






Abstract

The Finite Difference Time Domain (FDTD) method is one of the most popular time

domain methods in computational electromagnetics. The FDTD method is easy to im-

plement and a wide band solution can compute from a single run of simulation. However,

the application of the FDTD method is limited by the requirement of the computational

resources. Such requirement is due to the numerical dispersion error and the Courant-

Friedrich-Levy (CFL) stability condition, which relates the choosing of the cell size and the

time-step. In recent research, an unconditionally stable FDTD method was proposed—

one that can set the time-step to any arbitrary value without compromising the stability

of the system. This method applies the Alternating Direction Implicit (ADI) technique

to solve the finite difference equations; therefore, it is named the “ADI-FDTD method.”

The ADI-FDTD method is useful to simulate a structure with fine features because the

time-step can be set to the desired value, based on the signal but not the smallest cell

size. However, it suffers a drawback in that the numerical dispersion error is found to

increase when the ADI technique is applied.

In this thesis, two modified ADI-FDTD methods are proposed to reduce the numerical

dispersion error. The first method is the high-order ADI-FDTD method, which employs

the multi-points high-order central difference scheme to approximate the spatial deriva-

tive terms. This method is still unconditionally stable and can reduce the numerical

dispersion. However, it is found that the numerical dispersion error of the sixth-order

ADI-FDTD method is close to the limit of the conventional ADI-FDTD method, and

the improvement is found to be relatively insignificant when the time-step is large. This

motivated the development of the second method called (2,4) low numerical dispersion
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(LD) ADI-FDTD method. This method is based on the fourth-order ADI-FDTD method.

The coefficients of finite difference operator are modified by minimizing the error terms in

the numerical dispersion relation. This modification does not affect the unconditionally

stable property. In addition, the (2,4) LD ADI-FDTD method can provide a significant

wide band reduction on the numerical dispersion error for any time-step. Furthermore,

there is an alternative scheme that can reduce the numerical dispersion error at a specified

propagation angle.
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Statement of Originality

1 The High-Order ADI-FDTD Method

The high-order ADI-FDTD method is formulated by using the multi-points

high-order central finite difference scheme to approximate the spatial deriva-

tives in the ADI-FDTD method. The stability condition is studied, and it

has been proven that the high-order ADI-FDTD method is unconditionally

stable. In addition, the numerical dispersion relation is derived, and it has

been shown that the numerical dispersion error is reduced. Furthermore, the

numerical dispersion error of the sixth-order ADI-FDTD method is already

close to the limit of the conventional ADI-FDTD method for a given time-

step. The stability and numerical dispersion relation are validated by the

simulation results.

2 The Low Numerical Dispersion (2,4) ADI-FDTD Method

The Low Numerical Dispersion (2,4) ADI-FDTD method is based on the

fourth-order ADI-FDTD method. The finite difference operator is modified by

minimizing the error terms in the numerical dispersion relation. The modifica-

tion does not affect stability condition. In addition, the numerical dispersion

relation is derived, and it has been shown that the numerical dispersion error

is much smaller than in either the conventional ADI-FDTD method or the

FDTD method for any time-step. Furthermore, the complexity of the LD

ADI-FDTD method has been studied. When the LU method is used to solve

the equations system, the complexity remains as the order of the length of the
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computational domain. Finally, the stability and numerical dispersion relation

are validated by the simulation results.
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Chapter 1

Introduction

1.1 Computational Electrodynamics

Maxwell’s partial differential equations [1] are fundamental physical laws expressed math-

ematically to govern the time-varying electric and magnetic fields. They are the essen-

tials for the computational electrodynamics [2]. Due to the rapid growth of computer

technology, these equations can solve many complex electromagnetics field problems in

different applications. These applications include antenna design, high-speed electric cir-

cuits modelling, design of micrometer- and nanometer-scale integrated optical devices,

and bioelectomagnetics simulations.

In general, based on the solution domain, there are two different methods in computa-

tional electrodynamics. One is the frequency domain method, which involves computing

the frequency and phase response of a system. The other is the time domain method,

which computes the time varying signal inside a computational domain.

Usually, the frequency domain methods [3]-[5] are used to solve a problem that only in-
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Introduction 2

volves a narrow band of frequency spectrum and when no non-linear elements are involved.

When a wide band solution is required, time domain methods are usually used because

the computed time-varying signal can be converted to frequency domain to achieve the

wide band solution—although a large number of iterations are required if wide band and

high frequency solutions are needed. In addition, the time domain method is a better

method for handling problems with non-linear elements.

1.2 Time Domain Methods in Computational Elec-

tromagnetics

The rapid growth of low-cost but powerful computers has made the time domain method

attractive as a versatile problem-solver in computational electromagnetics. In addition,

the time domain method is easier to understand and program up since Maxwell’s curl

equations can be discretized using difference formulas. Furthermore, an added advantage

of the time domain method is that a wide band solution can be computed from a single

run by Fourier transforming the time varying signal.

Several other attributes of the time domain method make it attractive:

1. Visualization of the time-varying fields helps us study the interaction of the field

in a complex structure. For example, such visualization is useful for analyzing the

propagation, radiation, and crosstalk of digital pulses in high-speed digital circuits.

2. Excitation of a very short pulse enables us to understand the physics of lighting

discharge and the propagating of very high-speed signal in digital circuits.



Introduction 3

3. Computation of wide band response of UWB antennas and systems.

In view of the above features, the time domain methods have seen a rapid growth in

computational electromagnetics during the last two decades [6]-[20].

1.2.1 The Transmission Line Matrix Method (TLM)

Proposed by P. B. John and R. L. Beurle in 1971, the Transmission Line Matrix (TLM)

[6] method is one of the time domain methods in electromagnetics modelling. The TLM

method is a physics-based algorithm in which the computational domain is discretized by

using a mesh of transmission lines interconnected at nodes. The approach is based on the

equivalence between Maxwell’s equations and those for the voltage and current on a mesh

of continuous two-wire transmission lines, and it solves the electromagnetic field problems

by using equivalent electrical circuit networks. The convergence and stability problems

associated with the TLM method can be deduced by analyzing the equivalent circuits.

The disadvantage of the TLM method is that a large number of iterations are required

to generate the field solutions. In addition, the process requires more memory as well as

computational time when compared to the Finite Difference Time Domain method.

1.2.2 The Finite Difference Time Domain Method (FDTD)

As mentioned above, the Finite Difference Time Domain (FDTD) method [7]-[10] is an-

other time domain approach that is widely used in computational electromagnetics. It

was introduced by K. S. Yee in 1966 [7] to solve Maxwell’s time-dependent curl equations,

and it applies the finite difference approximation directly to solve the partial differential

equations. It is easy to understand and is also versatile in its application to a wide class
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of electromagnetics problems.

However, unless multiple processors are used, the FDTD method is often limited to

solving electrically small-size problems. This is because the cell size must be sufficiently

small to capture the fine features of the geometry and must also be small compared to

the wavelength of the signal—usually at least 20 cells per smallest wavelength—to obtain

accurate results. Furthermore, the time-step must be small enough to satisfy the Courant-

Friedrich-Levy (CFL) condition in order to guarantee numerical stability [11]. Thus, a

large model with fine features can place a heavy burden on the method, owning to the

small cell size and time-step.

1.2.3 The Multi-Resolution Time Domain Method (MRTD)

In 1996, a Multi-Resolution Time Domain method (MRTD) [12]-[13]—which is based on

Battle-Lemarie wavelets—was proposed for efficient time domain computation. It shows

an excellent capability to approximate the accurate solution with negligible error, even

when using sampling rates in space that approach the Nyquist limit and far smaller than

those used to generate accurate solutions in Yee’s FDTD algorithm. The MRTD method

applies multi-resolution analysis, which uses scaling and wavelet function as a complete set

of basis function, in the method of moments type of discretization of Maxwell’s equations.

In the MRTD method, the field components are represented in terms of a twofold

expansion that utilizes scaling and wavelet functions. In regions that are characterized

by smoothly varying fields, the S-MRTD can be used in which the above expansion is

only in terms of scaling function. Additional field sampling points are introduced by

incorporating wavelets in the field expansions, in regions where the field variations are
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strong.

The principal motivation for using the MRTD is to reduce the numerical dispersion

and, hence, the required memory for space-gridding. However, the MRTD method is

more complex than the FDTD method because of the field expansion—the field at one

grid point is related to those at several of the neighboring points. In addition, the stability

condition for the MRTD method is stricter than that for the FDTD method, since the ratio

of temporal and spatial discretization is five times less than required in the conventional

FDTD method [13].

1.2.4 Unconditionally Stable ADI-FDTD Method

The low computation efficiency of the FDTD method, which arises from the requirement

that the CFL stability condition must be satisfied, can become a bottleneck in the ap-

plication of the FDTD method. This motivated the development of an unconditionally

stable FDTD method called Alternative Direction Implicit (ADI) FDTD method [14]-

[20] in which the time-step can be set to any arbitrary value without compromising the

stability of the system.

In contrast to the traditional FDTD method, the ADI-FDTD method employs an

implicit finite difference method—namely, the Crank-Nicholson scheme—to approximate

the spatial derivatives appearing in Maxwell’s equations. The ADI method, which is a

two-procedures method, is applied to solve the equations. The spatial derivatives in one

direction are treated implicitly first, and then the other direction in the second procedure.

While the ADI-FDTD method is no longer subject to the CFL stability condition, it

suffers from a drawback: The numerical dispersion error is found to increase when the
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implicit method is employed [21]-[24].

1.2.5 Techniques to Reduce Numerical Dispersion Error

The numerical dispersion error is introduced when the finite difference is applied to ap-

proximate the partial derivative of the PDE. It is one of the criteria to choose the cell size

as well as the size of the time-step in the FDTD method. An increase in the cell size or

the size of time-step results in an increase in the numerical dispersion error.

For the traditional FDTD method, there are several ways available to reduce the

numerical dispersion error. One of these is to use a higher-order and more accurate finite

differencing scheme to approximate the spatial derivatives that are approximated by a

Taylor series expansion [2], [9], [25]-[30]. An alternative way to reduce the numerical

dipsersion error is to redefine the finite difference operators based on the analysis of the

numerical dispersion relation of the FDTD method so as to minimize the error [31]-[32].

1.3 Motivation of the Thesis

By applying the ADI technique, the CFL stability condition can be obviated, and the

computational efficiency of the FDTD method can be increased; however, the drawback

of this approach is that it increases the numerical dispersion error. The objective of this

thesis is to develop an ADI-FDTD method that is not only unconditionally stable but

also has low numerical dispersion. Different schemes are implemented in the ADI-FDTD

method to accomplish this reduction in the numerical dispersion error, and the accuracy

as well as the stability criteria associated with these modifications are investigated in

detail.
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1.4 Outline

This thesis introduces two new time domain methods that are based on the ADI-FDTD

method. Following a general introduction in Chapter 1, the ADI-FDTD method is in-

troduced in Chapter 2. It begins with a discussion of Yee’s FDTD method and then

formulates the ADI-FDTD method in some detail. This chapter also demonstrates that

the numerical dispersion error increases when the ADI method is applied.

Next, the high-order ADI-FDTD method is developed in Chapter 3. A detailed for-

mulation of this new scheme is presented, and it is proved that the method is also uncon-

ditionally stable but has less numerical dispersion error. The improvement, however, is

found to be relatively insignificant when the time-step is large.

In Chapter 4, we go on to develop the (2,4) low-numerical-dispersion ADI-FDTD

method. It is based on the fourth-order ADI-FDTD method, and the finite difference

operators are adjusted according to the numerical dispersion relationship. The schemes for

choosing the finite difference operators are discussed in detail. The numerical dispersion

characteristics of this method are investigated analytically and numerical results presented

for validation, as well as discussion of the advantages of the proposed method over the

conventional ADI-FDTD method.

In Chapter 5, some conclusions of this study are presented, and future directions as

well as some problems encountered in the ADI-FDTD method are discussed.



Chapter 2

The ADI-FDTD Method

2.1 Introduction

The FDTD method is one of the well-known computational techniques for solving elec-

tromagnetics problems. In this method, the electromagnetics fields in a finite volume of

space are discretized in both time and space. The shape and the material of the structure

under simulation can be set arbitraily inside the discrete domain. However, the FDTD

method suffers from a limitation: Huge computational resources are required due to the

constraints on choosing the cell size and size of the time-step. According to the sam-

pling theorem, the cell size must be taken as at least half of the minimum wavelength

to avoid aliasing. In practice, at least 20 cells per the minimum wavelength are used.

In addition, the cell size must be small enough to model the minimum dimension of the

structure. After the cell size is chosen, a small time-step must be chosen to satisfy the

Courant-Friedrich-Levy (CFL) stability condition, which is proportional to the smallest

cell size.

