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Abstract 

Location-based services (LBS) have become more and more important with the 

development of Internet of Things (IoT) technology and increasing popularity of IoT 

terminals in recent years. Global Navigation Satellite System (GNSS) is widely used 

for positioning outdoors while it is still challenging to realize autonomous, precise and 

universal indoor localization based on the existing devices. Among most indoor 

positioning technologies, the Wireless Fidelity (Wi-Fi) based positioning is regarded as 

an effective way for realizing ubiquitous and high-precision indoor navigation, 

especially the presentation of next generation Wi-Fi access point which supports the 

state-of-art Wi-Fi Fine Time Measurement (FTM) protocol. Micro-Electro-Mechanical 

System (MEMS) sensors can provide an accurate short-term navigation solution, which 

also provides a potential way for autonomously generating the crowdsourced Wi-Fi 

received signal strength indication (RSSI) based fingerprinting database, by collecting 

and mining the users’ daily-life trajectories and corresponding signals of opportunity. 

This thesis proposes an automatic and precision-controllable algorithm for multi-

source fusion based wireless positioning using the combination of Wi-Fi FTM, 

crowdsourced Wi-Fi RSSI fingerprinting, and IoT terminals integrated MEMS sensors, 

by which the realized ubiquitous positioning accuracy can reach 1.5~4.5m (within 75th 

percentile), and meter-level accuracy can be achieved under Wi-Fi FTM covered indoor 

scenes. Compared with previous hybrid navigation algorithms or structures, the main 

innovation points of this research are: 

1) This research presents an autonomous three-dimensional (3D) positioning 

algorithm for low-cost MEMS sensors. This algorithm is based on the inertial 

navigation system (INS) mechanization and comprehensively utilizes multi-level 

constraints and observables (including: pseudo observations, gravity vector, altitude 

increment, pedestrian dead reckoning (PDR), zero velocity update (ZUPT), zero 

angular rate update (ZARU), quasi-static magnetic field (QSMF), non-holonomic 

constraint (NHC)). The proposed algorithm can be used without any external 

equipment and user intervention, and the autonomous 3D indoor positioning 

performance can be realized under changeable motion and handheld modes and 

environmental interference. 

2) This research proposes and compares three different Wi-Fi FTM bias estimation 

algorithms to solve the problem of Wi-Fi FTM based ranging biases between 
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changing terminals and Wi-Fi access points (APs). In which the polynomial-based 

(PB) approach can provide the best performance of ranging bias estimation, but 

requires the priori information; The Gradient Descent (GD) based calibration 

algorithm does not need the priori information, but needs to extract the initial quasi-

static status information; The tightly-coupled bias estimation algorithm integrates 

multiple location sources and pedestrian’s motion information, and calculates and 

feedbacks the ranging bias estimation result in real-time to obtain the optimal 

convergence value. In this point, corresponding error and iterative models are 

designed, which can realize adaptive ranging bias estimation towards different 

scenarios and improve the accuracy and universality at the signal source level. 

3) This research develops an autonomous 3D indoor localization and trajectory 

reconstruction framework based on MEMS sensors and sparsely deployed Wi-Fi 

FTM stations, Bluetooth Low Energy (BLE) nodes, and Quick Response (QR) 

codes based landmarks, and proposes and testes two corresponding trajectory error 

optimization algorithms, including the two-sided filtering and smoothing algorithm 

based on the adaptive unscented Kalman filter (AUKF) and Rauch-Tung-Striebel 

(RTS), and the GD based global optimization algorithm. The proposed trajectory 

optimization algorithms can effectively eliminate the cumulative error caused by 

the MEMS/landmarks integration framework and maintain the calculation 

efficiency, and more accurate smoothed navigation results can be acquired 

compared with one-sided filtering. 

4) This research proposes a deep-learning based crowdsourced Wi-Fi fingerprinting 

database generation and updating framework based on the daily-life trajectories of 

public users. The influencing factors and time correlation of the optimized 

crowdsourced trajectory error are modeled and predicted by the multi-layer 

perception (MLP) network. In addition, the results of trajectories error prediction 

are further applied for crowdsourced trajectories classification, segmentation, 

merging, and the final Wi-Fi RSSI fingerprinting database construction and 

updating, which can effectively reduce the redundancy of the generated database 

and improve the accuracy and the stability of database matching. 

5) This research proposes a 3D navigation architecture based on the integration of 

MEMS sensors, Wi-Fi FTM, and crowdsourced RSSI fingerprinting, and makes the 

comprehensively experimental analysis. In which the MEMS sensors/Wi-Fi FTM 

tightly-coupled integration model can realize meter-level positioning accuracy in 
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Wi-Fi FTM covered indoor environments, and has strong anti-interference ability; 

the MEMS sensors/RSSI fingerprint loosely-coupled integration model can provide 

a more universal and wide-coverage positioning solution and compensate for the 

limited deployment of Wi-Fi FTM stations; and the final hybrid MEMS sensors/Wi-

Fi FTM/RSSI fingerprint integration model can effectively achieve automatic, and 

precision-controllable positioning in large-scale 3D indoor spaces. In addition, this 

research designs corresponding signal quality evaluation strategies for all three 

integration models to achieve adaptive weight adjustment of each observation. 

Therefore, by taking better advantage of the merits of low-cost sensors, Wi-Fi FTM, 

and crowdsourced RSSI fingerprinting, the proposed algorithm has the following 

advantages: 

1) The algorithm can significantly improve the performance of attitude estimation and 

3D dead reckoning by self-calibrating the navigation parameters without the need 

for any external equipment or user intervention, which can be applied in case of 

complex indoor environments and changeable handheld modes of smartphones. 

2) The algorithm can provide accurate and reliable 3D indoor navigation results in 

large-scale indoor spaces using smartphone integrated MEMS sensors and sparsely 

deployed landmarks such as Wi-Fi stations, BLE nodes, and QR codes; In addition, 

different error optimization methods are further applied for decreasing the 

cumulative error of forward navigation. 

3) The algorithm can realize the automatic construction of Wi-Fi fingerprinting 

database using the collected crowdsourced trajectories, and develops a 

comprehensive deep-learning based trajectories evaluation, selection, partition, and 

merging framework to improve the robustness and efficiency of final generated 

database. 

4) The algorithm can provide universal and precision-controllable positioning 

performance by integrating both Wi-Fi FTM and RSSI fingerprinting based 

absolute location sources and MEMS sensors based DR approach. Autonomous 3D 

localization can be realized in large-scale indoor spaces and meter-level positioning 

accuracy can be realized in Wi-Fi FTM covered indoor scenes. 

There are various potential applications for the outcomes of this research, for example:  

• Precise location based services that use IoT terminals; 

• Mobile mapping and crowd-sensing; 
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• Crowdsourced navigation by using daily-life data provided by public users; 

• Crowdsourced data mining and geo-spatial big data analysis; 

• Multi-source fusion based seamless localization towards pedestrians and vehicles; 
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Chapter 1: Introduction 

1.1 Background and Problem Statement 

With the coming era of universal navigation facing the public and the rapid 

development of various Internet of Things (IoT) terminals and wearable devices, there 

is an increasing demand for obtaining personal location information anytime and 

anywhere and providing associated services based on acquired indoor and outdoor 

location information [1]. As an important means of obtaining geo-spatial location 

information, positioning and navigation technologies are regarded as the most essential 

part in various research field, for example artificial intelligence (AI), autonomous 

driving, and smart city platform [2]. Although the mainstream Global Navigation 

Satellite System (GNSS) technology is maturely developed and applied in large-scale 

commercial applications, and the positioning accuracy in outdoor open environments 

has already meet the most daily requirements of localization and navigation, and the 

meter-level positioning accuracy can be achieved in some outdoor open scenarios. The 

disadvantage is that the GNSS signal cannot cover or received well in most indoor 

spaces, thus it is difficult to exert efficient positioning capabilities in complex and 

changeable indoor spaces [3]. 

Indoor positioning is a very important application in mobile computing and a key 

technology based on location services. Indoor positioning has wide application 

prospects in all walks of life, for example tracking items in the logistics and 

warehousing industry; navigation in shopping malls, airports, and other indoor venues. 

According to the state-of-art reports, about 87% of human activity time is indoors, 

which has brought huge commercial impetus to the application of indoor location-based 

services, and also promoted the development of indoor positioning technology [4].  

It is reported that the market of indoor navigation will reach 58 billion U.S. dollars 

in 2023, and domestic and foreign technology giants have begun to deploy in this 

market. For example, Google has launched the visual positioning system (VPS), an 

indoor positioning system using mobile terminals integrated cameras; Apple has 

acquired the Wi-Fi Simultaneous Localization and Mapping (SLAM) system, an indoor 

positioning startup, and Microsoft has also opened an IPIN conference in this area to 

explore commercial positioning technology. Technology companies such as Alibaba, 

Baidu, and Huawei have also increased their investment in indoor localization 

application and promoted the advancement of indoor localization technology.  
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The Ministry of Science and Technology of China issued the "Twelve Five "Special 

Planning", and in 2013 released the "White Paper on Indoor and Outdoor High-

Precision Positioning and Navigation", which proposed the systematic construction of 

industrial support for navigation and location services, and indoor navigation has higher 

technical requirements based on indoor positioning [5]. 

In recent years, the indoor location information has become increasingly important 

for many emerging fields, such as emergency rescue solutions, smart city based 

applications, and analytics of geo-spatial big data. Although the Global Positioning 

System (GPS) has been widely used for positioning outdoors, the most indoor 

environments are GPS-denied. To realize location-based services (LBS) in indoor 

environments, different systems and techniques are developed, for example ultra-

wideband (UWB) [6], Bluetooth Low Energy (BLE) [7], Wireless Fidelity (Wi-Fi) [8], 

acoustic source [9], and Micro-Electro-Mechanical System (MEMS) sensors [10]. 

The IoT technology integrates sensing, communication, and computing technology. 

This will make the communication of human to human more convenient, and the 

communication of human to thing or thing to thing possible. As an important IoT based 

application, indoor positioning integrates sensing, communication, and AI technology 

to provide a reliable location for the pedestrian. Relying on the accurate positioning 

service, route navigation in airports, shopping malls, and other indoor public areas can 

be easily achieved [11-12]. 

At present, there are three main kinds of IoT terminals based indoor and outdoor 

positioning methods, and their advantages and disadvantages are shown below: 

1) Relative localization based on smartphone built-in sensors, usually using strap-

down inertial navigation system (SINS) or pedestrian dead reckoning (PDR) algorithm 

to track the movement of pedestrians, by collecting the data from multiple sensors such 

as the accelerometer, magnetometer and gyroscope. The advantage of SINS and PDR 

is that it does not rely on the environment and has the ability to achieve autonomous 

positioning so that is widely used in positioning environments without external signals. 

However, due to the cumulative error caused by the inertial sensors and navigation 

algorithm, the positioning error increases with time and cannot be easily eliminated by 

itself. However, it is always difficult to acquire the absolute heading and initial location 

indoors, thus, this kind of technology is always combined with the indoor map or the 

other positioning methods [13-14]; 
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2) Absolute localization based on radio frequency (RF) signals or computer vision 

(CV) [15-16]. Multiple characteristics extracted from RF signals can be used for indoor 

localization purposes such as received signal strength indication (RSSI) [17], time of 

arrival (TOA) [18], round-trip time (RTT) [19], time difference of arrival (TDOA) [20]. 

Besides, fingerprinting-based methods can also be used in complex indoor scenarios 

[21]. The advantage of RF signals based indoor localization is that the positioning error 

does not increase with time, therefore it can be used as a long-term and stable 

positioning source. The complex indoor environments also affect the accuracy of RF 

signals. For example, the occlusion and the shelters indoors can lead to non-line-of–

sight (NLOS) influences and multipath propagation, which would seriously affect the 

performance of RF signals based indoor positioning. Beside, CV based method always 

needs a large amount of calculation, which would improve the calculation complexity 

of location updating;  

3) Multi-source fusion based localization which combines the advantages of both 

relative and absolute location sources and provides more stable and accurate location 

information. There are always some limitations in positioning principle and distribution 

of single location source, thus, in order to achieve universal location, different location 

sources need to be combined to adapt to complex and changeable indoor environments 

[22]. To meet the requirements of indoor localization in complex and large-scale smart 

city based scenes, the multiple sources based fusion method becomes the most effective 

localization algorithm, which can be applied in different indoor environments under 

existing location sources [23]. In outdoor open environments, the GNSS based 

positioning approach has already been integrated in the most IoT terminals. In large-

scaled urban spaces, the GNSS signal is easily affected by the block of dense buildings, 

therefore is usually integrated with inertial sensors to combine the advantage of each. 

In GNSS-denied indoor environments, RF signals are regarded as an effective approach 

for acquiring absolute reference and can further combined with IoT terminal integrated 

sensors to provide more robust indoor localization performance [24-25]. The sensors 

and RF radios integrated in IoT terminals which can be applied for navigation purpose 

are shown in Figure 1-1: 
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Figure 1-1 Positioning sensors and RF radios in IoT Terminals [4] 

 

The description and comparison between different location sources supported by 

IoT terminals are described in Table 1-1: 

 

Table 1-1 Comparison of Existing Positioning Technologies Using Smartphone Sensor 

Location 

Sources 

Accuracy Robustness Complexity Scalability Cost 

Wi-Fi Fingerprinting: 

2~5m;  

RTT ranging:  

1~3m;  

Affected by 

environmental 

factors and 

human bodies; 

Time-

consuming for 

database 

generation; 

Easy No additional 

cost; 

Bluetooth/BLE Fingerprinting: 

2~5m;  

AOA Array:  

< 1 m 

Limited by the 

changeable 

environments; 

Time-

consuming to 

construct the 

database; 

Easy High cost of 

antenna 

array; 

NFC Centi-meter 

level, short 

effective 

distance; 

Good Low Easy A large 

number of 

NFC tags are 

required; 

Cellular 

Network 

Ten meters to 

tens of meters; 

Affected by 

environments; 

Medium Good High 
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UWB Centi-meter 

level 

Good Medium Medium High 

RFID 1~5 m Affected by 

environments; 

Medium Medium Medium 

Infrared Ray Meter-level LOS required; Medium Low Medium, 

additional 

transceivers 

are required; 

Visible Light 1~5 m Medium Medium Good Low 

Ultrasound Centi-meter 

level; 

Good Low Low Medium, 

additional 

transceivers 

are required; 

Acoustic Source Meter-level Affected by 

NLOS factor; 

Medium Good Medium 

INS Cumulative 

error exists; 

Good Medium Good Low 

Magnetic Field 2~5 m Affected by 

environments; 

High Good Low 

Computer 

Vision 

Camera 

rendezvous: 

Centi-meter 

level; Others:  

Meter-level 

Medium, 

affected by the 

ambient light 

and quality of 

the image 

Very High Good Medium 

 

Wi-Fi positioning system (WPS) has attracted much more attentions compared with 

other indoor location sources because of its low cost and wide coverage characteristics. 

Generally, the IoT terminals based WPS always contains two implementation methods: 

ranging and fingerprinting. The RSSI feature is usually acquired to realize real-time 

ranging between IoT terminals and Wi-Fi APs and the location information is acquired 

by the Least squares (LS) algorithm [26]. Besides, the fingerprinting technique is 

developed to provide location information by collecting signals of opportunity (SOP) 

in selected indoor environments without knowing the positions of local facilities [27]. 

In a typical indoor scene, the precision of Wi-Fi RSSI based fingerprinting approach is 

easily affected by the deployment and sparseness of surrounding facilities and the 
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localization precision would decrease in open environments [28-29]. To improve the 

robustness of WPS, IEEE 802.11ac standard added the Wi-Fi ranging function in 2016, 

named the Wi-Fi Fine Time Measurement (FTM) protocol, which can provide accurate 

time-of-flight information between different initiators such as smartphones and 

receivers such as Wi-Fi APs [30]. 

However, in complex and changeable smart city based indoor scenes, the realized 

precision of Wi-Fi FTM is limited by the multipath propagation and NLOS which 

would cause the additional deviation in Wi-Fi ranging results [31]. Due to the hardware 

difference of IoT terminals and Wi-Fi APs, not all IoT devices or Wi-Fi APs support 

the FTM protocol, and the ranging bias always exists in the procedure of FTM 

timestamp exchange between different terminals [32]. In addition, the PDR or inertial 

navigation system (INS) based location update methods are proved to provide shortly 

precise results by integrating the collected built-in sensors data, while the accuracy of 

MEMS sensors based approach decreases with time due to the cumulative error and 

magnetic interference therefore are always integrated with absolute location sources 

[33-34]. 

As discussed above, the integrated indoor localization using the combination of 

different location sources is regarded as an effective approach for realizing much better 

indoor localization performance. In recent years, indoor wireless localization towards 

the next generation Wi-Fi access point has attracted considerable attention due to the 

presentation of the state-of-art Wi-Fi FTM protocol. Aiming at the next generation WPS 

which supports both RSSI and FTM collection, how to achieve a robust combination 

of all the supported wireless characteristics using IoT terminals and improve the 

autonomy, accuracy and universality of traditional WPS becomes a hot issue towards 

large-scaled and precision-controllable three-dimensional (3D) indoor localization. 

It can be found from the state-of-art literatures that the Wi-Fi FTM based high-

precision location source is not available in all the Wi-Fi APs, and the RSSI 

characteristic is regarded as the universal location sources but is subjected to the 

environmental interference and labor-consuming collection phase. Towards the 

generation WPS, how to combine the Wi-Fi FTM, crowdsourced Wi-Fi RSSI 

fingerprinting and MEMS sensors based location sources to provide a large-scaled and 

accurate indoor localization performance is a facing problem, and how to 

comprehensively solve the challenges including magnetic interference and cumulative 

error, hardware deviation, quality evaluation, and efficient Wi-Fi fingerprinting 
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database generation is also an existing challenge. To improve the performance of Wi-

Fi and MEMS sensors integrated 3D indoor positioning based on the IoT hardware 

platform, the following challenges and problems need to be handled: 

1) Magnetic Interference, Cumulative Error, Motion and Handheld Modes of 

MEMS Sensors: In the dead-reckoning (DR) related structure, the location is updated 

through the calculated step-length/walking speed and heading estimation result, which 

is affected by the increasing measurement error of MEMS sensors and changeable 

magnetic field in local environments. In addition, due to the variety of pedestrian’s 

motion modes and handheld modes, the original positioning trajectory may exist a large 

deviation, which needs to be recognized and calibrated. 

2) Hardware Deviation of Different IoT Terminals: Due to the hardware 

differences between IoT terminals and Wi-Fi APs, the raw measured RSSI or the RTT 

information always contains additional bias which causes the overall drift of the ranging 

result. Besides, the estimated value of additional bias depends on both initiator 

terminals and responder terminals, therefore an adaptive bias estimation framework is 

required to increase the robustness and precision of multi-terminal contained indoor 

localization system. 

3) Efficient Generation of Crowdsourced Navigation Database: Under the 

background of geo-spatial big data analysis, massive IoT terminal data information 

provided by the large amount of users provides a novel approach for autonomous 

navigation database constructing and crowdsourced positioning. Towards the next 

generation wireless positioning system, how to improve the accuracy of crowdsourced 

trajectories provided by the daily-life data, and how to autonomously and effectively 

select, evaluate and merging the useful data from a large amount of collected navigation 

information is a facing problem. 

4) Effective Integration and Quality Evaluation of Multiple Location Sources. 

Indoor scenes usually contain structure based influences such as multipath propagation 

and NLOS. Similar to the TOA based positioning method, Wi-Fi FTM is much more 

robust indoors compared with RSSI but is also subjected to the indoor interference 

which should be recognized. Thus, signal quality evaluation is regarded as an essential 

part in the final multi-source fusion phase and also a unified integration framework is 

needed for a more autonomous and concrete 3D indoor localization using Wi-Fi and 

MEMS sensors based location sources. 
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1.2 Review of Existing Literatures 

1.2.1 MEMS Sensors Based Positioning and Optimization 

Currently, built-in sensors based pedestrian navigation algorithm usually contains 

two types: pedestrian gait detection based positioning method such as PDR and INS 

mechanizations based positioning approaches. In PDR based positioning method, the 

pedestrian’s two-dimensional (2D) position is propagated based on four main phases: 

step recognition [35], step-length calculation [36], walking direction calculation and 

calibration [37], and location update [38]. These procedures are subjected to the 

changeable human motions and complex indoor environments such as the handheld 

mode of smartphone and artificial magnetic interference [39-40]. The other alternative 

positioning solution is using strap-down inertial navigation system (SINS), which 

acquires moving objects’ 3D position, velocity, and attitude information among the 

combination of different kinds of inertial sensors [41]. Compared with PDR, the 

navigation data estimated by SINS is low latency and more comprehensive. However, 

the consumer grade SINS is usually composed of MEMS Inertial Measurement Unit 

(IMU), which is subjected to the fast divergence and cumulative errors therefore cannot 

be directly used for navigation purpose [42]. 

To decrease the fast divergence and cumulative error of MEMS sensors based 

localization, different algorithms are proposed. In case of foot-mounted pedestrian 

navigation system, the zero-velocity update technology (ZUPT) and zero angular rate 

update (ZARU) are regarded as an effective way to decrease the cumulative and 

divergence errors of SINS [43]. Tong et al. [44] proposed a double-step unscented 

Kalman filter (DKF) to reduce the heading error and used the hidden Markov model to 

increase the precision of ZUPT approach, by which the maximum positioning error is 

estimated lower than 2%. Li et al. [45] developed a self-calibration framework aiming 

at gyroscope based heading estimation, in which various constraints, including pseudo 

observations, measurements of MEMS sensors, ZUPT/ZARU, are applied to increase 

the precision and stability of SINS. 

The accuracy of PDR based solution is affected by the walking speed calculation, 

heading estimation, and handheld modes of the smartphone. Comprehensive 

experiments are developed and processed by previous works to enhance the 

performance of PDR mechanization.  



 

9 

 

Gu et al. [46] developed a deep-learning based walking speed calculation structure 

that the prior knowledge of the pedestrian’s height, motion status and handheld modes 

are not regarded as the essential information, and the disadvantage is that the training 

dataset is required in the procedure of estimation of the optimal estimation result. 

Zhang et al. [47] presented the SmartMTra system by learning and extracting features 

in the period of pedestrian’s real-life activities, which are further applied for motion 

detection and handheld modes classification in order to realize a robust dead reckoning 

performance. 

Poulose et al. [48] comprehensively compared the heading estimation performance 

of five different multi-sensors fusion approaches including the Kalman filter (KF), 

Extended Kalman filter (EKF), Unscented Kalman filter (UKF), particle filter (PF) and 

complementary filters (CF). The experimental results prove that the UKF has the 

highest heading estimation accuracy and the PF shows the poor performance in heading 

estimation. 

Limited by the low-precision of MEMS sensors, the initial INS mechanization is 

usually applied in foot-mounted positioning system due to the effective detection of 

ZUPT/ZARU constraints. 

Liu et al. [49] used EKF to fuse the INS mechanization, QR code, and ZUPT/ZARU 

detection results to realize accurate forward localization performance. In addition, the 

Rauch-Tung-Striebel (RTS) smoother is adopted to increase the precision of forward 

navigation result and meter-level accuracy could be acquired after smoothing phase. 

Aiming at smartphone based pedestrian positioning system, ZUPT/ZARU 

constraints are not enough for eliminating the divergence error of INS mechanization 

due to the changeable motion statuses and handheld modes. Besides, the performance 

of PDR mechanization is subjected to performance of long-term heading and walking 

speed estimation. 

Li et al. [50] combined INS and PDR mechanizations using smartphone integrated 

MEMS sensors. The sensors features including external acceleration, magnetic 

deviation, ZUPT, ZARU, step-length based walking speed are adopted to constrain the 

INS originated error. The forward-backward smoothing is applied to further optimize 

the positioning performance. Kuang et al. [51] further improved the performance of 

INS/PDR integration system by adding pseudo observations and comprehensively 

compared the performance of INS/PDR structure with the enhanced PDR (E-PDR) 
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proposed in state-of-art literatures. Final experimental results proved that the INS/PDR 

integration structure effectively improve the performance of single PDR mechanization. 

Shi et al. [52] used the modulus and variance of gyroscope output to realize the real-

time step detection, which effectively recognize the swing mode and static mode based 

on the foot-mount platform. Besides, the zero-velocity-update (ZUPT) detection result 

and bias error of accelerometer are combined to calibrate the attitude angle. The 

experimental results shown end-to-end localization error are decreased within 1.2%. 

Jin-Shyan Lee and Shih-Min Huang [53] proposed a multi-pose based PDR algorithm 

including six poses and four modes of the smartphone, and a novel approach of the 

pedestrian’s heading estimation without using magnetometer under different handheld 

modes is applied. The experimental results proved that the high precision localization 

performance can be achieved under changing handheld modes. 

Yan et al. [54] applied the Support Vector Machine (SVM) to classify different 

handheld modes of the smartphones and the Support Vector Regression (SVR) was 

applied to calculate the walking speed of the pedestrian from the collected history 

acceleration and angular velocity, which showed the comparable positioning accuracy 

to the typical visual positioning system. In addition, they improved the smartphone-

based localization using a novel neural framework and acquired 3D trajectories under 

different motion modes based on the training dataset larger than 40 hours provided by 

100 different testers [55]. 

To further decrease the cumulative error of MEMS sensors based indoor localization, 

the backward smoothing or the global optimization algorithms are usually applied to 

increase the precision of forward navigation result, which can provide much higher 

accuracy of reconstructed trajectory and can further used for navigation database 

construction. 

In recent years, many researchers have devoted to the methods of trajectory 

optimization based on the crowdsourcing data acquired from a large number of 

smartphones. There are some existing methods, such as obtaining high-precision 

positioning database from high-cost inertial sensors [56], map information [57], or 

various reference points [58-59]. Zhang et al. [60] proposed a quality assessment 

criteria towards the crowdsourced navigation database generation using IoT-based 

daily-life built-in sensors data, by taking motion modes, sensors biases, and the length 

of time period into consideration. The comprehensive experiments proved the 

efficiency and precision of designed framework. Wang et al. [61] proposed UnLoc 



 

11 

 

system, realizing the navigation database generation based on the detection of context-

related indoor landmarks such as elevators and stairs, which is further applied for 

trajectory re-calibration and database construction. 

The classical smartphone based indoor mapping and navigation database generation 

structures including Walkie-Markie [62], PiLoc [63], and MPiLoc [64]. In Walkie-

Markie, the indoor pathway is generated based on the detection of Wi-Fi AP based 

landmarks and trajectory matching. The limitation is that the collected RSSI value is 

subjected to the changeable indoor environments and the absolute location of generated 

pathway cannot be acquired. The PiLoc classified the similar crowdsourced trajectories 

by their shapes and the similarity of collected Wi-Fi RSSI information and merged the 

similar trajectories using point-to-point fusion. The MPiLoc further extended the floor 

plan from 2D to 3D and using the sparse acquired GNSS reported location as the 

absolute points. The disadvantage is that both PiLoc and MPiLoc rely on the accurate 

estimation of heading information, while the precise absolute heading may not be 

available all the time. 

Li et al. [65] presented the IndoorWaze system, using the crowdsourced Wi-Fi 

fingerprinting data and POI information collected by shopping mall employees to 

generate robust and marked floor plan. The final experiments shown that the designed 

IndoorWaze framework can accurately mark the pathways and location of the store for 

indoor navigation purpose. 

It can be found from the current built-in sensors based localization and optimization 

systems proposed by the state-of-art literatures that the INS/PDR integrated framework 

can achieve better performance due to the richer motion information compared with the 

INS or PDR mechanization. The existing INS/PDR models are all focused on the 2D 

indoor localization and not suitable for the complex 3D scene. In addition, the indoor 

magnetic interference and changeable handheld modes of smartphones are also the 

facing challenges for realizing a more precise MEMS sensors based forward 3D indoor 

localization performance. 

The existing global optimization algorithms can significantly increase the precision 

of forward localization while the accuracy of global optimization algorithm depends on 

the robustness of integration model and the number of landmark points, and the 

traditional backward smoothing approach always requires high computational 

complexity due to the large number of matrix inverse operations. Thus, a 

comprehensive and precise 3D integration structure is required in this stage in order to 
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realize comparable forward localization and a more efficient global optimization 

algorithm is also needed and the optimization accuracy needs to be comparable with 

the traditional backward smoothing based optimization approach. 

 

1.2.2 Wi-Fi FTM Based Positioning 

In 2016, IEEE 802.11ac protocol expanded the IEEE 802.11mc, which is normally 

called the Wi-Fi ranging function, and the aim is to provide meter-level distance 

measurement performance among IoT terminals and Wi-Fi APs, according to the Wi-

Fi alliance [66]. Recently, various Wi-Fi chipsets have provided hardware-level support 

of FTM protocol and the smartphone with the Android system level higher than 

Android P has been provided with the Wi-Fi FTM ranging support by Google. Beside 

the IEEE802.11mc standard documents, there are few details about implementation 

techniques and performance of RTT ranging system on how to use the specified Wi-Fi 

chipsets [67]. Thus, how to realize accurate indoor positioning using state-of-art Wi-Fi 

FTM protocol becomes an important and hot issue. 

Traditional Wi-Fi based indoor localization methods usually use RSSI to calculate 

the distance between intelligent terminal and Wi-Fi AP or using fingerprint method. 

Compared with RSSI, Wi-Fi FTM which measures the RTT of the Wi-Fi signal 

between initiator and responder/AP promises the following advantages: Firstly, Wi-Fi 

RTT can be more stable compared with RSSI and is less affected by multipath 

propagation in case of LOS [68]; Secondly, it is easier to establish a relationship model 

between measured time and the ground truth distance after data processing [69]; Thirdly, 

Wi-Fi FTM based localization does not require the preliminary efforts for obtaining 

environmental information compared with the fingerprinting based methods [70]. 

However, in the real-word positioning phase among a typical indoor environment, 

the direct transmission path between the transceiver is blocked and only the NLOS 

transmission exists, the distance errors measured by Wi-Fi FTM cannot be easily 

eliminated due to its ranging mechanism [30]. Due to the different realizing approaches 

of hardware manufactory, the raw Wi-Fi FTM based ranging results exist initial biases 

among changeable IoT terminals and Wi-Fi APs [71]. Accuracy of Wi-Fi FTM is also 

affected by bandwidth of the Wi-Fi signals. For instance, the ranging results are much 

more accurate using 80 MHz bandwidth than with 40 MHz bandwidth. It is 

understandable that with larger bandwidth, the ranging errors can be reduced by 

improving the resolution of the multipath detection [72]. Another important factor is 
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the clock deviation error caused by initial deviation and random error which are 

inconsistent with different initiators and responders and should be estimated and 

eliminated.  

Wi-Fi FTM protocol is based on the TOA and TOD methods [73-74] which can also 

be used to measure the time of flight (TOF). Authors in [75] introduces how the TOF 

works in detail and a series of experiments are designed for localization estimation in a 

typical indoor environment. In order to reduce the negative impacts on unsynchronized 

time signal and multipath, they used EKF fusing TOF measurements with IMU to 

enhance the performance of TOF system [76]. In [77], a “Siamese” artificial neural 

network (ANN) based on machine learning (ML) approach is proposed, which gives an 

effective solution to the influence of low bandwidth and go on to improve the ranging 

precision of Wi-Fi FTM. Niesen U et al. [78] proposed an improved dedicated short-

range communication method by Wi-Fi FTM to perform outdoor inter-vehicle ranging. 

A timestamp compression method has been discussed by discarding the most 

significant bits of each FTM frame. 

To evaluate the performance of Wi-Fi FTM based indoor localization system, a lot 

of efforts have been made by a mount of researchers. Ibrahim M and his partners 

analyzed the key factors and parameters which affect the Wi-Fi ranging performance 

based on the open platform and revisited standard error correction techniques for Wi-

Fi FTM-based localization system [79]. Yu Y et al. [19] proposed a real-time Wi-Fi 

ranging model which reduce the impacts of clock deviation, non-line-of-sight (NLOS), 

and multipath, then used unscented Kalman Filter (UKF) to fuse data acquired from 

multiple sensors and Wi-Fi FTM and got the final positioning error within 2 m. Xu S 

H et al. [23] proposed an enhanced particle filter (PF) to fuse the multi-sensor data and 

Wi-Fi FTM data, using adaptive tilt compensation to improve the performance of 

heading estimation. The final localization accuracy is within 1 m in 86.7% of the 

dynamic cases when the number of particles is 2000. 

