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Abstract

Beamforming is an essential technique in speech enhancement, which has been

applied to many applications, including wireless communication, hands-free com-

munication, and speech recognition. This thesis mainly focuses on the beamformer

design and sensor array localization problem via optimization techniques in the dis-

tributed network.

Firstly, we consider the microphone array localization problem with time-difference-

of-arrival (TDOA) measurements. We formulated the problem which applied the

known source locations to identify the wireless array configuration and estimate the

location for each array. The proposed method formulates a mixed semidefinite pro-

gramming (SDP) and second-order cone programming (SOCP) relaxation model.

Then the acoustic geometry calibration is obtained by solving a convex optimal

programming. The characteristics of the optimal solution are studied, and exact

relaxation conditions are given. In addition, two methods are proposed to give an

offset of the random internal error caused by the recording procedure. Experimental

results demonstrate the proposed mixed model in 2-dimensional and 3-dimensional

space, which outperforms other relaxation methods.

Then, with the given locations, a near-field broadband beamformer based on IIR

filters performing spatial and frequency filtering is designed. The coefficients of the

beamformer can be found from an optimal minimax problem which minimizes the

error between the desired response and the actual response. We proposed a decom-
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position method to solve the stability problem, and two optimization algorithms are

considered to obtain a global solution. Since the design problem is very complex

and highly nonlinear due to the need for stability constraints, a specific structure is

proposed to simplify the problem, Furthermore, the performance limit of the general

and specific structure is analyzed. Results show that significantly fewer coefficients

are needed than for FIR filter designs, and the corresponding computational load in

the implementation decreases.

Finally, two adaptive beamformers are designed in the modulation domain, by-

passing the need of spatial information. The beamformers are designed based on

the least square (LS) error between the desired and estimated signals and the max-

imum signal-to-noise ratio (SNR). The proposed methods have been evaluated by

three indicators, including STOI, noise suppression, and signal distortion. The re-

sults show that the beamformers designed in the modulation domain outperform the

counterparts developed in the frequency domain.
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Chapter 1

Introduction

1.1 Background

Beamforming is an essential technique in speech signal processing, which has

been applied in many areas such as wireless communication, hands-free communica-

tion, speech recognition, voice control devices, and hearing aids [19]. For example,

consumers would like to speak commands to their devices via systems of automatic

speech recognition and natural language processing like Siri, Google Now, Alexa,

and Cortana [171]. Popular consumer products like Amazon Echo and Google Home

are drawing much attention from significant manufacturers and product developers.

However, in the real-world situation, the received speech signals can be polluted by

a lot of noises, such as babble noise, white noise, traffic noise, or reverberation, as

depicted in Fig. 1.1. As a result, systems for voice control suffer from severe perfor-

mance degradation. A critical technique to enhance the received signal and reduce

noise is to apply beamforming over a set of sensors, which analyzes the spatial prop-

erties of received signals to improve desired source locations over others. A general

structure of the beamformer is given in Fig. 1.2. Compared with a single-point mi-

crophone observation of a speech signal, multichannel observations can obtain more

information about the noise and desired signals, including both the spatial domain

and time domain information. This technique applies a linear filter-and-sum opera-
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Figure 1.1: Noisy environment

tion on the received signals, where the filters are designed based on specific criteria.

The conventional beamfomering techniques are always applied in a compact mi-

crophone array. However, with the development of micro-electro-mechanical systems

(MEMS) over the last few decades, small smart acoustic sensors have appeared.

They are equipped with powerful embedded processors and can achieve multi-task,

like data processing, communication, and sensing, with low cost and power. Follow-

ing the miniaturization of sensor technologies, the use of portable devices increases

significantly, and many are networked via various protocols. This allows information

to flow between sensors and be controlled remotely by users. At the same time, de-

ploying many microphones is gaining popularity for devices with acoustic capabilities,

such as smartphones and portable computers. Being distributed in the environment,

if properly employed, can form a robust acoustic sensor network to give another di-

mension in carrying out various speech processing tasks [7]. This kind of network is

referred to as wireless sensor networks (WSNs) [139, 129], have been widely used in

many areas, with applications ranging from locating and tracking sound sources and

enhancing speech signals [26, 152, 163, 6, 111]. It is an emerging scheme comprising
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Figure 1.2: The structure of the beamformer

many wireless sensor nodes; each node consists of a single microphone or a single

microphone array. Compared with the conventional compact microphone arrays, the

array configuration of WSNs is no longer limited to standard structure, which can

provide comprehensive spatial coverage. The microphones can even locate meters

away from one another, enabling the various acoustic scenes to be obtained, result-

ing in a more accurate estimation of the users’ environment. Some problems should

be addressed to better apply the distributed signal processing techniques; the one

main challenge is the unknown array structure.

To allow the formation of microphone networks by the sensors finding themselves

in the same enclosure, the location of the microphones and the array configuration

are required for many applications. Research shows that beamformers are sensitive to

systematic errors because of the differences in the design conditions. One uncertainty

is in the transfer function from the source to the sensors, which is related to the source

locations and the sensor array configuration [82]. Errors in the sensor coordinates

can affect the transfer function, which will further have a severe negative effect on the

performance of the beamformer [179, 86]. The regular microphone array structure is
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often deployed for the ease of manufacture, which results in the linear array being

the predominant way to arrange microphones. This imposes many restrictions on the

beamforming algorithms in localizing sound sources and enhancing speeches. Besides,

with advanced wireless technology, microphone sensors can be distributed arbitrarily,

and regular structure is unnecessary in the wireless world. As microphone locations

are critical to speech enhancement and source localization accuracy, a thorough study

of microphone locations and arrangements is necessary.

As reviewed in [116, 112], much recent research on acoustic geometry calibration

is to determine the locations of the microphones from the received speech signals.

This is to explore the spatial differentiation hidden in the signals. Typical indica-

tors extracted are the time difference of an arrived signal at two sensor nodes or the

direction under which the signal is detected. The obtained information is applied in

a cost function measuring the discrepancy between the predicted indicators by the

assumed geometry and the actual measured quantities. Since the extracted location

information often relies on measuring time or time difference, accurate time syn-

chronization is essential. To compound the difficulty, for a distributed system, the

sampling process in each node is closely related to its local clock oscillator and hard-

ware structure. Inevitably there will be a delay in the sampling start, and there is a

sampling rate offset between the signals received by different nodes, severely affecting

localization and speech enhancement performance. The system should compensate

for the offset in the calculations to avoid this performance reduction.

Assuming that the array configuration is estimated, beamforming algorithms can

be performed over the network. There are various beamformers, which can be cate-

gorized as fixed and adaptive beamformers. As its name indicated, the parameters of

fixed beamformers are fixed during the process; and the filter is independent of the

microphones’ signal data. In essence, the filters can be considered as multidimen-

sional filters, also known as broadband beamformers, which can extract the signal of
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a particular beam-width and bandwidth while restraining the signals that are not in

the desired space or frequency. Fixed beamforming techniques enhance noisy signals

by calculating and summing the delay. We can divide the fixed beamformers into

near-field and far-field beamformers in terms of the distance between the source and

microphone. In some traditional applications, such as sonar, antennas, and radar,

the source is assumed to be located at an infinite distance from the array, receiving

plane waves [76, 167, 132]. However, the applications we focus on in this thesis, such

as hands-free mobile in cars, and voice-commanded systems, typically have short

distances between sources and arrays. Traditional far-field algorithms always per-

form poorly in this near-field situation, so designing algorithms suitable for near-field

applications is necessary. There exists many near-field broadband beamforming al-

gorithms, such as [101, 77, 69, 25, 42, 100, 172, 102, 83, 170, 43]. The main goal of a

beamformer is to enhance the audio signal from the parts of interest and reduce the

undesired elements. One general method is constructing the near-field beamformer

design problem as a minimax program in a quadratic form of the weighted Chebyshev

approximation problem [101].

Another type of beamformer is the adaptive beamformer. The parameters of

adaptive beamformers are changeable during the operation, and the beamformers

depend on static characteristics of desired, noisy speech signals received by the mi-

crophone. Typical adaptive beamformers include minimum variance distortionless

response (MVDR), linear constraint minimum variance (LCMV) and generalized side

lobe canceller (GSC). They always formulate the design problem as an optimization

problem by different criteria, and the parameters can be obtained by solving the

problem. The classic adaptive beamformers always require spatial cues. As men-

tioned above, the spatial cues are hard to estimate due to the dynamic geometries.

Thus, some blind algorithms, such as generalized eigenvalue decomposition and max

signal to noise ratio method, are needed, which can bypass the need for spacial
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information. Another problem that should be considered is that the classic central-

ized beamformer needs a central processing unit to calculate the data accepted by

all the sensors, which is undesirable in actual applications. Therefore, distributed

algorithms are necessary to distribute the processing load over different nodes, as

each node only contains partial data with limited energy supplies. In addition, the

distributed algorithms should have the same outputs as the centralized methods.

Above all, the formation of a microphone array network is still an active research

area with many possibilities. In the current state, there are still many problems

to be overcome. This thesis mainly focuses on designing acoustic beamformers via

optimization techniques and auditory sensor network localization. A convex opti-

mization techniques-based microphone array localization algorithm is proposed first.

Then, with the given locations, a fixed near-field broadband beamformer based on

IIR filters is designed, where significantly fewer coefficients are needed than FIR-

based algorithms. It is satisfying in WSNs, due to the battery and computation

load limitations. Finally, adaptive beamformers are designed in the modulation do-

main, which has no requirements for spatial information and performs better than

the frequency-based counterpart algorithms in terms of four widely used indicators.

The structure of the thesis is sketched below.

• Chapter 2 considers the microphone array localization problem in a distributed

acoustic network based on a relaxation model with time-difference-of-arrival

(TDOA) measurements. In multimedia applications, it is common to employ

acoustic sensors collectively to enhance signals and to locate sound sources. A

direct problem can be formulated to locate sound sources from a set of known

sensors. In order to form the acoustic sensor network, it is important to locate

the sensor array locations first. However, unlike other networks in which di-

rect TOA measurements might be possible, acoustic distributed network can
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only obtain time-difference-of-arrival (TDOA) measures indirectly from vari-

ous sound source anchors. While it is common to employ convex optimization

techniques to localize sensor locations in a network with TOA information, it

has not been studied properly when it comes to TDOAs. This chapter con-

siders the microphone array localization problem in a distributed acoustic net-

work with time-difference-of-arrival (TDOA) measurements. We formulate the

inverse problem which applied the known source locations to identify the wire-

less array configuration and estimate the location for each array. The proposed

method formulates a mixed semidefinite programming (SDP) and second-order

cone programming (SOCP) relaxation model. Then the acoustic geometry cal-

ibration is obtained by solving convex optimal programming. The character-

istics of the optimal solution are studied, and exact relaxation conditions are

given. Furthermore, offset algorithms are proposed to decrease the random

error raised from the recording procedure. Experimental results demonstrate

the proposed mixed model in 2-dimensional and 3-dimensional space, which

outperforms other relaxation methods. The efficiency of the offset algorithms

has been proved in real applications.

• Chapter 3 considers the design of a near-field broadband beamformer based

on an IIR filter performing spatial and frequency filtering. Many near-field

broadband beamforming models are achieved by an FIR filter attached to each

channel. This chapter investigates the characteristics of the IIR-based beam-

former. By using IIR filters in the design, significantly fewer coefficients are

needed than for FIR filter designs, and the corresponding computational load

in the implementation decreases. To solve the stability problem better, we

further decompose the feedback part into a sum of low-order sections and add

stability constraints in the optimal problem resulting in a stable filter struc-
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ture. Two global optimization algorithms are given to solve the non-convex

optimization problem. However, due to the need for stability constraints in the

optimization, the full IIR filter problem is very complex and highly nonlinear.

A specific structure is proposed in which all the elements in the beamformer

share the same feedback section to simplify the problem. Furthermore, we

study the performance limit of the proposed method, where the filter length

can be chosen arbitrarily, and the performance limit can be obtained efficiently

by solving a series of subproblems. We prove that the specific structure have

the same limit performance as the general structure. Numerical experiments

showed that the optimal value of the IIR design method could approach the

limit much faster than FIR-based beamformers. The proposed method was

evaluated utilizing a room simulation model for varying reverberation times.

The design degrades consistently with increasing reverberation time.

• Chapter 4 considers the design of beamformers in the modulation domain with-

out the requirements of spatial cues. The concept of modulation domain is de-

veloped from Short Time Fourier transform (STFT), which analyzes the modi-

fication synthesis framework. In essence, modulation domain processing is the

evolution of the signal’s temporal and spectral information. These modula-

tion domain characteristics promote the application of the modulation domain

processing in speech enhancement. This chapter extends two popular beam-

formers, including least square (LS) and signal-to-noise ratio (SNR), into the

modulation domain. The proposed methods have been evaluated by four in-

dicators, including noise suppression, signal distortion, and STOI. The results

show that the beamformers designed in the modulation domain outperform the

counterpart methods developed in the frequency domain.

• Chapter 5 summarises the whole thesis and gives insights into future work.
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1.2 Literature Review

1.2.1 Microphone Array Localization Problem

This part reviews the most recent algorithms for microphone array localization

problems, also called position self-calibration or microphone self-localization. Micro-

phone localization algorithms have been proposed for various scenarios. In general,

there are three kinds of basic microphone arrangements for different application sce-

narios: single compact array, distributed individual sensors, and distributed arrays.

The last two are for wireless acoustic sensor networks. Follows characterizes the

three arrangements in detail, and Figure 1.3 depicts the three scenarios.

1. The first scenario considers the arrangement containing only one single micro-

phone array and all the microphones located in the array of small geometric

dimensions. In application, we can always assume that all the microphones

have the same time base. In this situation, the acoustic location calibration

problem is also known as array shape calibration. The configuration charac-

teristic is that all the microphones are close to each other. Therefore, there

is some acoustic coherence among the signals received by the sensors. Many

algorithms are developed based on the coherence information.

2. In the second scenario, the microphones are not in a compact array while they

are distributed in the network, and each node only contains one microphone.

The calibration task is to determine the locations of all the microphones dis-

tributed in the whole room, called microphone configuration calibration. Due

to the distribution of sensors, we cannot generally know the time synchroniza-

tion among nodes.

3. The difference between the second and third scenarios is the number of the

microphone in each node. In the second scenario, each node only consists of
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one microphone, while in the third scenario, each node contains a compact

microphone array (more than one microphone). This acoustic geometry cal-

ibration task is known as array configuration calibration. In this task, the

inner configuration of the microphone array is known, and the microphones in

the same array always share the same time base. Thus, we can calculate the

microphone locations with the knowledge of the center microphone’s position

and the sensor nodes’ orientation. Then, the sensor localization problem is

simplified, as we only need to estimate the center positions of arrays and the

orientations of each node.

(a) single compact array (b) distributed sensors (c) distributed sensor arrays

Figure 1.3: Three fundamental sensor arrangements

According to different application situations, acoustic geometry calibration algo-

rithms are developed. The general idea of acoustic geometry calibration algorithm is

to extract geometric arrangement-related information from the received signals [84],

such as the time of arrival between sources and sensors, the time difference of arrival

between two different microphones [138], and the direction of arrival [106]. Then,

one objective function can be formulated with the obtained geometric arrangement

information and the measurements as predicted. In general, four kinds of acous-

tic measurements are categorized by the geometric arrangement of the sensors in a

connection to other microphones or an active speaker. The four kinds of measure-

ments include pairwise distance (PD), the direction of arrival (DOA), time of arrival
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(TOA), and time difference of arrival (TDOA), which are depicted in Fig. 1.4.

(a) Pairwise distance (PD)

PD measurements measure the distance between a particular pair of sensors

in an acoustic network. It can be obtained by calculating the noise coherence

between the signals received by the two microphones.

(b) Time of arrival (TOA)

This measurement describes the distance between the source and the sensor,

which is generally obtained by receiving the sources with known positions. It

means the TOA measurement requires the emission time of the source signal.

This measurement is also known as the time of flight, measuring source to

sensor distance in a direct propagation.

(c) Time difference of arrival (TDOA)

TDOA measures the difference between the time delay of two different sensors.

Compared with TOA, TDOA requires no emission time of source signals.

(d) Direction of arrival (DOA)

Microphone localization algorithms based on DOA only for the cases where

each node contains a sensor array rather than a single sensor. A unit norm

vector measures the direction in which the source reached the node.

The following part reviews the recent literature on microphone localization, which is

ordered based on the four geometric measurements above.

Pairwise Distance (Noise Coherence)

The pair-wise distance can be obtained by calculating the noise coherence, the

normalized cross-power spectrum of two received signals. The assumption of diffuse
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Figure 1.4: The four different measurements

noise field limits microphones with small distances, so this kind of method only works

for a compact array. The fundamental insight of this kind of method is to match

the theoretical diffuse noise coherence function to the measurements [99]. Then, we

can formulate an optimization problem by minimizing the difference between the

theoretical distance and the measurements.

We can solve the optimization problem in a closed form by applying multidi-

mensional scaling [15], which can obtain the spatial arrangement of the sensor. The

general idea of this method is that the sensor configuration can be found by eigen-

value decomposition from the productive scalar matrix, and for more details in [36].

Instead of directly fitting the diffuse noise coherence, a model for the generalized

cross-correlation with phase transform (GCC-PHAT) was proposed in [155], which

achieves minor estimation error compared with the previous methods. Another prob-

lem with the PD measurements is that the measurements matrix has a higher di-

mension than its rank. A low rank matrix completion strategy is applied in [142]

and a nonnegative matrix factorization method is used in [3] to solve the problem.

TOA

Methods based on TOAs focus on the arrival time of an active source. If a point

source propagates in a direct path, the TOA is related to the distance between the

sensor and the speaker. Multiply a given speed of sound in the air on the TOAs.
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Then, we can get the distances from the sensors to the source. In essence, the

estimation of TOA can enable localization since it indicates the measurement of

distances between the sensors and targets, which induces a high accuracy. With the

known positions of the sound sources, the configuration of the sensor network can

be estimated by triangulation. If all the nodes are in a coplanar scenario, at least

three base nodes and three TOA measurements are needed to find the location of

one target node. If a known base node position and a TOA r are given, the potential

target location will be on a circle with a radius r. If there are two known base nodes,

there would be two TOA circles, and the potential target would be the two points

of intersection of the TOA circles. One more node is needed to find out the exact

position. The final target location is the point that goes through the third TOA

circle. In a non-coplanar scenario, an additional one node is required, that is, four

base nodes, to localize one target due to the increasing spatial dimension.

The TOA is given by the pairwise distance between the source and sensor posi-

tions, the onset time of the source, and the internal recording delay. The calculation

of onset time requires the same time base between the sensor and sound, while the in-

ternal delay requires the signal at the source. The first requirement means the source

and sensor should be synchronization, and the second requirement assumes the source

is a loudspeaker. If the offset and delay are known, we can derive the sensor positions

by minimizing the error between the pairwise distance and the estimated measure-

ments. [16], where the estimation of TOA can be calculated by cross-correlating the

sensor signal. Some relevant methods are proposed in [29, 30, 125].

However, if the knowledge of internal recording delay and an onset delay is un-

known, some more complex estimation algorithms should be considered. A two-stage

method is proposed in [50], which estimates the timing information first and then

solves the positions. These two steps exploit the low-rank structure of the location

matrices S andA. Then, the problem becomes to estimate matrices with much lower
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dimensions, which can be considered as a nonlinear least square problem. Once tim-

ing parameters are solved, the second step can be solved by methods proposed in

[30].

TDOA

TDOA measurements refer to the time difference between two sensors to the

source when there is a direct path from the source to the sensor. The arrival time

difference can be presented in a hyperbola, a locus of a point in a plane. Then,

the distance difference between two fixed anchors is a constant. Three base nodes

and two TDOA measures are needed to determine one unknown target node in a

coplanar scenario. Suppose that the first base node that received the signal emitted

from the target node is the reference node. Then the potential target location is on a

hyperbola formulated by the TDOA with one base node and the reference node. To

find out the exact position, we need another TDOA information, and the final place

is the point of the intersection of two hyperbolas. While in a non-coplanar situation,

one additional base node is required, that is, four base nodes and three TDOA

measures. In this situation, there isn’t an onset time of the source, which means this

measurement does not need the time synchronization between the microphone and

source.

Assuming that the system is time-synchronized or the equivalent knowledge of

delays is known, we can derive the TDOAs directly according to the estimation

coordinates. The steered response power with phase transform is always used for this

method. It is the same as a delay and sum beamformer when finding the position

with a maximal output power [19]. A sensor localization algorithm in reverberant

environments is proposed in [65] to perform a local coordinate mapping based on

coherence analysis. In addition, in a situation where each node contains a sensor

array, acoustic images can be obtained by the delay and sum beamformer in each
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array [151]. This makes positions can be extracted from a camera model in Cartesian

coordinates. If the sources are located far away form the sensors, which means the

sensors are in a far field of the speaker. Then, the microphone localization problem

can be simplified [148].

If the system is unsynchronized, the recording delays are unavailable. More com-

plex joint estimation algorithms should be considered. The method in [107] formulate

the localization problem as the nonlinear least square problem, which can be solved

by the algorithms based on auxiliary function. Besides, research showed that the

alternating optimization has better convergence properties than gradient descent. A

two-stage method is given in [157] by using a rank approximation method. Thrun

[148] first proposed the approximation rank-based algorithms with TDOA measure-

ments and known onset time and delays. Wang [157] extended this method to un-

synchronized systems, where the time delays should be estimated. Another insight

of TDOA is that the TDOA can be applied to calculate pairwise distance [114]. The

advantage of this is that the time synchronization between sensors is unnecessary.

DOA

DOA-based methods can only be applied where each node contains a microphone

array rather than a single sensor. For DOA measurement, a cosine distance measure

is better than a Euclidean distance measure, as we focus on directions. The optimiza-

tion problem is formulated by comparing the direction of the source, as measured by

the sensor.

A Newton algorithm is applied to solve the optimization problem in which only a

synchronization among the same node is required [73]. The advantage of this method

is that we can eliminate the synchronization problem between different nodes and

the synchronization between sensors and sources. However, there is a drawback:

methods based on DOA can not estimate the scale of the acoustic network. This
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drawback can be overcome by applying TDOA measurements to the localization

problem. The method in [115] showed that a known inter-array arrangement of a

circular array could also solve the scale uncertainty problem.

1.2.2 Fixed Beamformer Design Problem

Fixed beamforming techniques enhance noisy signals by calculating and summing

the delay. The fixed beamformer design problem is related to a multidimensional

digital filter design problem with an arbitrarily specified amplitude and phase. We

can set the desired frequency and place as the pass region, while the undesired

elements are the stop region. After the beamformer, the desired parts’ audio signal

remains, and the undesired components are reduced. The pass and stop regions can

be discretized into a finite number of grid points. Then, we can formulate a minimax

problem with a quadratic formulation of the weighted Chebyshev approximation

problem to derive the parameters of the beamformer, which can be solved by the

linear programming technique [103].