8



The ADI-FDTD method 9

It is difficult to relax the constraint on choosing the cell size because it is limited by the

physical dimensions of the structure under simulation. To reduce required computational

resources, a novel FDTD method was developed that can use arbitrary time-step without

compromising the CFL stability condition. This unconditionally stable FDTD method is

based on the traditional FDTD method and an implicit finite difference method called

the Crank-Nicholson method. The implicit equations are then solved by the Alternating

Direction Implicit (ADI) technique.

In this chapter, the formulation of the FDTD method and the ADI-FDTD method are

reviewed. Then, the stability condition and numerical dispersion error of these methods

are studied and compared.

2.2 Overview of the FDTD Method

2.2.1 Formulation of the FDTD Method

The algorithm of FDTD method for solving electromagnetics problems was introduced

by K. S. Yee in 1966. The continuous electromagnetics fields in a finite volume of space

are sampled in discrete manner in time and space. The central difference scheme is then

applied to model the differential form of Maxwell’s equations.

In a lossless, linear, and isotropic medium, the differential form of Maxwell’s equations

are

∇× E = −μ
∂H

∂t
, (2.1)

∇×H = ε
∂E

∂t
, (2.2)

where μ is magnetic permeability and ε is electrical permittivity.
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Then, the vector components of the curl operators in (2.1) and (2.2) are written out to

yield the following six scalar equations in the three-dimensional rectangular coordinates

system:

∂Hx

∂t
=

1

μ

{
∂Ey

∂z
− ∂Ez

∂y

}
, (2.3)

∂Hy

∂t
=

1

μ

{
∂Ez

∂x
− ∂Ex

∂z

}
, (2.4)

∂Hz

∂t
=

1

μ

{
∂Ex

∂y
− ∂Ey

∂x

}
, (2.5)

∂Ex

∂t
=

1

ε

{
∂Hz

∂y
− ∂Hy

∂z

}
, (2.6)

∂Ey

∂t
=

1

ε

{
∂Hx

∂z
− ∂Hz

∂x

}
, (2.7)

∂Ez

∂t
=

1

ε

{
∂Hy

∂x
− ∂Hx

∂y

}
. (2.8)

In the Yee’s algorithm, the electric and magnetic fields in the free-space are sampled

in the grid shown in Figure 2.1. It can be noticed that the electric and magnetic field

components are interlaced within the unit cell, which is convenience to perform the central

difference approximation.

Let any function u of space and time evaluated at discrete point in the grid and time

as

u (iΔx, jΔy, kΔz, nΔt) = un
i,j,k, (2.9)

where Δx, Δy, Δz are the lattice space increments in the x, y, z coordinate directions

respectively and Δt is the time increments. i, j, k, and n are integer.

Then, the second-order accurate central difference approximation expression of the

spatial and temporal derivatives can be written as

∂un
i,j,k

∂x
=

un
i+1/2,j,k − un

i−1/2,j,k

Δx
+ O

(
Δx2

)
, (2.10)



The ADI-FDTD method 11

Ey

Ex

Ez

Hz

HzHz

Hx

Hx

Hx

Hy

Hy

Hy

x

y

z

(i+1/2,j+1/2,k-1/2)

Figure 2.1: Unit cell containing the locations of the discrete electromagnetics field

components for the FDTD method.
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∂un
i,j,k

∂t
=

∂u
n+1/2
i,j,k − ∂u

n−1/2
i,j,k

Δt
+ O

(
Δt2

)
. (2.11)

An explicit approach in leapfrog manner is used in the Yee’s algorithm. The com-

ponents of the present time-step are derived from the field components at the previous

time-step. In addition, the electric and magnetic field components are computed at half

time-step alternately. Figure 2.2 shows the use of central difference scheme for the spatial

derivatives and leapfrog manner for the temporal derivatives.

The temporal and spatial partial derivatives of the electric and magnetic fields in (2.3)

to (2.8) are then approximated by the second-order accurate central difference scheme and

the updating equations for Maxwell’s equations can be written as

H
n+1/2
x,i,j+1/2,k+1/2 = H

n−1/2
x,i,j+1/2,k+1/2 +

Δt

μi,j+1/2,k+1/2

(
En

y,i,j+1/2,k+1 − En
y,i,j+1/2,k

Δz

)

− Δt

μi,j+1/2,k+1/2

(
En

z,i,j+1,k+1/2 − En
z,i,j,k+1/2

Δy

)
, (2.12)

H
n+1/2
y,i+1/2,j,k+1/2 = H

n−1/2
y,i+1/2,j,k+1/2 +

Δt

μi+1/2,j,k+1/2

(
En

z,i+1,j,k+1/2 − En
z,i,j,k+1/2

Δx

)

− Δt

μi+1/2,j,k+1/2

(
En

x,i+1/2,j,k+1 − En
x,i+1/2,j,k

Δz

)
, (2.13)

H
n+1/2
z,i+1/2,j+1/2,k = H

n−1/2
z,i+1/2,j+1/2,k +

Δt

μi+1/2,j+1/2,k

(
En

x,i+1/2,j+1,k − En
x,i+1/2,j,k

Δy

)

− Δt

μi+1/2,j+1/2,k

(
En

y,i+1,j+1/2,k − En
y,i,j+1/2,k

Δx

)
, (2.14)

En+1
x,i+1/2,j,k = En

x,i+1/2,j,k +
Δt

εi+1/2,j,k

⎛⎝H
n+1/2
z,i+1/2,j+1/2,k − H

n+1/2
z,i+1/2,j−1/2,k

Δy

⎞⎠
− Δt

εi+1/2,j,k

⎛⎝H
n+1/2
y,i+1/2,j,k+1/2 − H

n+1/2
y,i+1/2,j,k−1/2

Δz

⎞⎠ , (2.15)

En+1
y,i,j+1/2,k = En

y,i,j+1/2,k +
Δt

εi,j+1/2,k

⎛⎝H
n+1/2
x,i,j+1/2,k+1/2 − H

n+1/2
x,i,j+1/2,k−1/2

Δz

⎞⎠
− Δt

εi,j+1/2,k

⎛⎝H
n+1/2
z,i+1/2,j+1/2,k − H

n+1/2
z,i−1/2,j+1/2,k

Δx

⎞⎠ , (2.16)
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t=2 t
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t= t
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Figure 2.2: The use of central difference scheme for the spatial derivatives and leapfrog

manner for the temporal derivatives.
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En+1
z,i,j,k+1/2 = En

z,i,j,k+1/2 +
Δt

εi,j,k+1/2

⎛⎝H
n+1/2
y,i+1/2,j,k+1/2 − H

n+1/2
y,i−1/2,j,k+1/2

Δx

⎞⎠
− Δt

εi,j,k+1/2

⎛⎝H
n+1/2
x,i,j+1/2,k+1/2 − H

n+1/2
x,i,j−1/2,k+1/2

Δy

⎞⎠ . (2.17)

To reduce the complexity of equations, a two-dimensional model for transverse elec-

tric (TE) wave is used in the following chapters. To reduce the FDTD method to two

dimensions, it is assumed that the electromagnetics field excitation and modelled geome-

try has no variation in the z-direction. It means that all partial derivatives of the fields

with respect to z are zero, and the structure under modelling is extended to infinity in

z-direction without any changes in material and shape. Maxwell’s equations for the 2-D

TE wave in an isotropic loss-free medium in the rectangular coordinates system can be

obtained as

∂Ex

∂t
=

1

ε

∂Hz

∂y
, (2.18)

∂Ey

∂t
= −1

ε

∂Hz

∂x
, (2.19)

∂Hz

∂t
=

1

μ

(
∂Ex

∂y
− ∂Ey

∂x

)
. (2.20)

Then, the updating equations for the 2-D TE mode Maxwell’s equations can be obtained

as

E
n+1/2
x,i+1/2,j = E

n−1/2
x,i+1/2,j +

Δt

εi+1/2,j

(
Hn

z,i+1/2,j+1/2 − Hn
z,i+1/2,j−1/2

Δy

)
, (2.21)

E
n+1/2
y,i,j+1/2 = E

n−1/2
y,i,j+1/2 −

Δt

εi,j+1/2

(
Hn

z,i+1/2,j+1/2 − Hn
z,i−1/2,j+1/2

Δx

)
, (2.22)

Hn+1
z,i+1/2,j+1/2 = Hn

z,i+1/2,j+1/2 +
Δt

μi+1/2,j+1/2

⎛⎝E
n+1/2
x,i+1/2,j+1 − E

n+1/2
x,i+1/2,j

Δy

⎞⎠
− Δt

μi+1/2,j+1/2

⎛⎝E
n+1/2
y,i+1,j+1/2 − E

n+1/2
y,i,j+1/2

Δx

⎞⎠ . (2.23)
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2.2.2 Numerical Stability of the FDTD Method

The Yee’s FDTD method is an explicit numerical method. The choice of size of the

time-step is bounded to avoid numerical instability, which is an undesirable possibility

with explicit differential equation solvers that can cause the computed result to limitless

increase. In addition, the choice of the cell size is also bounded by the structure under

simulation and the minimum wavelength of the signal.

The von Neumann method is used to analyze the numerical stability of the Yee’s

FDTD method. Assume that the trial solution for the 2-D TE wave is given by

Φn
I,J = Φ0ξe

j(kxIΔx+kyJΔy), (2.24)

where Φ is the field component and kx, ky are wavenumber in the x and y directions,

respectively. The growth factor ξ describes the time-related behavior of the solution.

If the magnitude of the growth factor is greater than one, then the system is unstable.

Assume that the solution region is free-space, the updating equations (2.21)-(2.23) are

then rewritten as (
1 − 1

ξ

)
En

x = j
2Δt

ε0Δy
sin
(
ky

Δy

2

)
Hn

z , (2.25)(
1 − 1

ξ

)
En

y = j
2Δt

ε0Δx
sin
(
kx

Δx

2

)
Hn

z , (2.26)

(ξ − 1) Hn
z = j

2Δt

μ0

[
1

Δy
sin
(
ky

Δy

2

)
En

x − 1

Δx
sin
(
kx

Δx

2

)
En

y

]
. (2.27)

By eliminating the field components of (2.25)-(2.27), a quadratic equation is obtained

as

(ξ − 1) (1 − 1/ξ) = −K, (2.28)

where

K = 4c2Δt2
[

1

Δx2
sin2

(
kx

Δx

2

)
+

1

Δy2
sin2

(
ky

Δy

2

)]
(2.29)
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and c is the speed of light. By solving (2.28), the growth factor of the 2-D TE mode

FDTD method is found as

ξ =
2 − K ± j

√
K (4 − K)

2
. (2.30)

Since K is always positive, the magnitude of the growth factor is less than 1 if K ≤ 4.

It implies that the stability condition for the 2-D TE mode FDTD method is

Δt ≤ 1

c

(
1

Δx2
+

1

Δy2

)−1/2

. (2.31)

From (2.31), it can be observed that the upper bound of the time-step is proportional

to the cell size. It means that when a small cell size is used, a small time-step is also

required to guarantee the numerical stability.

2.2.3 Numerical Dispersion of the FDTD Method

The dispersion relation is used to represent the relationship of the phase velocity of a

travelling wave with different frequencies. It can be presented in wavenumber k as

k =
ω

up

, (2.32)

where ω is angular frequency and up is phase velocity. The theoretical dispersion relation

for a 2-D plane wave in free-space is

k2
x + k2

y =
(

ω

c

)2

, (2.33)

where kx and ky are the wavenumber in the x and y directions.

When the FDTD method is applied, the space is sampled into discrete cells. It causes

a phase velocity of the numerical wave that is different from the theoretical one. This

error is called numerical dispersion error.
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The dispersion relation of the FDTD method can be devised from (2.28). Since the

growth factor is unity at the stable condition, the growth factor can be expressed in terms

of the time-step as

ξ = ejωΔt. (2.34)

Then, the dispersion relation of the 2-D FDTD method in free-space can be obtained as

(
1

cΔt

)2

sin2
(
ω

Δt

2

)
=

1

Δx2
sin2

(
kx

Δx

2

)
+

1

Δy2
sin2

(
ky

Δy

2

)
. (2.35)

It can be observed that when Δx, Δy, and Δt all go to zero, the dispersion of the 2-D

FDTD method (2.35) is converted to the theoretical one (2.33). It means that when the

cell size is small enough, the numerical solution is close to the analytical solution. This

is one of the reasons that small cell size is required in the FDTD method.

2.2.4 Limitation of the FDTD Method

Although the FDTD method is easy to understand and formulate, it is a computational

resources-consuming method. Since the FDTD method is a numerical iterative method,

the required memory and computational time are dependent on the cell size and the

time-step. Smaller cell size or time-step results in more required computational resources.

