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Abstract

Voice interaction has become the fundamental approach to connecting humans and smart de-

vices. Such an interface enables users to easily complete daily tasks by voice commands, which

not only contain the explicit user’s semantic meaning but also imply the user’s physical con-

text information such as location and speaking direction. Although current speech recognition

technology allows devices to accurately understand voice content and take smart actions, these

contextual clues can further help smart devices make more intelligent responses. For example,

knowing a user’s location helps narrow down the possible set of voice commands and provides

customized services to users in a kitchen.

Acoustic sensing has been studied for a long time. However, unlike actively transmitting hand-

crafted sensing signals, we can only obtain the voice on the receiver side, making sensing voice

contexts challenging. In this thesis, we use voice signals as a sensingmodality and propose new

acoustic sensing techniques in a passive way to extract the physical context of the voice/user:

location, speaking direction, and liveness. Specifically, (1) inspired by the human auditory

system, we investigate the effects of human ears on binaural sound localization and design

a bionic machine hearing framework to locate multiple sounds with binaural microphones.

(2) We exploit the voice energy and frequency radiation patterns to estimate the user’s head

orientation. By modeling the anisotropic property of voice propagation, we can measure the

user’s speaking direction, serving as a valuable context for smart voice assistants. (3) Attackers

may use a loudspeaker to play pre-recorded voice commands to deceive voice assistants. We

check the sound generation difference between humans and loudspeakers and find that the

human’s rapid-changing mouth leads to a more dynamic sound field. Thus, we can detect

voice liveness and defend against such replay attacks by examining sound field dynamics.

To achieve such context-aware voice interactions, we look into the physical properties of voice,

work with hardware and software, and introduce new algorithms by drawing from principles

in acoustic sensing, signal processing, and machine learning. We implement these systems

and evaluate them with various experiments, demonstrating that they can facilitate many new

real-world applications, including multiple sound localization, speaking direction estimation,

and replay attack defense.
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Chapter 1

Introduction

1.1 Background

In recent years, the proliferation of embedded and mobile devices has ushered in the Inter-

net of Things (IoT) era. The development of IoT devices calls for ubiquitous human-machine

interaction approaches accordingly. With the support of sensing technologies, versatile appli-

cations can be implemented to enhance the capability of users to interact with smart devices,

such as speech recognition [63, 136], gesture recognition [97, 174, 213, 226], user identification

[23, 36, 89], and health monitoring [171, 203, 229].

Although the industry has developed many commercial interaction applications with cameras,

they may bring about privacy issues and do not work well in poor light conditions [1, 7]. Be-

sides, the camera is not always available in various IoT devices, especially for small ones (e.g.,

smart speakers). Some companies have developed new interactionmethods with wearable sen-

sors (e.g., Inertial Measurement Unit, IMU) [5], but users may feel uncomfortable wearing sen-

sors all day. Academia found that human activities can distort wireless signals in the air, so re-

searchers attempt to design sensing applications with wireless signals. For example, Wi-Fi was

originally invented for communication but can be redesigned to detect user movements [175].

As such, many sensing technologies are proposed with Radio Frequency IDentification (RFID)

[233], mmWave [215], and other Radio Frequency (RF) signals [34, 38]. Although promising,

such methods are also not practical for normal users. For instance, although Wi-Fi chips have

already been installed onmany devices, they usually cannot support Application Programming

Interface (API) to access low-level signals [68]. Furthermore, dedicated RF sensing devices (e.g.,

1
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RFID readers and mmWave peripherals) are considered expensive and bulky [17]. Therefore,

users’ desire for a ubiquitous device-free interaction approach has consequently pushed re-

search to seek alternative methods, especially during the COVID-19 pandemic.

Voice is a natural and friendly interface for human-device interaction with a low level of effort

and cost. Consequently, most IoT devices are equipped with microphones and loudspeak-

ers, ranging from customized embedded devices (i.e., smart bands, smartwatches, and smart

speakers) to powerful general-purpose devices such as smartphones and laptops. Many devices

even have multiple microphones forming a microphone array to record clear sound [2]. The

ubiquitous and low-cost property enables researchers to develop new sensing applications by

repurposing built-in microphones and loudspeakers. Similar to RF sensing with a transmitter-

receiver pair, acoustic sensing systems usually transmit a carefully-designed waveform as the

sensing signal and then collect the signals bounced back from objects for channel estimation.

The frequency of sensing signals commonly falls between 18 and 24 kHz since this frequency

band is inaudible to humans [30]. The low speed of acoustic signals enables a mm-level sens-

ing accuracy, facilitating extensive applications such as motion tracking [129, 211, 244], gesture

recognition [97, 174, 213], and breath monitoring [128, 203, 205, 229].

1.2 Voice signal as a sensing modality

Smart IoT devices such as Amazon Echo allow users to interact with them by voice commands

and have become increasingly popular in our daily life. As a friendly interface, it is intuitive

for users, especially for the elderly, handicapped, and disabled people [235]. The report shows

that 62% Americans use a voice assistant on any device [6]. To this end, the speech community

has made great efforts in speech recognition [63, 136], allowing IoT devices to understand

the semantic meaning of the voice accurately and take smart actions accordingly. But then,

we find that the voice command not only contains the explicit user’s speech content but also

implies the user’s physical context information, such as location and speaking direction. Such

contextual information can help smart devices make more intelligent responses than before.

For example, knowing a user’s location helps narrow down the possible set of voice commands

and provides customized services to users in a kitchen. In this way, the voice command is

stamped with contextual tags to enable more applications such as multiple device arbitration,

meeting diarization, and indoor navigation.
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Figure 1.1: Illustration of the physical context of voice.

However, the active acoustic sensing methodology is not feasible in voice-related scenarios

since we cannot obtain original sounds from the human mouth (i.e., the transmitted signal)

to estimate the acoustic channel [30]. Thus, despite tremendous efforts to develop acoustic

sensing applications in the past decade, passive sensing with voice signals has attracted less

attention. Therefore, as a kind of acoustic signal, voice provides unprecedented opportunities

to develop novel sensing applications, even though it is challenging.

1.3 Context-aware Voice Interaction

In this thesis, we explore extracting the physical context from human acoustic signals (i.e.,

voice) in a passive way. Specifically, we focus on three physical factors of voice: location, head

orientation, and liveness. As shown in Fig. 1.1, the voice location indicates where the speaker

is; the head orientation denotes the speaking direction; the voice liveness reveals whether this

speech is spoken by a human or played by a loudspeaker once the microphone receives a voice

command. In the following, we will explain the research problem in terms of each physical

feature and propose our approaches to facilitate context-aware voice interaction applications.

1.3.1 Where are you speaking? - multiple sound localization

Although existing works have achieved highly accurate voice localization with microphone

arrays [168], localization with binaural microphones is still a problem. The binaural micro-

phone, which refers to a pair of microphones with artificial human-shaped ears, is widely used

in hearing aids and spatial audio recording to improve sound quality. It is crucial for such

devices to find the voice direction in many applications such as binaural sound enhancement.
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However, sound localization with two microphones remains challenging, especially in multi-

source scenarios. Most previous work utilized microphone arrays to deal with the multi-source

localization problem [198, 210]. Extra microphones yet have space constraints for deployment

in many scenarios (e.g., hearing aids).

However, we find that humans have evolved to locate multiple sound sources with only two

ears. Inspired by the fact that humans have evolved to locate multiple sound sources with only

two ears, we propose DeepEar, a binaural microphone-based sound localization system (§3).

To this end, we design a multisector-based neural network to locate multiple sound sources

simultaneously, where each sector is a discretized region of the space for different angles of

arrival. DeepEar fuses explicit hand-crafted features and implicit latent sound representatives

to facilitate sound localization. More importantly, the trained DeepEar model can adapt to new

environments with a minimum amount of extra training data. The experiment results show

that DeepEar substantially outperforms the state-of-the-art binaural deep learning approach

[198] by a large margin in terms of sound detection accuracy and azimuth estimation error.

1.3.2 Which direction are you facing? - head orientation estimation

The user’s position embeds additional context information into voice commands making voice

assistants smarter. In contrast, few works explore the user’s head orientation, which also con-

tains useful context information. For example, when a user says ”turn on the light,” the head

orientation could infer which light the user means. Existing model-based works require a large

number of microphone arrays to form an array network [8, 25, 120, 163, 164], while machine

learning-based approaches need laborious data collection and training workload [12, 232]. The

high deployment and usage cost of these methods is unfriendly to users.

In this research, we propose HOE, a model-based system that enables Head Orientation Esti-

mation for smart devices with only two microphone arrays, which requires a lower training

overhead than previous approaches (§4). The basic idea is that voice propagation presents an

anisotropic property [41]. Intuitively, the human voice energy is mainly radiated to the head

front direction, while the energy radiated to the side and opposite direction is generally weaker

due to the block of the head and face. HOE models this voice radiation pattern and estimates a

user’s head orientation with the voice signals received by two microphone arrays. The evalu-

ation on real-world experiments shows that HOE can achieve a median estimation error of 23
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degrees. To the best of our knowledge, HOE is the first model-based attempt to estimate the

head orientation by only two microphone arrays without arduous data training overhead.

1.3.3 Is the voice command from a real human or a spoofing loudspeaker? -

voice liveness detection

Accompanied by contextual clues, voice commands enable users to easily complete daily tasks

such as adjusting music volume and even critical operations such as online transactions and

remote door unlocking [42, 56, 81]. However, once attackers replay a secretly-recorded voice

command by loudspeakers to compromise users’ voice assistants, this operation will cause

serious consequences, such as information leakage and property loss. Unfortunately, most

existing voice liveness detection approaches mainly rely on detecting lip motions or subtle

physiological features in speech, which are limited within a very short range.

As such, we propose VoShield to check whether a voice command is from a real user or a

loudspeaker imposter (§5). VoShield measures sound field dynamics, a feature that changes fast

as the humanmouths dynamically open and close. In contrast, it would remain rather stable for

loudspeakers due to the fixed size. This feature enables VoShield to largely extend the working

distance and remain resilient to user locations. Besides, sound field dynamics are not directly

extracted from the voice contents, which means that attackers can hardly manipulate the voice

to bypass our approach. To evaluate VoShield, we conducted comprehensive experiments with

various settings in different working scenarios. The results show that VoShield can achieve

a detection accuracy of 98.2% and an Equal Error Rate of 2.0%, which serves as a promising

complement to current voice authentication systems for smart devices.

1.4 Research Framework

In this study, we investigate the principle behind the voice life cycle [185] to capture the phys-

ical information of voice. As shown in Fig. 1.2, in the generation stage, the voice is uttered by

human mouths or played by loudspeakers to spoof a real user. Inspecting the differences in

voice generation between humans and loudspeakers, we find that the sound field caused by

humans is more dynamic than that caused by loudspeakers. On the basis of this observation,

VoShield can detect voice liveness and protect voice assistants.
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Figure 1.2: Research framework of this thesis. We carefully investigate the physical char-
acteristics of each stage in the voice life cycle. Accordingly, we propose three application
systems, namely VoShield, HOE, and DeepEar, to sense the liveness, orientation, and location

of voice/speakers.

After that, the voice propagates as a mechanical wave in the medium, reflects, refracts, and

diffracts in the environment. During the propagation process, we observe that the front di-

rection has higher energy than other directions, because the voice propagation is blocked by

the head and face in the side and back directions, respectively. Thus, by measuring the non-

uniformity of voice propagation, HOE is able to estimate the user’s head orientation for voice

commands.

Finally, the voice is captured by human ears or collected bymicrophones. Unlike amicrophone,

before collecting sound, human ears will filter signals and cause special multipath patterns

for different directions. Such spatial filtering significantly helps the human brain to locate

multiple sounds with only two ears. By mimicking the sound collection process of the human

auditory system, DeepEar can support multiple sound localization with binaural microphones,

enabling hearing-impaired people to hear much more clearly with the help of hearing aids.

Subsequently, the recorded signal may be played by loudspeakers to conduct the replay attack,

and the binaural microphone performs beamforming to enhance the sound quality for users.

1.5 Thesis Organization

This thesis is laid out in the following way. Chapter 1 introduces the background and research

problems. Chapter 2 reviews related work on acoustic sensing. Chapters 3 to 5 present the de-

sign and evaluation of our three voice sensing systems: DeepEar for sound localization (Chap-

ter 3), HOE for head orientation estimation (Chapter 4), and VoShield for liveness detection

(Chapter 5). Chapter 6 concludes this thesis and discusses some future research directions.



Chapter 2

Literature Review

There is a large body of literature in the area of acoustic sensing. Generally, they fall into

two categories in terms of the sensing method, namely active sensing and passive sensing

[30]. Active sensing refers to a system that actively transmits pre-designed acoustic signals

and analyses the signal bounced back from objects. Passive sensing systems typically only

receive acoustic signals emitted by other objects (e.g., human voices, footstep sounds, etc.), so

the original sound is transparent to the receiving device. In this chapter, we review related

work on both active and passive acoustic sensing and introduce them from an application

perspective.

2.1 Active acoustic sensing

Active acoustic sensing systems measure the time of fight (ToF) or acoustic channel by trans-

mitting inaudible hand-crafted waveform, such as pure tone signals [243], frequency-hopping

spread spectrum (FHSS) signals [244], and frequency modulated continuous wave (FMCW)

[106]. Apart from sensing physical objects, the acoustic signal can also be used for wireless

communication as an alternative to conventional RF approaches like Bluetooth or Near Field

Communication (NFC) [29, 126, 209].

7
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2.1.1 Ranging

By detecting the ToF of the transmitted signal, we can easily measure the range of objects,

fueling many applications such as size measurement, obstacle detection, and indoor mapping.

BeepBeep [142] achieves centimeter-level ranging errors with cross-correlation. Based on it,

SwordFight [251] improves the ranging accuracy to 2 cm. ABAid [255] can detect obstacles

with an average error of 2.73◦ to help blind people move independently using smartphones.

Despite its high accuracy, the acoustic signal quickly attenuates in the air, which poses chal-

lenges for distant ranging. DeepRange [107] trains a deep learning model with synthesized

data and achieves 1 cm error performance at a distance up to 4 m. BatMapper [256] builds a

probabilistic model to construct the floor map, and its ranging errors are less than 30 cm on

a room scale. SAMS [145] further improves the performance by introducing the chirp mixing

technique for better temporal resolution.

2.1.2 Localization

Having multiple range results, we can triangulate and locate the position of the sound source

as long as we have degree information. GuoGuo [100] locates targets with multiple ZigBee-

synchronized acoustic anchors. In [87], many distributed speakers are used as anchors and

connected to an audio device for synchronization. Based on it, [86] replaces the synchro-

nization module with Bluetooth and achieves an average localization error of 30 cm. UPS+

[96] exploits the non-linearity of microphones and uses ultrasonic beacons to locate devices

that cannot receive ultrasonic signals. These approaches heavily rely on multiple strictly syn-

chronized anchors or beacons, leading to a high deployment cost. Given that Wi-Fi is widely

deployed in living environments, Wi-Fi Access Points (AP) become natural anchors for local-

ization. Prior arts [98, 127] combines acoustic ranging andWi-Fi fingerprints to perform local-

ization. Moreover, EchoTag [192] utilizes acoustic echoes from its surroundings as a location

fingerprint, sensitive to environmental changes. Besides, some works [99, 103, 207, 257] can

conduct keystroke snooping attacks by locating the keystroke locations with high accuracy.
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2.1.3 Motion Tracking

By continuously locating the object, acoustic signals can further be used for motion tracking

and act as an interface for many applications like Augmented Reality (AR), gaming, and text en-

try. AAMouse [243] estimates the Doppler speed of a smartphone that emits multi-tone signals

and tracks its movements at a centimeter level. CAT [106] transmits FMCW signals to push the

tracking accuracy to a sub-centimeter level. MillSonic [204] makes use of a four-microphone

array to achieve high-precision tracking. SoM [254] supports tracking a smartwatch on the

wrist with a smartphone.

However, these works can only track a device that can transmit sounds. Therefore, some re-

searchers took a step further and explored tracking any object by detecting the echoes bounced

back from it. EchoTrack [32] measures the TDoA between two microphones in the smart-

phone and tracks hand movements without any additional hardware. FingerIO [129] leverages

OFDM-modulated acoustic signals to estimate the channel between the speaker and micro-

phone. When the finger moves near a smartphone, the channel state will be distorted and

transformed to the finger location. The tracking accuracy of FingerIO is 8 mm. After that,

LLAP [211] further improves the tracking performance to 4.57 mm. It harnesses the phase

divergence of multiple carrier signals to track the placement of the fingers. Strata [244] ex-

erts a training sequence to perform robust finger tracking, pushing the accuracy to 3 mm. A

problem with these approaches is the limited sensing range since the acoustic echoes attenu-

ate very quickly. To overcome this drawback, [108] exploits Multi-Input Multi-Output (MIMO)

and deep learning techniques to achieve room-scale hand tracking. CovertBand [130] tracks

body postures with a powerful loudspeaker to enhance the signal-to-noise ratio (SNR).

2.1.4 Gesture Recognition

Based on motion tracking, we can perform gesture recognition by detecting consecutive mo-

tion patterns in a period. Soundwave [67] and Spartacus [177] leverage theDoppler shift caused

by hand movements to identify gestures. EchoWrite [226] decomposes English letters into six

different strokes and detects correspondingDoppler profiles to input text in the air. SoundWrite

[250] also extends the input interface by recognizing handwriting gestures with the K-Nearest
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Neighbors (KNN) model. Built on the LLAP tracking technique, VSkin [174] supports fine-

grained gesture recognition on the back of mobile devices, and [173] can accurately measure

small finger movements in the depth direction for virtual reality (VR) applications.

Moreover, many systems apply deep learning methods to build the relationship between the

acoustic channel state property and different gestures. AcouDigits [259] extracts temporal

and spectral acoustic features from reflected signals and employs machine learning models

to recognize digit writings. Combining the Doppler effect and channel features, AudioGest

reports an accuracy of 96% in six gesture recognition. UltraGesture [97] transmits the Barker

code training sequence to estimate the Channel Impulse Response (CIR).Then, a Convolutional

Neural Network (CNN) is used to classify CIR profiles into twelve hand gestures and achieves

an accuracy of 97%. To push the limit of recognition accuracy, RobuCIR [213] incorporates

data augmentation with deep learning on CIR and improves recognition accuracy to 98.4%.

Not only the air, but acoustic signals can also propagate in solid mediums. In [193], ForcePhone

investigates the relationship between the force on a smartphone and sound intensity in the

phone body. Based on this model, it can accurately measure the force on the phone. Touch

& Active [134] finds that touch force affects the acoustic resonant frequency of a smartphone.

With a data-driven method, it can recognize five finger-gestures and measure the force with

very high accuracy.

2.1.5 Health Monitoring

Sensing physiological activities can help humans understand their body’s health situation

without a professional medical instrument. [128] uses acoustic signals to measure chest dis-

placement and estimate the breathing rate for sleep monitoring. RespTracker [203] utilizes the

Zadoff-Chu training sequence as the transmitted signal and can support multi-user respiration

monitoring. SpiroSonic [171] measures chest motion and interprets such motion into lung

function indices, which are robust to the impact of various environmental and human factors.

Acousticcardiogram [147] transmits FMCW signals and extracts fine-grained baseband signal

phase information to obtain the chest motion. The heartbeat signal can be further separated

from the breath waveform in the frequency domain. Although these works modulate sensing

signals on an inaudible band, the sound can still be perceived by pets and babies. BreathJunior

[205] cleverly transforms white noise into an FMCW signal, avoiding disturbance when moni-

toring infants’ breath. The acoustic sensing system suffers from ambient noise and movement
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interference, so previous works all assume that the human body keeps static. To relax this

assumption, BreathListener [229] extracts the breath patterns with a Generative Adversarial

Network (GAN) with body movements in driving conditions.

2.1.6 Acoustic Communication

Acoustic signals enable smart devices equipped with microphones and speakers to communi-

cate with each other exempting additional hardware and network access. Researchers in MIT

[60] employ Amplitude Shift Keying (ASK) on pure-tone signals to achieve acoustic commu-

nication with a data rate of 5.6 kbps. In 2013, Dhwani [126] adopted Orthogonal Frequency

Division Multiplexing (OFDM) modulation on sounds with a 24 kHz bandwidth to achieve

an acoustic NFC. However, communication with audible signals is disruptive to humans, and

thus [209] utilizes a similar OFDM modulation but in the inaudible band to transmit data at

500 bps. To enhance the resilience to environmental interference, many works exploit chirp

spread spectrum (CSS) modulation to encode data [29, 82, 88]. Despite less bit error and a

long communication range, CSS-based approaches suffer from low data rates due to inefficient

bandwidth utilization. One possible way to deal with this problem is the MIMO technique, and

some works [152, 153] also explore structure sounds to achieve high-speed acoustic commu-

nication.

2.2 Passive acoustic sensing

Passive acoustic sensing systems do not transmit sensing signals. They passively receive sounds

from other objects or humans. For example, speech recognition is an important research area

in the speech community [63, 136, 138]. Recently, some works can sense the physical state of

humans [168, 210]. However, compared with active sensing, it is difficult for passive sensing

to estimate the acoustic channel and ToF with such unknown sounds [30]. This disadvantage

poses a unique challenge for the research community. Given the overwhelming sounds in real

life, passive acoustic sensing can potentially drive more exciting applications for our smart life.
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2.2.1 Localization and Orientation Estimation

Thanks to the array processing technology, we can infer the sound incoming directions with a

microphone array. By carefully calculating the time delay among different microphone chan-

nels, the time difference can be mapped to geometrical angles [33]. However, most works can

only measure the Angle of Arrival (AoA) of the sound with one array, which means that multi-

ple arrays are required for triangular localization [47, 158]. Recent work VoLoc [168] bypasses

this requirement by using reflection paths as a complementary direction, and hence it can lo-

cate sound with only one microphone array. Following this idea, Symphony [210] exploits

redundant information between different microphone pairs in an array, making it feasible to

locate multiple sources simultaneously. In this thesis, we conduct a comprehensive survey on

sound localization in §3.5. Then, we take a step further and ask a question: can we only use two

microphones to locate multiple sound sources like humans? We answer it in Chap. 3 by proposing

DeepEar [236, 237].

The location of human voices facilitates voice assistants to interact more intelligently with

humans. For example, smart speakers can give more cooking recommendations if they locate

the user in a kitchen. Subsequently, we noticed that another important spatial context of voice,

head orientation, does not draw too much attention. We made a detailed review of this topic

in §4.3, and found that most of the literature attempt to measure orientation by deep learning

[12, 232]. However, such a methodology is either vulnerable to environmental dynamics or

requires many microphone arrays. To address this problem, in Chap. 4, we propose HOE [235],

a system that can estimate a user’s head orientation with two microphone arrays in a model-

based way.

2.2.2 User Identification and Authentication

Given the wide adoption of voice-driven smart devices, voice assistants support powerful func-

tions like device controlling, door opening, and even financial transactions [42, 56, 81]. There-

fore, security and privacy issues have attracted more attention. Despite extensive research

efforts on user authentication using voice fingerprints in the last few years [64, 94, 131], sig-

nificant defects still exist preventing users’ trust. One key issue is the reply attack, whichmeans

that attackers can circumvent current protection systems by replaying the recorded voice of a

user [118]. This problem becomes even more severe nowadays because retrieving audio clips
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of a target user from social media is easy. We survey related works on voice authentication

and liveness detection in §5.7. To combat replay attacks, in Chap. 5, we propose VoShield [234]

to detect voice liveness with sound field dynamics. By doing so, we can distinguish whether a

voice command is from a user’s mouth or replayed by a malicious loudspeaker.

