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Abstract 

The investigation of various oscillations is crucial for the stable operation of high 

power electronic converter (PEC)-penetrated power systems. In order to tackle the 

various oscillations, a precise system modeling would be important. The commonly-

used modeling-based methods include the damping torque analysis (DTA) and modal 

analysis (MA). However, the large quantities of system components make the system 

modeling nearly an impossible task. To date, the energy flow analysis (EFA) has been 

applied in the stability analysis of power grids, which is based on the measurement 

technology. Nevertheless, the existing research of EFA is still insufficient. Specifically, 

the relationship between EFA and the modeling-based methods (i.e., DTA and MA) is 

not essentially revealed. Moreover, EFA is mainly used for monitoring and analyzing 

the oscillations of synchronous generator-dominated power grids, but has not been 

extended and generalized to that of PEC-penetrated power systems. 

In this thesis, firstly, the connection between DTA and EFA are systematically 

examined and revealed for the better understanding of the oscillatory damping 

mechanism of the electromechanical oscillation. Specifically, the concepts of the 

aggregated damping torque coefficient and frequency-decomposed energy attenuation 

coefficient are proposed and derived. On this basis, the frequency spectrum analysis of 

the energy attenuation coefficient is employed to rigorously prove that the results of 

DTA and EFA are essentially equivalent, which is valid for arbitrary models of 
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synchronous generators in multi-machine power systems. 

Secondly, a novel EFA is proposed based on the signal reconstruction and 

decomposition to quantitatively investigate the electromechanical oscillations in multi-

machine power systems. Specifically, the time-domain implementation (TDI) and 

frequency-domain implementation (FDI) of the proposed EFA are designed. On this 

basis, the consistency between the proposed EFA and MA is strictly proved, which is 

applicable for arbitrary models of synchronous generators in the multi-machine 

environment. Also, the application procedure of the proposed EFA in monitoring and 

analyzing the electromechanical oscillations is given. 

Thirdly, as a major part of the full converter-based wind generation (FCWG), the 

potential dynamics of the permanent magnet synchronous generator (PMSG) can be 

utilized to improve the oscillatory stability of the PEC-penetrated power grid with the 

introduction of the auxiliary resonance controller (ARC) to the machine-side control of 

FCWG. However, the machine-side oscillations (MSOs) of FCWG would also be 

complicated. Thus, the proposed EFA is extended to the machine side of FCWG for 

numerically investigating multiple types of MSOs of FCWG. 

Finally, a generalized oscillation loop is structured based on the second-order 

differential operations of a studied control loop of PEC. On this basis, a generalized 

EFA is proposed for monitoring and analyzing of the various oscillations of PEC-

penetrated power grids. Taking the control loops of the grid-side converter (GSC) of 

FCWG as an example, the application of the generalized oscillation loop and 

generalized EFA is further discussed considering the potential modal resonance 
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between GSC oscillations (GSOs) and external grid oscillations (EGOs) to consolidate 

the oscillatory stability of the PEC-penetrated power system. 
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Chapter 1 

Introduction 

1.1 Background 

Energy depletion and environmental problems boost the development of renewable 

power generations [1], among which the wind and photovoltaic power generations are 

the most representative. Unlike the conventional power generation, the power 

electronic converter (PEC) is indispensable for the integration of the renewable power 

generation to the power grid [2][3]. In addition, the development of new transmission 

technologies, such as the flexible AC transmission system and high-voltage DC system, 

also lead to the consequence that the conventional power equipment (e.g., synchronous 

generators, transmission lines, transformers, series compensation equipment) has to 

coexist with the large number of PECs [4][5]. The current status of the power grid with 

multiple emerging technologies can be illustrated by Fig. 1.1. In some optimization-

related studies of the local distribution network, the external power grid is usually seen 

as an ideal infinite power source (e.g., the research in [6] and [7]). However, the big 

amount of PECs have brought complex non-linearity and dynamics to the power grid 

[8][9]. Thus, the external power grid can no longer be regarded as the ideal infinite 

power source, but the weak grid [10]. As an important aspect of power system dynamics, 

the stability issue has been significantly impacted [11]. The aforementioned multiple 

emerging technologies inevitably bring potential risks to the overall stability of power 
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systems, as well as the secure operation of power grids [12][13]. 

Large-scale wind farms

Large-scale photovoltaic 
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Transmission system

  

High-voltage DC system
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transmission system

 
 

Series compensated 

transmission line

Small-scale wind systems Small-scale 
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Electric vehicles charging

 

 

Distribution 

system

 

Fig. 1.1 Current status of power grids with emerging technologies. 

The oscillation is an inherent phenomenon in the large-scale or interconnected 

system operation [14]. The oscillation events can be triggered by various factors such 

as the sudden change in transmission line parameters, generator faults and load 

fluctuations [15][16]. 

Since the PECs bring more complex dynamics in some frequency ranges, they have 

a great potential to generate various types of interactions with the external grid and 

bring the emerging oscillation issues [17]. On the other hand, with the number of PECs 

becomes huge, it is more difficult to identify which device in the system is the main 

source of the oscillation, which further complicates the oscillation investigation. In the 
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existing literature of oscillation issues, the sub-synchronous oscillation/resonance 

(SSO/SSR) and the low-frequency oscillation (LFO) have attracted the major attention 

of researchers. 

An SSO/SSR incident caused by the interactions between the type-3 wind turbines 

and the series compensation equipment happened in Texas in 2009, which has led to 

the damage to system devices and motivated the research on the SSO/SSR issues caused 

by the power electronics [18][19]. Shortly after this accident, the authors in [20] put 

forward the dynamic model of the type-3 wind turbines for the SSO/SSR analysis. In 

recent few years, more SSO/SSR phenomena have been observed in the power systems 

with growing number of power electronics, such as the SSO/SSR occurring in Guyuan, 

Hebei Province, China in 2011 [21], and the SSO/SSR among PEC-interfaced wind 

generators in Hami, Xinjiang, China in 2015 [22][23]. These incidents have revealed a 

pressing need to investigate the emerging SSO/SSR phenomena. At present, there are 

some task forces in IEEE which focus on the SSO/SSR phenomena, such as the IEEE 

wind SSO Task Force established in 2017 [24] and the IEEE PES Task Force on 

Oscillation Source Location [25]. Some academic activities on SSO/SSR issues have 

also been organized, such as the analysis of SSO/SSR issues of the wind integration 

system at 2018 IEEE PES General Meeting [26]. According to the IEEE report, SSR 

refers to the oscillation resulting from the interactions of the turbine-generator with 

series compensation equipment, while SSO refers to the oscillation resulting from the 

interactions of the turbine-generator with quick acting control devices [27]. However, 

with the appearance of many new types of SSO/SSR, the conventional classification 
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may be no longer applicable. The authors in [28] make the attempts to refine the 

classification of SSO/SSR based on the oscillation modes. Specifically, the SSO/SSR 

is divided into three types according to [28]: (1) SSO/SSR caused by the torsional 

vibration of rotating machines; (2) SSO/SSR caused by the electric resonance between 

the capacitance and the inductance in the power grid, especially the reactive power 

compensation and filtering devices; and (3) SSO/SSR caused by the interactions of the 

various PECs with the external grid or other PECs. Ref. [29] reveals some 

characteristics of the SSO/SSR caused by the type-3 and type-4 wind farms through 

analyzing the real-life measurement data. 

LFO initially originates from the small-signal stability issues of synchronous 

generators in power grids, which is more common and conventional. Over the past years, 

more LFO events have occurred in power grids all over the world: for example, the 

LFO phenomena have been observed at different frequencies in Texas [30]; [31] reports 

that one LFO incident happened in the south power grid of China in 2005; [32] presents 

the LFO observation at 0.38 Hz in 2013 summer in the US. These incidents have also 

aroused the interest of some researchers. In recent years, there have been some studies 

on LFO, such as the research in [33]-[35]. Typically, the LFO can be classified into two 

types: the intra-area LFO and the inter-area LFO [36], and the latter is of more general 

concerns. The growing number of LFO incidents have set a high requirement for the 

accuracy of the identification of LFO characteristics [37]. However, with the increasing 

number of PECs being connected to the power grid, the LFO modes show more 

complexities, such as the LFO induced by the variation of the wind power in [38], and 
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the LFO existing in the train-traction network in [39] and [40]. Generally, the LFO and 

SSO/SSR have different frequency ranges of interests. The LFO can occur at the very 

low frequency, even as low as 0.1 Hz [41], while the frequency range of the SSO/SSR 

is normally higher than that of the LFO. 

1.2 Literature Review 

As the statement in Section 1.1, the emerging oscillation problems seriously 

threaten the safe and stable operation of power grids. Therefore, the various oscillations 

need to be investigated in the PEC-penetrated power system. In the existing literature, 

the stability problem caused by the oscillation in power systems is usually known as 

the oscillatory stability [42]-[46]. In this thesis, the oscillatory stability is adopted as 

the academic terminology. 

After an oscillation accident occurs, if the oscillating power lasts for a while and 

then gradually decays, the oscillation is considered to be stable [47]. The investigation 

of an oscillation involves two aspects, i.e., its frequency and damping performance. The 

frequency of an oscillation can reflect its type and potential causes. The damping 

performance of an oscillation characterizes its decaying rate, which is a quantitative 

characterization to evaluate the oscillatory stability, and the better damping 

performance indicates a shorter oscillation duration. For the power systems with weak 

natural damping, the damping performance is normally enhanced by using the external 

equipment [48]-[51], and the damping performance should be carefully investigated for 

the installation planning and parameter setting. 
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At present, there are two commonly-used modeling-based methods for the damping 

performance assessment, i.e., the damping torque analysis (DTA) and modal analysis 

(MA). 

DTA originates from the concept of the electric torque of synchronous generators 

in the electromechanical oscillation. The generator rotor movement produces the torque 

effect, which provides a clear physical explanation [52]. As a component of the electric 

torque, the damping torque contributes to the damping of power oscillations [52]. At 

present, DTA is a common method to examine the effect of excitation control on the 

power system small-signal stability and gradually extended to the damping 

performance assessment as well as the design of stabilizer controllers. DTA relies on 

the mathematical model of the components [53]. The mathematical models of the 

doubly-fed induction generator, fixed-speed induction generator and three transitional 

wound rotor generators are established in [54] to realize the damping torque assessment. 

A model reduction strategy of doubly-fed induction generators is mathematically 

proposed in [55] to improve the efficiency of dynamic DTA. The dynamic 

mathematical model of doubly-fed induction generators with least orders but acceptable 

accuracy is established in [56] to investigate the damping torque from different dynamic 

components of doubly-fed induction generators. DTA is proved to be equivalent to the 

conventional eigenvalue analysis [57]. The damping torque coefficient is an important 

index to represent the relationship between the damping torque and angular frequency. 

Ref. [58]-[60] study the damping torque coefficient through the mathematical modeling 

based on a linearized model. In a single-machine infinite-bus (SMIB) power system, 
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there is only one dominant oscillation mode and the damping torque coefficient can 

directly characterize the damping performance of the whole power system. However, 

the damping torque coefficients of multiple generators are presented in the matrix form 

for multi-machine power systems [52]. The damping contribution of the whole power 

system is distributed to the generators associated with the oscillation mode, which 

makes the analysis more complex for multi-machine power systems. Therefore, there 

is a lack of a useful concept for DTA that can characterize the integration effect of the 

damping contribution from the whole power system, which should be applicable for 

arbitrary types of synchronous generator models in multi-machine power systems. 

The modal analysis (MA) is another commonly-used modeling-based method to 

examine the oscillations [61][62]. MA usually requires the mathematical modeling of 

the whole power system. The state-space modeling is widely adopted in MA, and the 

advantage is that it can handle the nonlinear system modeling for the oscillatory 

stability analysis. Refs. [63]-[67] adopt the state-space modeling approach to build the 

state-space matrix and use the eigenvalues of the state-space matrix to assess the 

oscillatory stability in power systems with the wind power integration, photovoltaic 

power integration and new transmission technologies. Generally, MA focuses on the 

oscillation modes or corresponding eigenvalues without paying much attention to the 

physical mechanism of oscillations [68]. The eigenvalue is a fundamental and 

conventional index for the studies of the oscillatory stability in the power grid [69][70]. 

The imaginary part of the eigenvalue represents the angular frequency of the oscillation, 

and the real part of the eigenvalue can accurately indicate the relevant damping of the 
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oscillation [71]. Some recent work of MA is summarized as follows. The modal 

sensitivity is derived as a new index in [72] to represent the impact of dynamic 

interactions introduced by double-fed induction generators on the electromechanical 

oscillations. The authors in [73] propose a modal superposition theory to classify the 

modal interactions between wind power oscillations and electromechanical oscillations. 

MA and DTA are the well-developed methods, but they have the certain difficulties 

when applied in the large-scale power systems. Firstly, the large number of system 

components leads to a high-dimension modeling [74], which has significantly raised 

the modeling difficulty as well as the computational burden of computers and affected 

the efficiency of oscillatory stability studies [75][76]. In addition, the components of 

modern power grids are becoming increasingly diversified and time-varying, which 

makes it difficult to obtain the accurate model and parameters of each component. 

In view of the above restrictions of DTA and MA, it is urgent to develop an 

alternative method to investigate the oscillations, which does not largely reply on the 

precise and high-dimensional modeling. Apart from the modeling-based method, the 

measurement-based method is an emerging way to assess the stability of modern power 

systems [77][78]. 

The oscillation events are accompanied by the transmission and dissipation of the 

oscillatory energy flow in the power network [79]. For a stable oscillation event, the 

oscillatory energy flow is eventually dissipated by the generators as well as external 

stabilizers if any. Based on this fact, the energy flow analysis (EFA) is developed and 

able to provide a clear explanation on the physical mechanism of the electromechanical 
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oscillation. Hence, the EFA provides a clear description for the oscillation mechanism. 