The cell size must be small enough to model the smallest dimension of the structure

and in comparison with the smallest wavelength of the signal—usually at least 20 cells

per wavelength—in order to make the numerical error negligible, which is shown in the

previous section. The size of the time-step is also limited by the stability condition (2.31),

which must be proportional to the smallest cell size.
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2.3 Overview of the ADI-FDTD Method

When the FDTD method is applied, the selections of the cell size and the size of time-step

are limited. The constraint on the choosing of the cell size is difficult to relax because it is

due to the physical dimensions of the structure. In 1999, the unconditionally stable ADI-

FDTD method was developed, whereby the constraint on choosing of the size of time-step

is relaxed and can be set to any arbitrary value while the system remains stable.

2.3.1 Formulation of the ADI-FDTD Method

The ADI-FDTD method uses the same spatial grid as the Yee’s method, shown in Figure

2.1. However, the Alternating Direction Implicit (ADI) method is used—instead of the

explicit leapfrog method—to solve Maxwell’s equations. For Yee’s method, the updating

equations (2.21)-(2.23) are explicit. All of the field components at the new time instant

are computed using the data previously stored. For the ADI-FDTD method, simultaneous

equations are used.

The ADI method is used to solve multi-directional partial differential equations. When

the ADI method is used, one direction is treated implicitly first, then the other direction

in the next step. To demonstrate how to apply the ADI method on the FDTD method,

a 2-D model for a TE wave (2.18)-(2.20) in an isotropic loss-free medium is considered as

an example.

Since the ADI method treats the equation implicitly in different directions alternately,

one discrete time-step is calculated using two procedures. For the first procedure of

the ADI-FDTD, the x-direction spatial derivatives are treated implicitly. The updating
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equations of the first procedure are

E
n+1/2
x,i+1/2,j = En

x,i+1/2,j +
Δt/2

ε

(
Hn

z,i+1/2,j+1/2 − Hn
z,i+1/2,j−1/2

Δy

)
, (2.36)

E
n+1/2
y,i,j+1/2 = En

y,i,j+1/2 −
Δt/2

ε

⎛⎝H
n+1/2
z,i+1/2,j+1/2 − H

n+1/2
z,i−1/2,j+1/2

Δx

⎞⎠ , (2.37)

H
n+1/2
z,i+1/2,j+1/2 = Hn

z,i+1/2,j+1/2 +
Δt/2

μ

(
En

x,i+1/2,j+1 − En
x,i+1/2,j

Δy

)

−Δt/2

μ

⎛⎝E
n+1/2
y,i+1,j+1/2 − E

n+1/2
y,i,j+1/2

Δx

⎞⎠ . (2.38)

In the first procedure, the En+1/2
x components can be computed by (2.36) directly using

the data previously stored. The En+1/2
y and Hn+1/2

z components cannot be computed

by using (2.37) and (2.38) independently in direct numerical calculation. However, by

combining (2.37) and (2.38), a equation for the Hn+1/2
z components can be obtained as

− Δt2

4εμΔx2
H

n+1/2
z,i+3/2,j+1/2 +

(
1 +

Δt2

2εμΔx2

)
H

n+1/2
z,i+1/2,j+1/2 −

Δt2

4εμΔx2
H

n+1/2
z,i−1/2,j+1/2

= Hn
z,i+1/2,j+1/2 +

Δt

2μ

(
En

x,i+1/2,j+1 − En
x,i+1/2,j

Δy

)

−Δt

2μ

(
En

y,i+1,j+1/2 − En
y,i,j+1/2

Δx

)
. (2.39)

The equation (2.39) can be simplified as

aiui−1 + biui + ciui+1 = di, (2.40)

where ui represents H
n+1/2
z,i−1/2,j−1/2 which is the unknown variable, ai,bi,ci represent the

corresponding coefficients and di is the known variable.

Assume that the computational domain has N rows in the x-direction. There will be
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N equations by having different suffix i and they can be expressed in matrix form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 c1 0 · · · 0

0 a2 b2 c2 0 · · · 0

...
. . .

. . .
. . .

...

0 · · · 0 aN−1 bN−1 cN−1 0

0 · · · 0 aN bN cN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u0

u1

...

uN

uN+1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

d2

...

dN−1

dN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.41)

This N equations N +2 unknowns system is unsolvable. However, u0 and uN+1 are at the

boundary, they are calculated using the boundary conditions by the data at the previous

time-step. They become known variables when (2.41) is computed. Then, (2.41) can be

rewritten as

Au = d −B1u0 − B2uN+1 (2.42)

where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1 c1 0 · · · 0

a2 b2 c2 0 · · · 0

0

...
. . .

. . .
. . .

...

0

0 · · · 0 aN−1 bN−1 cN−1

0 · · · 0 aN bN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (2.43)
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u =

[
u1 u2 · · · uN−1 uN

]T

, (2.44)

d =

[
d1 d2 · · · dN−1 dN

]T

, (2.45)

B1 =

[
a1 0 0 · · · 0 0

]T

, (2.46)

B2 =

[
0 0 · · · 0 0 cN

]T

. (2.47)

The system becomes a N equations N unknowns solvable system. Since A is a tri-diagonal

sparse matrix, there are many efficient methods to solve the system, such as Gaussian

elimination and LU method. The time-consuming calculation A−1 can be avoided.

Then, the En+1/2
y components can be computed by (2.37), using the Hn+1/2

z compo-

nents.

The second procedure can be formulated similarly, except that the y-direction spatial

derivatives are treated implicitly. The updating equations of the second procedure are

En+1
x,i+1/2,j = E

n+1/2
x,i+1/2,j +

Δt/2

ε

⎛⎝Hn+1
z,i+1/2,j+1/2 − Hn+1

z,i+1/2,j−1/2

Δy

⎞⎠ , (2.48)

En+1
y,i,j+1/2 = E

n+1/2
y,i,j+1/2 −

Δt/2

ε

⎛⎝H
n+1/2
z,i+1/2,j+1/2 − H

n+1/2
z,i−1/2,j+1/2

Δx

⎞⎠ , (2.49)

Hn+1
z,i+1/2,j+1/2 = H

n+1/2
z,i+1/2,j+1/2 +

Δt/2

μ

⎛⎝En+1
x,i+1/2,j+1 − En+1

x,i+1/2,j

Δy

⎞⎠
−Δt/2

μ

⎛⎝E
n+1/2
y,i+1,j+1/2 − E

n+1/2
y,i,j+1/2

Δx

⎞⎠ . (2.50)

The En+1
y components can be computed by (2.49) directly, using the data previously

stored. The En+1
x and Hn+1

z components cannot be computed by using (2.48) and (2.50)

independently in direct numerical calculation. However, by combining (2.48) and (2.50),
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an equation for the Hn+1
z components can be obtained as

− Δt2

4εμΔy2
Hn+1

z,i+1/2,j+3/2 +

(
1 +

Δt2

2εμΔy2

)
Hn+1

z,i+1/2,j+1/2 −
Δt2

4εμΔy2
Hn+1

z,i+1/2,j−1/2

= H
n+1/2
z,i+1/2,j+1/2 −

Δt

2μ

⎛⎝E
n+1/2
y,i+1,j+1/2 − E

n+1/2
y,i,j+1/2

Δx

⎞⎠
+

Δt

2μ

⎛⎝E
n+1/2
x,i+1/2,j+1 − E

n+1/2
x,i+1/2,j

Δy

⎞⎠ . (2.51)

The equation (2.51) can be written in tri-diagonal matrix form by having different

suffix j, and the matrix can be solved after including the boundary conditions. Then, the

En+1
x components can be computed by (2.48) using the Hn+1

z components.

The basis flowchart of the ADI-FDTD method is shown in Figure 2.3.

2.3.2 Numerical Stability of the ADI-FDTD Method

The concept of the ADI method is based on the Crank-Nicholson method, which is always

stable. The Crank-Nicholson method applies the average of the central difference formulas

at the nth and (n + 1)th time instant to approximate the spatial derivative at the (n +

1/2)th time instant. When the updating equations for the Ex components at the (n +

1/2)th (2.36) and (n + 1)th (2.48) iteration are combined, it obtains

En+1
x,i+1/2,j − En

x,i+1/2,j

Δt

=
1

ε

⎡⎣1

2

⎛⎝Hn+1
z,i+1/2,j+1/2 − Hn+1

z,i+1/2,j−1/2

Δy
+

Hn
z,i+1/2,j+1/2 − Hn

z,i+1/2,j−1/2

Δy

⎞⎠⎤⎦ .(2.52)

It can be observed that the average of the central difference formulas at the nth and

(n + 1)th time instant is used to approximate the spatial derivative in y-direction at the

(n + 1/2)th time instant. Besides, when the updating equations for the Ey components
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Ex is calculated by (2.36)

Hz is calculated by the system
of linear equations (2.39)

Ey is calculated by (2.37)1st procedure

2nd procedure

t = t + ½ t

t = t + ½ t

t > tmax

END

Start

t = 0

Y

Ey is calculated by (2.49)

N

Hz is calculated by the system
of linear equations (2.51)

Ex is calculated by (2.48)

Figure 2.3: Flowchart of the 2-D ADI-FDTD method for a TE wave.
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at the nth and (n + 1/2)th (2.37) iteration are combined, it obtains

E
n+1/2
y,i,j+1/2 − E

n−1/2
y,i,j+1/2

Δt

= −1

ε

⎡⎣1

2

⎛⎝H
n−1/2
z,i+1/2,j+1/2 − H

n−1/2
z,i−1/2,j+1/2

Δx
+

H
n+1/2
z,i+1/2,j+1/2 − H

n+1/2
z,i−1/2,j+1/2

Δx

⎞⎠⎤⎦ . (2.53)

It can be also observed that the average of the central difference formulas at the (n−1/2)th

and (n+1/2)th time instant is used to approximate the spatial derivative in x-direction at

the nth time instant. By the same manner, it can be observed that the averaging method

is used at the updating equation for the Hz components.

To analyze the stability of the ADI-FDTD method, the von Neumann method is

used. The trial solutions for the 2-D TE wave (2.24) are substituted into the updating

equations of the two procedures (2.36)-(2.38), (2.48)-(2.50). Since the complete update

cycle includes two procedures, in order to determine the overall growth factor ξ, the

updating equations of the two procedures are combined and written as

ε0ξE
n
x + WyξH

n
z = ε0E

n
x − WyH

n
z , (2.54)

−WxWyξE
n
x + ε0μ0ξE

n
y − WxWyξH

n
z = −WxWyE

n
x + ε0μ0E

n
y − WxWyH

n
z , (2.55)

WyξE
n
x − WxξE

n
y + μ0ξH

n
z = −WyE

n
x + WxE

n
y + μ0H

n
z , (2.56)

where

Wx = j
Δt

Δx
sin
(
kx

Δx

2

)
, (2.57)

Wy = j
Δt

Δy
sin
(
ky

Δy

2

)
. (2.58)

By eliminating the field components of (2.54)-(2.56), it obtains

(ξ − 1)2

(ξ + 1)2 = −K, (2.59)
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where

K = S2
x + S2

y + S2
xS

2
y , (2.60)

Sx =
cΔt

Δx
sin
(
kx

Δx

2

)
, (2.61)

Sy =
cΔt

Δy
sin
(
ky

Δy

2

)
, (2.62)

and c is the speed of light. By solving (2.59), the growth factor of the ADI-FDTD method

is found as

ξ =
1 − K ± 2j

√
K

1 + K
. (2.63)

Since K is always positive, the magnitude of the growth factor is always unity. There-

fore, the ADI-FDTD method is unconditionally stable.

2.3.3 Numerical Dispersion of the ADI-FDTD Method

Since the magnitude of the growth factor is always unity, the growth factor can be ex-

pressed in terms of the time-step as

ξ = ejωΔt. (2.64)

The numerical dispersion relation of the ADI-FDTD method can be derived from

(2.59) as

S2
x + S2

y + S2
xS

2
y = tan2

(
ωΔt

2

)
. (2.65)

Before the numerical dispersion error of the ADI-FDTD method is studied, it is as-

sumed that uniform square cell is used, where Δx = Δy = Δ. Besides, with regard to the

2-D FDTD method, the maximum time-step under CFL stability condition is defined as

ΔtCFL =
Δ

c
√

2
(2.66)
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and a ratio of time-step is defined as

CFLN =
Δt

ΔtCFL

. (2.67)

A larger CFLN means that a larger time-step is applied.

Figure 2.4 shows the numerical dispersion error of the FDTD and ADI-FDTD at

different mesh resolutions with different CFLN . It can be observed that when the cell size

decreases, the numerical dispersion error decreases. In addition, the numerical dispersion

error increases when the ADI method is applied. Furthermore, a larger time-step results

in higher numerical dispersion error.

Although the ADI method is stable under any arbitrary time-step, the maximum time-

step is limited by the numerical dispersion error. It reduces the ability of the ADI-FDTD

method to retrench the computational resources.
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Figure 2.4: Numerical dispersion errors of the FDTD and ADI-FDTD method with

different mesh resolutions at different CFLN .