2.2.3 Daily Activity Recognition

Daily activity monitoring is important to elder care and fitness tracking. We can evaluate a

user’s daily routine and lifestyle by analyzing the sound produced by daily activities such as

cooking, eating, and walking. BodyScope [239] is a headset that can monitor mouth move-

ments, such as eating and speaking. SoundSense [101] logs daily activities, including walking,

driving, and riding a bus. These works generally extract acoustic features (e.g., Mel-Frequency

Cepstrum Coefficient, MFCC) from daily sounds and then classify features into different ac-

tivity categories with machine learning models such as Support Vector Machine (SVM) and

Random Forest. However, the feature extraction process is highly dependent on the domain

knowledge of the researchers. Therefore, some works leverage deep learning models to extract

relative features automatically. EI [80] utilizes CNN to recognize daily activities. Furthermore,

it designs an adversarial learning framework to remove environmental and subject-specific

interference. Tamamori et al. [183] use a Long Short Term Memory (LSTM) network as the

backbone for daily activity classification.

2.2.4 Ubiquitous Sound Applications

Humans are in an ocean of sounds. Besides the human voice, other sounds in the physical

world also inspire us to explore more interesting applications. For instance:

Tapping sound. Different from air channels, sound propagation in a solid medium presents

unique physical characteristics such as frequency dispersion and acoustic resonance. UbiTap

[83] builds a parametric model to map the distance and dispersive frequencies of tapping

sounds, realizing a mm-level tap localization accuracy on hard surfaces.

Footstep sound. Placing a microphone array on the floor, PACE [28] can track and identify

the user with footstep sounds. The basic idea is that footstep sounds on the floor are accompa-

nied by distance information, while footstep sounds propagating in the air are used to estimate
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the direction. Besides, different users also have different walking patterns. The reported local-

ization accuracy achieves a median error of 30 cm.

Breathing sound. [148] reports a system that can detect the respiration rate and sleep states

from breathing sounds, including snoring, coughing, turning over, and getting up. Combining

these two kinds of information can achieve continuous fine-grained sleep monitoring for many

healthcare-related applications.

Ear sound. HeadFi [54] repurposes speakers in the earphone as a sensor to measure air pres-

sure changes in the ear canal. By carefullymeasuring voltage changewith a customized periph-

eral circuit, HeadFi reports very high accuracy inmany applications, such as user identification,

gesture recognition, and heart rate monitoring.

Keyboard sound. Keystroke sounds may imply the key information. [15] investigates the

sound emanated by different keys and utilizes a neural network to recognize the pressed key.

[258] can recover up to 96% typed characters with the keystroke sound recording and does not

need any training. [20] also builds an effective acoustic-based password cracker combining

signal processing and data algorithms, exposing a high risk of password leakage.

In a nutshell, voice, as a kind of acoustic signal, embraces not only the semantic meaning but

also lush physical context information. In this thesis, we focus on sensing the physical context

of voice in a passive approach. Although unknown signals, understanding the mechanism

behind voice provides many opportunities to bring context-aware voice interaction to versatile

IoT devices.



Chapter 3

Sound Localization with Binaural

Microphones

3.1 Introduction

Sound localization can provide context information to improve user experience and enable

a variety of innovative applications such as human-computer interaction, smart homes, and

helping disadvantaged groups. As shown in Fig. 3.1, people with hearing difficulties gener-

ally wear a pair of hearing aids to help amplify sounds when listening to others. However,

all ambient sounds, including noise, will be enhanced in this case. Thus, binaural beamform-

ing algorithms have been applied to further improve speech intelligibility [69]. If hearing aids

can distinguish the sound location, then the beamforming algorithms can focus on the desired

direction to improve the Speech to Noise Ratio (SNR). Furthermore, when hearing-impaired

people walk on a street, it is essential to detect nearby sounds and alert them timely to avoid

potential accidents. Such binaural localization would substantially improve their communica-

tion quality and life experience.

Over the years, many microphone array-based sound localization approaches have been pro-

posed, such as cross-correlation based methods [47, 210] and subspace-based MUSIC [158].

These approaches typically require a large number of microphones and are difficult to apply to

binaural microphones directly. For example, rigidly employing the cross-correlation on only

two microphones leads to the front-back confusion problem [169]. MUSIC requires at least

three microphones to estimate the Angle of Arrival (AoA) of two sound sources [49]. Many

15
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Figure 3.1: Application scenario. The binaural microphones in hearing aids can localize the
sound location and amplify the sound for hearing-impaired wearers to improve their commu-

nication quality.

deep learning-based methods using microphone arrays [31, 72, 143, 178] have emerged in re-

cent years. Although effective, these methods typically require multiple microphone channels

of an array as input. The fairly large form factor of a microphone array makes it inconvenient

for users to wear or integrate into small hearing aids.

Our work is based on the fact that the human auditory system has naturally evolved to locate

multiple sounds simultaneously and accurately. Biological research found that the outer ears

shape the sound waveform from different directions and provide additional spatial information

which helps humans locate sounds [22]. Inspired by observation, in this chapter, we investigate

the mechanism of the human auditory system and propose DeepEar, a Deep Neural Network

(DNN) based machine hearing framework to fully leverage the help of the ear-shaped binau-

ral microphones. We identify the following key objectives and challenges to enable binaural

localization for multiple sources:

i) How to characterize and exploit the ear-filtering effects? Although we know that ears cause

unique distortion for sound signals from different directions, how to exploit such a filtering ef-

fect is still challenging. Most previous works utilize either raw acoustic signals [198] or hand-

crafted features (e.g., Interaural Time Difference (ITD) or Interaural Level Difference (ILD) )

[222] as the input, overstating or understating the signal in the localization procedure. To ad-

dress this challenge, we adopt an analogous processing pipeline to the human auditory system

and transform audio signals into the time-frequency domain. Then, a temporal autoencoder

is designed to extract the latent sound representation automatically. Apart from this, we also

combine the explicit ITD feature with encoded representatives to facilitate sound localization.

ii) How to achieve fine-grained multi-source localization? Intuitively, regression-based methods

produce potentially higher-resolution results than classification since there is no quantization

[65]. However, it is non-trivial to directly reform a classification layer in previous methods to a

regression node to achieve fine-grained localization. First, for multiple sources, the number of
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active sound sources may not be known and can vary over time. Second, multiple regression

nodes usually face the source permutation problem of associating outputs to their correspond-

ing target sources [65]. To this end, we use a multi-task learning framework to detect the

sound existence and estimate sound locations simultaneously. Specifically, we partition the 2D

horizontal space into several sectors and formulate multiple sound detection as a multi-label

classification problem. Each sector represents a certain range of the search space, in which

we model sound localization as a regression problem. These sectors pose a spatial constraint

for different sources and hereby avoid the label permutation problem. Therefore, DeepEar can

detect multiple sound sources dynamically and then estimate their fine-grained positions in

each sector. Moreover, the number of sectors can be configured according to the application

requirement.

iii) How to adapt to new environments? Many machine learning-based methods highly depend

on the data used for training, which are susceptible to new environments due to different room

reverberations [65]. Our experiment (Sec. 3.4.4) indicates a substantial performance degrada-

tion of a baseline approach when tested in unseen rooms. In this case, training the model in

new environments from sketch involves a huge data collection overhead. To ease this burden,

we first train a global model on a large amount of available datasets. To bootstrap the adap-

tion process, DeepEar then harnesses a transfer learning strategy and fine-tunes the global

model with a small amount of new data collected in the target environments. By doing so, our

method significantly alleviates the data collection overhead and copes with the heterogeneity

of working environments with the minimum effort of end-users.

In summary, the contributions of this chapter can be summarized as follows.

• We propose DeepEar, a human-inspired sound localization framework for binaural mi-

crophones that can locate multiple sources without the number of sources. We also

propose two variants, namely Complex DeepEar and Monaural DeepEar. The former

further improves the localization performance with the phase of the sound. The latter

verifies that DeepEar can still work with only one ear.

• DeepEar fuses explicit binaural time clues and implicit sound representatives to facili-

tate sound localization. It features a sector-based DNN model to enable dynamic sound

source detection and simultaneous multisource fine-grained localization.
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• Comprehensive experiments are conducted in both anechoic and reverberant environ-

ments. The results demonstrate that DeepEar outperforms a binaural state-of-the-art

in various experiment settings. A real-world case study illustrates that the ears of bin-

aural microphones play a pivotal role in sound localization performance, especially for

disambiguation.

The chapter is organized as follows. We elaborate on the detailed system design of DeepEar in

Sec. 3.2. Then, Sec. 3.3 and Sec. 3.4 describe the implementation and evaluation results. Related

work is summarized in Sec. 3.5. We also discuss some open problems in Sec. 3.6. Finally, Sec. 3.7

concludes this chapter.

3.2 DeepEar Design

In this section, we elaborate on the components of the human-inspired sound location pipeline.

Before moving on to the details, we will first give an intuitive introduction to how humans

locate sounds.

3.2.1 Preliminary of Human Auditory System

Figure 3.3 shows a basic human auditory system. When the sound waveform travels to a user,

it will be scattered, reflected, and diffracted by the ears, which significantly distort and filter

the sound at certain frequencies. This direction-dependent filtering effect is technically named

the Binaural Room Impulse Response (BRIR) in the time domain or the Head-Related Transfer

Function (HRTF) in the frequency domain [66, 110]. In Fig. 3.2, we illustrate the HRTFs of a

binaural microphone with and without artificial ears. The signal amplification (< 10 kHz) and

notch (10 kHz ∼ 20 kHz) are observed in the HRTF with ears, which differ substantially from

those without ears.

After ear filtering, the sound wave strikes the eardrum, leading to the vibration in the spiral-

shaped cochlea, which transduces the soundwave to neural stimulus signals [144]. As stimulus

activities move along the nerve path, several brainstem nuclei encode the stimulus to percep-

tion [50, 144]. Finally, the auditory cortex in the brain interprets perception as spatial sound
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Figure 3.4: Sound localization
with binaural microphones.

information. We will elaborate more on each part in the following sections, and we refer inter-

ested readers to the literature [22, 70, 144] formore psychophysics of human sound localization.

In a nutshell, the ears distort incoming sounds, and the human brain can learn and associate

these subtle difference patterns with certain spatial locations, which helps perform source lo-

calization, even in multisource scenarios [71]. Inspired by this fact, we utilize binaural micro-

phones with human-shaped ears to capture sounds and develop a DNN-based framework to

locate sound sources, as illustrated in Fig. 3.4.

3.2.2 System Overview

Figure 3.5 presents a system overview of DeepEar. The upper part depicts the pipeline of the

human auditory system. Inspired by its powerful localization ability, we design and implement

several components to mimic its key functions. We first utilize binaural microphones with

human-shaped ears to capture sounds. Then, a gammatone filterbank is used to transform the

audio signals into the time-frequency domain, which acts as a cochlea in the human auditory

system. After that, we train an autoencoder to extract a high-level representation. Finally, these



20 Chapter 3. Sound Localization with Binaural Microphones

Air vibration

Pinna

Electrical stimulus

Encoding

PerceptionMechanical pressure

Gammatone Filterbank Sound location

Cognition

Air vibration

Dummy head

ADC

Digital signal

Encoder

t-f representation

Neural network Sound location

Output

Eardrumm

Cochlea Auditory cortexBrainstem nuclei Sound location

on

Sound location

DeepEar

Human Auditory System

Figure 3.5: System overview: an analogy between the human auditory system and DeepEar.

features are input to a DNN to estimate the sound locations. In the following, we introduce

each component in detail.

3.2.3 Data Collection and Preprocessing

Human beings perform sound localization by learning the spatial patterns of sounds caused by

the ears. As such, we use binaural microphones with human-shaped ears to capture acoustic

signals. In the human auditory system, the cochlea is a spiral structure essential for frequency

analysis. Along this spiral, it has a large number of inner cells that will vibrate in response

to different frequencies. As a result, the sound waves are converted into electrical stimuli.

During this process, the sound is decomposed into many constituent frequency components.

This frequency-selective vibration varies exponentially along the cochlea [52].

DeepEar imitates the cochlea function with a gammatone filterbank. The gammatone filter-

bank can transform sound into multifrequency activity patterns such as those observed in the

cochlea, which is widely used in the literature on auditory system modeling [114]. We employ

the gammatone filterbank on the whole voice frequency band (i.e., [0 Hz, 8 kHz]). The center

frequencies fc of the filterbank are equally spaced on the Equivalent Rectangular Bandwidth

(ERB) scale, whereERB = 21.4log10(0.00437fc+1) [62]. The literature shows that ears have

about 3500 inner cells that decompose signals into the frequency domain with a very high res-

olution [144]. Although more filters provide better frequency granularity, the computational

overhead increases accordingly. Hence, we empirically set the number of filters P as 100 to

balance the signal representative sufficiency (i.e., resolution) and the computational efficiency.
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Moreover, we frame the audio signals using a 100msHamming windowwith 50ms overlap to

retain the frequency resolution and preserve temporal context. After filtering the audio frame

in the frequency domain, we can obtain a coefficient vector with length P per frame, and the

final output of the preprocessing is a 2D matrix I ∈ R
P×T , where T is the frame number.

3.2.4 Feature Extraction

A neural stimulus passes throughmany stages of processing by several brainstem nuclei before

reaching the auditory cortex in the brain, as shown in Fig. 3.3. Although the understanding of

the specific processing accomplished in this stage remains unclear yet [202], it is commonly

believed that these nuclei perform a function similar to signal encoding for sound localization

and recognition [50]. This compressing process is able to prevent an information overload in

the brain in a short period of time [221].

Such a neural coding procedure inspires us to exploit an autoencoder to extract compact sound

representations automatically. Therefore, we train an autoencoder to compress and encode

data to a high-level latent feature space. An autoencoder consists of two parts: an encoder

to compress data and a reversed structure named a decoder, which can reconstruct encoded

features into the original input without much information loss.

As the input is a 2D temporal series, we use the seq2seq framework [179] to build a Gated

Recurrent Unit-based Variational AutoEncoder (GRU-VAE). As shown in Fig. 3.6, two GRU

layers are used to form an encoder. Like the Long Short-Term Memory (LSTM) layer, GRU

can learn the long and short-term temporal context while having fewer parameters and better

generalization capability. The encoder reads the gammatone coefficients I and maps them to

a feature vector z with 100 dimensions. Instead of encoding latent features for the input data

independently, we use a variational autoencoder to map the data into a multivariate normal

distribution N (μ, σ) ∈ R
100. After that, a latent feature z is sampled from this distribution.
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Figure 3.7: GRU VAE can effectively extract the latent features from original data and recon-
struct them back with it.

This variational design forces the encoder to learn a smoother feature representation, which

is more generalized to unseen data. As a symmetric structure, two GRU layers are used to

construct a decoder to recover the latent feature z to the data domain. Specifically, the VAE

module V is pre-trained using massive audio samples in a self-supervised way by minimizing

the following loss:

Lv = KL(N (μ, σ),N (0, 1)) + λ ‖V (I)− I‖2 (3.1)

whereKL is the Kullback-Leibler divergence that measures the difference between two prob-

ability distributions, and λ ‖V (I)− I‖2 is the Mean Square Error (MSE) loss to guarantee that

z is informative enough for reconstruction. λ is a weight constant. Once the training process is

completed, the decoder part is cut off; the encoder is then frozen and grafted into the DeepEar

framework.

Figure 3.7 illustrates the original and reconstructed gammatone coefficients of an audio sample.

We can see that our GRU-VAE can extract representative high-level features from the original

input without much information loss. We visualize the encoded latent features of this clip as

the AoA changes in Fig. 3.8. The radius of these polar figures is the feature dimension (i.e.,

1∼100). Figure 3.8(a) shows the latent features in the left ear. We can see that some parts

of the latent features (e.g., the 90th dimension) look similar in different directions and form

several circles because the distortion effect of a single ear is not very notable. However, there

are still diverse patterns in other dimensions (e.g., 20th ∼ 90th), which provide direction clues

for different AoAs. In Fig. 3.8(b), we subtract the latent features of the left ear from those of

the right ear. This subtraction operation removes the signal impact and makes the difference

between the two ears stand out. As a result, we observe rare apparent circles, indicating that

the latent features of all directions are different from each other. More importantly, we can see

clear distinguishable patterns between the front and back semi-field at 15th (red arrows) and
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(a) Left ear. (b) Difference between the two ears.

Figure 3.8: The latent feature encoded by VAE along with different directions. The radius is
the feature dimension, and the angle is the sound AoA. The left figure illustrates the latent

features in the left ear, and the right one is the difference between the left and right ear.

90th (blue arrows) dimensions. This observation confirms that binaural filtering performed by

human shaped ears on sounds can effectively alleviate the front-back ambiguity problem.

As we mentioned before, the human brain perceives the spatial patterns in sounds to perform

localization. This spatial pattern arises from two aspects. First, different propagation paths

cause subtle time differences between the two ears [79], so the ITD is associated with the

sound azimuth. As such, we perform GCC-PHAT [16] between the signals of two ears as part

of the features. The distance between two ears limits the maximum time difference between

two ears. Hence, we only take the middle 100 coefficients (±3 ms) instead of all correlation

results considering the extra multipath caused by the head and body. However, there is no

one-to-onemapping between ITD and sound direction because of the ambiguity problem as we

discussed. Then, ear filtering, as the second feature, can help. The ears produce micro-echoes

to the arriving sound, leading to spectral distortion associated with specific spatial locations.

Therefore, we fuse explicit correlation features and implicit latent sound representatives after

ear filtering to jointly help DeepEar locate sound sources. Besides the separately encoded

features from the left and right ears, we also subtract them and measure the feature differences

between the two ears. Finally, all of these features are concatenated to form the final feature

vector. Thus, DeepEar fuses explicit binaural time clues and implicit sound representatives to

facilitate sound localization.
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Figure 3.9: DeepEar network design.

3.2.5 Sound Localization

DeepEar divides 2D space into several equal sectors and detects whether a sound is present

in a specific sector. If yes, then the AoA and distance of the sound source are estimated. We

introduce the neural network design as follows.

3.2.5.1 Network Structure Design

With the extracted features, we design a neural network to perform multiple sound localiza-

tion. In this research, a sector-based output is used to facilitate simultaneous multiple source

localization with arbitrary spatial resolution. For example, we set the number of sectors as

eight, which means that DeepEar supports up to eight co-active sources. We assume that there

is at most one source in a sector. Although two sources may sometimes be present in the same

sector, it is sufficient for some applications such as hearing aids since users do not need to

strictly distinguish two very close sound sources. We can surely further increase the number

of sectors to increase the spatial resolution according to specific application requirements (e.g.,

in an extreme case, one degree per sector). Here, we assume that the maximum number of

concurrent sound sources is less than eight.



3.2. DeepEar Design 25

Figure 3.9 shows the DeepEar network design. The extracted features of the binaural channels

are subtracted in the subtract layer to obtain the feature difference between the two ears. Af-

ter that, all features are concatenated to a feature vector and input to the DNN-based sound

localization network. We formulate the full-field localization as a multitask learning problem.

The first three layers learn a general shared spatial pattern, followed by eight sector subnets

responsible for each sector (45◦). In each sector subnet, three task subnets share a common

dense layer. The first task subnet is SoundNet, which detects if an acoustic source is present

in this sector and produces a binary result. The second task subnet named AoANet predicts

the AoA of the target. AoANet is a regression net whose output is a normalized value in [0,1],

indicating the minimal and maximal degree in the sector. But we note that two adjacent sec-

tors have a common degree on the boundary. For example, the degree range of sector 1 is

[0◦ ∼ 45◦] and the scope of sector 2 is [45◦ ∼ 90◦]. They have an overlapped degree (i.e., 45◦)

at the sector boundary and so are other sectors. That is to say, for each sector, the first angle

already appears in the previous sector. Therefore, the regression value 0 is meaningless. Thus,

we leave it for the case where no sound source is present in the sector. DisNet is the third task

subnet that estimates the distance between the ears and the target source. Note that humans

estimate distance by the sound loudness and the Direct to Reverberant sound Ratio (DRR).This

perception result is much worse compared to the AoA estimation [185]. Therefore, we model

distance estimation as a classification problem and add an extra category for the no-present

source case.

3.2.5.2 Loss Function

Overall, DeepEar has a 56-dimension output, and the whole network can be trained by min-

imizing the loss between the network output and ground truth. The SoundNets of all sectors

can be regarded as a multilabel classification problem, so the activation function is sigmoid

and the binary cross-entropy is used as the loss function:

Ls = −ys · log (ŷs)− (1− ys) · log (1− ŷs
)

(3.2)

where ys is the ground truth of the DisNet, and ŷs is the prediction probability.

As for AoANets, the mean squared error (MSE) is used to qualify this regression task:
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La = (ya − ŷa)2 (3.3)

where ŷa is the regression output of AoANet.

Since DisNet is a multiclass classification problem, we use the softmax activate function and

formulate its loss function as the cross-entropy:

Ld = − 1

C

C∑
i=1

wi · ydi · log ŷdi (3.4)

where C is the number of quantization distances, and wi is the weight for each category. ydi is

the i-th one-hot encoding ground truth of this instance. We seldom observe many simultane-

ous sound sources (e.g., larger than 3), which leads to unbalanced data in the categorywithout a

sound present. Therefore, we add weights to different categories to improve the generalization

of DisNet.

In this case, the loss of one sector subnet Lsector is constructed as a weighted sum of the losses

of three task subnets:

Lsector = αLs + βLa + γLd (3.5)

where α, β, and γ are weights for different task subnets. The most important requirement for

DeepEar is successfully detecting concurrent sound sources, while we also expect a better AoA

estimation than distance estimation. Thus, we empirically set these weights at 0.4, 0.35, and

0.25, respectively.

Finally, we can average the losses of all sector subnets and obtain the overall loss of the DeepEar

network:

L =
1

N

1

M

N∑
n=1

M∑
m=1

Lsector(m) (3.6)

where M is the sector number, and N is the number of training data in a batch.
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3.2.6 Adaptation to New Environments

Humans have the ability to locate sound in various environments through continuous learning

from childhood [73]. This ability indicates that humans can transfer knowledge from previous

environments to a new context. Therefore, we first build a global model for DeepEar with the

publicly anechoic dataset to learn the unalloyed ear filtering patterns for sounds from different

directions. Then, we apply transfer learning [139] tomake DeepEar adapt to new environments

with a small number of new data.

DeepEar network can be divided into two components. The first is the general feature ex-

traction module, including the VAE, the feature concatenation layer, and three dense layers

to learn the general knowledge of spatial patterns. Another part consists of eight subnets re-

sponsible for learning specific context information and performing several localization tasks.

Thus, we employ transfer learning by freezing the first part of the pre-trained global model

and fine-tuning the remaining subnets with a small amount of data from new environments.

In this way, DeepEar can adapt to different working environments quickly, saving redundant

and burdensome training overhead for users.

3.2.7 DeepEar Variants

To further investigate the localization capability of DeepEar, we propose two variants, namely,

Complex DeepEar and Monaural DeepEar.

3.2.7.1 Complex DeepEar

The acoustic signals in the frequency domain include not only the amplitude but also the phase.

In DeepEar, we directly input the magnitude coefficients after the gammatone filterbank, fus-

ing the effect of magnitude and phase. Therefore, we propose Complex DeepEar, whose input

consists of both magnitude and phase information. The target of Complex DeepEar is to in-

vestigate whether the phase can help further improve localization performance. Although we

have used the cross-correlation to extract the most prominent time difference between two

ears, other subtle time delay information at different frequencies may be neglected.

Biological literature reports that some brain stem nuclei, such as the superior olivary complex,

have the property of ”phase locking” [188]. Consequently, they can compare the timing of
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Figure 3.10: Complex DeepEar network design. The Dense networks are the same as the right
side of the original DeepEar (Fig. 3.9).

stimulus spikes within the auditory nerve linking two ears and obtain the interaural time delay

on different frequencies [115]. For this consideration, besides the power (i.e., magnitude) of

the gammatone spectrogram, we also feed phase values into Complex DeepEar, as shown in

Fig. 3.10. Specifically, we perform the Fast Fourier Transform (FFT) on each audio frame and

extract the phase values at the center frequencies of gammatone filters. Then, the gammatone

coefficients and phase values are fed into VAE separately. We trained a new VAE for phase

encoding in the same approach as the magnitude VAE. After the feature encoding process,

the magnitude and phase representatives are concatenated as the final feature vector for the

localization network.