In recent years, the phasor measurement unit (PMU) and wide area measurement 

system (WAMS) have been applied in the stability analysis of the power system 

[80][81], which facilitates the measurement of the oscillatory energy flow at the 

terminal of a local power generation and thus enabled a convenient EFA [82]. Therefore, 

the measurement-based EFA gradually becomes popular to the oscillatory stability 

analysis. Compared with DTA and MA, EFA is a type of method that mainly replies on 

the measurement technology and shows apparent advantages: no complex high-

dimensional modeling process is required, especially for the large-scale power system. 

The merits have attracted quite a few research efforts in developing EFA for the studies 

of the oscillatory stability. The basic components of the oscillatory energy flow are 

presented in [83] and the oscillatory energy flow is utilized to determine the location of 

oscillation sources. The calculation of the oscillatory energy flow on the bus level is 

given in [84], and then the oscillation source is determined according to the variation 

tendency of the oscillatory energy flow at each generator. On the basis of [84], the 

authors in [85] propose a scheme of the cut-set energy construction to make full use of 

the measurement data. The authors in [86] divide the whole system into closed-contour 

regions to locate the oscillation source on the region level considering the incomplete 

measurement coverage. A two-level method is proposed in [87] for locating the 

oscillation source from both the bus level and the control device level. The above-

mentioned work on the source location is a typical application of EFA, but the 

investigation of the damping performance of oscillations is not included. 
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Thus, in order to make EFA more capable and valid, the researchers apply EFA to 

conduct the numerical analysis for the oscillatory stability. Some of the latest work are 

summarized as follows. The components of the oscillatory energy flow are analyzed 

with more details in [88], which lays a foundation for the EFA-based numerical analysis 

for oscillations. In order to quantitatively characterize the change of damping 

contributions, the damping loss factor of the generator is defined and derived in [89] 

and [90]. However, the limitation of [89] and [90] is that the feasibility analysis of the 

defined concept is limited to the specified generator model. The dissipation of the 

oscillatory energy flow is revealed to be connected with the damping torque of 

generators in [91]-[93] to offer a capability of the qualitative analysis for the oscillatory 

stability. The EFA-based work is further extended to the SSO/SSR with higher 

frequencies in [94]. However, the limitation of [91]-[94] is that the dissipation of the 

oscillatory energy flow is not further linked with the damping ratio (or eigenvalue) in 

the multi-machine power system, which has restricted their capability in the 

quantitative analysis. The rate of change of the dissipation of the oscillatory energy 

flow is recommended in [95] and [96] to assess the damping performance of an 

electromechanical oscillation. However, the proposed method in [95] employs a linear 

fitting for the dissipation of the oscillatory energy flow, which may be inaccurate under 

some operating conditions. The proposed method in [96] relies on the availability of 

parameters of the power network, which is not quite a generalized approach. The 

connection between EFA and MA as well as DTA is attempted to be revealed in [97]-

[100]. However, the strict proof is provided for the SMIB power system based on the 
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certain model and parameters of the synchronous generator, which lacks a complete 

validation for arbitrary models of synchronous generators. For the multi-machine 

power system, the validation is obtained from the repeated simulations and curve-

fittings in [97], and the strict theoretical proof is not provided. 

Therefore, there is no research seen so far to rigorously justify the consistency 

between EFA and MA as well as DTA for the damping performance assessment. In 

addition, the measurement at the terminal of a local generator involves multiple 

oscillation modes with respect to different frequencies in the multi-machine power 

system. Thus, the pre-processing of the measurements at the terminal of a local 

generator should be conducted so that the damping contribution with respect to the 

interested frequency can be screened. Considering the above discussion, the EFA-based 

numerical analysis for the oscillatory stability should be further improved. Specifically, 

there is a pressing need to rigorously prove the consistency between EFA and MA as 

well as DTA for investigating the oscillations especially in multi-machine power 

systems, and the expected conclusions should be applicable for the arbitrary models 

and parameters of synchronous generators, as well as arbitrary topologies and 

parameters of power networks. 

As described in Section 1.1, the large number of PECs have brought the emerging 

oscillation issues to the conventional power system. With the growing number of PECs 

integrated into the power grid, the PECs have become an obvious source of complex 

dynamics. Moreover, the emerging oscillation of PECs may even have the potential 

resonance with the external grid oscillation (EGO), which can increase the harm of 
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oscillation accidents. The instability of the PEC-penetrated power grid has been 

frequently reported and drawn increasing attention recently from both academia and 

industry [101]-[105]. The quantitative investigation of the damping and frequency 

feature of various oscillations becomes particularly important in PEC-penetrated power 

grids [106]. However, the above-mentioned EFA research does not involve the PECs, 

which reduces the popularity and timeliness of the work. That is to say, the EFA-based 

quantitative analysis is still limited to the oscillatory stability studies of the synchronous 

generator-dominated power grid and needs to be generalized to that of the PEC-

dominated power system. 

Among the different kinds of renewable generations, the wind power is a 

predominant and typical one [107]. Like the conventional power generation, the stable 

operation of the wind generation is of critical importance to the reliable power supply 

to the external power grid [108]. The full converter-based wind generation (FCWG) is 

a preferable option for the wind power integration [109]. Compared with the doubly 

fed induction generator-based wind power generation, FCWG has a very different 

nature in dynamics. The permanent magnet synchronous generator (PMSG) and 

machine-side converter (MSC) of FCWG are decoupled by the DC-link from the 

external power grid and become relatively independent [110][111]. However, the 

intermittence and fluctuation of the wind speed can trigger the inherent machine-side 

oscillation (MSO) of FCWG. The improper parameter settings of controllers can lead 

to the poor damping performance of MSO [112]. The poorly damped MSO can have a 

severe impact on the wind power supply to the external power grid. On the other hand, 
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the dynamics in the rotor of PMSG can be effectively utilized to mitigate the modal 

resonance between the FCWG system and weak grid and hence improve the oscillatory 

stability by equipping with an auxiliary resonance controller (ARC) on the machine 

side of FCWG [113]. However, the utilization of ARC can unfortunately introduce the 

EGO to the originally dynamics-decoupled machine side of FCWG, and even cause the 

modal resonance with the inherent MSO of FCWG, which would dramatically 

complicate and aggravate the machine-side dynamics of FCWG. 

Based on the facts above, investigating the damping feature of multiple MSOs of 

FCWG becomes more important. Specifically, investigating the characteristics of 

MSOs of FCWG can help wind farm operators understand the condition of wind 

generation units to provide the reliable wind power supply and improve the oscillatory 

stability of the PEC-penetrated power grid, which is helpful to further increase the 

penetration of FCWG in the modern power systems. However, the MSO issue of 

FCWG is often ignored by researchers. Thus, the machine-side dynamics of FCWG 

with/without ARC should be comprehensively and quantitatively studied. It should be 

noted that the MSOs mentioned in this thesis not only refer to the inherent MSOs of 

FCWG, but also the EGOs introduced by ARC (i.e., the non-inherent MSOs of FCWG). 

When ARC introduces the dynamics of the external grid to the MSC controls, the 

machine-side dynamics of FCWG are no longer independent. Thus, the calculation of 

relevant eigenvalues requires the dynamic modelling of the whole power systems. In 

practice, it is difficult for wind farm operators to obtain the detailed models and accurate 

parameters of all components in the external power systems. Even if the information of 
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the full system model is available, the modelling and computational complexity can be 

significantly raised for the oscillatory stability studies especially considering the large-

scale power system [114]. Hence, the above-mentioned points limit the application of 

the mathematical modeling-based methods, and the EFA of conventional synchronous 

generators urgently needs to be extended to PMSG to investigate MSOs of FCWG. 

1.3 Primary Contributions 

Considering all the points in Section 1.2, the primary contributions of this thesis are 

listed as follows. 

(1) The connection between DTA and EFA for qualitatively evaluating the damping 

performance of electromechanical oscillations of multi-machine power systems is 

revealed. 

For DTA, in order to characterize the integration effect of the damping contribution 

from the whole power system, a concept of the aggregated damping torque coefficient 

is proposed and derived. It can be applied to arbitrary types of synchronous generator 

models in multi-machine power systems. The aggregated damping torque coefficient 

lays a foundation for identifying the theoretical connection between DTA and EFA. 

For EFA, the pre-processing of measurements at the terminal of a local generator is 

conducted in the time domain. Based on that, a concept of the frequency-decomposed 

energy attenuation coefficient is newly defined to pick out the damping contribution 

with respect to the interested frequency. Then, the connection between DTA and EFA 

is strictly proven and the consistency of the aggregated damping torque coefficient and 
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frequency-decomposed energy attenuation coefficient is revealed for the first time, 

which is a general conclusion for arbitrary types of synchronous generator models in 

both SMIB power system and multi-machine power system. 

(2) A novel EFA is proposed based on the signal reconstruction and decomposition, 

which can be implemented in two forms, i.e., the time-domain implementation (TDI) 

and frequency-domain implementation (FDI). Compared with the research in (1), the 

proposed EFA is strictly proved to be consistent with MA especially for the multi-

machine power systems, and the proof stays valid for arbitrary models of synchronous 

generators as well as arbitrary types of power networks. 

For TDI of the proposed EFA, the measurements at the terminal of a local generator 

are reconstructed and then decomposed in the time domain based on the principle of 

the Laplace analysis. After that, the mode-screened damping torque coefficient is 

defined to extract the damping torque coefficient with respect to an electromechanical 

oscillation mode from the perspective of a local generator. Then, FDI is derived to 

transform the proposed EFA from the time domain to frequency domain using the 

Parseval’s Theorem. The mode-screened damping torque coefficient with respect to the 

interested oscillation mode from the perspective of FDI is consistent with that from TDI. 

Then, the connection between the proposed EFA and MA in quantitatively 

investigating the electromechanical oscillations is strictly proved in the multi-machine 

power system for the first time. The proof is effective for arbitrary models of 

synchronous generators as well as arbitrary types and parameters of power networks. 

Moreover, the application procedure of the proposed EFA for quantitatively estimating 
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the damping performance with respect to an electromechanical oscillation mode is 

given. 

(3) The proposed EFA in (2) is applied to quantitatively investigate the inherent and 

non-inherent MSOs of FCWG (including the potential modal resonance among them) 

for the first time. 

Specifically, the proposed EFA in (2) is extended to the machine side of FCWG in 

the time domain to extract the damping feature of interested MSOs of FCWG without 

any modelling requirement. Then, the consistency between the extended EFA and MA 

when studying MSOs of FCWG is proved and revealed, which is general for the 

arbitrary control schemes of FCWG in the multi-machine environment. With the help 

of the extended EFA, the damping feature of multiple types of MSOs in different 

scenarios is quantitatively assessed for the first time. 

(4) The proposed EFA in (2) is further applied to quantitatively investigate the 

various oscillations of the PEC-penetrated power system (including the potential modal 

resonance among them) for the first time. 

Specifically, the generalized oscillation loop is structured based on the second-order 

differential operations in the studied control loop of the PEC. On this basis, the 

generalized EFA is proposed for monitoring and analyzing the various oscillations of 

the PEC-penetrated power system. In other words, the proposed EFA in (2) is 

generalized to any control loop of the PEC with the second-order differential operations. 

Taking the grid-side converter (GSC) of FCWG as the example, the application of the 

generalized oscillation loop and generalized EFA are further demonstrated and 



 

17 

 

discussed for quantitatively investigating the GSC oscillation (GSO), which provides 

the reference for the parameter setting and adjustment of GSC. 

1.4 Thesis Layout 

The rest of this thesis consists of five chapters, which is summarized as follows. 

Chapter 2 studies the connection between DTA and EFA for qualitatively 

evaluating the damping performance of electromechanical oscillations of multi-

machine power systems. Specifically, a DTA in the frequency domain is presented and 

the aggregated damping torque coefficient is defined. Then, EFA is conducted based 

on the pre-processing of measurements in the time domain and the frequency-

decomposed energy attenuation coefficient is defined. The frequency spectrum analysis 

of the energy attenuation coefficient is conducted, which reveals the consistency 

between DTA and EFA. 

In Chapter 3, a novel EFA is proposed in multi-machine power systems and its 

connection with MA is proved for quantitatively investigating the electromechanical 

oscillations. Specifically, TDI of the proposed EFA is developed, and FDI of the 

proposed EFA is conducted equivalently in the multi-machine power system. Then, the 

connection between the proposed EFA and MA is strictly proved, and the application 

procedure of the proposed EFA is given. 

In Chapter 4, the proposed EFA in Chapter 3 is extended and applied for 

quantitatively investigating the MSOs of FCWG systems. Specifically, the main 

configuration and machine-side control loops of FCWG are briefly introduced. Then, 
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the proposed EFA in Chapter 3 is extended to the machine side of FCWG in the time 

domain, and the consistency between the extended EFA and MA is strictly revealed for 

MSOs of FCWG in the frequency domain. 

In Chapter 5, the generalized oscillation loop is structured in the control loop of the 

PEC, and then the proposed EFA in Chapter 3 is further generalized to quantitatively 

investigate the various oscillations of the PEC-penetrated power system. Then, the 

generalized oscillation loop and generalized EFA are further derived and tested in the 

control loops of GSC of FCWG for GSOs considering the potential resonance. 

Finally, the conclusions and future work of the thesis are summarized and drawn in 

Chapter 6. 
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Chapter 2 

The Connection between Damping Torque Analysis 

and Energy Flow Analysis in Evaluating Damping 

Performance of Electromechanical Oscillations 

2.1 Overview 

The damping performance assessment of electromechanical oscillations of power 

systems is crucial for the stable operation of power grids. In this chapter, the connection 

between a modeling-based method (i.e., DTA) and a measurement-based method (i.e., 

EFA) are systematically examined and revealed for the better understanding of the 

oscillatory damping mechanism. Firstly, a concept of the aggregated damping torque 

coefficient is proposed and derived based on DTA of multi-machine power systems, 

which can characterize the integration effect of the damping contribution from the 

whole power system. Then, the pre-processing of measurements at the terminal of a 

local generator is conducted for EFA, and a concept of the frequency-decomposed 

energy attenuation coefficient is defined to characterize the damping contribution with 

respect to the frequency of interest. On this basis, the frequency spectrum analysis of 

the energy attenuation coefficient is employed to rigorously prove that the results of 

DTA and EFA are essentially equivalent, which is valid for arbitrary types of 

synchronous generator models in multi-machine power systems. Additionally, the 

consistency between the aggregated damping torque coefficient and frequency-
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decomposed energy attenuation coefficient is further verified by the numerical 

calculation in case studies. The relation between the proposed coefficients and the 

eigenvalue (or damping ratio) is finally revealed, which consolidates the application of 

the proposed concepts in the qualitative assessment of the damping performance. 

