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Abstract
The world is seeing the Internet of Things (IoT) devices grow in volume and variety.

From consumer smart home products and wearable devices, to retail and industrial

IoT, to smart city applications, IoT devices have been widely integrated, making our

life more convenient and efficient. As we gradually reach an IoT world, a fundamental

question worth discussing is how to interact with these ubiquitous IoT devices.

Besides traditional interaction methods, existing solutions mainly leverage cam-

eras, acoustic sensors, and inertial measurement unit (IMU) sensors to enable human-

IoT device interaction. Although effective, these solutions cannot be applied to IoT

devices that do not have these specific sensors. Furthermore, vision-enabled in-

teraction requires ideal lighting conditions, which are hard to guarantee in practice.

Acoustic-based interaction still cannot handle some practical scenarios involving mul-

tiple speakers and background noise. IMU-based interaction is not user-friendly, as

it generally requires users to carry some dedicated IMU devices.

This thesis studies a novel human-IoT device interaction via RF sensing to com-

plement and augment current interaction methods. We repurpose two RF tech-

nologies to realize a novel and user-friendly interaction by overcoming a series of

technical challenges. Specifically, this thesis allows users to interact with two com-

mon types of IoT devices, Radio Frequency Identification (RFID) tags and millimeter

wave (mmWave) radars in a contact-less interaction manner using their smartphones.

The main contents are as follows.

The first work aims to allow users to interact with ubiquitous RFID tags. Ultra-

High Frequency (UHF) RFID technology has become increasingly popular in stores,

since it can quickly query a large number of RFID tags from afar. The deployed

RFID infrastructure, however, does not directly benefit smartphone users in stores,

mainly because smartphones cannot read UHF RFID tags or fetch relevant informa-
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tion. In the first work, we propose ShakeReader to bridge the gap and allow users to

‘read’ UHF RFID tags using their smartphones, without any hardware modification

to either deployed RFID systems or smartphone hardware. To ‘read’ an interested

tag, a user makes a pre-defined smartphone gesture in front of the interested tag. The

smartphone gesture causes changes in 1) RFID measurement data captured by RFID

infrastructure, and 2) motion sensor data captured by the user’s smartphone. Since

the changes of the two data caused by the same gesture are synchronized, we can

match the two data and pair the interested tag with the corresponding smartphone,

thereby enabling the smartphone to indirectly ‘read’ the interested tag. Experi-

mental results show that ShakeReader can accurately pair interested tags with their

corresponding smartphones with an accuracy of ą96.3%. To our best knowledge,

ShakeReader is the first work that enables commodity smartphones to ‘read’ pas-

sive RFID tags without any hardware modification to either smartphones or RFID

readers.

The second work aims to allow users to interact with widely deployed mmWave

radars. We present the design and implementation of mmRipple, which empowers

commodity mmWave radars with communication capability through smartphone vi-

brations. In mmRipple, a smartphone (transmitter) sends messages by modulating

smartphone vibrations, while a mmWave radar (receiver) receives the messages by

detecting and decoding the smartphone vibrations with mmWave signals. By doing

so, a smartphone user can not only be passively sensed by a mmWave radar, but

also actively send messages to the radar using her smartphone without any hardware

modifications to either the smartphone or the mmWave radar. mmRipple addresses

a series of unique technical challenges, including vibration signal generation, tiny

vibration sensing, multiple object separation, and movement interference mitigation.

We implement and evaluate mmRipple using commodity mmWave radars and smart-

phones in different practical conditions. Experimental results show that mmRipple

achieves an average vibration pattern recognition accuracy of 98.60% within a 2m

communication range, and 97.74% within 3m on 11 different types of smartphones.

The communication range can be further extended up to 5m with an accuracy of
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91.67% with a line-of-sight path. To our best knowledge, mmRipple is the first

work that allows smartphones to send data to COTS mmWave radars via smart-

phone vibrations without any hardware modification to either the smartphones or

the mmWave radars.

In conclusion, this thesis exploits RF sensing to complement and enhance current

human-IoT interaction technologies, enabling users to interact with ubiquitous RFID

tags and mmWave radars. Such technologies are promising to enable a wide variety of

innovative applications such as product information inquiry, inventory management,

customer behaviour analysis, access control,pedestrian-to-sensing-infrastructure in-

teraction, and other near-field interaction.

Keywords: RFID; mmWave radar; interaction; IoT
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Chapter 1

Introduction

1.1 Background

We are witnessing the rapid growth of the Internet of Things (IoT), with its ap-

plications proliferating across sectors and impacts being felt across society. IoT is

the Internet extended into the physical world, connecting billions of physical objects

embedded with sensors, software, and other technologies. Since the coining of the

term by Kevin Ashton in 1999 [8], IoT has been transformed from a mere vision into

a tangible reality. IoT Analytics [83] estimates that the global number of connected

IoT devices will reach 14.4 billion in 2022. By 2025, it is expected that there will

be more than the eye-opening 27 billion IoT connections. IoT creates more smart

spaces, including smart homes, smart cities, smart factories, and smart farming,

making our lives more convenient, efficient, safe, and sustainable.

In the whole IoT ecosystem, IoT devices are ubiquitous and underpin myriad

IoT applications. Wearable IoT devices can track our daily activities and biometric

data for health and wellness. Smart appliances can be operated remotely or automate

household tasks to facilitate our lives. Businesses use multiple IoT devices to optimize

operations and thus improve efficiency and monitor the working environment to

reduce security risks. Smart meters, environmental sensors, cameras, and other IoT

devices are deployed by the government to collect expansive data at an unprecedented
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scale for smart cities.

Typically, an IoT device mainly consists of four components: 1) a central pro-

cessing unit (CPU) and memory for data processing and storage; 2) a power unit

harvesting energy from the battery or the environment; 3) a communication module

for exchanging data with other devices; 4) sensors for monitoring the environment

and collecting data. Among them, IoT devices are diverse in terms of communication

modules and sensors to accommodate different usage scenarios. For the communica-

tion modules, IoT devices mainly adopt multiple wireless communication technologies

[71] in Table 1.1 to meet different requirements on communication range, latency,

throughput, throughput, etc.For example, Radio Frequency Identification (RFID) is

the most attractive technology for retailers for its advantages of low cost, automatic

identification and management, and non-line-of-sight reading. In a smart city, Low

Power Wide Area Networks (LPWANs) enable smart meters to automatically up-

load your energy consumption to the electricity supply several kilometers away at

extremely low power and labour costs.

Table 1.1: Comparison of typical IoT wireless communication technologies.

Contents RFID Bluetooth ZigBee Wi-Fi Cellular LPWANs

Standard
ISO/IEC

18000

IEEE

802.15.1

IEEE

802.15.4

IEEE

802.11

4G

5G

LoRaWAN

NB-IoT

Frequency

Band

120-150KHz

13.56MHz

860-930MHz

2.4GHz
868/915Mhz

2.4GHz
5-60GHz

2-8GHz

3-30GHz

868/915MHz

800/900MHz

Transmission

Range

passive: 1-12m

active: <100m
8-10m 10-20m 20-100m „ 1Km <30Km

Power

Consumption
low medium low high medium very low

Use Case retail logistics wearables
wearables

building

home

building
city

industry

city

2



At the same time, various sensors are equipped on IoT devices to collect multiple

types of data, which can be mainly sorted into the following:

• Location: these sensors, typically based on GPS technology, allow for objects

or individuals to be located or tracked for navigation or item tracking.

• Environmental: these sensors are used for measuring and monitoring the key

environmental parameters, including temperature, humidity, air quality, water

pollution, gas, chemicals, etc.

• Biometric/Biomedical: these sensors aim to detect physiological data that are

either static and unchanging (biometric) or fluctuate over time (biomedical).

Biometric sensors measure unique personal characteristics, including finger-

prints, voice prints, and facial features, for identification and security purposes.

In contrast, biomedical sensors monitor heart rate, pulse, blood pressure, and

other vital signs for healthcare applications.

• Vision: these sensors are used to convert an optical image into an electronic

signal, including common cameras, infrared cameras, and others. Furthermore,

these sensors can be trained to support multiple tasks, including object classi-

fication, facial recognition, heat detection, etc.

• Acoustic: acoustic sensors are designed for capturing sound, e.g., human voices

and traffic noises. Benefiting from the development of the natural language

process, recent years have witnessed the emergence of acoustic-enabled IoT

devices as a mainstream user interface in smart homes.

• Inertial Measurement Unit (IMU): IMU sensors are used to measure orien-

tation, velocity, and gravitational forces, including accelerometer, gyroscope,

and magnetometer. Typically, these sensors are installed in smartphones and

smartwatches to monitor human motions such as sitting, walking, and sleeping.
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• Radio: radio-based sensors transmit radio frequency (RF) signals and then

analyze the reflected signals from objects to detect their position, velocity,

motions, etc.. It will enable robots, cars, and smart home devices to sense

their surroundings and respond dynamically.

IoT devices are ubiquitous and various. From wearable health bands, and self-

monitoring factory equipment, to autonomous vehicles, these powerful IoT devices

have integrated into our lives.

1.2 Motivation

IoT devices are growing in both volume and variety. In this case, the interaction be-

tween humans and IoT devices is particularly important, which allows common users

to configure IoT devices for personalized responses. Conventional human-device in-

teraction approaches rely on physical interfaces, such as buttons, keyboards, mice,

touch screens, and other interfaces. However, such contact interaction via legacy

interfaces requires users to touch these public interfaces, which is inconvenient and

may incur possible infection, especially in the current COVID-19 pandemic. There-

fore, the state-of-art human-IoT device interaction mainly falls into three categories

as follows:

• Vision-enabled interaction: the vision-enabled approaches, e.g., Xbox Kinect,

use cameras to capture hand gestures or body skeletal to perform an interaction.

• Acoustic-enabled interaction: this interaction allows users to interact with IoT

devices using voice commands. Recent works have found that acoustic signals

can also be used to detect human gestures for interaction [86, 97, 96].

• IMU-enabled interaction: such interaction leverages specific devices equipped
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with accelerometers, gyroscopes, and magnetometers to recognize hand ges-

tures or human activities for interaction.

Despite providing a better user experience, these interaction methods have some

drawbacks. Vision-enabled solutions are fundamentally challenged by poor light

conditions and raise privacy concerns by capturing real images. Existing acoustic-

enable approaches provide a convenient and flexible interaction in home scenarios,

but they are difficult to extend into a larger scenario due to the influence of multifar-

ious ambient noise (e.g., traffic noise and construction noise) and multiple speakers.

IMU-enabled interaction requires users to carry dedicated devices, which is still not

widely used due to limited battery life and high hardware costs. More importantly,

these solutions rely on specific sensors and are unsuitable for all IoT devices.

To overcome the above drawbacks, we turn our attention to promising radio fre-

quency (RF) sensing. RF sensing leverages RF signals (e.g., WiFi, RFID, mmWave,

and LoRa) to sense the objects by measuring and analyzing the changes in wireless

signal propagation (e.g., amplitude and phase). It has been exploited to enable vari-

ous innovative applications such as object localization and tracking [39, 66, 10, 102],

gesture detection [1, 14, 9], vibration recovery [115, 46], and vital signal monitoring

[101, 124]. Compared with other interaction methods, RF sensing reuses the deployed

wireless communication technologies and radio-based sensors to enable interaction.

Therefore, it is low-cost and easy to deploy in practice. Moreover, such interaction

is user-friendly that can work in poor light conditions and relieve privacy concerns.

Therefore, in this thesis, we aim to repurpose the deployed RF signals to enhance

current interaction, allowing users to interact with ubiquitous IoT devices via RF

sensing, especially for IoT devices without specific sensors (e.g., cameras, IMU, and

acoustic sensors).
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1.3 Research Scope and Contribution

In this thesis, we study how to allow users to interact with ubiquitous IoT devices

via RF sensing, without any extra deployment costs and hardware modifications.

Specifically, we use smartphones as an assistant to enable users to interact with two

common types of IoT devices: RFID tags and mmWave radars.

Interacting with RFID tags. Although Ultra-High Frequency (UHF) RFID

infrastructure has been widely deployed in stores, regular users cannot directly ben-

efit from it, mainly because they cannot interact with RFID tags to obtain relevant

information without dedicated RFID devices. To bridge the gap between users and

RFID tags, in Chapter 3, the first work proposes ShakeReader that can allow users

to ‘read’ UHF RFID tags.

The key observation that drives the design of ShakeReader is that the rotation of

a non-circular reflector over a single RFID tag will impact its backscattered RFID

signals. Therefore, we build a novel reflector polarization model to analyze this

impact and use the smartphone as the non-circular reflector. In this case, to ‘read’ an

interested tag, a user makes a pre-defined smartphone gesture in front of an interested

tag. During this process, the smartphone gesture causes two different types of data,

RFID measurement data captured by RFID infrastructure and motion sensor data

captured by the user’s smartphone, to change simultaneously. By matching the two

data, our system can pair the interested tag with the corresponding smartphone,

thereby enabling the user to interact with the interested tag.

We implement a prototype of ShakeReader using commodity RFID devices and

multiple smartphones, without any hardware modification to either deployed RFID

systems or smartphone hardware. Experimental results show that ShakeReader can

accurately pair interested tags with their corresponding users with an accuracy of

ą96.3%.
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Interacting with mmWave radar. mmWave radars have been widely installed

in modern vehicles, road infrastructure, robots, and smart home appliances because

of i) unprecedented sensing resolution benefiting from a much shorter wavelength,

and ii) robustness to various weather conditions such as rain, fog, snow, and poor

lighting conditions. However, we argue that the potential of mmWave radars has yet

to be fully explored since we still lack a direct communication channel from objects

to mmWave radars. In Chapter 4, we aim to bring the communication function to

COTS sensing-oriented mmWave radars, so that users can interact with IoT devices

equipped with mmWave radars through smartphone vibrations.

In mmRipple, a smartphone (mmRipple transmitter) modulates its vibrations to

send messages, while a mmWave radar (mmRipple receiver) detects and decodes the

smartphone vibrations using mmWave signals to receive the messages. By doing so,

a smartphone user can not only be passively sensed by a mmWave radar, but also

actively send messages to the radar using her smartphone. Compared to Wi-Fi and

Bluetooth, mmRipple does not require link establishment before direct communica-

tion and is user-friendly, especially for the elderly and disabled. More importantly,

the received message implicitly carries context information (e.g., users’ locations),

which can be sensed by mmWave radars and used for personalized responses.

We implement and evaluate mmRipple using commodity mmWave radars and

different types of smartphones in different practical conditions. Experimental results

show that mmRipple achieves an average vibration pattern recognition accuracy of

98.60% within a 2m communication range, and 97.74% within 3m. The communi-

cation range can be further extended up to 5m with an accuracy of 91.67% with a

line-of-sight (LoS) path. In addition, mmRipple can support multiple object com-

munication and mitigate the impact of human motion.
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1.4 Organization

The thesis consists of six chapters:

• Chapter 1 briefly introduces the research background, highlights the moti-

vation, and then summarizes the research scope and contributions during my

Ph.D. study;

• Chapter 2 reviews the state-of-the-art works of human-IoT device interactions

and discusses their advantages and disadvantages. In specific, the human-

device interaction via RF sensing is highlighted.

• Chapter 3 focuses on human interaction with RFID tags. We propose Shak-

eReader, which allows common users to ‘read’ UHF RFID tags via their smart-

phones. We address multiple technical challenges and implement the prototype

of ShakeReader using commodity devices. Comprehensive evaluation under dif-

ferent conditions is conducted to demonstrate its effectiveness.

• Chapter 4 aims to help smartphone users interact with mmWave radar by

building a communication channel. We present the design of mmRipple, which

exploit the smartphone vibrations to deliver particular messages and enable the

human-mmWave radar interaction. Without any hardware modification to ei-

ther the smartphones or the mmWave radars, we address a series of unique prac-

tical challenges and implement the prototype using commodity smartphones

and mmWave radars. The system performance is evaluated under various ex-

periment settings.

• Chapter 5 points out my future work directions.

• Chapter 6 concludes the thesis.
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Chapter 2

Literature Review

Ubiquitous IoT devices are driving researchers to find effective approaches to facili-

tate human interaction with these devices. Meanwhile, the diversity of IoT devices

prompts a variety of interaction methods. In this chapter, we will first review state-of-

the-art works about human-IoT device interaction and then highlight the interaction

methods enabled by RF sensing.

2.1 Vision-enabled Interaction

Vision sensors (e.g., cameras) are one of the most common sensors deployed in IoT

devices, which can be used to capture human gestures, postures, and activities for

interaction. For example, PenSight [62] adds a downward-facing camera on the top

end of a digital tablet pen to capture the postures of two hands (pen-holding hand

and the resting hand) to enable multiple interactions. Opisthenar [121] allows users

to interact with smartwatches by detecting hand poses and finger tapping using

an embedded wrist camera. HandSee [123] senses the state and movement of the

hand touching or griping on smartphones to enable full hand interaction. VNect [64]

provides a lightweight interaction method by capturing 3D human pose with a single

RGB camera and enables some innovative applications. Xnect [63] further leverages

a single RGB camera and implements a multi-person 3D human pose estimation to
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support multi-person interaction.

Although effective, such vision-based methods require ideal light conditions, which

are hard to guarantee in practice. More importantly, privacy issues prevent these

devices from being widely deployed in home scenarios.

2.2 Acoustic-enabled Interaction

Acoustic-enabled interaction has become a mainstream interaction between common

users and IoT devices since it is friendly and convenient for users. Generally, users

adopt voice commands to interact with these voice-activated IoT devices such as

Amazon Echo. Recent works also capture additional context information in acoustic

signals to provide better customer-oriented service. VoLoc [78] infers user location

using a microphone array to enable spatial interactions. HOE [117] uses two micro-

phone arrays to estimate the user’s head orientation by measuring the voice energy

radiation pattern, allowing users to interact with the device in a specific direction. In

addition, acoustic-enabled IoT devices can exploit acoustic signals to capture hand

gestures to offer more innovative interactions. VSkin [86] uses the smartphone’s

two microphones and a speaker to sense touch gestures on the back of the smart-

phone and enable Back-of-Device interactions (i.e., back-swiping, back-tapping, and

back-scrolling). StruGesture [96] further proposes a fine-grained Back-of-Device in-

teraction by sensing acoustic structure-borne propagation.

Although promising in home scenarios, this interaction relies on clear audio sig-

nals, limiting the interaction range. Multiple speakers and ambient noises (e.g.,

traffic noise and commercial noise) in public places further hinder its wide adoption

in larger scenarios such as smart stores and smart cities.
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2.3 IMU-enabled Interaction

IMU-enabled interaction leverages accelerometers, gyroscopes, magnetometers, and

other devices to capture human movements for interaction. For example, ArmTrak

[79] uses IMU on smartwatches to track the 3D posture of the entire arm to support

arm-based interaction. ActualTouch [80] designs an IMU board attached to a finger-

nail to detect touch status, i.e., touch and non-touch, so that it can enhance touch

interaction experiences. DualRing [49] designs a ring-form input device to track the

user’s hand and fingers, enabling within-hand interaction, hand-to-surface interac-

tion, and hand-to-object interaction. Unlike these works of measuring hand gestures,

HulaMove [111] leverages the IMU of a smartphone placed in a pocket near the waist

to capture eight waist movements, implementing a novel eyes-free and hands-free

input method. Byte.it [89] puts a customized IMU behind the ear to measure the

changes in acceleration and angular velocity caused by teeth clicks and enable a new

type of teeth-clicking interaction.

However, this IMU-enabled interaction is not user-friendly, as it requires users to

carry dedicated IMU devices. Moreover, the limited battery life and the high cost of

these IMU devices prevent their large-scale deployment in practice.

2.4 RF Sensing-enabled Interaction

RF sensing-enabled interaction is regarded as an effective way to complement and

augment human-IoT device interactions, offering distinct advantages over traditional

interactions. It generally exploits already-deployed RF signals (e.g., RFID, Wi-Fi,

LoRa, mmWave) to realize interactions by sensing users’ gestures and movements.

Reusing built-in RF technologies rather than installing dedicated devices, reduces

the deployment cost and empowers a new sensing capability on IoT devices. Light

conditions, ambient noises, and privacy factors hardly influence the interactions via
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RF sensing.

2.4.1 RFID-enabled Interaction

Thanks to low-cost and long-distance inventory, RFID technology has gained a

tremendous amount of attention from the industry, particularly in logistics. In

academia, researchers observe that RFID technology can be used to accurately sense

objects to support two types of interaction: contact-based interaction [26, 60, 84, 52,

114] and contact-free interaction [47, 55, 56, 116, 120].