The fixed beamformers contain far-field and near-field beamformers according to

the distance between the source and microphone array. If the microphones are far

enough from the source, we can assume the wavefronts are planar and will decay

at a rate of 6dB per distance doubled from the start. The signals received by the

sensors can be equally considered attenuated, and the source can be viewed as a point

source. Most transducers are characterized and operate in the far-field as behavior

is consistent across a range of frequencies required by specific imaging applications

in sonar, non-destructive testing, or biomedical industries. Suppose the microphone

is near the source. In that case, the model becomes a complex constructive and

destructive interference pattern as the waves are generated from an aperture of a set

geometric size. The sound waves in near field and far field are depicted in Fig. 1.5.

Many works have been done to design the beamformers. The traditional research
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Figure 1.5: Sound waves in the near field and far field

mainly focus on the one-dimensional or two-dimensional FIR filters, which are de-

signed by the minimax metod and applied on a single grid with the requirement of

the linear phase [71, 137, 60]. Then, many general algorithms have been proposed

for multidimensional filters design with arbitrary phases and amplitudes. A far-field

beamformer design algorithm has been proposed in [44], and they analyzed the influ-

ence of the performances concerning the filter length and the number of microphones.

Ward et al. proposed a frequency variant fixed far-field beamformer in [160], which

is suitable for distributed arrays with any bandwidths and has no requirement of the

beam shape. Mars et al. [97] further improved the frequency variant beamformer

with lower signal distortion and less computation load compared with the adaptive

ones.

There also exist many nearfield broadband beamforming algorithms. Rodney

et al. [78] proposed the reciprocity relationship between the nearfield and far-field

beam patterns and designed a nearfield beamforming array using the relationship.

The method in [77] transformed the wanted nearfield model to an equivalent radial

pattern by applying the spherical harmonic solution to the wave equation. The

desired nearfield beamformer can be obtained by using the far-field design methods.

Ryan et al. [124] proposed a method using a signal propagation vector to describe a
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point source. This method can be applied when the desired source is in the nearfield

region, but the noises are far away from the sensors.

Another design method is constructing the near-field beamformer design problem

as a minimax program with a quadratic formulation of the weighted Chebyshev

approximation problem [101]. This approach is related to a multidimensional digital

filter design problem with an arbitrarily specified amplitude and phase. It performs

on a discrete domain where frequency and spatial domains are discretized into a finite

number of grid points. Then, it can be solved by the linear programming technique.

Many conventional near-field broadband beamforming models are achieved by an FIR

filter attached to each channel [69, 43]. The FIR filter is used to generate a frequency-

dependent magnitude and phase shift over the array operating bandwidth. The wider

the operating bandwidth is, the larger the number of taps required to obtain a given

level of broadband interference injection [98, 123]. The method in [83] introduced

an auxiliary function to solve the continuous space design problem. The auxiliary

function’s first root gives the solution, which can be found by a root-catching method.

To improve the optimization processing, the researchers propose a penalty function

method to reduce or get rid of the constraints [102]. In [170], they use l1−norm

and actual rotation theorem to reduce the nonlinearity in optimization, and the

design problem becomes a semi-infinite linear programming problem. To decrease

memory usage and computational complexity, a two-stage algorithm is given in [43].

It is vitally important in high dimension problems, as the number of discrete points

needed is significantly large, resulting in a large-scale optimization problem. The

FIR filter is used for all the methods above to formulate a frequency-dependent

magnitude and phase shift over the network operating bandwidth. The wider the

operating bandwidth is, the larger the number of taps required to obtain a given

level of broadband interference injection [98, 123].
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Figure 1.6: The framework of centralized algorithms

1.2.3 Adaptive Beamformer Design Problem

In this section, the most recent theoretical and practical literature on adaptive

beamforming techniques has been reviewed. Compared with the fixed beamformer,

such adaptive algorithms can adapt to the changeable signals. It is more robust and

suitable for a changeable situation. The common idea of all methods is estimating the

target signal, and the design problem is finding the beamformer’s proper parameters.

Many beamforming techniques have been studied, and the main difference among

them is their different criteria. For example, multi-channel Wiener filter (MWF)

beamforming [35, 9, 80] optimizes the mean square error between the desired and

output signals. Minimum variance distortionless response (MVDR) beamformer [88,

51] aims to minimize the system’s output power with only one linear constraint on

the sensor’s response to the target signal. In contrast, linear constrained minimum

variance (LCMV) [1] is an extension of MVDR, which have constraints on both

desired and noisy signal. Another method is the maximization of signal-to-noise-

ratio (MAX-SNR) [147], which aims to optimize the SNR criterion.
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However, there is a problem that many beamformers require the spatial infor-

mation or equivalent knowledge, which could be hard to obtain in a wireless sensor

network. This problem also exists in the fixed beamformer design problem. Some

methods assume that the transfer functions between microphones and sources are

known [68]. Some methods assume that spatial clues are not available and have to be

estimated based on statistical properties of the microphone signals, such as subspace

methods and the generalized eigenvalue decomposition method (GEVD).

Another problem is that, in the conventional methods, the communication of

wireless microphones is committed by a central processor known as a fusion center

used to collect all data for further processing. A centralized algorithm framework is

given in Fig. 1.6. This model is applied in conventional centralized multi-channel

noise reduction algorithms, but there is a drawback that the need for energy or

transmission bandwidth is overmuch. It is unsuitable in WANs due to each array’s

limited battery life, communication, and computational load. An alternative solution

known as distributed arrays is always applied in the WASNs algorithms, which can

decrease the cost of communication and spread the processing burden to different

nodes. A framework of the distributed algorithms is given in Fig. 1.7.

The acoustic model is formulated first to give a better understanding of the

algorithms. Suppose that there are L nodes in a acoustic sensor network, and each

node l ∈ {1, · · · , L} contains ml sensors. Then, the number of sensors in the whole

network is m =
∑L

l=1ml. We consider that in the network there are n speakers, some

interfering and some desired; and the desired and interfering parts are assumed to

be uncorrelated. The γth source captured by the ith senor in the lth node at the

time index t is modelled as

yγli(t) = pγli ∗ sγ(t) + vli(t), (1.1)

where pγli is the propagation steering vector from the γth source position to the ith
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Figure 1.7: The framework of distributed algorithms

sensor in the lth array, sγ is the clean signal at the γth source location, and vli is the

noise signal. Then, the received speech at the ith senor in the lth node is expressed

as

yli(t) =
n∑

γ=1

(pγli ∗ sγ)(t) + vli(t). (1.2)

Denote yl = [yl1, · · · , ylml
] as a stack of the received signals of the lth node; and

y = [y1, · · · ,yL] as a stack of the all signals of the network. By using the short

time discrete Fourier transform (STFT), we can window and transform the signals

into frequency domain. As we assume that STFT coefficients are independent in

time and frequency, we can omit indices for the brevity of notation. Let Yl =

[Yl1, · · · , Ylml
]T be a stack of signals received by the lth node, where (·)T means the

matrix transposition, and let Y = [Y1, · · · ,YL]
T be a stack of all signals received

by all the nodes. Then, the m× 1 vector Y can be described as

Y = pS + V , (1.3)
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Figure 1.8: Data model of the network

where p is an m×n mixing matrix, containing the propagation steering vectors from

the n source locations to the m microphones, S is an n× 1 vector consisting source

signals DFT coefficients, and V represents the noise. The auto-correlation matrix

of the vector Y can be denoted as RY Y = E(YYH), where E(·) is the statistical

expectation operator. Similarly, the spectral covariance matrix of desire and noise

signal are RXX and RV V , respectively.

In the following, a review of algorithms for speech enhancement applying beam-

forming techniques is presented, which is ordered in terms of the criteria used. For

each beamformer, the corresponding optimization problem will be formulated first,

and then the solution set is given. Furthermore, for each kind of method, some

distributed algorithms are given.

Minimum Mean Square Error (MMSE)

MMSE method is to minimize the mean square error between the desired signals

and the estimated signals. For a node l, the estimation of the desired signal is given
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by

x̂l = wH
l y,

where wl is a node specific estimator. According to the criterion of the MMSE

method, we can formulate the design problem of the estimator as an square opti-

mization problem as

wl = argmin
wl

E{|xl −wH
l y|2}, (1.4)

where E{·} is the expected value operator, and xl represents a node specific desired

signal. Suppose that the correlation matrix of the output signal Ryy = E{yyH}

has a full rank. When the signals received by different sensors are independent, the

assumption could be satisfied. Then, the unique solution of (1.4) is given by [53]

wl = R−1
yyrx, (1.5)

where rx = E{yx∗
l } and (·)∗ represents the conjugate of the matrix, and rx can be

estimated by applying training sequences or voice activity detection mechanism.

In [35], an iterative multi-channel Wiener filter was introduced in a binaural hear-

ing aid for the MMSE estimation by using a pruned version of the distributed adap-

tive node-specific signal estimation (DANSE) algorithm. It proves the distributed

beamformer converges to the centralized solution in the situation of a rank-1 corre-

lation matrix, i.e., with a single desired source. Then, the algorithms with different

desired sources are proposed. Bertrand et al. [8] introduced a batch-mode DANSE

algorithm to calculate an MMSE estimator for multiple desired signals. A robust

DANSE algorithm was proposed in [9], and the efficiency and convergence of the

method have been proven in a simulated room with multiple speakers. In [10], more

details of the DANSE algorithm are given, including the convergence proof, a truly

adaptive version, and the simulation results in a dynamic scenario.

The DANSE algorithm was further extended to greedy algorithm [140], and co-

operative adaptive algorithm [61] for the MMSE estimation. While an optimal node
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selection strategy is NP-hard, the greedy selection procedure reduces the computa-

tion cost by adding and iteratively removing nodes. The method in [61] considers

node-specific DOA estimation. However, all the methods based on DANSE require

a fully connected broadcasting sensor network or a tree topology. In [158], the au-

thors proposed an MMSE beamformer based on a gossip algorithm, which has no

requirements on the topology of the networks. In addition, blockchain technology is

applied to protect data integrity during transmission and give more reliable connec-

tions between different nodes.

Minimum Variance Distortionless Response Beamforming (MVDR)

MVDR is an important technique in speech enhancement, which optimizes the

power of the beamformer output with only one constraint on the response of the

sensor to the target speech. Firstly, we consider the centralized situation. Assume

that there exists only one desired signal. The filter coefficient vector w can be

obtained by solving the following problem [19]

min
w

wHRY Yw

s.t. wHp = 1,
(1.6)

where RY Y is the auto-correlation matrix. If we suppose that the speech sig-

nal is independent with the noise signal, then E(XV H) = E(V XH) = 0, and

RYY = RXX +RV V . Mathematically, the optimal problem in (1.6) is equivalent

to minimize the cost function wHRV Vw. According to the matrix inversion lemma

and Langrange multiplier method [20, 153], we can get the solution of (1.6) as

w∗
MVDR =

R−1
V V p

pHR−1
V V p

. (1.7)

The estimation of the desired speech is given by

Ŝ = wHY. (1.8)
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The main challenge of the method is how to compute R−1
V V .

If we assume that the noise in network is spatially uncorrelated across micro-

phones, which can be achieved in a diffuse noise field or/and that the distance be-

tween the arrays is quite large. With the assumption, the matrix RV V is simplified

by setting all the off-diagonal number to be 0, and the calculation of the matrix

inversion is bypassed. In addition, the PSDs of each microphone can be different.

Accordingly, the output of the beamformer is rewritten as

Ŝ =

∑L
l=1

∑ml

i=1 pliσ
−2
vli
Yli∑L

l=1

∑ml

i=1 pliσ
−2
vli
pli

, (1.9)

where the power spectral density σ−2
vli

can be estimated by an ideal voice activity de-

tector [63], and pli can be estimated by the method in [47]. This kind of beamformer

is also known as delay and sum beamformer (DSB).

The general idea of mixing the multi-channel signals in an optimization problem

with the restriction on signal distortion was first proposed by Darlington [32]. Then,

many works have been done to improve it. Frost introduced an adaptive scheme

in [45] by using a constrained least mean-squares algorithm. However, this original

method is quite sensitive to the errors. Thus, many algorithms have been proposed

to achieve the robust beamforming, such as [22, 28], which applied diagonal loading

techniques. Another type of robust method applied the steering vector, in which

the output power is optimized according to the estimation of difference between the

actual and presumed steering vectors [62]. To further balance the trade-off between

noise reduction and signal distortion, a system in terms of AMNOR was proposed,

which used a soft constraint [74]. A generalized sidelobe canceller (GSC) structure

was proposed to eliminate the constrained adaptation [56], which is an extension of

[45]. Then, the MVDR beamformer was further used to dereverberation, but there is

a trade-off between noise reduction and dereverberation, which has been rigorously
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analyzed in [58].

Another alternative model of the MVDR algorithm is the pseudo-coherence based

signal model, witch is quite flexible and suitable for changeable geometry. Tavakoli

et al. [145] proposed a blind speech enhancement method, which is modeled by the

pseudo coherence vector, without the requirements of the sensor position information

exploiting an orthogonal decomposition of the target signal. Furthermore, a primal

and dual method of multipliers is used to tackle the distributed optimization problem

formulated in the pseudo-coherence based model [146]. A frame work of speech

enhancement methods based on pseudo-coherence vectors and matrices is given in

[144].

Yuan et al. [173, 174] proposed a distributed DSB via asynchronous randomized

gossip algorithm. The goal of the distributed algorithm is to calculate the Ỹave =

1/m
L∑
l=1

ml∑
i=1

Ỹli and p̃ave =
L∑
l=1

ml∑
i=1

p̃li in a distributed manner. In each iteration, a

random pair of nodes is active; and the pair of nodes exchange and update the values.

Comparing with the full MVDR beamformer, although the calculation load of the

DSBs decreases, the performance is also degraded. To balance the calculation load

and the performance, a trade-off parameter is given in [67]; and a message-passing

algorithm is applied to exchange information among different nodes. The inversion

of the matrix is calculated by formulating a quadratic optimization problem, which is

solved by the generalized linear-coordinate descent message passing algorithm [177,

176]. However, this algorithm suppose that the noise covariance matrix is diagonally

dominant, that means the non-neighboring nodes are needed to be uncorrelated.

Matt et al. [104] proposed a diffusion-based distributed MVDR beamformer,

that can approach to a full MVDR centralized beamformer with no requirements

on the structure of the noise covariance matrix nor the prior knowledge of the co-

variance matrix. As the diffusion adaptation can adapt to changing data in real
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applications[90, 127], this method is particularly suitable for dynamic environments.

However, there is a drawback that each node eventually ends up with a vector con-

sisting all weight value of the beamformer, limiting the true distributed nature of the

algorithm, especially in the extremely large scale networks. In addition, all the meth-

ods above need a global averaging in each time slot to give a beamformer output. To

preserve privacy, Yuan et al. [175] provided a distributed beamformer in which each

array can estimate its own target source without sharing the steering vector with

the other elements in the network. In [175], the Sherman-Morrison formula [133] is

applied to enable the estimation of the inverse correlation matrix to be a consensus

problem, which can be solved by a gossip algorithm [18]. However, this method is

either not suitable for large scale networks, as it requires each node contains a large

vector of covariances with all other nodes. In [105], Matt et al. further proposed a

beamformer operating in a fully distributed and asynchronous manner and applying

sparsity implementation by an l1 penalty of the weight vector. Instead of focusing

on the entire network, this method aims to formulate optimization problems with a

subset of nodes in beamformer calculation.

Linearly Constrained Minimum Variance (LCMV)

An LCMV beamformer can be considered an extension of MVDR, which imposes

constraints on both desired and noisy signals. The beamformer parameters w design

minimizes the noise power while protecting the target responses. If all the nodes can

transmit information to a fusion center for further processing, i.e., the centralized

LCMV beamformer, the design problem can be formulated as

min
w

wHRV Vw

s.t. pHw = s,
(1.10)

where s represents the desired responses of the speech signals. We can solve this

problem by Lagrange multiplier and Karush-Kuhn-Tucker (KKT) conditions, and
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the closed form solution of problem (1.10) is given by [154]

w∗
LCMV = R−1

V V p
T (pR−1

V V p
T )−1s. (1.11)

Note that this closed form solution needs the knowledge of acoustic transfer functions,

which can be estimated by the methods in [93, 52, 143].

An adaptive scheme of LCMV was first proposed in [40] by adding additional

constraints of MVDR beamformers. One drawback of the method in [40] is that the

beamformer is sensitive to the error of the covariance matrix and the steering vector.

Then, many works have been done to improve the traditional LCMV beamformer.

One method to tackle the problem is adding a phase constraint to the target out-

put response, which makes the magnitude response and phase response less distorted

than the conventional LCMV [164]. Thus, the proposed method is robust against the

covariance matrix error and steering vector mismatch. To solve the problem, some

other techniques have also been considered, such as convex quadratic constraints

[121], Bayesian approach [5], and diagonal loading technique [23]. In addition, re-

search proves that the generalized sidelobe canceler (GSC) form can also be applied

in this multiple constraints case [21].

Distributed LCMV algorithms have been proposed to decrease the data ex-

changed among arrays, which avoids the computation of the network-wide covariance

matrix. As summarized in [94], the generic formulation of distributed algorithms al-

ways contains two parts. One is a compression matrix, which fuses the multiple local

signals into a signal with fewer channels and then broadcasts to the other nodes.

The other is a local beamformer, which is designed by using the local signal and the

compressed information from other nodes to give the desired output signal. In this

way, each node can continuously adapt its compression matrix and the parameters of

the local beamformer to the changes in the compression matrix at the other nodes.

The main differences among the algorithms are the strategies of information chances.
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The beamformer algorithm proposed in [13] fused the multiple signals of the same

node into a single-channel signal and considered the case in which all nodes share

the same constraints set. A DANSE algorithm is applied on the LCMV beamformer,

which allows specific constraints at each node of the network [12]. It considers both

the steering vector known case and the blind beamforming case similar to [93, 11],

and these two versions’ convergence and optimality have been proved. However,

these two methods need a fully connected or tree-shaped network. Sherson et al.

[134] further proposed a robust LCMV by adding a regularisation term for both

cyclic and acyclic implementations and then cast the Beamformer design problem

into a distributed convex optimization problem. Then, we can solve the problem

by PDMM and ADMM algorithms. Compared with [13, 12], this method avoids

multiple updates to calculate the optimal BF response, decreasing data transmitted

during computation. It has no limitation on the topology of the network. The

distributed beamformer in [81] reduces the cross power spectral density matrix to a

block-diagonal form with some linear equality constraints and arbitrary topology. Li.

et al. [87] first introduced the augmented Lagrangian method to design a centralized

Beamformer, and then a distributed beamformer was proposed by using ADMM. The

convergence is proved without any other additional conditions. Distributed multiple

constraints GSC algorithms for a fully connected sensor network are proposed in

[95, 96], designed for a reverberant environment.

Max-SNR Beamformer

As its name indicated, a max-SNR beamformer aims to optimize the SNR cri-

terion. Compared with the MVDR and LCMV, the max-SNR technique bypasses

the need for any spatial information, such as the steering vector, which may be hard

to estimate accurately in real applications. Suppose that there is only one desired

signal. According to the objective of the beamformer, the optimization problem for
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a centralized beamformer can be formulated as

max
w

wHRXXw

wHRV Vw
. (1.12)

However, problem (1.12) is not a standard concave maximization problem, which can

be solved by a Lagrange multiplier, and the optimal solution is achieved by making

the gradient of its Lagrangian zero. The optimal weights matrix is the generalized

eigenvector, which can be solved by the generalized Schur algorithm.

A distributed max-SNR speech enhancement method using the PDMM algorithm

is proposed in [147]. This method decouples the optimization problem into local

elements, and then the distributed convex optimization problem is applied. Similar

to [178], the optimization problem is systematically solved by PDMM.
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Chapter 2

Distributed Microphone Array

Localization Problem via
SDP-SOCP Method

2.1 Introduction

Acoustic geometry calibration estimates the locations of the microphones from

the received signals, which explores the spatial differentiation hidden in the signals.

Typical indicators extracted are the time of arrived signal [16, 30], the time difference

of an arrived signal at two nodes [117, 151], or the direction under which the signal

is detected [73, 115]. As reviewed in the first chapter, the methods based on TOA

measurements are always biased by the unknown source onset times and unknown

device capture times [148]. Compared with the TOA, TDOA gains fewer stringent

requirements on time synchronization between sensors and the source locations [157].

Then, the extracted information is used in a cost function measuring the discrepancy

between the predicted indicators by the assumed geometry, and the actual measured

quantities [70]. This kind of method usually leads to optimizing a non-convex cost

function. Researchers proposed relaxation models transforming the non-convex func-

tion into convex to solve this problem. In [135], semidefinite programming (SDP)

based relaxation model for the position estimation problem in sensor network local-
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ization is analyzed, and it proved that networks could be localized. Furthermore,

a second-order cone programming (SOCP) model is studied in [150] due to its sim-

pler structure and faster calculation speed. However, these models used the DOA

measurements.

In the proposed method, the TDOA between each pair of microphones is obtained

and transformed into distance measurements between microphones. Then, we can

get a series of nonlinear hyperbolic equations, and assess the location by solving the

set of equations. However, there is a difficulty that the formulated problem is highly

nonlinear and nonconvex. To solve this problem, we extensively employ a convex

relaxation method to solve the group microphone localization problem and propose

a novel mixed relaxation model. This approach has been studied extensively in [49]

by exploring the properties of SDP and SOCP, which outperforms the other exist-

ing methods. To formulate a novel localization method based on convex relaxation,

we have also studied the optimal solution’s theoretical structure and characteristics.

However, in real applications, the sensors in wireless sensor networks are inherently

asynchronous, resulting in a temporal offset in each channel. Two offset compensa-

tion algorithms are proposed to increase accuracy in real data estimates. Then, in

the experimental part, we test the three relaxation models, i.e., SDP, SOCP, and

SDP-SOCP relaxation model, in numerical and room simulation methods. Results

show that the SDP-SOCP outperforms the other two methods. In addition, exam-

ples with real data are given, and the two offset algorithms are applied. Results show

the efficiency of the offset algorithms.

2.2 Fundamentals of Localization Problem

This section discusses the fundamentals of the localization problem, and prepare

some knowledge for the proposed sensor array localization algorithm.
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2.2.1 Distance Measurements

One of the most fundamental techniques in the positioning system is to extract

measurements from the received signals. There are four distance measurements in

general. The pairwise distance can only work for a compact array, and the direc-

tion of arrival can only be applied where each node contains a microphone array

rather than a single sensor. In contrast, TOA and TDOA are suitable for all the

application scenarios. This part further discusses the differences between these two

measurements. The signal models based on these two measurements and their fun-

damental localization principles are presented below.

