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Abstract 

Vision-based autonomous driving techniques are popular in both academia and industry 

because of the highly cost-effective commodity cameras with high quality output images and 

the information richness of images. Global Navigation Satellite Systems (GNSS) is well-

known for many real-world ego-localization and other related applications. However, GNSS 

suffers from reflection and blocking due to dense concrete buildings and tall trees, especially 

in the densely populated urban areas, like Hong Kong. There are also other solutions using 

high-level sensors like Lidar, Radar and 360 RGB-D cameras. Nevertheless, these solutions 

still have their respective limitations and are not widely used in various commercial products. 

Therefore, various technologies including visual place recognition and reconstruction methods 

discussed in this thesis will be required for achieving a comprehensive autonomous driving 

system.  

Place recognition or localization is an important element to autonomous driving system. 

Accurate ego location information is crucial for either removing past accumulated errors or 

future planning. The challenges lie in the variations in appearance, speeds, lighting 

environments, perspectives and objects. Therefore, we develop a fast algorithm for place 

recognition, for which fast tracking with the use of historical information and effective 

representation of a frame have been comprehensively studied to achieve satisfactory 

recognition performance and minimize computational cost. We name the use of historical 

information as a tubing strategy which emphasizes the temporal correlation between 

consecutive input frames.  

We take the advantages of recent deep learning techniques; also remove two main 

barriers of Convolutional Neural Networks (CNNs) , i.e., heavy computational cost and large 

amount of labelled data, such that deep learning techniques can be used for  efficient place 

recognition methods. We study lightweight CNN models to offer efficient feature extraction 

and improve an existing automatic training data generation module by considering more 

variations in conditions. We further propose a way to adaptively use the historical information 

to tackle the tasks of unknown initial location and efficient recognition. The proposed methods 

outperform other state-of-the-art methods in terms of both recognition performance and 

complexity.  
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To ensure the quality of the extracted features from images, we also study object 

removal by means of deep learning-based image inpainting for scene reconstruction. By 

removing unwanted objects like moving vehicles and pedestrians in images, we can have clean 

images for place recognition. We propose Deep Generative Inpainting Network (DeepGIN) 

and inpainting model with Multi-Dilation Fusion Block (MDFB) and auxiliary attention 

learning branch which seek for a better balance of pixel-wise accuracy and visual quality. We 

show that our proposed models can handle wild images by testing them on several publicly 

available datasets, Flickr-Faces-HQ (FFHQ), The Oxford Buildings and Places2 datasets. We 

demonstrate that our inpainting results can be used in other high-level computer vision tasks 

such as face verification and semantic segmentation. We believe that the inpainting results can 

also be used in place recognition.  

For future research work, we target at developing a more comprehensive recognition 

system for which our inpainting models are used as pre-processing module to obtain  better 

input images and our tubing strategy is applied to the post-processing stage to obtain better 

recognition performance. Apart from combining the techniques discussed in this thesis, we 

would like to develop an online learning strategy to keep the understanding of a path up to date 

for further enhancing life-long recognition performance.  
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Chapter 1 Introduction 

1.1 Introduction to Scene Localization 

Scene Localization is an important topic to Autonomous Driving. It can be solved by 

means of visual place recognition and/or image retrieval [1]-[3]. An input query image is 

compared with all the stored images in a geo-tagged database and the best match pair indicates 

the location information about the input query image based on the corresponding geo-tag in the 

form of latitude and longitude. Therefore, visual place recognition can be regarded as an 

indirect scene localization if all possible queries have been visited and stored in the database 

with geo-tags.  

Visual Place Recognition, also known as Visual Scene Recognition and Loop Closure 

Detection, is a crucial element to Visual Simultaneous Localization And Mapping (Visual 

SLAM) [4], [5]. The difficulty of visual place recognition lies on the variations in viewpoints, 

lighting conditions, and frame capturing interval, etc. Note that the same scene/place could be 

very or completely different at various time slots. Therefore, robust feature extraction and 

matching have to be studied to achieve satisfactory recognition performance. In recent decade, 

a number of visual place recognition approaches have been proposed, for which they take 

images or frames using standard monocular frontal camera as the input queries. The recognition 

performance can be enhanced by using consecutive images or frames, i.e., video sequences. It 

is because we must travel along a path gradually without any sudden jump. Hence, a group of 

consecutive frames can help to improve the recognition confidence. Note that the core function 

of visual place recognition is to tell whether the current incoming query frame has been 

recorded in the database and hence current location information can be obtained in real time. 

Accurate location information is useful for many autonomous driving related tasks such as 

visual SLAM and navigation as ego-location information (i.e., instant self location information) 

can be used to rectify accumulated localization and/or recognition errors.  
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In the present age, Global Navigation Satellite Systems (GNSS) is well known for ego-

localization and is widely used for different real-world applications. Nevertheless, GNSS signal 

sometimes suffers from reflection and blocking because of dense trees and tall buildings, 

especially the situations in Hong Kong [4]. There are also other solutions based on other types 

of sensors like wheel counters, gyroscope, and inertial sensors [5]. However, some of these 

high-level sensor modules are still in high cost and have their corresponding weaknesses, for 

example, sensitive to various lighting environments and adverse weather conditions. In this 

context, standard monocular vision-based algorithms are important to ego-localization because 

of its cost-effectiveness and a large amount of information from input images. In the literature, 

many components can be included in the development of monocular visual based localization 

systems [6]-[15] such as vehicle detection [16], [17], frontal vehicle distance estimation [18], 

visual odometry [19]-[21], traffic light and sign recognition [22]-[25], and railway or lane 

detection [26], [27]. Therefore, there could be many components in a comprehensive 

localization system, and the computational cost of each component should be minimized to 

ensure an efficient system for real-time performance.  

Broadly speaking, visual place recognition can be classified into two groups, namely 

monocular frame-based and multi-frame based. For monocular frame-based visual place 

recognition, the most straightforward approach is to compare the current incoming query frame 

with all the frames stored in the database by means of distance measure such as Euclidean (L2) 

distance and Cosine distance. The database frame which gives the smallest distance to the 

current incoming query frame would be the best matched place.. A pre-defined similarity 

threshold can also be used to further enhance the accuracy of the recognition, i.e., eliminate 

those best matches with low confidence scores. Such an approach is defined as single nearest 

neighbor searching and it heavily relies on the discriminative power of the image descriptors. 

FAB-MAP [28] has been one of the most commonly used appearance-based SLAM systems in 
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which a Bag-of-(Visual)-Words (BoVW) strategy is employed. For BoW method, salient 

feature points of frames are first detected and then clustered into a number of groups to 

construct a visual word dictionary. The visual word dictionary helps to evaluate the similarity 

between two frames. If two frames contain similar numbers and types of visual words, they 

would have higher similarity score than others. Nevertheless, Milford and Weth [7] reported 

that salient point detection can be easily fail especially for extreme changes in appearance and 

lighting environments. In this context, the discriminative power of the image descriptors is 

severely degraded and is not enough for maintaining satisfactory recognition performance by 

using only monocular frame-based approaches. Milford and Wyeth suggested the earliest 

multi-frame-based method named SeqSLAM [7], which takes sequences of consecutive frames 

as inputs to enhance the recognition performance. The core idea of SeqSLAM is that the 

recognition result of each single frame can be regarded as a weak match and a group of weak 

matches can be a confident match to give convincing recognition result. With the use of 

multiple frames, SeqSLAM attained 100% precision at around 60% recall rate.  Inspired by 

SeqSLAM, many researchers have started to integrate the temporal correlation between 

consecutive frames into their proposed algorithms [29]-[34]. The temporal correlation here can 

be regarded as the information given by the previous incoming query frames. For example, if 

there is no difference or just small difference from the image descriptors of previous frames, a 

stop ego-motion can be deduced as the frontal camera takes very similar incoming frames 

continuously.  

In the recent decade, the boom of Convolutional Neural Networks (CNNs) has shown 

that CNNs have outperformed most conventional methods in different computer vision (CV) 

tasks [35]. The features extracted by CNNs called CNN or deep features, have demonstrated 

better and robust discriminative power than traditional hand-engineered features. Since 2012, 

AlexNet [35] has been the first CNN-based method which outperforms conventional methods 
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in object classification task. For AlexNet, there are five convolutional layers, and each level of 

convolution can be regarded as certain feature extraction, from concrete to abstract levels. The 

first level of convolutional layer (conv1) targets at simple feature patterns such as edges, 

corners, and colors. The fifth convolutional layer (conv5) looks for more complex feature 

patterns like a dog face, a wheel, and a gun shape. Sünderhauf et al. [13] studied the recognition 

performance of CNN features given by AlexNet in place recognition tasks, for which the 

skeleton features of a place are the most important. We can know that there can be dynamic 

and static objects in a place and these objects can be regarded as noises distracting our decision 

making. Therefore, the middle convolutional layer, i.e., conv3, seems to be more suitable for 

place recognition tasks as skeleton features are tended to be extracted at this layer from 

experiments and the skeleton features provide the gist of a frame. Their experimental results 

haven demonstrated that conv3 features offer the best recognition performance compared to 

features from other layers. Nevertheless, the dimensionality of the conv3 features is very high 

in terms of the length of the feature descriptors. For example, for a 224 × 224 frame, the 

descriptors at conv3 are 384 × 13 × 13 = 64,896. This causes slow pair matching especially for 

the single nearest neighbor searching or linear full searching. In addition, a large amount of 

class-labelled images for demanding training can be expensive to different practical 

applications.  

From the success of using deep features, many researchers have started to apply CNNs 

to visual place recognition [13], [36]-[39]. It has been well known that high computational cost 

and difficulty in collecting large amount of labelled data are two main weaknesses of CNN-

based place recognition methods. Merrill and Huang [36] tried to resolve these two limitations 

by means of employing a shallow convolution autoencoder network and training the network 

using self-transformed images. With the shallow fast feature extraction stage and the 

needlessness of labelled data, they proposed a lightweight and unsupervised place recognition 
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method. Autoencoder network can be used to extract gist features because of its denoising 

property [40]. General speaking, there are several convolutional layers to squeeze the 

dimensionality of the input and extract representative features of the input. We then reconstruct 

the input image with the squeezed features. In this process, the network has to learn how to 

extract salient features of the input and reconstruct a “clean” version of the input as output 

based on the extracted features. This is a straightforward denoising network setting. In [36], 

they generated the training data by applying random perspective transformation to every image 

so that each single image is paired up with its transformed version as a training pair. As a result, 

the trained autoencoder is robust to one practical situation, i.e., changes in perspective.  

For visual place recognition nowadays, CNNs always act as a feature extraction stage 

for extracting representative features of the input frame because of its robustness to variations 

in changes in lighting conditions, viewpoints, and appearance. Once we have more 

discriminative and robust feature representation of the input frame, we can further improve the 

recognition performance. However, discriminative features have to be extracted by deeper 

CNNs, for which these CNNs are still demanding for real-world applications with limited 

resources. The field of visual place recognition is still finding an effective and efficient 

algorithm with fast feature extraction and feature matching. This implies that researchers 

should work on i) efficient feature extraction with better discriminative power of features 

and/or ii) efficient feature matching and searching regardless of the size of the database.  

1.2 Introduction to Quality Scene Reconstruction  

Quality Scene Reconstruction has been an overwhelming topic for Autonomous 

Driving. It is useful for providing better visual experience of the current capturing scene to 

users. Apart from enhancing the visual quality of a scene, scene reconstruction can also benefit 

visual place recognition by means of providing clean inputs without unwanted dynamic objects 

for recognition. In this work, we consider object removal as a technique for quality scene 
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reconstruction. For the applications of unwanted dynamic object removal, image inpainting, 

also known as image completion, is a highly related task to be studied.  

Image inpainting is a task of predicting the values of missing pixels in a masked or 

corrupted image such that the completed image looks realistic and is semantically close to the 

reference ground truth even though it does not exist in real-world situations. It would be useful 

for erasing unwanted parts from photos.  

With the recent success of deep learning in image recognition, generation, super-

resolution, image synthesis and many others [51], [54]-[60], a growing number of CNN-based 

inpainting approaches [61]-[76] have been proposed to fill in masked images with plausible 

global semantics in an end-to-end manner. Most of these methods adopt the framework of 

Generative Adversarial Networks (GANs) [77] because of its capability of generating visually 

appealing images. This conforms to image inpainting for which we have to generate the missing 

content with good visual quality. For example, dilated convolution [67] can be used to enlarge 

the receptive field of a layer without increasing parameters by adjusting the dilation rate such 

that we can see the context of images with the use of a shallower fully convolutional network. 

Most of the state-of-the-art inpainting models [62], [64], [68], [70], [74]-[76] follow a two-

stage approach which contains a coarse reconstruction stage and then a refinement stage. The 

first coarse generator roughly fills in the masked images with correct spatial structures, and 

then the following refinement generator explicitly mends and decorates the generated content 

with fine details. Yu et al. [68] proposed the idea of contextual attention (CA) layer for further 

improving the textures of the generated content by borrowing information from correlated 

feature patches at distant spatial locations. Apart from that, feature perceptual and style losses 

for style transfer and super-resolution to generate high-quality images [58], [59] have also been 

applied to image inpainting [61], [69], [73], [75] for encouraging similar high-level feature 

representation and style between the completed images and real images. With certain 
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understanding of the context, appropriate feature references, and relevant perceptual loss 

functions, one can reconstruct the missing content with both plausible visual quality and global 

semantics.  

1.3 Organization of the thesis  

This thesis is organized as follows. In Chapter 2, we review the basic knowledge of 

visual place recognition, including types of methods, evaluation metrics, common datasets and 

challenging in place recognition. We also review the task of image inpainting and focus on the 

main function of it which is used for dynamic object removal for quality scene reconstruction.  

Chapter 3 covers the details of our proposed monocular vision-based place recognition 

method using both conventional machine learning and recent deep learning techniques. We 

demonstrate how temporal information helps to improve the recognition performance. Chapter 

4 proposes a deep generative inpainting model for quality image reconstruction. We show how 

a better balance of pixel-wise reconstruction accuracy and visual quality can be found. Lastly, 

Chapter 5 gives our conclusion of this study.  
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Chapter 2 Technical Review 

2.1 Visual Place Recognition  

Visual Place Recognition (VPR), Scene Recognition and Loop Closure Detection 

(LCD), generally refer to the same task. VPR and LCD are the commonly used terms in 

Robotics society. For “Loop Closure Detection”, it is widely used when the travelling path 

forms a close loop. Scene Recognition, VPR and LCD share the identical final objective which 

is reporting the fact that the current capturing scene/place has been previously visited or not.  

 

Figure 2.1 is an illustration of different types of paths that we usually study in visual 

place recognition and loop closure detection. The first kind of path is shown on the left-hand 

side. It is a path from the start point to the end point without any closing. The second kind of 

path is located at the right-hand side, for which it has the same start and end point. Hence, this 

path forms a close loop, and we detect a loop closure when we re-visit the start point.  

 

Figure 2.1 Illustration of the visual place recognition tasks  
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Figure 2.2 shows some examples of place recognition and/or loop closure detection. It 

is observed that the agent, i.e., the robot or the vehicle, re-visits the sample place under changes 

in conditions like changes in lighting environments and perspective views.  

2.1.1 Types of Visual Place Recognition  

 

For standard visual place recognition methods, we usually have an offline learning stage 

to store the path in terms of a number of frames first. This implies that we have to learn the 

path from a reference sequence and there would not be any update once the path is learned. In 

this context, we would have a pre-defined database. We then compare each input frame with 

all the frames stored in the database to give recognition or loop closure detection result. Figure 

 

Figure 2.2 Some examples of place recognition and/or loop closure detection  

 

Figure 2.3 An example to show a standard visual place recognition approach  
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2.3 shows an example of a standard visual place recognition approach. For example, we have 

500 frames in the reference sequence and these 500 frames would be used to build a database 

for the corresponding path. Of course, there are many ways of building the database. We may 

input the 500 frames to a pre-trained CNN to get 500 feature descriptors or use conventional 

feature extraction methods to extract features from the 500 frames to form the database.  

 

Figure 2.4 shows an example of how we use a pre-trained CNN to build a database of 

a reference sequence. Assume that we want to use a pre-trained VGG16 [41] as the feature 

extractor to build the database. Note that the final fully connected layer of the VGG16 is with 

the feature length of 4,096. We can feed the 500 frames to the VGG16 and get 500 feature 

vectors with the length of 4,096. As a result, we have 500 feature vectors, one vector represents 

one scene/place. We then store all the 500 feature vectors to the database and obtain a 

recognition database with 500 places. Note also that the database would not be changed unless 

we rebuild the entire database.  

 

Figure 2.4 An example of standard building of a database and standard visual place recognition 

testing procedure with the fixed database  
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 After building the database, we can perform online recognition. Assume that we now 

have an incoming frame, and we would like to match this frame to all the frames in our database. 

The first step is to feed the new scene frame, i.e., query frame, to the pre-trained VGG16 to get 

the feature vector (FV) with the length of 4,096. We then compare this FV with all the FVs 

stored in the database. More specifically, we compare the FV with FV001, FV002, …, FV500 

(i.e., feature vectors of database frame 1, 2, …, 500) using distance measure techniques such 

as Euclidean (L2) distance and Cosine distance. The match pair with the smallest distance 

would be the best match and it implies the recognition result. A pre-defined threshold can be 

used to judge whether the best match represents the same place or not.  If the distance between 

the FV of the query frame and the FV of the 9th database frame is the smallest and the distance 

is smaller than a pre-defined threshold, FV009 will be the final recognition result. This means 

that the new incoming scene is matched to scene 9 in the database, and they represent the same 

place.  
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2.1.2 Evaluation Metrics  

2.1.2.1 Precision-Recall Curve  

 

For visual place recognition and loop closure detection, one of the commonly used 

evaluation metrics is precision-recall curve. Precision (P) is defined as the ratio of true positive 

reported recognition results (tp) to the total reported recognition results (tp+fp) while Recall 

(R) is defined as the ratio of true positive reported recognition results (tp) to the total ground 

truth recognition results (tp+fn).  Table 2.1 gives a simple numerical example of how the 

precision and recall are calculated. In this case, we have 10 frames, and the approach gives 8 

confident matches. Note that there are 2 frames we cannot confidently report the matches, 

hence the false negative, fn = 2. Also, among the 8 reported matches, 6 of them are correct. 

 

Current 

frame 

Reported 

match 

Ground 

truth 

Correct/Incorrect 

(Y/N) 

 
Precision 

(P) [0, 1] 

Recall (R) 

[0, 1] 

F1 

1 3 1 N 
 

0.8 0.8 0.8 

2 2 2 Y 
 

0.8 0.5 0.62 

3 3 3 Y 
 

1.0 0.5 0.67 

4 4 4 Y 
 

0.5 1.0 0.67 

5 5 5 Y 
 

0.9 0.9 0.9 

6 - 6 - 
 

1.0 0.7 0.82 

7 - 7 - 
    

8 8 8 Y 
    

9 9 9 Y 
    

10 9 10 N 
    

Summary: 

tp = 6 (6‘Y’); fp = 2 (2‘N’); fn = 2 (2‘-’) 

Precision = 6 / (6 + 2) = 0.75 

Recall = 6 / (6 + 2) = 0.75 

    

Table 2.1 Evaluation metrics – Precision-Recall Curve (PR Curve) and F1 Score with numerical 

examples  
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Therefore, we get tp = 6 and fp = 2 and finally the precision and recall of this example are both 

0.75 as shown in the example.  

2.1.2.2 Area Under Curve and Max. Recall Rate at 100% Precisi on  

 

Figure 2.5 shows an example of Precision-Recall curve (PR curve) that we found in the 

visual place recognition or loop closure detection paper [36]. We have two main ways to 

explain the PR curve. Area Under Curve (AUC) is the first interpretation, the higher the better. 

The second way is the maximum recall rate (r) at 100% precision, also the higher the better. In 

the robotics community, the loop closure detection results are usually used to eliminate 

accumulated errors for mapping rectification. Hence, robotics researchers target at a perfect 

precision even at lower recall rate. They look for the maximum recall rate at 100% precision. 

In the PR curve of Figure 2.5, we can see that the maximum recall rate at 100% precision of 

the deep blue curve is around 0.52.  

 

 

 

 

 

Figure 2.5 Evaluation metrics – Precision-Recall Curve (PR Curve) and Area Under Curve (AUC), 

an example for visualization  
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2.1.2.3 F1 Score  

Apart from Area Under Curve (AUC) and Max. recall rate at 100% precision, Table 2.1 

also shows another commonly used metric in visual place recognition, named F1 Score. In this 

example, we show a simple numerical example of how to compute the F1 Score. Practically, 

we target at both high precision and recall. In order to get high F1 Score, we have to get both 

high precision and recall. The F1 Score is calculated as,  

𝐹1 = 2 ×
𝑃∙𝑅

𝑃+𝑅
       (2.1) 

where P is the precision and R is the recall rate. For high F1, both P and R have to be 

high.  
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2.1.3 Datasets for Visual Place Recognition  

 

Table 3.2 summarises all the datasets used for our study of visual place recognition. We 

included sequences with different lengths and various practical issues encountered in real life. 

Note that some sequences have been time-synchronized such that frames with same indices 

represent the same places.  

2.1.3.1 Nordland and UA Datasets  

 

Figure 2.6 shows one of the widely used datasets for visual place recognition, named 

Nordland dataset [42]. There is no loop closure in this dataset. One important point is that the 

Nordland dataset has been time-synchronized so as to focus on the extreme changes in 

appearance and seasons.  

Datasets Number of sequences Total number 

of frames in 

average 

Time-

synchronized 

Remarks 

LRT-S 4 623 No Changes in 

speeds, 

lightings, and 

motion blur  

LRT-L 4 2566 No 

UA [43] 2 646 Yes Day-night 

sequences 

Nordland [42] 4 5950 Yes Seasonal 

changes 

Alderley [7] 2 2035 Yes Extreme 

changes in 

weather and 

lightings  

Table 2. 2 Table summarising all the datasets used  

 

 

Figure 2.6 A typical dataset for scene recognition – Nordland dataset [42]  



16 

 

 

Figure 2.7 gives more example of the Nordland and UA datasets [42], [43]. The UA 

dataset focuses on the changes in lighting conditions. In practical situations, we need to handle 

variations in lighting conditions and appearance, motion blurring, seasonal changes, as well as 

varying speeds.  

2.1.3.2 Looping Datasets  

 

Figure 2.8 displays some examples of loop closure detection datasets [10], [28]. For 

this kind of looping datasets, the vehicle or the car-like robot would travel the loop using a 

number of branches. For example, the map at the right-hand side in Figure 2.8. there are two 

 

Figure 2.7 More examples of both Nordland dataset [42] and UA dataset [43]  

 

Figure 2.8 Some examples of loop closure datasets [10], [28].  
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purple loops and we can only perform the place recognition in the overlapping area of the two 

loops (the red circle). In this context, we may consider updating the database in an online 

manner in order to recognize all the visited places. This is related to the topic of online place 

recognition and is not covered in this thesis.  

2.1.4 Challenging in Visual Place Recognition  

In this part, we summarize the challenging in visual place recognition into two areas. 

The first area is the extreme changes in conditions. It is difficult to have a sufficient 

generalization on the extracted deep features for frame matching as incoming frames suffer 

from variations in seasonal changes and blurring, changes in viewpoints, lighting environments, 

and appearance, and different speeds.  

The second area is related to the real-time performance commitment. Visual place 

recognition is similar to large-scale image retrieval tasks, but we have to pay attention to the 

complexity of the entire system. When the processing time per frame is longer than the frontal 

camera capturing interval, i.e., the frame rate, a delay in our location information would be 

introduced.  

2.1.5 Recent Development of Visual Place Recognition   

Recently, Chancán and Milford [98] further developed SeqSLAM [7] and proposed 

DeepSeqSLAM. Similar to our proposed methods in this thesis, they took the advantages of 

both deep features and sequential information from historical frames. They used a 

Convolutional Neural Network (CNN) model to extract deep features from incoming frames 

and a Recurrent Neural Network (RNN) model to integrate temporal information over a 

sequence of consecutive frames. Their work re-confirms the use of CNN models for place 

recognition and the importance of temporal information to place recognition. They showed that 

the use of temporal information can further reduce the false positive rates compared to the 



18 

 

single nearest neighbour approaches. We show that the idea of using temporal information has 

been covered in our work.  