Contact-based interaction with RFID devices: Contact-based interaction

generally requires users to carry or touch RFID tags and then measures the changes

in tags’ backscattered signals to enable the interaction. RF-IDraw [95] attaches an

RFID tag on the user’s finger to accurately track finger trajectories and transforms

any plane into a virtual touch screen in the air as a gesture-based interface. RF-

Kinect [93] puts RFID tags on the user’s body to enable interaction by tracking the

3D body movement. In addition, RFID tags can also be transformed into a novel

interface. For example, PaperID [43] uses RFID tags as the paper input devices to

control lights, sounds, software, and animations by sensing touch, cover, overlap of

tags. RIO [70] also turns a passive RFID tag directly into a user interface, such as

an input interface and dimmer switch, by capturing touch gestures on the RFID tag.

In IDSense [44], daily objects (e.g., toys, books, and cloth) are retrofitted with RFID

tags to enable multiple interactions such as storytelling. In [94], the authors connect

the chips of two RFID tags using a strip transmission line and implement a robust

touch input sensing device by sensing finger position on this line.

Contact-free interaction with RFID devices: Besides directly affecting the

tag signals by touching, in fact, objects moving in the environment still impact the

backscattered signals of RFID tags. Therefore, we can exploit RFID tags to capture

human movements to complete the interaction in a contact-free manner. For exam-
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ple, RF-finger [92] tracks finger writings and recognizes multi-touch gestures using

tag arrays deployed in the environment. RFIPad [14] uses an array of RFID tags as

a virtual touch screen to track hand gestures, allowing a user to perform in-air hand-

writing for inputs. ReActor [125] exploits machine learning and RFID technology to

achieve contactless gesture recognition (e.g., knock, up, down, push, and pull) with

high accuracy and low recognition latency, which will support novel human-machine

interaction, augmented reality (AR), and ubiquitous computing. TACT [102] builds

a contact-free reflection model for activity recognition (e.g., sitting, walking, falling,

and rotation) and further enables user interaction. RFID Light Bulbs [22] creates

a hybrid RFID reader and smart LED lamp in the form factor of a standard light

bulb to enable various home-scale interactions, including infrastructure monitoring,

location, and guided navigation.

Unlike the previous works, our work is designed to allow the user to interact

directly with the RFID tag to access its information. Specifically, we use a pre-

defined smartphone gesture and leverage the synchronicity of RFID and sensor data

to accurately match an interacted tag to the corresponding smartphone user. As

such, users can ‘read’ UHF RFID tags using their smartphones, without any hardware

modification to either deployed RFID systems or smartphone hardware.

2.4.2 mmWave-enabled Interaction

mmWave radio has emerged as the next-generation wireless communication tech-

nique. Its large bandwidth and small wavelength facilitate fine-grained sensing

[119, 24, 20, 23, 34, 109, 57, 75] and thus enable reasonable interactions [27, 48,

105, 72, 72, 3, 103]. For example, mmKey [27] presents a virtual keyboard as an in-

teractive typing medium to detect both single keystroke and multi-finger concurrent

keystrokes by capturing the mmWave signals reflected off moving fingers. ThuMouse

[48] designs a micro-gesture cursor input that accurately tracks the motion of fingers
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by combining both point clouds from mmWave radar and data augmentation meth-

ods. mTrack [105] can track passive writing objects (e.g., a pen) at sub-centimeter

level accuracy, thanks to the short wavelength and steerable directional beams of

60GHz mmWave signals. In [72], the authors propose a handwriting tracking sys-

tem to detect the moving target and support handwriting interaction in the air.

In addition to tracking these small hand gestures, recent works have also enabled

interaction by capturing human poses and activities. mm-Pose [77] leverage both

CNNs and 3D point cloud generated by mmWave radar to track human skeletal pos-

ture to enable more applications. MilliPose [3] exploits conditional GANs to address

the challenges of existing works, including poor resolution, specularity and variable

reflectivity for facilitating full human body silhouette imaging and 3D pose estima-

tion. mm-Activity [103] mitigates the impact of the multi-path effect and designs a

HARnet network that combines CNN and RNN, so as to implement an accurate and

real-time activity recognition for interaction.

These mmWave-enabled interactions are realized by capturing human gestures

and activities. In practice, however, gestures and activities are dynamic and change-

able. For one specific user, the same gesture may be performed with different dis-

placements, speeds and directions. Moreover, these differences will be exacerbated

across different users. To address this issue and improve system generality, some

works have applied advanced neural networks to mmWave sensing and interaction.

For example, M-Gesture [53] proposes a contactless and fine-grained gesture-based

interaction in the air, which combines mmWave radar and a custom-designed neural

network to capture hand gestures and extract unique features to enable accurate

and person-independent gesture recognition. Unfortunately, their reliance on users’

cooperation for data collection, the extra time cost of network training, and the heav-

ier computation requirements make such interaction approaches more challenging to

adopt widely in everyday daily environments.
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Unlike these works, our second work aims to empower commodity mmWave

radars with communication capability through smartphone vibrations without any

hardware modification to either the radar or the smartphone. Smartphone users

exploit different vibration patterns to convey different messages, while a mmWave

radar receives the messages by detecting and decoding these smartphone vibrations

with mmWave signals. By doing so, a smartphone user can actively send messages to

the IoT devices equipped with mmWave radars using his smartphone. We implement

a more robust interaction by using more stable smartphone vibration patterns than

hand gestures.

2.4.3 WiFi-enabled Interaction

As a cost-effective and pervasive communication technology, Wi-Fi plays an increas-

ingly crucial role in promoting human-IoT device interaction [38, 128, 6, 113, 15, 130,

51]. For example, Wi-Finger [87] leverages fine-grained Channel State Information

(CSI) from commodity Wi-Fi devices and the Dynamic Time Warping (DTW) al-

gorithm to identify eight finger gestures. WiGest [1] measures the changes in Wi-Fi

signal strength to detect hand gestures, including right-left, up-down, infinity and

open-close gestures. Instead of recognizing a small set of pre-defined hand gestures,

FingerDraw [108] enables device-free finger tracking using one Wi-Fi transmitter

and two Wi-Fi receivers. By detecting tiny changes in channel quotient between

two antennas of the receiver, it can mitigate the impact of noise and reconstruct

finger trajectory, e.g., digits, alphabets, and symbols. However, these works are not

position-independent, and their performance relies on the action’s location and ori-

entation. To overcome this challenge, WiAG [90] designs a translation function that

automatically generates virtual gesture samples in all possible locations and orienta-

tions. Therefore, it only requires a few training samples in only one configuration to

implement a position and orientation agnostic gesture recognition system. WiDar3.0
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[126] extracts domain-independent features of human gestures, i.e., velocity pro-

files of gestures from Doppler Frequency Shift (DFS), to enable zero-effect gesture

recognition across different domains, e.g., environments, locations, and orientations.

WiGesture [18] observes a consistent pattern in the moving direction of the same

hand gesture even when performed at different directions and orientations relative

to the transceivers, so that it shifts the observation view from the transceiver view

to the hand-oriented view to find position-independent features, further enabling a

position-free gesture recognition.

2.4.4 Other RF Sensing Technologies for Interaction

In practice, the impulse radio ultra-wideband (IR-UWB) radar and LoRaWAN sen-

sors can also be used to enable interaction. IR-UWB radar typically sends short-term

pulses and then receives the signals reflected by objects to enable contact-free inter-

action. For example, Octopus [11] exploits UWB radar and large-scale MIMO to

build a compact yet salable sensing platform for passive localization, tracking, hu-

man imaging, and interaction. In [4], IR-UWB radars are used to recognize hand

gestures (e.g., left-right swipe, up-down swipe, clockwise rotation) to enable inter-

action. Ghaffar et al. [19] implement a digital menu board IR-UWB radars by

capturing hand-pointing gestures.

In addition, LoRa technology is gaining a tremendous amount of attention owing

to its long communication range and low energy consumption. Some researchers have

leveraged its features to realize long-distance sensing to support various applications

in a wide-area scenario, e.g., smart buildings, smart cities and smart agriculture.

WideSee [10] can localize and track human targets in a building and capture large-

scale human activities, such as walking and waving hands. Palantir [36] utilizes the

ambient LoRa transmitters that already exist on the bicycle to perform fine-grained

long-range cyclist sensing for interaction. Zhang et al. [124] utilize LoRa sensors to

16



capture human respiration and human walking even when the target is 25 meters

away from the LoRa devices. These studies demonstrate the feasibility of wide-area

LoRa sensing to enhance long-distance interaction.

2.5 Summary

Through the literature review, we find that RF sensing has great significance in

IoT applications and has attracted substantial research interests in academia. As

more and more IoT devices are being deployed, how to sufficiently reuse the already-

deployed RF signals to interact with ubiquitous IoT devices has become a crucial

problem. In this thesis, we will focus on two common types of IoT devices, RFID

tags and mmWave radars. Both of them are widely deployed and have a huge market

in practice. RFID tags have been attached to the item labels for automatic identifi-

cation, which are faster and more accurate than barcodes and QR codes. Although

RFIDs bring huge benefits to retailers, RFID tags are not popular as traditional

codes in a customer-oriented market, as there is no effective method to allow cus-

tomers to interact with RFID tags. As such, my first work aims to bridge the gap

between customers and RFID tags, allowing users to ‘read’ RFID tags with smart-

phones. For mmWave radars, the extremely high sensing accuracy and all-weather

operation make them attract significant attention in recent years. The overall mar-

ket is expected to grow to USD 1,410 million by 2028 [17]. Besides the powerful

sensing capability, my second work is to empower mmWave radars with communi-

cation capability, so that a mmWave radar will support two functions, i.e., sensing

and communication, enabling more innovative applications and interactions. Over-

all, this thesis will leverage RF sensing to enhance current interaction, allowing users

to interact with ubiquitous IoT devices in a contact-less and user-friendly manner.
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Chapter 3

Interacting with RFID Tags

3.1 Background

RFID technology has been widely used in retail stores (e.g., UNIQLO [28], Zara

[40], etc.) for logistics, sales tracking and shopping behavior analysis. Compared

with traditional labelling technologies (e.g., QR-code, NFC), UHF RFID is more

attractive to stores, because it allows quick scanning of a large number of RFID-

labelled items, achieving much higher operation efficiency. Leveraging the deployed

RFID infrastructure, merchants can also capture customers’ interests by analyzing

RFID data and optimize marketing strategy to maximize their profits [131]. As such,

more and more stores are expected to deploy UHF RFID systems in the future.

Such a deployed RFID infrastructure, however, does not directly benefit cus-

tomers during shopping. For example, while detailed item information (e.g., coupon,

promotion, price comparisons, matching tips) could be potentially accessed, flexibly

updated, and presented on smartphones, such item-specific information is not avail-

able to customers in physical stores. That is mainly because smartphones are limited

by the unavailability of any direct communication with UHF RFID tags. This chap-

ter aims to enable users to ‘read’ on-the-fly item-specific information by bridging the

gap between the deployed RFID infrastructure and smartphones without making any

hardware modification to either RFID system or smartphones.
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Figure 3.1: Application scenario of ShakeReader. A lady ’reads’ the item-specific
logistic information of a box of milk by making a gesture with her smartphone. An
RFID reader reads RFID tags and measures their phase readings (i.e., Tag Data).
Smartphone measures IMU sensor data (i.e., Sensor Data) and sends to a matching
algorithm. The matching algorithm pairs the smartphone with the corresponding
interacted tag and forwards tag information to the user.

In this chapter, we develop a system named ShakeReader, which allows a user

to interact with an RFID-labelled item by simply performing a pre-defined gesture

(e.g., shaking a smartphone) nearby the interested tag and automatically delivering

item-specific information to the smartphone. Fig. 3.1 illustrates a usage scenario.

Interested in a box of milk, a user makes a pre-defined gesture with her smartphone.

Such a gesture causes changes to backscattered signal of the labelled RFID tag

attached to the milk box. The changes in backscattered signal can be captured by

an RFID reader. Meanwhile, the user’s smartphone detects the smartphone gesture

using motion sensors. By matching the two data capturing the same smartphone

gesture, ShakeReader can deliver the interested tag information to the corresponding

smartphone user.

We note that our objective is not to replace other labelling technologies (e.g.,

QR-code, NFC), but is to provide a technology that could allow users to read the
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readily-deployed UHF tags in stores. We believe this technology can complement

other labelling technologies in practice.

Although useful in practice and simple in concept, the system entails tremendous

technical challenges. First, despite plenty of previous works on RFID and mobile

sensing, it is still challenging to use only one tag, which remains static and is not

attached on the smartphone, for accurately recognizing the smartphone gesture per-

formed nearby. Second, users in stores may influence the gesture detection accuracy

as other human activities may influence backscattered signal of RFID tags. Third,

many users may perform similar gestures near multiple tags in the same store. How

to correctly pair each tag with its corresponding smartphone is challenging in prac-

tice.

In this chapter, we address all the above challenges. First, ShakeReader builds

a reflector polarization model to characterize the backscattered signal of a single

tag caused by smartphone gestures. This reflection model simultaneously captures

backscattered signal propagation and the polarization caused by smartphone reflec-

tion. By leveraging the polarization of reflected signal from smartphones, RFID read-

ers can identify smartphone gestures even with a single tag. Second, we notice that

irrelevant user movement indeed influences the backscattered signal measurement

and may cause detection errors if not handled properly. To address this problem,

ShakeReader pre-defines a smartphone gesture (clockwise and counter-clockwise ro-

tation of smartphone in front of an interested tag) to facilitate the detection. Third,

to pair the interested tag with its corresponding smartphone, ShakeReader leverages

the synchronicity of the changes in RFID data and smartphone sensor data simul-

taneously affected by the same smartphone gesture. The synchronicity allows us to

differentiate the smartphone gestures performed by different users in front of their

interested tags.

The key contributions can be summarized as follows:
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• We present ShakeReader, a system that enables a flexible human-RFID inter-

action using smartphones. ShakeReader allows smartphone users to indirectly

‘read’ UHF RFID tags using their smartphones, without any hardware modi-

fication to either the deployed RFID infrastructure or smartphones.

• We characterize and analyze the reflector polarization and its impact on backscat-

tered signal in RFID systems.

• We propose a new algorithm, called FSS (Fluctuation, Symmetry, and Similarity)

to accurately determine the real interacted tag in the product-intensive envi-

ronment.

• We conduct extensive evaluations on our proposed prototype system using

COTS RFID system. The experimental results show that ShakeReader achieves

ą96.3% matching accuracy.

3.2 Motivation and Problem Definition

3.2.1 UHF RFID Technology and Existing Works

UHF RFID technology in stores. UHF RFID technology has been increasingly

used in retail stores. For example, UNIQLO is currently using UHF RFID tags to

label all the items to improve operational efficiency [28]. As UHF RFID supports

wireless identification from afar, retailers are freed from manually scanning items

one-by-one using handheld QR-code/NFC readers. The UHF RFID technology also

helps reduce customers’ waiting time in the checkout queue, as RFID-labelled items

can be instantly identified with RFID readers at checkout counters. As such, we

expect more stores will deploy UHF RFID systems to improve operational efficiency.

We note that the objective of ShakeReader is not to replace alternative labelling

technologies (e.g., QR-code, NFC) but allow users to read the already-deployed UHF
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RFID tags in stores with their smartphones.

Current smartphones cannot read UHF RFID tags. While NFC tags can

be read by NFC-enabled smartphones, most smartphones cannot read the deployed

UHF RFID tags in stores. In order to wirelessly energize UHF RFID tags, a UHF

reader needs to transmit continuous waves at high transmission power, which may

quickly drain the battery of a smartphone. Although retailers can afford a handheld

UHF reader and re-charge the reader more frequently in stores, customers could be

reluctant to purchase extra hardware to read the UHF tags and concerned about the

battery life of the smartphone.

Existing works. Research works strive to enable smartphones to read UHF

RFID tags. For example, TiFi [7] proposes to read tag IDs using RFID readers

and broadcast tag IDs as Wi-Fi beacons, so that smartphones equipped with Wi-

Fi modules can receive the tag IDs. However, as all tag IDs will be broadcast to

smartphones, it is very challenging to correctly identify the interested tag among all

the tag IDs. Moreover, TiFi is not compatible with COTS RFID readers.

3.2.2 System Architecture and Problem Definition

We assume that all N items are labelled with UHF RFID tags and the tags are

covered by RFID readers. In practice, one reader can connect multiple reader an-

tennas deployed in different locations. The readers continuously interrogate the tags

and measure the backscattered signal of the tags (e.g., phase, signal strength). M

clients in the environment specify their interests in tags by making pre-defined smart-

phone gestures (i.e., clockwise and counter-clockwise rotation of smartphone) near

the interested tags.

Fig. 3.2 illustrates the system overview and dataflow. A client makes a smart-

phone gesture to specify the intention to fetch information about an interested tag.

The server collects tag data from RFID readers and identifies the interested tag
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Figure 3.2: System architecture of ShakeReader.

among many co-existing tags in the environment. The server also records the starting

and finishing timestamps of the smartphone gesture. Along with the coarse-grained

timing information, the server next examines the fine-grained patterns in RFID mea-

surement data caused by smartphone gesture. Such timing information is broadcast

to all clients over a wireless network. Meanwhile, a mobile application running in

client’s smartphone records the motion sensor data and identifies the smartphone

gesture.

The key objective is to pair an interested tag Ti (1 ď i ď N) with its corre-

sponding client Cj (1 ď j ď M) based on RFID and sensor measurements. The

smartphone gesture generates two different data streams: 1) backscattered signal

data in RFID system, and 2) motion sensor data in smartphone, respectively. The

synchronicity of the same event (i.e., smartphone gesture) provides an opportunity

to correctly pair the interested tag with its corresponding smartphone.

3.3 Modelling Reflector Polarization

Referring to Fig. 3.3, we illustrate the signal propagation and polarization of a ro-

tating smartphone. The RFID system uses a circularly-polarized antenna, which
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transmits a combination of vertical waves v and horizontal waves h with the phase

difference of π{2. We use ρT to denote the tag polarized direction, and ρR to de-

note the long-axis direction of the reflector (i.e., smartphone). α, β, and γ represent

different angles between the polarized directions.

Suppose the reader transmits SAptq:

SAptq “ h ¨ cospkt ´ φAq ` v ¨ sinpkt ´ φAq (3.1)

where φA is the constant phase offset induced by the transmitter circuit.

3.3.1 Antenna-Tag-Antenna

Due to the tag polarization [5, 35, 54, 85], the signal emitted by the reader and

arrived at the tag SAÑT ptq will be projected to the direction of the tag polarization

ρT . Thus, we have:

$’’’’’’’’&
’’’’’’’’%

SAÑT ptq “ρT ¨ SApt ´ tAÑT q
“pρT ¨ hq cospkt ´ φAT ´ φA ´ φT q
`pρT ¨ vq sinpkt ´ φAT ´ φA ´ φT q
“ cospαq cospkt ´ φAT ´ φA ´ φT q
` sinpαq sinpkt ´ φAT ´ φA ´ φT q

φAT “2πdAÑT {λ mod 2π

(3.2)

where tAÑT represents the propagation time from the reader antenna to the tag,

φAT represents the phase change corresponding to the signal distance change dAÑT ,

and φT denotes the phase shift caused by the tag’s hardware.

Similarly, the backscattered signal of tag to reader SAÑTÑAptq projects to both

the reader polarized directions h and v. Therefore, we will receive two sub-signals

Sh
AÑTÑAptq and Sv

AÑTÑAptq corresponding to the antenna polarized direction h and

v, respectively. Thus, we have:

#
Sh
AÑTÑAptq “ cospαqSAÑT pt ´ tTÑAq

Sv
AÑTÑAptq “ sinpαqSAÑT pt ´ tTÑAq (3.3)
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Figure 3.3: Reflector polarization model and angle relationship between tag, reflector
and RFID antenna.

The backscattered signal of tag SAÑTÑAptq is the combination of Sh
AÑTÑAptq and

Sv
AÑTÑAptq as follows:

$’’’’’’&
’’’’’’%

SAÑTÑAptq “Sh
AÑTÑAptq ` Sv

AÑTÑApt ´ tπ{2q
“ cosp2αq cospkt ´ 2φAT ´ φ1q
` sinp2αq sinpkt ´ 2φAT ´ φ1q

φAT “2πdAÑT {λ mod 2π

φ1 “φA ` φT ` φ1
A

(3.4)

where φ1
A is the phase offset induced by the receiver circuit of the reader antenna.

