

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

AUTONOMOUS FLIGHT IN UNKNOWN AND
DYNAMIC ENVIRONMENT

HAN CHEN
PhD

The Hong Kong Polytechnic University

2023

The Hong Kong Polytechnic University

Department of Aeronautical and Aviation Engineering

AUTONOMOUS FLIGHT IN UNKNOWN AND DYNAMIC ENVIRONMENT

CHEN HAN

A thesis submitted in partial fulfilment of the requirements for the degree of Doctor of

Philosophy

Aug 2022

ii

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge and

belief, it reproduces no material previously published or written, nor material that has been

accepted for the award of any other degree or diploma, except where due acknowledgement

has been made in the text.

(Signed)

Han Chen (Name)

iii

To people who inspire me

iv

ABSTRACT

The development of aerial robots in recent years has involved Micro Aerial Vehicle

(MAV) more and more in our daily life. MAVs, especially quadrotors, have been widely used

in field applications, such as disaster response, field surveillance, and search-and-rescue. For

accomplishing such missions in challenging environments which narrow free space, crowded

obstacles, and intruding and moving objects, the capability of navigating with full autonomy

without collision is the most crucial requirement. This thesis is arising from the real-world

applications of MAVs, and we present novel methodologies, complete system designs, and

progressive test results in simulation and field robots, with a focus on the adaptability to

cheap and affordable hardware platforms. Also, a basic requirement is finishing all the

autonomous navigation task with onboard resources only, no external guidance is required.

We start by introducing a computing efficient motion planning algorithm which is more

concise and outperform existing autonomous navigation system of UAVs in single-step

calculation time. Later, based on the above research, we developed a path planner working

on the map which is much larger than the camera FOV to guide the local motion planner and

avoid potential detours, confronting a more complex and dense environment. To better avoid

those continuously moving obstacles, after that we propose a velocity planning algorithm

based on the relative velocities toward obstacles in the environment and implicitly include

the future obstacle’s position. A novel lightweight pointcloud-based obstacle tracking and

velocity estimation algorithm is also designed to fulfill a complete system. At last, we

improve the robustness of the dynamic object perception part by introducing the image-

based object detector and tracker and active yaw control, enhance the flight smoothness

and speed by the polynomial trajectory optimization approach, and upgrade flight safety

by involving object state’s uncertainty. Extensive experimental and contrasting results, and

detailed system set-up are presented throughout the thesis. We conclude this thesis by

introducing the motivation backside each chapter and summarizing the current limitation of

v

the aerial autonomy development, and propose future potential research opportunities based

on our research experience.

vi

PUBLICATIONS ARISING FROM THE THESIS

Published:

[1] M. Lu*, H. Chen*, and P. Lu, “Perception and Avoidance of Multiple Fast Mov-

ing Small Objects for Quadrotors with Only Low-cost RGBD Camera”, in Robotics and

Automation Letters (RAL)[J]. Early access in https://arclab.hku.hk/files/

RA-L%202022_Lu.pdf. * equally contributed authors.

[2] H. Chen and P. Lu, “Real-time Identification and Avoidance of Simultaneous Static

and Dynamic Obstacles on Point Cloud for UAVs Navigation”, in Robotics and Autonomous

Systems (RAS)[J], doi: 10.1016/j.robot.2022.104124.

[3] H. Chen and P. Lu, ”Computationally efficient obstacle avoidance trajectory planner

for uavs based on heuristic angular search method.” 2020 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), pp. 5693-5699, 2020.

[4] H. Chen, C. Xiao and P. Lu, ”Dynamic Obstacle Avoidance for UAVs Using a Fast

Trajectory Planning Approach”, In 2019 IEEE International Conference on Robotics and

Biomimetics (ROBIO), pp. 1459-1464, 2019. * equally contributed authors.

[5] S. Chen, H. Chen, C.W. Chang, and C.Y. Wen, ”Multilayer Mapping Kit for

Autonomous UAV Navigation”. in IEEE Access, 9, 31493-31503, 2021.

[6] S. Chen, W. Zhou, A. Yang, H. Chen, B. Li, Chih-Yung Wen, ”End-to-End UAV

Simulation Platform for Visual SLAM and Navigation”. in Aerospace[J], 9.2 (2022): 48.

Under process:

[7] H. Chen, S. Chen, P. Lu and C. Wen, “A fast planning approach for 3D short

trajectory with a parallel framework”, under review in Mechatronics[J].

[8] H. Chen, C. Wen, and P. Lu, “Uncertainty-Aware and Perception-Enhanced trajectory

planning for dynamic environments”, under review in IEEE T-MECH[J].

Awards:

The third place in IROS 2019 Autonomous Drone Racing.

https://arclab.hku.hk/files/RA-L%202022_Lu.pdf
https://arclab.hku.hk/files/RA-L%202022_Lu.pdf

vii

ACKNOWLEDGMENTS

Many people helped me a lot to finish this thesis, and I would like to thank them for their

vital support and encouragement to me. First of all, I would like to thank my chief supervisor

Professor WEN Chih-yung for his strong and selfless support of this research topic and

inspiring suggestions. I learned from him a serious and rigorous attitude towards academics.

Under his encouragement, I began communicating and cooperating with other colleagues,

which made me realize the importance of frequent academic communication. I would also

like to thank my co-supervisor, Professor LU Peng. We have frequently communicated and

discussed my research progress during the three years, and he gave me detailed and patient

guidance on many aspects of my research work.

I would like to thank Prof. CHEN Benmei and Prof. WANG Zhengjie for serving on

my Ph.D. defense external committee. I also want to thank my colleagues in our research

group for the inspiring technical discussion in robotics and the enthusiastic help in my field

tests. Especially, I want to thank Dr. CHEN Shengyang for his detailed answers to my

questions in the research and engineering and the energetic discussion of the problems. I

sincerely thank Prof. GAO Fei from Zhejiang University for the generous sharing of his

ideas, thoughts, and experience in the research of UAV motion planning. I gained huge

progress in both research and engineering during the journey in FAST lab.

Last but not least, I thank my parents for their forever strong support and selfless love.

Also, I hope to say thank you to my girlfriend Yuyang, who went through the toughest days

and nights with me during my pursuit of the degree, and brought me the treasured happy

and shining days.

viii

TABLE OF CONTENTS

Page

ABSTRACT . iv

LIST OF TABLES . xii

LIST OF FIGURES . xiii

ABBREVIATIONS . xix

1 Introduction . 1

1.1 Research problems and targets . 2

1.1.1 Dynamic environment perception 2

1.1.2 Efficiently planning efficient trajectory 3

1.1.3 System integration . 4

1.2 Thesis overview . 4

2 Literature Review . 8

2.1 Dynamic and static obstacle perception 8

2.1.1 Mapping the environment . 8

2.1.2 Dynamic obstacle perception . 9

2.2 Fast and feasible motion planning methods 10

2.2.1 Path planning . 11

2.2.2 Hierarchical approach . 12

2.2.3 Direct approach . 13

2.3 Global and local planning . 14

2.4 Planning safely in dynamic scenes . 15

3 Efficient Sampling-Based Motion Planning . 18

3.1 Research Background . 18

3.2 Quick Responding and Safe Planner . 19

3.2.1 Processing the Point Cloud . 20

ix

Page

3.2.2 Heuristic Angular Search Method 22

3.2.3 Motion Planning . 23

3.2.4 Safety Guarantee . 25

3.2.5 Improvements on the Motion Planner 27

3.3 Experimental Results . 30

3.3.1 Experimental Configuration . 30

3.3.2 Simulation Flight Test in a Simple Environment 31

3.3.3 Simulation Flight Test in a Complex Environment 31

3.3.4 The Improvements in Optimization Formulation 36

3.4 Conclusion . 37

4 Parallel Navigation Framework for Flights in Complex Terrain 39

4.1 Research Background . 39

4.2 Mapping and the Map Planner . 41

4.2.1 Point Cloud Filter . 41

4.2.2 Mapping and 2D path planning 42

4.2.3 Improved 2D path . 46

4.2.4 Shorter 3D path searching . 47

4.3 Complete Navigation Framework . 49

4.3.1 Connection between the PCP and MP 50

4.3.2 The whole framework . 52

4.4 Test Results . 52

4.4.1 Algorithm performance static test 52

4.4.2 Simulated flight tests with real-time planning 56

4.4.3 Hardware flight tests . 64

4.5 Conclusion . 70

5 Flying and Avoiding Dynamic Obstacles on Pointclouds 72

5.1 Research Background . 72

5.2 Technical Approach . 75

x

Page

5.2.1 Obstacle tracking . 75

5.2.2 Obstacle Velocity Estimation and Classification 77

5.2.3 Ego-motion compensation and neighbor data overlapping 80

5.3 Motion Planning . 81

5.3.1 Velocity planning . 82

5.3.2 Motion planning . 87

5.4 Experimental Implementation and Results 89

5.4.1 Point cloud filters . 89

5.4.2 Map building . 90

5.4.3 Experimental Configuration . 90

5.4.4 Simulation Test . 91

5.4.5 Hardware Test . 96

5.5 Conclusion and Future Work . 100

6 An Enhanced System: Robust Perception and Threat-Aware Planning 102

6.1 Research Background . 102

6.2 Dynamic Object Perception . 104

6.2.1 Detect and track objects on image 104

6.2.2 Estimate the object velocity . 106

6.2.3 Uncertainty evaluation . 110

6.3 Trajectory Planning . 114

6.3.1 FOV constrained hybrid A* algorithm 114

6.3.2 Trajectory optimization and the time-varying safety margin 117

6.3.3 Perception Enhanced Planning 122

6.4 Experimental Implementation and Results 126

6.4.1 Vehicle ego-motion compensation and depth map filter 126

6.4.2 Static points memorizing and reusing 127

6.4.3 Experimental Configuration . 128

6.4.4 Simulation Test . 129

xi

Page

6.4.5 Field test . 133

6.5 Conclusion . 139

7 Conclusion, Discussion, and Future Work . 142

VITA . 158

xii

LIST OF TABLES

Table Page

3.1 Parameters for simulation . 30

3.2 Comparison with state-of-the-art algorithms. 33

3.3 Test results for the improvements of optimization formula 37

4.1 Test results of different Map1 sizes . 55

4.2 Test results of different Mapc sizes . 56

4.3 Flight test results for the 3D path planning . 60

4.4 Parameters for the framework . 61

4.5 3D path length comparison with the state-of-the-art algorithms 62

4.6 COMPARISON WITH STATE-OF-THE-ART ALGORITHMS. 70

4.7 REAL-TIME COMPUTING PERFORMANCE COMPARISON 70

5.1 Parameters for the tests . 91

5.2 Obstacle State Estimation Comparison . 92

5.3 Dynamic Planning Comparison . 95

5.4 Obstacle tracking performance under different parameters 98

5.5 System comparison between different works 101

6.1 Parameters for the tests . 128

6.2 Obstacle State Estimation Comparison . 130

6.3 System Performance Comparison . 132

6.4 CPU load Comparison . 135

6.5 Controller tracking error . 136

xiii

LIST OF FIGURES

Figure Page

3.1 (a) depth camera’s RGB output, (b) raw point cloud, (c) filtered point cloud(Pcl2) 19

3.2 Illustration about angular search,(a) is a stereogram,(b) and (c) are the projection
of (a) to different plane. B− xyz presents the body coordinate. The number in
the blanket is the ordinal number of iteration, for example, 2(1) presents Pd2
with αd = ∆α . 24

3.3 Illustration of the relationship between dmax and the direction of vn (∥vn∥2 and
∥an∥2 are fixed). 26

3.4 (a) an IRIS drone, (b) a simple simulation environment, (c) and (d) show the
results of the first and the second flight test respectively. The trajectory is shown
in the green line. 32

3.5 Our simulation environment and visualized data of results 33

3.6 Results of the test in a complex environment. (a) shows the point cloud of
the global map and the size of the obstacles from the top view, (b) shows the
Octomap from a side view. The trajectory is shown in the green line. 34

3.7 (a)-(c) curve of the three-axis coordinate position, flight speed, attitude angle
respectively; (d) curve of time cost of each part of the planner versus number of
points in Pclr. 35

3.8 (a) pie chart for the proportion of each iteration number; (b) the boxplot of time
cost for each iteration number. 36

3.9 The two scenarios in which the drone are most likely fail to find a free path . . . 36

4.1 Architecture of our autonomous navigation system for UAVs. 41

4.2 Process for point cloud filtering, coordinate transformation, and mapping. B
denotes the body coordinate and E is for the earth coordinate. 42

4.3 Local and global maps. 42

4.4 The map downsampling and obstacle inflating (k=3,h=2), and the path planning
in the stiched map. 44

4.5 A scenario where the 3D path is much shorter than the improved 2D path. 48

xiv

Figure Page

4.6 (a): A wall stands between psr and gl , the 3D path segment psrt psr is found.
(b): The discrete angular graph for (a), αres = 10◦. 48

4.7 Geometric illustration of the analytical solution of (4.6). The pink, dashed line
marks the Fermat triangle. 51

4.8 Visualized result during the numerical simulation. (a): only the sliding local
map is used, with the map size of 75 m*75 m, (b): the double layer map is used. 54

4.9 Simulation test 1 of the whole framework, (a)is the world in Gazebo, (b)-(d) are
visualized data in RVIZ. 57

4.10 (a)-(b) are the simulation world in Gazebo. (c)-(d) are visualized data of different
flights with different configurations in RVIZ, the final 2D map constructed by
the mapper is attached on upper left corner, and curve of velocity is attached on
lower right corner. In (c) and (d), the start point is marked in green and the goal
is in red, and it is reversed in (e) and (f) . 59

4.11 The visualized data in RVIZ. The Gazebo window when the flight test is ongoing
is shown at the lower right corner. The colorful dots is the point cloud of the
3D local map. The black blocks on the ground plane in RVIZ stand for the
obstacles, the white part stands for the free or unknown area. 60

4.12 The visualized results for the flight tests in Gazebo. 63

4.13 (a): Indoor environment for the hardware flight tests. (b): Explored map and
the drone trajectory after the hardware flight test in the static environment. . . . 66

4.14 Curves of the three-axis coordinate positions, flight velocities, and attitude angles.67

4.15 Two of the outdoor flight test environments. (a) locates in a campus and (b) is
at the sports corner in a park. 68

4.16 (a): Average time cost and the proportion of each submodule of MP. (b): The
time cost versus Pcluse size curves of each part of the PCP. 69

5.1 The composite picture of the simulation in Gazebo for the process that the drone
avoids static and dynamic obstacles. 5 screenshots are used for composition
and the cut time interval is fixed to 0.7 seconds. The line with an arrowhead
shows the moving direction and the numbers mark the corresponding frame, the
numbers increase over time. The yellow line is generated by the method in this
chapter, while the red line is by the static planning method. 73

5.2 The proposed system for the autonomous navigation in dynamic environments.
The positioning can be done by the outer motion capture system or onboard
VIO toolkit. 74

xv

Figure Page

5.3 The left figure shows a situation that two obstacles are mismatched. The
predicted cluster of obstacle 1 is closer than the predicted cluster 2 to the current
cluster of obstacle 2. By comparing the feature vector, the correct predicted
cluster for obstacle 2 can be matched for the current cluster, as shown in the
right figure. 76

5.4 The left figure illustrates the velocity estimation error caused by the self-
occlusion of the obstacle. vobs is the velocity ground truth. When the obstacle
approaches the camera, the visible part shrink, resulting in the relative displace-
ment between the point cloud center and obstacle centroid. The track point in
the right figure can reduce the velocity estimation error. The middle part of the
cluster is bounded by the green box. 78

5.5 Check if the current relative velocities towards each obstacle lies in the forbidden
area. In this figure, the relative velocity towards one dynamic obstacle and one
static obstacle all fail the collision check. The forbidden area is the projection
area (space) of the inflated obstacle AABB in the projection plane to the camera.
rsa f e is the inflating size. 83

5.6 The left figure explains the velocity planning for multiple forbidden pyramids.
We use a floor plan to better demonstrate the method. The right figure is a
forbidden pyramid for one obstacle in 3D view, four sides of the pyramid result
in four proposed relative velocity vectors. “Unreachable” refers to that a relative
velocity is out of the maximal velocity bound of the drone, which is detailed in
Fig. 5.8 . 84

5.7 The feasibility check of the relative velocity for one obstacle, as the supplemen-
tary for Fig. 5.6. The proposed relative velocity is checked if feasible for other
moving obstacles. In this figure, the left proposed relative velocity for obstacle
2 is also feasible for obstacle 1 (navy blue arrows), while the right one (green
arrows) is not. 84

5.8 The reachable check for the proposed relative velocities. vobs is moved to start
from pn, and the endpoint is the center of the spherical reachable set. The
possible relative velocity constrained by vmax towards this obstacle is included
in this set. Only the relative velocity vectors in the reachable set are chosen. . . 85

5.9 The proposed motion planning method. The objective function is designed
to minimize the time cost to reach the desired velocity and the distance from
trajectory endpoint pend to the path line. The solid yellow line represents the
predicted trajectory. 89

5.10 The filtering process for the raw point cloud. 90

xvi

Figure Page

5.11 (a): The simulation environment for the moving obstacles’ position and velocity
estimation test. (b): The visualized estimation results in RVIZ, corresponding
to (a). Only the forbidden pyramids for dynamic clusters are visualized. The
pedestrians always face their moving direction. It can be seen that the obstacles
are correctly tracked even though they are very close. 93

5.12 The box chart of the Euclidean distance of the feature vector f te() between
obstacles from OB1 and OB2. B, W, and R represent the moving Ball, Walking
and Running person in Fig. 5.11 respectively. The distance of the same obstacle
is obviously lower than that of different obstacles, so the obstacles are matched
correctly. 94

5.13 The estimation results of the moving obstacles’ position. The FOV of the
camera is represented with a light green area. The dotted line is the estimated
result, while the solid line is the ground truth. 94

5.14 The simulated test environment for the motion planning module. The drone
flies between the two points for the assigned times. The red arrows represent
the velocity vectors of dynamic obstacles. 96

5.15 The images from the onboard camera of the dynamic perception test scenarios
and the visualized results. Two pedestrians are walking among several boxes
and pillars. (a): The camera is fixed, for MOTA(a). (b): The camera is held by
hands and moving at around 1.5 m/s and 2.5 m/s, for MOTA(b) and MOTA(c)
respectively. 97

5.16 The dynamic hardware test environment. The aerial platform is introduced in
the upper right corner. The pedestrian walks directly through the area while the
drone is flying among the static obstacles. 99

5.17 The composed image of one of the hardware flight tests. The drone takes off
from the right side, and the goal is located at the left side, denoted by a green
dot. The numbers mark the corresponding frames, increasing with time. 99

5.18 The corresponding visualized data in RVIZ for the frames in Fig. 5.17 100

5.19 The time cost for different modules under different filtered point cloud size. . . 100

6.1 The flowchart of the whole navigation system. 104

6.2 Illustration of the displacement estimation method. The red grid is the peak
in the cross-correlation tensor, whose index represents the displacement of the
object. In this case, the displacement of the object from t1 to t2 is [−1,−1]lv. . 108

6.3 The relationship between depth standard deviation and the distance. This picture
is from the Intel official online document. 112

6.4 The flowchart of the re-planning framework 115

xvii

Figure Page

6.5 The process of trajectory optimization. Before the optimization (upper case),
the sample points on the trajectory (black dots) are found outside the SFC
(with yellow circle) and collides with dynamic object (with red circle). The
four trajectory samples correspond to the four predicted object positions. After
the optimization, the joint points (yellow dots) of the trajectory and the time
allocatinon T are adjusted to deform the trajectory and make it safe. 120

6.6 Illustration of the predicted dynamic objects’ position distribution and the
optimized trajectory. To make a clear expression, we put the 2D case. The
dashed boxes are the position distribution region for the dynamic obstacle (red
boxes with arrows) at some future timestamps. The blue curve stands for the
trajectory and does not consider the collision cost brought by the unpredictable
acceleration of moving objects, while the green curve does. 122

6.7 The importance of yaw planning. dt represents a short time period. 123

6.8 An example of the planning process. The nodes compose a graph, and at each
time sample, they are connected to the former layer (time sample) to maximize
the accumulated score in the dynamic programming way. The score inherited
from the parent node is marked in black, while the state transition score is in
blue and the object visibility score in green. The gray arrow starts from the
parent node to its child node. The chosen yaw path is marked by orange glow. 125

6.9 (a): The simulation environment for the moving object tracking and velocity
estimation test. (b): The visualized estimation results in RVIZ for the static
case, corresponding to (a). (c): The visualized results of the dynamic case, the
drone is controlled to follow an offline trajectory to traveling in the world. The
colorful boxes in the Rviz window represent the stored static points, the black
dots are the non-dynamic point cloud of the current depth map. 131

6.10 (a): Difference between the trajectories with and without the cost of dynamic
objects’ acceleration uncertainty in the trajectory optimization. The left figure
shows a case of multiple dynamic objects, and the right figure shows the single-
object case. (b): Visualized results of the perception-enhanced yaw planning.
The original FOV pyramids of the camera are represented in blue, and the
optimized FOVs are in red. Our method does not change the yaw at the initial
state, the FOVs are completely coincident at frame 0 and are shown in purple.
The left figure demonstrates an object moving from back to front, and the object
in the right figure is moving from left to right. The black numbers are the
sequence numbers, and the time gap between samples is 0.5 s. 134

6.11 The latency test window1. The digital clock is encoded into binary form, and
the program render the bits to screen. It then use Hough Transform to identify
sent bits in the latest frame from the camera (marked as black squares), and
calculate the latency. 137

xviii

Figure Page

6.12 The obstacle layout for indoor flight test in static environment 138

6.13 Two trials of dynamic object avoidance indoor flight test. The number on the
left upper corner of each subfigure mark the frame sequence as time increasing. 139

6.14 (a): The autonomous flight test in the grove. (b): The autonomous flight test
among the roadblocks. The arrows point to the direction to destination. 140

xix

ABBREVIATIONS

AABB Axis-aligned bounding box

AAC Autonomous aerial cinematography

API Application programming interface

BB Bounding box

DAS Discrete angular search

DAGS Discrete angular graph search

DBSCAN Density-based spatial clustering of applications with noise

EKF Extended Kalman filter

FFT Fast Fourier transform

FOV Field of view

fDSST fast Discriminative Scale Space Tracking

HAS Heuristic angular search

IMU Inertial measurement unit

JPS Jump point search

KCF Kernelized correlation filters

KF Kalman filter

MAV Micro Aerial Vehicle

MP Map planner

MOTP Multiple object tracking precision

MOTA Multiple object tracking accuracy

PCP Point cloud planner

PIV Particle image velocimetry

RMSE Root mean square error

ROS Robot operating system

xx

ROI Region of interest

RRT Rapidly-exploring random tree

SFC Safe flight corridor

SLAM Simultaneous localization and mapping

SOTA State-of-the-art

UAV Unmanned Aerial Vehicle

UUV Unmanned underwater Vehicle

VIO Visual-Inertial odometry

1

1. INTRODUCTION

With robotics developing from its birth to the present, an intention always stands unchanged:

people hope that robots can help humans undertake some heavy and dangerous work, such

as exploring dangerous and unknown environments [1]. Unmanned aerial vehicles (UAVs),

especially micro UAVs (MAVs), have become one of the best choices for exploring the

unknown environment because of their motion flexibility in space and flight stability. MAVs

enjoy a great advantage in price, portability, and environmental adaptability compared to

large UAVs, which are more welcome in many application scenarios.

For accomplishing such missions in challenging environments that are usually unknown

and chaotic, the capability of navigating with full autonomy while avoiding unexpected

obstacles is the most crucial requirement for MAVs in real applications. In addition, MAVs

always face rapid unexpected changes, while moving obstacles pose a greater threat than

static ones. Avoiding dynamic obstacles with limited onboard sensing and computing with

an efficient flight strategy is still an untackled challenge preventing MAVs from being

applied in complex real-world tasks.

To tackle this challenge, dynamic environment perception and motion planning methods

play the most vital role in the autonomous aerial system. The MAV should sense the

obstacle’s position, size and motion in time and give reliable results. The motion planner for

MAVs needs to constantly and quickly generate collision-free and feasible trajectories in

different scenarios, and its response time is required to be as short as possible. In addition,

the optimality of the motion strategies should also be considered to save the limited energy

of MAVs.

In this thesis, the primary consideration is to develop a complete and effective software

system for autonomous navigation in dynamic. We review and introduce our past works in

the scope of environment perception and quadrotor motion planning, from the perspective

of not only the methodology but also the system design and experimental validation. The

2

software system is specially designed for those cheap MAV platforms, which are usually

equipped with only one depth camera and weak computing power, and the limited sensing

and computing ability motivate most algorithms and technical approaches in the thesis.

1.1 Research problems and targets

1.1.1 Dynamic environment perception

Before planning, the trajectory planner needs to obtain information about environmental

obstacles to avoid them. In most related studies, obstacles are obtained by using two types

of sensors: lidar or depth binocular camera. Lidars are generally large in size and weight

and consume too much energy. Although lidars have higher detection accuracy and more

stable obstacle information, they are unsuitable for small drones. The detection accuracy of

the depth camera within a certain distance (0.5-8m) is sufficient for MAV obstacle avoidance

in most cases. However, the field of view is narrow and will likely lose obstacles. They are

supposed to be memorized for static obstacles to avoid collision when they are lost in FOV.

So we need to use the information obtained by the depth camera to build a map. For dynamic

obstacles, the motion estimation should have low latency because the depth camera can only

detect close obstacles, and the reaction time required for avoiding close moving obstacles

is short. Also, low sensing latency is necessary to catch the dynamic objects flashed by in

FOV.

Another important defect of the depth camera is its heavy noise. We need filters to

suppress the noise and design a dynamic obstacle tracking and motion estimation algorithm

which is robust to the depth noise. The movement of the camera, the narrow FOV, the heavy

noise, and the limited computing power make the perception of dynamic obstacles very

challenging for autonomous MAV with onboard vision.

3

1.1.2 Efficiently planning efficient trajectory

The planning algorithm for generating safe trajectory or motion primitives must be very

effective in computing. Since we focus on the autonomous flight in an unknown environ-

ment, which requires frequent replanning regarding the latest environment information, the

computing should be finished in a reasonable time before the vehicle reaches the state which

leads to an irreparable collision. Although many research works demonstrate successful

planning results in numerical simulation, there lacks the evidence to justify the computing

time cost, and they are doubtful to be capable for real-time tasks because the environmental

information is usually oversimplified in simulation. The real world contains irregularly

shaped obstacles, to precisely describe them, we typically use a pointcloud or voxel map.

However, the planning algorithms based on both two approaches require the operation with

a large amount of data for collision check. The pointcloud of one single frame from a

depth camera usually contains 100000-300000 points, and updating the map still requires

iterating each point and doing raycasting, though the collision check with the map is more

efficient than checking on a sparse pointcloud directly. Thus, the planning algorithm should

be efficient considering the environment information procession.

Under the premise of ensuring safety, planning an efficient trajectory is another essential

consideration. For completing the same navigation task, people always hope to reduce costs,

such as energy consumption or time consumption. From the view of the flight trajectory’s

shape, an efficient trajectory should be smooth (indicating the energy is not wasted) and

short (no detours, save time). However, finding a more efficient trajectory usually requires

more effort in computing, which presents a challenge in algorithm design. For our purpose,

the autonomous flight in dynamic environment with one depth camera, the influence from

motion planning to dynamic obstacle perception should also be considered. The dynamic

object’s motion can be estimated more accurate if the tracking duration time be longer, and

the position estimation of obstacle is more accurate at a closer distance, while the entire

body of obstacle is in FOV. The favorite distance from the vehicle to dynamic obstacle and

camera heading direction are also worth considering in motion planning.

4

1.1.3 System integration

Integrating all the algorithms inside the MAV onboard computer and achieving satis-

factory real-world autonomous flight is also worthy of attention. The localization is very

important for UAV’s navigation. Global Navigation Satellite System (GNSS) is only appli-

cable in the open field, its accuracy is much affected in the crowded urban area, and the

satellite signal will be completely blocked in close space. The vision-based localization

technique, such as visual-inertial odometry (VIO), has been prevalent in recent years, and it

has demonstrated robust performance after being applied to many systems. While lidar can

provide better localization accuracy and robustness, its high payload and price are beyond

the scope of this thesis. The RGBD camera, micro quadrotor platform, obstacle perception,

motion planning algorithm, and VIO algorithm make up our complete autonomous aerial

system. The most challenging part is running all the algorithms together on a tiny onboard

computer. Each algorithm should meet its real-time standard while sharing very limited

computing resources. The code of algorithms is developed with Robot Operating System

(ROS) to meet the requirement of parallel and asynchronous computing, and different sub-

modules of the system can be executed at their favorite frequency. During the algorithm and

code design, we always put emphasis on streamlining the unnecessary computing or data

copy and optimizing each submodule in computing efficiency. After the whole system is

integrated, the most cost-effective frequency setting of the sensors and submodules is also

worth studying.

1.2 Thesis overview

In the thesis, the author proposes a series of algorithms for both estimating the dynamic

obstacles’ states and planning the trajectory of the UAV to avoid static and dynamic obsta-

cles. In addition, a complete autonomous flight system is designed based on the proposed

algorithms and verified in simulation and real-world experiments, achieving safe navigation

in complex dynamic environments. The system is conceived to be practical for real-world

applications, and applicable for those micro unmanned platforms with very limited com-

5

puting resources and cheap sensors. In this thesis, flight safety of the autonomous MAV

system has an overwhelming importance level compared to other indicators, such as energy

or time cost. With regard to each submodule, flight safety can be decomposed into some

more specific indicators to be followed. For example, the motion estimation accuracy of

dynamic obstacles, the theoretical guarantee of trajectory safety, and acceptable computation

cost for an onboard computer are most important and the consideration is fulfilled in the

methodology in this thesis. In fact, optimality in energy or time cost is also contemplated,

but under the compromise to computation time cost.

To react to the rapidly changing environment, a vital consideration is utilizing a very

lightweight algorithm for local motion planning, thus the time cost for generating collision-

free motion primitives can be short enough for successful avoidance. We first propose

a very computational effective sampling-based motion planning method in Chapter 3. A

feasible sample point in 3D space is selected regarding safety and angular deviation from

the direction to the navigation goal. The feasible sample point acts as one constraint in the

non-linear optimization problem, the desired control input is solved to control the vehicle

through the sample point and meet other kinodynamic limits. The total computation time is

only about 15 ms, which outperforms the SOTA algorithms, and our method can avoid those

intruding obstacles in real-world experiments.

However, to autonomously fly in complex terrain, global path planning on a map is

important. Local planners may often fall into “traps” in the environment, such as a corridor

with a dead end, because only a narrow local part of environmental information is utilized

for planning. Therefore, in Chapter 4, we propose a map planner to find a sub-optimal path

in the large 3D map, combining it with the fast reactive local motion planner. The Fermat

point of a manually designed triangle is the local goal of the local motion planner introduced

above, smoothing the path and connecting the two planners. Since the local planner directly

works on point cloud which is of low latency, the system can react to the intruding obstacles

agilely, while resulting in a short trajectory in a global view.

Although a fast algorithm can help the drone react to environmental change and intruding

obstacles, it is not enough. If an object moves continuously at a comparable speed to the

6

UAV, the above local planner will fail because obstacles are still considered static in the

planner. At least the velocity of dynamic obstacles should be considered while planning

vehicle motion, and the collision can be avoided in advance. To safely avoid dynamic

obstacles, as well as save energy, in Chapter 5 we propose a velocity planning algorithm

based on the relative velocity between the vehicle and obstacles. The velocity is chosen

from samples, and it results in the relative velocities that are safe for each obstacle and is of

the minimum acceleration (energy) cost. The velocity of a dynamic object is estimated by

calculating the object’s displacement from two pointcloud frames with a certain time gap.

All computation is conducted online on the tiny onboard computer, and the method is tested

successfully in field experiments.

At last, in Chapter 6 we upgrade the autonomous fight system from each aspect to further

improve the dynamic object perception robustness, trajectory optimality, and flight safety.