Because of the complexity and variability of different indoor scenes, the RF signal 

based location sources cannot cover all the indoor scenes and are subjected to the 

multipath propagation and NLOS effect. IEEE 802.11mc protocol was proposed 

towards accurate indoor navigation, which supports real-time distance measurement 

among Wi-Fi APs and mobile terminals. In previous research, the Wi-Fi FTM is proved 

to achieve much higher ranging accuracy compared with RSSI based methods in typical 

indoor scenes, and can also be integrated with other location sources to provide precise 
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location information indoors. Biehl et al. [80] combined Wi-Fi FTM and BLE RSSI to 

realize room-level localization and fully researched the improved performance by 

combining the PF and the incorporating map geometry. Henry and Montavont [81] 

applied fingerprinting-based positioning approach to Wi-Fi FTM and examined the 

corresponding parameters defined for FTM, then used the ML approach to recognize 

individual machines performing FTM exchanges and significantly improved the 

ranging performance on individual chipsets. Kevin et al. [82] applied MUSIC algorithm 

to increase the precision of Wi-Fi FTM in NLOS contained environments and verified 

the room-level positioning accuracy without modifying the original protocol. 

In general, Wi-Fi FTM protocol is proposed towards the next generation WPS, which 

can effectively reduce the environmental effects compared with the RSSI based ranging 

and fingerprinting approaches. To get the meter-level localization performance, the Wi-

Fi FTM is usually integrated with MEMS sensors based location source by previous 

works. Compared with RSSI, Wi-Fi FTM provides a more robust way for Wi-Fi ranging 

and can be used as a new location source with high accuracy. However, when giving a 

complex indoor environment which contains NLOS and multipath propagation, the 

distance error measured by Wi-Fi FTM cannot be easily eliminated due to the lack of 

line-of-sight (LOS) path. In addition, PDR-based positioning methods are affected by 

accuracy of step-length estimation and heading drift therefore cannot be used for a long 

time period. 

Yu et al. [19] improved the Wi-Fi FTM based ranging performance in NLOS 

contained scenes by a comprehensive optimization model and AUKF is further applied 

to combine the pre-processed Wi-Fi FTM and multi-mode enhanced PDR. The 

estimated positioning error in several typical 2D indoor scenes is within 2 m. In addition, 

they extended their work from 2D to 3D indoor environments (3D-WFBS) and 

enhanced the performance of PDR using an AEKF based heading and walking speed 

fusion model, and the unscented particle filter (UPF) is adopted to integrate the 

information acquired from 3D-PDR, Wi-Fi landmark detection, and ranging fusion. 

The meter-level positioning precision can be realized in different indoor scenes by the 

proposed 3D-WFBS [83]. Shao et al. [84] improved the accuracy of Wi-Fi FTM using 

temporal-spatial constraints to eliminate the influence of indoor multipath propagation 

and the RF interference contained environments, and the iterative Wi-Fi ranging and 

virtual location coordinates are weighted together to get the optimal positioning result. 
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1.2.3 Wi-Fi RSSI Fingerprinting Based Positioning  

Wi-Fi based indoor localization solutions have been widely used compared with other 

location sources because of its low cost and wide coverage characteristics. Generally, 

a traditional Wi-Fi based positioning system always uses the RSSI characteristics to 

measure distance between smartphones and the Wi-Fi APs and then calculates the 

pedestrian’s location by triangulation algorithm. Besides, fingerprinting technique can 

also be used for universal indoor localization without acquiring the actual location of 

Wi-Fi APs. 

The typical process of Wi-Fi RSSI fingerprinting approach always contains two main 

parts: on-line phase and off-line phase. For the on-line phase, various matching and 

classification algorithms have been researched by the previous works [21]. For the off-

line phase, also refers to Wi-Fi fingerprinting database construction, which usually 

contains three main types: 1) Static point-to-point method, usually generates database 

by averaging the RSSI signal at each reference point (RP), which proves higher 

reliability but is labor-consuming [26]; 2) Mobile walk-survey method, by collecting 

Wi-Fi RSSI data among a high-precision walking trajectory between selected 

landmarks, which is much more efficiency than the static method [85]; 3) 

Crowdsourcing-based method, usually generates navigation database through spatial 

big data provided by the amount of IoT terminals, which provides an autonomous way 

for Wi-Fi fingerprinting database generation and updating [86]. Zhang et al. [60] used 

the optimized crowdsourcing-based inertial sensors localization data in order to obtain 

a reliable Wi-Fi fingerprinting database and evaluated the reliability and quality of each 

collected trajectory. The EKF algorithm is applied in both forward-DR and backward-

smoothing in the procedure of navigation database construction. Gu et al. [87] used the 

graph-based framework to calibrate user’s trajectories for establishing the 

crowdsourced Wi-Fi radio map. In addition, the multiple sensors data, Wi-Fi 

information, and GNSS-based coordinates are comprehensively considered to acquire 

the minimized defined error metric and the optimal trajectory evaluation result. Li et al. 

[88] proposed a robust radio map generation algorithm which effectively reduced the 

effects of inaccurate PDR trajectories and the requirement of floor information, and the 

estimated average positioning error is within 2.9 m. 

At this stage, the crowdsourcing-based navigation database generation exists several 

challenges: the poor performance of daily-life data due to the cumulative error of 

MEMS sensors and indoor magnetic interference [89], the quality evaluation and 
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efficient integration of crowdsourced trajectories and datasets [90], and the deployment 

and the recognition of RPs [56]. In addition, the single PDR based positioning method 

can only provide accurate location information in a short time period due to the 

cumulative error caused by heading calculation and step-length estimation, therefore is 

usually combined with absolute location sources to improve the localization 

performance [91]. 

Multiple Wi-Fi characteristics and corresponding positioning methods can be applied 

in the WPS, RSSI is regarded as the most universal feature for indoor positioning, 

which contains triangulation and fingerprinting based positioning methods. However, 

the other features for instance channel impulse response (CIR) [92], time of arrival 

(TOA) [93], angle of arrival (AOA) [94], and channel state information (CSI) [95], are 

usually can not be collected directly by handheld IoT terminals. 

Zou et al. [96] improved the performance of Wi-Fi fingerprinting by using 

autonomously constructed navigation database and adaptation model, and proposed a 

novel Gaussian process regression model, which effectively increased the accuracy of 

RSSI estimation and final localization. 

Li et al. [97] developed a passive positioning framework using a group of sniffers to 

track the Wi-Fi traffic and acquired the locations of Wi-Fi transmitters through TOA 

information. In addition, this system addressed the problems of clock synchronization 

and hardware delay and achieved the precision of 0.23 m, 0.62 m, and 1.65 m under 

outdoor LOS, indoor LOS, and indoor NLOS conditions, respectively. 

Wu et al. [98] comprehensively investigated the aspects which affect the accuracy of 

Wi-Fi fingerprinting, for example the RSSI continuity and pedestrian body blockages, 

and integrated these parameters by a unified model which covers both on-line and off-

line phases. The real-world experimental results achieved the mean error within 2.5m. 

 

1.2.4 Integrated Technologies for Wi-Fi and MEMS Sensors  

Wi-Fi positioning system (WPS) is regarded as an effective way for realizing 

universal indoor localization compared with the other location sources. The MEMS 

sensors based DR approach proves high-accuracy in a short time period but the 

positioning error cumulates with time, and the WPS proves better long-term 

performance but is easily affected by the changeable indoor environments. To eliminate 

environmental influences, the WPS is always combined with MEMS sensors based 

approach to make both advantages complementary. This section focuses on the Wi-Fi 
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and MEMS sensors based positioning methods, and then introduces some existing 

solutions of multi-source fusion based positioning and analyzes the corresponding 

challenges and difficulties. 

At this stage, integrated navigation technology becomes more and more popular due 

to the improved robustness and precision compared with single location source in 

complex indoor environments [99–101]. Several fusion methods such as the Kalman 

filter (KF) [102], Extended Kalman filter (EKF) [103], and Particle filter (PF) [104] are 

applied as the typical integration methods towards multi-source fusion based indoor 

localization. 

Zhuang et al. [105] developed a tightly-coupled indoor positioning approach uses the 

integration of Wi-Fi RSSI based ranging and smartphone integrated sensors. To 

decrease the influence of environmental factor, the bias of received Wi-Fi RSSI is 

modeled as the random walk process. The final experiments in a 120m ∗ 40m office 

area contains 47 APs achieved the mean accuracy within 3.47 m. Wang et al. [106] 

proposed a hybrid Wi-Fi/PDR integrated system based on a novel factor-graph based 

fusion model. The deep neural network (DNN) is applied to extract more 

comprehensive features from raw signals. Experiments in corridor scenes reaches 

meter-level accuracy and better performance compared with traditional approaches. 

Zhuang et al. [85] compared the performance of two different Wi-Fi based 

autonomous localization using fingerprinting and trilateration technologies respectively. 

A smartphone developed application named Trusted Positioning Navigator (T-PN) is 

applied to provide built-in sensors based navigation information and the estimated 

localization error is acquired within 5.75m. 

Jeongsik Choi and Yang-Seok Choi [40] presented a self-calibrated indoor 

positioning approach which contains the integration of Wi-Fi FTM and PDR. Instead 

of calibrating the FTM bias in advance, each parameter in the proposed framework is 

modeled and estimated in real-time to adapt to the changeable indoor scenes. The 

experimental results proved 1.04 m localization accuracy in case of 40 MHz bandwidth. 

Li et al. [41] developed a Wi-Fi fingerprinting based quality evaluation criteria by 

collecting fingerprinting groups, RSSI difference, and hyperbolic features in the 

procedure of the off-line procedure, and among the on-line procedure, the multiple 

supporting sets were generated which can predict the positioning error of estimated 

location while obtaining positioning results. 
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Li et al. [12] designed a robust DR/Wi-Fi fingerprinting/ magnetic matching (MM) 

based indoor localization system which can be applied on the low-cost sensors 

integrated IoT terminals and Wi-Fi covered environments. Three different levels of 

quality-control methods were applied for the navigation integration in the procedure of 

real-world application, which decreased the positioning error by the range of 13.3% to 

55.2% under different scenes and handheld modes. 

 

1.3 Research Scope and Questions 

The overall objective of our research plan is as follows: In case of large-scaled and 

diversified indoor scenes and ultra-sparse deployment of wireless stations or landmark 

points, the Wi-Fi fingerprinting database can be automatically constructed and updated 

by combining sparse local signals/landmark points and crowdsourced daily-life data, 

and a unified multi-source fusion framework is designed to organically integrate 

different location sources including Wi-Fi FTM, RSSI fingerprinting, and MEMS 

sensors. The proposed algorithm can finally realize precise and universal localization 

in large-scaled and multiple scenes contained indoor spaces, which is not restricted by 

external equipment and does not need to be collected among time-consuming procedure, 

and can achieve meter-level positioning accuracy in Wi-Fi FTM supported indoor 

scenes. Our current research plan mainly consists of the following four parts: 

1) Firstly, we intend to study the autonomous 3D indoor positioning algorithm for 

MEMS sensors integrated in IoT terminals. This algorithm is designed using the 

INS mechanization as the state model and comprehensively utilizes multi-level 

observed values including gravity vector, quasi-static magnetic field (QSMF), 

altitude increment and step-length, and multi-level constraints including 

ZUPT/ZARU, pseudo velocity, pseudo position, and non-holonomic constraint 

(NHC). It can be used without any external equipment and in the case of user 

intervention, and independent 3D indoor positioning can be realized in complex and 

changeable indoor environments with severe magnetic interference. 

2) Secondly, we intend to study the crowdsourced Wi-Fi fingerprinting database 

generation algorithm based on daily-life data collected from MEMS sensors and 

sparsely deployed Wi-Fi FTM stations, BLE nodes, and Quick Response (QR) 

codes based landmark points as reference points. In addition, to further improve the 

performance of forward navigation, we propose and test two trajectory optimization 
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algorithms, including the backward smoothing algorithm based on AUKF and RTS 

filtering and the global optimization algorithm based on gradient descent (GD) 

method, which can effectively eliminate the cumulative error caused by a single 

MEMS positioning algorithm, and obtain navigation results that are significantly 

better than forward filtering, and at the same time reduce the complexity of 

calculation. 

3) Thirdly, we intend to analyze the factors that affect the quality and accuracy of the 

crowd-sourced trajectories, by modeling these uncertain factors, we can 

quantitatively evaluate the credibility and positioning error of each trajectory and 

ensure the weight of each trajectory in the fusion phase and further merge the 

eligible trajectories in the construction of the final crowdsourced navigation 

database. Through this method, the high-precision navigation database construction 

and update are realized without changing the hardware conditions of the IoT 

terminals and additional installation equipment and scene prior information. 

4) Fourthly, we will study the multi-source fusion algorithm and corresponding signal 

quality evaluation strategy. Through the main location information is provided by 

the self-generated Wi-Fi fingerprinting database, we further combine it with the 

local high-accuracy location sources including Wi-Fi FTM and integrated MEMS 

sensors, and finally realize the universal and precision-controllable 3D indoor 

localization, which is not restricted by external equipment and does not need to be 

collected by time-consuming approach in large-scale smart city scenes, and meter-

level positioning accuracy can be realized under the Wi-Fi FTM covered indoor 

scenes.  

The first part is named as MEMS sensors based positioning solution, while the 

second part as autonomous generation of Wi-Fi fingerprinting database, and the third 

and the fourth parts are described as analysis of crowdsourced pedestrians’ trajectories 

and multi-source fusion based positioning solution. The research questions of each part 

are presented as follows: 

 

1.3.1 MEMS Sensors Based Positioning Solution 

The MEMS sensors based positioning solutions usually contain two kinds: The INS 

and PDR mechanizations. INS mechanization is updated using inertial sensors data to 

track the carrier’s 3D attitude and position information. Nowadays, with the 

development of MEMS sensors, the smartphone integrated sensors are already able to 
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meet the requirements of low-cost navigation purposes. PDR is proposed aiming at 

pedestrians based localization, which contains two main parts: 1) step detection and 

step-length estimation; 2) heading fusion and calibration. Due to the low accuracy of 

MEMS sensors, the raw positioning results always can not satisfy the demands of high-

accuracy indoor navigation, in order to realize a concrete and accurate MEMS sensors 

based 3D indoor localization algorithm, we need to handle the following challenges: 

1) Cumulative Error of Multiple Sensors: During the DR procedure, the current 

position is calculated by the estimated heading and speed information based on the 

previous heading and position, including INS and PDR. The errors of speed 

estimation and heading deviation lead to the decrease of positioning accuracy. 

2) Interference of Artificial Magnetic Field: The Earth’s magnetic field maintains an 

almost constant value at its surface. While in the complex and changeable indoor 

buildings, the local magnetic field is easily affected by the electronic devices or 

others indoors which lead to the deviation of magnetic heading. 

3) Differences in Pedestrian Characteristics: Pedestrian characteristics include for 

example heights, motion patterns and their step frequency. These would take into 

challenges in attitude calculation and step-length estimation. For example, the 

accuracy of step-length estimation can fluctuate ±40% with different height. 

Besides, the way how people use smartphones can also influence the method of 

heading fusion, such as handheld, calling near the ear, swaying in the hand, and 

putting in the pant pocket. In order to improve the accuracy of localization, these 

different modes of smartphones should be recognized and classified. 

 

1.3.2 Autonomous Generation of Wi-Fi Fingerprinting Database 

The method of Wi-Fi fingerprinting database construction always contains three 

main types: 1) Static point-to-point method, usually generates database by averaging 

the RSSI signal at each reference point (RP), which proves higher reliability but is 

labor-consuming; 2) Mobile walk-survey method, by collecting Wi-Fi RSSI data 

among a high-precision walking trajectory between selected landmarks, which is much 

more efficiency than the static method; 3) Crowdsourcing-based method, usually 

generates navigation database through spatial big data provided by the amount of IoT 

terminals, which provides an autonomous way for Wi-Fi fingerprinting database 

generation and update. 
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At this stage, the crowdsourcing-based Wi-Fi fingerprinting database generation 

exists several challenges:  

1) The poor performance of daily-life data due to the cumulative error of MEMS 

sensors and indoor magnetic interference. The accuracy of the crowdsourced 

trajectory collected by IoT terminals will greatly affect the accuracy of the final 

crowdsourced navigation library. How to improve the positioning accuracy of each 

crowdsourced trajectory has become a key point. 

2) The quality evaluation and efficient integration of crowdsourced trajectories. In the 

process of building a crowdsourced navigation library, how to deal with redundant 

crowdsourced data is also one of the challenges that needs to be overcome. In the 

case of the same path, how to quantitatively evaluate the final error index of each 

trajectory provides further accuracy support for the subsequent fusion of the 

navigation database 

3) The deployment and the recognition of reference points. Optimizing crowdsourced 

data through reference points can effectively improve positioning accuracy. 

However, due to the complexity and variability of real scenes, how to lay out and 

effectively detect the coordinates of reference points is also a difficult problem for 

building crowdsourced navigation database. 

 

1.3.3 Analysis of Crowdsourced Pedestrians’ Trajectories 

Among all kinds of human activity data, trajectory data is of great significance for 

capturing individual space-time movement and collective crowd dynamics. It has been 

widely applied among different scientific fields, such as intelligent transportation 

system, urban planning, mobility analysis and travel data mining. For a long time, 

motion uncertainty in trajectory has been considered as an inevitable factor in the 

process of data collection, and will significantly affect the effectiveness of knowledge 

extraction. At present, the modeling of motion uncertainty in trajectory data has 

attracted more and more attention, especially the work related to trajectory mining, 

representation and spatial query. There are two main difficulties in modeling the motion 

uncertainty of crowdsourcing trajectory data: 

1) Interpolation algorithms can easily not represent the actual motion trajectory, 

because they assume that the motion between two sampling points is close to a specific 

curve (such as a linearly interpolated line). This cannot be guaranteed due to the 

complex movement patterns and environmental background in the real-world trajectory. 
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2) For low sampling trajectories, the effectiveness of the interpolation algorithm 

decreases significantly, because the low sampling frequency makes the actual motion 

unknown for a relatively long time, which makes the interpolation result unreliable. 

Therefore, how to model the positioning error in the case of low sampling trajectory is 

a big problem. 

 

1.3.4 Multi-source Fusion Based Positioning Solution 

Figure 1-1 comprehensively describes that there are more than 12 types of sensors 

supported and integrated in IoT terminals, including GNSS receiver modules, short-

range RF transmitters, Wi-Fi, UWB, and Bluetooth/BLE modules, or other integrated 

sensors, such as the tri-accelerometers, tri-magnetometers, tri-gyroscopes, barometers, 

light-intensity sensors, microphones, speakers, and cameras. Among all these modules 

or sensors, only the GNSS receiver is originally applied for localization purpose. To 

explore potential navigation capabilities using IoT terminals integrated modules and 

sensors, various positioning systems and algorithms are proposed in order to acquire 

the pedestrian’s motion information (3D attitude, 3D speed, 3D position) during 

localization procedure. The mentioned location sources have their own advantages, 

which can be combined for integrated localization in order to be more adaptive to the 

complex and changeable indoor scenes. However, to realize an optimal indoor 

localization performance of multi-source fusion, the following problems have to be 

tackled:  

1) Synchronization of Signal Measurements. Among the various IoT terminals 

integrated sensors, different sampling features and sampling rates exist one of the 

problems in fusion phase. For instance, the sampling rate of the Wi-Fi RSSI 

collection ranges between 1/3 and 1/30 Hz, while the collection rate of inertial 

sensors can reach 100 Hz or more. Even with the same sampling rate, the sampling 

time instant may be different too. Therefore, to make the full use of the 

characteristics of various positioning sources, time synchronization is necessary. 

2) Different Precision Level of Sensor Measurements. There are over 12 kinds of 

wireless receiver modules and sensors supported and integrated in IoT terminals, in 

which the different measurement methods are applied for corresponding location 

sources. In addition, the measurement errors vary from different sensors and 

receivers, make it difficult to improve the real-world positioning performance 

regarding the changeable integration models of different location sources. For 
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instance, due to the poor performance of IoT terminals integrated MEMS sensors, 

the INS mechanization cannot be directly applied, while the PDR mechanization is 

more suitable for low-cost sensors based navigation. 

3) Hardware Deviation of Different IoT Terminals. Different hardware manufacturers 

usually develop different chipsets or components for the receiver modules or 

integrated MEMS sensors. Thus, the measurements from different IoT terminals 

may be biased due to the hardware differences even when applied on the same 

location source. For instance, due to the hardware differences between IoT 

Terminals and Wi-Fi APs, the raw measured RSSI signal or the RTT information 

always contains additional bias which causes the overall drift of the ranging result, 

which would lead to the changing accuracy of Wi-Fi fingerprinting and Wi-Fi 

ranging based positioning methods between different terminals.  

 

1.4  Thesis Outline 

This thesis covers the design and implementation issues of an autonomous and 

accurate 3D indoor localization on the IoT terminals based platforms using the 

combination of Wi-Fi FTM, crowdsourced Wi-Fi RSSI fingerprinting, and MEMS 

sensors, aiming at providing autonomous and precision-controllable 3D indoor 

positioning services in smart city based large-scale indoor spaces. The thesis consists 

of six chapters, and the outline of chapters two through six is as follows: 

Chapter Two covers the fundamental knowledge for Wi-Fi FTM based positioning 

system, Wi-Fi RSSI fingerprinting based positioning system, and MEMS sensors 

integrated navigation system, including that of separate technology, and the final 

information-fusion technique which uses Kalman filter, particle filter, and nonlinear 

least squares related approaches. 

Chapter Three develops a robust self-calibrated 3D indoor localization and error 

optimization system using IoT terminal integrated sensors and sparsely deployed 

anchors, in which the multi-level constraints and observables are applied for the 

enhancement of INS mechanization, and Wi-Fi FTM stations, BLE nodes, QR codes 

are sparsely deployed in large-scaled indoor spaces to provide absolute reference for 

MEMS based approach. In addition, to further improve the accuracy of MEMS sensors 

and sparse landmark points based forward localization, this chapter proposes and 

evaluates two different trajectory optimization algorithms and compares the improved 

localization performance. In which the backward-AUKF smoothing algorithm can 
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provide more accurate trajectory optimization performance but is time-consuming, and 

the GD based approach can realize slightly lower optimization precision compared with 

the backward-AUKF but can effectively reduce the calculation complexity.  

Chapter Four proposes two state-of-art WPS frameworks: Wi-Fi FTM based self-

calibration and positioning system and crowdsourced Wi-Fi fingerprinting based 

positioning system. The two different WPS systems are presented respectively towards 

different application requirements. In which the Wi-Fi FTM based calibration and 

positioning system is presented towards high-accuracy localization requirement in 

specific indoor areas, and the crowdsourced Wi-Fi RSSI fingerprinting based 

positioning system is presented aiming at realizing a more universal and autonomous 

positioning requirement in smart city based large-scaled indoor spaces. 

Chapter Five presents a comprehensive Wi-Fi/MEMS sensors integrated framework, 

which is consist of a robust MEMS sensors based localization solution described in 

Chapter Three and three different types of MEMS sensors and Wi-Fi integration models 

towards different application scenes. In addition, this chapter proposes the signal 

quality evaluation (QE) algorithm aiming at autonomously estimating the availability 

and uncertainty of measured Wi-Fi FTM and RSSI fingerprinting results using the 

misclosure check (MC) and double-stage k-nearest neighbor (DS-KNN) methods, 

aiming at improving the signal robustness in Wi-Fi/MEMS integration phase.  

Chapter Six summarizes the achieved work of this thesis, concludes the results of 

this research, and gives the recommendations for future research to improve the 

proposed algorithm structure. Figure 1-2 shows the outline of this thesis and topic 

classification corresponding to the issues listed in Section 1.4. 
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2. Fundamentals

3. Self-Calibrated 3D Indoor 

Localization and Error Optimization

4. Two Different Wi-Fi Positioning

Solutions
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Figure 1-2 Thesis Outline and Detailed Issues 
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Chapter 2: Fundamentals For Positioning 

This chapter will cover the fundamental information for the MEMS sensors and Wi-

Fi integrated navigation structure proposed by this thesis. Section 2.1 introduces the 

necessary coordinate frame; Section 2.2 describes the two commonly applied MEMS 

solutions for indoor navigation; Section 2.3 – 2.4 detail two different Wi-Fi positioning 

systems, including Wi-Fi FTM based solution and Wi-Fi fingerprinting based solution. 

Finally, Section 2.5 describes the three main kinds of existing filtering technologies 

applied in the navigation system, including the Kalman filter (KF) originated 

approaches, the particle filter (PF) originated approaches, and the nonlinear least 

squares (NLS) originated approaches. 

 

2.1 Reference Coordinate Systems 

This section focuses on the introduction of most commonly applied reference 

coordinate systems in the navigation filed, including the inertial coordinate system, the 

Earth-Centered Earth-Fixed (ECEF) coordinate system, the navigation coordinate 

system, the vehicle frame, and the body coordinate system. 

The inertial coordinate system (i.e., i-frame) is constructed as a reference coordinate 

system that directly follows Newton’s 1st and 2nd laws of motion and has no rotation 

or acceleration. Because the ideal i-frame cannot be acquired in real-world application, 

a typical definition of i-frame has its original point located at the center of the Earth 

and axes with non-rotating/accelerating axes with respect to distant galaxies. The i-

frame has its z-axis parallels to the spin axis of the Earth (polar axis), its x-axis points 

toward the mean vernal equinox, and its y-axis that completes a right-handed 

orthogonal frame. 

The ECEF coordinate system (i.e., e-frame) is constructed as a reference coordinate 

system which can be applied for GNSS and INS based navigation applications. For 

instance, the World Geodetic System (WGS) - 84 frame has its original point located 

at the center of the Earth and axes that are fixed with respect to the earth. The ECEF 

coordinate system has its x-axis in the equatorial plane points toward the Greenwich 

meridian, its z-axis along the Earth’s polar axis and its y-axis completes a right-handed 

orthogonal frame. 

The navigation coordinate system (i.e., n-frame) is constructed as a local geodetic 

frame, and is also regarded as the local-level frame (i.e., l-frame). The north-east-down 
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(NED) frame is adopted as the n-frame in the proposed algorithm in this thesis. This 

frame has its original points located at the measured center of the carriers, its x-axis 

points toward geodetic north, its z-axis orthogonal to the reference ellipsoid pointing 

down, and its y-axis obeys the right-handed orthogonal frame. 

The vehicle coordinate system (i.e. v-frame) is constructed as the vehicle fixed 

coordinate system, which has its original point located with the measurement center of 

the carriers, its x-axis points toward the forward direction of the vehicle, its y-axis 

points toward the horizontal right of the vehicle and its z-axis points downwards of the 

vehicle. The v-frame is widely applied in the field of vehicular technology and 

applications, aiming at providing enhance performance of navigation algorithm. 

The body coordinate system (b-frame) is related to the central of carrier. Its original 

point is located at the center of the measurement center of the carriers, and its axes are 

aligned with the roll, pitch and heading axes of the inertial hardware assembly. The b-

frame is widely applied in the personal navigation algorithms since most of mobile 

terminals have integrated the rich sensors which can be applied for navigation purposes. 

Figure 2-1 details the e-, n-, v-, and b-frames, in which X, Y, and Z represent the 

corresponding reference axis and the superscripts denote for the introduced frames in 

this section.  and  indicate the latitude and longitude information of the mobile 

terminal. 

 

 

Figure 2-1 Coordinate Systems Used in Navigation [24] 
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2.2 MEMS Solutions for Indoor Positioning 

2.2.1 INS Mechanization for Indoor Positioning 

INS mechanization is proposed towards inertial sensors based localization and is 

widely applied for fields of pedestrian and vehicle navigation, which can provide real-

time 3D motion information of the carrier with high sampling rate. The information of 

acceleration and angular rate acquired from MEMS sensors such as accelerometer and 

gyroscope are integrated by the INS mechanization for estimation of 3D position, 

velocity, and attitude of the moving object with high update rate, which is shown as 

follows [42]: 
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where 

([ ( ) cos 1])m ndiag R h R h                                           (2-2) 

where T[ ]n h p indicates the pedestrian’s real-time 3D location (latitude, 

longitude, and height); T[ ]n

N E Dv v vv represents the 3D velocity and n

bC indicates 

the rotation matrix between body coordinate system and navigation coordinate system; 

n
g indicates the local gravity value; n

ie represents the rotation angular rate between the 

e-frame and i-frame; n

en indicates the rotation angular rate between navigation 

coordinate system and the ECEF coordinate system;
1 indicates a 3 × 3 matrix related 

to the latitude Np and the ellipsoidal height Dp of the moving object. Rm and Rn indicate 

the radius of curvature of meridian and curvature in the prime vertical, respectively.  

 For the low-cost sensors based inertial navigation, a more simplified INS 

mechanization can be applied, which ignores rotation of the earth. The attitude update 

equation is described as follows: 

( 1)

( ) ( 1) ( )

n n b m
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where ( )

n

b mQ indicates the quaternion of attitude transformation at epoch m; 
( 1)

( )

b m

b m


Q

represents the change of attitude quaternion between epoch m and epoch m-1, which 

can be described as: 
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where m represents the angular increment in the time period (m-1,m), and

m m   . 

In low-cost inertial navigation systems, the influence of the rotation of the earth is 

generally ignored, therefore the speed update equation can be simplified as: 

1 ( )

n n n n

m m sf m sT  v v v g                                                 (2-5) 

In which: 
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where n

mv indicates the INS based velocity at epoch m, ( 1)

n

b mC represents the attitude 

matrix, mv represents the specific force increment in the period (t-1, t). 

Finally, the position update equation is described as: 
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where  
Tn

m m m mx y zP , Ts indicates the sampling rate. 
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Figure 2-2 Diagram of the INS Mechanization [110] 

 

2.2.2 PDR Mechanization for Indoor Positioning 

Limited by the poor performance of low-cost sensors, the original INS mechanization 

exists deviation error increases with time, which leads to the decreasing positioning 

performance especially the walking speed estimation. PDR mechanization is proposed 
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aiming at pedestrian tracking, by detecting the step-length, altitude increment and 

heading information in walking periods in order to update the 3D location of the 

pedestrian. The main structure of PDR mechanization is shown below: 

 

Accelerometers

Gyroscopes

Magnetometers

Step Detection

Attitude

Estimation

Step-length

Estimation

PDR

 

Mechanization

 

Figure 2-3 Diagram of PDR mechanization 

 

During the procedure of pedestrian’s walking periods, the collected acceleration data 

shows regular changes, therefore the biomechanical models are often used to detect 

pedestrian gait features and calculate the step-length [111]. The norm of extracted 

accelerometer data is calculated below: 

 
2 2 2

accNorm x y za a a                                                            (2-8) 

where Normacc represents the norm of real-time accelerometer data, ax, ay, and az 

indicate the extracted tri-axial acceleration information. 

Due to the complexity and randomness of pedestrian’s movement, the raw 

acceleration data is affected by noises and need to be smoothed. Low-pass filters are 

usually used to process raw acceleration data in order to obtain more obvious gait 

characteristics. 

Affected by the randomness of the handheld modes of the pedestrian, the filtered 

acceleration data still contains multiple peaks which may lead to the wrong step count. 

Thus, the multi-peak recognition method which contains several constrains are 

presented in (3): 

step 1

acc 2Norm

T >

- g <









                                                (2-9) 

where
stepT represents the time interval calculated by the two adjacent gaits; g indicates 

the local gravity value; 1 represents minimax time threshold of two detected steps; 2
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indicates the maximum allowable acceleration. The final detected step information is 

shown below: 

 

 
Figure 2-4 The Performance of Step Detection 

 

An empirical model characterizes the relationship between step length and 

pedestrian’s motion characteristics which is proposed by Harvey Weinberg [112] is 

shown below: 

4
max minL K A A                                                        (2-10) 

where Amax and Amin indicate the detected peak and valley acceleration values during 

one gait cycle, K represents the adjustable parameters of the step length which can be 

calculated in (2-11): 

estimated

true

d
K =

d
                                                        (2-11) 

where
estimatedd and

trued indicate the experimental and ground-truth distance during 

estimation. 

It is found in [113] that the pedestrian’s height and step frequency can also affect the 

accuracy of step-length estimation, in this paper, a linear model including pedestrian 

height and step frequency is also used: 

2

step

( 1.79)
[0.7 ( 1.75) ]

1.75

SF H
L a H b c


                                 (2-12) 

where 2

stepL and SF represent the step length and step frequency, respectively, H is the 

height of the pedestrian which is manually inserted in this step model, and a, b, and c 

are model parameters. 
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Because the pedestrian's height, attitude and walking frequency are different, users 

must train the model before using in order to obtain the optimal model parameters. 

However, this method is extremely inconvenient for users to use, so it is necessary to 

design an adaptive algorithm to automatically adjust the calibration parameter in order 

to meet the needs of users. 

Taking pedestrians’ height, step frequency and acceleration variation into 

consideration, two different kinds of walking speeds are calculated as follow: 

step( ) ( 1) ( ), 1,2i i ik k SF L k i    V V                                           (2-13) 

where SF represents the step frequency, 
step ( )iL k indicates the change of step-length,

( )i kV represents real-time walking speed, the above two kinds of walking speed are 

fused by AEKF to get the optimized speed estimation result. 