φ1 is a constant value related to hardware of tag and reader. As a result, we can

see that the backscattered signal of tag SAÑTÑA is influenced by both the distance

dAÑT and the angle between the tag and antenna α.

Previous works [33, 106] have studied the influence of the tag’s orientation on

phase values (i.e., antenna-tag-antenna). However, the previous models do not con-

sider the reflector polarization and its impact on backscattered signal.

3.3.2 Modelling Reflector Polarization

To further characterize the backscattered signal in our scenario, we consider a sce-

nario with a reflector (i.e., smartphone). The signal emitted by the reader and
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arriving at the reflector SAÑRptq is:

$’’’&
’’’%

SAÑRptq “ρR ¨ SApt ´ tAÑRq
“ cospβq cospkt ´ φAR ´ φA ´ φRq
` sinpβq sinpkt ´ φAR ´ φA ´ φRq

φAR “ 2πdAÑR{λ mod 2π

(3.5)

where φR is the phase offset caused by the reflector.

Then SAÑRptq will be reflected to the tag and the signal SAÑRÑT ptq can be

expressed as:

SAÑRÑT ptq “ cospγqSAÑRpt ´ tRÑT q (3.6)

SAÑRÑT ptq will arrive at the reader antenna and project on two antenna’s polar-

ization direction Sh
AÑRÑTÑAptq and Sv

AÑRÑTÑAptq as follows:

#
Sh
AÑRÑTÑAptq “ cospαqSAÑRÑT pt ´ tTÑAq

Sv
AÑRÑTÑAptq “ sinpαqSAÑRÑT pt ´ tTÑAq (3.7)

Thus, the final arrived signal at the reader SAÑRÑTÑAptq can be formulated as

follows: $’’’’’’&
’’’’’’%

SAÑRÑTÑAptq “Sh
AÑRÑTÑAptq ` Sv

AÑRÑTÑApt ´ tπ{2q
“ cospα ` βq cospγq cospkt ´ φARTA ´ φ2q
` sinpα ` βq cospγq sinpkt ´ φARTA ´ φ2q

φARTA “2πdAÑRÑTÑA{λ mod 2π

φ2 “φA ` φR ` φT ` φ1
A

(3.8)

From Eq.(3.8), we observe that the backscattered signal SAÑRÑTÑA is a function of

the distance and the relative angles among reader, tag and reflector.

Similarly, the received signal propagated along another path SAÑTÑRÑA can be

modelled. Note that SAÑRÑTÑA and SAÑTÑRÑA are reciprocal with the same prop-

agation distance and the same polarization directions.
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Finally, the received signal of antenna Rptq can be modelled:

$’’’’’’’’’’’’’&
’’’’’’’’’’’’’%

Rptq “SAÑTÑAptq ` SAÑRÑTÑAptq ` SAÑTÑRÑAptq
“ cospkt ´ 2φAT ´ φ1 ´ 2αqqq
`2 cos pγqqqcospkt ´ φARTA ´ φ2 ´ α ´ βq

φAT “2πdAÑT {λ mod 2π

φARTA “2πdAÑRÑTÑA{λ mod 2π

φ1 “φA ` φT ` φ1
A

φ2 “φA ` φR ` φT ` φ1
A

γ “|β ´ α|

(3.9)

Key observation: The distance and the polarization directions of tag, reflector,

and antenna jointly affect the received backscattered signal.

We conduct an experiment to validate our proposed reflector polarization model.

In the experiment, we ensure that both tag and reader antenna are fixed and only

rotate the reflector (i.e., change of β) for one circle. Specifically, we use an iPhone 7

(67.1mmˆ138.3mm) as a reflector to rotate 360 degrees counter-clockwise at 5cm in

front of the tag. The distance between the tag and reader’s antenna is 15cm and the

angle between them is 0 (i.e., α “ 0). The result is shown in Fig. 3.4. We observe that

the phase changes with the rotation of the reflector and the changes of the measured

phases are consistent with the theoretical phases. Note that the overall deviations of

the phase values are introduced by the unknown parameters φ1 and φ2 in Eq.(3.9).
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The experiment result demonstrates the validity of our reflector polarization model,

which can be applied when capturing and differentiating a pre-defined gesture from

other movements nearby.

3.4 System Design

In this section, we first design an interactive smartphone gesture between smart-

phones and RFID tags, and then elaborate our three key functional components:

Component-1) RFID based smartphone gesture detection in server; Component-2)

motion sensor based smartphone gesture detection in smartphone; and Component-3)

synchronicity based matching and pairing for interested tags and their corresponding

smartphones.

3.4.1 Smartphone Gesture

Based on our reflector polarization model, we design a simple yet effective pre-defined

smartphone gesture to specify user’s interest in a tag, as shown in Fig. 3.5. The user

first holds the smartphone horizontally then approaches the interested tag. Next, the

user rotates the smartphone 180 degrees clockwise rotation followed by a symmetric

180 degrees counter-clockwise rotation and finally departs from the tag. During the

entire interaction, the phone should be held vertically to interact with the tag and the

direction of the phone’s Z-axis should point straight ahead and remain perpendicular

to the direction of gravity. Note that the pre-defined gesture does not require strict

rotation angle.

To visualize the changes in RFID data as well as the sensor data caused by the

gesture, we ask a volunteer to perform a smartphone gesture and measure both RFID

data and motion sensor data in Fig. 3.6.

We observe that the phase measurements remain flat before the smartphone ges-

ture and start to fluctuate during the interaction. The phase changes caused by the
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Figure 3.6: Phase measurements (upper panel) and sensor data (lower panel) during
the interaction.

interaction are divided into three periods: approach, rotation and departure. On the

other hand, when approaching and leaving, acceleration readings in Y-axis are very

small, since Y-axis is mostly perpendicular to gravity. As a user rotates the phone,

the acceleration readings clearly exhibit two increasing-and-decreasing patterns. In

the following, we first focus on the RFID data and analyze the phase changes.
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3.4.2 RFID based Smartphone Gesture Detection

Approach and Departure Patterns

As shown in Fig. 3.6, when the phone is far away from the tag, the phase values

remain stable. As the distance does not change during this period, the phase readings

remain almost constant subject to small noise. Once the phone starts to approach or

depart from the tag, the reflected signal from the smartphone will affect the phase

measurements. Thus, the phase measurements of the interested tag will fluctuate

with the distance change between the tag and the phone.

More importantly, as the phone approaches, the backscattered signal exhibits

the specific approach pattern and its fluctuation range (i.e., the difference between

the local maximum and the local minimum of phase readings) is becoming larger

because the reflected signal strength from the smartphone increases. In contrast, the

fluctuation range will decrease when the phone departs.

To help better understand the approach and departure patterns, we take the

approach gesture as an example and illustrate in Fig. 3.7. When the smartphone

approaches the tag, the received signal consists of two components: the static com-

ponent
ÝÝÑ
OC, and the dynamic component

ÝÝÑ
CA with varying phase and signal strength.

In this process, the static component
ÝÝÑ
OC keeps unchanged because both the reader

antenna and tag are static. As the length of the reflection path dAÑRÑT (Antenna-

Reflector-Tag) decreases continuously, the signal strength of the dynamic component
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increases while the phase rotates, resulting in the spiral changing pattern of
ÝÝÑ
CA (i.e.,

blue spiral curve in Fig. 3.7). Therefore, the measured combined signal (red arrow

ÝÝÑ
OA) will fluctuate around

ÝÝÑ
OC with an increasing oscillation radius [102]. As a result,

the fluctuation range of the approach pattern exhibits an increasing trend. Similarly,

when the reflector moves away from the tag, the peaks of the fluctuation will decrease

gradually.

Based on this observation, we measure the standard deviation of phase readings

to detect the start and the end of a gesture. In particular, we apply a moving

window to scan the phase measurements and continuously calculate the standard

deviation of the phase measurement in the window. The standard deviation will

remain small without gestures. When the standard deviations of three consecutive

windows exceed a threshold, we consider that one gesture starts to affect the tag. If

the standard deviations of three consecutive windows are below the threshold and

the phase readings return to the original phase readings measured before the gesture,

we consider the gesture to be finished. We record the starting point timestamp T RFID
start

and finishing point timestamp T RFID
end as shown in Fig. 3.8(a). Based on the empirical

measurement, we set the size of moving window in this step to 151 samples (about 0.8

seconds) to make a balance between processing time and accuracy. For the threshold,

we empirically set it to 0.21, which is approximately 15 times the average standard

deviation of the phase readings from 100 collected traces without gestures.

However, we note that dynamics in the environment are likely to cause various

changes in the tag phase readings. In order to accurately detect approach and de-

parture patterns, we first find the local maximums and local minimums of phase

readings, then measure the differences between two adjacent local maximum and lo-

cal minimum defined as fluctuation range. If there are two or more consecutive

fluctuations and the fluctuation range exhibits an increasing trend (as illustrated in

Fig.3.8(b)), we consider that the phone is approaching. In contrast, the continuous
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decreases in the fluctuation range indicate that the smartphone is departing from

the tag. In practice, some movements may cause similar phase changing patterns as

in approach and departure events. In the following, we design a unique smartphone

gesture to facilitate the detection and improve the detection robustness.

Rotation Pattern

To improve the detection robustness against the dynamics and background noise in

the environment, we define a smartphone gesture (clockwise and counter-clockwise

rotation of smartphone). As analyzed in Section 3.3, smartphone polarization can

affect the received backscattered signal. In Fig. 3.6, we have an interesting observa-

tion.

Observation: Phase changes caused by the defined smartphone gesture are

generally symmetric.

We observe that the phase reading shows an ‘M’ or ‘W’ shape because the smart-

phone gesture is symmetrical. As a result, RFID readers can leverage such prior

knowledge and detect a pre-defined smartphone gesture. Note that such a symmet-

ric pattern in our pre-defined gesture can be used to disambiguate human activities

(i.e., human movement), which do not generate symmetric patterns.

Although the rotation angles of the clockwise and counter-clockwise are gener-

ally symmetrical, the rotation time and speed can be slightly different, resulting

in misaligned phase waveforms. To accurately detect the symmetric point and use
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that as the timing information, we adopt the Dynamic Time Warping (DTW) al-

gorithm to match the slightly misaligned phase waveforms measured in clockwise

and counter-clockwise rotations. We first select the local maximums and local

minimums on phase readings of rotation as a candidate set of symmetric points

tSP1, SP2, ¨ ¨ ¨ , SPk, ¨ ¨ ¨ , SPKu. Next, we divide the tag signals into two parts: clock-
wise signal θCW pkq before the symmetric point SPk and counter-clockwise signal

θCCW pkq after the symmetric point as shown in Fig.3.8(c). Then, we use DTW algo-

rithm to calculate the distance between the θCW pkq and the flipped counter-clockwise

signal, flippθCCW pkqq:

Distancepkq “ DTW pθCW pkq, f lippθCCW pkqqq, k P r1, Ks (3.10)

The minimum distance indicates the highest similarity of θCW pkq and flippθCCW pkqq.
We notice that the time difference between clockwise and counter-clockwise rotation

of smartphone performed by users are generally less than 1 second. Therefore, the

DTW algorithm in our experiment tolerates clockwise and counter-clockwise rotation

waveforms with a maximum misalignment of 1 second. As a result, we can find the

true symmetric point and filter out noise in the environment (e.g., user movement,

random signal fluctuation).

Timing Information Extraction on Tag Signal

Based on the observations, we can extract three key timing information on the

backscattered signal of RFID tag Ti (1 ď i ď N) as shown in Fig. 3.8(d):

• Absolute timestamp of symmetric point T RFID
sym pTiq.

• Clockwise rotation duration DRFID
CW pTiq: the difference between symmetric point

timestamp and starting point timestamp T RFID
startpTiq, i.e., DRFID

CW pTiq “ T RFID
sym pTiq´

T RFID
startpTiq.
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• Counter-clockwise rotation duration DRFID
CCW pTiq: the difference between sym-

metric point timestamp and finishing point timestamp T RFID
end pTiq, i.e.,DRFID

CCW pTiq “
T RFID
end pTiq ´ T RFID

sym pTiq.

3.4.3 Motion Sensor based Smartphone Gesture Detection

After detecting the gesture from the RFID data, we need to perform gesture detection

on user’s smartphone and pair the smartphone to the corresponding tag.

Smartphone Gesture Detection

In the above discussion, we only focus on the acceleration readings in the Y-axis

for concise presentation. In practice, X-axis and Z-axis acceleration readings can

complement and enhance the gesture detection as shown in Fig. 3.9. For comparison,

we also plot the acceleration readings from various human activities (e.g., walking,

running, and picking up and putting down) in Fig. 3.10. We notice acceleration

readings exhibit different patterns when a user performs our pre-defined gesture and

other daily activities.

Since the phone is held horizontally in the initial state, we observe that the

acceleration readings in Y-axis and Z-axis are close to zero, and the acceleration

readings in X-axis are close to the gravitational acceleration 9.8m2{s. Therefore, we
can determine the initial state of our defined gesture by measuring the initial pattern

of acceleration readings.

Next, we need to detect the approach pattern and departure pattern. We find

when the phone starts moving toward the tag along the Z-axis, the Z-axis accel-

eration readings will increase from 0. To detect the starting and finishing time of

smartphone gesture, we calculate the standard deviations of Z-axis readings in each

moving window. If the standard deviations exceed a threshold for three consecutive

windows, we consider that the smartphone is approaching the tag and departing
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when the standard deviations drop below the threshold for three consecutive win-

dows. When a user finishes this interaction gesture, the acceleration readings in all

three axes will return to the initial state. Meanwhile, we record the starting point

timestamp T Phone
start and finishing point timestamp T Phone

end . In our experiments, the size

of moving window is 0.8 seconds (80 samples at the fixed sensor sampling rate of

100Hz), which is consistent with the threshold for RFID-based gesture detection in

Section 4.2.1. In addition, to find a reliable threshold for detecting the T Phone
start and

T Phone
end , we first measure that the average standard deviation of the Z-axis readings

from 100 collected traces in the initial state is 0.19. Based on the experimental

observations, we set the threshold to 0.57, which is 3 times the measured average

value.

Then, we identify smartphone rotation by measuring the acceleration readings in

Y-axis. In the initial state, the acceleration readings in Y-axis are expected to be

small and stable. In contrast, once the phone starts rotation, its readings change

from 0 to 9.8m2{s. As the user rotates clockwise and then counter-clockwise, the

acceleration readings in Y-axis exhibit two peaks. Hence, we search for local maxi-

mum values and local minimum values and extract the key timing information. Our

observation is that the smartphone gesture is symmetric, and the symmetric point is

the local minimum (corresponding to the horizontal pose after clock-wise rotation)

between two local maximums (corresponding to the two vertical poses during the

clock-wise and counter clock-wise rotations, respectively). As a result, we can iden-

tify the symmetric point Psym: the local minimum between two peaks and its Y-axis

acceleration reading near zero. In this way, we obtain the timestamp of symmetric

point T Phone
sym .
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Figure 3.9: The changes of acceleration readings in the x, y, and z axes during the
interaction.

Timing Information Extraction on Sensor Data

Based on the above observation, Component-2 detects the pre-defined smartphone

gesture and extracts the timing information for each client smartphone Cj (1 ď j ď
M) as follows.

• Absolute timestamp of symmetric point T Phone
sym pCjq.

• Clockwise rotation duration DPhone
CW pCjq: the difference between symmetric

point timestamp and starting point timestamp, i.e., DPhone
CW pCjq “ T Phone

sym pCjq ´
T Phone
start pCjq.

• Counter-clockwise rotation duration DPhone
CCW : the difference between symmetric

point timestamp and finishing point timestamp T Phone
end pCjq, i.e., DPhone

CCW pCjq “
T Phone
end pCjq ´ T Phone

sym pCjq.

3.4.4 Synchronicity based Matching and Pairing

As the backscattered signal and the sensor data are simultaneously affected by the

same gesture, we leverage the synchronicity of the signals to pair the interacted tag

and the corresponding smartphone. Instead of mapping all the data points in two

data streams, we only match backscattered signal and the sensor data using the

extracted key time information to reduce computation time and network traffic.
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Figure 3.10: The changes of acceleration reading from common daily activities.

We design a sequence matching algorithm based on the following three key ob-

servations: (1) The rotation gesture is generally performed within a certain period

P (e.g., 5s); (2) Different users may generate different key timing information; and

(3) The key timing information of backscattered signal and sensor data caused by

the same gesture are synchronized. Based on these observations, we match tag Ti

(1 ď i ď N) with client Cj (1 ď j ď M) (denoted as Ti ÞÑ Cj ), if all following

conditions are satisfied:

• C1: DRFID
CW pTiq ` DRFID

CCW pTiq ď P ,

• C2: DPhone
CW pCjq ` DPhone

CCW pCjq ď P

• C3: T RFID
sym pTiq “ T Phone

sym pCjq

• C4: DRFID
CW pTiq “ DPhone

CW pCjq

• C5: DRFID
CCW pTiq “ DPhone

CCW pCjq

However, such strict timing requirements may not be satisfied in practice. For ex-

ample, due to the ALOHA protocol of RFID system as well as the different sampling

rates of the backscattered signal and the sensor data, the RFID signal and sensor

readings may not be exactly matched. To address this practical issue, we relax the
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conditions (C3 - C5) by tolerating a small mismatch δ in the time domain. For

example, we relax C3 as follows:

• Relaxed C3: |T RFID
sym pTiq ´ T Phone

sym pCjq| ď δ

We note that a smaller δ indicates a tighter timing requirement, which can reduce

the possibility of incorrectly matching two streams generated by different gestures

but meanwhile increase the chance of missing two streams originated by the same

gesture. We empirically tune δ and set δ to 400ms.

Why do we extract three key timing information for matching? Fig. 3.11 plots

the phase readings when three volunteers perform smartphone gestures in front of

their interested tags concurrently. We notice that the timestamps of three symmetric

points can be very close in time, making it hard to differentiate. Fortunately, as users

tend to perform gestures differently (e.g., different speed, different duration) [100],

the clockwise and the counter-clockwise duration can be different in practice. For

example, the gesture duration of user 1 is shorter than that of user 2. Therefore, we

extract three key timing information to differentiate users and improve robustness.

As the network traffic involved in transmitting the timing information as well as

tag ID is small, the server can encapsulate the timing information of RFID data and

its tag ID and broadcast a message to all clients through wireless communication.

As a matter of fact, a smartphone can be connected to the Internet via various

wireless networks (e.g., Wi-Fi, Bluetooth, cellular, etc.). Our system running in the
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Figure 3.12: Shape and size of RFID tags and smartphone.

application layer does not have a specific requirement on the networking technologies

in the lower layers. In practice, messages can be transmitted using sockets from a

server to a mobile client in a user’s smartphone. Receiving a broadcast packet,

clients test the above matching conditions if the client’s smartphone has detected a

smartphone gesture recently. If no smartphone gesture has been detected, a client

can simply drop the broadcast packet. If all the above conditions are satisfied, the

client can read the tag ID from the broadcast packet, and fetch more information

about the tag from the server using the tag ID as an index. The computation

overhead involved in testing the above conditions is very low and can be afforded by

smartphones.

3.5 Cope with More Practical Factors

In practice, many factors may introduce errors. Among these factors, tag-to-tag

distance and reading rates for target tags are the two crucial ones. In this section, we

propose some solutions to mitigate their impacts on the performance of ShakeReader.
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3.5.1 Interaction in a Product-intensive Environment

The Impact of Adjacent Tags

To reduce costs and increase profits, products in the store are usually placed densely.

In the product-intensive environment, our system can be influenced by the adjacent

tag-labelled products. As a result, our system may mis-detect the neighboring tags

as the interested tag.

To visualize the effects of the adjacent tags, we place three tags (Impinj E53) in

a straight line with the same tag-to-tag distance and their order from left to right

is Tag 1, Tag 2, and Tag 3. A volunteer holds a smartphone (iPhone 7) to perform

the pre-defined gesture in front of Tag 2 (target tag). The shape and size of RFID

tags and the smartphone in this experiment are shown in Fig. 3.12. We vary the tag-

to-tag distance (the distance between the center points of tags) from 5cm to 15cm

to observe the signal changes of these three tags. Note that when the tag-to-tag

distance is 5cm, the spacing distance of two tags is only 0.2cm and most parts of

adjacent tags are under the coverage of the smartphone during interaction.

