filters and the CAPTCHA
techniques to guarantee the effectiveness of SkyShield. The experimental
results demonstrate that SkyShield can effectively mitigate application layer
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DDoS attacks and pose a limited impact on normal users. The content of this
chapter is published in [84].
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5Understanding the Behaviors of
BGP-based DDoS Protection
Services

This chapter describes our study on the behaviors of BGP-based DDoS Protec-
tion Services (DPS) providers. We first introduce our analysis process and
describe the implementation of our prototype. After that, we present the
experimental results.

5.1 Analysis process

Our analysis aims to detect abnormal BGP dynamics caused by DDoS attacks
and identify the behaviors utilized by DPS providers to mitigate the attacks.
Fig. 5.1 shows the analysis process, which consists of a training phase and a
monitoring phase. Several features are extracted from the BGP update data
within a fixed time interval of one minute in both phases, and then they are
grouped into a vector referred to as a databin.
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Fig. 5.1: The analysis process

In the training phase, we first collect a sufficient number of different events,
such as a hurricane, blackouts, earthquakes, cable cuts, and DDoS attacks,
to train a classifier. We manually searched the related news about these
events to determine the occurrence times of these events. Then we collect
the BGP update data in a time period that can cover the occurrence of the
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events. Since the dynamics of BGP routing may persist much longer than the
actual duration of an event, there may be some deviations in the reports or
news related to those events. Thus, we collect BGP traffic data in a longer
period of time to ensure a reference period in the reports or news is included.
It is supposed that the reference period contains more normal BGP traffic
data than that in the occurrence period, thus facilitating the normalization of
databins in the occurrence period.

Since the BGP traffic is inherently dynamic and there are some outliers
even during the normal state, we employ the k-means method to filter out
the outlier databins in the reference period. Specifically, the databins in
the reference period are clustered into two groups based on the Euclidean
distances between databins. The group of the majority is expected to contain
only normal databins. It is used as the normality baseline, which is used
to normalize the incoming databins in the monitoring period. We utilize a
Z-score normalization method to normalize the databins. The Z-score value
of a feature is calculated as z = x−µ

σ
, where µ is the mean of the obtained

normal databins and σ is the standard deviation. The calculated mean and
deviation in the training phase are used to normalize the databins in the
monitoring phase.

We then mix the normal databins extracted from the reference period with
those in the occurrence period. Again, the k-means method is employed to
cluster the mixed databins into two groups. One of the majority is regarded
as normal and the other one as abnormal. Li et al. utilized the k-medoids
method for the same task [41]. We employ the k-means method instead of
the k-medoids method as the latter spends more time finding the centroids
(e.g. O(n) for k-means while O(n2) for k-medoids). We further group
the obtained abnormal databins by timestamps to obtain the consecutive
abnormal databins. By “consecutive”, we mean that the intervals of detected
abnormal databins are less than 3 minutes and at least three consecutive
databins in the cluster. The obtained groups of databins are referred to as
“incidents”. After that, the obtained abnormal databins are labeled as the
types of incidents. We only distinguish between disaster events and DDoS
attacks. Then a random forest classifier is trained based on the labeled
databin. The random forest classifier is selected as it can make a considerably
high prediction accuracy and be well interpreted by the features. We also
analyze the mitigation policy adopted by DPS providers.
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The newly incoming BGP traffic data is normalized in the monitoring phase
using the previous baseline obtained in the training phase. The anomaly
detection module will check whether there is an anomaly in the BGP dynam-
ics. We use the trained classifier to identify whether DDoS attacks cause the
abnormal event if an anomaly is detected. If so, further analysis is performed
to determine whether a BGP-based mitigation policy is utilized. It is worth
noting that our analysis process allows practitioners to utilize their experience
knowledge to improve the system’s performance. When an alarm is raised,
the practitioner could judge the result based on other external information
sources. If the prediction agrees with the practitioner’s judgment, the newly
incoming databins will be added to the training databins. Otherwise, we
rejected the prediction.

Features
BGP routing information are exchanged between BGP routers through BGP
update messages. A route is announced by a BGP speaker when it is chosen
as the preferred forwarding path. On the contrary, a route is withdrawn
when the BGP speaker has chosen a new route, and the old one is no longer
available or reachable. Besides, there are many implicit withdrawals, which
means the prefix is implicitly withdrawn by sending the same prefix with new
attributes. We extract 9 features from BGP update messages to character the
fluctuation of the BGP traffic. Table 5.1 shows the features.

Table 5.1: Description of features

Feature name Definition
Ann Number of announcements generalized by BGP speakers
Udt Number of BGP update messages
WADup Number of duplicate announcement after withdrawal to the same IP prefix
AW Number of Withdrawal after announcement to the same IP prefix
WADiff Number of new announced paths after an explicit withdrawal
AADiff Number of new announced paths without explicit withdrawals
AADupType1 Number of duplicate announcements to the same IP prefix
AADupType2 Number of duplicate announcements to the same IP prefix

with only AS-PATH and NEXT-HOP fields unchanged
Unq_pfx_as Number of unique prefixes originated by an AS
Max_AS_path_len The maximum length of AS-PATHs
pfx_org_chg Number of Prefix origin change

Ann is the number of paths announced by BGP speakers in a detection cycle.
BGP update messages deliver the reachability information. Base on various
situations, such as the length of AS path or a new route, the router will
announce to their peers; however, if this route keeps up and down, the router
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withdrawals it by protection policies. Otherwise, the router needs to send
numerous BGP updates to peers.

Udt is the number of updates sent by BGP speakers to share routing informa-
tion with other peers. It is the sum of announcements and withdrawals. The
distribution of Udt is similar to that of Ann. Since the number of withdrawals
caused by abnormal events is much smaller than that of announcements, the
Udt feature provides valuable information that can help us distinguish the
event data between DDoS events and Disaster events.

WADiff is the number of newly announced paths after an explicit withdrawal.
We distinguish between explicit or implicit withdrawals based on whether a
withdrawal message is sent or not. The former means that the corresponding
BGP update message is received. The latter does not receive such a message.
Since disaster events usually result in the unreachability of some BGP routes,
they will trigger peer routers to send more explicit withdrawals.

AADiff is the number of newly announced paths without an explicit with-
drawal sent by the BGP speakers. It happens when a previously preferred
route is not available, or a newly preferred route is announced. This feature
reflects possible exogenous network events, such as router failures or link
disconnection [42]. Since disaster events usually damage physical devices,
such as BGP routers the cyber links, the edge routers will announce more
new paths.

AADupType1 is the number of duplicate announcements to the same prefix
with all fields unchanged. Since the router will receive the BGP update of any
established BGP peer, it is not synchronized between iBGP, and meanwhile,
it updates BGP with the eBGP peer be a problem of repeated announce-
ments. [63]. Hence, the more alternative paths an AS has, the more internal
path explorations, the more duplicate announcements. During DDoS attacks,
the victims will repeatedly announce a fixed amount of the affected paths,
which will result in more duplicate announcements to the same prefix.

AADupType2 is the number of duplicate announcements to the same IP prefix
with only AS-PATH and NEXT-HOP fields unchanged. One or more of the other
attributes (such as community) is different from the former announcement
the same prefix, which could reflect the routing policy change. Community
in messages is used to make routes that share common property and thus
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undergoes a specific treatment. Some providers also allow their customers
to control the redistribution of their routes via communities. There will be
more policy fluctuations during disaster events than that during DDoS events,
because practitioners need to make a policy change when the destination is
unavailable through a ruined region due to disasters. However, these policy
changes happen less in DDoS attacks as the duration of DDoS attacks is much
shorter than that of disasters.

Unq_pfx_as is the number of unique prefixes originated from an AS in a given
time window. The number of announcements and withdrawals exchanged
by neighboring peers is an essential feature during instability periods. We
utilize this feature to model the stable situation of the normal state. This
feature is more stable during the disaster event period than that in the DDoS
event period. The reason is that when DDoS attacks occur, the DPS provider
may utilize a BGP-based approach by announcing the prefix that belongs to
the victim to mitigate the DDoS attack traffic, leading to the increase of the
number of a unique prefix.

Max_AS_path_len is the maximum length of AS paths announced by BGP
routers in a specific time window. In the normal state, the AS paths an-
nounced by BGP routers usually have a limited number of hops, since the
BGP protocol prefers short paths. However, when an AS suffers from attacks,
the operator might implicitly withdraw a pre-announced path by pre-pending
many duplicated ASes in the AS-path field. It could significantly increase
the lengths of AS paths. However, the distribution of the maximum AS path
lengths for disaster events will be much evener than that for DDoS attacks,
because disaster events usually cause outages of the Internet and thus result
in more long paths during disaster events.
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ASN (AS number) is a globally unique number that is used to identify an AS. It
allows an AS to exchange exterior routing information between neighboring
ASes. Asn_prfx_chg is the number of prefix changes of ASes in a time window.
This feature is proposed based on the assumption that the Internet topology
should not frequently change. It has been used as a single BGP feature to
detect prefix hijacking attacks. However, it is also possible for an AS to alter
the prefix to reroute the subnet traffic through the DPS AS. There are more
prefix origin changes during DDoS attacks. When DDoS attack events occur,
the DPS provider will announce the prefix that belongs to the victim and
scrub the traffic.

Community analysis
We utilize the community attribute in BGP updates to analyze the behavior
patterns used by DPS providers to mitigate DDoS attacks. Between BGP
peers, they set specific community values to demand a modification of peer’s
local preference values.