2.2 Damping Torque Analysis in Frequency Domain 

In this section, a DTA is conducted in the frequency domain via the mathematical 

modeling. Compared with the Phillips-Heffron model-based analysis in [52], the 

derivations presented in this section are order-independent for the synchronous 

generator models and can effectively evaluate the integration effect of the damping 

contribution from multi-machine power systems. 

The swing equation of the i-th generator in a power system is expressed by 
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where t is the time variable; δi(t) denotes the power angle of the i-th generator; ωi(t) 

denotes the angular frequency of the i-th generator; ω0 denotes the synchronous angular 

frequency; Pe,i(t) denotes the electric power of the i-th generator; Pm,i(t) denotes the 

mechanical power of the i-th generator; Di denotes the natural damping of the i-th 

generator; TJ,i denotes the inertia constant of the i-th generator; and d(·) is the 

differential operator. It is noted that i can be omitted for an SMIB power system. 

For DTA, some other equations should be further involved besides (2.1), e.g., the 
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equations that characterize automatic voltage regulators (AVRs), power system 

stabilizers (PSSs), etc. Define a vector Z(t) that includes the state variables of the 

generator(s) except δi(t) and ωi(t). The dimension of Z(t) is 
1

( 2) 1
k

ii
n

=
−  , where ni is 

the order of the i-th generator model and k is the number of the generator(s). Then, the 

linearized model of a power system can be derived as 
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where A21, A23, A31, A32 and A33 are the block sub-matrices of the state matrix; Δδi(t) 

denotes the power angle deviation of the i-th generator; Δωi(t) denotes the angular 

frequency deviation of the i-th generator; ΔZ(t) denotes the deviation of the state 

variables aggregated in Z(t); and 0 represents the 
1

1 ( 2)
k

ii
n

=
 −  vector in which the 

elements are all 0. It is noted that the dimensions of A23, A31, A32 and A33 are 

1
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respectively. 

The representation of (2.2) is transformed from the time domain to frequency 

domain through the Fourier analysis, as given by (2.3). 
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where f is the frequency variable; Δδi(f), Δωi(f) and ΔZ(f) denote the frequency-domain 
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forms of Δδi(t), Δωi(t) and ΔZ(t) under the Fourier analysis, respectively. 

Based on (2.1) and (2.3), the linearized representation of a multi-machine power 

system can be derived as the form in Fig. 2.1 under the Fourier analysis. 
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Fig. 2.1. Linearized model of a multi-machine power system under the Fourier 

analysis. 

From Fig. 2.1, the relationships among the major variables are clearly revealed. Then, 

(2.4)-(2.6) can be derived, respectively. 
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where I is the 
1 1

( 2) ( 2)
k k

i ii i
n n

= =
−  −   identity matrix and ΔPei(f) is the electric 

power deviation of the i-th generator in the frequency domain. 

Substitute (2.5) and (2.6) into (2.4), and (2.7) can be derived step by step. 
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The electric torque consists of two components: the damping torque and 

synchronizing torque. According to the discussion in Chapter 1, the damping torque 

contributes to the damping of power oscillations. The electric power is considered to be 

approximately equal to the electric torque. According to the definition of the damping 

torque, the real part of the ratio of ΔPe,i(f) and Δωi(f), i.e. Kda,i(f) in (2.8) can be regarded 

as the damping torque coefficient. Eq. (2.7) and (2.8) will play an important role in 

revealing the connection between DTA and EFA in Section 2.4. 
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where Re(·) is the real part operator. 

For an SMIB power system, (2.8) is actually the damping torque coefficient of this 

single generator according to the conventional definition of the damping torque. 

For a multi-machine power system, the damping torque coefficients of multiple 

generators are usually presented in the matrix form. Eq. (2.8) essentially implies the 

integration effect of the damping contribution from the whole power system but 

projected to the i-th generator, which is different from the conventional definition of 

the damping torque. Hence, a useful concept is given as Definition 2.1. 

Definition 2.1. The aggregated damping torque coefficient of the i-th generator 

with respect to the interested oscillation frequency fd is defined as Kda,i(fd) by 
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substituting fd into (2.8). 

The physical explanation of this concept is that all the damping contribution from 

the whole power system is aggregated and then reflected from a selected generator. 

2.3 Energy Flow Analysis in Time Domain 

As indicated in [98] and [99], the oscillatory energy flow from node a to node b can 

be calculated by 
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where Wab is the oscillatory energy flow from node a to node b; Pab is the active power 

flow from node a to node b; Qab is the reactive power flow from node a to node b; Ua 

and θa are the amplitude and phase angle of the voltage of node a; the subscript (·)s in 

(2.9) denotes the steady-state value of the corresponding variable; and the operator Δ(·) 

in (2.9) denotes the deviation of the corresponding variable from its steady-state value. 

Normally, the reactive power in (2.9) is ignored. Then, it is seen that the oscillatory 

energy flow in (2.9) consists of two components, as listed in (2.10). 
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W P θ

W P θ

 = 


=  




                                               (2.10) 

where 1

abW  is the oscillatory energy component with respect to Pab,s; and 2

abW  is the 

oscillatory energy component with respect to ΔPab. 
2

abW  reflects the dissipation of the 

oscillatory energy flow [98]. 
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The electric power of the generator is considered to be numerically equal to the 

active power flow between the two nodes, and the phase angle of the node voltage is 

approximately regarded as the power angle of the generator. On this basis, the 

dissipation of the oscillatory energy flow of the i-th generator can be calculated by (2.11) 

using the measurements at the terminal of a local generator. 

, , ( )d ( )d i e i iW P t δ t=                                             (2.11) 

where Wd,i is the dissipation of the oscillatory energy flow of the i-th generator; and 

ΔPe,i(t) is the electric power deviation of the i-th generator. 

The electric power is considered to be approximately equal to the electric torque. 

Then, the dissipation of the oscillatory energy flow of the i-th generator can also be 

represented as 

, 0 , ( ) ( )dd i e i iW ω T t ω t t=                                         (2.12) 

where ΔTe,i(t) is the electric torque deviation of the i-th generator. 

Generally, the electric torque can be divided into synchronizing torque and damping 

torque [52], i.e., (2.13). 

, , ,( ) ( ) ( )e i d i i s i iT t K ω t K δ t =  +                                    (2.13) 

where Kd,i is the damping torque coefficient of the i-th generator; and Ks,i is the 

synchronizing torque coefficient of the i-th generator. 

The integral of the product of power angle deviation and angular frequency 

deviation is equal to zero, and then (2.14) can be further derived based on (2.11)-(2.13). 

2

, 0 ,( )d ( ) ( )de i i d i iP t δ t ω K ω t t  =                               (2.14) 
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The damping torque coefficient can be derived from (2.14), as given by 

( )

,
0

, 2

0
0

( )d ( )

( ) d

e i i

d i

i

P t δ t
K

ω ω t t

+

+

 
=






                                         (2.15) 

Kd,i can reflect the energy attenuation brought by the damping torque of the 

generator, and hence we define the calculation result of (2.15) as the energy attenuation 

coefficient Kde,i in this chapter. Using the measurements at the terminal of a local 

generator, the energy attenuation coefficient of the i-th generator can be estimated by 

( )

,
0

, 2

0

( ) ( )d

( ) d

e i i

de i

i

P t ω t t
K

ω t t

+

+

 
=






                                      (2.16) 

where Kde,i is the energy attenuation coefficient of the i-th generator based on EFA. 

For an SMIB power system, the measurement at the terminal of the generator 

involves only one oscillation mode. Eq. (2.16) can be directly used to estimate the 

energy attenuation coefficient of this single generator. 

For a multi-machine power system, the measurement at the terminal of a local 

generator involves multiple oscillation modes. It is difficult to directly estimate the 

energy attenuation coefficient using (2.16). Therefore, it is necessary to conduct the 

pre-processing for the measurements at the terminal of a local generator in the time 

domain. According to the Fourier analysis, the signal that satisfies the Dirichlet 

condition can be decomposed into a series of sub-signals, as given by 

0

( ) cos(2 )
p

j j j

j

g t A πf t α
=

= +                                      (2.17) 

where g(t) denotes a signal in the time domain; p is the number of sub-signals 
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decomposed from g(t); Aj denotes the amplitude of the j-th sub-signal; fj denotes the 

frequency of the j-th sub-signal; and αj denotes the phase angle of the j-th sub-signal. 

The amplitude-frequency characteristic and phase-frequency characteristic of g(t) 

can be obtained by (2.18)-(2.20). 

j2( ) ( ) dπftG f g t e t
+

−

−
=                                               (2.18) 

1 ( )p G f =A                                                     (2.19) 

( )1 arg ( )p G f =α                                                 (2.20) 

where G(f) is the frequency-domain form of g(t) under the Fourier analysis; |·| denotes 

the magnitude of a complex number; arg(·) denotes the phase angle of a complex 

number; A1×p denotes the p-dimensional vector that includes the amplitudes of sub-

signals at each frequency; and α1×p denotes the p-dimensional vector that includes the 

phase angles of sub-signals at each frequency. 

The amplitude Ad (Ad∈A1×p) and phase angle αd (αd∈α1×p) at the interested 

frequency fd can be observed from the amplitude-frequency characteristic and phase-

frequency characteristic of g(t), and then the decomposed sub-signal with respect to the 

interested frequency fd is given as 

( ) = cos(2 + )df

d d dg t A f t                                      (2.21) 

where gf
d(t) is the decomposed sub-signal from g(t) with respect to fd. 

Based on (2.18)-(2.21), the decomposition is conducted for the electric power 

deviation and angular frequency deviation of the i-th generator, and the decomposed 

sub-signals with respect to fd are substituted into (2.16) to characterize the damping 
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contribution with respect to fd. Then, a concept is given as Definition 2.2. 

Definition 2.2. The frequency-decomposed energy attenuation coefficient of the i-

th generator with respect to an interested frequency fd is defined as K
de,i

f
d  by (2.22). 

( )

,
0

, 2

0

( ) ( )d

( ) d

d d

d

d

f f

e i if

de i
f

i

P t ω t t
K

ω t t

+

+

 
=






                                       (2.22) 

where K
de,i

f
d  denotes the frequency-decomposed energy attenuation coefficient of the i-

th generator with respect to fd; ΔP
e,i

 f
d(t) denotes the decomposed sub-signal from ΔPe,i(t) 

with respect to fd; and Δω
i

 f
d(t) denotes the decomposed sub-signal from Δωi(t) with 

respect to fd. 

If we repeat the calculation in (2.22) with respect to multiple frequencies (e.g., fa, 

fb, fc, fd …), the set  , , , ,
a b c df f f f

de i de i de i de iK K K K  can be obtained. It is seen that the 

frequency-decomposed energy attenuation coefficients calculated in the time domain 

can be represented as a spectrum with respect to multiple frequencies, which will be 

further analyzed in Section 2.4. 

In the case studies of Section 2.5, the time-domain data of the electric power and 

angular frequency can be obtained by the real-life measurements or solving differential 

equations. In this chapter, the time-domain data of the electric power and angular 

frequency is obtained by solving the differential equations based on synchronous 

generator models. The power flow calculation is needed in the process of solving 

differential equations. 
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2.4 The Connection between Energy Flow Analysis and Damping Torque 

Analysis 

In this section, the frequency spectrum analysis of the energy attenuation coefficient 

is conducted to demonstrate the consistency between EFA and DTA. 

Using the Parseval’s Theorem, the integral of the product of two real signals in the 

time domain can be conducted equivalently in the frequency domain, i.e., (2.23). It is 

noted that g1(t)=0 and g2(t)=0 when t<0. 

* *

1 2 1 2 1 2( ) ( )d ( ) ( )d ( ) ( )dg t g t t G f G f f G f G f f
+ + +

− − −
= =                (2.23) 

where g1(t) and g2(t) are two signals in the time domain; G1(f) and G2(f) are the 

frequency-domain forms of g1(t) and g2(t) under the Fourier analysis; and (·)* is the 

conjugate operator. 

Let G1(f)=R1(f)+jX1(f) and G2(f)=R2(f)+jX2(f), and then (2.24) can be derived. 

( )( )

( )

*

1 2 1 1 2 2

1 2 1 2 2 1 1 2

( ) ( ) ( ) j ( ) ( ) j ( )

( ) ( ) ( ) ( ) j ( ) ( ) ( ) ( )

G f G f R f X f R f X f

R f R f X f X f R f X f R f X f

= + −

= + + −
          (2.24) 

According to the Fourier analysis, (2.25) can be derived. 

1 1

1 1

2 2

2 2

( ) ( )cos(2 )d

( ) ( )sin(2 )d

( ) ( )cos(2 )d

( ) ( )sin(2 )d

R f g t πft t

X f g t πft t

R f g t πft t

X f g t πft t

+

−

+

−

+

−

+

−

 =



= −

 =

 = −










                                  (2.25) 

It can be seen from (2.25) that R1(f) and R2(f) are the even functions with respect to 

f, while X1(f) and X2(f) are the odd functions with respect to f. On this basis, R1(f)R2(f) 

and X1(f)X2(f) are the even functions, while R1(f)X2(f) and R2(f)X1(f) are the odd 
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functions. Therefore, (2.23) can be further derived as (2.26). 

( )

( )

*

1 2 1 2

1 2 1 2
0

*

1 2
0

( ) ( )d ( ) ( )d

2 ( ) ( ) ( ) ( ) d

2 Re ( ) ( ) d

g t g t t G f G f f

R f R f X f X f f

G f G f f

+ +

− −

+

+

=

= +

=

 





                            (2.26) 

By applying (2.26), (2.16) can be derived as (2.27). Eq. (2.27) implies that EFA is 

transformed from the time domain to frequency domain. 