Fig. 3.13 plots the phase measurements of all three tags at different tag-to-tag

distances. The phase measurements of non-interacted tags (i.e., Tag 1 and Tag

3) indeed exhibit similar fluctuation patterns to that of the interacted tag (i.e.,

Tag 2). We mitigate the impact of adjacent tags based on the following three key

observations.

Observation 1: The phase fluctuation of adjacent tags decreases as the tag-

to-tag distance increases.

As shown in Fig. 3.13, as the tag-to-tag distance increases, the phase fluctuation

of adjacent tags becomes less drastic compared to the interacted tag. This is because

the signal strength of reflected signal on the adjacent tags becomes weaker as the

distance increases. Therefore, we can find the interacted tag based on the fluctuation
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Figure 3.13: The phase changes of the interacted tag and its adjacent tags.
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Figure 3.14: Comparison of three metrics: Fluctuation, Symmetry, and Similarity.

of the phase measurements.

To formulate the fluctuation of the signal, we measure the range of the signal

phase, namely Fluctuation, as follows:

F pTiq “ maxpθpTiqq ´ minpθpTiqq (3.11)

where θpTiq is the phase measurement of tag Ti caused by smartphone gesture, where

i P r1, N s and N is the number of tags.

However, we observe that signal phase exhibits similar fluctuation under a closer

tag-to-tag distance, i.e., Tag 1 and Tag 2 in Fig. 3.13(a), due to similar and strong
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signal strength reflected from the smartphone. Therefore, only using the fluctuation

of the signal phase may not be able to detect the interacted tag under an extremely

product-intensive environment.

Observation 2: The phase changes of adjacent tags show a less symmetric

pattern when the tag-to-tag distance is small.

As the tag-to-tag distance increases, the influence of smartphone gesture on ad-

jacent tags becomes weaker, which results in smaller phase changes on adjacent tags

(e.g., Tag 3 in Fig. 3.13(c)). Such a flat pattern may result in higher symmetry of ad-

jacent tags than that of the interacted tag. In contrast, when the tag-to-tag distance

becomes smaller, the signal phase of the adjacent tag (e.g., Tag 3 in Fig. 3.13(a))

presents a less symmetric pattern compared to the interacted Tag 2. This is because

users perform a symmetric gesture right in front of an interested tag (i.e., Tag 2)

instead of adjacent tags. Therefore, when the tag-to-tag distance is relatively small,

symmetry can be utilized to distinguish the interacted tag from the adjacent tags as

well.

Symmetry represents the similarity of clockwise signal and flipped counter-clockwise

signal induced by the symmetric gesture. Refer to the Eq. 3.10, a smaller distance

means that these two parts of signal have a higher symmetry. To measure Symmetry,

we reverse the distance value of Eq. 3.10 by multiplying ´1. As a result, the tag

with the maximum value of Symmetry is most likely the tag interacted by users. The

Symmetry can be expressed as:

SympTiq “ maxp´1 ˚ DistancepTiqq (3.12)

However, we observe that only using the above two metrics may still be difficult to

find the interacted tag. For example in Fig. 3.13(a), we cannot determine whether

the interacted tag is Tag 1 with larger Fluctuation or Tag 2 with higher Symmetry.

Observation 3: Compared with adjacent tags, the phase changes share higher
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similarity among the interacted tags.

Our system requires users to perform a pre-defined and fixed smartphone gesture

to interact with their interested tags. During the interaction, interacted tags are

within the shadow of the smartphone. As a result, the influence on the interacted

tag signal is consistent. In contrast, only parts of the antenna of the adjacent tags are

affected by the smartphone gesture. As a result, the similarity among the interacted

tags, such as Tag 2 in Fig. 3.13, is higher than that of the adjacent tags. Therefore,

Similarity can be regarded as an effective measurement to detect interacted tags.

Based on this observation, we select a phase changes caused by the pre-defined

gesture as a template, and calculate the Similarity between the phase changes of

possible tags and the template, which can be regarded as an effective metric to

complement other two metrics. Similarity can be formulated as:

SimpTiq “ maxp´1 ˚ DTW pθpTiq, θptemplateqqq (3.13)

where θptemplateq is the phase measurement of the template. Note that we also

adopt the Dynamic Time Warping (DTW) algorithm to calculate the similarity, since

it allows the elastic transformation of time series to calculate the similarity between

signals with different lengths. In addition, experiments show that the phase changes

caused by our pre-defined gesture for different tags and users are relatively consistent.

Therefore, we only need to collect one template even for multiple users.

Determine the Interacted Tags

To compare these different types of metrics, we utilize min-max normalization to

transfer all three metrics of F pTiq, SympTiq and SimpTiq into a unified range [0,1].

The corresponding normalized metrics, F 1pTiq, Sym1pTiq and Sim1pTiq are denoted

as:

F 1pTiq “ F pTiq ´ minpF q
maxpF q ´ minpF q (3.14)
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Sym1pTiq “ SympTiq ´ minpSymq
maxpSymq ´ minpSymq (3.15)

Sim1pTiq “ SimpTiq ´ minpSimq
maxpSimq ´ minpSimq (3.16)

Fig. 3.14 plots the three metrics of corresponding tag signals in Fig. 3.13. We

observe that only using a single metric cannot distinguish the interacted tag from

others. For example, in a sparse environment in Fig. 3.14(c), the value of Fluctuation

of interacted Tag 2 is larger than that of adjacent Tag 1 and Tag 3, while in densely

deployed scenarios in Fig. 3.14(a), the value of Fluctuation of Tag 2 is smaller than

that of Tag 1. Similarly, the value of Symmetry can be used to find the interacted tag

(i.e., Tag 2) from adjacent tags in Fig. 3.14(b), while it fails to detect the interacted

tag in Fig. 3.14(c). The Similarity can serve as a complementary metric of the other

two metrics to find the target tag. For example, when Tag 1 has larger Fluctuation

and Tag 2 has higher Symmetry in Fig. 3.14(a), Similarity can determine that Tag

2 is the interacted tag instead of the adjacent Tag 1.

Therefore, we synthetically combine these three metrics and define a joint metric

M to rank all potential tags and determine the interacted tag with the highest rank.

The joint metric M can be formulated as

MpTiq “ w1F
1pTiq ` w2Sym

1pTiq ` w3Sim
1pTiq (3.17)

In practice, we empirically set the weights w1 “ 0.3, w2 “ 0.2, and w3 “ 0.5,

respectively. We assign a higher weight to Similarity because the impact of pre-

defined gesture on the interacted tag are relatively consistent among different tags

and users.

The overview of the interacted tag detection algorithm is shown in Algorithm. 3.1,

named FSS algorithm (Fluctuation, Symmetry, and Similarity). Specifically, we sort

the joint metric M in descending order, and then get the order set of potential tags

O. A tag with a higher M is more likely to be interacted. In practice, we can push
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Algorithm 3.1 Determining the interacted tag and the order of potential tags.

Input:
The set of phase measurements from potential tags, θpT1q, θpT2q, ..., θpTiq, ...,
θpTNq;
The phase measurement of the template, θptemplateq;

Output:
The interacted tag, TO1 ;
The order set about interacted probability from high to low, O “
tO1,O2, ...,ONu;

1: for each tag Ti do
2: calculate Fluctuation F pTiq; {Eq. 3.11}
3: calculate Symmetry SympTiq; {Eq. 3.12}
4: calculate Similarity SimpTiq; {Eq. 3.13}
5: end for
6: for each tag Ti do
7: normalize Fluctuation F 1pTiq; {Eq. 3.14}
8: normalize Symmetry Sym1pTiq; {Eq. 3.15}
9: normalize Similarity Sim1pTiq; {Eq. 3.16}
10: end for
11: for each tag Ti do
12: calculate joint metric MpTiq; {Eq. 3.17}
13: end for
14: O = Order( M,‘descending’); {descending order of M}
15: return TO1 , O;

the information of Top-k tags to users to prevent information missing. We evaluate

the performance of the FSS algorithm with experiments in Section. 3.6.

3.5.2 Adaptive Reading Scheme

In practice, the reading rate of the commodity RFID reader is limited. A low sam-

pling rate in a tag-intensive environment may influence our system performance.

To solve this problem, we design an adaptive reading scheme to focus on potential

interacted tags while filtering out other co-existing tags in the environment.

Specifically, the adaptive reading scheme includes two reading modes: normal

reading mode and selective reading mode. In the normal reading mode, the RFID

reader directly sends the QUERY command to inventory all tags. By analyzing the
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Figure 3.15: The adaptive reading scheme.

received tag information (e.g., phase and RSS changes), we can find the potential

tags that are likely being interacted by users and record their IDs.

After detecting these potential interacted tags, the adaptive reading scheme will

switch to the selective reading mode and set these potential interacted tags as target

tags. The selective reading mode consists of two following steps: (1) The RFID reader

first sends the SELECT command to select potential tags, which is compatible with

and supported by the EPC standard. (2) Then the RFID reader sends the QUERY

command to only read the potential tags which can effectively increase the reading

rates of potential tags.

We conduct an experiment to test the feasibility of the adaptive reading scheme.

We use an RFID reader (Impinj R420) to query 30 RFID tags, which include five

different types of tags (Impinj E53, Impinj H47, Alien ALN-9640, Alien ALN-9662

and Alien ALN-9629). One antenna is connected with the reader. We first adopt

the normal reading mode and send QUERY commands to read all 30 tags. Then,

we switch to the selective reading mode and read 3 potential tags out of the 30 tags.

Fig. 3.15 plots the individual reading rates in the two reading modes and the

baseline is 30 reads/s. In the normal reading mode, we see that the individual

reading rate of all 30 tags is about 24 reads/s, which lower than the baseline. In

contrast, after adopting the selective reading mode, the individual reading rate of
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target tags is significantly increased to about 129 reads/s, which is 5 times larger

than that of normal reading mode. Therefore, we can utilize this adaptive reading

scheme to select potential tags and increase their reading rates in product-intensive

environments.

3.6 Implementation and Evaluation

We implement a prototype of ShakeReader using the COTS RFID system and con-

duct extensive experiments to evaluate its performance in this section.

Hardware: As shown in Fig. 3.16, our prototype system consists of an Impinj

R420 RFID reader, which is connected to a circularly-polarized directional antenna.

We adopt the Network Time Protocol (NTP) to synchronize the reader’s time [42]

with smartphones. Three different types of RFID tags (i.e., Impinj E53, Alien ALN-

9640, and Impinj H47) are tested in our experiments. A PC with Intel Core i7-10510U

2.30GHz CPU and 16GB RAM is used as the server to control the reader and process

the received RFID data. We test three popular smartphones including an iPhone

7 with aluminum back cover, a HUAWEI P20 Pro with glass back cover, and an

iPhone 7 with a common soft rubber case.

Data collection: Our server adopts the LLRP (Low-Level Reader Protocol)

to communicate with the RFID reader and the software is implemented using C#.

We use MATLAB Mobile Apps [61] to collect sensor data and the data processing

algorithm is implemented using MATLAB.

Experiment setting: We conduct experiments in an office environment with a

size of 4m ˆ 10m and a bookshelf scenario in another office to evaluate the perfor-

mance of ShakeReader. By default, the reader uses its maximum transmit power at

32.5dBm and works on 920.625MHz. In our experiment, the reading rate is about

260 tags/s. On the client side, we adopt the sampling rate of 100Hz to collect data
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Figure 3.16: Experimental environment and devices.

from the smartphone’s accelerometer. The default configuration is in Table 3.1.

Metrics: For each component, we mainly focus on detection accuracy. We adopt

three metrics, i.e., Accuracy, False Accept Rate (FAR) and False Reject Rate (FRR)

to evaluate the overall performance of the system. Accuracy is defined as the rate

that one tag is correctly matched to its corresponding client. FAR is the rate that

ShakeReader incorrectly accepts the uninterested tag information and FRR is the

rate that ShakeReader incorrectly rejects the interacted tag information.

Table 3.1: Default RFID configuration in ShakeReader

Parameter Status

Channel List Channel 1, 920.625MHz
Transmit Power 32.5dBm
Reader Mode Max throughput
Search Mode Dual Target
Sampling rate of sensor 100Hz

3.6.1 RFID based Smartphone Gesture Detection

Component-1 detects smartphone gestures based on the phase measurements of

RFID tags. In the following, we consider various factors that may affect the de-

tection accuracy.
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Impact of smartphone-to-tag distance. To evaluate the effective interaction

range of ShakeReader, we vary the smartphone-to-tag distance from 2cm to 10cm.

A volunteer is asked to perform the smartphone gesture 30 times at each interaction

distance.

Fig. 3.17 shows the detection accuracy at different distances. The smartphone

gestures can be detected with an average accuracy over 95%. In the figure, we see that

within interaction distance of 10cm, the gesture detection accuracy for Impinj E53

and Impinj H47 tags keeps stable and exceeds 95% at all tag-smartphone distances.

The interaction with ALN-9640 tag exhibits a lower detection accuracy of around

90% and decreases to 80% at the distance of 10cm. This is because the ALN-9640 tag

is not fully covered by the smartphone, resulting in an asymmetric pattern during

smartphone rotation. Therefore, we choose the Impinj E53 as our default RFID tag

in the next experiments.

We note that a longer distance between the tag and the smartphone results in

weaker reflected signals. As such, the smartphone may not cause sufficient impact on

the backscattered signal, which degrades the detection accuracy. Therefore, to ‘read’
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Figure 3.18: Impact of different reflective materials.

a tag, a user needs to make a smartphone gesture within 10cm. More importantly,

the result implies that a smartphone gesture will not cause ambiguity in identifying

the interacted tags as long as the interacted ones are separated from their near tags

by 10cm. As such, we do not intend to increase smartphone-to-tag distance in the

current implementation. Possible approaches to increase the distance are to increase

the transmission power of readers, and decrease the distance between antenna and

smartphone, thereby increasing reflected signals from smartphones.

Impact of smartphone materials. Different smartphones may have different

back cover materials. The reflected signal is impacted by the reflection coefficient

of the material. A higher reflection coefficient of the reflector can reflect more radio

waves. To test the impact of smartphone materials, we conduct an experiment

using 3 smartphones with different materials: an iPhone 7 with metal back cover,

a HUAWEI P20 Pro with a glass back cover and an iPhone 7 with a soft rubber

case. A volunteer performs the pre-defined smartphone gesture at 10cm interaction

distance. Each phone is used to interact with 3 different tags 30 times.

Fig. 3.18 shows gesture detection accuracy when using smartphones with different
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Figure 3.19: Impact of tag-to-reader distances.

materials to interact with the tag. We observe that almost all the gestures performed

using smartphones with different back cover materials can be detected. We note that

along with the external back cover, the internal circuit board also reflects continuous

waves to the tags. As such, smartphones with glass and rubber back cover can also

be used to interact with tags.

Impact of tag-to-reader distance. In the above experiments, we fixed the

distance between the tag and the reader’s antenna at 1m. To evaluate the impact of

distance between the tag and the reader’s antenna, we vary the tag-reader distance

ranging from 1m to 2.5m. A volunteer is asked to perform the smartphone gesture

100 times in front of the tag while the tag-reader distance is varied. In the experiment,

we only use the Impinj E53 tag and the interaction distance between the tag and the

smartphone is within 10cm.

Fig. 3.19 illustrates the gesture detection accuracy at different tag-reader dis-

tances. When the tag-reader distance is 1m, the RFID system can reliably measure

the changes in backscattered signal and our algorithm can correctly detect almost

all gestures. As the tag-reader distance increases to 2.5m, the backscattered signal
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Figure 3.20: Impact of tag-to-tag distances.

becomes weak, resulting in miss detection of some gestures. In practice, one COTS

reader can be connected with multiple antennas. To achieve high detection accuracy,

we can deploy multiple antennas to reduce tag-to-reader distance.

Impact of tag-to-tag distance. When a user is interacting with the tag of

interest, the adjacent tags may be affected as well, leading to detection ambiguity.

To evaluate the impact of tag-to-tag distance, we fix the tag-reader distance to 1m

and the interaction distance within 10cm while varying the tag-to-tag distances from

5cm to 30cm. A volunteer performs a gesture in front of one tag, while we move

away the other tag from the interacted tag.

Fig. 3.20 plots the detection accuracy with and without the enhancement of

FSS. On the one hand, we observe that when the tag-to-tag distance is ă 15cm,

the adjacent tags could influence the detection. When tags are very close to each

other (e.g., ă 10cm), without FSS our system sometimes detects an adjacent tag

as the interacted tag. In contrast, with FSS, most interacted tags can be correctly

identified. Even when the tag-to-tag distance is 5cm, the detection accuracy reaches

90% with FSS, which is 37% higher than the result without FSS. In summary, FSS
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Figure 3.21: Both the interacted tag and its adjacent tags are fully covered.

algorithm can effectively improve the detection accuracy and mitigate the impact of

adjacent tags.

On the other hand, when the tag-to-tag distance exceeds 15cm, the influence of

the smartphone gesture on the adjacent tags is weaker and our system can detect

almost all target tags. Therefore, we can regard 15cm as the safe distance, and

tags outside the safe distance will receive limited interference. As such, when a user

interacts with his interested tag, the interacted tag will not be affected by adjacent

users. In practice, such requirement can be easily guaranteed because of the width

of human body (average adult female shoulder width is about 40cm).

In addition, we consider a scenario where the tag-to-tag distance is less than

5cm and both the interacted tag and its adjacent tags are completely covered by

the smartphone gestures. We place three Impinj E53 tags in Fig. 3.12 vertically and

keep the tag-to-tag distance is 3cm to conduct a corresponding experiment. Fig. 3.21

plots the phase measurements of a set of tags and the corresponding values of three

metrics: fluctuation, symmetry, and similarity. We can see that when adjacent tags

(Tag 1 and Tag 3) are fully covered by the smartphone gesture, their phase changes

are almost the same as that of the actual interacted tag (Tag 2). This is because that

they receive almost the same and strong reflected signal from smartphone under the
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coverage of smartphone gestures. In such cases, we cannot accurately identify the

exact tag of interest from neighbor tags even if we utilize the proposed FSS algorithm

to compare three metrics as shown in Fig. 3.21(b). Therefore, we recommend that

the setting of tag-to-tag distance should ensure that the adjacent tags are not fully

covered by the smartphone.

Impact of tag orientation. In real applications, an interested tag can be at-

tached to an item in various orientations. To investigate the impact of tag orientation

relative to the smartphone, we vary the tag’s orientation θ from 0˝ to 180˝ as shown

in Fig. 3.5. We perform the pre-defined gesture 30 times at each tag’s orientation

and measure recognition accuracy.

In the experiment, the smartphone rotates in the XY plane, while the tag’s initial

orientation attached to the item is varied as illustrated in Fig. 3.5. According to our

experiments, the tag orientation does not affect the gesture recognition accuracy.

That is because we leverage the symmetry of our pre-defined gesture to pair the

interested tag with its corresponding smartphone, which is irrelevant to the tag’s

initial orientation. We note that if the smartphone rotates in the XZ plane, since

the reflection from the smartphone to the tag is weak due to small reflection surface,

it becomes hard to notice substantial phase changes during smartphone gesture. In

this case, we need to manually adjust the RFID tag to ensure that the tag plane is

parallel to the smartphone.

Impact of human movement. Human movements near a tag may cause the

change in its backscattered signal. We consider the human movement near a tag

as well as the blockage of the line-of-sight path between a tag and reader’s antenna

by a user. In the first scenario, we ask a volunteer to walk near a tag and stay in

front of the tag for a while. In the second scenario, we ask a volunteer to stand

between the tag and the reader to block the line-of-sight path. Fig. 3.22 plots the

phase measurements in the two scenarios. Compared with the pre-defined gesture of
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Figure 3.22: Impact of human movements.

ShakeReader, the phase measurements in the two scenarios exhibit different patterns.

Even if Component-1 accidentally triggers a false alarm and incorrectly broadcasts

a potential smartphone gesture to clients, the clients can filter out the packets using

Component-3 (i.e., synchronicity based matching and pairing). In addition, the

limitation of the interaction distance between smartphones and tags (within 10cm)

prevents the interference of human movements.