In the original practice, we first estimate the velocity of all point clusters (objects), but

many static objects are often wrongly assigned a non-zero speed by the perception algorithm

because of the horrible depth noise from the RGBD camera, which will disturb the planner

a lot. So we first utilize an image-based object detector and classifier to find objects that

tend to be dynamic, and the point clusters are matched with the ROIs of dynamic objects on

the image. The velocity of objects is estimated by an improved and expanded PIV method,

which can address the wrong cluster match between two point cloud frames. In addition, the

trajectory planning is based on optimizing segmented polynomials and MINCO class, which

can result in a spatial-temporal optimal trajectory for avoiding both static and dynamic

obstacles. The acceleration uncertainty and object visibility are also considered in trajectory

planning.

In each chapter, we demonstrate the flight performance in both Gazebo simulation which

is very close to reality, and the real-world tests with our self-assembled MAV platform. At

last, the insufficiency of our proposed methods and the possible technical approaches for

improvement in this research field is discussed in Chapter 7.

7

Mathematical symbol announcement

For the reader’s convenience, the mathematical symbols in this thesis are defined in-

dependently in each chapter when they appear at the first time in this chapter, since we

introduce a complete system in each chapter. To fit the algorithms used in each chapter, the

symbols may be different in those chapters to represent a very similar concept, and please

refer to the definition in its current chapter.

8

2. LITERATURE REVIEW

2.1 Dynamic and static obstacle perception

2.1.1 Mapping the environment

It is required for hardware experiments to encode and utilize the information of identified

static impediments efficiently. In the majority of relevant research, point clouds are the most

commonly utilized format for expressing obstacle information. One strategy for employing

point clouds is just to utilize the most current sensor measurement data or to weight the most

recent data [2, 3]. In other words, these methods will not record obstacles that have moved

away from the camera’s field of view (FOV) [4, 5]. The alternative, which is also the most

typical practice, is to continually fuse a filtered point cloud into a map, generally in the form

of an occupied grid or distance field [6], and then do trajectory planning on the basis of the

grid map. When considering vehicle state estimation, many methods have been proposed

to convert the depth measurements generated by the onboard sensors into a global map.

Representative methods include voxel grids [7], Octomap [8], and elevation maps [9]. Each

method has advantages and disadvantages in a particular environment. The voxel grid is

suitable for fine-grained representation of small volumes, but the storage complexity is poor.

Elevations are suitable for representing artificial structures composed of vertical walls but

are less efficient in describing natural and unstructured scenes. Octomap is memory-efficient

when indicating an environment with a large open space. This storage structure is beneficial

for further utilizing maps for trajectory planning and has the function of automatic map

maintenance, which is convenient to use and has satisfactory results in both simulation and

hardware flight tests.

In the previous work [10], they use Octomap building on point cloud raw data to

develop their own method and gained satisfactory experimental results. In another way, in

9

order to reduce the computational time consumed by this step of building the map, some

researchers have directly planned the trajectory on the original point cloud. Lopez et al.

utilize the transformed point cloud for the collision check with trajectories corresponding

to the randomly generated motion primitives [11]. However, directly planning on the point

cloud requires high-quality point cloud information. This method is not suitable for drones

carrying a single depth camera if a global map has not been established.

2.1.2 Dynamic obstacle perception

Most researchers employ the camera’s raw image and mark the corresponding pixels

before measuring the depth to identify and track moving obstacles from the environment.

The semantic segmentation network with a moving consistency check method based on

images can distinguish the dynamic objects [12]. Also, a block-based motion estimation

method to identify the moving obstacle is used in [13], but the result is poor if the background

is complex. Some work [14]-[15] segment the depth image and regard the points with similar

depth belong to one object. But such methods cannot present the dynamic environment

accurately because static and dynamic obstacles are not classified. If only humans were

considered as moving obstacles, the human face recognition technology could be applied

[16]. However, the abovementioned works do not estimate the obstacle velocity and position.

A multi-purpose approach is proposed in [17], which jointly estimates the camera position,

stereo depth, and object detections, and tracks the trajectories. Some works adopt feature-

based vision systems to detect dynamic objects [18]-[19], which require dense feature

points. Also, detector-based or segmentation-network-based methods can work well in

predefined classes such as pedestrians or cars [20]. However, they cannot handle generic

environments. A similar dynamic obstacle perception approach to ours is proposed in [21],

but the tracking by detection method they used is still computationally expensive for micro

onboard computers, and the Intersection over Union (IoU) matching metric is not good

for dense scenes. Considering the onboard microcomputer’s limited resource, the above

image-based methods are computation-expensive and thus unable to run in real-time.

10

Based on the point cloud data, it is also possible to estimate the moving obstacles’

position and velocity in the self-driving cars [22]-[23]. However, they all rely on high-

quality point clouds from LiDAR sensors and powerful GPUs to detect obstacles from only

predefined classes. For enhancing the versatility, tracking point clusters with the global

feature has been proved as a practical idea in austere environments [24]. As for the point

cloud of a depth camera, the existing works are rare and they all match the obstacle by

only the center position of obstacles, depending on the Kalman filter to predict the status of

dynamic obstacles from past to present. However, this may fail when the predicted position

of one obstacle is close to other obstacles at present. Varying from them, we propose the

feature vector for each obstacle to tackle this challenge, and the matching robustness and

accuracy are improved a lot. Our method also can be run at a higher frequency with low

computational power. Event cameras can distinguish between static and dynamic objects

and enable the drone to avoid the dynamic ones in a very short time [25]. However, the

event camera is expensive for low-cost UAVs, and the high-quality depth information of the

obstacle may also rely on another depth camera because the generated events are sparse

[26].

2.2 Fast and feasible motion planning methods

After obtaining the environmental information, we can generate motion primitives and

perform the collision check with the obstacle’s information. Here we would like to mention

several most classical algorithms in motion planning in robotics. The artificial potential

field (APF) method [27] conceives that the goal point generates an “attractive force” on

the vehicle, and the obstacle exerts a “repulsive force”. The movement of the vehicle is

controlled by seeking the resultant force. Its expression is concise, but it is easy to fall into

the optimal local solution. The vector field histogram (VFH) [28] is a classical algorithm for

robot navigation with a lidar, improved from the APF method. VFH will calculate the travel

cost in each direction. The more obstacles in this direction, the higher the cost. The dynamic

window approach (DWA) is a sampling-based method that samples the motion primitives

11

within the feasible space and chooses one set by ranking them with a cost function [29]. The

concepts in these classical methods are of the excellent reference value and enlightening

significance for our algorithm. However, for a UAV with a single depth camera flying in an

unknown environment, they are not sufficient.

The related methods that appeared in recent years can be divided into two categories.

One is the hierarchical approach, composed of a front-end path planner and a back-end

trajectory or motion primitive planner. The path planner usually works in lower-dimensional

state space (SO(3) for UAV), and aims to robustly find a viable path in a short time. Then,

the back-end plans the vehicle’s states in higher order, such as velocity, and acceleration, to

generate a smooth trajectory while respecting the vehicle’s kinodynamic limits. The path

offers geometric constraints for the back-end. Another way is planning in the entire state

space and generating motion primitives, and usually, it is based on sampling.

2.2.1 Path planning

Before introducing the hierarchical approach, we should study the front-end path plan-

ning algorithms. For path searching of UAVs, the algorithms commonly used can be

classified into two categories: searching-based or sampling-based methods. Searching-based

methods discretize the whole space into a grid map and solve path planning by graph search-

ing. The graph can be defined in a 2D, 3D, or higher-order state space. Typical methods

include Dijkstra [30], A* [31], anytime repairing A* [32], JPS [33], and hybrid A* [34].

Dijkstra’s algorithm is the root of the above methods, which searches paths by utilizing

an exhaustive method on all the given grids. A* improves the efficiency by setting a cost

function to cut off the search away from the goal. As an improved version of the traditional

A*, JPS greatly reduces its time cost without sacrificing optimality in all cases. However, as

the path direction is constrained, the path is not the true shortest in the unconstrained 2D

map.

Sampling-based methods usually do not need to discretize the space first. In the repre-

sentative sampling-based approach, such as rapidly exploring a random tree (RRT) [35],

12

random and uniform sampling is performed from the space near the starting point, and the

root node and child nodes are continuously connected to form a tree that grows toward

the target. The RRT algorithm can effectively find a viable path, but it has no asymptotic

optimality, and its search will stay at the first feasible solution. Sampling-based methods

with asymptotic optimality include probabilistic road maps (PRM*) [36], rapid exploration

of random graphs (RRG) [37] and RRT* [37], where RRT* can make the solution converge

to the global best point with the increase of samples. RRG is an extension of the RRT

algorithm because it connects the new sample with all other nodes within a specific range and

searches for the path after constructing the graph. Based on RRT, the method in [38] cancels

the optimal control of time to ensure the asymptotic optimality of the path and kinematics

feasibility. Also, a belief roadmap can be combined with RRG [39] to solve the problem

of trajectory planning under the state uncertainty. A technique called “partial ordering”

balances confidence and distance to complete the expansion graph in the confidence space.

2.2.2 Hierarchical approach

The hierarchical approach first converts the obstacle information and the position of

the UAV in three-dimensional space into a local map. This map contains only the obstacle

information near the UAV, the global goal and the points of obstacles are projected in this

local map in some way. A static path planning algorithm is run on the local map, and the

motion primitives are obtained by solving the motion planning equations. For instance, [40]-

[41] built a local occupancy grid map with the most recent perception data and generated a

minimum-jerk trajectory through waypoints from an A* search.

In addition, you can also obtain motion primitives by solving an optimization problem

with other kinds of geometrical constraints except for the waypoint. Thanks to the convex

property of the Bezier curve, we can ensure that the final trajectory is collision-free by

setting constraints to the control points only, which is very effective in computing. The safety

corridor (SFC) is one popular technique for giving geometrical constraints in trajectory

optimization. It is composed of a set of simply-connected polyhedrons, the polyhedrons

13

connect end to end and cover the front-end path completely. The most crucial benefit of

SFC is the simplification of collision checks. We only need to check a position with several

polyhedrons instead of a large number of points in pointcloud. Mellinger et al.[42] first

systematically propose using corridor constraints to make the aircraft’s trajectory confined

to an interval of space, but they did not give a method to construct SFC. Deits et al.[43–45]

use a series of connected convex polyhedra to represent feasible spaces, describe the linear

inequality constraints restricting polynomial trajectories in polyhedra as a set of polynomial

sum-of-squares conditions, and use mixed integer second-order conic programming to solve

the distribution of each segment of the trajectory in different polyhedrons. [46] achieved

satisfactory results by utilizing SFC, the segmented Bezier splines are guaranteed safe

by protecting the control points inside the SFC. A similar approach can be fount in [47].

However, SFC is not necessary, the collision check of control points can also be achieved

with a voxel map by querying in a compact data structure [48].

As for time allocation for the segments of curves, an approximate method was used in

[47, 49], and a bi-level optimization was used in [50]-[51] to find the optimal time allocation.

2.2.3 Direct approach

The other method is skipping the map’s search paths and directly generating motion

primitives by sampling. Then, the evaluation function can be designed to select the most

suitable group of motion primitives as the output, which is very similar to DWA. Mueller et

al. present a representative work, even making the quadrotor catch a falling ball [52]. An

effective algorithm for state space sampling utilizing a model-based trajectory generation

approach is proposed in [53], demonstrating the potential of the state space sampling-based

method to adapt to real-time motion planning in a complex environment. One of the

great advantages of the sampling method is that it does not explicitly construct the exact

boundary of the feasible state space, but obtains discrete state points by sampling in the

continuous state space and connects them through the graph structure or tree structure

(the tree structure can also be regarded as a special graph structure) in order to explore

14

the connectivity of the feasible space efficiently. Therefore, it is mainly used to solve

the problem complexity caused by obstacle constraints. The most influential algorithm in

the state space sampling method should be kinodynamic-RRT* [54], which generates a

complete trajectory in the state space and has the asymptotic global optimality. In recent

years, many variants of kinodynamic-RRT* have been proposed to improve its computation

efficiency and be capable for real-time planning. Gammell et al.[55] proposed informed

RRT*, which proved that when there is an initial solution, the sampling that can improve the

quality of the solution is constrained in a high-dimensional ellipsoid, so direct sampling can

be carried out. Compared with sample rejection after uniform sampling, it greatly improves

the sampling efficiency, especially in high-dimensional space. Later, he proposed bit*[56],

ait*[57], Eit*[58], and other algorithms together with Sturb et al., which also use this feature

for adaptive sampling.

2.3 Global and local planning

In some environments where existing huge obstacles larger than the vehicle’s maximum

sensing range or the local planner’s horizon, the local environment information is no longer

enough for navigation. A planner working on a larger map will be helpful to guide the

local planner and avoid falling into local minima and flying blindly. In the last few years,

several research works discussed how to combine the optimal global planning algorithm

for static maps with the algorithm applied to real-time online replanning. The algorithms

can learn from each other’s strengths and weaknesses, i.e., working out a short path and

responding quickly to map changes for replanning the trajectory. For the existence of the

unknown space in the environment, several methods can be adopted: the unknown space

is regarded to be freely passable in [59, 60], and the path is continuously adjusted as the

obstacle information is updated. We call it the optimistic planner. In [51, 61], the optimistic

global planner and conservative local planner are combined to ensure the safety of the

aircraft. Tordesillas et al. [62] proposed a planning framework with multi-fidelity models

to diminish the inconsistency between the global and local planners. They run the JPS

15

algorithm on the local slide grid map, and the constraints of motion optimization were

divided into three parts according to the distance from the drone, where the most strict

constraints are for the closest area. With the large map and the navigation task request

moving a long distance, the sampling-based path searching methods (such as RRT) usually

find a feasible path faster than the graph-searching ones (A* or JPS). However, the resulted

path may be much longer than the optimal global solution. RRT* [37] with a maximal time

cost bound can be used in real-time planning and improve the path optimality, but there is

still much uncertainty in optimality. RRTX[63] should be a very effective solution for global

path fast replanning. It can replan the near-optimal path very fast when needed because it

refines and repairs the same search graph over the entire duration of navigation, instead of

regrowing the entire search tree. In addition, the authors demonstrate the fast replanning in

a dynamic environment, which indicate the broad prospects in UAVs’ application.

2.4 Planning safely in dynamic scenes

Several published works of autonomous UAV navigation systems have demonstrated

agile, reliable flights in a clustered static environment, and the motion primitives can be

solved in real-time [48, 64, 65]. In terms of the avoidance of moving obstacles for navigation

tasks, the majority of research works are based on the applications of ground vehicles. The

avoidance between multiple agents in the robot swarm is a similar problem, and the related

research appears earlier than the dynamic obstacle avoidance problem. The relative velocity

between agents (or between the local machine and other dynamic obstacles) is an important

clue, and Fiorini et al. first realized this and proposed the velocity Obstacle (VO) algorithm

[66]. The VO method assumes all other agents will not actively avoid the collision, and their

velocities are always constant. Van den burg et al. solve the shaking problem and propose

the reciprocal velocity obstacles (RVO) method in multiple agents navigation when two

agents actively avoid each other using the same VO method [67]. The forbidden velocity

map [68] is designed to solve all the forbidden 2D velocity vectors, and they are represented

as two separate areas in the map, thus the optimal velocity with minimum acceleration cost

16

for avoidance can be solved. Alonso et al. [69] further address the shaking problem when

multiple agents actively avoid each other, and the optimal velocity can be solved by linear

programming (LP) with a very light computation.

The artificial potential field (APF) method can avoid the moving obstacles by considering

their moving directions [70]-[71]. For UAVs, the model predictive control (MPC) method

is tested to be one feasible solution, but the time cost is too large for real-time flight [72].

The probabilistic safety barrier certificates (PrSBC) define the space of admissible control

actions that are probabilistically safe, which is more compatible for multi-robot systems

[73]. Recently, some global planners for UAV navigation in crowded dynamic environment

are proposed [74]-[75]. However, the states of all obstacles are known, they are not suitable

for a fully autonomous aerial platform. [76] utilizes the kinodynamic A* algorithm to

find a feasible initial trajectory first and the parameterized B-spline is used to optimize the

trajectory from the gradient. However, it does not optimize the flight time and does not

consider the inaccuracy of the constant velocity model while ours does.

The narrow FOV of a single depth camera is the stumbling block for the autonomous

vison-based navigation systems to perceive the environment. To save cost, reduce the

weight, and lighten the computation burden for the onboard computer, most researchers

choose to fix only one camera on the drone frame as the environmental sensor [48, 64].

A reasonable solution to make up for this defect is adjusting the vehicle trajectory while

planning the yaw to sense unknown space during the flight [77]. Later in [78], the object

visible capability of the planner is enhanced with the star-convex constrained optimization,

obtaining a spatial-temporal optimal trajectory. However, such approaches are all for the

static environment, we propose a different method to plan the yaw to enable the camera

to track dynamic objects more robustly. With the help of a mechanical gimbal, Chen et al.

[79] design an active-sensing-based UAV for obstacle avoidance. Instead of fusing multiple

sensors to enlarge the narrow FOV of a single depth camera, they mount the camera on

the gimbal and plan its heading direction while planning the trajectory of the vehicle to get

better sensing results of dynamic obstacles or unexplored areas. However, this increases

17

the mechanical complexity and brings extra load to the propulsion system, and we seek an

intelligent planning algorithm for those simple hardware platforms.

18

3. EFFICIENT SAMPLING-BASED MOTION PLANNING

3.1 Research Background

For autonomous flight in an unknown or even dynamic environment, we believe two

indicators are crucial for the motion planning algorithm. First, the future trajectory of the

vehicle should be guaranteed safe (or collision-free) from at least a theoretical view. Second,

the computation of the motion primitives should be very light so that even on tiny onboard

computers, the motion replanning can be finished in a very short time (a few milliseconds) to

react to intruding obstacles or sudden environmental change. Responding quickly enough to

the newly detected static obstacles, or even moving obstacles also ensures the vehicle safety

from another aspect. Suppose the planning algorithm is too complex and always takes a long

time when it is executed on board. In that case, collisions will occur when the UAV is flying

in an unknown and clustered environment. The updated environmental information may

contain a new obstacle close to the vehicle and occupies the originally planned trajectory,

and the complex algorithm may fail to solve the motion plan before the collision happens. In

addition, for accomplishing a variety of missions in challenging environments, the capability

of navigation to a user-defined goal is required. The goal should be considered in the motion

planning, so that the goal could be approached with the planned trajectory.

Because of the narrow view field of single depth camera on a UAV, the information of

obstacles around is quite limited thus the shortest whole actual flight trajectory is difficult to

achieve. Therefore we focus on the time cost of the trajectory planner and safety rather than

other factors such as trajectory length or entire energy cost.

In this chapter, we proposed such a computationally efficient obstacle avoidance tra-

jectory planner that can be used in unknown cluttered environments. This planner is

mainly composed of a point cloud processor, a waypoint planner with Heuristic Angular

Search(HAS) method and a motion planner with minimum acceleration optimization. Fur-

19

thermore, we propose several techniques to enhance safety by making the possibility of

finding a feasible trajectory as large as possible. The proposed approach is implemented

to run onboard in real-time and is tested extensively in simulation and the average control

output calculating time of iteration steps is less than 18 ms.

In the waypoint planner, we directly find the target point of the drone in the next step

on a sparse point cloud. Then in the motion planner, we solve the optimization problem to

obtain the motion primitives that the drone needs to perform at the next moment. In order to

reduce the amount of calculation for collision detection when searching for a waypoint, we

further streamline the point cloud of obstacles in the global map maintained by Octomap.

The degree of simplification is related to the drone safety radius rsa f e we set. Then, the

discrete angular search is used to simplify the collision detection to calculate the distance

from the point to the straight line.

3.2 Quick Responding and Safe Planner

(a) (b) (c)

Fig. 3.1.: (a) depth camera’s RGB output, (b) raw point cloud, (c) filtered point cloud(Pcl2)

As mentioned above, the collision check is the most time-consuming part of the trajectory

generation. To cope with this challenge, we introduce a Heuristic Angular Search(HAS)

method with a backup safety plan. The overall algorithm is presented in Algorithm 1, where

Pcl is the point cloud, Prec is the list where the planner record pn in each step, BE described

20

in (3.1) is the transformation matrix from body coordinate to earth coordinate, c() is short

for cos() and s() is short for sin(), φ ,θ ,ψ are Euler angles respectively. We describe Line

2-4 in section 3.2.1 and describe Line 5 in Section 3.2.2. Line 6-7 is described in Section

3.2.3 and Line 9 is described in Section 3.2.4. Overall, the outer loop can be executed at

55-100 Hz, considering the density of obstacles in the simulation tests.

Algorithm 1: our proposed planner
1: while true : do
2: Filter the raw point cloud data, output Pcl1
3: Transform Pcl1 in body coordinate (B) to Pcl2 in earth coordinate(E) by BE
4: Build a global map represented by point cloud Pcl3, filter again
5: Find the next waypoint wp by heuristic angular search
6: if found a feasible waypoint: then
7: Run the minimum acceleration motion planner to get motion primitives
8: else
9: Run the backup plan for safety, then go to line 5

10: Send the motion primitives to the UAV flight controller
11: Record the current position pn in list Prec

BE =


cψcθ sψcθ −sθ

cψsθsφ − sψcφ sψsθsφ + cψcφ cθsφ

cψsθcφ + sψsφ sψsθcφ − cψsφ cθcφ

 (3.1)

3.2.1 Processing the Point Cloud

The point cloud data obtained by a real depth camera is often noisy and too dense,

and the noise is greater on objects farther from the camera, as shown in Fig. 3.1(a) and

Fig. 3.1(b). This is inconvenient for converting the coordinate system of each point in the

point cloud and establishing a global map. First, we filter the original point cloud data

Pcl1 through three filters in order to obtain the point cloud data Pcl2 which is convenient to

store and recall. The algorithm of the filter and the point cloud after filtering are shown in

Algorithm 2 and Fig. 3.1(c). duse is a parameter. It can be seen that the filtered point cloud

21

data are more concise and tidy, retaining the basic shape of the obstacle. Then we convert

the point cloud into the earth coordinate system and use Octomap to build and maintain a

global map. In fact, it is tolerable as long as the gap between the midpoints of the point

cloud corresponding to an obstacle is not greater than the safe radius rsa f e of the drone. But

if you do this at beginning, the global map after fusion will be unavailable for visualization.

So we filter again after we obtain the point cloud of the global map, the algorithm is also

shown in Algorithm 2. q is one of the three axes’ value of a point in Pcl4, pw is the point in

Pcl4, Lq ∈ Rn×3 is the list of all points in Pcl4 and it is rearranged by the increasing q value

according to the order of x− y− z.

At last, we only use the point in Pclr for collision detection.

Algorithm 2: point cloud filter
1: Pcl1⇐ point cloud raw data
2: for pi in Pcl1 do
3: Remove pi which is further than 8m, keep only one point in a 0.2m voxel, remove

the outliers
4: Pcl2⇐ Pcl1
5: for pm in Pcl2 do
6: pm = BE pm + pn

7: Pcl3⇐ center points of Octomap, with Pcl2 input
8: Pcl4⇐ Pcl3
9: for q in x,y,z do

10: for pw
q in Lq do

11: if not ((pw
q −Lq(0,q))%rsa f e ≈ 0 or no element of Lq(:,q) in range of

[pw
q , pw

q + rsa f e]) then
12: Delete pw from Pcl4
13: Pclr⇐ Pcl4
14: for pt in Pclr do
15: if ∥

−−→
pn pt∥2 > duse then

16: Delete pt from Pclr
17: dmin = min(∥

−−→
pn pt∥2)

22

3.2.2 Heuristic Angular Search Method

Different from the previous work in which a complete path needs to be planned on the

local map, we only find a target point close to the drone as a guide for motion planning.

Because the overall planner’s calculation speed is quite fast, such a short predicted trajectory

is sufficient to refresh before the drone flight reaches its endpoint. As shown in Fig. 3.2, we

use the vector Ag = (αg,βg) to represent the angle of the navigation target pg relative to the

current position of the drone pn in E. Based on this, we define a series of line segments with

different endpoints Pd1-Pd4 in (3.2), and these line segments have a common endpoint pn.

Algorithm 3: HAS method
1: for i in {1,2,3,4} do
2: for αd in {0,∆α,2∆α...m∆α} do
3: if dPdi > rsa f e then
4: wp = µ(Pdi− pn)+ pn
5: Break all circle

Algorithm 4: collision check
1: for pt in Pclr do
2: if ∥

−−→
pn pt∥2

2 > ∥
−−→
Pdi pt∥2

2+∥−−−→Pdi pn∥2
2

3: or ∥
−−→
Pdi pt∥2

2 > ∥
−−→
pn pt∥2

2+∥−−−→Pdi pn∥2
2 then

4: dPdi = ∞ (Foot drop of pt is not on pnPdi)
5: else
6: dPdi =

∥
−−→
pn pt×−−−→pnPdi∥2∥∥∥−−−→pnPdi

∥∥∥
2

Algorithm 3 reveals the process of searching for waypoints. We simplify the calculation

of collision detection by calculating the perpendicular distance from a point to a line segment,

rather than the distance from the obstacle to the sampled curvy path [80]. The specific

process of collision checking is shown in Algorithm 4. In most cases in simulation tests,

collision detection can be done within 16 ms. The meaning of heuristic search is that the

starting point of the search is calculated according to the historical record of the results

obtained by this method and the current point cloud information, so as try to obtain an initial

23

value Ag0 which is the closest to the final search result, minimize the search time cost. The

initial value of Ag0 is calculated in (3.3) and (3.4), where ld is the detection radius of UAV

for obstacle avoidance check, µ is a relatively small coefficient with a value between 0.1-0.2.

Alast is the angle corresponding to the waypoint in the last step, nobs is the size of Pclr in the

current step and navr is the average of the size of Pclr over all past steps.

Pd1 = ld
(
c
(
αg0 +αd

)
,s
(
αg0 +αd

)
,s
(
βg0
))

+ pn

Pd2 = ld
(
c
(
αg0−αd

)
,s
(
αg0−αd

)
,s
(
βg0
))

+ pn

Pd3 = ld
(
c
(
αg0
)
,s
(
αg0
)
,s
(
βg0 +αd

))
+ pn

Pd4 = ld
(
c
(
αg0
)
,s
(
αg0
)
,s
(
βg0−αd

))
+ pn

(3.2)

Ag0 =

 Ag (others)

Alast (λnobs > navr)
(3.3)

λ =
times’ number for Ag = Alast in last 3 steps

3
(3.4)

3.2.3 Motion Planning

After obtaining the next waypoint wp, the next step is to calculate the motion primitives

(such as position p = [px, py, pz], speed v = [vx,vy,vz], acceleration a = [ax,ay,az]) and send

the command to the flight controller. Sending wp directly as the control command may

cause the flight to be unstable, and the acceleration magnitude may exceed amax. Because

wp may vary significantly between two continuous motion planning steps, the point cloud

quality is harmed when the drone acceleration magnitude is too large. In addition, the

position commands cannot control the speed. To ensure that the aircraft can fly within its

kinematic limits and reach the next waypoint, the motion primitives are generally obtained

by solving an optimization problem. In this way, the kinematic constraints of the drone

can be addressed by setting constraints [38]. We take the acceleration of the drone as the

variable to be solved, because compared with the use of jerk or snap, acceleration can be

24

(a)

(b) (c)

Fig. 3.2.: Illustration about angular search,(a) is a stereogram,(b) and (c) are the projection
of (a) to different plane. B− xyz presents the body coordinate. The number in the blanket is
the ordinal number of iteration, for example, 2(1) presents Pd2 with αd = ∆α .

25

directly sent to the flight control as a control command, and the computational load is less

while meeting the kinematic constraints and ensuring the smooth trajectory.

The optimization problem is defined in (3.5), where the subscript n presents the current

step in a rolling process of the whole planner, pstart is the position of the drone when the

planner starts to work [81]. vmax and amax are the kinematic constraints for speed and

acceleration respectively, tmax is the upper bound for the time which can be used to finish

the predicted piece of trajectory. ξ is the tolerance for the difference between the end of the

predicted trajectory and the wp, vn+1 and pn+1 are calculated by the kinematic formula.

min
an,tn

∥an∥2
2 +ηtn

s.t. p0 = pstart

0 < tn ≤ tmax

vn = ṗn

an = v̇n

∥vn+1∥∞
≤ vmax

∥an∥∞
≤ amax

∥pn+1−wp∥2 ≤ ξ

vn+1 = vn +antn

pn+1 = pn + vntn +
1
2

ant2
n

(3.5)

3.2.4 Safety Guarantee

Next, we demonstrate the safety of the trajectory and add additional measures to improve

safety based on the above method. As shown in Fig. 3.3, if the trajectory of the aircraft is a

straight line that coincides with pnwp in each step, then this line must be safe because it has

undergone collision detection check. However, considering the kinematic constraints of the

aircraft, the trajectory of the aircraft in each step is a curve. Assuming that the acceleration

an solved by the optimizer is in the same plane as the speed vn and the waypoint of the

26

drone at the current moment (so that it meets the optimization objective function), then this

curve is a parabola in this plane. When an is in opposite direction of vn, the deviation dmax

between the drone trajectory and line segment pnwp is the largest. It can be easily proven

since ∥vn∥2 and ∥an∥2 is constant.

We can get dmax by solving the optimization problem in (3.6), and we get a close form

solution in (3.7).

dmax = max

(
2∥vn∥2

2
∥an∥2

)

s.t.

√
2
∥∥wp− pn

∥∥
2

∥an∥2
+
∥vn∥2
∥an∥2

≤ tmax

(3.6)

dmax = 2∥vn∥2

tmax−

√
2
∥∥wp− pn

∥∥
2

amax

 (3.7)

Fig. 3.3.: Illustration of the relationship between dmax and the direction of vn (∥vn∥2 and
∥an∥2 are fixed).

The trajectory is safe when we choose parameters to make dmax < rsa f e.

On some occasions, such as when the obstacles are too dense or an obstacle suddenly

appears near the drone (distance is smaller than rsa f e), HAS will fail to find a feasible

direction. To solve this problem, the minimum braking distance dbkd =
∥vn∥2

2
2amax

at current

velocity vn is introduced. It can be proved always smaller than rsa f e. If the minimum

distance from the drone to obstacles is greater than dbkd , the search direction having the

maximum distance to the obstacles is chosen (although the distance is smaller than rsa f e).

27

Otherwise, the drone brakes immediately and flies back to the position at the former planning

step, and the chosen search direction of the former step will not be considered after the

drone has flown back in place. This measure is called the “safety backup plan.”

Besides, during the flight, when no feasible wp is found at the first run of Algorithm 3

we will change ld to a smaller one and try it again.

3.2.5 Improvements on the Motion Planner

(1) Streamline and Sequence the Input Pointcloud

In our previous work[82], we find that the execution time of the trajectory planner is

highly relevant to the size of the input point cloud Pclr. The collision check accounts for

a large proportion of the total time cost. Every point in Pclr is checked for a collision

in the loops. Once a point p1st in Pclr is first found to collide with the detecting line

segment, the collision check loops are terminated. Therefore, we hope to find p1st in a more

computation-efficient way to reduce the time cost.

Algorithm 5: Streamline the sorted Pclr
1: for pt in Pclr (j is the iteration number): do
2: if (∥pt− pn∥2 ≤ 0.5d f t or ∠p1st pn pg ≤ 90◦): then
3: Put pt in list Pcluse

4: if len(Pcluse)> nuse: then
5: Remove len(Pcluse)−nuse points in Pcluse randomly
6: else
7: Choose nuse− len(Pcluse) points from ∁PclrPcluse randomly, add them into Pcluse

By analyzing a large amount of recorded data of the motion planner in simulation and

hardware tests, we found the following statistical laws. Let pg denotes the goal position.

p1st has a larger probability to appear in the part that is closer to pn and pn pg (Pclr is first

sorted in order of increasing distance to pn). d f t is the farthest distance from pn to the

points in Pclr. For approximately 89.6% of all the recorded p1st , pn p1st ≤ 0.5d f t . For

approximately 81.3% of p1st , the angle ∠p1st pn pg ≤ 90◦. Thus, the part of Pclr that is

out of the highlight range (pn p1st ≤ 0.5d f t , and ∠p1st pn pg ≤ 90◦) can be streamlined. In

28

Algorithm 5, we streamline Pclr to remain within at most nuse points of it. len() returns

the list size. The point that is more likely to collide is stored in list Pcluse to have a higher

priority for being checked (line 3-4). When the number of points in Pcluse is more than nuse,

Pcluse is randomly sampled to limit its size. The limited size of Pcluse reduces and stabilizes

the time cost for the collision check. In addition, if nuse and rsa f e are reasonable, safety is

not compromised in extensive simulation and hardware tests.