3.2.7.2 Monaural DeepEar

Despite the binaural localization, we notice that some hearing-impaired people only have one

functional ear. As such, we also need to investigate whether we can apply the DeepEarmethod-

ology to a single ear. Previous studies show that, despite the difficulty, hearing-impaired lis-

teners with only a single functional ear can also distinguish the sound direction to some extent

[157, 199]. Suchmonaural localization is made possible by the external ears, which also distorts

the sound depending on different angles, even with one ear. As a result, although without the

binaural time clue, human beings can still learn special filtering patterns for different incident
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Loudspeaker

BRIR

Figure 3.11: Binaural spatial sound synthesis with BRIR data.

angles. Hence, we propose Monaural DeepEar, which only uses the sound of one ear as input

to exploit the feasibility of monaural localization. Since the monaural clues rely primarily on

the amplitude distortion rather than the phase, we only feed the gammatone coefficients of

the left or right ear into Monaural DeepEar. After the encoding process, the latent features are

forwarded into the localization network. This monaural localization approach loosens the bin-

aural requirement, which benefits people who suffer from severe hearing diseases with only a

single functional ear.

3.3 Implementation

We implemented DeepEar with Python and TensorFlow. The neural network and VAE were

trained on a workstation with an Nvidia GeForce RTX 2080 Ti. We applied a dropout rate

of 0.2 for each dense layer to prevent overfitting. The early-stopping strategy was used if

no performance improvement was observed on the validation set for more than five epochs.

DeepEar has 584K and 785K parameters for the VAE and the localization network. The feature

extraction and model inference time for a sample is about 181.4ms and 69.4ms, respectively.

We follow existing binaural localization works [104, 198, 222] to generate binaural spatial

sounds through synthetic recordings. As shown in Fig. 3.11, a loudspeaker source emits sound

signals x(t). It travels through the air channel and is then distorted by the ears, which can be

characterized by BRIR h(t, φ), where φ is the incident angle of the sound. Finally, ears capture

the sound y(t) = x(t)
⊗

h(t, φ). Therefore, we can synthesize a variety of binaural sounds

by convolving clean speech audio recordings x(t) with BRIRs h(t, φ) of different locations. It

is possible since various speech signals and BRIRs of different rooms are available in public

datasets.

To this end, we randomly chose clean speeches from a corpus named TIMIT [58], which con-

tains the speech recordings of 630 speakers with eight major dialects of American English. We
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Figure 3.12: Three rooms in TU Berlin dataset [219]: an anechoic chamber, a meeting room,
and a lecture room (from left to right).

choose the BRIR from the TU Berlin BRIR dataset [219]. This dataset was measured with a KE-

MAR dummy head (i.e., binaural microphones with a head) in three different rooms, including

an anechoic chamber [218], a small meeting room named Spirit [217], and a mid-size lecture

room called Auditorium3 [216], as shown in Fig. 3.12.

In the anechoic chamber, BRIRs were measured in the horizontal plane with a resolution of 1◦

for four different distances of 0.5m, 1m, 2m, and 3m. There are 360 (degrees)× 4 (distances)

= 1440 BRIR measurements in total accordingly. For the meeting room, BRIRs were measured

for three different sources with a resolution of 1◦ and head movements from -90◦ to 90◦. The

distances between the three sound sources and the dummyhead are 2m. Therefore, the number

of BRIRs is 181 (degrees) × 3 (sources) = 543 in this dataset. We note that three sources do not

indicate only three source locations instead of 543 locations because these sources also rotate

relatively around the dummy head. Similarly, BRIRs in the lecture room were measured with

the same resolution and rotation range but at six different loudspeaker positions. We also used

the Rostock dataset [53] to evaluate DeepEar in more complicated environments, in which

BRIRs were measured in an audio lab with 64 loudspeakers. The KEMAR dummy head used

in Rostock rotates in a range of ±80◦ with 2◦ steps. The reverberation time of this audio lab

is 0.25 s at 1 kHz. We illustrate the measurement setup in Figure 3.13. We refer interested

authors to the dataset references for more detailed descriptions.

Considering that the number of concurrent primary sound sources is typically small in the real

world, we set it uniformly distributed in [1, 3] but with a constraint where only one source

presents in a sector. The AoA is also sampled following a uniform distribution in each sector.

The source index and corresponding distance are randomly selected since there aremany sound

sources in a dataset. Inmultisource cases, we addmultiple sounds together as the superposition

sound received by the binaural microphone. All synthesized data were sampled at 16 kHz and

cut into 1-second instances for evaluation.
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Figure 3.13: BRIR measurement setup of the meeting room, lecture room, and lab room. Fig-
ures are taken from [53, 216, 217]. Readers can refer to these datasets for more descriptions.

3.4 Evaluation

3.4.1 Experiment Setup

We first train a global model for DeepEar with anechoic data only to learn the unalloyed ear

filtering patterns to the sounds from different directions. After that, DeepEar can be customized

and adapted to the real-world (i.e., reverberant) data by transfer learning with a minimum

amount of new data collected in target working environments.
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Table 3.1: Dataset summary.

Dataset Anechoic-training Anechoic-validation Anechoic-testing1 Anechoic-testing2 Spirit Auditorium Rostock

BRIR convolved Anechoic Anechoic Anechoic Anechoic Spirit Auditorium3 Rostock

Sample size 72000 9000 9000 9000 9000 9000 9000

Usage Training Validation Testing Testing Testing Testing Testing

The clean speech recording corpus TIMIT consists of two portions, TRAIN and TEST. No hu-

man speakers and no speech text overlap between these two portions. We first randomly se-

lected speeches in the TRAIN portion and convolved them with the anechoic BRIR as anechoic

data to build a global model. These data were divided into three parts with a ratio of 8:1:1.

We denote them as anechoic-training, anechoic-validation, and anechoic-testing, respectively.

Given that anechoic-training and anechoic-testing data are split from the same portion (i.e.,

TIMIT TRAIN), their speech text or speakers may overlap, although their sound locations are

different. Therefore, we separately took random clean speech recordings in the TEST portion

and synthesized a new testing dataset to evaluate the model robustness to unseen speeches

and speakers, denoted Anechoic-testing2 (accordingly, the former testing set is renamed as

Anechoic-testing1). Moreover, we similarly convolved the clean speeches randomly selected

in the TEST portion with the real-world BRIRs to generate three other testing datasets, includ-

ing a meeting room (Spirit-testing), a lecture room (Auditorium-testing), and a lab (Rostock-

testing). Overall, we obtained seven datasets: one for training, one for validation, and five for

model testing. We summarize the name, size, and usage of all datasets in Tab. 3.1. We should

note that there are only four distances in the training data (i.e., the anechoic chamber, Sec. 3.3),

andmost distances in other testing rooms are inconsistent. In this case, we regard it as a correct

prediction if the distance in other rooms is classified into its closest distance in the training

data (e.g., 2.93 m→ 3 m) since the classification results are discrete values.

For comparison, we implemented a state-of-the-art binaural localizationWaveLoc [198]. Wave-

Loc decomposes binaural signals into 32 frequency bands and then employs a Convolutional

Neural Network (CNN) on the raw waveform to classify the AoA. Note that WaveLoc only

supports single-source azimuth classification, so we replaced the last layer of WaveLoc with

DeepEar’s localization network (i.e., sector subnets) to enable multiple sound localization. In

addition, we also conducted a real-world case study with a binaural microphone to locate the

sound with and without ears to further verify the importance of ears.
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3.4.2 Evaluation Metrics

We evaluate DeepEar with the following metrics:

• Sound detection accuracy. It measures the binary classification accuracy of SoundNet

for detecting whether there is a sound source in a spatial sector.

• Hamming score of sound detection. Hamming score is defined as the proportion of the

correctly predicted labels to the total positive labels (predicted and actual) for a sample:

H =
1

N

N∑
n=1

sum(ysn & ŷsn)

sum(ysn | ŷsn)
(3.7)

where ysn is the ground truth of eight SoundNets of the n-th instance. ŷsn is the corre-

sponding classification result. & and | represent bitwise AND and OR operations, respec-

tively. Compared to detection accuracy, the Hamming score ignores the true negative

(i.e., a no-source case is correctly recognized) and penalizes false positive cases (i.e., a

no-source case is mistakenly detected as an active source).

• Mean Absolute degree Error (MAE) of AoA. MAE means the absolute degree error be-

tween the predicted AoA and the ground truth. We average the MAE of all AoANets as

the overall MAE of DeepEar.

• Distance classification accuracy. Thismetric refers to the average accuracy of all DisNets.

3.4.3 Overall Performance

Figure 3.14 shows the performance of the global model in the anechoic-testing1 data. Overall,

the sound detection accuracies of DeepEar and WaveLoc are 93.3% and 80.9%, respectively.

Furthermore, DeepEar has a high detection accuracy of 99.8% in the one-source scenario. In

comparison, the performance of WaveLoc is slightly lower, with a detection accuracy of 90.9%

in this case. We can see that the performance of both models decreases with the increasing

number of sound sources. When the three sources coexist, the detection accuracy of DeepEar

drops to 85.3%, and WaveLoc’s accuracy decreases to 70.6%.

In general, the Hamming score of DeepEar is 83.5%, slightly lower than the detection accuracy,

since all cases without sound sources are excluded. However, the performance of WaveLoc
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Figure 3.14: Performance comparison between DeepEar and WaveLoc on the anechoic-
testing1 dataset.

drops by almost half and decreases to 44.6%. This degradation indicates that WaveLoc makes

more false positive sound detection than DeepEar.

As for AoA estimation, the mean absolute degree error of DeepEar is 7.4◦, which is nearly

half of WaveLoc’s. In the one-source case, DeepEar can even predict AoA within an error of

2.3◦. However, the MAE of WaveLoc is 13.2◦ in this setting, much larger than DeepEar. It is

because that WaveLoc performs CNN directly on raw waveforms, missing the key time differ-

ence information between binaural channels and filtering patterns in the frequency domain.

With the increasing number of sources, multiple sounds interfere with each other, and their

time differences are confused, leading to a higher estimation error.

The average distance accuracies of all source cases are 82.9% and 75.6% for DeepEar andWave-

Loc, respectively. Same as before, the larger the number of active sources, the lower the esti-

mation performance.

We also evaluate DeepEar on the anechoic-testing2 dataset. This dataset is generated separately

rather than splitting from the original one. The result is listed in Tab. 3.2. Overall, the sound

detection accuracy and Hamming score of DeepEar are 91.9% and 80.4%, respectively. The

performance is nearly the same as that on anechoic-testing1 data, as well as AoA MAE (8◦)

and distance accuracy (82%). The performance of WaveLoc is still lower than DeepEar in terms

of all metrics. This result indicates that DeepEar generalizes well to unseen data. This is likely
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Table 3.2: Performance comparison between DeepEar and WaveLoc in the anechoic-testing2
dataset.

Metircs Sound detection (%) Hamming score (%) AoA MAE (degree) Distance (%)

Source # ave 1 2 3 ave 1 2 3 ave 1 2 3 ave 1 2 3

DeepEar 91.9 99.8 92.5 83.5 80.5 99.1 78.2 64.1 8.0 2.3 7.7 10.1 81.6 95.2 81.2 68.4

WaveLoc 80.4 90.9 80.0 70.3 43.2 56.7 39.3 33.7 14.5 13.2 15.2 14.5 75.0 87.5 75.0 62.6

because we synthesized massive training data to train a global model, and the VAE can also

learn a smooth latent feature space to adapt unseen speakers and locations.

3.4.4 Real Environment

The DeepEar trained in the anechoic environment has learned the spatial filtering patterns

of the ear, so it is our turn to examine DeepEar in real reverberant rooms, including a small

meeting room, a larger lecture room, and a lab room.

3.4.4.1 Evaluation in a Small Meeting Room

Figure 3.15 illustrates the performance of a small meeting room (Spirit). As we expected, di-

rectly testing the global model on the reverberant data brings about a dramatic performance

deterioration. The baseline WaveLoc also performs poorly in reverberant environments. The

average sound detection accuracy and Hamming score of DeepEar are 65.6% and 24.7%, while

WaveLoc achieves 67.3% in sound detection and 14.3% in Hamming score, respectively. Al-

though the sound detection accuracy of WaveLoc is comparable to that of DeepEar, the Ham-

ming score of DeepEar is much higher than WaveLoc. Similarly, the performance of AoA and

distance estimation also decreases. The reason is that signals in a reverberant environment

differ substantially from those in an anechoic room.

We perform transfer learning to adapt the global DeepEar model to this meeting room. Specifi-

cally, we split the dataset (Spirit) into two portions: 10% formodel adaptation (Spirit-adaptation)

and the remaining 90% for performance evaluation (Spirit-testing). There is no overlap between

the two portions. Besides, we also conducted end-to-end fine-tuning for WaveLoc except for

its first layer used for frequency decomposition. Both models converge fast within ten epochs

and exhibit much better performance than before. The sound detection accuracy of DeepEar
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Figure 3.15: Performance comparison in Spirit meeting room. The darker bars refer to the
accuracy before transfer learning or MAE after transfer learning.
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Figure 3.16: DeepEar performance per source before and after transfer learning in the spirit
meeting room.

increases to 91.9%, while WaveLoc only achieves 82.1%. The Hamming score of DeepEar in-

creases by 53.3%, almost double that of WaveLoc. The DeepEar’s AoA MAE decreases to 8.8◦,

which is very close to the anechoic case. Moreover, the performance increase in terms of dis-

tance estimation is 24.4% for DeepEar (to 91.9%) and 15.1% forWaveLoc (to 82.3%), respectively.

This figure shows that both methods benefit from transfer learning when testing the new re-

verberant data. Nevertheless, DeepEar notably outperformsWaveLoc after the same retraining

procedure. The reason may be that WaveLoc uses CNN on time-domain sample series, losing

the correlation between different frequencies and ears. Therefore, it is difficult to adaptWavLoc

to new environments with a relatively small number of additional training data.

We also break down the AoA evaluation result of DeepEar for different sources in this meeting

room as shown in Fig. 3.16. We can observe that the AoA MAEs for three sound sources are

15.8◦, 14.5◦, and 15.3◦, respectively. In addition, they also have a comparable performance
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Figure 3.17: Performance comparison in the Auditorium lecture room. The darker bars refer
to the accuracy before transfer learning or MAE after transfer learning.

after transfer learning, decreasing by 6.4◦ on average. This result shows that DeepEar gener-

alizes well to different sound sources.

3.4.4.2 Evaluation in a Large Lecture Room

In this experiment, we evaluate DeepEar in a large lecture room with six different sound

sources (Auditorium). As shown in Fig. 3.17, the overall sound detection accuracy of Deep-

Ear is 81.5%, i.e., 6.2% higher than WaveLoc. In terms of Hamming score, the performance gap

is even wider. In particular, WaveLoc decreases to 16.3%, approximately one-third of Deep-

Ear (49.9%). Besides, the AoA estimation errors of these two systems are 12.9◦ and 17.3◦,

respectively. Although both methods suffer performance degradation in this reverberant envi-

ronment, DeepEar still performs much better than WaveLoc. This result shows that DeepEar

is more robust to the highly reverberant new environment than WavLoc.

Transfer learning is effective in improving the performance of both models. Yet, we see that

DeepEar benefits more than the benchmark method. Specifically, the sound detection accuracy

and Hamming score of DeepEar increased to 89.4% and 71.7%, respectively. In contrast, the

sound detection accuracy of WaveLoc only has an increase of 1.8%. The AoAMAEs of DeepEar

and WaveLoc decrease by 3.9◦ and 2.5◦, respectively. Furthermore, the distance accuracy of

DeepEar and WaveLoc increases to 91.7% and 76.4%. Again, DeepEar still outperforms the

baseline regarding distance and AoA estimation. A noteworthy aspect is that the Hamming
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Figure 3.18: Performance comparison in Rostock lab. The darker bars refer to the accuracy
before transfer learning or MAE after transfer learning.

score of WaveLoc declines from 16.3% to 14.6% after transfer learning. The main reason is that

the lecture room is relatively large, which ismore reverberant than themeeting room. TheCNN

mechanism of WaveLoc relies more on time-domain data and even hampers it from adapting

to the reverberant environment. In contrast, DeepEar benefits from the variational encoding

and can calibrate the feature distribution accordingly with new data, thereby achieving better

performance.

3.4.4.3 Evaluation in a Lab with Many Sources

We also conducted an experiment in a lab with 64 loudspeakers around this room (Rostock).

As shown in Fig. 3.18, the overall sound detection accuracy of DeepEar is 82.9%, higher than

that of WavLoc by 11.4%. The Hamming scores for DeepEar and WavLoc are 56.4% and 21.9%,

respectively. In addition, the DeepEar AoA MAE is 11.6◦, which is less than that of WavLoc

(16.8◦). In terms of distance prediction accuracy, DeepEar reports 74.5%, and WavLoc is 3.3%

lower than it. We can see that DeepEar performs better than WavLoc in an environment with

a large number of different sound sources.

After transfer learning, the sound detection accuracy of DeepEar increases to 86.2%, while

WavLoc only increases to 76.4%. The distance accuracy of DeepEar increases to 84.6% while

WavLoc climbs to 75.8%. Additionally, DeepEar benefits more from transfer learning than
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Figure 3.19: The transfer learning performance of DeepEar with different sizes of new training
data. Two subfigures share the same legend.

WavLoc, especially for the Hamming score and AoA estimation. Specifically, the Hamming

score of DeepEar increases by 8.5%, while WavLoc only has a negligible increase (0.1%). As for

AoA, DeepEar also obtainsmore performance gain thanWavLoc, especially in one-source cases

(2.7◦ vs. 0.6◦). This result confirms that CNN-basedWavLoc is difficult to adapt to a complicated

environment with only a small amount of data. Although DeepEar has more performance

improvement due to its human-inspired framework design, the overall performance gain from

transfer learning is less than those in the meeting room and lecture room. The rationale behind

this is the sophisticated reverberant environment with too many sound sources, which hinders

the global DeepEar model from transferring to this new context.

3.4.4.4 Transfer Learning Performance

The experiment results above demonstrate that transfer learning effectively helps DeepEar

adapt to new environments. We also tested DeepEar with different sizes of new data for trans-

fer learning in the meeting room and lecture room because of their high performance improve-

ment. The result is illustrated in Fig. 3.19. We zoom in on the y-axis for clear observation. We

observe that only 2% of new data can essentially boost DeepEar performance in both the small

meeting room and the large lecture room. The accuracy steadily increases as the number of

training data grows. Consequently, the MAE gradually decreases. In theory, the more new

data is used in transfer learning, the better performance we can achieve. Nevertheless, we

need to balance the performance gain and the extra training overhead introduced since col-

lecting a large number of new data in different environments could be practically challenging

for ordinary users. This experiment reveals that 2% of new data (i.e., 180 one-second instances)

are efficient for DeepEar to produce a good adaption result, while DeepEar can achieve higher

performance with 10% or more of new data if needed.
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Figure 3.20: Performance comparison between DeepEar and WavLoc across different noise
levels. ”N/A” indicates that no noise is added to the signal.

3.4.5 Noisy Environment

We added Gaussian noise with different signal-to-noise (SNR) levels (30 dB ∼ 0 dB) to binaural

signals in anechoic-testing2 to evaluate DeepEar in noisy environments. Figure 3.20 depicts the

performance comparison between DeepEar and WavLoc across different SNRs. ”N/A” means

the result without any noise. We can observe that DeepEar keeps stable performance when the

SNR is higher than 25 dB, where the sound detection accuracy, Hamming score, and distance

accuracy are about 90.6%, 76.8%, and 80.5%, respectively. The corresponding AoAMAE is about

8.1◦. In comparison, WavLoc suffers notable performance deterioration when encountering

noise. Specifically, the sound detection accuracy and Hamming score decrease by 6.1% and

9.4% at 25 dB, respectively. As the noise level increases, the performance of both systems

degrades rapidly. When SNR is 0 dB, the sound detection accuracy and Hamming score of

DeepEar drop to 71.6% and 33.7%. The AoAMAE ofWavLoc increases slightly slower than that

of DeepEar. However, its MAE at 0 dB (16.8◦) is still higher than that of DeepEar (16.8◦). This

result reveals that DeepEar is more robust to noise than WavLoc, but they both cannot handle

relatively noisier scenarios. We note that the global DeepEar model used in this experiment is

trained on anechoic data, so there is a large improvement space if we perform robust training

strategies such as multi-conditional training (MCT) [104].

We also evaluate DeepEar with different kinds of noise (pink, factory, destroyer, and babble)

selected in the Noise92X noise database [197]. Same as the experimental setting for Gaussian
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Figure 3.22: AoA estimation error
comparison between DeepEar and

GCC-PHAT.

noise, we added them to binaural signals with an SNR of 25 dB. From Fig. 3.21, we can see that

DeepEar performs slightly better under destroyer noise. But overall, the performance remains

relatively stable in terms of all metrics under different types of noise.

3.4.6 Comparison with GCC-PHAT

Subspace-based AoA estimation methods such as MUSIC require that the number of micro-

phones should always be larger than the sound number. Since we only have two microphone

channels, these approaches are not feasible in suchmultisource cases. Thus, we choose another

typical approach GCC-PHAT for comparison. In this experiment, the dummy head can be con-

sidered a linear array with two microphones apart with head size (i.e., 18 cm for the KEMAR

dummy head). We used Anechoic-testing2 as the evaluation set to exclude the noise impact,

and the result is shown in Fig. 3.22. We can see that the AoA MAE of GCC-PHAT is 69◦ in

the one-source case. It further increases to 85◦ and 91◦ in two-source and three-source cases,

respectively, much higher than that of DeepEar. The reasons arise from many aspects. First,

the signal does not travel to the ears in a straight line but diffracts due to the head curvature,

leading to incorrect time delay estimation between two ears. Second, the low signal sampling

rate (16 kHz) determines low spatial resolution, where one sample lag denotes 22.5◦ azimuth

using the cross-correlation method. In addition, the cross-correlation peaks with only two mi-

crophones are easily distorted in the presence of multiple sound sources. Finally and more

importantly, as we mentioned in Sec. 3.1, one microphone pair can only achieve the semi-field

AoA estimation, which brings about a severe front-back confusion problem and significantly

raises AoA MAE. And what is more, this consequence becomes worse in a multisource situa-

tion.
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Figure 3.23: DeepEar performance across different distances. The ”NaN” denotes no-sound
cases.

3.4.7 Impact of Distance

We conduct a detailed analysis of the evaluation result and investigate the DeepEar perfor-

mance across different distances. In this setting, we assume that the distances of source sources

are known as a prior, so the sound detection accuracy and Hamming score are not applicable.

Instead, we adopt sound detection recall (true positive rate) as the sound detection metric,

which indicates how many sound sources are correctly detected at a specific distance.

The result is shown in Fig. 3.23. We can see that the sound detection recall decreases with

increasing distance. However, the AoA estimation error (MAE) remains relatively stable across

different distances. This is because the sound power from sources far away is very weak; hence

they are hard to detect. But say, as long as DeepEar successfully detects the sound, it can

extract the interaural clues and infer the corresponding sound direction. As a result, the AoA

estimation performance does not suffer degradation as the distance increases. The ”NaN” on

the x-axis denotes the no-source case. We use ”NaN” instead of ”0” to avoid misunderstanding.

In this case, we can see that the recall is relatively high since no sound is much easier detected

than sound cases. Moreover, the MAE of AoA is near 1.6◦. The reason is that the ground truth

label of a no-sound case is 0 (explained in Sec. 3.2.5.1). Thus, even though DeepEar correctly

detects a no-source case, the AoA estimation value is minimal but not equal to zero. These

small residuals also lead to an error.

3.4.8 Adaption to New Ears

Different ear shapes may cause distinct sound distortion effects. Therefore, we synthesized a

new testing set with Surrey BRIR (medium-small classroom) [4], which is recorded with a Cor-

tex MK2 dummy head. The data synthesis setting is the same as previous datasets. Figure 3.24

shows the performance comparison between DeepEar and WavLoc. When we directly deploy



3.4. Evaluation 43

(a) Sound detection. (b) Hamming Score.

(c) AoA. (d) Distance.