Time of Arrival (TOA)

TOA is the signal propagation time from one source to a receiver. If a point source

propagates in a direct path, the TOA is related to the distance between the sensor

and the speaker. Suppose that one sound is emitted at time t1, and one set of sound

waves was captured by on sensor by t2. Then, the TOA between the sensor and the

sound is t2 − t1. Let A = [a1, · · · , am] be a stack of all the sensors’ locations, where

ai, i = 1, · · · ,m is the location coordinates of the ith microphone. Suppose that

the sources’ locations are gathered in S = [s1, · · · , sn], where sγ, γ = 1, · · · , n is the

position of the γth source. Then, the TOA of the γth source at the jth microphone

is given by

tγ,i =
∥ai − sγ∥

c
+ oγ − oi, (2.1)

where oγ is an onset time of the source and oi is an internal recording delay, c

represents the speed of source, and ∥ · ∥ represents the l2 norm.

The calculation of onset time requires the same time base between the sensor and

sound, while the internal delay requires the signal at the source. If this knowledge
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is known, the distance between the γth source at the jth sensor is

d̂γ,i = (t̂γ,i − oγ + oi) · c, (2.2)

where t̂γ,i is the measured TOA, and t̂γ,i can be calculted by the cross-correlating of

the microphone signal. The sensors’ postions can be estimated by

min
A

m∑
i=1

n∑
γ=1

(∥ai − sγ∥ − d̂γ,i)
2. (2.3)

A base point multidimensional scaling can be used to give the direct solution of

problem (2.3).

Although TOA has high accuracy, this technique has some drawbacks. TOA

measurement requires precise synchronization; even a tiny timing error can result in

a significant error in calculating distance. Besides, TOA needs the signal emission

time, and this additional time measure can result in another error.

Time Difference of Arrival (TDOA)

Whereas similar in name, TDOA measures the time difference between the signals

arriving at a pair of sensors. The TDOA can be formulated in mathematics as follows.

Assume that there is a signal emitted from the source k at the unknown time t0.

The ith sensor receives the signal at time ti, while the jth sensor receives the signal

at time tj. A distinct TDOA is given as τij = (ti − t0) − (tj − t0) = ti − tj. There

are total C2
m = m(m− 1)/2 possible pairs, where m is the total number of sensors in

the distributed network. However, if the error of TDOAs is absent, there are some

redundant items among all the C2
m = m(m − 1)/2 possible pairs. For example if

there are 3 sensors, then τ23 = t2 − t3 = (t1 − t3) − (t1 − t2) = τ13 − τ12, which is

redundant. Thus, we can reduce the m(m − 1)/2 distinct TDOAs to m − 1 non-

redundant ones in a noise-free situation, decreasing calculation load without falling

estimation accuracy. Without loss of generality, we can choose the first sensor in
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the network as the reference sensor, and the m − 1 non-redundant TDOAs can be

given as τ1i, where i = 2, · · · ,m. In contrast, if there are some random errors in the

measures, we can not reduce the TDOA measures.

The distance difference between the source and two sensors can be obtained by

multiplying the speed of sound in the air. Measurements related to the coordinates

can be given as

τγ,ij = tγ,i − tγ,j

=
∥ai − sγ∥ − ∥aj − sγ∥

c
− oi + oj,

(2.4)

where −oi+oj is the time offsets of between two sensors, and c is the speed of sound.

Compared with the TOA measurement, this method overcomes one drawback of

TOA. As in the TDOA measures, all microphones accept the same signals emitted

by the sources; there is no need to synchronize the unknown anchors’ clock with the

base anchors, which means a lower hardware cost. Consequently, this method only

requires the synchronization of base anchors. Due to this advantage, this chapter

considers a localization algorithm based on TDOA measures.

(a) the TOA information (b) the TDOA information

Figure 2.1: Two different measurements used in localization problem
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2.2.2 Estimation of TDOA

The TDOAmeasures can not be obtained directly in the real world, and they need

to be estimated from the real data received by the sensors. This part gives a widely

used estimation method, the Maximum likelihood generalized cross-correlation (GCC)

method, which is considered the classical method for TDOA estimation from micro-

phone pairs.

In this method, a maximum likelihood estimator can determine the time delay be-

tween the audio signals received by a pair of microphones. The maximum likelihood

estimator can be considered two receiver prefilters followed by a cross-correlator. The

delay estimate is obtained when the correlator reaches a maximum, where the time

delay is usually considered a prominent peak. The goal of the prefilters is to guaran-

tee that the signals before passing the correlator are at the highest SNR to decrease

the noise power. This procedure can be formulated in mathematics as follows.

Firstly, the signals received by a pair of sensors are formulated as

y1(t) = x(t) + n1(t)

y2(t) = x(t+ d) + n2(t),
(2.5)

where n1(t) and n2(t) represents the noise, x(t) is the pure signal emitted from a

remote source and d is the delay between the pair of sensors, also known as the time

difference of arrival (TDOA). In this model, we assume that the x(t) is uncorrelated

with n1(t) and n2(t). One general method estimating d is to calculate the cross

correlation function between y1(t) and y2(t),

Ry1y2(τ) = E[y1(t)y2(t− τ)] (2.6)

where E represents expectation. As the observation time is finite, we can only get an

estimation of Ry1y2(τ) and the estimation in an observation interval T is presented
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by

R̂y1y2(τ) =
1

T − τ

∫ T

τ

y1(t)y2(t− τ)dt. (2.7)

When R̂y1y2(τ) reaches a maximum, the value of τ is the delay estimation. However,

y1(t) and y2(t) contain noise, decreasing estimation accuracy. A prefilter part is

considered to solve this problem.

Because of the Fourier transform, we can have a function about Ry1y2(τ) and the

cross power spectral density, formulated as

Ry1y2(τ) =

∫ +∞

−∞
Py1y2(f)e

j2πfτdf. (2.8)

The the cross power spectral density is

Py1y2(f) = Y1(f)Y
∗
2 (f) (2.9)

where ∗ means the complex conjugate. The Y1(f) and Y2(f) are received signals

after Fourier transform

Y1(f) = X(f) +N1(f)

Y2(f) = X(f)ej2πfd +N2(f),
(2.10)

where X(f), N1(f) and N2(f) are x(t), n1(t) and n2(t) in frequency domain. If there

are prefilters before correlator, the filter outputs are given as

W1(f) = G1(f)Y1(f)

W2(f) = G2(f)Y2(f),

where H1(f) and H2(f) are the transfer functions of filters. Then, the cross power

spectrum between the outputs is

Pw1w2(f) = W1(f)W
∗
2 (f)

= (G1(f)Y1(f))(G2(f)Y2(f))
∗

= G1(f)G
∗
2(f)Py1y2(f).

(2.11)
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The generalized correlation between y1(t) and y2(t) is

R(g)
w1w2

(τ) =

∫ +∞

−∞
Ωg(f)Py1y2(f)e

j2πfτdf. (2.12)

where Ωg(f) = G1(f)G
∗
2(f). Then, the TDOA estimation is solving the following

optimization problem.

τ ∗ = argmax
τ

= R(g)
w1w2

(τ). (2.13)

However, there is still a problem with how to choose the weighting Ωg(f)? Various

weighting schemes of Ωg(f) are proposed, such as Roth Processor, the smoothed

coherence transform (SCOT), the phase transform(PHAT), and the Echart filter

[162, 72, 161]. Research shows that GCC-PHAT is a suitable approach for TDOA

estimation in real practice [57, 113]. In GCC-PHAT method, the weighting is given

as

Ωp(f) =
1

|Py1y2(f)|
, (2.14)

and the generalized correlation becomes

R(p)
w1w2

(τ) =

∫ +∞

−∞

Py1y2(f)

|Py1y2(f)|
ej2πfτdf. (2.15)

In an ideal noiseless situation,

|Py1y2(f)| = αPx1x2(f),

resulting in

Py1y2(f)

|Py1y2(f)|
= ej2πfd. (2.16)

Then, we have

R(p)
w1w2

(τ) = δ(t− d), (2.17)

and the time delay estimation problem becomes

τ ∗ = argmax
τ

= R(p)
w1w2

(τ). (2.18)
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2.3 Problem Statement

We consider an acoustic network with a total of n sources andm sensors. For con-

venience, we denote the spatial coordinates of the γth source as sγ = (sγ1, · · · , sγd)T ,

γ = 1, · · · , n, where d is the dimension of the network. Accordingly, define the

source location matrix as S = (s1, · · · , sn). Consider that there are L sensor nodes

distributed in the environment, each of which may contain a single microphone

or a microphone array. Suppose that each node l ∈ {1, · · · , L} has ml sensors,

and position coordinates of the sensors in node l are denoted by a d × ml matrix

Al = (al1, · · · , alml
). In particular, if L = 1 and m > 1, it is a compact single

array. If L > 1, and ∀l ml = 1, then the type of microphone arrangement is dis-

tributed individual sensors. Let m =
∑L

l=1ml, and define the sensor location matrix

as A = (A1, · · · ,AL), where A is a d×m matrix. Acoustic localization algorithms

can be characterized as a direct problem and inverse problem according to the esti-

mation of the geometric arrangement of the source or sensor, as illustrated in Fig.2.2

and Fig.2.3.

2.3.1 Direct Problem

As given in Section 4.2.1, the TDOA can be formulated mathematically as follows.

Assume that C is the set of all microphones. Suppose that there is a signal emitted

from the source γ at the unknown time tγ and the ith (i ∈ C) sensor receives the

signal at time ti, and another sensor j (j ∈ C, j ̸= i) received the signal at time tj.

We can measure a distinct TDOA, denoted as τγ,ij = (ti − tγ)− (tj − tγ). There are

a total of m(m− 1)/2 possible pairs, where m is the total number of sensors in the

distributed network.

In the direct problem, the measurements from unknown sound sources are first

obtained and transformed into distance measures between sensors, formulating a
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series of nonlinear hyperbolic equations. The estimation of TDOAs, denoted as τγ,ij,

can be calculated from the signals received by a pair of sensors, via the method given

in Section 2.2.2. In addition, we can get a set of TDOAs correlating with the spacial

coordinates as

τ̂γ,ij = (∥ŝγ − ai∥ − ∥ŝγ − aj∥), (2.19)

where ai is the known microphone locations, and ŝγ is estimated positions of sources.

Then, we can formulate an optimization problem

min
ŝγ

=
∑
|τγ,ij − τ̂γ,ij|2. (2.20)

By solving problem (2.20), we can obtained the estimated sensor locations. This is

the formulation of the direct problem and the geometric figure is given in Fig. 2.2.

Figure 2.2: Geometric setup of direct problem

2.3.2 Inverse Problem

Inversely, if some of the sound source locations are known, we can use them to

identify the wireless array configuration and estimate the location for each array. The
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purpose of the inverse problem is to calibrate the realization of microphone locations

such that the distance measurement equations are satisfied. In this problem, there

are a total of m(m − 1)/2 possible node pairs for TDOA information. Similarly, a

set of τ̂γ,ij can been calculated by

τ̂γ,ij = (∥sγ − âi∥ − ∥sγ − âj∥), ∀i, j ∈ C, i > j, γ = 1, · · · , n (2.21)

where âi and âj are the microphone locations that we need to estimate, sγ is the

given source locations, and C is the set of all microphones. An estimation of TDOA

can also be obtained by GCC method from the received signals, denoted by τγ,ij.

The purpose of the inverse problem is to find out the sensor locations by minimizing

the error between τγ,ij and τ̂γ,ij.

In application, the inner configuration of one microphone array is fixed. It is

reasonable to assume the relative locations of microphones within an array are known.

Thus, for each array, we have the distance between each pair of microphones in the

same node. When solving the localization problem, the follows constraints should be

satisfied

d2ij = ∥âi − âj∥2, ∀i, j ∈ Cl, i > j, l = 1, · · · , L,

where dij is the known distance and Cl is the set of microphones within the lth array.

Then, the inverse problem is

min
âi

∑
|τγ,ij − τ̂γ,ij|2

s.t. d2ij = ∥âi − âj∥2, ∀i, j ∈ Cl, i > j, l = 1, · · · , L.
(2.22)

One can identify suitable locations for placing sound sources and calibrate the array

configuration. Once the signals are recorded, the inverse problem can be solved by

nonlinear optimization techniques. This inverse problem can be illustrated in Fig.

2.3.
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Figure 2.3: Geometric setup of inverse problem

However, the problem (2.22) is highly nonlinear and nonconvex. One common

idea to tackle is to employ convex relaxation, which can convert the problem into

a convex optimization problem. This relaxation technique has been considered to

solve the inverse problem in [135, 150] based on TOA measurements. As far as

our knowledge is concerned, there is no relaxation method used to solve the inverse

problem based on the TDOA measurements, and in this chapter, we aim to fill this

blank.

2.4 Relaxation Models

The sensor localization problem problem (2.22) is highly nonlinear and noncon-

vex. In tackling the problem, efficient relaxation models have been proposed based

on TOA measurements, such as SDP [135] and SOCP relaxation [150]. A relaxation

model for the direct problem with TDOA measures has been proposed in [49]. After

relaxation, the optimization problem become convex. In this section, both SDP and

SOCP relaxation models will be extended for TDOA measurements. Then, a mixed

42



SDP-SOCP relaxation model will be proposed and described.

2.4.1 SDP Relaxation Model

The purpose the optimal problem in (2.22) is to make τ̂γ,ij ≈ τγ,ij. It is equivalent

to find a set of suitable âi satisfying

τγ,ij = (∥sγ − âi∥ − ∥sγ − âj∥)/c ∀i, j ∈ C, i > j, γ = 1, · · · , n,

d2ij = ∥âi − âj∥2 ∀i, j ∈ Cl, i > j, l = 1, · · · , L.
(2.23)

Set ∥sγ − âi∥ = βγ,i and ∥sγ − âj∥ = βγ,j. Then, the equations in (2.23) can be

expressed as

βγ,i − βγ,j = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n,

∥sγ − âi∥ = βγ,i, ∀i ∈ C, γ = 1, · · · , n,

d2ij = ∥âi − âj∥2, ∀i, j ∈ Cl, i > j, l = 1, · · · , L.

(2.24)

Let ∥sγ − âi∥2 = αγ,i,∀i ∈ C, γ = 1, · · · , n. We can rewrite the squared distance

between sensor and source with respect to the target matrix A. For all i ∈ C, γ =

1, · · · , n, we have

∥sγ − âi∥2 =
(
sTγ eTi

)( Id
AT

)
(Id A)

(
sγ
ei

)
, (2.25)

where ei is a vector of all zeros except an −1 at the ith position and Id is identity

matrix. To simplify the equation (2.25), we introduce a symmetric matrix Y ∈ Rn×n

and Y = ATA. Equation (2.25) is equivalent to

(
sTγ eTi

)( Id A
AT Y

)(
sγ
ei

)
= ∥sγ − âi∥2. (2.26)

Then, the SDP relaxation is to replace the equivalent constraint Y = ATA by an

inequivalent constraint Y ⪰ ATA, which is equal to

W =

(
Id A
AT Y

)
⪰ 0. (2.27)
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Similarly, we can rewrite the squared distance between the sensors in the same array

as

∥âi − âj∥2 = eTijA
TAeij, (2.28)

where eij is the vector with 1 at the ith position and an −1 at the j the position and

zeros the other positions. It can be further written as

(
0 eTij

)
W

(
0
eij

)
= d2ij ∀i, j ∈ Cl, i > j, l = 1, · · · , L. (2.29)

As ∥sγ − âi∥ = βγ,i and ∥sγ − âi∥2 = αγ,i, then β2
γ,i = αγ,i. We can also relax this

equation to (
1 βγ,i

βγ,i αγ,i

)
⪰ 0.

If there isn’t a relaxation, αγ,i should be equal to βγ,i. After relaxation, we should

make sure the value of αγ,i is as small as possible. Therefore, we minimize
∑

αγ,i

in the objective function, where i = 1, · · · , n, ∀i ∈ C. Thus, the relaxed model

becomes a standard SDP problem

min
W ,αγ,i,βγ,i

∑
αγ,i

s.t. βγ,i − βγ,i = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n,

(
sTγ eTi

)
W

(
sγ
ei

)
= αγ,i, ∀i ∈ C, γ = 1, · · · , n,

(
0 eTij

)
W

(
0
eij

)
= d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L,

(
1 βγ,i

βγ,i αγ,i

)
⪰ 0, ∀i ∈ C, γ = 1, · · · , n,

W 1:d,1:d = Id,W ⪰ 0.

(2.30)
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Compared with TOA measurements, when applying TDOA, there are two folds SDP

relaxation, and the relaxation becomes quite weaker, and numerical results also prove

it.

2.4.2 SOCP Relaxation Model

For the SOCP relaxation model, we can also rewrite the equations in (2.23) to

βγ,i − βγ,j = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n,

∥sγ − âi∥ = βγ,i, ∀i ∈ C, γ = 1, · · · , n,

∥âi − âj∥2 = d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L.

Inspired by the idea in [150], we can relax the second equivalent constraint into ” ≤ ”

inequivalent constraints and the relaxation model is as follows

min
âi,βγ,i

∑
βγ,i

s.t. βγ,i − βγ,j = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n,

∥sγ − âi∥ ≤ βγ,i, ∀i ∈ C, γ = 1, · · · , n,

∥âi − âj∥2 = d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L.

(2.31)

By the similar method, we further relax the third equation as

min
âi,βγ,i,zij

∑
βγ,i +

∑
|zij − d2ij|

s.t. βγ,i − βγ,j = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n,

∥sγ − âi∥ ≤ βγ,i, ∀i ∈ C, γ = 1, · · · , n,

∥âi − âj∥2 ≤ dij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L.

(2.32)

Then, problem becomes an SOCP which is a convex problem. Obviously, this

model has a simpler structure. Many optimization algorithms can be applied on
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SOCP problem such as an interior-point algorithm. We can get positions of mi-

crophones by solving the SOCP problem over the entire sensor network. Based on

the knowledge of [150], if the microphone location leaves the convex hull, the SOCP

model can not work well. To generate a more robust model, we further combine

these two models.

2.4.3 SDP-SOCP Relaxation Model

Similarly, rewrite the equations in (2.23) as

βγ,i − βγ,j = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n

∥sγ − âi∥ = βγ,i, ∀i ∈ C, γ = 1, · · · , n

∥âi − âj∥2 = d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L.

(2.33)

Set ∥sγ − âi∥2 = αγ,i, ∀i ∈ C, γ = 1, · · · , n. Then, we can get the relationship

between αγ,i and βγ,i and the constraints becomes

βγ,i − βγ,j = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n,

∥sγ − âi∥ = βγ,i, ∀i ∈ C, γ = 1, · · · , n,

∥sγ − âi∥2 = αγ,i, ∀i ∈ C, γ = 1, · · · , n,

∥âi − âj∥2 = d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L,

αγ,i = (βγ,i)
2, ∀i ∈ C, γ = 1, · · · , n.

(2.34)

Rewrite the equality constraint αγ,i = (βγ,i)
2 into following inequalities

αγ,i ≥ (βγ,i)
2, ∀i ∈ C, γ = 1, · · · , n,

αγ,i ≤ (βγ,i)
2, ∀i ∈ C, γ = 1, · · · , n.

(2.35)

The inequality constraints αγ,i ≥ (βγ,i)
2 is equivalent to

(
1 βγ,i

βγ,i αγ,i

)
⪰ 0, and αγ,i ≤

(βγ,i)
2 is equivalent to ∥sγ − âi∥ ≤ βγ,i. In addition, equality constraints ∥sγ − âi∥ =
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βγ,i can be relaxed into ” ≤ ” inequality constraints, which yields a second order cone

problem. If without the relaxation, ∥sγ − âi∥ should be equal to the βγ,i, therefore,

βγ,i should be as small as possible after relaxation. Thus, we add βγ,i to the objective

function, and the objective function becomes

min
∑

βγ,i.

If without the relaxation, (βγ,i)
2 equals to αγ,i. As βγ,i is positive, minimizing βγ,i

is equivalent to making αγ,i as small as possible. However, αγ,i = ∥sγ − âi∥2 is a

quadratic function which is satisfied in optimization problem, so that we replace∑
βγ,i with

∑
αγ,i in the objective function. Then the original microphone localiza-

tion problem could be transformed into

min
âi,αγ,i,βγ,i

∑
αγ,i

s.t. βγ,i − βγ,j = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n

∥sγ − âi∥ ≤ βγ,i, ∀i ∈ C, γ = 1, · · · , n,

∥sγ − âi∥2 = αγ,i, ∀i ∈ C, γ = 1, · · · , n,

∥âi − âj∥2 = d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L,(
1 βγ,i

βγ,i αγ,i

)
⪰ 0, ∀i ∈ C, γ = 1, · · · , n.

(2.36)

For the equivalent constraints ∥sγ − âi∥2 = αγ,i and ∥âi − âj∥2 = d2ij, based on SDP

relaxation rule in section 2.3, we can relax it into following constraints

(
sTγ eTi

)
W

(
sγ
ei

)
= αγ,i, ∀i ∈ C, γ = 1, · · · , n,

(
0 eTij

)
W

(
0
eij

)
= d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L,

(2.37)
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W 1:d,1:d = Id,

W =

(
Id A
AT Y

)
⪰ 0,

where ei is a vector of all zeros except an −1 at the ith position; and eij is the vector

with 1 at the ith position and an −1 at the j the position and zero the other positions.

Finally, the relaxed version of the original problem (2.21) can be represented as the

following mixed SDP-SOCP relaxation model

min
âi,αγ,i,βγ,i

∑
αγ,i

s.t. βγ,i − βγ,j = cτγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n

∥sγ − âi∥ ≤ βγ,i, ∀i ∈ C, γ = 1, · · · , n,(
1 βγ,i

βγ,i αγ,i

)
⪰ 0, ∀i ∈ C, γ = 1, · · · , n,

(
sTγ eTi

)
W

(
sγ
ei

)
= αγ,i, ∀i ∈ C, γ = 1, · · · , n,

(
0 eTij

)
W

(
0
eij

)
= d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L,

W 1:d,1:d = Id,

W =

(
Id A
AT Y

)
⪰ 0.

(2.38)

2.5 Analysis of the Mixed SDP-SOCP Relaxation

In this section, we analyze when the SDP-SOCP model has an exact relaxation.

This occurs when τ̂γ,ij = τγ,ij, ∀i, j ∈ C, i > j, γ = 1, · · · , n. In the following section,

the properties of the mixed relaxation model will be studied, and some lemmas to

verify the optimal solution of (2.38) will be given.

For convenience, we can firstly simplify the problem (2.38). Let yi be the ith
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diagonal element of matrix Y, and y = [y1, · · · , ym]. Then, we have

(
sTγ eTi

)
W

(
sγ
ei

)
= ∥sγ − âi∥2 + (yi − ∥âi∥2) = αγ,i,

and (
0 eTij

)
W

(
0
eij

)
= ∥ai − aj∥2 + (yi − ∥ai∥2) + (yj − ∥aj∥2) = d2ij.