According to the discrete time model of attitude updating by gyroscope quaternion 

method and the velocity parameter calculated by step-length model in (2-10), the state 

equation of AEKF can be obtained using rotating quaternion and velocity as the state 

vector: 

 
, 1

1 1

0( , ) 0
= = + +

0 1

k k k k s

k k k

k

F T



    
    
    

Q
x x w

V V


                           (2-14) 

where xk contains current moment’s quaternion Qk and walking speed Vk calculated by 

(2-12) in case of i = 1, 1 1

speed step ( )SF L k  V represents the velocity variation, 
, 1( , )k k k sTF 

represents the state transition matrix which is used for quaternion updating, k indicates 

the angular velocity of gyroscope, Ts indicates the sampling rate, 
T[ ]q v

k k kww w  

represents the state noise with a state covariance matrix Uk. 

The sensor data acquired from the accelerometer and magnetometer can also be used 

to calculate pedestrian’s real-time attitude information, the measured values of the 

normalized tri-axial acceleration, the normalized tri-axial magnetic value and walking 

speed calculated by (2-12) in case of i = 2 are taken as the observed vector, the 

observation equation is shown in (2-15): 

( ) 0 0

( ) 0 ( ) 0 +

0 0 1

k

k

k

a
b

n k

mb

k n k

s
k

h

v

    
    

       
         

k k

vT Q g

vz x v T Q m

V

                                 (2-15)  

In which: 
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2 2

2 3 1 2 0 3 1 3 0 2

2 2

1 2 0 3 1 3 2 3 0 1

2 2

1 3 0 2 2 3 0 1 1 2
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2 ( ) 1 2( ) 2 ( + )
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    
   

b

n
T                              (2-16) 

 0 0 1g =                                                               (2-17) 

0 y zb b  m =                                                           (2-18) 

    The observed noise matrix can be expressed as: 
2

2

2

0 0

0 0

0 0

a

m

v







 
 

  
 
 

I

R I                                                         (2-19) 

Because the relationship between the state vector and the measurement vector of the 

observation equation is non-linear, it is necessary to linearize the ( )h
k

x in (2-15), and 

the measured matrix is linearized by (14). The observation Jacobian matrix obtained is 

shown in (2-20): 

( )
=

h


-

k k

k

x = x
k

x
H

x
                                                       (2-20) 
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H
                 (2-21) 

The measurement noise of accelerometer and magnetometer basically remain 

unchanged in the static and non-magnetic cases, but when the mobile terminal produces 

large linear acceleration or magnetic interference exists in the surrounding environment, 

the actual measurement values of accelerometer and magnetometer contains 

uncertainty error. To solve the problem, this paper constructs the adaptive observation 

variance 2

a , 2

m  and 2

v to adjust the weights of measured values, which can be used in 

dynamic acceleration and magnetic interference contained environments. 

:2

1 a2 -(| || || || || |)+ (|| || || ||)a a k k N kk k var   ga a a                                  (2-22) 

: :
1 2

2

- -(|| || || ||) (|| || || ||)m m k N k m k N kk var k var    m m                           (2-23)       

2 1 2

- :(|| || )v v k N kk var  V V                                                       (2-24) 

In (2-22), the deviation between acceleration modulus and standard gravity value and 

the variance of acceleration modulus are used as eigenvalues to adjust the weight of 

acceleration data in AEKF. In (2-23), the variance of heading calculated by 

magnetometer and modulus of magnetometer data are used to detect the quasi-static 
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magnetic field (QSMF) in surrounding environments [114], the magnetometer data in 

QSMF periods can be used after calibration, and the absolute heading reference 

provided by magnetometer data will be used to correct cumulative error caused by 

gyroscope. In (2-24), the deviation between two kinds of speed is used to adjust the 

weight of observed value. 

Another usually applied heading estimation is complementary filter, in this work, an 

enhanced complementary filter (ECF) is described to integrate the real-time data 

collected from multiple sensors. The original complementary filter (CF) combines the 

high-frequency characteristics of gyroscope and low-frequency characteristics of 

accelerometer and magnetometer and finally provides the optimal real-time attitude 

estimation result, which was first proposed in [115]. 

In the proposed ECF, the gyroscope plays the most important role in attitude updating, 

the accelerometer data is used to correct the gyroscope's roll and pitch drift, and the 

heading drift is corrected by the magnetometer data. When the pedestrian is walking, 

the accuracy of accelerometer is subject to the interference originated from the external 

acceleration, which presents the collected data from the magnetometer after removing 

the local gravity value. Therefore, the weight information of the acceleration needs to 

be adjusted in real time according to the magnitude of the external acceleration. 

In a complex and changing indoor scene, the magnetometer data is also affected by 

the surrounding artificial magnetic field which leads to a relatively magnetic declination. 

Therefore, the surrounding magnetic field needs to be detected and analyzed to 

determine the weight of the magnetometer information. In this work, QSMF periods 

are recognized in the procedure of pedestrian’s walking when the strength of the local 

magnetic field (LMF) remains unchanged or fluctuates within a small range in indoor 

environments. 

The ECF proposed in this paper extracts the features of external acceleration and 

magnetic field during QSMF periods based on the acceleration and magnetometer data 

and constructs an adaptive way to adjust the weight of each. The main parts of the 

proposed ECF are described as follows: 

1) Complementary of Pitch and Roll Using Accelerometer Data. In the body 

coordinate, the measured value obtained by the accelerometer can be described as 

equation (2-25): 

T

b x y zAcc a a a  =                                                     (2-25) 
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where Accb is consist of ax, ay, and az, which indicates the collected accelerometer data 

in the body coordinate, and the normalized acceleration is calculated in equation (2-26): 

T

acc acc accNorm Norm Norm

yx z
norm

aa a
Acc

 
 
 

=                              (2-26) 

where Accnorm represents the normalized acceleration vector,
2 2 2

accNorm x y za a a  

represents the acceleration modulus. The reference normalized gravity value in the 

navigation coordinate is described in equation (2-27): 

 
T

0 0 1nAcc =                                                   (2-27) 

Then transform the reference gravity vector from navigation coordinate to body 

coordinate using current attitude matrix: 
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n
T                            (2-28) 

where q0, q1, q2, and q3 represent the attitude quaternion, and the relationship between 

the attitude matrix and the attitude quaternion is described as: 

2 2

2 3 1 2 0 3 1 3 0 2

2 2

1 2 0 3 1 3 2 3 0 1
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1 3 0 2 2 3 0 1 1 2
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 

    
   

b

n
T              (2-29) 

Then construct the acceleration error vector through vector cross product between 

equation (2-26) and equation (2-28): 

acc norme = Acc v                                                  (2-30) 

where eacc indicates pitch and roll errors in the attitude quaternion obtained from the 

gyro integration. 

2) Complementary of Heading Using Magnetic Data. In the body coordinate, the 

normalized value obtained by the magnetometer can be described as equation (2-31): 

T

mag mag magNorm Norm Norm

yx z
norm

mm m
Mag

 
 
  

=                       (2-31) 

where 2 2 2

magNorm x y zm m m   , mx, my, and mz indicate the collected 

magnetometer data. 

Normally, the magnetic field indoors contains interferences due to the complex 
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interior architecture, and the indoor magnetic field shows large fluctuations, which 

cannot be integrated directly. In a changeable indoor environment, QSMF detection 

algorithm can be applied to recognize the relatively stable magnetic field when the 

pedestrian is walking indoors. In this paper, the QSMF detection algorithm proposed in 

[114] is used to detect the useful local magnetic data and then transform the local 

magnetic field from body coordinate to navigation coordinate by equation (2-32): 

 

x

y norm

z

h

h = h = Mag

h

 
 
 
 
 

n

b
T                                          (2-32) 

where hx, hy, and hz indicate the transformed magnetic value in the navigation 

coordinate system. 

Then calibrate the local magnetic field and get the optimal magnetic vector in the 

navigation coordinate by equation (2-33): 

calibrated
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                                    (2-33) 

Transform the calibrated magnetic value from the navigation coordinate to the body 

coordinate by equation (2-34): 

calibrated calibrated

x

b n
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w

Mag w Mag

w

 
 

  
 
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b

n
T                                   (2-34) 

Similarly, we can get the magnetic error vector through vector cross product between 

equation (2-31) and equation (2-34): 

calibrated

b

mag Norme = Mag Mag                                          (2-35) 

3) Adaptive Compensation of Gyro angular velocity Using External 

Acceleration and QSMF Data. The low frequency characteristics of accelerometer 

and magnetometer can be used to eliminate the constant offset and cumulative error 

during gyroscope-based attitude estimation. 

The constructed error vector of the acceleration is used to calibrate the pitch and roll 

angle error, the correction parameter obtained from the error can be expressed as: 

1 2acc a acc a acc= K e K e dt                                             (2-36) 
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where 
1aK and

2aK are used to compensate the instantaneous and cumulative errors of 

gyro angular velocity in the procedure of pitch and roll angle calculation.  

The constructed error vector of magnetic field is used to calibrate the heading error, 

and the correction parameter obtained from the error vector can be expressed as: 

1 2mag m mag m mag= K e K e dt                                            (2-37) 

where 
1mK and

2mK are used to compensate the instantaneous and cumulative errors of 

the gyroscope angular velocity in the procedure of heading angle calculation.  

The two parameters
acc and

mag can be used to calibrate the drift of the gyroscope-

based attitude respectively, and adjust the weight according to the calculated external 

acceleration and QSMF detection. The final compensation model of the gyro angular 

rate is described as follows: 
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                                       (2-38) 

where b

xw , b

yw and b

zw indicate the compensated data of collected gyroscope angular rate, 

and the attitude information using the compensated gyro angular rate is updated based 

on the Runge-Kutta quaternion update equation [60] and the quaternion is normalized 

after updating: 
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                                (2-39) 
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                                                 (2-40) 

where 0q , 1q , 2q and 3q  represent the updated quaternion. The fused attitude maintains 

much higher accuracy and stability, which is more suitable in complex indoor 

environments. 

In the PDR mechanization, after the estimation of step-length, the required heading 

information is provided by the fusion of both INS and PDR mechanizations to restrain 

the accumulative error. The real-time 2D location of the pedestrian is updated based on 

the last positioning result, which is shown as follows: 
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



  

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                                 (2-41) 

where [ ( ), ( )]x yP k P k and [ ( -1), ( -1)]x yP k P k indicate the pedestrian’s location at the 

moment k−1 and k; ( )L k and ( )k represent the calculated step-length and direction at 

epoch k. 

   In order to get the altitude information indoors, the barometer is used to estimate the 

altitude difference in 3D indoor buildings. The relationship between height and 

barometer-measured air pressure is described as [116]: 

1.0

5.255

0

100
44330 (1.0 ( ) )b

p
h

p
                                     (2-42) 

where hb represents the real-time height estimated by the barometer, p and p0 represent 

the measured air pressure and the sea level reference pressure, respectively.  

 

2.3 Wi-Fi FTM Solution for Indoor Positioning 

Wi-Fi FTM protocol enables distance measurement between initiators and 

responders such as mobile phones and APs. The whole procedure is described as 

follows. Firstly, the initiator send a FTM request to responder, then the responder 

receive the request and return an ACK signal to the initiator which indicates that the 

responder has received the FTM request, after that several FTM signals are sent from 

responder to initiator to calculate the mean RTT. This process can be performed 

between several initiators and responders at the same time. Figure 2 shows the whole 

protocol. In this procedure, the parameter names ‘FTMs per Burst’ can be changed to 

improve the FTM accuracy by multiple measurements. The single RTT among one 

FTM period is calculated in equation (2-43): 

4_ n 1_ n 3_ n 2_ nRTT=( ) ( )t t t t                                (2-43) 

where n indicates one of the FTM structure exchange during the whole FTM procedure, 

t1_n is the timestamp when the FTM structure first sent by the responder, t2_n is the 

timestamp when the FTM structure received by the initiator, t3_n is the timestamp when 

the initiator returns the FTM structure to the responder and t4_n is the timestamp when 

the FTM structure finally received by the responder. Generally, the protocol excludes 

the processing time on the initiator by subtracting it (t3_n - t2_n) from the total round trip 

time (t4_n - t1_n), which represents the time from the instant when the FTM structure is 

sent (t1_n) by the responder to the instant when the FTM structure is finally received by 
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the responder (t4n). This calculation is repeated for each FTM structure exchange and 

the final RTT is the average over the number of FTMs per burst. In this paper, we just 

set the parameter FTMs per burst as 30 to decrease and average the measurement error 

so as to keep high accuracy [79]. 

    The distance between initiator and responder can be calculated by equation (2-44): 

4_ n 1_ n 3_ n 2_ ndistance= ( ) ( ) / 2C t t t t                                    (2-44) 

where C indicates the speed of radio wave.    
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Figure 2-5 Duration of FTM Procedure, FTMs per Burst = n 

 

In Figure 2-5 the parameter which called the ‘FTMs per Burst’ is defined to increase 

the ranging precision by averaging series of measurement results. The final output RTT 

information among one ranging procedure is estimated by equation (2-45): 

    4 1 3 2

1

1
RTT= ( ) ( ) ( ) ( )

n

k

t k t k t k t k
n 

                                  (2-45) 

where t1(k) indicates the recorded timestamp of ranging parameters firstly emitted by 

the initiator, t2(k) represents the timestamp of the acquired ranging parameters by the 

responder, t3(k) indicates the timestamp when the responder returns back the ACK 

signal to the initiator, t4(k) indicates the timestamp of final received ACK signal by the 

initiator side, and the n represents the definition of “FTMs per burst” during each 

ranging procedure. 

When the required RTT value is calculated, the distance between the initiator and 

the responder can be converted as follow: 
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n 

                         (2-46) 

where C indicates the wireless propagation speed and DRTT indicates the estimated 

distance during one ranging procedure. 

The typical least squares (LS) method [26] is usually applied for positioning 

purposes, which is consist of following equations: 
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(2-48) 

where xp indicates the calculated 2D location, j indicates the deployed responders, xj 

and yj represent the location of each deployed local responder, and DRTT(j) indicates the 

received RTT value between the initiator and each deployed responder. In a typical LS 

algorithm, the number of responders will affect the final positioning accuracy. The 

number of responders needs to be at least three. Appropriately increasing the number 

of responders will theoretically improve the accuracy of positioning. [117]. 

In order to analyze the performance of Wi-Fi FTM, a Wi-Fi ranging system including 

hardware and software support was built up, which can realize real-time data 

acquisition with a specified frequency. The whole ranging system is composed as 

follows: 

FTM Responder/AP. Implementation of RTT data acquisition requires hardware 

and software support. We choose the Intel Dual Band Wireless-AC 8260 card as the 

first type of AP/responder and use the ubuntu 16.04 LTS system and Linux kernel 

version 4.4.0-21 as the software platform. The original driver pack does not contain the 

FTM response function so we need to modify the driver and add the FTM response 

function. By downloading the hostapd-2.3 and open the Wi-Fi hotspot one RTT 

responder can be made. Then we choose the mobile phone VIVO NEX and VIVO X21 

based on Andriod 8.1 which support the IEEE.802.11 FTM as the second and third type 

of AP, just open the hotspot mode of the phone, RTT information can be got by initiator. 

FTM Initiator. We use the same hardware and software platform as the first kind of 

AP Responder to make a RTT Initiator. By modifying the RTT ranging command and 



 

41 

 

adding FTM function into the driver we can get the RTT information from multi APs 

by sending the ranging requests from the initiator containing MAC address, bandwidth 

and frequency. Only APs which support FTM can return the RTT information. With 

knowing position of three or more APs and RTT information between initiator and APs 

we can get real-time position of the mobile initiator. In addition, Android P has 

provided the platform and API which can be used for RTT ranging, so we also use the 

mobile phone Google Pixel 1 which has installed the latest Android P or higher system 

as another initiator. In this system, several initiators are supported to use at the same 

time and acquire RTT data from multi-APs. Different sampling rate of RTT can be set 

by modifying the parameters of ranging function. The total Wi-Fi FTM based ranging 

system which contains mobile terminals and the open platform is described in Figure 

2-6: 

 

Initiator 1

Responder 1

Initiator 2

Responder 2

 

Figure 2-6 Wi-Fi FTM Based Ranging System 

 

At this stage, not all the IoT terminals support the Wi-Fi FTM ranging protocol, the 

Table 2-1 lists the part of Android based smartphones which support the Wi-Fi FTM 

protocol, and Table 2-2 lists the part of Wi-Fi APs or wireless cards which support the 

Wi-Fi FTM protocol: 

 

Table 2-1 Android Devices That Support Wi-Fi FTM Protocol 

Manufacturers and Models Android Version 

Xiaomi Redmi Note 5 Pro Android 9.0 or higher 

LG V30 Android 9.0 or higher 

Samsung Note 10+ Android 9.0 or higher 

Samsung A9 Pro Android 9.0 or higher 

Google Pixel 4 Android 9.0 or higher 



42 

 

Google Pixel 3 Android 9.0 or higher 

Google Pixel 2 Android 9.0 or higher 

Google Pixel 1 Android 9.0 or higher 

 

Table 2-2 Wi-Fi APs or Wireless Cards That Support Wi-Fi FTM Protocol 

Manufacturers and Models Availability 

Compulab WILD AP Yes 

Google Wi-Fi Yes 

Google Nest Wi-Fi Yes 

Aruba 500 Series Yes 

Inter AC 8260 Yes 

Inter AC 8265 Yes 

Inter AC 9260 Yes 

ASUS RT-ACRH13 Not advertise  

ASUS RT-ACRH17  Not advertise  

Netgear Orbi (RBR20) Not advertise 

 

2.4 Wi-Fi Fingerprinting Solution for Indoor Positioning 

This thesis focuses on two wireless positioning techniques: the Wi-Fi FTM based 

ranging and Wi-Fi RSSI based fingerprinting. At this stage, the Wi-Fi RSSI based 

fingerprinting approach can provide more universal localization performance because 

a large amount of smart city scenes are covered with local wireless facilities. 

The Wi-Fi fingerprinting based approaches always contains two main phases: the 

off-line phase which can also be called as the Wi-Fi fingerprinting database 

construction. The other is called as the on-line positioning phase, using the 

classification algorithms to match the optimal position from the collected navigation 

database. The main procedure of Wi-Fi fingerprinting is described in Figure 2-7: 
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Figure 2-7 Wi-Fi RSSI Fingerprinting Procedure 

 

The method of Wi-Fi fingerprinting database construction always contains three 

main types:  

1) Static point-to-point method, usually generates database by averaging the RSSI 

signal at each reference point (RP), which proves higher reliability but is labor-

consuming;  

2) Mobile walk-survey method, by collecting Wi-Fi RSSI data among a high-

precision walking trajectory between selected landmarks, which is much more 

efficiency than the static method;  

3) Crowdsourcing-based method, usually generates navigation database through 

spatial big data provided by the amount of IoT terminals, which provides an 

autonomous way for Wi-Fi fingerprinting database generation and update. 

The raw collected Wi-Fi fingerprinting data needs to be pre-processed before 

generating the final Wi-Fi fingerprinting database. Normally, multi-level constraints 

need to be applied to adaptively select the useful local Wi-Fi information:  

1) The filtering of Wi-Fi RSSI: The Wi-Fi APs with more obvious strength 

characteristics are added into database: 

01

01

, remained

,dropped

k

k

RSS Th

RSS Th





                                                (2-49) 

where Th01 indicates the applied threshold for APs selection, the received RSSI values 

below Th01 will be dropped. In this work, the value of threshold Th01 is set as -90 dBm 

according to the propagation characteristics of RSSI signals. 
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2) The number of selected Wi-Fi APs: in the procedure of crowdsourced 

fingerprinting generation, after filtering the Wi-Fi APs by RSSI information in (2-49), 

the quantity of Wi-Fi APs is needed in WKNN algorithm in order to get the optimal 

position matching information: 

02

02

, remained

,dropped

k

k

Num Th

Num Th





                                            (2-50) 

where Th02 indicates the needed number of APs in the WKNN algorithm, in this work, 

the value of threshold is acquired by the amount of experiments in different 

environments, the overall estimated matching accuracy of WKNN algorithm in case of 

different number of selected Wi-Fi APs is shown in Figure 2-8: 

 
Figure 2-8 The Relationship Between WKNN Accuracy and Number of APs 

 

    It can be found from Figure 2-8 that when the number of APs is larger than 6, the 

accuracy of the WKNN based matching result remains basically unchanged. Thus, the 

threshold Th02 is set as 6 in order to provide the useful matching results in Wi-Fi 

fingerprinting database. 

3) Signal smoothing: The RSSI information between adjacent timestamps can be 

averaged in the case of low-speed movement: 

03

1

1
,

n

k k p

k

RSS RSS v Th
n 

                                          (2-51) 

where RSSk indicates the averaged Wi-Fi AP based RSSI in case of low walking speed. 

The threshold Th03 is used to determine whether the pedestrian is moving slowly. In 

this work, the value of threshold Th03 is set as 0.65 m/s according to the pedestrian’s 

walking characteristics. 
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The final constructed crowdsourced radio map is described as:  

1 1

2 2

w RSSI

w RSSI

w RSSI

j j

 
 
 
 
 
 
 

Array

Array
RadioMap

Array

P

P

P

                                    (2-52) 

where j indicates the capacity of the final crowdsourced Wi-Fi fingerprinting database. 

( , , )w

j j j jx y zP represents the location of each reference point in database, and

RSSI

jArray is the corresponding RSSI based vector. 

In the positioning phase or on-line phase, the IoT terminal measures and collects the 

local wireless information and models the pre-processed Wi-Fi RSSI as the input value 

of the classification algorithm. Because the location of the pedestrian in the real-world 

environments is unknown, the estimated location of the pedestrian can be acquired 

using the matching approach by comparing the input value of the RSSI vector with the 

RSSI vectors acquired from the database. The calculated Euclidean distance between 

each comparison procedure is described as: 

i iD                                                   (2-53) 

where iD indicates the calculated Euclidean distance among real-time constructed RSSI 

vector  and the ith candidate RSSI vector information i . 

After adaptively selecting the parameter K, the eligible reference locations in 

database are weighted for the final position calculation, the weight of each reference 

location is provided by the similar degree : 

1

1

POS( , )

POS'( , )

K

i i i

i
r r K

i

i

x y

x y


















                                  (2-54) 

In which POS'( , )r rx y is the positioning result of WKNN, POS( , )i ix y indicates the 

selected reference location in database, i

 represents the weight value of the ist 

reference position acquired from the generated navigation database. 

 

2.5 Filtering Algorithms for Positioning 

This section will discuss the existing classical filtering technologies towards multi-

source fusion based indoor navigation, including the basic Kalman filter (KF) and its 
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enhanced structures such as the extended Kalman filter (EKF) and the unscented 

Kalman filter (UKF), and the basic particle filter (PF) and its extended version such as 

the unscented particle filter (UPF). In addition, the nonlinear least squares (NLS) based 

approach is also discussed in this section. 

 

2.5.1 Kalman Filter 

The typical KF is firstly proposed in 1960, which overcomes the shortcomings of 

Wiener filtering and is widely applied in many application fields. It can estimate the 

current state value based on the system state value at the previous moment and the 

current observation value using the modeled system state update equation. The original 

KF framework is also called the basic KF, which is normally designed for solving the 

state or parameter estimation problems of random linear discrete systems. 

The system state equation in the Kalman filtering is normally described as:  

 ( ) ( 1) ( )k k k  X AX W                                     (2-55) 

where A is the state transition matrix, and W(k) is a driving noise with i dimension 

which contains random clock deviation.   

The observation equation is defined as: 

( ) ( ) ( )k k k Z HX V                                       (2-56) 

where Z(k) is an observation of RTT ranging result, H is i dimensional diagonal 

observation matrix, V(k) is observation noise. 

The basic procedure of KF is summarized as follows: 

        State prediction:  

( ) ( 1)p ek k -X AX                                        (2-57) 

State updating:  

( ) ( ) ( ) ( ( ) ( ))e p pk k k k k   X X K Z HX                   (2-58) 

MSE phase: 

 ( ) ( 1) 'p ek k  p Ap A Q                                   (2-59) 

( ) ( ) ( ) ( )e p pk k k k P P K P                                 (2-60) 

Kalman Gain:  

( ) ( ) ' / ( ( ) ' )p pk k  k K P H HP H R                         (2-61) 
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where Pp(k) is the prediction mean square error (MSE) of the estimate when the current 

observation is not considered, Xp(k) indicates the predicted state value, Pe(k) is the 

covariance matrix, K(k) indicates the Kalman gain. The general process of the discrete 

time KF is shown in Figure 2-9: 

 

( ) ( 1)p ek k -X AX

( ) ( 1) 'p ek k  p Ap A Q

( ) ( ) ' / ( ( ) ' )p pk k  k K P H HP H R

( ) ( ) ( ) ( ( ) ( ))e p pk k k k k   X X K Z HX

( ) ( ) ( ) ( )e p pk k k k P P K P

Prediction 

Phase

Update 

Phase

 

Figure 2-9 Typical Process of Discrete Time KF 

 

The Kalman filter we mentioned above is used in linear systems and is performed 

under the assumption of Gaussian and linear motion (prediction) and observation 

models. The transmission result of Gaussian distribution in a nonlinear system will no 

longer be Gaussian distribution, and nonlinear problems can be solved through local 

linearity. 

EKF is an enhance version of nonlinear approximate filtering algorithm, which is 

proposed aiming at the situation where the state or the observation model is not linear. 

EKF linearizes the state or the observation model using first-order Taylor series. In 

addition, the typical KF and EKF follow the same procedure of filtering, both present 

the posterior probability density in Gaussian distribution, and both are acquired by 

updating the Bayesian recursion equation. The biggest difference is that when 

calculating the variance, the state transition matrix of EKF (the state information k-1|k-

1 at the previous moment) and the observation matrix (one-step prediction k|k-1) are 

both the Jacobian of the state information matrix. The standard procedure of EKF is 

described as follows: 

State vector prediction: 

, 1 1k k k k



 x F x                                                      (2-62) 

Covariance matrix prediction: 

, 1 1 , 1k k k k k k k

 

   P F P F U                                      (2-63) 

Observation Matrix linearization: 
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( )
= -

k k

k

k

h

 x = x

x
H

x
                                         (2-64) 

Kalman gain calculation: 

 
1

T T

k k k k k k kk


    K P H H P H R                            (2-65) 

State vector update: 

k k k k k k

     x x K z H x                                 (2-66) 

Covariance matrix update. 

k k k k k

  P P K H P                                         (2-67) 

The typical KF can only applied in case of linear model, and the EKF transforms 

non-linear state of observation model into the linear Gaussian model, by which the 

analytical form in the Bayesian recursion formula could be applied in the same way, 

which is convenient for calculation. But for non-linear problems, EKF not only has a 

higher complexity of calculation, but also has the influence of linear error, so UKF is 

further introduced. The main difficulty in solving the Bayesian recursive formula for 

nonlinear models lies in how to analytically solve the probability of one-step prediction 

state distribution, the likelihood function distribution density (obtained from the 

observation equation) and the posterior conditional probability distribution. EKF uses 

Taylor decomposition to linearize the state and observation models, using Gaussian 

hypothesis to solve the problem of difficulty in probability calculation. But the 

introduction of linear error reduces the accuracy of the model. For nonlinear models, it 

is more difficult to solve the Bayesian recursion formula directly analytically. It is 

difficult to obtain the mean and variance of each probability distribution analytically. 

The approximation method of each order moment of the variable can better solve this 

problem. Through a certain regular sampling and weighting, the mean and variance can 

be approximated. Moreover, because the insensitive transformation has a high 

approximation accuracy for statistical moments, the performance of UKF can reach the 

accuracy of second-order EKF.  

The typical UKF is usually consist of eight main steps: 

1) Calculating sigma point set using the state value ( | )t t


X  and the corresponding 

weight at the last timestamp: 
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       (2-68) 

where  indicates the dimension of the state value,   indicates the corresponding 

number of sigma point set, and is the proportional parameter which is used to scale 

of the weight. ( | )t t  is the state covariance matrix at the current timestamp t. 

2) Further prediction of 2 1   sigma point sets, 0,1,2, , 1   : 

( ) ( )( 1| ) ( | ) ( 1)t + t t t S t + v   X X B                                  (2-69) 

3) Calculating the predicted value and covariance matrix using the weighted sigma 

point set:   

2
( ) ( )

0

( +1| ) ( +1| )t t w t t


 







X X                                             (2-70) 

2
( ) ( )

0

( +1| ) ( )[ ( +1| ) ( +1| )][ ( +1| ) ( +1| )]Tt t w t t t t t t t t


 




 



    X X X X Q      

(2-71) 

4) Acquiring the sigma point set again using UT transform based on the result of 

state prediction: 

( )
( +1| ) [ ( +1| ), ( +1| ) ( ) ( +1| ), ( +1| ) ( ) ( +1| )]


   

  

    t t t t t t t t t t t tX X X X   

(2-72) 

5) Calculating the predicted observation using the state prediction result of each 

sigma point, 0,1,2, ,2 1   . 

( ) 2 ( ) 2

0 0

( ) 2 ( ) 2

( ) ( ) 2 2

( ) 2 ( ) 2

( ( +1 ) ) ( ( +1 ) )

( ( +1 ) ) ( ( +1 ) )
( +1| ) ( ( +1| ))

( ( +1 ) ) ( ( +1 ) )j j

x t | t x y t | t y

x t | t x y t | t y
t t h t t

x t | t x y t | t y

 

 
 

 

   
 
   
  
 
 

    

Z X         (2-

73) 

where ( ) ( +1 )x t | t  and ( ) ( +1 )y t | t are calculated in ( ) ( +1| )t t
X . 

6) Weighting sigma point sets, getting predicted observation value, and 

corresponding covariance matrix. 
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2
( ) ( )

0

( +1| ) ( +1| )t t w t t


 







Z Z                                      (2-74) 

2
( ) ( )

0

( )[ ( +1| ) ( +1| )][ ( +1| ) ( +1| )]
t t

T

z z w t t t t t t t t


 




 



    Z Z Z Z R          

(2-75)

2
( ) ( )

0

( )[ ( +1| ) ( +1| )][ ( +1| ) ( +1| )]
t t

T

x z w t t t t t t t t


 




 



    X Z X Z R         

(2-76) 

where
t tz z indicates the covariance matrix provided by ( +1| )t t



Z and ( ) ( +1| )t t
Z , and 

t tx z indicates the covariance matrix provided by ( +1| )t t


Z and ( ) ( +1| )t t
X . 

7) Updating the Kalman gain. 

1( 1)
t t t tx z z zt  K                                               (2-77) 

8) System status and covariance updating. 

( +1| +1) ( +1| ) ( 1)[ ( 1) ( +1| )]t t t t t t t t
  

    X X K Z Z            (2-78) 

( +1| +1) ( +1| ) ( 1) ( 1)
t t

T

z zt t t t t t   K K                         (2-79) 

Compared with EKF, UKF has higher accuracy. Its accuracy is equivalent to second-

order Taylor expansion, but the speed will be slightly slower. Another great advantage 

of UKF is that it does not require to estimate the Jacobian matrix, and sometimes the 

Jacobian matrix is not available. In addition, UKF and PF also have similarities, except 

that the particles selected in the unscented transformation are clear, while the particles 

in the particle filter are random. The advantage of random is that it can be used for 

arbitrary distribution, but it also has its limitations. Therefore, for the distribution that 

is approximately Gaussian, it is more effective to use UKF. 

Kalman filtering is based on the linear Gaussian model. For nonlinear systems, if we 

want to maintain the basic form of Kalman filtering, we must linearize the model. UKF 

realizes the update of mean and covariance matrix through Gauss-Hermite sampling 

points. Since the Gauss-Hermite sampling points are generally very small compared 

with the sampling points in the particle filter, is there a need for particle filtering? In 

fact, Gauss-Hermite integration requires that the distribution to be sampled must be 

Gaussian. This implicitly limits its usage conditions: the posterior distribution must be 

well approximated by the Gaussian distribution. When the parameters cannot be 

identified, the posterior distribution is usually multimodal, and it is generally not 
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advisable to approximate the Gaussian distribution. At this time, particle filtering 

comes in handy. In other words, we can also say that UKF can only handle mild 

nonlinear problems. Of course, it is already much stronger than EKF, because its 

estimation accuracy does not depend on the rate of change of the state. 

Finally, we make a summary. Both EKF and UKF adopt the idea of linearization, but 

the former is a priori linearization, and the latter is a posterior linearization. The 

accuracy of prior linearization is limited by the rate of system state evolution, and the 

performance is not good when the state changes rapidly. UKF uses posterior 

linearization, and the accuracy has nothing to do with the rate of state change. No matter 

what kind of linearization is, it can't handle the problem of high non-linearity, because 

it can't describe the multimodal distribution well. 

 

2.5.2 Particle Filter 

The basic particle filter (PF) is developed using the Monte Carlo theory, which 

implements recursive Bayesian filtering through non-parametric Monte Carlo 

simulation methods. It is suitable for any nonlinear system that can be described by a 

state-space model, and its accuracy can approach the optimal estimation. The PF is 

simple and easy to implement, and it provides an effective solution for analyzing 

nonlinear dynamic systems, which has attracted widespread attention in the fields of 

target tracking, signal processing, and automatic control. 