First, we extract UTransaction = {prefix, community1 , community2 , ... ,
communityM , AS1 , AS2 , AS3 , ... , ASN }( N = |S| , where S is the
set of ASes in the AS Path ) in a databin that belongs to normal traffic
period, and one databin is responsible for one UTransaction. Let UDB =
{UTransaction1, UTransaction2, ..., UTransactionn} represent all the nor-
mal databin UTransactions. Let I = {i1, i2, ..., im} be a set of items(for each
i ∈ I, i can be prefix, community and ASN).and then we conduct affinity
analysis on the UDB. Here we adopt Apriori Algorithm, and the Apriori
process will read the UDB for multiple passes to find all frequent normal
updates itemsets. For the first pass, Apriori scans the UDB to get the fre-
quent 1-itemsets that satisfies minimum support. In a subsequent kth pass,
Apriori uses self-join rule to generates the candidate frequent k-itemsets
with the help of (k-1)-itemsets, then it will scan the UDB to get frequent
k-itemsets that satisfies the minimum support. Repeat this process from k = 1
until we can’t apply self-join rule any more. At the end of Apriori process,
we get the frequent normal updates itemsets, then we extract all the rules
which are greater than the threshold support and the threshold confidence
as the association rules. Besides, the association rule will be selected as our
frequent normal updates pattern if it takes the form: {prefix, community1

, community2 , ... , communityP } =⇒ { AS1 , ... , ASQ } ( P ≤ M and
Q ≤ N ), which indicated that if {prefix, community1 , community2 , ... ,
communityP } appears in the databin, { AS1 , ... , ASQ } is also likely to
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appear in the databin. In order to find a bigger network scope behavior,
our system will search in the frequent normal updates patterns to find the
prefixes that belong to the same subset, then prefixes in the same subset will
be replaced with the more generic prefix. For example, "152.113.0.0/16"
and "152.113.32.0/24" belong to the same subset "152.113.0.0/16" and the
prefix "152.113.32.0/24" will be replaced with to "152.113.0.0/16". And the
process is shown in Fig. 5.3. Let AR1 represent the frequent normal updates
patterns. Second, we perform the same process using the databins that be-
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Fig. 5.3: Frequent UPDATES pattern’s Mining process

long to the abnormal periods when the system sends a DPS mitigation signal,
and we get frequent updates patterns AR2. Finally, we use AR3 = AR2−AR1

to extract the abnormal patterns, which is the relative complement of AR1

with respective to frequent updates patterns AR2 (the difference of AR1 and
AR2).

5.2 Implementation

Fig. 5.4 shows the architecture of our prototype. We utilize the BGP traffic
data collected from Route Views to monitor the BGP routing dynamics. The
system persistently sniffers the Internet dynamics and extracts features from
the BGP traffic data with a one-minute fixed time interval. We encapsulate
the extracted features in a databin and pass the databins to the detection
module. When the detection module detects consecutive anomalies, the
system determines that a disruptive event is going on. Then, the classification
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module classifies the abnormal databins to identify the type of event. If the
event type is a DDoS attack, we will further analyze the DDoS mitigation
policy adopted by the victim. We develop the prototype using Python 2.7.12
running on a 64-bit Windows 10 system with an Intel(R) Core(TM)2 Quad
CUP Q9550 @2.83GH and 8.0GB RAM.

Detection Classification

Practitioners

Feature 
extraction

BGP traffic

Mitigation Policy Analysis

DDoS attacks

Fig. 5.4: The architecture of the system

The feature extraction module constantly retrieves BGP traffic data from
Route Views and extracts features (e.g. Ann and AADiff) with a fixed time
interval of one minute. The detection module takes the extracted features as
input and detects abnormal databins with these features. Then we employ
the k-means clustering method to remove the outliers in the reference period.
After the preprocessing, the k-means method is employed to distinguish
between the abnormal databins from the normal ones. The abnormal databins
are tagged as 1, and the normal ones are tagged as 0. When the system
detects 3 consecutive abnormal databins, it will raise the alarm, and the
detected abnormal databins are passed to the classification module for event
type identification. When a DDoS attack is identified, it will further analyze
the BGP update traffic originating from DPS’s ASes.

The classification module employs the random forest method to classify the
abnormal databins into different categories. Random forest is an ensemble
learning method for classification, regression. In this report, we focus on two
categories: DDoS attacks and disaster events. We collect 4 different disaster
events, including blackout, earthquake, hurricane and cable cut, respectively.
We collect the BGP traffic data of 41 historical events which are summarized
in Table. 5.2 and use these events to train the classification model. We use
5-fold cross validation method to evaluate the accuracy of the system. The
detected abnormal databins in each category is divided into 5 folds and in
each test we use one of the 5 folds as test data and the other 4 folds as
training data. The clustering results are obtained by averaging the 5 results.
Finally, we obtained an accuracy of 91.2%. The results produced by the
classification module will help the practitioners fast analyze the abnormal
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dynamics of BGP traffics and thus take steps to eliminate the damage to the
concerned local networks.

Table 5.2: A summary of the dataset

type Event number Detected databins
hurricane 4 30
black out 4 14

earthquake 4 152
cable cut 9 602

DDoS 20 889

When a DDoS attack event is identified, the mitigation policy analysis module
will check whether a BGP-based DDoS mitigation method was adopted or not
by the victim. In this process, the module constructs the AS graphs of the
victim to check. Any ASes that belong to DPS providers are connected to the
victim. The BGP messages from the DPS ASes are checked, and the mitigation
policies are analyzed. We manually collected the top 15 DPS providers for
this module, and their ASes are listed in Table 5.3.

5.3 Experiments

In this section, we show how the Mitigation Policy Analysis model works. We
focus on community values in the BGP UPDATES to infer the behavior of DPS
providers. We also conduct case studies on two DPS providers to validate the
effectiveness of our method.

5.3.1 BGP routing policies

DPS providers may have many ways to mitigate DDoS traffic, including
BGP-based routing policies, DNS-based routing policies, In-line filtering poli-
cies [72], and so on. Our work focuses on BGP-based routing policies. Many
DPS providers adopt BGP-based mitigation methods. For example, Akamai
provides a DDoS mitigation service named Prolexic Routed, which lever-
ages the Border Gateway Protocol (BGP) to route all of an organization’s
network traffic through Akamai’s globally distributed scrubbing centers [2].
Nexusguard provides an Origin Protection service which offers comprehen-
sive protection of the entire network by routing the inbound traffic to their
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Table 5.3: The top 20 DPS and their ASes

Rank DPS ASes
1 Akamai Technologies Inc. 22207,18717,23454,20189,16702,

18680,23455,35994,12222,35993
2 VeriSign, Inc. 29403
3 Incapsula, Inc. 19551
4 CloudFlare, Inc. 13335,132892
5 Arbor Networks, Inc. 20052
6 Sucuri Inc. 30148
7 F5 Networks, Inc. 22317
9 Check Point Software Technologies Ltd. 25046
9 Neustar, Inc. 32979,7786,32978,12008,19905,

19911,32980
10 NSFOCUS, Inc 8757
11 Radware Ltd. 15823,48851
12 Staminus Communications, Inc. 25761
13 Storm Systems LLC 59796
14 Corero Network Security, Inc. 395752
15 Zenedge Inc. 393676

worldwide scrubbing centers and the clean traffic will be routed back via a
GRE tunnel [62].

An organization may have several routes to reach a particular destination, and
operators can control the import and export policies by modifying preference,
filtering and tagging to choose the best route [10]. The preferences attributes,
such as LocalPref, AS path length and the multi-exit discriminator(MED) pose
a great influence on the BGP routes decision process. LocalPref is an integer
value which can be set and transmitted in the local AS and will be filtered
before reaching the neighboring AS. A highest LocalPref value means the
routes is the best among all the routes to a particular destination. The MED
attribute is a non-transitive attribute which provides a way for an AS to
negotiate with its external neighbors about the preferred path to enter the AS.
A route with lowest MED value will be adopted first. Filtering can be used
to control the import and export routes by configuring the routers to ignore
the BGP updates advertisements with matching certain specified values or
ranges. According to the condition we pre-set in tagging, routers use the
iBGP to update each other [10]. The main method is grouping destinations
into a single entity, named community [22]. The first 2 bytes represent an
ASN and the last 2 bytes as a value with a predetermined meaning. The
predetermined meaning is not standardized. Although MED and LocalPref
are essential in the route selecting process, they are seen only by neighbor
routers or the router itself. We can not use them directly to determine the
DPS provider’s mitigation behavior. The attributes that are available to us
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are AS Path and community values. Our system utilizes these two attributes
to analyze the DPS provider’s mitigation behavior.

Table 5.4 shows how the as-path changes with the community attribute
during the period of an attack. When the new community value 712 and
801 appeared, the as-path changed from “3549 26769 45474 45599” to
“3549 3491 45474 45599”. Table 5.5 shows the routing tables before it.
At 08:00, the community attributes were “732, 3114, 3210, 3220, 3314”.
However, at 14:00, the as-path changed to “3549 26769 45474 45599” when
the community attributes added 712 and 801. It shows that DPS providers
change their protection policies by modifying community values.

Table 5.4: updates: prefix 112.78.104.0/24, monitor 3549

time(UTC +8) DPS’(45474) community attribute as path
2011-05-10 08:48:42+08:00 732,3114, 3210,3220,3314 3549 26769 45474 45599
2011-05-12 13:33:53+08:00 712,801,3114,3211, 3221, 3314 3549 3491 45474 45599

Table 5.5: routing table: prefix 112.78.104.0/24, monitor 3549

time(UTC +8) DPS’(45474) community attribute as path
2011-05-10 08:00:05+08:00 732, 3114,3210,3220,3314 3549 26769 45474 45599
2011-05-12 14:00:07+08:00 712, 801,802 3549 3491 45474 45599

Besides, we find the relationship between community values and the as-path
hops. We count the frequency of an AS appearing in an as-path associated
with a community value H and the total frequency of the community value
T . We refer to the confidence of the hops as H/T . The bigger the confidence
value is, the more likely it is that an AS appears in the as-path. When we
set a threshold of the confidence value of 0.6, we remove the community
values corresponding with hop 45474. We observe that there are around
16 ASes that are related to the community value changes, and the hops
information is shown in Table 5.6. The relationship between the number
of related community values and shown hop in Fig. 5.5. From Fig. 5.5, we
could see that as hop 4826 and 45599 have high confidence with only one
community value, so we can infer the hops like 4826 and 45599 are more
specific to the corresponding community value. While ASes like 3549 and
10107 has more than 20 related community values, the relation with the
community values may be week compared with the former ones.