As W ⪰ 0, we can get yi ≥ ∥âi∥. Rewrite the constraint

(
1 βγ,i

βγ,i αγ,i

)
⪰ 0 as

β2
γ,i ≤ αγ,i. The simplified model is formulated as follows

min
âli,αγ,i,βγ,i,yi

∑
αγ,i

s.t. βγ,i − βγ,j = cτγ,ij ∀i, j ∈ C, i > j, γ = 1, · · · , n,

∥sγ − âi∥2 + (yi − ∥âi∥2) = αγ,i ∀i ∈ C, γ = 1, · · · , n,

∥âi − âj∥2 + (yi − ∥âi∥2) + (yj − ∥âj∥2) = d2ij

∀i, j ∈ Cl, i > j, l = 1, · · · , L,

yi ≥ ∥âi∥2, ∥sγ − âi∥2 ≤ β2
γ,i ≤ αγ,i ∀i ∈ C, γ = 1, · · · , n.

(2.39)

Denote one feasible solution of (2.39) as (A,β,α,y), where α = (αγ,i) and β =

(βγ,i). The optimal solution and the real true solution is denoted as (Â, β̂, α̂, ŷ)

and (A∗,β∗,α∗,y∗), respectively. We can use the following lemmas to describe the

relationship between the real solution and optimal solution.

Lemma 2.1. Suppose that (Â, β̂, α̂, ŷ) is an optimal solution of (2.39). Then there

exists a λγ, γ = 1, · · · , n such that

β̂γ,i = (βγ,i)
∗ − λγ ∀i ∈ C.

Proof. If (A∗,β∗,α∗,y∗) is the true solution of problem (2.39), it satisfies that

(β∗
γ,i)

2 = α∗
γ,i = ∥sγ − a∗i ∥2, ∀i ∈ C, γ = 1, · · · , n.
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Notice that both β̂ and β∗ are the solutions of a series of linear equations

βγ,1 − βγ,j = cτγ,1j, γ = 1, · · · , n,∀j ∈ C, j ̸= 1.

We divide these equations into n groups according to different source locations. For

each source γ, there are m − 1 equations with m variables, and the rank of the

coefficient matrix is m− 1. Then, there is λi such that

β̂j = β∗
j − λγ ∀j ∈ C.

Lemma 2.2. Suppose that (Â, β̂, α̂, ŷ) is an optimal solution of (2.39) and (A∗, β∗, α∗,y∗)

is a true solution. Then, if β̂ = β∗ and the number of sources is larger than 2, then

Â = A∗.

Proof. If β̂ = β∗ and β∗
ij = ∥si − a∗j∥,∀i, j, then β̂ij = ∥si − âj∥ = ∥si − a∗j∥,∀i, j.

We define that D(s, r) = {b||b − s| = r}. Thus, if the number of sources p > 2, for

all j = 1, · · · ,m, we have âj = ∩pi=1D(si, β̂ij) = ∩pi=1D(si, β
∗
ij) = a∗

j , which means

Â = A∗.

Lemma 2.3. In a distributed acoustic network with more than 2 sources, if one

microphone is localizable, then all the microphones are localizable.

Proof. If the zth microphone is localizable, then for all γ = 1, · · · , n, it has

β̂γ,z = (βγ,z)
∗.

According to Lemma 2.1, we can get ∀γ = 1, · · · , n, λγ = 0, and β̂ = β∗. If β̂ = β∗

and β∗
γ,i = ∥sγ − a∗

i ∥,∀γ, i, then ∥sγ − âi∥ ≤ β̂γ,i = ∥sγ − a∗
i ∥,∀γ, i. We define

that D(s, r) = {b| ∥b − s∥ = r} and F (s, r) = {b| ∥b − s∥ ≤ r}. For all i ∈ C,
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we have âi = ∩nγ=1F (sγ, β̂γ,i) ⊇ ∩n
γ=1D(sγ, β̂γ,i) = a∗

i . If the number of sources

n > 2 and ∩nγ=1D(sγ, β̂γ,i) ̸= ∅, we have ∩nγ=1F (sγ, β̂γ,i) = ∩nγ=1D(sγ, β̂γ,i). Thus,

for all i, âi = a∗
i , which means Â = A∗. We can have that all the microphones are

localizable.

Lemma 2.4. Let (Â, ŷ, β̂, α̂) be an optimal solution of (2.39). Then, for every si,

∥si − aj∥ < β̂ij, j = 1, · · · ,m cannot be satisfied simultaneously.

Proof. For a certain si, if ∀j = 1, · · · ,m, we have ∥si − aj∥ < β̂ij. Set ε =

minj=1,··· ,m{β̂ij−∥si−âj∥}, and set β̄ij = β̂ij− ε
2
. Given ξ > 0, such that y−∥â∥ ≥ ξ.

Then, we can have (β̂ij − ε
2
)2 < α̂ij − ξ. Set Ā = Â, ȳ = ŷ − ξ and ᾱ = α̂ − ξ.

Then, (Ā, ᾱ, β̄, ȳ) is also a feasible solution, and
∑

ᾱij <
∑

α̂ij. Thus, (Â, ŷ, β̂, α̂)

is not the optimal solution.

Lemma 2.5. If the network is localizable, then there is at least one microphone in

the convex hull of the sources.

Proof. We prove this lemma by contradiction. Denote the convex hull of the sources

as conv{sγ}γ=1,··· ,n. Suppose that the convex hull fails to hold for all the sensors.

According to Lemma 2.3, if the network is localizable, then all the sensors are local-

izable, which means (A∗,β∗,α∗,y∗) is the optimal solution of (2.39). Let pi be the

nearest point projection of a∗
i onto conv{sγ}γ=1,··· ,n. Then, we have pi ̸= a∗

i , and

∀γ = 1, · · · , n, we have (a∗
i − pi)

T (pi − sγ) ≥ 0, which means

∥sγ − a∗
i ∥2 = ∥sγ − pi + pi − a∗

i ∥2

= ∥sγ − pi∥2 + ∥pi − a∗
i ∥2 + 2(sγ − pi)

T (pi − a∗
i )

> ∥sγ − pi∥2.

Define aε
i = (1−ε)a∗

li+εpi, where ε ∈ (0, 1). As (A∗,β∗,α∗,y∗) is the true solution,

we have ∥sγ−a∗
i ∥2 = β∗

γ,i, ∀i ∈ C, γ = 1, · · · , n. Due to the convexity and continuity
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of ∥ · ∥2, for all ε is sufficiently small, we have

∥sγ − aε
i∥2 < (β∗

γ,i)
2, ∀i ∈ C, γ = 1, · · · , n.

Set ε = min{βγ,i−∥sγ−aε
i∥, and β̄γ,i = β∗

γ,i− ε
2
. Given a ȳ, such that ∥sγ−aε

i∥2+

(ȳi−∥aε
i∥2) = α∗

γ,i, ∀i ∈ C, γ = 1, · · · , n. As ∥sγ − aε
i∥2 < (β∗

γ,i)
2 = α∗

γ,i, ∀i ∈ C, γ =

1, · · · , n, we can always find a ξ > 0, such that ȳi−∥aε
i∥2 ≥ ξ, and (β∗

γ,i− ε
2
)2 ≤ α∗

γ,i−ξ.

Set Ā = {aε
i}, and ᾱ = α∗ − ξ. Then, (Ā, ᾱ, β̄, ȳ) is also a feasible solution, and∑

ᾱγ,i <
∑

α∗
γ,i. Thus, it contradicts the assumption that (A∗,β∗,α∗,y∗) is the

optimal solution.

Lemma 2.6. If the optimal solution Ŵ =

(
Id Â

Â
T

Ŷ

)
satisfies Ŷ = Â

T
Â, which is

equivalent to the rank of Ŵ is d (the dimension of the network), then Â is also a

solution of original problem (2.21).

Proof. For the matrix Ŵ , we have Ŵ =

(
Id Â

Â
T

Ŷ

)
=

(
Id 0

Â
T

Id

)(
Id Â

0 Ŷ − Â
T
Â.

)
,

where Id is a d-dimension matrix. We can see that the rank of Ŵ is at least d. If the

rank of Ŵ is d, then Trace{Ŷ − Â
T
Â} must equals to 0, which means Ŷ = Â

T
Â.

Inversely, if Ŷ = Â
T
Â, we have rank{Ŵ } = rank{

(
Id Â
0 0

)
} = d. The rank of Ŵ

is d.

If Ŷ = Â
T
Â, then ∀i, we have ŷi = ∥âi∥2, which means ∀i ∈ C, γ = 1, · · · , n,

∥sγ− âi∥2 = α̂γ,i, and âi− âj = dij. As ∥sγ− âi∥2 ≤ β2
γ,i ≤ αγ,i and ∥sγ−ai∥2 = α̂γ,i,

∀i ∈ C, γ = 1, · · · , n, we can get β̂2
γ,i = α̂γ,i and ∥sγ−âi∥ = β̂γ,i, ∀i ∈ C, γ = 1, · · · , n.
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Then, the problem (2.39) becomes

min
âi,αγ,i,βγ,i,yi

∑
αγ,i

s.t. βγ,i − βγ,j = cτγ,ij ∀i, j ∈ C, i > j, γ = 1, · · · , n,

∥âi − âj∥2 = d2ij ∀i, j ∈ Cl, i > j, l = 1, · · · , L,

∥sγ − âi∥2 = αγ,i ∀i ∈ C, γ = 1, · · · , n,

∥sγ − âi∥ = βγ,i ∀i ∈ C, γ = 1, · · · , n.

(2.40)

Then, the constraints of (2.40) can be written as

∥sγ − âi∥ − ∥sγ − âj∥ = cτγ,ij ∀i, j ∈ C, i > j, γ = 1, · · · , n,

∥âi − âj∥2 = d2ij ∀i, j ∈ Cl, i > j, l = 1, · · · , L.

It means τ̂γ,ij = τγ,ij, ∀γ, i, j. We can prove that the optimal solution of problem

(2.40) is also a solution of original problem without realxation.

Given a set of τ̂γ,ij, we can get an calibration of the geometry (Â, Ŵ ) by solving

(2.38). The lemmas above can check whether the estimation is correct. Lemma

2.3 establishes that, as long as there is an âi ∈ Â satisfying âi = a∗
i , then the

whole network is localizable. It means that, in a distributed acoustic network, if one

microphone’s location is known, we can use this location information to check the

correctness of the other positions. Lemma 2.5 gives a localizable condition that at

least one sensor should be in the convex hull of the sources. Moreover, Lemma 2.6

implies that if problem (2.23) has a solution for Â with rank d, then the network is

localizable.

Given a set of τ̂γ,li,kj, we can get an calibration of the geometry (Â, Ŵ ) by solving

(2.38). The lemmas above can be used to check whether the estimation is correct.

Lemma 2.3 establishes that, as long as there is a âli ∈ Â making âli = a∗
li, then
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the whole network is localizable. It means that, in a distributed acoustic network,

if one microphone’s location is known, we can use this location information to check

the correctness of the other positions. Moreover, Lemma 2.5 implies that if problem

(2.23) has a solution for Â being rank d, then the network is localizable.

To understand the lemmas better, we give two examples. Suppose there are

four sources S = [s1, s2, s3, s4], two microphone arrays each with only one sensor

A = [a1, a2], and the dimension of the network is 2. Then, we have the following

equations:

∥s1 − â1∥ − ∥s1 − â2∥ = β̂1,1 − β̂1,2 = τ1,12c

∥s2 − â1∥ − ∥s2 − â2∥ = β̂2,1 − β̂2,2 = τ2,12c

∥s3 − â1∥ − ∥s3 − â2∥ = β̂3,1 − β̂3,2 = τ3,12c

∥s4 − â1∥ − ∥s4 − â2∥ = β̂4,1 − β̂4,2 = τ4,12c

Set τ = [τ1,12, τ2,12, τ3,12, τ4,12]. Based on Lemma 2.1, for the optimal β̂ and the real

β∗, we have {
β̂1,1 = β∗

1,1 − λ1

β̂1,2 = β∗
1,2 − λ1

{
β̂2,1 = β∗

2,1 − λ2

β̂2,2 = β∗
2,2 − λ2

{
β̂3,1 = β∗

3,1 − λ3

β̂3,2 = β∗
3,2 − λ3

{
β̂4,1 = β∗

4,1 − λ4

β̂4,2 = β∗
4,2 − λ4
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If a1 is localizable, it means β̂γ,1 = β∗
γ,1, γ = 1, 2, 3, 4. Then, we have λγ = 0, γ =

1, 2, 3, 4. Accordingly, β̂γ,2 = β∗
γ,2, γ = 1, 2, 3, 4. Then, â2 = ∩4γ=1D(sγ, β̂γ,2) =

∩4γ=1D(sγ, β
∗
γ,2) = a∗

2, where D(s, r) = {b| ∥b − s∥ = r}. It is in accordance with

Lemma 2.3.

• Example 1

In this example, we set the location of the sources as {(0, 0), (0, 1), (1,

0), (1, 1)}, and two microphones needed to be estimated are located at {(0.2,

0.4), (0.7, 0.6)}. By solving the optimal problem (2.38), we can get an optimal

solution as

Ŵ =

(
Id Â

Â
T

Ŷ

)
=


1.00 0.00 0.20 0.70
0.00 1.00 0.40 0.60
0.20 0.40 0.20 0.38
0.70 0.60 0.38 0.85

 .

The microphone location matrix is given as

Â =

[
0.20 0.70
0.40 0.60

]
.

The optimal matrix Ŵ satisfies that Ŷ = Â
T
Â, and rank of Ŵ is 2. According

to Lemma 2.5, the estimation location should be the real location. The result

is depicted in Fig. 2.4. It is clear that the estimation is correct.

• Example 2

In this example, we set the location of the sources as {(0, 0), (0, 1), (1, 0), (1,

1)}, which is the same as Example a. We move the two microphones outside

the convex hull formulated by the sources, and the locations of the microphones

are {(−0.2, 0.2), (−0.2, 0.6)}. By solving the optimal problem (2.38), we can
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Figure 2.4: The result of Example a

get an optimal solution as

Ŵ =


1.00 0.00 0.31 0.32
0.00 1.00 0.31 0.67
0.31 0.31 0.32 0.31
0.32 0.67 0.31 0.62

 .

The decision matrix Ŵ does not satisfy Ŷ = Â
T
Â, and rank of Ŵ is 4.

The microphone location matrix is estimated as

Â =

[
0.31 0.32
0.31 0.67

]
,

while the true solution is

A∗ =

(
−0.20 −0.2
0.20 0.6

)
.

It is clear that there is an error between the estimation location and the true

location, which is also in accord with Lemma 2.5. The optimal value of β̂ is

given as

β̂ =


0.44 0.79
0.83 0.45
0.83 0.95
0.97 0.79

 .

56



The real value of β∗ is

β∗ =


0.28 0.63
0.82 0.44
1.21 1.34
1.44 1.26

 .

We can see that there is a gap between β̂ and β∗ and this gap induces an error

between the estimation location and real location.

The source locations, real sensor locations and estimation locations are depicted

in Fig. 2.5. It is clear that both of the sensors are not localizable.

Figure 2.5: The result of Example b

2.6 Offset of TDOA with Real Data

Although the inverse problem is well developed above, there is still another prob-

lem that we need to consider when using real data. In application, the TDOAs are

estimated by the real signals received by the sensors. However, the distributed acous-

tic network sensors are inherently asynchronous, which reduces a temporal offset in

each channel. Therefore, the real data can not directly be applied to the inverse

problem. In this section, the task is to investigate the optimization of the temporal

offset estimation coupled with the inverse problem.
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Denote the first microphone in the first array as the reference microphone. Ac-

cording to the definition, the real TDOA concerning the source and sensor locations

is given as

τγ,1j =
∥sγ − a1∥ − ∥sγ − aj∥

c
,

where c is the sound speed, sγ is the location of the γth source, a1 location of the

reference microphone, and aj is the location of the jth microphone. For each pair of

microphones, we estimate TDOA calculated by the received signals in the real world

according to the GCC-PHAT method proposed in section 2. The estimation of

TDOA is denoted as τ̄γ,1j, which can be obtained by (2.18) with the received signals.

Because of the inherently asynchronous, there is an error between the real TDOA

τγ,1j and the estimation TDOA τ̄γ,1j. We add some time offsets on the estimation

values to decrease the error.

Suppose that there is an unknown time offset between the reference sensor and

each other sensor. Denote oj as the offset between the jth microphone and the

reference sensor. Then, the TDOA with the offset is given as

τ ∗γ,1j = τ̄γ,1j + oj.

The task of this section is to estimate the offsets and adjust the assessed value to

approach the actual value. This section proposes two different methods to solve the

offset problem. The first one tries to add the offsets as the additional variables in

the optimization problem (2.38), while the second method considers a pre-training

procedure.

2.6.1 Method 1

For the first method, we consider the offsets as part of the decision variables and

formulate a final optimization problem for the calibration of array configuration.
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Therefore, the final calibrated system should be less sensitive to offset errors. If we

apply the TDOAs with the offset in the SDP-SOCP relaxation model, the set of

linear equation constraints corresponding to the TDOAs become

βγ,1 − βγ,j = c(τ̄γ,1j + oj), γ = 1, · · · , n,∀j ∈ C, j ̸= 1.

The final optimization problem becomes

min
âj ,o,αγ,j ,βγ,j

∑
αγ,j

s.t. βγ,1 − βγ,j = c(τ̄γ,1j + oj), γ = 1, · · · , n,∀j ∈ C, j ̸= 1,

∥sγ − âj∥ ≤ βγ,j, γ = 1, · · · , n,∀j ∈ C,

(2.41)

(
1 βγ,j

βγ,j αγ,j

)
⪰ 0, γ = 1, · · · , n,∀j ∈ C,

(
sTγ eTj

)
W

(
sγ
ej

)
= αγ,j, γ = 1, · · · , n,∀j ∈ C,

(
0 eTij

)
W

(
0
eij

)
= d2ij, ∀i, j ∈ Cl, i > j, l = 1, · · · , L,

W 1:d,1:d = Id,

W =

(
Id A
AT Y

)
⪰ 0.

By solving the optimization problem, we can obtain the final estimated sensor loca-

tions with time offsets.

2.6.2 Method 2

In the second method, we use some data to train the offsets for a system. As the

internal random delay is only related to the devices, we can train the delay in advance.

For the training set, the signals are recorded by the sensors with known positions.

As the purpose of the algorithm is to minimize the errors between the estimated
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TDOAs and real TDOAs, for each case in the training set, we can formulate the

follows optimization problem

min
o

∑
(τ̄γ,1j + oj − τγ,1j)

2

s.t.− ε ≤ oj ≤ ε ∀j
(2.42)

where o = [o1, · · · , om] and ε is a fixed small value. With the known sensor locations

and source locations, the real TDOAs can be calculated by

τγ,1j =
∥sγ − a1∥ − ∥sγ − aj∥

c
.

The τ̄γ,1j is obtained by the received signals based on GCC method. Then, the

problem (2.42) can be solved by any gradient based optimization algorithm. The

average offsets of the training set is considered as offsets of the system. Then, the

TDOAs with offset can be applied in SDP-SOCP relaxation model.

2.7 Experimental Results

This section gives some results to test the SDP-SOCP relaxation model. Firstly,

the mixed model is compared with the SDP model and SOCP model, and the results

show that the mixed model outperforms the other two models. Then, a rectangular

room is defined for the fast ISM room simulator to calculate the RIRs. Results show

the proposed method is a robust in-room simulation model for both 2-D and 3-D

space. Finally, an example with real data is given, and the offset algorithm is applied.

Results show the efficiency of the proposed algorithms. All the conic programming

is solved by SDPT3 [149] software package in Matlab.

2.7.1 Numerical Results

In the first example, assume that we have 2 microphone arrays, and we have 3

microphones in the linear equispaced beamforming array with inter-element distance
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5cm. In addition, there are 4 sources with known locations. In this example, we

suppose that there is no TDOA estimation error, and the TDOA is directly derived

by

∥sγ − âi∥ − ∥sγ − âj∥ = cτγ,ij,

where c = 340m/s is the speed of sound in the air.

Firstly, we set source location as S = {(0, 0), (0, 1), (1, 0), (1, 1)}, and

give the true microphones’ locations as A∗ = {(0.75, 0.7)(0.8, 0.7)(0.85, 0.7)(0.35,

0.5)(0.4, 0.5)(0.45, 0.5)}. With A∗ and S, we can calculate τγ,li,kj. Then, the

SDP-SOCP, SDP, and SOCP models are applied to estimate the sensor locations,

respectively. The results are presented in Fig. 2.6(a). It shows that SOCP and the

mixed SDP-SOCP can give the correct estimates, while the SDP method can not.

It can be seen that the two folds SDP relaxation is weak. In addition, the rank of

Ŵ from the SDP-SOCP solution is 2 (d = 2), and the numerical results show the

optimal solution after relaxation is the same as the original problem. It is accordant

with Lemma 2.5.

Then, we move one of the array outside the convex hull slightly, and the new

microphone location matrix is A∗ = {(0.75, 0.7)(0.8, 0.7)(0.85, 0.7)(−0.25,

0.5)(−0.2, 0.5)(−0.15, 0.5)}, and the results are given in Fig.2.6(b). As the lo-

calization region of the SOCP relaxation model is the convex hull formulated by

the known sources, in this example, the SOCP relaxation can either not give an

exact estimation. Then, we move the outside array further away from the convex

hull to {(−2.25, 0.5)(−2.2, 0.5)(−2.15, 0.5)}, and results show that the SDP-SOCP

model can also give the exact location. According to the above all, we can see that

the mixed SDP-SOCP relaxation model has a larger localizable region. Table 3.2

illustrates the estimation errors of these three models.

To investigate the model better, we further move both of the arrays outside the
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convex hull and set the microphone location as A∗ = {(0.75, 1.2)(0.8, 1.2)(0.85,

1.2)(−0.25, 0.4)(−0.2, 0.4)(−0.15, 0.4)}. In this situation, the rank of the optimal

solution (SDP-SOCP) is 8 ̸= 2. From Fig 2.6(d), we can observe that there is an

error between the true location and the estimated location, which is also in accord

with Lemma 2.5. Besides, we can see that all the microphones are not localizable,

and it follows the Lemma 2.3.

(a) (b)

(c)
(d)

Figure 2.6: Comparison with different methods
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Table 2.1: Errors of different methods

Methods SDP SOCP SDP-SOCP
Error (a) 1.80 4.49e-14 3.61e-15
Error (b) 3.60 1.60 2.47e-14
Error (c) 6.79 8.91 1.14e-6
Error (d) 3.49 2.56 2.40

2.7.2 Experiments in simulated rooms

In this subsection, we consider the room acoustics. Suppose that there are four

sources located at {(0, 0), (0, 1), (1, 0), (1, 1)} and three linear arrays. Each

of them contains 3 elements with inter-element distance 5cm. True locations of the

three sensor arrays are {(0.75, 0.80), (0.80, 0.80), (0.85, 0.80), (0.05, 0.50),

(0.10, 0.50), (0.15, 0.50), (0.65, 0.40), (0.70, 0.40), (0.75, 0.40)}. The audio

data is generated from the reflection impulse responses (RIRs) generator using the

image method in [85]. The simulation reverberant room is 4m× 4m× 3m, and the

reverberation time T60 = 0.3. Firstly, we generate a set of synthetic RIRs by the

image source method technique. According to the GCC method, we can obtain τ

by (??). Then, by solving the problem (2.38), we can calibrate the locations of the

microphones. The result is illustrated in Fig. 2.7(a), and the absolute error sum

between the estimated locations and real locations is 0.07.