Figure 3.24: Performance comparison with different ear shapes (a Cortex MK2 dummy head).
The darker bars refer to the accuracy before transfer learning or MAE after transfer learning.

two methods on this new dataset, the average sound detection accuracies are 58.5% for Deep-

Ear and 64.5% for WavLoc. Although the sound detection accuracy of WavLoc is higher than

DeepEar, their Hamming scores are comparable, which are 18.0% for DeepEar and 16.5% for

WavLoc. Accordingly, the AoA MAEs of DeepEar and WavLoc are 18.8◦ and 18.1◦, and their

distance accuracies are 61.6% and 70.4%, respectively. The low Hamming score and the high

AoA MAE denote that DeepEar can hardly locate sound sources in this context. This result

indicates that, in addition to reverberation, the different ear filtering effect further degrades

original models. An interesting finding is that the performance of DeepEar is much worse

than that of the previous three rooms, likely because the ear-filtering features used by Deep-

Ear are more sensitive to the ear shape (changed from a KEMAR dummy head to Cortex MK2).

By contrast, the performance of WavLoc with this new ear is comparable to that of the other

three new rooms, although a large performance degradation is observed as well.

We also split 10% of this dataset as the adaptation set for transfer learning, and the remaining

data are used for testing. As shown in Fig. 3.24, we observe a significant performance boost

for DeepEar, especially for the cases with less number of sound sources. In particular, the

average sound detection accuracy and Hamming score of DeepEar substantially increase to

93.6% and 82.9%, respectively. The same metrics for WavLoc after transfer learning are 80.6%

and 43.7%. As for AoA, the MAE of DeepEar decreases almost by half to 9.9◦, while that of

WavLoc only decreases to 14.2%. The distance accuracy also remarkably increased for DeepEar

(31.7%), higher than WavLoc (9.8%). Overall, the evaluation result shows that the transfer
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Figure 3.25: Performance of DeepEar ablated with cross-correlation (Xcorr), subtraction (Sub),
and VAE.

learning strategy can effectively help DeepEar adapt to new ears, i.e., binaural microphones.

The possible reason is that the human-inspired features used by DeepEar can quickly adapt the

feature space to new ears, as long as with a few numbers of data.

3.4.9 Ablation Study

We conducted an ablation study to evaluate the importance of different components in Deep-

Ear. Specifically, the cross-correlation and subtraction features were removed successively,

and then we replaced the VAE with two general GRU layers. Anechoic-training and Anechoic-

testing2 were used as the training and testing dataset, respectively.

The results are shown in Fig. 3.25. We can see that the sound detection accuracy decreases

from 91.9% to 83.3%, and Hamming score drops by 24% without cross-correlation features. Ac-

cordingly, the AoA estimation error increases by 5.9◦. This is because the cross-correlation

feature apparently provides the time difference between two ears, indicating the sound direc-

tion. Thus, DeepEar is hard to accurately distinguish the sound direction without this feature.

The distance accuracy, however, decreases a little (5.9%), since the direct-to-reverberant ratio

mainly used for distance estimation is kept in the extracted gammatone coefficients.

After ablating the subtraction part, we observe almost the same performance as before. This

result is not surprising. Subtraction is a simple task; hence the network can easily learn this
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Figure 3.26: Performance of DeepEar, complex DeepEar, and complex DeepEar without cross-
correlation.

operation within hidden layers. As we illustrated in Sec. 3.2.4, the feature difference between

two ears is an essential factor helping us break the AoA front-back ambiguity. Therefore, de-

spite a slight performance gain, adding subtraction as a part of features can reduce the learning

burden and accelerate model convergence.

Replacing VAE brings about a performance decrease, especially for AoA estimation. Specifi-

cally, the Hamming score and the distance accuracy drop by 2% and 4%, and AoA estimation

error increases from 8◦ to 11.9◦. The reason is that VAE has a generalization ability to un-

seen data due to continuous representation distribution. Therefore, the system performance

degrades without the VAE, although we have used massive data to train a global model.

3.4.10 Performance of DeepEar Variants

3.4.10.1 Complex DeepEar

We train Complex DeepEar with the anechoic-training dataset and test it on the anechoic-

testing2 dataset. The result is shown in Fig. 3.10. Compared to the original DeepEar, sound

detection accuracy and Hamming score increase by 2% and 2.3%, respectively. The AoA MAE

decreases to 7.7◦, and the distance accuracy increases to 82%. These results are in accordance

with our expectations, since phase information provides richer time differences between two
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Table 3.3: Performance of Monaural DeepEar of the left and right ear.

Metrics
Sound

detection (%)

Hamming

score (%)

AoA MAE

(degree)

Distance

(%)

Left Ear 82.8 50.7 13.6 77.1

Right Ear 83.3 53.1 13.1 77.5

ears that can help with sound localization. The performance boost is especially notable in

2-source and 3-source cases.

We also repeated the experiment but removed cross-correlation features from complex Deep-

Ear. Like the result of the ablation study we have done in Sec. 3.4.9, the performance of Com-

plex DeepEar decreases in terms of all metrics accordingly. We found that the performance

gain of the phase is not as great as the cross-correlation. We suspect that the interaural time

delay estimated with phase suffers from a ”phase wrapping” problem if the phase change be-

tween two ears is greater than 2π. Compared with phase-inferred time delay information,

cross-correlation can provide a more prominent time difference estimate.

However, what we want to point out here is, although Complex DeepEar experiences a large

degradation without cross-correlation, its performance is still better than the original DeepEar

without cross-correlation (Sec. 3.4.9). For example, sound detection accuracy and Hamming

score are 88.5% and 70.4%, but still higher than the original DeepEar by 5.2% and 14%, respec-

tively. The AoA MAE is 11.5◦, less than the original DeepEar by 1.4◦. A possible reason is

that DeepEar can partly unwrap the phase and infer the interaural time differences with the

redundant information of multiple frequency bands [228].

3.4.10.2 Monaural DeepEar

We also evaluate Monaural DeepEar in the same experimental setting as Complex DeepEar.

The overall result of different metrics is illustrated in Tab. 3.3. We can see that Monaural

DeepEar can achieve promising sound localization performance, although there is a large space

to improve. The reason is that the unique pinna structure can still distort the sound and produce

angle-dependent monaural clues even with one ear [199]. Furthermore, the performance of the

two ears is almost the same.

However, without the help of another ear, human beings cannot cancel the sound contents

between two ears and extract the binaural difference patterns. It means that listeners with one
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Figure 3.27: Localization performance with and without human-shaped ears.

functional ear can only locate the sounds with which they are familiar [157]. Some researchers

also reveal that people with hearing diseases often turn around their heads slightly and can

locate a rough sound direction [105]. In this case, the head rotation leads to a different propa-

gation path between the sound source and the ear, yielding new reference information to help

achieve monaural localization. This promising result shows that Monaural DeepEar can po-

tentially benefit people who suffer from severe hearing diseases with only a single functional

ear.

3.4.11 Real-world Case Study

We conducted a real-world localization experiment to further evaluate the importance of ears

for sound localization. A binaural microphone (miniDSP EARS) is placed in a meeting room

as a recording device. Several speech files were randomly selected from the public TIMIT

corpus to form long audio with 120 seconds. Then we used a portable loudspeaker to play the

selected audio files in eight 45◦ evenly spaced directions 1m away from the microphones. We

first recorded the binaural audio with ears and then repeated this process but detaching the

human-shaped ears from the binaural microphone. After that, each long audio recording was

sliced into many one-second samples. Twenty gammatone coefficients were extracted from

each 0.1 s frame in a sample as a feature.
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We implemented a one-layer LSTM network consisting of 100 hidden units stacked with a

dense layer to execute the sound localization task. Figure 3.27 shows the confusion matrices of

localization with and without ears. Without ears, the localization accuracy is 58.6% as shown

in Fig. 3.27(a). We can observe that the model suffers from front-back confusion. Although

directions on the left or right side (e.g., 90◦ and 270◦) can be easily detected, the model can

hardly identify the degrees on each side (e.g., 45◦, 90◦, and 135◦). For comparison, the overall

classification accuracy increased to 92% after mounting the ears, as shown in Fig. 3.27(b). The

confusion problem was alleviated to a great extent, and accuracy in almost all directions was

improved. This result confirms that human-shaped ears indeed help to significantly improve

localization accuracy, especially for AoA disambiguation.

3.5 Related Work

3.5.1 Sound Localization

Sound source localization has been studied for many years [65]. DeepEar is most related to bin-

aural sound localization. We divide existing works into four categories based on two features,

i.e., microphone array-based/binaural microphone-based and one source/multiple source(s) in

Tab. 3.4.

Microphone array-based methods. Much prior research work utilizes microphone arrays

to estimate the AoA of an unknown sound source. [140] performs a spiking neural network

(SNN) with a 4-mic array for AoA Estimation. By exploiting the sound reflections, VoLoc [168]

and [14] can locate the voice position with a microphone array. When multiple sound sources

are present, their interference raises practical challenges for localization. [210] explores the

microphone redundancy in an array to achieve multisource localization. Many works [31, 72,

143, 172, 178] adopt Convolutional Neural Network (CNN)-based model to localize multiple

sources with a microphone array.

Binaural microphone-based approaches. Unlike the microphone array, the binaural mi-

crophone consists of only two microphones with human-shaped artificial ears. Our experi-

ment in Sec. 3.4.11 shows that localization with only two microphones without ears suffers

from the ambiguity problem. Some researchers tried to exploit the ear filtering effect and per-

form binaural localization with deep learning techniques [132, 242]. WaveLoc [198] inputs
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Table 3.4: A taxonomy of related works on sound localization.

Sound localization Mic array Binaural mics

One source [14, 140, 168] [132, 141, 198, 242]

Multiple sources [31, 72, 143, 172, 178, 210]
Known number Unknown number

[104, 137, 222] DeepEar

raw waveforms into a CNN and classifies sounds into 37 directions. [141] utilizes CNN on

audio spectrograms to perform azimuth and elevation classification. Both works use the soft-

max function in the classification layer, the sum of which outputs is equal to 1. These works

locate one sound source with the highest probability. To achieve multiple sound localization,

some works [104, 137, 222] train machine learning models and aggregate the estimates of dif-

ferent frequency bands or time segments. However, they assume the prior knowledge of the

exact number of coactive sound sources, and [104] requires an extra head rotation process.

Moreover, the localization resolution of classification-based approaches is limited to the class

quantization [65]. In contrast, DeepEar utilizes a sector-based network for sound detection and

a regression-based network in each sector for localization, which can achieve multiple sound

localization with an unknown and varying number of co-active sound sources. Here, we note

that themaximum supporting number of sound sources is required for DeepEar. Besides, some

works also perform sound localization with a single microphone by leveraging the reflection

multipath from the artificial pinnae [157], LEGOs [51], and metamaterial enclosure [176].

3.5.2 Bionic Auditory Applications

Inspired by the powerful human auditory capability, many researchers imitated the human au-

ditory mechanism and designed several smart systems to deal with sound-related tasks such

as sound classification [224, 225], speech recognition [223], and keyword spotting [240]. In

addition, [248] proposed an auditory-like system to recognize the type of musical instruments,

and [151] designed a machine hearing approach to predict the types of sounds. Spiking neural

network [61] has been developed to closely mimic natural neural networks, which imitates the

information transfer in biological neurons. It has become popular as a possible energy-efficient

and neuromorphic alternative to conventional deep learning models [165]. The powerful per-

ceptual capacity of humans is still the goal of the AI community today. Like the research on
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CNN and its breakthrough in computer vision tasks, we envision that modeling the human

auditory system will open up a broad range of possibilities in various sound-related tasks.

3.6 Discussion and Open Problems

3.6.1 HRTF Calibration

Although the ear-caused HRTF is unique and cannot be directly applied to different ears, our

experiment result shows that transfer learning can help DeepEar adapt to new binaural mi-

crophones. However, the precondition is that we must collect a certain amount of data with

new ears. Recent work UNIQ [238] personalizes HRTF for different users with a smartphone

and a pair of in-ear microphones. [135] proposed a regression approach to estimate the HRTF

based on the ear’s 3D shape. These HRTF personalization approaches provide an opportunity

to apply our model to different binaural microphones with only an online calibration process.

Moreover, recent research found that humans can get used to new mold ears in a few weeks

[73], which indicates that we may perform incremental learning strategies to facilitate HRTF

generalization among different ears.

3.6.2 3D Localization

We focus on horizontal sound localization in this research. In fact, humans can locate full

3D sound directions with reasonably high accuracy, including both azimuth and elevation.

While the primary cues for azimuth localization are binaural, the primary cues for elevation

localization are often regarded monaural [220]. This is mainly due to the fact that the pinna

can distort the sound in a direction-dependent manner [113]. Furthermore, the head, shoulder,

and torso also produce distinct filtering patterns in different elevation angles. [21, 227] provide

3D HRTF databases that can be used for sound elevation localization. Some works also reveal

that people often turn their heads slightly, and thus they can locate a sound direction more

accurately [104]. We leave this for future work.
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3.7 Chapter Summary

In this Chapter, we propose DeepEar, a sound localization framework for binaural microphones

that can locate multiple sources without the number of sources. Inspired by the human audi-

tory system, we design a machine hearing framework to fuse binaural time differences and

latent sound representatives to estimate the locations of multiple sources. To cope with the

heterogeneity of working environments, a global DeepEar model is trained on available ane-

choic datasets. Then we take advantage of the transfer learning strategy to adapt DeepEar

in real working scenarios. DeepEar investigates the significance of the ears on binaural mi-

crophones in sound localization. Experiment results demonstrate that DeepEar substantially

outperforms a state-of-the-art work in terms of sound detection and localization accuracy. We

believe that DeepEar could not only benefit hearing-impaired people with smart hearing aids

but also fuel more binaural applications in the future. Besides location, in the next chapter, we

will explore how to estimate the head orientation when a user is speaking.



Chapter 4

Head Orientation Estimation with

Microphone Arrays

4.1 Introduction

Recently, we have witnessed the prosperity of smart devices and their applications in homes.

Most of them are equipped with microphone arrays that enable interaction with users by voice

commands. As a friendly interface to access smart devices, it is intuitive to use for users,

especially for the elderly, handicapped, and disabled people. To provide better services and

attract more customers, smart device companies have developed a lot of new technologies to

infer users’ context based on the captured voice commands. For example, some companies

leverage acoustic sensing to infer the user’s location [44, 178]. The research community also

pays close attention to this trend and proposes many innovative voice localization technologies

[43, 45, 76, 155, 168, 210]. Knowing a user’s location helps to narrow down the possible set

of voice commands and provide customized services to users. Similar to the location, head

orientation also provides important contextual information:

1) Multi-deviceWakeup Arbitration. Nowadays, most families ownmore than one smart voice-

controlled device, such as smart speakers, smart lamps, smart TVs, etc. Without head orienta-

tion information, these devicesmay suffer from themulti-device confusion problem in practice.

As illustrated in Fig. 4.1(a) and Fig. 4.1(b), imagine that we have two smart lights in a room.

When they receive “turn on the light” as a voice command, they may wonder which light to

52
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(a)

Turn on!

(b)

Turn on!

(c)

Figure 4.1: An example application scenario for head orientation estimation. (a) Two voice-
controlled lights in a home. (b) The user would like to turn on the left light, but all lights
receive this voice command and become bright. (c) With head orientation estimation, the left

light could be turned on as the user intended to.

turn on. If the smart lights can infer the user’s head orientation, they can turn on the exact

light as the user intended to (Fig. 4.1(c)).

2) Meeting diarization. By inferring the location and head orientation of a user, the smart

microphones in a meeting room can figure out Alice is actually talking to Bob but not Charlie

sitting in different orientations. Thus, the meeting diarization will be more clear on the task

assignment and conversation log.

3) Additional application scenarios. For example, disabled people could control their wheelchairs

with the head orientation when they are equipped with voice devices [156]; Verbally indoor

navigation is also possible when there are several smart devices deployed in a building that

could give directional instruction like ”the office is on your left side” when users ask the des-

tination. Moreover, we generally speak towards smart devices when we intentionally interact

with them so that smart devices can filter out the commands not facing them, such as the

sound from TV or computer in case of the ghost waking-up by mistake. We believe that head

orientation as contextual knowledge would inspire and benefit more voice applications in the

future.

However, at present, mostworks on head orientation estimation adopt vision-based approaches

utilizing cameras to monitor the human head orientation [18, 162]. Such approaches however

raise privacy concerns in home environments. Existing model-based acoustic methods typ-

ically require hundreds/dozens of microphone arrays densely deployed in monitoring areas

[8, 25, 92, 121, 164]. The deployment cost of such a large array network consisting of so many

microphones is prohibitive for practical usage scenarios [187]. Moreover, these methods per-

form exhaustively searches and hence cannot work in real-time due to high computational

overhead [9]. Machine learning-based acoustic approaches require fewer arrays but laborious

data collection and labeling efforts to train a learning model [12, 181, 182, 232]. For example,

Soundr [232] leverages a head-mounted VR device to collect 700+ min ground truth data to
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train a neuron network, which is also not friendly to users. Therefore, we may ask a question:

could we estimate head orientation with fewer arrays, as well as lower training overhead?

In this chapter, we propose HOE, a Head Orientation Estimation system with only two micro-

phone arrays. HOE is model-based, which means it does not require arduous data collecting

or training overhead. Besides, compared with existing model-based methods, it significantly

reduces the number requirement of arrays. Intuitively, the human voice energy is mainly ra-

diated to the head front direction, while the energy radiated to the side and opposite direction

is generally weaker. HOE models the voice radiation pattern based on this fact and estimates

a user’s head orientation with the voice signals received by two microphone arrays. Although

intuitive and simple in concept, it entails tremendous challenges in practice:

1) Noise and Reflection Interference. The key enabler underlying head orientation estimation

is the correct energy measurement for matching with the theoretical voice radiation pattern.

However, interfering with ambient noise (e.g., air-conditioners or fans) and reflections, the

energy measured by microphone arrays may substantially differ from the expected radiation

pattern if not handled properly.

2) Energy Attenuation. The energy of voice signals varies at different positions and directions

due to propagation attenuation. Therefore, we must compensate for the energy to the further

array before performing head orientation estimation. However, voice signal attenuation is very

complicated in practice, since it is affected by many factors such as distance, signal frequency,

directions, and so on [39].

3) Orientation Ambiguity. To reduce the deployment cost, HOE only utilizes two microphone

arrays. However, using fewer microphone arrays (e.g., 2) will result in ambiguity in the es-

timation result. For example, when two arrays measure the same energy levels, we cannot

distinguish if a user is speaking towards the middle of arrays or in the opposite direction. This

ambiguity problem may significantly affect the final estimation result if not properly resolved.

HOE addresses the above challenges by proposing the following techniques:

To mitigate the impact of reflection interference, microphone arrays are beamformed to the

direction of the user’s position, since beamforming can enhance the voice signal from the user

and suppress the signal from other directions (e.g., reflections). Background noise is mostly

within low-frequency bands, and the signal in the high-frequency band has a better directivity
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as well as a less reflection effect [185]. Therefore, HOE leverages the high-frequency compo-

nent of the beamformed voice signal to perform head orientation estimation. Thus, background

noise can be effectively mitigated.

Although indoor voice attenuation is hard to model in theory, we could perform a one-off

parameter training to approximate the attenuation pattern for each room, since the location

of smart devices would not change frequently. We investigate the attenuation effect caused

by both distance and orientation and propose an adaptive compensation model considering

both factors into account. By properly compensating for the received voice signals, HOE could

mitigate the attenuation impact of different distances and orientations.

To resolve the ambiguity, we study the distribution of two ambiguous orientations and find

that all ambiguities are always symmetrical: facing or backing arrays. Furthermore, arrays

would receive more high-frequency energy when the user is facing them [160]. Based on this

key observation, we could check the proportion of high-frequency component energy received

by the arrays to perform disambiguation.

The main contributions of this chapter are summarized as follows:

• We propose HOE, the first model-based effort on head orientation estimation with two

microphone arrays to the best of our knowledge.

• We present an adaptive compensation model for voice signals considering the effect not

only from distances but also orientations. We also propose an approach that utilizes the

voice frequency radiation pattern to tackle the orientation ambiguity problem.

• HOE is implemented and evaluated in real-world experiments. The results show that

HOE can achieve an overall median angular error of 23◦, which is promising to provide

new context information (i.e., head orientation).

The rest of this chapter is organized as follows. In Sec. 4.2, we briefly introduce the capability

of commodity smart devices and voice assistants and define the target problem. Followed by

Sec. 4.3, we summarize the design space of related works and highlight our novelty. In Sec. 4.4,

we describe the detailed system design of HOE. Our system is implemented and evaluated in

Sec. 4.5. We discuss some limitations and future work in Sec. 4.6. Finally, Sec. 4.7 concludes

this chapter.
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Head Orientation

AoA2
AoA1

Departure Angle

0

90

180

Deviation Angle

Figure 4.2: Problem illustration of the head orientation estimation. The aim of HOE is to
estimate the head orientation, i.e., the angle between the speaking direction (red arrow) and

x direction.

4.2 Background and Problem definition

Smart devices are generally equipped with a microphone array to enable voice interaction.

They are usually triggered by a name or phrase, such as “Alexa, …” or ”Hello, …” which are

termed as Keywords. Nowadays, commercial voice assistants in smart devices provide many

built-in functions, including Keyword Spotting (KWS), Angle of Arrival (AoA), and so on [159].

Keyword Spotting detects the keyword towake up the device and start a conversation, andAoA

could estimate the Angle of Arrival of the voice, indicating the direction of the speaking user.

With two microphone arrays (referring to smart devices hereinafter), the user’s position could

be localized by finding the intersection point of two AoAs. As shown in Fig. 4.2, AoA1 and

AoA2 are crossed at (x0, y0), which indicates the user’s location. Voice localization with mi-

crophone arrays has been extensively studied [8, 27, 59, 85, 120, 150, 163, 168, 210], so we can

build HOE on them directly. Head orientation, however, has not been thoroughly studied yet.

Previously, voice localization only focused on the distance or angle between the user and the

microphone array but ignored the angle between the array and the user’s speaking direction.

We give a formal definition of our target problem as follows:

Problem Definition. Fig. 4.2 illustrates a head orientation estimation scenario. The user’s

position (x0, y0) could be localized by existing methods. In a local coordinate, the head ori-

entation is defined as the angle between the speaking direction (red arrow) and x direction.

Furthermore, the directions of the microphone array with respect to the user are termed as the

departure angle, indicating the Line of Sight (LOS) departure directions of voice. the devia-

tion angle defines the deviation from the departure angle to the user’s head orientation. HOE
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Figure 4.3: Design Space: comparing with related work. The digits before citations are the
number of microphones/arrays used. The literature marked in green means they conducted

research on loudspeakers instead of humans.

aims to estimate the head orientation of a voice command, so the orientation estimation error

should be as small as possible to meet the practical requirement of applications.

4.3 Related work

Ideally, a head orientation estimation method should deliver a high estimation accuracy with

a few microphones and low training overhead. Many researchers have made great efforts to

achieve this goal. Fig. 4.3 summarizes the existing works and our proposed solution in a design

space. We categorize existing works according to the number of needed microphones and their

training overhead as follows.

4.3.1 More Arrays, Low Training Intensity

J. M. Sachar et al. [154] used a Huge Microphone Array (HMA) consisting of 448 microphones

distributed in a laboratory to estimate a user’s head orientation. Such HMA-based methods

[91, 92, 121, 122] could detect differences in the energy from microphones and accurately esti-

mate head orientation. However, they need a large number of microphones and incur high de-

ployment costs. Several works [8, 25, 120, 163, 164] utilized the GCC-PHAT [84] based method

to estimate a user’s head orientation by searching all possible locations and orientations, find-

ing a maximum in the 3D space. This exhaustive search leads to high computation costs and

is not suitable for real-time applications. Another multi-microphone approach [9, 160–162]

is based on HLBR [161], a frequency-domain metric related to the head orientation. These

model-based approaches do not involve much training overhead. However, they typically need

to deploy a large number of microphone arrays at each wall around a room in order to cover
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all possible directions. For example, [121, 180] deploy a 64-microphone array, and [161, 163]

utilized six T-shape arrays (4 microphones in each array). Therefore, these methods cannot be

deployed in ordinary homes.