5.3 Experiments 59



Table 5.6: ASes that highly related to the DPS provider’s (45474) community values

ASN URL as name as country
4635 hkix.net HKIX-RS1 Hong Kong SAR China
4837 chinaunicom.cn CHINA169-Backbone China
4134 chinatelecom.com.cn CHINANET-BACKBONE China

45578 - SPLUNKNET-PH Philippines
10026 pacnet.com PACNET AP
7660 nic.ad.jp APAN-JP Japan
3549 level3.com LVLT-3549 United States

26769 bandcon.com BANDCON United States
3491 pccwglobal.com BTN-ASN United States

15412 relianceglobalcom.com FLAG-AS United Kingdom
38325 - WTP-AS-AP Philippines
3320 dtag.de DTAG Germany
4826 vocus.com.au VOCUS-BACKBONE-AS Australia

10107 - AASTARNET-PH Philippines
12989 eweka.nl HWNG Netherlands
45599 - EQUANTECH-TW-AP Taiwan
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Fig. 5.5: Dyn DDoS attack overview

60 Chapter 5 Understanding the Behaviors of BGP-based DDoS Protection Services



5.3.2 DDoS attack events

This section presents the identification of DDoS attack events from the per-
spective of a victim and a DPS provider.

Perspective from Victim
The first case is the DDoS attack against the Dyn in October 2016 [74].
On October 21, 2016, the Dyn suffered from many DNS queries from a
considerable vast of clients, which consume the ability of the managed DNS
network. It caused the unavailability of the DNS service of the Dyn. This
further results in difficulties connecting numerous websites (such as Amazon,
BBC, CNN, etc.) for many users. During the attack, the traffic going to the
other DNS providers increased dramatically and thus caused the widespread
congestion of network traffic. This congestion eventually results in the
abnormal dynamics of BGP traffic, which enables us to detect the Dyn DDoS
attack event through the BGP dynamics.

For the impact value, it is the sum of the differences between the normalized
features, and the baseline represents the distance of a databin from the
normal ones. Fig. 5.6 illustrates the impact values versus the time. Three red
blocks illustrate the three periods of abnormal dynamics on October 21, 2016.
Our anomaly detection module can identify these abnormal databins and
correctly classified them as DDoS attacks. The detected abnormal periods are
described as follows:

• The first period started at 04:30:22(PDT), and there were fluctuations
of BGP traffics from that time point. Until around 06:16:00(PDT), the
fluctuation diminished. Which coincides with the reported start and
mitigation time of the incident [19]. During this period, the Dyn’s
DNS server platforms in the Asia Pacific and East Europe suffered from
massive requests, and then the US-East region, resulting in the vast
BGP route dynamics [74].

• According to our system detection results, the second period started
at 08:41:44(PDT) and ended at around 10:32:00 (PDT), which also
agrees to the reported DDoS attack period [29].
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• Our system also detected the third period of abnormal BGP dynamics,
which started at 13:19:28 and ended at around 14:08:00(PDT). We is
also consistent with the DDoS attack period reported in the news [74].

We also found some noticeable additional fluctuations in the BGP traffic,
which started at 01:22:23(PDT) and 17:47:1 respectively, as shown in Fig. 5.6
with green blocks. However, they are not reported by Dyn.com or other
news media. We speculate these events were caused by the initiation and
aftershocks of the DDoS attacks.

Fig. 5.6: Dyn DDoS attack overview

To look insight into the mitigation policy of the Dyn, we extract part of
the BGP traffic that originated from or passed through AS33517 (Dyn.com)
during the DDoS attack. We find that the peers AS2914 and AS6453 are
both DPS providers. AS2914 is NTT-COMMUNICATIONS, which provides
information and communications technology solutions in Japan and inter-
nationally. It is also one of the world’s top ISP and DSP. AS6453 is TATA
Communications, one of the leading providers in a new world of communi-
cations. It started launching its network-agnostic DDoS protection globally
and delivering over a cloud-based infrastructure since 2011 Sept.07. Fig. 5.7
(a) presents the topology of AS33517 in the day of 2016/10/01, without
DDoS attacks. Fig. 5.7 (b) presents the topology of AS33517 in the day of
2016/10/21. The circle around AS33517 represents the path where next hop
is AS33517 itself. The red AS number is the DPS ASs AS2914 and AS6453,
and the blue circle ASes are the missed ASes in the DDoS attack period. The
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missed ASes are a sign of the poor performance of Dyn.com to provide DNS
query services.

Fig. 5.7: Topology of AS33517 at different times

During the first DDoS period, most traffic originating from or to AS33517
is routed to AS2914 and AS6453. We summarize the paths during the first
period of the DDoS attack from 04:30:22(PDT) to 06:16:00(PDT). AS33517
announced the route and passed through The DPS AS6453 and AS2914. A
comparison between October 1 and October 21 is shown in Table 5.7. We
demonstrated that the total number of paths decreased while the number
passed through the DPS providers increased during the attack. It indicates
that DPSs are trying to mitigate the traffic when the DDoS attack started
and more traffic is routed through the two DPSes. Hence, it is clear that
AS33517 was under the protection of the two big DPS providers like TATA
Communications and NTT-COMMUNICATIONS during the period of the DDoS
attack. This case also demonstrates that even a large DPS provider may fail
to protect its customers completely.

Table 5.7: A comparison of AS paths between 2016/10/01 and 2016/10/21

# of Paths announced by Dyn.com # of Paths passed through DPS
2016-10-01 3916 543
2016-10-21 1292 643

Perspective from a DPS Provider
In this case study, we analyze the policies of DPS adoption events through
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the BGP traffic. We detected three DDoS attack events against a victim AS
owned by New World Telecom Inc. (NWT) from May 1 to June 30, 2012. The
DPS provider confirms all these detected events. NWT, which is established to
design, manufacture, and distribute telecommunications products, suffered
from severe DDoS attacks from May 1 to June 30, 2012, and turned to the
NexusGuard Ltd (NG) to seek protection from DDoS attacks.

Table 5.8 presents a summary of the three events. The AS Numbers of NWT
and NG are 17444 and 45747, respectively. We then analyze the three

Table 5.8: A summary of the detected events

Prefixes Protected AS# DPS AS# Mitigation period (UTC+8)
58.64.128.119/32 17444 45474 2012/06/21 08:25:17 to 06/28 09:58:21
58.64.138.186/32 17444 45474 2012/05/26 10:47:51 to 05/27 14:46:35
58.64.135.102/32 17444 45474 2012/06/20 17:29:10 to 06/20 18:23:59

prefixes “58.64.128.119/32”, “58.64.138.186/32”, and “58.64.135.102/32”.
We found 24 BGP updates records in total, and the number of announcements
and withdraws is 14 and 10, respectively. We have also analyzed the features
mentioned in Table 5.1, and their values are listed in Table 5.9. There is
neither AADupType1 nor AADupType2 update pattern, meaning that no
identical announcements were sent from BGP routers. We track the prefixes
and found that there is no community information in the BGP updates of
these prefixes, resulting in zero AADupType2.

Table 5.9: Quantity of each update pattern

Pattern number
WADiff 4
AADiff 4
WADup 6

AW 10
AADupType1 0
AADupType2 0

The first adoption event started on 2012/6/21 at 8:25:17 and ended at
2012/6/28 at 11:28:59. Fig. 5.8 shows the extracted BGP information that
is relevant with the AS numbers 17444 and 45474. Let’s assume the former
BGP updates record is a withdraw to the prefix “58.64.128.119.32”, then
the update pattern are WADiff → AW → WADup → AW → WADup → AW
→WADup→ AADiff→ AADiff→ AW→WADup→ AW. We could see that
the update pattern sequence starts with a WADiff and ends with an AW, and
there are several repeated AW to WADup change procedures. From Fig. 5.8,
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we could see that AS 17444 firstly attempted to announce a path through
AS 45474 (NG LTD) to protect the IP address 58.64.128.119 from DDoS
attacks. There are 4 such announcements with an average time interval of
6900s (about 2 hours). However, such an adoption policy seemed to take no
effect, and at 13:57:28, AS 45474 announced the prefix “58.64.128.119/32”
directly, indicating that a complete hosting policy is adopted and an AADiff
update pattern occurred. After 2447s (about 40 minutes), the first protection
policy is re-adopted, and we could capture another AADiff update pattern.
The above analysis shows that the host whose IP address is 58.64.128.119
suffered from the DDoS attack from 2012/6/21 8:25:17 UTC+8, and the
operator of the AS or host taken different DPS policies to defeat the attack.