Furthermore, we consider a 3-dimension example in a simulated room. Suppose

that there are 8 known sources and 6 unknown microphones. The locations of sources

are {(0, 0, 1), (0, 1, 1), (1, 0, 1), (1, 1, 1), (0, 0, 1.2), (0, 1, 1.2), (1, 0,

1.2), (1, 1, 1.2)}, and the microphones are located at {(0.7, 0.7, 1.1), (0.5, 0.4,

1.05), (0.4, 0.7, 1.2), (0.3, 0.4, 1.1), (0.5, 0.8, 1.2), (0.3, 0.7, 1)}. We consider the

room reflection with the same room settings as in the 2-D example. By solving the

problem (2.38), we can get the estimated location matrix of rank 3, which equals the

network’s dimension. The simulation results with room reflections are shown in Fig.
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2.7(b), and the corresponding error is 0.13.

(a) 2-D example (b) 3-D example

Figure 2.7: The results of room simulation

2.7.3 Experiments with Real Data

In this example, we further investigate the application of SDP-SOCP model in

real data. For real data collecting, Microsemi’s audio processing eval board is used

with a ZLE38000 model, containing four microphones and a USB interface converter,

and a Raspberry Pi applied to receive signals. The audio signals are recorded with

the program Audacity on a MacBook Pro with 3GHz Intel Core i7 processor. The

experiment is conducted in a room with 3.75 × 7.5 × 2.75m, and the total number

of sensors used for recording is 4. The four microphones are divided into two groups

and each group contains two microphones. The experiments contain three different

configurations, depicted in Fig. 2.9. The recording setup is given in Fig. 2.8.

The estimated TDOA τ̄ is calculated by the real signals received by the sensors,

and the algorithm used for estiamting the TDOA is GCC method. To improve the

estimation accuracy, the proposed TDOA offset algorithms are applied. The errors of

the two different offset algorithms are compared with the model without the offsets.
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The results are given in Table 2.2, where ETDOA is the sum of the square errors

between the real TDOAs and the estimated TDOAs, and Emics represents the sum

of absolute error between the real sensor locations and estimated sensor locations.

For offset 1, we consider the offsets as part of decision variable, and the estimated

sensor locations are achieved by solving problem (2.42). For offset 2, when estimating

one configuration, we consider the other two configurations as the training set. For

example, when calibrating configuration 1, the configuration 2 and 3 are considered

as the training set. The offsets for configuration 1 are the average value of the

training set. Clearly, after the offset algorithms, the sum of errors decreases. The

locations are given in Fig. 2.10.

Table 2.2: Errors of different configuration

Configuration
Without offset Method 1 Method 2
ETDOA Emics ETDOA Emics ETDOA Emics

1 0.1308 0.5709 0.1151 0.4394 0.1178 0.4438
2 0.0597 0.2143 0.0176 0.1798 0.0432 0.1861
3 0.0610 0.3698 0.0405 0.3162 0.0519 0.3224

Figure 2.8: The recording setup
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(a) Configuration 1 (b) Configuration 2

(c) Configuration 3

Figure 2.9: The configurations of real data
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(a) Without offset (b) Method 1

(c) Method 2

Figure 2.10: The results with real data C1
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(a) Without offset (b) Method 1

(c) Method 2

Figure 2.11: The results with real data C2
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(a) Without offset (b) Method 1

(c) Method 2

Figure 2.12: The results with real data C3
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Chapter 3

Design of Near-Field Broadband

Beamformer Based on IIR Filters

3.1 Introduction

Assuming that the array configuration is given, beamforming algorithms can be

performed over the network. This chapter motivates the use of infinite impulse re-

sponse (IIR) filters in near-field broadband beamformer design in wireless sensor

networks. The main idea of beamforming is to enhance the audio signal from the

desired parts and reduce the undesired elements. Many conventional near-field broad-

band beamforming models are achieved by an FIR filter attached to each channel

[69, 43]. The general approach is related to a multidimensional digital filter design

problem with an arbitrarily specified amplitude and phase. It performs on a discrete

domain where frequency and spatial domains are discretized into a finite number of

grid points. Then, it can be solved by a linear programming technique. Motivated

by the desire to decrease the number of coefficients, a new structure of tapped delay

line processor with both feedback and feedforward digital filtering, known as IIR

filter, is proposed in this chapter. Compared to the FIR filter, it is shown that the

optimal frequency dependent array weighting could be more efficiently approximated

by IIR filters in broadband beamformers [54, 37, 131]. In the proposed method, this
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improvement in efficiency is also shown to be true for the case of nearfield fixed

array processing. Furthermore, we analyse the performance limit of the proposed

beamformer. The performance limit will be reached with fewer coefficients when IIR

filters are used compared to FIR. This results a decrease in the computational load

in the implementation.

This chapter motivates the use of IIR filters in beamformer design. Section 3

formulates the problem. Since the IIR filters contain feedback sections, they may

have stability problems. Section 4 addresses the stability problem by decomposing

the direct form into a sum of partial fractions with low orders. Section 5 gives the

algorithms to obtain the optimal solution to the formulated optimization problem.

Section 6 proposes a specific structure to simplify the stability problem, in which

all the filters share the same poles. Section 7 analyzes the limited performance of

the proposed beamforming. Finally, we give two examples to verify the performance

of the beamforming designs. From those examples, it can be seen that the results

follow the theory. Example 1 shows that the proposed method reduces the number

of parameters to half compared to FIR filters when approaching the same limit

performance.

3.2 Problem Statement

Assume that there are m sensors distributed in an acoustic network, and after

each sensor there is an Infinite-Impulse-Response (IIR) filter with an M order de-

nominator and N − 1 order numerator. The frequency response of these IIR filters

can be defined as

Rk(f) =
Hk(f)

Wk(f)
=

hT
kd0(f)

1 +wT
kd1(f)

, k = 1, · · · ,m, (3.1)
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where

hk = [hk(0), hk(1), · · · , hk(N − 1)]T

wk = [wk(1), · · · , wk(M)]T

d0(f) = [1, e
−j2πf

fs , · · · , e
−j2πf(N−1)

fs ]T

d1(f) = [e
−j2πf

fs , · · · , e
−j2πf(M)

fs ]T,

and the coefficients matrices are defined as

h = [hT
1 ,h

T
2 , · · · ,hT

m]
T,

w = [wT
1 ,w

T
2 , · · · ,wT

m]
T.

Denote the corresponding transfer function in frequency domain from the source

position r to the kth microphone as Ak(r, f), suppose the array response vector

A(r, f) = [A1(r, f), · · · , Am(r, f)]
T, where T means the transposition. Then, we can

obtain the actual model as

G(r, f) =
m∑
k=1

Rk(f)Ak(r, f), (3.2)

and the structure of the beamformer is depicted in Fig.3.1. For the transfer function

depicting sound wave propagation Ak(r, f), if a simple spherical free field model is

applied, the transfer function in the free field is written as

Ak(r, f) =
1

∥r− rk∥
e

−j2πf∥r−rk∥
c , (3.3)

where c is the sound speed in the air, rk is the position of the kth sensor. However,

in the case of a reverberant environment, this free field model can not estimate

the complicated propagation accurately. Thus, for indoor beamformer design, the

image-source method (ISM) is applied, where the room impulse response (RIRs)
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Figure 3.1: Beamforming structure applied IIR filters

are calculated by an efficient room simulator developed in [85]. The RIRs measure

responses in the design, and give A(r, f).

Denote the specific desired response of the microphone system as Gd(r, f) in

frequency and space. Give a space-frequency region Ω as the definition field of

Gd(r, f), which contains two parts, stop region Ωs and pass region Ωp. We can

set the pass and stop region according to real applications. The main task of this

problem is to find the suitable coefficients such that the actual response G(r, f) fits

a desired response Gd(r, f) optimally. The error between the actual and desired

response is defined as

E(h,w, r, f) = α(r, f)|G(r, f)−Gd(r, f)|2, (3.4)

where α is a positive weighting function to measure the importance of pass region

and stop region. As there are feedback sections, we have to consider the stability

problem. Denote S
′
= {w : wk(f) is stable, k = 1, · · · ,m}. Then, we can formulate

a minimax beamforming problem as

min
w∈S′ ,h∈RNP

max
(r,f)∈Ω

E(h,w, r, f). (3.5)

The minimax problem can be transformed into an equivalent semi-infinite problem
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constituting infinite inequality constraints as

min
w∈S′ ,h∈RNP ,δ∈R+

δ

s.t. E(h,w, r, f)− δ ≤ 0, ∀(r, f) ∈ Ω.

(3.6)

By solving the optimization problem, we can obtain the parameters of the filters.

However, two problems still need to be considered. The first problem is how to

formulate a stable region. As the stability region is hard to be obtained directly, we

need to decompose it into different partial fractions. The other problem is how to

solve the optimization problem. The problem (3.6) is nonconvex, and some global

optimization algorithms should be applied. The following two sections will tackle

these two problems.

3.3 Stability Condition

The stability problem of the beamformer was raised from the feedback sections

of the IIR filters. Thus, the beamformer is stable only if the IIR filters satisfy

the stability condition, which means we only need to guarantee that the frequency

response of the IIRs are stable. Then, the problem becomes how to find the stability

condition. The sufficient and necessary stable condition for the IIR filter is that all

the filter poles should be inside the unit circle [122]. If the poles of IIR filters are

placed outside the unit circle, the system is unstable. Therefore, the stability domain

must be determined by solving all the poles. When the denominator is a polynomial

of order 1 or 2, we can get the poles directly. However, when the order is large, the

poles cannot be obtained easily with a transfer function given in (3.34). It is difficult

to formulate and solve the optimization problem. One efficient method to solve the

problem is decomposing the direct form into first and second-order sections. In the

cascaded form, the poles of filters can be easily obtained, and coefficient quantization
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errors also reduced that occur because of the using a finite number of bits to represent

the filter coefficients. In the following part, we discuss the stability condition for these

two cases.

3.3.1 A Root of Multiplicity 1 or 2

For each channel k, the frequency response of the IIR is given as

Rk(f) =
Hk(f)

Wk(f)
.

When the denominator is a polynomial of order 1 or 2, it is much easier to obtain

the poles. In terms of the first order case, the feedback coefficient is the unique pole

directly. For the stability requirement, we must restrict the feedback coefficients

between a range from −1 to 1, that is

S
′
= {w : −1 < wk(1) < 1; ∀k = 1, · · · ,m}. (3.7)

If the order of feedback section is 2, we can obtain from [120] that the stable domain

is

S
′
= {w : 1+wk(1)+wk(2) > 0; 1−wk(1)+wk(2) > 0; 1−wk(2) > 0;∀k = 1, · · · ,m}.

(3.8)

Denote

D =

 −1 −11 −1
0 1

 ; e =

 1
1
1

 .

Then, (3.8) is equivalent to

S
′
= {w : Dwk < e; ∀k = 1, · · · ,m}. (3.9)
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3.3.2 General Roots

However, when the order of denominator is greater than 2, the stable domain

of an IIR filter in a direct form is exceptionally complicated. Thus, we consider

to decompose the direct form into a sum of partial fractions with lower orders.

A decomposition of rational polynomial depends on the poles of the denominator.

Then, for the polynomial where the coefficients are real numbers, each pole or each

pair of pole can have four different situations.

(i) Single Real Pole

If there is only one single real pole z0, then the decomposition must have a term

A
z−z0

. If there are at least two single real poles z1 and z2, the decomposition

have two terms A1

z−z1
and A2

z−z2
. We can rewrite it as

cz + d

z2 + az + b
=

A1

z − z1
+

A2

z − z2
(3.10)

where a = −z1 − z2, b = z1z2, c = A1 + A2, d = −A1z2 − A2z1.

(ii) Double Real Pole

If there is a double real pole z0, then the decomposition must have the terms

A1

z−z0
+ B0

(z−z0)2
, this can be rewritten as

cz + d

z2 + az + b
=

A1

z − z0
+

B0

(z − z0)2
(3.11)

where a = −2z0, b = z20 , c = A1, d = B0 + A1z0.

(iii) Single Complex Pole

Note that the coefficients of the polynominal are real, the complex pole appear

conjugately, which means the decomposition must contain the terms A
z−(α+βj)

76



and A
z−(α−βj)

. By combining the conjugate poles, we can get the combined part:

cz + d

z2 + az + b
=

A

z − (α + βj)
+

A

z − (α− βj)
(3.12)

where a = −2α, b = α2 + β2, c = 2A, d = −2Aα.

(iv) Repeated Pole

If there exist repeated real pole z0 of order M0(M0 ≥ 3), then except the terms

in (i) and (ii), there are serveral terms in the decomposition of filters

A1

(z − z0)M0
+ · · ·+ AN−2

(z − z0)3

Similarly, if there exists repeated complex poles of order M1(M1 ≥ 2), then

there are several terms in the decomposition as follows

c1z + d1
(z2 + az + b)2

+ · · ·+ cn−1z + dN−1

(z2 + az + b)N
(3.13)

Hence, we can decompose the frequency response of the IIR, denoted by Rk(f),

for each channel k in the following possible cases.

(1) The multiplicities of all the poles are in the cases of (i), (ii), (iii).

In this case, the function Rk(f) can be decomposed into a uniform equation

Rk(f) =

M/2∑
l=1

bkl1z + bkl2
z2 + αk

l z + βk
l

+
N−M∑
l=0

ckl z
l (3.14)

when M is even, and

Rk(f) =
ak1

z − dk1
+

(M−1)/2∑
l=1

bkl1z + bkl2
z2 + αk

l z + βk
l

+
N−M∑
l=0

ckl z
l (3.15)

when M is odd.
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(2) If there exists an M0-repeated real pole a0 of Rk(f) (M0 ≥ 3). Besides the pole

a0, there are M −M0 times of the other poles. Then, if the M −M0 times of

the poles are the case of (a) above,the decomposition is also the same. Hence,

the decomposition is

Rk(f) =
N−M−1∑

l=0

ckl z
l +H1(z) + r(z), (3.16)

where

H1(z) =

(M−M0)/2∑
l=1

bkl1z + bkl2
z2 + αk

l z + βk
l

+
N−M−1∑

l=0

ckl z
l (3.17)

when M −M0 is even, and

H1(z) =
ak1

z − dk1
+

(M−M0−1)/2∑
l=1

bkl1z + bkl2
z2 + αk

l z + βk
l

+
N−M−1∑

l=0

ckl z
l (3.18)

when M −M0 is odd. In addition, r(z) is given by

r(z) =
b1z + b2

z2 − 2dz + d2
+

M0∑
l=3

bk
(z − d)l

. (3.19)

(3) If there are M1-repeated (M1 ≥ 2) complex conjugate poles z0 and z̄0 of Rk(f).

Besides, the poles z0 and z̄0, there are M − 2M1 times of the poles, which is

similar to the situation (2). The decomposition is the same as (3.16), where

H1(z) is shown as (3.17) or (3.18) and r(z) is given by

r(z) =

M1∑
l=2

b1l−1z + b1l
(z2 + 2αz + β)l

. (3.20)

As the order of denominator m increases, the number of the decompositions

increases. Hence, it is required to simplify the problem. One way is to approximate

higher order terms suitably. We have the following lemma.
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Lemma 3.1. For any transfer function Q(z) = A
(z−a0)M0

(M0 ≥ 3), where (|a0| < 1)

is a real number, then ∀ε > 0, there is a stable P (z) satisfies |Q(z) − P (z)| < ε,

where P (z) = 1
(z−a0)M0−δ

and the multiplicity of P (z) is 1.

The proof of the lemma are given in [120]. It can be seen that the multiplicities

of poles of P (z) are 1, which can be decomposed into the following form

P (z) =

M0/2∑
r=1

br1z + br2
z2 + αrz + βr

(3.21)

when M0 is even and

P (z) =

(M0−1)/2∑
r=1

br1z + br2
z2 + αrz + βr

+
a1

z − d1
(3.22)

when M0 is odd.

Based on the results from Lemma 1, we can easily obtain the following results.

Corollary 3.1. For any transfer function Q(z) = bz+c
(z2+αz+β)M1

(M1 ≥ 2), where α, β

satisfy the stability triangle in (3.8), there is a P(z) satisfies |Q(z)− P (z)| < ε.

By Lemma 3.1 and Corollary 3.1, we have the following conclusion that for any

δ > 0, and any decomposition of Rk(f) which contains M0(M0 ≥ 3) repeated real

roots or M1(M1 ≥ 2) complex roots, there is a decomposition of first kind which ap-

proached to Rk(f). It means that we can always solve the first kind of decomposition

to find the optimal solution and the other kind of decompositions are unnecessary.

Hence, we simplify the problem by only considering one subproblem. We have the

following two theorems to summarize.

Theorem 3.1. For any ε > 0, and any Rk(f) which contains M0(M0 ≥ 3) repeated

real roots or M1(M1 ≥ 2) complex roots, there exists R̄k(z) which is of the form

(3.14) or (3.15), such that

|Rk(f)− R̄k(f)| < ε, ∀z.
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Then, for each channel k, we have the parallel form of Rk(f) as

R̄k(f) =



M/2∑
l=1

bkl1z
−1 + bkl0

1 + αk
l z

−1 + βk
l z

−2
, if N − 1 < M

M/2∑
l=1

bkl1z
−1 + bkl0

1 + αk
l z

−1 + βk
l z

−2
+

N−M∑
l=0

ckl z
−l, if N − 1 ≥M

(3.23)

when M is even, and

R̄k(f) =



ak1
1− dk1z

−1
+

(M−1)/2∑
l=1

bkl1z
−1 + bkl0

1 + αk
l z

−1 + βk
l z

−2
, if N − 1 < M

ak1
1− dk1z

−1
+

(M−1)/2∑
l=1

bkl1z
−1 + bkl0

1 + αk
l z

−1 + βk
l z

−2
+

N−M−1∑
l=0

ckl z
−l, if N − 1 ≥M

(3.24)

when M is odd.

The original feedback part becomes a cascade of several first or second-order

parts. The whole feedback section is stable if and only if every low order part is

stable. Then, based on the stable condition of low order cases in (3.7) and (3.9), we

can obtain the stability domain as

S
′
= {(αk

l , β
k
l ) : D

(
αk
l

βk
l

)
< e, l = 1, · · · , M

2
, k = 1, · · · ,m} (3.25)

when M is even and

S
′
= {(dk1, αk

l , β
k
l ) : −1 < dk1 < 1;D

(
αk
l

βk
l

)
< e, l = 1, · · · , M − 1

2
, k = 1, · · · ,m}

(3.26)

when M is odd.

Then, for a given R̄k(f), where the coefficients are hk, wk, there are the corre-

sponding coefficients ak1, b
k
l0, b

k
l1, c

k
l , d

k
1, α

k
l , β

k
l such that R̄k(f) approaches to Rk(f).
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Hence, we denote a vector y = {ak1, bkl0, bkl1, ckl , dk1}, k = 1, · · · ,m as a stack of all

these variables. The transfer function becomes

Gs(r, f) =
m∑
k=1

R̄k(f)Ak(r, f), (3.27)

where R̄k(f) is given by (3.23) and (3.24). The error between the real actual and

desired response becomes

Es(y, r, f) = α(r, f)|Gs(r, f)−Gd(r, f)|2. (3.28)

We can transfer the problem (3.5) into the problem below.

min
y∈S′ ,δ∈R+

δ

s.t. Es(y, r, f)− δ ≤ 0, ∀(r, f) ∈ Ω.

(3.29)

Problem (3.29) can be optimized directly by any gradient-based algorithm. After y

is obtained by solving (3.29), the corresponding h and w can also be obtained by

unifying all the partial fractions into one fraction. Then, the stability problem is

well solved. The remaining issue is how to find the global optimal solution to the

problem (3.29).

3.4 Optimization Algorithms

This section considers the algorithms use to solve the optimization problem. As

problem (3.29) is a smooth nonlinear constrained optimization problem, it can be

solved by any gradient-based algorithm. Sequential quadratic programming (SQP) is

an efficient one to solve this kind of problem with a fast convergence rate. Based on

the works of Biggs [14], Han [59] and Powell [118], an SQP method mimics Newton’s

method for constraint optimization. It is an iterative method of starting from some

initial point and converging to a constrained local minimum. At each iteration, one
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obtains search directions from a quadratic program (QP) that is a quadratic model of

a specific Lagrangian function subject to the constraints. We consider the unknown

of Problem (3.29) in one vector

x =

[
δ
y

]
.

We can rewrite the objective function and the constraints as

f(x) = δ

c(x) = δ − Es(y, r, f).

The Lagrangian function associated with problem (3.29) is defined as

L(x, λ) ≜ f(x)− λT c(x). (3.30)

Then, the SQP search direction d(i) for iteration i can be calculated by solving a

sub-problem described as

min
d

d(i) +
1

2
dT(i)B(i)d(i),

s.t. c(x(i)) +∇c(x(i))
Td(i) ≥ 0,

(3.31)

where ∇ means gradient operation, and B is an approximation of the Hessian of the

Lagrangian function. For the calculation of B, we can consider the Quasi-Newton

method. The related works have been proposed in [17] [27], and research shows that a

simple Broyden-Fletcher-Goldfarb-Shanno (BFGS) method is efficient in practice. In

this problem, we use a BFGS approximation, and a BFGS update for each iteration

t is given as

B(i+1) = B(i) +
p(i)p

T
(i)

pT
(i)s(i)

−
B(i)s(i)s

T
(i)B

T
(i)

sT(i)Bts(i)
, (3.32)

where p(i) = ∇L(x(i+1), λ(i+1)) − ∇L(x(i), λ(i)) and s(i) = x(i+1) − x(i). Then, for

iteration i, we have

x(i+1) = x(i) + αd(i),
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where α is the step length.

The pseudo-code of the SQP algorithm is given in Algorithm 1. The step length

parameter α is required to enforce global convergence of the SQP method, and it

is usually chosen to satisfy a certain Armijo [2] condition. It guarantees a reduced

direction at each step of a procedure. Besides, κ is used to estimate whether the

current solution is convergent. The algorithm stops if sufficient descent is not ob-

served after a certain number of iterations. If the tested stepsize falls below machine

precision or the accuracy by which model function values are computed, the merit

function cannot decrease further.

Algorithm 1 SQP Algorithm

Require: Choose an initial guess x(0), and initial matrix B0. Set i = 0.
Ensure: y ∈ S

′
and δ ≥ 0

1: Compute the optimum update d(t) by solving QP problem (3.31).
2: Set x(i+1) = x(i)+αd(i), with α ∈ (0, 1), which is a suitable steplength parameter.

Update B(i+1) according to (3.32).
3: If ∥ x(i) ∥2 / ∥ x(i+1) ∥2< κ, stop, where ∥x(i)∥2 is the Euclidean norm. Otherwise,

set i = i+ 1 and then go to (1)

However, there is another problem. Since problem (3.29) is not convex, we cannot

find a global minimum by a general constrained optimization algorithm. Generally,

there are two methods to find out the global optimal solution. One method is to try

different initial guesses, and another is to consider a global optimization algorithm.