Apart from this, Patch-NetVLAD [99] has been proposed as an improved version of 

NetVLAD [2], [3]. They employed the idea of multi-scale fusion of locally global feature 

descriptors to take the advantages of both local and global descriptors. Such an approach can 

effectively handle both appearance and viewpoint changes. Note that local keypoint and patch 

descriptors are effective against perspective changes while global descriptors are effective 

against changes in appearance. This idea is similar to how we define key frames and represent 

the key frames in our work. We analyse key frames by using conventional machine learning 

techniques such that we can use few but effective local feature patches with variable sizes to 

represent a key frame. This reflects that the idea of conventional salient points or features has 

been integrated into recent deep learning-based feature representation methods for better 

representation of the input images.  

 

2.2 Image Inpainting  

 

 

Figure 2.9 Degree of difficulty in extreme image inpainting  



19 

 

Image inpainting is a task of filling in the missing areas in a masked image such that 

the completed image is a prediction of the original image with similar appearances, semantics, 

textures, and details. The degree of difficulty depends highly on the scales and forms of the 

missing regions as well as the contents of both the valid and invalid pixels as shown in Figure 

2.9. The first row shows the input masked images Iin with the corresponding mask described 

on top of them. Rect. (α) represents a random rectangular mask with the height and width rate 

of α of each dimension. The randomly generated mask based on cellular automata is introduced 

in the AIM 2020 Extreme Image Inpainting Challenge [78], and the free-form mask is proposed 

in DeepFillv2 [62]. The last row displays the ground truth images.  

2.2.1 Problem Formulation  

Let us formulate the image inpainting problem with the help of Figure 2.10. We first 

define an input RGB masked image and a binary mask image as Iin ∈ ℝH×W×3 and M ∈ ℝH×W 

respectively. The pixel values input to the model are normalized between 0 and 1 and pixels 

with value 1 in M represent the masked regions. Icoarse ∈ ℝH×W×3 denotes the output of the 

coarse reconstruction stage (light orange). We also define the output of the refinement stage 

(light green) and the reference ground truth as Iout ∈ ℝH×W×3 and Igt ∈ ℝH×W×3 respectively. Note 

that H and W are the height and width of an input/output image, and we fix the input to 256 × 

256 for inpainting. Our objective is to complete Iin conditioned on M and produce a completed 

image Iout (Icompltd) which should be both visually and semantically close to the reference 

ground truth Igt. Icompltd is the same as Iout except the valid pixels are directly replaced with the 

ground truth. The network is trained under the framework of generative adversarial learning 

with training data {Iin, M, Igt} where M is randomly generated with arbitrary sizes and shapes. 

The coarse generator takes Iin and M as input to generate Icoarse as output. Then, Icoarse and M 

are fed to the refinement generator to obtain the completed image Iout (Icompltd).  
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2.2.2 Types of Random Masks  

2.2.2.1 Regular Mask  

Pathak et al. [65] proposed the first deep learning based inpainting algorithm that 

employs the framework of Generative Adversarial Networks (GANs) [77] for more realistic 

image completion. They resized images to 128 × 128 and assume a 64 × 64 rectangular centre 

missing region for the task of inpainting. The encoded feature of the image with the centre hole 

is then decoded to reconstruct a 64 × 64 image for the centre hole. Random rectangular masks 

with different height and width rates are shown in the first six columns of Figure 2.9 for 

reference.  

2.2.2.2 Irregular Mask  

For the early stage of deep learning-based methods of image inpainting, authors focused 

on the rectangular types of masks and this assumption limits the effectiveness of these methods 

 

Figure 2.10 Architecture of the generators of our DeepGIN [75]  
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in real-world situations. Liu et al. [61] addressed this problem by suggesting a partial 

convolutional layer, for which a binary mask for indicating the missing regions is automatically 

updated along with the convolutional operations inside their model for guiding the 

reconstruction. Yu et al. [62] further improved the concept of partial convolution by proposing 

gated convolution for free-form image inpainting. An example of the proposed random free-

form masks can be seen at the second last column of Figure 2.9.  

Another type of masks has been introduced in the AIM 2020 Image Inpainting 

Challenge [78], in which the masks are randomly generated based on cellular automata. An 

example of this type of masks is provided at the seventh column of Figure 2.9.  

Note also that object masks are also valid in the case of object removal using different 

image inpainting models.  

2.2.3 Common Techniques for Image Inpainting  

2.2.3.1 Generative Adversarial Networks  

Context Encoder [65] is the first deep learning-based inpainting algorithm that adopts 

the framework of Generative Adversarial Networks (GANs) [77]. For GAN-based image 

inpainting, a generator is designed for filling the missing regions with semantic awareness and 

a discriminator is responsible for distinguishing the completed image and the reference ground 

truth. Under this framework of GANs, the generator and discriminator are alternately optimized 

to compete against each other, as a result, the completed image given by the generator would 

be visually and semantically close to the reference ground truth. Based on this early work, most 

if not all later developed inpainting models are also trained under the framework of GANs.  

2.2.3.2 Dilated Convolution  

For the task of image inpainting, understanding the context of images is crucial for 

filling the missing regions with plausible global semantic. Pathak et al. [65] proposed channel-
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wise fully connected layer for which all feature locations at the previous layer contribute to 

each feature location at the current layer. Nevertheless, fully connected layer limits input 

images to fixed size or requires additional layers to control the spatial sizes with a model, hence 

multiple models are usually required for images with different resolutions. To release this 

limitation, Iizuka et al. [67] presented a fully convolutional network with dilated convolutions 

which allows us to understand the context without using the channel-wise fully connected layer. 

More specifically, for a 3 × 3 filter with dilation rate = 1, its receptive field is 3 × 3 and we 

have 9 learnable parameters. If we would like to enlarge the receptive field to 5 × 5 such that 

each feature location at the current layer can see more of its neighbours, we may use a 5 × 5 

filter with dilation = 1 which results in 25 learnable parameters. To achieving the desired 

receptive field without inducing dozens of parameters, alternatively we can choose a 3 × 3 filter 

with dilation rate = 2. It remains 9 parameters, while its receptive field is 5 × 5 (= 3 + 2 × (d-

1), where d is the dilation rate = 2 in this example). This idea forms the basis of all state-of-

the-art models [61]-[64], [68]-[76]. For the recent ECCV 2020 AIM challenge on extreme 

image inpainting [78], DMFN [73] and DeepGIN [75] extended this idea to multi-dilation 

convolutional blocks and achieved outstanding performance in terms of PSNR, i.e., pixel-wise 

reconstruction accuracy.  

2.2.3.3 Gated Convolution  

Early CNN-based inpainting models [65]-[68] focused on regular masks. This limits 

the practicability of these models to real-world inpainting problems with arbitrary masks. Liu 

et al. [61] suggested partial convolution for which a binary mask is simultaneously updated 

with the convolutional operation to indicate the reduced missing regions for the guidance on 

generating the missing content. Yu et al. [62] enhanced their previous model [68] by proposing 

a learnable version of partial convolution, called gated convolution. The hard-assigned binary 

mask in partial convolution was modified to a soft-gated convolutional layer which gives much 
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flexibility for indicating the validness of each feature location. The soft gate can be 

implemented by an additional branch of a convolutional layer followed by a sigmoid activation.  

2.2.3.4 Contextual Attention  

Recent state-of-the-art inpainting models [62], [64], [68], [74]-[76] utilize the concept 

of “patch matching then replacing” to improve local fine details of the generated content by 

borrowing appropriate reference feature patches from the known regions. For example, Yu et 

al. [62] proposed a contextual attention (CA) layer which reconstructs the generated feature 

patches inside the missing regions via weighted sums of all the extracted reference feature 

patches, and the weights are derived from the similarities between the generated and the 

reference feature patches. To remove the heavy loading of calculating the similarity between 

each pair of patches and ensure the appropriateness of the reference feature patches to each 

generated feature patch, Zeng et al. [76] proposed to perform the CA operation only during 

training by means of a contextual reconstruction loss. An additional branch of reconstructing 

target images using information only from the similarity between each pair of patches was 

designed for optimizing a per-pixel accuracy (L1) loss and an adversarial loss. As a result, the 

correctness of the nearest reference feature patches can be enhanced, and better reference 

feature patches can be attached to the main branch for the missing content generation.  

2.2.3.5 Perceptual Losses  

With the advent of neural style transfer (NTS) [58], [59], some researchers have 

employed relevant losses, e.g., style loss and feature perceptual loss [61], [66], [69]-[75] for 

the task of image inpainting. Their core idea is to transfer the style of the extracted reference 

feature patches to the generated feature patches through the minimization of one or more 

perceptual losses. For example, Yang et al. [66] improved the textures of the results obtained 

from Context Encoders [65] through proposing a texture network with a local texture loss. The 

texture network is a well pre-trained VGG19 network [41] on ImageNet [49] for image 
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classification. For the local texture loss, they extract the features at the middle layers as 

computed by the texture network and then encourage each generated feature patch to have 

similar feature responses at its nearest reference feature patch by minimizing their L2 distance. 

There are also other inpainting methods [61], [69]-[75] trained with the variants of the style 

and/or perceptual loss to generate realistic textures. A recent study on perceptual loss [79] has 

found that L1 or L2 distances between extracted features and distances between distributions 

of extracted features, e.g., Kullback-Leibler Divergence (KLD), are not necessarily appropriate 

for producing perceptually realistic results. They proposed to aggregate 1D Wasserstein 

distances between each pair of individual feature maps from input and target, computed by any 

well pre-trained CNN model. The proposed loss is called projected distribution loss (PDL).  

2.2.4 Dataset for Image Inpainting  

2.2.4.1 ADE20K Dataset  

A subset of the ADE20K dataset [80], [81] was selected as the train set for the AIM 

extreme general image inpainting challenge [78] of the ECCV 2020. This dataset is collected 

for scene parsing and understanding, in which it contains images from various scene categories. 

The subset was provided by the organizers of the challenge, and it consists of 10,330 training 

images with diverse resolution roughly, from 256 × 256 to 3648 × 2736. Figure 2.11 shows 

some examples of this dataset.  
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2.2.4.2 CelebA-HQ Dataset  

 

Apart from the ADE20K dataset, the CelebA-HQ dataset [82] is also commonly used 

for facial image inpainting. Figure 2.12 shows some examples of this dataset. This dataset 

contains 30,000 high-quality facial images with a standard size of 10242. Some previous 

methods like [69], [73], [75] randomly split this dataset into two groups, 27,000 images for 

training a face image inpainting models and 3,000 images for testing.  

 

 

Figure 2.11 Examples of the ADE20K dataset [80], [81]  

 

Figure 2.12 Examples of the CelebA-HQ dataset [82]  
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2.2.5 Challenging in Image Inpainting  

As mentioned in section 2.2 and Figure 2.9, the difficulty of image inpainting highly 

depends on the sizes of the missing area and the semantic importance of the missing regions to 

the entire image. For example, if half of a person or a car is removed, it is more difficult to 

recover the whole person or car because of its semantic significance. In this case, we still have 

half of the person or car in the masked image and only limited information is available to help 

to fill in the missing regions. In contrast, it is easier to fill in the missing regions if the entire 

person or car is masked. We can fill in the missing regions with the background information, 

like the sky and grass field. Therefore, we have to seek a better balance of the semantic 

correctness and the visual quality. Completed images with correct global semantic are 

important to other high-level tasks such as semantic segmentation and image recognition.  

The second challenge is related to the network design of inpainting models. The 

necessity of the two-stage approach has been challenged by some one-stage inpainting models 

[61], [65]-[67], [69], [71]-[73] which are also able to produce state-of-the-art high-quality 

completion results. Computationally expensive Contextual Attention (CA) layer has been 

recently restudied [76] to improve its effectiveness and efficiency by replacing the generated 

feature patches by the selected reference feature patches at a later layer which shares the same 

spatial size as the input to preserve more local textures and eliminating its expensive search 

operation from inference stage. Hence, inpainting network design is another interesting topic, 

in which the effectiveness of each building block should be studied.  

For the most recent development of deep learning-based image inpainting, Zhou et al. 

[100] proposed TransFill which is a reference-guided image inpainting model. They fill in the 

hole by referring to a warped reference image with learned spatial transformations. As a result, 

they can offer inpainting results with plausible visual quality compared to other state-of-the-

art inpainting models without using any reference image. Apart from reference-based image 
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inpainting, high-resolution and large mask image inpainting tasks are also hot research and 

industrial topics. Zeng et al. [101] proposed Aggregated Contextual Transformation GAN 

(AOT-GAN) for high-resolution image inpainting. They designed an AOT block, for which 

multi-dilation convolutional layers are used to include various receptive fields for capturing 

both near and distant spatial neighbours. Their experimental results showed that the proposed 

AOT block brings impressive improvements by capturing both near and distant spatial 

locations for high-resolution images and large missing regions. Suvorov et al. [102] also 

proposed a new model named Large Mask inpainting, LaMa. They designed their inpainting 

network using fast Fourier Convolutions (FFCs), which offers a receptive field that covers the 

entire image, and it is less sensitive to the input image size. For existing inpainting models, 

more layers are required such that a model can see the entire image when the input resolution 

is large. With FFCs, a model can capture the global context of an image at early layers and 

hence high-resolution images with large missing regions can be completed.  

In this thesis, we also demonstrate that the range of the receptive fields of an inpainting 

model is important to the inpainting performance. We show that self-attention can be used to 

enhance the visual quality of the inpainting results by borrowing the high-frequency textures 

from the valid pixels to refine the generated pixels. Apart from these, we focus on seeking the 

balance of visual quality and pixel-wise reconstruction accuracy such that the inpainting can 

be further used for other high-level computer vision tasks like verification, segmentation and 

recognition.  
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Chapter 3 Learning Approaches for Place Recognition 

 

Figure 3.1 shows the block diagram of our workflow on visual place recognition. The 

orange blocks are the core components in our algorithm. At the beginning, we assume that the 

initial point of a path is known. We identify the key frames in a path by means of studying the 

local and global effectiveness of the features in a frame. We then use low-resolution whole 

frame tracking with the concept of tube of frames for fast reporting of the recognition results. 

We also design a two-stage key frame recognition to eliminate the accumulated efficient 

tracking errors. The offline feature-shifts and search window weights are also proposed to 

consider the practical feature-shifts in real time for the key frame recognition. This is our 

conventional machine learning approach for place recognition.  

 

Figure 3. 1 Overview of the block diagram of the work done on Visual Place Recognition. Our study 

started with known initial point. We assume that some frames are easier to be recognized (key 

frames) compared to other frames and few but effective features can be used to represent the key 

frames. By utilizing the fact that a vehicle must travel along a path gradually, we propose the tube 

of frames concept to take the previous recognition results into account.  
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To extend the concept of tube of frames, we also study dynamic tubing strategy and the 

use of deep features for place recognition. We propose a deep learning-based method for 

tackling the task of unknown starting point of a journey. We also apply the same idea to achieve 

efficient temporal correlation-based place recognition.  

In this chapter, we first dive into each component of our conventional machine learning 

approach for visual place recognition. We then introduce how we extend our ideas to deep 

learning-based efficient method of visual place recognition.  

3.1 Machine Learning Approach for Place Recognition  

 

Figure 3.2. provides an overview of our proposed Fast Monocular Visual Place 

Recognition (FMPR) method. We design an offline shallow learning stage to learn a path from 

 

Figure 3. 2 Overview of offline shallow learning stage and online scene recognition and tracking 

stage for Fast Monocular Visual Place Recognition (FMPR)  

Offline shallow learning stage
- Identify key frames and reference 

frames

- Analyzing key frames to extract 

representative and effective features 

Store to the database

Online scene recognition and 

tracking stage
- Low-resolution whole frame 

descriptor tracking 

- Two-stage key frame recognition 

Report localization results

Reference sequence

Testing sequence

First load all the learnt key and reference frames 
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a reference sequence. Key frames and reference frames are identified and stored for online 

recognition and tracking stage. A few but effective features of the key frames are extracted for 

better representative power of the key frames to enhance the recognition accuracy and 

efficiency. With these two strategies, we can build a database for the path. For our proposed 

online recognition and tracking stage, also named as online practicing stage later in this chapter. 

We propose a low-resolution whole frame descriptor tracking approach, for which recognition 

results are given by an effective comparison with neighbouring frames and a prediction of 

current location based on previous recognition results. With the proposed tracking, the 

efficiency of the system can be improved. We also design a two-stage key frame recognition 

to rectify the accumulated errors from fast tracking. The “two-stage” arrangement is designed 

in which fine recognition process will only be activated when more information is needed for 

decision making. In the following, we first introduce the proposed offline shallow learning 

stage in which key frames and reference frames are defined and extracted. Then, we describe 

the details of the online practicing stage.  
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3.1.1 Offline Shallow Learning Stage 

 

Figure 3.3 displays the flowchart of our offline shallow learning stage. In this stage, we 

target at learning a path by means of extracting representative information from a reference 

sequence and storing the information in the database for online usage. The box drawn with the 

dash line shows how the analysis of key frames is performance. We learn the path from the 

reference sequence in an offline manner. We start to introduce the motion types of the reference 

sequence as displayed in the 2nd box of the left-hand side of Figure 3.3. All the other 

components in Figure 3.3 are fully discussed in the following sub-sections.  

 

Figure 3. 3 Flowchart of the proposed offline shallow learning stage  
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3.1.1.1 Motion Type Classification  

 

The core idea of the motion type classification is to detect duplicated incoming frames 

with stop or dead-slow motions. Milford and Wyeth [7] focused on handling of identical speed 

and constant motion situations which are not sufficiently practical for real-world applications. 

Therefore, we start our study on stop and dead-slow motions, in which redundant or even 

confusing information can be identified. More importantly, removing repeated frames can save 

the database storage and speed up the processing time. There are two types of stop frames in 

our case studies. Figure 3.4(a) shows the first type of the stop motions which encounters a 

vehicle in the front. A stop frame offset is designed to eliminate the effect of the motion of the 

frontal vehicle, or otherwise the motion of the frontal vehicle plays an important role in visual 

based methods instead of the self-motion we are studying. The second type of the stop motions 

is also shown in Figure 3.4(b) and there is no frontal vehicle. Hence, there is no need to apply 

the stop frame offset to this type of stop motions.  

 

Figure 3. 4 (a) First type of stop motions: Vehicle in the front. (b) Second type of stop motions: No 

vehicle in the front  
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One effective way to capture the types of stop motions is to compute the average pixel 

difference within the red-bounded region of two consecutive frames as shown in Figure 3.4. 

The size of the red-bounded region is defined as 256 × 64 pixels. We down-sample the region 

to 64 × 16 and divide it into a number of 8 × 8 small regions for contrast normalization so as 

to minimize the effect of local changes in illumination. A search window is constructed for 

capturing the dead-slow motion of the vehicle and the average pixel difference are computed 

as:  

𝑑(∆𝑚, ∆𝑛, 𝐼𝑖, 𝐼𝑖−1) =
∑ ∑ |𝐼𝑖(𝑚+∆𝑚,𝑛+∆𝑛)−𝐼𝑖−1(𝑚,𝑛)|𝑊−1

𝑚=0
𝐻−1
𝑛=0

𝑊×𝐻
, 𝑖 ∈ [1, 𝐹 − 1]  (3.1) 

where W and H are the width and height of the down-sampled normalized red-bounded 

region, 64 and 16 respectively. Ii(m, n) is the intensity value of the pixel located at (m, n) of the 

down-sampled region of frame i. F is the total number of reference frames in the studying 

reference sequence. ∆m and ∆n are the shifts in terms of pixels. We shift the location of the 

region according to ∆m and ∆n before extracting and down-sampling the red-bounded region. 

We look for ∆mmin and ∆nmin that minimize the average pixel difference, d(.), between two 

consecutive frames.  

(∆𝑚min, ∆𝑛min) = arg min
∆𝑚,∆𝑛∈[−𝑠,𝑠]

𝑑(∆𝑚, ∆𝑛, 𝐼𝑖, 𝐼𝑖−1)    (3.2) 

where s is the search range in terms of pixels and the minimized d(.) for frame i, di, is 

the final average pixel difference value between frame i and i-1.  

𝑑𝑖 = 𝑑(∆𝑚min, ∆𝑛min, 𝐼𝑖 , 𝐼𝑖−1)     (3.3) 
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To deal with exceptional cases like repeated frames during capturing the current place 

and variations in the average pixel difference values as shown in the blue curve of Figure 3.5. 

We adopt “tube smoothing”, di,tube, which computes the average pixel difference of the current 

frame by averaging the “average pixel differences” of the neighbouring frames to smooth out 

the exceptional cases, please refer to the orange curve in Figure 3.5. If di,tube is smaller than the 

pre-defined thresholds, Tdead-slow and Tstop, the motion type of the current incoming frame is 

classified as dead-slow and stop motion respectively.  

3.1.1.2 Reference Frame Identification  

Apart from the dead-slow and stop frames, all the other frames are identified as 

reference frames with standard motion in the proposed method. Note that all the reference 

frames would be stored in the database in the form of feature descriptors for online practicing 

stage.  

3.1.1.3 Potential Key Frame Identification  

Potential key frames are identified from the reference frames, and we define key frames 

as frames that can be represented by few discriminative features with respect to the entire 

 

Figure 3. 5 Average pixel difference between each consecutive pair with (orange) and without (blue) 

tube smoothing  
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reference sequence. We assume that key frames can confidently be recognized with only few 

but effective representative features. We define a reference term, AVG dref frames, i.e., the average 

of the “average pixel differences” among the reference frames. The AVG dref frames is computed 

and rounded up as follows:  

ROUNDUP (𝐴𝑉𝐺 𝑑ref frames =
∑ 𝑑𝑟

𝑅
𝑟=0

𝑅
)   (3.4) 

where R is the number of reference frames and dr is the final average pixel difference 

of the reference frame r defined in Eq. 3.3.  

Reference frames with dr larger than AVG dref frames are selected and sorted based on 

their dr values. In our setting, key frames should not be too close to each other, i.e., the interval 

of key frames should not be small. Hence, potential key frames are identified based on a key 

frame interval, Lkey frame, which is in terms of accumulated average pixel difference and is 

calculated as,  

𝐿key frame = 𝐿expected × 𝑓 × 𝐴𝑉𝐺 𝑑ref frames  (3.5) 

where Lexpected is the expected key frame interval in terms of second, f is the frame rate 

of the studying reference sequence, which is usually set to 25 fps, and AVG dref frames is 

computed using Eq. 3.4 without the round up operation. Note that “average pixel differences” 

is used to classify the frame motion as mentioned in section 3.1.1.1. We also infer the travel 

distance through accumulating the “average pixel differences”. Therefore, we can have certain 

control of the closeness of the key frames.  

Reference frames with larger dr mean that there are larger variations in the texture in 

the red-bounded region as shown in Figure 3.4. It usually happens when the vehicle is crossing 

a vehicle-pedestrian interface (Figure 3.6a) or turning left/right (Figure 3.6b). This kind of 

frames usually have obviously different structures or skeleton from other frames in the same 
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reference sequence and there are also more representative features such as road signs. Hence, 

these frames are suitable for selecting as key frames.  

 

3.1.1.4 Potential Key Frame Evaluation  

As the key frames are used to confidently tell whether we arrive at a specific location, 

they should be obviously different from the other reference frames. Hence, each potential key 

frame is compared with all other frames using low-resolution whole frame descriptor matching 

with a search window. A weak potential key frame would have similar structural features with 

other potential key frames, which would also be reflected by the matching results. The search 

window is established for considering reasonable viewpoint invariance. The original size of a 

frame is 640 × 480 and we preserve 5 pixels from each edge for establishing the search window. 

A frame is downsampled to 64 × 48 and divided into normalized regions with size of 8 × 8. 

The operation of low-resolution whole frame descriptor matching is similar to Eqs. 3.1-3.3. Let 

dp,i denote the average pixel difference between each potential key frame and all other reference 

frames. Then, we compute the average and variance of the average pixel differences of each 

potential key frame, AVG dp and VAR dp respectively.  

𝐴𝑉𝐺 𝑑𝑝 =
∑ 𝑑𝑝,𝑖

𝐹−1
𝑖=0

𝐹
, 𝑝 ∈ [0, 𝑃 − 1]    (3.6) 

 

Figure 3. 6 (a) Reference frame with the largest dr = 111.73, Frame 251 (b) Reference frame with 

the second largest dr = 103.54, Frame 44  
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𝑉𝐴𝑅 𝑑𝑝 =
∑ (𝑑𝑝,𝑖−𝐴𝑉𝐺 𝑑𝑝)2𝐹−1

𝑖=0

𝐹−1
, 𝑝 ∈ [0, 𝑃 − 1]   (3.7) 

where F and P are the total number of frames and potential key frames in the studying 

reference sequence respectively.  