3.6.2 Overall System Performance

System performance in a multi-user scenario. To evaluate the system perfor-

mance in a multi-user scenario, we invite three volunteers (2 males and 1 female) to

simultaneously interact with any of the 9 tags. We note that volunteers do not inter-

act with the same tag simultaneously, but they can interact with different tags at the

same time. We conduct this experiment in an office environment and the 9 tags are

attached on paper boxer separated by 15cm in Fig. 3.16. Each volunteer interacts

with one of the tags within 10cm interaction range. We record the ground truth of

the interactions and test whether our system can accurately match the interacted
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Figure 3.23: Overall performance.

tags to their corresponding smartphones.

In the dynamic environment with multiple users, we collect 810 RFID tag records

and 270 smartphone gesture records in total. As shown in Fig. 3.23, ShakeReader

with FSS achieves the matching accuracy of ą 96.3%. Even in the case of multi-user

interaction, the FAR and FRR of each user are less than 4% and 3.3% respectively.

The results indicate that ShakeReader can accurately match the interacted tags to

their corresponding smartphones. In our applications, we care more about FRR than

FAR, because false rejects mean a user performs the pre-defined gesture but does not

receive any item information. In contrast, false accepts indicate that it is possible

for a user to receive broadcast information of an uninterested tag. When two users

interact with two different tags at the same time and their phase and accelerometer

waveforms exhibit similar patterns, ShakeReader may not be able to differentiate

the two gestures and associate the tags to their corresponding tags. To address

this problem, we can examine tag location and phone location to further improve

matching accuracy in future work.

System performance improvements introduced by the FSS algorithm.
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Figure 3.24: Differences between with and without the FSS algorithm

To illustrate the performance of FSS algorithm, we plot the differences of overall

performance between with and without FSS algorithm in Fig. 3.24. We can see that

with the help of the FSS algorithm, the FAR is significantly reduced and the max-

imum reduction is 2.1%. This is because the FSS algorithm considers three metrics

synthetically to mitigate the influence of adjacent tags, so that more interacted tags

could be pushed to the corresponding users instead of other non-interested tags. As

such, the overall accuracy is correspondingly increased. Therefore, the FSS algorithm

can effectively prevent the influence of adjacent tags.

System performance in a shelf scenario. To simulate real application sce-

narios, we divide 10 items attached with RFID tags into two columns and put them

on the shelf to conduct the experiment as shown in Fig.3.16. The shape of selected

items is various and the distance of the tag on the items is around 10cm. A volunteer

randomly chooses an item and performs the pre-defined gesture in front of the inter-

ested item. In this process, we read phase samples when performing 100 smartphone

gestures in total and each tag is interacted 10 times.

Fig. 3.25 plots the matching result between smartphones and tags. For a pair
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Figure 3.25: Matching result between smartphones and tags in a shelf scenario.

of tags and smartphones, we set the same ID. Overall, under the shelf scenario,

ShakeReader can effectively push the tag information to the corresponding users.

The overall accuracy reaches 98.8%, FAR is 1.22% and FRR is 1%. We notice

that 4 pieces of irrelevant information from the adjacent tag #4 are received by the

smartphone #5. Although the interference of the adjacent tag #4 is strong, the

interested tag #5 can still be ‘read’ with a very high accuracy.

System latency. We measure the execution time of each component as shown in

Fig. 3.26. The average values are around 4.83ms, 0.13ms, and 0.48ms for Component-

1, Component-2 and Component-3, respectively. We find that the DTW algorithm

in Component-1 is most time-consuming. To reduce the time complexity, instead of

scanning all sampling points of tag signals, we select the segments between the local

maximums and local minimums to execute the DTW algorithm to find the symmet-

ric point. In addition, our system matches interacted tags and corresponding users

using timing information rather than raw data, which further reduces computational

complexity. Overall, the average processing time of ShakeReader is 7.6ms for each

smartphone gesture matching, which is acceptable for most interaction applications.
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Figure 3.27: Phase calibration under fre-
quency hopping mode.

System generalization. For the countries that adopt Frequency Hopping

Spread Spectrum (FHSS), commercial RFID readers must run in the frequency-

hopping mode to reduce co-channel interference, which will cause phase discontinuity

and impact our system performance. To address this issue, we first conduct a phase

calibration step to map different hopping frequencies to a single fixed frequency as

described in [102, 106]. Fig. 3.27 plots the results after phase calibration. The grey

line indicates the phase measurements caused by the smartphone gesture in the Hong

Kong frequency-hopping mode. According to the regulation of Hong Kong Office of

the Telecommunications Authority (OFTA), commercial UHF RFID readers must

randomly hop to one of 10 center frequencies within the 920-925 MHz band every

200 ms. Therefore, we can see that the phase measurements collected directly from

the RFID reader are discontinuous. After applying the phase calibration, the phase

measurements show the continuous pattern. As a result, we can use phase calibration

to generalize our system and support frequency hopping.

System capacity. A low reading rate of reader will result in a low resolution of

measured timing information extracted from RFID data, which may affect the match-

ing accuracy. To determine the maximum capacity of ShakeReader, we first analyze
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Figure 3.28: Gesture frequency component Analysis.

the frequency component of the pre-defined interaction gestures with different users.

We use the Fast Fourier Transform (FFT) to measure the frequency domain informa-

tion of RFID data when users perform gestures as shown in Fig. 3.28(a). We can see

that the main frequency components corresponding to the gestures are concentrated

below 20Hz. Thus, we plot the top-2 frequency distribution from 370 RFID tag

records of four users in Fig. 3.28(b). We can see that 96.8% of gesture frequencies

is less than 15Hz. According to the Nyquist theorem, the reading rate of the RFID

reader needs to be higher than 30 readings/s for a single tag. As a result, we can

utilize the adaptive reading scheme in Section. 3.5.2 to improve the reading rate of

target tags to meet this requirement.

3.7 Discussion

In this section, we discuss limitations of ShakeReader and room for improvement.

Design of interactive smartphone gestures. Based on our proposed reflector

polarization model, we have carefully defined our interactive smartphone gesture in

Section 3.4.1. In practice, these pre-defined rules are flexible and users do not need

to follow them strictly. For example, Fig. 3.29 illustrates the impact of phone tilt
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Figure 3.29: Impact of phone tilt on tag data and sensor data

on tag data and sensor data during interaction. We can see that tilting smartphone

forward 30 degrees (Fig. 3.29(a)) or backward 30 degrees (Fig. 3.29(b)) relative to

the tag will still produce the specific smartphone gesture patterns as expected. As a

result, the tilt of smartphones does not greatly affect our Component-1) RFID based

smartphone gesture detection. However, there are slight differences in the changes

of smartphone sensor data. The Z-axis acceleration readings no longer change from

0 due to the influence of gravity. Fortunately, our sensor based smartphone gesture

detection mainly relies on the standard deviations of Z-axis acceleration readings,

which are independent of the initial state. In addition, the acceleration readings of

X-axis and Y-axis are almost unaffected when the phone is tilted to interact with

the tag. Thus, our system tolerate slight smartphone tilt when users interact with
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tags.

Tag-to-tag distance. Based on our experimental results in Fig. 3.20 and

Fig. 3.21, we recommend that the setting of tag-to-tag distance should exceed 5cm

to ensure that the adjacent tags are not fully covered by the smartphone gesture.

However, in practice, tag-to-tag distance may not be guaranteed. To mitigate the

impact of neighbor tags, we may broadcast both the information of interacted tag

and neighbor tags to the user. Then the user can perform double-check and pick

the interacted tag. Besides, as a workaround, users can also pick up the interested

product and make sure the to-be-interacted tag is sufficiently separated from other

tags before performing a smartphone gesture.

Tag-to-reader distance. In our system, we need to control the distance between

tag and reader to ensure the detectability of the backscatter signal. If the tag-to-

reader distance is too large, the backscatter signal becomes too weak to be accurately

detected. Based on our experimental results, we suggest the tag-to-reader distance

should be within 2 meters. In practice, a commercial RFID reader can be connected

to multiple antennas. For example, the Impinj R420 reader has 4 antenna ports,

which can be further extended to connect up to 32 antennas with an antenna hub

[29]. Therefore, we can deploy multiple antennas to ensure the coverage of RFID

tags.

System cost. In this work, we utilize ubiquitous smartphones to enable a flex-

ible human-RFID interaction without making any hardware extension to either de-

ployed RFID infrastructure or smartphones. Compared with traditional solutions

with external UHF modules, we indeed increase the cost of server and wireless net-

work deployment and power consumption, as our system requires users to connect

to the server through a wireless network to receive the broadcast tag information.

ShakeReader adds a new function to the smartphones that allow smartphones to

‘read’ RFID tags without any hardware modification or extension. As such, ordi-
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nary users in the logistics and retail industry can use their smartphones to query the

item-specific information stored in RFID tag instead of using expensive specialized

equipment (e.g., handheld RFID readers).

Privacy issue and system security. ShakeReader leverages the synchronicity

of the changes in RFID data and smartphone sensor data simultaneously caused

by a smartphone gesture to receive the interested tag information over a wireless

network. In this process, sensor data from users’ smartphones is recorded locally

and the smartphones connect to the server to obtain the tag information, which

may raise privacy concerns. In practice, synchronicity based matching and pairing

(Component-3) can run on the client side. In this way, clients keep sensor data local,

and receive and match the broadcast messages encapsulating the tag information

from the server. We note that clients do not need to send any data to a server

during the interaction process, meaning that the sensor data that could potentially

reveal a user’s privacy would not leave the user’s smartphone.

Leveraging tag and smartphone localization. RFID and smartphone lo-

calization have been extensively studied in previous works. Some works can achieve

very high localization accuracy with calibration and fingerprinting. Our original idea

was to locate both tag and smartphone in the environment and pair collocated tag

and smartphone. However, it turns out such an approach requires highly accurate

localization performance (e.g., with localization erroră 15cm), which is very chal-

lenging to achieve in practical scenarios. ShakeReader can be optimized if there are

pre-deployed RFID or smartphone localization systems that can ensure high local-

ization accuracy. However, it is worth noting that ShakeReader does not rely on any

deployed localization services.
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3.8 Summary

This work aims to enable smartphone users to interact with UHF RFID tags using

their smartphones without making any hardware extension to either deployed RFID

infrastructure or smartphones. To this end, we define a smartphone gesture which can

be simultaneously detected by both RFID systems and smartphones. We overcome

many technical challenges involved in smartphone gesture detection especially using

RFID systems. In particular, we characterize the polarization of reflected signals

from smartphone and detect smartphone rotations. We leverage the synchronicity

of RFID data and sensor data caused by the same smartphone gesture to match the

interacted tag with the corresponding smartphone. Experimental results show that

ShakeReader can achieve up to 96.3% matching accuracy.
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Chapter 4

Interacting with mmWave Radars

4.1 Background

Recent advances in mmWave radars and their applications in wireless sensing have at-

tracted wide attention from both academia and industry. Compared with traditional

RF-based sensing solutions (e.g., Wi-Fi sensing, RFID sensing) and camera-based so-

lutions, mmWave sensing has two prominent advantages: i) unprecedented accuracy

and sensing resolution: mmWave radars operate at high frequencies between 30GHz

and 300GHz with a small wavelength between 1mm and 10mm, which enable fine-

grained sensing applications; and ii) operation in all-weather condition: the shorter

wavelength allows mmWave radars to withstand challenging environmental condi-

tions, such as rain, fog, snow, and even poor lighting conditions, breaking the limits

of camera-based solutions.

Researchers have devoted efforts to exploit the promising sensing technology for

various ubiquitous computing applications such as object localization and tracking

[105, 81, 107, 112], gesture and human activity recognition [37, 50, 118, 75, 76], lo-

calization and map construction [129, 59, 21, 58, 69], and vital signal monitoring

[16, 119, 24]. Recent works have also demonstrated the excellent performance of

mmWave radars on detecting micro-vibration in industrial scenarios [34, 23] and vo-

cal vibration for speech recognition and authentication [67, 109, 45, 104]. In these
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Figure 4.1: Application scenarios of mmRipple.

sensing systems, mmWave radars can accurately sense and track tiny object move-

ments. However, we argue that the potential of mmWave radars has yet to be fully

explored since we still lack a direct communication channel from objects to mmWave

radars.

In this chapter, we present mmRipple which allows smartphone users to send

messages to mmWave radars without any hardware modifications to either mmWave

radars or smartphones. Specifically, mmRipple leverages a vibration motor (widely

available in almost all smartphones) as a transmitter. The vibra-motor vibrates

according to user-defined messages, while the mmWave radar senses such vibrations

and decodes these messages.

We envision some applications that could benefit from the communication func-

tionality enabled by mmRipple: 1) Pedestrian-to-Infrastructure (P2I) communica-

tion. As shown in Fig. 4.1(a), after receiving the ”crossing” message from an elderly’s

smartphone vibration, the traffic light can suitably extend the flashing green time

and meanwhile track her movement. 2) Multiple object interaction. In Fig. 4.1(b),
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Table 4.1: Comparison with related works.

Type Works
Non

-contact
No Hardware

Modifi.
No Link
ESTB

Motion Multi-object ISAC

Visual QR Code � � � ˆ ˆ ˆ
Wireless

Bluetooth � � ˆ � � �
Wi-Fi � � ˆ � � �

Acoustic
Dhwani [65] � � � ˆ ˆ ˆ
Chirp [41] � � � � ˆ ˆ

Vibration
Ripple II [73] ˆ ˆ � ˆ ˆ ˆ
MotorBeat [98] � ˆ ˆ ˆ � ˆ
mmRipple � � � � � �

mmWave radar can be deployed at the entrance of a venue to monitor visitors,

while simultaneously checking their COVID-19 vaccine passports by decoding spe-

cific smartphone vibrations. Such contactless and multi-object interaction also re-

duces the risk of the virus spreading via physical contact and shortens queuing time,

which can be applied in public areas covered by mmWave radars (e.g., hospitals and

student canteens).

Compared to other communication technologies and related works summarized

in Table 4.1, mmRipple provides a contactless communication without any hardware

modification or link establishment before direct communication. At the same time,

mmRipple supports multiple object communication and is robust to hand and body

movements in practice. To our knowledge, mmRipple is the first mmWave ISAC

system that enables a mmWave radar to capture smartphone vibration messages

while sensing its surroundings.

Multiple practical challenges need to be addressed to communicate with mmWave

radars through smartphone vibrations. On the transmitter side, a smartphone needs

to generate vibration patterns that can be detected and decoded by a mmWave radar.

When the vibra-motors of multiple smartphones vibrate concurrently, the reflection

signals interfere at the receiver, making it challenging to separate and decode the

concurrent vibrations. Furthermore, as a smartphone can be held in hand during
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communication, hand and body movements may distort smartphone vibrations.

We address the above challenges and develop mmRipple. On the transmitter

side, we conduct experimental studies to understand smartphone vibrations and

design orthogonal vibration patterns that can be easily separable from each other

and reliably detected by mmWave radar. On the receiver side, to support multi-

object communication, mmRipple leverages the spatial diversity of multiple objects

to separate the mixed vibration signals in both range and angle with joint Range-FFT

operation and beamforming technique. The diversity of vibration frequency of vibra-

motors in smartphones is also employed as a feature to separate multiple objects.

Furthermore, we mitigate hand and body movements by tracking and recovering

integrated vibration signals along target trajectories.

We build a prototype with commercial mmWave radars and evaluate the per-

formance of mmRipple in detecting and decoding vibration signals sent by different

types of smartphones in various experiment settings. The experimental results show

thatmmRipple achieves the average vibration pattern recognition accuracy of 98.60%

within a 2m communication range, and 97.74% within 3m. The communication range

can be up to 5m with an accuracy of 91.67%, when the smartphone is equipped with

a Z-axis vibra-motor and has the line-of-sight path to the mmWave radars. The

main contributions of this work are summarized as follows:

• mmRipple builds a communication channel from a smartphone to a mmWave

radar through smartphone vibrations, without any hardware modifications. To

our knowledge, it is the first work that allows COTS mmWave radars to receive

smartphone messages, empowering mmWave radars with the communication

capability.

• mmRipple builds on prior works and makes new scientific contributions by

developing novel solutions to address practical challenges: i) understanding
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and modulating smartphone vibrations; ii) separating multiple objects in mixed

reflected signals for multi-object communication; and iii) mitigating movement

interference for mobile objects.

• We build a prototype of mmRipple using a commodity mmWave radar and

different types of smartphones. Comprehensive experiments and evaluation

results demonstrate the effectiveness and robustness of mmRipple.

4.2 Preliminaries

We present primers of vibration motors (transmitters) and mmWave radars (re-

ceivers) in our system.

4.2.1 Vibration Motor

Vibration motors (also called ”vibra-motors”) are widely used to provide haptic

feedback in smartphones, tablets, and game controllers. Among these vibra-motors,

linear resonant actuator (LRA) is the most popular as it supports faster response

time and offers better user experience. LRA generates the linear movement of a

magnetic mass with changing magnetic fields.

Figure 4.2 illustrates two common types of LRA-based vibra-motors depending

on their vibration directions, i.e., Z-axis LRA, and X-axis LRA. For a Z-axis LRA

vibra-motor in Figure 4.2(b), its magnetic mass oscillates back and forth along the

direction perpendicular to the smartphone screen. Such Z-axis vibra-motors are

widely adopted in Android smartphones, such as Samsung smartphones. In con-

trast, a X-axis LRA vibra-motor (e.g., Taptic Engine of Apple) vibrates laterally.

To produce better vibration performance, manufacturers typically set the vibration

frequency of a vibra-motor near its resonant band. Therefore, the vibration frequen-

cies of vibra-motors in smartphones are generally in the range between 100Hz and
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Figure 4.2: Basic sketch of two types of LAR vibra-motors.

300Hz [88, 74].

4.2.2 mmWave Radar

mmWave radars are mainly used to detect and capture smartphone vibrations. The

key idea in detecting the micro-displacement of smartphone vibrations is to extract

the phase changes of the reflected signals from the object, which consists of the

following two steps as illustrated in Fig. 4.3:

Step 1: range estimation by Range-FFT. We first detect the object range

relative to a mmWave radar. As shown in Fig. 4.3(a), mmWave radars transmit

Frequency Modulated Continuous Wave (FMCW) signals (i.e., chirp signals) to sense

objects. The transmitted chirp signal (Tx) xptq can be represented as follows:

xptq “ exprjp2πfct ` πKt2qs (4.1)

where fc is the starting frequency of the chirp and K represents the chirp slope [34].

After being reflected by the object at distance d, the received signal (Rx) yptq can be

represented as yptq “ αxpt´tdq, where α is the path loss, time delay is td “ 2d{c, and
c is the speed of the light. Then the mmWave radar mixes xptq and yptq and outputs

the so-called Intermediate Frequency (IF) signal sptq which consists of a tone with a
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beat frequency fIF in Fig. 4.3(b) as [110, 34]:

sptq “ x˚ptqyptq
“ α expr´jp2πKtdt ` 2πfctd ´ πKt2dqs

« α expr´jp2π K2d

cloomoon
fIF

t ` 4πd

λloomoon
φ

qs
(4.2)

where λ is the wavelength. We notice that the value of beat frequency fIF contains

the distance information. Hence, we can determine the beat frequency fIF by taking

FFT (i.e., Range-FFT in Fig. 4.3(c)) on the received IF signal sptq, and then the

distance d between the object and the radar can be calculated by cfIF
2K

. Since a

mmWave radar typically transmits N chirps to form a frame for sensing objects, the

result of Range-FFT of a frame is a matrix (Fig. 4.3(d)), where each row stores the

Range-FFT result of one chirp.

Step 2: micro-displacement measurement based on phase changes. In

practice, the range resolution of radar dres is limited by the bandwidth B of chirp
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signals, i.e., dres “ c
2B

. For example, a chirp bandwidth of 4GHz translates to

a range resolution of 3.75cm. It means a micro displacement ( <3.75cm) will not

cause detectable changes in the beat frequency fIF , e.g., peak shift in FFT bins.

Fortunately, such a subtle change in distance can still be captured in the phase value

φ as shown in Fig. 4.3(d). In Eq. 4.2, the phase value of IF signal φptq is 4πd
λ
. If the

object distance changes by Δd, the phase value will change accordingly. Hence, Δd

can be derived from phase change Δφ, i.e., Δd “ λΔφ
4π
. As shown in Fig. 4.3(e), we

can track the phase changes in chirps to capture the micro-displacement.

4.3 Smartphone Vibration

In this section, we propose a vibration model and conduct an empirical study to

investigate the characteristic of smartphone vibrations.