58.64.128.119/32|1340238317|A|'3561 4637 45474 17444'

58.64.128.119/32|1340245165|A|'3561 4637 45474 17444'

58.64.128.119/32|1340252099|A|'3561 4637 45474 17444'

58.64.128.119/32|1340258036|A|'3561 4637 45474 17444'

58.64.128.119/32|1340258248|A|'3561 4637 45474'

58.64.128.119/32|1340260695|A|'3561 4637 45474 17444'

58.64.128.119/32|1340848701|A|'3561 4637 45474 17444'

As-pathElem typetimestampprefix

DPS annouce 
the prefix

5561s

5461s

5389s

2477s

212s

2775s

NG NWT

58.64.128.119/32|1340243878|W
1287s

58.64.128.119/32|1340250626|W
1473s

58.64.128.119/32|1340257488|W
548s

58.64.128.119/32|1340263470|W
585231s

58.64.128.119/32|1340854139|W

5438s

Fig. 5.8: Extracted BGP information

The second event started from 2012/5/26 10:47:51 and ended at 2012/5/27
14:46:35 UTC+8. Fig. 5.9 shows the extracted BGP information that is
relevant with the two ASes. If we assume the former BGP updates record is a
withdraw to the prefix “58.64.138.186/32”, then we could get the update
pattern:“WADiff→ AW→ WADup→ AW→ WADup→ AADiff→ AADiff→
AW”. The updated pattern also starts with a WADiff pattern and ends with
an AW pattern. The repeated update pattern sequences are “AW→ WADup”,
which is similar to the DPS adoption process of prefix “58.64.128.119/32”.
Firstly, the NWT started to mitigate the attack traffic by announcing a path to
AS 45474 (NG LTD). Then the DPS provider completely took charge of the
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58.64.138.186/32|1338000471|A|'3561 4637 45474 17444'

58.64.138.186/32|1338029711|A|'3561 4637 45474 17444'

58.64.138.186/32|1338096199|A|'3561 4637 45474 17444'

58.64.138.186/32|1338096441|A|'3561 4637 45474'

58.64.138.186/32|1338101195|A|'3561 4637 45474 17444'

As-pathElem typetimestampprefix

DPS annouce 
the prefix

5398s

5419s

242s

4754s

NG NWT

58.64.138.186/32|1338005869|W
23842s

58.64.138.186/32|1338101652|W

457s

58.64.138.186/32|1338035130|W
61069s

Fig. 5.9: Extracted BGP information

protected hosts, directly announcing the prefix “58.64.138.186/32” and the
AADiff update pattern enters our vision. As the path is much shorter than the
previous one, more traffic would be rerouted to AS 45474 and filtered. After
about one and a half hours, AS 17444 re-announced the prefix again when
the attack relieved, and we could see another AADiff update pattern.

58.64.135.102/32|1340184550|A|'3561 4637 45474'

58.64.135.102/32|1340187839|A|'3561 4637 45474 17444'

As-pathElem typetimestampprefix

3289s DPS annouce 
the prefix

NG NWT

58.64.135.102/32|1340186988|W
61069s

58.64.135.102/32|1340193262|W

61069s

Fig. 5.10: Extracted BGP information

Table 5.10: update pattern sequences of three prefix

prefix update pattern sequence
58.64.128.119/32 WADiff→AW→WADup→AW→WADup→AW→WADup

→AADiff→AADiff→AW→WADup→AW
58.64.138.186/32 WADiff→AW→WADup→AW→WADup→AADiff→AADiff→AW
58.64.135.102/32 WADiff→AW→WADiff→AW

Fig. 5.10 shows the extracted BGP information from the third event. And here
again, we assume the former BGP updates record is a withdrawal to the prefix
“58.64.135.102/32”, then we could get the updated pattern: “WADiff→ AW
→WADiff→ AW”. And the updated pattern also starts with a WADiff pattern
and ends with an AW pattern. Unlike the previously analyzed two events, a
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strict policy is directly adopted by the prefix “58.64.135.102/32” from the
start, indicating it suffered an overwhelming DDoS attack. The protection
persisted from 2012/6/20 17:29:10 to 2012/6/20 18:23:59 UTC+8 for about
one hour. Then the prefix is re-announced by AS 17444 (NWT) with a longer
path passing through AS 45474. Thus AS 17444 is still under the protection
of DPS provided by NG.

From the analysis of the 3 prefixes, we could see some common DPS pro-
tection update pattern sequences, which means the response behavior to
the DDoS attack. Here, we put the three prefixes updates pattern sequence
together, as shown in Table 5.10. And if we represent the “WADiff.*AW” as
B0, represent “AW → WADup” as B1, and represent “AADiff → AADiff” as
B2, as shown in Table 5.11. Then we could represent the Table 5.10 as Ta-
ble 5.12, from Table 5.12, the DPS protection behaviors are more clear. And
it is obvious that DPS protected “58.64.128.119/32” and “58.64.138.186/32”
once, respectively, and protected “58.64.135.102/32” twice.

Table 5.11: DPS protection behaviors

behavior abbreviation update pattern sequence meaning
B0 WADiff.*AW protection behavior of start and end
B1 AW→WADup DPS appended behavior
B2 AADiff→AADiff DPS directly protection behavior

Table 5.12: DPS protection behaviors of update pattern sequences of three prefixs

prefix update pattern sequence
58.64.128.119/32 WADiff→B1→B1→B1→B2→B1→AW
58.64.138.186/32 WADiff→B1→B1→B2→AW
58.64.135.102/32 B0→B0

Table 5.13: prefixs’ the route table from monitor 3561

prefix time(UTC +8) route
58.64.128.119/32 2012/6/21 14:00:01 3561 4637 45474
58.64.128.119/32 2012/6/28 10:00:01 3561 4637 45474 17444
58.64.138.186/32 2012/5/26 12:00:00 3561 4637 45474 17444
58.64.138.186/32 2012/5/26 20:00:01 3561 4637 45474 17444
58.64.138.186/32 2012/5/27 14:00:00 3561 4637 45474
58.64.135.102/32 2012/6/20 18:00:01 3561 4637 45474

We referred to the BGP routing table from May 1 to June 30, and we extracted
the routes dumped by the monitor 3561, as shown in Table 5.13, then we find
that there are no routes that are related to them. On the contrary, they are
unreachable from the monitor. And the number of them are quite a few. And
if we combine BGP updates and the BGP ribs records (as shown in Fig: 5.11),
we will have a comprehensive understanding of the behavior of the DPS
AS 45474 and the normal AS 17444. In Fig. 5.11, we use different colors
to represent the behavior of these ASes, and the colors are red and purple,

5.3 Experiments 67



A W A W A W A

A

A W A W

Ribs dump:
3561 4637 45474

Ribs dump：
3561 4637 45474 17444

Time
58.64.128.119/32

A W A W A

A

A W

Ribs dump:
3561 4637 45474

Time

58.64.138.186/32

Ribs dump：
3561 4637 45474 17444

Ribs dump：
3561 4637 45474 17444

W

A

A

W

Ribs dump:
3561 4637 45474

Time

58.64.135.102/32

Fig. 5.11: Extracted BGP routing tables

representing NG and NWT, respectively. From Fig. 5.11 we could see that
route tables dumped only a few times, and there is no more record in May
and June, so the prefix may be backup and seek protection from Nexusguard
to diverse the traffic.

5.3.3 Case studies on BGP community

This section investigates how the Border Gateway Protocol(BGP) community
attribute can be used by Autonomous Systems (ASes) to control their routing
policies through its upstream service provider networks.

Route Filter application in DPS
Table 5.14 and Table 5.15 shows the routing policy of Nexusguard, and Ta-
ble 5.14 shows that the router announced 58.64.128.0/17 and 58.64.128.0/19
at 2011-05-22 08:20:28(UTC +8) and 2011-05-22 10:10:33(UTC +8) re-
spectively, and announced a more specific and longer prefix 58.64.156.0/24
at 2011-05-22 10:10:33(UTC +8) and 2011-05-22 10:11:04. The as-path
associated to the prefix 58.64.156.0/24 is changed to “7500 7660 4635
45474 17444”. Table 5.15 shows that there were two as-paths to the network
58.64.128.0, and the as-path to the more specific prefix 58.64.128.0/19
would be adopted. At 2011-05-22 12:00:00 there were three as-paths to the
network 58.64.156.0, and the as-path to a more specific prefix 58.64.156.0/24
would be adopted.

Table 5.16 and Table 5.17 show the routing policy of Prolexic, we could see
that it is similar to the Nexusguard routing policy. From Table 5.17 we could
see that at 2011-09-10 14:00:18, there is two as path "11666 3257 702" and
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Table 5.14: BGP update of AS7500

time(UTC +8) prefix DPS’(45474) community attribute as path
2011-05-22 08:20:28 58.64.128.0/17 - 7500 2516 17444
2011-05-22 10:10:33 58.64.128.0/19 - 7500 2516 17444
2011-05-22 10:10:33 58.64.156.0/24 - 7500 2516 3356 1299 45474 17444
2011-05-22 10:11:04 58.64.156.0/24 1410 1420 1510 1710 7500 7660 4635 45474 17444

Table 5.15: AS path of AS7500

time(UTC +8) prefix DPS’(45474) community attribute as path
2011-05-22 10:00:00 58.64.128.0/17 - 7500 2516 17444
2011-05-22 10:00:00 58.64.128.0/19 - 7500 2516 17444
2011-05-22 12:00:00 58.64.128.0/17 - 7500 2516 17444
2011-05-22 12:00:00 58.64.128.0/19 - 7500 2516 17444
2011-05-22 12:00:00 58.64.156.0/24 1410 1420 1510 1710 7500 7660 4635 45474 17444

"11666 3356 3209 8373" to the network 160.83.0.0/16 and 160.83.0.0/19
respectively, and 160.83.0.0/19 is the sub-network of 160.83.0.0/16, from
Table 5.16 we could see AS 2824 announced a 32 bits prefix 160.83.95.1/32
which is more specific than 160.83.0.0/16 and 160.83.0.0/19, and we could
see from Table 5.17 at 2011-09-10 16:00:19, there are three as paths to
the network 160.83.0.0, and when the as path to the more specific prefix
160.83.95.1/32 will be adopted.