(2) Improve the Motion Primitives Generation Efficiency

Previously [82], we considered the flight time to reach wp the optimization variable.

However, we found the solver may fail in the given number of iteration steps in some

cases. The solving success rate with an error tolerance 10−3 is approximately 83.7% within

40 steps. When the solver fails in several continuous motion planner steps, the planned

trajectory deviates considerably from wp, and the drone is very dangerous. Furthermore,

considering the requirement of low time cost for real-time computing, the maximal number

of iteration steps should be limited. The time variable increases the problem complexity, and

the flight controller does not require it. Therefore, the flight time can be removed from the

optimization variables and the optimization strategy (3.7) is proposed. It is slightly different

from that of [82], to improve the success rate and time cost.

min
an

∥an∥2
2 +η1∥−−−−→wp pn+1∥2 +η2

∥
−−−−→
pn p∗n+1×

−−−−→
p∗n+1wp∥2

∥−−−→pnwp∥2

s.t. vn = ṗn, an = v̇n

∥vn+1∥2 ≤ vmax, ∥an∥2 ≤ amax

vn+1 = vn +antavs

pn+1 = pn + vntavs +
1
2

ant2
avs

p∗n+1 = pn +2vntavs +2ant2
avs

(3.8)

In the revised optimization formula, we fix the trajectory predicting time to tavs. tavs

is the average time cost of the last 10 executions of the motion planner. The endpoint

29

constraint is moved to the objective function. The endpoint of the predicted trajectory need

not coincidence with wp. Because the execution time of the motion planner is always much

smaller than the planned time to reach wp, before the drone reaches wp, a new trajectory

is generated, and then the remainder of the formerly predicted trajectory is abandoned.

Predicting only the trajectory between the current step to the next step of the motion planner

is sufficient. Therefore, minimizing the distance between the trajectory endpoint at tavs and

wp is reasonable. Given that the current step run time of the motion planner may exceed

tavs, the distance from the trajectory endpoint at 2tavs to pnwp should also be optimized. The

subscript n presents the current step in a rolling process of the motion planner. vn ∈ R3

and an ∈ R3 are the current velocity and acceleration of the drone. vmax and amax are the

kinematic constraints for speed and acceleration, respectively, and vn+1, pn+1, and pn+1

are calculated using the kinematic formula. η1, η2 are the weight factors for the trajectory

endpoint constraint.

After the modification, the success rate with error tolerance 10−3 within 20 steps is

increased to 99.8%, and no dangerous trajectory deviation from wp can be detected. The

time cost of the motion planning and safety of the motion planner is greatly improved. We

adopt the revised optimization formula instead of the one introduced in section 3.2.3 in the

final version of this system.

As a result, the safety criterion changes and is detailed in (3.9) and (3.10).

dmax = max

(
∥vn∥2

2
2∥an∥2

)

s.t.

√
∥vn∥2

2 +2∥an∥2∥wp− pn∥2 +∥vn∥2

∥an∥2
≤ tavs

(3.9)

dmax =
∥vn∥2

2 t2
avs

4
(
tavs ∥vn∥2 +

∥∥wp− pn
∥∥

2

) (3.10)

30

3.3 Experimental Results

3.3.1 Experimental Configuration

Our proposed HAS-based trajectory planner was tested and verified in the Robot Op-

eration System (ROS)/Gazebo simulation environment. Gazebo is a simulation software

which can provide a physical simulation environment close to the real world. The model of

the drone we use in the simulation is IRIS, the depth camera model is Kinect V2, and the

PX4 1.7.4 firmware version is used as the underlying flight controller. Mavros package is

deployed for establishing the communication between our planner node and the PX4 control

module. The acceleration controller for tracking is provided by the PX4 module by default.

The point cloud filters are executed by C++ code and the other parts are executed by Python

scripts. All these timing breakdowns were measured using an IntelCore i7-8565U 1.8GHz

Processor. Table 3.1 describes the parameter settings of the planner in the simulation test.

To make the depth camera observe the environment more efficiently, we control the yaw

angle of the drone to keep the camera always heading toward the goal during the flight.

Table 3.1.: Parameters for simulation

Parameter Value Parameter Value
∆α 10◦ duse 3m
amax 4m/s2 rsa f e 0.8m

voxel size 0.2m vmax 3m/s
ξ 0.01m µ 0.1
ld 3m dmax 0.68m < rsa f e

tmax 0.5s η 1.2

Two flight tests of increasing difficulty are presented in section B and section C to show

the planning trajectory in 3D space and the time cost of each planning step. The obstacles

are not known a priori and are unobservable at takeoff.

31

3.3.2 Simulation Flight Test in a Simple Environment

The test results are shown in the Fig. 3.4. In the first flight, the starting point of the drone

is (0,0,0), and the red point indicates the navigation target point (12,0,1). After reaching

the target point, set the starting point change to (12,0,0) and the endpoint is set to (0,0,1),

then another test is performed. This is to test the drone’s ability to avoid obstacles in the

horizontal and vertical directions. According to the design of the algorithm, the drone will

choose the path with the smallest amount of angle change of the flight direction when the

obstacle can be avoided both horizontally and vertically. Because turning the drone too fast

will increase the noise of the point cloud data obtained by the depth camera and destroy the

established map, the attitude angle of the drone should be kept as smooth as possible.

The global 3D map and the flight trajectory of the drone during the flight are displayed

in RVIZ, as shown in Fig. 3.4(c)-(d). In the first flight, the drone first raised its height to

avoid the obstacles in the face of short obstacles and then chose to fly to the left to avoid the

higher obstacles. In the second test, the drone first chose to fly to the left and then chose

to continue to the left, because this minimizes the amount of angle change in the flight

direction.

3.3.3 Simulation Flight Test in a Complex Environment

In this test, we built a more complex simulation world as shown in Fig. 3.5. Due to

the limited space in the Chapter, we show only one flight’s results. The start point is set at

(12,0,0), the endpoint is set at (-12,0,1). The flight trajectory of the drone and the established

global map are shown in Fig. 3.5 and Fig. 3.6. After repeating the flight experiments 10

times, the detailed data of the trajectory and the average running time of each part of the

planner are shown in Fig. 3.7 and Fig. 3.8. Table 3.2 compares the calculation time of our

proposed planner to the state-of-the-art, where Cond.1 means Ag0 is fixed to goal direction,

and Cond.2 means all points in Pcl3 are used for collision check. PL(path length) factor is

the ratio of the whole path length to the straight distance from the start point to goal. It is

worth noting that the difficulty of the simulation tests in this table are different, we show the

32

(a) (b)

(c) (d)

Fig. 3.4.: (a) an IRIS drone, (b) a simple simulation environment, (c) and (d) show the
results of the first and the second flight test respectively. The trajectory is shown in the green
line.

33

data here for a preliminary comparison. We can see that our proposed planner has obvious

advantages in computational time, but the whole path length is longer than some of others’

works.

Fig. 3.5.: Our simulation environment and visualized data of results

Table 3.2.: Comparison with state-of-the-art algorithms.

Authors Time(ms) PL Factor Authors Time(ms) PL Factor
Zhou et al.[48] >100 1.56 Tordesillas et al.[83] >25 1.34
Liu et al.[40] >160 - Chen et al.[59] >34 -

Burri et al.[84] >40 1.78 This Chapter 19 1.48
This Chapter (Cond.1) 29 1.48 This Chapter (Cond.2) 42 1.44

In Fig. 3.7(b)-(c), the curve changes intensely near the end because the drone was

switched to position control mode when it is close enough(<0.3 m in this test) to the goal.

We can see from the boxplot that the number of iteration time in the angular search is the

major influential factor to the time cost. Fig. 3.8(a) shows that in most instances the HAS

method can work out the feasible solution with less than 3 steps, so the average step time

can be controlled within 20 ms. The time cost also relates to the number of input points to

some extent, which means we can decrease the time cost by simplifying the point cloud

(Pclr) in a more efficient way.

34

(a)

(b)

Fig. 3.6.: Results of the test in a complex environment. (a) shows the point cloud of the
global map and the size of the obstacles from the top view, (b) shows the Octomap from a
side view. The trajectory is shown in the green line.

However, in additional series of simulation tests, we found the proposed trajectory

planner may fail in two typical scenarios as shown in Fig. 3.9: a room with narrow exit and

a forest with dense and tall pillars. To improve the computation efficient, the collision check

is not performed in range of 360◦ on the point cloud. Although the drone returns to the last

recorded position when it fails to find a waypoint, it may fail to exit the room if the exit is

too narrow. In the dense forest, although the gap between the pillars allows the drone to

pass, considering the fixed rsa f e the drone can’t find a collision-free line segment under such

condition. In addition, there is still huge room for improvement by changing the code to

C++, improving the hardware of the simulation platform.

35

(a)

(b)

(c)

(d)

Fig. 3.7.: (a)-(c) curve of the three-axis coordinate position, flight speed, attitude angle
respectively; (d) curve of time cost of each part of the planner versus number of points in
Pclr.

36

(a) (b)

Fig. 3.8.: (a) pie chart for the proportion of each iteration number; (b) the boxplot of time
cost for each iteration number.

(a) (b)

Fig. 3.9.: The two scenarios in which the drone are most likely fail to find a free path

3.3.4 The Improvements in Optimization Formulation

To validate the improvements in the optimization introduced in equation (3.5), we

perform static tests with a large amount of data collected from simulation flight tests. We

record all the required data for solving the optimization problem, including pn, vn, and wp,

at each step (over 5.3×104 steps in total). To validate the improvements of the optimization

formula, the collected data is input to the original optimization formula (3.5) and the

improved one (3.8) for comparison. In addition, the optimization solving performance under

37

different maximum iterating numbers is studied. The average time cost and overall success

rate are counted for quantitative comparison. In Table 3.3, Rog and Tog are the solution

success rate and the average time cost of the original optimization formula, respectively, and

Rim and Tim are for the improved version. We can see that the success rate and time cost are

greatly improved. When the maximum step is more than 20, the success rate improvement is

minor. Because 99.83% is a satisfactory success rate, we set the maximum step number as 20

to reduce the time cost. The motion optimization problem-solving time decreases by 39.33%

compared to that of the original formula. For the improved optimization formulation, we

choose η1 = 40, η2 = 10.

Table 3.3.: Test results for the improvements of optimization formula

Max steps Rog (%) Rim (%) Tog (ms) Tim (ms)
5 41.51 89.12 3.24 2.12

10 61.14 95.49 4.87 2.94
20 76.87 99.83 6.56 3.98
40 83.68 99.96 9.45 5.23
80 92.15 100.00 14.78 5.61

3.4 Conclusion

This work presented a trajectory planner’s framework based on the HAS method, for

safe and quick responding flights in unknown environments. The key properties of this

planner are that it uses a direct waypoint search method on a simplified point cloud to reduce

the time cost and the safety is ensured by restricting dmax < rsa f e by setting parameters and

compromise on vmax and ld when necessary. Our proposed planner was tested successfully

in different simulation environments, achieving the average step time cost within 18 ms. The

time cost is believed to be able to achieve a better level on a higher performance hardware

platform with C++ code. In conclusion, the main contributions of this chapter are:

38

• The combination of a streamlined point cloud of global Octomap and the heuristic

discrete angular search makes the computation load of finding a collision-free path

much lighter. It improves the efficiency by generating waypoints directly on the point

cloud rather than building a grid map and running a static path planning algorithm(such

as A* or JPS) on the grid map afterward.

• The collision check can be removed from the motion planning part due to the intro-

duction of rsa f e and the constraint of maximum speed and acceleration of drone, the

drone’s position can be well constrained in the free space between the execution time

of two contiguous steps of the trajectory planner.

• We propose three techniques to guarantee safety in the autonomous flight based on

the mentioned method. Simulation experiments in ROS/Gazebo showing agile flights

in completely unknown cluttered environments, with maximal average control output

calculating time of iteration steps less than 18 ms.

We also test this local motion planner in real world with a self-assembled quadrotor

platform, the results are shown in Chapter 4 where it is connected with a global path planner

to build a more versatile system.

39

4. PARALLEL NAVIGATION FRAMEWORK FOR FLIGHTS IN
COMPLEX TERRAIN

4.1 Research Background

Minimizing the reaction time towards environment change often requires direct planning

based on the raw sensing data instead of planning on the periodically updated map, and

therefore, it is difficult to handle complex environments. The UAV is more likely to detour,

resulting in an inefficient flight trajectory. Nevertheless, to respond to emergencies, planning

on the map may not be sufficiently fast. Mapping and planning on the map cost too much time

to avoid the intruding dynamic obstacles. The drone must be able to avoid sudden obstacles

in the unknown environment before the map is updated. Thus, to achieve autonomous

unmanned aerial vehicle (UAV) navigation in unknown and complex environments, we

should combine the two kinds of planner (point cloud planner and map planner) together in

a reasonable way. In this chapter, we propose a framework in which a low-frequency path

planner and a high-frequency reactive motion planner work in parallel. It makes the drone

follow the solved path on map and can avoid the suddenly appearing obstacles nearby.

Considering the path planning on map, two important indicators are usually considered

except safety: path length, and calculation time for replanning. However, regarding path

length and calculation time, most researchers have only focused on one of the two factors

because of the potential conflicts between them. In other words, calculating a shorter global

path is always more time-consuming.

In addition, calculating the shortest path in the global 3D map consumes too much time

and is not applicable to real-time planning. Although we do not expect the path replanning

time cost very short, it should be up-to-date with the map. While flying in an unknown

environment, the environmental information sensed by the drone is continuously used to

update the map. After the map is updated, if the planned path cannot be replanned in time,

40

the flight of the drone will be greatly imperiled. Therefore, for real-time calculations during

drone flight, using a local map (the part of the global map around the location of the drone)

is a common and effective method. Moreover, drones in unknown environments usually

do not have a complete map, which means that the globally shortest path is difficult to

plan. Admittedly, planning the globally shortest path with only a local map is impossible,

shortening the path in the local map will also contribute to shortening the final flight path

length. The computation complexity of the path planning should also be optimized. Because

we should consider the limited computing resource of the onboard computer and the path

planning node shares the resource with many other running nodes, including the VIO

(localization), mapping, and point cloud planner.

To optimize the computation, we propose several techniques. Because path planning

with a 3D map is also expensive, the map planner (MP) first determine the 2D path to the

local goal with the improved jump point search (JPS) method on the projection map. The

double-stage 2D path planning is done with a downsampled coarse 2D map first and then on

a fine map to balance the path length and computation cost. Then, a discrete angular graph

search (DAGS) is used to find a 3D path that is obviously shorter than the 2D one. If the

shorter 3D path is found, it is adopted. Otherwise, the 2D path is output.

To summarize, we propose a framework in which a low-frequency path planner and

a high-frequency trajectory planner work in parallel. The designated goal is cast to the

local map as the local goal. The map planner is used to determine the local goal for the

pointcloud-based motion planner. The point cloud planner (PCP) for trajectory planning

is based on the design in our previous work [82]. With a given goal, the PCP generates

collision-free motion primitives continuously in a computationally efficient way to navigate

the drone. In this parallel framework, it calculates the goal from the path output by the MP.

In addition, we introduce the calculation formula for obtaining the goal for the PCP from

the waypoints in the path. One benefit of the local map is that the computational time for

the path planning on the map will not increase with the global map size. The path output

frequency and the computational resource usage are guaranteed in a specific range to ensure

that the loop frequency of the PCP is unaffected, and the MP can respond to the map change

41

in time. In this framework, all the submodules are designed to minimize the time cost. For

UAVs’ real-time planning, it is safer when the planning outer loop frequency is higher.

4.2 Mapping and the Map Planner

The flight system architecture is shown in Fig. 4.1. The MP obtains the map from

the mapping kit and plans the final path as the reference, and the PCP searches the next

waypoint based on the final path and optimizes the motion primitives to make the drone fly

through the next waypoint.

Fig. 4.1.: Architecture of our autonomous navigation system for UAVs.

This section primarily introduces the construction of a stitched map with two resolutions

and the algorithms used for path planning in the local map (the MP). The PCP will be intro-

duced in section IV. Moreover, the point cloud filter for the raw sensor data preprocessing is

introduced at the beginning.

4.2.1 Point Cloud Filter

The dense raw point cloud from a real depth camera may overburden computational

procedures, and the contained heavy noise will mislead the mapper to mark many nonexistent

obstacles on the map. Before building a map, we filter out the noise in the point cloud and

keep the actual obstacle points, as is shown in Fig. 4.2 and Algorithm 2. Pcl2 is the filtered

point cloud in the Earth coordinate system, and we input Pcl2 to the mapping kit to build

42

and maintain a global map. Finally, the center points of occupied voxels are used as the 3D

map for the collision check, referred to as Pclm. Pclm well retains the basic shape of the

obstacle in a more concise and tidy form.

At last, Pcl2 is used for the map building and collision check in the PCP, and Pclm is

used for the 3D path collision check in the MP.

Fig. 4.2.: Process for point cloud filtering, coordinate transformation, and mapping. B
denotes the body coordinate and E is for the earth coordinate.

Fig. 4.3.: Local and global maps.

4.2.2 Mapping and 2D path planning

The mapping kit MLmapping1 assembled in this project is self-developed. It provides

Pclm and the projected 2D grid map for the path planning in this chapter. Here, we first

1https://github.com/HKPolyU-UAV/MLMapping

43

introduce the basic concepts of the local map. A local map is a subset of the global map and

is also presented by voxels’ center points. The space covered by the local map is a cuboid

with a square bottom surface, and it has no relative rotation to the global map. As shown

in Fig. 4.3, lms is the square side length, and hms is the local map height, which is much

smaller than lms. The center of the local map follows the drone’s current position pn ∈ R3.

The local goal gl ∈ R3 is assigned in a receding horizon way, while g′l is the goal in 2D map

Map1. We use Pcllm to represent the subset of Pclm corresponding to the local map in the

text below. Only the points at the similar height (height difference < rsa f e) with the drone is

projected to obtain the 2D map Map1 for planning the 2D path. rsa f e is the pre-assigned

safety radius, and will be further introduced later.

To plan an optimal path on Map1, JPS is one of the best choices, because it is fast

and can replan the path in real-time. JPS outputs the optimal path by searching a set of

jump points where the path changes its direction. However, two problems arise if the path

planning is performed directly on Map1. First, to find a short and safe path, the local map

scale should not be small. Otherwise, the optimal path on a tiny local map is more likely to

end at a blind alley or differs substantially from the globally optimal path. However, a large

local map is computationally expensive, and it is important to leave as much CPU resource

as possible to the high-frequency PCP for safety. Second, the path planned directly on Map1

is adjacent to the obstacle projection. In our framework, considering the drone frame size

and flight control inaccuracies, the drone must remain at a safe distance from obstacles.

Thus, the path should remain a certain distance from obstacles. The PCP will make the

drone closely follow the path obtained by the MP. When the path is found to be occupied,

the PCP starts to take effect. As a result, the PCP in this framework can run faster compared

to that of [82], because the initial search direction is more likely to be collision-free.

In our framework, we take two measurements to address these two problems. For the

first problem, we plan the path on the downsampled local map and the cast local map,

respectively, and fuse the paths as shown in Fig. 4.4. The dark gray grids indicate the

obstacle, and the light gray grids are the obstacle’s inflation after the convolution. The

path planning start point is the center of Map1 and Mapc. We first conduct the convolution

44

Fig. 4.4.: The map downsampling and obstacle inflating (k=3,h=2), and the path planning in
the stiched map.

45

with Map1 to reduce the map size and obtain a low-resolution version Map1b from Map1

(Fig. 4.4, top right). Mapc is segmented from Map1 afterward as the original resolution

map around the drone (Fig. 4.4, bottom left). Then, we plan Pathb on Map1b and find the

intersection point gist of Pathb and the Mapc boundary (Fig. 4.4, top right). The part of

Pathb that lies in Mapc is removed. Finally, we use gist as the goal point to find the path

Patha in Mapc, and splice Patha and Pathb to form a complete path Path1 = { jp1, jp2, · · ·}

(Fig. 4.4, bottom right). The grid size of Map1b positively correlates with the map size, so

the time cost of 2D path planning can be controlled.

For the second problem, after we have obtained Mapc, we first perform an expansion

operation on the obstacles in Mapc. Using a convolution kernel to convolve the binary

matrix corresponding to Mapc, the blank area next to the obstacle in the map can be marked

as an obstacle so that each point on Path1 maintains a certain distance from true obstacles.

Map′1 =

 [Map1]i× j [0](i+s)×s

[0]s× j

 (4.1)

Map′c =


[0]k×(n+2k)

[0](m+2k)×k [Mapc]m×n [0](m+2k)×k

[0]k×(n+2k)

 (4.2)

Mapc = Sgn(Conv1([Map′c](m+2k)×(n+2k), Ik×k)) (4.3)

Map1b = ⟨Convh([Map′1](i+s)×(j+s),
Ih×h

h2)⟩ (4.4)

h = ⟨ i j
2mn
⟩ (i j > 3mn & (i+ s) is divisible by h) (4.5)

Equations (4.1)-(4.4) show the calculation of the downsampling and inflation. i and j

denote the size of the original Map1 (i = j), and m and n denote the size of the cut map

Mapc (m = n). We use [] to present a matrix, and the subscript of the matrix denotes

its size. [0] indicates the zero matrix. s is the line and column number for zero padding

for Map1. h and k are the convolution kernels’ size for map downsampling and obstacle

inflation, respectively. Sgn() is a function that returns the sign matrix corresponding to each

46

element in the input matrix. The sign matrix is used as the binary map with two types of

elements: 0 and 1. Conv() indicates the convolution, and it inflates the occupancy grids

on the map or downsamples Map1. Its subscription indicates the step size for the kernel

sliding, and the second element is the convolution kernel. ⟨⟩ is for rounding the number to

the nearest integer. If a matrix is in ⟨⟩, it rounds each element in the matrix. (4.3) represents

the obstacle inflation process, and (4.4) is for the map downsampling. Fig. 4.4 illustrates the

map processing and path planning intuitively. The deep gray grids represent the obstacles,

and the light gray grids are the inflation of obstacles after the convolution. gist is represented

in blue on the maps. When gist is occupied after the inflation, we find the nearest free grid

on the map edge as the new gist . The calculation of h is introduced in (4.5), and i, j, m, n, s

should meet the conditions in the bracket.

4.2.3 Improved 2D path

In section III.B, a path Path1(jp1, jp2, ...) on a plane parallel to the ground plane XY

is found using the JPS method in the hybrid map of Map1b and Mapc. However, in some

cases, it is not the shortest path in the plane, as search directions of waypoints can only

be a multiple of 45◦. We can further optimize the original path by deleting the redundant

waypoints. For example, in Fig. 4.5, the red path is the original path, the green path is

the improved path, and jp2 and jp4 are deleted. The deleting process can be written in

Algorithm 6. ti is the iteration number, jpck is the ckth point in Path1, and the same for

jpti. We connect the third point in the original JPS path with the first point and check if the

line collides with the occupied grid in the map. If it does not collide, the point before the

checked point in the waypoint sequence of the original JPS path is deleted. The first and

third points can be directly connected as the path. Then, the next point will be checked until

all the point pairs (the two points are not adjacent) from Path1 are checked, and all excess

waypoints in Path1 are removed. The simplified Path1 is composed of { jp′1, · · · , jp′N}.

47

Algorithm 6: Optimize the original JPS path
1: for jpck in Path1 (ck is the iteration number): do
2: ti = ck+2
3: while ti < len(Path1) and len(Path1)> 2 do
4: if jpck jpti does not collide with the occupied grids in the 2D map: then
5: ti = ti−1, delete jpti from Path1

6: ti = ti+1

4.2.4 Shorter 3D path searching

After an improved 2D path is found, we notice an obviously shorter 3D path in some

scenarios. For example, to avoid a wall, which has large width but limited height, flying

above the wall is better than flying over a bypass from right or left. To search for a

shorter 3D path with light computation, a generalized method DAGS for all environments

is described in Algorithm 7, Fig. 4.5, and Fig. 4.6 in detail. It is composed of N rounds

of search (N is the number of points in the simplified Path1), and each round determines

one straight line segment to compose the 3D path. At the beginning, Pcllm is divided into

N parts {Pcl1
lm, · · · ,PclN

lm}, the perpendicular projection of Pcl1
lm on pngl falls between the

projection of pn and jp′1, and so on. As shown in Fig. 4.5, the first segment is pnt p1, the

second segment is t p1t p2, and pn−t p1−t p2−gl represents the shorter 3D path. αres is the

angular resolution of the discrete angular graph. Ag(αg1,αg2) is the angular part of the

spherical coordinates of gl , and the origin of the spherical coordinate system is psr for each

search round. min() is a function that returns the minimal value of an array.

Here, the procedure for the first round of the search is briefly introduced, and the follow-

ing rounds are basically identical. First, the discrete angular graph is built by Algorithm 7,

line 3-8, as shown in Fig. 4.6(b). ⌊ ⌋ returns the integer part of each element of the input.

The angular coordinate in the graph is the direction angle difference between the goal gl

and any point in the space. The colored grids represent all the discrete angular coordinates

A′mid corresponding to the input point cloud. Then, the relative direction angle Aeg for pnt p1

is found (line 9), which has the minimal angle difference with −−→pngl (the yellow grid in Fig.

4.5 and Fig. 4.6). Next, the length of path segment pnt p1 is determined in line 10, and the

48

Fig. 4.5.: A scenario where the 3D path is much shorter than the improved 2D path.

(a) (b)

Fig. 4.6.: (a): A wall stands between psr and gl , the 3D path segment psrt psr is found. (b):
The discrete angular graph for (a), αres = 10◦.

direction angle of this path segment in earth coordinate E−XYZ is calculated by line 11.

αsa f e is the angle increment to make the path segment remain a safe distance from obstacles.

Finally, the coordinate of the endpoint of this path segment is calculated in line 13.

If the 3D path is found by Algorithm 7, it is compared to the optimized Path1, and

the path with the shortest length is denoted as Path f nl . Subsequently, the drone follows

Path f nl , and the MP is suspended until Path f nl collides with the obstacles in the updated

map. For any obstacles stand between two waypoints of the 2D path Path1 despite the shape

of each, we always find a free grid on the angular graph (4.6 (b)) unless the origin point

49

Algorithm 7: DAGS method
1: for sr in [1,N] (sr ∈ N is the searching rounds number) do
2: If sr = 1, psr = pn, otherwise psr = t psr−1
3: The angular coordinate of −−→psrgl → Ag(αg1,αg2)
4: for each point pmi in Pclsr

lm: do
5: The angular coordinate of pmi→ Ami
6: Calculate the angle difference Ami−g = Ami−Ag
7: A′mi−g = ⌊Ami−g/αres⌋ (Discretize Ami−g), build the discrete angular graph (Fig.

4.6(b)) with A′mi−g

8: The edge of all A′mi−g in the angular graph→ Aeg−all , Aeg ⊂ Aeg−all and
∥Aeg∥2 = min(∥Aeg−all(1)∥2,∥Aeg−all(2)∥2, ...)

9: Points in Pclsr
lm corresponding to Aeg→ Pcleg, peg ⊂ Pcleg and peg has the maximal

distance to psrgl , lt p = pn peg

10: Get the direction angle of −−−−→psrt psr, At p = (∥Aeg∥2 +αsa f e)
Aeg

∥Aeg∥2
,

αsa f e = arcsin(rsa f e/lt p)
11: t psr = psr + lt p(cos(At p(1)),sin(At p(1)),sin(At p(2)))

psr in the search is tightly surrounded by obstacles in all directions (can not get out by

straight movement). Our proposed DAGS method is only a backup plan in MP, and it is

not designed to always result in a 3D path, but it sacrifices completeness to obtain more

computation efficiency. We assume the application scenarios of this system are common

places for human ground activities, and it is not forced to go through narrow holes or gaps in

the ceiling or floor. So 2D paths should exist for most navigation tasks, and MP still works

by providing the 2D path planner’s result if the 3D one fails. Even if both the 2D and 3D

planner fails, PCP can still drive the drone to avoid nearby obstacles while pursuing the

sliding local goal along the last final path (safety of the guidance path will not affect PCP’s

avoidance) until it reaches the final goal.

4.3 Complete Navigation Framework

This section will introduce how the goal gn is generated from Path f nl for the PCP’s

current step n, and the complete navigation framework. First, the discrete angular search

(DAS) method specifies the safe waypoint wp ∈ R3 in free space (see Chapter 3), which

50

the drone should traverse. The motion planner solves the optimization equation to make

the drone pass through wp under the given motion constraints. The PCP also includes an

additional safety measure to ensure that no collision will occur, which works when no wp

can be found in an emergency.

4.3.1 Connection between the PCP and MP

For the PCP, an updated goal point gn is always required at every step n. −−→pngn is the

initial search direction. If this direction does not collide with any obstacles, the planned

trajectory will head to gn directly.

The final path Path f nl = [pt1, pt2, ...,gl] is received from the MP (Path f nl dose not

include pn), and an optimization problem (4.6) is designed to find the current goal gn. It

is designed to make the final trajectory smooth by sliding gn continuously. If pt1 is simply

assigned as gn, gn will jump to pt2 as the drone approaching pt1. This result may cause

wp to also jump with gn and cannot be reached within the drone’s kinematic constraints.

The drone should start to turn earlier to avoid a violent maneuver, which leads to a greater

control error and undermines safety. The endpoint of the planned trajectory remains near

Path f nl under the premise of safety assurance.

min
vt

∥vt
∥v0∥2

∥vt∥2
− (pn + v0)∥2 +∥vt−κ1a1∥2 +∥vt−κ2a2∥2

s.t. a1 = pt1− pn, a2 = pt2− pn, vt =
−−→pngn

(4.6)

In (4.6), the three components are the acceleration cost, the cost of pt1, and the cost of

pt2. pn is the current position of the drone, and v0 is the current velocity. vt presents the

initial search direction of the local planner. rdet is the search range radius for the DAS. κ1

and κ2 are the weight factors for adjusting the influence of pt1 and pt2 on vt , and κ1 is much

larger than κ2. Fig. 4.7 intuitively demonstrates the initial search direction vt for the PCP,

drone position, and waypoints on Path f nl . The green, dashed line displays the rough shape

of the trajectory if the PCP does not check for a collision and wp is always on pngn. We can

see from (4.6) and Fig. 4.7 that as the drone approaches the next waypoint pt1, the influence

51

Fig. 4.7.: Geometric illustration of the analytical solution of (4.6). The pink, dashed line
marks the Fermat triangle.

on gn from a2 overwhelms a1. When the drone is far from pt1 and pt2, a1 is the governing

influence factor of vt . We can also reduce the difference between the trajectory and Path f nl

by regulating κ1 and κ2. If only one waypoint gl remains in Path f nl , pt1 = pt2 = gl .

Solving a nonlinear optimization problem, such as (4.6), is computationally expensive.

From a geometric point of view, the nature of (4.6) is to find a point (vt) in the space with

the minimal total distance between three fixed points (κ1a1 + pn, κ2a2 + pn, v0 + pn). The

triangle composed of these three points is called a Fermat triangle. It can be solved by

locating the Fermat point fm of the triangle, as shown in Fig. 4.7, and gn = fm. The

calculation of fm is illustrated in (4.7). First, the plane coordinates (x f 1,y f 1), (x f 2,y f 2), and

(x f 3,y f 3) in the plane Pf m for the three points are determined (Pf m is the plane defined by

the Fermat triangle). S f m is the area of the triangle. l1 is the length of the side opposite to

the triangle point (x f 1,y f 1), and so on. f ′m(x f m,y f m) is the coordinate of fm in plane Pf m.