Different from the basic PF applied in various literatures, this section describes the 

unscented particle filter (UPF), which uses the UKF to calculate the distribution 

reference in procedure of particle state updating and get a more reliable particle 

distribution. Thus, the UPF can get the mean and covariance of N particles in real time 

by UKF and control the distribution range of particles to improve estimation accuracy 

of object’s motion information. The whole procedure of proposed UPF is shown as 

follows: 

1) Initialization, k=0, For i=1:N, extract the initial state from the prior distribution: 

( ) ( )

0 0

( ) ( )( ) ( ) ( ) T
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P E X X X X


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 

  

                         (2-80) 

2) Importance sampling. For i=1:N, calculate the mean and variance of state 
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quantities using the UKF algorithm: 

○1  Calculate Sigma point set: 

( ) ( )
( ) ( )

1 11 1[ ( ) ]
i a i a

i a i a
k kk a kX X X n P                                 (2-81) 

○2  Further prediction of Sigma point sets: 
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       (2-82) 

○3  Integrate with the latest observations and update: 
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○4  Calculate samples and update particles: 
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For i=1:N, recalculate weights for each particle: 
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For i=1:N, normalize weight: 
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3) Re-sampling: Using the re-sampling algorithm to copy and eliminate the 

particle set ( )

0:

i

kX  according to the normalized weight: 

1i i

k kw w
N

                                                (2-87) 

4) Output final filtering result: 

( )

0: 0:

1

1 N
i i

k k k

i

X w X
N 

                                         (2-88) 

Although the particle filtering (PF) is not constrained by the linearity and Gaussian 

assumptions of the model, it still has the following shortcomings: 1) Using a large 

number of random samples to search the state space easily leads to excessive calculation 

of the algorithm; 2) As time increases, it will appear the phenomenon of particle 

degradation, the weight degradation would lead to the useless particles and increasing 

calculation complexity of overall algorithm, reduces the efficiency of the algorithm, 

which may cause the filter divergence. 

 

2.5.3 Nonlinear Least Squares 

    The method of least squares (LSQ) is the standard approach to obtain unique values 

for parameters from related redundant measurements through a known observation 

model. 

In this case, the observation equation is constructed as: 

( ) +hz = x v                                                 (2-89) 

where ( )h x represents the relationship between the state vector x and the observation 

vector z, v indicates the measured noise. 

The loss function in LSQ algorithm is described as: 

T 1( ) ( ( )) ( ( ))h h   x z x z x                                (2-90) 

where  represents the covariance matrix of the measured value. We need minimize the 

loss function ( ) x and acquire the optimal estimation result of state vector. 

In this work, the non-linear observation model needs to be linearized, and the Taylor 

series can be applied to linearize the nonlinear measurement vector by expanding the 

terms around the current estimated state x and only the first order is remained: 
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                  (2-91) 

where  x = x x  represents the state estimation error, H is the design matrix. The 

measurement misclosure vector during each iteration is described as: 

( ) =- h  z z x H x v                                             (2-92) 

Similar to the linear case derivation process, the result of the nonlinear least squares 

estimation is calculated by: 

T -1 -1 T -1= ( ) x H H H z                                           (2-93) 

The above procedure needs to be repeated and the optimal result can be acquired 

when the state estimation error reaches the least value. In general, the NLS update is 

presented as an iterative process until the optimal result is acquired: 

-1 -1=j j jx x x                                                   (2-94) 

where j indicates the needed rounds of iteration. The optimized state vector can be 

acquired when ( ) x less than the set threshold.  
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Chapter 3: Self-Calibrated 3D Indoor Localization 

and Error Optimization Based on MEMS Sensors and 

Sparse Anchors 

In smart city based large-scaled indoor spaces, the accuracy of smartphone based 3D 

indoor localization is always subjected to the poor performance of IoT terminal 

integrated sensors and limited coverage of absolute location sources. This chapter 

mainly focus on providing a simple but effective 3D indoor localization and error 

optimization system that uses the combination of smartphone integrated MEMS sensors 

and sparse deployed landmark points. The INS mechanization, multi-level constraints 

and observed values are integrated by the AUKF and the positioning parameters 

extracted from the state model are calibrated autonomously in order to eliminate effects 

of cumulative error, indoor magnetic interference, and diversity of handheld modes. In 

addition, the Wi-Fi FTM station, BLE node, and QR code based landmarks are adopted 

in this chapter to provide accurate absolute location references for the MEMS sensors 

based method using robust DTW based landmark detection algorithm. To further 

improve the accuracy of MEMS sensors and sparse landmark points based forward 

localization, this chapter proposes and evaluates two different trajectory optimization 

algorithms and compares the improved localization performance. In which the 

backward-AUKF smoothing algorithm can provide more accurate trajectory 

optimization performance but is time-consuming, and the GD based approach can 

realize slightly lower optimization precision compared with the backward-AUKF but 

can effectively reduce the calculation complexity. The comprehensive experiments 

designed in this chapter indicate that the proposed MEMS sensors based self-calibrated 

3D indoor localization and optimization system is proved to achieve accurate and stable 

3D indoor positioning and trajectory optimization performance under complex indoor 

environments using sparse wireless stations. 

The contributions of this chapter are summarized as follows: 

1) This chapter proposes multi-level observed values including gravity vector, QSMF, 

altitude increment and step-length, and multi-level constraints including ZUPT/ZARU, 

pseudo velocity, pseudo position, and NHC, which are applied as the hybrid 

observations in order to eliminate the effects of divergence and accumulative errors, 

magnetic interference and different handheld modes added on the MEMS sensors based 

positioning approach. 



56 

 

2) This chapter presents three different landmark detection approaches using Wi-Fi 

FTM, BLE, and QR code based location sources. The first approach uses the ranging 

fusion model and the DTW matching to realize the hybrid RSSI and RTT based Wi-Fi 

landmark recognition. The second approach uses a novel BLE RSSI propagation model, 

DTW matching, and real-time constructed RSSI map to realize the robust BLE node 

recognition. The last approach uses QR code to provide absolute location information 

through camera scanning, which is much more low-cost and easily deployed. After the 

landmark detection procedure, the real-time recognized landmarks and corresponding 

fusion models are adopted to provide accurate and absolute reference to built-in sensors 

based localization approach. 

3) This chapter adopts the AUKF to integrate all the navigation data together and 

adjust the corresponding weight of each observed value dynamically. In the AUKF 

based fusion structure, the INS mechanization based error vector is adopted as the state 

model, multi-level constraints and observed values, Wi-Fi FTM anchor and BLE node 

based ranging and landmark recognition, QR code based landmark are applied as 

observation models, respectively. Finally, the modified and calibrated INS 

mechanization is applied to provide accurate and high-speed 3D attitude and 

localization information. The combination of different positioning approaches 

significantly improve the final accuracy and robustness of MEMS sensors and sparse 

landmark points integrated 3D indoor localization. 

4) To further enhance the performance of forward 3D positioning trajectory and meet 

the needs of crowdsourcing-based navigation data collection and processing, this 

chapter also presents the backward-AUKF optimization algorithm using RTS 

smoothing to decrease the cumulative error of forward-AUKF. To further reduce the 

computational complexity of backward-AUKF, this chapter also proposes the GD 

based global optimization algorithm, which can significantly decrease the complexity 

of matrix operations compared with backward-AUKF approach and also avoid large 

loss of accuracy. 

The remainder of this chapter is organized as follows. Section 3.1 introduces the 

background information of proposed system and state the existing problems of MEMS 

sensors based localization and optimization structure. Section 3.2 presents the multi-

level constraints and observed values applied for INS mechanization based error 

elimination and calibration. Section 3.3 proposes a novel PINS system aiming at 

provided autonomous and accurate 3D indoor localization and optimization 
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performance in large-scaled indoor spaces, which contains a robust MEMS sensors and 

sparse landmarks integration approach. Section 3.4 designs comprehensive experiments 

and gives the test results and the performance analysis. Section 3.5 gives the summary 

of this chapter. 

 

3.1 Introduction 

It can be found from the review of state-of-art literatures in Section 2.1 that the INS 

and PDR mechanizations are regarded as the two main pedestrian aimed positioning 

approach using smartphone integrated MEMS sensors, and the global optimization 

framework can be applied to increase the precision of forward dead reckoning (DR) 

approach. 

There are some facing challenges of existing DR approaches toward real-world 

applications in smart city based large-scaled indoor spaces. The accuracy of PDR based 

solution is affected by the walking speed calculation, heading estimation, and handheld 

modes of smartphones. In addition, the INS mechanization normally cannot be used 

directly due to the fast divergence error of speed and attitude estimation. Besides, the 

DR approaches can only provide relative location output due to the lack of absolute 

initial 3D location and attitude information and the error of location and attitude update 

is cumulated with time. Thus, the sparse deployed landmark points and optimization 

algorithms are required for error elimination. 

In Section 1.2.1, the current smartphone built-in sensors based localization and 

optimization systems proposed by the state-of-art literatures proves that the INS/PDR 

integrated framework can achieve better performance compared with single INS or 

PDR mechanization due to the richer motion information. The existing INS/PDR 

models are all focused on the 2D indoor localization and not suitable for the complex 

3D scene. In addition, the indoor magnetic interference and changeable handheld modes 

of smartphones are also the facing challenges for realizing a more precise 3D indoor 

localization performance. The existing global optimization algorithms can effectively 

improve the performance of forward indoor localization while the accuracy of global 

optimization algorithm depends on the robustness of integration model and usually 

requires high calculation complexity. Thus, a much more comprehensive and precise 

3D integration structure is required in this stage in order to realize comparable forward 

localization and optimization. 
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Except for the challenge of poor performance of smartphone integrated MEMS 

sensors, another facing challenge is the limited coverage of absolute location sources. 

How to maintain the indoor localization accuracy in case of sparse signal covered 

environments is an essential problem which will be addressed in this chapter. Also in 

this chapter, we will research and compare different deployment and detection 

approaches of corresponding indoor landmark points, including Wi-Fi FTM station, 

BLE node, and QR code with sparse layout, to satisfy the accuracy-level of real-world 

localization applications. 

By considering the facing problems described above, this chapter focuses on 

developing a light-weight MEMS sensors based 3D indoor positioning framework and 

further realize integrated localization and optimization with sparse deployed landmark 

points. In the proposed localization and optimization structure, the INS mechanization 

based error vector is adopt as the state model, multi-level constraints and observed 

values, landmark detection results are presented as the observation model to eliminate 

the effects of cumulative error, the magnetic interference, and changeable handheld 

modes. In addition, the forward integrated navigation data is further processed by the 

smoothing and optimization algorithms respectively to increase and compare the 

robustness and complexity of the final trajectory and provide an alternative solution 

aiming at different hardware platforms. 

 

3.2 Multi-level Constraints and Observables for Self-calibration  

3.2.1 MEMS Sensors Based Multi-level Observables 

In the measured model of the proposed MEMS sensors based 3D navigation 

framework, the QSMF period, gravity value, walking speed and 3D position increment 

are adopted as the observed values, and can adaptively adjust the corresponding weight 

to improve the robustness. The combination of INS mechanization and multi-level 

observed values is served as the basic model in proposed MEMS sensors based 3D 

navigation framework, which is aiming at providing autonomous 3D indoor positioning 

performance with long-term accuracy. Compared with the existing INS/PDR 

integration approach, the proposed basic model improves the QSMF and gravity 

observation with adaptive weight values, and enhances the positioning ability from 2D 

to 3D by adding observations of measured barometer related altitude increment and 

detected Wi-Fi landmarks provided altitude information. 
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The magnetometer measurement among QSMF period is adopted to calibrate the 

gyroscope based heading drift and non-QSMF data is not used in this case.  In this part, 

a novel QSMF detection algorithm is proposed to improve the recognition performance. 

The local magnetic field is regarded as the quasi-static state if the norm of 

magnetometer data remains constant during the pedestrian’s walking period. The 

detected QSMF periods can be used to provide a relatively accurate local magnetic field 

reference for gyroscope based heading estimation and can also decrease the effect of 

artificial interference indoors. The feature of magnetic data can be extracted as [51]: 

  2 2 2

1
0

0,
n

b b b

x y z
k k

k

m m m




     M M M                            (3-1) 

where b
M represents the modulus of collected magnetic data in the body coordinate 

system; mx, my and mz indicate the measured tri-magnetometer data; k represents the 

first epoch of a detected QSMF period and n indicates the length of detected QSMF 

period. Since the magnetic field strength remains constant when the pedestrian remains 

static, thus, the QSMF detection algorithm is always performed during pedestrian’s 

walking period. 

    In this paper, multi-level constraints are used to recognize the QSMF period, the 

whole detection procedure is shown below: 

    1) Pedestrian’s Motion Pattern Recognition. The modulus value of gyroscope 

data and increment value of accelerometer data are extracted to identify the pedestrian’s 

motion pattern, QSMF is only detected when the pedestrian walks straight or remains 

static. The modulus value of gyroscope data and increment value of accelerometer are 

shown in (3-2): 

2 2 2
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2 2 2
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x y z

x y z

N g g g

A a a a g
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
    

                                                (3-2) 

where gx, gy and gz represent the measured tri-gyroscope data; ax, ay and az represent 

the measured tri-accelerometer data; gyroN and accA remain in a certain range when the 

pedestrian is walking straight forward or remains static over a short period of time. 

2) Extraction of Pedestrian’s Gait Feature. A complete gait cycle during the 

pedestrian’s walking period includes increment value of accelerometer data
accA

changing from zero to peak value, then to valley value and finally return to zero, just 

like this:
acc peak valley: 0 0 0A A A     . The mean-square error (MSE) and 
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interquartile range (IQR) of magnetic heading in the sliding time window with a length 

of n are calculated as follows: 

3 1

2

MSE

0

IQR

1
( ) ( ( ) ( ))

( ) ( ) ( )Q Q

n
i

mag mag

i

k k k
n

k k k

  

  




  


  

                              (3-3) 

where
MSE ( )k and IQR ( )k indicate the MSE and IQR values of the acquired magnetic 

heading, ( )mag k represents the average magnetic heading in the sliding time window. 

( )i

mag k represents the real-time measured magnetic heading. 

3) QSMF Detection During Periods of Gait Cycles. After recognizing 

pedestrian’s motion pattern and acquiring the heading information in each gait cycle, 

multi-level constraints are presented to detect the QSMF state under the above 

conditions: 
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where 
1 5h h   represent the thresholds which are uses to identify the QSMF state in 

local magnetic field. The extracted magnetic data is fused by the AUKF, which will be 

described in the following section. 

After the QSMF period detected, the local magnetic field is calibrated and regarded 

as the reference vector at the first epoch of detected QSMF period: 

refer ,1 ,1

n n b

b k m C m                                                       (3-5) 

where ,1

b

km represents the first magnetic vector of detected QSMF period in the body 

coordinate, ,1

n

bC is the current attitude matrix.
refer

n
m is calculated and regarded as the 

reference magnetic field. The final observation model for magnetic field is shown 

below: 
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                             (3-6) 
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where b

km represents the output magnetic data during QSMF period, ,

n

b kC represents the 

current attitude matrix, and the noise of acceleration nm can be adjusted based on the 

estimation of magnetic deviation
refer( )b n

m knorm n m m . 

In this work, accelerometer data is regarded as the observed value in AUKF to 

compensate the roll and pitch angle drift. The acceleration based measurement equation 

is described as follows [51]: 
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where n
f indicates the local gravity vector, b

f indicates the measured acceleration, and 

the noise of acceleration na can be modified based on the estimation of extra 

acceleration: 
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where ( )bA norm g f indicates the extra acceleration,
a represents the 

acceleration bias stability, P indicates the error covariance in AUKF. 

In case of human walking characteristics detected, the pedestrian’ step-length 

information can be estimated by the following linear model, which describes the 

relationship between step length and pedestrian’s height and step frequency [113]: 

1 2 3

( 1.79)
[0.7 ( 1.75) ]

1.75
sL

 
   


                                        (3-9) 

where
sL and   indicates the step length and step frequency;  indicates the 

pedestrian’s height;
1 , 

2 , and
3 are the model parameters. The walking speed is 

calculated according to the estimated step-length and frequency: 

walking sV L                                                                    (3-10) 

where
walkingV indicates the instantaneous walking speed calculated by the detected step. 

The estimated walking speed is used as the observed value for INS based localization. 

The 2D position increment is calculated using the position coordinates provided by 

the last epoch: 
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                                    (3-11) 
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where (rx(t), ry(t)) represents the real-time updated 2D position, Ls(t) indicates the 

calculated step-length, and ( )t indicates the real-time estimated AUKF heading. 

In this work, the barometer is applied to provide the altitude increment in indoor 

environments, the relationship between altitude and air pressure is calculated as [116]: 

1.0

5.255

0

100
44330 (1.0 ( ) )b





                                               (3-12) 

where
b represents the estimated altitude,  and

0 indicate the measured local air 

pressure and the reference pressure at the sea level.  

The observation model aiming at step-length based velocity in the navigation 

coordinate is modelled as: 

INS

n n n

v Step  z v v                                                           (3-13) 

where
n

Stepv indicates the walking speed calculated in (3-10); 
INS

n
v is the INS 

mechanization based speed updating result. The observation equation for location 

difference under navigation coordinate frame is calculated as: 

INS

n n n

p Step  z p p                                                           (3-14) 

where 
n

Stepp indicates the 3D location provided by calculated step-length and AUKF 

heading, 
INS

n
p indicates the INS mechanization updated 3D location information. 

In case of 3D indoor localization, because the barometer originated altitude is 

subjected to the changeable local air pressure thus cannot provide the accurate absolute 

altitude information, thus, in this paper, the altitude difference value estimated by 

barometer is used as the measured value to compensate the step-length based 2D update: 

 
INS

n n n

h Bh h  z                                                             (3-15) 

where n

Bh represents the updated altitude information by using the difference of 

barometer based altitude update result in adjacent timestamps presented in (3-12), and 

the initial altitude is provided by the detected landmarks, 
INS

nh indicates the z-axis 

position increment by INS mechanization. 

The initial bias of the low-cost barometer is influenced by the cumulative error and 

environmental factors such as temperature and humidity. In proposed PINS structure, a 

novel height-related zero-velocity update technology (H-ZUPT) is proposed to 

eliminate the speed estimation error in the z-axis. Instead of detecting the quasi-static 

(QS) period by the acceleration or gyroscope angular rate data, the pressure change 

information and RF signals based observation are adopt to detect the height-related QS 
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period: 
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where 
b

averagep indicates the mean value of real-time measured pressure data in slide 

window of length N,
2

p is the measured noise.
b

ku indicates the RF reported floor, and 

2

u is RF based measured noise. When the height-related QS period is detected, the state 

update model of altitude can be modeled as [116]: 
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                                                     (3-17) 

where
hw indicates the state noise for the altitude update,

hb and
hb represent the 

correlation time and the driving noise of the random walk process. 

During the detected height-related QS periods, the measured model for the H-ZUPT 

based altitude update is described as: 

 
0

ˆ
bb h hh h h b n                                                       (3-18) 

where bh indicates the barometer measured altitude, 0ĥ is extracted from the first epoch 

of each detected height-related QS period. In these periods, the ideal observed value is 

always regarded as zero, and the change of altitude at the detected height-related QS 

period is caused by the bias of barometer, which can be calibrated by the proposed 

model. 

 

3.2.2 MEMS Sensors Based Multi-level Constraints 

To further improved the precision of the basic model in described MEMS sensors 

based 3D navigation framework in Section 3.2.2, the enhanced model contains multi-

level constraints is proposed to further decrease the motion modes and handheld modes 

originated positioning error, which contains the ZUPT, ZARU, pseudo-position and 

pseudo-velocity, and enhanced NHC (E-NHC) based constraints. Except for the 

traditional approach using ZUPT/ZARU for error estimation, this work applied the 

pseudo-position and pseudo-velocity to decrease the effects of harsh motion modes and 

proposes the E-NHC for forward axis finding from the changeable handheld modes. 

This paper uses acceleration and gyroscope output to detect the QS periods [51]: 
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where N represents the length of sliding window, b

kf  and
k

g indicate the measured 

acceleration and angular velocity data at epoch k, 
2

f and 2

w represent the measured 

noises of accelerometer and gyroscope, and   is the set threshold. Once the QS periods 

are recognized, the velocity is set as zero for ZUPT, which is described as follows: 

INS

n n n n

v zero vv n    z v v                                                 (3-20) 

where
INS

n
v is the INS based speed, T[0 0 0]n

zero v in case of QS periods detected. 

When QS periods are detected, ZARU measurements are also applied to constrain the 

heading drift [110]. The observed model aiming at ZARU is shown as follows: 

INS

n n

refer n       z                                        (3-21) 

where
INS

n represents the INS mechanization based heading,
n

refer represents the reference 

heading collected from the first timestamp recorded during detected QS time procedure, 

and n indicates the measured noise. 

The pseudo-position and pseudo-velocity can normally be applied because of the 

limited scope of low-cost sensors based 3D location and linear velocity within a 

specified period. The observation model of pseudo-position is [51]: 

n n
n

p p p pn  z z z                                                        (3-22) 

The observation model of pseudo-velocity is: 
n n

n
v v v vn  z z z                                                        (3-23) 

where 
n

p  constantz , 
n

pz and 
n

vz  are the INS based location and velocity vectors; 
n

p z

and n

v z are the location and velocity errors, 
pn and 

vn are the measured noises. 

NHC is usually used to increase the navigation solvency of INS solution in vehicular 

and robotic navigation fields [118]. In this paper, E-NHC is proposed to recognize the 

forward direction of the pedestrian under different handheld modes.  The handheld 

modes of the smartphone are divided into two kinds: the basic mode (reading mode) 

and the other modes. The different handheld modes are firstly recognized and classified 

by machine learning (ML) approach using sensors based characteristics [40]. The four 

different handheld modes of smartphone are shown in Figure 3-1. 
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Reading Calling Swaying Pocket
 

Figure 3-1 Four Different Handheld Modes 

 

The forward under carrier coordinate system is given as: 
T

0 0b b

forwardv   v                                                     (3-24) 

where 
b

forwardv is calculated by step-length based method.  

In order to get the pedestrian’s forward speed, the estimated walking speed b
v should 

be transformed based on the results of handheld mode recognition. The forward speed 

in navigation coordinate system is calculated as: 

1

1

en n e b

e e bv C C C v                                                        (3-25) 

where 
n

v is converted NHC based speed, 1e

bC represents the calculated attitude matrix 

from carrier coordinate system to ENU coordinate system; 
1

e

eC indicates the handheld 

modes related translation matrix which converts the heading related axis into reading 

mode based heading related axis based on the results of handheld mode recognition. 

n

eC indicates the translation matrix from ENU coordinate system to NED coordinate 

system. 

 

3.3 Pedestrian Aimed INS Solution for MEMS Sensors and Sparse Anchors 

Based 3D Indoor Localization and Error Optimization 

In this section, a novel MEMS sensors and sparse anchors based 3D indoor 

navigation and optimization framework, called PINS, is presented. The proposed PINS 

framework contains an AUKF based forward localization model using the integration 

of sparse detected landmarks and MEMS sensors. In addition, two different 3D 

trajectory optimization algorithms are also included aiming at different application 

platforms: backward-AUKF and GD, which can further enhance the precision of 

forward 3D indoor positioning. 

In order to get a precise and concrete estimation of 3D indoor localization in case of 

limited signal coverage, different location sources and sensors based characteristics 

should be effectively combined. In proposed PINS framework, the INS mechanization 

based error vector is adopt as the state model, multi-level constraints and observed 
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values are presented as the observation model to eliminate the effects of the cumulative 

error, the magnetic interference, and changeable handheld modes. In addition, three 

different landmark detection approaches are adopted to further improve the 

performance of MEMS sensors based 3D indoor localization under complex and sparse 

wireless stations contained 3D indoor environments. The forward integrated navigation 

result is finally optimized by the proposed trajectory optimization approaches for a 

more robust and efficient 3D indoor localization and optimization. The whole 

procedure of proposed PINS framework is shown in Figure 3-2: 
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Figure 3-2 Process of PINS Framework 

 

3.3.1 INS Mechanization and Error Model 

INS mechanization is proposed towards inertial sensors based localization. The 

information of acceleration and angular rate acquired from MEMS sensors are 

integrated by the INS mechanization for estimation of 3D position, velocity, and 

attitude of the moving object with high update rate, which is shown below [24]: 



 

67 

 

1

(2 )

( )

n n

n n b n n n n

b ie en

n n b b

b b ib in
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   

      
      

p v

v C f v g

C C



 

 

                                       (3-26) 

where T[ ]n

N E Dp p pp indicates the pedestrian’s real-time 3D location; 

T[ ]n

N E Dv v vv represents the 3D velocity and n

bC indicates the rotation matrix 

between body coordinate system and navigation coordinate system; n
g indicates the 

local gravity value; n

ie represents the rotation angular rate between the ECEF 

coordinate system and inertial coordinate system; n

en indicates the rotation angular rate 

between navigation coordinate system and the ECEF coordinate system;
1  indicates 

a 3 × 3 matrix related to the latitude
Np and the ellipsoidal height

Dp of the moving object. 

The Earth related angular rate error vectors n

ie and n

en  can be ignored because of the 

low-precision of MEMS sensors, Thus, the simplified error model of INS can be 

described as follows [119]: 

(2 ) ( )

( ) ( )

/

/

n n n n

en

n n n n n n
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ie en b g bg
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 
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                   (3-27) 

where n p ,
nv and represent the measured errors of 3D position, velocity and 

attitude information;
g and 

a indicate gyroscope and accelerometer biases, 

respectively; n
f indicates the converted acceleration data in n-frame, 

bg and 
ba

represents the sensors noise related parameter; 
bgw and 

baw are the measured noises of 

g and
a . 

In the AUKF, the state vector can be described based on the above INS error model 

[24]: 

T

1 3 1 3 1 3 1 3 1 3( ) ( ) ( ) ( )n n

g a      
   x p v                          (3-28) 

The discrete-time AUKF system model and observation model are described as 

follows: 

1, 1t t t t t

t t t t

  

  

  


 

x F x

z G x
                                                   (3-29) 

where 
t x and

t z represents the state vector and observed vector at the moment t; 
tG  

indicates the observation matrix at the moment t. 
t and 

t indicate the state noise and 
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observation noise at the moment t;  
1,t tF represents the15 15 state transition matrix 

which is shown below: 

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3

1, 3 3 3 3 3 3 , 3 3

3 3 3 3 3 3 3 3 3 3

3 3 3 3 3 3 3 3 3 3

0 0 0

0 ) 0 0

0 0 0

0 0 0 0

0 0 0 0

I I

I (

I

I

I

n

k

n

t t b k

t

t

t

    

   

    

    

    

 
 

 
 
   
 
 
  

f

F C                            (3-30) 

where t indicates the sampling date of the inertial data;
n

kf indicates the measured 

acceleration in the n-frame.  

 

3.3.2 Landmark Selection and Detection Approach 

In this section, three different kinds of location sources including Wi-Fi FTM anchors, 

BLE notes, and QR codes are chosen as the landmark providers, which can provide 

absolute 3D location information for MEMS sensors based positioning approach. The 

corresponding landmark detection algorithms towards different location sources are 

described in this section, and the corresponding uncertainty model and fusion model 

are also presented in this case. 

 

3.3.2.1 Wi-Fi FTM Station Based Landmark Detection 

Wi-Fi FTM can provide accurate ranging performance in case of LOS, but is affected 

by random and NLOS errors because of its measurement mechanism [30], the observed 

distance of Wi-Fi FTM is usually described as follows: 

observed FTM randomNL L d d                                            (3-31) 

where Lobserved represents observed value which contains the NLOS error dN and random 

error drandom, LFTM indicates the ground truth value of Wi-Fi FTM. In addition, the 

ranging performance of Wi-Fi FTM in short distance is relatively poor because the 

variance of the ranging error indoors sometimes can reach 1 m or more [22]. 

  The RSSI signal acquired from Wi-Fi AP suffers from multipath propagation in 

typical indoor environments, besides, RSSI ranging accuracy would decline 

significantly when distance between smartphone and Wi-Fi AP increases [120]. Thus, 

the RSSI value acquired from the short distance can be used to judge the proximity. In 

this paper, Wi-Fi RSSI based ranging model is described in (3-32): 
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0 0

0

( ) ( ) 10 lg( )r

d
P d P d

d
                                                    (3-32) 

where Pr(d) indicates the RSSI at distance d from the source, d0 is the reference distance, 

P0(d0) is the RSSI at distance d0, α is the path loss exponent, and is the Gaussian 

random variable with a mean of zero. 

In this work, the sparse Wi-Fi FTM supported APs are adopted as the absolute 

location source which is further fused with built-in sensors based positioning result by 

AUKF. The final Wi-Fi ranging is the combination of distances calculated by the (3-

31) and (3-32) which can improve the short-distance performance of Wi-Fi FTM and 

also maintain the long-distance accuracy. The real-time RSSI and RTT information 

collected from sparse Wi-Fi stations are combined to provide more accurate ranging 

information using the fusion model proposed in [83]:  

Fused 1 observed 2 ( )rD L P d                                                   (3-33) 

where
1 2 1   ,

FusedD indicates the fused distance between smartphone and Wi-Fi AP. 

2 / RSSI   , threshold  is set to adjust the weight of RSSI based ranging model, 

which indicates the uncertainty of measured RSSI value, and is set as the standard 

deviation of real-time measured Wi-Fi RSSI values.  

This part uses the Dynamic Time Warping (DTW) algorithm [35] to detect sparse 

Wi-Fi APs on the pedestrian’s walking route, which can decrease effects of different 

walking speed and multipath propagation. In this work, the ideal distribution of 

collected distances is generated by the autonomous distance calculation between the 

pedestrian’s ideal locations updated by constant walking speed and Wi-Fi FTM anchor. 

The real-time collected distribution is provided by the calculated distance information 

provided by the fusion model in equation (3-33). The DTW result between ideal 

distribution and real-time collected distribution is shown in equation (3-34): 

 
refer

1 -1 -1

( , )

( , ) min[ ( , ), ( , ), ( , )]

k

n m n m n m n-1 m

DTW d d

Dist b c D b c D b c D b c 
                      (3-34) 

where
refer( , )kDTW d d represents the calculated DTW value among reference 

distribution and real-time distribution of measured Wi-Fi ranging result, ( , )n mDist b c

represents the Euclidean distance calculated by each two values of selected distributions. 

When a pedestrian walks towards a local Wi-Fi AP, the received RSSI value increases 

with time, and when the pedestrian walks away from the local Wi-Fi AP, the received 

RSSI value decreases with time. The ideal distribution is generated according to the 



70 

 

described walking route and served as the reference distribution in (3-32), and when the 

real-time collected RSSI distribution follows the same walking route, the calculated 

DTW would decrease in case of walking towards the Wi-Fi AP and reach the ideally 

minimal value when the pedestrian is closest to a local Wi-Fi AP. Thus, a new Wi-Fi 

landmark can be successfully detected when the DTW value reaches the set thresholds

h .The description of Wi-Fi FTM station based landmark detection is shown in Figure 

3-3. 

 

 
Figure 3-3 Procedure of Proximity Detection 

 

In this paper, the measured Wi-Fi ranging result and the 3D coordinates acquired 

from recognized Wi-Fi landmarks as the absolute observed values in AUKF: 
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                                         (3-35) 

where
,m range z represents the difference between Wi-Fi ranging results and Euclidean 

distance between MEMS sensors based location and Wi-Fi APs. In addition, when the 

pedestrian passes by a local Wi-Fi station, the 3D coordinates provided by the 

landmarks detection can also be applied as the observed value: 

INS

n n n

p wifi wifin    z p p p                                               (3-36) 

where
n

wifip indicates the 3D coordinate provided by the Wi-Fi landmark. Due to the 

landmark detection delay caused by the set slide window, the location information 

provided by the detected Wi-Fi landmark contains measurement uncertainty, which is 

described as follow: 

0

( )
AUKF

n

wifin d


 




v                                              (3-37) 

where ( )
AUKF

n v represents the measured walking speed provided by the MEMS sensors 

based approach, is the timestamp,  is the half-length of DTW window. 
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3.3.2.2 BLE Notes Based Landmark Detection 

The stability of RSSI data acquired from local BLE nodes is subjected to the 

multipath propagation and NLOS effects when the pedestrian walking in the complex 

indoor environments. The accuracy of RSSI based propagation model may decrease 

with the growing distance between smartphone and local BLE nodes [102]. In this work, 

BLE RSSI based propagation model is presented as follows [99]: 

0 0

0

( ) ( ) 10 lg( )r


     


                                                  (3-38) 

where ( )r   represents the idealized RSSI value at distance  , 
0 is the reference 

distance,
0 0( )  indicates the reference RSSI value at distance

0 , represents the path 

loss exponent, which conforms the Gaussian distribution with the mean of zero. is the 

measured noise which follows Gaussian distribution. represents the human occlusion 

factor related parameter. When the pedestrian moves towards the BLE node,  is set as 

zero. When the pedestrian moves away from the BLE node,  is increased to 

compensate the RSSI loss due to the occlusion. 