Based on Eqs. 3.6, 3.7, θp of each potential key frame is calculated:  

𝜃𝑝 =
𝑉𝐴𝑅 𝑑𝑝

𝐴𝑉𝐺 𝑑𝑝
, 𝑝 ∈ [0, 𝑃 − 1]    (3.8) 

 

Figure 3.7 shows a persuasive key frame with large AVG dp and small VAR dp. Large 

AVG dp means that the potential key frame is different from other potential key frames. Small 

VAR dp also makes sure that the potential key frame would not be similar to other potential key 

frames located at distant locations. K-means clustering [44] is applied to θp to split the potential 

key frames into 2 groups. One group is with small θp while the other is with large θp. The 

potential keys with small θp are then identified as official key frames and the list of extracted 

key frames is finalized.  

 

 

 

Figure 3. 7 Frame 251’s average pixel difference with all other frames (θp=0.271, the maximum 

value of dp is set to 90 for better visualization)  
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3.1.1.5 Analysis of Key Frame  

 

We make analysis of each key frame by using Histogram of Oriented Gradients feature 

vectors (HOG FV) with the standard formation mentioned in [45]. Table 3.1 lists out the 

parameter setting for the HOG FV formation.  

 

Figure 3.8a shows a sample image with the defined Region of Interest (RoI). We 

observe that features on the edges may be difficult to be observed in both reference and testing 

sequences due to the capture intervals of the frontal camera and the location of the camera. 

Therefore, we define the RoI in which only the green blocks enclosed by the grids are being 

processed as shown in Figure 3.8b. Note that there are 234 blocks in our RoI with the pre-

defined parameter setting.  

 

 

Input data: Y component of a frame 

Frame size: 640 × 480 pixels 

Cell size: 8 × 8 pixels 

Bin size: 9-bin histograms (unsigned gradient) 

Block size: 32 × 32 pixels (4 × 4 cells) 

Feature vector length: Each block has a 144-length vector 

Table 3. 1 Related Parameters for HOG FV formation  

 
________(a) (b)________ 

Figure 3. 8 (a) Sample image with RoI (Region of Interest) (b) RoI – Green blocks (234 blocks in 

the RoI)  
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3.1.1.5.1 Local Effectiveness  

 

We define features in a frame with high “local effectiveness” if they are with rich 

texture and strong alignment. In contrast, features with plain texture and irregular alignment 

are classified as ineffective local features. Figure 3.9a shows three feature blocks in our RoI 

which represent three kinds of features, i.e., sky (blue block), trees (green block) and road sign 

(red block). Note that the block size is 32 × 32 pixels, and there are 32 × 32=1,024 values of 

gradient magnitude and orientation of each feature block respectively.  

To show the “local effectiveness” of the feature blocks, we can examine their values of 

gradient magnitude and orientation. The values of the average gradient magnitude (M) of the 

three feature blocks are 1.21 (sky), 118.14 (trees) and 81.57 (road sign) respectively. It is 

obvious that the sky block has plain texture and no edge information, so small value of M is 

computed. For the trees and road sign blocks, we can see that their values of M are large which 

means the blocks containing rich texture and edge information. Note that each feature block 

has one value of M and we have 234 feature blocks for every frame in our RoI, please refer to 

Figure 3.8b for the RoI. Also, it is clear that trees and road signs include irregular and regular 

feature patterns respectively. From Figure 3.9b, the trees block (green) cannot be observed at 

nighttime, hence this kind of features should not be used as effective features to represent a 

 
________(a) (b)________ 

Figure 3. 9 (a) Three feature blocks in the RoI which represent three different kinds of features, 

namely sky (blue), trees (green), and road sign (red) (b) same place as (a) but at nighttime and blur 

situation  
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frame. Figure 3.10a and b show the probability distributions of gradient orientation of the trees 

feature block (green) and road sign feature block (red) in Figure 3.9a. Let pbi,b be the calling 

probability of bin bi of block b (for b=0, …, 233). For block b, its probability distribution of 

the gradient orientation can be evaluated in terms of the variance of the probability distribution, 

Var(Db) which is computed as:  

𝑉𝑎𝑟(𝐷𝑏) =
∑ (𝑝𝑏𝑖,𝑏−𝜇)2𝐵−1

𝑏𝑖=0

𝐵−1
    (3.9) 

where B is the bin size and μ is the average calling probability which equals to 1/B. The 

Var(Db) values of the trees and road sign blocks are 0.00077 and 0.00153 respectively. From 

Figure 3.10a and b, the trees block (a) contains irregular patterns and have small Var(Db) as all 

the bins have similar calling probabilities. On the other hand, the road sign block (b) often has 

higher probabilities on particular bins because of its regular pattern.  

 

We combine the average gradient magnitude (M) and the variance of probability 

distribution Var(Db) to compute the local effectiveness of each feature block, EL,b, as follows. 

𝐸𝐿,𝑏 = 𝑀𝑏 × 𝑉𝑎𝑟(𝐷𝑏) × 𝑤𝑏    (3.10) 

 

 
________(a) (b)________ 

Figure 3. 10 (a) Probability distribution of gradient orientation of trees feature block (green) in 

Figure 3.9a (b) Probability distribution of gradient orientation of road sign feature block (red) in 

Figure 3.9a  
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where wb is a weight for block b which reflects the distance between the camera and 

block b. From Figure 3.8b, it is not difficult to infer those blocks located at the lower part are 

closer to the camera and this region is less likely to be blocked by dynamic objects during 

recognition. Therefore, high weight is set for blocks located at the lower part, in which features 

closer to the camera can be observed clearly and with less blur by because of the highlights of 

the vehicle in the evening, etc. The EL,b values are normalized by dividing by the highest value 

of the local effectiveness in the current studying frame.  

3.1.1.5.2 Global Effectiveness  

Features with high local effectiveness, EL,b, are not necessarily to be effective and 

representative with respect to the entire reference sequence, i.e., all other frames. Some features 

with high EL,b could be repeated in other frames in the same reference sequence, hence these 

features are not representative. We propose “Global Effectiveness” to evaluate the features by 

comparing to all other frames in the same reference sequence. We define that the unique 

features of a frame should be the features with both high local and global effectiveness. 

Features with high global effectiveness mean that these features can only be observed in a 

specific frame but not the other frames in the same reference sequence. Cosine distance 

measure (C) and Block-to-Block HOG feature vector comparison are used for obtaining the 

global effectiveness.  

𝐶 = 1 − cos𝜔 = 1 −
𝐩∙𝐪

‖𝐩‖‖𝐪‖
    (3.11) 

where cosω is the Cosine similarity which is defined as the cosine of the angle 

difference between vectors p and q.  

To obtain the global effectiveness, all feature blocks (234 blocks per frame in the RoI) 

of a key frame are compared to the corresponding block locations in all other frames. There 
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could be undesirable or slight shifts of features in practice, hence we look for Cmin which is the 

minimum Cosine distance within a search window of the current studying feature block.  

𝐶𝑏 = 𝐶𝑚𝑖𝑛 = arg min
𝑘∈[0,𝐾−1]

𝐶𝑘    (3.12) 

where Ck is the Cosine distance of the kth search location within the search window and 

Cb is the final Cosine distance of a comparison of block b. To find Cb, please refer to Eqs. 3.1-

3.3. The only difference is that we use Cosine distance as the cost function for the comparison 

instead of average pixel difference. We set the search range to ±2 cells and consider 1 cell shift 

for each search location. There are (2 × 2 + 1)2 = 25 search locations in a search window and, 

this pre-defined search range is sufficient to cover the consideration of the feature shifts in our 

experiments. The average and variance of the Cosine distances of each feature block, AVG(Cb) 

and VAR(Cb) can be calculated as:  

𝐴𝑉𝐺(𝐂b) =
∑ 𝐶𝑏,𝑖

𝐹−1
𝑖=0

𝐹
     (3.13) 

𝑉𝐴𝑅(𝐂b) =
∑ (𝐶𝑏,𝑖−𝐴𝑉𝐺(𝐂b))2𝐹−1

𝑖=0

𝐹−1
   (3.14) 

𝜏𝐶,𝑏 =
𝑉𝐴𝑅(𝐂b)

𝐴𝑉𝐺(𝐂b)
      (3.15) 

where Cb,i is the Cosine distance of block b compared to frame i, F is the total number 

of frames in the studying reference sequence and τC,b is the ratio of VAR(Cb) to AVG(Cb) of 

block b. Note that a standard global effective feature block should have large AVG(Cb) and 

small VAR(Cb), as the feature block should have large distance from the blocks in all other 

frames and all its distances should keep at a large value level. The values of τC,b are then 

normalized and converted into EG,b as follows.  

𝐸𝐺,𝑏 =
min 𝜏𝐶

𝜏𝐶,𝑏
      (3.16) 
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where min τC is the smallest τC,b in the current studying frame.  

Figure 3.8a shows a sample image with the defined Region of Interest (RoI). We 

observe that features on the edges may be difficult to be observed in both reference and testing 

sequences due to the capture intervals of the frontal camera and the location of the camera. 

Therefore, we define the RoI in which only the green blocks enclosed by the grids are being 

processed as shown in Figure 3.8b. Note that there are 234 blocks in our RoI with the pre-

defined parameter setting.  

3.1.1.5.3 Mixed Effectiveness  

 

As abovementioned, a real effective and representative feature block should have both 

high local and global effectiveness. We introduce the mixed effectiveness (EM,b) as the product 

of EL,b and EG,b. We normalize EM,b by means of dividing by the highest value of EM,b in the 

current studying frame. Feature blocks are sorted based on EM,b and Figure 3.11 shows the 

absolute changes from the previous feature block of frame i = 44 in sequence – LRTS1. The 

absolute change is the drop in the mixed effectiveness of the sorted feature blocks. The first 

feature block should be the beginning most effective blocks to represent the frame. It is obvious 

that the absolute changes for the end of Figure 3.11 become smaller and smaller. This implies 

that the use of these ineffective blocks has no positive effect on the representation of the frame 

in terms of the value of effectiveness. We set a threshold Tcut off = 0.001 for detecting the cut 

 
Figure 3. 11 Absolute changes from the previous feature block after sorting based on EM,b  
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off point of the ineffective blocks. The cut off point is detected when the absolute change 

between two consecutive feature blocks is smaller than Tcut off. The final list of effective feature 

blocks is then finalized. Figure 3.12a displays the extracted effective feature blocks of frame i 

= 44 based on EM,b and the absolute changes in EM,b. By using the proposed mixed effectiveness, 

only few but the most effective feature blocks are required to represent a frame with respect to 

the entire reference sequence. The most effective and representative features in frame i =44 

shown in Figure 3.12a is clearly the road sign located at a around the middle of the frame. It is 

important to note that we do not intentionally extract the artificial features like traffic signs and 

lane as the effective features.  

 

3.1.1.5.4 Effective Feature Blocks Grouping  

Refer to Figure 3.12a, we can see that most of the effective feature blocks are connected, 

hence we combine them to form different effective feature patches. Note that individual 

effective feature block can be regarded as small feature patterns for feature matching, but it 

could be easily to have false positive for small feature patterns. On the other hand, larger feature 

patterns, i.e., feature patches, are more expressive and larger patters reduce the probability of 

getting false positives. Therefore, each feature patch contains one to few feature blocks, please 

refer to Figure 3.12b for an example of grouping effective feature blocks. Each effective feature 

 
________(a) (b)________ 

Figure 3. 12 (a) Final extracted effective feature blocks of frame i = 44 based on EM,b and the absolute 

changes in EM,b (b) Final extracted effective feature patches of frame i = 44  
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patch is shifted to form a number of shifted versions. This is our proposed offline feature-shifts 

approach for feature matching during online practicing stage. Different shifted versions of the 

feature patches are then stored in the database for later usage. We set the shift range to ±3 cells 

(3 × 8 = 24 pixels), which means we shift a patch horizontally and/or vertically by 4 pixels for 

each version. Hence, there are in total (2 × (3 × 8/4) + 1)2 = 169 shifted versions and each 

version generates a HOG feature vector [45].  

3.1.2 Online Scene Recognition and Tracking Stage  

 

Figure 3.13 shows the workflow of our proposed online scene recognition and tracking 

stage (i.e., online practicing stage). The first step of the online practicing stage is to load all the 

 
Figure 3. 13 Flowchart of online scene recognition and tracking stage  
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learned key frames and reference frames from the abovementioned offline shallow learning 

stage into the system. We propose a two-stage strategy to simplify and speed up the key frame 

recognition. We boost the recognition performance by introducing a search window weighting 

approach. We also suggest a reference frame tracking, which contributes to the efficiency of 

the recognition system. By considering both the estimated and computed tracking results, the 

temporal relationship between neighbouring frames is utilized, in which the recognition 

consistency can be enhanced. The details of the key frame recognition and reference frame 

tracking are discussed as follows.  

3.1.2.1 Key Frame Recognition  

3.1.2.1.1 Offline Feature-Shifts Approach  

As mentioned in section 3.1.1.5.4, we consider the practical feature-shifts of the key 

frame patches in an offline manner for the sake of efficiency. We build a shift window for each 

key frame patch and shift the patch inside the shift window to form different versions of the 

feature patch. During testing, we compute the feature vector of each patch in the current query 

frame based on the initial locations of the patches of the current studying key frame. The feature 

vector of each patch in the current incoming query frame is compared with all versions of the 

feature vectors of the corresponding patch stored in the database by using Cosine similarity 

(Eq. 3.11). For every single patch, we look for the best matched location (∆uk,min, ∆vk,min) 

among all the shifted versions which offers the highest similarity score as follows.  

(∆𝑢𝑘,min, ∆𝑣𝑘,min) = arg min
∆𝑢𝑘,∆𝑣𝑘∈[−

𝑠ℎ

𝑠𝑡
,
𝑠ℎ

𝑠𝑡
]

𝐶(𝐹𝑉𝑘,query, 𝐹𝑉𝑘,key,∆𝑢𝑘,∆𝑣𝑘
)  (3.17) 

where FVk,query is the feature vector of the kth patch in the current incoming query frame 

and FVk,key,∆uk,,∆vk is the feature vector of the shifted version of the kth effective feature patch in 

the current comparing key frame with coordinates (∆uk, ∆vk). sh and st are the shift range and 
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stride in terms of pixels. The final Cosine similarity between the studying patches, Ck, is 

calculated as:  

𝐶𝑘 = 𝐶(𝐹𝑉𝑘,query, 𝐹𝑉𝑘,key,∆𝑢𝑘,min,∆𝑣𝑘,min
)   (3.18) 

3.1.2.1.2 Shift Window Weighting Approach  

It is difficult to detect the global peak, i.e., whether we recognize the key frames, in real 

time as we could be trapped into the local peaks which are located before the global peak. To 

avoid this kind of situations, the similarity (or Weighted Confidence Level to be defined later) 

of the global peak and the others should be as different as possible so that we have a clearer 

decision boundary for decision making. We define the tolerance of the key frame recognition 

of a key frame as the difference between the global peak similarity and the average similarity 

of the matching curve. Large tolerance means that we have a sharper decision boundary which 

is important to recognition and navigation. We have carefully studied the key frame recognition 

results of each key frame. We are targeting at the original effective feature patches we found 

at the offline learning stage previously, even that we have already shifted the patches for 

practical feature-shifts in real time. From the actual matching results, we realize that patches 

are matched to different shifted versions, and we study the distributions of the matched 

locations of the feature patches.  

Figure 3.14 shows an example of a shift window with u and v range from -4 to 4. dmax 

is the largest L2 norm distance [45] from the origin in the shift window, sqrt(42 + 42) = sqrt(32) 

in this case. Based on dmax, the distance between each shift point and the origin can be 

normalized and the weighting for the kth patch, wk, can be calculated,  

𝑤𝑘 = 1 −
𝑑(∆𝑢𝑘,min,∆𝑣𝑘,min)

𝑑max
    (3.19) 
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where the coordinates (∆uk,min, ∆vk,min) are computed using Eq. 3.17 and we can 

calculate the distance between (∆uk,min, ∆vk,min) and the origin of the kth effective feature patch. 

If the distance is small, the patch is matched to the original effective feature patch and we aware 

this matching by assigning a larger weight. The Weighted Confidence Level (WCL) between 

two frames is defined as the weighted sum of the similarities between all respective patches.  

𝑊𝐶𝐿 =
∑ 𝐶𝑘𝑤𝑘

𝐾−1
𝑘=0

𝐾
    (3.20) 

where K is the number of effective feature patches in a key frame, Ck and wk are 

obtained using Eqs. 3.18 and 3.19 respectively.  

 

3.1.2.1.3 Two-Stage Key Frame Recognition  

In the proposed offline key frame identification, we use low-resolution whole frame 

descriptor to select potential key frames by means of comparing the structural features of all 

the frames in the studying reference sequence. The same concept is used to recognize key 

frames. The comparison between frames is based on the average pixel differences, refer to Eq. 

3.1, which is then converted into similarity score, SS, as below.  

 
Figure 3. 14 An example of shift window with u and v range from -4 to 4. The red grid is the origin 

which represents the original effective feature patch without nay shift. The yellow grid is the farthest 

matched location from the origin  
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𝑆𝑆 = {
                  0                             , 𝑖𝑓 𝑎𝑝𝑑 > 𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑−𝑎𝑝𝑑

𝑢𝑝𝑝𝑒𝑟 𝑏𝑜𝑢𝑛𝑑−𝑙𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑
     , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                        

 (3.21) 

where apd is the average pixel differences between the current frame and the studying 

key frame. For unsigned 8-bit image, the largest value of apd is 255 but our experimental results 

show that most of the differences vary between 70 and 120. Hence, the upper bound of apd 

and lower bound of apd are set to 70 and 120 respectively.  

We also proposed to split our online key frame recognition into two stages in order to 

take the advantage of efficient low-resolution whole frame matching. The first stage is low-

resolution whole frame descriptor matching, targeting at fast and concise decision. The second 

stage is the abovementioned patch-based key frame recognition which employs the offline 

feature-shifts with shift window weighting approach. The operation of the two-stage key frame 

recognition is described as follows.  

𝑆𝑆 = {

the best match is found directly                                                               , 𝑖𝑓 𝑆𝑆 > 𝑇𝑚𝑎𝑡𝑐ℎ𝑒𝑑

no further operation of key frame recognition (𝑀𝐶𝐿 = 0)                  , 𝑖𝑓 𝑆𝑆 < 𝑇𝑢𝑛𝑚𝑎𝑡𝑐ℎ𝑒𝑑

perform patch − based key frame recognition (𝑀𝐶𝐿 = 𝑊𝐶𝐿 × 𝑆𝑆) , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒               
  (3.22) 

where WCL (weighted confidence level) and SS (similarity score) are computed using 

Eqs. 3.20 and 3.21 respectively. Our logic is that if the SS shows enough confidence in the 

current match, the best match to the comparing key frame is found directly. If SS is very low, 

the current match is not likely to be the best match. The operation of the key frame recognition 

for the current query frame would be ended immediately to save the time cost. For SS without 

clear indication of the match, our patch-based key frame recognition would be activated, and 

the current match would be evaluated by the modified confidence level, MCL, for which it is 

the product of SS and WCL. To get a high value of MCL, both SS and WCL should be high. 

This implies that both structural features and local feature patches are employed to ensure a 

reliable level of confidence. Note that not all the matches have the corresponding MCL, so the 
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default value of MCL is 0. We assume that the reference key frames appear in order as the 

starting point of the vehicle is known. A parallel key frame recognition scheme is also adopted 

to avoid trapping into false negatives. This means that the current key frame and the next key 

frame are under the matching process concurrently. When the current key frame is accidentally 

matched with lower confidence because of practical reasons such as dynamic objects and 

blurring, the next key frame is useful to rectify the current position of the vehicle when it is 

matched. The core idea of key frame recognition is that we match some critical landmark 

locations, i.e., key frames, to lock the current position of the vehicle and then the reference 

frame tracking can be performed to trace the recent positions of the vehicle until the next 

landmark location is recognized.  

3.1.2.2 Reference Frame Tracking  

3.1.2.2.1 Low-Resolution Whole Frame Descriptor Tracking  

During the online practicing stage, if the input query frame is classified as dead-slow 

or stop frame, please refer to Eqs. 3.1-3.3 and Figure 3.13, no operation on tracking and 

recognition would be performed to save the cost and the previous result is kept. For an 

incoming input frame which is classified as frames with normal motion, low-resolution whole 

frame descriptor tracking with our proposed tube of frames concept is performed to find the 

best match to one of the reference frames within a search range (ζ) and use the previous results 

to predict the next best match. The down-sampled input frame is compared to a set of reference 

frames using average pixel difference, refer to Eq. 3.1. In our proposed reference frame tracking, 

we introduce a novel idea on combining the estimation of the next best match and the evaluation 

of the current match.  
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3.1.2.2.1.1 Estimation of the Next Best Match  

 

Figure 3.15 shows a graphical illustration of our proposed ideas of tube of frames and 

the estimation of the next best match. The horizontal axis represents the current incoming query 

frame number, and the vertical axis represents the reference frame number. Assume that the 

dark grids are the previous results in which these input and reference frame pairs give the 

smallest average pixel difference among the corresponding set of reference frames. In this case, 

the tube width is 5 and the current query frame is the 5th input frame, last column in the blue 

region. We use the previous 5 results, the 5 dark grids, to predict which pair in the next column, 

i.e., the next input frame, provides the smallest average pixel difference. We would like to find 

a line which produces the smallest Sum of Square Error (SSE) with the previous results. We 

draw a number of lines based on the pre-defined search range and search step, φrange and φstep, 

which define the slope of each line. The estimated match defines the search range (ζ) for the 

next input query frame. The tube width is fixed, and the tube keeps sliding based on the final 

result of each input query frame which is obtained from the estimated match (discuss in the 

sub-section) and the current calculated match (discuss in the next sub-section).  

 
Figure 3. 15 Graphical illustration of a sample case in tube of frames concept and estimation of the 

next best match  
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3.1.2.2.1.2. Evaluation of the Current Match  

 

We discuss the confidence measure of the estimated and calculated matches. Figure 

3.16 shows how to obtain the final result of the current input frame based on the estimated 

match and the current calculated best match graphically. Suppose that we are at the 6th column 

and the red grid is the estimated match obtained in the previous input frame. The green grid is 

the current calculated best match which gives the smallest average pixel differences within the 

corresponding search range (ζ). The average pixel differences of the estimated match and the 

calculated match are indicated as apdestimated and apdcalculated. The two matches are weighted 

based on their apds to get the final result as below.  

𝐼𝑓𝑖𝑛𝑎𝑙 = 𝑊𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑𝐼𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑 + 𝑊𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑𝐼𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑  (3.23) 

where Ifinal is the final result of the current input frame in terms of the reference frame 

index, Iestimated is the estimated match and Icalculated is the current calculated match. Westimated and 

Wcalculated are the weights of the estimated and calculated matches respectively. The weights are 

computed as follows.  

 
Figure 3. 16 Graphical illustration of evaluation of the current match  
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𝑊𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑=
𝑎𝑝𝑑𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑎𝑝𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑+𝑎𝑝𝑑𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

𝑊𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑=
𝑎𝑝𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑

𝑎𝑝𝑑𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑+𝑎𝑝𝑑𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑

     (3.24) 

where the confidence of the estimation and the current calculation are based on the 

average pixel difference. If the current input frame is closer to the estimated match, i.e., lower 

apd, a higher weight is assigned to the estimated match and vice versa.  

3.1.3 Experimental Results  

3.1.3.1 Datasets  

Extensive experiments have been conducted. There are four datasets, and we compare 

our proposed method to several approaches, namely SeqSLAM [7], [42], ABLE-M [31], [32], 

and AlexNet [35], [46] conv3 layer feature-based approach. SeqSLAM is the first sequence-

based approach which assumes constant speed situation. It acts as a baseline to evaluate the 

performance of different methods. ABLE-M is also a sequence-based method for which the 

authors used binary sequence codes to represent sequence of images. AlexNet conv3 layer 

feature-based method uses the off-the-shelf network as a feature extractor to take the 

advantages of well generalized deep features. The datasets are discussed in the following.  