Finally, f ′m is converted to E−XYZ to obtain fm.

52

x f m = (
3

∑
i=1

x f i(4S f m +
√

3l2
i)+g(y))/ fSl

y f m = (
3

∑
i=1

y f i(4S f m +
√

3l2
i)+g(x))/ fSl

g(x) = [x f 1,x f 2,x f 3][l2
3− l2

2 , l
2
1− l2

3 , l
2
2− l2

1]
T

g(y) = [y f 1,y f 2,y f 3][l2
3− l2

2 , l
2
1− l2

3 , l
2
2− l2

1]
T

fSl = 12S f m +
√

3(l2
1 + l2

2 + l2
3)

(4.7)

4.3.2 The whole framework

To summarize, Algorithm 8 shows the overall proposed framework. The two planners

(MP and PCP) are designed to run in ROS parallelly and asynchronously because of their

large difference in operation time and share all the data involved in the calculation via the

ROS master node. In addition, the point cloud filter and the mapping kit are run in parallel

on different threads.

4.4 Test Results

In this section, the static tests and real-time flight tests are introduced to validate the

effectiveness of the methods in our proposed framework.

4.4.1 Algorithm performance static test

Our detailed algorithms and methods are designed to obtain an undiminished or much

better path planning performance with a decreased or slightly increased time cost. To

prove our proposed algorithms’ effectiveness, we first individually test them offline with

static data input. This approach can avoid the influence from the fluctuations in computing

performance caused by other simultaneously running algorithms when one algorithm is

analyzed. Moreover, the data can be customized, so the tests are more effective and targeted.

In this subsection, all the time costs are measured on a personal computer with an Intel

53

Algorithm 8: our proposed framework
1: while true: (Thread 1) do
2: Filter the raw point cloud data, output Pcl2
3: while true: (Thread 2) do
4: Build a global 3D voxel map Pclm, project the piece with similar height to the drone

on ground to obtain Map1

5: while the goal is not reached: (Thread 3) do
6: if the shorter 3D path has not been found or it collides with the updated Pclm: then
7: Apply downsampling on Map1 to get Map1b, find the 2D path Path1 on the

stitched map (Map1b,Mapc).
8: Try to find a shorter 3D path, output Path f nl

9: while the goal is not reached: (Thread 4) do
10: Calculate the goal gn from Path f nl
11: Find the waypoint wp by DAS method
12: if found a feasible waypoint: then
13: Run the motion planner to get motion primitives
14: else
15: Run the safety backup plan, and go to line 14
16: Send the motion primitives to the UAV flight controller

Core i7-8565U 1.8-4.6 GHz processor and 8 GB RAM, and Python 2.7 is used as the

programming language.

(1) Path planning on the 2D map

The size of the local map is the main influencing factor of the actual flight trajectory

length and computing time of each replanning step. In addition, we apply the JPS algorithm

twice on two maps of different sizes and resolutions and splice the two paths into a whole.

The Mapc size is also a key to balancing the time cost and the path length. As the effec-

tiveness of our proposed method should be verified and analyzed, two rounds of numerical

simulations are designed and conducted.

The first round tests the influence of the local map size, the second-round tests the effect

of the Mapc size (see Fig. 4.4). A large-scale 2D map is used in the numerical tests, as

shown in Fig. 4.8. The map size is 800 m*800 m, and the local map size is tested with

54

(a)

(b)

Fig. 4.8.: Visualized result during the numerical simulation. (a): only the sliding local map
is used, with the map size of 75 m*75 m, (b): the double layer map is used.

three configurations (unit: m): 75*75, 200*200, and 400*400. The sizes of Map1 and Mapc

in Fig. 4.8(b) are 200*200 and 100*100 (unit: m), and the configuration for the obstacle

inflation and map downsampling is the same with Fig. 4.4. The blue line indicates the real

trajectory of the drone, the red dash line indicates the global JPS path, and the purple line is

the JPS path on the local map. We assume the local map center moves along the local map

path and can only move one meter (including the diagonal move) in one step. The test is

conducted with 10 combinations of the randomly assigned start point and goal point, whose

straight-line distance is greater than 500 m. For each local map size, the 10 combinations

are identical.

55

For the first round, the average time cost and real trajectory length are compared

with that of the planning on the entire map, as shown in Table 4.1. Len1 represents the

average trajectory length, while Len2 denotes the average global JPS path length. Tc1 is the

average total computing time of each replanning step with the local map (including the map

downsampling), and Tc2 is that of the global planning. Table 4.1 shows that Len1 does not

increase substantially compared to Len2, while the time cost is saved considerably compared

to the global planning time. We use green color to highlight the data corresponding to our

proposed method, and use bold characters to mark the best performance. Len1 increases

by only 2.2% and Tc1 decreases by 96.6% compared to Len2 and Tc2, respectively, when the

Map1 size is 200 m*200 m. It is the most time-efficient map size among the three tested

sizes, and the effectiveness of planning on the local 2D map is verified.

For the second round, the size of Map1 is fixed at 200 m*200 m and the size of Mapc

has three alternatives (unit: m): 70*70, 100*100, and 120*120. In Table 4.2, the average

total computing time Tc3 and trajectory length Len3 are compared between the tests that do

and do not use the stitched map. When the size of Mapc is 100 m*100 m, the real trajectory

length Len3 increases by only 0.31%, while the time cost Tc3 is reduced by 53.4% compared

to Len1 and Tc1, respectively. Thus, the effectiveness of planning on the multi-resolution

hybrid map is well validated.

Table 4.1.: Test results of different Map1 sizes

Map1 size (m) Len1 (m) Tc1 (s) Len2 (m) Tc2 (s)
75*75 1021.962 0.036 980.439 3.454

200*200 1001.783 0.118 980.439 3.454
400*400 997.486 0.284 980.439 3.454

56

Table 4.2.: Test results of different Mapc sizes

Mapc size (m) Len3 (m) Tc3 (s) Len1 (m) Tc1 (s)
70*70 1110.374 0.040 1001.783 0.118

100*100 1004.848 0.055 1001.783 0.118
120*120 1002.917 0.082 1001.783 0.118

(2) 3D path searching

In addition, we compare the path length and computing time with JPS3D [85], RRT, and

our proposed method in the local map. For fair comparison, all the methods are implemented

with Python. We generate 60 box obstacles randomly distributed in a 20×20×6 m3 3D local

voxel map (resolution 0.2 m) as the input, the goal position is also randomly assigned inside

the map, and the initial position is always (0,0,0). The box size varies from 0.4×0.4×0.8

m3 to 5×5×2 m3, and each dimension varies independently. For each algorithm we perform

50 tests. For our method (only 2D path planning and DAGS), the average path length and

time cost is 19.62 m and 0.031 s. Although JPS3D can search shorter paths of the average

length 17.10 m, the time cost mean is 0.655 s, which is far from real-time requirement.

RRT achieves 22.81 m with 0.036 s, both the two indicators are worse. Thus, our proposed

method achieves the reasonable trade off between the computing time and path length.

4.4.2 Simulated flight tests with real-time planning

(1) Validity verification

We first test our whole navigation framework in two different scenes in Gazebo simu-

lation. Gazebo is a simulation software that provides a physical simulation environment

similar to the real world. Compared to our experimental hardware platform, all the simula-

tion configurations are set up as the same or similar to ensure the credibility of the simulation

and the analysis conclusion. The first world consists of a long and low wall and a row of

57

taller cylinders. It is designed to show the case that the 3D planning in 3D map takes effect

to make the entire trajectory shorter. As is shown in Fig. 4.9, the drone pass the cylinders by

side and fly above the wall. In Fig. 4.9(b), the red line is the 2D path on the ground plane,

the green line is the actual trajectory in the past.

(a)

(b)

(c) (d)

Fig. 4.9.: Simulation test 1 of the whole framework, (a)is the world in Gazebo, (b)-(d) are
visualized data in RVIZ.

Then, we construct a complex world (see Fig. 4.10(a)-(b)) to study the overall perfor-

mance of the proposed framework. The straight line distance between the start point and

58

goal is about 33.4m, there are not only obstacles with regular shape on the ground, but also

some random items common in life, such as a dummy, table, barricade, wall and weeder. In

the first flight (Fig. 4.10(c)) we disable the 3D path planning to see what will happen. The

drone entered the box area near the goal because the low wall has not been detected. Then

the map updated and MP replanned the path, the drone turned around and finally reached the

goal. However, flying over the wall can reach the goal directly and avoid the detour, but MP

doesn’t plan in z axis. When we enable 3D planning, the flight result is demonstrated in Fig.

4.10(d), apparently the trajectory is much shorter and smoother. Fig. 4.10(e) and (f) are two

flight results with different convolution kernel size k. When k = 5 in (e), the trajectory is

longer than that with k = 3 in (f) because some narrow passages are banned by the inflation

of obstacle at a higher safety level. However there occurred a tiny collision in (f) because

the passage is too narrow, the time delay of the planner, the error in sensors and the control

error of Px4 module all contribute to the uncertainty of collision avoidance.

To study the path length shortened by the 3D path search and corresponding extra time

cost, the flight data in the simulation environment is analyzed. The visualized data during

the flight is shown in Fig. 4.11. The obstacle feature size in the simulation is from 0.5 m

to 6 m, which is similar to that of most real scenes. Three local 3D map bottom sizes are

used (unit: m): 12*12, 20*20, and 30*30, and the map height is fixed at 6 m with the map

resolution of 0.2 m. The drone is at the center of the local map. We also conduct 5 flight

tests with different combinations of starting and goal points for each local map size. For

each flight test, an additional flight test without the 3D path search procedure is used as the

control group to compare the final trajectory length. During the flight simulation, the time

cost of the 3D path search and the path length is recorded for statistical analysis. The results

can be found in Table 4.3. η2D indicates the mean of shortening percentage of the 3D path

compared to the 2D path. T3D is the average time cost for the 3D path search (Algorithm

7). Len3D and Len2D are the actual trajectory average lengths for the flight tests with and

without Algorithm 7, respectively.

We can see that η2D and Len3D decrease as the map size increases. When the map size

is small, the points in the 3D map reduces. Seemingly, the algorithm is more likely to find a

59

(a) (b)

(c) (d)

(e) (f)

Fig. 4.10.: (a)-(b) are the simulation world in Gazebo. (c)-(d) are visualized data of different
flights with different configurations in RVIZ, the final 2D map constructed by the mapper is
attached on upper left corner, and curve of velocity is attached on lower right corner. In (c)
and (d), the start point is marked in green and the goal is in red, and it is reversed in (e) and
(f)

60

Fig. 4.11.: The visualized data in RVIZ. The Gazebo window when the flight test is ongoing
is shown at the lower right corner. The colorful dots is the point cloud of the 3D local map.
The black blocks on the ground plane in RVIZ stand for the obstacles, the white part stands
for the free or unknown area.

Table 4.3.: Flight test results for the 3D path planning

Map size (m) T3D (s) η2D (%) Len3D (m) Len2D (m)
12*12 0.011 38.6 39.274 47.263
20*20 0.032 35.7 32.635 44.582
30*30 0.059 35.0 30.843 42.341

shorter 3D path. However, the 3D path of a small local map is more likely to collide with

the newly appearing obstacles in the updated local map. Therefore, the drone has a high

probability of taking a detour while flying along the 3D path, and the actual trajectory length

is longer than when we use a large local map. When the local map size is settled as 20 m*20

m, the average outer loop frequency of the path planning is greater than 15 Hz, and the

actual trajectory is smooth and natural. We use this map size in the following flight tests.

61

(2) Comparison with the global optimum

Compared to the counterpart that follows the original JPS path directly on the 2D map,

our proposed framework is proved to shorten the actual trajectory substantially with limited

additional time cost. Another test is required to compare the final trajectory length and time

cost with the 3D global optimal path searching methods to further validate the framework’s

performance. However, the globally optimal path can only be obtained after the map is

entirely constructed, so we cannot obtain it while exploring the environment. We adopt

the asymptotically optimal method RRT* to generate the globally optimal path using a

large amount of offline iteration computing. Also, we use JPS3D algorithm for global path

planning to enrich the comparison, and it can ensure RRT* has converged to the global

optimum. For comparison, the same simulation configuration with the former flight tests

is used in this test. We first fly the drone manually with the mapping kit to build up the

complete 3D map for the simulation world. Then, we apply the JPS method by converting

the point cloud map into the voxel map to obtain the globally shortest path. Next, the RRT*

method is applied, the iteration breaks until the resulted path length is very close to the

JPS path (< 1% for relative difference). Table 4.4 describes the parameter settings of the

framework in the simulation test. “pcl” is short for the point cloud. The simulation flight

tests are conducted 10 times with different randomly assigned initial and goal positions,

with the straight distance from 30 m to 40 m.

Table 4.4.: Parameters for the framework

Parameter Value Parameter Value
lms 20 m hms 6 m
αres 10◦ i, j 100
m,n 50 k 3

h 2 rsa f e 0.5 m
pnwp 0.3 m nuse 70

voxel size 0.2 m pcl frequency 30 Hz
depth resolution 640*360 κ1, κ2 4.2, 1.5

rdec 3 m

62

The mean of the 10 flight tests’ results are obtained for comparison. The mean of length

of the actual trajectory, RRT* path, and JPS path is 37.024 m, 32.985 m, and 32.822 m,

respectively. We use the average JPS path length as the globally optimal path length. The

actual path length increases by approximately 12.8% compared to the global optimum. tmp

is the average step time cost of MP in flight. For time cost, our proposed method takes

0.043 s for each MP re-planning step, while RRT* costs 5.243 s and JPS3D costs 2.151 s.

Thus, our proposed method results in the comparable path length while takes much fewer

computing time.

Fig. 4.12 illustrates the detailed visualized data of the flight test corresponding to one of

the 10 flights. Fig. 4.12(a) demonstrates the entire map of the simulation world in Fig. 4.11.

The coordinates of the starting and goal points of the resulted flight trajectory in Fig. 4.12(b)

are (11.4,14.4,0.8) and (−12.0,−10.0,1.2), respectively. The global optimal path length

for this flight is 33.252 m, and the actual flight trajectory length is 36.057 m. In Fig. 4.12(c)

and (d) we show the comparison of the globally optimal paths (found by RRT* and JPS3D)

and the actual trajectory in (b), the 3D map is shown in the form of a point cloud. We see

that the real trajectory has obvious differences with the other optimal paths. Nevertheless,

the path length gap is not large, which is similar to the numerical test results on the 2D map.

Table 4.5.: 3D path length comparison with the state-of-the-art algorithms

work η3D Success rate failure position
Ours 12.8% 100% N/A
[82] 29.5% 85% High wall
[64] 20.2% 100% N/A

The trajectory length comparison between our proposed framework and the state-of-the-

art algorithms is shown in Table 4.5. [82] is our former work proposes a local motion planner.

η3D indicates the relative length increment comparing the resulted path with the optimal

3D path. The results are evaluated from the flight test data in the same simulation world,

with the open-sourced code [64] and the default parameters. We conduct 20 flights for each

63

(a) (b)

(c)

(d)

Fig. 4.12.: The visualized results for the flight tests in Gazebo.

64

work and the initial and goal position is randomly assigned as the above tests, the maximum

velocity and acceleration are 1m/s and 5m/s2, respectively. Our proposed framework can

fly the shortest trajectory compared to the works listed in Table 4.5, also the success rate is

the highest. [82] suffers from the narrow range of the collision check (perception range), and

the range cannot be extended due to the nature of the HAS method, so the resulted trajectory

is longer and it is easy to be trapped in complex scenarios. Our improved PCP can brake in

time and chose another direction thanks to the effective safety backup plan, thus resulted in

better safety. Also, with the help of MP, the proposed framework can avoid the obstacles

earlier following a short path. Although the planning range of [64] is farther, the front-end

path has no optimality guarantee even in a local map, thus the resulted trajectory is longer.

4.4.3 Hardware flight tests

The video for the hardware test has been uploaded online. In the test environment, static

and dynamic obstacles are present to validate the fast reaction of the PCP.

(1) Introduction of hardware platform

We conduct the hardware tests on a self-assembled quadrotor. The Intel RealSense depth

camera D435i is installed under the frame as the only perception sensor. The drone frame is

QAV250, with the diagonal length 25 cm. The Pixracer autopilot with a V1.10.1 firmware

version is adopted as the underlying flight controller. A LattePanda Alpha 800S with an

Intel Core M3-8100Y, dual-core, 1.1-3.4 GHz processor and 8 GB RAM is installed as

the onboard computer, where all the following timing breakdowns are measured. For the

hardware test, we fly the drone in multiple scenarios with our self-developed visual-inertial

odometry (VIO) kit2 to demonstrate the practicality of our proposed framework. The point

cloud filter, the VIO kit, and the mapping kit are executed by C++ code, while the other

modules are run by the Python scripts. All the parameters used in the hardware test are

2https://github.com/HKPolyU-UAV/FLVIS

65

identical to the simulation flight tests, as shown in Table 4.4. The yaw angle of the drone is

controlled to keep the camera always heading toward the local goal g′l .

(2) Indoor tests

Fig. 4.13 (a) is our indoor flight test environment. First, the drone takes off from point 1

and flies through the cluttered static obstacles (shown in the picture), following the sequence

2-3-4. The environment is unknown to the drone before it takes off. We can see from the

video that the drone can avoid the obstacles agilely. Meanwhile, the drone posture is stable

and the final flight trajectory is smooth. After the drone reaches point 3 and starts flying

toward point 4, a person who hides behind the boxes suddenly appears closely in front of the

drone. In the video, the drone quickly maneuvers after the person appears, and the avoidance

is successful. The map is updated afterward, and the drone continues to follow the path from

the MP.

The constructed voxel map and flight trajectory after this flight are shown in Fig. 4.13

(b). The position, attitude, and velocity curves of the drone can be found in Fig. 4.14. The

framework begins to work at time 0 s, and the data shown in the figures start at 70.38 s

and end at 94.31 s, corresponding to the flight from point 3 to point 4. The moving person

enters the depth camera’s FOV at 76.09 s (marked with the vertical dashed lines). The

attitude angles react immediately to the appearance of the person, and then the velocity

changes considerably. Sequentially, the drone decelerates and flies to the left side to pass the

person. The maximum speed reaches 1.23 m/s at 74.40 s. Because ∥−−−→pnwp∥2 is assigned to

be always greater than ∥−−−−→pn pn+1∥2, in the motion optimization problem defined in chapter 3,

minimizing the cost η1∥−−−−→wp pn+1∥2 leads to positive acceleration when no obstacle is around.

The drone will decelerate when the obstacles are near it, because of the acceleration cost

and the endpoint cost in the objective function.

66

(a)

(b)

Fig. 4.13.: (a): Indoor environment for the hardware flight tests. (b): Explored map and the
drone trajectory after the hardware flight test in the static environment.

67

(a)

(b)

(c)

Fig. 4.14.: Curves of the three-axis coordinate positions, flight velocities, and attitude angles.

68

(a) (b)

Fig. 4.15.: Two of the outdoor flight test environments. (a) locates in a campus and (b) is at
the sports corner in a park.

(3) Outdoor tests

In addition, the proposed framework is tested in diverse outdoor scenarios. Fig. 4.15

shows the environments of two experiments, and the flight tests in other environments are

included in the video. Fig. 4.15(a) is entirely static, with several obstacles standing on a

slope and dense bushes and trees. This environment is challenging, requiring the 3D precise

trajectory planning and motion control. Fig. 4.15(b) is a larger environment compared to

those of the tests above. In addition to the complex static obstacles, five moving people in

the field continuously interrupt the drone from the original planned path and validate its

reaction performance. The intruding person causes the change of environment so that we can

observe the flight performance in such a dynamic environment. The video demonstrates that

the drone performs agile and safe flights in various test environments, so the practicability

and flight efficiency of our proposed framework can be proven.

Finally, the average time cost of each part of the MP and PCP for the hardware tests is

counted and analyzed in Fig. 4.16 to show the computational efficiency. In Fig. 4.16(a),

the average time cost and the percentage are provided on a pie chart. In Fig. 4.16(b), the

relationship between the time cost of each procedure in the PCP and the size of Pcluse is

illustrated, with the average time cost shown on the right side. For the MP, most of the time

cost (63%) is used for path planning and optimization on the 2D map. The path search with

the 3D point cloud is computationally inexpensive. The average total time cost of each MP

69

(a) (b)

Fig. 4.16.: (a): Average time cost and the proportion of each submodule of MP. (b): The
time cost versus Pcluse size curves of each part of the PCP.

step is 0.078 s, and the loop frequency is approximately 12 Hz. These results are slower

than the offline test results because the computing resource is occupied by the other part of

the framework (VIO, mapping kit, point cloud filter, and the PCP). For the PCP, only the

time cost of the waypoint searching is relevant to the Pcluse size because the number of the

points determines the collision check’s circling number. The average time cost of the PCP

step is 16.2 ms, of which searching for wp is the most time-consuming part.

Moreover, the time cost is compared with those of the state-of-the-art algorithms in Table

4.6. Because our proposed method is composed of two planners running asynchronously, no

single value represents the framework execution time. Thus, the average step time costs of

the MP and PCP are listed for the comparison. Notably, the time costs of the related works

are measured on different hardware platforms with different program code types, and we

obtain the data directly from the publications. “MSCF” is the abbreviation for the maximum

single-core frequency of the hardware platform processor. Although Table 4.6 cannot be

used for the absolute performance comparison, the trajectory replanning time cost of our

proposed method (PCP) is believed promisingly the best level among the state-of-the-art

algorithms.

At last, we evaluate the real-time performance of MP (only 2D path planning and

DAGS) on our tiny onboard computer and comparing with JPS3D, both the algorithms

are implemented with C++ in this test for the best efficiency. The results can be found

in Table 4.7, where condition ”vacant” means that only the tested algorithm running on

the computer, and ”full-load” means that the d435i API, VIO, and mapping kit are all

70

running to simulate the computing pressure of the autonomous flight field tests, together

with the tested algorithm. The test configurations are the same with the test described in

subsection V-A, the last paragraph of part 2, and 50 random 3D voxel maps are used. We

can conclude that our method always cost less time than JPS3D and can run in real-time

even in full-load condition. Although JPS3D can run in real-time with C++ implementation

when the computing resource is sufficient, it is no longer real-time to meet the map updating

rate (15 Hz) when the onboard computer is much occupied. Thus, our approach is more

practical in real-world applications with limited computing resource.

Table 4.6.: COMPARISON WITH STATE-OF-THE-ART ALGORITHMS.

Works Time cost (ms) MSCF (GHz)
MP 78 3.4
PCP 16.2 3.4
[48] >100 3.0
[40] >160 3.4
[84] >40 N/A
[82] 19 4.6
[86] 199 3.1
[47] 106 3.0

Table 4.7.: REAL-TIME COMPUTING PERFORMANCE COMPARISON

Algorithm Condition Time cost (ms)
MP vacant 18.6
MP full-load 42.1

JPS3D vacant 64.8
JPS3D full-load 142.4

4.5 Conclusion

In this Chapter, a framework of trajectory planning for UAVs with two parallel planners is

introduced. The map planner tries to find the shortest possible path in limited computational

71

time. The point cloud planner takes effect when the point cloud near the drone differs from

the 3D map to ensure safety. It reacts much faster than the path planning on the map. The

test results verify that the techniques proposed in this chapter can reduce the computing

time cost, with the performance basically unchanged or even improved compared to that

of the original method [82]. The real-time flight trajectory length outperforms those of the

state-of-the-art algorithms, and the reacting time of the PCP is also superlative. The entire

framework is tested extensively in simulation and hardware experiments, demonstrating

excellent rapid response capabilities and flight safety. The main contributions of this work

are as follows:

• A parallel architecture with the MP and PCP is proposed, considering the planning

success rate, path length, and fast response. The framework has been tested to achieve

satisfactorily synthesized performance in extensive environments.

• A sliding local map with two resolutions is introduced to increase the planning speed

while maintaining a fine-grained path around the drone.

• We introduce the DAGS based on the angular cost and try to find a 3D path shorter

than the improved 2D path.

• To connect two planners in one framework, we build an optimization problem to

calculate the local goal from the path output by the MP. The analytical solution of the

optimization problem is found from a geometric view.

Supplementary Materials

Demo video: https://youtu.be/AOENvwf8sfM, or https://www.bilibili.

com/video/BV1sR4y1s7fh?spm_id_from=333.999.0.0

https://youtu.be/AOENvwf8sfM
https://www.bilibili.com/video/BV1sR4y1s7fh?spm_id_from=333.999.0.0
https://www.bilibili.com/video/BV1sR4y1s7fh?spm_id_from=333.999.0.0

72

5. FLYING AND AVOIDING DYNAMIC OBSTACLES ON
POINTCLOUDS

5.1 Research Background

Most existing frameworks that enable drones to autonomously fly in unknown environ-

ments consider all obstacles stationary. However, as quadrotors often fly at low altitudes,

they are faced with various moving obstacles such as vehicles and pedestrians on the ground.

One primary solution to avoid collision is to raise flight altitude to fly above all the obstacles.

This method is not feasible for some indoor applications, because the flight altitude is

limited in narrow indoor space, and the drones are often requested to interact with humans

as well. Another solution is to assume all detected obstacles as static. But this method

cannot guarantee the safety of the trajectory [59], considering measurement errors from the

sensors and unmissable displacement of the dynamic obstacles.

Although we consider the obstacle avoidance in dynamic environment in chapter 3 and

4, the motion planner only take advantage of its fast computation speed to avoid intruding

obstacles. In the algorithms introduced above, the dynamic obstacle and static obstacle are

both represented by pointcloud, and a hidden assumption lies behind is that the pointcloud

will not move in the future. For an obstacle just suddenly intrude into the vehicle’s FOV

and then turn to static, the method in Chapter 3 can react in time. However, for objects

continuously moving, the error in obstacle position estimation will be not negligible, and

may lead to collision. Because the planned trajectory is only guaranteed safe for the static

pointcloud within its duration time, if the object is moving, the trajectory is no longer safe

for obstacle’s changing position. Obviously, the faster the obstacle and the drone, the greater

the error caused by the above assumption. For obstacles moving at comparable speed with

the drone, the method in Chapter 3 will be hazardous. As shown in Fig. 5.1, the collision

may happen if the motion information of obstacles is ignored (the red line). Therefore,

73

Fig. 5.1.: The composite picture of the simulation in Gazebo for the process that the drone
avoids static and dynamic obstacles. 5 screenshots are used for composition and the cut time
interval is fixed to 0.7 seconds. The line with an arrowhead shows the moving direction and
the numbers mark the corresponding frame, the numbers increase over time. The yellow
line is generated by the method in this chapter, while the red line is by the static planning
method.

a more efficient and safer way to avoid moving obstacles is to predict and consider the

obstacles’ position in advance based on the velocity, which can avoid detours or deadlock

on some occasions.

To fly in dynamic scenes for micro aerial platforms, we propose a complete system

in this chapter, composed of a position and velocity estimator for moving obstacles, an

upper-level planner to obtain the desired velocity, and a motion planner to generate final

motion primitives. Considering the limited computation resource and demands for low cost,

all the computation involved should be light and do not require high-precision sensor data.

For the perception of dynamic obstacles, the dynamic ones are identified from static ones by

clustering and comparing the displacement from two point cloud data frames. To overcome

its narrow field of view (FOV), the static points are memorized to prevent the drone from

hitting obstacles that just moved outside the FOV. An RGB-D camera is the only sensor

utilized to obtain the point cloud. First, we set up a Kalman filter for each dynamic obstacle

74

for tracking and output more accurate and continuous estimating results. The feature vector

for each obstacle is adopted to improve the obstacle matching accuracy and robustness,

thus the dynamic obstacle tracking and position and velocity estimating performance are

improved compared to the related existing works. In addition, we introduce the track point

to reduce the displacement estimation error involved by the self-occlusion of the obstacle.

Then, with the estimated position and velocity of obstacles and the current states and

kinodynamic limitations of a real vehicle, the forbidden pyramids method is applied to plan

the desired velocity to avoid obstacles. The desired velocity is obtained from a sampling-

based method in the feasible space, and the sampled velocity with the minimal acceleration

cost is chosen. Finally, the motion primitives are efficiently solved from a well-designed

non-linear optimization problem, where the desired velocity is the constraint. For navigation

tasks, the proposed velocity planning method is also flexible to combine with most path

planning algorithms for static environments, giving them the ability to avoid dynamic

obstacles. The waypoint in the path acts as the trajectory endpoint constraints at a further

time horizon. In this chapter, we test it with our former proposed waypoint planning method

heuristic angular search (HAS) (Chapter 3) to complete the system and conduct the flight

tests. The safety and the lower acceleration cost of this method can be verified by the

data from flight tests. The computational efficiency of the whole system also shows great

advantages over state-of-the-art (SOTA) works [72]-[76].

Fig. 5.2.: The proposed system for the autonomous navigation in dynamic environments.
The positioning can be done by the outer motion capture system or onboard VIO toolkit.

75

5.2 Technical Approach

Our proposed framework is composed of two submodules that run parallelly and asyn-

chronously: the obstacle classifier and motion state estimator (section 5.2.1 & 5.2.2) and

the waypoint and motion planner (section 5.3.1 & 5.3.2). The additional technical details

for improving the accuracy of dynamic perception are introduced in section 5.2. Fig. 5.2

illustrates the whole framework, including the important message flowing between the

submodules.

5.2.1 Obstacle tracking

The raw point cloud is first filtered to remove the noise and converted into earth coordi-

nate E−XYZ. The details about the filter are in chapter 3. We use Pclt1 and Pclt2 to denote

two point cloud frames from the sensor at the former timestamp t1 and the latest timestamp

t2 respectively. t2− t1 = dt and dt > 0. The time interval dt is set to be able to make the

displacement of the dynamic obstacles obvious enough to be observed, while maintaining an

acceptable delay to output the estimation results. Pclt1 and Pclt2 are updated continuously

while the sensor is operating. To deal with the movement of the camera between t1 and

t2, Pclt2 is filtered, only keeping the points in the overlapped area of the camera’s FOVs

at t1 and t2 [76]. The newly appeared obstacles in the latest frame are removed, so only

the obstacles appear in both of the two point cloud frames are further analyzed. Pclt1 and

Pclt2 are clustered into individual objects using density-based spatial clustering of applica-

tions with noise (DBSCAN) [87], resulting in two sets of clusters OB1 = {ob11,ob12, ...}

and OB2 = {ob21,ob22, ...}. Then, matching the two clusters ob2k ∈ OB2 and ob1 j ∈ OB1

corresponding to the same obstacle is necessary before the dynamic obstacle identification.

At the time when we obtain the first frame of Pclt2 , a list of Kalman filters with the

constant velocity model is initialized for each cluster (obstacle) in OB2. The position and

velocity are updated after the obstacle is matched and the observation values are obtained.

To match the obstacle, we preliminarily sort out the two clusters that satisfies the condition

∥pos(ob2k)− pos(ob1 j)∥2 < dm. dm is the distance threshold. pos() ∈R3 gives the obstacle

76

position when the input cluster is from the latest frame Pclt2 , while it returns the predicted

position at t2 by the corresponding Kalman filter of the cluster from Pclt1 [76]. It is designed

to associate current clusters to the forward propagated Kalman filters rather than clusters

in the previous frame. If we cannot find an ob1 j for ob2k there, we skip it and turn to the

next cluster (k← k+1, k is the cluster index). For each Kalman filter, it is also necessary

to assign a reasonable maximal propagating time tk f before being matched with a new

observation. Because the camera FOV is narrow, we hope to predict the clusters which just

move out of the FOV for safety consideration, and they are assumed to continue to move at

their latest updated velocity in a short period. A Kalman filter is deleted together with its

tracking history if it has not been matched for over tk f .

Fig. 5.3.: The left figure shows a situation that two obstacles are mismatched. The predicted
cluster of obstacle 1 is closer than the predicted cluster 2 to the current cluster of obstacle 2.
By comparing the feature vector, the correct predicted cluster for obstacle 2 can be matched
for the current cluster, as shown in the right figure.