4.3.1 Smartphone Vibration Model

To intuitively understand how to recover the smartphone vibration with a mmWave

radar, we first show a basic vibration model in Fig. 4.4. We set the mmWave radar

as the coordinate system’s origin. The initial location of the vibration source (smart-

phone) is S0px0, z0q with the initial range of R0 to the mmWave radar. When the

smartphone vibrates, it will follow a typical harmonic motion and produce a time-

74



varying micro-displacement δptq as:

δptq “ A cosp2πfvtq (4.3)

where A is the vibration amplitude and fv is the vibration frequency.

Due to the misalignment between the smartphone’s vibration direction and the

mmWave radar’s sensing direction with angle β, the measured displacement denoted

as δ1ptq is a projection along the sensing direction, i.e., δ1ptq “ cos β ¨ δptq. Hence, the
smartphone range Rptq sensed by the mmWave radar is R0 ` δ1ptq. If we rewrite the
object distance d as the smartphone range Rptq in Eq. 4.2, the received IF signals

from the smartphone sptq can be represented as:

sptq “ αexpr´jp4πK
c

Rptqt ` 4π

λ
Rptqqs (4.4)

Then we extract the reflected signal Srptq from this target range by performing a

Range-FFT operation on the IF signal as:

sptq Range-FFTÝÝÝÝÝÝÝÝÝÝÝÑ
in object range bin

Srptq “ α expr´j
4π

λ
Rptqs (4.5)

The corresponding phase measurements from the target range bin can be represented

as:

φrptq “ 4π

λ
pR0 ` cos β ¨ δptqq mod 2π (4.6)

Thus, phase measurements φrptq can reflect smartphone vibrations.

4.3.2 Smartphone Vibration Characteristic

We conduct empirical studies to investigate the characteristics of smartphone vibra-

tions. We select 11 popular smartphones and use a mmWave radar (TI AWR1642)

to capture their vibrations. In each experiment, one smartphone is placed directly
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Figure 4.5: The characteristics of smartphone vibration.

in front of the radar 1m away, and its vibrating direction is well-aligned with the

mmWave sensing direction, i.e., β “ 0.

Vibration frequency. Fig. 4.5(a) shows the distribution of the vibration fre-

quencies of the 11 smartphones. We have two observations: (1) Each smartphone

vibrates in a narrow frequency band. This is because vibra-motors are usually set

to vibrate around the resonant frequency to produce a better vibration performance

[74]. Therefore, we can assume that the smartphone vibration is limited to a sin-

gle frequency. (2) We also observed that smartphones from different vendors have

various vibration frequencies. For example, iPhones vibrate at around 150Hz, while

Huawei smartphones vibrate at around 230Hz. Although there are slight differences,

the vibration frequencies are generally in the range between 100Hz and 300Hz.

Vibration amplitude and inertia. The peak-to-peak vibration amplitude

of the smartphone vibra-motor is typically around 9μm „ 248μm, resulting in

0.029rads „ 0.8rads phase change for the 77GHz mmWave radar. We take Samsung

S9+ as an example and let its vibra-motor vibrate for 100ms with the maximum am-

plitude and stop. Fig. 4.5(b) plots the vibration signal collected by a mmWave radar.

We see that smartphone vibrations can be captured by mmWave radars. The phase

measurements exhibit sinusoidal patterns with larger variance (maximum peak-peak
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Figure 4.6: Overview of mmRipple.

amplitude is 0.11rads) when the smartphone vibrates, while the pattern disappears

when the smartphone pauses the vibration. In addition, we also observe that the

vibra-motor takes a rise time Trise to reach its maximum vibration amplitude due

to inertia. It also requires a fall time Tfall to stop vibration. Typically, the rise/fall

time of smartphone vibra-motors is between 4ms and 120ms.

4.4 System Overview

mmRipple aims to empower a mmWave radar with the communication capability,

allowing users to communicate with a mmWave radar through smartphone vibra-

tions. Fig. 4.6 illustrates the overview of mmRipple, which comprises of two parts: a

transmitter (i.e., a smartphone’s vibra-motor) and a receiver (i.e., a mmWave radar).

• Transmitter: We first design different vibration patterns to modulate and con-

vey messages. The vibra-motor in smartphones is then programmed to generate

the corresponding vibration signals. The vibration signals from smartphones

are regarded as the outputs of the transmitter.

• Receiver: a mmWave radar constantly sends FMCW signals and measures the

raw ADC samples of received signals. By analyzing the spectrum of the re-

ceived signals, we first detect candidate objects and then identify the vibration

objects that vibrate in a target vibration frequency band. Next, vibration sig-

nal recovery and refinement are conducted for each vibration object. Finally,
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we decode the messages embedded in the extracted vibration signals.

In the following sections, we elaborate on the design of the transmitter side in

Section 4.4.1 and the receiver side in Section 4.4.2.

4.4.1 Transmitter Design

A mmRipple transmitter outputs vibration signals with different vibration patterns

to convey different messages. In this section, we first demonstrate the design and

generation of vibration patterns. Then, vibration signals can be generated by switch-

ing on/off the vibra-motor of a smartphone according to the vibration patterns to

send messages.

Vibration Pattern Design

In mmRipple, different smartphone vibration patterns are designed to send different

messages. Therefore, we need to carefully design the vibration patterns with the

following design considerations:

• High separability. Designed vibration patterns should be easily separable from

each other to reduce recognition errors.

• High reliability. Designed vibration patterns should be accurately and reliably

detected by mmWave radars under background noise and interference.

Table 4.2: 4-bit Walsh codes

Index Walsh sequences

W 4
1 1111

W 4
2 1010

W 4
3 1100

W 4
4 1001
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To this end, we design a set of patterns with inter-pattern orthogonality and

intra-pattern repetition:

Inter-pattern orthogonality means that different vibration patterns are or-

thogonal to each other, i.e., the cross-correlation between any two patterns is mini-

mized, so that we can differentiate different vibration patterns and reduce matching

errors. In particular, we adopt Walsh codes [25], which are widely used in CDMA

systems, to guide the design of our vibration patterns. Walsh codes correspond to

lines of a special square matrix called the Hadamard matrix. For a set of N -bit

Walsh codes, it is from a N ˆ N Hadamard matrix. Table 4.2 illustrates a set of

4-bit Walsh codes ∗. Each Walsh code can be used to generate one vibration pattern.

Intra-pattern repetition requires that a vibration pattern will be repeatedly

transmitted several times, thereby improving the communication reliability. In this

case, one transmission will send K consecutive and identical vibration patterns (K ě
1) to form a pattern frame. In addition, we add a unique delimiter after each vibration

pattern to separate two consecutive patterns and avoid the ambiguity introduced by

the intra-pattern repetition.

Fig. 4.7 shows a pattern frame, which consists of two consecutive and identical

vibration patterns designed according to the Walsh code W 4
2 (1010). We adopt the

on-off keying (OOK) to modulate the pattern frame to the corresponding vibration

signal [122]. Specifically, one symbol duration Tsym is divided into 2 smaller time

slots Tslot. As shown in Fig. 4.7, data-1, data-0, and the delimiter are encoded into

vibration modes “on-on”, “off-off”, and “off-on-off”, respectively. Therefore, we can

leverage multiple orthogonal codes to design different vibration patterns to carry

different messages.

∗mmRipple uses the inverse-ordered Walsh code.
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vibration on

vibration off

Symbol Duration (Tsym = 2 Tslot )Time Slot (Tslot )
Vib. Amplitude (Avib) 

Vibration Frame

Vibration Signal

Vibration Pattern #1

1 0 1 0 delimiter

Vibration Pattern #2

1 0 1 0 delimiter

Figure 4.7: A vibration frame containing two consecutive and identical vibration
patterns based on the Walsh code W 4

2 .

Vibration Signal Generation

The next issue is how to control a vibra-motor to generate the expected vibration

signals. Current smartphones provide APIs [13] to control vibra-motors by two key

parameters: vibration time Tvib in milliseconds and vibration amplitude Avib in the

range r0, 255s. As such, the vibration signal can be generated by a series of duration

and amplitude pairs txTvib, Avibyu.
We specify the minimum unit of vibration duration Tslot should be greater than

or equal to the rise time Trise of the vibra-motor to overcome inertia and reduce

inter-symbol interference. For the vibration amplitude, we use Avib “ 255 to en-

code the ”on” state, and Avib “ 0 to encode the ”off” state. As such, in the vi-

bration ”on” state, the motor can vibrate at its highest amplitude in a fully ac-

tivated state. Conversely, the motor dampens in the vibration ”off” state. For

example, the vibration pattern in Fig. 4.7 can be represented by the sequences

tx60, 255y , x60, 0y , ¨ ¨ ¨ , x30, 0y , x30, 255y , x30, 0yu when Tslot “ 30ms.

4.4.2 Receiver Design

In this section, we present the technical details of mmRipple receiver side. A receiver

(i.e., a mmWave radar) continuously collects reflected signals from surroundings
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and detects smartphone vibrations. We conduct a feasibility study in an office and

elaborate on our design considerations. We use a mmWave radar at location p0, 0q
to sense two objects: a static metal plate at p0m, 2mq and a vibrating smartphone

at p0.3m, 1mq. The vibrating smartphone sends the vibration patterns “1010” with

a delimiter as shown in Fig. 4.7. Next, we describe how to find the vibration target

(i.e., smartphone) and decode its vibration signals step by step.

Object Detection

Object detection aims to find objects in the following three steps. Note that the

objects include both target objects (i.e., vibrating smartphones) and other co-existing

objects such as reflectors.

Step 1: Range-Doppler spectrum acquisition. We first perform the Range-

FFT on the received ADC samples to detect objects in range and obtain a Range-FFT

spectrum. Then, we perform a second FFT (Doppler-FFT) on all chirps in a frame

(across columns in the Range-FFT spectrum) to separate objects in the rate of phase

change, i.e., velocity [34]. Hence, we obtain a Range-Doppler Spectrum as shown

in Fig. 4.8(a). A bright spot in the spectrum indicates that an object exists at the

corresponding range and velocity. For example, the object at around 1m and with

a velocity of 0 is the target smartphone, and the metal plate at (0m, 2m) can be

found in the range bin 2m. Note that although the smartphone is a vibrating object,

its vibration velocity is too small to be accurately measured by the mmWave radar,

since the velocity resolution is about 0.15m{s. Thus, the velocity of the vibrating

smartphone is reported as 0 in the spectrum.

Step 2: CFAR-based object bin detection. This step exploits a constant

false alarm rate (CFAR) detection algorithm [2] to search for the bright spots (i.e.,

candidate objects) in the Range-Doppler Spectrum. Once the magnitude of a bin

exceeds a threshold, there can be a candidate object in this bin. Specifically, CFAR
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Figure 4.8: Illustration of object detection.

detection uses the adaptive threshold to achieve an expected false alarm rate by

tracking background noises. The false alarm rate is empirically set to 10´5. We

further leverage a moving window to merge neighbor peaks in candidate object de-

tection. As shown in Fig. 4.8(b), we detect 2 candidates from the Range-Doppler

Spectrum in Fig. 4.8(a).

Step 3: Object location extraction. The above bin detection only outputs

the candidate bins. To get the exact object location, we exploit the phase difference

of received signals at multiple antennas to calculate the angle of arrival (AoA).

Specifically, the distance difference from the object to multiple antennas results in a

phase change ω, which is related to the AoA θ as [32]:

θ “ arcsinpλω{2πdAq (4.7)

where dA represents the spacing between receiver antennas. Suppose an object is

in range bin r and its AOA related to the mmWave radar is θ, the object location

Lpx, zq can be calculated as:

x “ r sinpθq, z “ r cospθq (4.8)

Fig. 4.8(c) demonstrates the result of object location extraction. We can see that
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Figure 4.9: Illustration of vibration object detection and vibration signal recovery.

the difference between calculated object location and real object location is negligible

(ď 6cm), meaning that mmWave radars can accurately locate the candidate objects.

Vibration Object Identification

After detecting candidate objects, we next analyze the reflected signals from each

candidate object to detect whether a candidate object is a real transmitter with

defined vibration patterns (i.e., a vibrating smartphone) or a static object in the

environment.

Fig. 4.9(a) plots the raw phase measurements of the two objects in Fig. 4.8(c).

Compared to the static object, the vibrating object has a larger variance in phase

values. However, phase changes hardly show clear vibration patterns due to the

impact of background noises. In the frequency domain (Fig. 4.9(b)), we observe that

both objects suffer from the impact of the Direct Constant (DC) component and

low-frequency noises (e.g., AC power, user’s movement in the environment). Unlike

static objects, the frequency spectrum of the vibrating object exhibits a sharp peak

corresponding to the vibration frequency range of 100Hz to 300Hz.

Suppose there is a vibrating object in range bin r. Based on Eq. 4.6, its phase
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measurements φrptq can be represented as:

φrptq “ 4π

λ
pR0 ` cos β ¨ δptqq

“ 4π

λ
R0loomoon

DC

` 4π

λ
cos β ¨ A cosp2πfvtqlooooooooooooomooooooooooooon
vibration signal Y(t)

(4.9)

For simplicity, the mod operation can be ignored, since smartphone vibration is

generally very small. The first term is the DC component, which is irrelevant to

smartphone vibration. We name the second term as vibration signal Y ptq, as its

frequency is the same as the smartphone vibration frequency fv and its amplitude is

proportional to the smartphone vibration amplitude A.

Therefore, we leverage a threshold to identify the vibration objects that vibrate in

the vibration frequency band. Once the average amplitude of frequency components

in this band exceeds the threshold, the object is detected as a vibration target. We

empirically set the threshold as the mean value of noise plus three standard deviations

of noise (i.e., 99.7% confidence level). In this way, we can separate vibration objects

from static objects and other interference.

Vibration Signal Recovery and Refinement

(1) Recovering vibration signal. After locating the vibration target, we leverage

a band pass filter (BPF) to extract the expected vibration signal while filtering

out the DC component and noises. The vibration signal Y ptq is the reminder after

filtering:

Y ptq “ BPF rφrptqs “ 4π

λ
cos β ¨ A cosp2πfvtq (4.10)

We empirically choose the lower and the upper stopping frequencies as 100Hz and

300Hz, respectively, which can cover the vibration frequencies of most mainstream

vibra-motors in smartphones. Fig. 4.9(c) plots the vibration signal extracted from
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the reflection signals. We observe that the recovered vibration signals from vibrating

smartphone clearly exhibit the transmitted vibration pattern, i.e., “1010” followed

with a delimiter (D) in Fig. 4.7.

(2) Enhancing vibration signal with antenna diversities. In practice, the

reflected signals include not only vibration reflections of the target object, but also

background reflections. The reflected signals Sk
r ptq in range bin r of each Rx antenna

k can be rewritten as:

Sk
r ptq “ α expr´j

4π

λ
Rptqs `

ÿ
i“1

α
ris
B expr´j

4π

λ
R

ris
B s (4.11)

where α
ris
B and R

ris
B represent the signal strength and propagation distance of a back-

ground reflection, respectively.

To mitigate this effect and further improve the SNR of the vibration signal,

we adopt the beamforming technique to coherently combine signals across multiple

antennas. For the object in range bin r and direction θ, we perform beamforming

on the reflected signals Sk
r ptq from the object range across all Rx antennas as:

Sr,θptq “
Kÿ
k“1

Sk
r ptq ¨ expr´jpk ´ 1q2πdA sinpθq{λs (4.12)

where dA is the antenna spacing. Sr,θptq is the reflected signals from direction θ and

range r. By choosing the right θ, the reflected signals from the target at K antennas

add up constructively while background reflections and noises randomly add up.

As shown in the I/Q complex domain in Fig. 4.10(a), the beamformed reflected

signal of the vibrating smartphone in Fig. 4.8(c) is constructively enhanced by four

Rx antennas. After filtering out the noises through the band pass filter, we obtain

the refined vibration signals. For further analysis, we convert the vibration signals

from the time domain to the frequency domain by Short-Time Fourier Transform

(STFT). Compared to the time-domain vibration waveform, vibration spectrogram
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Figure 4.10: Illustration of vibration signal refinement.

(the upper in Fig. 4.10(b)) presents a clearer vibration pattern, as it can demonstrate

the change of dominant frequencies over time. Based on this observation, we first

locate the specific vibration frequency band of an object in the frequency domain,

and then track the energy profiles of target frequency band and normalize it as the

vibration level over time. As shown in the lower panel of Fig. 4.10(b)), when the

vibration level is higher, the vibra-motor is in the vibration “on” state; otherwise, it

is in the “off” state.

Vibration Signal Decoding

This step aims to decode the vibration signals and recognize the vibration patterns.

(1) Segmentation. We first locate the delimiter to split a consecutive vibration

signal into multiple vibration pattern signals, each of which is only modulated by

one vibration pattern without a delimiter. Unlike data-0 and data-1 which are both

represented by two consecutive chips, the delimiter is denoted by three chips “off-

on-off”. Thus, we exploit a matched filter with the known pattern (a delimiter) to

infer the delimiter location. Fig. 4.11(c) shows the result of applying the matched

filter to the recovered vibration level. The highest correlation value reveals the

delimiter location. After that, multiple vibration pattern signals are extracted before
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a delimiter.

(2) Decoding. Since we adopt the OOK modulation, vibration pattern signals

can be directly decoded based on the difference in vibration levels in Fig. 4.11(d).

For each vibration pattern signal, we empirically set the threshold to half the max-

imum vibration level amplitude of its delimiter. Then in each symbol duration, if

the majority of vibration level amplitudes (e.g., 80%) are above the threshold, this

symbol is mapped to data-1; otherwise, it is data-0.

(3) Erroe correction. Due to noise and vibration inertia, the extracted vibra-

tions may have some distortion, causing decoding errors. For example, the vibration

pattern “1111” may be incorrectly decoded as a non-defined code “1110”. In this

case, we will further correct the decoding results using the inter-pattern orthogonal-

ity. Specifically, we calculate the cross-correlations to measure the similarity between

the extracted vibration pattern levels with the pattern templates in Fig. 4.11(e).

Since our designed vibration patterns are orthogonal, we expect the highest cross-

correlation value when the vibration patterns match against themselves. Thus, we

leverage the Walsh code corresponding to the maximum cross-correlation value to

(c) after matched filter

(a) vibration signal

(b) vibration level

(d) decoding

(e) correction

1010 100111001111 1010 100111001111

1 0     1     0 1 0 1    0

Figure 4.11: Illustration of decoding process.

87



correct the decoding result and output the final result.

4.5 Practicality and Robustness

In this section, we will improve the practicality and robustness of mmRipple by

dealing with multi-object and mobile object scenarios.

4.5.1 Handling Multiple Objects

In practice, multiple smartphones may communicate with a mmWave radar concur-

rently, leading to interference and collision at the receiver. mmRipple addresses this

issue and enables multi-object communication as follows.

Separating multiple objects in range. When multiple objects are vibrat-

ing simultaneously at different ranges and each range has only one target, we can

directly separate them by the Range-FFT. For example, we place two smartphones

(Samsung S8 and S9+) 1m and 1.1m away from the radar and capture their vibra-

tions. Fig. 4.12(a) shows the vibration spectrograms and vibration levels extracted

from different ranges. We observe that the vibration signals from different ranges

show different vibration patterns (i.e., “1100” and “1010”), demonstrating that the

objects can be separated in range.

Note that the range resolution dres will limit the ability to resolve multiple objects

in range, which is determined by chirp bandwidth B, i.e., dres “ c{2B where c is light

speed. In our setting, the range resolution is about 5cm. This means that mmRipple

cannot separate two objects if their range spacing is less than 5cm.

Separating multiple objects in angle. When two vibrating objects locate

in the same range relative to the radar, we exploit the beamforming technique to

spotlight on each target to separate them. Here, we place the two smartphones in the

same range (1m away from the radar) but at different directions (i.e., 0˝ and 30˝) and

capture these vibrations. As shown in Fig. 4.12(b), the vibration signals extracted
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Figure 4.12: Illustration of multi-object communication.

from different beam steering angles present the different vibration patterns.

Angular resolution θres depends on the number of receive antenna N , antenna

spacing dA as well as the AoA of object θ, i.e.,θres “ λ{NdAcospθq. In our setting, the

angular resolution is about 28.65˝ in front of the mmWave with 4 Rx antennas and

1 Tx antenna. If two objects are too close in range and angle, it is hard to separate

the two objects. Fig. 4.12(c) shows the vibration signals of two objects located in

the same range 1m and different directions (0˝ and 10˝). Since their angular spacing

is less than the angular resolution, the vibration signals cannot be separated.