( )

( )

( )

*

, ,
0 0

2 *

0 0

( ) ( )d Re ( ) ( ) d

( ) d Re ( ) ( ) d

e i i e i i

i i i

P t ω t t P f ω f f

ω t t ω f ω f f

+ +

+ +

   
=

  

 

 
                    (2.27) 

Normally, for an oscillation mode with respect to the particular frequency fd, (2.27) 

becomes (2.28). 

( )

( )

( )

*

, ,
0 0

2
*

0 0

( ) ( )d Re ( ) ( ) d

( ) d Re ( ) ( ) d

d d

d

f f

e i i e i d i d

f

i i d i d

P t ω t t P f ω f f

ω t t ω f ω f f

+ +

+ +

   
=

  

 

 
                 (2.28) 

It should be noted that ΔPe,i(fd), Δωi(fd) and Δωi
*(fd) are all constant complex 

numbers at the frequency fd, and hence the integral operator in (2.28) actually collapses. 

In fact, the product of Δωi(fd) and Δωi
*(fd) is a real number. Considering the coefficient 

proposed in (2.22), (2.29) can be obtained. 

*

, ,

, *

( ) ( ) ( )
Re Re

( ) ( ) ( )
d e i d i d e i df

de i

i d i d i d

P f ω f P f
K

ω f ω f ω f

    
= =        

                      (2.29) 

The following Theorem 2.1 can be summarized by comparing (2.29) with (2.7) and 

(2.8). 

Theorem 2.1. For the i-th generator, the aggregated damping torque coefficient is 

essentially equivalent to the frequency-decomposed energy attenuation coefficient with 
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respect to the oscillation frequency fd, i.e., 

, , ( )df

de i da i dK K f=                                                   (2.30) 

2.5 Case Studies 

The consistency of the proposed coefficients reflecting the damping performance 

calculated by (2.8), (2.22) and (2.29) is verified by the numerical calculation in both 

the SMIB power system and multi-machine power system in this section. The 6th-order 

model of synchronous generators [115] and the transfer functions of AVR and PSS are 

given by (A.1) and Fig. A.1 in the Appendix A.1. 

Matlab programming is employed to conduct the numerical calculations of Kda,i(fd) 

and K
de,i

f
d , i.e., Step 1-Step 6. 

Step 1: assume a set-up disturbance happens at the i-th generator in a power system; 

Step 2: the time-domain solutions of Pe,i(t) and ωi(t) of the i-th generator are 

obtained by solving the differential equations; then, ΔPe,i(t) and Δωi(t) are calculated 

from Pe,i(t) and ωi(t); 

Step 3: the amplitude-frequency characteristic of ΔPe,i(t) is obtained through the 

Fourier analysis, where the frequency of each dominant oscillation mode can be 

observed; then, select an interested oscillation mode at the frequency fd; 

Step 4: the modeling is conducted via (2.3); then, Kda,i(fd) is calculated by 

substituting the block sub-matrices of the state matrix and fd into (2.8); 
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Step 5: ΔPe,i(t) and Δωi(t) are decomposed as ∆Pe,i

f
d (t)  and ∆ω

i

f
d(t)  by applying 

(2.18)-(2.21) with respect to fd, and then (2.22) is applied to calculate K
de,i

f
d  in the time 

domain; 

Step 6: Eq. (2.29) is applied to calculate K
de,i

f
d  in the frequency domain. 

Finally, the numerical results from (2.8), (2.22) and (2.29) need to be compared to 

verify the consistency of DTA and EFA. 

2.5.1 Verification in a Single-machine Infinite-bus Power System 

The line diagram of the SMIB power system is shown in Fig. 2.2. 

~ 1

Generator Line

Infinite bus

External 

grid2 3

Transformer

 

Fig. 2.2. Line diagram of an SMIB power system. 

The parameters of this power system are given in the Appendix A.1. A step-up 

disturbance happens to the mechanical power of the generator at 0.2 s, i.e., Pm=1.1Pm0, 

and lasts for 0.1 s. There is no installation of PSS. The eigenvalue of the state matrix is 

computed to be -0.1021+j7.9095. 

The simulation results of ΔPe(t) and its amplitude-frequency characteristic are 

shown in Fig. 2.3. It is seen that there is only one dominant oscillation mode at around 

1.26 Hz. 

The plot of the angular frequency deviation Δω(t) and its amplitude-frequency 

characteristic are given by Fig. 2.4. It is seen that there is only one oscillation mode at 

around 1.26 Hz, which is consistent with that in Fig. 2.3 (b). 
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(a) 

 
(b) 

Fig. 2.3. ΔPe(t) and its amplitude-frequency characteristic. (a) Plot of ΔPe(t) in time 

domain. (b) Amplitude-frequency characteristic of ΔPe(t) in frequency domain. 

 

(a) 

 

(b) 

Fig. 2.4. Δω(t) and its amplitude-frequency characteristic. (a) Plot of Δω(t) in time 

domain. (b) Amplitude-frequency characteristic of Δω(t) in frequency domain. 
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attenuation coefficient at 1.26 Hz are calculated by (2.8), (2.22) and (2.29), respectively. 

The calculation results are shown in Table 2.1, which verifies the consistency. 

Table 2.1 Calculation of proposed coefficients in an SMIB power system. 

 DTA by (2.8) EFA by (2.22) EFA by (2.29) 

Calculation results 1.6221 1.6054 1.6308 

Generally, the numerical calculation from DTA is considered to be accurate because 

DTA is a modeling-based method. While the numerical calculation from EFA is 

regarded as an estimation because EFA is a measurement-based method. 

Eq. (2.8) is from DTA, (2.22) is from EFA in the time domain and (2.29) is from 

EFA in the frequency domain. The computing time by (2.8), (2.22) and (2.29) in this 

SMIB power system is 0.12 s, 0.14 s and 0.03 s, respectively. Compared with DTA (i.e., 

(2.8)), the error of (2.22)-based EFA is -1.03%, while the error of (2.29)-based EFA is 

0.54%. It is seen that the error of EFA is within an acceptable range. 

2.5.2 Verification in a 4-machine 2-area Power System 

The 4-machine 2-area (4M2A) power system is used as an example in this sub-

section, which is illustrated by Fig. 2.5. 

G1
1 5 6 7 8 9 2

3 4

G3

G2

G4

G generator

load

transformer

 

Fig. 2.5. Line diagram of a 4M2A power system. 
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The parameters of the generators, transmission lines and loads are presented in the 

Appendix A.1, which is cited from [115] and [116]. The based capacity of this 4M2A 

power system is 100 MVA. A step-up disturbance occurs in the mechanical power of 

the G1 at 0.5 s, i.e., Pm,1=1.05Pm0,1, and lasts for 0.05 s. 

The four generators are all equipped with AVR and PSS with the same parameter 

settings. Three scenarios are designed as follows: 

Scenario 1.1: Ka,i=60.0, Ta,i=0.055 s; Kpss,i=8.0, T1,i=T3,i=5.0 s, T2,i=T4,i=3.0 s; 

Scenario 1.2: Ka,i=70.0, Ta,i=0.055 s; Kpss,i=7.0, T1,i=T3,i=5.0 s, T2,i=T4,i=3.0 s; 

Scenario 1.3: Ka,i=80.0, Ta,i=0.055 s; Kpss,i=6.0, T1,i=T3,i=5.0 s, T2,i=T4,i=3.0 s. 

As for the neglecting of the reactive power in (2.9), the comparison of the oscillatory 

energy flow with and without the consideration of the reactive power is conducted at 

G1 in Scenario 1.1. The results are given in Fig. 2.6. It is seen that the influence of the 

reactive power is very small, which can be ignored. 

 

Fig. 2.6. Oscillatory energy flow with and without consideration of reactive power at 

G1 in Scenario 1.1. 

ΔPe,1(t) and the amplitude-frequency characteristics for three scenarios are 

displayed in Fig. 2.7-2.9, respectively. 
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(a) 

 

(b) 

Fig. 2.7. ΔPe,1(t) and its amplitude-frequency characteristic in Scenario 1.1. (a). Plot 

of ΔPe,1(t) in time domain. (b). Amplitude-frequency characteristic of ΔPe,1(t) in 

frequency domain. 

 
(a) 

 
(b) 

Fig. 2.8. ΔPe,1(t) and its amplitude-frequency characteristic in Scenario 1.2. (a) Plot of 

ΔPe,1(t) in time domain. (b) Amplitude-frequency characteristic of ΔPe,1(t) in 

frequency domain. 
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(a) 

 
(b) 

Fig. 2.9. ΔPe,1(t) and its amplitude-frequency characteristic in Scenario 1.3. (a) Plot of 

ΔPe,1(t) in time domain. (b) Amplitude-frequency characteristic of ΔPe,1(t) in 

frequency domain. 

It can be seen that there is an inter-area oscillation mode at around 0.53-0.54 Hz, 

which is the focus of this case study. The eigenvalues of the inter-area oscillation mode 

for the three scenarios are -0.0590+j3.3618, -0.0541+j3.3608 and -0.0454+j3.3580. The 

real part of the eigenvalue indicates the damping. By comparing the real parts of the 

three eigenvalues, it can be found that the damping performance of Scenario 1.1 is 

better. 

The calculation results of the aggregated damping torque coefficient by (2.8) and 

frequency-decomposed energy attenuation coefficient by (2.22) and (2.29) for the three 

scenarios are demonstrated by Table 2.2, which shows the consistency. 
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Table 2.2 Calculation of proposed coefficients in a 4M2A power system. 

 DTA by (2.8) EFA by (2.22) EFA by (2.29) 

Calculation in Scenario 1.1 44.71 45.34 45.37 

Calculation in Scenario 1.2 43.94 44.18 44.21 

Calculation in Scenario 1.3 38.93 38.11 38.14 

The difference between EFA and DTA mainly comes from the following aspects: 

(1) the fast Fourier transform is applied to analyze the amplitude-frequency 

characteristic of a signal in Matlab. Since the fast Fourier transform is discrete, the 

frequency of an oscillation mode may fall between two adjacent spectral lines, which 

brings a slight error to the displayed amplitude; (2) the reactive power is ignored in 

(2.9), which leads to a slight error; and (3) the integral operation is obtained by 

accumulating the rectangular areas within the time interval, which causes a slight error. 

However, the results are generally within the acceptable range. 

The damping performance assessment through different approaches is given by 

Table 2.3, and their assessment results are consistent. It is noted that the number of ☆ 

indicates the degree of damping performance. It can be concluded from the case studies 

that the proposed coefficients can be the new indicator for the qualitative assessment of 

the damping performance, which can be obtained from either the time or frequency 

domain. 

Table 2.3 Comparison of qualitative assessment of damping performance through 

multiple approaches. 

 Via eigenvalue Via DTA Via EFA 

Assessment in Scenario 1.1 ☆☆☆ ☆☆☆ ☆☆☆ 

Assessment in Scenario 1.2 ☆☆ ☆☆ ☆☆ 

Assessment in Scenario 1.3 ☆ ☆ ☆ 
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In order to demonstrate the relationship between the eigenvalue (or damping ratio) 

and the proposed frequency-decomposed energy attenuation coefficient (or aggregated 

damping torque coefficient), Ka,i is randomly adjusted 1000 times between 40.0 and 

80.0, and Kpss,i is randomly adjusted 1000 times between 4.0 and 8.0. Thus, 1000 

simulation scenarios are established to obtain a dense scatter diagram, as shown by the 

blue scatter points in Fig. 2.10 and 2.11. The fitting is represented by the red curves in 

Fig. 2.10 and 2.11. 

 
Fig. 2.10. Relationship between frequency-decomposed energy attenuation coefficient 

(or aggregated damping torque coefficient) and real part of eigenvalue. 

 
Fig. 2.11. Relationship between frequency-decomposed energy attenuation coefficient 

(or aggregated damping torque coefficient) and damping ratio. 

It can be revealed that there is an approximate linear relationship between the 
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coefficient) provides a new indicator to qualitatively assess the damping performance 

of the whole system, which provides the important reference for the parameter setting 

of external stabilizers. 

The application of the proposed concepts to qualitatively investigate the 

electromechanical oscillations of the multi-machine power system is suggested as 

follows. 

In order to qualitatively evaluate the damping performance based on the concept of 

the aggregated damping torque coefficient, the mathematical models of all power 

components should be available, and the state-space modelling of the whole power 

system should be conducted. Then, (2.8) is applied to calculate the aggregated damping 

torque coefficient. 

The concept of the frequency-decomposed energy attenuation coefficient proposed 

for EFA shows a clear advantage in the large-scale power system with a large number 

of complex power components. The mathematical models of power components are 

unnecessary to be known, and the high-dimensional modeling can be avoided. In order 

to qualitatively evaluate the damping performance based on EFA, the measurements at 

the terminal of a local generator should be monitored. After that, (2.22) or (2.29) can 

be applied to calculate the frequency-decomposed energy attenuation coefficient. 

2.6 Summary 

The key findings of this chapter are summarized as follows: (1) through the case 

studies in both the SMIB power system and 4M2A power system, the consistency of 
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the aggregated damping torque coefficient and the frequency-decomposed energy 

attenuation coefficient is numerically verified; and (2) the relationship between the 

frequency-decomposed energy attenuation coefficient (or aggregated damping torque 

coefficient) and the eigenvalue (or damping ratio) is numerically disclosed, which 

further demonstrates the application of the proposed concepts in the qualitative 

assessment of the system damping. 
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Chapter 3 

A Novel Energy Flow Analysis and Its Connection 

with Modal Analysis for Investigating 

Electromechanical Oscillations 

3.1 Overview 

In Chapter 2, the consistency between EFA and DTA is derived and discussed to 

explain the oscillatory damping mechanism. The conclusion in Chapter 2 can be used 

for the qualitative investigation of the electromechanical oscillation, but the related 

quantitative analysis is limited. In this chapter, a novel EFA is proposed based on the 

signal reconstruction and decomposition to quantitatively investigate the 

electromechanical oscillations. In contrast to the research in Chapter 2, the connection 

between the proposed EFA and MA can be quantitatively revealed for arbitrary models 

of synchronous generators in multi-machine power systems. Firstly, TDI of the 

proposed EFA is designed. Specifically, the measurements at the terminal of a local 

generator are reconstructed through an exponential operator and then decomposed with 

respect to an angular frequency. Then, the mode-screened damping torque coefficient 

is defined to extract the damping feature with respect to an electromechanical 

oscillation mode. After that, FDI is derived. Specifically, the Parseval’s Theorem is 

applied to transform the proposed EFA from the time domain to frequency domain. On 
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this basis, the consistency between the proposed EFA and MA is strictly proved, which 

is applicable for arbitrary models of synchronous generators in multi-machine power 

systems. Additionally, the application procedure of the proposed EFA in quantitatively 

investigating electromechanical oscillations is given. Finally, the proposed EFA are 

substantially demonstrated in multiple case studies. 