The idea of the first method is quite simple. The initial guesses can be chose arbi-

trarily in the feasible region. We can choose different y(0) and repeat Algorithm 1

to get a set of local optimal solutions. Finally, we can find the best solution among

them. To ensure the solution is global, we also consider a hybrid global optimization

method, which combines a simulated annealing algorithm and SQP algorithm. We

tried these two methods in the experimental section and obtained the same optimal

solution.

The details of the hybrid algorithm are given as follows. If we set a function
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f(y) = max{Es(y, r, f)}, then problem (3.29) is equivalent to

min
y∈S′

f(y), (3.33)

where f(y) is a non-convex function on the set Ψ = {y ∈ S
′}. Theoretically, a global

minimum solution of f(y) can be found by a simulated annealing algorithm alone.

This algorithm contains three main steps:

1. generate the next trial point in space S
′
by random perturbations,

2. choose a probability distribution to manage the accepting of uphill steps,

3. an annealing schedule.

For the choice of a probability distribution, the classical Boltzmann distribution

is applied here [79, 24]. In the annealing schedule, there are some determinants.

Denote te, α, np, nc as the initial temperature, cooling speed, the number of random

perturbations for each temperature, and the number of cooling steps; and the value

of the parameters is given in [119]. For the simulated annealing algorithm, there

is also a drawback that the convergence rate is always relatively slow, while the

SQP method is much faster in converging to a stationary point. Inspired by the

method proposed in [169], we consider solving this non-convex optimal problem by

a hybrid descent method to find a global optimal solution efficiently. The algorithm

is described in Algorithm 2.

3.5 Special Structure

Compared with the conventional FIR implementations, the structure with IIR

filters can be more efficient for the same filtering accuracy. However, the design

problem formulated in (3.5) is complicated, especially when m is large, as it contains

m feedback parts resulting in many stability problems. In addition, it is hard to
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Algorithm 2 A hybrid global optimization algorithm

Require: Choose an initial guess y(0) and δ(0) randomly. Set l = 0.
Ensure: y ∈ S

′
and δ ≥ 0

1: Set x(l) = [δ(l);y(l)].
2: Solve problem (3.29) by an SQP algorithm with the initial guess x(l) to obtain a

local minimal solution x(l∗), such that f(y(l∗))− f(y(l)) ≤ −εl.
3: Set y(l∗) as the initial guess of simulating annealing algorithm, and choose

te, α, np, nc. Evaluate f(y(l∗))
4: for j = 1; j < nc; j = j + 1 do
5: for i = 1; i < np; i = i+ 1 do
6: q ← random{1, 2, 3}
7: if q=1 then
8: choose one element of y as ŷ
9: else if q=2 then
10: p← random{1, · · · , np}
11: choose p elements of y as ŷ
12: else
13: choose the whole vector of y as ŷ
14: end if
15: b← f(ŷ)− f(y)
16: if b < −σl or random[0, 1] < te exp(−b/te) then
17: y = ŷ
18: end if
19: j ← j + 1
20: end for
21: te ← αte
22: end for
23: Set y(l+1) = y, δ(l+1) = f(y), and l = l + 1.
24: Return to step 1 until convergence.

find globally optimal solutions. To simplify the problem, we consider a specific

structure in which we suppose that all the IIR filters share the same poles. Then,

the beamforming structure applied IIR filters can be depicted in Fig. 3.2 with m

all-zero filters and a standard all-pole filter. The multi-channel FIR part mainly

concentrates on spatial filtering, while the common IIR filter part guarantees the

frequency filtering efficiency. Thus, this specific structure improves efficiency and

reduces design complexity as well.

For the proposed structure, we can rewrite the actual response of the beamformer
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Figure 3.2: Beamforming structure using common feedback

as

G(r, f) =

m∑
k=1

Hk(f)Ak(r, f)

W (f)

=
hT[A(r, f)dT

0 (f)]

1 +wTd1(f)
,

(3.34)

where h and w are vectors of the filter coefficients, denoted as

h = [hT
1 ,h

T
2 , · · · ,hT

P ]
T,

w = [w(1), · · · , w(M)]T.

It would be much easier to consider the stability problem of transfer function in

(3.34). The stable region becomes S = {w : w(f) is stable}.

We can reformulate the error between the real actual and desired response as

E(h,w, r, f) = α(r, f)|G(r, f)−Gd(r, f)|2, (3.35)

where α is a positive weighting function. For an N -tap filter design problem, the

desired response always contains a delay term τN , which always takes value in [0, N−
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1]. Then, the desired response can be denoted as

Gd(r, f) = e
−j2πfτN

fs Ḡd(r, f). (3.36)

Accordingly, we can rewrite G(r, f) as

G(r, f) = e
−j2πfτN

fs Ḡ(r, f), (3.37)

where

Ḡ(r, f) =
hT [A(r, f)d̄

T
0 (f)]

wTd1(f)

d̄0(f) =e
−j2πf(−τN )

fs d0(f)

=[e
−j2πf(−τN )

fs , e
−j2πf(1−τN )

fs , · · · , e
−j2πf(N−1−τN )

fs ]T

(3.38)

Then, the cost function (3.35) is equivalent to

Ē(h,w, r, f) = α(r, f)|Ḡ(r, f)− Ḡd(r, f)|2.

The original problem is transformed into an equivalent semi-infinite problem consti-

tuting infinite inequality constraints as

min
w∈S,h∈RNP ,δ∈R+

δ

s.t. Ē(h,w, r, f)− δ ≤ 0, ∀(r, f) ∈ Ω

(3.39)

The stable region of the specific structure is similar as the case discussed in section

3. When the order of W (f) is 1 or 2, we have the stable region

S = {w : −1 < w(1) < 1}. (3.40)

If the order of feedback section is 2, the stable domain is

S = {w : Dw < e}, (3.41)
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where

D =

 −1 −11 −1
0 1

 ; e =

 1
1
1

 .

For a general case where the order of W (f) is greater than 2, we can also equivalently

decompose the polynomial into a sum of partial fractions with lower orders. After

the decomposition, for each k, we have

Hk(z)

W̄ (z)
=



M/2∑
l=1

bkl0 + bkl1z
−1

1 + αlz−1 + βlz−2
, if N − 1 < M

M/2∑
l=1

bkl0 + bkl1z
−1

1 + αlz−1 + βlz−2
+

N−M−1∑
l=0

ckl z
−l, if N − 1 ≥M

(3.42)

when M is even, and

Hk(z)

W̄ (z)
=



a1
1− d1z−1

+

(M−1)/2∑
l=1

bkl0 + bkl1z
−1

1 + αlz−1 + βlz−2
, if N − 1 < M

a1
1− d1z−1

+

(M−1)/2∑
l=1

bkl0 + bkl1z
−1

1 + αlz−1 + βlz−2
+

N−M−1∑
l=0

ckl z
−l, if N − 1 ≥M

(3.43)

when M is odd. Then, we can obtain the stability domain as

S = {(αl, βl) : D

(
αl

βl

)
< e}, l = 1, · · · , M

2
, (3.44)

when M is even and

S = {(d1, αl, βl) : −1 < d1 < 1;D

(
αl

βl

)
< e}, l = 1, · · · , M − 1

2
, (3.45)

when M is odd.
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Then, for a given Hk(z)
W (z)

, where the coefficients are hk, w, there are the correspond-

ing coefficients a1, b
k
l0, b

k
l1, c

k
l , d1, αl, βl such that Hk(z)

W̄ (z)
approaches to Hk(z)

W (z)
. Hence,

we denote all these variables by y and optimize y directly. The transfer function

becomes

Gs(r, f) =

m∑
k=1

Hk(f)Ak(r, f)

W̄ (f)
, (3.46)

where Hk(z)

W̄ (z)
is given by (3.42) and (3.43). The error between the real actual and

desired response becomes

Es(y, r, f) = α(r, f)|Gs(r, f)−Gd(r, f)|2. (3.47)

We can transfer the problem (3.39) into the problem below.

min
y∈S,δ∈R+

δ

s.t. Es(y, r, f)− δ ≤ 0, ∀(r, f) ∈ Ω.

(3.48)

Problem (3.48) can be optimized by the algorithms given in Section 4.

3.6 Performance Limit Analysis

For the proposed beamforming, there are two parameters, N and M , which are

the numbers of parameters in the numerator and denominator, respectively. If N and

M change, the optimal value also changes. As in many applications N and M can

be chosen arbitrarily, it is necessary to analyze the change rule between the optimal

value and the orders N and M to help the designers make a proper choice.

For this problem, we denote the optimal value in the case of N and M by

V (N,M). To avoid a waste of calculations and memory usage, it is necessary to

find the specific value of inf
N,M

V (N,M). Once this limit value is reached, there is
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no need to increase the filter order. We can see that there are two variables in

inf
N,M

V (N,M), and it would be difficult to define the infimum value. For the order

M , it is related to the complexity of the design processing. If M is large, the non-

linearity and the instability of the design problem are also severe, and the design

problem formulated in (3.48) becomes very complicated. In addition, a large M is

not favorable in actual applications. Therefore, for the calculation of infimum value,

we choose M as a fixed small number. Then, the infimum value is transformed from

inf
N,M

V (N,M) to inf
N

V (N,M), and the problem is simplified. The performance limit

is the same with different fixed M , which will be proved later. The difference be-

tween different M is that the larger M can achieve the limit performance with a

smaller N . This is in accordance with the property of the IIR filter: it could be more

efficiently approximating the optimal frequency part comparing with the FIR filter.

The numerical examples also prove it. Designers can choose the suitable N and M

according to their demands.

The followings are the calculation of infimum values. As the specific structure is

relatively more uncomplicated, we first analyze the performance limit of the specific

structure. Then we prove that the general structure has the same infimum value as

the specific structure.

3.6.1 Performance Limit of a Special Structure

For a special structure, as depicted in Fig. 3.2, denote Rk(f) = Hk(f)/W (f),

k = 1, · · · ,m. Then, the actual response function is rewritten as

G(r, f) = A⊤(r, f)R(f), where R(f) = [R1(f), · · · , Rm(f)]
T. (3.49)

Denote a set functions as ∆N = {e−j2πf(i−τN ) : i = 0, · · · , N − 1}. Then, for each

k = 1, · · · ,m, Hk(f) can be expressed as the linear combination of the elements

in ∆N . If ∆N is monotonically increasing as N increases, then inf
N

V (N,M) can be
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simplified as a limit lim
N→∞

V (N,M). However, this is always not the case, because

of the existence of τN . Basically, if N increases, the delay τN always increases.

Then, for the subsequences are monotonically increasing and then the limit of each

subsequences can be computed.

For example, if τN = (N+1)/3, we can find three subsequences {∆1,∆4,∆7, · · · },

{∆2,∆5,∆8, · · · }, {∆3,∆6,∆9, · · · }, such that they are monotonically increasing.

That is,

1. N = 3N̄ + 1,

∆N ={e−j2πf(i−τN̄ ) : i = 0, · · · , N − 1}

={e−j2πfiej
4
3
πf : i = −N̄ , · · · , 2N̄}

⊂{e−j2πfiej
4
3
πf : i = −N̄ − 1 · · · , 2N̄ + 2}

=∆N+1

2. N = 3N̄ + 2,

∆N ={e−j2πf(i−τN̄ ) : i = 0, · · · , N − 1}

={e−j2πfi : i = −N̄ − 1, · · · , 2N̄}

⊂{e−j2πfi : i = −N̄ − 2 · · · , 2N̄ + 2}

=∆N+1

3. N = 3N̄ ,

∆N ={e−j2πf(i−τN̄ ) : i = 0, · · · , N − 1}

={e−j2πfiej
2
3
πf : i = −N̄ , · · · , 2N̄}

⊂{e−j2πfiej
2
3
πf : i = −N̄ − 1 · · · , 2N̄ + 2}

=∆N+1
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It can be seen that for each subsequences ∆Nl
, there exists η ∈ [0, 1), such that

L−τNl
= η+ il,∀l = 1, · · · , where il is some integer. Then, η = −τNl

− [−τNl
], where

[−τNl
] is the largest integer less than or equals to −τNl

. Denote

Γ0 = {H̄(f) : H̄(f) = u(f) + jv(f), f ∈ [0, fs/2], u(f) and v(f) are continuous and their

left derivatives and right derivatives exist, v(0) = 0, v(fs/2) = 0}.

Then,

Γη =e−j2πfη/fs/2 · Γ0

={H̄(f) : H̄(f) = u(f) + jv(f), t ∈ [0, fs/2]), u(f) and v(f) are continuous and

their left derivatives and right derivatives exist, v(0) = 0, H̄(fs/2) = a · ejπη,

a is a real number}

Then, for Γ0, we have the following theorem.

Theorem 3.2. Suppose that τNl
is an integer for any l, lim

l→∞
τNl

= +∞ and lim
l→∞

Nl−

τNl
= +∞. Then, for any complex function R(f) defined in [0, fs/2], if R(f) ∈ Γ0,

then there exists a series of coefficients {ci : i = 0, · · · }, such that

R(f) = lim
l→+∞

Nl−1∑
i=0

cie
−j2πf(i−τNl

)/fs/W (f), (3.50)

where W (f) is an arbitrary stable filter.

Proof. Since W (f) =
M−1∑
i=0

w(k)e−j2πif/fs , then W (0) and W (fs/2) are real numbers.

Let H(f) = R(f) ·W (f), then H(0) and H(fs/2) are real numbers. Hence, H(f) ∈

Γ0. Denote H(f) = u(f)+jv(f), then we generate H(f) from [0, fs/2] to (−∞,+∞)

by {
u(f) = u(−f), v(f) = −v(−f), if f ∈ [−fs/2, 0]
v(f) = u(f − ifs), v(f) = v(f − ifs), if f ∈ [(i− 0.5)fs, (i+ 0.5)fs].
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By Fourier series approximation, H(f) can be expressed by the basis functions

{1, cos(2πif/fs), sin(2πif/fs), i = 1, 2, · · · ,∞}. (3.51)

That is, there exist {ai, i = 0, 1, · · · }, {bi, i = 1, 2, · · · }, such that


u(f) = a0 +

∞∑
i=1

ai cos(2πif/fs)

v(f) =
∞∑
i=1

bi sin(2πif/fs).

Denote coefficients di as

d0 = a0, di =

{
(ai − bi)/2, if i > 0

(ai + bi)/2, if i < 0,

and di = c(i+τNl
). Then, we have

H(f) = a0 +
+∞∑
i=1

ai cos(2πif/fs) + j
+∞∑
i=1

bi sin(2πif/fs)

= a0 +
+∞∑
i=1

ai + bi
2

cos(2πif/fs) +
+∞∑
i=1

ai − bi
2

cos(2πif/fs)

+j
+∞∑
i=1

ai + bi
2

sin(2πif/fs)− j
+∞∑
i=1

ai − bi
2

sin(2πif/fs)

= a0 +
+∞∑
i=1

ai + bi
2

(cos(2πif/fs) + j sin(2πif/fs)

+
+∞∑
i=1

ai − bi
2

(cos(2πif/fs)− j sin(2πif/fs)

= c0 +
+∞∑
i=1

d(−i)e
j2πif/fs +

+∞∑
i=1

die
−j2πif/fs

=
∞∑

i=−∞

die
−j2πif/fs
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Note that lim
l→∞

τNl
=∞, lim

l→∞
Nl − τNl

=∞, we have

∞∑
i=−∞

die
−j2πif/fs = lim

l→∞

Nl−1∑
i=0

cie
−j2πf(i−τNl

)/fs .

Hence,

H(f) = lim
l→∞

Nl−1∑
i=0

cie
−j2πf(i−τNl

)/fs .

Since W (f) is stable, then W (f) ̸= 0, ∀f ∈ [0, fs/2], then we have

R(f) = H(f)/W (f)

= ( lim
l→∞

Nl−1∑
i=0

cie
−j2πf(i−τNl

)/fs)/W (f).

The proof completes.

Similarly, we have the result for Γη as follows.

Corollary 3.2. Suppose that τNl
= η+ il, ∀l, where il is an integer, and lim

l→+∞
τNl

=

+∞, lim
l→+∞

Nl−τNl
= +∞. Then, for any complex function R(f) defined in [0, fs/2],

if R(f) ∈ Γη, then there exists a series {ci : i = 0, · · · } such that

R(f) = lim
l→+∞

Nl−1∑
i=0

cie
−j2πf(i−τNl

)/fs/W (f) (3.52)

where W (f) is an arbitrary stable filter.

Proof. Let R̄(f) = ej2πfη/fs · R(f), τ̄Nl
= τNl

− η. Then, R̄(f) ∈ Γ0. Since τ̄Nl
is an

integer for any l, and lim
l→+∞

τ̄Nl
= τNl

−η = +∞, lim
l→+∞

Nl− τ̄Nl
= Nl−τNl

+η = +∞.
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It follows by Theorem 3.2 that there exists a series {ci : i = 1, · · · } such that

R̄(f) = lim
l→+∞

Nl−1∑
i=0

cie
−j2πf(i−τ̄Nl

)/fs/W (f).

Multiplied by e−j2πfη/fs in two sides, we obtain (3.52). The proof completes.

By Theorem 3.2 and Corollary 3.2, for any subsequences Nl of the same η, the

set function ∆Nl can approach to {e−j2πfη · e−j2πif : i = −∞, · · · ,+∞}. Hence, any

R(f) defined in [0, fs/2] and belongs to Γη can be approximated by (3.50). Then, the

infimum of the optimal value can be decomposed as many limits, where each limit is

related to one fixed η and is computed by

inf
Nl

V (Nl,M) = lim
l→+∞

V (Nl,M).

Find all possible η, and denote the subsequences for η by Nl(η), the infimum of

the optimal value is computed as

inf
N

V (N,M) = min
η

( lim
Nl→∞

V (Nl(η),M)). (3.53)

To simplify the computation of (3.53), we formulate a functional optimization prob-

lem for each subsequences Nl(η) as

Problem(η) :

min
R(f)∈Γη ,z

z

s.t. α(r, f)|A⊤(r, f)R(f)−Gd(r, f)|2 ≤ z, ∀(r, f) ∈ Ω

(3.54)

For each f ∈ [0, fs/2], denote the corresponding space set for f ∈ Ω by Ωf . Problem

(3.54) can be decomposed by many subproblems as

Problem(η, f) :

min
R(f)

z

s.t. α(r, f)|A⊤(r, f)R(f)−Gd(r, f)|2 ≤ z, ∀r ∈ Ωf ,

(3.55)

where R(f) take value in a suitable space.

95



Remark 1. Note that f ∈ [0, fs/2] and there may exist f such that Ωf is an empty

set. It means that Problem (η, f) is an empty problem. For this case, the solution

R(f) is not determined and can be any value such that R(f) ∈ Γη is satisfied.

Remark 2. If f ∈ [0, f̄s] ⊂ [0, fs/2], there is no difference between any two different

Γη. The difference between two different Γη is the function value at fs/2. Hence,

if f ∈ [0, f̄s] ⊂ [0, fs/2], Problem (η1, f) is the same as Problem (η2, f), for any

η1 ̸= η2. In this case, we only need to solve Problem (0, f).

If f = 0, the function value is a real number, then Problem(η, 0) becomes

min
R0∈RNl ,δ

δ

s.t. α(r, 0)|A⊤(r, 0)R0 −Gd(r, 0)|2 ≤ δ, ∀r ∈ Ω0.

(3.56)

If f ∈ (0, fs/2), the function value is a complex number, then Problem(η, f) is

min
R0∈CNl ,δ

δ

s.t. α(r, f)|A⊤(r, f)Rf −Gd(r, f)|2 ≤ δ, ∀r ∈ Ωf .

(3.57)

If f = fs/2, we denote Gη
d(r, f) = Gd(r, f)e

jπη, then Problem(η, fs/2) becomes

min
Rfs/2∈R

Nl ,δ
δ

s.t. α(r, fs/2)|A⊤(r, fs/2)Rfs/2 −Gη
d(r, fs/2)|

2 ≤ δ, r ∈ Ωfs/2.

(3.58)

After Problem (η, f) is solved for each f in [0, fs/2], where the optimal value is

δf and then the optimal value of Problem (η) is computed as

δη = max
f∈[0,fs/2]

δf . (3.59)

For each η, we can obtain zη; then the infimum value can be computed as

inf
N

V (N,M) = min
η

δη. (3.60)
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Finally, for the infimum value inf
N

V (N,M), we have follows theorem.

Theorem 3.3. For different orders M1 and M2, inf
N

V (N,M1) = inf
N

V (N,M2).

Proof. Suppose that W1(f) is an arbitrary stable filter with order M1, and W2(f) is

an arbitrary stable filter with order M2. Then, by Corollary 3.2, any R(f) in Γη can

be expressed as

R(f) = lim
l→+∞

Nl−1∑
i=0

c
(1)
i e−j2πf(i−τNl

)/fs/W1(f)

= lim
l→+∞

Nl−1∑
i=0

c
(2)
i e−j2πf(i−τNl

)/fs/W2(f),

(3.61)

where c
(1)
i and c

(2)
i are the corresponding coefficients. Hence, for different orders

M1 and M2, the space Γη is the same for any η ∈ [0, 1). Then, inf
N

V (N,M1) and

inf
N

V (N,M2), which both are the optimal value of (3.54), are the same. The proof

completes.

It can be seen from Theorem 3.3 that inf
N

V (N,M) is independent of M . The dif-

ference between different M is the convergence rate. If M increases, the convergence

rate also increases, which can be seen from the numerical experiment below.

3.6.2 Performance Limit of a General Structure

This part considers the case of the general structure, as depicted in Fig. 3.1.

Suppose that V (N,M) is the optimal value of Problem (3.6) with the coefficients N

and M . That is

V (N,M) = max
(r,f)∈Ω

E1(h
N,∗,wM,∗, r, f),

where hN,∗ and wM,∗ are the optimal solutions. We have Problem (η) as (3.54)

Problem(η) : min
R(f)∈Γη

max
(r,f)∈Ω

α(r, f)|A⊤(r, f)R(f)−Gd(r, f)|2.
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The convergence of the problem can be found in the following theorem.

Theorem 3.4. Suppose that Nl is a subsequences with the same η. Then, lim
Nl→∞

V (N,M) =

V ∗, where V ∗ is the optimal value of Problem (η).

Proof. Suppose that the optimal solution and the optimal value of problem (η) are

R∗(f) and v∗, that is

V ∗ = max
(r,f)∈Ω

α(r, f)|AT(r, f)R∗(f)−Gd(r, f)|2.

Let HNl,∗(f) and WM,∗(f) are the corresponding response functions with hNl,∗ and

wM,∗. Then, we have

RNl,M,∗
k (f) = HNl,∗

k (f)/WM,∗
k (f) ∈ Γn, ∀k.

By the optimality of Problem (η), we have

V (N,M) ≥ V ∗, ∀Nl.

Then, we obtain

inf V (N,M) ≥ V ∗.