Chapter 3

The High-Order ADI-FDTD Method

3.1 Introduction

From the previous chapter, it is found that the ADI method can reduce the required nu-

merical resources of the FDTD method by the unconditionally stable property. However,

the numerical dispersion error increases when the ADI method is applied. In addition,

larger time-step results in higher numerical dispersion error. It limits the maximum time-

step of the ADI-FDTD method.

When we apply the ADI-FDTD method, the numerical dispersion error must be

present because of the grid discretization. The obvious way to reduce the numerical

dispersion error is to reduce the cell size and the time-step. When both approach to zero,

the dispersion relation converges to the theoretical value.

From the previous chapter, the numerical dispersion relation of the ADI-FDTD method

is found as

S2
x + S2

y + S2
xS

2
y = tan2

(
ωΔt

2

)
, (3.1)

28
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where

Sx =
cΔt

Δx
sin
(
kx

Δx

2

)
, (3.2)

Sy =
cΔt

Δy
sin
(
ky

Δy

2

)
. (3.3)

It can be rewritten as

c2

Δx2
sin2

(
kx

Δx

2

)
+

c2

Δy2
sin2

(
ky

Δy

2

)
+

c4Δt2

Δx2Δy2
sin2

(
kx

Δx

2

)
sin2

(
ky

Δy

2

)

=
1

Δt2
tan2

(
ωΔt

2

)
. (3.4)

By taking the limit of both sides for Δt → 0, Δx → 0 and Δy → 0, it becomes

lim
Δt,Δx,Δy→0

c2

Δx2
sin2

(
kx

Δx

2

)
+

c2

Δy2
sin2

(
ky

Δy

2

)
+

c4Δt2

Δx2Δy2
sin2

(
kx

Δx

2

)
sin2

(
ky

Δy

2

)

=
c2

2

(
k2

x + k2
y

)
, (3.5)

lim
Δt,Δx,Δy→0

1

Δt2
tan2

(
ωΔt

2

)
=

ω2

2
. (3.6)

Combining 3.5 and 3.6, we get

k2
x + k2

y =
(

ω

c

)2

. (3.7)

It is not an efficient way to reduce the numerical dispersion error by reducing the cell

size and time-step because both computational time and required memory will be rapidly

increased. From other research [25] - [30], using multi-points high-order central difference

scheme—instead of two-points second-order central difference scheme—can reduce the

numerical dispersion error.

3.2 Multi-Points High-Order Central Difference Scheme

According to the Yee’s grid, a one-dimensional diagram for the approximation of the

spatial derivative Φ′(x0) is shown in Figure 3.1, where Φ is the field component. In
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Figure 3.1: The approximation of the spatial derivative Φ′(x0).

the Yee’s FDTD method and the ADI-FDTD method, the two-points central difference

scheme (3.8) is used to approximate the spatial derivatives, where

Φ′ (x0) �
Φ
(
x0 + Δx

2

)
− Φ

(
x0 − Δx

2

)
Δx

. (3.8)

By using Taylor series, it can be obtained that

Φ
(
x0 +

Δx

2

)
= Φ (x0)+

Δx

2
Φ′ (x0)+

1

2!

(
Δx

2

)2

Φ′′ (x0)+
1

3!

(
Δx

2

)3

Φ′′′ (x0)+ . . . , (3.9)

Φ
(
x0 − Δx

2

)
= Φ (x0)−Δx

2
Φ′ (x0)+

1

2!

(
Δx

2

)2

Φ′′ (x0)− 1

3!

(
Δx

2

)3

Φ′′′ (x0)+. . . . (3.10)

Then, by subtracting (3.10) from (3.9), it yields

Φ
(
x0 +

Δx

2

)
− Φ

(
x0 − Δx

2

)
= ΔxΦ′ (x0) + O

(
Δx3

)
, (3.11)

or

Φ′ (x0) =
Φ
(
x0 + Δx

2

)
− Φ

(
x0 − Δx

2

)
Δx

+ O
(
Δx2

)
. (3.12)

It can be shown that the two-points central difference scheme is of second-order accuracy.
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To obtain higher order accuracy, the multi-points central difference scheme [2] can

be used. Four-points central difference scheme is taken as an example. By using Taylor

series, the four points can be written as

Φ
(
x0 +

Δx

2

)
= Φ (x0) +

Δx

2
Φ′ (x0) +

1

2!

(
Δx

2

)2

Φ′′ (x0) +
1

3!

(
Δx

2

)3

Φ′′′ (x0)

+
1

4!

(
Δx

2

)4

Φ4 (x0) +
1

5!

(
Δx

2

)5

Φ5 (x0) + . . . , (3.13)

Φ
(
x0 − Δx

2

)
= Φ (x0) +

Δx

2
Φ′ (x0) − 1

2!

(
Δx

2

)2

Φ′′ (x0) +
1

3!

(
Δx

2

)3

Φ′′′ (x0)

− 1

4!

(
Δx

2

)4

Φ4 (x0) +
1

5!

(
Δx

2

)5

Φ5 (x0) + . . . , (3.14)

Φ
(
x0 +

3Δx

2

)
= Φ (x0) +

3Δx

2
Φ′ (x0) +

1

2!

(
3Δx

2

)2

Φ′′ (x0) +
1

3!

(
3Δx

2

)3

Φ′′′ (x0)

+
1

4!

(
3Δx

2

)4

Φ4 (x0) +
1

5!

(
3Δx

2

)5

Φ5 (x0) + . . . , (3.15)

Φ
(
x0 − 3Δx

2

)
= Φ (x0) +

3Δx

2
Φ′ (x0) − 1

2!

(
3Δx

2

)2

Φ′′ (x0) +
1

3!

(
3Δx

2

)3

Φ′′′ (x0)

− 1

4!

(
3Δx

2

)4

Φ4 (x0) +
1

5!

(
3Δx

2

)5

Φ5 (x0) + . . . . (3.16)

By subtracting (3.14) from (3.13), (3.16) from (3.15) and then adding them together, it

yields

A
[
Φ
(
x0 +

Δx

2

)
− Φ

(
x0 − Δx

2

)]
+ B

[
Φ
(
x0 +

3Δx

2

)
− Φ

(
x0 − 3Δx

2

)]

= (A + 3B)ΔxΦ′ (x0) + (A + 27B)
1

3!

(
Δx

2

)3

Φ′′′ (x0) + O
(
Δx5

)
, (3.17)

where A and B are the coefficients of the four-points central difference scheme. To mini-

mize the error, it sets

A + 3B = 1 (3.18)

and

A + 27B = 0. (3.19)
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Table 3.1: Coefficients a(m) of the multi-points high-order central difference scheme.

m 2nd order 4th order 6th order 10th order

0 1.000000 1.125000 1.171875 1.211243

1 -0.041667 -0.065104 -0.089722

2 0.004688 0.013843

3 -0.001766

4 0.000119

a(−1 − m) = −a(m)

By solving (3.18) and (3.19), it obtains

Φ′ (x0) =

27
24

[
Φ
(
x0 + Δx

2

)
− Φ

(
x0 − Δx

2

)]
+ −1

24

[
Φ
(
x0 + 3Δx

2

)
− Φ

(
x0 − 3Δx

2

)]
Δx

+O
(
Δx4

)
. (3.20)

It can be found that the four-points central difference scheme is of fourth-order accuracy.

In general, we define that the δp is the operator of the multi-points central difference

approximation with respect to variable p. For example, the approximation of the spatial

derivative of the field component Φ with respect to x is given by

δxΦi,j =
1

Δx

M/2−1∑
m=−M/2

a(m)Φi+m+1/2,j, (3.21)

where a(m) is the coefficient of the central difference scheme and M is the total number

of points used.

The a(m) of different order schemes can be found by the same manner, and they are

shown in Table 3.1.
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3.3 The High-Order ADI-FDTD Method

3.3.1 Formulation of the High-Order ADI-FDTD Method

For Yee’s FDTD method and the ADI-FDTD method, two-points second-order central

difference scheme is used to approximate the temporal derivatives and the spatial deriva-

tives. To apply high-order method, only high-order backward difference scheme, which

requires huge number of memory, can be used to approximate the temporal derivatives. It

is because unknowns in different time instants will be included at an updating equation if

high-order central difference or forward difference scheme is used. Mathematically, those

updating equations can be solved by forming equations system, however, it will have un-

knowns from each time instant, and the method is no longer a time-iterative simulation.

In addition, for this simulation method, it is unpractical because final values are needed

to solve the equations system.

Following the formulation of the ADI-FDTD method in the previous chapter, the high-

order ADI-FDTD method [36]-[38] also has two procedures to calculate in one time-step.

The two-points second-order central difference scheme is replaced by the multi-points

high-order central difference scheme to approximate the spatial derivatives. The tempo-

ral derivatives are still approximated by the two-points second-order central difference

scheme. The updating equations of the first procedure for a 2-D TE wave in an isotropic

loss free medium can be written as

E
n+1/2
x,i+1/2,j = En

x,i+1/2,j +
Δt/2

ε
δyH

n
z,i+1/2,j+1/2, (3.22)

E
n+1/2
y,i,j+1/2 = En

y,i,j+1/2 −
Δt/2

ε
δxH

n+1/2
z,i+1/2,j+1/2, (3.23)

H
n+1/2
z,i+1/2,j+1/2 = Hn

z,i+1/2,j+1/2 +
Δt/2

μ

(
δyE

n
x,i+1/2,j+1 − δxE

n+1/2
y,i+1,j+1/2

)
, (3.24)
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where δp is defined as the operator of the multi-points central difference approximation

with respect to variable p. For example, the approximation of the spatial derivative of

the field component Φ with respect to x is given by

δxΦ
n
i,j =

1

Δx

M−1∑
m=−M

a(m)Φn
i+m+1/2,j . (3.25)

The a(m) depends on order of the central difference scheme used to approximate the

spatial derivatives.

The updating equations of the second procedure can also be obtained as

En+1
x,i+1/2,j = E

n+1/2
x,i+1/2,j +

Δt/2

ε
δyH

n+1
z,i+1/2,j+1/2, (3.26)

En+1
y,i,j+1/2 = E

n+1/2
x,i,j+1/2 −

Δt/2

ε
δxH

n+1/2
z,i+1/2,j+1/2, (3.27)

Hn+1
z,i+1/2,j+1/2 = H

n+1/2
z,i+1/2,j+1/2 +

Δt/2

μ

(
δyE

n+1
x,i+1/2,j+1 − δxE

n+1/2
y,i+1,j+1/2

)
. (3.28)

Similar to the ADI-FDTD method, the high-order ADI-FDTD also forms simultaneous

equations by combining the updating equations. It takes fourth-order ADI-FDTD method

as an example. The updating equations of the first procedure of the fourth-order ADI-

FDTD method are

E
n+1/2
x,i+1/2,j = En

x,i+1/2,j +
Δt/2

εΔy

⎡⎢⎢⎢⎣
27
24

(
Hn

z,i+1/2,j+1/2 − Hn
z,i+1/2,j−1/2

)
− 1

24

(
Hn

z,i+1/2,j+3/2 − Hn
z,i+1/2,j−3/2

)
⎤⎥⎥⎥⎦ , (3.29)

E
n+1/2
y,i,j+1/2 = En

y,i,j+1/2 −
Δt/2

εΔx

⎡⎢⎢⎢⎣
27
24

(
H

n+1/2
z,i+1/2,j+1/2 − H

n+1/2
z,i−1/2,j+1/2

)
− 1

24

(
H

n+1/2
z,i+3/2,j+1/2 − H

n+1/2
z,i−3/2,j+1/2

)
⎤⎥⎥⎥⎦ , (3.30)

H
n+1/2
z,i+1/2,j+1/2 = Hn

z,i+1/2,j+1/2 +
Δt/2

μΔy

⎡⎢⎢⎢⎣
27
24

(
En

x,i+1/2,j+1 − En
x,i+1/2,j

)
− 1

24

(
En

x,i+1/2,j+2 − En
x,i+1/2,j−1

)
⎤⎥⎥⎥⎦
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−Δt/2

μΔx

⎡⎢⎢⎢⎣
27
24

(
E

n+1/2
y,i+1,j+1/2 − E

n+1/2
y,i,j+1/2

)
− 1

24

(
E

n+1/2
y,i+2,j+1/2 − E

n+1/2
y,i−1,j+1/2

)
⎤⎥⎥⎥⎦ . (3.31)

By combining (3.30) and (3.31), an equation for the Hn+1/2
z components can be obtained

as

− 1

242

Δt2

4εμΔx2
H

n+1/2
z,i+7/2,j+1/2 +

54

242

Δt2

4εμΔx2
H

n+1/2
z,i+5/2,j+1/2 −

783

242

Δt2

4εμΔx2

27

242
H

n+1/2
z,i+3/2,j+1/2

+

(
1 +

1460

242

Δt2

4εμΔx2

)
H

n+1/2
z,i+1/2,j+1/2 −

783

242

Δt2

4εμΔx2
H

n+1/2
z,i−1/2,j+1/2

+
54

242

Δt2

4εμΔx2
H

n+1/2
z,i−3/2,j+1/2 −

1

242

Δt2

4εμΔx2
H

n+1/2
z,i−5/2,j+1/2

= Hn
z,i+1/2,j+1/2 +

Δt

2μΔy

[
27

24

(
En

x,i+1/2,j+1 − En
x,i+1/2,j

)
− 1

24

(
En

x,i+1/2,j+2 − En
x,i+1/2,j−1

)]

− Δt

2μΔx

[
27

24

(
En

y,i+1,j+1/2 − En
y,i,j+1/2

)
− 1

24

(
En

y,i+2,j+1/2 − En
y,i−1,j+1/2

)]
. (3.32)

It can be simplified as

aiui−3 + biui−2 + ciui−1 + diui + eiui+1 + fiui+2 + giui+3 = hi. (3.33)

where ui represents H
n+1/2
z,i−1/2,j−1/2 which is the unknown variable, ai,bi,ci,di,ei,fi,gi repre-

sent the corresponding coefficients and hi is the known variable.