In the related works [21, 76], matching the clusters in two frames as the same object is

based only on the center position. However, it may fail when obstacles are getting close, as

shown in Fig. 5.3. To improve the matching robustness, we design a novel technique based

on the feature vector to help match the clusters. The feature vector is composed of several

77

statistic characters of a point cluster with aligned color information from the obstacle, which

is defined as

f te(ob) = [len(ob),V A
P (ob),V (ob),MC(ob),V A

C (ob)], (5.1)

where ob denotes any point cluster. len() is the function that returns the size of the input

cluster. V A
P () ∈ R3 returns the position variance of the cluster, and V () returns the volume

of the axis-aligned bounding box (AABB) of the cluster. MC() ∈ R3 and V A
C () ∈ R3 return

the mean and variance of the RGB value of points. The idea is: if there is not a significant

difference in the shape and color of the two point clusters extracted from two timely close

point cloud frames respectively, then they are commonly believed to be the same object.

The global features for each obstacle are very cheap to calculate and proved to be effective

in tests.

At last, the Euclidean distance d f te = ∥ f te(ob1 j)− f te(ob2k)∥2 between feature vectors

is calculated with each cluster pair {ob2k,ob1 j} that satisfies the position threshold. For each

cluster ob2k ∈ OB2, the cluster ob1J ∈ OB1 results in the minimal d f te is matched with it.

The feature vector is normalized to 0-1 since the order of magnitude of each element varies.

We use obm
2 ∈ OB2 and obm

1 ∈ OB1 to represent any two successfully matched clusters.

5.2.2 Obstacle Velocity Estimation and Classification

Here, we will introduce the track point which effectively reduces the velocity estimation

error compared to the existing methods.

After the obstacles in two sensor frames are matched in pairs, the velocity of the obstacle

obm
2 can be calculated by vm

2 =
−−−→
pm

2 pm
1 /(t2− t1), where pm

2 and pm
1 are the position of the

corresponding obstacle. The obstacles have certain shapes, they are not points. In the related

works, the mean of the points in each cluster is adopted as the obstacle position, since

it is easy to calculate and close to the centroid for a common obstacle if we ignore the

self-occlusion. However, due to the self-occlusion, the backside of the obstacle is invisible,

so the mean of points is closer to the camera than the obstacle centroid. In addition, the

occluded part of a moving obstacle changes when the relative movement occurs between

78

Fig. 5.4.: The left figure illustrates the velocity estimation error caused by the self-occlusion
of the obstacle. vobs is the velocity ground truth. When the obstacle approaches the camera,
the visible part shrink, resulting in the relative displacement between the point cloud center
and obstacle centroid. The track point in the right figure can reduce the velocity estimation
error. The middle part of the cluster is bounded by the green box.

the camera and obstacle. Thus, the relative position between the position mean and the

real mass center also changes. This will lead to a wrongly estimated velocity, as shown

in Fig. 5.4, the error is mainly distributed on the Z axis of the camera Zcam and it is not a

fixed error can be estimated. As a consequence, the constant velocity model in the Kalman

filters will no longer hold even for constant velocity obstacles. For the position estimation

of obstacles, the self-occlusion is not important, considering the visible part only is safe

for obstacle avoidance. But the velocity is the key information of moving obstacles in the

vehicle velocity planning. Therefore, we propose a method to reduce this velocity estimation

error by choosing the appropriate track point for the matched pair of clusters, as illustrated

in the right figure of Fig. 5.4.

For a moving obstacle in translational motion, the closest part to the camera is believed

not to be self-occluded in obm
2 and obm

1 . In addition, the middle part of the cluster is close

to the centroid of the common obstacles, so the rotational movement is weak in this part.

Thus, we only use the center point p̂m
2 and p̂m

1 of the closest Nc points to the camera in

the middle part of the cluster obm
2 and obm

1 to estimate the displacement. p̂m
2 and p̂m

1 are

named as the track point. Here the distance to the camera is measured only along Zcam.

79

The middle part of the cluster is divided in the projection plane corresponding to the depth

image. The bounding box for the middle part is shrunk from the AABB of the obstacle to

the center proportionally. The shrinking scale factor is α (α < 1). Considering the common

obstacles usually performs slow rotation, and the time gap dt is small, we can neglect

the influence on the closest part caused by rotation in the displacement estimation. To

update the Kalman filter, pm
2 (the mean of current cluster) is still the observed position, but

the velocity observation is v̂m
2 =
−−−→
p̂m

1 p̂m
2 /(t2− t1). The classification for static and dynamic

obstacle is done by comparing the velocity magnitude with a pre-assigned threshold vdy,

i.e. ∥v̂m
2 ∥2 > vdy indicates a moving obstacle. If an obstacle is classified as static in Sc

consecutive times, the corresponding Kalman filter is abandoned and the static point cluster

is forwarded for map fusion.

The Kalman filter for one cluster is detailed with

x̂−t = Ft x̂t−1 +Btat−1, (5.2)

P−t = FtPt−1FT
t +Q, (5.3)

Kt = P−t HT (HP−t HT +R
)−1

, (5.4)

Pt = (I−KtH)P−t , (5.5)

x̂t =

 x̂−t +Kt
(
xt−Hx̂−t

)
(found dynamic obstacle),

x̂−t (no dynamic obstacle),
(5.6)

xt =

 pm
2

v̂m
2

 ,Ft =

 1 ∆t

0 1

 ,Bt =

 ∆t2

2

∆t

 , (5.7)

where R, H, Q are the observation noise covariance matrix, observation matrix, and process

noise covariance matrix respectively. The superscript − indicates a matrix is before being

updated by the Kalman gain matrix Kt , applicable for the state matrix x̂t and the posterior

error covariance matrix Pt . The subscripts t and t−1 distinguish the current and the former

step of the Kalman filter. Ft is the state transition matrix and Bt is the control matrix. xt is

80

composed of the observation of the obstacle position and velocity, and ˆ marks the filtered

results for xt . x̂t equals to the predicted state x̂−t if no dynamic obstacle is caught. x̂−t is also

utilized as the propagated cluster state in the obstacle matching introduced above. ∆t is the

time interval between each run of the Kalman filter. In the current stage, we assume the

moving obstacle performs uniform motion between t1 and t2, at−1 = 0.

We summarize our proposed dynamic environment perception method in Algorithm 9.

Algorithm 9: Dynamic environment perception
1: while true: do
2: Obtain Pclt1 , Pclt2 from the point cloud filter, cluster them to OB1, OB2
3: if it is the first loop then
4: Initialize the Kalman filters for each cluster in OB2

5: Predict the position of former clusters with the Kalman filters
6: for ob2k in OB2 (k is the iteration number): do
7: Match ob2k with the predicted clusters
8: if successfully match the clusters: then
9: Estimate the velocity of ob2k with the paired ob1 j

10: Classify it as static or dynamic and record the class as the history together with
the corresponding Kalman filter

11: if the cluster marked as static for Sc consecutive times: then
12: Delete the corresponding Kalman filter, submit ob2k for map fusion
13: else if ob2k is dynamic: then
14: Update the Kalman filter with pm

2 and v̂m
2

15: if no dynamic obstacle is found: then
16: Update the Kalman filter with the predicted state

5.2.3 Ego-motion compensation and neighbor data overlapping

To improve the estimation accuracy, we notice the time gap between the latest point

cloud message from the camera and the vehicle state message from the IMU in the flight

controller, which is an important detail ignored in the existing works. A constant acceleration

81

motion model is adopted to describe the vehicle motion in a short period, and the ego-motion

compensation can be done with

p̂cam = pcam + vcamtgap +
1
2

acamt2
gap, (5.8)

to result in the compensated camera pose p̂cam. pcam, vcam and acam ∈ R2×3 are the pose,

velocity and acceleration of the camera obtained from raw data (translational and rotational

motion), translated from the installation matrix of the camera. tgap is the time gap between

the message, equals to the timestamp of point cloud minus the timestamp of vehicle state.

As a result, the point cloud can be converted to E−XYZ more precisely.

For non-rigid moving obstacles, for example, walking animals (including humans), the

body posture is continuously changing. The point cloud deformation may cause additional

position and velocity estimation error of obstacle since the waving limbs of a walking

human to interfere with the current estimation measurements. We notice that when two

neighbor frames of point cloud are overlaid, the point cloud of the human trunk is denser

than the other parts which rotate over the trunk. Then, an appropriate point density threshold

of DBSCAN can remove the points corresponding to the limbs. So the overlapped point

cloud can replace the filtered raw point cloud. For instance, the wth point cloud frame Pclw

is replaced with Pclw ∪Pclw−1. p̂cam is also replaced by the mean of the value from its

neighbor data frame, to align with the point cloud.

5.3 Motion Planning

The motion of the drone is more aggressive for avoiding moving obstacles than flying in

a static environment. To address the displacement of the drone during the time costed by the

trajectory planner and flight controller, position compensation is adopted before the velocity

planning, which is another important detail usually not mentioned in the references. The

current position of drone pn is updated by the prediction

p̂n = pn +(tpl + tct + tpm)vn +
1
2
(tpl + tct + tpm)

2an, (5.9)

82

where tpl is the time cost of the former step of the motion planner. tct is the estimated fixed

responding time for the flight controller. tpm is the timestamp gap between UAV pose and

current time. In addition, due to the time cost of obstacle identification and communication

delay, the timestamp on the information of dynamic obstacles is always later than that of

the pose and velocity message of the drone. Based on the constant velocity assumption, the

obstacle position p̂m
2 in the planner at the current time is predicted and updated as

p̂m
2 = pm

2 +(tpl + tct + tpm + td p)v̂m
2 , (5.10)

where td p is the timestamp gap between the UAV pose and the received dynamic clusters.

The dynamic clusters published by the perception module share the same timestamp with

the latest point cloud pclt2.

5.3.1 Velocity planning

This subsection will introduce a novel velocity planning method based on the relative

velocity and the forbidden pyramids. First, the planner receives the moving clusters and

the velocity from the dynamic perception module. The currently unclassified clusters are

also conveyed to the planner and treated as static obstacles together with the classified

static clusters. In addition, we adopt the mapping kit to offer the static environmental

information out of the current FOV, because the FOV of a single camera is narrow. To

tackle the autonomous navigation tasks, the drone is required to reach the goal position. The

desired velocity of the drone is initialized as v′des, ∥v′des∥2 = vmax and v′des heads towards

the goal. vmax is the maximum speed constraint. Also, considering the path optimality, a

path planner is usually adopted in the navigation. Thus, the waypoint wp generated from the

planned path is used to replace the navigation goal if a path planner is required. Otherwise,

wp denotes the navigation goal. wp can be generated from a guidance law or assigned

directly as the first waypoint in the path to enable the drone to follow the path. It is a choice

to combine the velocity planning method with the path planning algorithms to adapt to

navigation applications better. Fig. 5.5 illustrates the collision check by calculating the

83

relative velocity of v′des towards the obstacles, and if the check fails the velocity re-planning

will be conducted. For dynamic obstacles, the relative velocity equals v′des minus the obstacle

velocity. For static obstacles, the relative velocity is vn itself. If v′des is checked to be safe,

the finally desired velocity vdes is given by v′des.

Fig. 5.5.: Check if the current relative velocities towards each obstacle lies in the forbidden
area. In this figure, the relative velocity towards one dynamic obstacle and one static obstacle
all fail the collision check. The forbidden area is the projection area (space) of the inflated
obstacle AABB in the projection plane to the camera. rsa f e is the inflating size.

Then, the velocity re-planning method is explained in Fig. 5.6-5.8, the forbidden area

(space) is extended to a pyramid for the 3D case, different from the triangle for the 2D

case. Here, we introduce a hypothesis that the object in the environment does not have a

ring topology, thus the flight trajectory through a single object is forbidden. If the relative

velocity lies in the corresponding forbidden pyramid, four proposed relative velocity vectors

are found by drawing perpendicular lines from the relative velocity vector perpendicular to

the four sides of the pyramid. They are the samples to be checked later. The vertical line

segments stand for the acceleration cost to control the vehicle to reach the proposed velocity.

84

Fig. 5.6.: The left figure explains the velocity planning for multiple forbidden pyramids. We
use a floor plan to better demonstrate the method. The right figure is a forbidden pyramid for
one obstacle in 3D view, four sides of the pyramid result in four proposed relative velocity
vectors. “Unreachable” refers to that a relative velocity is out of the maximal velocity bound
of the drone, which is detailed in Fig. 5.8

.

Fig. 5.7.: The feasibility check of the relative velocity for one obstacle, as the supplementary
for Fig. 5.6. The proposed relative velocity is checked if feasible for other moving obstacles.
In this figure, the left proposed relative velocity for obstacle 2 is also feasible for obstacle 1
(navy blue arrows), while the right one (green arrows) is not.

85

Fig. 5.8.: The reachable check for the proposed relative velocities. vobs is moved to start
from pn, and the endpoint is the center of the spherical reachable set. The possible relative
velocity constrained by vmax towards this obstacle is included in this set. Only the relative
velocity vectors in the reachable set are chosen.

For any cluster, vrel denotes the relative velocity, the five vertices of the forbidden pyramid

are

{p̂n(x0,y0,z0),vt1(x1,y1,z1), ...,vt4(x4,y4,z4)}. (5.11)

The acceleration cost aci of the proposed relative velocity vectors vpi (i ∈ {1,2,3,4}) can

be calculated by solving the 3D geometric equations, as follows:

Cp =
−−→
p̂nvt1×

−−→
p̂nvt2, (5.12)

cp
d =−Cp p̂T

n , (5.13)

aci =
|Cp(vrel + p̂n)

T + cp
d |

∥Cp∥2
, (5.14)

86

vpi = vrel−CpCp(vrel + p̂n)
T + cp

d

∥Cp∥2
2

. (5.15)

In (5.12)-(5.15), triangle { p̂n,vt1,vt2} is taken as the example, Cp[x,y,z]T + cp
d = 0 is

the corresponding plane equation, p̂n is the common vertex of all the 4 triangles.

Obviously, for only one obstacle, the desired relative velocity with the minimal cost is

from the four proposed ones. For multiple obstacles and forbidden pyramids, the desired

relative velocity is chosen by comparing the feasibility, reachability, and cost. Among all

the proposed relative velocity vectors, the one checked to be feasible and reachable and with

the minimal cost is selected (vr
des), and the desired vehicle velocity vdes = vr

des + vobs. vobs

is the velocity for the corresponding obstacle. Although the globally optimal solution for

acceleration cost cannot be guaranteed within the samples, the computation complexity is

greatly reduced compared to solving the optimal solution. We use the inflated bounding box

because the character radius of the vehicle ruav can not be neglected.

The feasibility check is to guarantee vdes is safe for all obstacles, not for only one of

them, which is described in Fig. 5.7. Besides the feasibility check, vdes should satisfy the

maximum speed constraints vmax. We introduce the reachable set for the relative velocity

vector to check if the proposed relative velocity vpi (i ∈ {1,2,3,4}) is reachable, as Fig. 5.8

indicates. For the relative velocity towards one obstacle, vrel = vn− vobs always hold. vrel is

the current relative velocity towards the obstacle, vobs is the obstacle velocity.

In addition, the lag error of the velocity planning caused by the time cost to reach the

desired velocity is also considerable. The relative displacement between the moving obstacle

and vehicle during this time gap should be estimated, because the forbidden pyramid is also

directly related to the relative position. We can assume the solved jerk Jn is very close to its

boundary Jmax, because the time cost tv is minimized in the optimization problem (5.20).

Thus, the time cost is estimated as

vn +antv +
1
2

Jnt2
v = vdes

⇒ tv = min
tv
{∥2(vdes− vn−antv)

t2
v

∥∞ = Jmax∧ tv > 0},
(5.16)

87

and the displacement of the vehicle and obstacle is calculated by

duav = vntv +
1
2

ant2
v +

1
6

Jnt3
v , (5.17)

dobs = v̂m
2 tv. (5.18)

At last, the estimated displacement duav and dobs are added to the position after vdes is

obtained, and a new vdes is planned in iteration until it is checked to be safe. The accurate

time cost tv can only be determined after solving the motion optimization problem. However,

involving the optimization problem in the iteration will be time-consuming, so we use a

closed-form solution as the approximate value. To speed up the convergence, the safety

radius is inflated by a small value ε (equivalent to the tolerance in the safety check) to

calculate vpi:

rsa f e = ruav + ε (ε > 0). (5.19)

In a situation where the obstacles are too dense, the forbidden area may cover all the

space around the vehicle. We first sort all the clusters with the increasing order of distance

to pn, the farther obstacles are considered less threatening for the drone. Then, the last j

clusters are excluded, j is the iteration number increasing from 0. Algorithm 10 reveals

the process of velocity planning. As a result, the vehicle can always quickly plan the

velocity to avoid static and dynamic obstacles and follow the path to meet the different task

requirements.

5.3.2 Motion planning

After the desired velocity vdes is obtained, it appears as the constraint in the motion

planning and will be reached in a short time. The waypoint constraints wp is also considered

to follow the path, as shown in Fig. 5.9.

The optimization problem to obtain motion primitives is constructed as

88

Algorithm 10: Velocity planning

1: v′des← vmax

−−−→
p̂nwp

|wp− p̂n|
2: if v′des is unsafe (Fig. 5.5): then
3: j← 0
4: Sort the clusters with the distance to pn
5: while vdes is not found: do
6: Remove the last j clusters from original sequence
7: Get all the feasible relative velocity vectors for the remained clusters
8: if feasible and reachable relative velocity exist: then
9: Choose vr

des with the minimal acceleration cost, and vdes← vr
des + vobs

10: j← j+1
11: repeat
12: p̂n← p̂n +duav, p̂m

2 ← p̂m
2 +dobs

13: Repeat line 7-10 with updated forbidden pyramids
14: until vdes is safe
15: else
16: vdes← v′des

min
Jn,tv

η1tv +η2dtr j

s.t. an+1 = an + Jntv,

vdes = vn +antv +
1
2

Jnt2
v ,

dtr j =
∥−−−−→p̂n pend×−−−−→wp pend∥2

|wp− p̂n|
,

pend = p̂n + vnKtv +
1
2

an(Ktv)2 +
1
6

Jn(Ktv)3,

0 < tv, ∥an+1∥2 ≤ amax, ∥Jn∥2 < Jmax,

(5.20)

where the jerk of the vehicle Jn is the variable to be optimized. tv is the time required to

reach vdes, which is the variable and the optimization object at the same time. an+1 and pend

are calculated by the kinematic formula. amax and Jmax are the kinodynamic constraints of

acceleration and jerk of the vehicle respectively. The velocity constraint vmax is satisfied in

the equality constraint with vdes. η1, η2 are coefficients. The default values are shown in

89

Table 5.1. After the desired trajectory piece is solved, a default cascade PID controller of

PX4 is utilized to track this trajectory in position, velocity, and acceleration.

Fig. 5.9.: The proposed motion planning method. The objective function is designed to
minimize the time cost to reach the desired velocity and the distance from trajectory endpoint
pend to the path line. The solid yellow line represents the predicted trajectory.

5.4 Experimental Implementation and Results

5.4.1 Point cloud filters

For the dynamic environment perception, filtering the raw point cloud is necessary,

because the obstacle state estimation is sensitive to the noise. The noise should be eliminated

strictly, even losing a few true object points is acceptable. The filter has the same structure as

our former work [82], as shown in Fig. 5.10, but the parameters are different. The distance

filter removes the points too far (≥ 6.5 m) from the camera, the voxel filter keeps only one

point in one fixed-size (0.1 m) voxel, outlier filter removes the point that does not have

enough neighbors (≤ 13) in a certain radius (0.25 m). Based on such configuration, the

density threshold for DBSCAN is at least 18 points in the radius of 0.3 m. These metrics

are tuned manually during extensive tests on the hardware platform introduced in the next

subsection, to balance the point cloud quality and the depth detection distance. They are

proved satisfactory for obstacle position estimation. The point cloud filtering also reduces

the message size by one to two orders of magnitude, so the computation efficiency is much

improved, while the reliability of the collision check is not affected.

However, when the drone performs an aggressive maneuver, the pose estimation of the

camera (including the ego-motion compensation) is not accurate enough for dynamic obsta-

90

cle perception. To solve this problem, we propose a practical and effective measurement:

The filtered point cloud is accepted only when the angular velocity of the three Euler angles

of the drone is within the limit ωmax.

Fig. 5.10.: The filtering process for the raw point cloud.

5.4.2 Map building

In our implementation, we adopt a simple method to store the static points in a list

(“mapping kit” in Fig. 5.2), and visualize the points as the point cloud map. After the first

dynamic obstacle identification, we push all the static clusters into a list for initialization.

When a new static point cluster is found afterward, we compare the distance between the new

static cluster center with the existing clusters’ centers in the list. If the new cluster is very

close to the existing static clusters, it will not be added to the list to avoid duplicating and

saving the RAM of the onboard computer. In the velocity planning, only the static clusters

in the list in the range of 6.5 m (the cut-off depth of the distance filter) to the vehicle are

considered. To obtain a high-quality map, the existing mapping toolkits (such as Octomap)

are also capable in our system.

5.4.3 Experimental Configuration

The detection and avoidance of obstacles are tested and verified in the Robot Operation

System (ROS)/Gazebo simulation environment first and then in the hardware experiment.

The drone model used in the simulation is 3DR IRIS, and the underlying flight controller

is the PX4 1.10.1 firmware version. The depth camera model is an Intel Realsense D435i

with a resolution of 424*240 (30 fps). For hardware experiments, we use a self-assembled

91

quadrotor with a Q250 frame and a LattePanda Alpha 864s with an Intel m3-8100y processor,

other configuration keeps unchanged. A motion capture system VICON is adopted to obtain

the pose of the drone. Table 5.1 shows the parameter settings for the simulation tests. The

supplementary videos for the tests have been uploaded online12.

Table 5.1.: Parameters for the tests

Parameter Value Parameter Value
Sc 3 tct 0.01 s
vdy 0.3 m/s dt 0.2 s
tk f 0.7 s dm 0.9 m
Nc 12 α 0.5
η1 10 η2 6
K 3 ε 0.05 m

amax 6 m/s2 ωmax 1.5 rad/s
Jmax 12 m/s3 vmax 1.5 m/s

5.4.4 Simulation Test

(1) Dynamic perception module test

First, the accuracy and stability of the estimation method for the obstacle position and

velocity are verified.

In the simulation world depicted in Fig. 5.11(a), there is one moving ball, two moving

human models, and some static objects. The moving obstacles reciprocate on different

straight trajectories. The camera is fixed on the head of the drone, facing forward straightly.

Since the point cloud from the simulated sensor is clean and the noise is very light, the dis-

tance filter threshold is extended to 8 m. The drone is hovering around the point (−6,0,1.2).

Fig. 5.11(b) depicts the visualized estimation results in Rviz. The Euclidean distance of

the feature vectors utilized for obstacle tracking is illustrated in Fig. 5.12. The estimation

1https://youtu.be/1g9vHfoycs0, https://www.bilibili.com/video/
BV1oU4y1N7yp?spm_id_from=333.999.0.0
2https://www.youtube.com/watch?v=5CwFATodSvU, https://www.bilibili.com/
video/BV1T44y1a7rR?spm_id_from=333.999.0.0

https://youtu.be/1g9vHfoycs0
https://www.bilibili.com/video/BV1oU4y1N7yp?spm_id_from=333.999.0.0
https://www.bilibili.com/video/BV1oU4y1N7yp?spm_id_from=333.999.0.0
https://www.youtube.com/watch?v=5CwFATodSvU
https://www.bilibili.com/video/BV1T44y1a7rR?spm_id_from=333.999.0.0
https://www.bilibili.com/video/BV1T44y1a7rR?spm_id_from=333.999.0.0

92

numeral results are shown in Fig. 5.13, and they are compared with the ground truth. The

dynamic perception performance is also compared with SOTA works in Table 5.2, where the

metrics Multiple Object Tracking Precision (MOTP) and Multiple Object Tracking Accuracy

(MOTA) are adopted as defined in the work of Bernardin [88]. MOTP is the average position

estimation error in this test. Only walking or running pedestrians are tested in Table 5.2.

The second line marked with * is for our method without using the track point to correct the

velocity estimation, and the third line marked with # is for our method without the neighbor

frame overlapping. We record the point cloud (at 30 Hz) and UAV states data (at 100 Hz)

for about 600 s, and repeat the test on the data 5 times to give the average results.

The estimation test results in Gazebo simulation demonstrate that our estimation al-

gorithm is practical for dynamic obstacle avoidance. In addition, our method efficiently

improves the estimation accuracy and robustness in the clustered environment. For our

MOTA, it is composed of a false negatives rate fn = 6.7% (covering non-detected dynamic

objects and dynamic objects erroneously classified as static or uncertain), a false positives

rate fp = 6.9% (static objects misclassified as dynamic), and a mismatch rate fm = 2.1%.

Table 5.2.: Obstacle State Estimation Comparison

Method errorvel(m/s) MOTA (%) MOTP

Ours 0.21 84.3 0.15
Ours* 0.29 83.9 0.16
Ours# 0.25 83.6 0.18
[76] 0.37 76.4 0.28
[72] 0.41 70.1 0.30

(2) Motion planning module test

In addition, we compare the motion planning method with [76] and [89] in Table 5.3. The

metrics amean, vmean, ltra j and topt stand for the average acceleration, the average velocity,

the average flight trajectory length and the time cost for the motion optimization part. The

time costs are measured on a laptop computer with an Intel i7-8565U CPU and 8 GB

93

(a)

(b)

Fig. 5.11.: (a): The simulation environment for the moving obstacles’ position and velocity
estimation test. (b): The visualized estimation results in RVIZ, corresponding to (a). Only
the forbidden pyramids for dynamic clusters are visualized. The pedestrians always face
their moving direction. It can be seen that the obstacles are correctly tracked even though
they are very close.

RAM. Similarly in [76], we consider the environment with only dynamic obstacles, because

the locations and velocities of all obstacles are known and considered as dynamic in [89].

The obstacles are ellipsoids with human-like size (0.5×0.5×1.8m) and move at constant

94

Fig. 5.12.: The box chart of the Euclidean distance of the feature vector f te() between
obstacles from OB1 and OB2. B, W, and R represent the moving Ball, Walking and Running
person in Fig. 5.11 respectively. The distance of the same obstacle is obviously lower than
that of different obstacles, so the obstacles are matched correctly.

Fig. 5.13.: The estimation results of the moving obstacles’ position. The FOV of the camera
is represented with a light green area. The dotted line is the estimated result, while the solid
line is the ground truth.

95

Table 5.3.: Dynamic Planning Comparison

Method amean(m/s2)vmean(m/s)ltra j(m) topt(ms)

Ours 2.96 2.24 25.21 3.15
[76] 3.43 2.37 23.65 8.61
[89] 3.18 2.33 22.96 31.23

velocities, as shown in Fig. 5.14. For each planner, the drone flies between two points

(0,0,1.2) and (20,0,1.2) back and forth for 10 times, 20 obstacles with velocities at 1-3

m/s cross this straight path disorderly. The camera FOV is also considered, and simulated

to be 85.2◦×58◦ with the maximal sensing depth 8 m. From Table 5.3 we conclude that the

average acceleration cost of our motion planning method is smaller because our velocity

planning method considers the minimal acceleration cost in all the sample velocities for the

current time. Also, the computing time is much shorter thanks to the simple but efficient

object function and constraints, which shows the potential to avoid faster obstacles. In these

tests, our planning approach produces a longer trajectory because the farther obstacles are

more likely to be ignored when the obstacles are dense. Only the obstacle close to the drone

is considered sometimes, the trajectory optimality in length from the global view is weak

compared to the compared works, as they optimize the trajectory with all the obstacles in

the sensing range. In addition, the average speed is smaller because our velocity planning

approach is based on sampling and the unreachable samples are simply abandoned, the

drone’s movement capability is not fully used.

(3) System test

To test the whole framework for navigation tasks, we utilize the HAS method [82] as the

path planning algorithm at the front end to generate the waypoint wp for equation (5.20).

The flight simulation world is revealed in Fig. 5.1 and 5.11(a), there are four walking or

running pedestrians, one moving ball, and many static pillars and boxes. In Fig. 5.1, the

necessity for estimating the obstacle’s velocity is illustrated: To avoid the moving man

96

Fig. 5.14.: The simulated test environment for the motion planning module. The drone flies
between the two points for the assigned times. The red arrows represent the velocity vectors
of dynamic obstacles.
which is at a similar speed to the drone, the aircraft choose to fly in the “opposite” direction

from the man so the threat is removed easily. If only the static HAS method [82] is utilized

in the same situation, the drone decelerates and flies alongside the man (red line), which is

very inefficient and dangerous.

5.4.5 Hardware Test

(1) Perception module evaluation

In the above simulation tests, the proposed perception module is verified with the

simulated depth camera. However, the noise of the point cloud from a real depth camera

is much more severe. In subsection 5.1, the parameters of the point cloud filters for the

real camera are tuned to eliminate the ghost points (the points that do not correspond to

any real obstacles), but still a few ghost points remained. Also, the points for real obstacles

are not accurate as those in simulation, especially the depth error is greater for the farther

objects. The vehicle state estimation also has a greater error than that in simulation, which

adds additional error when transforming the points from the body to the earth coordinate.

Therefore, some parameters for perception should be adjusted before flight tests. We collect

over 430 s data of the raw point cloud (at 30 Hz), raw RGB image (at 30 Hz), and the

vehicle states (at 100 Hz) under VICON in different scenarios, and study the influence on the

97

dynamic obstacle detecting and tracking performance from the parameters. As a result, vdy

and dt are found to be more influential than other parameters. In Table 5.4, we use MOTA

(%) to evaluate the performance under different configurations with the collected data, and

repeat the test 5 times for each configuration. Other metrics are discarded since the position

and velocity ground truth of a moving pedestrian are complex to obtain. (a), (b), (c) in the

first row refers to the different test scenarios, and the scenarios are introduced in Fig 5.15.

(a) (b)

Fig. 5.15.: The images from the onboard camera of the dynamic perception test scenarios
and the visualized results. Two pedestrians are walking among several boxes and pillars. (a):
The camera is fixed, for MOTA(a). (b): The camera is held by hands and moving at around
1.5 m/s and 2.5 m/s, for MOTA(b) and MOTA(c) respectively.

We can conclude from Table 5.4 that greater vdy and dt are helpful to suppress the noise

and depth error in obstacle tracking. However, vdy should be much smaller than the slowest

object in the environment to make the classification robust to the velocity estimation error.

If dt is too large, due to the limited camera FOV, an object may be neglected since the

continuously observed time is even shorter than dt . According to the results, we choose

vdy = 0.5 m/s and dt = 0.3 s, other parameters of the perception module stay unchanged.

98

Table 5.4.: Obstacle tracking performance under different parameters

vdy(m/s), dt(s) MOTA(a) MOTA(b) MOTA(c)

0.2, 0.2 69.43 65.26 59.68
0.3, 0.2 71.91 67.71 60.26
0.5, 0.2 75.86 71.12 64.11
0.9, 0.2 74.37 70.59 59.14
0.5, 0.1 71.65 68.24 64.87
0.5, 0.3 78.45 76.12 71.36
0.5, 0.5 74.57 69.11 55.73
0.5, 0.7 66.62 62.78 48.83

(2) Flight test

We set up a hardware test environment as Fig. 5.16, the drone takes off behind the

boxes and then a person enters the FOV of the camera and walks straight towards the drone

during the flight to test the effectiveness of our method. In Fig. 5.17, the camera is fixed

and takes photos every 0.33 s during the flight. Eight photos are composed together. In

the first frame the pedestrian appeared, the orange line shows the trajectory of the drone

while the yellow line is for the person. It can be concluded that the reaction of the drone

is similar to the simulation above. The visualized data for this hardware test is shown in

Fig. 5.18, the planned velocity and the predicted trajectory react promptly once the moving

obstacle appears. In Fig. 5.19, the gray line is only for the path planning algorithm (HAS),

and the blue line represents the whole planning with Algorithm 10. The gray line has a

strong positive linear correlation with time because the number of the input points of the

collision check procedure determines the distance calculation times. The blue and red lines

show the irregularity, because the moving obstacle brings an external computation burden to

Algorithm 10, and the number of moving obstacles has no relation to the point cloud size.