By the monotonicity of V (N,M), as Nl increases, we have

lim
Nl→∞

V (N,M) = inf
Nl

V (N,M) ≥ V ∗. (3.62)

On the other hand, it follows by Theorem 3.2 that there exists the coefficients hNl ,

wM and the corresponding response functions HNl(f) and WM(f), such that

R∗
k(f) = lim

l→∞

Nl−1∑
i=0

HNl
k (f)/Wk(f),

where W (f) = WM(f) can be chosen the same as Nl increases. By the continuity of

the function

max
(r,f)∈Ω

α(r, f)|AT(r, f)R(f)−Gd(r, f)|2,
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we have

lim
l→+∞

max
(r,f)∈Ω

α(r, f)|AT(r, f)
HNl(f)

W (f)
−Gd(r, f)|2 = max

(r,f)∈Ω
α(r, f)|AT(r, f)R∗(f)−Gd(r, f)|2.

That is

V ∗ = lim
l→+∞

max
(r,f)∈Ω

α(r, f)|AT(r, f)
HNl(f)

W (f)
−Gd(r, f)|2.

Since

V (Nl,M) = lim
l→+∞

max
(r,f)∈Ω

α(r, f)|AT(r, f)
HNl(f)

WM(f)
−Gd(r, f)|2

≤ max
(r,f)∈Ω

α(r, f)|AT(r, f)
HNl(f)

W (f)
−Gd(r, f)|2.

Then, we have

lim
l→+∞

V (Nl,M) ≤ V ∗. (3.63)

Combined with (3.62) and (3.63), we have

lim
l→+∞

V (Nl,M) = V ∗.

From the theorem above, we can see that the specific structure and the general

structure have the same limit performance with the same fixed M . The difference

between the two structures is that the general structure can converge to the limited

performance with a faster speed. The results are also following the theorem.

3.7 Simulation Results

This part shows the simulation results of two examples designed by the pro-

posed method in the free field and room simulation model. First, the direct transfer

function depicting the sound wave propagation in an acoustic-free field is applied.
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The performance of beamformers with different filter lengths is compared with FIR

beamformers. Then a rectangular room is defined for the fast ISM room simulator

to calculate the RIRs [85]. The limit performances of different models are compared.

3.7.1 Experiments with a free-field model

Example 1

The first example is the same as the first example in [43], so it is convenient to

compare filter performances. We design an equispaced linear array with 5 elements

and a 5cm element spacing, and the central microphone is located as (0, 0). Set the

sampling rate as 8kHz. The beamformer is specified on an x-axis parallel with 1m

in front of the array. The beamformer is suitable for the frequency range of human

voice, which can be applied in hand-free equipment. The pass region is defined as

{(x, f) : 0.3kHz ≤ f ≤ 2kHz,−0.4m ≤ x ≤ 0.4m},

and stop region is defined as

{(x, f) : 2.5kHz ≤ f ≤ 4kHz,−0.4m ≤ x ≤ 0.4m}

{(x, f) : 0.3kHz ≤ f ≤ 2kHz, 1.5m ≤ |x| ≤ 2.5m}

{(x, f) : 2.5kHz ≤ f ≤ 4kHz, 1.5m ≤ |x| ≤ 2.5m}.

Then, we can consider the pass region and stop regions as four rectangular regions.

The discrete points of the frequency domain are taken every 0.01 kHz, and for the

spatial domain, we take discrete points every 0.01m.

Firstly, we consider the free-field model and compare the performance of the

general and specific structures. Table 3.1 gives the optimal value of the cost function

with different N and a fixed M = 2, where N is the order of numerator, and M is

the order of denominator. The first row represents the special structure, as depicted

in Fig. 3.2, where all the IIR filters share the same feedback section. The results
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Figure 3.3: The structure of the 3 feedback sections

are obtained by solving the problem (3.48). The third row represents the results of

the general structure, as depicted in Fig. 3.1, which contains five different feedback

sections. The results are obtained by solving the problem (3.29). The second row

considers a structure that contains three different feedback sections, as given in Fig.

3.3, in which the five filters are divided into three groups, and the same group shares

the same feedback section. This resembles the situation that we have 3 distributed

arrays, with each array having a common feedback structure. We can see that when

N is small, the general structure has a better performance. When N becomes more

significant, the three structures have similar performances.

Table 3.1: Cost function value (dB) with different number of IIR

No. N = 6 N = 10 N = 14 N = 18 N =∞
1 -11.44 -14.40 -18.44 -20.80 -21.40
3 -11.97 -17.59 -18.60 -20.80 -21.40
5 -16.32 -17.95 -18.66 -20.82 -21.40

Then, we compare the results of the FIR and IIR-based patterns. We apply the

specific structure in the free-field model to solve the problem in (3.48) with a series of
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Figure 3.4: Cost function value for the first example

different N from 10 to 55. For all N , we set three different fixed order of denominator

as M = 2, M = 5 and M = 10. For the proposed method, when the length of the

filter is 30 with a fixed M = 2, the cost function value approaches infinite length

solution, while the beamformers designed by the method in [43] converge to the same

value at a larger length of 55. It can be seen that under the same length of filters,

the proposed method gains a much better performance. The comparing results are

shown in Fig.3.4, which describes the change of cost function value while the filter

length increases. Both methods converge to the same infinite length solution, and the

infinite cost function value is −21.40dB. The beamformers with different lengths of

denominator also converge to the same performance limit, which is following Theorem

3.3. In addition, with the same fixed N , the cost function value decreases when M

increases. The magnitude of the actual response when the N = 22 and M = 2 is

shown in Fig.3.5. The resulting magnitude of actual response for frequency f = 1kHz

and x = 0.2m are given in Fig.3.6(a) and Fig.3.6(b).
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Figure 3.5: The magnitude of the actual response of the first example in free-field

(a) f = 1kHz
(b) x = 0.2m

Figure 3.6: Magnitude of the actual response and desired response of example 1 in
free field

Example 2

In the second example, we consider a 2-dimensional region situation. Suppose

that there is a microphone array with five microphones, locating at {[(−0.05, 0, 2); (0,−0.05, 2);

(0, 0, 2); (0, 0.05, 2); (0.05, 0, 2)]}. Given the passband and stopband region on an

(x, y)−plane with z = 1 under the microphone array. The pass region is defined
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as

Ωp = {(r, f) : −0.4m ≤ x ≤ 0.4m;−0.4m ≤ y ≤ 0.4m; 0.5kHz ≤ f ≤ 1.5kHz},

and the stopband is defined the following three parts

{(r, f) : x ∈ [−4m,−2m] ∪ [−0.4m, 0.4m] ∪ [2m, 4m];

y ∈ [−4m,−2m] ∪ [−0.4m, 0.4m] ∪ [2m, 4m]; f ∈ [2kHz, 4kHz]}

{(r, f) : x ∈ [−0.4m, 0.4m];

y ∈ [−4m,−2m] ∪ [−0.4m, 0.4m] ∪ [2m, 4m]; f ∈ [0.5kHz, 1.5kHz]}

{(r, f) : x ∈ [−4m,−2m] ∪ [−0.4m, 0.4m] ∪ [2m, 4m];

y ∈ [−0.4m, 0.4m]; f ∈ [0.5kHz, 1.5kHz]}

The same as the Example 1, the weighting function α(r, f) is 1, and the sampling

rate is 8kHz. Then, we solve the optimal solution with a length from 7 to 17. Fig.

3.7 gives the cost function of different filter lengths, and it can be seen that when

the length is 16, the cost function converges to the limit performance −14.43dB.

When comparing FIR-based beamformers, the beamformers designed by the pro-

posed method still gain better cost function values with the same filter length. The

actual response of the beamforming, whose filter length is 16, is depicted in Fig. 3.8.

3.7.2 Experiments with room simulation

Example 1

To investigate the method better, we further evaluate the performance of the

beamformers designed in a simulated room. The settings of the microphones and

desired response are the same the example 1 in Section 3.7.1. One rectangular room

with a size of 8m×6m×3m is defined for the fast-ISM room simulator, and we set the

relevant reverberation time T60 as 0.1, 0.2, 0.3 and 0.4 which characterizes the room

surface. Compared with the free field transfer function, the limit cost function value
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Figure 3.7: Cost function value for the second example

designed by the image model has a slight decrease, and as the T60 grows, the decline

in limit performance increases. When T60 = 0.1, the performance limit is −17.03dB,

while T60 = 0.4, the performance limit reduced to −11.02dB. In this example, we set

the fixed M = 2. The cost function value of different reverberation time (T60) with

different filter length is given in Table 3.2. The magnitude of the actual response

with different T60 when N = 22 and M = 2 is given in Fig.3.9.

Table 3.2: Cost function value (dB) in simulated room

T60 Limit value
N = 4 N = 10 N = 16 N = 22

IIR FIR IIR FIR IIR FIR IIR FIR
0.1 -17.03 -8.12 -6.86 -14.15 -11.94 -16.98 -14.94 -17.03 -16.04
0.2 -14.35 -7.01 -5.98 -11.86 -10.69 -13.99 -13.74 -14.34 -14.34
0.3 -12.63 -6.93 -4.90 -10.43 -9.38 -11.51 -11.17 -12.29 -11.91
0.4 -11.02 -6.10 -4.43 -9.82 -8.95 -10.61 -10.25 -11.02 -10.73

Example 2

In this example, we also test the beamformers designed by the image model.

The settings of the microphones and desired response are the same as example 2 in
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(a) f=1000Hz (b) y=0m

(c) x=0.4m

Figure 3.8: Magnitude of the actual response and desired response of example 2 in
free field

Section 3.7.1. The simulated room’s settings are the same as example 1 in Section

3.7.2. When T60 = 0.1, the limit performance is −14.03dB. Fig.3.10 shows the actual

response of the designed beamformer with a 16 filter length.
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(a) T60=0.1 (b) T60=0.2

(c) T60=0.3 (d) T60=0.4

Figure 3.9: Magnitude of the actual response and desired response of example 1 in
simulated room
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(a) f=1000Hz (b) y=0m

(c) x=0.4m

Figure 3.10: Magnitude of the actual response and desired response of example 2 in
simulated room

108



Chapter 4

Design of Modulation-Domain

Based Beamformers

4.1 Introduction

Speech signals can generally be considered low-frequency modulators modulat-

ing high-frequency carriers, similar to the amplitude modulation [38, 39]. It means

speech information combines slow-changing modulations with a fast-changing car-

rier element. The speech intelligibility and quality are shown in the slow-changing

modulation [46]. The concept of modulation domain is developed from STFT, which

focuses on the modification synthesis framework. The modulation domain processing

compactly represents the evolution of the spectral, temporal information of speech

[4, 156, 91]. These findings led to the interest in applying the modulation domain as

a substitute to the frequency domain for noise reduction, and the efficiency has been

shown in many algorithms [108, 159, 128].

The aim of speech enhancement is to reduce noise from a polluted signal with

intelligibility damage as small as possible. The carrier frequency modulator is the

most crucial part of preserving linguistic information, which means we can process

the speech more accurately. In the following, we briefly introduce some speech en-

hancement methods in the modulation domain. In [66, 41, 92], FIR bandpass filters
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are proposed to enhance noisy speech, which is utilized on time trajectories of the

short-term power spectrum of the polluted speech. This kind of bandpass filter has

some drawbacks, such as the strict stationarity requirements for noise and speech

signals, and lack of consideration of the noise properties in the design process. To

overcome the disadvantages, the spectral subtraction method was proposed on the

modulation spectrum, in which noises were considered to be quasi-stationary, instead

of the conventional bandpass filters that assumed stationarity for all time [109]. An-

other well-developed processing technique in the acoustic domain, named Kalman

filtering, was alsp applied [136, 159, 34]. Researchers show that the Kalman filter

in the modulation domain performs better in processing non-stationary signals and

estimating the phase and magnitude spectrum.

However, all these above methods are for single-channel speech enhancement.

Compared with the single-channel algorithms, multichannel approaches can addi-

tionally apply spatial information to improve performance. One conventional tech-

nique for multichannel speech enhancement is beamforming, which generally ex-

ploits the correlation between multiple sensor signals to estimate the desired signal

[110, 21, 130, 48, 64]. Inspired by the conventional methods, some researchers ex-

tended the single-channel speech enhancement algorithms in the modulation domain

to multichannel cases. In [165], a novel multichannel Kalman filter was designed

to operate in both STFT and modulation domains. With a certain assumption,

the novel system is a concatenation of the MVDR beamformer and a single channel

modulation domain Kalman filter. Thus, the novel system can jointly apply inter-

frame temporal and inter-channel spatial correlation. Then, the system was further

extended to parametric Kalman filtering, which contains a constant to control flex-

ibly the speech enhancement behavior in each time-frequency bin [166]. Based on

the minimum power distortionless response beamformer (MPDR), a preprocessing

algorithm is proposed to filter the short-time spectral subtraction of the modulator.
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It can improve the performance of the beamformer in the situation with the presence

of reverberation [75].

Our work in this chapter considers speech enhancement algorithms in the modu-

lation domain for the multi-channel case that extends the most widely used optimal

beamformers, including LS [55] and SNR beamformers [31]. It is demonstrated in

[168] that the LS method concentrates more on distortion control with a deficiency in

noise suppression. In contrast, the SNR technique can consistently achieve a higher

noise suppression level with a high distortion cost. We analyze the performance of

the two techniques in the modulation domain by three performance measurement

indicators and further exploit the combination of existing optimal designs. Results

show that the proposed designs outperform the conventional beamformers in most

indicators.

4.2 Problem Formulation

In this section, we first formulate the acoustic model in the frequency domain.

Then, we further extend the formulated model into the modulation domain.

4.2.1 Signal Model in Frequency Domain

Suppose that there are m microphones randomly located in the acoustic network.

Denote the noisy signal received by the ith sensor as

yi(n) = xi(n) + vi(n), ∀i (4.1)

where xi(n) is the clean signal and vi(n) is the noise signal. The noise signal can be

a mixture of several fixed point noises, and the noises can be coherent or incoherent.

There is a filter after each sensor, and the parameter vector of the filter is given as

g (Fig. 4.9). Then, after sum and delay operations, the output of the system is
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Figure 4.1: The framework of the adaptive beamformer

represented as

s(n) =
m∑
i=1

N−1∑
k=0

αi(k)yi(n− k) (4.2)

where N is the filter length, i is the channel number, k represents tap number, and

α is the coefficient of the filter.

As described in [168], we can equivalently depict the signal model in frequency

domain by applying a sub-band scheme. In this case, for each frequency bin, there

are specific weights. Then, we have the output of the frequency ω as

s(ω)(n) =
m∑
i=1

α
(ω)
i y

(ω)
i (n), (4.3)

where y
(ω)
i (n) is the narrow band signal for frequency ω, and α

(ω)
i is the specific

weight vector. The received signal is obtained by

y
(ω)
i (n) = x

(ω)
i (n) + v

(ω)
i (n).

To calculate the weight vector, we can formulate the following problem for each
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subband

max
α(ω)
∥

m∑
i=1

α
(ω)
i y

(ω)
i (n)∥ ∀ω. (4.4)

4.2.2 Signal Model in Modulation Domain

The clean signal xi(n) for the ith sensor can be represented by the product of a

modulator m(n) and a carrier c(n) as

xi(n) = m(n)c(n). (4.5)

The modulator is given by an envelope detector

m(n) = Oenv{xi(n)}, (4.6)

where Oenv represents the envelope detector operator. Equivalently, we can transfer

the speech signal into frequency domain by STFT as

Xi(ω, l) = M(ω, l) ∗ C(ω, l), (4.7)

where ∗ represents the convolution operator, ω is the frequency index and l is the

time index. Accordingly, the envelope M(ω, l) in frequency domain is given by

M(ω, l) = Oenv{Xi(ω, l)} (4.8)

= Oenv{
N−1∑
n=0

xi(n)w(n− lR1)e
−jωn}, (4.9)

where R1 is the hop size and N is the window length, and l is the time index. Then,

we can have the short time modulation spectrum of s(n) as

X
(mod)
i (ω, γ, k) = F{M(ω, k)}

= F{Oenv{Xi(ω, l)}}

=
L−1∑
l=0

|Xi(ω, l)|w(l − kR2)e
−jγk,

(4.10)
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where F means the Fourier transform operator | · | means absolute value operator.

In the modulation spectrum, the limited window has a hop size of R2 and a length

of L, and the modulation frequency is presented by γ ∈ γ0, · · · , γL−1.

Then, the short time modulation spectrum of the noisy signal presented in (4.1)

for ω signal frequency and the γ modulation frequency at time k is

Y
(mod)
i (ω, γ, k) = F{Oenv{Yi(ω, l)}}

=
L−1∑
l=0

|Yi(ω, l)|w(l − kR2)e
−jγk.

(4.11)

Similarly, the short time modulation spectrum of the noise signal presented in (4.1)

for ω signal frequency and the γ modulation frequency at time k is

V
(mod)
i (ω, γ, k) = F{Oenv{Vi(ω, l)}}

=
L−1∑
l=0

|Vli(ω, l)|w(l − kR2)e
−jγk.

(4.12)

For a specific acoustic frequency ω of the kth time instant, the output can be

represented as

S
(ω,k)
l (γ) =

m∑
i=1

α
(ω,k)
i Y

(mod)
i (ω, γ, k). (4.13)

Finally, we convert the enhanced signal back to the time domain. The framework of

the modulation transform is given in Fig. 4.2. Then, the remaining problem is to

design the parameter. In the next section, we propose two efficient design methods

aiming to reduce noise.

4.3 Beamformer Design

This section presents two methods to design the filter weights with different crite-

ria. The first method minimizes the error between the source and noisy signals. The
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Figure 4.2: The framework of the modulation transform

filter weights can be obtained by solving the formulated least-squares optimal prob-

lem. The second criterion is the signal-to-noise power ratio (SNR), which measures

the SNR of the output. The formulated optimal problem maximizes a ratio between

two matrices, and a linear variable transformation can find the optimal solution.

4.3.1 Beamformer with Least Squares Criterion

The task of the filter design is to determine the weighting matrix g. We can

obtain an calibration sequence in a quiet environment. It can be considered as the

reference source signal, which contains the temporal and spatial information of the

source signal. Denoted the reference signal as sr(n), and the short time modulation

spectrum of it is S
(ω,k)
r (γ). If a least squares (LS) criterion is used to measure the

error for each modulation spectrum subset, we can formulate an objective as

min
α(ω,k)

{
L−1∑
γ=0

[|S(ω,k)(γ)−X(ω,k)
r (γ)|2]}, (4.14)

where S
(ω,k)
r (γ) is the output of the network for the ω frequency at time k in mod-

ulation domain, and X
(ω,k)
r (γ) is the modulation spectrum of the calibration signal.
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The problem (4.14) can be solved as

α
(ω,k)
ls (γ) = [R̂

(ω,k)

XX (γ) + R̂
(ω,k)

Y Y (γ)]−1r̂(ω,k)(γ), (4.15)

where R̂
(ω,k)

XX and r̂(ω,k) are the source signal correlation estimations and R̂
(ω,k)

Y Y is the

cross correlation matrix of the received signal. Let R(ω,k)(γ) = R̂
(ω,k)

XX (γ)+ R̂
(ω,k)

Y Y (γ).

Then, we have

α
(ω,k)
ls = R(ω,k)(γ)−1r̂(ω,k)(γ), (4.16)

The source correlation estimations can be pre-calculated in the calibration phase as

R̂
(ω,k)

XX (γ) =
1

L

L−1∑
γ=0

X(ω,k)H (γ)X(ω,k)H (γ)

r̂
(ω,k)
X (γ) =

1

L

L−1∑
γ=0

X(ω,k)H (γ)X(ω,k)∗

r (γ)

where ∗ represents the conjugation operator, H represents the Hermitian transpose.

The matrix X(ω,k) represents the sensor observation signals when the calibration

source signal is active alone, denoted as

X(ω,k) = [X
(ω,k)
1 , · · · ,X(ω,k)

m ]T .

The correlation matrix of the noisy signal can be directly calculated by the sensor

received signal

R̂
(ω,k)

Y Y (γ) =
1

L

L−1∑
γ=0

Y(ω,k)H (γ)Y(ω,k)(γ)

where

Y(ω,k)(γ) = [Y
(ω,k)
1 (γ), · · · ,Y(ω,k)

m (γ)]T .

For the problem (4.16), we can further decompose the correlation matrix into

R(ω,k)(γ) = βR(ω,k)(γ − 1) +Y(ω,k)(γ)Y(ω,k)H (γ) +Q(ω,k)HΛ(ω,k)Q(ω,k) (4.17)
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where Q is the eigenvector matrix of the matrix R̂
(ω,k)

XX (γ) and Λ is the corresponding

eigenvalue matrix

Q(ω,k) = [q
(ω,k)
1 , · · · ,q(ω,k)

m ]

Λ(ω,k) = diag([λ
(ω,k)
1 , · · · , λ(ω,k)

m ]).

After a rank-1 approximation, we have

R(ω,k)(γ) = βR(ω,k)(γ − 1) +Y(ω,k)(γ)Y(ω,k)H (γ) + (1− β)q
(ω,k)H

i λ
(ω,k)
i q

(ω,k)
i , (4.18)

where i = 1 + (γ mod m). By the matrix inversion lemma, we can further compute

the inversion of R(ω,k)(γ) iteratively

R(ω,k)(γ)−1 = R
(ω,k)
1 − λ

(ω,k)
i (1− β)R

(ω,k)
1 q

(ω,k)
i q

(ω,k)H

i R
(ω,k)
1

1 + λ
(ω,k)
i (1− β)q

(ω,k)H

i R
(ω,k)
1 q

(ω,k)
i

(4.19)

where

R
(ω,k)
1 = β−1R(ω,k)(γ−1)−1− β−2R(ω,k)(γ − 1)−1Y(ω,k)(γ)Y(ω,k)H (γ)R(ω,k)(γ − 1)−1

1 + β−1Y(ω,k)H (γ)R(ω,k)Y(ω,k)H
.

Then, we have the weight vector

α
(ω,k)
ls (γ) = βα

(ω,k)
ls (γ − 1) + (1− β)R(ω,k)(γ)−1r̂(ω,k)(γ). (4.20)

The output of each modulation bin is

S(ω,k)(γ) = α
(ω,k)H

ls (γ)Y(ω,k)(γ). (4.21)

4.3.2 Beamformer with SNR Criterion

The signal-to-noise power ratio (SNR) is an important criterion to measure the

noise suppression level in speech enhancement, which is defined as

SNR =
Px

Py

(4.22)
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where Px is the power of the clean signal and Py is the power of the noisy signal.

The output of the desired signal for frequency ω at time k is given as

α(ω,k)HR
(ω,k)
XX α(ω,k)

and the output of the noisy signal is

α(ω,k)HR
(ω,k)
Y Y α(ω,k).