Assume that the computational domain has N rows in the x-direction. There will be
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N equations by having different suffix i and they can be expressed in matrix form as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1 b1 c1 d1 e1 f1 g1 0 · · · 0

0 a2 b2 c2 d2 e2 f2 g2 0 · · · 0

...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

...

0

0 · · · 0 aN bN cN dN eN fN gN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u−2

u−1

u0

u1

...

uN

uN+1

uN+2

uN+3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

h1

h2

...

hN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(3.34)

This N equations N + 6 unknowns system is unsolvable. However, u−2,u−1,u0,uN+1,uN+2

and uN+3 are at the boundary, they can be calculated using the data at the previous time-

step by the boundary conditions. They become known variables when (3.34) is computed.

Then, (3.34) can be rewritten as

Au = h −B1

[
u−2 u−1 u0

]
− B2

[
uN+1 uN+2 uN+3

]
, (3.35)
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where

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 e1 f1 g1 0 · · · 0

c2 d2 e2 f2 g2 0 · · · 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 ai bi ci di ei fi gi 0

. . .
. . .

. . .
. . .

. . .
. . .

. . .

0 · · · 0 aN−1 bN−1 cN−1 dN−1 eN−1

0 · · · 0 aN bN cN dN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.36)

u =

[
u1 u2 · · · uN−1 uN

]T

, (3.37)

h =

[
h1 h2 · · · hN−1 hN

]T

, (3.38)

B1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1 b2 a3 0 · · · 0

b1 a2 0 · · · 0

a1 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

, (3.39)

B2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 aN

0 · · · 0 aN−1 bN

0 · · · 0 aN bN−1 cN

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (3.40)

The system becomes an N equations N unknowns solvable system. A is a hepta-diagonal

matrix. Since N is much larger than 7, A is still a sparse matrix and the system can be
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solved using efficient methods. Besides, multi-layers of boundary conditions are required

for the high-order ADI-FDTD method. Therefore, for an open region simulation, the

perfectly matched layer (PML)[33]-[35],[39]-[44] is one of the possible absorbing boundary

conditions for the high-order ADI-FDTD method.

By the similar manner, the updating equations of the second procedure of the fourth-

order ADI-FDTD method can be written as

En+1
x,i+1/2,j = E

n+1/2
x,i+1/2,j +

Δt/2

εΔy

⎡⎢⎢⎢⎣
27
24

(
Hn+1

z,i+1/2,j+1/2 − Hn+1
z,i+1/2,j−1/2

)
− 1

24

(
Hn+1

z,i+1/2,j+3/2 − Hn+1
z,i+1/2,j−3/2

)
⎤⎥⎥⎥⎦ , (3.41)

En+1
y,i,j+1/2 = E

n+1/2
y,i,j+1/2 −

Δt/2

εΔx

⎡⎢⎢⎢⎣
27
24

(
H

n+1/2
z,i+1/2,j+1/2 − H

n+1/2
z,i−1/2,j+1/2

)
− 1

24

(
H

n+1/2
z,i+3/2,j+1/2 − H

n+1/2
z,i−3/2,j+1/2

)
⎤⎥⎥⎥⎦ , (3.42)

Hn+1
z,i+1/2,j+1/2 = H

n+1/2
z,i+1/2,j+1/2 +

Δt/2

μΔy

⎡⎢⎢⎢⎣
27
24

(
En+1

x,i+1/2,j+1 − En+1
x,i+1/2,j

)
− 1

24

(
En+1

x,i+1/2,j+2 − En+1
x,i+1/2,j−1

)
⎤⎥⎥⎥⎦

−Δt/2

μΔx

⎡⎢⎢⎢⎣
27
24

(
E

n+1/2
y,i+1,j+1/2 − E

n+1/2
y,i,j+1/2

)
− 1

24

(
E

n+1/2
y,i+2,j+1/2 − E

n+1/2
y,i−1,j+1/2

)
⎤⎥⎥⎥⎦ . (3.43)

Then, by combining (3.41) and (3.43), an equation for the Hn+1
z components can be

obtained as

− 1

242

Δt2

4εμΔy2
Hn+1

z,i+1/2,j+7/2 +
54

242

Δt2

4εμΔy2
Hn+1

z,i+1/2,j+5/2 −
783

242

Δt2

4εμΔy2

27

242
Hn+1

z,i+1/2,j+3/2

+

(
1 +

1460

242

Δt2

4εμΔy2

)
Hn+1

z,i+1/2,j+1/2 −
783

242

Δt2

4εμΔy2
Hn+1

z,i+1/2,j−1/2

+
54

242

Δt2

4εμΔy2
Hn+1

z,i+1/2,j−3/2 −
1

242

Δt2

4εμΔy2
Hn+1

z,i+1/2,j−5/2

= H
n+1/2
z,i+1/2,j+1/2 −

Δt

2μΔx

[
27

24

(
E

n+1/2
y,i+1,j+1/2 − E

n+1/2
y,i,j+1/2

)
− 1

24

(
E

n+1/2
y,i+2,j+1/2 − E

n+1/2
y,i−1,j+1/2

)]

+
Δt

2μΔy

[
27

24

(
E

n+1/2
x,i+1/2,j+1 − E

n+1/2
x,i+1/2,j

)
− 1

24

(
E

n+1/2
x,i+1/2,j+2 − E

n+1/2
x,i+1/2,j−1

)]
. (3.44)
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Assume that the computational domain has P columns in the y-direction. There will be

P equations by having different suffix j, and they can be solved by the same manner with

the first procedure mentioned above.

3.3.2 Numerical Stability of the High-Order ADI-FDTD Method

To analyze the stability of the high-order ADI-FDTD method, the von Neumann method

is used. The trial solutions for the 2-D TE wave (2.24) are substituted into the updating

equations of the two procedures (3.22)-(3.24), (3.26)-(3.28). Since the only difference

between the high-order ADI-FDTD method and the ADI-FDTD method is using different

order central difference schemes to approximate the spatial derivatives, the formulation

of the numerical stability is very similar.

After substituting the trial solutions into the updating equations of the two procedures,

the resulted equations are combined as

ε0ξE
n
x + WyξH

n
z = ε0E

n
x − WyH

n
z , (3.45)

−WxWyξE
n
x + ε0μ0ξE

n
y − WxWyξH

n
z = −WxWyE

n
x + ε0μ0E

n
y − WxWyH

n
z , (3.46)

WyξE
n
x − WxξE

n
y + μ0ξH

n
z = −WyE

n
x + WxE

n
y + μ0H

n
z , (3.47)

where

Wx = j
Δt

Δx

M−1∑
m=0

a (m) sin

[
kx

(2m + 1)Δx

2

]
, (3.48)

Wy = j
Δt

Δy

M−1∑
m=0

a (m) sin

[
ky

(2m + 1) Δy

2

]
, (3.49)

and ξ is the growth factor of the complete update cycle, a(m) is the coefficient of the

central difference scheme and kx and ky are wavenumber in the x and y directions respec-

tively.
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By eliminating the field components of (3.45)-(3.47), it obtains

(ξ − 1)2

(ξ + 1)2 = −K, (3.50)

where

K = S2
x + S2

y + S2
xS

2
y , (3.51)

Sx =
cΔt

Δx

M−1∑
m=0

a (m) sin

[
kx

(2m + 1) Δx

2

]
, (3.52)

Sy =
cΔt

Δy

M−1∑
m=0

a (m) sin

[
ky

(2m + 1) Δy

2

]
, (3.53)

and c is the speed of light. By solving (3.50), the growth factor of the ADI-FDTD method

is found as

ξ =
1 − K ± 2j

√
K

1 + K
. (3.54)

Since K is always positive with any coefficient a(m), the magnitude of the growth fac-

tor is always unity. Therefore, the high-order ADI-FDTD method is also unconditionally

stable.

3.3.3 Numerical Dispersion of the High-Order ADI-FDTD Method

Since the magnitude of the growth factor is always unity, the growth factor can be ex-

pressed in terms of the time-step as

ξ = ejωΔt. (3.55)

The numerical dispersion relation of the high-order ADI-FDTD method can be easily

derived from (3.50) as

S2
x + S2

y + S2
xS

2
y = tan2

(
ωΔ, t

2

)
(3.56)
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where

Sx =
cΔt

Δx

M−1∑
m=0

a (m) sin

[
kx

(2m + 1) Δx

2

]
, (3.57)

Sy =
cΔt

Δy

M−1∑
m=0

a (m) sin

[
ky

(2m + 1) Δy

2

]
, (3.58)

and c is the speed of light. To solve the equation of numerical dispersion relation, it

is assumed that the wave propagates at angle θ with respect to the positive x -direction

(kx = kcosθ, ky = ksinθ). Thus, the numerical solution of the wavenumber k = ω/u can

be obtained, where u is the numerical phase velocity. In addition, it is assumed that

square uniform cell is used and the mesh density n is defined as

Δx = Δy = Δ =
λ

n
, (3.59)

where λ is the wavelength of the signal.

The numerical dispersion errors of the high-order ADI-FDTD method at different

mesh densities n are shown in Figure 3.2 to 3.4. Those results are for the fixed time-step

Δt = T/10, T/20 and T/100, respectively, where T is the signal period.

From Figure 3.2 to 3.4, it can be found that the numerical dispersion error of the

conventional second-order ADI-FDTD method is much larger than the other methods

when the mesh is coarse. In addition, the numerical dispersion error decreases when the

mesh density increases. Furthermore, it is observed that the numerical dispersion error is

reduced when the high-order central difference scheme is applied.

When the sixth-order ADI-FDTD method is applied, the numerical dispersion error

is very close to a constant, even in different mesh densities. In addition, no further

improvement is found when the order of the method is higher than six. This is because

the high-order central difference scheme can only reduce the numerical dispersion error,
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Figure 3.2: Numerical dispersion errors of the high-order ADI-FDTD method with

different order central difference schemes at Δt = T/10.
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Figure 3.3: Numerical dispersion errors of the high-order ADI-FDTD method with

different order central difference schemes at Δt = T/20.
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Figure 3.4: Numerical dispersion errors of the high-order ADI-FDTD method with

different order central difference schemes at Δt = T/100.
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Table 3.2: Accuracy limit of the high-order ADI-FDTD method at different time-steps

Δt.

Δt accuracy limit (%)

T/10 2.564

T/20 0.669

T/100 0.026

which is caused by approximating the spatial derivative but not the temporal derivative.

The constant is the accuracy limit of the high-order ADI-FDTD method. To calculate

the constant, we take the limit of the numerical dispersion relation for the cell size going

to zero, it obtains

c2Δt2

4

(
k2

x + k2
y

)
+

c4Δt4

16
k2

xk
2
y = tan2

(
ωΔt

2

)
. (3.60)

Therefore, the error does not depend on the approximation of the spatial derivatives.

Since (3.60) is not equal to the theoretical one, it can calculate the accuracy limit of the

high-order ADI-FDTD method for a given time-step. The accuracy limit for the time-step

Δt = T/10, T/20 and T/100 are computed and shown in Table 3.2. The results are close

to that from the figures.

Figure 3.5 to 3.8 show the numerical dispersion errors of the high-order ADI-FDTD

method with different order central difference schemes at different CFLN . From these

figures, it can be observed that the numerical dispersion errors are reduced when the high-

order central difference schemes are applied. However, the improvement diminishes when

the order of scheme is higher than 4. In addition, the slope of the numerical dispersion

error plot in the log-log diagram is 2. This means that the numerical dispersion error of
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Figure 3.5: Numerical dispersion errors of the high-order ADI-FDTD method with

different order central difference schemes at CFLN = 0.5.
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Figure 3.6: Numerical dispersion errors of the high-order ADI-FDTD method with

different order central difference schemes at CFLN = 1.
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Figure 3.7: Numerical dispersion errors of the high-order ADI-FDTD method with

different order central difference schemes at CFLN = 2.
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Figure 3.8: Numerical dispersion errors of the high-order ADI-FDTD method with

different order central difference schemes at CFLN = 4.
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the high-order ADI-FDTD method is O(Δt2). Furthermore, the improvement of applying

the high-order central difference scheme becomes insignificant when the CFLN is large.