3.2 Time-domain Implementation 

In this section, TDI of the proposed EFA is developed based on the signal 

reconstruction and decomposition to quantitatively extract the damping feature with 

respect to an electromechanical oscillation mode in the multi-machine power system. 

When an electromechanical oscillation event occurs, the damping effect of generators 

as well as external stabilizers leads to the dissipation of the oscillatory energy flow. 

According to [91], the oscillatory energy flow into the generator is divided into two 

parts. One is related to the active power–frequency control loop, and the other is related 

to the reactive power–voltage control loop. In fact, the change of the damping 

contribution is essentially owing to the regulation of the active power by the relevant 

controllers. Thus, the oscillatory energy flow related to the active power–frequency 

control loop of the i-th generator is mainly analyzed. 

According to the discussion in Chapter 2, the dissipation of the oscillatory energy 

flow of the i-th generator can be calculated by (2.11) using the measurements at the 

terminal of the local generator. Additionally, in the studies of the oscillatory stability, 

the electric power deviation is considered approximately be equal to the electric torque 
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deviation. In this view, the damping torque coefficient can be derived as (2.15). 

For a power system with multiple generators, the measurements at the terminal of 

a local generator are coupled with multiple electromechanical oscillation modes. Thus, 

Kd,i obtained by (2.15) is actually associated with multiple oscillation modes, which 

cannot be effectively used to quantitatively indicate the damping feature with respect 

to an electromechanical oscillation mode. 

In order to enable (2.15) to quantitatively characterize the damping feature with 

respect to an electromechanical oscillation mode, the pre-processing of the 

measurements in Chapter 2 should be improved. According to the Laplace analysis, the 

concept of signal reconstruction and decomposition is discussed. The principle of the 

Laplace analysis can be expressed by (3.1), which is the analysis of double-variables, 

i.e., s=σ+jw. 

( ) j

0 0
( ) ( )e d ( )e e dst σt wtG s g t t g t t

+ +
− − −= =                                (3.1) 

where s is the Laplacian operator; σ is the real part of s; w is the imaginary part of s; 

G(s) is the frequency-domain form of g(t) under the Laplace analysis. The meanings of 

other variables are the same as those in Chapter 2. 

For a real signal, it should be noted that g(t)=0 when t<0. Then, it can be seen from 

(3.1) that the Laplace analysis of g(t) can be regarded as the Fourier analysis of g(t)e-σt. 

On this basis, the signal reconstruction is defined as 

( | ) ( )e σtg t σ g t −=                                                 (3.2) 

where g(t | σ) is the reconstructed signal from g(t) by operator e-σt. 
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In practice, the integral interval of (3.1) is 0<t<tz, where tz is the signal length in the 

time domain. When σ=0, e-σt=1 and the Laplace analysis of g(t) becomes its Fourier 

analysis. For an electromechanical oscillation mode λd=σd±jwd associated with a local 

generator, the amplitude-frequency and phase-frequency spectrum of the reconstructed 

signal g(t | σd) can be obtained by (3.3)-(3.5). G(w | σd) is the Fourier analysis of g(t | σd) 

or the Laplace analysis of g(t) with respect to σ=σd and a set of angular frequencies 

w1×q=[w1, w2, … , wq]. It noted that the angular frequency variable w is adopted in 

Chapter 3. 

j

0
( | ) ( | ) dwt

d dG w σ g t σ e t
+

−=                                       (3.3) 

1 ( | )q dG w σ =M                                                  (3.4) 

( )1 arg ( | )q dG w σ =β                                             (3.5) 

where λd is a pair of eigenvalues with respect to an electromechanical oscillation mode; 

σd is the real part of λd; wd is the imaginary part of λd; g(t | σd) is g(t | σ) with respect to 

σ=σd; G(w | σd) is the frequency-domain form of g(t | σd) under the Fourier analysis; q 

is the number of decomposed sub-signals from g(t | σd); w1×q is the q-dimensional vector 

of angular frequencies of decomposed sub-signals from g(t | σd); wq is the q-th element 

in w1×q; M1×q is the q-dimensional vector of amplitudes of decomposed sub-signals from 

g(t | σd); and β1×q is the q-dimensional vector of phase angles of decomposed sub-signals 

from g(t | σd). The meanings of other variables are the same as those in Chapter 2. 

In the time domain, the reconstructed signal g(t | σd) is equivalent to the sum of a 

series of sub-signals with the form of (3.6) with respect to σ=σd and a set of angular 
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frequencies w1×q=[w1, w2, … , wq]. 

1

( | ) cos( )
q

d k k k

k

g t σ M w t β
=

= +                                      (3.6) 

where wk is the angular frequency of the k-th decomposed sub-signal from g(t | σd); Mk 

is the amplitude of the k-th decomposed sub-signal from g(t | σd); and βk is the phase 

angle of the k-th decomposed sub-signal from g(t | σd). 

The amplitude Md (Md∈M1×q) and phase angle βd (βd∈β1×q) with respect to the 

angular frequency wd (wd∈w1×q) can be observed from the amplitude-frequency and 

phase-frequency spectrum. It should be noted that wd indicates the imaginary part of λd 

rather than the d-th element in w1×p. Md is the amplitude of the decomposed sub-signal 

with respect to w=wd, and βd is the phase angle of the decomposed sub-signal with 

respect to w=wd. Then, the decomposed sub-signal from g(t | σd) with respect to the 

angular frequency wd is given by 

( | ) = cos( + )dw

d d d dg t σ M w t                                            (3.7) 

where gwd(t | σd) is the decomposed sub-signal from g(t | σd) with respect to w=wd. 

Based on the discussion above, let σ=σd and (3.2) is applied to reconstruct ΔPe,i(t) 

and Δωi(t) as ∆Pe,i(t | σd) and ∆ω
i
(t | σd) with respect to σd, i.e., (3.8) and (3.9). 

, ,( | ) ( )e dσ t

e i d e iP t σ P t − =                                              (3.8) 

( | ) ( )e dσ t

i d iω t σ ω t − =                                             (3.9) 

where ∆Pe,i(t | σd)  is the reconstructed signal from ΔPe,i(t) by operator e-σdt ; and 

∆ω
i
(t | σd) is the reconstructed signal from Δωi(t) by operator e-σdt. 

Then, (3.3)-(3.5) and (3.7) are applied to decompose ∆Pe,i(t | σd) and ∆ω
i
(t | σd) to 
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be ∆Pe,i
wd(t | σd) and ∆ω

i

wd
(t | σd) with respect to wd. On this basis, a new concept K

d,i

λ
d  is 

given in the Definition 3.1 below. Compared with the research in Chapter 2, the 

damping feature with respect to λd=σd±jwd is quantitatively extracted from the 

perspective of the i-th generator via (3.10). 

Definition 3.1. The mode-screened damping torque coefficient with respect to the 

electromechanical oscillation mode λd is defined as 

( )

,
0

, 2

0

( | ) ( | )d

( | ) d

d d

d

d

w w

e i d i d

d i
w

i d

P t σ t σ t
K

t σ t






+

+

 
=






                                (3.10) 

where ∆Pe,i
wd(t | σd) is the decomposed sub-signal from ∆Pe,i(t | σd) with respect to w=wd; 

∆ω
i

wd
(t | σd) is the decomposed sub-signal from ∆ω

i
(t | σd) with respect to w=wd; and 

K
d,i

λ
d  is the mode-screened damping torque coefficient of the i-th generator with respect 

to λd. 

3.3 Frequency-domain Implementation 

In this section, the proposed EFA in Section 3.2 is transformed from the time 

domain to frequency domain (i.e., its FDI), which is later employed for essentially 

revealing the connection between the proposed EFA and MA in the next section. 

According to the discussion in Chapter 2, the integral of the product of two real 

signals can be conducted equivalently in the frequency domain through the Parseval’s 

Theorem. The equation of the Parseval’s Theorem with respect to the angular frequency 

is represented by 
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( )

*

1 2 1 2

*

1 2
0

1
( ) ( )d ( ) ( )d

2

1
Re ( ) ( ) d

g t g t t G w G w w
π

G w G w w
π

+ +

− −

+

=

=

 


                       (3.11) 

where G1(w) and G2(w) are the frequency-domain forms of g1(t) and g2(t) under the 

Fourier analysis with respect to the angular frequency. The meanings of other variables 

are the same as those in Chapter 2. 

It should be emphasized here that the frequency variable f is used in Chapter 2, and 

the angular frequency variable w is used in Chapter 3. Thus, the equation of the 

Parseval’s Theorem is slightly different from that in Chapter 2. 

Based on (3.2), two real signals g1(t) and g2(t) are reconstructed as
 

1 1( | ) ( ) dσ t

dg t σ g t e−=                                              (3.12) 

2 2( | ) ( ) dσ t

dg t σ g t e−=                                              (3.13) 

where g1(t | σd) is the reconstructed signal from g1(t) by operator e-σdt; and g2(t | σd) is 

the reconstructed signal from g2(t) by operator e-σdt. 

Substitute g1(t | σd) and g2(t | σd) into (3.11), and then (3.14) can be obtained. 

( )*

1 2 1 2
0

1
( | ) ( | )d Re ( | ) ( | ) dd d d dg t σ g t σ t G w σ G w σ w

π

+ +

−
=      (3.14) 

where G1(w | σd)  and G2(w | σd)  are the frequency-domain forms of g1(t | σd)  and 

g2(t | σd) under the Fourier analysis. 

The measurements ΔPe,i(t) and Δωi(t) monitored at the terminal of the i-th generator 

are reconstructed based on (3.8) and (3.9). Then, (3.15) can be derived by applying 

(3.14). 
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( )

( )

( )

*

, ,
0 0

2 *

0 0

( | ) ( | )d Re ( | ) ( | ) d

( | ) d Re ( | ) ( | ) d

e i d i d e i d i d

i d i d i d

P t σ t σ t P w σ w σ w

t σ t w σ w σ w

 

  

+ +

+ +

   
=

  

 

 
         (3.15) 

where ∆Pe,i(w | σd) and ∆ω
i
(w | σd) are the frequency-domain forms of ∆Pe,i(t | σd) and 

∆ω
i
(t | σd) under the Fourier analysis. 

For a specific electromechanical oscillation mode λd, (3.10) can be equivalently 

derived as (3.16) based on (3.15). 

( )

( )

( )

,
0

, 2

0

*

,
0

*

0

Δ ( | )Δ ( | )d

Δ ( | ) d

Re Δ ( | )Δ ( | ) d

Re Δ ( | )Δ ( | ) d

d d

d

d

w w

e i d i dλ

d i
w

i d

e i d d i d d

i d d i d d

P t σ ω t σ t
K

ω t σ t

P w σ ω w σ w

ω w σ ω w σ w

+

+

+

+

=

=









                             (3.16) 

where ∆Pe,i(wd | σd)  is ∆Pe,i(w | σd)  with respect to w=wd; and ∆ω
i
(wd | σd)  is  

∆ω
i
(w | σd) with respect to w=wd. 

It is noted that ∆Pe,i(wd | σd), ∆ω
i
(wd | σd) and ∆ω

i

*
(wd | σd) are the constant complex 

numbers, and the product of ∆ω
i
(wd | σd) and ∆ω

i

*
(wd | σd) is a real number. Therefore, 

the integral operator in (3.16) collapses, i.e., (3.17). 

*

, ,

, *

( | ) ( | ) ( | )
Re Re

( | ) ( | ) ( | )
d e i d d i d d e i d dλ

d i

i d d i d d i d d

P w σ ω w σ P w σ
K

ω w σ ω w σ ω w σ

    
= =        

             (3.17) 

The discussion in this section implies that the proposed EFA is transformed from 

the time domain to frequency domain. TDI and FDI of the proposed EFA are essentially 

equivalent. In other words, (3.10) and (3.17) are essentially consistent. 
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3.4 The Connection between the Proposed Energy Flow Analysis and 

Modal Analysis 

In Section 3.2, a novel EFA is proposed based on the signal reconstruction and 

decomposition in the time domain, i.e., its TDI. In Section 3.3, the proposed EFA is 

converted from the time domain to frequency domain, i.e., its FDI. In this section, the 

proposed EFA is proved to be consistent with MA in the frequency domain. The proposed 

mode-screened damping torque coefficient is connected with the eigenvalue, which lays 

a foundation for the application procedure of the proposed EFA in Section 3.5. 

In order to represent the whole power system considering the arbitrary models of 

synchronous generators, the linearization of a multi-machine power system is derived as 

(3.18) through the Laplace analysis by adding the equations that characterize the AVRs, 

PSSs, etc. 

0

21

,

0
Δ ( ) Δ ( )

Δ ( ) Δ ( )

Δ ( ) Δ ( )

i i

i
i i

J i

ω
s δ s δ s

D
s ω s A ω s

T
s s s

 
    
    = −
    
       

  

23

31 32 33

A

Z Z
A A A

0

                             (3.18) 

where Δδi(s), Δωi(s) and ΔZ(s) are the frequency-domain forms of Δδi(t), Δωi(t) and 

ΔZ(t) under the Laplace analysis. The meanings of other variables are the same as those 

in Chapter 2. 

Similar to the discussion in Chapter 2, ΔZ(s) includes the state variables of the i-th 

generator excluding Δδi(s) and Δωi(s), as well as all the state variables of other generators. 