The single-step time cost of our proposed method (excluding the path planning) is even

smaller than 0.01 s, indicating the fast-reacting ability towards moving obstacles.

At last, we compare our work with SOTA works on the system level in Table 5.5. Since

most related works differ significantly from ours in terms of application background and test

99

Fig. 5.16.: The dynamic hardware test environment. The aerial platform is introduced in the
upper right corner. The pedestrian walks directly through the area while the drone is flying
among the static obstacles.

Fig. 5.17.: The composed image of one of the hardware flight tests. The drone takes off
from the right side, and the goal is located at the left side, denoted by a green dot. The
numbers mark the corresponding frames, increasing with time.

platform, for numeral indicators we only compare the total time cost for reference. The time

cost is obtained from the references directly, to compare roughly at orders of magnitude.

The abbreviations stand for: obs (obstacle), cam (camera), UUV (underwater unmanned

vehicle), N/A (not applicable). “N/A” in the sensor type column refers to the work that gets

obstacle information from an external source and does not include environment perception.

Most works have severe restrictions on the obstacle type or incompleteness in environment

perception, and the computing time cost is not satisfactory for real-time applications. Our

100

Fig. 5.18.: The corresponding visualized data in RVIZ for the frames in Fig. 5.17

Fig. 5.19.: The time cost for different modules under different filtered point cloud size.

work has a great advantage in generality and system completeness, the computing efficiency

is also at the top level.

5.5 Conclusion and Future Work

In this chapter, we present a computationally efficient algorithm framework for both

static and dynamic obstacle avoidance for UAVs based only on point clouds. The test results

indicate our work is feasible and shows great promise in practical applications. In summary,

the main contributions of the chapter are as follows:

101

Table 5.5.: System comparison between different works

Work Sensor type Vehicle Obs limits Time cost
(s)

[90] Sonar UUV dynamic obs 1-2
[70] N/A Robots dynamic obs 0.045-0.13
[24] Cam & Lidar Car N/A 0.1
[16] N/A UAV human 0.2-0.3
[25] Event cam UAV dynamic obs 0.0035
[72] RGB-D cam UAV N/A 0.024
Ours RGB-D cam UAV N/A 0.015

• The feature vector is introduced to help match the corresponding obstacle in two

point cloud frames. It is proved to be more robust than existing works that match the

obstacles with only position information predicted by the Kalman filter. The neighbor

frame overlapping and ego-motion compensation techniques are further introduced to

reduce the estimating errors of the obstacle’s position.

• To compensate for the resultant displacement estimation error from the self-occlusion

of obstacles, the object track point is proposed.

• Based on the relative velocity, the forbidden pyramids method is designed to efficiently

plan the safe desired velocity to avoid both dynamic and static obstacles. The various

time gaps which may cause control lag error are also well compensated.

• We integrate those proposed methods and a path planning method into a complete

quadrotor system, demonstrating its reliable performance in flight tests as shown in

Fig. 5.17.

However, when the speed or angular velocity of the drone is high, and also because of

the narrow FOV of a single camera, the dynamic perception becomes significantly unreliable.

In future research, we intend to improve the robustness of our method in aggressive flights

and test it with different sensors such as lidar.

102

6. AN ENHANCED SYSTEM: ROBUST PERCEPTION AND
THREAT-AWARE PLANNING

6.1 Research Background

One major potential application scenario of our proposed dynamic obstacle avoidance

system is autonomous aerial cinematography (AAC). Microdrones have been broadly ap-

plied in aerial cinematography in recent years, and some popular commercial products of

cinematography drones are well known to the public, such as DJI Mavic 2 and 3DR Solo

Drone. From the viewpoint of the developers of such products, the safety of the drone’s

flight should be the primary concern. For some inexperienced drone users, flying in com-

plex environments is challenging and dangerous, such as in a narrow indoor scenario with

crowds. Thus, to better ensure safety, the drone is supposed to avoid obstacles automatically

when encountering urgent incidents, even under the remote control of humans. In addition,

autonomous aerial cinematography is a popular function in the most recent photography

drone products. Some consumers may want the drone to follow them when doing sports

or driving and make a movie. When under the photography tasks, the drones may have to

fly in a complex environment, including many dynamic obstacles such as pedestrians. As

a consequence, robust autonomous obstacle avoidance ability is urgently required. More

importantly, the AAC drones are usually required to interact with people, the crash on the

human body will cause serious injury accidents.

After continuous research in recent years, the robust and agile flight in an unknown

static environment is no longer a vital challenge. Many existed works have demonstrated the

elegant and smooth flight through clustered obstacles. However, autonomous navigation in

complex dynamic environments is still recognized as one of the grand challenges in today’s

robotics [1]. As introduced in Chapter 5, autonomous flight in a dynamic environment is

preliminarily achieved. However, the method in Chapter 5 is not safe and robust enough

103

in a complex dynamic environment. The dynamic object classifier and tracker are not

robust to depth information noise. When the camera is moving, the velocity estimation

error of static objects is heavy and static obstacles are often wrongly classified as dynamic.

Thus, the dynamic environment still severely threatens autonomous vehicles. The motion

planning method also shows a deficiency in generating smooth motion primitives for aerial

cinematography. To avoid the dynamic obstacles smoothly, we need to detect the dynamic

obstacles in advance, robustly distinguish them from the background, and predict the

obstacle’s trajectory. In addition, the planned trajectory should cover a longer time duration

to improve the global optimality and camera stationarity (the unnecessary re-planning is

repressed).

Although we have proposed a complete navigation system in a dynamic environment

for micro UAVs, the dynamic object perception method embedded is not robust in complex

dynamic scenarios because only depth information is used to avoid the heavy computation

burden. Under such a condition, the classification of dynamic and static objects can only

refer to the estimated velocity of the objects, but the depth map from the RGBD camera

is too noisy, and the state estimation of the drone (camera is fixed on the drone) also

has an error. As a result, the initial velocity estimation has an unignorable error, and

the resulted classification is often wrong, especially since the static object is likely to be

classified as dynamic. This is also an untackled problem in related works [72, 76]. To

address this problem, we propose an RGB-image-based object classification framework that

outputs robust and continuous dynamic object identification results, which is also cheap

in computation and real-time on a micro on-board computer. A pointcloud-based object

velocity estimation module receives the object classification and outputs the velocity of the

dynamic objects only.

In trajectory planning, we adopt a two-stage framework consisting of a front-end kino-

dynamic path planner and a back-end trajectory optimizer. Although the existed works use

the constant velocity model to predict the obstacle’s future trajectory, we should note that

it is not accurate. The pedestrians may decelerate or accelerate when facing the drone for

their safety considerations. It is also similar to other human-driven vehicles such as cars or

104

bicycles. Hence, we predict the future position distribution of the objects by their maximum

possible acceleration and assign the cost for the trajectory optimization objective function if

the predicted vehicle’s trajectory conflicts with the obstacle’s future potential region.

6.2 Dynamic Object Perception

For autonomous flight in a dynamic environment, the dynamic object perception result

plays a vital role in obstacle avoidance performance. Because the classification based on

the estimated object velocity is heavily disturbed by the depth noise, we leverage the robust

RGB image-based object detecting algorithm to give a reliable category. Then, the velocity

of the dynamic object is estimated with the point cloud input after the clustering, and the

velocity is further optimized via the Kalman Filters (KFs). The architecture of our proposed

framework is illustrated in Fig. 6.1. The black arrows with brief descriptions represent the

information flow.

Fig. 6.1.: The flowchart of the whole navigation system.

6.2.1 Detect and track objects on image

In the common scenarios where AAC drones are used, dynamic objects, such as pedestri-

ans or cars, are also common in everyday life. Then, the dynamic objects can be distinguished

by prior knowledge with the help of a universal object detector. We list some potential

dynamic object types, and once the object detected from the image matches the list, the

dynamic object is found and forwarded with the corresponding bounding boxes to the object

105

tracker. We should note that although the detected “dynamic objects” are not guaranteed

moving at the moment, for example, a person sitting on a chair. We argue that the object

type that has a considerable probability of being dynamic and may collide with the drone is

a valuable target to estimate its velocity.

The object tracker is initialized with the bounding box proposed by the object detector.

Since the object tracking framework is designed for multi objects, we initialize I ∈N trackers

Timg = {T0, · · · ,TI} for I dynamic objects. Bimg = {b0, · · · ,bI} is the list of the bounding

boxes of all the tracked targets. Considering that the object tracker may fail during the

tracking iterations caused by the object disappearing, we design the recovering mechanism

for the tracking failure. Once a tracker fails when it updates with the most recent image,

the object detector is executed once to get all the possible Î dynamic objects again. The Î

newly detected objects is then associated with the currently tracked targets with the IoU,

the newly appeared ∆I objects are used to initialize ∆I trackers and update Timg,Bimg, I, the

detected objects associated with the previously tracked object are used to update the ROI of

the corresponding trackers. For each tracker in Timg, we assign a unique sequence number

increasing from zero when it is initialized, and it also inherits the object type tag from the

object detector. The image-based object detecting and tracking framework is detailed in

Algorithm 11.

In this chapter, a recent light version developed from YOLO object detector series,

YOLO-fastest-V21, is utilized because of its significant improvement on the computation

efficiency. With little sacrificed accuracy, the run time is shortened by about 80%−90%

compared to YOLO4-tiny when run on CPU, which is very favorable for tiny onboard

computers without GPU. For the object tracking algorithm, we adopt the fDSST algorithm

[91], which can adjust the BBs’ scale compared to the original KCF method [92] and the

run time is also very short on our onboard computer. Because the run time of the detector is

much longer than the tracker, we only call the detector when any tracker fails and utilize

the tracker to fulfill the ”gaps” between the runs of the detector and output continuous

tracking results, instead of the “tracking by detecting” approach. The trackers are stored in a

1https://github.com/dog-qiuqiu/Yolo-FastestV2

https://github.com/dog-qiuqiu/Yolo-FastestV2

106

Algorithm 11: Image-based object detecting and tracking
1 Input: Raw RGB image F

1: if Initial run then
2: Detect dynamic objects with F , initialize I trackers Timg and the bounding boxes

(BBs) Bimg
3: else
4: Update Timg and Bimg with F
5: if any tracker in Timg fails then
6: Delete the failed trackers and the BBs from Timg and Bimg
7: Detect Î objects with F , denoted as B̂img

8: for b̂i in B̂img do
9: Calculate the maximal IoU miou between b̂i and bmc ∈ Bimg

10: if miou < liou then
11: Initialize one new tracker with b̂i, push it in Timg and push b̂i in Bimg
12: else
13: Update the tracker (corresponding to bmc) with the accurate BB b̂i

14: Publish Bimg and the corresponding sequence number and object type.

container after initialized from the newly detected object, and each tracker always updates

the object bounding box and confidence indicator when a new RGB frame is input. If the

confidence (the peak value of the correlation matrix of the object) is smaller than a threshold,

the tracker is considered to fail and deleted from the container.

6.2.2 Estimate the object velocity

The object velocity can be estimated with the help of depth information. The RGBD

camera can provide the aligned depth map with the RGB image. The pixel’s value corre-

sponds to the real depth multiplied by a scale factor for each pixel in the depth map. The

object’s 3D position in the camera coordinates can be calculated by the camera intrinsics

and the 2D coordinate in the depth map.

We use Ft1 and Ft2 to represent two depth map frames at the former timestamp t1 and

the latest timestamp t2 respectively. t2−t1 = dt and dt > 0. The time interval dt is determined

in the same way as introduced in the last chapter. Ft1 and Ft2 are updated continuously

while the sensor is operating. To utilize the object classification (introduced in section 6.2.1)

107

and reduce the computation to our best, the depth map is segmented into different dynamic

objects by the object BBs and static background (static obstacles) first and then converted

to the point cloud in the earth coordinate separately. The clustering procession for the

whole point cloud, as introduced in [76, 93], is no longer needed, which takes considerable

time. We utilize Cs to denote the point cloud of the static obstacles (background), and

C d
t1 = {C0

t1, · · · ,C
I−
t1 }, C d

t2 = {C0
t2, · · · ,CI

t2} stands for the point clusters of dynamic objects

at t1 and t2 respectively. C d
t1 is aligned to C d

t2 following the object sequence numbers, if in t1

frame there is no corresponding object for Ci
t2, we remain a blank cluster at the ith position

in C d
t1. For each point cluster Ci

t2, we build its 3D axis-aligned bounding box (AABB) bi
o

with origin oi
B ∈ R3 and size [li

x, l
i
y, l

i
z]. Then, we build a wider observing box bi

ob out of the

AABB with the origin oi = oi
B− ld p and size li = [li

x, l
i
y, l

i
z]+2ld p. ld p ∈ R+3 is the inflating

size of the observing box, which is related to the maximal possible displacement of the

dynamic object within dt .

Here, the observing box is a similar concept to the ”window” in the original PIV method.

We translate the coordinate of Ci
t2 and change its origin at oi, as well as Ci

t1. To perform the

cross-correlation algorithm with Ci
t2 and Ci

t1 and calculate the displacement of the object,

we need to convert the point cluster into a discrete space with the same size. Given the voxel

size lv, the discretized coordinate of any point p in Ci
t1 or Ci

t2 is calculated by ⌊(p−oi)/lv⌋.

Here comes the most important difference between our method to the original PIV method.

The original PIV method is developed to estimate the velocity of the particles that physically

exist. However, the point in the point cloud does not relate to a physical particle. The

point is generated from the depth map, and the depth value of a specific pixel has been

post-processed (may result from interpolation algorithms). The depth calculated from the

depth map of a point in 3D space may be slightly different in the continuous frames because

of the lightning change. Thus, we extend the 3D discrete space into four dimensions, a

feature vector fe ∈ RN replace the original binary state (0 represents no particle in this pixel,

1 is for the contrary condition). N is the number of local features of the points fall in the

same voxel. The feature vector of each voxel is more robust to the noise and error in the

108

point cloud, and it is proved in the simulation tests. Let Cvx denote the points in any voxel

of the discrete space of Bi
ob, the feature vector is defined as:

fe(Cvx) = [len(Cvx),MC(Cvx)], (6.1)

where len() is the size of the input cluster, MC()∈R3 returns the mean of the RGB value

of the input cluster, and N = 4. We use two tensors X i
t2, X i

t1 ∈ R[Ni
x×Ni

y×Ni
z×N] to denote

all the feature vectors in the 3D discrete space, corresponding to point cluster Ci
t2 and Ci

t1

respectively. The displacement of the ith object can be estimated by the cross-correlation

algorithm:

F i
t1
(
ωx,ωy,ωz,ω f

)
=

1
2π

∫∫∫∫
X i

t1e j(ωxx+ωyy+ωzz+ω f f)dωx dωy dωz dω f

F i
t2
(
ωx,ωy,ωz,ω f

)
=

1
2π

∫∫∫∫
X i

t2e j(ωxx+ωyy+ωzz+ω f f)dωx dωy dωz dω f

Ri
12 (x,y,z, f) =

1
2π

∫∫∫∫
F i∗

t1 F i
t2e− j(ωxx+ωyy+ωzz+ω f f)dωx dωy dωz dω f

. (6.2)

Fig. 6.2.: Illustration of the displacement estimation method. The red grid is the peak in the
cross-correlation tensor, whose index represents the displacement of the object. In this case,
the displacement of the object from t1 to t2 is [−1,−1]lv.

F i
t1,F

i
t2 ∈ C[Ni

x×Ni
y×Ni

z×N] are the resulted complex tensor after the fast Fourier transform

(FFT) of X i
t1,X

i
t2. F i∗

t1 is conjugate with F i
t1. Ri

12 ∈ R[Ni
x×Ni

y×Ni
z×N] is the cross-correlation

function, it calculates the inverse fast Fourier transform of F i∗
t1 F i

t2, and the index di
pk of

109

its peak value is the estimated displacement of ith object in the unit of voxel size lv. Fig.

6.2 shows the process of the displacement estimation with a simple 2D case for a better

explanation, while our method is for the 3D case. Then, the velocity can be obtained with

vi
t2 =

di
pklv
dt

. (6.3)

At last, we use KFs to track each dynamic object according to the sequence number and

output the optimal position and estimation for each object. The constant velocity model is

used in the state transition equation. The KF will forward the prediction for a short time

when no latest observation values can be used to update the KF, dealing with the occasion

when the tracking of one object on an image is interrupted by short occlusion. If the tracking

on the image can recover in a short time, the update for the corresponding KF can resume.

The Kalman filter for one object is detailed as below:

x̂i−
t = F i

t x̂i
t−1 (6.4)

Pi−
t = F i

t Pi
t−1(F

i
t)

T +Q, (6.5)

Ki
t = Pi−

t HT (HPi−
t HT +R

)−1
, (6.6)

Pi
t =

(
I−Ki

t H
)

Pi−
t , (6.7)

x̂i
t =

 x̂i−
t +Ki

t
(
xi

t−Hx̂i−
t
)

(observation is available),

x̂i−
t (no observation),

(6.8)

xi
t =

 pi
t2

vi
t2

 ,F i
t =

 1 ∆t

0 1

 , (6.9)

where R, H, Q are the observation noise covariance matrix, observation matrix, and process

noise covariance matrix respectively. The superscript − indicates a matrix is before being

updated by the Kalman gain matrix Ki
t , applicable for the state matrix x̂i

t and the posterior

error covariance matrix Pi
t . The subscripts t and t−1 distinguish the Kalman filter’s current

and former steps of the Kalman filter. F i
t is the state transition matrix. xi

t is composed of the

110

observation of the obstacle position and velocity, and ˆ marks the filtered results for xi
t . x̂i

t

equals to the predicted state x̂i−
t if no dynamic obstacle is caught. x̂i−

t is also utilized as the

propagated cluster state in the obstacle matching introduced above. ∆t is the time interval

between each run of the Kalman filter. The utilization of KF and the related symbols are

the same as chapter 5, we repeat them for the reader’s convenience. A minor difference is

that we match the KFs with the observation value at each depth frame with a more strict

condition: The matching is accepted if the observed object position and velocity is close

(Euclidean metric) to one forwarded KF, and the observed object ID is identical to one

KF’s ID. This is a more robust measurement when the object tracker fail to give the correct

tracking results. For example, when a tracked object moves outside the camera FOV, the

tracker may wrongly keep tracking on some background pattern.

The whole algorithm for object velocity estimation is summarized in Algorithm 12.

6.2.3 Uncertainty evaluation

The KF requires a reasonable estimation of observation noise covariance matrix R ∈ R2

(assume the error is isotropic), since the depth noise from the camera is heavy, and it has a

severe impact on the position and velocity estimation based on our former tests. First, we

analyze the error in pointcloud cluster Ci
t2 in the earth coordinate and estimate the variance

Vari
p in the observed object position pi

t2.

Vari
p mainly comes from three aspects, the depth map variance Vari

p1 of the object i,

the variance in the vehicle’s state Vari
p2 (because the error is transferred into Ci

t2 during

the coordinate conversion from body frame to earth frame), and the variance caused by the

changing ego-occlusion and the object body deformation (the waving limbs of a moving

person). According to the official document of Intel Realsense D435i depth camera, the

standard deviation of depth increases with the measuring distance, as shown in Fig. 6.3. As

introduced in the document, the standard deviation of depth is approximately proportional to

the square of the distance, thus we can fit the curve with a parabola and estimate Vari
p1 with

111

Algorithm 12: 3D Object Velocimetry
1 Input: Depth maps Ft1 and Ft2, Drone’s position, orientation, Dynamic Object

BBs B and the object types and sequence number at time t1 and t2
1: Segment Ft1 and Ft2 with bounding boxes Bt1, Bt2
2: Convert the depth maps into the point cloud clusters Cs, C d

t1, C d
t2 in the earth coordinate

3: Re-sort C d
t1 to align with C d

t2 by the object sequence number, leave empty at position i
in C d

t1 if at t1 no object can match Ci
t2.

4: for i in range 0 to I do
5: if Ci

t1 is empty then
6: if the KF of object i is timeout then
7: Delete the KF of object i
8: else
9: Update the KF with the predicted values in the last step as the observation

(equation (6.7))
10: Continue to the next loop
11: else
12: Build the observing box Bi

ob for Ci
t2

13: Discretize the space of Bi
ob, calculate the integer index of each point in Ci

t1 and
Ci

t2 in the subspace Bi
ob

14: Calculate all the feature vectors for each voxel in Bi
ob, for both Ci

t2, Ci
t2, build

X i
t2, X i

t1
15: Estimate the velocity, as detailed in equation (6.2) and (6.3)
16: if object i’s observation cannot match with existed KFs then
17: Initialize the KF for object i with the observed state xi

t , x̂i
t ← xi

t
18: else
19: Update the KF with the observation values, obtain the optimal prediction x̂i

t

20: Publish x̂i
t as the position and velocity of object i, as well as the object type, with

timestamp t2

Vari
p1 = (0.00375∥pi

t2− pc0∥2)2, (6.10)

where pc0 denotes the current position of the camera. Vari
p2 is composed of the estima-

tion error of both vehicle orientation and position. The position estimation variance Varpos

can be directly accumulated in Vari
p2, while the error caused by orientation estimation

variance Varori is calculated by the error propagation law:

Vari
p2 =Var3×1

pos +R3×3
er Var3×1

ori , (6.11)

112

Fig. 6.3.: The relationship between depth standard deviation and the distance. This picture
is from the Intel official online document.

R3×3
er =

[
R1

er R2
er R3

er
]

(6.12)

R1
er =


((CψSθCφ +SψSφ)pi

B[1]+ (−CψSθSφ +SψCφ)pi
B[2])

((SψSθCφ −CψSφ)pi
B[1]+ (−SψSθSφ −CψCφ)pi

B[2])

CθCφ pi
B[1]−CθSφ pi

B[2]

 , (6.13)

R2
er =


(−CψSθ pi

B[0]+CψCθSφ pi
B[1]+CψCθCφ pi

B[2])

(−SψSθ pi
B[0]+SψCθSφ pi

B[1]+SψCθCφ pi
B[2])

−Cθ pi
B[0]−SθSφ pi

B[1]−SθCφ pi
B[2]

 , (6.14)

R3
er =


(−SψCθ pi

B[0]+ (−SψSθSφ −CψCφ)pi
B[1]+ (−SψSθCφ +CψSφ)pi

B[2])

(CψCθ pi
B[0]+ (CψSθSφ −SψCφ)pi

B[1]+ (CψSθCφ +SψSφ)pi
B[2])

0

 ,
(6.15)

where C() is short for cos() and S() is short for sin(). pi
B ∈ R3 is the body coordinate of

pi
t2. Here, please note that the variance of vehicle position and orientation estimation is

assumed to obtain from the localization submodule. If a KF or EKF is used for localization,

113

the variance we need can be directly copied from its posterior error covariance matrix. For

Vari
p3, it can be estimated by analyzing the data from Gazebo simulation since the ground

truth value can be easily collected. At last, we have the variance of object position estimation

Vari
p =Vari

p3 +mean(Vari
p2)+Vari

p1. (6.16)

The observed velocity variance Vari
v is also related to position variance Vari

p, the voxel

size lv in our proposed object velocity method also contribute to Vari
v. Since the displace-

ment result is also discretized by lv, the result will loose the precision and an additional

displacement error of variance (lv)2/12 (variance of continuous uniform distribution with

interval length lv) is introduced. According to the error propagation law, we have

Vari
v = 2Vari

p(
1
d2

t
−1)+

(lv)2

12
. (6.17)

Thus, the matrix R is obtained:

R =

 Vari
p

√
Vari

pVari
v√

Vari
pVari

v Vari
v

 . (6.18)

At last, please be reminded that we use the constant velocity model in KF to estimate

the dynamic obstacle’s motion. However, it is not precise for real-world common moving

objects. The velocity fluctuation is very common such as pedestrians. For the process error

covariance matrix Q, we should consider the disturbance from the unmodeled factor, such

as the acceleration variance Vari
a ∈ R[79]. If we assume Vari

a is known or can be roughly

estimated for a specific type of dynamic object, then matrix Q is given by

Q =

 δ t2

4
δ t3

2
δ t3

2 δ t2

Vari
a. (6.19)

Let’s take pedestrians as an example. As illustrated in one research[94], the total

acceleration root means square (RMS) of a walking human is about 3.15m/s2, for a running

114

human, the RMS is about 3.72m/s2. Thus, we can approximately pre-assign Vari
a = 10 for

”person” object to give matrix Q the reasonable value.

6.3 Trajectory Planning

The trajectory planning framework comprises three major parts: front-end path planning,

back-end trajectory optimization, and yaw planning. If we plan the initial trajectory at the

beginning of the flight, we first run the front-end path planning (hybrid A*) algorithm to

obtain a kinodynamic-feasible path for the drone. Then, we build a safe flight corridor (SFC)

based on the path. The SFC comprises a series of convex polyhedras connected end to end,

and no static obstacle is in the SFC. SFC can give concise geometry constraints to facilitate

trajectory optimization, and the optimized trajectory is supposed to stay inside the SFC to

avoid all the static obstacles. The predicted trajectories of the dynamic objects are converted

to the geometry constraints in the optimization. At last, the yaw along the trajectory is

planned to improve the obstacle visibility, and ultimately achieve the purpose of improving

flight safety.

To re-plan the trajectory, we design a hierarchical safety check mechanism in the

framework to minimize the computation burden. Fig. 6.4 illustrates the trajectory re-

planning framework after the initial trajectory has been obtained. The results from the last

planning step are well reused in the current circle. The hybrid A* planning, SFC building,

and trajectory planning are called only when the corresponding safety check fails (collision

detected). We adopt the KD-tree for quick collision check in the hybrid A* planning and

SFC building on the point cloud, and the KD-tree construction with the point cloud in the

local environment is also very fast [95].

6.3.1 FOV constrained hybrid A* algorithm

The 3D hybrid A* algorithm [48] can search a kinodynamic-feasible path efficiently, and

the kinodynamic path contains the primary coarse spatial-temporal information to predict

115

Fig. 6.4.: The flowchart of the re-planning framework

the vehicle position at any future time, thus we can check the path collision with dynamic

objects as well.

Given the initial vehicle state (the position and velocity) [pinit , ṗinit] and goal state

[pgoal, ṗgoal], the hybrid A* algorithm adopts the acceleration as the control input. With

a fixed time interval Tnode and the samples in the control space, the algorithm transfer the

initial state to many middle states (nodes). The control sampling and state transition are

repeated with the nodes within time horizon Tnode, until a node is close enough to the goal

state. The algorithm inherits a similar operation with an open list and close list from A*

algorithm, and adopts the heuristic cost function to speed up the convergence as well. We

propose modifications to the original hybrid A* algorithm [48], enabling it to work directly

on the point cloud with the dynamic objects existing, and the resulted path can be limited in

the camera FOV to enhance safety. The modified CheckFeasible() function in the original

Algorithm 1 of [48] is described in Algorithm 13. nsp is the sample number in Tnode for

safety check.

The camera FOV is considered as the soft constraint in the path searching, we add an

additional large cost c f ov in the original Heuristic() function [48] when the node is found

outside the current FOV of the camera. A regular quadrangular pyramid can represent the

116

Algorithm 13: Modified functions of hybrid A*
1 CheckFeasible(): Input: Current state (node) [pc, ṗc], current control sample ac,

state [ptmp, ṗtmp] in the open list tries to connect to [pc, ṗc], kd-tree K , Dynamic
objects’ position {p0

t2, · · · , pI
t2} and velocity {v0

t2, · · · ,vI
t2}.

1: tc← current global time
2: for ts in [Tnode

nsp
, 2Tnode

nsp
, · · · ,Tnode] do

3: Query position pc + ṗcts +act2
s /2 in K , dm← the distance to the nearest neighbor

4: if dm < dsa f e ∨ ∥ ṗc +acts∥> vmax then
5: Return false
6: else
7: for i in range [0,I] do
8: if ∥pi

t2 + vi
t2(tc− t2 + ts)− (pc + ṗcts +act2

s /2)∥< dsa f e then
9: Return false

10: Return true

camera FOV. Let the current position of the camera pc0 be one vertex of the pyramid. pc1 to

pc4 represent the other four vertexes, and pc0 to pc4 are in the earth coordinate. We first use

the combination of vector inner and outer products to judge one point ptmp is at the front or

back side of a plane:

d f 0 = (ptmp− pc0) · ((pc0− pc1)× (pc0− pc2)). (6.20)

If d f 0 ∈ R is negative, ptmp is at the inner side of plane △pc0 pc1 pc2 of the pyramid. We

calculate d f 1 to d f 4 for the other four sides of the pyramid as (6.9), and ptmp is outside the

FOV if one of d f 0 to d f 4 is positive. If ptmp is outside the FOV, an additional cost is added:

hc = h̄c + c f ov (6.21)

hc is the modified heuristic cost we use, h̄c is the original in [48]. We do not strictly

forbid the planned path to go beyond the FOV, considering the drone may face wide obstacles

occupying all the FOV and block the way to the goal. Our approach will find the path inside

the FOV if possible and try the unknown space outside the FOV when the FOV is fully

occupied.

117

6.3.2 Trajectory optimization and the time-varying safety margin

Assume that we have the second order kinodynamic path, the path is discretized into a se-

ries waypoints and the waypoints are streamlined, denoted as Pori = {wp1,wp2, · · · ,wpm}.

For any wpm∗ . wpm∗ ∈Psp(0 < m∗ < m), wpm∗−1wpm∗+1 collides with obstacles, and

wpm∗−1wpm∗ and wpm∗wpm∗+1 are all collision-free. Before we optimize the trajectory, a

safety corridor is required to offer the geometry constraints for the trajectory in order to

ensure static obstacle avoidance. In this chapter, we use polyhedrons to construct the SFC

rather than spheres because more free space is utilized. The safety corridor generation

procedure is the same as described in [96]. The polyhedron H j (0 < j < m) in the SFC is

defined as:

H j =

{
x ∈ R3 |

(
x− p̂k

j

)T
n⃗k

j ≤ 0,k = 1,2, · · · ,N j

}
, (6.22)

where N j is the number of faces of the jth polyhedron, and p̂k
j, n⃗

k
j are the point and the

corresponding normal vector on the face.

Thanks to MINCO (minimum control) class [97], we can directly control a trajectory’s

spatial and temporal profile, making the trajectory optimization with geometry constraints

very efficient. We use a series of polynomials to define the trajectory in each dimension (x,

y, and z) in 3D space, denoted as:

p(t)=



p1(t)=CT
1 β (t−T0) T0≤ t<T1

...
...

p j(t)=CT
j β
(
t−Tj−1

)
Tj−1≤ t<Tj

...
...

pm−1(t)=CT
m−1β (t−Tm−2) Tm−2≤ t<Tm−1

(6.23)

where C j ∈ R6×3 is the coefficient matrix of the jth piece and β (t) =
[
1, t, · · · , t5]T is the

time vector. The order of polynomials is 5, and the accelerations at the joint point between

polynomial pieces are continuous. Thus, the quadrotor’s body angles along the planned

118

trajectory are continuous according to the differential flatness property. The perception and

VIO system all benefit from the smoothly changing body angles because the camera is fixed

at the frame, and the jitters in body angles will bring motion blur to the image.