It is because the high-order central difference scheme is applied only to approximate the

spatial derivatives. The numerical dispersion error that is caused by the approximation

of the temporal derivatives dominates when the CFLN is large.

3.3.4 Simulation and Results

To demonstrate the validity and examine the performance of the high-order ADI-FDTD

method, the propagation of the TE wave in a short-circuited parallel-plate waveguide

model, which is shown in Figure 3.9, is simulated. This model is chosen because the

numerical dispersion error can be easily found by the data from two observation points.

In addition, the perfect electric conductor (PEC) is used as the boundaries such that the

stability is not affected by the modelling of the boundary. For simplicity, square uniform

cells are used.

Gaussian pulse
excitation

PEC

air

Obs. Pt.
300 cells

600 cells

20 cells

Y

(10, 20) (10, 320)

X

cell size = 0.3 cm
time-step size = 14.2 ps

Figure 3.9: The 2-D parallel-plate waveguide model.

From the analytical study, it is found that the numerical dispersion error of the ADI-

FDTD method is reduced when the high-order central difference scheme is applied. How-
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ever, there is no further improvement when the order of the scheme is higher than 6.

Therefore, the sixth-order ADI-FDTD is used at the simulation. Besides, the simulation

is performed at different sizes of time-step.

The Ex field at the observation point (10,320) is shown in Figure 3.10. It can be

observed that when the time-step is larger than the CFL stability condition, the method

remains stable but the numerical dispersion increases.

The numerical dispersion error is estimated by the data from the two observation

points [45] and plotted in Figure 3.11. It can be shown that the numerical dispersion

error of the ADI-FDTD method is larger than the FDTD method and increases when the

CFLN is increased. In addition, the numerical dispersion error of the sixth-order ADI-

FDTD method is smaller than that of the conventional second-order ADI-FDTD method

under the same time-step. The results agree with the analytical study.

3.4 Conclusion

The high-order ADI-FDTD method is formulated in this chapter. The multi-points high-

order central difference scheme is applied to approximate the spatial derivatives. The

unconditionally stable property of the high-order ADI-FDTD method is proved by the

analytical method and simulation examples. In addition, the numerical dispersion error

of the high-order ADI-FDTD method is smaller than that of the conventional second-

order ADI-FDTD method under the same time-step. However, it is found that there is no

further improvement when the order of the finite difference scheme is higher than 6, and

the improvement diminishes when the time-step is increased. This is because the high-

order central difference scheme only reduces the error that is caused by the approximation
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Figure 3.10: Ex field at the observation point (10,320) in time domain.
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with different time-steps which are calculated by simulation results.
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of the spatial derivative and the error that is caused by the approximation of the temporal

derivatives dominates when the CFLN is large.



Chapter 4

The (2,4) Low Numerical Dispersion

ADI-FDTD Method

4.1 Introduction

In the previous chapter, it is shown that the numerical dispersion error can be reduced by

applying the multi-points high-order central difference scheme to approximate the spatial

derivatives. However, when the time-step is increased, the improvement becomes rela-

tively insignificant. This is because the high-order scheme can only reduce the numerical

dispersion error, which is caused by approximating the spatial derivatives with the finite

difference scheme but not the temporal derivatives. In addition, the multi-points high-

order central difference scheme cannot be applied to the temporal derivative because the

method will become practically unsolvable.

The simplest high-order FDTD method for electromagnetics simulation is Fang’s (2,4)

scheme. The (2,4) high-order FDTD method uses two-points second-order central differ-

55
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ence scheme to approximate the temporal derivatives and four-points fourth-order central

difference scheme to approximate the spatial derivatives. The finite difference operator of

the fourth-order central difference scheme is computed by Taylor series, shown in previous

chapter.

In 2004, a low numerical dispersion (LD) algorithm based on the (2,4) high-order

FDTD method was proposed [31]. The finite difference operator is determined by min-

imizing the error terms, which are caused by approximating the spatial derivatives and

temporal derivatives with finite difference scheme, in the numerical dispersion relation.

In this chapter, a (2,4) low numerical dispersion ADI-FDTD method is developed

based on the idea of [31]. The formulation of the novel method is shown. The numerical

dispersion error is investigated and compared to the conventional ADI-FDTD method as

well as to the FDTD method.

4.2 Overview of the Low Numerical Dispersion Al-

gorithm for the FDTD method

For the conventional (2,4) FDTD method, the four-points central difference scheme is ap-

plied to approximate the spatial derivatives, and the finite difference operator is computed

by Taylor series. The finite difference operator is determined by cancelling the second-

order error terms and the error of the approximation of the spatial derivative becomes

O(Δx4). However, two-points central difference scheme is still applied to approximate

the temporal derivative. The overall error of the (2,4) FDTD method remains at O(Δt2).

Besides, the size of the time-step is linear proportional to the cell size under the stability



The (2,4) Low numerical dispersion ADI-FDTD method 57

condition. Therefore, the overall error of the (2,4) FDTD method is also equivalent to

O(Δx2).

The idea of the low numerical dispersion algorithm is minimizing the overall second-

order error in the numerical dispersion relation by adjusting the coefficients of the finite

difference operator but is not reducing the order of the accuracy.

To construct the low numerical dispersion algorithm, the four-points central difference

scheme is considered. For example, the approximation of the spatial derivative of the field

component Φ with respect to x is

∂Φi,j

∂x
=

C1

(
Φ

i+
1
2

,j
− Φ

i−1
2

,j

)
+ C2

(
Φ

i+
3
2

,j
− Φ

i−3
2

,j

)
Δx

, (4.1)

where C1 and C2 are the coefficients of the finite difference operator.

In the previous chapter, the numerical dispersion relation of the FDTD method is

formulated. By the same manner, the numerical dispersion relation of the 2-D (2,4)

FDTD method for TE wave in free-space can be formulated as

sin2
(

ωΔt

2

)
= S2

x + S2
y , (4.2)

where

Sx =
cΔt

Δx

[
C1 sin

(
k̃xΔx

2

)
+ C2 sin

(
3k̃xΔx

2

)]
, (4.3)

Sy =
cΔt

Δy

[
C1 sin

(
k̃yΔy

2

)
+ C2 sin

(
3k̃yΔy

2

)]
, (4.4)

c is the speed of light, and k̃x and k̃y are numerical wavenumbers in the x and y directions,

respectively. For a propagation angle θ, the numerical wavenumbers can be written as k̃x

= k̃ cos θ, k̃y = k̃ sin θ.

To analyze the numerical dispersion relation, the trigonometric terms in (4.2) are

expanded using Taylor series and assume that the numerical wavenumber is equal to the
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theoretical one, in which k̃ = k = ω/c. In addition, it is assumed that uniform square cell

is used. Furthermore, with regard to the 2-D FDTD method, the maximum time-step

under the Courant-Friedrich-Levy stability condition is defined as

ΔtCFL =
Δ

c
√

2
(4.5)

and a ratio of the time-step is defined as

CFLN =
Δt

ΔtCFL
, (4.6)

where CFLN must be smaller than 1 to guarantee the stability of the FDTD method.

Therefore, the numerical dispersion relation (4.2) can be rewritten as

ω2

c2
= (C1 + 3C2)

2 k2 − (C1 + 3C2) (C1 + 27C2)
(
cos4 θ + sin4 θ

) k4Δ2

12

+
CFLN2k4Δ2

24
, (4.7)

where terms with the order of the cell size greater than 2 are neglected. The details of

the formulation are shown in Appendix A.

To determine the coefficient C1 and C2 so that the numerical dispersion error is min-

imized, two conditions are formulated from equation (4.7). By equalizing the zero-order

terms in both sides of (4.7), the first condition is obtained as

C1 + 3C2 = 1. (4.8)

This condition guarantees the second-order accuracy.

Then, the second-order terms in the numerical dispersion relation (4.7) are defined as

the error of k2 and can be written as

e = − (C1 + 3C2) (C1 + 27C2)
(
cos4 θ + sin4 θ

) k4Δ2

12
+

CFLN2k4Δ2

24
. (4.9)
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Therefore, by minimizing the mean square error over all angles, the second condition

for determining the coefficients can be formulated as

C1 + 27C2 =
12

19
CFLN2. (4.10)

By combining the first condition (4.8) and the second condition (4.10), C1 and C2 can be

determined for a given CFLN .

The numerical dispersion errors of different FDTD methods at CFLN = 0.75 are

plotted in Figure 4.1. The coefficients of the finite difference operator for the fourth-order

FDTD method are (C1 = 27/24, C2 = −1/24) and that for the LD FDTD method is

(C1 = 657/608, C2 = −49/1824). It is shown that the numerical dispersion errors of both

FDTD methods are O(Δt2). However, the numerical dispersion error of the LD FDTD

method is much smaller than that of the conventional second-order FDTD method and

the fourth-order FDTD method.

4.3 The (2,4) Low Numerical Dispersion ADI-FDTD

Method

4.3.1 Formulation of the (2,4) LD ADI-FDTD Method

The (2,4) LD ADI-FDTD method [46] is formulated based on the idea of [31], which

is minimizing the overall second-order error by adjusting the finite difference operator in

the numerical dispersion relation. Since the ADI-FDTD method is unconditionally stable,

the low numerical dispersion algorithm is very useful for the ADI-FDTD method. It is

because the time-step of the ADI-FDTD method can be set to any arbitrary value, which is
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Figure 4.1: Numerical dispersion errors of different FDTD methods at CFLN = 0.75.
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always larger than that under the stability condition. Therefore, the numerical dispersion

error, which is caused by approximating the temporal derivatives, is dominated. The low

numerical dispersion algorithm can reduce the error terms of the numerical dispersion

relation but not the approximation formula of the individual spatial derivative, which is

used in the high-order FDTD method.

The updating equations of the (2,4) LD ADI-FDTD method are same as the fourth-

order ADI-FDTD method, and the difference is that the finite difference operators are

determined according to the numerical dispersion relation. We consider the numerical

dispersion relation of the (2,4) ADI-FDTD method, which is derived in the previous

chapter, as

tan2
(

ωΔt

2

)
= S2

x + S2
y + S2

xS
2
y , (4.11)

where

Sx =
cΔt

Δx

[
C1 sin

(
k̃xΔx

2

)
+ C2 sin

(
3k̃xΔx

2

)]
, (4.12)

Sy =
cΔt

Δy

[
C1 sin

(
k̃yΔy

2

)
+ C2 sin

(
3k̃yΔy

2

)]
, (4.13)

c is the speed of light, and k̃x and k̃y are numerical wavenumbers in the x and y directions,

respectively. For a propagation angle θ, the numerical wavenumbers can be written as k̃x

= k̃ cos θ, k̃y = k̃ sin θ.

Then, the trigonometric terms in (4.11) are expanded using Taylor series and the

numerical dispersion relation can be rewritten as

ω2

c2
= (C1 + 3C2)

2 k2 − (C1 + 3C2) (C1 + 27C2)

(
cos4 θ + sin4 θ

)
k4Δ2

12

+

(
(C1 + 3C2)

4 cos2 θ sin2 θ

8
− 1

12

)
CFLN2k4Δ2, (4.14)
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where terms with the order of the cell size greater than 2 are neglected. The details of

formulation are shown in Appendix B.

To determine the coefficient C1 and C2 so that the numerical dispersion error is mini-

mized, we can formulate two conditions from equation (4.14). By equalizing the zero-order

terms in both sides of (4.14), the first condition is obtained as

C1 + 3C2 = 1. (4.15)

This condition guarantees the second-order accuracy.

Then, the second-order terms in the numerical dispersion relation (4.14) are defined

as the error of k2 and can be written as

e =
[(

3

2
sin2 θ cos2 θ − 1

)
CFLN2 − (C1 + 27C2)

(
cos4 θ + sin4 θ

)] k4Δ2

12
. (4.16)

After that, we can formulate the second condition to determine C1 and C2 by setting

the error to zero. However, from the expression of the error, it is necessary to consider

the propagation angle. This subsequently leads to two alternative cases to determine the

coefficients of the finite difference operator. For the first case, a propagation angle is

specified. We then have

(
3

2
sin2 θ cos2 θ − 1

)
CFLN2 − (C1 + 27C2)

(
cos4 θ + sin4 θ

)
= 0. (4.17)

In this case, the numerical dispersion error at the specified propagation angle is minimized.

For the second case, we determine the coefficients by minimizing the mean square

error over all angles. We then have the second condition as

C1 + 27C2 = −81

76
CFLN2. (4.18)
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By combining the first condition (4.15) and one of the cases of the second condition

(4.17) or (4.18), C1 and C2 can be determined for a given CFLN .