Table 5.16: BGP update of AS11666

time(UTC +8) prefix DPS’(32787) community attribute as path
2011-09-10 15:48:22 160.83.95.1/32 35,65301 11666 32787 2824

Rollback application in DPS
Table 5.18 shows that a new as-path “4181 12989 45474 10107” was an-
nounced at 2012-05-10 08:01:26, and the community values were changed to
“712 1210 1411 1510 1711”. However, it rolled back at around 2012-05-11
13:59. And we could verify this from the routing table shown in Table 5.19.
The DPS community values were “712 1210 1411 1510 1711” and the as-
path was “3549 3491 45474 10107” at 2012-05-10 08:00:10. However, the
community values and the as-path replaced the old values at 2012-05-11
14:00:10. The whole process may be controlled by community values as
shown in the updates and routing tables of the prefix 183.177.114.0/24, and
AS 10107 used these inbound community values to set the LOCAL_PREF
attributes in the AS that would receive the route message [22]. And we
could see another example showed in Table 5.20 and Table 5.21, we could
see that there was a fluctuation between the as path "6539 577 2914 32787
2824" and as path "6539 6453 32787 2824". From the updated BGP message
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Table 5.17: AS path of AS11666

time(UTC +8) prefix DPS’(32787) community attribute as path
2011-09-10 14:00:18 160.83.0.0/16 - 11666 3257 702
2011-09-10 14:00:18 160.83.0.0/19 - 11666 3356 3209 8373
2011-09-10 16:00:19 160.83.0.0/16 - 11666 3257 702
2011-09-10 16:00:19 160.83.0.0/19 - 11666 3356 3209 8373
2011-09-10 16:00:19 160.83.95.1/32 35,65301 11666 32787 2824

Table 5.18: BGP update of AS3549 and AS4181

time(UTC +8) community attribute as path
2012-05-10 08:01:26 732 3110 3120 3210 3220 3230 4181 12989 45474 10107
2012-05-11 13:59:48 - 4181 3356 2828 12989 45474 10107
2012-05-11 13:59:49 - 4181 3561 174 45474 10107
2012-05-11 13:59:54 - 4181 3491 45474 10107
2012-05-11 13:59:53 712 1210 1411 1510 1711 3549 3491 45474 10107

records, we could see that at 2011/10/03 15:58:23(UTC+8) AS 2824 an-
nounced an updates message telling the network that the route has changed,
which resulted in the change of the routing table as recorded in Table 5.21.
To look into this as path transformation, we could see that AS 2824’s second
upstream AS has changed from AS 2914 to AS 6453 (it is worth noting that
the first upstream ASN is 32787, which belongs to prolexic). It may be caused
by a link failure or a LOCAL_PREF change made by the Administrator, which
means that as path "6539 6453 32787 2824" may be a temporary backup
link, the route changed to the former link "6539 577 2914 32787 2824"
again when the former link restored. This example is a bit different from the
early one because we could see no community values neither in the updates
message nor in the routing table message, which may be caused by the origin
AS 2824 or due to output filtering of community values[69].

To look into the UPDATES behaviors of different DPS, we conduct experi-
ments to see the time span between consecutive UPDATES of each prefix
related to the DPS from the same monitor on RoutViews2. We select the top
15 monitors according to the total number of UPDATES messages of each
monitor, and the results are shown in From Fig 5.12 and Fig 5.13. From

Table 5.19: AS path of AS3549 and AS4181

time(UTC +8) community attribute as path
2012-05-10 08:00:10 712 1210 1411 1510 1711 3549 3491 45474 10107
2012-05-10 08:00:01 - 4181 3491 45474 10107
2012-05-10 10:00:01 732 3110 3120 3210 3220 3230 4181 12989 45474 10107
2012-05-11 12:00:01 732 3110 3120 3210 3220 3230 4181 12989 45474 10107
2012-05-11 14:00:01 - 4181 3491 45474 10107
2012-05-11 14:00:10 712 1210 1411 1510 1711 3549 3491 45474 10107
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Table 5.20: BGP update of AS6539

time(UTC +8) community attribute as path
2011/10/03 13:27:39 - 6539 577 2914 32787 2824
2011/10/03 15:58:23 - 6539 6453 32787 2824
2011/10/03 16:41:30 - 6539 577 2914 32787 2824

Table 5.21: AS path AS6539

time(UTC +8) community attribute as path
2011/10/03 14:00:09 - 6539 577 2914 32787 2824
2011/10/03 16:00:09 - 6539 6453 32787 2824
2011/10/03 18:00:09 - 6539 577 2914 32787 2824

Fig 5.12, we can know the monitors receives a different number of UPDATES
messages related to the DPS Nexusgurad. Still, the average time span be-
tween consecutive UPDATES is much similar and has a value of 30. Compared
with Nexusguard, we can see the total number of UPDATES messages related
to Prolexic is much smaller. In the fact that, as shown in the former, some
routers did not re-announce any prefix solely with changed attributes, but
other routers sent a considerable amount of these re-announced UPDATEs
with changed attributes [69]. Besides, the average UPDATE time span of the
Prolexic is scattered, which may be caused by the same reason as the total
UPDATES number of each monitor. From Fig 5.14, we can see that a high
proportion of simultaneous UPDATES that reaches about 40% appears both in
the Nexusguard and Prolexic. Besides, the proportion value of UPDATES time
spans is more than 90% at 20 Seconds, and it reaches more than 97% both
in Prolexic and Nexusguard. And there are some slight differences between
Nexusguard and Prolexic. For example, the simultaneous UPDATES is more
than Prolexic; it lies in the more significant number of UPDATES messages
related to Nexusguard.

Fig. 5.12: Nexusguard’s Extracted BGP information
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Fig. 5.13: Prolexic’s Extracted BGP information

Fig. 5.14: Time span between consecutive UPDATES of each prefix from the same
monitor

5.4 Summary

To identify the abnormal BGP dynamics caused by DDoS attacks, we train
an accurate classifier based on a dataset of more than 40 manually collected
events demonstrated to cause abnormal behaviors of BGP dynamics. We also
develop a BGP monitoring and diagnosis system to analyze DDoS attacks with
BGP-based DPS mitigation involved. The content of this chapter is published
in [57].
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6An Empirical Study of DDoS
Amplification Attacks

The DDoS Amplification attacks have an essential role in different global
attack cases, and it has been shown that the DDoS amplification attacks
accounted for 62.84% of all attacks in 2019 [51]. To better understand
the trend and the evolution of DDoS Amplification Attacks, We deploy a
honeypot named DDoSTrap to monitor such attacks. The contents of this
chapter appear in [54, 52, 55, 53, 51].

6.1 DDoSTrap

DDoSTrap acts as a fake amplifier and listens on the following ports[70]
for incoming UDP packets, including Echo(7), CHARGEN(19), TFTP(69),
Portmapper(111), SNMP(161), XDMCP(177), LDAP/CLDAP(389), IKE(500),
RIP(520), Mssql(1433), Mssql(1434), SSDP(1900), Mysql(3306), Sentinal-
5093(5093), NAT-PMP(5351), MDNS(5353), UnrealTournament(7778), Elas-
ticsearch(9200), TeamSpeak3(9987), Memcached(11211), Quake(27960).
Once it receives a valid request, it will reply with a protocol-specific pre-
generated packet.

Security policies deployment
To avoid DDoSTrap from being exploited to launch real attacks on the victim,
we apply a rate limiting policy to it. Specifically, we will drop the response
to a client IP address if the client sends more than 300 requests per minute.
We evaluate the blacklist every hour and remove an IP address from the
blacklist if it stops sending requests after one hour. We further limit the rate
of response traffic to be less than 10Mbps. During the four-year operation,
we only received two emails from the Google Cloud Platform(GCP) that host
our honeypots, and we responded responsibly. After our clarification, no
victim claimed that the honeypots caused damage.

Data Collection
Fig 6.1 shows the architecture of DDoSTrap, which includes a rabbitMQ
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Fig. 6.1: Overview of the DDoSTrap

data broker, the logstash/elasticsearch servers, and honeypots. We use
Elasticsearch[23] to process the collected data. RabbitMQ is an open source
message broker supporting the Advanced Message Queuing Protocol[66].
The RabbitMQ server sends the collected data to Clinic server, a middleware,
using logstash to convert and deliver messages from rabbitMQ(TSV text)
to Elasticsearch servers(JSON format). When processing the captured data,
we need to separate actual attacks from scanning packets. To this end, we
filter out those IP sources that send at least 100 consecutive requests to our
honeypot within 5 minutes and the intervals between two packets are less
than 5 seconds. If a source keeps send the same requests for more than 15
minutes, we regard it as an attack. If the attack is paused for an hour and
then resumed, we will divide the relevant traffic into two attacks.

Since 2016, we have installed 8 DDoSTrap instances on Google Cloud Plat-
form (GCP) using static IP addresses to collect attack data. Table 6.1 sum-
marizes the details. We try to spread the honeypots in different regions to
contain more extensive real attacks.

Tool Sharing
The first version of DDoSTrap was developed by Terrence Gareau and spon-
sored by A10 Network, Nexusguard, and Cari.net in 2016 [70]. We share
DDoSTrap data with trusted parties(Banking group, governments, Team
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Table 6.1: Overview of honeypot deployments

HP Geolocation Deployed IP Add. Service
H01 United States 2016-12-28 Static 21
H02 Taiwan 2016-12-28 Static 21
H03 Belgium 2016-12-28 Static 21
H04 Hong Kong 2016-12-28 Static 21
H05 London 2016-12-28 Static 21
H06 Sao Paulo 2016-12-28 Static 21
H07 Singapore 2016-12-28 Static 21
H08 Sydney 2016-12-28 Static 21

Cymru, FBI, HK Policies, etc.) and make it accessible to fellow researchers,
assuming that we can use the derived data. Source code is free to download
from GitHub [70].

6.2 DDoS amplification attack analysis

Fig 6.2 summarizes the attacks our honeypots observed during the period
from Jan 2017 to Dec 2020. It captured 10,458 attacks and 2,198,110,454
raw requests. We can see that most attacks exploit the DNS protocol. The
second one is the SSDP protocol. Moreover, the raw requests of SSDP, CHAR-
GEN, NTP, MDNS, NAT-PMP, RIP, Sentinal-5093, LDAP/CLDAP, Memcached,
Mssql, TeamSpeak3, Elasticsearch, TFT, UnrealTournament, IKE, Quake, and
SNMP occupy less than 5.8% of all raw requests.