4.3.2 More Arrays, High Training Intensity

With the development of machine learning (ML) techniques, many researchers applied them

to improve the performance of the head orientation estimation. Brutti et al. [27] utilized the

Nearest Neighbors to classify loudspeaker orientations by seven 4-microphone arrays. [124,

125] deployed eight T-shape arrays in a room and trained a neural network to estimate the

orientation of a loudspeaker. These methods need to collect training data which incurs high

overhead for users and still requires a large number of microphone arrays.

4.3.3 Fewer Arrays, High Training Intensity

Following that, various machine learning-based methods have been proposed to reduce the

number of needed microphones in head orientation estimation. Many works trained a classifi-

cation model to predict the orientation of a loudspeaker rather than a real user [119, 123, 181,

182]. [119] distinguishes whether the user is talking to the array, which is less usable in our ap-

plications. Soundr [232] and [12] estimate real human head orientation with one microphone

array. Soundr needs a massive amount of training data (e.g., 700+ min) collected with a VR

device to train a workable neural network. However, it requires a dedicated VR headset and

does not perform well if it has not been trained for a given environment or a user [232]. [12]

is a state-of-the-art for head orientation estimation, which extracted acoustic features to train

a tree, but it can only predict the relative orientations (i.e., deviation angle in Fig. 4.2) instead

of absolute orientations as HOE. Although these ML-based methods can reduce the number

of microphone arrays from dozens to two or even one, the training overhead, including data

collection, manual labeling, and training workload, increases substantially. In contrast, HOE

proposes a model-based method to estimate absolute head orientation with two arrays and

does not need a laborious data collection and training overhead.
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Figure 4.4: Overview of HOE.

4.4 HOE System Design

In this section, we introduce the detailed system design. We start with an overview of HOE,

followed by a description of functional components. In each subsection, we discuss some prac-

tical challenges and present our solutions. Finally, we summarize the whole pipeline of head

orientation estimation.

4.4.1 System Overview

Fig. 4.4 illustrates the overview of HOE. HOE consists of three components: Energy Compensa-

tion,Orientation Estimation, andOrientation Disambiguation. When a user would like to deliver

a voice command, he/she speaks a keyword to wake up voice assistants, such as ”Hello, HOE”.

The microphone arrays of smart devices capture the voice command by Keyword Spotting

and locate the user by leveraging the Built-in Preprocessing function. Next, the distances and

departure angles of the user could be calculated with the known locations of smart devices.

Following that, the Energy compensation component compensates for the energy measured

by two arrays due to the attenuation loss from the distance and deviation angle differences.

Then, Orientation Estimation utilizes an energy matching method to figure out head orienta-

tion candidates with ambiguity. In Orientation Disambiguation, the ambiguity is resolved by

the frequency radiation pattern of voice, and eventually, HOE outputs a final orientation result.

HOE only utilizes the audio segment of the wake-up word for orientation estimation. Voice

commands may be different from each other but have the same preceded wake-up word for the

smart devices from the same vendor. Thus, we can conveniently adapt HOE to different smart

devices. Moreover, a wake-up word lasts about 500ms, and thus we can assume that the user’s

head keeps static for such a short period. In the rest of this section, instead of introducing the
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Figure 4.5: Voice radiation pattern with different directions (bird-eye view). (a) Energy pat-
tern [9]: more energy is radiated in the user’s forward direction than in other directions. (b)
Frequency pattern [185]: high-frequency signals (f ≥ 2kHz) have more notable directivity,

but low-frequency signals are almost omnidirectional.

Energy Compensation module first, we start with the Orientation Estimation and then raise

the reason why HOE needs energy compensation.

4.4.2 Orientation Estimation

Our head orientation estimation method is based on the fact that the user’s voice propagation

is anisotropic, which means that we have different measurements when voice is radiated in

different directions. To this end, we build voice radiation patterns to model this anisotropic

property of the human voice, including an energy radiation pattern and a frequency radiation

pattern.

Energy Radiation Pattern. The average energy of the human voice is not uniform in all

directions. More energy is radiated in the user’s forward direction than towards the side, or

rear directions [41]. As shown in Fig. 4.5(a) borrowed from [9], blocked by the face and head,

the voice energy suffers about -2 dB attenuation on the side of the user, as well as more than

-8 dB attenuation behind the body. This kind of voice energy radiation presents basically a

cardioid-like attenuation pattern, which can be mathematically parameterized as follows [26]:

w(θ) = 8

[(
1 + cos(θ)

2

)ρ

− 1

]
(4.1)

where θ is the deviation angle of the microphone array, and w(θ) is the energy attenuation

(dB) in θ degree compared to the front direction. The exponent ρ determines the directivity
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Figure 4.6: The voice energy radiation
pattern modeled by Eq. 4.1. The energy
radiated to 0° has 0 dB attenuation, and
it drops to -8 dB at most as the deviation
angle increases to 180◦ (rear direction).

Array #1

Array #2

-1.2

-3.1

Figure 4.7: Two microphone arrays are
placed at the same distance from a user.
When the user speaks a voice com-
mand, two arrays will receive different

voice energy levels.

level of voice radiation. When ρ = 0, the voice radiation pattern is omnidirectional. Fig. 4.6

shows a common attenuation pattern modeled by Eq. 4.1 where ρ = 1.

Suppose a case that two arrays have the same distance to a user as a bird-eye view shown

in Fig. 4.7. Two microphone arrays are settled at the two sides in front of the user. With

the known positions of microphone arrays and the user localized before, the distances and

departure angles of the two microphone arrays can be computed by geometry. Let E1 and

E2 denote the energy received by microphone array #1 and #2, respectively. Intuitively, when

a user speaks a voice command, the energy in different directions would attenuate following

the radiation pattern w(θ). Therefore, the energy of the signals received by two microphone

arrays would be different and presents an attenuation pattern as the dashed line. Thus, we

can formulate a loss function and minimize the residue to estimate the head orientation Θ by

searching all possible angles:

Θ = argmin
θ1,θ2

∥∥∥∥w(θ1)− w(θ2)− 10log10(
E1

E2
)

∥∥∥∥
2

(4.2)

where θ1, θ2 are the deviation angles of two arrays associated with the head orientation Θ.

Here we omit the A-weighting [185].

4.4.3 Energy Compensation

Note that the energy matching method above only works where the distances between two

arrays and the voice source are the same. It also assumes the signal propagates freely in a 3D

space without noise or interference. However, the propagation becomes more complicated in
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Figure 4.8: Energy measurement with two different orientations when a user speaks the same
command ”Hello”. (a) The user speaks commands to 90◦ (black arrow) and 135◦ (gray arrow)
(b) the energy measurement in different frequency bands of two arrays when the orientation

equals 90◦ (first peak) and 135◦ (second peak).

practice, especially in indoor scenarios. In the following, we propose corresponding solutions

to tackle these challenges.

4.4.3.1 Mitigate the Impact of Noise and Interference

We present the results of an empirical study to describe how we mitigate the impact of noise

and interference. As shown in Fig. 4.8(a), two microphone arrays are placed on two sides

with equal distances to the user (d1 = d2), and the departure angles of them are 150°and

30°, respectively. A user first speaks a command towards 90◦ (black arrow) and then repeats

this command towards 135◦ (grey arrow). The energy values measured by the two arrays are

presented in the top subfigure of Fig. 4.8(b). The first peak corresponds to the first command,

so does the second one.

When the head orientation is 90◦, the absolute deviation angles of the two arrays are equal.

Therefore, the measured energy level of the two arrays should be similar in theory, but we ob-

serve that the energy of array #1 is slightly higher than that of array #2. When the orientation

changes to 135◦ (the second peak), the user deviates to array #1, and thus we expect a higher

power obtained by that array. However, the measured energy levels remain almost the same

as shown in the second peak of Fig. 4.8(b). The main reason is that microphone arrays measure

both user’s voice and background interference in the environment. Besides the background

noise, large objects such as walls and furniture can reflect the voice signal back to microphone
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arrays. Therefore, it is challenging to infer the head orientation from the measured power lev-

els with interference. To deal with this problem, we first perform beamforming to the user’s

direction with microphone arrays, since it could enhance the signal from a specific direction

as well as suppress the interference from other directions (e.g., reflections) spatially. Then, we

use the voice frequency radiation pattern of the human voice to further mitigate noise.

Frequency Radiation Pattern. The human voice is produced by the vocal cords in the throat

and radiated out through the mouth. The low-frequency component has a longer wavelength

and is low directional due to the diffraction effect. In contrast, the wavelength of the high-

frequency component is short. As a result, the high-frequency component is highly directional

compared with the low-frequency one.

As illustrated in Fig. 4.5(b) [185], the low-frequency signal like 125 Hz practically has no di-

rectivity, i.e., the signal is emitted almost uniformly to all directions, while the signal with

higher frequencies (e.g., 2 kHz) exhibits a notable directional radiation pattern. As such, the

signal with high frequency has fewer reflections than low frequencies due to the higher direc-

tivity. Besides, the high-frequency signal also suffers less from noise, since the ambient noise

generally lies in low-frequency bands (lower than 2 kHz). Therefore, we choose 2 kHz as

a threshold to separate the beamformed signal into two components: the low-frequency and

high-frequency bands. The energy values of these two components are illustrated in the mid-

dle and bottom subfigures of Fig. 4.8(b). We can see that the low-frequency part contributes

the vast majority of energy and present a similar pattern to the raw signal. In contrast, for

the high-frequency component, the energy level is quite low but matches the energy pattern

we expected. This result hints that the beamforming and high-frequency characteristics can

effectively mitigate the impact of noise and reflection interference.

4.4.3.2 Distance Attenuation Compensation

In the above estimationmodel (Eq. 4.2), we assume the distances from a user to twomicrophone

arrays are the same. However, generally, the distances are different in practice, so we need to

carefully compensate for the energy attenuation before applying the estimation model.

According to the inverse square law, the energy level is inversely proportional to the square

of the distance between the voice source (i.e., mouth) and the microphone array. However,

signal attenuation is more complicated in practice and challenging to accurately model, since
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it is affected by many factors (e.g., frequency, orientation, room interior, distance, reflection,

etc. [39]), especially for the wide-band voice signal. These factors are associated with both user

(e.g., voice frequency) and room (e.g., reverberation and interior). Considering that the room of

smart devices usually keeps fixed, for each user, we can conduct a one-off parameter training

to approximately estimate the attenuation pattern in each room.

We performed an empirical experiment to investigate the distance energy attenuation effect.

As shown in Fig. 4.8(a), suppose two arrays (array #2 and array #2′) and the user are in a

straight line. d2 and d′2(= d2 + Δd) are the distances from the voice source to two arrays.

Generally, the voice interaction distance between humans and smart devices is about 1 ∼ 3m.

In our experiment, microphone array #2 is set to the reference array, 100 cm far away in front

of the user. d′2 is set varied from 120 cm to 300 cm (with a 20 cm step). Users were asked

to repeat five commands towards the direction from the reference array #2 to the target array

#2′ at each distance. Considering that the energy of spoken voice command is unstable and

unknown each time, the attenuation could only be measured as a relative quantity. Therefore,

We aim to explore the relationship between the energy ratio (
E′

2
E2

) and distance ratio (
d′2
d2
).

Fig. 4.9 shows the experiment result of two users in two different rooms: an office and a meet-

ing room. Each colored point represents one command measurement. We can see that the

energy ratios of near positions (e.g., distance ratio equals 1.2) are very close for different user-

s/rooms. However, for the same user 1, the energy attenuates faster in the meeting room than

in the office. The reason is that the meeting room is almost three times larger than the latter

one, so there are fewer blocks and reflections. Moreover, the energy attenuation for different

users in the same room presents a similar pattern (users 1 and 2 in the office) with a slight

difference. We believe the similarity is because of the same room acoustics, but the difference



4.4. HOE System Design 65

is attributed to the varied human physiological voice (i.e., user diversity). We also find that the

energy ratio measurements at each distance fluctuate more largely in the office than that in

the meeting room, since the energy stability also suffers from blocks and reflections in smaller

rooms. Although the energy ratio has fluctuations among five repetitions, we can see a clear

trend, that is, the energy ratio has a quadratic relationship with the distance ratio. As such, a

quadratic curve can be fitted to mathematically formulate this attenuation pattern:

E′

E
= h

(
d′

d

)−2

+ i

(
d′

d

)−1

+ j (4.3)

Here we drop subscripts for the sake of simplicity. h, i, and j are constant factors associated

with the room and user. Therefore, users could conduct a one-off parameter trainingmentioned

above to approximate the distance attenuation pattern in a room for themselves before using

HOE. In this circumstance, if the distances from the user to two microphone arrays are not

equal after localization (e.g., array #1 and #2′), HOE can compensate the energy for one array

to a comparable level with another one. It is equivalent to logically ”move” one array to the

position with the same distance as another array to the user (array #2′ →#2, which is termed

as the equal-distance array) to mitigate the distance attenuation effect.

4.4.3.3 Orientation Attenuation Compensation

It is noted that the experiment above was conducted where the head orientation (i.e., speaking

direction) was always towards the line linking two microphone arrays. In other words, both

deviation angles of array #2 and # 2′ equal to 0◦. However, when the head orientation is not

aligned with two arrays (array #2→#2′), the deviation angles would also contribute to the

attenuation accordingly.

We conducted another experiment to investigate the energy attenuation with different head

orientations in an office. In this experiment, the target array #2′ was fixed at 2.4 m far away

from the user. We labeled eight orientations anticlockwise from 0◦ to 315◦ with a 45◦ spacing

step (shown as the black arrows in Fig. 4.10). Two users are asked to speak five voice commands

in each direction. The degree ticks in Fig. 4.10 denote different head orientations, and the radius

ruler indicates the measured high-frequency band energy ratio (E/E′) between two arrays #2

and #2′, each dot represents one measurement.
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Intuitively, these points are expected to distribute uniformly across different orientations, i.e.,

the energy ratio should be almost the same since the positions of the user and arrays are not

changed, meaning that the distance ratio (d′/d) of two arrays keeps constant. However, the

experiment result presents a different pattern from what we expected, and the only changed

factor is the user’s head orientation, further said, the deviation angles of the arrays accordingly.

This result indicates that the orientation also has an impact on energy attenuation, especially

for high-frequency signals. In Fig. 4.9, we can see the energy ratio of user 2 is higher (lower for

E′/E) than user 1 at this distance (d′/d = 2.4). The result in Fig. 4.10 is consistent with this

observation, where user 2 has a maximal energy attenuation (3.1), which is higher than user

1 (2.8) towards the arrays’ direction (30◦). The energy ratio of both users decreases gradually

along with the head orientation turning left until to the opposite direction to the arrays (210◦).

The decreased speed is proportional to the user’s directivity factor. The reason is that high-

frequency signals aremore directional, so their radiation range is narrow. As a result, the signal

energy attenuation approximately confirms with the Eq. 4.3 at the exact front of the user’s head

orientation, but high-frequency signals attenuate more at the side or behind the user. Thus,

when the user faces back to the two arrays, reflections and a part of relative low-frequency

component are the dominant part in the recordings, so the energy ratio nearly reaches 1. The

relationship between the energy ratio and deviation angle can be approximately fitted as a

Gaussian-like pattern:

ER = r · exp
(
− θ2

2k2

)
, ER ≥ 1 (4.4)

where ER is the angular energy ratio, θ is the deviation angle of the array, and r is the maxi-

mum energy ratio when the deviation angle is zero, which can be obtained by Eq. 4.3 with the

distance ratio. k is the orientation attenuation factor associated with the user’s physiological

feature. Considering that the energy level of the closer array is hardly lower than the far array,

ER should be greater than or equal to 1. The empirical studies above show that we can conduct

one-off parameter training to approximate the distance and orientation attenuation patterns

for different users in different rooms, which are used to jointly compensate for the energy loss

in orientation estimation.
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Figure 4.11: Illustration of the orientation ambiguity. (a) Two ambiguous orientations are
always symmetrical with the boundary (purple solid line with arrows) (b) There are two in-
tersection points for the theoretical energy ratio (blue solid line) and the measured one (red

dashed line), which causes ambiguity.

4.4.4 Disambiguation

In the following, we will first give the reason why ambiguity happens. And then, a frequency

pattern-based approach will be proposed to resolve the ambiguity problem and find the real

head orientation.

4.4.4.1 Why Ambiguity

Because of the symmetry of the voice radiation pattern (Fig. 4.5), with only two arrays, the re-

sult estimated by Eq. 4.2 is not unique but has ambiguity. Referring to Fig. 4.11(a), we illustrate

a typical ambiguity case. Two microphone arrays are placed in the 45◦ and 135◦ directions

with respect to a user. As per Eq. 4.1, the theoretical energy ratio (i.e., w(θ1) − w(θ2)) with

different orientations presents a symmetric shape as the blue solid line exhibited in Fig. 4.11(b).

Suppose that the user speaks towards 90◦ (black arrow), the measured energy ratio should be 0

dB (red dashed line in Fig. 4.11(b)). Therefore, there are two intersection points corresponding

to 90◦ and 270◦. That is to say, Eq. 4.2 would have two solutions that lead to ambiguity.

In particular, the ambiguous orientations are always symmetrical with the angle of π+α1+α2
2

or (π+α1+α2
2 + π), where α1, α2 are the departure angles of two arrays. Thus, two half-circles

are divided by the symmetric axis. For example, the (180° ↔ 360°) axis in Fig. 4.11(a). We

term these axis directions as the boundary direction, and we define the front half-circle as the

one that contains arrays. Consequently, the ambiguity problem is equivalent to distinguishing
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whether the real orientation is towards the front half-circle area or not. For instance, when the

user speaks towards 90◦, HOE will report two preliminary estimation results as indicated by

the black dashed lines due to a tiny error, which are symmetrical with the boundary. The next

step is to discriminate whether the user is speaking to the blue front half-circle area or red rear

half-area to recognize the real orientation.

4.4.4.2 Disambiguation with the Frequency Pattern

We address this problem based on the following key observation. The blue front half-circle area

is always the orientation range towards two arrays, while another red half-circle area is always

back to the arrays. As we mentioned that the human frequency radiation pattern in Sec. 4.4.3.1,

the low-frequency signal is almost omnidirectional, while the high-frequency signal has much

higher directivity. As a result, when a user speaks towards arrays, the arrays would ”hear”

more high-frequency components than back to the arrays. However, we cannot utilize the

high-frequency energy value alone to discern whether the user is speaking towards the arrays

or not, since the human speaking volume may vary each time. [161] proposed High and Low

Band Ratio (HLBR) as a metric associated with head orientations, which is calculated by di-

viding the energy of the low-frequency band by the one of the high-frequency band. HLBR

utilizes the relative energy value which is less sensitive to the absolute voice volume as well

as the distance. However, the range parameters separating high and low bands require to be

tuned case by case carefully. To deal with this problem, we measure the energy Ratio between

the High octave band and Low Octave Band (HLOBR).The Octave filterbank is commonly used

to model how the human ear weights the spectrum and mimic how humans perceive loudness

by psychoacoustic perceptual criteria [133, 231]. HOEmeasures the HLOBR as the energy ratio

between the 8th and 3rd octave band whose center frequencies are 4 kHz and 125Hz, respec-

tively. As a result, we do not need to laboriously tune the band separation parameters person

by person. Fig. 4.12 shows the summedHLOBR of two arrays when a user speaks towards eight

different orientations. We can see that a boundary (i.e., threshold) could be set to separate the

orientations into a blue area and into a red area. Therefore, by comparing the HLOBR value of

a voice command with this threshold, HOE can distinguish the head orientation towards the

arrays or not, and further remove ambiguity.

The HLOBR threshold however may vary among different users due to the human pitch dif-

ference. Thus, users could measure their own threshold by speaking wake-up words towards
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Figure 4.12: HLOBR values of different
orientations. A threshold could be used
to detect if the user faces or backs ar-

rays.

Array #1

Array #2

Equal-distance Array #2

Figure 4.13: A general example of the
ambiguity when two arrays are placed
with different distances and departure

angles.

boundary directions position for initialization before runningHOE. As illustrated in Fig. 4.11(a)),

when users speak towards the boundary directions (i.e., 180◦ or 360◦), two deviation angles

θ1 + θ2 = π, which means θ1, θ2 are always supplementary angles. HLOBR values along

with different orientations are almost centrosymmetric. Therefore, we can regard the HLOBR

threshold as independent of the array position. Fig. 4.13 shows a general example where two

arrays (#1 and #2) are placed with different distances and different departure angles. As we

mentioned before, the energy compensation procedure is equivalent to logically ”moving” the

far array to the same distance as an equal-distance array. In this circumstance, we can see that

the deviation angles of two arrays θ1, θ2 are still supplementary angles when the user speaks

to the boundary direction (e.g., 330°). Note that the HLOBR is a coarse-grained metric related

to orientation. It can not measure the head orientation directly, although it can work as a two-

category classification problem for disambiguation. Moreover, if the rough spatial information

of head orientation (e.g., the position of intended devices, room space constraint) is known in

advance, we can leverage this prior knowledge to exclude ambiguity as well.

4.4.5 Summary

4.4.5.1 Parameter Configuration and Personalization

Indoor signal attenuation is associated with both user (e.g., voice frequency) and room (e.g.,

reverberation and interior). Users can conduct a one-off training to approximately estimate

the attenuation pattern in different rooms, including distance attenuation and orientation at-

tenuation. The whole procedure requires collecting about 100 samples.
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Different Rooms. We first mark a series of points (generally with a 20cm step) from 1 m to

3 m in front of the user. One mic array is fixed at 1 m location, and another array is placed at

every point marked before. For each point, a user repeats wake-up words five times towards

the array direction. Accordingly, HOE computes the energy ratio between two arrays and fits

a quadratic curve to approximate the attenuation pattern. More repetitions and more fine-

grained distance intervals are better for more accurate pattern approximation.

Different Users. The orientation attenuation is related to the user’s physiological factors. So

users can speak wake-up words five times towards eight 45◦-spacing directions while keeping

two arrays static, thenHOEmeasures the energy ratios to fit a Gaussian orientation attenuation

pattern. Likewise, more repetitions and smaller direction intervals are better for estimation.

Users are also required to speak extra five voice commands towards the ”boundary direction”

to measure their own HLOBR thresholds for disambiguation.

4.4.5.2 HOE Pipeline

We refer to Fig. 4.8(a) to describe the whole procedure of HOE. Suppose there are two micro-

phone arrays #1 and #2′, then HOE would like to estimate the user’s head orientation. The

algorithm in a glance is summarised as Alg. 1.

0) Initialization. Users perform the personalization step to initialize the attenuation parameters

and HLOBR threshold. The departure angles of two arrays α1, α2, and the user’s position are

calculated by the built-in pre-processing module.

1) Configuration. HOE calculates the distances d1, d
′
2 from the user to two arrays. Suppose

the head orientation is Θ, then deviation angles θ1, θ2 and corresponding radiation function

w(θ1), w(θ2) can be calculated.

2) Distance Attenuation Compensation. If d1 = d′2, HOE goes to step 4. If not (suppose d1 <

d′2), HOE should compensate for the energy attenuation for array #2′. So, if θ2 = 0, HOE

compensates for the distance energy loss for array #2′ by ER = r according to Eq. 4.3, and

then go to step 4. If not, go to the next step.

3) Orientation Attenuation Compensation. If θ2 �= 0, the orientation will also cause attenua-

tion. In this way, a new energy ratio ER could be computed by Eq. 4.4 with r and deviation

angle θ2.
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Algorithm 1: Head Orientation Estimation

Input: Recorded signals, positions of two microphone arrays, user’s position reported by

pre-processing, attenuation parameters, and HLOBR threshold.