To reduce the complexity of the equations, the formulation is shown in the two-

dimensional case. The LD method can be extended to the three-dimensional case straight-

forwardly. The only difference is that the formulation starts from the numerical dispersion

relation of (2,4) ADI-FDTD method in three-dimensional case as

tan2
(

ωΔt

2

)
= S2

x + S2
y + S2

z − S2
xS

2
y − S2

xS
2
z − S2

yS
2
z + S2

xS
2
yS

2
z , (4.19)

where

Sx =
cΔt

Δx

[
C1 sin

(
k̃xΔx

2

)
+ C2 sin

(
3k̃xΔx

2

)]
, (4.20)

Sy =
cΔt

Δy

[
C1 sin

(
k̃yΔy

2

)
+ C2 sin

(
3k̃yΔy

2

)]
, (4.21)

Sz =
cΔt

Δz

[
C1 sin

(
k̃zΔz

2

)
+ C2 sin

(
3k̃zΔz

2

)]
. (4.22)

Then, the formulation is the same as that described previously, which starts from expand-

ing the trigonometric terms using the Taylor series.

In Chapter 3.3.2, it is shown that the high-order ADI-FDTD method is unconditionally

stable and that the stability condition is not affected by the coefficients of the finite

difference operator. Therefore, the LD ADI-FDTD method is also unconditionally stable

when the coefficients are modified.

4.3.2 Numerical Dispersion of the (2,4) LD ADI-FDTD Method

For the conventional fourth-order ADI-FDTD method, which is shown in the previous

chapter, the coefficients of the finite difference operator are C1 = 27/24 and C2 = −1/24.
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Therefore, the error of the fourth-order ADI-FDTD method can be formulated from (4.16)

as

eADI = CFLN2k4Δ2

(
− 1

12
+

cos2 θ sin2 θ

8

)
. (4.23)

In addition, with regard to the LD ADI-FDTD method, the error can also be formulated

by substituting the general case of the second condition (4.18) into (4.16) as

eLD−ADI = CFLN2k4Δ2
(
− 1

912
+

1

152
cos 4θ

)
. (4.24)

Furthermore, the error of the LD FDTD method is formulated in the previous section as

eLD−FDTD = CFLN2k4Δ2
(

1

456
− 1

76
cos 4θ

)
. (4.25)

To compare the performance of different methods, the mean square errors over all angles

are calculated according to

e2 =
1

2π

2π∫
0

e (θ)2dθ. (4.26)

Table 4.1: Mean square errors over all angle e2 of different methods.

Simulation method Mean square error e2

4th-order ADI-FDTD 4.706 × 10−3CFLN2k4Δ2

(2,4) LD ADI-FDTD 2.284 × 10−5CFLN2k4Δ2

(2,4) LD FDTD 9.137 × 10−5CFLN2k4Δ2

The mean square errors over all angle e2 of different methods are shown in Table 4.1.

It can be found that the LD ADI-FDTD method has a wide-band error reduction of about

99.5% for any time-step when it compares with the fourth-order ADI-FDTD method. In
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Figure 4.2: Mean absolute numerical dispersion errors with different time-steps at

Δ = λ/50. (Dashed lines represent the numerical dispersion errors when only the

second-order error is considered.)
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addition, the mean square error of the LD ADI-FDTD method is only a quarter that of

the LD FDTD method.

Figure 4.2 and 4.3 show the numerical dispersion errors of different methods with

different time-steps, when the mesh resolution is λ/50 and λ/100. It shows that the

numerical dispersion errors for different methods are second-order when the time-step

is large. In addition, the LD ADI-FDTD method shows a significant reduction on the

numerical dispersion error when it compares with the conventional ADI-FDTD method

and the LD FDTD method with different CFLN . Furthermore, when the time-step is

decreased, the numerical dispersion errors of different methods approach to a constant. It

is because the terms with order greater than 2 have been neglected during the formulation.

If the general case is used in second condition, the second-order error decreases when the

CFLN decreases. The error terms with the order of cell size larger than two become

dominant. Since the coefficients of the finite difference operator are the same for different

methods (C1 = 9/8, C2 = −1/24) when the time-step is reduced to zero, the high-order

error of all methods is

ehigh−order =
9

960

(
cos6 θ + sin6 θ

)
k6Δ4. (4.27)

The details of the formulation can be found in Appendix A and B. In addition, the

numerical dispersion errors, when the time-step is reduced to zero, are shown in Table

4.2.

To show the improvement is wide-band and for all CFLN , the numerical dispersion

errors of different methods with different number of cells per wavelength are plotted in

Figure 4.4 and 4.5, when the CFLN is equal to 1 (C1 = 765/608, C2 = −157/1824) and

8 (C1 = 1467/152, C2 = −1315/456), respectively. It can be observed that the LD ADI-
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Table 4.2: Numerical dispersion error (1 − up/c)2 for Δt → 0.

Δ Simulated results Analytical results

λ/50 0.6581 × 10−12 0.6558 × 10−12

λ/100 0.2571 × 10−14 0.2550 × 10−14

FDTD method can provide a constant improvement over the conventional ADI-FDTD

method and the LD FDTD method at all frequencies for different CFLN .

4.3.3 Simulations and Results

In order to validate the new algorithm, two numerical examples are presented. One of

the examples is a uniform mesh free-space model, and the other is a non-uniform mesh

inhomogeneous medium model. Both of them are simulated by the conventional ADI-

FDTD method and the LD ADI-FDTD method for comparison.

To demonstrate the specified angle case, a free-space model, which is shown in Figure

4.6, for 2-D TE wave propagation with uniform mesh Δ = 0.015m and CFLN = 4 is

simulated. A Gaussian pulse is excited at the center of the computational domain, and

the observation points are specially arranged such that the phase velocities at different

propagation angles can be calculated. The finite difference operator of the LD ADI-

FDTD method is determined in the general case (C1 = 495/152, C2 = −343/456) and

also the specified angle case with θ = 45o (C1 = 29/8, C2 = −7/8). The normalized phase

velocities with different propagation angles at 500MHz are plotted in Figure 4.7. It can be

observed that the curve of the normalized phase velocity of the LD ADI-FDTD method

is closer to 1 and flatter than that from the conventional ADI-FDTD method for both

cases. For the general case, the mean numerical dispersion error of the LD ADI-FDTD
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method is zero. For the specified angle case, the curve of the LD ADI-FDTD method is

shifted, such that the normalized phase velocity at θ = 45o is closer to 1. This means

that the numerical dispersion error at the specified angle is minimum. In addition, the

simulation results agree with the theoretical evaluation.

- Excitation point

- Observationion point

500 cells

PML

500

cells

Figure 4.6: 2-D Free space model.

The non-uniform mesh model with a thin dielectric interface with periodic boundary

[47] is shown in Figure 4.8. The cell size is set as 50mm × 50mm at air and 5mm × 50mm

at the dielectric medium. The average permittivity is used at the surface of the dielectric

medium. The time-step is set as 0.2357 ns, which is 20 times that under the stability

condition (CFLN = 20). The coefficients of the finite difference operator are determined

based on the general case locally. For the fine mesh region, the CFLN equals to 20 and

C1 = 8271/152, C2 = −8119/456. For the coarse mesh region, the CFLN equals to 2 and

C1 = 63/78, C2 = −25/114. A Gaussian pulse is excited at the left boundary and the

right boundary is terminated by the PML with the thickness equals to 10 cells. The pulse
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Figure 4.7: Normalized phase velocities of the LD ADI-FDTD method with different
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propagates in y-direction and normally incidents on the dielectric interface. In addition,

the simulation is also carried out using the LD FDTD method and time-step equals to

0.01178 ns for reference. The Hz field at the Observation Point A in time domain is shown

in Figure 4.10. It can be observed that the first half of the signal is the incident wave, and

the other half is the reflected wave. The signal, which is computed by the conventional

ADI-FDTD method, is dispersed much than the other two methods. The results in the

LD ADI-FDTD method and the LD FDTD method are in good agreement.

The numerical dispersion errors of different methods are calculated by the first half of

the signal, which is the incident wave, from the two observation points and plotted in Fig-

ure 4.9. It can be shown that the LD ADI-FDTD method provides a wide-band constant

improvement over the fourth-order ADI-FDTD method and the LD FDTD method.

Analytically, the minimum reflected power is operated at 200 MHz for this dielectric

interface. By applying Fourier transformation to the reflected wave, the reflected power is

computed and shown in Figure 4.11. It is shown that the results from the LD ADI-FDTD

method and the LD FDTD method agree very well, and the minimum reflected power is

occurred at 199.9 MHz. For the conventional ADI-FDTD method, the minimum reflected

power is occurred at 198.5 MHz.

The simulations of the non-uniform mesh model are performed by different methods

on the Intel Pentium 4 1.8GHz PC and the simulation programs are written by Matlab.

There are 15× 1000 non-uniform cells in the computational domain. The cell size mainly

is 50mm × 50mm. Instead, the dielectric interface is modelled by fine mesh with the

cell size equals to 50mm × 5mm. The fine mesh region is allocated about 5% of the

total number of cells. The simulation period is 235.6 ns. The computational time and
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Figure 4.8: The non-uniform mesh model with a thin dielectric interface.

simulation results for different methods are shown in Table 4.3. It can be found that

the total number of iterations of the ADI-FDTD method is 1/20 of that of the FDTD

method. In addition, the computational time is reduced to about 30% that of the FDTD

method. Furthermore, since the ADI-FDTD method is a two-step method, the number

of samples in time domain is double of the number of iterations.

Table 4.3: Comparison of the non-uniform mesh model simulation results.

Simulation method Δt (ns) No. of iterations CPU time (s) Result* (MHz)

(2,2) FDTD 0.01178 20000 581.72 199.96

(2,4) LD FDTD 0.01178 20000 637.83 199.97

(2,2) ADI-FDTD 0.2357 1000 168.60 198.52

(2,4) ADI-FDTD 0.2357 1000 201.78 198.53

(2,4) LD ADI-FDTD 0.2357 1000 205.13 199.88

∗ Frequency of minimum reflected power occurred. (Analytical result = 200MHz)

In addition, the computational time of the two different (2,4) ADI-FDTD methods is



The (2,4) Low numerical dispersion ADI-FDTD method 75

10-2 10-1
10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

tCFL

N
or

m
al

iz
ed

 n
um

er
ic

al
 d

is
pe

rs
io

n 
er

ro
r |

1-
u p/c

|
y

(2,4) LD FDTD
4th-order ADI-FDTD
(2,4) LD ADI-FDTD

Figure 4.9: Numerical dispersion errors of different methods which are calculated by

the simulation results.



The (2,4) Low numerical dispersion ADI-FDTD method 76

60 80 100 120 140 160 180

-0.5

0

0.5

1

N
or

m
al

is
ed

 H
z 

Fi
el

d

Time (ns)

(2,4) LD FDTD
(2,4) LD ADI-FDTD
4th-order ADI-FDTD

Figure 4.10: Hz field at the observation point in time domain.



The (2,4) Low numerical dispersion ADI-FDTD method 77

192 194 196 198 200 202 204 206 208
-100

-80

-60

-40

-20

0

Freq. (MHz)

re
fle

ct
ed

 s
ig

na
l p

ow
er

 (d
B

)

FDTD (uniform fine mesh)
Standard ADI-FDTD
LD ADI-FDTD

Figure 4.11: Reflected signal power.



The (2,4) Low numerical dispersion ADI-FDTD method 78

about 15% more than that of the conventional (2,2) ADI-FDTD method. This is because

the square matrix of the equations system to be solved for the conventional (2,2) ADI-

FDTD method is a tri-diagonal matrix and that for the (2,4) ADI-FDTD method is a

hetpa-diagonal matrix, which has seven diagonal non-zero components. However, both of

them are still sparse matrix since the matrix size is N × N , where N is the number of

rows of the computational domain. For this simulation, the largest square matrix to be

solved is 1000 × 1000.

Table 4.4: Computational complexities of solving different equations systems by the

LU method.

Simulation Style of Computational complexity (×, +)*

method square matrix LU factorization Forward- & back-substitution

(2,2) ADI-FDTD Tri-diagonal (2N, N) (3N, N)

(2,4) ADI-FDTD Hepta-diagonal (12N, 9N) (7N, 6N)

∗ × - number of multiplications

+ - number of additions

There are many methods to solve the equations system, and the LU method [48] is

used in this simulation. The LU method includes three procedures: the LU factorization,

forward-substitution, and back-substitution. Table 4.4 shows the computational com-

plexities of solving different equations systems. For the LU factorization, the number

of numerical operations needed for the hepta-diagonal matrix system is 7 times that for

the tri-diagonal matrix system. However, the components in the diagonal matrix are the

function of the material constant, cell-size and time-step—which are constant during the

simulation—the LU factorization is calculated only once before the iteration process. For
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the forward- and back-substitution, the number of numerical operations needed for the

hepta-diagonal matrix system is about 3 times that of the tri-diagonal matrix system, but

it is still order of N .