3.1.3.1.1 Light Rail Transit (LRT) Datasets  

 

The first two datasets are obtained directly from a public transportation system in Hong 

Kong, Light Rail Transit (LRT). These are real-life sequences, and each dataset contains 4 

 
Figure 3. 17 Examples from LRT datasets, including changes in lighting conditions, blurring, 

dynamic objects, and varying speeds  
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sequences of the same route, 3 in the daytime and 1 at nighttime. One of the daytime sequences 

was used as a reference sequence for the offline learning stage. The datasets involve many 

practical issues like extreme lighting environments, blurring, varying speeds, and dynamic 

objects. The first shorter dataset has 623 frames in average, short sequence, LRTS, and the 

second dataset has 2,566 frames in average, longer sequence, LRTL. Figure 3.17 displays two 

examples of the LRT datasets. The ground truth, i.e., the match pairs, of these datasets are 

manually marked based on human inspection.  

3.1.3.1.2 Nordland Dataset  

 

The third dataset is introduced in [42], named as Nordland dataset, which consists of 4 

long railway sequences for four seasons. This dataset focuses on the extreme seasonal changes 

as shown in Figure 3.18. It assumes that the train travels at constant speed in the four journeys. 

Hence, the dataset is time-synchronized such that any frame in one of the sequences 

corresponds to the same frame in the other sequences. Note that our work focuses on general 

situations with varying speeds rather than extreme changes in appearance, we tested our 

proposed method on this dataset to highlight the difference between SeqSLAM and ours 

(FMPR). We extracted 5,950 frames from each sequence in this dataset as long sequences for 

testing and the “Spring” sequence was used as the reference sequence for the offline learning 

stage. Also, this dataset contains the tunnel parts which have no features to be matched, 

 
Figure 3. 18 Nordland dataset consists of extreme changes in appearance and seasons. Note that two 

images represent the same place in this example  
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examples can be seen in Figure 3.19. Clearly, low average pixel value of frames can be obtained 

when the train is inside the tunnel parts. Therefore, we use the average pixel value to detect the 

tunnel region frames which are regarded as dead-slow or stop frame in our system.  

 

3.1.3.1.3 UA Dataset  

 

The last dataset is a short sequence which was captured on the campus of University of 

Alberta, Edmonton, Canada [43]. This dataset contains non-railway sequences, and it focuses 

on the day-night lighting conditions as shown in Figure 3.20. We extracted two sequences from 

this dataset, one daytime and nighttime sequences. Note that this dataset has also been time-

synchronized and the two sequences both have 646 frames. There are also some changes in 

viewpoints and image distortions. The daytime sequence was used a reference sequence for 

 
Figure 3. 19 Tunnel parts without any feature, Frames 1900 and 2022, in Nordland dataset  

 
Figure 3. 20 UA dataset is non-railway case with changing lighting environments, small changes in 

viewpoints, and image distortions  
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offline learning stage. The use of this dataset demonstrates the possible extension of our 

proposed method to non-railway cases.  

3.1.3.2 Evaluation of Different Tube Sizes for FMPR  

As mentioned in Section 3.1.2.2, our proposed Fast Monocular Place Recognition 

(FMPR) approach uses the concept of tube of frames which utilizes the temporal information 

about the vehicle. Different tube sizes, i.e., different number of frames, from 4 to 40, are 

evaluated on the four datasets to study the relationship between the tube size and the 

recognition accuracy. Note that this experiment focuses on the tube size, hence the proposed 

key frame recognition and the evaluation of the current calculated match are not included. A 

match pair is regarded as correct if its deviation from the ground truth is fewer than 15 frames 

and the results are listed in Table 3.2.  

 

From Table 3.2, we can see that larger tube sizes generally benefit constant speed 

situations, like UA and Nordland datasets, the time-synchronized datasets. When the tube size 

is 40, sequences FALL and UA2 achieve 0.85 and 1.00 accuracies respectively. On the other 

hand, smaller tube sizes perform better in varying speed situations than larger tube sizes. For 

tube size = 4, sequences LRTS3 and LRTS4 attain 0.90 and 0.78 accuracies respectively. As 

Testing 

sequence  

Accuracy with different tube sizes 

4 6 8 10 20 30 40 

LRTS2 0.53 0.64 0.54 0.59 0.59 0.49 0.82 

LRTS3 0.90 0.84 0.61 0.49 0.82 0.61 0.47 

LRTS4 0.78 0.78 0.72 0.74 0.68 0.68 0.72 

LRTL2 0.76 0.74 0.60 0.71 0.06 0.59 0.50 

LRTL3 0.34 0.49 0.02 0.08 0.04 0.18 0.04 

LRTL4 0.81 0.67 0.53 0.02 0.20 0.03 0.40 

SUMMER 0.27 0.76 0.82 0.27 0.30 0.72 0.70 

FALL 0.82 0.83 0.83 0.32 0.31 0.85 0.85 

WINTER 0.07 0.07 0.07 0.07 0.16 0.26 0.28 

UA2 0.43 0.88 0.53 0.91 1.00 0.96 1.00 

Average 0.57 0.67 0.53 0.42 0.42 0.54 0.58 

Table 3. 2 Recognition results on different datasets with different tube sizes (for FMPR, the best 

scores are in bold typeface and the second-best scores are in italics typeface)  
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varying speed situations also contain similar speed situations, larger tube sizes also work 

properly in few sequences in the LRTS datasets like LRTS2, 0.82 accuracy with tube size = 40. 

This reflects that different datasets have their respective optimal tube sizes. For the sake of 

comparing different methods, we select a tube size which offers the best performance on 

average. Therefore, for the rest of our experiments, we set the tube size to 6.  

3.1.3.3 Evaluation of Key Frame Recognition  

 

The effectiveness of the proposed key frame recognition is important to rectifying the 

recognition results. As the reference frame tracking is based on both the predicted match pair 

based on the previous results and the current frame pair matching result, the estimation could 

deviate from the ground truth and the deviation accumulates over time. The term “deviation” 

is defined as the difference between the current output and the corresponding ground truth. The 

main function of the proposed key frame recognition is to eliminate the accumulated deviation. 

Figure 3.21 shows the matched pairs from the proposed method with and without key frame 

recognition for accumulated deviation elimination. Each current frame has the corresponding 

 
Figure 3. 21 Match pairs from the proposed method with and without key frame recognition for 

accumulated deviation elimination. For better resolution of the plot, we drew one match pair for 

each 25 consecutive pairs from Frame 3000 to Frame 5950. (Reference sequence: “Spring”, testing 

sequence: “Summer”)  
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matched pair from its reference sequence (Ground Truth, green circle). We can see that the 

shape of the ground truth seems irregular because of the non-uniform vehicle speed situation. 

Note that more overlaps with the ground truth mean better recognition performance. Without 

our key frame recognition (blue triangle), obvious deviation from the ground truth can be seen 

at location where the current frame number = 4000. This means that the blue and green curves 

are not overlapping starting from the current frame number = 4000. In addition, with the 

proposed key frame recognition (the black cross), the black and green curves are highly 

overlapped. This shows the effectiveness of our proposed key frame recognition.  

 

Figure 3.22 further shows the accuracies of the proposed method with and without key 

frame recognition under different acceptances of deviation, the black and blue curves 

respectively. We also consider a matched pair is correct under different acceptances of 

deviation from the ground truth for showing the closeness of our recognition results and the 

ground truth. For example, when the acceptance of deviation is 3 frames, a matched pair is 

regarded as correct only if the absolute frame difference between the pair and the ground truth 

 
Figure 3. 22 Accuracy of the proposed method with and without key frame recognition under 

different acceptances of deviation. We have set the range of the vertical axis from 0.3 to 0.8. Grid 

lines and data labels are also added. (Reference sequence: “Spring”, testing sequence: “Summer”)  
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is within 3. It is obvious that the black curve, with key frame recognition, is always above the 

blue one, without key frame recognition. This shows that the proposed key frame recognition 

could fulfil its core function in this typical case.  

3.1.3.4 Comparison of SeqSLAM  

We compared our proposed method with SeqSLAM by using OpenSeqSLAM package 

[7], [42]. We used the default parameters of the package, except for the reduced image size was 

changed from 64 × 32 to 64 × 48 pixels. The comparison was done via the precision value P, 

entitled as accuracy, which is the percentage of correctly matched pairs of all reported pairs for 

matching. Nevertheless, using precision alone may not be too fair since one may make 

evaluation by neglecting some number of pairs with low confidence, which offers higher 

precision score substantially. Hence, we use F1 score [47] for the evaluation, which is defined 

as:  

𝐹1 = 2 ×
𝑃∙𝑅

𝑃+𝑅
       (3.25) 

where P is the precision and R is the recall rate which is the percentage of available 

matched pairs to the total number of pairs for performance evaluation. Different values of R 

can be obtained by using a threshold to filter the pairs with low confidence. High F1 score 

means better performance, both P and R have to be high to obtain high F1 score. In this setting, 

methods offer low recall rate resulting in low F1 score, i.e., just selecting a small number of 

high confidence pairs for evaluation is reflected by the F1 score. Note that SeqSLAM uses a 

simple threshold to eliminate weak matches for generating different sets of precision and recall 

rate, and the default value of the threshold is 0.9. In our proposed method, the recall rate R is 

always 1.0 which means all the pairs are used for the evaluation. Our goal is to maximize the 

precision at 100% recall rate.  
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Figure 3. 23 Match pairs from the proposed method and SeqSLAM. For better resolution of the plot, 

we drew one match pair for each 10 consecutive pairs. (Reference sequence: “LRTS1”, testing 

sequence: “LRTS3”)  

 
Figure 3. 24 F1 scores of the proposed method and SeqSLAM. (Reference sequence: “LRTS1”, 

testing sequence: “LRTS3”)  
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The black crosses form two separate curves and the red triangles as shown in Figure 

3.23 display the matched pairs from the proposed method and SeqSLAM respectively. It is 

clear that SeqSLAM is not designed to handle varying speed situations which is reflected by 

the scattered red triangles. On the other hand, our proposed method, the black crosses, uses 

tube of frames, is more suitable for handling varying speed situations. Figure 3.24 shows the 

corresponding F1 scores of the results. Consider that we accept 15-frame deviation from the 

ground truth, our proposed method achieves F1 with 0.91 (black) while SeqSLAM only obtains 

0.53 (red) and 0.37 (blue) respectively. The distribution of deviation from the ground truth of 

ours (FMPR) and SeqSLAM are shown in Figure 3.25. Note that SeqSLAM with thresholding 

(blue) has only 150, out of 668 available match pairs for evaluation, while both ours (black) 

and full SeqSLAM (red) attained 100% recall rate. All of the matched pairs of ours (black) 

have only little deviation from the ground truth. In addition, it is obvious that the full SeqSLAM 

(red) gives many mismatched pairs, there are two red bars on the right-hand side with high 

frequency counts. Specifically, there are 33 and 66 pairs deviating from the ground truth with 

 
Figure 3. 25 Distribution of deviation of the proposed method and SeqSLAM. (Reference sequence: 

“LRTS1”, testing sequence: “LRTS3”)  



62 

 

291 and 479 frames respectively. This is consistent to the scattered red triangles as shown in 

Figure 3.23.  

 

Figure 3.26 shows another example that SeqSLAM cannot effectively deal with varying 

speed situations. SeqSLAM cannot report the correct matched pairs at the flat regions. The red 

triangles do not overlap with the ground truth in particularly the flat regions, around Frame 

1500 to 2000. This reflects the problem of constant speed assumption in SeqSLAM. The flat 

regions are the tunnel parts and stop locations in the Nordland dataset. Please refer to Figure 

3.19 for the examples of tunnel parts in this dataset.  

3.1.3.5 Comparison of ABLE-M  

Apart from SeqSLAM, we also compared our method with ABLE-M, OpenABLE [31], 

[32]. We used the default setting of OpenABLE and each frame was downsampled to 64 × 64 

for forming the Local Difference Binary (LDB) descriptor. We set the sequence length to 20 

and the threshold for reporting confident match pairs to 0.35. This means that 20 frames are 

grouped as a sequence to form the binary sequence codes. If the similarity between two 

 
Figure 3. 26 Match pairs from the proposed method and SeqSLAM. We drew one match pair for 

each 25 consecutive pairs from Frame 0 to Frame 3000. (Reference sequence: “Spring”, testing 

sequence: “Fall”)  
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sequence codes is higher than 0.35, a confident match pair is reported. Note that the main 

contribution of ABLE-M is about using the binary sequences as features to build the similarity 

matrix. They simply took the element with the highest similarity at each column as the output 

of the matched pair and they do not use any temporal logic constraint on searching the similarity 

matrix.  

 

 

 
Figure 3. 27 Match pairs from the proposed method and ABLE-M. We drew one match pair for each 

25 consecutive pairs from Frame 0 to Frame 2172. (Reference sequence: “LRTL1”, testing 

sequence: “LRTL2”)  

 
Figure 3. 28 F1 scores of the proposed method and ABLE-M. (Reference sequence: “LRTL1”, 

testing sequence: “LRTL2”)  
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Figure 3.27 shows the matched pairs from the proposed method (black cross) and 

ABLE-M (purple triangles and pink squares). The testing sequence, LRTL2 is a nighttime 

sequence with extreme changes in illumination and blurring. ABLE-M cannot effectively 

handle the changing lighting conditions, please refer to the scattered purple triangle. In addition, 

ours can deal with this nighttime sequence without any obvious problem. Therefore, ours, the 

black crosses, is highly overlapped with the green circles, ground truth. Figure 3.28 displays 

the F1 scores of ABLE-M and ours for this nighttime testing sequence. Note that OpenABLE 

with threshold = 0.35 suffers from very low recall rate, i.e., 2.21%, 48 out of 2172 frames. For 

the case of 15-frame deviation from the ground truth, ours attains F1 score = 0.85 with 100% 

recall rate compared to 0.39 achieved by OpenABLE at 100% recall rate. Figure 3.29 also gives 

the distribution of deviation from the ground truth of ABLE-M and ours. Similar observation 

as the previous comparison of SeqSLAM, ABLE-M with the default threshold has the problem 

of low recall rate. We can also observe that 100 match pairs from ABLE-M, purple bars, have 

220-frame and 332-frame deviation from the ground truth.  

 
Figure 3. 29 Distribution of deviation of the proposed method and ABLE-M. (Reference sequence: 

“LRTL1”, testing sequence: “LRTL2”)  
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3.1.3.6 Overall F1 Score and Time Cost Comparisons  

 

The recent rapid development of deep learning-based methods has shown better 

generalized features than that of conventional approaches. We also compared our proposed 

method with AlexNet conv3 layer feature-based approach [13], [35], [46], NetVLAD [2], [3], 

and CALC [36]. We used AlexNet conv3 layer features pre-trained on ImageNet [49] under 

the Caffe framework [46] to replace the convention features like low-resolution whole frame 

descriptor and HOG feature vector. We directly employed linear full search, i.e., single nearest 

neighbour, with the conv3 features and reported the best match pairs as the recognition results. 

For NetVLAD and CALC, we directly applied their trained models to the four challenging 

datasets and also adopted linear full search for the best match pair searching.  

Table 3.3 shows the overall F1 scores of different methods on the four datasets under 

15-frame acceptance of deviation from the ground truth. We can see that AlexNet conv3 

approach gives the best F1 score, 0.903 on average. This is highly related to the generalization 

of deep features. However, the dimension of the AlexNet conv3 layer is 13 × 13 × 384, and the 

length of the feature vector is 64,896. The second highest average F1 score is given by our 

proposed FMPR, with is 0.771. By using our proposed key frame recognition for accumulated 

deviation elimination, we achieve the best and the second-best F1 scores in the testing 

sequences, “FALL” and “SUMMER”, 0.907 and 0.862 respectively. These two sequences 

 

Table 3. 3 Overall F1 score comparisons of different methods (consider 15-frame acceptance of 

deviation from ground truth)  

[7],[42] [31],[32] [13],[35],[46] [2],[3] [36]
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contain natural places as shown in Figure 3.18, frames captured on the outskirts are similar to 

each other and our fast reference frame tracking encounters ambiguities in decision making. 

Our proposed key frame recognition is useful to alleviate the ambiguities by re-setting the 

tracking tube to the location of the recognized key frame. In this work, we focus on fast visual 

place recognition for situations with varying speeds and changing lighting conditions but not 

extreme changes in appearance like the spring-winter changes. For such a reason, we did not 

prepare our work for seasonal changes and hence our performance for the “WINTER” testing 

sequence is less satisfactory.  

NetVLAD and our FMPR without key frame recognition give similar overall 

performance on the four datasets in average, 0.752 and 0.754 F1 scores respectively. We 

believe that the performance of NetVLAD would be better if we fine-tune the model on similar 

datasets. Nevertheless, labelled training data is not always available, and it can be expensive 

for practical applications. The training of NetVLAD requires GPS stamps to construct a 

number of training pairs and it has already trained for place recognition. Therefore, we directly 

compared with the pre-trained model and we achieved comparable performance to them. The 

feature vector lengths of NetVLAD and ours without key frame recognition are 4,096 and 3072 

(=64 × 48) respectively, which are 15.84 (=64,896/4,096) and 21.13 (=64,896/3,072) times 

shorter than that of the AlexNet conv3 vector. CALC also attains 0.453 F1 score which is a 

reasonable performance with a short vector length of 1,064.  

For the conventional sequence-based approaches, SeqSLAM and ABLE-M have 

reasonable performance in average, 0.635 and 0.688 respectively. However, SeqSLAM cannot 

performance properly on LRTS and LRTL datasets which consist of varying speed situations. 

In addition, ABLE-M cannot work properly on nighttime testing sequences such as “LRTS2” 

and “LRTL2”. The use of normalized low-resolution whole frame descriptor helps to deal with 

the nighttime testing sequences as it focuses on the structural features of a frame. SeqSLAM 
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and Ours use this descriptor to compute the recognition results such that both methods can 

achieve satisfactory performance on nighttime testing sequences.  

 

The time costs of all the comparing methods running by CPU in terms of millisecond 

are listed in Table 3.4. The CPU used for the comparison is Intel Core i7-4790@3.6GHz with 

16GB memory. Note that the source codes of SeqSLAM and NetVLAD are written in 

MATLAB and the others are written in C++ without any parallel programming and code 

optimization. The feature extraction of the three CNN-based approaches, i.e., AlexNet conv3, 

NetVLAD and CALC, are written in Python and the extracted features are stored in text files 

when processing in C++. We divided the time costs reported by MATLAB by 10 for fair 

comparisons with C++. This is an assumption made in our previous work [50] based on 

extensive experiments on super-resolution using MATLAB and C++.  

The average feature extraction time of a frame of AlexNet conv3, NetVLAD and CALC 

are 128.55, 168.93 and 22.4 ms repsectively. The processing time per frame of each method 

highly depends on the use of the searching technique and the vector length. It is obvious that 

AlexNet conv3 gets the largest time cost. It requires 267.896 ms per frame (=139.436+128.55) 

on average. Besides, NetVLAD (15.451 ms) and CALC (9.026 ms) offer reasonable searching 

time costs per frame but the feature extraction time of NetVLAD is long because of the 

employment of a deep network, VGG16 [41]. SeqSLAM is sensitive to the length of the 

 

Table 3. 4 Overall time cost comparisons of different methods (in millisecond, ms)  

[7],[42] [31],[32] [13],[35],[46] [2],[3] [36]
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sequences as it uses linear full search, in which around 16 ms is required for long sequences 

and around 8 ms for short sequences. ABLE-M employs binary sequence codes to speed up the 

process so that they achieve a very small processing time cost, 1.972 ms per frame. For our 

proposed FMPR with and without the key frame recognition, we require 5.83 and 3.472 ms 

respectively. This means that our proposed two-stage key frame recognition strategy 

effectively simplifies the key frame recognition such that the overhead can be minimized. 

Compared to the best F1 approach, AlexNet conv3 which attains 0.903 F1 score. We achieve 

a comparable F1 score, 0.771 and is much faster than it by a factor of 45.95 times 

(=267.896/5.83).  

 

Figure 3.30 shows the average F1 score versus the average time cost per frame of all 

methods. The best method should get both high F1 score and low average time cost. Therefore, 

the desirable locations are at the left-top region of Figure 3.30. Clearly, AlexNet conv3 

approach (orange dot) is at the right-top corner which offers high F1 score but also high average 

time cost. Ours with and without Key Frame Recognition (green and black dots) achieve similar 

 
Figure 3. 30 Comparisons of the average F1 score and average time cost of our proposed FMPR 

with and without Key Frame Recognition and other approaches  
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performance compared to NetVLAD (blue dot) and are closer to the left-top region, i.e., lower 

average time cost. The left region of the red line in Figure 3.30 indicates the region with 

reasonable processing time, 50 ms, per frame for real-time applications under a certain time 

constraint. In this context, we fulfil the time constraint and is the best method to be selected. 

Hence, our FMPR offers a better balance between the accuracy and the processing time per 

frame, especially for real-time applications with battery-powered and resource-limited devices.  

3.1.4 Conclusion on Conventional Learning Approach  

Our work on conventional machine learning approach for place recognition has 

demonstrated the objective of offering fast algorithm for situations with varying speed 

situations and changing lighting environments. We give the recognition results using low-

resolution whole frame descriptor tracking with the concept of tube of frames, for which both 

the estimation of the next best match based on previous results and the current feature matching 

of the current incoming frame are utilized. The idea of tube of frames emphasizes the linkage 

with the previous recognition results in which there are temporal logic constraints on the 

movement of the vehicle, and these can be used to narrow down the search space for the current 

pair matching process. For the problem of accumulated deviation due to fast reference frame 

tracking, an efficient two-stage key frame recognition is also introduced. When a key frame is 

confidently recognized, the corresponding location will be used to rectify the tracking tube 

location and hence the accumulated deviation can be cleared. Our proposed FMPR attains a 

high F1 score and is less sensitive to the length of sequence. FMPR is also a good alternative 

when the balance of performance and processing time per frame is important, especially for the 

applications for battery-powered and resource-limited devices. Readers may also note that 

visual place recognition does not mean to replace or even compete with other high-end sensor-

based approaches or GNSS. Various techniques, including the visual place recognition 
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Figure 3. 31 Examples of match pairs from our proposed method (FMPR) and other approaches. 

There are three columns and one column for one example. The first and second rows show the testing 

frames and the ground truth for the corresponding example respectively. The third row displays the 

match pairs from our FMPR approach, the fourth row is the results from different approaches. The 

green-bounded match pairs indicate the correct match pairs under 15-frame acceptance of deviation 

from the ground truth while red-bounded match pairs mean incorrect match pairs  
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methods discussed in this work, can be integrated into a more comprehensive autonomous 

driving system.  

In the next section, we will study different CNN model sizes to find out a model which 

is suitable for fast place recognition approach. The concept of tube of frames will also be 

combined with the lightweight CNN model for further improving the recognition performance.  

3.2 Deep Learning Approach for Place Recognition  

From our work on convention learning approach place recognition, we have shown that 

the temporal information, i.e., the idea of tube of frames, is useful for benefiting both the 

accuracy and efficiency of the visual place recognition system. Also, recent development of 

deep learning-based methods has demonstrated that deep features are more robust than 

traditional hand-crafted features. Nevertheless, Heavy computational cost (the feature 

extraction time) and difficulty in collecting a large amount of labelled training data are two 

well-known weaknesses of CNN-based approaches. To tackle these weaknesses, Merrill and 

Huang [36] proposed a shallow CNN model and an automatic training data generation method. 

The lightweight shallow CNN model offers faster feature extraction time by sacrificing the 

discrimination power of the input frames. In their training data generation, they applied a 

random perspective transformation to every input frame such that each input is automatically 

paired up with its self-perspective transformed version as the ground truth training pairs.  

In this section, we discuss our work on deep learning-based approach for place 

recognition. Apart from taking the better generalization about the deep features for improving 

recognition performance, we also tackle the problem of unknown starting location of the 

vehicle by using the idea of tube of frames, i.e., the temporal correlation between consecutive 

frames. We further develop our tubing strategy in the form of dynamic tube sizes. We study 
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and improve the CNN model proposed in [36] by modifying the way of generating the training 

pairs with additional consideration to changes in appearance, illumination, and viewpoints.  