Normally, the accuracy of presented RSSI propagation model is subjected to the 

multipath propagation and NLOS in complex indoor environments. In this work, a 

novel BLE landmark detection algorithm is proposed to avoid the interference of indoor 

environments. 

When the pedestrian walks along a deployed BLE node, the received RSSI signal will 

generate signal peaks which can be used for landmark detection, as shown in Figure 3-

4. The raw RSSI data contains noises which may cause the signal fluctuation. However, 

the RSSI signal can also fluctuate even after smoothing because of multipath 

propagation and NLOS. In this paper, dynamic-time-warping (DTW) algorithm is 

applied to detect the local BLE landmark, using RSSI data in a period of time. DTW is 

usually applied to align and measure the similarity between two temporal sequences of 

data, which is widely applied in fields for example speech recognition and magnetic 

field based positioning [121]. 
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Figure 3-4 The Schematic of RSSI Landmark Detection 

 

The reference BLE RSSI distribution
refer 1 2{ , ,..., }nq q q  is shown in Figure 3-4, 

which can be automatically generated by equation (3-36) within a fixed distance range. 

The real-time RSSI information acquired from local BLE nodes contained in the 

database will be collected and described as the RSSI map after smoothed by Gaussian 

mixture model (GMM) [122], the processed RSSI map is presented in Table 3-1: 

 

Table 3-1 RSSI Map of Local BLE Nodes 

     Time 

Macn 
T1 T2 … Tm 

Mac1 RSSI1
1 RSSI1

2 … RSSI1
m 

Mac2 RSSI2
1 RSSI2

2 … RSSI2
m 

… … … … … 

Macn RSSIn
1 RSSIn

2 … RSSIn
m 

 

After constructing the local RSSI map, the RSSI distribution from each local BLE 

node will be extracted from the RSSI map, described as
1 2{ , ,..., }k mc c c  , and then 

using DTW algorithm to calculate the similarity between the reference distribution and 

real-time extracted distribution based on the equation (3-39): 

refer

1 -1 -1

( , )

( , ) min[ ( , ), ( , ), ( , )]

( )

k

n m n m n m n-1 m

DTW

Dist q c D q c D q c D q c h

s.t.  d t

 

   

 

                (3-39) 

where
refer( , )kDTW   presents the cumulative distance between two RSSI distributions,

( , )n mDist q c indicates the Euclidean distance between each two points of distributions. 

A new BLE landmark is successfully detected when the DTW value and real-time 

distance between detected BLE node and smartphone ( )d t reach the set thresholds h

and . 



 

73 

 

When a new BLE landmark is detected, the 3D location information of detected BLE 

node is applied as the observed value to further eliminate the cumulative error of INS 

mechanization, in this case, the equation (3-38) can also be described as: 

INS

n n n

p BLE BLEn    z p p p                                               (3-40) 

where
n

BLEp represents the 3D location of the detected BLE landmark, the measured 

uncertainty in this case is described as: 

0

( )
INS

n

BLEn d


 




v                                                 (3-41) 

where ( )
INS

n v indicates the measured INS based velocity during the period of time 

window used in GMM smoother,  is the timestamp, is the length of time window. 

 

3.3.2.3 QR Code Based Landmark Detection 

In this section, the QR code is introduced to acquire the reference 3D location for the 

low-cost sensors based method. The QR codes and the corresponding location 

information can be generated from the on-line website [27], which are deployed in 

indoor scenes and can be scanned by the smartphone integrated camera, which is shown 

in Figure 3-5: 

 

QR Code
1. Longitude
2. Latitude
3. Floor

 
Figure 3-5 Acquirement of QR Code Based Reference Points 

 

When the pedestrians walked into a new building deployed with QR codes, they can 

use the smartphones to scan the QR code to get their 3D locations, which contains 

longitude, latitude, and floor information. The 3D location information of detected QR 

code is also applied as the observed value to further eliminate the cumulative error of 

INS mechanization, in this case, the equation (3-40) can also be described as: 

INS

n n n

p QR QRn    z p p p                                                  (3-42) 
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where
n

QRp represents the 3D location of the detected QR code, the measured uncertainty 

in this case is described as: 

0

( )
INS

n

QRn d


 




v                                                 (3-43) 

where ( )
INS

n v indicates the measured INS based velocity during the period of camera 

scanning,  is the timestamp, is the length of camera scanning time. 

 

3.3.3 Backward-AUKF Smoothing Approach Based on Forward-AUKF Data 

In this work, AUKF is applied to fuse multi-source based navigation information, 

which contains the adaptive weight adjustment of each location source. In order to make 

full use of all the observations and obtain the optimal estimation of 3D localization 

trajectory, the forward-AUKF based navigation data needs to be smoothed to further 

eliminate the navigation error occurred in the forward trajectory. 

The RTS algorithm [60] is a smoother with a fixed window. Compared with the 

traditional reverse smoothing algorithm, RTS does not require a full set of reverse 

calculations. It only needs to calculate the reverse covariance based on the results of 

the forward filtering and the covariance matrix. The matrix is combined with forward 

filtering. RTS is widely used for navigation and mobile surveying tasks in vehicle, 

airborne and pipeline carriers. The whole AUKF based RTS algorithm proposed in this 

paper is shown below: 

1)  Localization Initialization:  

    
0 0

T
0 00 0 0

[ ]

[( )( ) ]

E

E

 


  

x x

P x x x x

                                               (3-44) 

2) Sigma Points Calculation: 

1 1 11 1 1( , , )k k kk k k       X x x P x P                                       (3-45) 

3) State Model Update: 

| 1 1k k k

i i

 
X X                                                                      (3-46) 
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| 1 | 1
( )

k k k k

i ih
 
Z X                                                                   (3-49) 
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z Z                                                                  (3-50) 

4) Measurement Update: 

| 1 | 1

2 1

0

( )( )
k k k kk k
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k ki kz z
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 
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1

k k k kk x z z z


K = P P                                                                         (3-53) 

( )k k kk k

 

 x = x K z z                                                               (3-54) 

T

k kk k k kz z

 P P K P K                                                                 (3-55) 

5) Backward Smoothing: 

1

T 1
-1| -1 1 ( ) ( )

k
k k k k kk k 


 

 x = x P P x x                                                (3-56) 

T 1 T 1 T

1| 1 -1 -1( ( ) )( ) ( ( ) )k k k k k k k k k k k

    

    P P P P P P P P                               (3-57) 

where
kx and

kz represent the state value and measured value which are represented in 

Section Ⅳ. The equation (3-44) to (3-55) define the forward-DR based on AUKF, and 

the equation (3-56) and (3-57) define the backward-smoothing procedure using results 

of forward-DR. 

 

3.3.4 Global Optimization Based on Gradient Descent 

The proposed backward-AUKF smoothing algorithm requires a large number of 

matrix operations, therefore it may not be conducive to building a lightweight 

navigation trajectory using mobile terminals based platforms. Thus, the gradient 

descent (GD) based global optimization approach is proposed to enhance the 

performance of forward-AUKF and decrease the algorithm complexity of backward-

AUKF.  

In the proposed GD, the location increment and the heading results at zero-crossing 

time during each step period are extracted as the raw navigation data, and all the 

navigation data during two detected landmarks is modeled as a nonlinear least squares 

problem. Thus, the observation model can be set as: 

( ) + z = x                                                             (3-58) 
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where x indicates the state vector of proposed optimization model, z is the observed 

value, represents the measured noise. The function ( ) x is defined as: 

0

1

cos( )
( ) =

sin( )i

i

n
i

i

L





 
  

 
x P                                            (3-59) 

where
0P  indicates the location of the last reference point; 

i
L and 

i represent the 

extracted location increment and heading information during each step period.  

The loss function in proposed GD optimization approach is defined as follows: 

T 1( ) ( ( )) ( ( ))L    x z x R z x                                           (3-60) 

where R is the covariance matrix of the observation error. 

Because the observation model is nonlinear, the linearization phase is required and 

Taylor series is applied to expand the current state estimate and take the first order term: 
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            (3-61) 

where  x indicates the state estimation error, G indicates the Jacobian matrix. The 

difference between each iteration phase is presented as follow: 

( ) =-  z x G x                                                 (3-62) 

The updated difference of the state vector after each iteration phase is calculated by: 

T -1 -1 T -1= ( ) x G R G G R z                                            (3-63) 

Non-linear least squares need to iterate the above process until the state estimation 

error is lower than the threshold. In general, the nonlinear least squares update can be 

written as: 

-1 -1=j j jx x x                                                    (3-64) 

where j represents the number of iteration. Since the observation error is not affected 

by the state estimation, the observation error covariance matrix R remains unchanged. 

The optimal solution reaches in the case when ( )L x less than the set threshold. 

Compared with backward-AUKF, the GD improves the calculation efficiency by 

reducing the complexity of matrix operations. 

 



 

77 

 

3.4 Tests and Results 

In this section, comprehensive experiments are organized to evaluate the 

performance of proposed PINS framework. The Google Pixel 3 and Google Pixel 4 are 

used for pedestrian tracking which contains rich MEMS sensors and supports the Wi-

Fi FTM protocol, BLE protocol, and QR code scanning. The sampling rates of MEMS 

sensors and Wi-Fi RSSI/FTM/BLE RSSI are set as 50 Hz and 5 Hz, respectively. Two 

indoor environments are adopted as experimental sites, which are deployed with sparse 

landmark points including Wi-Fi FTM station, BLE node, and QR code. The 

performance of proposed PINS framework is evaluated according to the following 

arrangement: Section 3.4.1 evaluates the performance of MEMS sensor based self-

calibrated solution; Section 3.4.2 estimates the performance of proposed landmark 

detection algorithm; Section 3.4.3 evaluates the overall performance of PINS based 3D 

indoor localization and optimization framework. 

 

3.4.1 Performance Evaluation of Multi-level Observables and Constraints 

In this section, comprehensive experiments are organized to evaluate the 

performance of proposed MEMS sensors based self-calibrated framework. The Google 

Pixel 3 and Google Pixel 4 are used for pedestrian tracking which contains rich MEMS 

sensors and supports the Wi-Fi FTM protocol, BLE protocol, and QR code scanning. 

The sampling rates of built-in sensors and Wi-Fi RSSI/FTM/BLE RSSI are set as 50 

Hz and 5 Hz, respectively. Two adjacent floors in a teaching building are selected as 

the 3D experimental site, which contains complex corridors and electro-magnetic 

interference, and the corresponding sparse landmarks are deployed at the positions A, 

D, L, J, as shown in Figure 3-6 and Figure 3-7. 
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Figure 3-6 Sixth Floor and Route 
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Figure 3-7 Seventh Floor and Route 

 

 

To improve the performance of INS mechanization based positioning, multi-level 

observed values and constraints are proposed in this work, in which gravity vector, 

QSMF, ZARU are adopted to decrease the cumulative error of attitude estimation and 

the effect of magnetic interference. Step-length based velocity and position increment, 

ZUPT, E-NHC, pseudo observations are used to further decrease the divergence error 

of speed estimation under different handheld modes and motion modes. In addition, the 

AUKF is applied as the fusion method in order to get more robust integration 

performance under non-linear cases. 

A long-term experiment is designed in this case to estimate the accuracy of attitude 

estimation, the pedestrian walked from the test point A, passed points B, C, D, and E, 

and then returned to the point A, the whole procedure repeated 10 times in a time period 
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of 10min. The performance comparison between gyroscope-based heading, magnetic 

heading and proposed AUKF based heading is compared in Figure 3-8: 

 

 
Figure 3-8 Long-term Performance Comparison of Heading Estimation 

 

Figure 3-8 presents that the accuracy of gyroscope based heading is limited by the 

cumulative error, which grows about 15° after 10 minutes walking, and the magnetic 

heading exists large fluctuations due to the artificial interference indoors. The proposed 

AUKF based heading estimation combines multi-level observations and maintain the 

accuracy after long-term use, the final heading error is the least among three different 

heading estimation approaches, the detailed error comparison result is further described 

in the Table 3-2. 

In order to provide a general evaluation of AUKF based attitude estimation, three 

more attitude fusion algorithms in literatures are compared with the proposed AUKF: 

AEKF in [83], DUKF in [44], and DKF in [124]. The tester’s walking route is the same 

as in Figure 3-5. The final attitude error comparison result is shown in Table 3-2. 
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Table 3-2 Attitude Estimation Comparison Results 

 

Table 3-2 shows the overall comparison results between four different state-of-art 

attitude estimation algorithms. According to the. Table 3-2, the DUKF gets the best 

pitch estimation accuracy, and the RMSE is within 0.12°. The proposed AUKF gets the 

best roll estimation accuracy, and the RMSE is within 0.18°. For the yaw estimation, 

the proposed AUKF proves the best accuracy among four algorithms, the final yaw drift 

error is within 1.34°, and the DKF has the highest error larger than 10.66°, which may 

be the lack of bias estimation. The AEKF proves better performance than DKF but has 

larger cumulative error than DUKF, and the DUKF uses error vector to estimates the 

bias of gyroscope but the performance is not good as multi-level observations based 

AUKF. 

The accuracy of walking speed estimation is compared between step-length based 

positioning method in equation (3-13) and proposed AUKF. To be fair, the two 

algorithms using the same heading provided by AUKF. The location and accuracy 

comparisons between step-length proposed in [113] and MEMS sensors based 

framework proposed in this section are described in Figure 3-9 and Figure 3-10: 

 

Index AUKF AEKF DUKF DKF 

 

RMSE 

 

Roll(°) 0.18 0.19 0.23 0.25 

Pitch(°) 0.15 0.22 0.12 0.21 

Yaw(°) 0.32 1.17 0.82 3.05 

 Roll(°) 0.37 0.41 0.45 0.51 

    Max Pitch(°) 0.31 0.47 0.26 0.45 

 Yaw(°) 1.38 6.05 4.28 10.66 

 Roll(°) 0.14 0.16 0.21 0.15 

   Median Pitch(°) 0.16 0.18 0.11 0.16 

 Yaw(°) 0.19 0.73 0.75 2.19 

 Roll(°) 0.14 0.16 0.22 0.15 

     Mean Pitch(°) 0.16 0.17 0.11 0.17 

 Yaw(°) 0.22 0.82 0.73 2.21 

 Roll(°) 0.16 0.21 0.25 0.31 

Final Pitch(°) 0.18 0.25 0.13 0.29 

 Yaw(°) 1.34 5.87 4.12    10.66 
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Figure 3-9 2D Localization Results 

 

 
Figure 3-10 Cumulative Errors Comparison 

 

    In Figure 3-9, the World Geodetic System (WGS84) coordinate system is adopted to 

present the absolute location of the pedestrian, the X and Y coordinate represent the 

east and north of the latitude and longitude based 2D location information. Figure 3-10 

presents that the proposed MEMS sensors based localization framework proves much 

better localization performance compared with the step-length based method, the 

Cumulative Distribution Function (CDF) error is within 2.13 m in 90% after a long-

term use. 

The handheld modes of the smartphone also prove significantly influences to MEMS 

sensors based positioning method. In this work, the positioning accuracy of E-NHC 
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algorithm under four typical handheld modes is calculated using the walking route from 

the point A to the point E in Figure 3-6. The performance of 2D positioning in case of 

different handheld modes is described in Figure 3-11 and Figure 3-12: 

 

 
Figure 3-11 2D Localization Routes 

 

 

Figure 3-12 Positioning Error Comparison 

 

It can be found from Figure 3-12 that the reading mode proves the best performance, the 

position error is within 0.98 m in case of 75%. The swaying mode gets the worst performance 

mainly due to the effects of external acceleration during pedestrians’ walking periods, and the 

positioning error is within 1.77 m in case of 75%. 
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3.4.2 Performance Evaluation of Landmark Detection 

In this section, the performance of Wi-Fi FTM anchor and BLE note based landmark 

detection is evaluated respectively, in this part, sparse Wi-Fi FTM and BLE anchors 

are deployed to provide accurate and absolute ranging and 3D location information for 

built-in sensors based method contained in PINS. The DTW algorithm is proposed for 

dynamic Wi-Fi based landmark detection, and the comparison between reference 

distribution and real-time collected distribution is shown in Figure 3-9(a). In real-time 

DTW estimation of Wi-Fi FTM station based landmark detection, the length of DTW 

slide window is choose as 10 which contains Wi-Fi ranging data in a 2s period. The 

performance of calculated DTW is described in Figure 3-13 and Figure 3-14. 

 
Figure 3-13 Comparison Between Real-time and Reference Distribution 

 

 
Figure 3-14 DTW Detection Result 

    Figure 3-14 described the real-time calculated DTW result between collected 

distribution and reference distribution in a length of 2s slide window. It can be found 
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from Figure 3-13 and Figure 3-14 that the calculated DTW value decreases when the 

pedestrian walks towards the Wi-Fi AP and reaches the minimum when the pedestrian 

is closest to Wi-Fi AP, and a new Wi-Fi based landmark can be recognized when the 

calculated minimum DTW value reaches the set threshold. In this work, the threshold 

is set as 16 according to the length of the DTW slide window and sampling rate of Wi-

Fi FTM. 

In this work, the accuracy of DTW based landmark detection is compared with the 

hybrid landmark detection algorithm proposed in [83], the detection error comparison 

result is shown in Figure 3-15: 

 
Figure 3-15 Error Comparison of Landmark Detection 

 

      It can be found from Figure 3-15 that the proposed DTW based landmark detection 

algorithm prove much high accuracy, the detection error is within 0.26 m in case of 

75%.  

For the BLE node based landmark detection, the processed RSSI value are directly 

applied for recognition purpose. The received RSSI will produce signal peak when the 

pedestrian walks by a local BLE node. In this paper, DTW algorithm is used to detect 

the BLE based landmark, a real-time RSSI distribution extracted from RSSI map is 

used to calculate the similarity with the reference distribution. The reference 

distribution can be acquired by fitting the measured RSSI value at each position in the 

range of effective distance of the BLE node by equation (3-38), which is shown in 

Figure 3-16: 
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Figure 3-16 Reference Distribution of BLE Based Landmark 

 

Figure 3-16 indicates the difference between reference RSSI distribution and real-

time collected RSSI distribution. In the proposed BLE landmark detection algorithm, a 

time window of length 15 is used to collect real-time RSSI data from RSSI map for 

DTW comparison with the reference distribution extracted in Figure 3-16, which can 

store received RSSI in a walking period of 3s. The DTW comparison result between 

real-time RSSI data from RSSI map and reference distribution is shown in Figure 3-17: 

 

 
Figure 3-17 DTW Comparison Result of BLE Landmarks 

In Figure 3-17, the calculation result of DTW proved the minimum value when the 
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value began to increase. The final accuracy of BLE based landmark detection is shown 

in Figure 3-18: 

 
Figure 3-18 Accuracy of BLE based Landmark Detection 

 

Figure 3-18 demonstrates the precision of proposed BLE landmark detection 

algorithm, the average detection error is within 0.42 m, and the maximum detection 

error is not greater than 0.75 m. The 3D location information provided by the detected 

BLE landmarks is further integrated with multiple sensors based method in proposed 

AUKF to realize a robust and concrete multi-source based 3D indoor localization. 

Thus, the performance comparison of three introduced landmarks is described in 

Table 3-3: 

 

Table 3-3 Performance Comparison of Three Different Landmarks 

Landmarks Accuracy Time Cost 

Wi-Fi Station < 0.35 m Quick High 

BLE Node < 0.75 m Quick Medium 

QR Code 0.5 m ~ 1 m Slow Low 

 

3.4.3 Performance Evaluation of Pedestrian Aimed INS Solution 
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mechanization and multi-level constraints and observed values to improve the built-in 

sensors based 3D localization performance, and Wi-Fi based ranging and landmark 

detection is applied to further improve the robustness of multi-source fusion based 

indoor positioning. In addition, the pedestrian’s attitude and position information is 

finally optimized respectively by the proposed backward-AUKF and GD algorithms at 

the time of Wi-Fi landmarks detected to construct the optimal 3D navigation trajectory. 

The comparison of the localization and optimization performance between forward-

AUKF, backward-AUKF and GD algorithm in case of reading mode is compared in 

Figure 3-19 and Figure 3-20: 

 

 

Figure 3-19 Performance of 2D PINS Framework in First Scene 

 

 
Figure 3-20 Performance of 3D PINS Framework in First Scene 
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The precision comparison between forward-AUKF, backward-AUKF, and GD under 

different handheld modes is described in Figure 3-21 and Figure 3-22: 

 

 
Figure 3-21 2D Error Comparison of Different Handheld Modes 

 

 
Figure 3-22 Altitude Error Comparison of Different Handheld Modes 

 

Figure 3-21 shows that the proposed forward-AUKF proves precise 3D indoor 

localization performance under four handheld modes, the 2D positioning errors are 

within 1.38m, 1.49m, 1.91m, and 1.73m in case of 80%. The proposed backward-

AUKF proves higher accuracy compared with GD algorithm in all the handheld modes, 

and both two algorithms have much better performance than the forward-AUKF, the 

ratios of accuracy improvement in reading mode are 26.09% and 23.91%, in phoning 

mode are 25.5% and 22.82%, in swaying mode are 14.14% and 7.85%, in pocket mode 

are 27.75% and 26.01%. 
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For the altitude calculation presented in Figure 3-22, the proposed backward-AUKF 

and GD algorithm also effectively improve the performance of forward-AUKF. The 

measured altitude error of forward-AUKF in four different handheld modes are 0.68m, 

0.71m, 0.67m, 0.63m in case of 80%, respectively. The ratios of accuracy improvement 

of backward-AUKF and GD in reading mode are 27.94% and 25%, in phoning mode 

are 39.44% and 32.39%, in swaying mode are 34.33% and 28.36%, in pocket mode are 

33.33% and 26.98%. In some cases, the accuracy of proposed GD algorithm proves 

comparable results than backward-AUKF, therefore, these two database construction 

algorithms can be selected organically according to the performance of different 

platforms and the application scenes. 

To compare the improved precision of developed PINS structure and state-of-art 

literatures, one more typical office scene contains two adjacent floors is selected as the 

other experimental site, which is shown in Figure 3-23 and Figure 3-24: 
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Figure 3-23 Ninth Floor and Walking Route 
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Figure 3-24 Eighth Floor and Walking Route 

 

In Figure 3-23 and Figure 3-24, two Wi-Fi FTM supported anchors are deployed in 
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each adjacent floor, respectively. The testers began from the point A, passed points B, 

C, D, E, F, G, A, B, G, H, went down stairs to the eighth floor, passed points I, J, K, L, 

M, N, O, P, J, K, and finally reached the point L. The estimated trajectories provided 

by the proposed PINS structure are shown as follows: 

 

 
Figure 3-25 2D Trajectory Evaluation of PINS Structure in Second Scene 

 

 
Figure 3-26 3D Trajectory Evaluation of PINS Structure in Second Scene 

 

Figure 3-25 and Figure 3-26 compare results of trajectory estimation of proposed 

PINS structure which contains the forward-AUKF, backward-AUKF, and GD based 

estimation and optimization results. To further evaluate the positioning precision of 

proposed PINS structure and state-of-art approaches, two different integration models 

of Wi-Fi FTM and MEMS sensors are applied for comparison: enhanced particle filter 

(EPF) presented in [23] and 3D-WFBS proposed in [83]. To be fair, the same 
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deployment of Wi-Fi FTM anchors and the same test route are applied, the positioning 

error comparison results is shown in Figure 3-27: 

 

 
Figure 3-27 Comparison of Different Integration Approaches 

 

The Figure 3-27 presents that the proposed PINS structure proves much better 

performance compared with the state-of-art Wi-Fi FTM and MEMS sensors integration 

approaches in case of sparse Wi-Fi FTM anchors contained indoor environments, the 

estimated positioning errors of three different algorithms are 1.38m, 1.67m, and 1.52m, 

respectively. Thus, the proposed forward-AUKF integration model effectively 

increases the positioning accuracy of MEMS sensors during the time period when the 

wireless signal is unavailable, and the proposed trajectory optimization approaches can 

further improve the positioning performance for high-accuracy requirements.  

 

3.5 Summary 

This chapter proposes the PINS framework, aiming at providing robust 3D indoor 

localization and optimization performance in case of large-scaled and sparse landmark 

points contained indoor spaces. The contribution of this chapter contains three main 
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which are applied as the MEMS sensors based observation model in AUKF in order to 
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maintain the accuracy of 3D indoor localization in complex indoor environments and 

changeable motion modes in a long time period through self-calibration procedure 

provided by the multi-level constraints and observed values; The comprehensive 

experiments in two complex 3D indoor environments indicate that the proposed PINS 

structure reaches the 2D positioning accuracy of 1.38 m, 1.44m, 1.91m, 1.73 m in 80%, 

and altitude calculation accuracy of 0.68 m, 0.71 m, 0.67 m, 0.63 m in 80%, under four 

different kinds of handheld modes: reading, phoning, swaying, and pocket.  

(2) This chapter proposes and compares three different location sources based 

landmark point detection and fusion methods, including the Wi-Fi FTM stations, BLE 

nodes, and QR codes. For the Wi-Fi FTM station based location source, the hybrid Wi-

Fi ranging and DTW landmark detection based approach is applied to provide high-

precision absolute reference to built-in sensors based positioning method. For the BLE 

node based location source, the real-time constructed RSSI map and DTW matching is 

combined for more accurate landmark detection, and the QR code can be directly 

scanned through the smartphone integrated camera. In addition, the uncertainty of 

detected landmark points is calculated respectively, and the 3D location information of 

detected landmark point is further integrated with MEMS sensors based approach to 

provide absolute reference and decrease the cumulative error. The maximum landmark 

detection errors of different location sources are estimated as 0.35 m (Wi-Fi FTM 

station), 0.75 m (BLE node), and between 0.5 m ~ 1 m (QR Code). 

(3) To fully complete the functions of PINS structure, two different types of 

navigation trajectory optimization algorithms including backward-AUKF and GD are 

proposed and evaluated in this chapter, aiming at different platforms and application 

scenes, which achieve meter-level accuracy of reconstructed 3D navigation trajectory. 

The optimized 3D navigation trajectory information provided by the PINS structure is 

further adopted in the next chapter and served as an important way to collect and 

process the crowdsourced navigation trajectories. The experimental results prove that 

the ratios of precision improvement of backward-AUKF and GD in reading mode are 

27.94% and 25%, in phoning mode are 39.44% and 32.39%, in swaying mode are 34.33% 

and 28.36%, in pocket mode are 33.33% and 26.98% in typical 3D indoor environments. 

In conclusion, in this chapter, after the presentation of theoretical framework of PINS 

algorithm, we design comprehensive experiments to evaluate the accuracy of developed 

PINS structure in different 3D indoor scenes under different walking routes, handheld 

modes, and time periods, and compare the PINS structure with multiple state-of-art 
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multi-source fusion algorithms. The experimental results prove that the proposed PINS 

structure in this chapter effectively improves the accuracy and robustness of MEMS 

sensors and sparsely deployed landmark points based 3D indoor positioning and the 

can further provide stable and precise localization and trajectory optimization result in 

complex, large-scaled, and limited wireless stations covered 3D indoor environments.  
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Chapter 4: Hybrid Wi-Fi Positioning Solutions 

Wi-Fi positioning system (WPS) has attracted much more attentions compared with 

other location sources because of its low-cost and wide coverage characteristics. 

Generally, the IoT terminals based WPS always contains two implementation methods: 

ranging and fingerprinting. The collected RSSI feature is usually acquired to realize 

real-time ranging between IoT terminals and Wi-Fi APs and the location information 

is acquired by the Least squares (LS) algorithm [26]. Besides, the fingerprinting 

technique is developed to provide location information by collecting signals of 

opportunity (SOP) in selected indoor environments without knowing the positions of 

local facilities [21]. In a typical indoor scene, the precision of Wi-Fi fingerprinting is 

seriously influenced by the deployment and sparseness of surrounding facilities and the 

localization precision would decrease in open environments [28-29]. To improve the 

robustness of WPS, IEEE 802.11ac added the Wi-Fi FTM protocol, which can provide 

accurate time-of-flight information between IoT terminals and Wi-Fi APs [30]. Ibrahim 

M et at. [79] realized and confirmed the meter-level ranging precision of Wi-Fi FTM 

on the Intel wireless card supported open platform under line-of-sight (LOS) and high 

bandwidth. The experimental results demonstrate that the Wi-Fi FTM based location 

source provides a much precise and stable approach for indoor localization compared 

with RSSI based positioning method. 

In this chapter, two state-of-art WPS systems: Wi-Fi FTM based calibration and 

positioning system and crowdsourced Wi-Fi fingerprinting based positioning system 

are presented respectively towards different application requirements. In which the Wi-

Fi FTM based calibration and positioning system is presented towards high-accuracy 

localization requirement in specific indoor areas, and the crowdsourced Wi-Fi 

fingerprinting based positioning system is presented aiming at realizing a more 

universal and autonomous positioning requirement in smart city based large-scaled 

indoor spaces. 

The contributions of this chapter are summarized as follows: 

1) This chapter proposes three different Wi-Fi FTM calibration strategies which take 

different application scenes into consideration. In which the Polynomial-based 

(PB) calibration strategy towards the known types of smartphones and Wi-Fi APs. 

Gradient descent (GD) based FTM bias estimation with the combination of quasi-

static (QS) recognition, and the estimated bias value is used to calibrate the 
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measured RTT in real-time without the known types of smartphones and Wi-Fi 

APs. Tightly-coupled (TC) integration model with the consideration of all error 

sources, in which all the navigation parameters are calibrated and optimized at 

the same time to get the final positioning results. 

2) This chapter proposes a comprehensive structure for crowdsourced trajectories 

modelling, pre-calibration, optimization, and classification. In which the 

collected crowdsourced trajectory is modeled as a non-linear function contains 

the extracted landmarks, heading and step-length information, and the raw 

trajectory is matched with the reference vector for pre-calibration in order to 

decrease the effects of initial heading error and installation error caused by the 

handheld mode of the pedestrian. In addition, an iterative extended Kalman filter 

(iEKF) is proposed for robust trajectory optimization to further improve the 

accuracy of pre-calibrated trajectory, and the optimized trajectories are finally 

classified into similar groups using the multi-level constraints, correlation 

coefficient and DTW indexes. 

3) This chapter proposes a novel multi-layer perceptron (MLP) based deep-learning 

network which can autonomously evaluate the positioning error of optimized 

trajectories during each step period based on the extracted motion features. To 

construct an accurate and efficient crowdsourced Wi-Fi fingerprinting database, 

the evaluated trajectories in same similar group are further segmented and merged 

according to the detected turning points information, and the final crowdsourced 

Wi-Fi fingerprinting database is reconstructed using the turning/landmark points 

generated collection points to reduce the dimension and complexity. 

The remainder of this chapter is organized as follows. Section 4.1 introduces the 

background information of two proposed Wi-Fi positioning system and state the 

existing problems in case of realizing a more robust and autonomous WPS. Section 4.2 

presents a Wi-Fi FTM Based calibration and positioning system, which contains three 

different kinds of Wi-Fi ranging bias calibration strategies. Section 4.3 proposes a 

crowdsourced Wi-Fi fingerprinting based positioning system, including a 

comprehensive crowdsourced trajectories processing structure and the MLP based 

crowdsourced trajectories evaluation and merging architecture. Section 4.4 designs 

comprehensive experiments and gives the test results and the performance analysis. 

Section 4.5 gives the summary of this chapter. 
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4.1 Introduction 

The indoor positioning ability has become an essential requirement towards smart 

city and IoT based applications as people spend more time indoors. Due to the 

variability of indoor scenes, it is still challenging to provide universal and precise 

pedestrian navigation services under GNSS-denied indoor environments. The Wi-Fi 

based navigation system has attracted attentions of researchers due to its low-cost and 

wide distribution characteristics. 

Aiming at the IoT terminals based indoor localization, most of above extracted 

characteristics are not supported due to the hardware or time synchronization based 

limitations. The Wi-Fi RSSI is the most commonly used wireless indoor positioning 

source, which usually contains two approaches: triangulation and fingerprinting. It can 

be found from state-of-art literatures that the Wi-Fi RSSI based ranging and 

fingerprinting methods are difficult to fulfil the requirements of meter-level indoor 

localization due to changeable local environments and artificial interference. To 

improve the ability of the WPS, IEEE 802.11mc protocol was presented in 2016, which 

can provide meter-lever round-trip-time (RTT) based distance measurement results 

among different mobile terminals and Wi-Fi access points (APs) [30]. However, due to 

the hardware differences between smartphones and Wi-Fi APs, the raw measured RTT 

value always contains additional bias which causes the overall drift of the ranging result. 

Ibrahim M et al. [79] confirmed the existence of FTM based ranging bias between 

different wireless devices, and calibrated the initial deviation error by the measured 

ground-truth distance on an open platform. In addition, [125] provided the theoretical 

analysis of various factors which influence the Wi-Fi ranging bias and proved that both 

smartphones and Wi-Fi APs can influence the value of FTM based ranging bias, also 

included the Gaussian distributed random error added by the measurement mechanism 

and environmental factors. 