To reduce the computational time, parallel-computing is one of the most common

methods used for the FDTD method. It computes individual cells by different processes

simultaneously. For ADI-FDTD method, only the field components—which are not com-

puted by solving the equations system—can use the similar scheme. Therefore, one of

three field components for 2-D case and three of six field components for 3-D case can-

not use the parallel-computing in form of individual cells, but they can use it in form of

individual rows or columns. This is because those equation systems are formulated from

individual rows or columns.

4.4 Conclusion

The (2,4) low numerical dispersion ADI-FDTD method is developed in this chapter. It

is based on the (2,4) fourth-order ADI-FDTD method and the finite difference operator

is determined by minimizing the errors terms, which are caused by approximating the

spatial derivatives and temporal derivatives with finite difference scheme, in the numerical

dispersion relation. The new method provides a wide-band error reduction of about 99.5%

as compared to the conventional ADI-FDTD method. In addition, the error of the new

method is only a quarter that of the LD FDTD method.

For the LD ADI-FDTD method, we need to solve an equations system with hepta-

diagonal matrix, and more computational time is required. However, the complexity is

still order of N for a N × N matrix when the LU method is used. In addition, in the
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2-D non-uniform mesh simulation example, the LD ADI-FDTD method spends only 15%

more computational time to have a much accurate result as compared to the conventional

ADI-FDTD method.



Chapter 5

Conclusion and Future Works

5.1 Conclusion

The ADI-FDTD method has become attractive because of its unconditionally stable prop-

erty. It is very useful for a non-uniform mesh model with small dimensional structure.

This is because, for the conventional FDTD method, the size of the time-step is bounded

by the smallest cell size. The required computational resources become very large when

small time-step is used. When the ADI-FDTD method is applied, the time-step can

be set to the desired value, and the required computational resources can be reduced.

However, there is a drawback in that the numerical dispersion error increases when the

ADI technique is applied. Besides, larger time-step results larger numerical dispersion er-

ror. To enhance the usefulness and effectiveness of the ADI-FDTD method, two modified

ADI-FDTD method are developed to reduce the numerical dispersion error.

The first one is the high-order ADI-FDTD method. The multi-points high-order cen-

tral difference scheme is applied to approximate the spatial derivatives of the ADI-FDTD
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method. It is proved, analytically and practically, that the method is still unconditionally

stable when the high-order central difference scheme is applied. In addition, it is found

that the numerical dispersion error is reduced. Furthermore, the numerical dispersion er-

ror is very close to the accuracy limit of the conventional ADI-FDTD method for a given

time-step when the sixth-order central difference scheme is applied. However, when the

chosen time-step is much larger than that under the stability condition, the improvement

becomes relatively insignificant. This is because the high-order scheme can only reduce

the numerical dispersion error, which is caused by approximating the spatial derivatives

but not the temporal derivatives. This reason motivates the development of the second

method.

The second method is the (2,4) low numerical dispersion (LD) ADI-FDTD method.

It is based on the fourth-order (2,4) ADI-FDTD method. The coefficients of the finite

difference operator are determined by minimizing the error terms in the numerical disper-

sion relation but not in the approximation formula of the individual derivative. Since the

stability condition of the high-order ADI-FDTD method is not affected by the coefficients

of the finite difference operator, the LD ADI-FDTD method is unconditionally stability.

From the numerical analysis and simulation results, it is shown that the LD ADI-FDTD

method provides a wide-band error reduction of about 99.5% for any time-step when

compared to the conventional ADI-FDTD method. In addition, the error of the LD ADI-

FDTD method is only a quarter that of the LD FDTD method. Furthermore, there is an

alternative method that can reduce numerical dispersion error at a specified propagation

angle.

For the LD ADI-FDTD method, we need to solve an equations system with hepta-
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diagonal matrix. The required computational time is longer than that of the conventional

ADI-FDTD method. However, the complexity is still order of N , where N is the length of

the computational domain, when the LU method is used. In addition, the LU factoriza-

tion is calculated only once before the iteration process. This is because the components

in the square matrix are the function of the cell size, time-step and material constants,

which are constant in the simulation.

5.2 Future Works and Discussion

5.2.1 (2,4) LD ADI-FDTD Method with PML

In open-region problem simulations, absorbing boundary conditions (ABC) are needed to

terminate the boundary for the FDTD, ADI-FDTD or LD ADI-FDTD method. There

are many research studues [39]-[44] on applying perfectly matched layer (PML) as ABC

for the ADI-FDTD method, but most of the simulations are in free-space, small structure,

and observing near the PML. Therefore, it does not require too much iteration. Recently,

some researchers [49]-[50] find that the ADI-FDTD open-region simulation will be unstable

when more iterations are run. In addition, it is demonstrated that the ADI-FDTD method

with PML is unstable at [51]. Similar problem is found when the PML is applied to the

LD ADI-FDTD method.

The LD ADI-FDTD method is applied to simulate a photonic band structure, which

presents in [52]. The non-uniform mesh is used, and the fine mesh is applied at the area

with the tube. The time-step is 1.18 ns, and the other configurations of the simulation

are shown in Figure 5.1. We run the iteration 1750 times, and 3500 samples are taken.
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Figure 5.2 shows the Ez fields at the observation point. It can be found that the system

becomes unstable after 3000 samples are taken when the incident wave already passed the

observation point and is absorbed by the PML. By the data before instablility occurred,

the transmission coefficient in dB is calculated and plotted in Figure 5.3. It is shown that

the results are close to the measured results.
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periodic
boundary

10 layers PML

Obs. Pt.

Figure 5.1: Photonic band structure.

One of the possible reasons to cause the instability is that the LD ADI-FDTD and PML

region are computed by different sets of equations. The difference of their characteristic

generates a small error at the interface between the two regions. In addition, the condition

numbers of equations systems in the simulation are between 9322-19648, which are defined

as ill-conditioned [48] and which have a large effect on the solution when there is a small

error in the coefficients or in the solution process. In the future, the solutions for the

instability of the open-region LD ADI-FDTD or ADI-FDTD simulation with ABC are
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valuable research topics.

5.2.2 Modified LD ADI-FDTD Method

Applying the LD ADI-FDTD Method within a Sub-Gridded Model

In most of the structures, only small parts require fine mesh to model. Therefore, it can

use sub-gridding scheme, shown in Figure 5.4, to model the structure.

Figure 5.4: Sub-gridding scheme.

With this kind of structure, we can use the conventional FDTD method to compute

the coarse region and use the LD ADI-FDTD method in the fine region with a same

time-step. It can greatly reduce the size of the computational region of ADI method,

which requires paying extra computational cost for the implicit method.

However, an extra error is introduced when the interfaces between the fine and coarse

regions are calculated by spatial and temporal interpolation. The temporal interpolation is

also required—and even the same time-step is used in both regions—because the leapfrog

algorithm is used in the FDTD method but not in the LD ADI-FDTD method. In

addition, computing the two regions by different equations will lead to instability, which

likens the ADI-FDTD method to PML.
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Non-Orthogonal Gridding

To model some structures, it is more convenient for using non-orthogonal grid, such as

cylindrical coordinate, to model than the rectangular grid. It was shown that the ADI-

FDTD method can be applied to the cylindrical coordinate system [53]. According to the

updating equations in [53], the numerical dispersion relation of the ADI-FDTD method in

the cylindrical coordinate system can be formulated, and we can devise the low numerical

dispersion algorithm for it from this relation, as described in the previous chapter.



Appendix A

Analysis of the Numerical Dispersion

Relation of the (2,4) FDTD Method

The numerical dispersion relation of the 2-D (2,4) FDTD method for TE wave in free

space is found as

sin2
(

ωΔt

2

)
= S2

x + S2
y , (A.1)

where

Sx =
cΔt

Δx

[
C1 sin

(
k̃xΔx
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(
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[
C1 sin

(
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)
+ C2 sin

(
3k̃yΔy

2

)]
, (A.3)

and c is the speed of light, and k̃x and k̃y are numerical wavenumbers in the x and y

directions, respectively. For a propagation angle θ, the numerical wavenumbers can be

written as k̃x = k̃ cos θ, k̃y = k̃ sin θ.

To analyze the numerical dispersion relation, it is assumed that the numerical wavenum-

ber is equal to the theoretical one, in which k̃ = k = ω/c. In addition, uniform square

cell is assumed (Δx = Δy = Δ). Furthermore, with regard to the 2-D FDTD method,
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the maximum time-step under the Courant-Friedrich-Levy (CFL) stability condition is

defined as

ΔtCFL =
Δ

c
√

2
(A.4)

and a ratio of time-step is defined as

CFLN =
Δt

ΔtCFL
. (A.5)

Therefore, the relation of the cell size and the time-step can be written as

Δt = CFLN
Δ

c
√

2
. (A.6)

Then, the trigonometric terms in (A.1) are expanded using the Taylor series
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The numerical dispersion relation (A.1) becomes
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Then, we neglect the terms with the order greater than 2 and replace Δt with Δ by (A.6).

The numerical dispersion relation of the (2,4) FDTD method becomes

ω2

c2
= (C1 + 3C2)

2 k2 − (C1 + 3C2) (C1 + 27C2)
(
cos4 θ + sin4 θ

) k4Δ2

12
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24
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To guarantees the second-order accuracy, the first condition, which is used to determine

the coefficients, can be written as

C1 + 3C2 = 1. (A.11)
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The second-order terms in the numerical dispersion relation (A.10) are defined as the

error of k2 and can be written as

e = − (C1 + 3C2) (C1 + 27C2)
(
cos4 θ + sin4 θ

) k4Δ2

12
+

CFLN2k4Δ2

24
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Then, the mean square error over all angles is calculated according to

e2 =
1

2π

2π∫
0

e (θ)2dθ, (A.13)

and the second condition can be formulated by minimizing the mean square error as

C1 + 27C2 =
12

19
CFLN2. (A.14)

The C1 and C2 can be determined for a given CFLN by combining the two conditions.

In addition, the numerical dispersion error of the LD-FDTD method can be rewritten

by substituting the two conditions (A.11),(A.14) into (A.12) as

eLD−FDTD = CFLN2k4Δ2
(

1

456
− 1

76
cos 4θ

)
, (A.15)

where the trigonometric function is simplified.

Furthermore, the fourth-order terms in the numerical dispersion relation (A.1) are

defined as

ehigh−order =
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The high-order error term dominates when the time-step is very small. Therefore, when

CFLN trends to zero, C1 = 9/8, C2 = −1/24 and the high-order error term becomes

ehigh−order =
9

960

(
cos6 θ + sin6 θ

)
k6Δ4. (A.17)
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Analysis of the Numerical

Dispersion Relation of the (2,4)

ADI-FDTD Method

The numerical dispersion relation of the 2-D (2,4) ADI-FDTD method for TE wave in

free-space is found as
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and c is the speed of light, and k̃x and k̃y are numerical wavenumbers in the x and y

directions, respectively. For a propagation angle θ, the numerical wavenumbers can be

written as k̃x = k̃ cos θ, k̃y = k̃ sin θ.
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To analyze the numerical dispersion relation, it is assumed that the numerical wavenum-

ber is equal to the theoretical one, in which k̃ = k = ω/c. In addition, uniform square

cell is assumed (Δx = Δy = Δ). Furthermore, with regard to the 2-D FDTD method,

the maximum time-step under the Courant-Friedrich-Levy (CFL) stability condition is

defined as
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Δ

c
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2
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and a ratio of time-step is defined as
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Therefore, the relation of the cell size and the time-step can be written as
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Then, the trigonometric terms in (B.1) are expanded using the Taylor series
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where the B is the Bemoulli number.

The numerical dispersion relation (B.1) becomes
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Then, we neglect the terms with the order greater than two and replace Δt with Δ by

(B.6). The numerical dispersion relation of the (2,4) ADI-FDTD method becomes
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To guarantees the second-order accuracy, the first condition, which is used to determine

the coefficients, can be written as

C1 + 3C2 = 1. (B.12)

The second-order terms in the numerical dispersion relation (B.11) are defined as the

error of k2 and can be written as
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Then, the second condition, which is used to determine the coefficients, can be formu-

lated by setting the error to zero for a given propagation angle as
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In addition, it can calculate the mean square error over all angles according to
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and then the second condition can be formulated by minimizing the mean square error as

C1 + 27C2 = −81
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The C1 and C2 can be determined for a given CFLN by combining the first condition

and either one of the second condition.

Besides, numerical dispersion error of the (2,4) LD ADI-FDTD method can be re-

written by substituting the two conditions (B.12),(B.16) into (B.13) as

eLD−ADI = CFLN2k4Δ2
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where the trigonometric function is simplified.

Furthermore, the fourth-order terms in the numerical dispersion relation (B.1) are

defined as
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The high-order error term dominates when the time-step is very small. Therefore, when

CFLN trends to zero, C1 = 9/8, C2 = −1/24 and the high-order error term becomes

ehigh−order =
9
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cos6 θ + sin6 θ
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