3.2.1 Convolutional Autoencoder Network for Place Recognition  

 

Figure 3.32 shows the training process of the proposed model [36] with our 

modifications in the training data generation. We follow their training process1 under the Caffe 

framework [46] to improve the model. Histograms of Oriented Gradients (HOG) [34], [45], 

[51], [52], is a well-known hand-engineered feature vector which is robust to changes in 

lighting conditions because of its local contrast normalization. [36] employed HOG for their 

network training for which it benefits from i) Smaller size of the extracted features (ℝ3,648) 

compared to AlexNet conv3 features (ℝ64,896), to achieve reasonable data compression; ii) 

Illumination invariance property of HOG to handle changes in lighting conditions; iii) 

Perspective transformed training data to further enhance the features for place recognition tasks. 

Their proposed network targets at reproducing the same HOG feature vector of an image pair 

 
1 Source code and pre-trained model are available online at https://github.com/rpng/calc. Please refer to it for the 

details.  

 
Figure 3. 32 Illustration of the CALC network architecture and its training process [36] with our 

proposed modifications in the training data generation. Note that the training pair covers the 

problems of changes in appearance, illumination, as well as viewpoints  
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based on an image pair which always represents the same place. For the loss function, they 

simply used Euclidean loss function, i.e., L2 norm [45] to minimize the different between the 

HOG feature vector and the deep feature vector given the network. For the online practicing 

stage, only the convolutional layers are kept, i.e., the dashed box in Figure 3.32, for further 

speeding up the feature extraction stage. Therefore, the network learns to map an input image 

(ℝ120×160) to a feature space (ℝ1,064). Note that the input image size is 120 × 160 while the output 

feature size is 1,064.  

Our proposed improvement in the training data generation is that we insert more 

variations in the paired training data. Apart from the random perspective transformation, we 

also include a random gamma correction to the input images and a random selection of the 

corresponding image for the data generation. The formula for the gamma correction is shown 

in Eq. 3.26 and γ is randomly chosen from 0.1 to 2.5.  

𝐼𝑐 = (
𝐼

255
)𝛾 × 255      (3.26) 

where I is the input image, Ic is the gamma corrected image and γ is the gamma used to 

correct the brightness of the input image via using non-linear mapping of pixel values. If γ < 1, 

the corrected image will be darker than the original input image. For γ > 1, the opposite 

observation is made. We are not restricted to use the input image to generate the ground truth 

label for training. Our proposed procedure for generating a training pair is as follows (also refer 

to the left-hand side of Figure 3.32).  

(i) We randomly select one of the paired images of the input from the dataset or use the 

input image directly as an image pair. For example, if a place has been recorded in 4 

different time slots in the dataset, we will have possible 4 image pairs of this place. We 

randomly pick one of them and use it to create a training image pair. Note that all the 

input images to the model are with size of 120 × 160 and is grayscale.  
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(ii) From each training image pair, we randomly choose one image to perform either the 

perspective transformation or the gamma correction (Eq. 3.26), or even both 

perspective transformation and gamma correction.  

With our data generation strategy, we can then include the three practical problems to generate 

the training pairs, i.e., changes in appearance, illumination as well as perspective.  

3.2.2 Temporal Correlation based Initialization  

 

Our previous work on conventional learning approach for visual place recognition [34], 

[51] found that only datasets for situations with constant speed can benefit from long image 

sequences. However, practical situations with varying speeds are burdened with the excessive 

consideration to the historical information, i.e., a group of shorter image sequences is more 

suitable for sequences with varying speeds. An important question is that what is a suitable size 

 
Figure 3. 33 Our proposed temporal correlation-based initialization stage  
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of image sequences? This means that how much temporal correlation we have to consider so 

as to benefit from using the historical information. The concept of dynamic tube sizes or tubing 

is introduced to address the problem. We propose a weighted sum of the searching similarity 

scores (S) of consecutive frames, and the weight of each searching similarity score is depending 

on the differences between the current querying frame and the previous frames.  

Figure 3.33 shows the pipeline of our proposed temporal correlation-based initialization 

graphically. For the 1st query frame (the most left column), we perform the linear full search to 

find the match pair as shown in Eq 3.27.  

𝑑∗ = arg max
𝑑∈[0,𝐷−1]

𝐶(𝐪𝑡, 𝐩𝑑) = arg max
𝑑∈[0,𝐷−1]

(𝐪𝑡 ∙ 𝐩𝑑)   (3.27) 

where C(q,p) is the Cosine similarity defined as the cosine of the angle difference 

between normalized vectors q and p. In this work, p and q represent the normalized deep 

feature vectors of the database images and query images respectively extracted by the network 

model in section 3.2.1. D is the total number of frames in the database, t is the input query 

order, t = 0 for the 1st query frame. Neighbour d* is the single nearest neighbour to the 1st query 

frame among the database with the highest similarity score, S0,t=0 = C(qt, pd*) and d* is regarded 

as the match pair for output. If the ratio of S0,t=0 to S1,t=0 (the second highest similarity score 

found outside the window centered at d*, with window size W) is smaller than a threshold, thinit, 

the confidence of this match pair is high and the initialization can be done with only the 1st 

query frame. Otherwise, we record the top T% of the nearest neighbours with the similarity 

scores denoted as Sk, k ∈ [0,K-1] and K=D × T%. The search range of the next query frame is 

based on the K nearest neighbours and ik denote the location of the kth neighbour in the database. 

Starting from the 2nd query frame, the weighted similarity score is computed by Eqs. 3.28 and 

3.29.  
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𝑖𝑘
∗ = arg max

𝑖∈[𝑖𝑘−𝛼,𝑖𝑘+𝛽]
𝐶(𝐪𝑡, 𝐩𝑖)      (3.28) 

𝑆𝑘,𝑡 = 𝐶(𝐪𝑡, 𝐩𝑖𝑘
∗ ) × (1 − 𝐶(𝐪𝑡, 𝐪𝑡−1))    (3.29) 

where α and β are the upward and downward search offset respectively. For each ik, it 

has its own search range, and we find the corresponding single nearest neighbour i*
k. If i

*
k - α 

< 0, we start to search from the 1st database frame; If i*
k - β ≥ D, we stop the search process 

once reaching the last database frame. Sk,t is the weighted similarity score of the kth neighbour 

in time t. We weight the score using the difference between the current and previous query 

frames. If the two frames are very similar, this means that we can neglect the current score as 

there is very little new information given by the current query frame. Note that ik is updated for 

each query frame based on i*
k, hence we only keep the K nearest neighbours to each query 

frame. We report the match pair of the current query frame (k*) using Eq. 3.30.  

𝑘∗ = arg max
𝑘∈[0,𝐾−1]

(𝑆𝑘,𝑡 + ∑ 𝑆𝑘,𝑎 × 𝐶(𝐪𝑡, 𝐩𝑎)𝑡−1
𝑎=0 )   (3.30) 

𝑊𝑆𝑆𝑘∗,𝑡 = 𝑆𝑘∗,𝑡 + ∑ 𝑆𝑘∗,𝑎 × 𝐶(𝐪𝑡, 𝐩𝑎)𝑡−1
𝑎=0     (3.31) 

if t=1, Sk,0 is obtained from the linear full search of the 1st query frame, i.e., Sk,t=0 = {S0,0, 

S1,0, …, SK-1,0}. When the current query frame is different from the past query frames, the 

vehicle goes far away from the past locations and the influence of the historical information on 

the current decision making should be diminished. The weighted sum of scores of location k* 

for the current query frame is calculated using Eq. 3.31. Similar to the case of the 1st query 

frame, we compute the ratio of WSSk*,t to WSSk*,t (k’ is the location where has the second highest 

weighted sum of scores found outside the window centered at k*, with window size W, the 

purple box in Figure 3.33). If the ratio is smaller thinit, high confidence of k* is observed and 

the initialization is done with tubing.  
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3.2.2.1 Experimental Results and Analysis   

3.2.2.1.1 Dataset for Fine-tuning and Module Parameters  

We used parts of the Nordland dataset [42] and removed the tunnel and stop frames for 

the network fine-tuning. This dataset contains 4 long rail sequences recorded at 4 seasons and 

it has been time-synchronized, hence any frame in one of the sequences represents the same 

frame in the other three sequences. We used the first 10,000 frames of each sequence. After 

the removal of stop and tunnel frames, there are 7,705 frames for each sequence and 30,820 

(=7,705 × 4) frames in total for the fine-tuning.  

We considered the top 10% (T% = 10%) of the nearest neighbours for the initialization. 

α and β are set to 5 and 10 respectively. The window size W is set to 3 and thinit is predefined 

as 0.8.  

3.2.2.1.2 Datasets for Comparisons  

In our experiments, 3 challenging datasets were included, and we compared to several 

state-of-the-art approaches, CALC [36] and AlexNet conv3 deep feature-based approaches 

[13], [35], [53]. CALC is the network model that we fine-tuned for our proposed method. Note 

that CALC merely focuses on the discrimination power of its deep features, they applied the 

simplest single nearest neighbour search to find the match pair. For AlexNet conv3 deep 

feature-based approaches, we directly extract the conv3 features from two AlexNets pre-trained 

on two datasets, ImageNet [35] and Places365 [53]. The former one is for object classification 

tasks and the latter one is for single scene recognition tasks. These approaches also use the 

single nearest neighbour search.  

3.2.2.1.2.1 Alderley Dataset  

This dataset is introduced in [7] which focuses on extreme changes in weather and 

lighting conditions. We extracted the first 2,000 frames of the daytime sequence to build the 

database and there are 2,069 frames of the nighttime sequence correspond to these 2,000 
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database images. Note that the ground truth of this dataset is very close to a diagonal line which 

means constant speed situation is considered.  

3.2.2.1.2.2 Nordland Dataset  

We used the last 5,000 frames of each sequence for comparisons. We made sure that 

there is no overlap with the training data, and we did not remove the tunnel and stop frames for 

the comparisons. It is because this is real situation for practical applications, and this is for 

testing whether the methods can perform well with slow moving or even stop frames. The 

database was formed using the “Spring” sequence. For examples of this dataset, please refer to 

Figure 3.18 in section 3.1.3.1.2.  

3.2.2.1.2.3 Light Rail Transit (LRT) Dataset  

LRT dataset was captured directly from a public transportation system in Hong Kong. 

There are 4 sequences of the same route, 3 in the daytime and 1 at the nighttime. The dataset 

consists of many practical difficulties like varying speeds, extreme changes in lighting 

environments, and motion blurring. On average, there are 2,566 frames for a sequence in this 

dataset. We used one of the daytime sequences to build the database. As the sequences are not 

time-synchronized, we manually marked the ground truth of all the sequences. Please refer to 

Figure 3.17 in section 3.1.3.1.1.  
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3.2.2.1.3 High Confident Initialization with Temporal Module  

 

We show the advantage of using our proposed tubing strategy for the initialization to 

localize the starting location of the vehicle. For computing the precision, a match pair is 

regarded as correct if its difference between the ground truth is fewer than 5 frames. We 

randomly selected 10 starting points for each querying sequence and the precisions of the 

initialization of various methods are listed in Table 3.5.  

Without the proposed tubing strategy, the initialization of the fine-tuned CALC is 

simply done with the single nearest neighbour search. Therefore, the average tube size is 

always 1.0 as no temporal correlation between consecutive query frames is included. It is 

obvious that the initialization performance is boosted with the tubing strategy. On average, we 

get 0.229, = 0.800 – 0.571 increase in precision. Note that high confident initialization is always 

the first step in comprehensive localization/navigation systems. Compared to the original 

CALC, we also show our improvement with our modified training data generation method. 

Considering only the discrimination power of the deep features, the original CALC got 0.429 

in average precision while our fine-tuned CALC attained 0.571. We can also see that the 

 

Table 3. 5 The initialization performance of various approaches (the best scores are in bold typeface)  

[36]
[35]

[53]
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AlexNet pre-trained on Places365 outperformed the AlexNet pre-trained on ImageNet in our 

experiments. On average, these two methods attained 0.471 and 0.329 precision respectively. 

This implies that one can benefit from the model pre-trained on task-related datasets. We 

offered 0.4, = 0.800 – (0.471 + 0.329) / 2, improvement in precision compared to that of the 

two AlexNet conv3 deep feature-based approaches.  

More importantly, our tubing strategy dynamically groups a number of query frames to 

make a confident initialization decision. We have had larger tube size for LRT2 and LRT3 

sequences, 54.1 and 80.4 respectively. This is due to the fact that we have to handle situations 

with varying speeds. The random selected starting points sometimes locate at stop-frame 

locations, and this requires more frames to make the decision as stop frames offer very little or 

even no new information. Hence, our tubing strategy needs more frames to make a confident 

decision. On average, the tubing strategy requires 27.3 frames to localize the starting locations 

of the vehicle which costs around 1.1 second in a 25-fps system. This means that 1.1 second is 

needed to initialize the starting location of the vehicle in practice.  

3.2.3 Efficient Place Recognition Strategy  

After studying the high confident initialization strategy, we assume that the starting 

position of a vehicle can be known, and we further study an efficient place recognition strategy 

to reduce the search range of each new coming frame.  

Once a confident initialization is done and the starting location is localized, we can 

further reduce the search space for the coming query frames since the vehicle must travel along 

a route gradually without any sudden jump from one point to another point. Therefore, linear 

full search is not necessary, and the reduced search space helps to improve both the place 

recognition efficiency and accuracy.  
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Figure 3.34 shows our proposed efficient place recognition strategy graphically based 

on the initial match pair, k* (the left most column), which comes from our tubing initialization. 

For the 1st query frame after obtaining k*, we perform a linear full search in a new reduced 

search space to find the match pair using Eq 3.32.  

𝑗∗ = arg max
𝑗∈[𝑘∗−𝛼,𝑘∗+𝛽]

𝐶(𝐪𝑡, 𝐩𝑗) = arg max
𝑗∈[𝑘∗−𝛼,𝑘∗+𝛽]

(𝐪𝑡 ∙ 𝐩𝑗)  (3.32) 

where Cosine similarity is used, C(q, p), for the similarity measure. (q∙p) is defined as 

the cosine of the angle difference between two normalized vectors p and q. p and q denote the 

normalized ConvNet feature vectors of the database frame and query frame given by the 

network model mentioned in section 3.2.1, refer to Figure 3.32, respectively. t is the current 

querying order. j* is the single nearest neighbor to the current query frame among the new 

reduced search space with the highest similarity score, S0,t = C(qt,pj*). If the ratio of S0,t to S1,t 

 
Figure 3. 34 A graphical illustration of our proposed efficient place recognition strategy  
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(the second highest similarity score found in the search space) is smaller than a threshold, threcg, 

the confidence of j* is at a satisfactory level and we will keep the tubing to continue using the 

temporal correlation between consecutive query frames. We believe that once we confidently 

localize the vehicle, fast recognition or tracking can be performed to enhance the efficiency of 

the model until the confidence level of the output drops below a certain threshold value. If the 

ratio is larger than threcg, we will perform re-initialization. After finding j*, all the similarity 

scores in the search space are denoted as Su,t, u ∈ [0, U-1] where U=α+γ+1, and ju denotes the 

location uth neighbor in the search space which also defines the search space for the next query 

frame. From the next query frame, the weighted similarity score is computed using Eqs. 3.33 

and 3.34.  

𝑗𝑢
∗ = arg max

𝑗∈[𝑗𝑢−𝛼,𝑗𝑢+𝛽]
𝐶(𝐪𝑡, 𝐩𝑗)      (3.33) 

𝑆𝑢,𝑡 = 𝐶(𝐪𝑡, 𝐩𝑗𝑢
∗ ) × (1 − 𝐶(𝐪𝑡, 𝐩𝑡−1))    (3.34) 

where α and γ have been defined previously. Each ju has its own search space and the 

corresponding single nearest neighbor is denoted as j*
u. The weighted similarity score of the 

uth neighbor in time t is denoted as Su,t. Note that only the U nearest neighbors are kept for 

decision making and ju is updated continuously according to j*
u. The match pair of the current 

query frame (u*) is given by Eq. 3.35.  

𝑢∗ = arg max
𝑢∈[0,𝑈−1]

(𝑆𝑢,𝑡 + ∑ 𝑆𝑢,𝑎 × 𝐶(𝐪𝑡, 𝐩𝑎)𝑡−1
𝑎=𝑣 )   (3.35) 

𝑊𝑆𝑆𝑢∗,𝑡 = 𝑆𝑢∗,𝑡 + ∑ 𝑆𝑢∗,𝑎 × 𝐶(𝐪𝑡, 𝐩𝑎)𝑡−1
𝑎=𝑣     (3.36) 

where the tube is reset after the initialization and v is the querying order in which j* is 

computed. Su,v is calculated during the computation of j* mentioned in above. Eq. 3.36 shows 

the computation of the weighted sum of scores of location u* for the current query frame. 

Similarly, if the ratio of WSSu*,t to WSSu’,t (the second highest weighted sum of scores found in 
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the current search space) is smaller than a threshold, threcg, the confidence of u* still maintains 

at a satisfactory level and u* is reported as the match pair for output. Otherwise, re-initialization 

will be activated.  

3.2.3.1 Experimental Results and Analysis  

3.2.3.1.1 Dataset for Fine-tuning and Module Parameters  

Same as mentioned in section 3.2.2.1.1, we used parts of the Nordland dataset [42] and 

removed the tunnel and stop frames for the network fine-tuning. This dataset contains 4 long 

rail sequences recorded at 4 seasons and it has been time-synchronized, hence any frame in one 

of the sequences represents the same frame in the other three sequences. We used the first 

10,000 frames of each sequence. After the removal of stop and tunnel frames, there are 7,705 

frames for each sequence and 30,820 (=7,705 × 4) frames in total for the fine-tuning.  

For the parameters of our proposed efficient place recognition strategy, α and β are set 

to 5 and 10 respectively, and threcg is pre-defined as 0.75.  

3.2.3.1.2 Datasets for Comparisons  

Three challenging datasets were included in this work, and we compared to several 

state-of-the-art approaches, namely SeqSLAM [7], ABLE-M [31], [32], CALC [36] and 

AlexNet conv3 deep feature-based approaches [13], [35], [53]. SeqSLAM utilizes down-

sampled grayscale normalized images as features for pair searching and assumes constant 

speed situation. ABLE-M is also a sequence-based approach in which different groups of 

consecutive images are represented by different binary sequence codes for pair searching. We 

denote ABLE-M using different sequence lengths as ABLE-M l where l is the size of an image 

sequence, l=1, 150 and 300 in our experiments. CALC is the model that we fine-tuned for our 

proposed method. CALC relies on the discrimination power of its deep features, they applied 

the simplest single nearest neighbour search for pair searching. For AlexNet conv3 deep 

feature-based approaches, we directly extract the conv3 features from two AlexNets pre-trained 
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on two datasets, ImageNet [35] and Places365 [53]. The former one is for object classification 

tasks and the latter one is for single scene recognition tasks. These approaches also use the 

single nearest neighbour search.  

3.2.3.1.2.1 UA Dataset  

The UA dataset has introduced in [43]. This dataset focuses on changes in lighting 

conditions and has been time-synchronized. We extracted two sequences from this dataset, one 

daytime and one nighttime, both have 646 frames. The daytime sequence was used to construct 

the database, please refer to Figure 3.20 for the examples of this dataset.  

3.2.3.1.2.2 Nordland Dataset  

We used the last 5,000 frames of each sequence for comparisons. We made sure that 

there is no overlap with the training data, and we did not remove the tunnel and stop frames for 

the comparisons. It is because this is real situation for practical applications, and this is for 

testing whether the methods can perform well with slow moving or even stop frames. The 

database was formed using the “Spring” sequence. For examples of this dataset, please refer to 

Figure 3.18 in section 3.1.3.1.2.  

3.2.3.1.2.3 Light Rail Transit (LRT) Dataset  

LRT dataset was captured directly from a public transportation system in Hong Kong. 

There are 4 sequences of the same route, 3 in the daytime and 1 at the nighttime. The dataset 

consists of many practical difficulties like varying speeds, extreme changes in lighting 

environments, and motion blurring. On average, there are 2,566 frames for a sequence in this 

dataset. We used one of the daytime sequences to build the database. As the sequences are not 

time-synchronized, we manually marked the ground truth of all the sequences. Please refer to 

Figure 3.17 in section 3.1.3.1.1.  
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3.2.3.1.3 Evaluation Metrics  

To evaluate different approaches, we sorted all match pairs from different approaches 

based on their weighted similarity scores. Generally, a match pair with high score is more likely 

to be correct. For computing the precision, a pair is regarded as correct if its difference from 

the ground truth is less than 5 frames. We apply a set of 100 recall rates, 0.01 to 1.00 with each 

step = 0.01, to the sorted scores and generate the corresponding set of precisions and recall 

rates. We used F1 score to evaluate various approaches for concise comparisons which is 

computed by Eq. 3.25,  

𝐹1 = 2 ×
𝑃∙𝑅

𝑃+𝑅
    (Same as Eq. 3.25) 

where P is the precision defined as the ratio of the number of correct match pairs to the 

number of recalled match pairs. R is the recall rate [0.01, 1.00] and is defined as the ratio of 

the number of recalled match pairs to all the query frames. Note that high F1 is attained if and 

only if both P and R are high. Therefore, F1 can reflect the practicability of a method.  

3.2.3.1.4 F1 Score Comparisons  

 

The overall F1 scores of different methods are listed in Table 3.6. For each approach, 

each pair of precision and recall rate gives a F1 score and here we compute the maximum F1 

score of each approach. “Ours*” represents the method of the fine-tuned CALC with our 

modified training data generation method and the proposed tubing strategy while “Ours” 

represents the fine-tuned network model without the proposed efficient tubing strategy for 

 

Table 3. 6 Overall F1 score comparisons of various approaches (the best scores are in bold typeface; 

the second-best scores are in italics typeface)  

[35] [7][53][36] [7] [31],[32] [31],[32] [31],[32]
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recognition. On UA dataset, “Our*” obtains a 0.572, = 0.941 – 0.369, F1 score improvement 

over the original CALC. On average, we have the highest F1 score, 0.724, throughout the three 

challenging datasets. This means that our proposed efficient recognition method has better 

adaptability to general situations. For the discrimination power and generalization about the 

ConvNet features. “Ours” gives better performance (0.681), compared to the original CALC 

(0.495), AlexNet Places365 (0.603), and AlexNet ImageNet (0.496) on the three datasets. This 

also reflects that the AlexNet pre-trained on the recognition-centric dataset, i.e., Places365, 

performs better than that of the classification-centric, i.e., ImageNet, dataset.  

Apart from the deep learning-based methods, conventional sequence-based methods, 

namely SeqSLAM and ABLE-M have good performance on long sequences for situations with 

constant speed, the Nordland dataset. ABLE-M 300 (0.869 = (0.952 + 0.961 + 0.695) / 3) 

clearly outperforms ABLE-M 150 (0.805 = (0.932 + 0.944 + 0.540) / 3) on the Nordland dataset 

and provides evidence that sequences with constant speed benefit from large tube size. 

Nevertheless, the performance of these sequence-based methods drops drastically on the LRT 

dataset (0.56 = (0.098 + 0.213 + 0.249) / 3). This also gives evidence that large tube size can 

worsen the performance in varying speed situations. Therefore, dynamic tubing strategy is a 

must to get satisfactory performance in both situations with varying speeds and constant speed.  

3.2.3.1.5 Time Cost Comparisons  

 

 

Table 3. 7 Overall time cost comparisons of various approaches (millisecond, ms, only CPU is used)  

[36] [35],[53] [7] [31],[32]
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The time cost comparisons of all the methods, including our approach and conventional 

approaches, SeqSLAM and ABLE-M are listed in Table 3.7 in terms of milliseconds. The CPU 

used for the time cost comparisons is Intel Core i7-6900k @ 3.2 GHz. The codes of SeqSLAM 

were written in MATLAB while ABLE-M and our efficient tubing strategy were written in 

C++. Therefore, we divide the time reported by MATLAB by 10 for a possible fair comparison. 

“Ours” and the original CALC should have the same time cost as both use the single nearest 

neighbour search and have the same network model. The two AlexNets pre-trained on two 

datasets should also have the same time cost.  

Our first observation is that conventional approaches are much faster than the ConvNet 

feature-based approaches as there is no heavy computation of feature extraction by means of 

convolutions. Nevertheless, the discrimination power of ConvNet features obviously 

outperforms the traditional hand-engineered features like down-sampled grayscale normalized 

image and binary descriptor as shown in Table 3.6. SeqSLAM is sensitive to the length of 

sequence can also be reflected in Table 3.7. For the Nordland dataset which contains 5,000 

frames, SeqSLAM requires 12.7 ms per frame while SeqSLAM only takes 2.0 ms per frame 

on the UA dataset which has 646 frames. For this reason, ABLE-M adopts image sequences to 

form binary sequence codes for efficient pair matching via the use of Hamming distance. 