The crowdsourcing-based localization approach is developed using the analysis of 

geo-spatial big data, which provides an effective way for the realization of autonomous 

Wi-Fi positioning in smart city based large-scaled indoor scenarios. In order to generate 

a robust crowdsourced Wi-Fi fingerprinting database, the following challenges need to 

be tackled: 1) The low accuracy of collected daily-life MEMS sensors data which is 

seriously affected by the cumulative error and local artificial interference [90]. The 

performance of crowdsourced trajectories is also subjected to the number of detected 
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landmark points and the complexity of the floor plan; 2) The requirements of 

autonomous evaluation and accurate combination of crowdsourced trajectories [56]. 

Due to the huge amount of collected trajectories provided by various mobile terminals, 

a robust trajectory evaluation model is needed to predict the uncertainty of collected 

trajectories, which is an essential step before trajectory merging phase and navigation 

database generation phase; 3) The efficient deployment and the accuracy detection of 

RPs [91]. Because the smartphone integrated sensors can only provide relatively 

location information, thus, sparsely deployed landmarks are required in order to provide 

absolute reference to the MEMS sensors originated trajectory. 

By considering the facing problems described above, this chapter focuses on 

developing two robust Wi-Fi positioning systems aiming at providing precision-

controllable indoor localization performance towards different requirements of location 

based services. The target of Wi-Fi FTM Based calibration and positioning system is 

to provide meter-level indoor localization performance in Wi-Fi FTM protocol 

supported environments. The advantages of proposed Wi-Fi FTM Based calibration 

and positioning system including the strong anti-interference ability compared with 

RSSI based ranging approach and realization of the potential of integration of 

communication and accurate indoor navigation. The target of crowdsourced Wi-Fi 

fingerprinting system is to provide autonomous localization service in large-scaled 

indoor environments. The advantages of proposed crowdsourced Wi-Fi fingerprinting 

system including the autonomous collection, generation, updating of Wi-Fi 

fingerprinting database using crowdsourced data provided by a huge amount of IoT 

terminals, and the universal characteristics that almost all the mobile terminals support 

the Wi-Fi scanning function. Therefore, the two Wi-Fi positioning systems proposed in 

this chapter have their own advantages respectively, and a more robust integrated 

navigation system combining Wi-Fi FTM / Wi-Fi RSSI / MEMS sensors will be 

introduced in Chapter Five. 

 

4.2 Wi-Fi FTM Based Calibration and Positioning Solution 

Wi-Fi FTM based indoor localization has become the state-of-art approach for 

pedestrian tracking. Due to the hardware differences between smartphones and Wi-Fi 

access points, the raw measured round-trip-time exists additional deviation which needs 

to be calibrated. In order to solve this problem, this section proposes and compares three 

different self-calibration strategies towards Wi-Fi FTM and MEMS sensors based 
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localization. Polynomial-based, Gradient Descent and tightly-coupled integration 

models are applied respectively towards different application scenarios. Final 

experimental results prove that the proposed self-calibration strategies significantly 

eliminate the ranging bias, and meter-level indoor localization accuracy can be 

achieved after calibration. The basic framework proposed calibration and integrated 

localization is shown in Figure 4-1. 
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Figure 4-1 Calibration and Localization Framework 

 

Figure 4-1 shows the main procedure of the proposed calibration and localization 

framework. In the built-in sensors module, the INS mechanization based heading and 

location update is combined with the step-length estimation and quasi-static magnetic 

field (QSMF) detection results. In the Wi-Fi FTM calibration module, three different 

strategies are proposed for real-time RTT bias estimation aiming at different application 

conditions. In the multi-source integration module, the calibrated RTT measurements 

and built-in sensors based positioning results are fused by the adaptive unscented 

Kalman filter (AUKF) in order to provide meter-level indoor localization performance. 

This section focuses on the PB and GD based Wi-Fi FTM calibration methods. 

 

4.2.1 Polynomial Based Calibration Method 

As discussed in literature [19], the measured bias of Wi-Fi FTM depends on the types 

of IoT terminals and Wi-Fi APs. In addition, the measured RTT based distance is 

affected by both initial bias and environmental factors such as multipath propagation, 

NLOS, and random error. Thus, the raw ranging result can be modeled as follow: 

raw RTT randombias EL L d d d                                            (4-1) 
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where Lraw indicates the smartphone reported distance; LRTT represents; dbias is the bias 

of Wi-Fi FTM which will be addressed in our paper; dE is the environment related error; 

drandom represents the measured random error which is subjected to the Gaussian 

distribution.  

 In case of the known kinds of smartphones and Wi-Fi APs, the parameter dbias 

remains as a constant value, which can be calculated by the proposed PB calibration 

approach. The PB model is described as: 

true

0

i

i raw

i

D L





                                                    (4-2) 

where Dtrue represents the calibrated distance, 
i indicates the calibration parameter, 

and i

rawL is the raw Wi-Fi FTM result. In this paper, the random measurement error is 

eliminated by the KF algorithm proposed in [125]. When the 1  , the equation (4-2) 

can be transferred into a linear calibration model: 

true 1 0rawD L                                                     (4-3) 

In which the calibration parameter 1 and 0 can be acquired by the linear-fit method 

using the measured distance distribution and ground-truth distance distribution. In this 

case, we use the Google Pixel 1 to 4 and Google Wi-Fi to get the final linear-fit result 

and the corresponding calibration parameters respectively, and the linear-fit result is 

shown in Figure 4-2.  

 

 

Figure 4-2 Polynomial Based Calibration Result  
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In this case, the calibration parameters 0 and 1 using Google Pixel 1 to 4 are finally 

calculated and shown in Table 4-1: 

 

Table 4-1 Calibration Parameters Estimation 

 

4.2.2 Gradient Descent Based Calibration Method 

In real application scenarios, due to the unknown types of smartphones and Wi-Fi 

APs, the proposed PB calibration approach is often unavailable. Aiming at dynamically 

estimating the Wi-Fi FTM bias, the GD based calibration algorithm is proposed. The 

QS periods are recognized during the pedestrian’s walking procedure using the real-

time collected inertial sensors data [51]: 

2 2

2 2
1

1
( )

b n k
N

k g

k f wN  


  

f g 
                                         (4-4) 

where N represents the length of sliding window, b

kf  and
k

g indicate the measured 

acceleration and angular velocity data at epoch k, 
2

f and
2

f represent the measured 

noises of accelerometer and gyroscope, and is the set threshold. 

Once the QS periods are recognized, the least square (LS) algorithm is applied to 

acquire the location of the pedestrian based on the real-time RTT measurements [19]: 

T 1 T

RTT ( )P A A A B                                                   (4-5) 

where PRTT is the optimal position of the pedestrian, and the matrix A and B are defined 

as: 

T

AP(2) AP(1)

T

AP(N) AP(1)

( )

= 2

( )

 
 
  
  

P P

A

P P

                                                (4-6) 
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             (4-7) 

where PAP(N) indicates the position of local Wi-Fi AP, Lraw(N) represents the measured 

RTT value, dbias is the RTT bias exists between the smartphone and Wi-Fi AP. 

Parameter Pixel 1 Pixel 2 Pixel 3 Pixel 4 

μ0 1.006 1.004 1.002 1.001 

μ1 -1.24m -0.95m -0.88m -1.06m 

 



 

101 

 

Under ideal circumstances, the position of the pedestrian remains theoretically 

unchanged in the detected QS periods. Thus, the differences between estimated 

positions during each detected QS period approximately equal to zero, the GD based 

RTT bias optimization model is presented as: 

RTT RTT

21 1
1

1

( ) =
M M

j i

i j i

h
 



 

x P P                                       (4-8) 

where x represents the RTT bias, M indicates the collected Wi-Fi FTM based 

positioning results during the detected QS period using LS algorithm, the difference 

between each estimated location is cumulated to get the optimal bias value. The loss 

function in GD algorithm is described as: 

T 1( ) ( ( )) ( ( ))L h R h  x z x z x                                   (4-9) 

Because the optimization model is not linear, Taylor series are applied to linearize 

the proposed model: 
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      (4-10) 

where x represents the state estimation error, H indicates the Jacobian matrix. The 

difference between each iteration is described as follow: 

( ) =- h  z x H x v                                              (4-11) 

Similar to the linear case derivation process, the result of the nonlinear least squares 

estimation is: 

T -1 -1 T -1= ( ) x H R H H R z                                      (4-12) 

Non-linear least squares need to iterate the above process and stops when the state 

estimation error reaches the set threshold. In general, the nonlinear least squares update 

can be written as: 

-1 -1=  x x x                                                (4-13) 

where represents the number of iterations, and the optimal bias value can be acquired 

when ( )L x less than the set threshold. 
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4.2.3 Tightly-coupled Calibration and Localization Method 

In order to estimate the RTT bias in dynamic scenes and realize the integrated 

localization at the same time, this paper proposes the TC based bias estimation and 

indoor localization algorithm, which provides a comprehensive solution by taking all 

the Wi-Fi FTM and MEMS sensors based location sources into consideration. 

The state value in the proposed TC integration model contains two parts. The first 

part is the built-in sensors based error model, which can be described as: 

=s s s s s  X F X G                                                (4-14) 

where s X is consist of 15 dimensions state error, which is presented in [105], 

1 15[ ]s    indicates the error sources that comply the Gaussian distribution.
sG is the 

noise driven matrix with the rank of 15. 

The second part is the Wi-Fi FTM bias based error model. In our work, the bias of 

Wi-Fi FTM is applied to compensate the differences between different kinds of 

smartphones and Wi-Fi APs, which is modeled as the random walk process: 

RTTRTT bb                                                        (4-15) 

where
RTTb is the white noise. The RTT bias based error model is described as: 

=W W W W W  X F X G                                            (4-16) 

where RTTW b X , 0W F , 1W G , and
RTTW b  .  

    The augmented form of TC calibration and localization state model is presented as: 

0 0
=

0 0
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X XF G

F GXX
                         (4-17) 

The observation value is this work contains four parts. The first part is the zero-

velocity update (ZUPT) and zero angular rate update (ZARU), which is applied in order 

to eliminate the cumulative error of speed and attitude estimation in case of QS periods 

detected, the detailed presentation of ZUPT/ZARU can be refer by [51]. The second 

part is the pedestrian based step recognition and step-length calculation, which are 

applied to constrain the fast divergence error of INS mechanization and can be refer 

from [24]. The third part is the QSMF based constraint, which is served as the absolute 

reference and decrease the cumulative error of gyroscope based heading estimation in 

complex indoor environments, which can be refer from [45]. 

This model focuses on the fourth part of the observation. In case of Wi-Fi FTM 

covered indoor environments, the observed ranging model can be described as: 
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where
,m range z indicates the ranging difference between Wi-Fi FTM and MEMS sensors 

based ranging estimation; The MEMS sensors based ranging 
,MEMS md is described as 

follow: 

2 2

, ( ) ( )
MEMS MEMS

k E k N

MEMS m m md E P N P                                 (4-19) 

where(Ek
MEMS, N

k
MEMS) indicates the MEMS sensors based localization result, (Pm

E, Pm
N) 

represents the location of the mst Wi-Fi AP.  

The raw measured RTT value contains bias factor acquired from mth Wi-Fi AP is 

calculated by: 

,FTM m raw RTT RTTd L b v                                            (4-20) 

Finally, the TC calibration and localization model is presented as: 

  Z = H X                                                    (4-21) 

whereZ and X are given in equation (4-20) and (4-21),  indicates the measurement 

noise, H is the design matrix. 

 

4.3 Crowdsourced Wi-Fi Fingerprinting Based Positioning System 

In this section, a comprehensive structure for crowdsourced trajectories modelling, 

pre-calibration, optimization, and classification. In which the collected crowdsourced 

trajectory is modeled as a non-linear function contains the extracted landmarks, heading 

and step-length information, and the raw trajectory is matched with the reference vector 

for pre-calibration. In addition, an iterative extended Kalman filter (iEKF) is proposed 

for robust trajectory optimization to further improve the accuracy of pre-calibrated 

trajectory, and the optimized trajectories are finally classified into similar groups. 

Besides, a novel multi-layer perceptron (MLP) network which can autonomously 

evaluate the positioning error of optimized trajectories during each step period based 

on the extracted motion features. To construct an accurate and efficient crowdsourced 

Wi-Fi fingerprinting database, the evaluated trajectories in same similar group are 

further segmented and merged according to the detected turning points information, 

and the final crowdsourced Wi-Fi fingerprinting database is reconstructed using the 
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turning/landmark points generated collection points to reduce the dimension and 

complexity. 

 

4.3.1 Crowdsourced Trajectories Pre-calibration and Optimization 

In the off-line phase of navigation database construction, the raw data of 

crowdsourced trajectories are consist of the PINS structure originated heading and 

location increment proposed in Chapter Three, and the each collected crowdsourced 

trajectory can be modeled as: 
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where ( )tLoc indicates the current location of the pedestrian, 0

xPos and 0

yPos represent 

the first detected reference point which is regarded as the start point. 
tL and

t are the 

calculated step-length and heading at each step period. 

Due to the positioning mechanism of dead reckoning (DR) based method, the 

accuracy of raw trajectory decreases with time. Besides, the single DR approach can 

only provide relative position information, thus, to select a comprehensively reliable 

trajectory, two reference landmark points are required in each independent trajectory.  

When the second landmark point is detected, raw trajectory is matched with the 

reference vector for pre-calibration in order to decrease the effects of initial heading 

error and installation error caused by the handheld mode of the pedestrian, which is 

described in Figure 4-3: 
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Raw Path
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Path

 

Figure 4-3 Trajectory Pre-calibration Procedure 

 

In Figure 4-3, A and C indicate two detected reference points, which are constructed 
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as a reference vector. The point B is the end point of the raw path, the raw vector can 

be constructed using the points A and B. Thus, the raw path can be pre-calibrated by 

rotating and scaling based on the comparison of the raw vector and the reference vector: 
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where iAB indicates the 2D location coordinates extracted from raw trajectory and iAC

is the pre-calibrated 2D location coordinates. represents the rotation angle, and xS , xS

indicate the scale parameters of x and y axis. 

To further eliminate the cumulative error of step-length calculation and heading 

estimation, the pre-calibrated trajectory which contains two reference points is modeled 

as an optimization problem, an iterative extended Kalman filter (iEKF) is proposed for 

robust trajectory optimization. To comprehensively express the whole trajectory, the 

state vector of iEKF is constructed as: 
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1) State model prediction based on the acquired step-length and heading 

information: 
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2) State function linearization by the first-order Taylor series to get the linearized 

state matrix: 
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2) Covariance matrix prediction: 

, 1 1 , 1

T

t t t t t t t



   P F P F Q                                             (4-27) 

4) Kalman gain matrix update: 

1
T T

t t t t t t t


    K P H H P H R                                      (4-28) 
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5) State vector update: 

t t t t t t

     x x K z H x                                         (4-29) 

6) Covariance matrix update. 

t t t t t

  P P K H P                                               (4-30) 

After completing each round of iEKF iteration, the calculated Kalman gain is 

extracted to evaluate the degree of convergence, the whole procedure of iEKF will stop 

if the value of Kalman gain reaches the set threshold. 

 

4.3.2 Deep Learning Based Uncertainty Prediction of Crowdsourced Trajectories 

When the optimal reconstructed trajectory is acquired, the accuracy evaluation is 

required for further trajectory merging. In this work, MLP [126] based evaluation 

framework is proposed to predict the accuracy of optimized trajectory using only 

motion features extracted from the optimized trajectory. Considering various factors 

which would affect the accuracy of optimized trajectory, the non-linear mapping 

relationship can be established between extracted features and positioning error at each 

step period, which include: 

1) Estimated step-length tL at each step period. 

2) Calculated heading information t at each step period. 

3) Cumulative number of steps t at the current moment.  

4) Cumulative change in heading, which can be described as: 

2 2

-1

1

( )
n

t t

t

t  


                                             (4-31) 

where ( )t indicates the cumulated heading difference, t is the real-time heading 

information. 

5) Percentage of progress on distance: 

1

1

( )

k

t

t
d n

t

t

L

p t

L









                                                   (4-32) 

where n indicates the total step number of the selected trajectory, k is the current step 

number. 

6) Percentage of progress on time: 
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( ) ( ) /t totalp t T t T                                             (4-33) 

where totalT indicates the total time of the selected trajectory ( )T t is the spent time at 

current step. 

7) Percentage of progress on step number: 

( ) ( ) /s totalp t step t step                                              (4-34) 

where totalstep indicates the total step number of the selected trajectory, ( )step t  is the 

spent step number at current time. 

The above extracted motion features can effectively describe the performance of 

selected optimized trajectory, and these features are further modelled as the input vector 

of proposed MLP based network, the detailed structure of proposed MLP is shown in 

Figure 4-4: 
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Figure 4-4 Framework of Proposed MLP Network 

 

The loss function of proposed MLP is described as: 

21
( , ) ( )

2
C y

n
 

x

b x                                           (4-35) 

where the and b indicate the weight values and biases, x represents the input vector,

( )y x is the trained result of each epoch. The stochastic gradient descent (SGD) 

algorithm [127] is adopted to in the procedure of MLP training phase in this work: 



108 

 

j

j

k k k

j k

l l l

j l

C

m

C
b b b

m


  




  





   





x

x

b


                                        (4-36) 

where the indicates the learning rate of SGD. The optimal weight values and biases 

can be acquired when the loss function gradually converges to the expected result. 

 

4.3.3 Crowdsourced Trajectories Segmentation and Merging 

In this part, the crowdsourced navigation database is generated based on the error 

evaluation result of crowdsourced trajectories. Due to the difference between 

pedestrians’ motion mode, step error, instability heading biases and other factors, even 

the positioning results of the same walking route are significant different from each 

other. To solve this problem, multi-level constraints are applied for trajectories 

selection, partition, and merging for the final crowdsourced navigation database 

construction. 

1) Crowdsourced trajectories pre-selection: Due to the changeable motion modes, 

cumulative error of DR, requirement of landmark points, not all the collected 

trajectories can be used for database construction. In this work, three indexes are 

applied for selecting the eligible trajectories. Firstly, at least two landmark points are 

required in each selected trajectory for optimization purpose. Secondly, the navigation 

time between each two detected landmark points should less than 2 min to maintain the 

positioning accuracy [88]. Thirdly, the trajectory contains complex handheld modes 

and intense movements is not suitable for database construction. In this work, we use 

an enhanced F-score index to evaluate the influenced degree of motion modes and 

handheld modes during each collected crowdsourced trajectory [128]:  

( )

b

b b

G


 
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
                                                    (4-37) 
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h

h h
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                                                    (4-38) 

2 (1 ) (1 )

(1 ) (1 )

G M
F

G M

   


  
                                          (4-39) 

where b represents the recorded step count which follows the forward-walking motion;

b indicates the recorded step count does not follow the forward-walking motion; hr is 
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the recorded step count that consistent with the reading handheld mode; h is the 

recorded step count which is not consistent with the reading handheld mode, and F is 

the calculated F-score which varies between 0 and 1. The larger the value of F, and the 

higher the credibility of the trajectory. 

2) Detection of the pedestrian’s motion modes: two pedestrian’s walking modes in 

this work are extracted, including the walking straight forward and turning, and the 

modulus of gyroscope output is used: 

2 2 2( )gyro x y zNorm t g g g                                        (4-40) 

where gx, gy, and gz indicate the collected angular velocity of each axis. The turning 

point is detected based on the peak detection of modulus of gyroscope output, similar 

to the step detection procedure. The detected straight forward mode and turning point 

are further combined as the reference for crowdsourced trajectory partition and merging, 

and navigation database construction. 

3) Trajectory partition based on the results of motion modes detection and trajectories 

classification: In our work, each of selected trajectory is divided into fragments with a 

straight line and two turning points, which is shown in Figure 4-5: 
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Figure 4-5 Illustration of Trajectory Partition 

 

The turning points of classified trajectories which have the same walking route are 

extracted, and the uncertainty error of each turning point is provided by the proposed 

MLP based evaluation model. The eligible turning points extracted from crowdsourced 

trajectories follow the same walking route are weighted to get reference turning point 
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set. Suppose that each walking route contains k turning points, each of detected turning 

point is weighted by the N different trajectories: 

1

1

turning

k kN
k i i

N
ki
i

i

E

E








P
r                                                  (4-41) 

where
turning

k
r indicates the weighted result of kth turning point, and

k

iP represents the 

turning point extracted from the ith trajectory, and
k

iE is the corresponding predicted 

location error.  

4) Crowdsourced trajectories classification: this work firstly extracts trajectories with 

the same walking route and reference points for merging purpose. To recognize the 

trajectories using the same walking route, the correlation coefficient index and DTW 

index are applied to find the similar trajectories using the information detected turning 

points in each trajectory:  

1
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          (4-42) 

where
refer( , )kDTW   presents the cumulative distance between two turning points 

distributions, ( , )n mDist q c indicates the Euclidean distance between each two points of 

distributions. 
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where -1( , )cor x x  and -1( , )cor y y  indicate the results of correlation coefficient on x 

and y axis, respectively. To get all the classification groups, the crowdsourced 

trajectories are compared and iterated, and the similar trajectories are classified and 

regarded as one group. 

5) Trajectory partitions merging problem: The extracted and weighted turning points 

provide a robust reference locations for further optimizing the crowdsourced trajectory 

partitions. In this work, crowdsourced trajectories based on the same walking route are 
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firstly divided by the detected turning points, and then the trajectory partitions under 

the same route are modeled as a problem of searching the optimal vector of rotation and 

scaling in order to get the least distance between each bundle of trajectory partitions 

and the weighted turning points, which is similar as in [129]: 

 opt opt ,, arg min ( )f
P C

P C D                                             (4-44) 

where optP and optC indicate the rotation matrix and scaling matrix, respectively. ( )f D

represents the cumulated distance between turning points of each trajectory partition: 

opt opt

1

( )
turning

N
i i i k

k

i

f


   D U P C r                                         (4-45) 

where
i

kU indicates the turning point extracted from the ist trajectory partition, 

corresponding to the ist reference turning point calculated by the equation (4-45). To 

get the convergent result of ( )f D , the optimal opt opt,P C group needs to be found. 

We firstly calculate the optimal optP by iteration, each trajectory partition is rotated 

around its formal turning point
i

kU : 

, ,

1 1

( )
turning

N N
i k

k i k i k k

i i

T = T
 

   F U r                                     (4-46) 

where ,i kT indicates rotation related resultant moment, ,i kF is the force vector provided 

by the last ( )f D .  

The rotate angle of the jth iteration for the kth trajectory partition is calculated as: 
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where
2

.

1
turning

M
j k

l k

l

 U r indicates the momentum of inertia.  is a constant scale 

parameter. Similarly, we can get the optimal scaling value by: 
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F
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where kL indicates the total length of kth trajectory partition, ( , )k k kx y     D

represents the value of scaling adjustment of each iteration epoch. After acquiring the 

optimal opt opt,P C group, the final adjusted trajectory partitions under same walking 



112 

 

route are described as: 
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where .

j

l kU is optimized turning point of each trajectory partition under same route, after 

repeating the above optimization procedure, crowdsourced trajectory partitions can be 

adjusted and built up as the complete trajectories. 

 

4.3.4 Crowdsourced Wi-Fi Fingerprinting Database Generation 

The above steps provide a robust approach of crowdsourced trajectories pre-selection, 

classification, partition, and merging. The final constructed crowdsourced radio map is 

described as:  

1 1
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                                           (4-50) 

where j indicates the capacity of the final crowdsourced Wi-Fi fingerprinting database. 

( , , )w

j j j jx y zP represents the location of each reference point in database, and

RSSI

jArray is the corresponding RSSI based vector. 

The preliminary constructed crowdsourced radio map described in (4-50) contains a 

large amount of similar trajectories and is labor-consuming to further conduct the on-

line phase by mobile terminal based platform. Thus, to decrease the complexity and 

dimension of preliminary constructed radio map, the collected RSSI fingerprinting 

points need to be further merged according to be performance of RSSI vector. The 

detailed procedure of RSSI merging is shown as follows: 

    1) Search trajectory partition group between the same two turning points or landmark 

points: The partition group contains various similar trajectories can be further merged 

according to the crowdsourced trajectories classification and partition results, which 

has been presented in the formulas introduced above. 

2) Generate virtual reference Wi-Fi fingerprinting collection points using the adjacent 

turning/landmark points: 
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where j

x and
j

y indicate autonomously generated Wi-Fi fingerprinting collection 

points,  is the distance between two adjacent collection points. ( )
turning

k xr and ( )
turning

k xr

represent the merged turning point in selected partition group. In this work, the 

generated Wi-Fi fingerprinting collection points are applied as the reference points to 

reduce the dimension of preliminary constructed radio map.  

3) Radio map reconstruction from the preliminary result: After acquiring the 

generated collection points, the corresponding RSSI vector received from 

crowdsourced trajectories is weighted to provide a more stable and robust fingerprinting 

information. In this work, the fluctuation degree of received RSSI vector is applied as 

the weight of crowdsourced RSSI vectors searched by the same collection points: 
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                                                        (4-52) 

where u indicates the average RSSI value collected from one of the crowdsourced 

trajectories. In the fingerprinting merging phase, the RSSI vectors acquired common 

Wi-Fi APs in different trajectories searched by the same collection point are merged 

and reconstructed as the final radio map: 
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    Compared with the preliminary constructed crowdsourced radio map, the final radio 

map effectively reduces the complexity and dimension of generated database, and also 

maintains the characteristics of Wi-Fi RSSI fingerprinting and the accuracy of matching 

phase. 
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4.4 Tests and Results 

In this section, comprehensive experiments are organized to evaluate the 

performance of proposed Wi-Fi FTM based calibration and positioning system and 

crowdsourced Wi-Fi fingerprinting based positioning system. The Google Pixel 1, 

Google Pixel 2, Google Pixel 3 and Google Pixel 4 are used for pedestrian tracking 

which contains rich MEMS sensors and supports the Wi-Fi FTM protocol and also 

supports the typical Wi-Fi scanning. The sampling rates of low-cost sensors and Wi-Fi 

FTM, RSSI scanning are set as 50 Hz, 5 Hz, and 0.3 Hz, respectively. Different indoor 

environments are adopted as experimental sites, which contains comprehensive indoor 

scenes such as office scene, shopping mall, and corridor scene. The precision of 

proposed two Wi-Fi positioning systems are estimated according to the following 

arrangement: Section 4.4.1 evaluates the precision of Wi-Fi FTM based calibration and 

positioning system; Section 4.4.2 estimates the performance of crowdsourced trajectory 

optimization and error prediction; Section 4.4.3 estimates the performance of 

crowdsourced navigation database generation approach; Section 4.4.4 evaluates the 

overall performance of crowdsourced Wi-Fi fingerprinting based positioning system in 

large-scale indoor spaces. 

 

4.4.1 Performance Evaluation of Wi-Fi FTM Based Calibration and Positioning 

Solution 

We analyzed in Chapter Two that the initial clock deviation has been existed before 

FTM procedure which causes the initial ranging error. In order to analyze the 

relationship between initial clock deviation and types of Wi-Fi FTM responders and 

initiators, we choose the corridor with length of 50 m as the experimental scene. The 

responder and initiator were placed on the brackets respectively at the same height (0.8 

m). We marked the ground truth distance in advance and then set 2 m as the measuring 

interval when the distance is shorter than 10 m, set 5 m as the measuring interval when 

distance is longer than 10 m, 2 Hz as sampling rate, measured for 10 min at each 

estimation point, collected RTT data from three different AP responders (Intel 8260, 

VIVO X21, VIVO NEX) with the same initiator (Intel 8260), the average result at each 

estimation point is shown in figure 4. Then we use two different kinds of initiators (Intel 

8260 and Pixel 1) to collect RTT data from the same AP (Intel 8260), the average result 

at each estimation point is shown in Figure 4-6. 
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Figure 4-6 The Same Initiator with Three Different APs 

    

 
Figure 4-7 Same AP with Two Different Initiators 

 

It can be found by comparing Figure 4-6 and Figure 4-7 that the initial clock 

deviation is influenced by both initiator and responder, thus, calibration is needed 

before ranging. 

We firstly calibrate the initial clock deviation using the PB calibration algorithm. A 

playground was chosen as the calibration scene which is shown in Figure 4-8 where we 

can minimize the multipath effect. We choose the length of 50 m as the effective 

measurement range, set different calibration interval as mentioned above, set sampling 

rate as 2 Hz, collected RTT data from AP responder with 2.4 GHz frequency and 20 

MHz bandwidth. Each group of data was collected for 10 min. Ranging bias of each 

group can be calculated by subtracting the true distance with the average ranging 
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distance. After removing the maximum and minimum deviation of bias, we choose 

average bias of remaining data as the initial clock deviation of RTT, take into the raw 

data of ranging bias, result is show in Figure 4-8: 

 

 
Figure 4-8 Wi-Fi FTM Calibration Field 

 

 
Figure 4-9 Error Comparison before and after calibration 

 

It can be found in Figure 4-9 that initial clock deviation has been effectively corrected 

after calibration, we also find that with longer ranging distance, accuracy of RTT signal 

does not decline in the case of LOS due to its measuring mechanization. However, 

several factors such as bandwidth, frequency and hardware condition can affect the 

initial clock deviation of Wi-Fi FTM. Therefore, when changing parameters of the AP 

responder or initiator, the same calibration procedure should be made. We compared 

several APs with different chipsets, bandwidth and frequency, as shown in Table 4-2: 
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Table 4-2 Influence of Different Factors on Ranging Bias 

AP Category 20 MHz(2.4 G) 40 MHz(2.4 G) 40 MHz(5 G) 80 MHz(5 G) 

Wi-Fi card A -6.21 m -4.56 m Not supported Not supported 

Wi-Fi card B Not supported Not supported -1.74 m -1.07 m 

Mobile Phone 1 -1.86 m Not supported Not supported Not supported 

Mobile Phone 2 -1.35 m Not supported Not supported Not supported 

 

Then we evaluated the accuracy and stability of the calibrated data collected from 

Wi-Fi card A and Wi-Fi card B and another Wi-Fi card A was used as the initiator. We 

used the same calibration interval than in Figure 4-9 and got the calibrated ranging 

results shown in Figure 4-10: 

 

 
Figure 4-10 Comparison of Ranging Errors 

 

It can be found in Figure 4-10 that the results of Wi-Fi FTM show higher accuracy 

and stability when using frequency and bandwidth with 5 GHz and 80 MHz. Meter-

level ranging precision is realized in case of 5 GHz, 80 MHz. 

Then we applied different mobile terminals Google Pixel 1 to 4 as the evaluation 

platforms. The result of PB calibration algorithm has been presented in Figure 4-9. The 

proposed GD based calibration algorithm realizes RTT bias estimation in case of QS 

periods detected. In this work, 50 pairs of Wi-Fi RTT values in a time period of 10s are 

collected for GD based bias calibration, and the final number of iterations  and 

optimized RTT bias are presented in Table 4-3: 
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Table 4-3 Iteration Number and Optimized Bias 

 

It can be found from Table 4-3 that the proposed GD algorithm proves high 

efficiency of bias calibration, the number of iterations is not larger than 25 by different 

kinds of smartphones.  

In TC calibration algorithm, the Wi-Fi RTT bias is estimated in real-time. To 

estimate the overall precision, the pedestrian remains static in the first 10s, and starts 

walking for the next 40s, and remain static for the last 10s. The RTT bias estimation 

results are described in Figure 4-11: 

 
Figure 4-11 Tightly-coupled Calibration Results 

 

It can be found from Figure 4-11 that the RTT bias reaches the optimal estimation 

result when the pedestrian remains static, and the estimation result fluctuates when the 

pedestrian begins walking because of the changeable environmental effects in the 

procedure of the pedestrian’s walking period.  

To further estimate the indoor positioning precision of proposed calibration strategies 

and multi-source integration model, a typical office scene is chosen as the experimental 

site, and four Wi-Fi FTM supported APs are deployed in corners of the office, which 

are shown in Figure 4-12: 
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Figure 4-12 Experimental Site and Test Route 

 

To be fair, the three calibration algorithms are evaluated using the same integration 

model described in equation (14) and (18). In this case, the PB calibration result is 

applied directly into the collected RTT values, and the GD based calibration result is 

applied after the initial QS period of 10s, and the TC calibration result is feedback in 

real-time. The tester started at point A, passed the points B, C, D, E, F, G, H, I, J, B, 

and returned to the point A. The indoor localization performance using three different 

calibration strategies is shown in Figure 4-13: 

 
Figure 4-13 Performance of Proposed Calibration Strategies 

 

To evaluate the positioning accuracy of proposed calibration strategies, 12 volunteers 

walk through the same route shown in Figure 4-12, and different types of Google Pixels 
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are hold respectively. The real-time positioning accuracy is evaluated when the 

pedestrian passed the test points B, C, D, E, F, G, H, J. The final comparison of 

localization accuracy between different calibration algorithms is shown in Figure 4-14: 

 
Figure 4-14 Positioning Errors of Proposed Calibration Strategies 

 

It can be found from Figure 4-14 that the built-in sensors based positioning methods 

exists cumulative error even the integration model has been applied, and the 

combination of Wi-Fi FTM significantly improves the performance of final indoor 

localization of raw AUKF, which is within 1.25 m in 75%. In addition, the proposed 

three RTT bias calibration algorithms further improves the positioning accuracy. The 

PB AUKF proves the best localization performance, and the positioning error reaches 

the 1.01 m in 75%. The accuracy of GD AUKF is a little higher than TC AUKF, and 

the positioning errors of two algorithms are 1.09 m and 1.19 m in 75%, respectively. 