Fig. 6.2: Number of attacks per protocol between 2017 and 2020
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Attack Duration
Figure 6.3 shows the distribution of attack duration, which is defined as the
time interval between the first and last data packets involved in an attack
on a particular victim. It shows that the amplification attacks are usually
short-lived: 38.4% of the attack duration is shorter than 20 minutes, and
72.5% of the attack duration is shorter than 1 hour. Only 1.15% of attacks
lasted for more than 23 hours.

Fig. 6.3: Attack duration by hours

Fig. 6.4: Geolocation of victim by countries

Victim Analysis
According to the source IP addresses of the amplification attack, we analyze
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the Geolocation of Victims. Figure 6.4 shows the distribution of victims by
their countries. In 2019, when looking at countries, the U.S. stands out,
hosting half of the victims. There are many victims in Brazil (6.7%) and
United Kingdom (5.7%), and all other victims in 231 countries have a long-
tail distribution. We further investigated the attack peak period from Sep
2019 to Dec 2019. Most attacks targeted global communications service
providers (ISP) — mobile networks, ISPs, and cloud service providers [54],
such as Comcast, Virgin Media, Aliyun Computing, Amazon, and China
Mobile. In particular, Comcast was attacked nearly every day. According
to our findings, ASes in the U.S., the U.K., and China were hit the hardest,
with the U.S. being hit by more than 42 million individual attacks. Reflection
attacks that exploit open DNS resolvers were used most frequently, and the
stealthy bit-and-piece attacks(detailed in section 6.3) continued to cause
outages and remained as a threat.

United States - More than 1,000 ASes of most industries in the U.S. fell
victim to DDoS attacks, the highest level of activities that has ever been
seen.

United Kingdom - DDoS attacks against the U.K. networks were most likely
politically driven as the high level of occurrence of attacks coincided with
the country’s election period. Virgin Media, a British company that provides
telephone, television, and internet services., was hit hard, whose 244 PoPs
were all attacked. The Bank of England was also one of the victims.

China - Though China has the world’s largest internet population, attack
activity was relatively subdued compared with the U.S. and the U.K. Most
attacks targeted Alibaba and Aliyun Computing. That’s likely due to the fact
that most cloud services rely on China’s Aliyun cloud, which is protected by
its anti-DDoS platform.

Table 6.2: Overview of countries under large scope attacks between Sep 2019 to
Dec 2019

Country Amplification Attack Bit-and-Piece Attack Total of amplification raw request
United States 2,209 76 42,370,109

United Kingdom 295 12 4,696,498
China 261 18 11,528,380
Brazil 143 75 5,994,470

Hong Kong 162 5 4,830,051
Canada 155 0 3,060,355

Saudi Arabia 145 0 1,920,072
Germany 99 1 3,386,033
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DNS Abuse Domain List
As shown in Fig. 6.2, amplification attacks exploiting DNS account for 75.5%.
Therefore, for defending against such attacks, we create a list of domains
abused for amplification attacks. Table 6.3 lists the ten most popular attack
domains since December 2020, in descending order of the number of requests
recorded in the honeypot.

Table 6.3: DNS domains, ordered by the number of request seem at the honeypot
between 2017 and 2020

FQDN Type Request Count First Seen Last Seen Days Victim IPs
isc.org ANY 918,461,633 2018-07-29 2021-07-31 1,098 829,789

arctic.gov ANY 187,020,688 2019-03-01 2019-03-11 10 100,489
1x1.cz ANY 86,924,677 2017-07-09 2021-07-31 1,483 843,786

doc.gov ANY 78,644,456 2017-10-09 2021-07-31 1,391 654,324
wzb.eu ANY 78,493,514 2019-03-13 2021-07-31 871 583,935

mz.gov.pl ANY 76,233,583 2018-07-29 2021-07-31 1,098 810,373
peacecorps.gov ANY 68,166,193 2019-10-15 2021-07-26 650 116,736
commerce.gov ANY 61,231,866 2017-10-09 2021-07-31 1,391 695,112

aids.gov ANY 57,689,436 2017-10-09 2021-07-31 1,391 819,588
paypal.com ANY 46,657,045 2017-02-21 2021-07-31 1,621 776,187

6.3 Case studies

6.3.1 The bit-and-piece attack

Since July 2018, we have observed that 159 ASes and 527 Class C networks
were targeted in a series of amplification attacks where attackers injected
small bits and pieces of junk into legitimate traffic as a disguise [52]. Con-
sequently, attack traffic in the space of each IP address was small enough
to bypass detection but big enough to cripple the targeted site or even an
entire ISP network once the traffic converged. Due to the negligible size of
the junk traffic, typical security devices deployed by ISPs are unable to detect
and mitigate the attack before it can cause any harm.

We investigated the honeypot data between 2018 and 2020 and found that
bit-and-piece attacks impacted on average 318 ASes every year. As shown in
Table 6.4, the maximum attack duration was 1439.67 minutes.

One attack case was presented in the report [52] prepared by us, where the
orchestrated attacks generated only 33.2Mbps per destination IP, which is
small enough to fly under the radar and will be easily regarded as legitimate
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Table 6.4: Summary of Bit-and-Piece Attacks

2018 2019 2020
No. of Targeted ASes 397 305 251

No. Target Geolocations 28 50 23
Total IP prefixes under attack(Class C) 892 1,207 1,188

Minimum no. of IP addresses under attack(per class c IP prefix) 32 30 30
Maximum no. of IP addresses under attack(per class c IP prefix) 252 256 256

Minimum Attack Duration(Minutes) 6.32 10.22 3.37
Maximum Attack Duration(Minutes) 1,439.67 1,391.38 1,433.85

Minimum Attack per IP 15 40 40
Maximum Attack per IP 45118 42946 70442

Minimum Attack per class c IP Prefix 191 200 937
Maximum Attack per class c IP Prefix 433,999 496,734 5,219,918

traffic delivered straight to the destination AS. Table 6.5 reveals that the
campaign was significant. We found that attackers targeted networks within
the exact geo-location, attempting to exhaust the capacity of transmission
lines. In the worst-case scenario, the convergence of attack traffic spread
across 38 IP prefixes, each loaded with 2.48Gbps of attack traffic — potent
enough to overwhelm a 10Gbps ISP line.

Table 6.5: Summary of Actual Bit-and-Piece Attacks

Targeted ASes 159
Attack Types DNS Amplification, SSDP,

CHARGEN, NTP Amplification
Total IP Prefixes (Class C Networks) Under Attack 527

Maximum no. of Targeted IP Addresses per class c IP Prefix 252
Minimum no. of Targeted IP Addresses per class c IP Prefix 49
Average no. of Targeted IP Addresses per class c IP Prefix 131

Maximum Attack Durations(Minutes) 1,439.67
Minimum Attack Durations(Minutes) 5.12
Average Attack Durations(Minutes) 113.81

Maximum Attack Sizes per IP 300.1Mbps
Minimum Attack Sizes per IP 2.5Mbps
Average Attack Sizes per IP 33.2Mbps

Maximum Attack Sizes per class c IP Prefix 5.32Gbps
Minimum Attack Sizes per class c IP Prefix 285.4Mbps
Average Attack Sizes per class c IP Prefix 2.48Gbps

Since Feb 15, 2020, we have seen a shift in the attack tactics. That is, the
attackers opt for a more deceptive and sophisticated approach by launching
amplification and different types of UDP-based attacks to flood target net-
works[55]. In particular, smaller and more complex UDP-based and a variety
of amplification attacks were often used to maximize the impact on target
networks. Interestingly, for every wave of bit-and-piece attacks, a single
IP address is selected in the same IP prefix to receive a large flood attack,
namely, a UDP-based attack or amplification attack, in size range of 300Mbps
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to 21Gbps [55]. It may act as a smokescreen to distract in-house security
teams from bit-and-piece attacks that are taking place in attempts to take
down ISP infrastructures.

Table 6.6: Summary of Bit-and-Piece Attack Vectors

Distribution of Attack Vectors Targeted Geo-locations
UDP Attack(44.57%), DNS Amplifica-
tion Attack(35.68%), UDP Fragmenta-
tion Attack(6.8%), CLDAP Reflection
Attack(6.24%), SSDP Amplification At-
tack(3.87%), CHARGEN Attack(2.19%),
DNS Attack(0.56%), IP BOGONS(0.05%),
SIP Flood(0.05%)

Argentina, Bangladesh, Brazil, Canada,
China, Hong Kong, Islamic Republic of Iran,
Japan, Lebanon, Netherlands, Poland, Roma-
nia, Russian Federation, Singapore, South
Africa, Taiwan, Turkey, Ukraine, United
States

In the past, attackers have utilized bit-and-piece attacks with a single attack
vector such as a UDP amplification attack to launch UDP-based attacks. How-
ever, in 2020, there has been a tendency to employ a blend of attack vectors to
launch a wider range of UDP-based attacks [55]. The combined effect of this
tactic is to increase the difficulty for ISPs to detect and differentiate between
attack and legitimate traffic. Table 6.6 illustrates the types of attack vectors
employed in this actual attack. Note that 44.57% of attacks were attributed
to UDP attacks, though in previous studies and instances of bit-and-piece
attacks, they were not commonly used. Moreover, we found that UDP-based
attacks were characterized in the 4Mbps to 21.64Gbps size range, which is
smaller than previously observed [55]. UDP-based attacks are still widely
adopted. Though smaller in size now, these types of UDP-based attacks can
be enlarged by randomly crafting payloads to congest target networks.

6.3.2 Amplification attacks exploiting DNSSEC

The Domain Name System (DNS) is a fundamental element in Internet
technology as it translates domain names into corresponding IP addresses.
DNS servers are constantly bused to reflect DNS amplification attacks. The
continued adoption of DNSSEC suggests that DNS Amplification will remain
a mainstream attack method and continue to pose a significant threat to the
Internet.