Therefore, ABLE-M is the fastest method among all the methods which only takes 1.0 ms per 

frame on average.  

For the ConvNet feature-based methods, “Ours*” is the fastest method because of the 

use of temporal correlation between consecutive query frames for the search space reduction. 

The time cost of the feature extraction of CALC model is 46.5 ms. This means that pair 

searching with our proposed tubing strategy costs only 12.4 ms, = 58.9 – 46.5 ms, on average. 

Compared to the linear full search method, 73.2 – 46.5 = 26.7 ms, our proposed tubing strategy 

is faster than it by a factor of 2.15. For the AlexNet conv3 feature-based approaches, on average 
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342.8 ms is required to match a frame because of the slow feature extraction stage and high 

dimensional feature vectors.  

3.2.4 Conclusion on Deep Learning Approach  

We have further developed the concept of tube of frames in our work on deep learning-

based approach for place recognition. We study a lightweight CNN model for efficient place 

recognition and improve an automatic training data generation module to ease the burden of 

collecting a large amount of labelled training data. In our enhanced training data generation 

module, variations in appearance, seasons, lighting conditions, and perspectives are also 

considered for better generalization of extracted deep features. We also tackle the problem of 

unknown initial location of a vehicle with our novel dynamic tubing strategy. By making use 

of the temporal correlation between consecutive query frames, a high confident initialization 

with 80% accuracy can be attained compared to 57.1% without the tubing strategy, 47.1% and 

32.9% of two direct AlexNet conv3 feature-based approaches.  

We further extend the initialization module to an efficient place recognition method by 

proposing an efficient tubing strategy for recognition after the initialization. Similar idea of 

using temporal correlation with a sequence of consecutive query frames is applied to 

recognition once the initial location of a vehicle is found. We suggest using the weighted sums 

of the similarity scores based on the comparison of consecutive frames to obtain the final match 

pairs. The search space of the coming query frame is reduced and defined by the previous 

match pairs, hence efficient searching can be achieved. Our experimental results have 

demonstrated that the proposed efficient place recognition method gives a satisfactory F1 score 

of 0.724 compared to the second best (0.658, conventional sequence-based method) and the 

third best (0.603, AlexNet deep feature-based method). Our tubing strategy is also faster than 

the commonly used linear full search strategy be a factor 2.15, 12.4 ms versus 26.7 ms using a 

standard CPU device.  
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For the discriminative power of the deep features, we found that the feature extraction 

is sensitive to the input images, especially for the images with dynamic and unwanted objects 

like pedestrians and moving vehicles. This observation inspires us to make a study of quality 

scene reconstruction, in which we target at clean images for place recognition. It is well-known 

that clean images are not possible for real-life place recognition tasks. In the next chapter, we 

discuss our study of deep learning-based image inpainting, a useful technique for unwanted 

object removal.  

3.3 Chapter Summary  

In Chapter 3, we covered our work on both conventional machine learning and recent 

deep learning based visual place recognition. We target at efficient methods of visual place 

recognition such that the proposed methods could be further developed into real-time real-

world applications.  

For the conventional machine learning-based visual place recognition, we define key 

frames in a sequence as the places where are visually different from other frames in the same 

sequence and hence can be easily recognized. We analyse and represent key frames by few but 

effective feature patches with varying patch sizes. To improve efficiency in providing 

recognition results, we propose an efficient frame tracking module and a two-stage key frame 

recognition module. We predict the incoming match and define its search range based on the 

previous recognition results. The accumulated errors from the prediction are removed when a 

key frame is confidently matched. The two-stage key frame recognition module maintains the 

efficiency by only activating the detail feature patch matching stage when necessary. Our 

experimental results demonstrate that our proposed method can offer a better balance of the 

recognition performance and computational cost compared to both state-of-the-art 

conventional sequence-based methods and recent deep feature-based methods.  
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For the deep learning-based visual place recognition, we take the advantages of both 

the discriminative power of deep features and the use of temporal information given from the 

previous recognition results and query frames. We study a lightweight CNN model to minimize 

the feature extraction time cost of extracting deep features. We also improve an automatic 

training pair data generation module by adding more variations in self-augmented data 

including changes in lighting conditions, appearance, and viewpoints. By doing this, the trained 

model can extract features that are more robust to various types of changes encountered in 

practical situations. For the use of temporal information, we propose our dynamic tubing 

strategy for which it adaptively takes a group of previous frames into account based on the 

amount of new information given by the previous frames, i.e., the differences between the 

current query frame and previous frames. For example, if a vehicle stops, more frames need to 

be considered so as to have sufficient information for making a confident recognition. We 

propose a high confidence initialization module and an efficient recognition module based on 

the lightweight CNN model and our tubing strategy. Note that a high confidence initialization 

is important especially for the task of unknown starting location. The experimental results show 

that our improved automatic training pair generation module can obviously enhance the 

discriminative power of the extracted deep features compared to the existing CNN models. 

With our tubing strategy, we significantly boost the recognition performance compared to both 

conventional sequence-based methods and deep learning-based methods without using the 

temporal information.  

To further improve recognition performance, one promising way is to study the 

robustness of the extracted deep features to various situations. We believe that extracting 

features from clean images can benefit the recognition performance. Clean images are regarded 

as images without unwanted objects such that dead cars, moving vehicles and pedestrians. This 

inspires our study on object removal via deep learning-based image inpainting.  
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Chapter 4 Learning Approach for Quality Scene 

Recognition  

4.1 Deep Generative Image Inpainting Network  

 

Existing image inpainting approaches usually have certain assumptions of the shapes 

and sizes of the masked areas. We propose a Deep Generative Inpainting Network, named 

DeepGIN, to handle various types of wild masked images. To deal with different types of 

masks with various shapes and sizes, we propose a Spatial Pyramid Dilation (SPD) block for 

ensuring the model can capture the global semantics of various masked images.  

Our proposed Deep Generative Inpainting Network (DeepGIN) consists of two stages 

as shown in Figure 4.1, a coarse reconstruction stage and a refinement stage. The first coarse 

generator G1(Iin, M) is trained to roughly reconstruct the masked regions and gives Icoarse. The second 

 

Figure 4. 1 Architecture of our proposed model for image inpainting. Our proposed model consists 

of two generators and two discriminators. The coarse generator G1 at Coarse Reconstruction Stage 

and the second refinement generator G2 at Refinement Stage constitute our DeepGIN which is used 

in both training and testing. The two discriminators D1 and D2 located within Conditional Multi-

Scale Discriminators area are only used in training as an auxiliary network for generative adversarial 

training  
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refinement generator G2(Icoarse, M) is trained to exquisitely decorate the coarse prediction with details 

and textures, and eventually forms the completed image Iout (Icompltd). For our discriminators, motivated 

by SN-GANs [62], [83] and multi-scale discriminators [56], [57], we modify and employ two SN-GAN 

based discriminators D(Iin, Icompltd) which operate at two image scales, 256 × 256 and 128 × 128 

respectively, to encourage better details and textures of local reconstructed patterns at different scales. 

Details of our network architecture and learning are shown below.  

4.1.1 Network Design  

 

Coarse Reconstruction Stage. Recall that G1 is our coarse generator and it is 

responsible for rough estimation of the missing pixels in a masked image. Referring to the 

previous section, we concatenate (Iin, M) ∈ ℝH×W×(3+1) as the input to G1 and then obtain the 

coarse image Icoarse. G1 follows an encoder-decoder structure. As the scales of the masked 

regions are randomly determined, we proposed a Spatial Pyramid Dilation (SPD) ResNet block 

with various dilation rates to enlarge the receptive fields such that information given by distant 

spatial locations can be included for reconstruction. Our SPD ResNet block is an improved 

 

Figure 4. 2 Variations of ResNet Block. From top to bottom, left to right: (a) Standard ResNet block 

[84], (b) Dilated ResNet block used in [67], [68], [70] which adopts a dilation rate of 2 of the first 

convolutional layer, (c) The proposed SPD ResNet block with 4 dilation rates and (d) 8 dilation 

rates. To avoid additional parameters, we split the number of input feature channels into equal parts 

according to the number of dilation rates employed. As shown in (c), if 4 dilation rates are used, the 

output channel size of the first convolutions equals a quarter of the input channel size  
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version of the original ResNet block [84] as shown in Figure 4.2, and in total, 6 SPD ResNet 

blocks with 8 different dilation rates are used at the stage.  

Refinement Stage. Generator G2 is designed for refinement of Icoarse and it is similar 

to generator G1. At this stage, we have 6 SPD ResNet blocks with 4 different dilation rates and 

a Self-Attention (SA) block in between at the middle layers. Apart from the SPD ResNet block, 

Multi-Scale Self-Attention (MSSA) blocks [85], [86] are used for self-similarity consideration. 

The SA block used in this paper is exactly the same as the one proposed in [85]. One similarity 

between the SA block and the contextual attention layer [62], [68] is that they both have the 

concept of self-similarity which is useful for amending the reconstructed patterns based on the 

remaining ground truth in a masked image. We apply MSSA instead of single scale SA to 

enhance the coherency of the completed image Iout by attending on the self-similarity of the 

image itself at three different scales, namely 16 × 16, 32 × 32 and 64 × 64 as shown in Figure 

4.1. To avoid an excessive increase in additional parameters, we simply use standard 

convolutional layers to reduce the channel size before connecting to the SA blocks. The idea 

of Back Projection (BP) [86], [87] is also redesigned and it is used at the last decoding process 

of this stage (see the shaded Back Projection region in Figure 4.1). At the layer with spatial 

size of 64 × 64, we output a low-resolution (LR) completed image Ilr and perform BP with Iout. 

By learning to weight the BP residual and adding it back to update Iout, the generated patterns 

can have better alignments with the reference ground truth and hence Iout looks more coherent.  

Conditional Multi-Scale Discriminators. Two discriminators D1 and D2 at two input 

scales (i.e., 256 × 256 and 128 × 128) are trained together with the generators to stimulate 

details of the filled regions. Combining the idea of multi-scale discriminators [57] with SN-

GANs [83] and PatchGAN [56], [62], our D1(Iin, I) and D2(Iin, I) take the concatenation result 

of two RGB images as input (I is either Icompltd or Igt, recall that Icompltd is the same as Iout except 

the valid pixels are directly replaced by the ground truth) and output a set of feature maps with 
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size of H/22 × W/22 × c where c represents the number of feature maps. Note that each value 

on these output feature maps represents a local region in the input image at two different scales. 

By training D1 and D2 to discriminate between real and fake local regions, Iout would gradually 

be close to its reference ground truth Igt in terms of both appearance and semantic similarity. 

For achieving stable generative adversarial learning, we employ the spectral normalization 

layer described in [83] after each convolutional layer in D1 and D2.  

4.1.2 Network Learning  

We design our loss function based on consideration to both quantitative accuracy and 

visual quality of the completed images. Our loss function consists of five major terms, namely 

(i) a L1 loss to ensure the pixel-wise reconstruction accuracy especially if using quantitative 

evaluation metrics such as PSNR and mean L1 error to evaluate the completed images; (ii) an 

adversarial loss to urge the distribution of the completed images to be close to the distribution 

of the real images; (iii) the feature perceptual loss used in [58] that encourages each completed 

image and its reference ground truth image to have similar feature representations as computed 

by a well-trained network with good generalization like VGG-19 [41]; (iv) the style loss [59] 

to emphasize the style similarity such as textures and colours between completed images and 

real images; and (v) the total variation loss used as a regularizer in [58] to guarantee the 

smoothness in the completed images by penalizing its visual artifacts or discontinuities.  

L1 Loss. Our L1 loss is derived from three image pairs, namely Icoarse and Igt; Iout and 

Igt; and Ilr and Ilr
gt. Note that Ilr

gt is obtained by down-sampling Igt by 4 times. We sum the L1-

norm distances of these three image pairs and define our L1 loss, ℒ𝐿1, as follows:  

ℒ𝐿1 = 𝜆ℎ𝑜𝑙𝑒ℒℎ𝑜𝑙𝑒 + ℒ𝑣𝑎𝑙𝑖𝑑      (4.1) 
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where ℒℎ𝑜𝑙𝑒 and ℒ𝑣𝑎𝑙𝑖𝑑 are the sums of the distances which are calculated only from 

the missing pixels and the valid pixels respectively. 𝜆ℎ𝑜𝑙𝑒 is a weight to the pixel-wise loss 

within the missing regions.  

Adversarial Loss. For generative adversarial learning, our discriminators are trained 

to rightly distinguish Icompltd from Igt while our generators strive to cheat the discriminators of 

incorrect classification. We employ the hinge loss to train our model, ℒ𝑎𝑑𝑣,𝐺 and ℒ𝑎𝑑𝑣,𝐷 are 

computed as:  

ℒ𝑎𝑑𝑣,𝐺 = −𝔼𝐈𝑖𝑛~ℙ𝑖
[𝐷1(𝐈𝑖𝑛, 𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑)] − 𝔼𝐈𝑖𝑛~ℙ𝑖

[𝐷2(𝐈𝑖𝑛, 𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑)]   (4.2) 

ℒ𝑎𝑑𝑣,𝐷 = 𝔼𝐈𝑖𝑛~ℙ𝑖
[∑ [ReLU (1 − 𝐷𝑑(𝐈𝑖𝑛, 𝐈𝑔𝑡)) + ReLU (1 + 𝐷𝑑(𝐈𝑖𝑛, 𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑))]2

𝑑=1 ] (4.3) 

where ℙ𝑖 represents the data distribution of Iin, ReLU is the rectified linear unit defined 

as f(x) = max(0, x).  

Perceptual Loss. Let ϕ be the well-trained loss network, VGG-19 [41], and ϕI
l be the 

activation maps of the lth layer of the network ϕ given an image I. We choose five layers of the 

pre-trained VGG-19, namely conv1_1, conv2_1, conv3_1, conv4_1, and conv5_1 for 

computing this loss. Our ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 is calculated as:  

ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 = ∑
‖𝜙𝑙

𝐈𝑜𝑢𝑡−𝜙𝑙

𝐈𝑔𝑡
‖

1

𝑁𝜙𝑙

𝐈𝑔𝑡

𝐿
𝑙=1 + ∑

‖𝜙𝑙

𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑
−𝜙𝑙

𝐈𝑔𝑡
‖

1

𝑁𝜙𝑙

𝐈𝑔𝑡

𝐿
𝑙=1    (4.4) 

where 𝑁
𝜙𝑙

𝐈𝑔𝑡
 indicates the number of elements in 𝜙𝑙

𝐈𝑔𝑡
 and L equals 5 as five layers are 

used. Here, we compute the L1-norm distance between the high-level feature representations 

of Iout, Icompltd and Igt given by the network ϕ.  
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Style Loss. Let (𝜙𝑙
𝐈)

T
(𝜙𝑙

𝐈)  be the Gram matrix [59] which computes the feature 

correlations between each activation map of the lth layer of ϕ given I, and this is also called 

auto-correlation matrix. We then calculate the style loss (ℒ𝑠𝑡𝑦𝑙𝑒) using Iout, Icompltd; and Igt as:  

ℒ𝑠𝑡𝑦𝑙𝑒 = ∑ ∑
1

𝐶𝑙𝐶𝑙
‖

1

𝐶𝑙𝐻𝑙𝑊𝑙
((𝜙𝑙

𝐈)
T

(𝜙𝑙
𝐈) − (𝜙𝑙

I𝑔𝑡)
T

(𝜙𝑙

I𝑔𝑡))‖
1

𝐿
𝑙=1

𝐈𝑜𝑢𝑡,𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑

𝐈   (4.5) 

where Cl denotes the number of activation maps of the lth layer of ϕ. Hl and Wl are the 

height and width of each activation map of the lth layer of ϕ. Note that we use the same five 

layers of the VGG-19 as mentioned for this loss as well.  

Total Variation (TV) Loss. We also adopt the total variation regularization to ensure 

the smoothness in Icompltd.  

ℒ𝑡𝑣 = ∑
‖𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑

𝑥+1,𝑦
−𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑

𝑥,𝑦
‖

1

𝑁𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑
𝑟𝑜𝑤

𝐻−1,𝑊
𝑥,𝑦 + ∑

‖𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑
𝑥,𝑦+1

−𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑
𝑥,𝑦

‖
1

𝑁𝐈𝑐𝑜𝑚𝑝𝑙𝑡𝑑
𝑐𝑜𝑙

𝐻,𝑊−1
𝑥,𝑦   (4.6) 

where 𝐻  and 𝑊  are height and width of Icompltd. Nrow
Icompltd and Ncol

Icompltd are the 

number of pixels in Icompltd except for the last row and the last column respectively.  

Total Loss. Our total loss function for the generators is the weighted sum of the five 

major loss terms:  

ℒ𝑡𝑜𝑡𝑎𝑙 = ℒ𝐿1 + 𝜆𝑎𝑑𝑣ℒ𝑎𝑑𝑣,𝐺 + 𝜆𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙ℒ𝑝𝑒𝑟𝑐𝑒𝑝𝑡𝑢𝑎𝑙 + 𝜆𝑠𝑡𝑦𝑙𝑒ℒ𝑠𝑡𝑦𝑙𝑒 + 𝜆𝑡𝑣ℒ𝑡𝑣  (4.7) 

where 𝜆𝑎𝑑𝑣 , 𝜆𝑝𝑒𝑟𝑒𝑐𝑒𝑝𝑡𝑢𝑎𝑙 , 𝜆𝑠𝑡𝑦𝑙𝑒  and 𝜆𝑡𝑣  are the hyper-parameters which indicate the 

significance of each term.  

4.1.3 Experimental Results  

We have participated in the AIM 2020 Extreme Image Inpainting Challenge [78] of the 

ECCV 2020 (please find in our github page for details and qualitative results of the challenge). 

In designing our proposed model, we take reference to the networks in [56]-[58]. We have 
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attached our improved SPD ResNet block to our DeepGIN. We have also modified and applied 

the ideas of MSSA and BP in our proposed model. Inspired by ESRGAN [55], we remove all 

batch normalization layers in the model to smooth out the related visual artifacts. We have used 

discriminators as two different scales which share the same architecture. Also, we have 

adjusted the number of layers of each discriminator and applied spectral normalization layers 

[62], [83] after the convolutional layers for training stability.  

4.1.3.1 Training Procedure  

Random Mask Generation. Three different types of masks are used in our training. 

The first type is a rectangular mask with the height and width between 30-70% of each 

dimension [65]-[68], [78]. The second type is the free-form mask proposed in [62]. The third 

type of masks is introduced in the AIM 2020 Image Inpainting Challenge [78], for which masks 

are randomly generated based on cellular automata. During training, each mask was randomly 

generated and we applied the three types of masks to each training image to get three different 

masked images. We observed that this can balance the three types of masks to achieve more 

stable training.  

Training Batch Formation. As the size of training images could be every diverse, we 

resized all training images to the size of 512 × 512 and adopted a sub-sampling method [88] to 

randomly select a sub-image with size of 256 × 256. We then apply the random mask 

generation as stated above to obtain three masked images. Therefore, each training image 

becomes three training images. We set a batch size of 4 and this means that there are 12 training 

images in a batch.  

Two-Stage Training. Our training process is divided into two stages, namely a warm-

up stage and then the main stage. First, we trained only the generators by using the L1 loss for 

10 epochs. We used the initialization method mentioned in [55], using a smaller initialization 
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for ease of training a very deep network. The trained model at the warm-up stage was used as 

an initialization for the main stage. This L1-oriented pre-trained model provides a reasonable 

initial point for training GANs, for which a balance between quantitative accuracy of the 

reconstruction and visual quality of the output is required. For the main stage, we trained the 

generators alternately with the discriminators for 100 epochs. We used Adam [89] with 

momentum 0.5 for both stages. The initial learning rates for generators and discriminators were 

set to 0.0001 and 0.0004 respectively. We trained them for 10 epochs with the initial rates and 

linearly decayed the rates to zero over the last 90 epochs. The hyper-parameters of the loss 

terms in Eqs. 4.1 and 4.7 were set to λhole = 5.0, λadv = 0.001, λperceptual = 0.05, λstyle = 80.0, and 

λtv = 0.1. We developed our model using Pytorch 1.5.0 [90] and trained it on two NVIDIA 

GeForce RTX 2080Ti GPUs.  

4.1.3.2 Training Data  

ADE20K Dataset. We trained our model on the subset of ADE20K dataset [80], [81] 

for participating in the AIM challenge [78]. This dataset is collected for scene parsing and 

understanding, in which it contains images from various scene categories. The subset is 

provided by the organizers of the challenge and it consists of 10,330 training images with 

diverse resolutions roughly, from 256 × 256 to 3648 × 2736. We took around two and a half 

days for training on this dataset.  

CelebA-HQ Dataset. Beyond the ADE20K dataset, we also trained our model on the 

CelebA-HQ dataset [82] that contains 30K high-quality face images with a standard size of 

1024 × 1024. We randomly split this dataset into two groups, 27,000 images for training and 

3,000 images for testing. This required approximately 6 days to train our model on this dataset.  

4.1.4 Analysis of Experimental Results  

We have thoroughly evaluated our proposed model. We first provide evidence in our 

model analysis to show the effectiveness of our suggested strategies for using Spatial Pyramid 
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Dilation (SPD) ResNet block, Multi-Scale Self-Attention (MSSA), and Back Projection (BP). 

We then compare our model with state-of-the-art approaches, namely DeepFillv1 [68] and 

DeepFillv2 [62], which are known to have a good generalization. We demonstrate that our 

model is able to handle images in the wild by testing it on two publicly available datasets, 

namely Flickr-Faces-HQ (FFHQ) dataset [91] and The Oxford Buildings (Oxford) dataset [92]. 

Related materials are available at: https://github.com/rlct1/DeepGIN.  

4.1.4.1 Model Analysis  

We first evaluate the effectiveness of the three proposed strategies, namely SPD, MSSA, 

and BP. Refer to the proposed architecture as shown in Figure 4.1, our baselines are denotated 

as StdResBlk (Coarse only, using only the Coarse Reconstruction Stage) and StdResBlk (a 

conventional ResNet of inapinting), for which all SA blocks and BP branch are eliminated and 

all SPD ResNet blocks are replaced by standard ResNet block (see Figure 4.2(a)). 

DilatedResBlk or SPDResBlk represents StdResBlk with standard ResNet blocks replaced by 

Dilated or SPD ResNet blocks. Please refer to Figure 4.2(b), (c) and (d). SA or MSSA indicates 

whether single SA block or MSSA is used and the use of BP is denoted as BP. We conducted 

the model analysis on CelebA-HQ dataset [82] using the 3K testing images. Note that the 

testing images were randomly masked by the three types of masks and the same set of masked 

images was used for each variation of our model. During testing, for images with size larger 

than 256 × 256, we divided the input into a number of 256 × 256 sub-images using the sub-

sampling method [88] and obtained the completed sub-images. We then regrouped the sub-

images to form the completed image by using the reverse sub-sampling method. We finally 

replaced the valid pixels by the ground truth.  
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Quantitative Comparisons. As the lack of good quantitative evaluation metric for 

inpainting [61], [62], [68], we report several numerical metrics which are commonly used in 

image manipulation, namely PSNR, SSIM [93], mean L1 error, Fréchet Inception Distance 

(FID) [94], and Learned Perceptual Image Patch Similarity (LPIPS) [95], for a comprehensive 

analysis of the performance. The results are listed in Table 4.1 and higher PSNR, SSIM and 

smaller L1 error mean better pixel-wise reconstruction accuracy. FID and LPIPS are also used 

to estimate the visual quality of the output, the smaller the better. It is obvious that our full 

model, SPDResBlk-MSSA-BP, gives the best performance on these numerical metrics. The 

employment of MSSA brings an 1.06 dB increase in PSNR compared to StdResBlk-SA. This 

reflects the importance of multi-scale self-similarity to inpainting. Our SPD ResNet blocks and 

the adoption of BP also bring about 0.22 dB and 0.38 dB improvement in PSNR respectively.  