 

4.4.2 Performance Evaluation of Crowdsourced Trajectory Optimization and 

Uncertainty Prediction 

This work enhances the raw crowdsourced trajectories by pre-calibration and iEKF 

based optimization, which effectively improve the performance of collected trajectories, 

and then a novel MLP based trajectory error prediction framework is applied to evaluate 

the positioning error of the trajectory at each step. The tester firstly walked through an 

indoor trajectory for about 2min, and the comparison between raw trajectory, pre-

calibrated trajectory, and optimized trajectory is compared in Figure 4-15:  
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Figure 4-15 Comparison of Pre-calibration and Optimization Trajectories 

 

Figure 4-15 presents that the proposed pre-calibration and optimization framework 

effectively improves the accuracy of raw trajectory, the positioning errors are calculated 

by comparing with the ground-truth trajectory: 

 

 
Figure 4-16 CDF Errors Comparison 

 

It can be found from Figure 4-16 that the proposed pre-calibration approach 

significantly decreases the positioning error of raw trajectory from 12.57 m in 75% to 

4.41 m in 75%, and the optimization algorithm further improve the performance of pre-

calibration from 4.41 m in 75% to 3.67 m in 75%. Due to the effect of cumulative error, 

the performance of optimized trajectory needs to be evaluated by the proposed MLP 

based error prediction model, which can provide a robust error reference for the further 

trajectory merging phase. 
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The training dataset of proposed MLP in this case is provided by the number of 30 

daily-life trajectories provided by the IPIN-2018 indoor competition, track 3 [130], 

which are learned by the MLP and the trained model is applied for error prediction of 

optimized trajectories with two landmark points. The constructed input vector contains 

extracted features are applied to train the MLP model and the training phase completed 

when the value of loss function is convergent. The training phase of MLP model is 

shown in Figure 4-17: 

 

 
Figure 4-17 Training Phase of MLP Model 

 

Figure 4-17 presents that the MLP model reaches the convergent status after 500 

iterations. The performance of error prediction of optimized trajectory in Figure 4-15 

is further predicted by the trained MLP model, and the predicted positioning error 

during each step period and the prediction error of total trajectory is described in Figure 

4-18: 
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Figure 4-18 Performance of Trajectory Error Prediction 

 

Figure 4-18 shown that the accuracy of proposed MLP based trajectory error 

prediction reaches 0.75 m in case of 75%. The results of error prediction are further 

applied for crowdsourced navigation generation. 
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In order to generate a robust and unified navigation database, the collected 
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Figure 4-19 Predicted Error of Collected Trajectory 
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combination of forward walking periods and turning points. After the separation of 

crowdsourced trajectories, the extracted turning points and landmarks points of each 

trajectory are modeled as a unified vector, and the values of DTW and correlation 

coefficient are further used for trajectories classification, the result of one of the 

classification iterations is show in Figure 4-20: 

 

 
Figure 4-20 DTW Result of Classification Iteration 

 

 
Figure 4-21 Correlation Coefficient Result of Classification Iteration 

 

Figure 4-20 and Figure 4-21 presents that one similar group can be effectively found 

after the comparison of DTW and correlation coefficient indexes. In Figure 4-20, the 

trajectories which DTW distance lower than 30 m and the correlation coefficient lower 

than 0.1 are classified into the same group. 

After the classification phase, each group contains similar trajectories are merged to 
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further improve the performance of crowdsourced trajectories. Firstly, turning points 

belong to the same point are weighted to get the reference location of merged turning 

point according to the error prediction results of MLP model, and then partitions 

extracted from each trajectory are merged and adjusted based on the calculated turning 

points. The performance of trajectory partitions merging is described in Figure 4-22 

and Figure 4-23: 

 

 
Figure 4-22 Result of Turning Points Merging 

 

 
Figure 4-23 Result of Crowdsourced Trajectories Merging 

 

Figure 4-22 and Figure 4-23 present that the merged trajectories further improve the 

performance of crowdsourced data. The abnormal trajectories have been revised and 

the trajectory group becomes more compact. In order to generate a more comprehensive 

and wide-covered wireless navigation database, more crowdsourced trajectories are 
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collected, classified, and merged. The final constructed trajectory based pathway 

information is shown in Figure 4-24: 

 

 
Figure 4-24 Performance of Trajectory Merging Phase 

 

The trajectory error comparison before and after trajectory merging phase is shown 

in Figure 4-25: 

 

 
Figure 4-25 Accuracy Comparison of Trajectory Merging 

 

It can be found from Figure 4-25 that the merged crowdsourced trajectories prove 

much high overall positioning accuracy within 2.99 m in 75%, compared with 

optimized crowdsourced trajectories within 4.09 m in 75%, and the information of 

merged trajectories finally applied for crowdsourced navigation database generation. In 

this work, the positioning performance of constructed Wi-Fi fingerprinting database is 
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compared with state-of-art crowdsourced navigation database generation methods: 

quality assessment criteria (QAC) proposed in [60], trace matching (TM) algorithm 

proposed in [131] and our crowdsourced trajectory merging (CTM) approach. To be 

fair, the same Weighted K-Nearest Neighbors (WKNN) classifier is applied for off-line 

phase of Wi-Fi fingerprinting in each algorithm [132]. The comparison of all the 

estimated positioning errors is compared in Figure 4-26: 

 

 
Figure 4-26 Accuracy Comparison of Different Generation Methods  

 
 

    Figure 4-26 demonstrates that the proposed CTM approach proves higher positioning 

accuracy within 3.75 m in 75%, compared with the TM approach within 4.18 m in 75%, 

and the accuracy of QAC approach is within 5.64 m in 75%. Thus, the trajectories 

merging phase effectively improves the robustness of final constructed navigation 

database and much better localization performance can be achieved. 

 

4.4.4 Performance Evaluation of Crowdsourced Wi-Fi Fingerprinting solution in 

Large-scale Indoor Spaces 

In order to evaluate the accuracy of proposed crowdsourced Wi-Fi fingerprinting 

based positioning system in large-scale indoor spaces, one typical shopping mall based 

3D indoor environment which contains multi-floor structure and large-scaled open 

areas is chosen as the experimental site, one of the selected floor is shown in Figure 4-

27: 
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Figure 4-27 Large-scale Scene of IPIN-2018 Dataset 

 

In the selected shopping mall scene, the crowdsourced dataset acquired from a 

shopping mall is provided by IPIN-2018 indoor competition, track 3 [130], in which 37 

the crowdsourced trajectories contain the data acquired from smartphone integrated 

sensors and corresponding scanned local Wi-Fi information are collected respectively. 

In addition, in order to estimate the absolute localization trajectory, the sparse landmark 

points are added in the procedure of trajectory data collection. The part of the collected 

trajectories and corresponding landmark points are presented in Figure 4-28: 
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Figure 4-28 Crowdsourced Trajectories Provided by IPIN-2018 Dataset 

 

The raw MEMS sensors data is firstly processed by forward PINS framework 

proposed in Chapter Three, after that the GD algorithm is applied to optimize the 

crowdsourced trajectories and quality evaluation is used to evaluate the accuracy and 

weight of each trajectory. The final crowdsourced Wi-Fi fingerprinting database in this 

indoor scene is generated based on the weighted results of selected Wi-Fi data provided 

by crowdsourced trajectories, MLP based trajectory evaluation model and multi-level 

constrains. In this case, the raw trajectories which contain detected landmarks are firstly 

processed by the proposed PINS structure, then the optimization phase is conducted to 

further improve the performance, which is shown as follows: 

 



130 

 

 

Figure 4-29 Performance of PINS Optimization Phase 
 

The optimized crowdsourced trajectories are further evaluated by the proposed MLP 

model and uncertainty of each trajectory at each step period is provided for further 

trajectory partition and merging. In which the training dataset and the test dataset are 

both provided by the collected crowdsourced trajectories acquired from IPIN-2018 

dataset. In this case, a number of overall 50 selected trajectories are finally applied as 

the training dataset of the MLP, and the number of training iterations is set as 800 in 

order to get the optimal result, which is shown as follow: 

 

 

Figure 4-30 Performance of MLP Training Result 

The predicted result of positioning error of total dataset are described in Figure 4-31 
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and Figure 4-32, respectively: 

 

 

Figure 4-31 Training and Prediction Result of Positioning Error 

 

 

Figure 4-32 Prediction Result of Positioning Error 

 

It can be found from Figure 4-32 that the proposed MLP based trajectory uncertainty 

prediction model proves impressive performance, which reaches the accuracy of 0.76 

m in case of 75%. 

Finally, we draw the uncertainty region of predicted trajectory to shown the 

performance of our proposed MLP based uncertainty prediction approach, the 

uncertainty regions of all the step are combined together to get the total uncertainty 

region, which is shown as follow: 
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Figure 4-33 Uncertainty Region of Optimized Trajectory  

 

After evaluating the crowdsourced trajectories, the partition and merging phase is 

further applied to generate an efficient and accurate database. The final constructed 3D 

crowdsourced Wi-Fi fingerprinting database is shown in Figure 4-34: 

 

 
Figure 4-34 Crowdsourced Wi-Fi Fingerprinting Database  

 

In the on-line phase, the Samsung SM-A520F is used as the hardware platform, and 

the reading mode described in [51] is applied. The real-time Wi-Fi fingerprinting based 

3D location of the pedestrian is provided by combination of the signal quality 

evaluation of Wi-Fi fingerprinting and double-stage k-nearest neighbor (DS-KNN). 
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The single Wi-Fi fingerprinting result may fluctuate due to the indoor interference, thus, 

in this work, the PDR and Wi-Fi fingerprinting result are integrated by a typical particle 

filter (PF) to realize robust and stable crowdsourcing-based 3D localization 

performance. The final evaluation dataset contains cross-floor motion modes, and the 

2D and 3D comparison results between forward PDR mechanization, Wi-Fi 

fingerprinting and the PF are presented in Figure 4-35 and Figure 4-36, respectively: 

 

  

Figure 4-35 2D Comparison of Different Positioning Approaches 

 

 

Figure 4-36 3D Comparison of Different Positioning Approaches 

 

It can be found from Figure 4-36 that the forward PDR is subjected to the cumulative 

error thus cannot maintain accuracy in a long time period, and the location information 
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provided by the Wi-Fi fingerprinting method proves significant fluctuations due to the 

multipath propagation effect indoors. The proposed PF effectively combines the 

advantages of different location sources and provides reliable and accurate 3D indoor 

location information. The final positioning error comparison result is shown in Figure 

4-37: 

 

 

Figure 4-37 Comparison of Different Positioning Methods 

 

Figure 4-37 describes that the proposed PF realizes much higher localization 

precision compared with single location source. The average positioning error is within 

3.7m and the CDF error is within 5.18m in case of 75% in the open scene of the 

shopping mall. 

Finally, we give a comprehensive discussion between the performance of 

crowdsourced Wi-Fi fingerprinting methods applied in IPIN-2018. In Figure 4-35, the 

back part of the fusion result proves larger error due to the lack of useful Wi-Fi 

fingerprinting database in the underground parking scene. The HFTS team in [130] 

used standard PF to fuse the results of Wi- Fi RSSI fingerprint and PDR, and used the 

map information to detect the most likely path to improve the accuracy in case of Wi-

Fi database missing. The EGEC team in [130] combined the magnetic fingerprinting 

with PDR, Wi-Fi fingerprinting, and map information, which further improved the 

multi-source indoor localization performance. 
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4.5 Summary 

This chapter proposes two different Wi-Fi positioning systems, including Wi-Fi 

FTM based calibration and positioning system and crowdsourced Wi-Fi fingerprinting 

based positioning system, aiming at providing autonomous and precision-controllable 

3D indoor localization performance in large-scale and multiple scenes contained indoor 

spaces. The contribution of this chapter contains three main parts: 

1) This chapter proposes three different Wi-Fi FTM calibration strategies which take 

different application scenes into consideration. In which the Polynomial-based (PB) 

calibration strategy towards the known types of smartphones and Wi-Fi APs. Gradient 

descent (GD) based FTM bias estimation with the combination of quasi-static (QS) 

recognition, and the estimated bias value is used to calibrate the measured RTT in real-

time without the known types of smartphones and Wi-Fi APs. Tightly-coupled (TC) 

integration model with the consideration of all error sources, in which all the navigation 

parameters are calibrated and optimized at the same time to get the final positioning 

results. The real-world estimation in typical office scene shows that the PB approach 

proves the best positioning performance within 1.01 m in 75%, and the accuracy of GD 

AUKF is a little higher than TC approach, and the positioning errors of two algorithms 

are 1.09 m and 1.19 m in 75%, respectively. 

2) This chapter proposes a comprehensive structure for crowdsourced trajectories 

modelling, pre-calibration, optimization, and classification. In which the collected 

crowdsourced trajectory is modeled as a non-linear function contains the extracted 

landmarks, heading and step-length information, and the raw trajectory is matched with 

the reference vector for pre-calibration in order to decrease the effects of initial heading 

error and installation error caused by the handheld mode of the pedestrian. In addition, 

an iterative extended Kalman filter (iEKF) is proposed for robust trajectory 

optimization to further improve the accuracy of pre-calibrated trajectory, and the 

optimized trajectories are finally classified into similar groups using the multi-level 

constraints, correlation coefficient and DTW indexes. 

3) This chapter proposes a novel multi-layer perceptron (MLP) network which can 

autonomously evaluate the positioning error of optimized trajectories during each step 

period based on the extracted motion features. To construct an accurate and efficient 

crowdsourced Wi-Fi fingerprinting database, the evaluated trajectories in same similar 

group are further segmented and merged according to the detected turning points 
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information, and the final crowdsourced Wi-Fi fingerprinting database is reconstructed 

using the turning/landmark points generated collection points to reduce the dimension 

and complexity. The performance evaluation of MLP model on the daily-life dataset 

proves the meter-level accuracy in positioning error prediction, and the proposed 

crowdsourced trajectory merging approach reaches the better accuracy compared with 

state-of-art crowdsourced Wi-Fi fingerprinting database generation algorithms, which 

is within 3.75 m in 75% under office scene and also has the good performance under 

large-scaled shopping mall scene, the accuracy of PDR/Wi-Fi fingerprinting integration 

approach reaches 5.18 m in 75%. 

In conclusion, in this section, we present two different Wi-Fi positioning systems 

(WPS) and design comprehensive experiments to evaluate the precision of two 

developed WPS in different 3D indoor scenes, including the office scene, corridor scene 

and shopping mall scene. The experimental results prove that the Wi-Fi FTM based 

calibration and positioning system proposed in this chapter can realize meter-level 

localization accuracy after self-calibration phase of ranging bias, and the proposed 

crowdsourced Wi-Fi fingerprinting based positioning system can autonomously 

generate an efficient and accurate navigation database using large amount of 

crowdsourced navigation data and realize universal localization towards large-scale 

indoor spaces and avoid the labor-consuming collection phase. We will combine the 

advantages of both two Wi-Fi positioning systems together with the MEMS sensors 

based positioning approach and realize a more autonomous, more accurate, and more 

stable multi-source fusion based 3D indoor localization framework. 
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Chapter 5: Wi-Fi/MEMS Integration Framework For 

Large-Scaled 3D Indoor Positioning 

Indoor wireless localization towards the next generation Wi-Fi access point has 

attracted considerable attention due to the presentation of the state-of-art Wi-Fi Fine 

Time Measurement (FTM) protocol. In order to increase the precision and universality 

of wireless positioning based on the Internet of Things (IoT) terminals, this chapter 

proposes a multi-source fusion based indoor localization framework which contains the 

integration of Wi-Fi FTM, RSSI fingerprinting and IoT terminal integrated MEMS 

sensors 

In the Chapter Four, two state-of-art WPS systems: Wi-Fi FTM based calibration and 

positioning system and crowdsourced Wi-Fi fingerprinting based positioning system 

are presented respectively towards different application requirements. The 

disadvantages of two Wi-Fi positioning system are that, in a complex and changeable 

smart city indoor scene, the realized precision of Wi-Fi FTM is constrained by the 

multipath propagation and NLOS effect which would cause the additional deviation in 

Wi-Fi ranging results [19]. Due to the hardware difference of IoT terminals and Wi-Fi 

APs, not all IoT devices or Wi-Fi APs support the FTM protocol, and the ranging bias 

always exists in the procedure of FTM timestamp exchange between different terminals 

[125]. In addition, the single MEMS sensors based location update approach is proved 

to provide shortly precise results in a short time period, while the accuracy of MEMS 

sensors based approach decreases with time due to the cumulative error and magnetic 

interference therefore are always integrated with absolute location sources [33-34]. 

In this chapter, in order to enhance the precision and universality of indoor 

positioning towards the next generation wireless positioning based on IoT terminals, 

this paper presents the Wi-Fi/MEMS sensors integrated framework, which is consist of 

a robust MEMS sensors based localization solution and three kinds of MEMS sensors 

and Wi-Fi integration models towards different application scenes. In addition, this 

chapter proposes the signal quality evaluation (QE) algorithm aiming at autonomously 

estimating the availability and uncertainty of measured Wi-Fi FTM and RSSI 

fingerprinting results using the misclosure check (MC) and double-stage k-nearest 

neighbor (DS-KNN) methods, which effectively improves the signal robustness in final 

multi-source fusion phase. At this stage, the integrated indoor localization using the 

combination of different location sources is regarded as an effective approach for 
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realizing much better indoor localization performance. Aiming at the next generation 

WPS which supports both RSSI and FTM collection, how to achieve a robust 

combination of all the supported wireless characteristics using IoT terminals becomes 

a hot issue towards large-scaled and controllable indoor localization. 

The contributions of this chapter are summarized as follows: 

1) This chapter simplifies the original INS mechanization described in the MEMS 

sensors based 3D indoor localization structure by ignoring the rotation of the earth, 

which can significantly increase the efficiency and decrease the complexity of proposed 

PINS structure. Compared with existing MEMS Sensors based approaches, our 

proposed PINS realizes the integration of INS and multi-level constraints and observed 

values. In addition, the proposed PINS integration approach can further be expanded 

into different multi-source fusion models towards specific location sources and 

positioning scenes. 

2) This chapter proposes the signal quality evaluation (QE) algorithm aiming at 

evaluating the availability and uncertainty of measured Wi-Fi FTM and RSSI 

fingerprinting results aiming at improving the signal robustness in final fusion phase. 

In which the misclosure check (MC) method is applied to detect the received round-

trip-time (RTT) indoors which contains NLOS measurement and initial bias, and the 

double-stage k-nearest neighbor (DS-KNN) method is proposed to improve the 

matching performance of crowdsourced RSSI fingerprinting and evaluate the location 

uncertainty of Wi-Fi RSSI fingerprinting result. 

3) This chapter proposes three different types of multi-source fusion structures, in 

which the self-calibrated tightly-coupled integration model based on Wi-Fi FTM and 

MEMS sensors can provided meter-level positioning accuracy without calibration 

phase of Wi-Fi ranging; the loosely-coupled integration model based on Wi-Fi RSSI 

fingerprinting and MEMS sensors can realize autonomous localization and navigation 

database updating; and the hybrid fusion model organically combined all the location 

sources together aiming at providing precision-controllable positioning in complex and 

large-scaled indoor spaces. The use of different fusion structures significantly increases 

the accuracy and universality of 3D indoor localization. 

The remainder of this chapter is organized as follows. Section 5.1 introduces the 

overall Wi-Fi and MEMS sensors integrated framework. Section 5.2 presents self-

calibrated tightly-coupled integration model of Wi-Fi FTM and MEMS sensors and 

corresponding Wi-Fi FTM based signal quality evaluation approach. Section 5.3 
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proposes a loosely-coupled integration model of crowdsourced Wi-Fi fingerprinting 

and MEMS sensors and corresponding Wi-Fi RSSI fingerprinting based signal quality 

evaluation approach. In addition, a hybridly-coupled integration model using the 

combination of all the Wi-Fi FTM, RSSI fingerprinting and MEMS sensors based 

location sources is further presented. Section 5.4 designs comprehensive experiments 

and gives the test results and the performance analysis. Section 5.5 gives the summary 

of this chapter. 

 

5.1 System Overview 

It can be found from the previous work that the Wi-Fi FTM based high-precision 

location source is not available in all the Wi-Fi APs, and the RSSI characteristic is 

regarded as the universal location sources. Towards the generation WPS, how to 

integrate the Wi-Fi FTM/RSSI and MEMS sensors based location sources to provide a 

large-scaled and accurate indoor localization performance is a facing problem, and how 

to comprehensively solve the challenges including magnetic interference and 

cumulative error, hardware deviation, and quality evaluation is also an existing 

challenge. To enhance the precision of multi-source fusion based indoor localization 

using the IoT hardware platform, the following mentioned challenges need to be 

handled: 

1) Magnetic interference and cumulative error of MEMS sensors: In the traditional 

dead-reckoning (DR) algorithm, the position is updated using the calculated walking 

speed and heading information, which is affected by the increasing measurement error 

of MEMS sensors and changeable magnetic field in local environments.  

2) Hardware deviation of different IoT terminals: Due to the hardware differences 

between IoT Terminals and Wi-Fi APs, the raw measured RSSI or the round-trip-time 

(RTT) information always contains additional bias which causes the overall drift of the 

ranging result. 

3) Effective quality evaluation of multiple location sources: Indoor scenes usually 

contain structure based influences such as multipath propagation and NLOS. Similar to 

the TOA based positioning method, Wi-Fi FTM is much more robust indoors compared 

with RSSI but is also subjected to the indoor interference which should be recognized. 

To improve the accuracy and universality of the multi-source fusion based wireless 

positioning, this chapter proposes the multi-source fusion based Wi-Fi FTM/RSSI 

fingerprinting/MEMS sensors integration framework (MS-WFRS). The proposed MS-
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WFRS combines the Wi-Fi FTM, Wi-Fi RSSI fingerprinting and MEMS sensors based 

location sources to make all the three approaches complementary. Firstly, the raw 

magnetic data is used to detect QSMF periods and step detection is applied to provide 

reference walking speed and position increment as the measured value to eliminate the 

drift error of INS mechanization; In addition, the MC and DS-KNN algorithms are 

proposed in signal QE procedure to increase the robustness of Wi-Fi FTM and RSSI 

fingerprinting and provide the adaptive weight of each location source in fusion phase; 

Finally, the AUKF is applied to fuse the information of PINS, Wi-Fi FTM and RSSI 

fingerprinting to realize precise and universal IoT terminals based indoor localization 

performance. The whole framework of proposed Wi-Fi FTM/RSSI 

fingerprinting/MEMS sensors framework is shown in Figure 5-1. 
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Figure 5-1 Framework of Wi-Fi and MEMS Sensors Integration 

 

5.2 Self-calibrated Tightly-coupled Integration Model of Wi-Fi FTM and 

MEMS Sensors 

When pedestrians move into the Wi-Fi FTM covered environments, the self-

calibrated tightly-coupled integration model is applied for meter-level localization. 

After Wi-Fi FTM based signal QE procedure, the Wi-Fi FTM based location source is 

adopted as the observation. The raw ranging result existing initial bias due to the 

deviation between different IoT terminals and Wi-Fi APs, to estimate the ranging bias 

in dynamic indoor scenes and realize the integrated localization at the same time, this 

section proposes the TC-S integration model, which provides a comprehensive solution 

by taking both Wi-Fi FTM and MEMS sensors based location sources into 

consideration in Wi-Fi FTM supported indoor spaces. 
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5.2.1 Signal Quality Evaluation of Wi-Fi FTM 

Wi-Fi FTM is proved to provide meter-level ranging result in LOS contained 

environment, while is influenced by the initial bias, random error and NLOS deviation 

due to its measurement mechanism [30], because the multipath propagation added on 

the Wi-Fi ranging results can be largely eliminated by increasing the bandwidth and 

frequency of Wi-Fi signals [79]. Thus, the actually collected Wi-Fi FTM based distance 

is defined as: 

observed FTM randombias NL L d d d                                               (5-1) 

where Lobserved indicates the observed distance which is consist of the initial bias dbias, 

NLOS error dN and random error drandom, LFTM represents the ground-truth ranging 

distance. In addition, the random error of ranging result drandom always subjected to 

Gaussian distribution, therefore, the aim of Wi-Fi signal QE is to detect the accuracy 

of initial bias and NLOS error contained ranging results and adaptively adjust the 

weight of corresponding location sources.  

In this section, the misclosure check (MC) method [133] is applied to detect the 

received round-trip-time (RTT) indoors which contains NLOS measurement and initial 

bias. The description of proposed MC detection is described in Figure 5-2. In Figure 5-

2, the point B and C indicates Wi-Fi APs with fixed location, and the point A is the 

location of the pedestrian. In ideal case, the vectors organized by the point A, B, and C 

meet the following condition: 

BC AB AC                                                           (5-2) 

where BC indicates the vector between two known APs. AB and AC represent the 

vectors of the distance provided by the Wi-Fi ranging result between the pedestrian and 

Wi-Fi APs.  

In Figure 5-2, the random error of the predicted location A and measured noise is 

modeled as a confidence region, in this case, the equation (5-2) is represented as: 

randombias N pAB AC BC d d d d                                          (5-3) 

where dp indicates the approximate error and the error of drandom and dp can be described 

by the variance Qr and Qp. The initial deviation dbias is estimated in real-time by the 

proposed integration model in the following part, thus, the error of dbias can be described 

by the variance Qb. Therefore, the size of the confidence region is acquired by values 

of Qr, Qb and Qp. If the calculated misclosure out of the confidence region range, it is 
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regarded as the effect of NLOS bias. The definition of Wi-Fi FTM based signal QE is 

described in Figure 5-2: 
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Figure 5-2 Diagram of Wi-Fi FTM Based Signal QE 

 

In the 2D positioning scene, the predicted location of the pedestrian is consist of X 

and Y coordinates. The misclosure equation is rewritten as: 

AB ACBC

AB ACBC

X X X

Y Y Y

  


 

                                                     (5-4) 

where X and Y indicate the components of the calculated misclosure vector. The Wi-Fi 

FTM based distance can be modeled as the vector form by the following equation: 

AB AB
AB

AB

AB AB
AB

AB

X
X

Y
Y














 


                                                       (5-5) 

where
AB indicates the FTM based distance between point A and point B.  ,AB ABX Y

indicates the organized vector provided by the measure Wi-Fi ranging at the predicted 

location A. AB represents the Euclidean distance between point B and the estimated 

position A, which can be calculated with 2 2

AB ABAB X Y   . The Wi-Fi FTM based 

misclosure vector in this case can be described as: 

AB ACx BC

AB ACy BC

V X X X

V Y Y Y

   


  

                                                 (5-6) 

where
T[ , ]x yV V V indicates the misclosure vector, defining that the variance of Wi-Fi 

FTM ranging result is Dr, then calculate the variance of V : 
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                             (5-7) 

After the construction of misclosure model, the t-test [134] can be described as 

following: 

( )r pV D D                                                   (5-8) 

In each quality evaluation procedure, the ( )D V is finally compared with the sum of 

Dr and Dp, and the variance of Dp is provided by MEMS sensors based method. The 

NLOS bias exists when the deviation between ( )D V and sum of Dr and Dp larger than 

the set threshold. The misclosure vector is constructed from every group of two Wi-Fi 

APs and one IoT terminal, thus there would be N*(N-1)/2 triangles that need to be 

organized based on N Wi-Fi APs.  

 

5.2.2 Tightly-coupled and Self-calibrated Integration Model Based on Wi-Fi FTM 

and MEMS Sensors 

When pedestrians move into the Wi-Fi FTM covered environments, the tightly-

coupled and self-calibrated integration model is applied for meter-level localization. 

After signal QE procedure, the Wi-Fi FTM based location source is adopted as the 

observation. The raw ranging result existing initial bias due to the deviation between 

different IoT terminals and Wi-Fi APs, to estimate the ranging bias in dynamic indoor 

scenes and realize the integrated localization at the same time, this paper proposes the 

TC-S integration model, which provides a comprehensive solution by taking both Wi-

Fi FTM and MEMS sensors based location sources into consideration. 

The state value in the proposed TC-S integration model contains two parts. The first 

part is the built-in sensors based error model, which can be described as: 

=s s s s s  X F X G                                                   (5-9) 

where s X is consist of 15 dimensions state error, which is presented in (3-28), 

1 15[ ]s    indicates the error sources that comply the Gaussian distribution. sG is 

the noise driven matrix with the rank of 15. 

For the low-cost sensors based inertial navigation, a more simplified INS 

mechanization can be applied, which ignores rotation of the earth. The attitude update 
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equation is described as follows: 

( 1)

( ) ( 1) ( )

n n b m

b m b m- b m

Q Q Q                                                 (5-10) 

where ( )

n

b mQ indicates the quaternion of attitude transformation at epoch m; 
( 1)

( )

b m

b m


Q

represents the change of attitude quaternion between epoch m and epoch m-1, which 

can be described as: 

( 1)

( )

cos
2

sin
2

m

b m

b m
m m

m









 
 
 
  
  

Q


                                                        (5-11) 

where m represents the angular increment in the time period (m-1,m), and

m m   . 

In low-cost inertial navigation systems, the influence of the rotation of the earth is 

generally ignored, therefore the speed update equation can be simplified as: 

1 ( )

n n n n

m m sf m sT  v v v g                                                    (5-12) 

In which: 

( ) ( 1)

1
( )

2

n n

sf m b m m m m     v C v v                                       (5-13) 

where n

mv indicates the INS based velocity at epoch m, ( 1)

n

b mC represents the attitude 

matrix, mv represents the specific force increment in the period (t-1, t). 

Finally, the position update equation is described as: 

1
1

2

n n
n n m m

m m sT



 

v v
P P                                                     (5-14) 

where  
Tn

m m m mx y zP , Ts indicates the sampling rate. 

In this section, the bias of Wi-Fi FTM is estimated in real-time to compensate the 

differences between different kinds of smartphones and Wi-Fi APs, which is modeled 

as the random walk process: 

RTT RTTRTT RTT(1/ )b bb b                                              (5-15) 

where
RTTb represents the correlation time,

RTTb indicates the white noise. The RTT bias 

based error model is described as:  

=W W W W W  X F X G                                              (5-16) 

where RTTW b X , 0W F , 1W G , and
RTTW b  .  

    The augmented form of TC-S calibration and localization state model is presented 
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as: 

0 0
=

0 0

s s ss s

W WW WW

  

 

        
        

         

X XF G

F GXX
                          (5-17) 

The observed model is described as: 
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                                   (5-18) 

where
,m range z indicates the ranging difference between Wi-Fi FTM and MEMS sensors 

based ranging estimation; The Wi-Fi FTM ranging model is defined in (5-1), and the 

MEMS sensors based ranging 
,MEMS md is described as follow: 

2 2

, ( ) ( )
MEMS MEMS

k E k N

MEMS m m md E P N P                                  (5-19) 

where(Ek
MEMS, N

k
MEMS) indicates the MEMS sensors based localization result, (Pm

E, Pm
N) 

represents the location of the mst Wi-Fi AP.  

The raw measured RTT value contains bias factor acquired from mth Wi-Fi AP is 

calculated by: 

,FTM m raw RTT RTTd L b v                                             (5-20) 

Finally, the TC calibration and localization model is presented as: 

  Z = H X                                                   (5-21) 

whereZ and X are given in equation (5-20) and (5-21), indicates the measurement 

noise, H is the design matrix. 

 

5.3 Loosely-coupled Integration of Crowdsourced Wi-Fi Fingerprinting 

and MEMS Sensors 

Section 5.2 describes the TC-S integration model using Wi-Fi FTM and MEMS 

sensors based location sources. For some indoor environments where the Wi-Fi APs do 

not support the FTM protocol, the Wi-Fi RSSI fingerprinting is regarded as a more 

universal and wide-covered indoor location source which is supported by almost all the 

mobile terminals. This section describes the Wi-Fi RSSI fingerprinting and MEMS 

sensors based loosely-coupled integration model, which is applied for a more universal 

3D indoor localization combining with the signal QE procedure. 
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5.3.1 Signal Quality Evaluation of Wi-Fi RSSI Fingerprinting 

The Wi-Fi RSSI fingerprinting method is widely applied due to its extensive coverage 

and universality characteristics, while the accuracy of RSSI based fingerprinting is 

limited by complex indoor environments. In this paper, DS-KNN is proposed to 

enhance the precision of RSSI fingerprinting based positioning, which contains three 

main steps: the adaptive selection of the optimal parameter K, the weighted location 

based on the averaged distance, and the error variance prediction of weighted position. 