Eq. (3.18) uses the i-th generator as an example, and the damping contribution of the 

whole power system is aggregated to the selected generator (i.e., the i-th generator). The 
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linearized representation of a multi-machine power system under the Laplace analysis 

can be shown in Fig. 3.1, where ΔPe,i(s) is the frequency-domain form of ΔPe,i(t) under 

the Laplace analysis. 
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Fig. 3.1. Linearized representation of a multi-machine power system under the 

Laplace analysis. 

Similar to the derivation in Chapter 2, (3.19)-(3.21) can be obtained, respectively. 

0Δ ( ) Δ ( )i i

ω
δ s ω s

s
=                                              (3.19) 

( )21

1
Δ ( ) Δ ( ) Δ ( )i iω s A δ s s

s
= + 23A Z                               (3.20) 

Δ ( ) Δ ( ) Δ ( )i is δ s ω s
s s

= +
− −

31 32

33 33I I

A A
Z

A A
                       (3.21) 

Substitute (3.19) into (3.20), and (3.22) can be obtained. 

0
21 Δ ( ) Δ ( )i

ω
s A ω s s

s

 
− = 

 
23A Z                              (3.22) 

Substitute (3.19) into (3.21), and (3.23) can be obtained. 

0Δ ( ) Δ ( )i

ω
s ω s

s s s

 
= + 

− − 

31 32

33 33I I

A A
Z

A A
                             (3.23) 

Substitute (3.23) into (3.22), and (3.24) can be obtained. 
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0
21

ω
s A

s s s

   
= + +   
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31 32
23 23

33 33I I

A A
A A

A A
                           (3.24) 

Eq. (3.24) shares the same eigenvalue solutions with (3.18) as no information is 

missing. According to Fig. 3.1, (3.25) can be derived. 

( ), , 21Δ ( ) Δ ( ) Δ ( )e i J i iP s T A δ s s= − + 23A Z                              (3.25) 

Eliminate Δδi(s) and ΔZ(s) in (3.25) using (3.19) and (3.23), and then (3.26) can be 

derived. 

, 0
21

,

Δ ( )

Δ ( )

e i

J i i

P s ω
A

T ω s s s s

   
− = + +   

− −   

31 32
23 23

33 33I I

A A
A A

A A
                 (3.26) 

For an electromechanical oscillation mode λd, the variable s in (3.24) and (3.26) is 

replaced by λd. By substituting (3.26) into (3.24), (3.27) can be obtained. 

,

,

Δ ( )

Δ ( )

e i d

d

J i i d

P λ
λ

T ω λ
− =                                             (3.27) 

where ΔPe,i(λd) is ΔPe,i(s) with respect to s=λd; and Δωi(λd) is Δωi(s) with respect to 

s=λd. 

In fact, ΔPe,i(λd) and Δωi(λd) are actually ∆Pe,i(wd | σd) and ∆ω
i
(wd | σd) based on the 

discussion in Section 3.3. Substitute (3.27) into (3.17), and (3.28) can be obtained. 

( ), ,Redλ

d i J i dK T λ= −                                              (3.28) 

It can be seen from (3.28) that the proposed EFA is always equivalent to MA for the 

arbitrary models of synchronous generators in the multi-machine power system, which 

is summarized as a new Theorem 3.1 below, where Λ is the set of system eigenvalues 

associated with the i-th generator of a multi-machine power system; λ is an arbitrary 
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pair of complex numbers; x is the real part of λ; y is the imaginary part of λ (y≠0); and 

Kd,i
λ  is the mode-screened damping torque coefficient of the i-th generator with respect 

to λ. 

Theorem 3.1. Λ is the set of system eigenvalues associated with the i-th generator 

of a multi-machine power system. Re(λ)=-
Kd,i

λ

TJ,i
 holds if a pair of complex numbers λ=x±jy 

(y≠0) ∈ Λ. 

The proposed Theorem 3.1 implies the consistency between the proposed EFA and 

MA, which hence can provide a clear explanation on the quantitative analysis of the 

electromechanical oscillation. Interestingly, the new concept proposed in Section 3.2 

(i.e., eq. (3.10)) is connected with the real part of the eigenvalue without considering 

the reactive power, which is one of the highlights and main findings of this chapter. 

Compared with the work in the literature, the proposed Theorem 3.1 is a general 

conclusion for arbitrary types and parameters of synchronous generators and power 

networks in the multi-machine power system. Even if the structure and parameters of 

the power network are unknown, the proposed Theorem 3.1 can be used to 

quantitatively estimate the damping performance. 

3.5 Application Procedure of the Proposed Energy Flow Analysis 

In Section 3.4, it is proved that the proposed EFA and MA are consistent, and the 

proposed mode-screened damping torque coefficient is connected with the eigenvalue, 

which provides the potential for the application of the proposed EFA in quantitatively 

estimating the damping performance of system oscillations. 
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For an unfamiliar power network or a complex system, the frequency of dominant 

electromechanical oscillation modes can be directly and conveniently observed from 

the Fourier analysis of the measurements at the terminal of a local generator. In other 

words, the frequency of the interested electromechanical oscillation mode is not 

required to be known by the system operators in advance. The variable y in the proposed 

Theorem 3.1 can be directly replaced by the angular frequency of an interested 

electromechanical oscillation mode. Then, the damping performance with respect to the 

interested electromechanical oscillation mode can be quantitatively investigated by 

searching the variable x to meet the requirement in the proposed Theorem 3.1. 

According to the discussions in Section 3.2 and 3.3, the calculation of Kd,i
λ

 with 

respect to an arbitrary pair of complex numbers λ=x±jy (y≠0) can be conducted by two 

options below. 

Option (1): Refer to the discussion in Section 3.2. ΔPe,i(t) and Δωi(t) are 

reconstructed as ∆Pe,i(t | x)  and ∆ω
i
(t | x)  with respect to x. Then, ∆Pe,i

y
(t | x)  and 

∆ω
i

y
(t | x) are decomposed from ∆Pe,i(t | x) and ∆ω

i
(t | x) with respect to y. After that, 

the decomposed sub-signals ∆Pe,i
y

(t | x)  and ∆ω
i

y
(t | x)  are substituted into (3.10) to 

compute the value of Kd,i
λ

. 

Option (2): Refer to the discussion in Section 3.3. ΔPe,i(t) and Δωi(t) are 

reconstructed as ∆Pe,i(t | x)  and ∆ω
i
(t | x)  with respect to x. Then, ∆Pe,i(w | x) and 

∆ω
i
(w | x) are obtained from the Fourier analysis of ∆Pe,i(t | x) and ∆ω

i
(t | x). After that, 

∆Pe,i(y | x) and ∆ω
i
(y | x) with respect to y are substituted into (3.17) to compute the 

value of Kd,i
λ

. 
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It should be noted that option (1) is in the time domain while option (2) is in the 

frequency domain, and Kd,i
λ

 can be calculated from either option. 

Based on the discussion above, the real part of the eigenvalue can be estimated by 

searching x, and the steps are illustrated in Fig. 3.2. The original x can be set as 0. 

START

Select an interested angular 

frequency, i.e., y

Set an original x 

Calculate Kλ
d,i through option (1) or (2)

Does Re(λ)=-Kλ
d,i/TJ,i hold?

Output the real part of the 

related eigenvalue

END

Yes

Update x
No

Let λ=x±jy

 
Fig. 3.2. Procedure flowchart of searching real part of eigenvalue. 

3.6 Case Studies 

The accuracy of the proposed EFA is verified in a 4M2A power system in 

Subsection 3.6.1, and the application of the proposed EFA in quantitatively 

investigating the electromechanical oscillations is demonstrated in a 16-machine 5-area 

(16M5A) power system in Subsection 3.6.2. Finally, a case of a real large-scale power 

system is further discussed in Subsection 3.6.3. 
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3.6.1 Verification in a 4-machine 2-area Power System with a Single Measurement 

Since the aim of this subsection is to verify the accuracy of the proposed EFA, an 

interested eigenvalue of the 4M2A power system is selected to illustrate the calculation 

of the mode-screened damping torque coefficient via both TDI and FDI of the proposed 

EFA, which has been summarized in Section 3.5. 

The line diagram of the 4M2A power system has been given by Fig. 2.5, which is 

not repeated here. The base capacity of the 4M2A power system is 100 MVA. The four 

generators are all equipped with AVR and PSS, and the terminal of G1 is set as the 

single measurement location. 

In order to verify the consistency between the proposed EFA and MA, the 6th-order 

model is adopted for all four generators in this study, as given by (A.1) in the Appendix 

A.1. It should be emphasized that the Definition 3.1 proposed in Section 3.2 and the 

Theorem 3.1 proposed in Section 3.4 are not limited to the 6th-order model of the 

synchronous generator. The parameters of generators are listed in the Appendix A.2. It 

is assumed that a step-up disturbance occurs to G1 at 0.5 s and its mechanical power 

becomes 1.05 times of the original value, lasting for 0.05 s. 

Pe,1(t) and ω1(t) at the terminal of G1 are recorded for 100 s. Then, the deviations of 

Pe,1(t) and ω1(t) from the steady-state values are calculated, i.e., ΔPe,1(t) and Δω1(t). 

The amplitude-frequency characteristic of ΔPe,1(t) is analyzed to identify the frequency 

of dominant electromechanical oscillation modes. The plot of ΔPe,1(t) is given in Fig. 

3.3 (a), and the amplitude-frequency characteristic of ΔPe,1(t) is given in Fig. 3.3 (b). 
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(a)                                                       (b) 

Fig. 3.3. ΔPe,1(t) and its amplitude-frequency characteristic in a 4M2A power system. 

(a). Plot of ΔPe,1(t) in time domain. (b). Amplitude-frequency characteristic of ΔPe,1(t) 

in frequency domain. 

Fig. 3.3 (b) shows that G1 is majorly associated with two electromechanical 

oscillation modes at around 0.54 Hz and 0.97 Hz. The oscillation mode at around 0.54 

Hz is an inter-area oscillation mode, which is selected as the concerned one in this study. 

Then, the eigenvalue with respect to 0.54 Hz is also calculated from the state matrix of 

this 4M2A power system, i.e., -0.0820±j3.3977, for the verification purpose. 

Since (3.24) is a key step to derive the connection between the proposed EFA and 

MA in Section 3.4, the correctness of (3.24) is firstly verified in this 4M2A power 

system. Substitute s=-0.0820±j3.3977 into the right part of (3.24) and the result is -

0.0820±j3.3977. It can be found that (3.24) holds when a pair of complex numbers is 

equal to the related eigenvalue. 

Let x=-0.0820 and y=3.3977. According to the discussion in Section 3.5, the mode-

screened damping torque coefficient with respect to λ=x±jy=-0.0820±j3.3977 at G1 (i.e., 

Kd,1
λ

) is calculated from (3.10) and (3.17), respectively. 

After Kd,1
λ

 is calculated, the consistency between Re(λ) and -Kd,1
λ

TJ,1⁄  is verified. 

The results are listed in Table 3.1. It can be demonstrated that the numerical calculations 
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from the proposed EFA show a high accuracy. 

Table 3.1 Accuracy verification of the proposed EFA at G1 in a 4M2A power system. 

Concerned 

frequency 
Re(λ) 

-Kd,1
λ

TJ,1⁄  

(Kd,1
λ

 is from (3.10)) 

-Kd,1
λ

TJ,1⁄  

(Kd,1
λ

 is from (3.17)) 

0.54 Hz -0.0820 -0.0832 -0.0821 

Apart from this, as one of the most important conclusions in this chapter, the 

correctness of the proposed Theorem 3.1 is further verified in the 4M2A power system. 

The arbitrary pair of complex numbers x±jy is generated as λ for the calculation of 

-Kd,1
𝜆 TJ,1⁄ , which is repeated for 1000 times. The results are plotted in Fig. 3.4, where 

the x-axis is the real part of the complex number (i.e., x), the y-axis is the imaginary 

part of the complex number (i.e., y), and the z-axis is the result calculated from 

-Kd,1
λ

TJ,1⁄ . The blue circles are the results from -Kd,1
λ

TJ,1⁄  by the arbitrary pairs of 

complex numbers, and the red dot is the result from -Kd,1
λ

TJ,1⁄  by the related eigenvalue 

(i.e., -0.0820±j3.3977). The coordinate of the red dot is (-0.0820, 3.3977, -0.0821). It 

is seen from the partially enlarged drawing that the x-coordinate is closest to the z-

coordinate for the red dot. In other words, only the red dot makes the transcendental 

equation in the proposed Theorem 3.1 hold, which further demonstrates the correctness 

of the proposed Theorem 3.1. 
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Fig. 3.4. Verification of the proposed Theorem 3.1 in a 4M2A power system. 

More discussions on the above results are highlighted as follows: (1) it is known 

from Table 3.1 that the proposed EFA can be implemented in both the time and 

frequency domain; (2) Eq. (3.24) is valid when the variable s is a related eigenvalue; 

and (3) Fig. 3.4 reveals that the proposed Theorem 3.1 is valid only when a pair of 

complex numbers x±jy are the related eigenvalues of the multi-machine power system. 

3.6.2 Application in a 16-machine 5-area Power System with Multiple 

Measurements 

The application of the proposed EFA with multiple measurements at different 

generators is demonstrated in a 16M5A power system. The line diagram of the 16M5A 

power system is illustrated in Fig. 3.5. The generators are all equipped with AVR but 

no PSS. The base capacity of this 16M5A power system is 100 MVA. The parameters 

of generators are listed in the Appendix A.2, which is cited from [117]. The terminals 

of the 16 generators are the potential measurement locations. A step-up disturbance 

happens to G1 at 0.2 s and its mechanical power becomes 1.05 times of the original 

value, lasting for 0.1 s. 
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Fig. 3.5. Line diagram of a 16M5A power system. 