Variations of our model 
Number of 

parameters 
PSNR SSIM L1 err. (%) FID LPIPS 

StdResBlk (Coarse only) 8.168M 31.55 0.925 4.690 23.824 0.182 

StdResBlk 40.850M 31.34 0.923 4.710 19.436 0.191 

StdResBlk-SA 41.376M 31.60 0.925 4.510 18.239 0.180 

StdResBlk-MSSA 42.892M 32.66 0.933 4.067 12.843 0.148 

DilatedResBlk-MSSA 42.892M 32.71 0.933 4.034 12.548 0.149 

SPDResBlk-MSSA 42.892M 32.88 0.935 3.884 12.335 0.143 

SPDResBlk-MSSA-BP 42.930M 33.26 0.939 3.666 11.424 0.132 

Table 4. 1 Model analysis of our proposed model on CelebA-HQ dataset. The best results are in 

bold typeface  
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Qualitative Comparisons. Figure 4.3 shows the comparisons of the variations of our 

model on CelebA-HQ dataset. Without the second refinement stage, i.e., Coarse only, the 

completed images lack for facial details like the first example of the 2nd column in Figure 4.3. 

We can see the blurriness of the completed face. It can also be observed that the use of MSSA 

greatly enhances the visual quality as compared to the two which are without SA block and 

with only a single SA block (see the 3rd and 4th columns). Apart from this, with the SPD ResNet 

blocks and BP technique, the completed images are with better colour coherency and alignment 

of the generated features. For example, see the spectacle frames and the eyes in the 2nd and 3rd 

rows respectively.  

4.1.4.2 Comparison with Previous Works  

In order to test the generalization of our model, we compare our best model against 

some state-of-the-art approaches, DeepFillv1 [68] and DeepFillv2 [62], on the two publicly 

available datasets, FFHQ [91] and Oxford Buildings [92]. It is worth nothing that both 

DeepFillv1 and v2 are known to have good generalization for dealing with images in the wild. 

 

Figure 4. 3 Comparisons of test results of the variations of our model on CelebA-HQ dataset. Three 

different types of masked images are displayed from top to bottom. The first and the last columns 

show Iin and Igt respectively. The variations of our model are indicated on top of the figure. Our full 

model (the 8th column), SPDResBlk-MSSA-BP (GAN-based), provides high quality results with 

both the best similarity and visual quality to the ground truth images. Please zoom in for a better 

view  
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We directly used their provided pre-trained models2 for comparison. The FFHQ dataset is 

similar to the CelebA-HQ dataset and it contains 70K high-quality face images at 1024 × 1024 

resolution. We randomly selected 1,000 images for the testing on this dataset. For the Oxford 

dataset, it consists of 5,062 images of Oxford landmarks with a wide variety of styles. The 

images include buildings, suburban areas, halls, people, etc. we also randomly selected 523 

testing images on this dataset for comparison.  

Similarly, testing images were randomly masked by the three types of masks. For 

DeepFillv1 and v2, the authors divided an image into a number of grids to perform inpainting 

and indicated that their models were trained with images of resolution 256 × 256. Note also 

that DeepFillv1 was trained only for the rectangular types of masks. For fair comparison, we 

also conducted experiments in which testing images were randomly masked only by the 

rectangular masks.  

 
2 https://github.com/JiahuiYu/generative_inpainting  
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Quantitative Comparisons. Table 4.2 shows the comparisons with DeepFillv1 and 

DeepFillv2 on the two datasets with two sets of masked images. It is clear that our model 

outperforms DeepFillv1 and v2 in all the experiments on the two datasets in terms of the pixel-

wise reconstruction accuracy. Our model achieves better PSNR compared with DeepFillv1 and 

v2 in the range of 1.84~5.1 dB and offers better SSIM and L1 error. For FID and LPIPS, we 

attain better performance on the testing images with the original sizes. For the testing images 

with size of 256 × 256 and masked by random rectangular masks, we are also comparable to 

the other two approaches.  

Method PSNR SSIM L1 err. (%) FID LPIPS 

Flickr-Faces-HQ-Dataset (FFHQ), random rectangular masks 

DeepFillv1 (OS) 20.22 0.872 16.523 97.630 0.173 

DeepFillv2 (OS) 20.95 0.903 14.607 92.070 0.170 

Ours (OS) 26.05 0.923 7.183 20.849 0.137 

DeepFillv1 (256) 21.55 0.836 13.631 26.276 0.144 

DeepFillv2 (256) 22.52 0.845 12.029 19.336 0.128 

Ours (256) 24.36 0.867 9.797 37.577 0.142 

The Oxford Buildings Dataset (Oxford), random rectangular masks 

DeepFillv1 (OS) 19.20 0.767 20.322 67.193 0.187 

DeepFillv2 (OS) 18.58 0.766 21.204 77.636 0.192 

Ours (OS) 21.92 0.861 12.067 63.744 0.170 

DeepFillv1 (256) 19.49 0.795 16.851 58.588 0.169 

DeepFillv2 (256) 18.88 0.789 18.308 66.615 0.174 

Ours (256) 21.90 0.819 12.995 74.866 0.185 

Flickr-Faces-HQ-Dataset (FFHQ), random three types of masks 

DeepFillv1 (OS) 25.12 0.839 11.363 64.534 0.232 

DeepFillv2 (OS) 29.70 0.912 7.994 36.940 0.188 

Ours (OS) 32.36 0.929 4.071 14.327 0.156 

DeepFillv1 (256) 22.87 0.683 16.812 80.952 0.310 

DeepFillv2 (256) 22.75 0.716 17.472 75.555 0.293 

Ours (256) 24.71 0.760 13.417 64.542 0.274 

The Oxford Buildings Dataset (Oxford), random three types of masks 

DeepFillv1 (OS) 21.48 0.741 23.460 61.958 0.237 

DeepFillv2 (OS) 24.68 0.802 19.195 38.315 0.179 

Ours (OS) 27.57 0.871 7.268 38.016 0.191 

DeepFillv1 (256) 21.64 0.686 18.835 81.009 0.284 

DeepFillv2 (256) 20.80 0.702 20.687 82.671 0.266 

Ours (256) 23.60 0.744 14.659 79.927 0.265 

Table 4. 2 Comparisons of DeepFillv1 [68], and DeepFillv2 [62] on both FFHQ and Oxford datasets 

with two sets of masked images. One set only contains the rectangular masks while another set 

includes all the three types of masks. Our DeepGIN is denoted as Ours (i.e., the full model, 

SPDResBlk-MSSA-BP in the previous section). (OS) and (256) mean that the testing images are 

with the original sizes and size of 256 × 256 respectively. The best results are in bold typeface  
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Qualitative Comparisons. Figure 4.4 displays the test results on both FFHQ and 

Oxford datasets. It can be seen that DeepFillv1 and DeepFillv2 fail to achieve satisfactory 

visual quality on the large rectangular masks as shown in the first and fourth columns in Figure 

4.4. For the other two types of masked images, our model is also able to provide the completed 

images with better colour and content coherency. Note that our model tends to produce blurry 

images and the reason is that our model was trained to be more PSNR-oriented than the 

DeepFillv1 and DeepFillv2. We seek a balance between the pixel-wise accuracy and the visual 

quality to avoid some strange generated patterns like the completed table image by DeepFillv2 

(3rd row) of the last example (last column) in Figure 4.4.  

 
Figure 4. 4 Comparisons of test results on FFHQ and Oxford Buildings datasets. Each column shows 

an example of the test results. From top to bottom: the first row displays various masked input 

images (Iin) from both datasets. The second to the fourth rows show the completed images by 

DeepFillv1, v2 and our DeepGIN respectively. The reference ground truth images (Igt) are also 

provided at the last row. Please zoom in for a better view  
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To show that our model offers better pixel-wise reconstruction accuracy and our 

completed images benefit other high-level computer vision tasks, we provide the predicted 

semantic segmentation test results as shown in Figure 4.5. It is obvious that our results are 

semantically closer to Igt (the last row) than that of the other two methods, i.e., DeepFillv1 (2nd 

row) and DeepFillv2 (3rd row), see for example, the intersection of the newspaper and the lawn 

in Figure 4.5. Semantic correctness of the completed images is important when the completed 

images would be further used for other high-level tasks. For example, the completed images 

with dynamic and/or static object removal can be used for place recognition tasks.  

 

 
Figure 4. 5 Visualizations of predicted semantic segmentation test results on Oxford Buildings 

dataset. The 2nd to 4th rows show the completed images by different methods and the corresponding 

predicted semantic segmentation obtained using the trained semantic segmentation network [81]. 

The ground truth and segmentation images are also attached to the last row for readers’ reference. 

Please zoom in for a better view of the results  
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4.1.5 Conclusion on Generative Inpainting  

We have presented a deep generative inpainting network, called DeepGIN. Unlike the 

existing works, we propose a Spatial Pyramid Dilation (SPD) ResNet block to include more 

receptive fields for utilizing information given by distant spatial locations. This is important to 

inpainting especially when the masked regions are too large to be filled. We also enhance the 

significance of self-similarity consideration, hence we employ Multi-Scale Self-Attention 

(MSSA) strategy to enhance our performance. Furthermore, Back Projection (BP) is 

strategically used to improve the alignment of the generated and valid pixels. We have achieved 

performance better than the state-of-the-art image inpainting. This research work participated 

in the AIM 2020 Extreme Image Inpainting Challenge, which requires the right balance of 

pixel-wise reconstruction accuracy and visual quality. We believe that our DeepGIN is able to 

achieve the right balance and we encourage scholars in the field to give more attention in this 

direction.  

4.2 General Image Inpainting with Advanced Global Semantics 

and Visual Quality  

Let us firstly define an input RGB masked image and a binary mask image as Iin ∈ 

ℝ3×H×W and M ∈ ℝ1×H×W respectively. Pixels with value 1 in M indicate the missing regions. Ic 

∈ ℝ3×H×W is the output of our generator network G. We also define Iout ∈ ℝ3×H×W which is the 

same as Ic except that pixels located in the known regions outside the mask are directly replaced 

by the original valid pixels. Igt ∈ ℝ3×H×W is the ground truth image. Our objective is to fill in Iin 

with its condition M and the output Iout should be both semantically and visually similar to Igt. 

Our proposed model is designed to be trained under the framework of GANs with training data 

{Iin, M, Igt}. Note that the training mask M is randomly generated with arbitrary types and 

sizes. Our GAN generator G takes Iin and M as input and generate Ic as output. We then produce 
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Iout = Ic ⊙ M + Iin ⊙ (1−M) as the ultimate output, where ⊙ represents elementwise, i.e. 

element by element, multiplication.  

 

An overview of our proposed model is shown in Figure 4.6. The top-left red-bounded 

corner of Figure 4.6 gives a simplified overview of our model. For training, three networks are 

involved, namely Generator G (the whole light blue shaded area), a well pre-trained 

autoencoder which consists of an ENcoder (EN, yellow trapezoid) and a DEcoder (DE, light 

blue trapezoid), and a standard SN-PatchGAN Discriminator (D, pink trapezoid). For inference, 

only the generator network (G) is used. It is responsible for producing realistic inpainting 

results. The objective of D is to identify real images from images generated by G during 

 
Figure 4. 6 An overview of the proposed model for image inpainting. Refer to the top-left red-

bounded simplified overview diagram, our model contains a Generator G (light blue shaded region), 

a well pre-trained autoencoder which is decomposed into an ENcoder (EN, yellow trapezoid) and a 

DEcoder (DE, light blue trapezoid), and a standard SN-PatchGAN Discriminator (D, pink 

trapezoid). Only the generator (G) is used in both training and testing. The dashed block next to 

Generator (G) shows the exact operation of a gated convolution. Also, the auxiliary contextual 

attention learning branch (cream-shaded area) is only activated during training. This means that this 

branch is not used for testing.  
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training for adversarial learning. Generally speaking, G has to learn to produce realistic images 

to fool D, while D has to learn to discriminate between real and generated images. Under this 

adversarial framework, G would eventually be able to generate realistic images. EN and DE 

are the encoder and decoder of a well pre-trained autoencoder network, say introduced in [58] 

for the tasks of style transfer and super-resolution. We suggest to use them as auxiliary 

networks for obtaining the target encoded features (E) to optimize a perceptual loss (PDL) and 

decoding our learned decoded features (Fa) to get decoded images (Ia) to minimize the per-

pixel (L1) loss in our auxiliary contextual attention learning branch (cream-shaded areas in 

Figure 4.6). Note that the parameters of the pre-trained EN and DE are fixed during our training.  

4.2.1 Network Design  

4.2.1.1 Generator Network  

 

The generator (G, light blue shaded area) essentially has a standard encoder-decoder 

network structure. It takes masked input image Iin and its binary mask image M as input. The 

missing pixels in Iin are indicated by value 0. Input to G is encoded to features (Fm) with channel 

size of 128 and spatial size of 64×64 (i.e. 4× downsampling the input). Encoded features (Fm) 

 
Figure 4. 7 The structure of the proposed Multi-Dilation Fusion Block (MDFB). Residual block and 

gated convolutions with multiple dilation rates are the basic components of our MDFB.  
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are fed to the main branch and the CA branch to obtain decoded features Dm and Da respectively. 

Dm and Da are then concatenated and decoded to obtain the completed image Ic and the output 

Iout. As gated and dilated convolutions have been proven to be useful for indicating the validity 

of each spatial location and understanding the context of an image respectively, we propose a 

Multi-Dilation Fusion Block (MDFB) to be used as a major processing unit in the proposed G, 

i.e. the 4 orange blocks as shown in the middle of the light blue shaded area of Figure 4.6. The 

structure of MDFB is shown in Figure 4.7 and it is a dedicated new design with residual 

connections [84]. In Figure 4.7, six parallel gated convolutions (their results are denoted as F1 

to F6) with different dilation rates (i.e. d = 1, 2, 3, 4, 6, 8 and 10) are used to enlarge the 

receptive fields such that information from both near and distant spatial locations can be 

captured for reconstructing local missing regions. The conventional approaches use 

consecutive single dilated convolutional layers [62], [68], [76] or multiple dilated 

convolutional layers followed by a single aggressive concatenation layer [75]. Different from 

those, we intentionally fuse the convolutional results from each pair of consecutive dilation 

rates (the five dashed fusion blocks in the middle of Figure 4.7) to capture the neighboring 

information according to the closeness of the spatial locations, from near to distant spatial 

locations. We obtain five fused features F2_1, F3_1, F4_1, F5_1 and F6_1 from the five dashed 

fusion blocks. We then concatenate the fused features with multiple scales and perform 

convolution to get the residues as shown in the 6th rightmost dashed fusion block of Figure 4.7. 

Finally, the residues are added to the input via the residual connection. This is the output of our 

MDFB. We use 4 MDFBs to obtain encoded features Fm (i.e. the output coming out from the 

4th MDFB orange block at the middle of the light blue shaded area in Figure 4.6). In so doing, 

the generated features inside the missing regions would have better global semantics.  

Contextual Attention (CA) (Green block in the cream-shaded region of Figure 4.6): In 

order to fully utilize the information given by the known regions, we design an auxiliary 



110 

 

contextual attention (CA) learning branch as shown in the cream-shaded region of Figure 4.6. 

Actually, the CA operation is similar to the non-local operation (also known as self-attention) 

introduced in [85]. Note that the self-attention is a point-wise operation while CA is a patch-

wise operation. More specifically, we extract reference feature patches from the known regions 

to form a number of filters (kernels) and then convolve with the generated feature patches 

(patches located at the missing regions) through standard convolutional operation. Then, we 

obtain the convolutional results with channel size same as the number of extracted filters and 

each channel represents the correlations between all the generated feature patches and the 

corresponding extracted reference feature patch (filter). We perform softmax operation along 

the channel dimension and get the similarities between each generated feature patch and all the 

reference feature patches. We rebuild the generated feature patches by weighted sums of the 

reference feature patches and the weights are derived from similarities. The similarities range 

from 0 to 1 and higher similarity means higher weight. This means that each generated feature 

patch is replaced by a weighted combination of all the extracted reference feature patches. The 

output of the CA operation is with the same size as the input, i.e. 1×128×64×64 as shown in 

the green block of Figure 4.6.  

From the bottom cream-shaded area in Figure 4.6, after the CA operation, standard 

convolutional layers and a max pooling layer are applied to obtain our learned decoded features 

(Fa) with size of 1×512×32×32. We intentionally encourage Fa to be close to the target encoded 

features (E) as computed by the encoder (EN) of the well pre-trained autoencoder [58]. We 

compare Fa with E using a recent projected feature distribution loss (PDL). We also feed Fa to 

the corresponding decoder (DE) of the well pre-trained autoencoder to obtain the decoded 

images Ia. If Fa have similar feature representations to E, Ia should be close to Igt. Hence, we 

also compute a per-pixel loss (L1) between Ia and Igt. By so doing, this CA branch has to learn 

to use the known feature patches to reconstruct the generated feature patches. Let us introduce 
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the function of the well pre-trained autoencoder and our reason for using it in the following 

sub-section.  

4.2.1.2 Autoencoder Network  

We suggest to use a well pre-trained autoencoder [58] to help us learning better decoded 

features (Fa). We decompose it into an encoder (EN) and a decoder (DE) as shown in the bottom 

yellow trapezoid and light blue trapezoid of Figure 4.6 respectively. To enhance the semantics 

and textures of the inpainting results, some previous inpainting models have adopted perceptual 

losses to force their completed images to have similar feature representations to the real images 

computed by typical well pre-trained CNN models such as VGG16 [41] and AlexNet [35]. We 

suggest to use the well pre-trained VGG16-like autoencoder for computing our perceptual loss 

(PDL, the bottom cream-shaded region of Figure 4.6). In [58], the VGG16 was modified to an 

autoencoder with symmetric encoder and decoder networks to reconstruct the input. Its 

encoded features at the bottleneck layer have to contain all the information of the input so as 

to perfectly reconstruct the input. Therefore, we encourage our learned features (Fa) at the 

auxiliary CA learning branch to have similar projected distribution [79] as the target encoded 

features computed by the encoder (EN) of the autoencoder. In addition, if we feed Fa to the 

corresponding decoder (DE) of the autoencoder, we should also obtain the input real images. 

With this assumption, the auxiliary CA branch has to learn using the feature patches from the 

known regions to fill in the missing regions such that the completed images look close to the 

real images. This information is useful for improving the quality of our ultimate inpainting 

results.  

Figure 4.8 shows a sample visualization of the input, encoded features at the bottleneck 

of our generator (Fm), learned decoded features at the output of the auxiliary CA branch (Fa) 

and the corresponding decoded image (Ia) using DE, and also the target encoded features (E) 

as well as the corresponding decoded image. Note that E is obtained by feeding Igt to EN. The 
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locations of all these features and images are marked in Figure 4.6 and they are mainly located 

at the bottom cream-shaded region of Figure 4.6. Refer to Figure 4.8, for an input masked 

image Iin (first row first column), we look for a completed image Iout (second row first column) 

which should be close to the ground truth Igt (second row second column). With the use of our 

proposed MDFB, we can see that the middle generated content of the encoded features Fm (first 

row second column, the output of the 4th MDFB orange block in Figure 4.6) are with good 

global semantics. Note that good alignment of the cabinet and the table can be observed. In 

addition, our learned decoded features Fa (first row third column) is close to E (second row 

third column). We can also see that the decoded image Ia (first row last column) is already a 

plausible prediction of the ground truth Igt (second row second column). This means that our 

auxiliary CA learning branch is able to reconstruct the real images by using the CA operation. 

Note that the decoded image using E as encoded features is also provided (second row last 

column) for reference.  
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4.2.1.3 Discriminator Network  

We employ a SN-PatchGAN Discriminator (D) [62], [70], [71], [74]-[76] in our 

training to stimulate realistic details of the generated regions. The structure of D is shown in 

the top-right corner (pink convolutional blocks) of Figure 4.6. Spectral Normalization (SN) [83] 

is applied to each convolutional layer of the PatchGAN discriminator [56], [57] for stable 

generative adversarial learning. Our D takes Iout or Igt as input and outputs a single feature map 

with size of 16×16. Each element on this 16×16 feature map represents a local region of the 

input as compared to approaches in [65], [67] using discriminators which examine the entire 

input as a whole. By training D to discriminate different local patches between Iout and Igt, Iout 

would eventually look realistic with better local details as compared to that of examining the 

entire input as a whole.  

 

 

 
Figure 4. 8 Visualizations of input, learned features, target encoded features and output of our 

proposed model. Iin, Fm, and Iout are located at the middle light blue shaded area in Figure 4.6. Fa, 

Ia, and E are located at the bottom cream-shaded area in Figure 4.6, and Igt is located at the bottom 

in Figure 4.6  
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4.2.2. Network Learning  

The design of our loss function is based on consideration to both per-pixel 

reconstruction accuracy and visual quality of the inpainting results. Our total loss contains four 

terms, namely (i) L1 loss for per-pixel reconstruction accuracy; (ii) Adversarial (GAN) loss for 

similar feature distribution between the completed images and the real images; (iii) Projected 

Distribution loss (PDL) introduced in [79] that minimizes the 1D Wasserstein distance between 

each feature map of the completed images and the real images as computed by well pre-trained 

CNN models; and (iv) Total Variation (TV) loss employed in [58] as a regularization term to 

encourage spatial smoothness in the inpainting results. Hence obvious visual artifacts and 

discontinuities can be alleviated.  

L1 loss. Our L1 loss is derived from two image pairs, the exact output of our generator 

Ic and ground truth Igt; and decoded image Ia at the auxiliary contextual attention learning 

branch and Igt. We sum the L1 norm distances of these two image pairs and define the L1 loss 

term, LL1, as follows.  

𝐿𝐿1 = 𝜆ℎ𝑜𝑙𝑒𝐿ℎ𝑜𝑙𝑒 + 𝜆𝑣𝑎𝑙𝑖𝑑𝐿𝑣𝑎𝑙𝑖𝑑     (4.8) 

where Lhole and Lvalid are the sums of the absolute differences calculated from the 

missing and the known (valid) regions respectively. λhole = 1.0 and λvalid = 1.2 are the weights 

to the per-pixel loss for the missing and known regions respectively.  

Adversarial loss. We use a standard hinge loss to train our proposed model following 

the previous inpainting models [62], [74]-[76]. Compared to the typical logarithmic loss which 

maximizes Binomial likelihood for a two-class classification, hinge loss can focus on those 

hard samples (images which are difficult to be discriminated) by neglecting the samples which 

are far away from the decision boundary. This means that better accuracy is achieved by 
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releasing the aim of getting better probability estimation. We define the adversarial loss terms 

for our generator and discriminator, LAdv,G and LAdv,D, as below.  

𝐿𝐴𝑑𝑣,𝐺 = −𝔼𝐈𝑖𝑛~𝕡𝑖
[𝐷(𝐈𝑜𝑢𝑡)]     (4.9) 

𝐿𝐴𝑑𝑣,𝐷 = 𝔼𝐈𝑔𝑡~𝕡𝑔
[ReLU (𝟏 − 𝐷(𝐈𝑔𝑡))] + 𝔼𝐈𝑖𝑛~𝕡𝑖

[ReLU(𝟏 + 𝐷(𝐈𝑜𝑢𝑡))] (4.10) 

where ℙi and ℙg represent the data distributions of Iin and Igt respectively. D(I) means a 

forward pass of I to D and ReLU is the standard rectified linear unit function defined as f(x) = 

max(0, x).  

Projected Distribution loss. Given two non-negative vectorized feature maps a and b 

∈ ℝ1×HW where H and W are the height and width of the two feature maps. We can compute 

their cumulative sums A and B such that Ai ≤ Ai+1 and Bi ≤ Bi+1, where i = [0, HW−1]. Then, 

the 1D Wasserstein distance between two projected one-dimensional feature maps can be 

computed as.  

𝑊1(𝐀, 𝐁) = ∑ |𝐴𝑖 − 𝐵𝑖|
𝐻𝑊−1
𝑖=0      (4.11) 

The projected distribution loss is to calculate the sum of the absolute difference between 

the cumulative sums of two non-negative vectorized feature maps. Note that non-negative 

feature maps can be extracted from most CNN models after any ReLU activation layer. For a 

concise notation, we simply use W1(a,b) to represent the 1D Wasserstein distance between two 

non-negative feature maps. Note that it also includes the vectorization and cumulative sum 

operation. Compared to directly computing the mean difference (L1) between feature maps, 

the cumulative sum operation can better capture the geometric information on features. For a 

cumulative sum of a non-negative vectorized feature map, the locations where have high 

activation values are highlighted by obvious increase in the cumulative sum. To minimize the 

absolute difference between two cumulative sums, the locations with high activation values 
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should be the same. Hence, geometrics of features are captured to obtain better learned features 

as compared to L1 which merely aims for minimizing the mean difference between feature 

maps.  