We define the optimization problem formulation as follows:

min G=Se+ρ (Tm−1−T0)+λvSv+λaSa+λcSc+λdSd

s.t. p[s]j
(
Tj
)
= p[s]j+1(0) = p̄ j,

p j
(
Tj
)
∈H j∩H j+1,Tj−Tj−1 > 0,

∀ j ∈ {1, · · · ,m−1},

p[s]1 (0) = p̄s, p[s]m−1 (Tm−1) = p̄ f ,

(6.24)

where C (x) = max(x,0)3 is a cubic function, ρ is the weight of the flight time of the whole

trajectory. [s] represents a set of derivatives of the highest order s. We choose s = 2, so the

position, velocity, and acceleration of the joint point between polynomial segments are all

equal. p̄ j ∈R(s+1)×3 is the interval condition, p̄s, p̄ f ∈R(s+1)×3 are the start and final states,

respectively. Se, Sv, Sa, Sc, Sd are the cost for the energy, the maximum velocity constraint,

the maximum acceleration constraint, the collision with safety corridor, and the collision

with dynamic objects respectively. λv, λa, λc, and λd are the corresponding weights. We

define the time allocation vector T as:

T = (T1−T0,T2−T1, · · · ,Tm−1−Tm−2)
T

= (δ1,δ2, · · · ,δm−1)
T ∈ Rm−1

+ .
(6.25)

The detailed definition of the costs are as follows:

Se=
m−1

∑
j=1

L−1

∑
l=0

∥∥∥∥CT
j β

(3)
(

l
L

δ j

)∥∥∥∥2

2

δ j

L
, (6.26)

Sv=
m−1

∑
j=1

L−1

∑
l=0

C

(∥∥∥∥CT
j β

(1)
(

l
L

δ j

)∥∥∥∥2

2
− v2

max

)
δ j

L
, (6.27)

119

Sa=
m−1

∑
j=1

L−1

∑
l=0

C

(∥∥∥∥CT
j β

(2)
(

l
L

δ j

)∥∥∥∥2

2
−a2

max

)
δ j

L
, (6.28)

Sc=
m−1

∑
j=1

L−1

∑
l=0

N j

∑
k=1

C

((
CT

j β
(0)
(

l
L

δ j

)
− p̂k

j

)T

n⃗k
j

)
δ j

L
, (6.29)

where L is the sample number on each piece of the trajectory, and I is the number of dynamic

objects. dsa f e is the pre-assigned safety radius to guarantee the safety between the vehicle

trajectory and the obstacle at any moment. vmax and amax are the upper bound of the velocity

and acceleration magnitude, respectively. The trajectory optimization is also illustrated

in Fig. 6.5, all the sample points along the trajectory will be pushed inside the SFC, and

they are guaranteed not to have a spatial-temporal intersection with the predicted dynamic

obstacle’s position.

Here we introduce the time-varying safety radius toward the dynamic objects. Most

existing related works assume the dynamic obstacles move at a constant velocity when

planning the trajectory. Since most dynamic obstacles such as pedestrians in the real-world

can not suits the constant velocity model precisely, especially when human meet a aerial

vehicle their reactive behavior is difficult to predict, the motion uncertainty should be

considered carefully. We hence propose a future position distribution estimating method

for dynamic objects based on their maximal acceleration from prior knowledge. Let ad
max ∈

R3 denotes the maximal acceleration can be reached for a certain object type. At time

t2 +∆t(∆t > 0), the position of dynamic object i is distributed in

S i
t2+∆t =

{
x ∈ R3 | |x[r]− p̂i

d[r]−bi
o[r]| ≤

ad
max[r](∆t2)

2

}
, (6.30)

where r = 1,2,3 represents the x,y,z coordinate respectively. The dynamic object’s predicted

position p̂i
d is calculated by the velocity and the global time topt when the optimization

starts:

p̂i
d = p̂i

t2 + v̂i
t2(topt− t2 +

l
L

δ j +
j−1

∑
q=1

δq). (6.31)

120

Fig. 6.5.: The process of trajectory optimization. Before the optimization (upper case), the
sample points on the trajectory (black dots) are found outside the SFC (with yellow circle)
and collides with dynamic object (with red circle). The four trajectory samples correspond
to the four predicted object positions. After the optimization, the joint points (yellow dots)
of the trajectory and the time allocatinon T are adjusted to deform the trajectory and make it
safe.

If there is the spatial-temporal intersection between the vehicle’s future trajectory and S i
t2+∆t ,

the vehicle is considered of collision risk. The distributed space is of cuboid shape with

the half-edge lengths li
∆t = ad

max(∆t2)/2+ li/2 ∈ R3, as shown in Fig. 6.5. We assume that

the position closer to pi
d has a higher probability of being occupied by the object i at time

t2 +∆t, Sd is defined as (⊙ is Hadamard product)

Sd =
m−1

∑
j=1

L−1

∑
l=0

I

∑
i=1

(
λdsC

(
1−
∥∥vd⊙−li

∆t
∥∥2

2

)
+C

(
1−
∥∥vd⊙−l̂i∥∥2

2

))
δ j

L
(6.32)

121

where −li
∆t represents a vector has the reciprocals of each element in li

∆t , the same for l̂i.

To make the formula more concise, we define the distance vector vd = CT
j β (0) (l

Lδ j
)
− p̂i

b.

l̂i is the inflated AABB obtained by further introduce the safety margin ds into the orig-

inal object 3D AABB of size l̂i = [li
x, l

i
y, l

i
z] + 2ds. ds = ectl + epos + rsum, it is the sum

of characteristic radius of the dynamic object and vehicle rsum, the estimated respond-

ing error of the entire control system ectl , and the object position estimation error epos.

epos can be estimated from posterior estimated covariance matrix Pi
t ∈ R3 of the KF,

epos =
√

Pi
t [1,1]+Pi

t [2,2]t f +Pi
t [3,3]t2

f /2 (t f =
l
Lδ j +∑

j−1
q=1 δq). We use the ellipsoid to

approximate the box to generate the convex and differentiable cost. λds≪ 1 is the soft factor

for the cost in the extended position distribution region for the first term in Sd , while the

second term acts as the harder restriction. When there is ample space in the SFC to avoid

the dynamic obstacles, the optimized trajectory will avoid the all the obstacle distribution

S i
t2+∆t , as the green curve shown in Fig. 6.6. If there are many dynamic obstacles and the

position distribution may occupy too much space, the optimized trajectory is guaranteed

only to avoid the predicted AABBs of the objects, and keeps the distance to the predicted

dynamic objects’ position as long as possible. In addition, Se is essentially the integration of

a polynomial, and it is easy to calculate the closed-form result in each optimization iteration.

The other costs are accumulated in discrete form in our code by iterating the sample points

along the trajectory.

To solve the optimization problem efficiently, we need the gradient w.r.t the joint points

p between the trajectory pieces, written as ∂G(p,T)/∂p. Also, we use ∂G(p,T)/∂T to

represent the gradient w.r.t the time vector T. The Gradient Propagation Law can derive the

required gradients:

∂G(p,T)
∂p

=
∂G
∂C

∂C
∂p

∂G(p,T)
∂T

=
∂G
∂T

+
∂G
∂C

∂C
∂T

,

(6.33)

where C is the overall coefficient matrix representing
(
CT

1 ,C
T
2 , · · · ,CT

m−1
)T ∈ R2(m−1)s×3.

Since we can calculate ∂C/∂p and ∂C/∂T efficiently referring [97], and the gradient

122

Fig. 6.6.: Illustration of the predicted dynamic objects’ position distribution and the opti-
mized trajectory. To make a clear expression, we put the 2D case. The dashed boxes are the
position distribution region for the dynamic obstacle (red boxes with arrows) at some future
timestamps. The blue curve stands for the trajectory and does not consider the collision cost
brought by the unpredictable acceleration of moving objects, while the green curve does.

∂G/∂C, ∂G/∂T can be derived following the cost definition in (6.16)-(6.19) and (6.22),

the gradients of the objective function are finally obtained. In addition, the constraints in

(6.14) can all be eliminated by the method in [97], the optimization problem is transformed

into an unconstrained one, and we can solve it efficiently with optimization algorithms such

as L-BFGS.

6.3.3 Perception Enhanced Planning

In the related works, the desired yaw of the drone is often determined as the orientation

angle of the desired velocity. However, the potential connection between dynamic perception

and motion planning is not realized sufficiently. The camera fixed on the drone is likely to

lose the tracked objects during their relative motion. We hope to track those obstacles with a

high probability of collision longer to obtain a more precise velocity estimation from the KF.

Fig. 6.7 demonstrates a situation when a dynamic obstacle moving towards the vehicle and

123

a “safe” trajectory has been planned. The safety of the trajectory is under the assumption

that the estimated object velocity is precise, however, the initial velocity estimation often

has an unignorable error unless the result can be optimized after several KF iterations. If the

yaw follows the desired velocity[51] (left case in Fig. 6.7), the object’s appearing time in

the FOV is very short. The left case shows that the vehicle will collide with the dynamic

obstacle due to the velocity estimation error. After the yaw is planned to actively track the

object, as shown in the right figure, the object will be tracked for a longer time and the

estimated velocity is more accurate. Thus, the object velocity estimation is enhanced, and

the safety of the planned trajectory is improved.

Fig. 6.7.: The importance of yaw planning. dt represents a short time period.

Let ψty ∈ [ψv
ty−ψmax,ψ

v
ty +ψmax] denotes the yaw to be optimized at future time ty ∈

[ty0,Tm−1+ty0] (ty0 is the global time when the yaw planning starts), ψv
ty is the yaw of vehicle

desired velocity at ty, pveh
ty is the vehicle position according to the optimized trajectory.

p̂ty = [p̂0
ty , · · · , p̂I

ty] is the position of all the dynamic objects at time ty.

First, we sample the trajectory evenly in the time horizon [ty0,Tm−1+ ty0] into Nt samples

Ts = [ty0 +
Tm−1

Nt
, · · · , ty0 +Tm−1], also sample yaw angle in range [−ψmax,ψmax] evenly and

obtain Ny samples Ψ
ty
s = [ψv

ty−ψmax,ψ
v
ty−ψmax+

2ψmax
Ny−1 , · · · ,ψmax+ψv

ty]. For any ψ
ny
ty ∈Ψ

ty
s

(0 < ny ≤ Ny), we can obtain the corresponding desired thrust Uty , pitch θ
ny
ty , and roll

φ
ny
ty of the vehicle according to the desired acceleration aty = [ax

ty,a
y
ty ,a

z
ty] and the known

gravitational acceleration G:

124

θ
ny
ty = arctan

(
ax

ty +ay
tytanψ

ny
ty

(az
ty +G)(cosψ

ny
ty + sinψ

ny
ty tanψ

ny
ty)

)
,

φ
ny
ty = arccos

(
az

ty +G

Utycosθ
ny
ty

)
,

Uty = ∥aty∥2.

(6.34)

Then, we have the FOV pyramid at ty on earth coordinate since the vehicle position

and orientation at ty are all known. For each p̂i
ty ∈ p̂ty we calculate the visibility of all

dynamic objects according to the method introduced in section 6.2, and we add 1 to the

total score sty of the current ψ
ny
ty every once p̂i

ty is found in the FOV. Also, considering the

obstacle close to the vehicle poses more threat, an additional score 1/∥p̂i
ty− pveh

ty ∥ is added

for each p̂i
ty in the FOV. The score related with the object visibility is denoted as svis(ty,ny).

We also hope the yaw angle gaps between each two adjacent time samples to be minimal.

A large yaw gap may exceed the vehicle dynamic limit and disturb the height control.

Thus, for ψ
ny
ty we design the state transition score sgap(ny,n∗, ty) = ∆ψmax−|ψt−y −ψty | and

s(ny,n∗, ty) = svis(ny, ty)+ sgap(ny,n∗, ty), where t−y = ty− Tm−1
Nt

is the former time sample,

n∗ stands for the sample index at time t−y (0 < n∗ ≤ Ny), ∆ψmax is the maximal yaw gap limit.

If sgap < 0 the transition between two yaw samples will not be considered. At last, we plan

a series of yaw angles Ψ̂ = [ψ̂1, · · · , ψ̂Nt] which accumulate the highest score ∑
Nt
n=1 s. The

complete planning method is described in Algorithm 14, and we demonstrate an example

for the planning in Fig. 6.8 in a more intuitive approach. In Algorithm 14, the node N is a

structure and composes of several members such as yaw angle, score, and the pointer to its

parent node.

We get the desired yaw at the specific time with linear interpolation on Ψ̂, and forward

the desired yaw together with the desired position, velocity, and acceleration to the flight

controller.

125

Algorithm 14: Yaw angle planning
1: Predict the vehicle and dynamic objects’ position with Nt time samples
2: Calculate svis for each time sample and each yaw angle sample in Ψs, initialize a node

N for each sample, N
ny

ty .ψ ← ψ
ny
ty , N

ny
ty .svis← svis(ny, ty)

3: for ty in Ts do
4: for ψ

ny
ty in Ψ

ty
s do

5: N
ny

ty .parent←N nmax
t−y

, N
ny

ty .s←N nmax
t−y

.s+ sgap(ny,nmax, ty), nmax is the node

index of the former time sample t−y that maximize N
ny

ty .s.

6: Find the node with the maximal accumulated score s at the last time sample Tm−1 + ty0,
denoted as Nopt . Push Nopt .ψ in list Ψ̂.

7: while Nopt .parent exists do
8: Push Nopt .parent.ψ in empty list Ψ̂.
9: Nopt ←Nopt .parent

10: Return the planned yaw angles Ψ̂

Fig. 6.8.: An example of the planning process. The nodes compose a graph, and at each time
sample, they are connected to the former layer (time sample) to maximize the accumulated
score in the dynamic programming way. The score inherited from the parent node is marked
in black, while the state transition score is in blue and the object visibility score in green.
The gray arrow starts from the parent node to its child node. The chosen yaw path is marked
by orange glow.

126

6.4 Experimental Implementation and Results

6.4.1 Vehicle ego-motion compensation and depth map filter

To improve the object state estimation accuracy, the time gap between the latest depth

map message from the camera and the vehicle state message from the IMU in the flight

controller is addressed [93], which is an important detail. We assume the vehicle’s motion

in the short time gap is of constant acceleration, and the vehicle’s pose is aligned to the

timestamp of the depth map by the second-order interpolation

p̂cam = pcam + vcamtgap +
1
2

acamt2
gap. (6.35)

p̂cam is the compensated camera pose, pcam, vcam and acam ∈R2×3 are the pose, velocity and

acceleration of the camera obtained from raw data (translational and rotational motion). tgap

is the time gap that equals the depth map’s timestamp minus the vehicle state’s timestamp.

The ego-motion compensation is the same as in chapter 5.

Also, the point cloud used for the object velocity estimation should be streamlined. The

original depth map input is aligned to the RGB image with the camera’s intrinsics, and they

have the same resolution. However, the depth information is too dense, which is unnecessary

and may overburden the computing device. The depth map is down-sampled after it is

segmented into different dynamic objects, and the decimation factor f = dr/(2di
mintan(αres

2))

is different for each object, determined by the minimum depth di
min of the object i and the

angular resolution of αres of the RGB camera. dr is the pre-assigned average point distance

gap of the converted point cloud. The down-sampling operation on the depth map is more

efficient than the density filtering with the point cloud. The converted points’ size is reduced,

thus the time cost of the following operation, including the coordinate conversion and feature

tensor building, is shortened. At last, we should consider that the depth image segment

within the dynamic object’s BB may includes pixels of the background or other objects.

Binary large object (BLOB) detection is used to extract the pixels of the interested object

inside the BB, which is a simple but robust object detection algorithm against noise. For

127

each depth map segment, we conduct BLOB detection and only keep the largest group of

pixels, under the assumption that the detected object occupies the maximum area in the BB

compared to other objects. For each depth map segment, we conduct BLOB detection and

only keep the largest group of pixels, under the assumption that the detected object occupies

the maximum area in the BB compared to other objects.

6.4.2 Static points memorizing and reusing

In our implementation, we adopt a classical method to store the static points in a list

and reuse the memorized static points in the planning. Because the camera FOV is too

narrow, the static obstacle will likely escape from the FOV due to the camera’s motion

during the flight even though the static obstacle is very close to the vehicle. By memorizing

the points of the static obstacles that appeared previously, the planner can reuse the static

points and avoid the static obstacles when they are not even captured in the current depth

frame, otherwise, flight safety is much affected.

After the initial object detection results are published, we convert the depth map except

for the regions of the dynamic objects into a pointcloud and push the static points into a list

for initialization. The point coordinates are discretized regarding the pre-assigned voxel size

(0.1 m). When new stationary points are obtained afterward, we add new discretized points

in the list and remove the duplication, and the number of repetitions nrep of each point in the

list is also recorded. At last, only the points whose nrep in the corresponding voxel is greater

than the threshold Nsta are sorted as actual static points, and they are used in the hybrid A*

path searching and SFC construction.

In addition, nrep for each voxel will also decrease with time, once a nrep < Nsta is found

after the decrease, the corresponding point will be removed from the pointcloud used in path

planning. When a dynamic obstacle is detected, the part of pointcloud inside its 3D AABB

is also deleted. Thus, the influence from dynamic objects in the depth map but not detected

in RGB image on the map is much reduced. The repetition threshold can effectively avoid

the disturbance of noise, which is a classical practice in most mapping toolkits. Our mapping

128

method is more flexible in deleting the wrongly classified static obstacles compared to the

existing popular mapping toolkits such as Octomap2 or MLMapping3.

6.4.3 Experimental Configuration

The whole software system is tested and verified in the Robot Operation System

(ROS)/Gazebo simulation environment first and then in the hardware experiment. The

drone model used in the simulation is 3DR IRIS, and the underlying flight attitude controller

is the PX4 1.12.3 firmware version. We use a cascade PID controller for the outer-loop

control to follow the trajectory, with the desired position, velocity, and acceleration input.

The depth camera model is an Intel Realsense D435i with a resolution of 640*480 (30 fps).

For hardware experiments, we use a self-assembled quadrotor with a Q250 frame and a

LattePanda Alpha 864s with an Intel m3-8100y processor, the camera resolution is 848*480,

and other configuration keeps unchanged. A visual-inertial odometry toolkit4 is adopted to

obtain the pose of the drone. Table 6.1 shows the parameter settings for the simulation tests.

Table 6.1.: Parameters for the tests

Parameter Value Parameter Value

Nsta 2 lv 0.15 m
liou 0.3 dt 0.25 s
ld p 0.5 m c f ov 105

Tnode 0.8 s nsp 10
Nt 10 Ny 8

ψmax π/2 αres 0.1◦

dr 0.1 m 2 vmax 2.0 m/s
amax 16 m/s2

2https://octomap.github.io/
3https://github.com/HKPolyU-UAV/MLMapping
4https://github.com/HKPolyU-UAV/FLVIS

https://octomap.github.io/
https://github.com/HKPolyU-UAV/MLMapping
https://github.com/HKPolyU-UAV/FLVIS

129

6.4.4 Simulation Test

(1) Dynamic perception module test

First, the accuracy and stability of the dynamic object tracking and velocity estimation

method are verified in the Gazebo simulation.

In the simulation world depicted in Fig. 6.9(a), there are four moving human models

and some static objects such as a table, boxes, and pillars. The moving obstacles reciprocate

on different straight trajectories. The camera is fixed on the drone’s head, the z axis of the

camera coincides with x axis of the drone frame. The cut-off depth is set to 8 m, which is

approximate to the effective depth range of the real depth camera. We test the algorithm

with a static camera and a moving camera respectively. For the static case, the drone hovers

at the point (−6,0,1.2) and heading along the positive X direction in the earth coordinate.

We choose 50 random goals for the moving case and generate the flight trajectories with

the minimum-snap method [98]. The trajectories are adjusted manually by inserting middle

waypoints to guarantee collision-free with the static obstacles. We record the data of the

vehicle state ground truth and the RGB and depth image for repeat tests. Fig. 6.9(b) depicts

the visualized estimation results in Rviz.

The numeral results of the dynamic object perception tests are shown in Table 6.2. The

dynamic perception performance is also compared with SOTA works in this table, where

the metric Multiple Object Tracking Accuracy (MOTA) is adopted as defined in [88]. We

also evaluate the average position estimation error errp(m) and velocity error errv(m/s) in

the tests. The second line marked with * is for our method without using the image-based

object detector and tracker. We convert the depth map into a point cloud, and cluster the

points into individual objects. All the objects’ velocities are estimated first and classified as

static or dynamic with a speed threshold (similar in [76] and [93]). The speed threshold we

used for these three methods is 0.3m/s. We record the images from the camera (at 30 Hz)

and UAV state data (at 100 Hz) for about 550 s, and repeat the test on the data 5 times to

give the average results.

130

The estimation test results in the Gazebo simulation demonstrate that our estimation

algorithm is robust in both static and dynamic cases, which is practical to be applied in

AAC tasks. Compared with the existing SOTA works, our method efficiently improves the

estimation accuracy and robustness in the clustered environment, especially when the camera

is moving. Although the results are close in the static case, comparing our method with and

without the front-end object detector, we can see the exciting improvement in MOTA in the

dynamic case. The dynamic object detecting accuracy is rarely affected when the camera is

moving, and the inaccurate velocity estimation of the actual static obstacles is avoided. For

our MOTA, it is composed of a false negatives rate 7.5% (covering non-detected dynamic

objects), a false positives rate 0.3% (static objects misclassified as dynamic), and a mismatch

rate 1.1%. If the image-based object detector is banned, the false positives rate increases to

7.1%, which make a major difference.

Table 6.2.: Obstacle State Estimation Comparison

Method
Static case Dynamic case

errv errp MOTA errv errp MOTA

Ours 0.22 0.12 91.1 0.35 0.14 89.8
Ours* 0.21 0.12 87.4 0.45 0.26 77.3
[93] 0.28 0.14 84.1 0.49 0.27 74.5
[76] 0.38 0.26 77.1 0.51 0.30 70.6

(2) System test

After the dynamic object perception part is validated and compared independently, we

test the complete navigation system in simulation. We adopt the same 50 randomly chosen

goals mentioned above and program the drone to reach the goals successively. We also

replace the planning part with the method proposed in [76] for flight tests to compare the

trajectory planning performance. The maximal flight speed is set to 2.5 m/s, the maximal

acceleration is set to 10 m/s2, and the flight height is limited to under 2 m to increase

difficulty. For the compared methods, we utilize the total flight time t f ly(s), average re-

131

(a)

(b) (c)

Fig. 6.9.: (a): The simulation environment for the moving object tracking and velocity esti-
mation test. (b): The visualized estimation results in RVIZ for the static case, corresponding
to (a). (c): The visualized results of the dynamic case, the drone is controlled to follow an
offline trajectory to traveling in the world. The colorful boxes in the Rviz window represent
the stored static points, the black dots are the non-dynamic point cloud of the current depth
map.

planning time cost tplan(ms), actual maximal speed vact(m/s), number of collisions as

indicators n f ail , and the results is shown in Table 6.3. # marks our trajectory planning

method without considering the position distribution caused by the acceleration uncertainty,

and - represents our method without the yaw planning.

We can conclude from the results that our method is the safest, and our proposed

additional cost of object’s acceleration uncertainty in the trajectory optimization and the yaw

132

Table 6.3.: System Performance Comparison

Method t f ly vact n f ail tplan

Ours 394.4 2.503 0 7.96
Ours# 380.1 2.506 5 7.13
Ours˜ 391.2 2.501 2 7.20
[76] 441.9 2.231 7 8.87

planning method can effectively improve flight safety. The re-planning time cost also shows

improvement compared to [76]. Because our method is based on SFC and the effective

MINCO class, the computation load of calculating the collision cost is lighter than the

control point method [76]. In addition, the total flight time of our method shows superiority,

which benefits from spatial-temporal optimization. The trajectory duration is also shortened

after optimization, while [76] just relaxes the time allocation manually if the maximum

trajectory speed exceeds the limitation after the trajectory optimization, and it is also the

reason our actual maximal flight speed is higher and closer to the upper boundary.

In Fig. 6.10(a), we intuitively demonstrate the difference between the trajectories

with and without the cost of dynamic objects’ acceleration uncertainty in the trajectory

optimization. The trajectory is more conservative after the acceleration uncertainty is

considered when there is adequate free space in the environment. When there are more

dynamic obstacles and the free space is insufficient, the resulting trajectory is “pushed” to the

middle position between the dynamic obstacles at each future time sample by the gradient

of the collision cost. The visualized results of the perception-enhanced yaw planning are

displayed in Fig. 6.10(b), and they are compared intuitively with simply keeping the vehicle

yaw coincide with the velocity direction (original practice). We can see the camera FOV

fails to cover the dynamic obstacles sometimes during the trajectory in the original practice,

and our proposed method can track the dynamic obstacles well along the trajectory under

the maximal yaw range ψmax. The object tracking robustness and object velocity estimating

133

precision can both be improved. The related videos for autonomous flight tests in Gazebo

simulation are uploaded online5.

6.4.5 Field test

The field test is based on the same hardware platform introduced in Chapter 5, and here

we omit the introduction. In this chapter, the autonomous flight is based on the onboard VIO

toolkit rather than an outer localization method, highlighting the practical application value

for real-world tasks.

(1) Preparation and implementation details

To deploy all our algorithms with ROS on a tiny onboard computer, an efficient way is

using nodelet manager6. The most important benefit of nodelet is that the efficiency of ROS

message transmission between different ROS nodes is much improved. The traditional way

for ROS nodes to transport messages requires frequent compression and decompression.

A considerable CPU resource is wasted for messages of large sizes, such as images or

pointclouds. By utilizing nodelet method, the nodelets under the same manager can share

the ROS messages (data) directly from computer RAM without any additional procession,

which can release the tight computing resources. To study the improvement to the coding

efficiency after we use the nodelet method, we record the CPU occupancy rate before and

after the code is modified. The overall CPU occupancy rate is given by the htop tool in

Ubuntu 18.04 system, and we conduct the test under different load levels by incrementally

launching each submodule. The results are given in Table 6.4, where the VIO receives the

stereo images at 15 Hz. The RGB image, depth images, and point cloud are published at 30

Hz.

In Table 6.4, ’+’ in the head represents the submodule is launched while the submodules

on the left side are all running. It is pleasing to see that using the nodelet can save 10-15%

5https://youtu.be/pB_6jBgP1TQ, or, https://www.bilibili.com/video/
BV1eS4y1W7Yx/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035
6http://wiki.ros.org/nodelet

https://youtu.be/pB_6jBgP1TQ
https://www.bilibili.com/video/BV1eS4y1W7Yx/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035
https://www.bilibili.com/video/BV1eS4y1W7Yx/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035
http://wiki.ros.org/nodelet

134

(a)

(b)

Fig. 6.10.: (a): Difference between the trajectories with and without the cost of dynamic
objects’ acceleration uncertainty in the trajectory optimization. The left figure shows a
case of multiple dynamic objects, and the right figure shows the single-object case. (b):
Visualized results of the perception-enhanced yaw planning. The original FOV pyramids of
the camera are represented in blue, and the optimized FOVs are in red. Our method does not
change the yaw at the initial state, the FOVs are completely coincident at frame 0 and are
shown in purple. The left figure demonstrates an object moving from back to front, and the
object in the right figure is moving from left to right. The black numbers are the sequence
numbers, and the time gap between samples is 0.5 s.

135

Table 6.4.: CPU load Comparison

Submodule Camera&VIO + Detector&tracker +Filters&Velocimetry + Controller &
EKF & Planner

CPU load
(Node)

42-46% 50-56% 60-68% 72-78%

CPU load
(Nodelet)

33-36% 39-44% 49-56% 61-65%

CPU load on the onboard computer, and for the submodules that require image input (VIO

and the image-based object detector and tracker) or raw pointcloud (pointcloud filters)

the computational load improvement is the most apparent, which fits well with the ”data

zero-copy” feature of nodelet. By leaving sufficient free computing resources, we can

ensure the loop frequency of each submodule can reach our designed settings even in some

complicated scenes, such as dense environments with multiple dynamic objects.

Another critical gap between simulation and hardware is the VIO toolkit7 has latency

and dynamic estimation error towards the vehicle movement, thus it brings trouble to the

outer-loop controller. We tune the PID parameter before the autonomous flight with the

planner. The outer-loop controller is sensitive to the dynamic delay of VIO output, and

the vehicle can only hover stably at small control gains, which leads to bad performance

in trajectory tracking. Moreover, when all the submodules are working, the VIO may fail

to process the image in time, and sometimes the arrived image has to be discarded. Thus,

the state estimation delay from VIO is heavier, the dynamic accuracy is reduced, and the

vehicle cannot hover stably even with smaller control gains. To address this problem, we

use an extended Kalman filter (EKF) to improve the original odometry output of VIO. As a

result, the vehicle can hover at a more aggresive control gain, and the trajectory tracking

error is much improved. The control gain of the outer controller and the average trajectory

tracking error are measured and listed in Table 6.5.

7https://github.com/HKPolyU-UAV/FLVIS

https://github.com/HKPolyU-UAV/FLVIS

136

Table 6.5.: Controller tracking error

Configuration Maximal control gain (kp&kv) Position error (m) velocity error (m/s)

VIO + Controller 1.3/1.4 0.34 0.48
Full load N/A 0.57 0.75

Full load + EKF 2.75/2.6 0.14 0.24

At last, the latency from the depth camera to generate the depth map should be considered.

With the help of the official latency tool, as shown in Fig. 6.11, the latency of the infra

image can be measured. Because the timestamp of the depth map and point cloud from the

camera is set exactly identical to the infra images, the latency of the depth map can also be

determined. The latency tlat is about 103 ms for the 848∗480 resolution at 30 Hz, which is a

surprisingly huge latency and must be compensated in our algorithm. When we convert the

point cloud from the body frame into the earth frame, we need the time-aligned message of

the vehicle pose and depth map. So we first measure the latency of the depth image relative

to the IMU message, denoted as td2i. We set up an simple test to measure td2i. The drone is

put on a table while the camera and IMU are working and the data is recording. Then, we hit

the vehicle frame and made a sudden displacement. We can check the IMU and image raw

data and record the timestamp when the hit happens. The sudden huge change in Gyro and

the frame different from the previous one of recorded images are considered to correspond

to the same event (hit), and td2i is the timestamp difference. The hit test is repeated 10 times,

and the average td2i is about 80 ms. The timestamp of the depth map is reduced by td2i for

the time alignment. When the states of the dynamic objects are published, the timestamp is

reduced by tlat− td2i to give the real timestamp for the observed object position and velocity.

8Image source: https://dev.intelrealsense.com/docs/rs-latency-tool

https://dev.intelrealsense.com/docs/rs-latency-tool

137

Fig. 6.11.: The latency test window8. The digital clock is encoded into binary form, and the
program render the bits to screen. It then use Hough Transform to identify sent bits in the
latest frame from the camera (marked as black squares), and calculate the latency.

(2) Autonomous flight

First, we arranged an indoor venue with only static obstacles. Due to the limited size

of the valid space for UAV flight in the lab, the flight distance between the initial position

and the goal is not long, but we make the vehicle travel between the two positions several

times to show the robust flight performance. We put several boxes and roll-up banners on

the ground as obstacles and let the drone travel between the two ends of the field repeatedly

to validate the flight safety in a static environment. When the drone reaches the goal point, it

will hover and turns its head to the next goal, and then recall the planner for navigation. The

flight environment is shown in Fig. 6.12, and the related video has been uploaded online9. In

the video, we can see the drone fly agilely among the obstacles, and the body attitude during

the flight is changing smoothly, indicating the planner’s efficiency in flight time and energy

utilization. In this test, the maximum velocity is constrained as 1.8m/s, and the maximum

propulsion acceleration (total thrust divided by vehicle mass) is set to 16m/s2.

Then, to test the dynamic obstacle avoidance performance in the real world, we make

the drone travel between two points with one pedestrian repeatedly walking straight toward

the drone. Because the VIO tool is not robust to aggressive maneuvers and interference

9https://www.youtube.com/watch?v=xEJT-yrf6LI, https://www.bilibili.com/
video/BV1GB4y1z7Hj/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035

https://www.youtube.com/watch?v=xEJT-yrf6LI
https://www.bilibili.com/video/BV1GB4y1z7Hj/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035
https://www.bilibili.com/video/BV1GB4y1z7Hj/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035

138

Fig. 6.12.: The obstacle layout for indoor flight test in static environment

from moving objects, we set the maximum cruising speed to 1.5m/s, and the speed limit

is increased to 2.2m/s for avoiding dynamic objects. Because we conduct this test with

a real person, safety should be highly valued, and an aggressive test is not capable at the

current stage. The propulsion acceleration limit is 16m/s2, and the maximum horizontal

acceleration is about 12.5m/s2. In Fig. 6.13 we put the snapshots of two flight trials. In

the first flight, the drone set out from the position far from the recording camera and flew

to the goal close to the camera, and it flew back in the second trial. We can see the drone

successfully avoid the person, keeping a satisfactory safe distance away, and does not affect

the person’s original movement. The related video has been uploaded online10.