Output: Head orientation Θ of the user;

1 Calculate the distances d1, d
′
2 and departure angles α1, α2 from the voice source to two

arrays #1, #2′;
2 Initialize orientation Θ = 0;
3 for Θ = 0 to 359 do

4 Compute deviation angles θ1 = α1 −Θ, θ2 = α2 −Θ of two arrays;

5 Calculate theoretical energy radiation patterns w(θ1), w(θ2) of two arrays;

6 if d1 �= d′2 then // we suppose d1 < d′2
7 if θ2 = 0 then
8 Compensate the distance attenuation ER = r according to Eq. 4.3;

9 else

10 Compensate the distance and orientation attenuation ER with Eq. 4.3 and

Eq. 4.4
11 end

12 else

13 ER = 1;
14 end

15 Calculate the compensated energy ratio E1
ER·E′

2
and corresponding residue;

16 end

17 Estimate head orientation candidates minimizing the residue using Eq. 4.2;

18 Remove ambiguity with the HLOBR threshold and obtain the final head orientation Θ.

4) Orientation Estimation. HOE calculates the residue by Eq. 4.2, goes back to step 2 with the

next orientation until searching all possible directions. The orientation candidates could be

estimated by minimizing the residue.

5) Disambiguation. Finally, HOE computes the summed HLOBR of the two arrays and com-

pares it with the pre-measured HLOBR threshold. The ambiguity could be removed and then

HOE outputs the final estimated orientation Θ.

4.5 Implementation and Evaluation

4.5.1 Implementation and Experiment Setting

As commercial smart devices like Alexa Echo do not output recorded raw audio data, we im-

plemented HOE with the Seeed Respeaker USB microphone array v2.0 [159]. As shown in

Fig. 4.14(a), it consists of four omnidirectional microphones placed in a circular shape and sup-

ports USB Audio Class 1.0 (UAC 1.0). The sampling rate was set to 16 kHz which covers most
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Figure 4.14: Experiment setting. (a) A Seeed Respeaker microphone array v2.0 with four mics.
(b) Experiment illustration in an office. (c) Experiment setting.

of the voice frequency bands. Two arrays were connected to a ThinkPad X1 laptop with an

Intel i7-10510 CPU (4.9 GHz at boost clock) by cables for data collection and processing. We

run HOE and process signals in MATLAB.

We recruited ten participants (5 male, 5 female, mean age 27) and conducted experiments in an

office (7.81m× 3.48m) and a meeting room (10.61m× 7.62m). Two arrays were settled on the

desks near the wall. The experiment setting in the office is shown in Fig. 4.14(b). There is some

furniture around the room, such as e-boards, desks, and several chairs. Before the experiment,

we have already measured and marked the locations and corresponding orientations on the

ground in advance as the ground truth. Users were asked to sit at nine labeled positions (1∼9)

separated by 1 m and speak wake-up commands in eight different directions from 0◦ to 315◦

with a 45◦ step as illustrated in Fig. 4.14(c). These commands start with two keywords: ”Hello”

or ”Alexa”. Each command was repeated three times in each direction per position. Users

completed parameters training of attenuation and HLOBR threshold before conducting the

experiment, but these samples collected for the parameter configuration are not used in the

evaluation.

4.5.2 Performance Metrics

In the following, we evaluate the performance of HOE in various experiment settings. Before

that, we first introduce some evaluation metrics for head orientation estimation following the

common agreement of the CHIL consortium [160, 201].

• Mean Average Error (MAE): the mean average angle error of the head orientation esti-

mation.
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• Correct Classification (CC): CC measures the percentage of the estimations of head ori-

entation within the nearest sector of ground truth, where the 2D plane is divided into

eight 45◦ sectors.

• Correct Classification within a Range (CCR): CCR measures the percentage of estimated

head orientations within the nearest sector of ground truth and adjacent two sectors.

Generally, MAE reveals the fine-grained estimation performance, while CC and CCR evaluate

the coarse-grained orientation estimation ability.

4.5.3 Overall Estimation Performance

Fig. 4.15 illustrates the Cumulative Distribution Function (CDF) of HOE’s orientation estima-

tion errors in all experiments. The result is obtained with the general directivity factor ρ = 1

for all participants. Overall, the median error is 23◦, and 90% errors are less than 64◦. In

addition, we present HOE without ambiguity, which gives the theoretical upper bound of HOE

if the ambiguity can be completely resolved. As the green dashed line shows, its median error

is 22◦. Compared with HOE, they are almost the same, while the 90%-percentage point of later

is 54◦, and no error is larger than 150◦, which has a large enhancement. As we discussed in

Sec. 4.4.4, the ambiguous orientations always distribute in two half-circle parts, which would

cause some big errors. The experiment results show that HOE has an amenable estimation

accuracy for orientation-aware applications and the disambiguation could effectively decrease

the probability of large errors.
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4.5.4 Impact of Participants

We also tested the head orientation estimation performance across different participants. As

shown in Fig. 4.16, the overall MAE across ten users is 28.9◦. Due to different physiologic

directivity factors, the performance across them varies slightly, where the highest and lowest

MAE among ten participants are 35.8◦ and 23.6◦, respectively. Considering the minute 3.6◦

standard deviation, we can claim that users have a similar performance. Fig. 4.17 displays the

CC/CCR of different users. The overall class classification rate among ten participants is 50.2%,

corresponding to the percentage where MAE is lower than 22.5◦. According to the definition,

CCR is always larger than CC, which ups to 91.4% across all experiments. This demonstrates

that HOE could accurately report a coarse-grained direction of a voice command.

4.5.5 Impact of Directivity Factor

Different people have different voice radiation patterns because of physiological factors such

as mouth size, pitch, head, etc.. To investigate the impact of the directivity pattern of different

users, we tuned the directivity factor ρ in Eq. 4.1 from 0.5 to 2. In Fig. 4.18, we show the results

of three users whose optimal ρ are larger than 1. Evidently, the estimation error changes with

the parameter variation, and superior results are seen when ρ equals 1.25, 1.6, and 1.7 for

users 3, 7, and 6, respectively. Overall, the mean average error reduces by 1.3◦ across different

users after adopting the optimal directivity factors, about 4% compared to the case before. This

result demonstrated that the directivity factor does have an influence on the head orientation

estimation accuracy. Users are suggested to use the default parameter ρ = 1 for initialization
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first, and HOE could search the optimal directivity factors for them after a period of use and

feedback.

4.5.6 Impact of Orientations

Fig. 4.19 illustrates theMAE of different orientations. Overall, the front-back directions (90◦ ↔
270◦) have lower estimation errors than the left-right aspects (i.e., 180◦ ↔ 360◦). Besides, 225◦

is the corner direction, the MAE of which is larger than the direction to the door (315◦). This

result indicates that a complex environment could make a negative effect on the estimation

result. It is because that large objects like walls and furniture would block and corrupt sig-

nal propagation, which leads to energy fluctuation that does not accord with the expected

energy attenuation pattern (Fig. 4.5(a)). CC (red sectors) and CCR (grey sectors) of different

orientations are exhibited in Fig. 4.20. We can see that front-back directions have a higher CC

value (70%) than left-right aspects (40%). As for CCR, the average value is 91%, and there is no

obvious difference among all orientations, which confirms that HOE has a viable orientation

estimation ability.

4.5.7 Impact of Ambiguity

To evaluate the ability of disambiguation, we define a metric ADR (Ambiguity Detection Rate),

which means the rate of correctly detecting the real head orientation from ambiguous candi-

dates. We explore the relationship between ADR and estimation errors (i.e., MAE), and position

ten participants in an ADR-MAE coordinate. As shown in Fig. 4.21, each point represents a

user with the corresponding index. ADR varies from 84.3% to 93.1% across different partic-

ipants with an average of 89.1%. Moreover, as we discussed in Sec. 4.5.3, higher ADR could

mitigate big errors and improve the overall performance. Evidently, we could infer a strong

positive correlation between ADR and MAE, that is to say, the higher ADR, the lower the esti-

mation error. This result guides us to further advance the HOE performance by improving the

ambiguity detection rate.

4.5.8 Impact of Locations/Rooms

The estimation performances of HOE at different locations in the office are shown in Fig. 4.22.

To illustrate the disambiguation of HOE, we also conducted an additional test at location 0
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which is directly between two microphone arrays. The perspective view is from the array side,

and the index of each bar represents the corresponding location in Fig. 4.14(c). The height of

the bars refers to the value of MAE. We see that the performance depends on the location.

Specifically, nearer locations (e.g., 3, 6, and 9) have a lower MAE than farther ones (e.g., 2, 5,

8, or 1, 4, 7). It is because farther positions suffer more from energy attenuation. As such,

it is challenging for HOE to compensate for the energy precisely. Another finding is that

the locations in the middle (i.e., 4, 5, and 6) have lower estimation errors than the ones on

the two sides (locations 1, 2, 3 and 7, 8, 9). This result indicates that the locations near the

walls experience more complex voice propagation, which also causes inaccurate voice energy

compensation. As a result, we see the largest errors at the two corners (i.e., locations 1 and 7).

There is a blind region of head orientation estimation where a user is between two arrays (e.g.,

location 0), we can see that the estimation error increases to 53.3◦. In this case, there is no

front half-circle containing two arrays for disambiguation. So HOE can only randomly guess

between two ambiguous orientation estimations, which leads to poor estimation performance.

In practice, this problem can be mitigated by placing microphones in locations where such

ambiguity could be avoided, or by cooperating with other microphone arrays in the room if

available.

We also compare the performance between two rooms: an office and a meeting room. As

shown in Fig. 4.23, MAE corresponds to the left y-axis, and the right y-axis refers to CC/CCR.

We can see that theMAE of themeeting room is 26.3◦, lower than the office (31.5◦). CC/CCR of

the meeting room are 51.2% and 92.8% respectively, which are slightly higher than the ones of

the office. The reason is that the size of the meeting room is almost three times larger than the

office, and there are fewer blocks and reflections. Therefore, the energy difference measured

by arrays can match with the expected voice diffusion model more accurately.
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4.5.9 Impact of Reverberation Time

We measured the reverberation time (RT60) of the two rooms above with ARTA software, and

they are 0.38 s and 0.49 s respectively. Bymeasuring the RT60 of many labs, offices, classrooms,

and lecture halls, we found that all of them are within 0.6 s. To explore the HOE performance

with different reverberation times, we synthesized the recordings with different RT60s based

on the data collected in the meeting room. We also conducted the experiment in a building

lobby and a closed corridor with RT60s of 1.1 s and 1.55 s respectively to investigate the HOE

performance in real acoustically-wet environments.

The evaluation result is shown in Fig. 4.24. According to the Sabine equation [241], with the

same room material, a higher reverberation time indicates a larger room volume. Therefore,

when the reverberation time is within a low range (e.g., < 0.5s), we can see a performance

improvement for large rooms with fewer blocks and reflections (e.g., meeting room vs. of-

fice). However, the estimation error increases gradually with an incremental RT60, since the

wet component in recordings mainly makes a negative effect on the energy measurement and

compensation. When the RT60 is 2 s, the MAE achieves 39.1◦. Furthermore, the field exper-

iments perform worse than synthesized recordings. The result is that besides reverberations,

the energy measurement also suffered from noise like elevators and reflections from different

interiors.

4.5.10 Impact of Utterance

The performance of different utterances is illustrated in Fig. 4.25. Overall, the performance

CC/CCR of these two commands are almost the same, while the MAE of ”Alexa” (28.3◦) is

a little lower than the command ”Hello”. The reason may be that ”Alexa” has more syllables

than another one, making it easier to be captured by microphone arrays. Nowadays, most
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companies design a 4-syllable wake-up command for their voice assistant in smart devices,

which is more effective to trigger.

4.5.11 Impact of Interference

To evaluate the robustness to noise, we used an EARISE AL-202 loudspeaker placed near the

wall, at the position where 3.6m away from the user, and 3.1m away from the right mic array.

The volume of playing music is set to 60 dB. The voice SNR measured at the microphone is

about 9 dB, which means the voice still dominates in recordings. The MAE of HOE slightly

increases by 1.3◦. Accordingly, CC decreases by 2.7%. This result indicates HOE is robust

to the daily background music, since HOE employs beamforming to mitigate the noise from

other directions and enhance the voice effectively. Considering that the distance is quite long

and music noise may diffuse, we conducted another experiment interfering with one and two

persons to further evaluate the HOE under a directional near interference source. Specifically,

we asked human interferers to read books at a normal volume, and walked around the target

user while keeping a 1.5m social distance when the user speaks commands.

Fig. 4.26 illustrates the performance of HOE with different interference conditions. When the

voice SNR drops to 7.1 dB with the interference of one person (1P, female), the MAE decreases

by 4.3◦ accordingly. The reason is two-fold. On the one hand, the energy of near human inter-

ference is comparable and even higher than the target user, leading to strong energy turbulence.

On the other hand, the sound fields of multiple directional voice sources would overlap with

each other and corrupt the original attenuation pattern of the target user. With two human

interference (2P, female and male), the performance further deteriorates with a lower SNR of

4.8 dB. As a result, HOE can hardly measure the energy level correctly, leading to a decrease

to 40.3◦ and 33% for MAE and CC, respectively. Besides former reasons, we also found that

HOE misdetected the wake-up word occasionally in this case, since it may be overwhelmed

in voice from interferers. Therefore, we do not suggest users use HOE in a very noisy (es-

pecially multi-person) scenario. Fortunately, when the user is listening to music or without

interference, HOE provides a satisfying estimation result.
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4.5.12 Impact of Head Rotation and Movement

HOE estimates the user’s head orientation only with the recording clip of the wake-up word.

Generally, a wake-up word is very short and lasts about 500 ms. Therefore, we assume that

the user’s head keeps almost static for such a small duration. However, head orientation may

change due to subconscious motion. To further investigate its effect, we conducted two experi-

ments with head rotation and walking. The first one is that users sat on a chair and were asked

to speak voice commands in eight directions with five different levels of rotation speeds. The

second experiment is conducted where users walked from a 3m-far wall towards microphone

arrays with three different levels of speed, speaking three voice commands while keeping a

fixed orientation. A camera was used to record the experiment and calculate the time spent as

well as ground truth orientations.

Fig. 4.27 shows the HOE performance with different head rotation speeds. The rotation speed

was controlled by the users themselves and hard to follow a certain value, so we grouped all

data into five different speed groups, and calculated the average rotation speedω corresponding

to each group. Group 0 means static. We can see that the MAE of HOE increases with the

increasing rotation speed. This result is not surprising, since a tiny head rotation will lead to

a large orientation shift. For example, when the average rotation speed is 33.2 degree/s in

group 3, the orientation shifted in a wake-up word duration (about 0.5 s) is 16.6 degrees, and

MAE raises to 38.9◦ accordingly.

The estimation results with different walking speeds are shown in Fig. 4.28. We also divided

experiments into three groups with different levels of speed. Similarly, the higher the walking

speed is, the higher MAE is. The estimation error increases to 35.9◦ when the user walks with a

speed of 0.72m/s in group 3. Even though the user’s orientation kept fixed during walking, the

speed resulted in a location shift, which further caused errors in departure angle measurement
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and energy compensation. Moreover, we can see that the MAE caused by walking does not

increase so fast as the rotation, since generally, the walking speed of users is not high when

users interact with smart devices. Therefore, the distance shift is relatively shorter than the

range between the user and the smart device, and the effect of walking is not so notable as the

head rotation which directly changes the orientation estimation.

4.5.13 Comparison with the Model-based Method

We implemented HLBR-V [160] as a model-based benchmark for comparison with HOE. This

method regards the direction from the user to the array as a directional vector, whose norm

equals the HLBR measurement of this array. Summing up all direction vectors of microphone

arrays, it can estimate the head orientation as the direction of the summed vector. The mean

estimation error of HOE (red sectors) and HLBR-V (gray sectors) are shown in Fig. 4.29. The

overall MAE of the latter is 89.3°, which is 50.4° higher than HOE. We can see that the MAE of

the front direction of this benchmark method is 13°, lower than HOE instead, since this range

is the positive intersection area of two array direction vectors. However, the estimation error

increases dramatically when the head orientation deviates from the front direction and ups

to 156°when facing back to arrays. The reason is two-fold. On the one hand, HLBR-V cannot

accurately estimate the head orientation when the number of microphone arrays is small (i.e.,

a few direction vectors). Therefore, this method generally requires many arrays around the

room covering all directions. On the other hand, the HLBR value is unstable since it highly

relies on the thresholds separating the high and low-frequency bands.

4.5.14 Comparison with the ML-based Approach

To make a comprehensive comparison with ML-based approaches, we implemented the state-

of-the-art ML-based work [12] and evaluated it on our collected data. [12] utilizes the same

microphone array as HOE and extracts hundreds of features to predict head orientation. As

specified in [12], we implemented an EXTRA-trees classifier with 1000 estimators. We note

that [12] is an 8-category classification problem. In contrast, HOE is a regression problem,

which reports a degree-level estimation result. As such, we cannot compare the two methods

directly on the basis of estimation error. Instead, we choose CC as the performance metric.

Since [12] is tested on one array, we first implemented [12] with the data collected from the

left array (denoted as ’Left array’). Furthermore, we also implemented two other versions of the
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baseline: testing this left-array-trained model on the data collected by the right array, denoted

as the ’Right array (L)’, and extending the one-array version and training it with the data of

both arrays (noted as ’two arrays’). We compared HOE with [12] in four cases: per user, cross

user, cross room, and training overhead. Specifically, for the baseline method, we left other

users’/room’s data to train the ML model and test it on the target user’s/room’s data. For HOE,

we utilized the average value of other users’/room’s profiles (i.e., attenuation parameters and

HLOBR threshold) to run the estimation algorithm on the target user’s/room’s data. The results

are shown in Fig. 4.30.

1) Per-user Case. The CC of the baseline method on the left array is 29.5%, which is far lower

than HOE (50.2%). This is because [12] is designed for relative orientation estimation (i.e., devi-

ation angles in our ProblemDefinition of Sec. 4.2), while the problem is to estimate the absolute

orientation. We also test the ’Right array (L)’ model, in which CC drops to 15.5%. The reason

is that [12] only learns the knowledge of relative orientation. However, some relative orienta-

tions became contrary when the reference coordinate was changed from the left array to the

right array, although the absolute orientation (i.e., true class label) remains fixed. The CC of

’Two arrays’ model increases to 37.6%. This result indicates that combining the features of two

arrays can improve the classification performance, since two arrays avoid the relative orien-

tation confusion problem. However, this performance is still lower than HOE, because most

features used in [12] are highly correlated with locations and reverberations (e.g., auto/cross-

correlation) but not with head orientations.

2) Cross-user Case. As expected, the performance of most methods decreases in the cross-user

case due to the generalization problem. TheCC of ’Left array’ and ’Two arrays’ models decrease

by 7.1% and 8.9%, respectively. The HOE performance also presents a considerable fall to 36.9%,

by 13.3% compared to the CC before. In Fig. 4.9 we can see that the attenuation of different



82 Chapter 4. Head Orientation Estimation with Microphone Arrays

users in the same room is close although with variations. Therefore, the HLOBR threshold of

users plays a more significant role in the performance than attenuation parameters, since HOE

relies on the HLOBR threshold to remove the ambiguous orientations. However, the HLOBR

threshold is quite user-dependent, so HOE performs worse in this case. An interesting finding

is that the CC of ’Right array (L)’ model increases slightly by 1.3%. We infer that cross-user data

break the symmetrical orientation confusion problem of [12] to some extent, which increases

the generalization of the ML model instead. But overall, the performance of HOE is still higher

than the baseline approach. One reason is that the disambiguation of HOE is essentially a

binary classification problem. Thus, it guarantees a half ambiguity detection ratio even though

with a wrong HLOBR threshold.

3) Cross-room Case. The performance change in cross-room cases is similar to cross-user ones

compared with the per-user conditions: all models experience a decrease in CC as we expected.

It is worth pointing out that HOE has a better cross-room performance than one in the cross-

user task, since although the room attenuation parameters are different in cross-room cases,

the HLOBR thresholds of users are close. Thus, estimation results have fewer large errors.

4) Training Overhead. We tested [12] and HOE with a varied amount of training data. The

result is shown in Fig. 4.31. The CC of [12] increases with the number of training data, and

keeps nearly constant at about 28% when the size increases up to 1000. The performance of

HOE reaches up to 37% at the beginning with the training size of 100 and remains stable. The

reason is that HOE is a model-based method, and 100 samples are enough for the one-time

parameter training configuration. By contrast, ML-based methods need lots of data to train a

ML model. This result indicates that HOE can achieve a higher estimation accuracy with the

minimum training overhead.

4.5.15 Processing Time

Fig. 4.32 shows the processing time of each component of HOE. Overall, HOE takes around 57.3

ms for one voice command. Specifically, the initialization takes around 3%, including the local-

ization and distance/departure angle calculation. HOE takes 27.5ms for energy compensation,

since the filtering operation is computation-intensive. Orientation estimation only takes about

7.1 ms, while 37% of the total time is used for disambiguation. This part requires filtering sig-

nals into high-frequency and low-frequency bands. Considering the powerful computation of
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commercial smart devices, we believe that HOE is capable to estimate the head orientation in

real time.

4.6 Limitation and Discussion

Different Environments. We conducted most experiments in lab settings, i.e., offices and

meeting rooms in a university. They are constrained environments compared to our family

scenarios such as a noisy living room or kitchen. We conducted more experiments in a cor-

ridor and a building lobby, and the result in Sec. 4.5.9 shows that the performance of HOE

presents a degradation since it becomes challenging to measure an accurate energy level with

high reverberations. Moreover, the energy measurement also suffers in a noisy environment.

Therefore, we suggest users use HOE in an acoustically-dry environment to achieve higher ac-

curacy. We also hope that we can work with the community to further improve its applicability

and robustness in the future.

Head Motion and Interference. The current version of HOE is not resilient to head rotation

or movement. HOE performs head orientation using the recording clip of the wake-up word

only. Generally, a wake-up word is very short, so we assume that the user’s head keeps almost

static for such a small duration. However, head orientation may change due to subconscious

motion, which unavoidably leads to performance degradation. Moreover, HOE performance

also decreases with loud interference like a human voice, since the wake-up word may be

overwhelmed and misdetected. Current HOE cannot handle multiple users speaking simulta-

neously. Fortunately, when the user is listening to background music or without interference,

HOE could provide a satisfying estimation result.

Number of Smart Devices. In this chapter, we design and implement HOE with two micro-

phone arrays. The orientation estimation performance is not very high, but it is enough in

many application scenarios. For example, multiple device arbitration does not need a high ori-

entation resolution since devices are distributed sparsely in the room. According to the report

[109], current U.S. households with smart speakers own an average of 2.6. Along with smart

speakers, many smart devices are equipped with microphone arrays for voice interaction. For

example, TCL P717 Android TV integrates a 4-mic array [186]. We believe the design principle

and proposed models are not limited to specific types of smart devices. We plan to enhance

our head orientation method by leveraging more smart devices in the future.
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4.7 Chapter Summary

The head orientation enables smart devices to sense additional context information of voice

commands. It is no doubt that more novel interactions will emerge with directional voice

information, especially for smart home appliances, smart meeting rooms, or smart care for

handicapped people. In this chapter, we propose HOE, a model-based approach that estimates

head orientation by two microphone arrays with a minimum training overhead. The energy

radiation pattern of voice is used to compensate for the energy attenuation and estimate head

orientation. We also propose a frequency radiation pattern-basedmethod to resolve the estima-

tion ambiguity problem. To the best of our knowledge, HOE is the first model-based method to

estimate head orientation with two microphone arrays. We believe HOE is promising to bring

the head orientation to various ubiquitous context-aware applications for smart devices.

So far, we can sense the location and head orientation of a user with voice signals. In the

next chapter, we think a step further: how to detect the voice liveness to examine if this voice

command is from a real human?



Chapter 5

Liveness Detection for Voice

Assistants

5.1 Introduction

Background. Voice assistants (e.g., Google Now, Alexa, Siri, Cortana, etc.) are becoming

increasingly popular and facilitate user interaction with smart devices these days. Voice inter-

action allows users to quickly complete daily tasks in a hands-free way, such as making phone

calls, controlling home appliances, sendingmessages, and ordering food online. Recently, voice

assistants have been empowered to perform more sophisticated and critical functions, such as

online transactions [81], banking services [42], and even unlocking doors [56].