First, the averaged Euclidean distances
,t otherDis between real-time collected RSSI 

array and each reference RSSI array in the Wi-Fi fingerprinting database are compared 

and sorted to extract the nearest average distance
1,t rDis as the reference value instead 

of using the total distance, then the similar constraint parameter is applied to get the 

optical parameter K, which are defined as [135]: 
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                                        (5-22) 

where represents the similar degree of two RSSI arrays and indicates the threshold 

of similar degree. Based on the similar constrain of calculated Euclidean distances, the 

parameter K can be adjusted adaptively. 

After adaptively selecting the parameter K, the eligible reference locations in 

database are weighted for the final position calculation, the weight of each reference 

location is provided by the similar degree  : 
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                                              (5-23) 

In which POS'( , )r rx y is the positioning result of WKNN, POS( , )i ix y indicates the 

selected reference location in database, 
i

 represents the weight value of the ist 

reference position acquired from the generated navigation database. 

In this work, a more intelligent MLP network based signal quality evaluation model 

is applied for error prediction of the Wi-Fi fingerprinting matching result, and the 

features that can affect the precision of Wi-Fi fingerprinting based positioning are 



 

147 

 

extracted and modeled as the input features for training purpose, which are described 

as follows: 

1) Collected step-length tL and heading information between adjacent Wi-Fi 

fingerprinting matched results: 

/ /
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/ /
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                                                       (5-24) 

where M is the step number detected between two reported Wi-Fi fingerprinting 

reported locations,
/W G

ML and 
/W G

M indicate the corresponding step-length and heading 

information collected in this period. 

2) Updated locations and corresponding Euclidean distance between different 

updated locations: 
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where ( ), ( )W W

G Gx k y k indicates the Wi-Fi fingerprinting reported location. 

3) Location update interval and calculated speed provided by different location 

sources: 
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                                                    (5-26) 

where
MEMS

kSpeed and
Wi Fi

kSpeed 
are the walking speeds estimated by MEMS sensors 

and Wi-Fi fingerprinting approaches, respectively.
MEMS

k and
Wi Fi

k


indicate update 

intervals of different location sources. 

4) Virtual headings originated from the MEMS sensors and Wi-Fi fingerprinting 

approaches: 
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where ( )MEMS

virtual k and ( )Wi Fi

virtual k 
indicate the MEMS sensors based virtual heading and Wi-

Fi fingerprinting based virtual heading between adjacent sampling points, respectively. 

5) Average RSSI difference between scanned Wi-Fi APs and reference Wi-Fi APs. 
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j j

j
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
                                              (5-28) 

where
scanned

jRSSI and 
reference

jRSSI represent the scanned and corresponding reference 

Wi-Fi APs and at current collection point, respectively.  is the number of Wi-Fi APs. 

Due to the dimension requirement of collected Wi-Fi RSSI vector in order to get an 

effective and accurate WKNN based matching result, the changing parameter  would 

also affect the precision of Wi-Fi fingerprinting result. Thus, the minimum value of 

is required and it is proved that the increasing dimension of collected Wi-Fi RSSI vector 

has the limited effect on the accuracy of WKNN based matching phase, which is 

described in [132]. 

The final error variance of the crowdsourced Wi-Fi fingerprinting based positioning 

can be predicted according to the above extracted input features, the MLP based error 

variance distribution of the Wi-Fi fingerprinting reported location is presented as: 
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                                                (5-29) 

where
rssi indicates the measured noise of MEMS sensors based localization result, 

which is consist of xk and yk directions. 

 

5.3.2 Loosely-coupled Integration Model of Wi-Fi RSSI Fingerprinting and 

MEMS Sensors 

For some indoor environments where the Wi-Fi APs do not support the FTM protocol, 

the Wi-Fi RSSI fingerprinting and MEMS sensors based loosely-coupled navigation 

model is applied for more universal localization purpose after signal QE. The state 

model is the same as equation (5-9) and the observed model of Wi-Fi RSSI fingerprint 

can be described as: 

MEMS
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n n n
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                                                   (5-30)  
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where
n

rssip and
n

rssiv represent the received Wi-Fi RSSI fingerprinting based position and 

speed results, 
MEMS

np and 
MEMS

nv  represent the MEMS sensors based navigation results. 

 

5.4 Hybridly-coupled Integration Model of Wi-Fi FTM/RSSI 

Fingerprinting and MEMS Sensors 

In Wi-Fi FTM covered indoor environments, Wi-Fi RSSI fingerprinting based 

location source can also be combined after signal QS to further enhance the final 

localization performance. In this case, the confidence region of MEMS/Wi-Fi FTM 

integrated localization result in signal QE algorithm can be limited to the ellipse region. 

a

b



 
Figure 5-3 Ellipse-based Confidence Region 

 

The center of the ellipse region is chosen as the output result of MEMS/Wi-Fi FTM 

integration model, and the major and minor semi-axis, and the azimuth can be acquired 

from the covariance matrix in the procedure of AUKF fusion: 

2

2
= N NE

EN E

 

 

 
 
 

F                                                     (5-31) 

where 2

N and 2

E indicate measured errors of the north and east location; EN and NE

represent the covariance error calculated by north and east positions. Regarding the 

definition of confidence ellipse in engineering field [136], the major semi-axis of the 

ellipse is presented as: 

2 2 2 2 2 20.5( ) 0.25( )
NEe N E E Na s                                     (5-32) 

The minor semi-axis can be described as: 
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2 2 2 2 2 20.5( ) 0.25( )
NEe N E E Nb s                                    (5-33) 

The azimuth of the major semi-axis can be calculated by: 

1 2 2

40.5tan (2 / ( ))NE E N                                           (5-34) 

At the beginning of crowdsourcing-based localization when people move from Wi-

Fi FTM supported scenes to unsupported scenes, the initialization of localization has 

larger error variance due to insufficient iterations; therefore, the value of the parameter 

se is turned up to avoid removing the useful RSSI fingerprinting result. With the 

increasing amount of filter iterations, the value of se becomes smaller. Finally, it is 

remained unchanged to eliminate the gross error of Wi-Fi RSSI fingerprinting result. 

The observed model in this case is described as： 
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where n

rssip and n

rssiv represent the Wi-Fi RSSI fingerprinting based position and speed in 

navigation coordinate,
/MEMS FTM

np and
/MEMS FTM

nv indicate the MEMS/Wi-Fi FTM based fusion 

result. 

Compared with existing multi-source fusion based wireless indoor localization 

approaches, our proposed multi-model integration framework comprehensively takes 

all the Wi-Fi FTM, RSSI fingerprinting, and MEMS sensors base location sources into 

consideration, and designs the corresponding integration models towards different 

indoor scenes contains different location sources. In addition, the proposed multi-model 

integration framework contains the robust signal QE module which provides the 

adaptive error prediction of each kind of location source and can maintain positioning 

accuracy in case of changing environments and terminals. Thus, the proposed hybrid 

positioning framework are more suitable for the large-scale indoor spaces and can adapt 

the complex real-word environments. 

 

5.5 Tests and Evaluations  

In this section, comprehensive experiments are organized to evaluate the accuracy 

and stability of proposed PINS algorithm and Wi-Fi/MEMS sensors integrated 

framework. Three typical indoor scenes are selected as experimental sites. Four Google 

Wi-Fi APs are deployed in the office scene to provide the Wi-Fi FTM function, Google 

Pixel 3 and Google Pixel 4 are used as the IoT terminals which support Android 10 
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based Wi-Fi ranging and can acquire RTT and RSSI information from surrounding Wi-

Fi APs and also contain rich MEMS sensors required by proposed Wi-Fi and MEMS 

sensors integration framework. The sampling rates of MEMS sensors, Wi-Fi FTM, 

RSSI are 50 Hz, 5 Hz and 0.3 Hz, respectively. The selected experimental sites, 

installed Wi-Fi APs, and IoT terminals are shown in Figure 5-4. 

 

Google Pixel 3

Google Pixel 4

Corridor Scene Office Scene

Google Wi-Fi

 
Figure 5-4 Total Experimental Sites and Equipment 

 

5.5.1 Accuracy Evaluation of Hybrid Integration Models in Office Scene 

In this section, three different kinds of multi-source integration models are proposed 

aiming at various wireless signals covered indoor scenes. In our work, a rectangular 

office which contains the serious multipath propagation and NLOS influences is 

applied for accuracy evaluation, and the tester’s walking route is shown in Figure 5-5. 
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Figure 5-5 Office Scene and Testing Route 
 

The tester began with the point A, passed by the points B, C, D, E, F, G, H, I, J, K, 

D, E, L, M, N, B, and returned to the point A. The performance comparison between 

PINS and three different types of integration models are compared in Figure 5-6: 
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Figure 5-6 Performance of Different Integration Models 

 

In addition, this procedure is repeated 15 times to estimate the long-term accuracy of 

proposed positioning integration structure, which is compared in Figure 5-7: 

 

 
Figure 5-7 Positioning Errors Comparison 

 

Figure 5-7 presents that in the Wi-Fi FTM supported environment, the proposed TC-

S integration model effectively reduces the effect of ranging bias of Wi-Fi FTM, the 

estimated localization error is within 1.12 m in 75% compared with the positioning 

error of raw TC model within 1.33 m in 75%. The performance of LC model proves 

lower positioning accuracy than the TC-S model due to the fluctuations of collected 

RSSI signal. The HC model proves the highest positioning accuracy compared with the 

other three kinds of integration models, and the final positioning errors of five different 
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localization models in office scene are 1.68 m, 1.33 m, 1.47 m, 1.12 m, and 1.05 m in 

case of 75%, respectively. 

To give a comprehensive comparison of proposed QS approach and state-of-art 

algorithms, the Wi-Fi FTM outlier detection (OD) method proposed in [23] and the 

RSSI fingerprinting adaptive K selection (AKS) method proposed in [135] are applied 

for comparison. The positioning errors comparison of four models before and after 

using different signal QE approaches based on the same walking route in Figure 5-6 is 

described in Table 5-1: 

 
Table 5-1 Performance of Signal QS Algorithm  

 

Table 5-1 presents the improved performance of proposed signal QE algorithm 

compared with non-QE. In non-QE, the measurement error variances of the Wi-Fi FTM 

and RSSI fingerprinting based location sources are fixed at constant values. In this case, 

the measurement errors of the Wi-Fi FTM and RSSI fingerprinting are set as 1m and 

3m according to previous literatures. It can be found from Table 5-1 that the proposed 

signal QE algorithm effectively increases the accuracy of final integration models. The 

positioning errors of different integration models are decreased by 11.9%, 16%, 13.2%, 

and 13.9%, respectively. Compared with state-of-art quality control approaches, the 

proposed QE also reaches higher improvement of localization performance. 

Besides, we give a comprehensive comparison between signal QE contained TC-S 

integration model with the state-of-art calibration-free positioning system (CPS) 

proposed in [107]. To be fair, the same location sources (Wi-Fi FTM and MEMS 

sensors) and the same walking route and test points in described Figure 5-5 are applied, 

Google Pixel 3 and Google Pixel 4 are adopted as the IoT platforms to provide Wi-Fi 

FTM functions and built-in sensors support. The CDF localization error of two 

algorithms is compared in Figure 5-8: 

 

                  Model 

Error (m) 
RAW TC LC TC-S HC 

Non-QE 1.51 1.75 1.29 1.22 

QE 1.33 1.47 1.12 1.05 

OD+AKS 1.41 1.65 1.21 1.14 

Increased Ratio (%) 11.9/6.6 16/5.71 13.2/6.2 13.9/6.56 
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Figure 5-8 CDF Errors Comparison Between TC-S and CPS 

 

Figure 5-8 describes that the proposed TC-S integration model proves better 

performance that the CPS algorithm under both Google Pixel 3 and Google Pixel 4 

platforms. The final estimated mean error of proposed TC-S is 1.14 m in 75%, 

compared with the CPS’s positioning error of 1.26 m in 75%. 

 

5.5.2 Performance Evaluation of Hybrid Integration Models in Large-scaled 

Scenes 

To evaluate the overall accuracy and university of proposed multi-source fusion 

based wireless integration framework in large-scaled indoor environments, two 

comprehensive indoor environments are selected, the first one is the teaching building 

contains two adjacent floors consist of corridor and office scenes, which are shown in 

Figure 5-9 and Figure 5-10: 
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Figure 5-9 Experimental Site and Walking Route in 9th Floor 
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Figure 5-10 Experimental Site and Walking Route in 10th Floor 
 

In Figure 5-10, four FTM supported Google APs are deployed in one of the 

laboratories, the theoretical coverage of Wi-Fi FTM signals is shown in the red circle, 

and other areas are FTM unsupported. The Wi-Fi fingerprinting database is constructed 

using the deep-learning based crowdsourced Wi-Fi fingerprinting database generation 

framework and over the number of 80 trajectories are selected and combined, which 

covers all the pedestrians’ walking routes and can provide the priori information of 

specific indoor scenes by marking upon the on-line phase of Wi-Fi fingerprinting 

database generation. To evaluate the precision of proposed MS-WFRS, the testers 
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walked from the test point A at the 10th floor, continuously passed by the points B, C, 

D, E, F, G, H, I, J, K, L, I, J, K, L, I, H, M, N, went down to the 9th floor, and passed 

by the route O, P, Q, R, S, T, U, P, V, W, X, Y. In this experiment, the hybrid integration 

model is applied in the laboratory area deployed with Wi-Fi FTM supported APs where 

both Wi-Fi fingerprinting/FTM exist, and loosely-coupled model is applied in the other 

areas covered with Wi-Fi fingerprinting. The 2D and 3D indoor positioning 

performance of proposed PINS and integration model is shown as follows: 

 

 
Figure 5-11 2D Positioning of Different Integration Models  

 

 
Figure 5-12 3D Positioning of Different Integration Models 

 

 Figure 5-12 shows that the MEMS sensors based PINS solution approach exists 

cumulative error even after heading and walking speed fusion by INS/PDR/magnetic 
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integration, and larger positioning error exists in 3D indoor environments compared 

with 2D indoor environments due to the multi-floor switching. The proposed LC 

positioning model provides a wide-coverage solution by combining crowdsourced Wi-

Fi fingerprinting and MEMS sensors, and the HC positioning model further takes all 

the location sources into consideration and enhances the location ability, especially in 

Wi-Fi FTM covered indoor spaces. The 2D and altitude positioning errors comparison 

results in 75% between MEMS, RSSI fingerprinting, LC, and HC based solutions in 

office, corridor and stairwell indoor scenes are described in Table 5-2: 

 

Table 5-2 Error Comparison in Different Indoor Scenes 

 

Table 5-2 compares the positioning performance of different integration models, 

PINS, and RSSI fingerprinting in three different indoor scenes. It can be found from 

Table 5-2 that the PINS and RSSI fingerprinting approaches both prove larger 

positioning errors, which are originated by cumulative error and environmental 

interference, respectively. The LC integration model combines the advantages of short-

term accuracy of MEMS sensors approach and long-term accuracy of crowdsourced 

RSSI fingerprinting approach and realizes the final positioning accuracy of 1.67 m and 

1.89 m in 75% in two typical indoor scenes, respectively. The HC integration model 

further enhances the localization performance of LC model and achieves the meter-

level accuracy within 1.08 m in 75% in Wi-Fi FTM covered office scene and also 

improves the positioning accuracy in corridor scene within 1.76 m in 75%. For the 

altitude estimation, the HC model also proves the best performance compared with the 

three other approaches, which reaches the 0.44 m in 75%. 

Furthermore, the overall localization accuracy of proposed MS-WFRS is compared 

with the state-of-act literatures in corresponding indoor scenes, respectively, in which 

the Wi-Fi/DR structure (WDS) proposed in [12] is applied in the corridor scene using 

the Wi-Fi fingerprinting and MEMS sensors based location sources, to be fair, the same 

crowdsourced Wi-Fi fingerprinting database is applied The DRWMs algorithm 

proposed in [19] is applied in the office scene using the Wi-Fi FTM and MEMS sensors 

                  Model 

Scenes 
PINS RSSI  LC HC 

Office Scene 2.42 m 2.89 m 1.67 m 1.08 m 

Corridor Scene 3.84 m 3.55 m 1.89 m 1.76 m 

Stairwell (Altitude) 1.53 m 1.76 m 0.48 m 0.44 m 

 



158 

 

based location sources. In addition, the same walking route is applied which is 

described in Figure 5-11 and Figure 5-12, and the final localization comparison results 

in different indoor scenes are presented in Figure 5-13 and Figure 5-14: 

 

 
Figure 5-13 Errors Comparison under Office Scene 

 

 
Figure 5-14 Errors Comparison under Corridor Scene 

 

It can be found in Figure 5-14 that the proposed MS-WFRS framework achieves 

much better localization performance in both office and corridor scenes compared with 

state-of-art algorithms using the same location sources and fingerprinting database. In 

corridor scene, the proposed MS-WFRS reaches the higher positioning accuracy within 

1.71 m in 75%, compared with the WDS approach with the accuracy of 1.94 m in 75%. 

In office scene, meter-level accuracy can be provided by the proposed MS-WFRS, 

which is within 1.11 m in 75%, compared with the positioning accuracy of 1.31 m in 
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75% provided by DRWMs approach. 

Finally, we give a comprehensive comparison using multi-source fusion solution 

contains Wi-Fi FTM-Vhattachayya and RSS-Euclidean based fingerprinting (WFS-F) 

described in [137] with MS-WFRS framework proposed in this work. To be fair, the 

same crowdsourced RSSI based fingerprinting database is applied, and the FTM based 

fingerprinting database is collected using the method provided in [137]. The accuracy 

comparison under different positioning scenes is shown in Figure 5-15: 

 

 
Figure 5-15 Errors Comparison in Different Scenes 

 

Figure 5-15 presents that the proposed MS-WFRS framework proves much more 

robust localization performance compared with WFS-F approach in both office and 

corridor scenes. The positioning errors of two algorithms under office scene are within 

1.11 m and 1.29 m in 75%, respectively. The positioning errors of two algorithms under 

corridor scene are within 1.71 m and 2.03 m in 75%, respectively. 

The second selected test environment is a multi-floor contained shopping mall 

building, and the basic positioning solution has been provided in Section 4.4.4 using 

the APF based integration model based on the crowdsourced Wi-Fi RSSI fingerprinting 

and typical PDR solution [132], and the final estimated accuracy is acquired within 5.18 

m in 75%. In this section, the proposed loosely-coupled (LC) integration model is 

applied to improve the accuracy of APF based integration model. The overall 3D 

structure of selected shopping mall is described in Figure 5-16.  
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Figure 5-16 3D map of Shopping Mall Environment [130] 

 

To provide the accuracy comparison between proposed APF in [132] and loosely-

coupled integration model proposed in this chapter, the same test route is applied and 

the comparison results between Wi-Fi fingerprinting, APF and LC integration model 

are shown in Figure 5-17: 

 

 

Figure 5-17 Comparison of Positioning Results in Shopping Mall Scene 

 

Figure 5-17 shows that the proposed LC integration model further improve the 

performance of APF fusion proposed in [132], which is closer to the ground-truth 

trajectory. Also it can be found in Figure 5-17 that the completeness of final constructed 

Wi-Fi fingerprinting database proves significant effects on the final precision of 

-1.6325 -1.632 -1.6315 -1.631 -1.6305 -1.63
47.223

47.2235

47.224

47.2245

47.225

47.2255

47.226

47.2265

47.227

East (°)

W
e

s
t 
(°

)

 

 

Reference

Wi-Fi Fingerprinting

APF

LC Integration Model



 

161 

 

integrated localization. The larger deviation of the trajectory from the ground-truth 

trajectory exists in the back part of the estimated trajectory due to the lack of effective 

fingerprint database information.  

In general, we evaluate the accuracy of proposed Wi-Fi and MEMS sensors 

integration models in different indoor environments including the teaching building 

which contains the office scene and corridor scene, and shopping mall building which 

contains large-scaled open spaces. The estimated positioning errors in case of CDF 75% 

using different integration models under different indoor scenes are summarized in 

Table 5-3: 

 
Table 5-3: Positioning Errors Comparison Between Different Model and Indoor Scenes 

          Scenes           

Models  
Office Corridor 

Shopping 

Mall 

TC-S 1.12 m - - 

LC 1.47 m 1.89 m 4.45 m 

HC 1.05 m 1.71 m - 

 

In conclusion, the proposed hybrid integration models effectively combine the 

advantages of Wi-Fi FTM, crowdsourced Wi-Fi RSSI fingerprinting and MEMS 

sensors, and realize the impressive 3D indoor localization performance in large-scaled 

indoor spaces compared with state-of-art approaches. In addition, the proposed hybrid 

integration models can provide autonomous localization services through 

crowdsourced Wi-Fi fingerprinting database construction and can also provide meter-

level positioning performance in Wi-Fi FTM supported environments. The overall 

positioning accuracy between 1.5 m to 4.5 m in CDF 75% can be acquired among the 

comprehensive experiments in different indoor environments. 

 

5.6 Performance Analysis and Results 

In order to enhance the accuracy and universality of Wi-Fi and MEMS sensors 

integrated 3D indoor navigation towards the next generation wireless positioning based 

on mobile terminals, this chapter presents the multi-source fusion based positioning 

framework, which is consist of a robust simplified MEMS sensors based localization 

solution, three different integration models, and corresponding signal quality evaluation 

approaches. The main contributions and the estimated results of Wi-Fi/MEMS sensors 

integrated location framework are summarized as follows: 
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(1) This chapter simplifies the original INS mechanization described in the MEMS 

sensors based 3D indoor localization structure by ignoring the rotation of the earth, 

which can significantly improve the efficiency and decrease the complexity of proposed 

PINS structure. Compared with existing MEMS sensors based approaches, our 

proposed PINS realizes the integration of INS and multi-level constraints and observed 

values. In addition, the proposed PINS integration approach can further be expanded 

into different multi-source fusion models towards specific location sources and 

positioning scenes. 

2) This chapter proposes the signal quality evaluation (QE) algorithm aiming at 

evaluating the availability and uncertainty of measured Wi-Fi FTM and RSSI 

fingerprinting results aiming at improving the signal robustness in final fusion phase. 

In which the misclosure check (MC) method is applied to detect the received round-

trip-time (RTT) indoors which contains NLOS measurement and initial bias, and the 

double-stage k-nearest neighbor (DS-KNN) method is developed to improve the 

matching performance of Wi-Fi RSSI fingerprinting and evaluate the location 

uncertainty of Wi-Fi RSSI fingerprinting result. The experimental results describes that 

the developed QE strategy can effectively eliminate positioning errors of different 

integration models, including 11.9% of raw TC model, 16% of LC model, 13.2% of 

TC-S model, and 13.9% of HC model respectively, which also prove better 

performance compared with other algorithms. 

3) This chapter proposes three different types of multi-source fusion structures 

aiming at different location sources contained indoor scenes, in which the self-

calibrated tightly-coupled integration model based on Wi-Fi FTM and MEMS sensors 

can provided meter-level positioning accuracy without calibration phase of Wi-Fi 

ranging; the loosely-coupled integration model based on Wi-Fi RSSI fingerprinting and 

MEMS sensors can realize autonomous localization and navigation database updating; 

and the hybrid fusion model organically combined all the location sources together 

aiming at providing precision-controllable positioning in complex and large-scaled 

indoor spaces. The use of different fusion structures significantly increases the accuracy 

and universality of 3D indoor localization. 

Finally, we design comprehensive experiments to evaluate the performance of 

proposed Wi-Fi and MEMS sensors integrated structure in different 3D indoor 

environments using different walking routes time periods. The experimental results 

show that the integration of Wi-Fi FTM, RSSI fingerprinting, and MEMS sensors 
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effectively improve the 3D positioning performance compared with the single location 

sources. In which the Wi-Fi FTM and MEMS sensors based tightly-coupled integration 

model is proved to provide meter-level location information in case of Wi-Fi FTM 

protocol supported indoor spaces, and the crowdsourced Wi-Fi RSSI fingerprinting and 

MEMS sensors based loosely-couple integration model can provide more universal and 

autonomous localization performance without known the deployment information of 

location stations. In addition, the hybridly-coupled integration model can further 

improve the performance of multi-source fusion based indoor localization and realize 

the positioning scene switching aiming at changeable location sources contained 

environments. The comprehensive experiments show that the proposed LC integration 

model combines the advantages of short-term accuracy of MEMS sensors approach and 

long-term accuracy of crowdsourced RSSI fingerprinting approach and realizes the 

final positioning accuracy of 1.67 m and 1.89 m in 75% in two typical indoor scenes, 

respectively. The HC integration model further enhances the localization performance 

of LC model and achieves the meter-level accuracy within 1.08 m in 75% in Wi-Fi 

FTM covered office scene and also improves the positioning accuracy in corridor scene 

within 1.76 m in 75%. For the altitude estimation, the HC model also proves the best 

performance compared with the three other approaches, which reaches the 0.44 m in 

75%. 

In the future, with the development of IoT terminals, more and more LBS aimed 

location sources and protocols will be applied, such as AOA, CSI, and angle of 

departure (AOD). In addition, the improved signal detection technology and signal 

bandwidth further enhance the performance of time-of-flight (TOF) based localization 

methods such as Wi-Fi RTT and UWB two-way ranging (TWR). The application of 

high precision location features would make the IoT terminals based sub-meter indoor 

wireless localization more possible. 
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Chapter 6: Conclusion and Future Works 

This chapter summarizes the conclusions and contributions of the research and 

provides recommendations and possible future work. 

 

6.1 Conclusion 

This thesis provides a reliable 3D indoor pedestrian positioning solution by using 

MEMS sensors integrated in IoT terminals, Wi-Fi FTM, crowdsourced Wi-Fi RSSI 

fingerprinting. By taking better advantage of the merits of DR, Wi-Fi FTM, Wi-Fi RSSI 

fingerprinting, the proposed algorithm can provide a robust 3D indoor pedestrian 

positioning solution that has the accuracy of 1.5-4.5 m (CDF in 75%) and can 

autonomously generate the Wi-Fi fingerprinting database instead of point-to-point 

collection. Furthermore, this algorithm can provide precision-controllable positioning 

performance by combining different location sources and meter-level positioning 

accuracy can be realized in Wi-Fi FTM covered indoor spaces. 

Also, by taking better advantage of the merits of DR, Wi-Fi FTM, and crowdsourced 

Wi-Fi RSSI fingerprinting, the proposed algorithm has the following advantages: 

1) The algorithm can significantly improve the attitude estimation and 3D DR 

results using IoT terminals integrated MEMS sensors without the need for any 

external calibration equipment or user intervention, which can be applied in case 

of complex and changeable indoor environments under different handheld modes. 

2) The algorithm can provide accurate forward localization and trajectory 

optimization results based on the daily-life data acquired from MEMS sensors 

and sparsely deployed Wi-Fi FTM stations, BLE nodes, and QR codes based 

landmarks, which can further be applied for autonomous crowdsourced 

navigation database construction. 

3) The algorithm can realize automatic error prediction of crowdsourced trajectories, 

and develop two different WPS systems including self-calibrated Wi-Fi FTM 

positioning system and crowdsourced Wi-Fi RSSI fingerprinting positioning 

system, aiming at providing precision-controllable location services in hybrid 

indoor scenes. 

4) The algorithm can organically integrate the two different WPS solutions and 

PINS solution towards large-scale indoor spaces covered by different location 

sources. In addition, the corresponding signal QE strategy is combined in the 
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final multi-source fusion model to increase the robustness of single location 

source. 

To be specific, compared with previous hybrid navigation algorithms or structures, 

the main innovation points of this research are: 

1) Chapter 3 develops a simple but robust 3D indoor localization and optimization 

system uses the combination of smartphone integrated MEMS sensors and sparse 

deployed landmark points including the Wi-Fi FTM station, BLE node, and QR 

code. Multi-level constraints and multi-level observed values, which are applied 

as the MEMS sensors based observation model in AUKF in order to eliminate 

effects of cumulative and divergence errors, magnetic interference, and different 

handheld modes added on the INS mechanization based 3D attitude and location 

update. In addition, two different types of navigation trajectory optimization 

algorithms including backward-AUKF and GD are proposed and evaluated in 

this chapter, aiming at different platforms and application scenes, which achieve 

meter-level accuracy of reconstructed 3D navigation trajectory. Comprehensive 

experiments in two complex 3D indoor environments indicate that the proposed 

PINS structure reaches the 2D positioning accuracy of 1.38 m, 1.44m, 1.91m, 

1.73 m in 80%, and altitude calculation accuracy of 0.68 m, 0.71 m, 0.67 m, 0.63 

m in 80%, under four different kinds of handheld modes: reading, phoning, 

swaying, and pocket. The proposed backward-AUKF and GD algorithms can 

further improve the accuracy of forward navigation, the estimated ratios of 

accuracy improvement backward-AUKF and GD in reading mode are 27.94% 

and 25%, in phoning mode are 39.44% and 32.39%, in swaying mode are 34.33% 

and 28.36%, in pocket mode are 33.33% and 26.98%. 

2) Chapter 4 presents two different Wi-Fi positioning systems, including Wi-Fi 

FTM based calibration and positioning system and crowdsourced Wi-Fi 

fingerprinting based positioning system, aiming at providing autonomous and 

precision-controllable 3D indoor localization performance in large-scale and 

multiple scenes contained indoor spaces. For the Wi-Fi FTM positioning system, 

three different Wi-Fi FTM calibration strategies are proposed and compared for 

the estimation of changing bias between different IoT terminals and Wi-Fi APs. 

The real-world estimation in office scene shows that the PB approach proves the 

best positioning performance within 1.01 m in 75%, and the accuracy of GD 

AUKF is a little higher than TC approach, and the positioning errors of two 
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algorithms are 1.09 m and 1.19 m in 75%, respectively. For the crowdsourced 

Wi-Fi RSSI fingerprinting system, a comprehensive structure for crowdsourced 

trajectories modelling, pre-calibration, optimization, and classification is 

proposed and a novel deep-learning based trajectory error prediction and 

crowdsourced trajectory merging is presented for the final Wi-Fi fingerprinting 

database construction, and the estimated matching accuracy Wi-Fi fingerprinting 

is within 3.75 m in 75% under office scene and also has the good performance 

under large-scaled shopping mall scene with the PDR/Wi-Fi fingerprinting 

integration accuracy of 5.18 m in 75%. 

3) Chapter 5 proposes a unified Wi-Fi/MEMS sensors integration framework, 

which is consist of a robust simplified MEMS sensors based localization solution, 

three different integration models (TC-S integration model, LC integration model, 

HC integration model), and corresponding signal quality evaluation (QE) 

strategies. The comprehensive experiments show that the proposed LC 

integration model combines the advantages of short-term accuracy of MEMS 

sensors approach and long-term accuracy of crowdsourced RSSI fingerprinting 

approach and realizes the final positioning accuracy of 1.67 m and 1.89 m in 75% 

in two typical indoor scenes, respectively. The HC integration model further 

enhances the localization performance of TC-S model and LC model and 

achieves the meter-level accuracy within 1.08 m in 75% in Wi-Fi FTM covered 

office scene and also improves the positioning accuracy in corridor scene within 

1.76 m in 75%. For the altitude estimation, the HC model also proves the best 

performance compared with the three other approaches, which reaches the 0.44 

m in 75%. In addition, the proposed LC model further improves the positioning 

accuracy under large-scaled shopping mall scene, which is increased from 5.18 

m in 75% to 4.45 m in 75%. 

 

6.2 Recommendations for Future Works 

Based on the achieved results and conclusions about the implementation of an 

autonomous localization algorithm using the integration of Wi-Fi FTM, crowdsourced 

RSSI fingerprinting and MEMS sensors towards large-scale indoor spaces, it is 

recommended to optimize it and extend this research for future developments. The 

future works include: 
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 Conducting deeper investigations on the requirements for different application 

scenarios (e.g., hospitals, malls, underground, etc.), and optimizing the algorithm 

framework according to the specific application scenario. 

 Further reducing the time- and manpower- cost of generating and updating the 

crowdsourced Wi-Fi fingerprinting database. In addition, mobile mapping 

technology can be further combined for providing accurate indoor map information 

and constructing the navigation database simultaneously. 

 Taking more complex motion and handheld modes into consideration and 

expanding the proposed algorithm to improve the adaptability. 

 It is also worth exploring the more state-of-art location technologies and location 

sources which will be supported by emerging IoT terminals, such as the BLE AOA, 

UWB, LiDAR. 

 As the most economical and efficient system is desired, a more simplified version 

of the multi-source integration algorithm needs to be developed for the IoT 

terminals. 

Last but not least, the real-time algorithm needs to be tested thoroughly using 

different hardware platforms for a variety of scenarios such as large-scaled buildings 

with multiple floors and with more complex internal structures. 
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