Let φ be a well pre-trained CNN model and φ(I) be the features of a particular layer of 

the model φ when the image I is forward passed to φ. For the features with size C×H×W, where 

C, H, and W are the channel size, height and width of the features, we define our projected 

distribution losses for the auxiliary contextual attention learning branch and the main branch 

as La,PD and Lm,PD, and they are computed as:  

𝐿𝑎,𝑃𝐷 = ∑ 𝑊1 (𝐅𝑎
𝑖 , 𝜑𝑖(𝐈𝑔𝑡))𝐶

𝑖=0     (4.12) 

𝐿𝑚,𝑃𝐷 = ∑ 𝑊1 (𝜑𝑖(𝐈𝑜𝑢𝑡), 𝜑𝑖(𝐈𝑔𝑡))𝐶
𝑖=0    (4.13) 

𝐿𝑃𝐷 = 𝜆𝑎,𝑃𝐷𝐿𝑎,𝑃𝐷 + 𝜆𝑚,𝑃𝐷𝐿𝑚,𝑃𝐷    (4.14) 

where Fi
a is the ith feature map out of the entire set of our learned features (Fa, the 

bottom cream-shaded area of Figure 4.6) and φi(I) is the ith feature map out of the entire set of 

feature maps. Note that φ is the encoder (EN) of the well pre-trained autoencoder [58] and we 

use its bottleneck features for computing La,PD. For Lm,PD, φ is the well pre-trained VGG16 [41] 

and we suggest to use the relu4_2 features for computing Lm,PD. Note λa,PD = 0.01 and λm,PD = 

0.005 are good selected weights for La,PD and Lm,PD respectively.  

Total Variation loss. We also use the total variation (TV) loss, LTV, to ensure the 

smoothness in Iout.  

𝐿𝑇𝑉 = ∑
|𝐈𝑜𝑢𝑡

𝑥+1,𝑦
− 𝐈𝑜𝑢𝑡

𝑥,𝑦
|

𝑁𝐈𝑜𝑢𝑡
𝑟𝑜𝑤

𝐻−1,𝑊
𝑥,𝑦 + ∑

|𝐈𝑜𝑢𝑡
𝑥,𝑦+1

− 𝐈𝑜𝑢𝑡
𝑥,𝑦

|

𝑁𝐈𝑜𝑢𝑡
𝑐𝑜𝑙

𝐻,𝑊−1
𝑥,𝑦   (4.15) 

where H and W are the height and width of Iout. The terms Nrow
Iout and Ncol

Iout are the 

number of pixels in Iout except for the last row and the last column respectively.  
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Total loss. The total loss function, LTotal, for training our model is the weighted sum of 

the four major loss terms:  

𝐿𝑇𝑜𝑡𝑎𝑙 = 𝐿𝐿1 + 𝐿𝑃𝐷 + 𝜆𝐴𝑑𝑣𝐿𝐴𝑑𝑣,𝐺 + 𝜆𝑇𝑉𝐿𝑇𝑉   (4.16) 

where λAdv and λTV are the weights to indicate the significance of the adversarial and 

TV loss terms respectively.  

4.2.3 Experimental Details  

In this section, we first describe our training procedure which includes how we generate 

random masks, how we form training mini-batches and how we train our model. Then, we 

present our training data to train our models for face and general image inpainting.  

4.2.3.1 Training Procedure  

Arbitrary masks. Both regular and irregular masks were included in our training. For 

regular masks, rectangular masks with the height and width ranging from 30% to 70% of the 

image size were used following previous methods [62], [65]-[76]. For irregular masks, we used 

the free-form masks proposed in [62]. We also included the third type of masks which was 

introduced in the AIM 2020 extreme image inpainting challenge [78]. This type of masks is 

arbitrarily generated based on cellular automata. During training, masks were randomly 

generated and applied to each training image to obtain three different masked images.  

Training mini-batch. All the training images were resized to 256×256. We then 

applied the random masking to each training image as stated above. Therefore, each training 

image became three training images, one was regularly masked, another one was irregularly 

masked and the last one was masked based on cellular automata. We set the mini-batch size to 

4, hence 12 (= 4×3) training images formed a mini-batch.  

Training details. We developed our proposed model using PyTorch 1.5.0 [90] and 

trained the model on two NVIDIA GeForce RTX 2080Ti GPUs. We used a smaller 
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initialization for ease of training a deep network following [55]. We firstly trained only the 

generator network using the L1 loss for 5 epochs as it could act as a reasonable initialization 

for the following adversarial training. Then, we trained the generator alternatively with the 

discriminator for 95 epochs. We used Adam [89] with momentum 0.5 and the initial learning 

rate was set to 0.0001. The learning rate was halved starting at the 20th, 40th, 60th, and 80th 

epochs. The weights of each loss term in Eq.4.16 were set to λAdv = 0.005 and λTV = 0.1.  

4.2.3.2 Training Data  

Three publicly available datasets were used to train our model, namely ADE20K [80], 

[81], Places2 [53], and CelebA-HQ [82] datasets. For general image inpainting, we trained our 

model using the ADE20K and Places2 datasets. For face image inpainting, we trained our 

model using the CelebA-HQ dataset. We took around 6 days to train either model.  

ADE20K dataset. A subset of the ADE20K dataset [80], [81] was used as the training 

set for the AIM extreme image inpainting challenge [78] of the ECCV 2020. We trained our 

model on this training set and this dataset was collected for the task of scene parsing and 

understanding. Therefore, it contains images from different scene categories and is suitable for 

general image inpainting. There are 10,330 training images in this training set selected by the 

organizers of [78].  

Places2 dataset. This is a commonly used dataset for previous inpainting models as it 

consists of more than 1.8M training images from 365 scene categories. We randomly selected 

around half of the validation images, i.e. 17,000 out of 36,500, as our training images. 

Therefore, together with the ADE20K training set, we had 27,330 training images for our 

general image inpainting model.  

CelebA-HQ dataset. Apart from general image inpainting, we also trained our model 

for face image inpainting on the CelebA-HQ dataset [82] which contains 30,000 high-quality 
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face images. Similar to previous methods such as [69], [73], [75] we randomly chose 27,000 

images as the training data for our face inpainting model.  

4.2.4 Experimental Results  

We have thoroughly evaluated our proposed model. We compare our model with state-

of-the-art inpainting methods, namely DeepFillv1 [68], GMCNN [69], DeepFillv2 [62], 

DMFN [73], DeepGIN [75], HiFill [64], and CRFill [76]. Results of the tests show that our 

model is able to handle images in the wild by testing it on three publicly available datasets: 

Flickr-Faces-HQ (FFHQ) dataset [91], The Oxford Buildings (Oxford) dataset [92], and 

Places2 dataset [53].  

4.2.4.1 Comparison with Previous Models  

We compare our best model against the following state-of-the-art approaches, 

DeepFillv1, GMCNN, DeepFillv2, DMFN, DeepGIN, HiFill, and CRFill. We directly used 

their officially provided pre-trained models on CelebA-HQ dataset [82] for face image 

inpainting on FFHQ, and Places2 training set [53] for general image inpainting on Oxford and 

Places2 testing sets. Note that authors of DMFN only provided pre-trained model on CelebA-

HQ dataset while HiFill and CRFill only trained their models on Places2 dataset.  

The FFHQ dataset is similar to the CelebA-HQ dataset and it consists of 70,000 high-

quality face images with 1024×1024 resolution. We randomly selected 1,000 images for the 

testing on this dataset. For the Oxford dataset, it contains 5,062 images of Oxford landmarks 

with a wide variety of styles. The images include buildings, suburban areas, halls, people, etc. 

For the Oxford dataset, we randomly chose 523 testing images for comparison. For the Places2 

dataset, there are 365 scene categories and 900 testing images per category. Similarly, we also 

randomly selected 1,000 images from the testing set for comparison.  



120 

 

To test the generalization of different inpainting models, testing images were arbitrarily 

masked by the three types of masks. All the previous works provided their pre-trained models 

on 256×256 images. Note also that some models were only trained for the rectangular masks. 

For fair comparison, we report test results on testing images masked solely by each type of 

masks and also mixture of the three types of masks. For testing images with size of 256×256 

and 512×512, we obtained the inpainting results by a single forward pass. For 1024×1024 

images, we divided them into four 512×512 sub-images and obtained the completed sub-

images. We then regrouped them to form the completed images with size of 1024×1024.  

Quantitative comparisons. Table 4.3 shows the comparisons of the state-of-the-art 

models and our approach on three datasets with four sets of masked images. The first three 

sub-tables in Table 4.3 list the test results on FFHQ dataset at three different resolutions, 

namely 256×256, 512×512 and 1024×1024. We can see that our model is comparable to 

DeepGIN which focuses on the pixel-wise reconstruction accuracy. Generally, for the 

evaluation metrics which target at pixel-wise reconstruction accuracy, i.e. PSNR, SSIM [93] 
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and mean L1 error, we are comparable to DeepGIN. Note that higher PSNR, SSIM and smaller 

 

 

 

 

 

Table 4. 3 Quantitative comparisons on FFHQ, Oxford and Places2 datasets. The best and second-

best results are in bold and blue respectively  
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L1 err. (%) mean better pixel-wise reconstruction accuracy. For the metric to estimate the 

visual quality of the output, i.e. Learned Perceptual Image Patch Similarity (LPIPS) [95], the 

smaller the better. Our model performs slightly better than DeepGIN on average.  

To ensure the usefulness of the completed faces in other high-level tasks such as face 

verification and recognition, we used deepface [96] to obtain the completed face verification 

rates of different methods. Figure 4.10 shows the verification rates using different threshold 

settings. We can see that both DeepGIN and ours can offer better verification rates of the 

completed faces as compared with other existing methods. This is an interesting way to 

evaluate the completed faces as the completed faces could be used for other high-level 

computer vision tasks but not just for viewing.  

The bottom three sub-tables in Table 4.3 show the test results on Oxford and Places2 

datasets. Note that general image inpainting is much challenging compared with face image 

inpainting. For Oxford dataset, we report the test results for two resolutions, 256 and 512 while 

we report the test results on Places2 dataset for 256×256 resolution. It is obvious that our model 

outperforms other inpainting methods in most cases.  

Qualitative comparisons. Figure 4.9 displays the test results on FFHQ dataset. Each 

row shows an example of the test results. From left to right: the first column shows different 

masked images. The second to the seventh columns display the completed faces by different 

methods, and the last column shows the reference ground truth. It can be seen that only 

DeepGIN and ours can achieve satisfactory visual quality without obvious visual artifacts on 

large masked regions in general. Compared to DeepGIN, our model offers more visual details 

such as the textures of the hair and the continuity of the glasses in the first and second examples 

respectively. For other examples, our model also provides the inpainting results with better 

global semantics and local textures. Note that DeepGIN is L1-oriented, hence blurry inpainting 
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results are observed. On the other hand, we achieve a better balance between pixel-wise 

accuracy and visual quality compared to the existing methods.  

 
Figure 4. 9 Comparisons of test results on FFHQ dataset. Each row shows an example by using 

various methods. Zoom in for a better view.  

 
Figure 4. 10 Face verification rates for completed faces by various approaches under different 

threshold settings. Vertical axis shows the verification rate which ranges from 0 to 1; horizontal axis 

shows different threshold values for verification, from 0.001 to 0.01.  
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Figure 4.11 shows the test results on Oxford and Places2 datasets. To show the 

importance of balancing pixel-wise accuracy and visual quality such that the inpainting results 

can be used for other high-level computer vision tasks, we also offer the predicted semantic 

segmentation test results as computed by a well pre-trained segmentation network [97]. Each 

pair of two rows shows an example of the inpainting results by various methods with the 

corresponding predicted segmentation results. From left to right: the first column displays 

different masked images and the corresponding mask images. The second to the eighth columns 

show the inpainting results and the corresponding segmentation results, and the last column 

displays the reference ground truth images and the predicted segmentation results. Generally, 

only DeepGIN and ours can provide plausible global semantics with no severe visual artifacts 

for the cases of rectangular masks, see for example, the skeleton of the building in the first 

example. For the other two types of masks: DeepFillv2, DeepGIN, CRFill and ours can give 

satisfactory visual quality. For example, we can see the bicycle wheel and the window grille in 

the fifth (the 9th and 10th rows) and sixth (the last two rows) examples respectively in Figure 

4.11. For the predicted segmentation results, it is clear that the test results as computed by 

DeepGIN and ours are semantically closer to the predicted segmentation results using the 

reference ground truth images compared to that of the other existing methods.  

We also compare our model with other inpainting models on real-world object removal 

examples and the results are shown in Figure 4.12. We can see that CRFill and ours can offer 

more satisfactory inpainting results compared with other methods in general. When we zoom 

in the inpainting results to see the textures of the grass field (the last row), we can see that ours 

is the most consistent with the textures of the grass field from the known areas. By performing 

object removal for the input images, we can have cleaner images as input to perform other 

computer vision tasks.  
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Figure 4. 11 Comparisons of test results on Oxford and Places2 datasets. Every two rows show an 

example with the corresponding segmentation results. Various types of masks are considered, and 

the mask images are shown at the first column of every two rows. Please zoom in for a better view 

of the inpainting results and the corresponding segmentation results  

DeepFillv1Input GMCNN DeepFillv2 OursDeepGIN HiFill Ground TruthCRFill
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4.2.4.2 Model Analysis  

In this sub-section, we evaluate the effectiveness of our auxiliary contextual attention 

learning branch (AT) and multi-dilation fusion block (MDFB). We also study the effects of 

using the middle layer and higher semantic layer for computing the perceptual loss. Our 

baseline is denoted as SD-Relu3 which replaces the 4 MDFBs of our generator (i.e. the 4 orange 

blocks located at the middle of G (light blue shaded area) as shown in Figure 4.6) as 4 standard 

dilated convolutions with dilation rates = 2, 4, 8, and 16 respectively. We used VGG16 relu3_2 

middle layer for computing the perceptual loss. This baseline was trained without using AT 

and this network architecture is the same as the coarse generator used in [62], [68], [76]. AT-

SD-Relu3 represents the baseline was trained with the proposed AT. AT-SDFB-Relu3 means 

that the 4 standard dilated convolutions with dilation rates = 2, 4, 8, and 16 were replaced by 4 

MDFBs which used 4 different dilation rates, namely 2, 4, 8, 16. We named this setting as 

single-dilation fusion block (SDFB). This means that the six parallel dilated convolutions with 

six different dilation rates of the first SDFB were replaced by six identical dilation rate = 2. 

The second, third and fourth SDFB used identical dilation rates = 4, 8, and 16 respectively. 

AT-MDFB-Relu3 and -Relu4 represent our final model and the only difference is that one used 

VGG16 relu3_2 middle layer for computing the perceptual loss and another one used VGG16 

 
Figure 4. 12 Comparisons of inpainting results on real-world object removal examples. Photos were 

captured by the author of this thesis. Please zoom in for a better view.  
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relu4_2 high-level semantic layer. We conducted our model analysis on general image 

inpainting, i.e. Oxford and Places2 datasets, using the same set of testing images as mentioned 

in the previous sub-section.  

 

Quantitative comparisons. The quantitative results of our model analysis are listed in 

Table 4.4. Similarly, higher PSNR, SSIM and smaller L1 err. (%) imply better pixel-wise 

reconstruction accuracy while smaller LPIPS means better estimated visual quality of the 

completed images. It is clear that AT-SD-Relu3 offers better results as compared with SD-

Relu3 in terms of both pixel-wise accuracy and visual quality in all cases. This means that the 

auxiliary contextual attention learning branch is useful to boost the inpainting performance. 

We can also observe that SDFB offers better results as compared with SD while MDFB further 

improves the inpainting performance compared to SDFB. This shows the improvement on 

using the ideas of feature fusion and multi-dilation. For the choice of feature layer for 

computing the perceptual loss, we can see that using the middle layer (Relu3) leads to better 

 

 

Table 4. 4 Model analysis of our model on Oxford and Places2 datasets. The best and second-best 

results are in bold and blue respectively  
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estimated visual quality, i.e. smaller LPIPS, while using the higher semantic layer (Relu4) 

results in better pixel-wise reconstruction accuracy, i.e. higher PSNR, SSIM, and smaller L1 

err. in most cases. As the improvement in the estimated visual quality is relatively slighter than 

that of the pixel-wise reconstruction accuracy, we chose AT-MDFB-Relu4 as our final model 

and compared it with the state-of-the-art models as mentioned in the previous sub-section.  

 

Qualitative comparisons. Figure 4.13 shows the comparisons of five variants of our 

proposed model on Oxford and Places2 datasets. Obviously, the visual quality of the completed 

images without using both the AT and MDFB is unsatisfactory. For AT-MDFB-Relu3 and AT-

MDFB-Relu4, these two variants offer similar visual quality. For example, please see the 

carved wall and the train track in the first and the third rows respectively. The two variants can 

 
Figure 4. 13 Comparisons of test results of the variants of our proposed model on Oxford and Places2 

datasets. Each row shows an example. Zoom in for a better view.  

SD-Relu3Input AT-SD-Relu3 AT-SDFB-Relu3 AT-MDFB-Relu4AT-MDFB-Relu3 Ground Truth
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accurately connect the train track with good continuity while the other three variants cannot do 

so.  

4.2.5 Conclusion on Inpainting with Global Semantics  

In Section 4.2, we have proposed a general image inpainting model which achieves a 

better balance of pixel-wise reconstruction accuracy and visual quality of the inpainting results, 

as compared with the existing inpainting models. We design a multi-dilation fusion block and 

an auxiliary attention learning branch for enhancing the global semantics and local textures of 

the inpainting results. Our model analysis has demonstrated the effectiveness of our proposed 

auxiliary attention learning branch and multi-dilation fusion block. We have achieved 

inpainting performance better than the state-of-the-art models in term of both visual quality 

and semantic correctness. We have also demonstrated the possible use of the inpainting results 

for other high-level computer vision tasks, such as face verification and semantic segmentation. 

For future development, we can try reference-based image inpainting to further boost the local 

textures of the generated content. We hope that finer details can be generated by attaching an 

extra common reference image with full information.  

4.3 Chapter Summary  

In this chapter, we discussed our proposed inpainting models which target at a better 

balance between pixel-wise reconstruction accuracy and visual quality. We emphasize the use 

of the inpainting results to other high-level computer vision tasks like recognition, verification, 

and segmentation. Our experimental results demonstrate the feasibility in using our inpainting 

results for other high-level computer vision tasks. Future work on applying synthetic results to 

other tasks will be done in order to improve the generalization of our algorithms to real-world 

situations.  
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In our proposed inpainting models, we focus on two techniques for improving the 

inpainting performance. The first technique is on dilated convolution which offers larger 

receptive fields for a model to see more distant spatial locations without an obvious increase in 

the number of parameters. The second technique is on self-attention which allows our models 

to borrow realistic information from the valid pixels to reconstruct and refine the missing and 

generated pixels respectively. Our experimental results show that we can achieve the state-of-

the-art inpainting performance in terms of both the visual quality and high-level semantic 

accuracy.  

We finally also provide some examples of quality scene reconstruction by using 

inpainting models to perform object removal. The experiment results demonstrate that better 

scenes could be obtained by removing those unwanted objects. In the future, the proposed 

inpainting models would be used as a pre-processing module in real-life recognition system to 

boost the discriminative power of the input images.  
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Chapter 5 Conclusion 

In this thesis, we have first proposed a fast monocular visual place recognition for 

situations with varying speed situations and dynamic lighting environments using conventional 

machine learning techniques. We define key frames in a video sequence as the places where 

are obviously different from the other frames in the same sequence, hence they can be easily 

recognized. We identify and analyze key frames using HOG features and low-resolution whole 

frame normalized descriptors. We successfully represent a key frame by only few but effective 

feature patches with variable patch sizes. To achieve efficient recognition, we report the 

recognition results through comparing low-resolution whole frame descriptors with our idea of 

tube of frames. Note that the estimation of the next best match based on previous results helps 

to define the search range for the current feature matching. The final recognition result is 

derived from both the estimation and the current calculation. For the idea of tube of frames, it 

emphasizes the temporal logic constraints on the movement of a vehicle in the form of the 

previous recognition results. We always travel along a path gradually without sudden jump. 

We also propose a two-stage key frame recognition to resolve the possible accumulated 

deviation from the ground truth without an obvious increase in the computational cost of our 

proposed method. Detailed patch-based matching will only be activated if there is a need. When 

a key frame is recognized, the corresponding location of the key frame will be used to reset the 

location of the tube such that the accumulated deviation can be cleared. Our proposed method 

achieves a high F1 score and is less sensitive to the length of sequence. The method is also a 

good choice when there is a need to balance the recognition performance and the computational 

cost, especially for resource-limited and/or battery-powered devices.  

We also further develop our concept of tube of frames together with the recent deep 

features. To allow the use of CNNs in visual place recognition, we study a lightweight CNN 

model and enhance an automatic training data generation module. A lightweight CNN model 
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can more efficiently extract deep features and the data generation module can generate a wide 

range of labelled data, for which variations in appearance, seasons, lighting environments, and 

viewpoints are all included. We first tackle the problem of unknown starting location of a 

vehicle with the deep features and our dynamic tubing strategy. Our proposed method gives 

the initialization result by adaptively considering a number of consecutive incoming frames 

based on the amount of new information from the incoming frames and the confidence of the 

frame matching. We attain a high confident initialization with 80% accuracy compared to 57.1% 

without the proposed tubing strategy, 47.1% and 32.9% of two AlexNet conv3 feature-based 

approaches, pre-trained on place-centric dataset and object-centric dataset respectively.  

We also extend our initialization module by integrating it into an efficient tubing 

strategy-based place recognition method. After the initialization, similar idea of the tubing 

strategy is applied to the recognition module. We propose the use of weighted sums of the 

similarity scores based on the comparison of the consecutive query frames to obtain the final 

match pairs. Similarly, the search spaces of the current incoming query frame are defined by 

the previous match pairs, hence the searching complexity can be reduced. Our experimental 

results show that the proposed efficient recognition method offers a satisfactory F1 score of 

0.724 compared to the second-best method which achieves 0.658 and is a conventional 

sequence-based method. Our tubing strategy is also faster than the standard linear full search 

strategy by a factor of 2.15, i.e., 12.4 milliseconds compared to 26.7 milliseconds using a 

standard commodity CPU device.  

To further improve the discriminative power of the deep features for places under 

different conditions, we also study the topic of quality scene reconstruction. We would like to 

remove dynamic and unwanted objects like pedestrians and vehicles in every incoming frame 

such that we can extract features from clean images. Therefore, we present a deep generative 

inpainting network named DeepGIN. We enlarge the receptive fields of our model by 
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proposing a Spatial Pyramid Dilation (SPD) residual block to cover more distant spatial 

locations. The ability of a model to observe distant spatial locations through dilation 

convolutions is important to inpainting especially when the missing regions are large. We also 

suggest to use Multi-Scale Self-Attention (MSSA) blocks to enhance the importance of self-

similarity such that the generated pixels can be further improved by using the valid pixels. 

Furthermore, Back Projection (BP) strategy is applied to improve the alignment of the 

generated and valid pixels. Our model attains a better balance of pixel-wise reconstruction 

accuracy and visual quality compared to the state-of-the-art methods. We extend our DeepGIN 

by designing a Multi-Dilation Fusion Block (MDFB) and an auxiliary attention learning branch 

for improving the global semantics and local textures of the inpainting results. The 

experimental results have demonstrated the effectiveness of the proposed MDFB and the 

auxiliary attention learning branch. Our model achieves the state-of-the-art performance in 

terms of both visual quality and semantic accuracy. We have also shown the feasibility of using 

our inpainting results for other high-level computer vision tasks like semantic segmentation 

and face verification.  

For future development, it is a promising research direction to build a comprehensive 

localization system. Our proposed inpainting models can be used as a pre-processing module 

to remove unwanted objects and/or occlusions for getting clean input images. Then, we can 

extract more robust deep features from these clean input images for feature matching and 

recognition. Finally, our proposed tubing strategy can also be used as a post-processing step to 

further enhance the recognition performance. Integrating the tubing strategy into CNNs would 

also be a good direction to study. An online learning strategy to continuously update the place 

database would be important to develop a life-long localization and recognition system.  
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