Motivation. Current voice assistants typically use voiceprint-based automatic speaker ver-

ification (ASV) [37, 189] to authenticate legitimate users. Voice commands, however, can be

secretly recorded by others. As a matter of fact, attackers can easily obtain a user’s voice

clips from an online meeting, phone calls, live presentations, or video recordings. Recent ad-

vances in deep fake technologies can also synthesize and reproduce voice commands at will.

A study [78] demonstrates that ASVs are vulnerable to replay attacks because replayed voice

commands originate from a legitimate user. Moreover, it is reported that many smart home

appliances are less protected and suffer from security flaws [149], which make it possible for

attackers to remotely play malicious voice commands over the Internet by hijacking the smart

devices. As such, attackers can intentionally replay or inject unauthorized commands into

popular music or YouTube videos to attack users’ voice assistants, as illustrated in Fig. 5.1.

85
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Figure 5.1: Application scenario of VoShield. Attackers can steal voice clips from a sneak
recording or public videos to employ remote replay attacks. VoShield is designed to protect
voice assistants by blocking such loudspeaker-played attacks while passing human-uttered

voice commands.

Therefore, we urgently need to protect voice assistants against replay attacks so as to avoid

serious consequences such as privacy leakage, property loss, and even worse.

Limitation of existing solutions. To defend against such attacks, existing works enhance

ASV systems with liveness detection. If a voice command passes the ASV, it has to be exam-

ined in terms of liveness. Specifically, as replay attacks are played by loudspeakers, we can

distinguish such attacks by checking whether a voice command originates from a real human

being or a loudspeaker. Prior arts build side channels to detect the voice liveness with addi-

tional devices, such as motion sensors [55, 166, 206], Wi-Fi radios [90, 112, 146, 252], earbuds

[57, 167]. However, these works require extra hardware and limit application scenarios. Some

recent works emit inaudible acoustic signals to sense users’ movement when speaking (e.g., lip

motion or breath) and hereby detect the voice liveness [36, 89, 102, 246]. Although effective,

high-frequency acoustic signals can be audible and disruptive to babies and pets. To address

these practical challenges, many researchers attempt to passively detect vital voice features

with received voice commands only [208, 230, 247]. However, they require users to hold the

devices with fixed gestures at very close locations to capture the subtle physiological sounds.

Therefore, they are not capable of interacting with distant devices, such as smart speakers and

smart lamps.

Our insight. This chapter aims to develop a passive acoustic-based liveness detection method

without restricting users to certain fixed gestures or positions. The high-level idea of our sys-

tem, VoShield, is simple. We observe that the intrinsic difference between humans and loud-

speakers is aperture size variation. Specifically, humans need to dynamically open and close

their mouths to speak voice commands, while loudspeakers always keep a fixed aperture size.

Intuitively, the time-varying mouth aperture of humans leads to a more dynamic sound field
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than loudspeakers. By examining the dynamic level of sound fields, we can distinguish the

voice liveness, i.e., whether a voice command is from a real user’s mouth or a loudspeaker.

Challenges. However, implementing our idea involves a series of challenges. The first is how

to characterize the dynamic level of the sound field. Traditionally, people use a large number

of microphones distributed around a room to measure the sound pressure and then interpolate

them into a sound field, which is impossible for the small microphone array used in daily smart

devices. Secondly, given there are typically several microphones in an array, cooperating all

microphone channels to facilitate the measurement, needs to be handled properly. Finally,

based on the feature we measured, designing an effective approach to discriminate between

humans and loudspeakers also remains a challenge.

Our solution. In this chapter, instead of directly measuring the sound field, we propose Sound

Field Dynamics (SFD), a new feature that indirectly characterizes the dynamic level of sound

fields, which captures the intrinsic difference between the sound fields generated by loudspeak-

ers and real humans. SFD is based on the temporal fluctuation of the energy ratio between

different microphones. This inter-microphone ratio has two advantages. (i) The voice content

is canceled, so attackers can hardly manipulate the voice to fool our system. (ii) Such a relative

division eliminates the effect of the absolute sound intensity, so the SFD is independent of the

sound volume. Moreover, the SFD is essentially determined by the physical aperture size varia-

tions of a sound source, hence resistant to source locations. Tomake full use of all microphones

in an array, we present a multi-channel fusion approach to facilitate SFD measurement. Based

on the extracted SFD features, we design a deep learning model with a self-attention mech-

anism to further fuse multiple channels and differentiate humans and loudspeakers. The key

contributions of this chapter are summarized as follows:

• We propose VoShield to protect voice assistants against replay attacks at room scale,

without relying on extra hardware.

• We introduce the notion of sound field dynamics, an effective feature that indicates voice

liveness and hereby distinguishes humans and loudspeakers.

• VoShield is implemented on commercial microphone arrays, and evaluation in various

settings demonstrates its applicability and effectiveness.

Wewant to point out that VoShield is a complement, not a replacement, to the existing voice au-

thentication solutions. The security of voice commands cannot be overemphasized. To protect
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voice assistants, VoShield will not work alone but will cooperate with other voice authentica-

tion approaches to provide a more reliable protection service.

In Sec. 5.2, we introduce the threat model. Sec. 5.3 gives a background of the sound field and

formally models sound field dynamics. Sec. 5.4 describes the design details of the VoShield

system which is implemented and evaluated in Sec. 5.5 and Sec. 5.6, respectively. We summa-

rize related work in Sec. 5.7. We discuss some limitations and future directions in Sec. 5.8, and

finally conclude in Sec. 5.9.

5.2 Threat Model

As illustrated in Fig. 5.1, our threat model assumes that attackers can obtain victims’ voice clips

from various sources, such as onlinemeetings, phone calls, or video recordings. We also believe

that attackers can remotely hack vulnerable Internet-connected loudspeakers and hijack these

devices to play sounds. Thus, attackers can remotely play pre-recorded voice commands to fool

voice assistants in smart devices [200]. This kind of attack is known as Replay Attack. However,

conventional biometric-based ASV systems can only identify whether the voice command is

from a specific user (user identification), but they cannot distinguish if it comes from a live

human being or an electronic loudspeaker (liveness detection), because the replay command is

recorded from the original legitimate user. Here we assume that the attacker cannot physically

access to the user’s home since it may cause more severe consequences.

In this chapter, we propose VoShield as a security shield before the voice assistant executes

voice commands. Upon receiving a command, VoShield will first differentiate whether this

command is played by a loudspeaker or not. If yes, VoShield will block and discard this com-

mand. Otherwise, VoShield will forward the command to the application backend for execu-

tion.

5.3 Understanding Sound Field Dynamics

VoShield exploits sound field dynamics as a feature to detect voice liveness with a microphone

array. We will begin by introducing the directivity of sound fields and then formally model the

sound field dynamics.
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Figure 5.2: (a) Sound field illustration. The energy of the acoustic source radiates and disperses
along the distance like a wave, and the hot map indicates normalized sound pressure levels
at different positions. (b) Diffraction effects with different aperture sizes [238]. The larger the

aperture size, the weaker the diffraction (higher is the directivity).

5.3.1 Sound Fields

The sound field describes the energy diffusion of an acoustic source over a space (i.e., field)

[19]. Fig. 5.2(a) illustrates a sound field with the k-Wave simulation [191]. A linear source of

10 cm length is located at [0, 0], playing a sine tone of 2 kHz in a 1 m2 square. The hot map

indicates instantaneous sound levels at different positions. We can see that the sound radiates

and disperses along the distance like a wave. However, the sound energy does not attenuate

uniformly in different directions, while most energy is radiated forward. We can observe a

higher (i.e., darker) energy level presenting in the middle of the field, which introduces the

concept of sound directivity [11], explained next.

5.3.2 Sound Directivity

In theory, a monopole point source should have no directivity and radiate its energy equally

to all directions, so it is called an omnidirectional source. However, in reality, different parts

of a source vibrate simultaneously, and the generated sound waves will constructively or de-

structively interfere with each other at different locations [230]. Additionally, various source

apertures also cause different diffraction effects, where a sound bends through an aperture into

the region of the geometric shadow [116]. This effect depends on the physical aperture size

of the sound source a relative to the wavelength of the sound wave λ [238]. As shown in

Fig. 5.2(b), with the same wavelength (same frequency), the larger aperture (left figure) leads

to a weaker diffraction effect and higher directivity. Similarly, we can infer that the shorter

wavelength (higher frequency) has higher directivity for the same aperture size. As a result,
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Figure 5.3: Sound directivity patterns with various aperture sizes and signal wavelengths
(i.e., frequencies). The larger the aperture size or higher frequency of a sound, the more pro-

nounced the directivity pattern.

the diffraction effect, along with sound superposition and interference, brings about sound

directivity.

In Fig. 5.3, We simulate the sound directivity patterns of six sound sources with different aper-

ture diameters and signal wavelengths. The directivity pattern is calculated as the sound power

(i.e., the Root Mean Square (RMS) of the sound level). As shown in Fig. 5.3(a), a sound source

playing the 2 kHz sine tone is located at [0, 0]. We observe that the sound energy radiation

is almost omnidirectional when the aperture size is 5 cm, but the sound directivity becomes

prominent as the aperture size increases to 10 cm and 15 cm. On the other hand, the aper-

ture size is fixed at 15 cm in Fig. 5.3(b). We can also see that the directivity pattern becomes

narrower as the signal wavelength decreases from 300mm to 100mm (accordingly, the signal

frequency increases from 1.1 kHz to 3.4 kHz).

This visualization shows that the higher signal frequency and the larger aperture size of the

sound source lead to a more concentrated directivity pattern. Mathematically, the signal am-

plitude A at a position in the sound field can be expressed as follows [39]:

A =
ua2

2vr

√
1 +

1

k2r2

∣∣∣∣2J1(kasinθ))kasinθ

∣∣∣∣ (5.1)
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where u is the vibration velocity of the source, and a is the source aperture size. k = 2πf
v , where

f is the signal frequency and v is the sound speed. r denotes the distance to the source, and

θ represents the angle relative to the x-positive direction. J1 is the one-order Bessel function

[214]. Based on the sound directivity, we can further formally model the fundamental enabler

behind VoShield: sound field dynamics.

5.3.3 Modeling Sound Field Dynamics

The key observation on the difference between the live human voice and the loudspeaker-

generated one is that the size of a human mouth is time-variant. On the contrary, the aperture

size of a loudspeaker is permanently fixed. As a result, the sound field produced by human

mouths is more dynamic than that generated by loudspeakers. Therefore, we use the term

sound field dynamics to characterize the dynamic pattern of the sound field. Suppose a mi-

crophone array consisting of two microphones at the polar coordinates (r1, θ1) and (r2, θ2).

According to Eq. 1, we can calculate the energy ratio R measured at two microphones:

R(f, a) =
A2

1

A2
2

=

(
r1
r2

)4 k2r21 + 1

k2r22 + 1

(
J1(ka · sinθ1)sinθ2)
J1(ka · sinθ2)sinθ1)

)2

(5.2)

Here r and θ can be regarded as constants, so the energy ratioR is irrelevant to absolute signal

power (i.e., u) and only depends on the source aperture a and the signal frequency f (recall that

k = 2πf/v). Then we can define the sound field dynamics SFD as the energy ratio fluctuation

along time in the whole frequency band:

SFDf (a) = [Rf
1 (a), R

f
2 (a), ..., R

f
n(a)] (5.3)

where n is the window frame number of a voice command in the time domain. Here, we

transform voice signals into the frequency domain for each short frame, so the variable f can

be deemed a constant frequency vector f , and the aperture size a becomes the only variable.

By doing so, we can indirectly profile the dynamics of the sound field, which only depends on

the aperture size, a key difference between humans and loudspeakers over time.

Remarks. The key observation on the difference between the real human voice and the

loudspeaker-generated one is that the size of a human mouth is time-variant. On the contrary,

the aperture size of a loudspeaker is permanently fixed. As a result, the sound field produced
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Figure 5.4: SFD illustration. Looking at the energy ratio in the time-frequency domain, we
obtain the sound field dynamics.

by human mouths is more dynamic than that generated by loudspeakers, because the size a

of the human mouth always varies during speaking.

To illustrate a basic idea, we performed a simulation in which a sound source plays a 2 kHz

sine tone. The source aperture is fixed to 5 cm to mimic a loudspeaker. Then, we also randomly

vary the aperture size within 5 cm to simulate a time-variant human mouth. Fig. 5.4 shows

the normalized energy ratio between two microphones. We can see that the energy ratio R

of the human fluctuates rapidly due to the changing size of the mouth. In comparison, the

loudspeaker has a pretty stable energy ratio since its aperture size is fixed all the time, which

is consistent with our expectations. One may argue that, in practice, the voice includes com-

plicated frequency components, and the time-variant voice content of a loudspeaker will also

cause a fluctuant energy ratio. This is why we should not only look into the energy ratio in

the time domain but also in the frequency domain. Specifically, we transform the signal per

window into the frequency domain, as shown in Fig. 5.4, and hereby we can obtain the SFD.

In a broad sense, we can regard a voice command clip as the composition of multiple single-

frequency signals. As such, we can decompose the energy ratio into SFD patterns on different

frequency bins. We illustrate the SFD of a real voice command in Fig. 5.7, and more details will

be explained in the next section.

5.4 System Design

This section starts with an overview of VoShield. Then we describe each functional component

in detail.
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5.4.1 System Overview

As shown in Fig. 5.5, when a microphone array receives a voice command, the voice activity

detector [170] will capture an energy increase and activate VoShield. Then, a speaker iden-

tification module can identify whether the voice comes from a legitimate user. After that,

VoShield further examines whether this command comes from a live human or a loudspeaker.

VoShield consists of three components: Pair Fusion (Section 5.4.2), SFD Pattern Extraction

(Section 5.4.3), and Liveness Detection (Section 5.4.4). A microphone array typically consists

of multiple microphones. In the Pair Fusion module, VoShield checks the microphone array

layout and then selects several most useful microphone pairs to cover all possible incoming

voice directions. To extract SFD, we perform Short Time Fourier Transform (STFT) on the

signal of each microphone channel to obtain time-frequency spectrograms. Then, the spectro-

grams will be subtracted pairwise to obtain SFD patterns (the energy ratio is equivalent to the

logarithmic energy subtraction). The third module is liveness detection, where SFD patterns

are fed to a CNN classifier to detect voice liveness. To increase the data size, we perform data

augmentation and use both collected and augmented data to train the model. Finally, if the

voice command is classified as spoken by humans, the voice signal will be forwarded to the

application backend. Otherwise, the voice command is regarded as a replay attack and then

discarded.

5.4.2 Pair Fusion

This component selects the most effective microphone pairs to facilitate SFD feature extraction

and model training. According to Eq. 5.2, we know that if two microphones and the source are
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colinear (i.e., θ1 = θ2), or the source is perpendicular to two microphones (i.e., θ1+θ2 = 180◦),

the energy ratio R of two microphones will be constant and therefore independent of the

aperture size a. The Angle of Arrival (AoA) estimation is a possible way to first detect the

voice’s incoming direction. However, such a method introduces an additional computation

workload. Using only one pair is also unreliable due to noise. Therefore, we cannot completely

rely on one pair of microphones to extract SFD patterns. Fortunately, commercial microphone

arrays typically consist of several microphones. However, directly using all microphone pairs

leads to redundancy of information and increases model training overhead, since many pairs

are paralleled and quantify the same SFD pattern.

We adopt a simple but effective way to cover all spatial directions, as well as eliminate the

impact of redundant pairs. In particular, we select only one from each paralleled pair. As

shown in Fig. 5.6, we choose Pair〈1, 4〉 but exclude Pair〈2, 3〉 because they are paralleled. As

a result, we select four pairs (Pair〈1, 2〉, Pair〈1, 3〉, Pair〈1, 4〉, and Pair〈2, 4〉) to make full use

of the microphone pairs to improve the SFD measurement. This method brings the following

advantages: (i) we can always extract useful features using these non-parallel pairs no matter

where the sound location is, remitting the AoA estimation. (ii) It unifies the channels of the

model input for effective training. Besides, we will also introduce another pair fusion method

in Sec. 5.4.4. Note that this pair selection principle is capable of other array layouts. Next step,

we can extract SFD patterns from selected microphone pairs and combine them to facilitate

liveness detection.

5.4.3 SFD Pattern Extraction

This part is responsible for extracting SFD patterns from multi-channel audio signals. Specifi-

cally, we first perform Short Time Fourier Transform (STFT) on the signal of each microphone

channel to obtain time-frequency spectrograms. When performing STFT, window size selec-

tion is a trade-off between time resolution and frequency granularity. On the one hand, we

need a high time resolution to capture the rapid variation of the mouth size. On the other
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Figure 5.7: SFD patterns of human beings and loudspeakers. (a)/(c) The spectrograms of the
signals of microphones 1 and 2, as well as the normalized SFD patterns of microphone pairs
(1, 2), (1, 3), and (1, 4). (b)/(d) The truecolor image whose RGB channels are the SFDs of three
microphone pairs. Compared with random human voice SFD, the SFDs of the loudspeaker

present many strip-like shapes due to the fixed aperture.

hand, we also require a fine-grained frequency resolution to observe SFD pattern distributions

in more frequency components. To this end, we empirically set the sliding window size as

50 ms with a 75% overlap. Then, the spectrograms will be subtracted pairwise to obtain SFD

patterns (the energy ratio is equivalent to the logarithmic energy subtraction).

Fig. 5.7 shows the spectrograms and SFD of a voice command ”OK, Google” received by a 4-

microphone array. As shown in Fig. 5.7(a) and 5.7(c), we illustrate the spectrograms of two

microphone channels (i.e., Mic1 and Mic2) for human-uttered speech and loudspeaker-played

commands. We observe that the spectrograms of the two microphones look almost the same

since these two microphones share similar voice content. In addition, the spectrograms of the

human voice and the replayed sound also look very similar, as they represent the same voice

command from the same user. It is also the reason why ASV systems are vulnerable to replay

attacks.

However, when we subtract the spectrograms in pairwise order, the SFD patterns differ sig-

nificantly. Fig. 5.7(a) and 5.7(c) show the SFD patterns of four microphone pairs. Evidently,

the SFD patterns of human voices are pretty random due to the changing size of the mouth.

In comparison, the SFD patterns of the loudspeakers are rather stable, exhibiting visible hor-

izontal strips due to the fixed aperture size. After this step, we obtain an SFD feature tensor
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I ∈ R
F×T×P for a voice command clip, where F is the number of frequency bins, T is the

time windows, and P is the number of selected microphone pairs (channels) in Sec. 5.4.2.

5.4.4 Liveness Detection

After extracting the SFD feature, VoShield examines whether this command was spoken by a

user or from a loudspeaker. Intuitively, we can use traditional image processing techniques

to detect the strip-like pattern in the SFD spectrum, which is the key difference between the

voice command from loudspeakers and real users. However, translating this intuitive idea

into a concrete implementation involves several technical challenges. First, the voice content

contains various phonemes, and hence the strip pattern may appear in different locations (i.e.,

different frequency bands at different times) in the SFD spectrogram. Second, STFT has limited

frequency resolution. Hence, some strips in the close vicinity of frequencies will be fused in

practice. Furthermore, we observe some breaks along these strips due to noise and short pauses

in the voice, which makes the strip patterns much less prominent. Third, the SFD of different

microphone pairs may have different significance due to their angles relative to the sound

source. For example, Pair〈1, 2〉 exhibits clearer strip patterns than Pair〈1, 3〉 in Fig. 5.7.

Considering these challenges, we utilize a deep learning model to let VoShield automatically

learn the strip patterns by leveraging its superior feature extraction and representation capa-

bility. Fig. 5.8 shows the architecture of our network. We first apply three convolution layers

to learn the feature embedding. To overcome the pair significance problem, a Squeeze-and-

Excitation (SE) block [74] is used as a self-attention mechanism to learn a weight vector as

global information. By doing so, we can further fuse the information between different chan-

nels and selectively emphasize informative ones. To address voice diversity, we perform data

augmentation with random scale and horizontal/vertical translation on SFD patterns and dou-

ble the size of the training data [213].
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Figure 5.9: Kernel response and feature visualization. We recommend readers see the colored
version.

To normalize the input size, we use the first one-second clip of a voice command to extract the

SFD, in which each microphone pair corresponds to an input channel. Since liveness detection

is a binary classification problem (i.e., human (1) vs. loudspeaker (0)), the output of the sigmoid

function in the last layer is the likelihood that a voice command is detected as a real user.

Therefore, we can change the threshold to adjust the confidence of the classification result.

The default threshold is 0.5, but we can raise it for sensitive voice commands (e.g., financial

operations) to reduce the false acceptance rate (i.e., wrongly accepting an attack command as

a real user).

To understand the effectiveness of representations learned by our model, we adopted kernel

response visualization [3] to illustrate what the kernels have learned during model training.

Fig. 5.9(a) shows the input response of a kernel in the last convolution layer. We can observe

several strip-like patterns (in dashed boxes) with different widths, which indicates that our

model can learn such a pattern in SFD as an indicator to detect voice liveness. It is noted that

this kernel response comprises four channels, and hence this figure is a true color image after

conversion with color distortion. Furthermore, we adopted t-distributed Stochastic Neighbor

Embedding (t-SNE) [196] to visualize high-dimensional embeddings extracted in the second-

last dense layer. We randomly selected 100 testing voice samples, fed them into the trained

model, and extracted corresponding embeddings. Then, we used t-SNE to reduce the represen-

tation dimension from 64 to 2 and visualized these audio samples in Fig. 5.9(b). We can see that

samples belonging to the same class are closely clustered, whereas samples from different cat-

egories are pushed far away. This result indicates that our model can extract effective features

to detect the liveness of voice commands.
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Figure 5.10: Experiment setting. (a) a Respeaker USB microphone array with four micro-
phones. (b) Experiment illustration for replay attacks. The smartphone can record the user’s

speech and play it via a loudspeaker. (c) The loudspeakers used in the experiment.

5.5 Implementation

We implemented VoShield with a Respeaker USB microphone array v2.0 [159] with a typical

circular layout in commercial smart devices (e.g., Amazon Echo), as shown in Fig. 5.10(a). A

voice activity detector [170] is used to monitor incoming voice commands. When performing

STFT, window size selection is a trade-off between time resolution and frequency granularity.

On the one hand, we need a high time resolution to capture the rapid variation of the mouth

size. On the other hand, we also require a fine-grained frequency resolution to observe SFD

pattern distributions in more frequency components. To this end, we empirically set the sliding

window size as 0.05 s with a 75% overlap. The CNN model is implemented with TensorFlow

and trained on a workstation equipped with an Nvidia GeForce RTX 2080 Ti GPU and an Intel

Xeon E5-2620 v4 2.10GHz CPU. The batch size is set to 100, and the binary cross-entropy is

used as the loss function. The voice command will be forwarded to a laptop to execute the

model.

We recruited twelve volunteers in our university (six males and six females) and conducted

various experiments in a meeting room as shown in Fig. 5.10(b). Before the experiment, we

confirmed with participants that they had fully understood the experiment procedure and pri-

vacy statement where all voice data collected are used only for research purposes and will

be properly protected. Participants were asked to speak 30 common voice commands used

in [212], which are selected in different tasks on ok-google.io. Each command was repeated

three times. Moreover, we also placed a smartphone near the user’s mouth to record clean

voice commands. Fig. 5.10(c) shows the loudspeakers used for replaying recorded voice com-

mands, including four different brands and sizes: the built-in speaker in a smartphone Mi 11

pro (12 mm × 16 mm), an EARISE AL-202 loudspeaker (72 mm × 72 mm), a Philips SPA20

loudspeaker (80mm × 122mm), and a Dell AX510 soundbar (335mm × 41mm). We used a
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Respeaker microphone array to record human speeches and replayed commands with different

distances, locations, head orientations, and other various settings, detailed in Sec. 5.6. Overall,

we collected 13000+ voice command samples.

Baseline. We choose CaField [230], a state-of-the-art liveness detection system based on the

sound field, as the baseline. CaField uses the sound directivity value as a feature and trains

a Gaussian Mixture Model (GMM) to verify legitimate users. However, sound directivity is

sensitive to different positions. Thus, CaField requires users to hold the devices with a fixed

gesture. By comparison, VoShield utilizes the variation of the consecutive sound directivity

measurements, which is resistant to different positions.