Separating multiple objects in vibration frequency. mmRipple can exploit

the diversity of vibration frequency (Fig. 4.5(a)) among different smartphones to

further separate multiple objects. To verify this, two smartphones (Huawei Mate 30
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and Samsung S8) with different vibration frequencies are placed 1m away from the

radar and their angular spacing is 10˝. As shown in Fig. 4.12(d), the vibration signals

extracted from the corresponding vibration frequencies show the expected vibration

patterns. Hence, when these two close objects cannot be separated in either range

or angle, the vibration frequencies can be used as another dimension to resolve their

collisions. The vibration frequency resolution is determined by the window size in

STFT. In our setting, the window size is set to 51.2ms with a frequency resolution

fres of about 2Hz.

Overall, mmRipple can separate multiple objects in range, angle, and vibration

frequency. As long as two vibrating objects differ in one dimension (5m in range,

28.5˝ in angle or 2Hz in vibration frequency), their vibration signals can be separated

and extracted.

x

z

1m

0.7m

mmWave radar

Figure 4.13: Hand moving

4.5.2 Handling Mobile Objects

In practice, a smartphone can be carried by a user in hand. As such, hand motion

as well as body movement can affect the detection and extraction of smartphone
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Figure 4.14: Illustration of mobile object communication.

vibration signals. To illustrate such an impact, we invite a user to hold a vibrating

smartphone and move it towards the mmWave radar 1m away as shown in Fig. 4.13.

Fig. 4.14(a) shows the phase values φr,θptq from the detected target location

where r “ 1m and θ “ 1.79˝. We notice that the smartphone movement results

in the phase change from ´π to π, drowning out the tiny smartphone vibrations.

In the frequency domain, such minute vibration signals are also dominated by the

movement (Fig. 4.14(b)). Even after applying a band pass filter, vibration patterns

can no longer be observed in the vibration spectrogram (Fig. 4.14(c)).

To combat the transmitter motions, we propose a frame-aware motion suppression

method. Suppose there is a vibrating smartphone located in (r, θ) with a moving

speed v. Considering that the moving speed of transmitter v can be approximated

as a constant within a short frame (e.g., 12.8ms in our setting), we first remove the

static component for each frame through the circle fitting and obtain the refined
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phase measurement that can be represented as:

φr,θptq “ 4π

λ
pR0 ` vt ` cos β ¨ δptqq

“ 4π

λ
R0loomoon

DC

` 4π

λ
vtloomoon

movement

` 4π

λ
cos β ¨ A cosp2πfvtqlooooooooooooomooooooooooooon
vibration signal Y(t)

(4.13)

Next, to extract the vibration signal while eliminating the impact of movement

as well as DC, we take the first-order derivative of phase measurements φ1
r,θptq for

every frame as:

φ1
r,θptq “ 4π

λ
vloomoon

movement

´ 2πfv ¨ 4π
λ

cos β ¨ A sinp2πfvtqlooooooooooooooooomooooooooooooooooon
vibration signal Y 1ptq

(4.14)

In this way, the DC component is removed and the impact of smartphone movement

is transformed into a new DC component. Moreover, the expected vibration signals

is amplified by a scaling factor of 2πfv. Then, we correct the discontinuity at every

two consecutive frames [91] and extract the corresponding vibration signal Y 1ptq from
φ1
r,θptq with a band pass filter.

We use the phase difference of two consecutive measurements to approximate the

first-order derivative of the phase. Fig. 4.14(d) shows the change of phase difference.

Although the phase difference changes are very small and drift because of movement,

its frequency spectrum (Fig. 4.14(e)) exhibits a sharp peak in the smartphone vibra-

tion range of 100Hz „ 300Hz. After applying a band pass filter and STFT, we can

observe a clear vibration pattern in the vibration spectrogram (Fig. 4.14(f)).

4.5.3 Stitching Vibration Signals

In the above discussion, we extract the vibration signal from a specific location of

a target. In practice, however, the target location is constantly changing when it is

moving, making it impossible to extract the whole vibration signal from one specific
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Figure 4.15: Illustration of vibration signal stitching.

location.

Fig. 4.15(a) exhibits the vibration spectrograms extracted from different loca-

tions. We see that the extracted signals from one location only measure the smart-

phone vibrations when the phone is in that particular location. If the smartphone is

not present in that location, the measurements are mainly noise. To handle the move-

ment, we need to track the location of the vibration object and stitch the vibration

signals along its moving trajectory.

In a frame, mmWave radar will report a set of points (detected objects in Sec-

tion. 4.4.2). We define the i-th point in j-th frame as pi,j, which is a 4D state vector

composed of coordinates on x, z axis, velocity v and the reflection intensity ε, i.e.,

pi,j :“ rx, z, v, εs P R
4. Note that the coordinates on y axis will also be reported
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on advanced radars. Once a vibration target is detected (Section. 4.4.2), we record

its current state as the initial state o0 :“ rx0, z0, v0, ε0s and then track it by moni-

toring the following consecutive frames. Specifically, in frame n, we first calculate

the Euclidean distance between the latest target state on´1 and the states of other

candidate objects in this frame pi,n, and then leverage Hungarian algorithm to find

the associated object on in frame n. Meanwhile, Kalman Filter is used to further

predict and correct the target tracks [82, 127]. Therefore, we can obtain the tar-

get state set O “ to0, o1, ..., on, ..., oN´1uT P R
Nˆ4 across N frames and extract its

moving trajectory tX,Zu P O.

Then we stitch the vibration signal along the target moving trajectory. At each

location, we first extract the phase difference measurements for recovering the vi-

bration signals (Eq. 4.14). Fig. 4.15(b) shows the phase differences captured at two

adjacent locations. Due to different initial phase values and noise, there is a slight

gap between the two measurements from adjacent locations, which might cause er-

rors. Hence, we align and stitch the discontinuous phase difference measurements

and output the integrated vibration signal along the target moving trajectory. Af-

ter that, the vibration spectrogram in Fig. 4.15(c) shows continuous smartphone

vibrations. However, there are some distortions in the vibration level due to various

multipath effects and noise at different locations. Inspired by peak normalization in

audio processing, we adjust the recovered vibration amplitude by normalizing the

vibration peak magnitude to a specified level. After normalization (Fig. 4.15(d)),

smartphone vibrations have a stable vibration amplitude that can be decoded.

4.6 Experimental Method

Hardware and software. As shown in Fig. 4.16, we implement a prototype of

mmRipple using commercial off-the-shelf devices. For the transmitter, we test 11
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Figure 4.16: Experiment Setting.

smartphones from 6 vendors equipped with different types of vibra-motors, including

traditional eccentric rotating mass (ERM) vibra-motors, X-axis and Z-axis LRA

vibra-motors as summarized in Table 4.3. The receiver is a commercial mmWave

radar, Texas Instruments AWR1642 [31], working in the 76GHz „ 81GHz frequency

band. There are 2 Tx and 4 Rx antennas on the radar board. The ADC samples

are captured through a TI DCA1000EVM real-time data acquisition board [30] and

then transmitted to a computer with an Intel Core i7-10510U 2.30GHz CPU for

processing.

Table 4.3: Tested smartphones

Vibra-motor Type Smartphone

ERM vibra-motor HTC One M9+, LG V20,
Xiaomi Mix

X-axis LRA vibra-motor Google Pixel 2, Xiaomi 11
Pro

Z-axis LRA vibra-motor Huawei Mate S, Huawei P20
Pro, Huawei P30 Pro, Sam-
sung Note3, Samsung S8,
Samsung S9+

Experiment setting. On the transmitter side, we control vibra-motors in

smartphones to generate vibration patterns with different coding bits, different vi-

bration amplitudes and different time slots. By default, smartphones are fixed on

tripod mounts and transmit 4-bit Walsh codes as vibration patterns at maximum
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vibration amplitude. The vibration time slot is 40ms and the vibration direction

of the smartphone is aligned with the mmWave radar’s sensing direction. On the

receiver side, we configure the Tx1 of mmWave radar to send FMCW chirps at the

starting frequency of 77GHz with 3GHz bandwidth, and Rx1 „ Rx4 to receive the

reflected signals. The ADC sampling rate of the mmWave radar is 5MHz with 256

samples per chirp and the chirp duration is 100μs. Since we only collect one vibra-

tion signal sample per chirp, the chirp sampling rate is 10kHz. The transmitted

vibration patterns are recorded as ground truth in the smartphones for performance

evaluation.

Evaluation metrics. We evaluate the performance of mmRipple using three key

metrics: Signal-to-Noise Ratio (SNR), Bit Error Rate (BER), and pattern recognition

accuracy. SNR measures the quality of recovered vibration signal, which is defined

as the ratio of the strength of vibration signal to that of background noise. BER

measures the accuracy of data transmission. Pattern recognition accuracy is defined

as the rate that mmRipple correctly matches recovered vibration patterns to their

corresponding programmed patterns. Unlike BER, it measures if mmRipple can

correctly recognize a pattern.

4.6.1 Overall Performance

Fig. 4.17(a) shows the overall performance of mmRipple on 11 popular smartphones

at different communication distances varying from 0.5m to 3m. To capture better

vibrations, the screens of smartphones with EMR or Z-axis LRA vibra-motors (vi-

brating perpendicular to the screen) face towards the mmWave radar. In contrast,

smartphones with X-axis vibra-motors vibrate laterally and we orient their sides to-

wards the mmWave radar. We see that mmRipple has high accuracy across different

types of vibra-motors in different smartphones. Overall, mmRipple achieves the av-

erage vibration pattern recognition accuracy of 98.60% within a 2m communication
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Figure 4.17: Overall Performance.

range, and 97.74% within 3m.

When the communication range is greater than 2m, we observe that recognition

accuracy decreases. We compare the vibration signals extracted by three smart-

phones equipped with different types of vibra-motors at 3m (Fig. 4.17(b)) and notice

that the vibration signal becomes less prominent as the distance increases. There

are two main reasons: 1) weaker reflected signals because of signal attenuation over

longer communication range and small form factors of smartphones; 2) more inter-

ference and noises from a larger sensing area. In this case, tiny vibration signals

are more likely to be drowned by noises and interference. Besides, we also notice

that smartphones with LRA vibra-motors perform better than those with traditional
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Figure 4.18: Performance centered on the transmitter. The smartphone is fixed at
(0,0) and a mmWave radar is placed around it to capture its vibrations.

ERM vibra-motors. This is because ERM vibra-motors generate vibration with un-

balanced mass rotation, which takes a longer rise time to reach the expected vibration

amplitude and frequency than LRA vibra-motors.

In addition, we evaluate the system performance at longer distances with Sam-

sung S9+. The vibration direction is well-aligned with the mmWave sensing direc-

tion. As shown in Fig. 4.17(c), we can see that the pattern recognition accuracy

decreases with distance. At 5m, the accuracy can still achieve 91.67%.

4.6.2 Orientation and Distance

Performance centered on the transmitter. We place the mmWave radar around

the fixed smartphone to evaluate the performance centered on the transmitter in

Fig. 4.18. A Samsung S9+ is placed at the origin of coordinates p0, 0q. Its screen

faces 0˝ and vibration direction is along the Z-axis (the line of 0˝ and 180˝). A

mmWave radar captures the smartphone vibrations from different sensing ranges

(0.5m „ 3m) and directions (0˝ „ 315˝).

We have the following key observations: (i) The performance of mmRipple de-
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creases as the communication range increases. When the communication range ex-

ceeds 2m, the reflected signal from the smartphone will become weaker, leading

to lower SNRs. In this case, it is challenging to accurately discriminate the vi-

bration states, leading to high BER (ą10%). (ii) The performance of mmRipple

will degrade with the increase of mis-alignment between the mmWave radar sens-

ing direction and the smartphone vibration direction. When these two directions are

completely aligned (0˝ and 180˝), the captured vibration signal has the largest vibra-

tion displacement and thus a higher SNR and lower BER. When the misalignment

increases, the captured vibration displacement becomes smaller, resulting in weaker

SNRs and higher BERs. If the vibration direction is orthogonal to the sensing di-

rection (90˝ and 270˝), the amplitude of the vibration signal is extremely tiny, but

can still be detected due to the distance changes in a near field range.

Overall, we findmmRipple can support 2m communication range in any direction,

with a BER of 0.893%. Moreover, within this communication range, a user can hold

the smartphone to transmit vibration signals in any direction. In our experiment,

when the smartphone is equipped with a Z-axis vibra-motor and its vibration direc-

tion is well-aligned with the mmWave sensing direction, the communication range

can be up to 6m.

Performance centered on the receiver. Next, we fix the radar at p0, 0q and

move the smartphone to different angles (´45˝ „ `45˝) and distances (0.5m „ 3m).

The radar always keeps facing towards 0˝ and the vibration direction is fixed along

the Z-axis. When the phone is at 0˝, its vibration direction is perfectly aligned with

the sensing direction of the radar.

In Fig. 4.19, we have the following findings: (i) The performance of mmRipple

also decreases as the sensing angle increases due to the mis-alignment between the

sensing direction and the vibration direction and the non-uniform antenna radiation

pattern. The limitation of radar’s field of view (˘45˝) results in a significant drop in
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Figure 4.19: Performance centered on the receiver. A mmWave radar is fixed at (0,0)
and a vibrating smartphone is placed within its FoV.

SNR, when the phone gets closer to the boundary of the field. (ii) The performance

of mmRipple near Tx antenna (left side) is better than the other side. The reason

for this might be that the limited size of the smartphone makes its reflected signals

susceptible to the non-uniform radiation pattern of antenna and interference [99].

(iii) In the FOV of mmWave radar, it can correctly capture and detect vibration

signals from the smartphone, with a BER of 1.88% within 2m. As the range increases

to 3m, BER increases to 3.78%. Enhanced by the error correction capability with

orthogonal coding, the smartphone vibrations in the FOV of mmWave radar and the

communication range of 2m can be accurately captured by the receiver of mmRipple.

In practice, we can transmit consecutive and identical vibration patterns and leverage

the intra-pattern repetition to improve the reliability of communication.

4.6.3 Communication Performance

In this evaluation, the smartphone and a mmWave radar (AWR1642) are placed

1m apart and we test the communication performance at different conditions. By

default, the smartphone is Samsung S9+.

Vibration time slot. We vary the vibration time slot from 10ms to 60ms to
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Figure 4.20: Communication performance under different conditions.

evaluate its impact on BER and bit rate on two types of smartphones, i.e., Xiaomi

11 Pro (LRA-X) and Samsung S9+ (LRA-Z). We can see from Fig. 4.20(a) that

BER decreases as the vibration time slot increases, since a longer vibration time slot

ensures that the motor has sufficient time to startup and shutdown to counteract

the effect of inertia. In this case, vibration states become more prominent and

easier to decode. When the vibration time slot is 20ms, the average BER for these

two smartphones is 1.90% and the corresponding bit rate is about 18.18bps. If the

vibration time slot is longer than the vibra-motor’s rise time (40ms for Xiaomi 11

Pro and 30ms for Samsung S9+), the average BER is less than 1%. As such, we

recommend that the vibration time slot should be longer than the smartphone’s rise
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time. On the contrary, a longer vibration time slot will result in a lower bit rate.

Therefore, this is essentially a trade-off between decoding accuracy and data rate.

In practice, we empirically set the time slot to be 40ms to strike a balance, since

a short time slot (e.g., ă 40ms) leads to high decoding errors. We believe such a

bit rate is sufficient for mmRipple to support various applications like pedestrian-to-

infrastructure interaction.

Vibration amplitude. A stronger vibration amplitude means that the displace-

ment change is larger, which yields better recognition performance. In this experi-

ment, we vary the vibration amplitude level (as a percentage of maximum vibration

amplitude, i.e., 255) to evaluate its impact. In Fig. 4.20(b), the results demonstrate

that vibration amplitude indeed influences BER. When the vibration amplitude is

set higher than 60% of the maximum amplitude, mmRipple can accurately decode vi-

bration signals. To optimize the performance, we set the amplitude to the maximum

in our experiments if not specified otherwise. We leave the amplitude adaptation

and energy-efficient vibration modulation for future work.

Different Walsh codes. Smartphones use different vibration patterns based on

Walsh codes to convey messages. To investigate the performance of different codes,

we select 8 Walsh codes from 4-bit Walsh codes W 4 and 8-bit Walsh codes W 8 to

generate different vibration patterns to compare their pattern recognition accuracy.

In Fig. 4.20(c), all Walsh codes show good performance with a pattern recognition

accuracy of >96.47%. Overall, users can choose any of Walsh codes to generate their

vibration patterns in applications.

Temporal stability. Given that a vibra-motor is essentially a mechanical com-

ponent, we next evaluate its temporal stability for the purpose of vibration based

communication. We set the vibration time slot to 60ms and let a smartphone vibrate

at this low bit rate to transmit longer packets for 300 seconds. The experiment is

repeated 40 times and the BER is calculated every 15 seconds. We can see from
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Fig. 4.20(d) the BER is less than 1% for 95% communication, demonstrating the

sufficient temporal stability of the vibra-motor.

Processing time.mmRipple takes around 601.89ms to process a one-second

vibration signal, 58% of which is used for object detection that requires massive

FFT operations. We believe the processing time can be reduced by implementing

the time-consuming modules in FPGAs of mmWave radars.

4.6.4 Robustness of mmRipple

Multiple objects. One appealing characteristic of mmRipple is its capability of

separating vibration signals of multiple objects and decoding their concurrent mes-

sages. As shown in Fig. 4.21(a), five smartphones from different vendors are placed

in an area of 2m ˆ 1m in front of the mmWave radar with no obstruction. Among

them, object O3 and O4 have the same communication range and different direc-

tions. These smartphones transmit different vibration patterns based on 4-bit Walsh

codes with 40ms vibration time slot.

Fig. 4.21(b) shows the pattern recognition accuracy of these five objects. As

the number of objects increases, the pattern recognition accuracy drops slightly.

However, even for five objects, mmRipple can still correctly separate multiple vibra-

tion objects at different ranges and directions as well as extract the vibration signal

for each target independently, achieving a pattern recognition accuracy higher than

91.6%. Moreover, mmRipple supports concurrent reception from multiple transmit-

ters, allowing the aggregated throughput to be multiplied. In this experiment, the

bit rate of each transmitter is 9.09bps with the vibration time slot of 40ms. On the

receiver side, the aggregated throughput for receiving vibration messages from five

transmitters is approximately 5ˆ.

Distance between objects. The capacity of mmRipple to resolve multiple

objects is limited by the sensing resolution. To evaluate its capacity, we place two
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Figure 4.21: Multiple object communication.

smartphones (Samsung S8 and S9+) with the same vibration frequency 1m away

from the radar. We vary the smartphone positions so that they are separated by

0cm „ 30cm in range and 5˝ „ 30˝ in AoA relative to the radar. In Fig. 4.21(c)

and Fig. 4.21(d), we observe that the average BER decreases with the increase of

the range and the angle. When the two objects are separated by more than 5cm in

range or 28.65˝ in AoA, we can accurately separate the two objects with a BER of

less than 1%. We repeat the experiment using two smartphones (Samsung S8 and

Huawei Mate 30) with different vibration frequencies. We see that mmRipple shows

better performance by separating the vibration signals in the frequency domain.

Even the two smartphones are very close in range and angle, the average BER is less
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Figure 4.22: Robustness of mmRipple.

than 5%, which indicates that the vibration frequency can be used as an additional

dimension to further separate objects.

Mobile objects. To evaluate the ability of mmRipple to handle mobile ob-

jects, we conduct experiments in the following four scenarios: (a) smartphones fixed

on tripod mounts, (b) handheld smartphones, (c) smartphones in pockets, and (d)

handheld smartphones with arm movement. In the mobile scenario, we invite three

volunteers and collect 150 messages in each scenario. Fig. 4.22(a) illustrates the

performance of mmRipple in these scenarios. Overall, mmRipple can effectively mit-

igate the impact of mobile object with a pattern recognition accuracy of >93.22%.

Our proposed method based on the first-order derivative of phases outperforms the

method of extracting the smartphone vibrations from raw phases. Especially in

the scenario of handheld smartphones with arm movement, the pattern recognition

accuracy has been improved by 20.33%.