ΔPe,1(t) and its amplitude-frequency characteristic are given in Fig. 3.6. ΔPe,10(t) 

and its amplitude-frequency characteristic are given in Fig. 3.7. It can be observed from 

Fig. 3.6 (b) that G1 is majorly associated with two electromechanical oscillation modes 

at around 1.39 Hz and 1.44 Hz. Fig. 3.7 (b) further indicates that G10 is also associated 

with the same two oscillation modes as G1. The damping performances with respect to 

1.39 Hz and 1.44 Hz are hence further quantitatively investigated at both G1 and G10, 

respectively. 

 

(a)                                                       (b) 

Fig. 3.6. ΔPe,1(t) and its amplitude-frequency characteristic in a 16M5A power 

system. (a). Plot of ΔPe,1(t) in time domain. (b). Amplitude-frequency characteristic of 

ΔPe,1(t) in frequency domain. 
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(a)                                                       (b) 

Fig. 3.7. ΔPe,10(t) and its amplitude-frequency characteristic in a 16M5A power 

system. (a). Plot of ΔPe,10(t) in time domain. (b). Amplitude-frequency characteristic 

of ΔPe,10(t) in frequency domain. 

When the model of a multi-machine power system is of a high dimension, the 

proposed EFA demonstrates a clear merit to quantitatively investigate the damping 

performance of an interested electromechanical oscillation mode, since no complex 

modelling process is required. As mentioned above, the frequency of dominant 

electromechanical oscillation modes can be directly observed from the amplitude-

frequency characteristic of the measurements. Then, using the steps displayed in Fig. 

3.2, the real parts of related eigenvalues are investigated by searching x at the two-

dimension plane of y=2π×1.39=8.7336 and y=2π×1.44=9.0478. The results are given 

by Fig. 3.8. 

It is noted that the horizontal axis of Fig. 3.8 represents the variable x in Fig. 3.2. 

The task of Fig. 3.8 is to continuously update the value of x to find its value that makes 

the equation in the proposed Theorem 3.1 hold. As mentioned in Section V, the original 

x can be set as 0. The blue curve in Fig. 3.8 is the trajectory of numerical results by 

continuously updating x from 0 to -0.1, and the crossover point with the red line is the 

value of x that makes the transcendental equation in the proposed Theorem 3.1 hold. 
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(a)                                                       (b) 

 

(c)                                                       (d) 

Fig. 3.8. Searching real parts of eigenvalues at G1 and G10 in a 16M5A power system. 

(a). At G1 with respect to 1.39 Hz. (b). At G1 with respect to 1.44 Hz. (c). At G10 with 

respect to 1.39 Hz. (d). At G10 with respect to 1.44 Hz. 

It should be emphasized here that the searching process of x can be actually stopped 

at the crossover point of the blue curve and red line, while Fig. 3.8 displays a complete 

process from 0 to -0.1 for a better understanding. For the electromechanical oscillation 

mode of 1.39 Hz, the real part of the eigenvalue obtained by the proposed method in 

Fig. 3.2 is -0.0656 at G1 and -0.0682 at G10. For the electromechanical oscillation mode 

of 1.44 Hz, the real part of the eigenvalue obtained by the proposed method in Fig. 3.2 

is -0.0582 at G1 and -0.0586 at G10. As a verification, the real eigenvalue of the 

oscillation mode of 1.39 Hz is given as -0.0668±j8.7220, and the real eigenvalue of the 

oscillation mode of 1.44 Hz is given as -0.0585±j9.0094. It can be concluded that the 
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estimated real parts of the eigenvalues are roughly consistent at G1 and G10. Therefore, 

the investigation on the real part of the eigenvalue can be done at any generator involved 

in the interested electromechanical oscillation mode. In addition, Fig. 3.8 also proves 

that the different electromechanical oscillation modes with similar frequency can be 

identified accurately via the proposed EFA. 

Next, whether the real part of the eigenvalue with respect to an electromechanical 

oscillation mode can be identified using the proposed procedure in Fig. 3.2 at those 

generators that are not strongly associated with the mode is verified. The 

electromechanical oscillation mode of 1.39 Hz is used as an example, and the results 

are given by Table 3.2. G1 and G10 are strongly associated with this oscillation mode, 

while G3 and G8 are not strongly associated. It can be seen from Table 3.2 that the real 

part of the eigenvalue with respect to this electromechanical oscillation mode can be 

identified at G3 and G8 that are not strongly associated. 

Table 3.2 Estimated real part of eigenvalue of electromechanical oscillation mode of 

1.39 Hz by the proposed EFA at multiple generators in a 16M5A power system. 

Concerned 

frequency 

Estimated 

result at G1 

Estimated 

result at G10 

Estimated 

result at G3 

Estimated 

result at G8 

1.39 Hz -0.0656 -0.0682 -0.0690 -0.0653 

The damping ratios of multiple concerned electromechanical oscillation modes are 

estimated to further verify the accuracy of the proposed procedure in Fig. 3.2. The 

results are shown in Table 3.3. The acceptable range of the absolute error of the 

damping ratio (%) can be set at ±0.1% in practice. It can be seen from Table 3.3 that 

the absolute error between the estimated damping ratio by the proposed EFA and the 
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real damping ratio is within the range ±0.02%. The proposed EFA demonstrates a 

feasibility for quantitatively investigating the electromechanical oscillation at multiple 

generators in a multi-machine power system. 

Table 3.3 Comparison of estimated damping ratios by the proposed EFA with real 

damping ratios in a 16M5A power system. 

Concerned frequency Real damping ratio Estimated damping ratio 

0.55 Hz 4.60 % 4.62 % 
0.66 Hz 1.89 % 1.90 % 
0.75 Hz 1.59 % 1.60 % 

0.86 Hz 0.99 % 0.99 % 

1.23 Hz 1.32 % 1.33 % 

1.39 Hz 0.77 % 0.75 % 

1.44 Hz 0.65 % 0.64 % 

More discussions on the obtained results are highlighted as follows: (1) Fig. 3.8 

illustrates that the real parts of eigenvalues of multiple electromechanical oscillation 

modes with similar frequency can be accurately identified by the proposed EFA; (2) 

Table 3.2 shows that the proposed EFA can be applied for quantitatively investigating 

the damping feature of the electromechanical oscillation mode that is not strongly 

associated with the measured generator; and (3) Table 3.3 illustrates that the error of 

the estimated damping ratio is within the acceptable range. 

3.6.3 A Case of a Real Large-scale Power System 

In this subsection, a case is further discussed in a real large-scale power system with 

multiple measurements. The configuration of this real provincial power grid at the East 

China is given in Fig. 3.9 [118]. There are 53 generators and 1713 buses. The voltage 

level of the transmission network is 500 kV and 220 kV. The abbreviations in Fig. 3.9 

represent different regions of this power grid. It is assumed that the parameters and 
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structures of the power network as well as generators are unknown. 
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Fig. 3.9. Configuration of a real large-scale power system in East China. 

The application of the proposed EFA in estimating the damping performance with 

respect to an electromechanical oscillation mode has been demonstrated in Subsection 

3.6.2 in details, which would not be repeated here. In this subsection, two 

electromechanical oscillation modes are investigated by the proposed procedure in 

Section 3.5, and the results are given by Table 3.4. 

Table 3.4 Validation of estimated damping ratios by the proposed EFA in a real large-

scale power system. 

Concerned frequency Real damping ratio Estimated damping ratio 

0.35 Hz 1.94 % 1.88 % 

0.73 Hz 6.36 % 6.44 % 

The above two electromechanical oscillation modes are two most concerned inter-
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area oscillation modes identified by the provincial system operators. It can be seen from 

Table 3.4 that the assessment error in this large-scale power system is larger than that 

in the 16M5A power system, but still acceptable. 

When the specific structures and parameters of the power network and generators 

are unknown in a large-scale power system, MA becomes incapable. However, the 

proposed EFA in this chapter can link with the eigenvalues for the arbitrary types and 

parameters of generators and power networks. 

3.7 Summary 

Some key findings of this chapter are summarized as follows: (1) the mode-

screened damping torque coefficient can be calculated in both the time and frequency 

domain based on the proposed EFA; (2) compared with the research in Chapter 2, the 

proposed EFA is strictly proved to be equivalent to MA regardless of the specific model 

of the generator in the multi-machine power system, and it is also interesting to see that 

this equivalence does not consider the reactive power items of the oscillatory energy 

flow; (3) the mode-screened damping torque coefficient with respect to an 

electromechanical oscillation mode is proportional to the real part of the eigenvalue 

with respect to this oscillation mode; (4) the damping performance of different 

electromechanical oscillation modes with similar frequency can be identified accurately 

by the proposed EFA; (5) the proposed EFA is proved to have a high accuracy for 

quantitatively investigating the damping ratio; (6) the proposed EFA provides the 

consistent results at multiple generators involved in the same electromechanical 
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oscillation mode; and (7) the damping ratio can be accurately estimated at the 

generators that are not strongly associated with the oscillation mode. 
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Chapter 4 

Application of Energy Flow Analysis in 

Investigating Machine-side Oscillations of Full 

Converter-based Wind Generation Systems 

4.1 Overview 

The MSOs of FCWG systems is the critical threat to the reliable wind power supply. 

The introduction of ARC to the MSC controls of FCWG can effectively improve the 

oscillatory stability of the PEC-penetrated power grid, but it would also complicate 

MSOs of FCWG. Thus, it is of great significance to study the damping feature of MSOs 

of FCWG. In Chapter 3, the quantitative investigation using EFA is limited to the 

electromechanical oscillations of conventional synchronous generators. In this chapter, 

the proposed EFA in Chapter 3 is extended and applied to quantitatively investigate 

MSOs of FCWG. Firstly, the configuration and machine-side control loops of FCWG 

are briefly introduced. Then, the proposed EFA is extended for quantitatively 

evaluating the damping feature of MSOs of FCWG in the time domain. After that, the 

consistency of the extended EFA with MA is proved and revealed, which is applicable 

for arbitrary control schemes of FCWG. Finally, the extended EFA is applied in 

numerically investigating multiple types of MSOs of FCWG in case studies. 
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4.2 Configuration and Machine-side Control Loops of Full Converter-

based Wind Generation 

The type configuration of FCWG is shown in Fig. 4.1. The main components of 

FCWG are as follows [119]: (1) a PMSG; (2) the MSC and its controllers; (3) the DC-

link, the GSC and their controllers; and (4) the phase-locked loop (PLL), etc. 

MSC GSC

Transformer
Transmission 

line

GridPMSG

FilterMultiple

Controllers

 

Fig. 4.1. Configuration of FCWG. 

The PMSG is commonly known as the type-4 wind turbine generator [120], which 

is an emerging and promising technique in the wind power industry. Unlike the type-3 

wind farm equipment, the PMSG and MSC are decoupled from the external grid by the 

DC capacitor. That is to say, the PMSG and MSC have no direct interaction with the 

external grid as the interaction is blocked by the DC capacitor [121][122]. 

Since this chapter focuses on MSO of FCWG, the machine-side control loops of 

FCWG are demonstrated in Fig. 4.2, Ppm,i(s) is the mechanical power of the i-th PMSG; 

Pwe,i(s) is the electric power of the i-th PMSG; Hpr,i is the inertia constant of the rotor 

of the i-th PMSG; ωpr,i(s) is the angular frequency of the stator of the i-th PMSG; 

ωprref,i(s) is the reference angular frequency of the stator of the i-th PMSG; Kp-wt,i is the 

integral time constant in the control loop of the wind turbine of the i-th PMSG; Kpp-wt,i 

is the proportional time constant in the control loop of the wind turbine of the i-th PMSG; 
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and xp-wt,i(s) is an intermediate variable in the control loop of the wind turbine of the i-

th PMSG. Generally, there are 3 control loops on the machine side of FCWG, i.e., the 

wind turbine control loop, d-axis current control loop and q-axis current control loop. 

Since the discussion on the extended EFA and its consistency with MA should be 

general to any control schemes, the d-axis current control loop and q-axis current 

control loop are represented in a general manner in Fig. 4.2. 
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Fig. 4.2. Machine-side control loops of FCWG. 

In the case studies of this chapter, a typical scheme of d-axis current control loop 

and q-axis current control loop is given in Fig. 4.3. The definition of variables in Fig. 

4.3 can be found in [113], which are not repeated here. 
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Fig. 4.3. A typical control scheme of MSC. 

When there is no ARC, the machine-side dynamics are directly connected at the DC 

capacitor, which does not interact with the EGOs. That is to say, the inherent MSOs of 

FCWG are all independent without ARC, and their characteristics are determined by 

the machine-side structure as well as parameters of FCWG. 

As discussed in Chapter 1, the rotor of PMSG can store energy and dynamics. If the 

FCWG is equipped with an ARC, the potential dynamic of PMSG can be utilized to 

improve the oscillatory stability of the PEC-penetrated power grid. On the other hand, 

when an ARC is installed, the EGOs will be introduced to the machine side of FCWG, 

which can complicate and aggravate MSOs of FCWG. Even the modal resonance 

between the inherent MSO and EGO can appear. Thus, the wind farm operator must 

pay more attention to them to ensure both the reliable wind power supply and the 

oscillatory stability. 

The mechanism of ARC is to introduce the disturbance of the external grid to the 

MSC controls to adjust the power output of FCWG and further to suppress the 
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instability. The transfer function of ARC is given in Fig. 4.4, where ΔPARC-wt,i(s) is the 

output signal of ARC to the i-th PMSG; TW is the time constant of the washout filter, 

KW is the proportional gain, T1, T2, T3 and T4 are the time constants of the lead-lag filers, 

and Δθpll,i(s) is the input signal of ARC (i.e., the PLL angle variation of the i-th FCWG 

in the frequency domain). It can be seen that an ARC has four main parts: a washout 

filter, a proportional gain, and two lead-lag filters. The washout filter eliminates the DC 

component and select the signal with the appropriate frequency that is related to the 

disturbance of the external grid. The proportional gain adjusts the input signal to a 

proper magnitude. The two lead-lag filters adjust the compensation angle to a proper 

one. 
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Fig. 4.4. Transfer function of ARC. 