If SNR is considered as a criterion, the beamformer design problem becomes to

maximize a ratio between two quadratic forms of positive definite matrices as

α(ω,k)
snr = arg max

α(ω,k)
{α

(ω,k)HR
(ω,k)
XX α(ω,k)

α(ω,k)HR
(ω,k)
Y Y α(ω,k)

}, (4.23)

where R
(ω,k)
XX is the correlation matrix of source signal in each sub modulation spec-

trum, and R
(ω,k)
Y Y is the correlation matrix of the observed data. The correlation

matric are calculated by

R
(ω,k)
XX = E{X(ω,k)(γ)X(ω,k)(γ)H}

R
(ω,k)
Y Y = E{Y(ω,k)(γ)Y(ω,k)(γ)H},

where E{·} represents the mean value operator and

X(ω,k)(γ) = [X
(ω,k)
1 (γ), · · · ,X(ω,k)

m (γ)]T ,

Y(ω,k)(γ) = [Y
(ω,k)
1 (γ), · · · ,Y(ω,k)

m (γ)]T .

The problem (4.23) is a maximization of a ratio between two positive definite ma-

trices with quadratic forms, which is related to the generalized eigenvector problem.

We can obtain an optimal solution by solving

v
(ω,k)
opt = argmax

v

v(ω,k)HR
(ω,k)
Y Y

− 1
2

H

R
(ω,k)
XX R

(ω,k)
Y Y

− 1
2v(ω,k)

v(ω,k)Hv(ω,k)
, (4.24)
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where v
(ω,k)
opt is the eigenvector corresponding to the largest eigenvalue satisfying the

following equation

R
(ω,k)
Y Y

− 1
2

H

R
(ω,k)
XX R

(ω,k)
Y Y

− 1
2v

(ω,k)
opt = λv

(ω,k)
opt . (4.25)

Accordingly, the optimal solution of problem (4.23) can be obtained by the inverse

of the linear variable transformation

α(ω,k)
snr = R

(ω,k)−
1
2

Y Y v
(ω,k)
opt . (4.26)

Then, the problem becomes to find the eigenvector v
(ω,k)
opt , and a widely used

method to solve problem (4.25) is an iterative power method. The update rule

follows

v
(ω,k)
opt (γ + 1) =

R
(ω,k)H

Y Y R
(ω,k)
XX v

(ω,k)
opt (γ)

∥R(ω,k)H

Y Y R
(ω,k)
XX v

(ω,k)
opt ∥

. (4.27)

The initial guess of v
(ω,k)
snr (0) can be an arbitrary vector. Then, the remaining problem

is to find out the inverse of R
(ω,k)
Y Y with a fast speed. One efficient method is Cramer’s

rule, which contains three main steps

• Formulate a cofactor matrix by calculating co-factors of R
(ω,k)
Y Y .

• Compute the determinant of the cofactor matrix and form a matrix denoted

as A.

• Multiply A by the determinant’s reciprocal.

This method outperforms the Gaussian elimination method, especially when the

given matrix has a small dimension. As the matrix in each modulation bin is rela-

tively small, we apply Cramer’s rule.
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4.3.3 Hybrid Method

We can compute the filter weights separately from the last two parts by LS

and SNR methods. As indicated in [168], the LS method focuses more on speech

distortion control, while the SNR technique concentrates more on noise suppression.

As each method has its own property when enhancing the speech, we attempt to

combine the two methods to adjust the speech quality in different aspects. We

first separately calculate two sets of optimal coefficients by LS and SNR methods.

Because of the linearity of the filtering system , we try to give a hybrid weights of

these two techniques, which can adjust the performances according to the decision

makers’ requirements. However, the different ranges of the coefficients may result in a

disparity when combining the weights. Thus, before the combination, we normalized

the coefficients to their maximum (i.e., the largest coefficient value) in each set

of coefficient individually, so that the coefficients are ranged from zero to one. A

framework of the hybrid system is given in Fig. 4.3.

Let the normalized optimal coefficients of the ωth frequency bin at time k be

α
(ω,k)
ls and α

(ω,k)
snr . The hybrid weight vector is given as

α
(ω,k)
hybrid = aα

(ω,k)
ls + (1− a)α(ω,k)

snr , (4.28)

where a is a real value from 0 to 1. Then, the output of the hybrid method for a

specific acoustic frequency ω of the kth time instant is

Y (ω,k)(γ) =
m∑
i=1

α
(ω,k)
i X

(mod)
i (ω, γ, k), (4.29)

where α
(ω,k)
i is given by (4.28).
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Figure 4.3: The framework of the hybrid system

4.4 Performance Measurement Indicators

To evaluate the performance of the beamformers designed by different methods,

in this section, we discuss performance measurement indicators. Generally speaking,

the assessment of speech quality includes subjective and objective evaluation. Sub-

jective evaluation relies on listeners’ subjective listening tests, which could be pretty

accurate but costly and time-consuming. Objective evaluation measures the numer-

ical distance between the reference signal and the processed signals, predicting the

speech quality with high correlation [89]. One of the most popular objective measure

for speech enhancement is the STOI, which are closely related to human auditory

perception and widely used in speech enhancement as evaluation criteria. STOI is the

latest popular measure, computing the correlation of short-time temporal envelopes.
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Another two performance measures are noise suppression, considered an engi-

neering design, and speech distortion, thought a quality design. The output signal

requires the highest possible SNR for engineering design, which describes noise sup-

pression capability. As for the quality design, it requires to protect the perceptual

features, which means minimal speech quality degradation. In fact, it isn’t easy

to optimize the engineering and quality design simultaneously. The reason is that

when improving SNR, the speech quality continuously degrades, leading to a natural

trade-off. In particular, we will study for two-stream streams of applications. The

first one is on signal quality for human perception. In this case, speech quality is

essential, and higher objective evaluation scores are required. The other important

application is to feed the beamformer output to speech recognition engines. For

this application, minimizing noise could be more critical, and SNR becomes a more

important criterion.

In this section, four indicators are given to evaluate the output signal. The

first criterion tests the distortion between the original speech signal and the output

signal, and the second concentrates on noise suppression. Another criterion is STOI,

which measure the numerical distance between the reference signal and the processed

signals, predicting the speech quality with high correlation [89].

4.4.1 Signal Distortion and Noise Suppression

Firstly, we introduce an indicator to measure the signal distortion, and a normal-

ized quantity can be given as:

Sd =
1

2π

∫ π

−π

| CdP̂yx(ω)− P̂sx(ω) | dω (4.30)

where P̂yx(ω) is a mean spectral power of the clean signal received by sensors and

P̂sx(ω) is the mean spectral power of the output when the desired signal is active
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alone. The constant Cd can be defined as

Cd =

∫ π

−π
P̂sx(ω)dω∫ π

−π
P̂yx(ω)dω

. (4.31)

Another indicator is given to measure the noise suppression, and this measure is

described as

NS = Cs

∫ π

−π
P̂sn(ω)dω∫ π

−π
P̂yn(ω)dω

(4.32)

where

Cs =
1

Cd

.

In (4.32), the P̂yn represents the spectral power of the noise signal received by mi-

crophones and P̂sn is the spectral power of the output when only the noise signal is

active.

4.4.2 A Short-Time Objective Intelligibility Measure(STOI)

STOI is the latest popular objective machine-driven intelligibility measure, which

evaluates the correlation of short-time temporal envelopes by a function of a time-

frequency-dependent intermediate intelligibility measure. It compares the temporal

envelopes of the reference and polluted signal in short-time regions by a correlation

coefficient. Experiments showed that STOI correlates better with speech intelligibil-

ity than other reference objective intelligibility models. Thus, the STOI is applied

in evaluating the performance in speech intelligibility [126], [33].

Denote the clean and polluted speech in the time domain as s and y. As STOI is

based on short time segments, we denote the short-time temporal envelope for clean

and polluted signals as sj,m and yj,m, respectively. The intermediate intelligibility is

then defined as the sample correlation coefficient between the two vectors, denoted
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as

dj,m =
(sj,m − µsj,m)

T ỹj,m

∥sj,m − µsj,m∥∥ỹj,m − µỹj,m∥
,

where µ(·) is the mean value of the corresponding vector, and ỹj,m is the corresponding

modulation vector of

Ỹj(m) = min(Yj(m), 6.33 · ∥yj,m∥
∥sj,m∥

Sj(m)),

where Sj(m) and Yj(m) are the time-frequency cell amplitudes of the clean and

polluted speech. The final average measure of all bands and frames is given by

d =
1

JM

∑
j,m

dj,m (4.33)

where M represents the total number of frames and J the number of one-third octave

bands. The details of the calculation of the STOI can be found in [141].

4.5 Experimental Results

We evaluate the performances of different speech enhancement methods in this

section. The real data is recorded by Sven Nordholm in Curtin University [49]. The

acoustic network contains eight microphones, which have been calibrated before use.

The sound card connected to the speakers is Delta 1010LT, and the sound driver is

ASIO Hammerfall DSP. We choose five clean signals from the NOIZEUS database,

and a babble noise signal from NOISEX-92 database. All speeches are recorded with

a sampling rate of 48000Hz, and then the signals are resampled to 8000Hz for speech

enhancement. We recorded the noise signal and the clean signal separately, and the

noisy signal is generated by adding the noise to the clean signal, and we choose one

single channel observation as the reference channel observation. We first analyze the

effect of a different number of frequency bins, modulation bins, and different SNR
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Figure 4.4: The configuration of the experiments

levels on the beamforming performances. Then, we test the performances of the

hybrid method, and the results prove that it can trade off signal distortion and noise

suppression.

4.5.1 Effect of Different Number of Frequency Bin and Mod-
ulation Spectrum Length

This part compares the LS and SNR methods’ experimental results in the fre-

quency and modulation domains. There are total 8 sensors ranged L shape in the

network. The signals are recorded in a room with 4× 4.5× 2.4m (L×W ×H), and

the height of the sensor are fixed at around 1.5m above the floor. The locations of

the sources and sensors are given in Fig. 4.4.

The desired signal and the interfering signal are recorded separately. The noisy

signal is created by adding the interfering signal to the desired signal. The noisy

signal is given by adding the noise signal to the clean signal, denoted as

y(n) = x(n) + αv(n),
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where x(n) is clean signal, v(n) is the noise signal, and α is a scalar value. To

evaluate the power of noise signal, we introduce SNR in decibels(dB), defined as

SNRdB = 10 log10(
px
pv

),

where px is the power of the clean signal, and pv is the power of the noise signal.

According to the definition of SNR, the value of α can then be obtained by

α =

√
∥x(n)∥22

∥SNR · v(n)∥22
,

where ∥ · ∥2 represents the Euclidean norm. In this part, the SNR of the noisy signal

is 0dB.

The polluted signal is filtered by the LS method in the frequency domain (F-LS)

and the modulation domain (M-LS). We further apply the SNR method in the fre-

quency domain (F-SNR) and the modulation domain (M-SNR). Then, performances

of the four methods by the four indicators presented in the previous section are

compared, including signal distortion Sd, and noise suppression Ns.

The number of frequency bins is directly related to the number of parameters

of the beamformer. We designed various beamformers with different frame sizes to

test the performance for speech enhancement based on the different frequency bins.

Table 4.2 shows the results of the different frequency bins from 64 to 512, which is

the size of the first STFT that we use to transform the time domain data to the

frequency domain. All the results of this section show average values. Also, we

compare the results in the frequency domain with the number of subbands from 64

to 512. Then, we further evaluate the performance of different lengths of modulation

spectrum, which is the number of second STFT in the modulation operator. When

investigating the effect of the frequency bins, we set the fixed number of modulation

spectrum bins as 4. When investigating the effect of the number of modulation bins,
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we set the fixed number of the frequency bins as 512.

For the LS method, the beamformers designed in the modulation domain perform

better in speech distortion, which means less quality degradation. For the SNR

method, the modulation domain filters considerably improve noise suppression. It

can be seen that when the number of frequency bins increases, the noise suppression

increases. The increasing length of the modulation spectrum can also help suppress

noise. To analyze the differences between the four methods, we give the time domain

signals and spectrograms of one speech as an example. The time-domain signal and

spectrogram analysis of clean speech, noisy speech, and denoised signals with 512

frequency bin and 4 modulation bin are given in Fig. 4.5 and Fig. 4.6, where ’Fb’

represents the number of frequency bins, and ’Mb’ means the number of modulation

bins.

Table 4.1: Effect of the number of FFT in frequency domain

Noisy signal ( SNR:0dB)

No. frequency bin
F-LS F-SNR

Ns Sd Ns Sd

64 19.38 -10.77 32.99 -3.35
128 19.56 -9.38 34.44 -3.21
256 19.79 -8.70 35.46 -3.18
512 19.95 -7.97 36.45 -3.17

4.5.2 Effect of Different Noise Levels

In this part, we further investigate the effect of SNR, and five SNR levels are

chosen as -10dB, -5dB, 0dB, 5dB, 10dB. The recording setting is the same as the last

part. For the methods in the modulation domain, we set the fixed first STFT number

as 512 and the second STFT number as 4. For the frequency domain methods, the

size of subbands is 512. We also compare the proposed methods with a modulation

domain based Wiener filter.
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Table 4.2: Effect of the number of FFT in modulation domain

Noisy signal ( SNR:0dB)

No. frequency bin M-LS M-SNR
(4 modulation bin) Ns Sd Ns Sd

64 6.24 -15.06 28.83 -3.55
128 10.72 -13.67 33.72 -3.53
256 16.82 -11.90 38.11 -3.64
512 21.32 -10.05 41.07 -3.78

No. modulation bin M-LS M-SNR
(512 frequency bin) Ns Sd Ns Sd

4 21.32 -10.05 41.07 -3.78
8 21.91 -9.09 42.27 -3.79
16 20.42 -9.22 43.86 -3.74
32 18.20 -9.40 46.22 -3.69

Figure 4.5: Clean speech, noisy speech and denoised speech signal in time do-
main(Fb=512,MB=4)
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Figure 4.6: Spectrogram analysis of clean speech, noisy speech and denoised speech
signal (Fb=512,MB=4)

Table 4.3 shows the results with different noise levels. We can see that the

performances of the SNR-based methods are similar for all the noise levels, which

means the noise levels have a more negligible effect on the performances of the F-SNR

and M-SNR methods. For the LS-based methods, when the noise levels go up, the

noise suppression increases with a similar distortion. Similar to the last part’s results,

M-SNR generally has better noise suppression than the other three methods, while

the M-LS method has minor noise distortion. The speech quality is protested well

in the M-LS method. However, for the modulation domain-based Wiener method,

although the signal distortion is less than the other methods, the noise suppression
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is little.

Table 4.3: Effect of the SNR (Fb=512,Mb=4)

SNR F-LS M-LS F-SNR M-SNR M-Wiener

-10
Ns 27.91 27.64 36.50 41.07 1.00
Sd -8.04 -9.98 -3.22 -3.78 -7.98

-5
Ns 23.86 24.63 36.46 41.08 1.34
Sd -8.00 -10.06 -3.18 -3.78 -10.39

0
Ns 19.95 21.32 36.45 41.07 1.16
Sd -7.97 -10.05 -3.17 -3.78 -12.87

5
Ns 15.96 17.81 36.44 41.06 0.85
Sd -7.95 -10.01 -3.17 -3.78 -14.73

10
Ns 11.91 13.66 36.45 41.07 0.71
Sd -7.93 -9.94 -3.17 -3.78 -15.59

(a) Noise suppression (b) Signal distortion

Figure 4.7: Noise suppression and signal distortion of different noise levels

4.5.3 Results of Hybrid Design Method

From the previous results, we can see that the optimal filter weights for LS and

SNR have unique properties in signal distortion and noise suppression. To find a

balance between the two criteria, we try to form a linear combination of the two

optimal weights. The hybrid weights are given as

αhybrid = aαls + (1− a)αsnr, (4.34)
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where αls is the normalized coefficients of M-LS method, αsnr is the normalized

coefficients of M-SNR method, and a is a scalar value from 0 to 1. We give the

results of different a with different size of frequency bins in Table 4.4. It can be

seen that with the increase of a, the signal distortion decreases, while the noise

suppression goes down. The less signal distortion and the more noise suppression,

the better speech quality. Comparing with the single objective based method, this

hybrid method allows a trade-off between the noise suppression and signal distortion.

For the LS method, it has less signal distortion. However, for the SNR method,

it performs better on the noise suppression. If two criteria are comprised and a

suitable parameter is chosen, we can obtain a beamformer with both favourable

signal distortion and noise suppression. Designers can choose a proper α according

to their specific requirements.

Table 4.4: The results of hybrid method

Fb=128,Mb=4 Fb=256,Mb=4 Fb=512,Mb=4
a Ns Sd a Ns Sd a Ns Sd

0 34.05 -5.29 0 39.09 -5.39 0 41.85 -5.58
0.1 33.28 -5.27 0.1 38.18 -5.36 0.1 40.93 -5.55
0.2 30.54 -5.25 0.2 35.47 -5.35 0.2 38.37 -5.51
0.3 27.13 -5.25 0.3 32.12 -5.35 0.3 35.15 -5.49
0.4 23.71 -5.30 0.4 28.75 -5.40 0.4 31.85 -5.52
0.5 20.42 -5.44 0.5 25.48 -5.56 0.5 28.60 -5.64
0.6 17.25 -5.83 0.6 22.31 -5.99 0.6 25.46 -6.04
0.7 14.30 -6.78 0.7 19.40 -7.09 0.7 23.64 -7.08
0.8 12.96 -8.94 0.8 18.55 -9.49 0.8 22.70 -9.32
0.9 11.92 -12.58 0.9 18.27 -12.76 0.9 22.25 -12.03
1 11.90 -16.55 1 18.04 -14.14 1 21.81 -12.89

4.5.4 Results of STOI values

This part further evaluates a widely used objective evaluation measure, STOI.

We add the noise with different SNR conditions, and process the noisy signals by the

four methods with 512 frequency bins and 4 modulation bins. Five speech signals are
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Figure 4.8: Trade off between the noise suppression and speech distortion

tested, and the same babble noise is added on the clean speeches. Table 4.5 give the

average STOI values for test samples corrupted under different SNR conditions and

enhanced by different methods. As observed, the modulation domain filters always

have a better STOI than the frequency domain methods, and M-LS has the most

significant improvements in STOI cores. Significantly when the number of frequency

bins is large, the SOTI values decrease severely for the frequency-based methods.

Table 4.5: STOI values with different SNR (Fb=512,Mb=4)

SNR noisy F-LS M-LS F-SNR M-SNR
-10 0.46 0.06 0.80 0.02 0.74
-5 0.56 0.06 0.85 0.02 0.74
0 0.68 0.05 0.88 0.02 0.76
5 0.79 0.05 0.91 0.02 0.77
10 0.88 0.04 0.94 0.03 0.79
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Figure 4.9: STOI values of different noise levels
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Chapter 5

Conclusions and Suggestions for

Future Research

In this chapter, a summary of this thesis will be given, and some possible works

for future research will be shown.

5.1 Conclusions

This thesis mainly focuses on the beamforming design problem in the wireless

acoustic network and some related problems during the design procedure, such as

the sensor localization problem. The transfer function from the source to the sensor

is sensitive to the microphone locations, and even minor errors can severely affect

the beamformers’ performances. Thus, an efficient sensor localization algorithm is

necessary, and Chapter 2 proposed the relaxation model-based methods to estimate

the microphone locations and structure. Then, with the given array configuration,

beamforming algorithms can be performed. Chapter 3 proposed a design method

for the fixed beamformers, which requires the transfer function. Compared with

the previous FIR-based methods, the proposed IIR-based algorithm is much more

efficient and can achieve the same performance with less filter length. As sensors

in the WSNs are always miniaturized, this improvement in efficiency is essential.

Then, some adaptive algorithms are proposed, which have no requirements on prior
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knowledge of the sensor locations, also known as blind estimation algorithms. These

methods are applied in the modulation domain, and four indicators are used to test

the performances.

The three research works in this thesis have been concluded as follows.

1. Chapter 2 presents a method to calibrate the microphone locations in a dis-

tributed acoustic network. The proposed method formulates a linear optimiza-

tion problem by an SDP-SOCP relaxation model with TDOA information,

which can be solved in a polynomial time. Then, we study the characteristics

of the solution to the relaxation model, and several theorems are given to check

the correctness of the model. In addition, two simple offsets algorithms are pro-

posed to eliminate the random noise in real data. Numerical results show that

the mixed relaxation model is more accurate than the SDP or SOCP relaxation

models. We further applied the proposed model in simulation rooms and real

situations. Results show that the sensor locations can be estimated accurately,

and the offset algorithms can improve the accuracy.

2. In Chapter 3, an IIR-based broadband beamforming design method is inves-

tigated. Since there is a feedback section in an IIR filter that results in an

intractable stability problem, a specific structure in which all the elements

share the same feedback section is proposed. This structure efficiently simpli-

fies the stability problem. We can ensure the whole system is stable by adding

constraints on the poles of the feedback part. Based on this structure, an op-

timal design beamformer method is given, and the performance limit of this

design method has been studied. Furthermore, according to the simulation

results, it has been proven that our method can converge much faster to the

same limiting cost function value compared with an FIR-based beamformer.

3. Chapter 4 presents two popular beamformer design methods in the modulation
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domain: the least square and maximization SNR. We compared the methods

in the modulation domain and frequency domain by three indicators. Experi-

mental results have shown that modulation domain-based methods outperform

the frequency-domain-based techniques, especially in SOTI, which is an essen-

tial measurement for human perception. In addition, SNR-based methods have

higher noise suppression in the modulation domain than the frequency domain,

and noise suppression is a critical indicator in speech recognition engines. In

contrast, the LS-based method has better speech quality with less noise sup-

pression. Then, a hybrid method is given to trade off the speech quality and

noise suppression. Users can choose suitable methods according to different

applications.

5.2 Suggestions for Future Research

Speech signal processing in wireless acoustic networks is a rich research subject.

Here are some possible directions for the future works.

• Estimation of TOA by TDOAs

Compared with TDOAa, TOAs are much powerful measurements in sensor

localization problem. However, acoustic distributed network can only obtain

TDOAs indirectly from various sound source anchors. Thus, if we can esti-

mate the TOAs from the obtained TDOAs, more powerful sensor localization

algorithms can be applied.

• Calibration of impulse response

Except for the sensor localization problem, there are still some other problems

that can affect the performances of the beamformers in the wireless acoustic

networks, such as impulse responses of microphones. The impulse responses
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are required in many beamformer design methods, such as MVDR and LCMV.

In addition, the room impulse responses used in Chapter 2 are generated by a

room simulator. If we can obtain a more accurate impulses response in actual

situations, the beamformer designed in Chapter 2 can be more robust in real

applications.

• Design of distributed beamformer algorithm

For example, the adaptive algorithms proposed in Chapter 4 are classic central-

ized adaptive beamformers, which require a central processing unit to calculate

the data received by all the nodes in the network. It could be undesirable in

actual applications because of privacy problems, transmission range, and bat-

tery limitations. Thus, distributed algorithms should be considered in future

work, decreasing the energy for transmitting data to the center fusion. The dis-

tributed algorithms should enable the processing load distribution over different

nodes, as each node only contains partial data with limited energy supplies.

In addition, it is possible to use compressed sensing in transmitting data and

derive algorithms with optimality in the sense that distributed methods have

the same beamformer outputs as its centralized counterpart method.
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