DNSSEC was designed to protect applications from forged or manipulated
DNS data. The extra security provided by DNSSEC relies on a resource-
intensive data verification process using public keys and digital signatures.
Table 6.7 compares the amplification factors of the ten most frequently abused
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domains before and after DNSSEC adoption. Using aids.gov as an example,
the domain’s DNS server amplification power surged to more than 45.28X
(up from 4.53X) after DNSSEC deployment.

Table 6.7: 10 Most Frequently Abused Domains and Query Counts of DNS Requests

Domain Amp Factor(no DNSSEC) Amp factor included DNSSEC
1x1.cz 8.19 72.55
edu.za 3.36 47.96

aids.gov 4.53 45.28
isc.org 3.92 58.89

eftps.gov 4.25 44.37
mz.gov.pl 2.31 48.31

paypal.com 3.96 42.24
leth.cc 4.96 53.52

dfafacts.gov 2.53 36.67
nel.gov 2.69 41.71

On Jan 5, 2019, we observed that multiple government domains (as well
as paypal.com) fell victim to rampant attacks. Closer scrutiny, however,
suggests that many of these domains had deployed DNSSEC to the top-level
.gov domain as required by the U.S. government’s OMB mandate. There
is a strong causal relation between DNSSEC implementation and increased
DNS Amplification because, due to the large size of responses they generate.
DNSSEC-enabled servers are at risk of being targeted to reflect amplification
attacks [53] as shown in Table 6.8.

Table 6.8: 10 Most Frequently Abused Domains and Query Counts of DNS Requests

Domain Query Count Percentage included DNSSEC or not
1x1.cz 16,605,666 11.49% yes
edu.za 13,524,481 9.36% yes

aids.gov 12,640,652 8.75% yes
isc.org 12,541,244 8.68% yes

eftps.gov 11,423,694 7.91% yes
mz.gov.pl 10,811,274 7.48% yes

paypal.com 9,403,514 6.51% yes
leth.cc 9,118,943 6.31% yes

dfafacts.gov 7,299,000 5.05% yes
nel.gov 7,212,696 4.99% yes
Others 33,884,389 23.45% -

6.3.3 Amplification attacks exploiting Memcached

Attackers are constantly seeking to magnify the power of DDoS weapons by
exploring new Amplification attack methods. Memcached is an open-source
and distributed memory-caching system to caching data for webserver and
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assessed internally. Due to poor security deployment, attackers abuse it as
an amplifier to generate DDoS. When attackers look for Memcached servers
that can be exploited to launch attacks, the logs in DDoSTraip show that
they tried different source IPs once or twice and typically used a “Version”
or “Gets” scanning request. For example, when an attacker sent a “Version”
request to confirm the existence of the target, packet size of the request was
17 bytes, whereas the returning packet was 14 bytes.

DDoSTrap collected a lot of information about Memcached attacks. It shows
that most of targets’ IPs came from Cloud providers (82.05%), Telecoms
(12.83%), DNS servers providers(2.56%) and Education network(2.56%).
Table 6.9 summarizes the information of the observed attacks.

Table 6.9: Memcached Attack Summary in 2019

Maximum Minimum Average
No. of Attacks (Count) 17339.00 68.00 1843.15

Frequency (per Second) 306.93 0.41 161.63
Duration (Seconds) 1440.98 0.54 69.98
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7Conclusions and Future Work

Conclusions. To understand and defend against advanced DDoS attacks,
we investigate them from three aspects. First, we examine the application
layer DDoS attacks that send requests similar to benign ones for evading
the detection and consuming the computational resources of target servers.
Specifically, we design a new approach to model users’ browsing behaviors
and use it to differentiate between attacks and benign visits at both session
and page level. By using a dataset of real attacks to conduct the evaluation,
the results showed that our approaches can detect application layer DDoS
attacks. To defeat such attacks, we further develop an effective system named
SkyShield that leverages the sketch data structure to detect and mitigate
application-layer DDoS attacks quickly as well as address the limitations of
previous studies. We also leverage other techniques, including Bloom filters
and the CAPTCHA techniques, to improve the performance of SkyShield.
By using a real attack dataset collected from a large-scale web cluster to
evaluate SkyShield, we find that it can effectively mitigate app-layer DDoS
attacks and pose a limited impact on normal users. Second, we characterize
the BGP-based DDoS protection services (DPS) by analyzing BGP update
messages. In particular, to identify the abnormal BGP dynamics caused by
DDoS attacks, we train a classier by using a dataset of more than 40 manually
collected events that have been demonstrated to cause abnormal behaviors
of BGP dynamics. By applying our approach to actual DDoS attacks, we
identify the policies used by DPS to mitigate the attacks and obtain interesting
observations. Third, to understand the trends and the evolution of DDoS
amplification attacks, we deploy DDoSTrap, a high-performance honeypot
to collect data. By analyzing the data, we identify the majority threat in
amplification attacks and report a new DDoS strategy called a Bit-and-piece
attack. Moreover, we observe that multiple government domains fell victim to
DNSSEC attacks and attackers exploited memcached to launch amplification
attacks.

Future work. We will extend the current research in three ways. First, since
many detection systems against application-layer DDoS attacks rely on ma-
chine learning techniques, we will investigate to what extent they can be
evaded by generating adversarial samples and quantifying the cost of generat-
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ing such adversarial samples. Based on this result, we will design more robust
detect systems for capturing stealthy application-layer DDoS attacks. Second,
since more and more ISPs will deploy programmable network elements, such
as P4 switches, we will propose a distributed in-network detection system
against both network layer and application layer DDoS attacks. By doing so,
the service provider can detect and mitigate the attacks as soon as possible.
Third, since attackers may use various approaches to figure out whether a
compromised host is a honeypot or not, we will first investigate whether
our DDoSTrap system could be identified or not. If that is the case, we will
propose new approaches to enhance the fidelity of DDoSTrap for cheating the
attackers. Moreover, we will try to deploy it to more places around the world
to collect data for further studying the evolution of various DDoS attacks.
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[3]M. Al-Rousan and L. Trajković. “Machine learning models for classification
of BGP anomalies”. In: 2012 IEEE 13th International Conference on High
Performance Switching and Routing. IEEE. 2012, pp. 103–108 (cit. on p. 9).

[4]T. Anderson, T. Roscoe, and D. Wetherall. “Preventing Internet denial-of-
service with capabilities”. In: ACM SIGCOMM Computer Communication Review
34.1 (2004), pp. 39–44 (cit. on p. 8).

[5]M. Arlitt and T. Jin. 1998 World Cup Web Site Access Logs. http://ita.ee.
lbl.gov/html/contrib/WorldCup.html (cit. on p. 45).

[6]P. Barford, J. Kline, D. Plonka, and A. Ron. “A signal analysis of network traffic
anomalies”. In: Proceedings of the second ACM SIGCOMM Workshop on Internet
measurment - IMW 02 (2002) (cit. on p. 8).

[7]D. Birant and A. Kut. “ST-DBSCAN: An algorithm for clustering spatial–
temporal data”. In: Data & Knowledge Engineering 60.1 (2007), pp. 208–
221 (cit. on p. 15).

[8]A. Broder and M. Mitzenmacher. “Network Applications of Bloom Filters: A
Survey”. In: Internet Mathematics 1.4 (2004), pp. 485–509 (cit. on p. 24).

[9]M. Butkiewicz, D. Wang, Z. Wu, H. Madhyastha, and V. Sekar. “Klotski: Repri-
oritizing web content to improve user experience on mobile devices”. In: 12th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
15). 2015, pp. 439–453 (cit. on p. 12).

[10]M. Caesar and J. Rexford. “BPG routing policies in ISP networks”. In: IEEE
Netw. 19.6 (2005), pp. 5–11 (cit. on p. 58).

85

https://www.akamai.com/blog/security/anatomy-of-a-syn-ack-attack
https://www.akamai.com/blog/security/anatomy-of-a-syn-ack-attack
https://www.akamai.com/site/en/documents/product-brief/prolexic-routed-product-brief.pdf
https://www.akamai.com/site/en/documents/product-brief/prolexic-routed-product-brief.pdf
https://www.akamai.com/site/en/documents/product-brief/prolexic-routed-product-brief.pdf
http://ita.ee.lbl.gov/html/contrib/WorldCup.html
http://ita.ee.lbl.gov/html/contrib/WorldCup.html


[11]M. Caesar, L. Subramanian, and R. Katz. Towards localizing root causes of BGP
dynamics. Citeseer, 2003 (cit. on p. 9).

[12]D. Chang, R. Govindan, and J. Heidemann. “The temporal and topological
characteristics of BGP path changes”. In: Network Protocols, 2003. Proceedings.
11th IEEE International Conference on. IEEE. 2003, pp. 190–199 (cit. on p. 9).

[13]Cloudflare. Cloudflare DDoS Threat Report 2022 Q3. https://blog.cloudflare.
com/cloudflare-ddos-threat-report-2022-q3 (cit. on p. 5).

[14]Cloudflare. DDoS Attack Trends for 2021 Q. https://blog.cloudflare.com/
ddos-attack-trends-for-2021-q4/k (cit. on p. 7).

[15]A. Cohen, Y. Gilad, A. Herzberg, and M. Schapira. “Jumpstarting BGP Security
with Path-End Validation”. In: () (cit. on p. 3).

[16]J. Cowie, A. Ogielski, B. Premore, E. Smith, and T. Underwood. “Impact of the
2003 blackouts on Internet communications”. In: Preliminary Report, Renesys
Corporation (updated March 1, 2004) (2003) (cit. on p. 9).

[17]J. Cowie, A. Ogielski, B. Premore, and Y. Yuan. “Internet worms and global
routing instabilities”. In: ITCom 2002: The Convergence of Information Tech-
nologies and Communications. International Society for Optics and Photonics.
2002, pp. 195–199 (cit. on p. 9).

[18]J. Czyz, M. Kallitsis, M. Gharaibeh, et al. “Taming the 800 Pound Gorilla: The
Rise and Decline of NTP DDoS Attacks”. In: Proceedings of the 2014 Conference
on Internet Measurement Conference (2014) (cit. on p. 5).