At last, we turn to the outdoor environment and test our system in a larger area. We test

our autonomous UAV system in two scenarios, as shown in Fig. 6.14, one is in a grove (the

same spot introduced in Chapter 4), and another one is located on a hard cement pavement

with many roadblocks. Although the lighting conditions vary in the environment while the

vehicle is required to fly through both shadow and strong sunlight (the difference in light

intensity is about 70 times), and the obstacles in the grove are of complex shape, our system

can hold the challenges and achieve safe flight for navigation tasks.

10https://www.youtube.com/watch?v=xEJT-yrf6LI, https://www.bilibili.com/
video/BV1GB4y1z7Hj/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035

https://www.youtube.com/watch?v=xEJT-yrf6LI
https://www.bilibili.com/video/BV1GB4y1z7Hj/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035
https://www.bilibili.com/video/BV1GB4y1z7Hj/?vd_source=f6ef8ce98ca35388105d2a5fc1b94035

139

(a)

(b)

Fig. 6.13.: Two trials of dynamic object avoidance indoor flight test. The number on the left
upper corner of each subfigure mark the frame sequence as time increasing.

6.5 Conclusion

In this chapter, we propose an enhanced autonomous flight system, and the progress is

made in several aspects compared to Chapter 5, as well as the SOTA works. The simulation

tests show the better robustness of our proposed dynamic object tracking system, and

comprehensive flight tests in simulation and real-world demonstrate the feasibility and

140

(a)

(b)

Fig. 6.14.: (a): The autonomous flight test in the grove. (b): The autonomous flight test
among the roadblocks. The arrows point to the direction to destination.

practicality of our proposed system, indicating it can handle the navigation task in complex

unknown dynamic environment.

In summary, the contributions of this chapter are from the following two aspects:

141

For the obstacle perception, we first propose a lightweight image-based object detecting

and tracking framework to give continuous object classification and mark the objects that

are likely to be dynamic in the environment. We then introduce a novel object velocity

estimating technique developed from the original Particle Image Velocimetry (PIV) method.

It is extended to the 3D case to estimate the object velocity and can work with the unordered

point cloud input by extracting local features of the point cloud. We integrate the techniques

together to classify the objects in the environment as dynamic or static and estimate the

velocity of the dynamic ones.

For the trajectory planning of the drone, we modify the hybrid A star algorithm to

limit the resulted front-end path in the narrow field of view (FOV) of the RGBD camera to

improve path safety. In addition, based on the minimum control (MINCO) class for trajectory

optimization, we proposed the time-varying safety margin in the objective function for the

dynamic obstacles to enhance safety by considering the different maximal accelerations

of different object types. At last, we also proposed an efficient yaw planning method to

optimize the heading of the camera, making more valuable targets appear in the FOV and

better perceive the dynamic objects.

Last but not least, we completely release the codes and hardware plans of our aerial

platform for the reference of the community11.

11https://github.com/chenhanpolyu/AutoFly-demo

https://github.com/chenhanpolyu/AutoFly-demo

142

7. CONCLUSION, DISCUSSION, AND FUTURE WORK

In this thesis, we introduced several novel algorithms on path planning, motion planning,

and environment perception, to address the existed problems in UAVs’ autonomous flight in

unknown and dynamic environments. The proposed algorithms are proved to overperform

the state-of-the-art by exhaustive simulation and hardware tests. In addition, we propose

complete autonomous flight systems with the introduced novel algorithms and demonstrate

real flights on a self-assembled low-cost UAV platform to highlight the practicability of our

systems. The tests indicate the promising potential application value in many scenarios,

such as UAV logistics, search and rescue, and autonomous aerial photography.

The research starts from the motivation to improve the computing efficiency of the

existing autonomous navigation system of UAVs, making all the algorithms capable of

being deployed on micro aerial platforms that can only carry tiny onboard computers with a

very limited computing resource. Although the motion planning algorithms on the onboard

computer turn out fast enough for real-time computing, the narrow FOV of the depth camera

becomes the bottleneck of flight safety and efficiency in a complex environment. Later,

we developed a path planner working on the map, which is much larger than the camera

FOV, to guide the local motion planner and avoid potential detours, confronting a more

complex and dense environment. We also noticed that avoiding those continuously moving

obstacles requires prediction of their future positions, or the planned trajectory cannot be

guaranteed safe in the future. Thus, we propose a velocity planning algorithm based on the

relative velocities toward obstacles in the environment. We also design a novel lightweight

pointcloud-based obstacle tracking and velocity estimation algorithm method to construct a

complete system. At last, we improve the robustness of the dynamic object perception part by

introducing the image-based object detector and tracker, and enhance the flight smoothness

and speed by the polynomial trajectory optimization approach. In addition, we exploit the

active yaw angle control of the vehicle to improve the dynamic object tracking accuracy,

143

and involve the object state estimation covariance and state transmission covariance in the

trajectory optimization to make the planned trajectory adapt to the uncertainty in the obstacle

perception.

From the view of the whole system, the most severe factor that prevents the autonomous

UAV from widespread real-world applications is the vision-based localization toolkit. While

those lidar SLAM algorithms show robust and accurate localization in most scenarios and

on high-speed vehicles, the weight and high power consumption make lidars unsuitable

for micro aerial platforms. The VIO algorithms suffer from motion blur when the camera

is moving or rotating, and it is also not good at working in a dark or feature-lacking

environment. Another bottleneck comes from the narrow FOV of the depth camera, if it can

only sense the obstacles very close, the vehicle cannot move at high speed, and it is also

difficult to avoid the moving obstacles at high speed.

In the future, we plan to investigate the deep-learning-based VIO and depth map genera-

tion method to strengthen the flight system’s robustness and ability of aggressive motion.

Before applying our system in applications such as searching for a target in an unknown

environment, or autonomous aerial photography, some problems still remain to be solved

in the future. For exploration purposes, the critical issue is to plan an efficient trip to

cover all the space in the assigned search range using the onboard sensor, while avoiding

obstacles. However, we can only determine the optimal global trip after exploring the entire

environment. During the exploration, the intelligent prediction of the unexplored area based

on the explored environmental information should be helpful for improving the searching

efficiency. In addition, planning a collision-free and optimal trip requires frequent path

planning on the latest map to estimate the trip cost. Improving the computing efficiency of

solving multi-query path planning problems with a growing map should also be considered.

For autonomous aerial photography, the photography requirement may conflict with

obstacle avoidance, including the target visibility and the particular relative position of the

flying camera to the target. We should find a clever motion strategy to balance the multiple

targets, fulfilling the higher-level tasks while maintaining flight safety. In addition, the

higher level of motion strategy planning still remains a massive room for progress. Making

144

UAVs design a series of keyframes independently according to the characteristics of the

scene and the movement of the target so as to complete an aerial video close to the level of

professional human photographers is also a precious research direction.

145

Bibliography

[1] G.-Z. Yang, J. Bellingham, P. E. Dupont, P. Fischer, L. Floridi, R. Full, N. Jacobstein,

V. Kumar, M. McNutt, R. Merrifield et al., “The grand challenges of science robotics,”

Science robotics, vol. 3, no. 14, p. eaar7650, 2018.

[2] D. Dey, K. S. Shankar, S. Zeng, R. Mehta, M. T. Ag-

cayazi, C. Eriksen, S. Daftry, M. Hebert, and J. A. Bagnell,

Vision and Learning for Deliberative Monocular Cluttered Flight. Cham: Springer

International Publishing, 2016, pp. 391–409.

[3] P. R. Florence, J. Carter, J. Ware, and R. Tedrake, “NanoMap: Fast, Uncertainty-Aware

Proximity Queries with Lazy Search Over Local 3D Data,” in 2018 IEEE International

Conference on Robotics and Automation (ICRA), 2018, pp. 7631–7638.

[4] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg,

and P. Abbeel, “Motion planning with sequential convex optimization and convex

collision checking,” The International Journal of Robotics Research, vol. 33, no. 9, pp.

1251–1270, 2014.

[5] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, “Generation of collision-free tra-

jectories for a quadrocopter fleet: A sequential convex programming approach,” in

2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, 2012,

pp. 1917–1922.

[6] F. Duchoň, A. Babinec, M. Kajan, P. Beňo, M. Florek, T. Fico, and L. Jurišica, “Path

planning with modified a star algorithm for a mobile robot,” Procedia Engineering,

vol. 96, pp. 59–69, 2014.

146

[7] A. Elfes, “Using occupancy grids for mobile robot perception and navigation,”

Computer, vol. 22, no. 6, pp. 46–57, 1989.

[8] A. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Burgard, “OctoMap: an

efficient probabilistic 3D mapping framework based on octrees,” Autonomous Robots,

vol. 34, no. 3, pp. 189–206, 2013.

[9] S. Choi, J. Park, E. Lim, and W. Yu, “Global path planning on uneven elevation maps,”

in 2012 9th International Conference on Ubiquitous Robots and Ambient Intelligence

(URAI), 2012, pp. 49–54.

[10] S. A. M. Coenen, J. J. M. Lunenburg, M. J. G. van de Molengraft, and M. Steinbuch,

“A representation method based on the probability of collision for safe robot navigation

in domestic environments,” 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 4177–4183, 2014.

[11] B. T. Lopez and J. P. How, “Aggressive collision avoidance with limited field-of-

view sensing,” in 2017 IEEE/RSJ International Conference on Intelligent Robots and

Systems (IROS), 2017, pp. 1358–1365.

[12] C. Yu, Z. Liu, X.-J. Liu, F. Xie, Y. Yang, Q. Wei, and Q. Fei, “DS-SLAM: A Seman-

tic Visual SLAM towards Dynamic Environments,” in 2018 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), 2018, pp. 1168–1174.

[13] J. Kim and Y. Do, “Moving obstacle avoidance of a mobile robot using a single camera,”

Procedia Engineering, vol. 41, pp. 911–916, 2012.

[14] H. Oleynikova, D. Honegger, and M. Pollefeys, “Reactive avoidance using embedded

stereo vision for MAV flight,” in 2015 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2015, pp. 50–56.

[15] P. Skulimowski, M. Owczarek, A. Radecki, M. Bujacz, D. Rzeszotarski, and P. Stru-

millo, “Interactive sonification of U-depth images in a navigation aid for the visually

impaired,” Journal on Multimodal User Interfaces, vol. 13, no. 3, pp. 219–230, 2019.

147

[16] T. Nageli, J. Alonso-Mora, A. Domahidi, D. Rus, O. Hilliges, N. Tobias, J. Alonso-

Mora, A. Domahidi, D. Rus, and O. Hilliges, “Real-Time Motion Planning for Aerial

Videography With Real-Time With Dynamic Obstacle Avoidance and Viewpoint

Optimization,” in IEEE Robotics and Automation Letters, vol. 2, no. 3, 2017, pp.

1696–1703.

[17] A. Ess, B. Leibe, K. Schindler, and L. van Gool, “Moving obstacle detection in

highly dynamic scenes,” in 2009 IEEE International Conference on Robotics and

Automation, 2009, pp. 4451–4458.

[18] K. Berker Logoglu, H. Lezki, M. Kerim Yucel, A. Ozturk, A. Kucukkomurler,

B. Karagoz, E. Erdem, and A. Erdem, “Feature-based efficient moving object de-

tection for low-altitude aerial platforms,” in Proceedings of the IEEE International

Conference on Computer Vision Workshops, 2017, pp. 2119–2128.

[19] I. A. Bârsan, P. Liu, M. Pollefeys, and A. Geiger, “Robust dense mapping for large-

scale dynamic environments,” in 2018 IEEE International Conference on Robotics

and Automation (ICRA). IEEE, 2018, pp. 7510–7517.

[20] S. Zhang, R. Benenson, M. Omran, J. Hosang, and B. Schiele, “Towards reaching

human performance in pedestrian detection,” IEEE transactions on pattern analysis

and machine intelligence, vol. 40, no. 4, pp. 973–986, 2017.

[21] T. Eppenberger, G. Cesari, M. Dymczyk, R. Siegwart, and R. Dubé, “Leveraging stereo-

camera data for real-time dynamic obstacle detection and tracking,” in 2020 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, 2020,

pp. 10 528–10 535.

[22] S. Kraemer, C. Stiller, and M. E. Bouzouraa, “LiDAR-based object tracking and

shape estimation using polylines and free-space information,” in 2018 IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS). IEEE, 2018,

pp. 4515–4522.

148

[23] J. Miller, A. Hasfura, S.-Y. Liu, and J. P. How, “Dynamic arrival rate estimation

for campus mobility on demand network graphs,” in 2016 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2016, pp. 2285–2292.

[24] A. Cherubini, F. Spindler, and F. Chaumette, “Autonomous Visual Navigation

and Laser-Based Moving Obstacle Avoidance,” IEEE Transactions on Intelligent

Transportation Systems, vol. 15, no. 5, pp. 2101–2110, 2014.

[25] D. Falanga, K. Kleber, and D. Scaramuzza, “Dynamic obstacle avoidance for quadro-

tors with event cameras,” Science Robotics, vol. 5, no. 40, p. eaaz9712, 2020.

[26] B. He, H. Li, S. Wu, D. Wang, Z. Zhang, Q. Dong, C. Xu, and F. Gao, “Fast-dynamic-

vision: Detection and tracking dynamic objects with event and depth sensing,” in

2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

IEEE, 2021, pp. 3071–3078.

[27] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile robots,” The

International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98, 1986.

[28] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle avoidance for

mobile robots,” international conference on robotics and automation, vol. 7, no. 3, pp.

278–288, 1991.

[29] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to collision

avoidance,” IEEE Robotics Automation Magazine, vol. 4, no. 1, pp. 23–33, 1997.

[30] E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische

Mathematik, vol. 1, pp. 269–271, 1959.

[31] P. E. Hart, N. J. Nilsson, and B. Raphael, “A Formal Basis for the Heuristic De-

termination of Minimum Cost Paths,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[32] M. Likhachev, G. J. Gordon, and S. Thrun, “ARA*: Anytime A* with provable bounds

on sub-optimality,” Advances in neural information processing systems, vol. 16, 2003.

149

[33] D. Harabor and A. Grastien, “Online Graph Pruning for Pathfinding On Grid Maps,”

Proceedings of the AAAI Conference on Artificial Intelligence, vol. 25, no. 1, pp.

1114–1119, 2011.

[34] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path Planning for Autonomous

Vehicles in Unknown Semi-structured Environments,” The International Journal of

Robotics Research, vol. 29, no. 5, pp. 485–501, 2010.

[35] S. M. LaValle and J. J. Kuffner, “Randomized Kinodynamic Planning,” The

International Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

[36] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars, “Probabilistic roadmaps

for path planning in high-dimensional configuration spaces,” IEEE Transactions on

Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[37] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,”

The International Journal of Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[38] D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Asymptotically optimal motion

planning for robots with linear dynamics,” in 2013 IEEE International Conference on

Robotics and Automation, 2013, pp. 5054–5061.

[39] A. Bry and N. Roy, “Rapidly-exploring Random Belief Trees for motion planning under

uncertainty,” in 2011 IEEE International Conference on Robotics and Automation,

2011, pp. 723–730.

[40] S. Liu, M. Watterson, S. Tang, and V. Kumar, “High speed navigation for quadrotors

with limited onboard sensing,” in 2016 IEEE international conference on robotics and

automation (ICRA). IEEE, 2016, pp. 1484–1491.

[41] H. Chen, P. Lu, and C. Xiao, “Dynamic Obstacle Avoidance for UAVs Using a Fast

Trajectory Planning Approach,” in 2019 IEEE International Conference on Robotics

and Biomimetics (ROBIO), 2019, pp. 1459–1464.

150

[42] D. Mellinger and V. Kumar, “Minimum snap trajectory generation and control for

quadrotors,” in 2011 IEEE International Conference on Robotics and Automation,

2011, pp. 2520–2525.

[43] R. Deits and R. Tedrake, “Computing large convex regions of obstacle-free space

through semidefinite programming,” in Algorithmic foundations of robotics XI.

Springer, 2015, pp. 109–124.

[44] ——, “Efficient mixed-integer planning for uavs in cluttered environments,” in 2015

IEEE international conference on robotics and automation (ICRA). IEEE, 2015, pp.

42–49.

[45] B. Landry, R. Deits, P. R. Florence, and R. Tedrake, “Aggressive quadrotor flight

through cluttered environments using mixed integer programming,” in 2016 IEEE

international conference on robotics and automation (ICRA). IEEE, 2016, pp. 1469–

1475.

[46] J. A. Preiss, K. Hausman, G. S. Sukhatme, and S. Weiss, “Trajectory optimization for

self-calibration and navigation.” in Robotics: Science and Systems, vol. 13, 2017.

[47] F. Gao, W. Wu, Y. Lin, and S. Shen, “Online Safe Trajectory Generation for Quadro-

tors Using Fast Marching Method and Bernstein Basis Polynomial,” in 2018 IEEE

International Conference on Robotics and Automation (ICRA), 2018, pp. 344–351.

[48] B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient quadrotor

trajectory generation for fast autonomous flight,” IEEE Robotics and Automation

Letters, vol. 4, no. 4, pp. 3529–3536, 2019.

[49] M. Watterson and V. Kumar, “Safe receding horizon control for aggressive MAV flight

with limited range sensing,” in 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), 2015, pp. 3235–3240.

[50] J. van den Berg, D. Wilkie, S. J. Guy, M. Niethammer, and D. Manocha, “LQG-

obstacles: Feedback control with collision avoidance for mobile robots with motion

151

and sensing uncertainty,” in 2012 IEEE International Conference on Robotics and

Automation, 2012, pp. 346–353.

[51] H. Oleynikova, Z. Taylor, R. Siegwart, and J. Nieto, “Safe Local Exploration for

Replanning in Cluttered Unknown Environments for Microaerial Vehicles,” in IEEE

Robotics and Automation Letters, vol. 3, no. 3, 2018, pp. 1474–1481.

[52] M. W. Mueller, M. Hehn, and R. D. Andrea, “for Quadrocopter Trajectory Generation,”

IEEE Transactions on Robotics, vol. 31, no. 6, pp. 1294–1310, 2015.

[53] T. M. Howard, C. J. Green, A. Kelly, and D. Ferguson, “State space sampling of feasible

motions for high-performance mobile robot navigation in complex environments,”

Journal of Field Robotics, vol. 25, no. 6-7, pp. 325–345, 2008.

[54] M. Weinmann, B. Jutzi, S. Hinz, and C. Mallet, “ISPRS Journal of Photogrammetry

and Remote Sensing Semantic point cloud interpretation based on optimal

neighborhoods , relevant features and efficient classifiers,” ISPRS Journal of

Photogrammetry and Remote Sensing, vol. 105, pp. 286–304, 2015. [Online].

Available: http://dx.doi.org/10.1016/j.isprsjprs.2015.01.016

[55] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*: Optimal sampling-

based path planning focused via direct sampling of an admissible ellipsoidal heuris-

tic,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

IEEE, 2014, pp. 2997–3004.

[56] ——, “Batch informed trees (bit): Sampling-based optimal planning via the heuristi-

cally guided search of implicit random geometric graphs,” in 2015 IEEE international

conference on robotics and automation (ICRA). IEEE, 2015, pp. 3067–3074.

[57] M. P. Strub and J. D. Gammell, “Adaptively informed trees (ait*): Fast asymptoti-

cally optimal path planning through adaptive heuristics,” in 2020 IEEE International

Conference on Robotics and Automation (ICRA). IEEE, 2020, pp. 3191–3198.

http://dx.doi.org/10.1016/j.isprsjprs.2015.01.016

152

[58] ——, “Ait* & eit*: Asymmetric bidirectional sampling-based path planning,” The

International Journal of Robotics Research (IJRR), 2021.

[59] J. Chen, T. Liu, and S. Shen, “Online generation of collision-free trajectories for

quadrotor flight in unknown cluttered environments,” in 2016 IEEE International

Conference on Robotics and Automation (ICRA), vol. 2016-June. IEEE, 2016, pp.

1476–1483.

[60] M. Pivtoraiko, D. Mellinger, and V. Kumar, “Incremental micro-UAV motion replan-

ning for exploring unknown environments,” in 2013 IEEE International Conference

on Robotics and Automation, 2013, pp. 2452–2458.

[61] H. Oleynikova, M. Burri, Z. Taylor, J. Nieto, R. Siegwart, and E. Galceran,

“Continuous-time trajectory optimization for online UAV replanning,” in 2016

IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2016,

pp. 5332–5339.

[62] J. Tordesillas, B. T. Lopez, J. Carter, J. Ware, and J. P. How, “Real-Time Planning

with Multi-Fidelity Models for Agile Flights in Unknown Environments,” in 2019

International Conference on Robotics and Automation (ICRA), 2019, pp. 725–731.

[63] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query sampling-based

motion planning with quick replanning,” International Journal of Robotics Research,

vol. 35, no. 7, pp. 797–822, jun 2016.

[64] X. Zhou, Z. Wang, H. Ye, C. Xu, and F. Gao, “EGO-Planner: An ESDF-Free Gradient-

Based Local Planner for Quadrotors,” IEEE Robotics and Automation Letters, vol. 6,

no. 2, pp. 478–485, aug 2021. [Online]. Available: http://arxiv.org/abs/2008.08835

[65] K. Mohta, M. Watterson, Y. Mulgaonkar, S. Liu, C. Qu, A. Makineni, K. Saulnier,

K. Sun, A. Zhu, J. Delmerico, and Others, “Fast, autonomous flight in GPS-denied and

cluttered environments,” Journal of Field Robotics, vol. 35, no. 1, pp. 101–120, 2018.

http://arxiv.org/abs/2008.08835

153

[66] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments using velocity

obstacles,” The international journal of robotics research, vol. 17, no. 7, pp. 760–772,

1998.

[67] J. Van den Berg, M. Lin, and D. Manocha, “Reciprocal velocity obstacles for real-

time multi-agent navigation,” in 2008 IEEE international conference on robotics and

automation. Ieee, 2008, pp. 1928–1935.

[68] B. Damas and J. Santos-Victor, “Avoiding moving obstacles: the forbidden velocity

map,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,

2009, pp. 4393–4398.

[69] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Siegwart, “Optimal

reciprocal collision avoidance for multiple non-holonomic robots,” in Distributed

autonomous robotic systems. Springer, 2013, pp. 203–216.

[70] N. Malone, H.-T. Chiang, K. Lesser, M. Oishi, and L. Tapia, “Hybrid Dynamic Moving

Obstacle Avoidance Using a Stochastic Reachable Set-Based Potential Field,” IEEE

Transactions on Robotics, vol. 33, no. 5, pp. 1124–1138, 2017.

[71] H. Febbo, J. Liu, P. Jayakumar, J. L. Stein, and T. Ersal, “Moving obstacle avoidance for

large, high-speed autonomous ground vehicles,” in 2017 American Control Conference

(ACC), 2017, pp. 5568–5573.

[72] J. Lin, H. Zhu, and J. Alonso-Mora, “Robust vision-based obstacle avoidance for micro

aerial vehicles in dynamic environments,” in 2020 IEEE International Conference on

Robotics and Automation (ICRA). IEEE, 2020, pp. 2682–2688.

[73] W. Luo, W. Sun, and A. Kapoor, “Multi-Robot Collision Avoidance under Uncertainty

with Probabilistic Safety Barrier Certificates,” in Advances in Neural Information

Processing Systems, vol. 33, 2020.

154

[74] C. Cao, P. Trautman, and S. Iba, “Dynamic channel: A planning framework for crowd

navigation,” in 2019 International Conference on Robotics and Automation (ICRA).

IEEE, 2019, pp. 5551–5557.

[75] D. Zhu, T. Zhou, J. Lin, Y. Fang, and M. Q.-H. Meng, “Online state-time trajec-

tory planning using timed-esdf in highly dynamic environments,” arXiv preprint

arXiv:2010.15364, 2020.

[76] Y. Wang, J. Ji, Q. Wang, C. Xu, and F. Gao, “Autonomous flights in dynamic environ-

ments with onboard vision,” arXiv preprint arXiv:2103.05870, 2021.

[77] B. Zhou, Y. Zhang, X. Chen, and S. Shen, “FUEL: Fast UAV Exploration Using

Incremental Frontier Structure and Hierarchical Planning,” IEEE Robotics and

Automation Letters, vol. 6, no. 2, pp. 779–786, oct 2021. [Online]. Available:

http://arxiv.org/abs/2010.11561

[78] T. Liu, Q. Wang, X. Zhong, Z. Wang, C. Xu, F. Gao, F. Zhang, and F. Gao, “Star-

Convex Constrained Optimization for Visibility Planning with Application to Aerial

Inspection,” in arXiv preprint arXiv:2204.04393, 2022.

[79] G. Chen, W. Dong, X. Sheng, X. Zhu, and H. Ding, “An active sense and avoid

system for flying robots in dynamic environments,” IEEE/ASME Transactions on

Mechatronics, vol. 26, no. 2, pp. 668–678, 2021.

[80] J. Bialkowski, M. Otte, S. Karaman, and E. Frazzoli, “Efficient collision checking

in sampling-based motion planning via safety certificates,” International Journal of

Robotics Research, vol. 35, no. 7, pp. 767–796, jun 2016.

[81] C. Richter, A. Bry, and N. Roy, “Polynomial trajectory planning for aggressive quadro-

tor flight in dense indoor environments,” in Robotics research. Springer, 2016, pp.

649–666.

http://arxiv.org/abs/2010.11561

155

[82] H. Chen and P. Lu, “Computationally efficient obstacle avoidance trajectory planner

for uavs based on heuristic angular search method,” in 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS). IEEE, 2020, pp. 5693–5699.

[83] J. Tordesillas, B. T. Lopez, and J. P. How, “FASTER: Fast and Safe Trajectory Planner

for Flights in Unknown Environments,” in 2019 IEEE/RSJ International Conference

on Intelligent Robots and Systems (IROS), 2019, pp. 1934–1940.

[84] M. Burri, H. Oleynikova, M. W. Achtelik, and R. Siegwart, “Real-time visual-inertial

mapping, re-localization and planning onboard MAVs in unknown environments,” in

2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),

2015, pp. 1872–1878.

[85] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and V. Kumar,

“Planning dynamically feasible trajectories for quadrotors using safe flight corridors in

3-D complex environments,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp.

1688–1695, jun 2017.

[86] A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding Hori-

zon ”Next-Best-View” Planner for 3D Exploration,” in 2016 IEEE International

Conference on Robotics and Automation (ICRA), 2016, pp. 1462–1468.

[87] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discover-

ing clusters in large spatial databases with noise,” in Proc. 1996 Int. Conf. Knowledg

Discovery and Data Mining (KDD ’96), 1996, pp. 226–231.

[88] K. Bernardin, A. Elbs, and R. Stiefelhagen, “Multiple object tracking performance

metrics and evaluation in a smart room environment,” in Sixth IEEE International

Workshop on Visual Surveillance, in conjunction with ECCV, vol. 90, no. 91. Cite-

seer, 2006.

156

[89] H. Zhu and J. Alonso-Mora, “Chance-constrained collision avoidance for mavs in

dynamic environments,” IEEE Robotics and Automation Letters, vol. 4, no. 2, pp.

776–783, 2019.

[90] W. Zhang, S. Wei, Y. Teng, J. Zhang, X. Wang, and Z. Yan, “Dynamic obstacle

avoidance for unmanned underwater vehicles based on an improved velocity obstacle

method.” Sensors, vol. 17, no. 12, p. 2742, 2017.

[91] M. Danelljan, G. Häger, F. S. Khan, and M. Felsberg, “Discriminative Scale Space

Tracking,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39,

no. 8, pp. 1561–1575, 2017.

[92] J. F. Henriques, R. Caseiro, P. Martins, and J. Batista, “High-Speed Tracking

with Kernelized Correlation Filters,” IEEE Transactions on Pattern Analysis and

Machine Intelligence, vol. 37, no. 3, pp. 583–596, 2015. [Online]. Available:

http://dx.doi.org/10.1109/TPAMI.2014.2345390

[93] H. Chen and P. Lu, “Real-time identification and avoidance of simultaneous static

and dynamic obstacles on point cloud for uavs navigation,” Robotics and Autonomous

Systems, vol. 154, p. 104124, 2022.

[94] D. Satkunskiene, V. Grigas, V. Eidukynas, and A. Domeika, “487. accelera-

tion based evaluation of the human walking and running parameters.” Journal of

Vibroengineering, vol. 11, no. 3, 2009.

[95] J. L. Blanco and P. K. Rai, “nanoflann: a C++ header-only fork of FLANN, a library

for Nearest Neighbor (NN) with KD-trees,” https://github.com/jlblancoc/nanoflann,

2014.

[96] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and V. Kumar,

“Planning dynamically feasible trajectories for quadrotors using safe flight corridors in

3-d complex environments,” IEEE Robotics and Automation Letters, vol. 2, no. 3, pp.

1688–1695, 2017.

http://dx.doi.org/10.1109/TPAMI.2014.2345390
https://github.com/jlblancoc/nanoflann

157

[97] Z. Wang, X. Zhou, C. Xu, and F. Gao, “Geometrically constrained trajectory optimiza-

tion for multicopters,” arXiv preprint arXiv:2103.00190, 2021.

[98] Z. Wang, H. Ye, C. Xu, and F. Gao, “Generating large-scale trajectories efficiently using

double descriptions of polynomials,” in IEEE International Conference on Robotics

and Automation. Xi’an, China: IEEE, 2021, pp. 7436–7442.

VITA

158

VITA

Born

Jan, 1994 in Songyuan, Jilin, China.

Education

• Ph. D. in Aeronautical and Aviation Engineering 2019-Present

The Hong Kong Polytechnic University, Hong Kong SAR, China

• M. Sc. in Armament Science and Technology 2016-2019

Beijing Institute of Technology, Beijing, China

• B. Eng. in Weapon system and engineering 2012-2016

Beijing Institute of Technology, Beijing, China

Research Experience

• Visiting Student 2021.9-2022.2

FAST Lab (supervised by Dr. Gao Fei), Zhejiang University, China.

	ABSTRACT
	LIST OF TABLES
	LIST OF FIGURES
	ABBREVIATIONS
	Introduction
	Research problems and targets
	Dynamic environment perception
	Efficiently planning efficient trajectory
	System integration

	Thesis overview

	Literature Review
	Dynamic and static obstacle perception
	Mapping the environment
	Dynamic obstacle perception

	Fast and feasible motion planning methods
	Path planning
	Hierarchical approach
	Direct approach

	Global and local planning
	Planning safely in dynamic scenes

	Efficient Sampling-Based Motion Planning
	Research Background
	Quick Responding and Safe Planner
	Processing the Point Cloud
	Heuristic Angular Search Method
	Motion Planning
	Safety Guarantee
	Improvements on the Motion Planner

	Experimental Results
	Experimental Configuration
	Simulation Flight Test in a Simple Environment
	Simulation Flight Test in a Complex Environment
	The Improvements in Optimization Formulation

	Conclusion

	Parallel Navigation Framework for Flights in Complex Terrain
	Research Background
	Mapping and the Map Planner
	Point Cloud Filter
	Mapping and 2D path planning
	Improved 2D path
	Shorter 3D path searching

	Complete Navigation Framework
	Connection between the PCP and MP
	The whole framework

	Test Results
	Algorithm performance static test
	Simulated flight tests with real-time planning
	Hardware flight tests

	Conclusion

	Flying and Avoiding Dynamic Obstacles on Pointclouds
	Research Background
	Technical Approach
	Obstacle tracking
	Obstacle Velocity Estimation and Classification
	Ego-motion compensation and neighbor data overlapping

	Motion Planning
	Velocity planning
	Motion planning

	Experimental Implementation and Results
	Point cloud filters
	Map building
	Experimental Configuration
	Simulation Test
	Hardware Test

	Conclusion and Future Work

	An Enhanced System: Robust Perception and Threat-Aware Planning
	Research Background
	Dynamic Object Perception
	Detect and track objects on image
	Estimate the object velocity
	Uncertainty evaluation

	Trajectory Planning
	FOV constrained hybrid A* algorithm
	Trajectory optimization and the time-varying safety margin
	Perception Enhanced Planning

	Experimental Implementation and Results
	Vehicle ego-motion compensation and depth map filter
	Static points memorizing and reusing
	Experimental Configuration
	Simulation Test
	Field test

	Conclusion

	Conclusion, Discussion, and Future Work
	VITA