Environmental disturbance. To evaluate the environmental disturbance in

practice, we conduct experiments on seven working scenarios in Fig. 4.16. In each

scenario, the distance between the smartphone user and the mmWave radar is kept

at 1m „ 1.5m and 120 vibration messages are collected. In Fig. 4.22(b), we see that

mmRipple has good performance on an open space lawn, as well as in the multipath-
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Figure 4.23: Case study: multi-object communication.

rich office, canteen, and parking lot. Even in the scenarios with moving object

interference, e.g., near the shop doorway where people frequently pass by, campus

and urban roadside with moving vehicles and pedestrians, mmRipple achieves a

pattern recognition accuracy higher than 94.17%. The results demonstrate that

mmRipple can effectively filter out the interference and extract vibration signals by

leveraging the prior knowledge of vibration frequencies and vibration patterns.

4.6.5 Case Study

We take a practical case to present the mmRipple performance in a multi-object com-

munication scenario. As shown in Fig. 4.23(a), a mmWave radar is deployed at the

entrance of a canteen to monitor its surrounding objects and meanwhile receive mes-

sages from vibrating smartphones. Three volunteers are invited to hold their smart-

phones (1-Samsung S9+, 2-Samsung S8, 3-Xiaomi Mix) and simultaneously interact

with the mmWave radar within a communication range of 2m. These smartphones

send different 4-bit vibration patterns with a vibration time slot of 40ms. We collect

30 vibration patterns from each experiment and repeated for 5 times. Fig. 4.23(b)

plots the pattern recognition accuracy of these three subjects. We observe that mm-

106



Ripple achieves an average pattern recognition accuracy of 96.85% for three subjects

demonstrating its practicality. Subject 3 holding the smartphone with a traditional

ERM vibra-motor still has an accuracy of 91.67%. Therefore, we believe that mm-

Ripple can be deployed in real-world scenarios to provide both multi-object sensing

and multi-object communication, enabling more innovative applications.

4.7 Discussion

One-way communication. mmRipple only supports one-way communication where

a message is sent from a smartphone user to a mmWave radar. In practice, same as

a QR code scanner, mmRipple can acknowledge to a user via an out-of-band channel

(e.g., light, sound, action and visual cues). For example, after receiving a valid mes-

sage from a user, a door can automatically open and allow access, which implicitly

acknowledges the successful reception of the vibration message. Smart traffic lights

can similarly acknowledge the user by turning green.

Communication capacity. mmRipple adopts the OOK modulation, where the

maximum amplitude vibration represents data-1 and no vibration represents data-

0. Higher vibration amplitude can support a longer communication range, while it

will also increase the rise time of the vibra-motor due to the inertia, resulting in a

lower bit rate. There is a trade-off between communication range and transmission

rate. For a vibra-motor with a rise time of 30ms, its bit rate sending 4-bit patterns is

12.12bps at the maximum vibration amplitude. We believe such a bit rate is sufficient

for various applications.

Multi-object communication. mmRipple separates multiple objects in time,

range, angle, and vibration frequency, so that the aggregated throughput on receiver

can be multiplied by reading concurrent messages. It is challenging to separate

two objects that are almost the same (below resolution) in all dimensions. One
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possible enhancement is to improve resolution by increasing chirp bandwidth, the

number of receive antennas as well as cascading multiple radars [12]. Furthermore,

we may exploit differences in the vibration patterns from different transmitters (e.g.,

orthogonal codes) to enhance the separation capability.

Energy consumption. mmRipple uses smartphone vibrations to communicate

with mmWave radars. On the receiver side, mmWave radars are typically powered by

dedicated power supplies. On the transmitter side, motor vibrations indeed consume

the energy of smartphones. In contrast to other smartphone applications, mmRipple

only requires vibra-motors to work occasionally to complete one communication in

a short period of time (e.g., 330ms). As such, we believe the energy consumption of

mmRipple is affordable for infrequent usage scenarios.

Communication security. mmRipple leverages smartphone vibrations to con-

vey messages. To guarantee communication security, we may reduce the vibration

amplitude, making it difficult to sense and decode from afar by an attacker but can

be reliably decoded by a mmWave radar nearby. Moreover, without prior knowledge

of an encoding method or encryption keys, it is challenging for an attacker to decode

the vibration pattern even if the vibration can be sensed.

4.8 Summary

In this work, we address a series of technical challenges in designing and implementing

mmRipple, which allows users to send messages to mmWave radars through smart-

phone vibrations. mmRipple can support concurrent reception of vibration signals

from multiple smartphones by leveraging the diversities of smartphone vibrations in

frequency, time, and location. mmRipple mitigates the impact of device movement,

noise and interference with novel signal processing techniques. While future work

is needed to further improve mmRipple, we believe it is an important step towards
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demonstrating the feasibility and practicality of building communication channels

between vibrating objects (not limited to smartphones) and mmWave radars.

So far, we have introduced our two works, ShakeReader and mmRipple. The sig-

nificant difference lies in the application scenario. ShakeReader targets offline stores

deployed RFID systems, allowing customers to interact with RFID-labelled items for

fetching more item-specific information (e.g., coupon, promotion, price comparison,

matching tips, and logistics information). In contrast, mmRipple is suitable for a

wider range of scenarios, e.g., home scenarios, industrial scenarios, and smart city

scenarios. For example, multiple users can interact with mmWave radar-equipped

home appliances, robots, and traffic lights for configuration and personalized re-

sponses. mmWave radar can be deployed at the entrance of a venue as a monitor to

sense surrounding objects, while receiving messages from multiple users to provide

specific services. Although the application scenarios are different, these two works

leverage smartphones to enable contact-free and user-friendly interaction.
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Chapter 5

Future Work

5.1 Faster and Full-Stack Communication for Human-

mmWave Radar Interaction

In Chapter 4, we present mmRipple, which allows users to interact with mmWave

radar through smartphone vibration to enable more promising applications, such as

Pedestrian-to-Infrastructure (P2I) interaction and other near-field interactions. In

mmRipple, we adopt OOK modulation and orthogonal codes to encode vibrations

and deliver different messages. As a first attempt, mmRipple achieves a bit rate of

12.12bps for the 4-bit Walsh Codes when the vibration time slot is 30ms, but leaves

various challenges and opportunities unaddressed.

In future work, we will present a subsequent work, mmRipple II, to enable faster

and full-stack communication and extend such interaction to all vibrating objecting

with vibra-motors (e.g., smartphone, electric razor, electric toothbrush and smart-

watch) and mmWave radars.

5.1.1 Faster Communication

To improve the bit rate of the communication channel, mmRipple II will adopt a

more efficient modulation scheme. Specifically, we opt for Pulse Width and Ampli-

tude Modulation (PWAM), which takes advantage of both the Pulse Width Modu-
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Figure 5.1: Illustration of PWAM data symbols consisting of 4 bits.

lation (PWM) and Pulse Amplitude Modulation (PAM) [68]. A data symbol with a

duration of T can represent M `N data bits, where M bits are translated to a set of

2M levels of vibra-motor vibrating percentage, and N bits correspond to a set of 2N

levels of vibration amplitude. Fig. 5.1 shows a set of PWAM data symbols consisting

of 4 bits. The vibra-motor vibrating percentage of each symbol could be 25%, 50%,

75%, and 100% to represent 00, 01, 10, and 11, respectively. The vibration ampli-

tude is divided into 4 levels, i.e., A1, A2, A3, and A4, to represent 4 bits, i.e., 00,

01, 10, and 11. Hence, we can adjust symbol duration T , M related to vibra-motor

vibrating percentage and N related to vibration amplitude to achieve the PWAM.

In the following, we will discuss how to choose the appropriate parameters.

The choice of T and M : T represents the symbol duration and M determines

the vibra-motor working percentage of each symbol, both of which are related to the

vibra-motor’s operating time. Due to the impact of inertia, a vibra-motor needs to

consume a certain amount of time (rise time Trise) to overcome the static inertia of

the magnetic mass and reach its maximum vibration amplitude. Similarly, inertia

causes the vibra-motor to take some time (fall time Tfall) to converge after the

motor is programmed to terminate. Therefore, we recommend that symbol duration
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Figure 5.2: The change of vibration amplitude with the percentage of maximum
programmed vibration amplitude.

T should be greater than or equal to the sum of the rise time and shutdown time

of the vibra-motor to ensure that the motor has sufficient time to be fully activated

and converged, i.e., T ě Trise ` Tfall. For the parameter M , we empirically set the

M to 2, so that the vibra-motor has 4 levels of usage, i.e., 25%, 50%, 75% and 100%.

The choice of N : The value of N depends on the number of groups of vibra-

tion amplitudes that we can control and use in practice. Theoretically, the range of

programmable vibration amplitude Avib is [0,255]. Thus the maximum value of N

is 8 (28 “ 256). We select the Z-axis vibra-motor in Samsung Galaxy S9+ as the

transmitter to vibrate for 100ms with different vibration amplitudes Avib. Fig. 5.2

plots the recovered vibration signals by mmWave radar. We observe that the signals

with different vibration levels can be generated by varying the value of the vibration

amplitude Avib. Each vibration level can serve as one symbol so that we can leverage

multiple levels of vibration amplitudes to encode data. In practice, however, vibra-

tion signals with weak amplitudes are likely to be drowned out by noise, making

them difficult to detect. Therefore, we empirically tune N and set N to 2 (i.e., 25%,

50%, 75%, and 100% of vibration amplitude levels) to ensure adequate vibration
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Figure 5.3: The received smartphone vibration signals after PWAM modulation.

intensity and vibration gap between adjacent vibration amplitudes.

To verify the effectiveness of PWAM modulation on vibra-motors, we conduct

an empirical study with a smartphone (Samsung S9+) and a mmWave radar (TI

AWR1642). The smartphone is placed directly in front of the radar 0.5m away.

We program the smartphone vibra-motor to conduct PWAM modulation as shown

in Fig. 5.1 and the symbol duration T is 100ms with 4 vibration amplitude levels

(N “ 2) and 4 levels of vibra-motor vibrating percentage (M “ 2). Fig. 5.3 shows

the received smartphone vibration signals after PWAM modulation. We can see

that the vibra-motor can be programmed to transmit different bits based on the

PWAM modulation. Different combinations of vibration levels and the vibra-motor

working percentage can be used to convey different messages. In this case, the bit

rate is increased to 40bps when the symbol duration is 100ms, which is 10ˆ that of

mmRipple under the same symbol duration.

5.1.2 Full-Stack Communication

In mmRipple II, we aim to build a full-stack communication platform, which allows

any vibrating devices held by the user (e.g., smartphone and smartwatch) to interact
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with IoT devices equipped with mmWave radar (e.g., robots, vehicles and smart

street lamp) through vibrations. As shown in Fig. 5.4, the vibration motor acts as

the transmitter of mmRipple II, and the mmWave radar as the receiver. From a

layered perspective, the overall architecture of mmRipple II mainly includes three

layers:

• PHY Layer: The redesign of mmRipple II PHY features a faster transmission

rate. On the transmitter side, mmRipple II adopts PWAM scheme instead of

OOK modulation to modulate data on the vibration signals by simultaneously

adjusting both vibration amplitude and vibrating percentage of vibra-motor.

On the receiver side, a mmWave radar continuously sends mmWave signals to

sense the surroundings and captures the reflected signals from the objects in
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its propagation path. By recovering and demodulating the vibration signals

from the transmitter, we can capture the message sent by the corresponding

object.

• MAC Layer: The design and measures in MAC layer aim to enable the re-

ceiver of mmRipple II (i.e., mmWave radar) to accommodate more practice

and dynamic scenarios and enhance the communication security. mmRipple

has demonstrated its effectiveness in multiple and mobile transmitter commu-

nication. In practice, however, the receiver side suffers from the same prob-

lems. For example, advanced vehicles are equipped with multiple mmWave

radars and these radars are in a highly dynamic environment. Therefore, we

will redesign and enable mmRipple II to further support multiple receiver and

mobile receiver scenarios. We may design guidelines to collaborate with mul-

tiple mmWave radars and select some fixed objects (e.g., traffic lights and

lamps) as the references to eliminate the impact induced by moving radars.

As such, mmRipple II will be extended to accommodate more practical and

dynamic scenarios. In addition, communication security is vital. In the future,

mmRipple II may dig into the context information in messages captured by

mmWave radar, such as object’s location and vital signs, for communication

authentication to improve the security of the system.

• APP Layer: We will explore potential applications of mmRipple II. 1) Rip-

pleMessage allows users to interact with both static and mobile devices equipped

with mmWave radar (e.g., road infrastructure, moving vehicles and smart home

appliances) by vibra-motor vibrations for personalised feedback. For example,

after receiving a “picking me up” message from a user, the self-driving shuttle

will automatically drive to the user’s location and provide the appropriate ser-

vice. 2) RippleKey will provide convenient and safe near-field communication.
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The different vibration messages can be regarded as tokens to enhance user au-

thentication for access control, mobile payment, etc.. By reducing the vibration

amplitude, a tiny vibration pattern serving as a password becomes extremely

challenging to sense and decode from afar by an attacker but can be reliably

decoded by a mmWave radar nearby. Moreover, without prior knowledge of

an encoding method, it is challenging for an attacker to decode the vibration

pattern even if the vibration can be sensed. At the same time, the hidden

context information, including location and vital signs, can be considered as

the user identity features to improve communication security.

5.2 Sound-induced Vibrations for Interaction

In practice, we observe that when the smartphone speaker plays acoustic signals, the

body of the smartphone will generate some vibrations that can be captured by the

mmWave radar. Therefore, we can build a communication channel between smart-

phones and mmWave radars. The core idea is to harness the speaker (present in

all smartphones) as a transmitter, and a mmWave radar as a receiver. When the

speaker transmits the modulated sound waves, the whole body of the smartphone

generates the corresponding vibrations to transfer messages. After capturing and

decoding these sound-induced vibrations, the mmWave radar will catch the trans-

mitting messages. In this way, smartphone users can send messages to mmWave

radars through smartphone speakers. Compared to vibrations from vibra-motor, the

vibrations from smartphone speakers have a wider vibration frequency band, so that

we can exploit sound-induced vibrations to build a faster communication channel

from speakers to mmWave radars. In the future, we hope to conduct several exper-

iments to characterize the sound-induced vibrations to create a reliable and faster

communication channel to boost vibration-based communication with smartphone
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speakers.

5.3 Pedestrian-to-Vehicle Interaction

Advanced driver assistance systems (ADASs) have been deployed on vehicles to

reduce human errors. By being equipped with myriads of sensors (e.g., cameras,

mmWave radars and LiDAR) and advanced algorithms, ADASs assist drivers to

sense their surroundings and keep the vehicle moving with little human control. Al-

though promising, these vehicles and self-driving cars, do not gain the trust of the

public, especially pedestrians. Studies have shown that misunderstandings between

drivers and pedestrians cause a large number of accidents. This problem is even more

urgent for vehicles with ADASs and self-driving cars. With partially automated ve-

hicles, the driver’s attention may be diverted from the driving environment and other

road users. The lack of driver control in fully self-driving cars makes communication

between pedestrians and vehicles difficult. In both cases, the pedestrian is unable to

catch valuable cues from the driver or the vehicle to understand its awareness and

intent, resulting in accidents. Therefore, it is desirable to facilitate the interaction

between pedestrians to enable the vehicle to understand human intentions.

Existing vehicles mainly use cameras to enable pedestrian-to-vehicle interaction

by capturing hand gestures and activities. However, they require ideal lighting condi-

tions and weather conditions, which are hard to guarantee in practice. On the other

hand, mmWave radars equipped on current vehicles have emerged as low-cost sensors

for all-weather conditions, such as fog, smoke, and dark environment. Therefore, we

will leverage mmWave radar to enable pedestrian-to-vehicle interaction.

In Chapter 4, we present mmRipple which allows smartphone users to interact

with mmWave radars through smartphone vibrations. Although it has demonstrated

better performance on pedestrian-to-infrastructure interaction and other near-field
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interactions, mmRipple cannot be easily extended to pedestrian-to-vehicle interac-

tion for two reasons. 1) mmRipple requires the receiver (mmWave radar) remain

static to capture the reflected signals from the target, largely confining their adop-

tion in practical environments where the vehicle (mmWave radar) is moving. 2)

mmRipple captures smartphone vibrations to receive the messages from the users,

while the weaker reflected signals from the smaller size of the smartphone will limit

the interaction range to a closer distance (i.e., 2m). Hence, this near-field interaction

does not apply to pedestrian-to-vehicle interaction with high mobility.

In the future, we will overcome the above challenges to enable a practical pedestrian-

to-vehicle interaction. Specifically, we attempt to design multiple interaction gestures

to represent pedestrians’ different intentions (e.g., crossing, stopping, picking me up).

After sensing and detecting by mmWave radars, the vehicle will give the correspond-

ing feedback to complete the interaction. The reflected signal from the human body is

stronger than that of a smartphone, ensuring a longer interaction range. In addition,

we try to select some fixed objects (e.g., walls, traffic lights and lamps) as references

to eliminate the impact induced by moving radars. We believe that pedestrian-to-

vehicle interaction is a promising and interesting topic with several challenges that

need to be explored in future research.
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Chapter 6

Conclusion

The interaction between humans and IoT devices is crucial throughout the IoT

ecosystem, allowing users to access or configure IoT devices for personalized re-

sponses. In this thesis, we enhance the current human-IoT device interaction via

RF sensing and enable users to interact with ubiquitous RFID tags and mmWave

radars.

Firstly, we propose ShakeReader which allows users to interact with RFID tags by

performing a pre-defined smartphone gesture over the interested RFID tag. The core

idea is to match the RFID measurement data and the motion sensor data, both of

which are affected by the pre-defined smartphone gesture. The whole system consists

of three components. Two detection components in the RFID and the smartphone

are used to detect the pre-defined gesture and calculate time information by monitor-

ing phase fluctuations and acceleration changes separately. One matching component

pairs the tag and smartphone by comparing time information. We implement the

prototype of ShakeReader without making any hardware extension to either deployed

RFID infrastructure or smartphones. Extensive experiments show that ShakeReader

can accurately pair interested tags with their corresponding smartphones with an

accuracy of ą96.3%.

Secondly, we present mmRipple that leverages smartphone vibrations to establish
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a communication channel with mmWave radar to enable near-field interaction. The

idea is that the smartphone would vibrate in patterns, while the mmWave radar de-

tects them to interpret the patterns which could correspond to messages. Specifically,

on the transmitter side (smartphone’s vibra-motor), we design several smartphone

vibration patterns based on orthogonal codes to convey different messages. On the

receiver side (mmWave radar), we detect and decode the smartphone vibrations to

receive the messages. We address multiple challenges, including recovering and re-

fining minute smartphone vibrations under background noises, separating multiple

objects in mixed reflected signals for multi-object communication, as well as mitigat-

ing movement interference for mobile objects. Without any hardware modification

to either smartphones or mmWave radars, we implement the prototype of mmRipple.

Comprehensive evaluation experiments show that mmRipple has a good communi-

cation performance within a 2m communication range. In addition, mmRipple can

support multiple object communication and mobile object communication.

As a first attempt, mmRipple adopts the OOK modulation to enable the human-

mmWave radar interaction and achieves a bit rate of 9.09bps when the vibration time

slot is 40ms. We next intend to extend this work to support faster and full-stack

communication. Specifically, we will leverage the PWAM modulation by adjusting

both the vibration amplitude and working percentage of the vibra-motor to encode

information. It is demonstrated that the bit rate of PWAM-based modulation is 10

times higher than that of OOK-based modulation under the same symbol duration.

Moreover, we attempt to exploit sound-induced vibration to boost vibration-based

communication with smartphone speakers. Such vibration with a wider vibration

frequency band will enable a faster communication channel from smartphone speakers

to mmWave radars. At the same time, we propose a full-stack platform, including

the PHY layer, MAC layer and APP layer, for the communication between any

vibrating objects (e.g., smartphones and smartwatches) and mmWave radars. In
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addition, we notice thatmmRipple cannot be easily extended to pedestrian-to-vehicle

interaction due to the short communication range and the requirement for radar to

remain stationary. In the future, we may achieve pedestrian-to-vehicle interaction by

detecting different hand gestures with mmWave sensing, allowing users to interact

with the on-road vehicle and even self-driving cars to improve road safety.

In summary, we study the problem of human-IoT device interaction via RF sens-

ing. In each work, we clarify our objectives, carefully address practical challenges

and provide effective solutions and frameworks. Human-IoT device interaction is a

promising topic as IoT plays a more significant role in our daily lives. Our future

research will continue to complement and augment human-IoT interactions, allowing

users to interact with these ubiquitous IoT devices without any hardware modifica-

tion and fully enjoy the IoT world.
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