[19]S. Daniel. How Friday’s Massive DDoS Attack on the U.S. Happened. https://
blog.radware.com/security/2016/10/fridays-massive-ddos-attack-
u-s-happened/ (cit. on p. 61).

[20]DARPA. Extreme DDoS defense. http://www.darpa.mil/program/extreme-
ddos-defense. Online, accessed 17-April-2016. 2015 (cit. on pp. 1, 6).

[21]S. Deshpande, M. Thottan, T. Ho, and B. Sikdar. “An online mechanism for
BGP instability detection and analysis”. In: IEEE Transactions on Computers
58.11 (2009), pp. 1470–1484 (cit. on p. 9).

[22]B. Donnet and O. Bonaventure. “On BGP Communities”. In: () (cit. on pp. 58,
69).

[23]Elasticsearch. https://aws.amazon.com/what-is/elasticsearch/ (cit. on
p. 74).

[24]A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs. “Locating Internet
routing instabilities”. In: ACM SIGCOMM Computer Communication Review
34.4 (2004), pp. 205–218 (cit. on p. 9).

86 References

https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3
https://blog.cloudflare.com/cloudflare-ddos-threat-report-2022-q3
https://blog.cloudflare.com/ddos-attack-trends-for-2021-q4/k
https://blog.cloudflare.com/ddos-attack-trends-for-2021-q4/k
https://blog.radware.com/security/2016/10/fridays-massive-ddos-attack-u-s-happened/
https://blog.radware.com/security/2016/10/fridays-massive-ddos-attack-u-s-happened/
https://blog.radware.com/security/2016/10/fridays-massive-ddos-attack-u-s-happened/
http://www.darpa.mil/program/extreme-ddos-defense
http://www.darpa.mil/program/extreme-ddos-defense
https://aws.amazon.com/what-is/elasticsearch/


[25]S. Ganguly, M. Garofalakis, R. Rastogi, and K. Sabnani. “Streaming algorithms
for robust, real-time detection of DDoS attacks”. In: Proc. ICDCS (2007), p. 4
(cit. on pp. 2, 8).

[26]A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. “QuickSAND:
Quick summary and analysis of network data”. In: DIMACS, Piscataway, NJ,
USA, Tech. Rep. (2001) (cit. on p. 2).

[27]P. Golle. “Machine learning attacks against the Asirra CAPTCHA”. In: Proceed-
ings of the 15th ACM conference on Computer and communications security -
CCS 08 (2008) (cit. on p. 7).

[28]H. Griffioen, K. Oosthoek, P. Knaap, and C. Doerr. “Scan, test, execute: Adver-
sarial tactics in amplification ddos attacks”. In: Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security (2021) (cit. on
p. 5).

[29]How Friday’s Massive DDoS Attack on the U.S. Happened. https : / / en .
wikipedia.org/wiki/2016_Dyn_cyberattackcite_note-wired-5/ (cit.
on p. 61).

[30]J. Hunter. “The exponentially weighted moving average”. In: J. Quality Technol.
18.4 (1986), pp. 203–210 (cit. on p. 34).

[31]N. Janevski and K. Goseva-Popstojanova. “Session reliability of web systems
under heavy-tailed workloads: an approach based on design and analysis
of experiments”. In: Software Engineering, IEEE Transactions on 39.8 (2013),
pp. 1157–1178 (cit. on p. 21).

[32]M. Jonker, A. Sperotto, R. van, R. Sadre, and A. Pras. “Measuring the Adoption
of DDoS Protection Services”. In: Proceedings of the 2016 ACM on Internet
Measurement Conference. ACM. 2016, pp. 279–285 (cit. on pp. 2, 8).

[33]S. Kandula, D. Katabi, M. Jacob, and A. Berger. “Botz-4-sale: Surviving orga-
nized DDoS attacks that mimic flash crowds”. In: Proc. NSDI (2005), pp. 287–
300 (cit. on pp. 6–8).

[34]M. Karami and D. McCoy. “Understanding the Emerging Threat of DDoS-as-a-
Service.” In: LEET. 2013 (cit. on p. 2).

[35]R. Kompella, S. Singh, and G. Varghese. “On scalable attack detection in the
network”. In: Proc. IMC (2004), pp. 187–200 (cit. on p. 2).

[36]B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. “Sketch-based change detec-
tion: Methods, evaluation, and applications”. In: Proc. IMC (2003), pp. 234–
247 (cit. on pp. 2, 8, 24).

[37]J. Krupp, M. Backes, and C. Rossow. “Identifying the scan and attack infras-
tructures behind amplification ddos attacks”. In: Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security (2016) (cit. on
p. 5).

References 87

https://en.wikipedia.org/wiki/2016_Dyn_cyberattackcite_note-wired-5/
https://en.wikipedia.org/wiki/2016_Dyn_cyberattackcite_note-wired-5/


[38]C. Labovitz, G. Malan, and F. Jahanian. “Internet routing instability”. In:
IEEE/ACM transactions on Networking 6.5 (1998), pp. 515–528 (cit. on p. 9).

[39]S. LaPerrière. “Taiwan earthquake fiber cuts: a service provider view”. In:
NANOG39, Febraury 5 (2007) (cit. on p. 9).

[40]S. Lee, G. Kim, and S. Kim. “Sequence-order-independent network profiling
for detecting application layer DDoS attacks”. In: EURASIP Journal on Wireless
Communications and Networking 2011.1 (2011), pp. 1–9 (cit. on pp. 7, 14,
18).

[41]J. Li and S. Brooks. “I-seismograph: Observing and measuring Internet earth-
quakes”. In: INFOCOM, 2011 Proceedings IEEE. IEEE. 2011, pp. 2624–2632
(cit. on pp. 9, 10, 50).

[42]J. Li, M. Guidero, Z. Wu, E. Purpus, and T. Ehrenkranz. “BGP routing dynamics
revisited”. In: ACM SIGCOMM Computer Communication Review 37.2 (2007),
pp. 5–16 (cit. on pp. 9, 52).

[43]J. Li, Z. Wu, and E. Purpus. “CAM04-5: Toward Understanding the Behavior of
BGP During Large-Scale Power Outages”. In: IEEE Globecom 2006. IEEE. 2006,
pp. 1–5 (cit. on p. 9).

[44]Y. Li, L. Guo, Z. Tian, and T. Lu. “A lightweight web server anomaly detection
method based on transductive scheme and genetic algorithms”. In: Computer
Communications 31.17 (2008), pp. 4018–4025 (cit. on p. 7).

[45]Y. Li, T. Lu, L. Guo, Z. Tian, and Q. Nie. “Towards lightweight and efficient
DDOS attacks detection for web server”. In: Proceedings of the 18th interna-
tional conference on World wide web - WWW 09 (2009) (cit. on pp. 7, 46,
47).

[46]Z. Li and J. Tian. “Testing the suitability of Markov chains as Web usage
models”. In: Proceedings 27th Annual International Computer Software and
Applications Conference. COMPAC 2003 () (cit. on p. 11).

[47]Z. Li, M. Zhang, Z. Zhu, et al. “WebProphet: Automating Performance Predic-
tion for Web Services.” In: NSDI. Vol. 10. 2010, pp. 143–158 (cit. on p. 12).

[48]H. Liu, Y. Sun, and M. Kim. “Fine-Grained DDoS Detection Scheme Based
on Bidirectional Count Sketch”. In: 2011 Proceedings of 20th International
Conference on Computer Communications and Networks (ICCCN) (2011) (cit.
on pp. 2, 8).

[49]X. Liu, CX. Yang, and Y. Xia. “NetFence Preventing Internet denial of service
from inside out”. In: Proceedings of the ACM SIGCOMM 2010 conference on
SIGCOMM - SIGCOMM 10 (2010) (cit. on p. 8).

[50]X. Liu, X. Yang, and Y. Lu. “To filter or to authorize: Network-layer dos
defense against multimillion-node botnets”. In: ACM SIGCOMM Computer
Communication Review 38.4 (2008), pp. 195–206 (cit. on p. 8).

88 References



[51]T. Miu. Annual Threat Report 2020. https://blog.nexusguard.com/threat-
report/annual-threat-report-2020 (cit. on p. 73).

[52]T. Miu. DDoS Threat Report 2018 Q3. https://blog.nexusguard.com/
threat-report/ddos-threat-report-2018-q3 (cit. on pp. 73, 78).

[53]T. Miu. DDoS Threat Report 2019 Q2. https://blog.nexusguard.com/
threat-report/ddos-threat-report-2019-q2 (cit. on pp. 73, 81).

[54]T. Miu. DDoS Threat Report 2019 Q4. https://blog.nexusguard.com/
threat-report/ddos-threat-report-2019-q4 (cit. on pp. 73, 77).

[55]T. Miu. DDoS Threat Report 2020 Q2. https://blog.nexusguard.com/
threat-report/ddos-threat-report-2020-q2 (cit. on pp. 73, 79, 80).

[56]T. Miu, C. Wang, X. Luo, and J. Wang. “Modeling User Browsing Activity
for Application Layer DDoS Attack Detection”. In: Proc. 12th International
Conference on Security and Privacy in Communication Networks (SecureComm)
(2016) (cit. on p. 21).

[57]T. Miu, C. Wang, and J. Wang. “Understanding the Behaviors of BGP-based
DDoS Protection Services”. In: Proc. 12th International Conference on Network
and System Security (NSS) (2018) (cit. on p. 72).

[58]D. Montgomery. “Introduction to Statistical Quality Control”. In: Hoboken, NJ,
USA: Wiley (2007) (cit. on p. 30).

[59]R. Netravali, J. Mickens, and H. Balakrishnan. “Polaris: Faster page loads
using fine-grained dependency tracking”. In: Proc. NSDI (2016), pp. 123–136
(cit. on p. 12).
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