5.6 Evaluation

In this section, we detail the experiment setup and evaluation results, starting with the metric

explanation.

5.6.1 Evaluation Metrics

Same as previous works [146, 212, 230], we use the following metrics to evaluate our system.

• Accuracy. Accuracy is the probability of how well the system can correctly discriminate

between live users and loudspeakers.

• False Acceptance Rate (FAR). FAR is the likelihood that the system wrongly accepts an

attack as a legitimate voice command.

• False Rejection Rate (FRR). FRR characterizes the rate at which the system mistakenly

declares a live user as a replay attacker.

• Equal Error Rate (EER). To balance FAR and FRR, we can adjust the threshold of the

classification layer in our model (Sec. 5.4.4) to make a trade-off between the probability

of incorrect classification for loudspeakers and legitimate users. EER is the value when

FAR equals FRR during threshold tuning.

• True Rejection Rate (TRR). TRR is the probability that a command from the loudspeakers

is correctly classified.
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Figure 5.11: Overall performance of VoShield.

From the above metric definition, we know that the higher the accuracy and the lower the

FAR/FRR/EER, the better the performance.

5.6.2 Overall Performance

In this experiment, we randomly chose 85% of all data for model training and validation, and

the remaining 15% were used for performance testing. Fig. 5.11(a) shows the confusion matrix.

Specifically, the overall liveness detection accuracy is 98.2%, and the FAR is 2.1%, indicating that

VoShield can effectively distinguish human voice commands from loudspeakers. Fig. 5.11(b)

plots FAR and FRR varying with the threshold changes. We obtain an EER with 2.0% when the

threshold is 0.45. In other words, we can set the threshold as 0.45 to strike a balance between

the detection ability of loudspeakers and humans. Naturally, we can tune this threshold to

adapt VoShield for different purposes. For example, for financial commands, we can increase

the threshold a little, and consequently, VoShield has a lower FAR to better block replay attacks.

We note that there is no free lunch. A higher threshold also leads to a higher FRR. As a cost,

we may need to speak a command several times to pass the VoShield check. But then, it is

still acceptable since a repetitive confirmation is required in the financial context, even for the

voice assistants without VoShield.

5.6.3 Impact of Users

We then investigate the impact of different users on VoShield performance, shown in Fig. 5.12.

Mixed-user case. We first break down the overall evaluation result and analyze the perfor-

mance of different users. As we mentioned before, the overall accuracy is 98.2% when the data
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Figure 5.12: Performance of different users.

of all users are mixed together. The highest accuracy is 100% for user 2, and the worst case is

92.4% (user 12). The variance is 0.03%, which indicates VoShield performs stably among twelve

different users.

Per-user case. Given that voice interaction is a highly-personal scenario, we also conducted

another experiment where a personalized model was trained for individual users. In this set-

ting, for each user, we only used his/her data for model training and testing (similarly, the

proportions are 85% and 15%, respectively). We can see that the overall accuracy increases to

98.9%. Therefore, in our system design (Fig. 5.5), we add a user recognition module so that

VoShield can call a personalized model according to different users to improve liveness detec-

tion performance.

Cross-user case. Despite the high performance of personalized models, sometimes a user is

not always enrolled in model training (e.g., a guest visiting at home). Thus, we also exper-

imented to evaluate the performance of VoShield on unseen users. In this experiment, we

trained the model with the data of eleven users and tested it with the remaining one unseen

user’s data. As the cross-user case shows in Fig. 5.12, most users still present good perfor-

mance (approximately 90%), while some users (e.g., 1 and 9) experienced a large degradation.

Accordingly, the average accuracy drops to 86.2%. It is in our expectation since although the

SFD removes the voice content by doing division between two microphones, it remains the

impact of the pause, rhythm, and mouth shape, which are determined by the physiological

factors of difference between users. These domain factors prevent current liveness detection

systems from high user-independent performance.

Enhanced cross-user case. To partially alleviate this issue, a practical solution is providing

some human voice samples of new users to calibrate the model since loudspeaker data collec-

tion is not always feasible. In this case, we used the data of eleven participants plus 2 mins

of real human voice samples from an unseen user for model training. As shown in Fig. 5.12,
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the average performance is improved for all users from 86.2% to 90.1%. This promising result

indicates that introducing only voice samples can help the model adapt to unseen users and

improve its performance. Thus, we can infer that the performance will be further improved if

sufficient voice samples are provided, for example, 5-minute data, which is not a heavy bur-

den for new users. Actually, the performance degradation with unseen users is still an open

problem in the area of liveness detection [10, 24, 111, 245], and we will discuss some possible

solutions in Sec. 5.8.1. We note that VoShield is a complement to current voice authentication

systems. Current cross-user performance can still significantly improve the security of voice

assistants.

5.6.4 Impact of Distances

We collected voice commands at different distances from 0.5 m to 4 m with a 0.5 m interval.

To evaluate the impact of distance, we also break down the overall result in terms of different

distances, as illustrated in Fig. 5.13. Visibly, the accuracy decreases from 98.9% at 0.5 m to

89.1% at 4 m, and the EER increases from 0.8% to 10.3% accordingly. This is because the array

has a very tiny size. As the distance increases, the angles of the microphones relative to the

sound source become very close (θ1 ≈ θ2). As a result, the energy ratio between the two

microphones tends to be stable, making it hard to differentiate live humans and loudspeakers

with SFD patterns. But say, we can see that the accuracy still remains 92.9% when the distance

is 3m. Considering that users prefer to speak voice commands within 3m from smart speakers

[89], this result shows the promising room-scale detection performance of VoShield. Users are

also suggested to speak sensitive commands near the device to obtain more reliable protection.
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5.6.5 Impact of Orientations

We also conduct an experiment with different orientations. In experiments, we keep the dis-

tance between the array and the user fixed at 1 m. 0◦ and 180◦ represent facing forward and

backward to the array, and 90◦ means that the user/loudspeaker faces the direction perpendic-

ular to the array. We used the same data partition proportion as before for model training and

testing. The performance across different orientations is shown in Fig. 5.14. We can observe

that VoShield performs best when the facing direction is 0◦ (Accuray=99.1%, EER=1.2%). The

performance gradually decreases as the orientation changes. In specific, the accuracy drops

slightly to 98.3% when the facing direction is 90◦. Yet, when users/loudspeakers continue to

turn their orientations, the performance presents a significant degradation. The accuracy de-

creases to 91.5%, and EER increases to 7.6% when the orientation is 180◦. Generally, when

we face the array and speak a voice command, the direct-path component dominates in voice

recordings. Thus, the microphone array can easily capture the sound field dynamics. However,

when the orientation turns to other directions, the array receives multiple voice reflections and

reverberations. After traveling along complex multipath, these reflection components may add

up constructively (in phase) or destructively (out phase), leading to SFD pattern distortions.

Moreover, human mouths and loudspeakers are both directional sound sources blocked by the

head or the enclosure case, and thus voice signals also suffer from substantial energy attenua-

tion when the sound source turns its back to the array [235]. As a result, the performance for

indirect facing directions degrades under reflections and attenuation.

5.6.6 Impact of Speaking Speed

To evaluate VoShield under different speaking speeds, we record participants’ voices and play

them with 1.5x and 2x speeds to imitate the fast voice content. In this experiment, the model

was trained with voice commands under the normal speed (1x). By comparison, we test the

model with high-speed replay samples, so TRR is used for evaluation. Fig. 5.15 shows the re-

sult. We can see that the TRR is 95.2% when testing the model with normal-speed replay com-

mands. Interestingly, the performance does not decrease with the increasing replay speed but

climbs slightly. When we replay voice commands with the 2x speed, the accuracy increases to

96.9%. This is because the SFD characterizes mouth movements rather than voice content, and

VoShield detects strip patterns in the spectral domain to examine voice liveness. Unexpectedly,

the high-speed content narrows the gaps between phonemes and words that may originally
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Microphone iPhone 12 Mi 11 Pro Seed 4-mic array

Accuracy 98.9% 98.1% 99.0%

Table 5.1: Performance across different microphones.

Loudspeaker Mi 11 Pro AL-202 SPA20 AX510

TRR (%) 97.2 98.3 98.5 96.9

Table 5.2: Performance across different loudspeakers.

break strip patterns to compromise VoShield. As such, we observe stable performance when

VoShield encounters fast voice commands.

5.6.7 Impact of Devices

To evaluate the performance across different devices, we recruited users to use another two

microphones (iPhone 12 and Seed 4-mic array) to repeat the experiment at 0.5 m. This eval-

uation was conducted in the per-user case (i.e., training and testing model with data from a

single user). As shown in Tab. 5.1, we observe that the accuracies across three microphones

are comparable. This is because although the frequency response of different microphones can

distort voice commands, we utilize the energy ratio between two channels to cancel out this

adverse hardware effect.

We also analyze the performance across different devices in the evaluation results. As shown

in Tab. 5.2, four loudspeakers also present similar performance because the energy ratio can

eliminate the distortion caused by the frequency response of different loudspeakers as well.

But we note that the TRR of AX510 is slightly lower than others. We suspect that the soundbar

has a large size (335mm) so the two stereo sub-speakers are apart pretty far. As a result, when

the microphone array is physically close to the soundbar, the sound fields of two sub-speakers

overlap and interfere with each other, leading to a slight performance drop. Moreover, the first

loudspeaker in a cell phone has a small sound cavity and little power output. Consequently,

the Signal-to-Noise Ratio (SNR) of voice commands collected at far positions is slightly low,

which also causes a lower TRR.



5.6. Evaluation 105

Table 5.3: Performance comparison between VoShield and CaField. They have comparable
TRRs, but CaField performs worse than VoShield in terms of accuracy, FRR, and EER since

many legitimate voice commands are rejected by mistake.

TRR(%) Accuracy (%) FRR(%) EER(%)

VoShield 99.5 98.9 1.7 0.8

CaField 91.7 83.9 28.0 15.7

5.6.8 Adaptive Attack

We added an experiment to evaluate if VoShield can defend against adaptive attacks such as

moving loudspeakers. When replaying voice commands, users are required to hold and shake

the loudspeaker while walking around. Then the collected replay samples are evaluated with

the model pre-trained in the static scenario. The result is shown in Fig. 5.16. We can see that the

TRR decreases significantly from 95.2% (static) to 60.8% for the moving scenario. Accordingly,

the FAR increases by 24.4%. This result is not surprising. If the attacker is aware of the VoShield

mechanism, he/she can shake or move the loudspeaker when performing attacks. Thus, the

sound field dynamics of loudspeakers will inevitably increase. We admit that current VoShield

cannot defend against this kind of attack, but we also note that the attacker must be physically

present in a user’s home, which is beyond our remote attack assumption. In this case, some

intrusion detection methods may help alleviate this problem, and thus users will be aware of

such intrusions, since physical access to users’ rooms can cause more severe consequences.

5.6.9 Baseline Comparison

CaField is designated for working in the near field [230]. For a fair comparison, we compare

VoShield with CaField on data collected at 50 cm. The performance result is shown in Tab. 5.3.

We can see that the TRRs of CaField and VoShield are 91.7% and 99.5%, respectively, indicating

that both systems can detect replay spoofing attacks accurately. However, in terms of accu-

racy, CaField (83.9%) performs worse than VoShield (98.9%). Looking in detail, CaField has a

28% FRR, much higher than VoShield (1.7%), which means that many legitimate voice com-

mands are rejected by mistake. It is mainly because that CaField relies on specific directivity

features trained with a fixed gesture. Generally, loudspeakers are easily kept static, so CaField

can make a quite accurate classification for loudspeaker detection (TRR). However, there are

inevitable head movements when users speak commands, not to mention that they speak with
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different orientations. In this case, many voice commands from other directions may have to-

tally different directivity patterns than the samples used for model training. As such, these

human voice commands are prone to be misclassified as illegal attacks, leading to a high FRR.

For the same reason, CaField presents an EER much higher than that of VoShield.

5.6.10 Response Time

We test the system response time on aThinkPad X1 laptop with an Intel i7-10510 CPU. In gen-

eral, VoShield takes approximately 0.25 s to perform the liveness detection for a voice command

sample. Thereinto, spectrogram postprocessing and model inference cost 0.02 s and 0.06 s, re-

spectively. The model is lightweight and does not take too long. The most time-consuming

part is STFT, which takes around 0.17 s. This is because STFT requires a high-frequency reso-

lution and executes many time steps. For future optimization, DSP and GPU chips can be used

to accelerate signal processing and model inference. Given the ever-increasing computation

power of commercial smart devices, we believe that VoShield can be capable of running locally

in real time.

5.7 Related Work

There is a large body of related work on voice liveness detection that can be divided into two

groups according to the methodology used, i.e., detection with additional sensors and detection

with audio signals only.

5.7.1 Liveness Detection with Additional Sensors

Most works detect voice liveness by building side channels with additional devices or sensors.

Camera-based approaches [40] are effective but challenged by poor light conditions. Moreover,

users may have privacy concerns about adopting vision-based solutions. VAuth [55] exploits

the relationship between the voice and motion sensor signals of extra wearable devices such as

glasses or earbuds to detect voice liveness. Consequently, manyworks follow thismethodology

and perform liveness detection by correlating voice signals with other signal modalities from

a variety of auxiliary sensors, such as throat vibrations [166], air pressures in ear canals [167],

body sounds in ears [57], and oral flows when speaking [212]. Wang et al.[206] playback the
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received command and check the induced vibrationwith amotion sensor sticking on the device

to defeat audio attacks. Chen et al.[35] explore the magnetic field emitted from loudspeakers

to defend against voice impersonation attacks, which require users to move smartphones with

a predefined trajectory while speaking a command. REVOLT [146] incorporates Wi-Fi based

respiration detection to combat voice replay attacks. Some approaches [90, 112, 190, 252] also

leverage Wi-Fi to detect the movement of the human body to determine whether a command

is from human users or not. rtCaptcha [195] applies the audio/video feedback for liveness

authentication. Recently, VocalPrint [93] prevents attackers by using a mmWave radar to sense

vocal vibration signals. In closing, these proposals rely on additional sensors and incur extra

costs to build a side channel to detect the liveness of voice commands.

5.7.2 Active Acoustic Liveness Detection

To decouple the requirement for additional sensors, many researchers attempt to utilize only

audio signals to detect whether a voice command is spoken by a live user or not. EchoSafe

[13] sends an audio pulse to detect if the user is present in the room, but it needs retraining

when the environment changes. VoiceGesture [246, 249] utilizes high-frequency acoustic sig-

nals to check the Doppler effect caused by the user’s articulatory gestures, which requires users

to physically close the microphone. LipPass [102] and SilentKey [184] detect lip movements

for authentication when the user holds a smartphone. Similarly, SPEAKER-SONAR [89] and

ChestLive [36] incorporate body and chest movements to examine the liveness of a voice com-

mand. These active acoustic detection approaches typically emit near-ultrasonic audio signals

to detect users’ movements or locations when speaking. Although effective, they have strong

assumptions that limit their applicability to other devices. For example, the user must hold the

microphone closely to capture lip movements. Importantly, such high-frequency sounds are

audible for babies and pets, leading to potential hearing problems. Furthermore, continuously

emitting sensing signals bring about additional power consumption.

5.7.3 Passive Acoustic Liveness Detection

To overcome the disadvantages of active acoustic methods, recent works detect voice live-

ness purely on voice commands without actively transmitting sensing signals. VoiceLive [247]

and VoicePop [208] measure physiological indicators like the time difference of phonemes and

breathing pop sounds in the human voice to detect voice liveness. These two works require
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users to hold smartphones within a very close distance, so they cannot be used for other de-

vices, such as smart speakers. Blue et al.[24] and Void [10] utilize the hardware imperfections

as the feature to design a voice liveness detection system. However, their performance suffers

from high-fidelity speakers and artificial noise. Some approaches use acoustic features [75]

and build deep learning models [64, 94] to combat replay attacks, but they extract deep features

directly from the voice content, which is easily compromised by attackers who can intention-

ally manipulate similar voice [46, 118]. ArrayID [111] assumes that the spectrum variance of

different microphones is constant, which requires arrays with a circular layout and many mi-

crophones to hold the hypothesis. In addition, other features it used, such as Linear Prediction

Cepstral Coefficients (LPCC) and frequency energy distribution, are extracted directly from

the original signal, which is susceptible to voice manipulation [111]. CaField [230] is the most

related work to VoShield. They are both based on sound directivity and do not directly extract

features from the voice content. However, CaField takes the absolute sound directivity values

as a feature, which requires users to hold the device with certain gestures. By comparison,

VoShield utilizes the relative dynamic level of the sound directivity within a command period,

which is resistant to different positions and significantly extends the working range.

5.8 Discussion

In this section, we discuss some limitations of VoShield and some directions for future work.

5.8.1 User-independent Detection

User-independent liveness detection still remains an open problem [10, 24, 112, 245]. In this

chapter, we adopt a CNN model and expect it to learn the strip-like SFD patterns. However,

CNN is a black box, and we cannot specify what it exactly learns. As such, spectrum noise and

some user-relevant physiological features are inevitably involved in model learning. This also

explains why VoShield cannot perform well in cross-user scenarios (Sec. 5.6.3). One possible

way to deal with this problem is denoising and purifying the SFD by image processing and

then extracting some handcrafted features to accurately characterize the strip SFD pattern

with conventional signal processing techniques such as the Radon transform [95] and Gabor

filtering [77]. Another solution is using data-driven domain adaption approaches to guide

our model to learn user-irrelevant features by adversarial learning [28, 253]. Finally, few-shot
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learning [117] and meta-learning [48] can also help the model to quickly adapt to new users

with a small amount of data. We leave this interesting topic for future work.

5.8.2 User Authentication

VoShield is a complementary component of existing voice-based user authentication systems

on smart devices. Detecting voice liveness through VoShield would help them identify replay

attacks at an early stage, which also improves their overall performance. Apart from this, since

SFD profiles the unique mouth movement pattern of a human being, it also has the potential

for user identification. In this case, the tiny physiological details in SFD, which initially pre-

vent VoShield from user-independent liveness detection, are converted to the key features to

identify different users. To validate this idea, we simply retrained our model for the user iden-

tification task with human voice samples, and the preliminary identification accuracy is 87.6%

among 12 different users. We believe this result is promising and can be further improved with

dedicated signal processing techniques. In this way, a secure user authentication scheme using

SFD patterns needs to combine the abilities of voice liveness detection and user identification.

Thus, how to enlarge the SFD difference between humans and loudspeakers, as well as preserve

the unique details of each user in SFD, warrants further investigation.

5.8.3 Sound Field Fabrication Attack

Besides adaptive attacks, one possible way to circumvent our liveness detection method might

be physically changing the loudspeaker aperture to mimic a human mouth. Thus, loudspeak-

ers can fabricate a random sound field and break the strip-like SFD pattern. However, we

can hardly see this kind of loudspeaker in commercial markets. To say the least, customizing

such a loudspeaker is also expensive, as it requires rapid aperture variation. Furthermore, this

attack loudspeaker must be placed physically in the users’ home, which is also beyond our as-

sumption as discussed in Sec. 5.6.8. Large-scale movements nearby and the movements of the

loudspeaker itself also disturb the sound field, but users will be easily aware of it. Moreover,

frequency-hopping signals also have a random pattern in their spectrogram to deceive our sys-

tem. But say, the frequency-hopping signals are meaningless for voice assistants to conduct

attacks. Thus, we can add an extra mechanism to detect if the received signal is human speech

or not. Therefore, we believe that the remote replay attack with general-purpose loudspeakers

is the major threat to users and the main focus of our work.
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5.9 Chapter Summary

Despite powerful functions and huge convenience, voice assistants are exposed to the serious

risk of replay attacks. In this chapter, we propose VoShield to protect voice assistants through

liveness detection. Specifically, VoShield can distinguish a voice command spoken by a live

user from its loudspeaker-replayed counterpart. Benefiting from the novel feature Sound Field

Dynamics, VoShield extends the working distance to room scale and can work at flexible po-

sitions. The evaluation results confirm the applicability and effectiveness of our system. As a

complementary protection mechanism to voice authentication, VoShield provides promising

liveness detection performance and can be readily integrated into commercial smart devices.



Chapter 6

Conclusion and Furture Work

Voice is the most common sound in our life. As a kind of acoustic signal, it embraces not only

the semantic meaning but also implies lush physical context information such as the speaker’s

location. Despite the tremendous amount of active acoustic sensing work, less attention is

drawn to passive acoustic sensing, especially for voice sensing. As such, this thesis explores

using voice signals as a sensing modality to obtain the physical context of voice: location,

direction, and liveness.

In this thesis, we look into the voice in different life stages, solve a variety of technical chal-

lenges, and propose three applications. By making an analogy of the sound collection mecha-

nism in human ears, we designDeepEar tomimic the powerful functions of the human auditory

system. Endowed with the sector-based deep learning network, DeepEar supports multiple

sound localization with binaural microphones. By profiling the anisotropy property of voice

propagation, we present HOE and build a parametric model to measure the user’s head orien-

tation with two microphone arrays. By investigating the sound generation difference between

humans and loudspeakers, we propose VoShield, a system that can detect voice liveness using

sound field dynamics. Based on it, voice assistants can distinguish whether the voice command

is legitimate or not to combat replay attacks. In this way, the voice command is stamped with

contextual tags to enable more applications such as multiple device arbitration, meeting di-

arization, indoor navigation, and seat-based voice control in a car. We envision that this thesis

takes a step towards context-aware voice interaction for smart devices.

Currently, we still face many challenges. For example, the application performance largely de-

pends on many domain factors (e.g., environment, user, or device). Advanced array processing
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technologies may exploit channel diversities to improve passive sensing capacity. The domain

knowledge in acoustics, physics, and physiology can guide us to extract more effective features

from voice signals. Moreover, many cutting-edge deep learning approaches, such as adversar-

ial learning, meta-learning, and transfer learning, are promising to alleviate these problems.

Besides the physical context mentioned in this thesis, the human voice also consists of much

other contextual information like health conditions. For example, we can possibly infer the

user’s stress level, emotional state, and even COVID-19 infection from his/her voice. Thus, we

plan to design new applications to monitor users’ health via human voice with smart speakers.

We leave these interesting topics for future work. We believe that context-aware voice interac-

tion provides an unprecedented opportunity to bring human-oriented intelligence to versatile

IoT devices.



Reference

[1] [n.d.]. Buy the Azure Kinect developer kit – Microsoft. https://www.micros

oft.com/en-us/d/azure-kinect-dk/8pp5vxmd9nhq?activetab

=pivot:overviewtab. (Accessed on 04/19/2022).

[2] [n.d.]. Echo Dot (3rd Gen) - Smart speaker with Alexa - Alexa devices - Christmas

gifts - Black friday offer. https://www.amazon.co.uk/dp/B07PJV

3JPR/ref=s9acsdalbwc2x0i?pfrdm=A3P5ROKL5A1OLE&pfrds=m

erchandised-search-3&pfrdr=41HRBCBX0PGKWGQJP0XW&pfrdt

=101&pfrdp=52b4416f-47cf-4c9f-a034-3ee6df9011db&pfrdi

=14100223031. (Accessed on 04/19/2022).

[3] [n.d.]. How convolutional neural networks see the world. https:

//blog.keras.io/how-convolutional-neural-networks-s

ee-the-world.html. (Accessed on 04/12/2022).

[4] [n.d.]. IoSR-Surrey/RealRoomBRIRs: Binaural impulse responses captured in real rooms.

https://github.com/IoSR-Surrey/RealRoomBRIRs. (Accessed on

05/30/2022).

[5] [n.d.]. Oculus — VR Headsets, Games & Equipment. https://www.oculus.c

om/?locale=ENus. (Accessed on 04/19/2022).

[6] [n.d.]. The Smart Audio Report — National Public Media. https://www.nation

alpublicmedia.com/insights/reports/smart-audio-report/.

(Accessed on 06/18/2022).

[7] [n.d.]. Xbox Consoles, Games, Controllers, Gear & More - Microsoft Store.

https://www.microsoft.com/en-us/store/b/xbox?icid=SSMAS

PromoDevicesXboxCTA1. (Accessed on 04/19/2022).

113



114 Reference
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