4.3 Extension of Energy Flow Analysis for Machine-side Oscillations of 

Full Converter-based Wind Generation 

The typical configuration and machine-side control loops of FCWG have been 

given in Section 4.2. In this section, the proposed EFA in Chapter 3 is extended for 

MSOs of FCWG to quantitatively extract the damping feature of the interested MSOs. 

According to the definition in Chapter 2 and 3, the energy can be represented as the 

integral of the product of torque and speed. Based on that, the dissipation of the 

oscillatory energy flow of the i-th PMSG can be calculated by (4.1). 



 

73 

 

 

 

, , ,
0

( ) ( )ddp i pe i pr iW T t ω t t
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=                                          (4.1) 

where Wdp.i is the dissipation of the oscillatory energy flow of the i-th PMSG; Δωpr,i(t) 

is the angular frequency deviation of the stator of the i-th PMSG; and ΔTpe,i(t) is the 

electric torque imbalance of the i-th PMSG. 

In this chapter, the electric torque imbalance of PMSG is defined and decomposed 

as two components, i.e., (4.2). 

, , , , ,( ) ( ) ( )pe i pd i pr i ps i p wt iT t K ω t K x t− =  +                                 (4.2) 

where Kpd,i is the equivalent damping torque coefficient of the i-th PMSG; Kps,i is the 

equivalent synchronizing torque coefficient of the i-th PMSG; and Δxp-wt,i(t) is the 

deviation of the intermediate variable in the control loop of the wind turbine of the i-th 

PMSG in the time domain. 

Substitute (4.2) into (4.1), and (4.3) can be further derived. 
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               (4.3) 

The electric torque imbalance is considered to be approximately equal to the electric 

power deviation for the i-th PMSG. Thus, the equivalent damping torque coefficient of 

the i-th PMSG can be derived as (4.4) with/without ARC. It is noted that ΔPARC-wt,i(t)=0 

in the following two conditions: (1) there is no ARC; or (2) ARC is installed but it does 

not work since there is no disturbance on the external power grid. 
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where ΔPwe,i(t) is the electric power deviation of the i-th PMSG in the time domain; and 

ΔPARC-wt,i(t) is the output signal of ARC to the i-th PMSG in the time domain. 

For the machine side of FCWG, Kpd,i obtained by (4.4) is coupled with multiple 

MSOs and some of them may be the non-inherent MSOs (i.e., EGOs) introduced by 

ARC. That is to say, Kpd,i obtained by (4.4) cannot be effectively used to quantitatively 

indicate the damping feature of the interested MSO. 

For an interested MSO λm=σm±jwm, the amplitude and phase angle at wm can be 

observed from the plot of the amplitude-frequency spectrum and phase-frequency 

spectrum of the measurements of PMSG. 

The pre-processing of measurements in Chapter 3 is applied to reconstruct ΔPARC-

wt,i(t), ΔPwe,i(t) and Δωpr,i(t) as ΔPARC-wt,i(t | σm), ΔPwe,i(t | σm) and Δωpr,i(t | σm) with 

respect to σ=σm. After that, ΔPARC-wt,i(t | σm), ΔPwe,i(t | σm) and Δωpr,i(t | σm) is further 

decomposed as ∆PARC-wt,i
wm (t | σm), ∆Pwe,i

wm (t | σm) and ∆ω
pr,i

wm
(t | σm). 

On this basis, the mode-screened damping torque coefficient of the i-th PMSG is 

given in (4.5). 
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where K
pd,i

λ
m  is the mode-screened damping torque coefficient of the i-th PMSG with 

respect to λm. 
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4.4 Modal Analysis for Machine-side Oscillations of Full Converter-

based Wind Generation 

In this section, MA is discussed for MSOs of FCWG. Δωpr,i(t) and Δxp-wt,i(t) are 

chosen as the two focused state variables. The natural damping of PMSG is ignored. 

According to Fig. 4.2, the focused equations of the i-th PMSG are given as (4.6) and (4.7). 
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It is noted that ΔPARC-wt,i(t)=0 in the following two conditions: (1) there is no ARC; 

or (2) ARC is installed but it does not work since there is no disturbance on the external 

power grid. 

In order to represent the whole power system considering the arbitrary control 

schemes of FCWG in the multi-machine environment, the linearization of the whole 

power system is derived as (4.8). 
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where Δxp-wt,i(s) is the frequency-domain form of Δxp-wt,i(t) under the Laplace analysis; 

Δωpr,i(s) is the frequency-domain form of Δωpr,i(t) under the Laplace analysis. Similar 

to Chapter 3, ΔZ(s) includes the state variables of the i-th FCWG excluding Δωpr,i(s) and 

Δxp-wt,i(s), as well as all the state variables of other generating units. The meanings of 

other variables are the same with those in Chapter 2 and 3, which are not repeated here. 
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Based on (4.6)-(4.8), the linearized representation of the whole power system 

considering the arbitrary control schemes of FCWG in the multi-machine environment 

can be displayed in Fig. 4.5. It is noted here Fig. 4.5 is from the perspective of the 

machine side of FCWG. 
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Fig. 4.5. Linearized representation of an FCWG-integrated power system under the 

Laplace analysis. 

From Fig. 4.5, (4.9)-(4.11) can be obtained, respectively. 
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Substitute (4.9) into (4.10), and (4.12) can be obtained. 

,
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Substitute (4.9) into (4.11), and (4.13) can be obtained. 
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Substitute (4.13) into (4.12), and (4.14) can be obtained. 
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Eq. (4.13) is essentially equivalent to (4.8). According to Fig. 4.5, (4.15) can be also 

derived. 

( ), , , 21 ,Δ ( ) Δ ( ) Δ ( ) Δ ( )ARC wt i we i pr i p wt iP s P s H A x s s− −− = + 23A Z                 (4.15) 

Eliminate Δxp-wt,i(s) and ΔZ(s) in (4.15) using (4.9) and (4.13), and then (4.16) can 

be derived. 
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By comparing (4.14) with (4.16), it can be seen that (4.17) can be obtained for an 

MSO of FCWG. 
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where λm is a pair of eigenvalues of an interested MSO of FCWG. 

4.5 Consistency of Energy Flow Analysis with Modal Analysis for 

Machine-side Oscillations of Full Converter-based Wind Generation 

In this section, the extended EFA and MA will be proved to be consistent for MSO 

of FCWG. Similarly, substitute ΔPARC-wt,i(t | σm), ΔPwe,i(t | σm) and Δωpr,i(t | σm) into the 

Parseval’s Theorem, and then (4.18) and (4.19) can be obtained. 
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where ΔPARC-wt,i(w | σm), ΔPwe,i(w | σm) and Δωpr,i(w | σm) are the frequency-domain forms 

of ΔPARC-wt,i(t | σm), ΔPwe,i(t | σm) and Δωpr,i(t | σm) under the Fourier analysis. 

Then, (4.20) can be derived by applying (4.18) and (4.19). 
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For an MSO λm=σm±jwm, since ΔPARC-wt,i(wm | σm), ΔPwe,i(wm | σm), Δωpr,i(wm | σm) 

and Δω*
pr,i(wm | σm) are the constant complex numbers, (4.5) is further equivalent to 

(4.21) on the basis of (4.20). 
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By comparing (4.5) with (4.17) and (4.21), it can be seen that the proposed coefficient 

in (4.5) is always equivalent to the relevant eigenvalue, i.e., (4.22). 
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Eq. (4.22) is general for the arbitrary types of control schemes of FCWG, which can 

be applied for quantitatively investigating the interested MSOs of FCWG. Then, the 
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application of (4.22) for estimating the eigenvalue of an interested MSO of FCWG is 

given as the following steps. Only the pre-processing of measurements is needed, and 

the complex modeling of the FCWG-integrated power system can be avoided. 

Step 1: Collect the measurements ΔPARC-wt,i(t), ΔPwe,i(t) and Δωpr,i(t) at the i-th 

PMSG in a period. 

Step 2: Conduct the analysis of the amplitude-frequency characteristic of ΔPwe,i(t) 

(or Δωpr,i(t)), from which the angular frequency of dominant MSOs can be observed, 

i.e., the imaginary parts of eigenvalues of dominant MSOs. 

Step 3: Choose an interested MSO at the angular frequency wm and give σm an initial 

value as σm=0. 

Step 4: Calculate K
pd,i

λ
m . 

Step 5: If abs (-K
pd,i

λ
m Hpr,i⁄ -σ

m
) is smaller than an acceptable error e, go to Step 7; 

otherwise, go to Step 6. 

Step 6: Update σm as σm=σm±r and go to Step 4. It is noted that r/e should be smaller 

than 10-1. 

Step 7: Output the estimated eigenvalue of the interested MSO. 

4.6 Case Studies 

In this section, the extended EFA is firstly verified in an FCWG-integrated SMIB 

power system. Then, the extended EFA is applied to quantitatively investigated the 

damping feature of multiple types of MSOs of FCWG in an FCWG-integrated 4M2A 

power system. 
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4.6.1 Verification in a Single-machine Infinite-bus Power System with a Full 

Converter-based Wind Generation 

The correctness of (4.22) is firstly verified in an FCWG-integrated SMIB power 

system. The line diagram of this FCWG-integrated SMIB power system is illustrated 

in Fig. 4.6. There is an FCWG installed at bus 2 with no ARC. The base capacity of 

this SMIB power system is 100 MVA. A step-up disturbance happens to PMSG at 0.2 

s and its mechanical power becomes 1.1 times of the original value, which lasts for 0.1 

s. There is no disturbance on the external grid. In this case study, PMSG and MSC are 

actually decoupled from the external grid. The parameters of FCWG and conventional 

synchronous generator are given in the Appendix A.3, which is cited from [113]. 

~ 1

Generator
Line

Infinite bus

External 

grid

2

4
Transformer

FCWG

3

Transformer

 

Fig. 4.6. Line diagram of an SMIB power system with an FCWG. 

The plot of ΔPwe,1(t) and its amplitude-frequency characteristic are given in Fig. 4.7. 

Since the purpose of this case study is to verify the correctness of (4.22), the eigenvalue 

of an interested MSO is directly given, i.e., λm=-0.0883±j3.0530. Then, the calculation 

of -Kpd,i
λm Hpr,1⁄  is conducted, and the result is -0.0883 (i.e., -Kpd,i

λm Hpr,1⁄ =-0.0883). It can 

be seen that (4.22) is valid. 
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(a)                                                       (b) 

Fig. 4.7. ΔPwe,1(t) and its amplitude-frequency characteristic in an FCWG-integrated 

SMIB power system. (a). Plot of ΔPwe,1(t) in time domain. (b). Amplitude-frequency 

characteristic of ΔPwe,1(t) in frequency domain. 

The steps proposed at the end of Section 4.5 can be feasible, and the estimation of 

the interested eigenvalue using the proposed steps will be carried out in the next 

subsection. 

4.6.2 Application in a 4-machine 2-area Power System with a Full Converter-based 

Wind Generation 

The line diagram of an FCWG-integrated 4M2A power system is given by Fig. 4.8. 

There is an FCWG installed at bus 5 with the integration of an ARC. The base capacity 

of this power system is 100 MVA. The parameters of FCWG and conventional 

synchronous generators are given in the Appendix A.3, which is cited from [113]. 
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Fig. 4.8. Line diagram of a 4M2A power system with an FCWG. 

(1) Scenario 4.1 (PMSG disturbance) 

In Scenario 4.1, there is no disturbance on the external power grid, but a disturbance 

occurs to the mechanical power of PMSG at 0.2 s and its value becomes 1.05 of the 

original one, which lasts for 0.1 s. 

The plot of ΔPwe,1(t) and its amplitude-frequency characteristic are given in Fig. 4.9. 

It can be seen that there are two inherent MSOs excited at 0.41 Hz and 1.54 Hz, which 

are selected as the interested ones. 

 

(a)                                                       (b) 

Fig. 4.9. ΔPwe,1(t) and its amplitude-frequency characteristic in Scenario 4.1 in an 

FCWG-integrated 4M2A power system. (a). Plot of ΔPwe,1(t) in time domain. (b). 

Amplitude-frequency characteristic of ΔPwe,1(t) in frequency domain. 



 

83 

 

 

 

The imaginary parts of the interested eigenvalues are estimated as 2π×0.41j=2.5761j 

and 2π×1.54j=9.6761j. According to the mentioned Steps 1-7 at the end of Section 4.5, 

the real parts of eigenvalues of the inherent MSOs at around 0.41 Hz and 1.54 Hz are 

estimated. The results are listed in Table 4.1. 

Table 4.1 Application of EFA for estimating eigenvalues of interested MSOs in 

Scenario 4.1 of an FCWG-integrated 4M2A power system. 

Interested frequency Real eigenvalue Estimated eigenvalue 

0.41 Hz (inherent) -0.0761±2.5889j -0.0761±2.5761j 

1.54 Hz (inherent) -0.0997±9.6595j -0.0998±9.6761j 

It is noted that the real eigenvalues are calculated from the state matrix, which acts 

as a comparison. It can be found that the numerical estimation from the proposed Steps 

1-7 has a high accuracy. 

Through the study in Scenario 4.1, it can be revealed that the machine-side 

disturbances such as continuous wind fluctuations will only trigger the inherent MSOs, 

and the non-inherent MSO will not be excited even if the ARC is installed. The damping 

feature of the inherent MSOs of FCWG can be evaluated accurately by the extended 

EFA in this chapter. 

(2) Scenario 4.2 (external grid disturbance) 

In Scenario 4.2, there is no disturbance on the machine side of FCWG originally. A 

disturbance occurs to the mechanical power of G1 (i.e., a conventional synchronous 

generator in this 4M2A power system) at 0.2 s and its value becomes 1.05 of the original 

one, which lasts for 0.1 s. 
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The plot of ΔPwe,1(t) and its amplitude-frequency characteristic are given in Fig. 4.10, 

and the plot of ΔPARC-wt,1(t) and its amplitude-frequency characteristic are given in Fig. 

4.11. 

 

(a)                                                       (b) 

Fig. 4.10. ΔPwe,1(t) and its amplitude-frequency characteristic in Scenario 4.2 in an 

FCWG-integrated 4M2A power system. (a). Plot of ΔPwe,1(t) in time domain. (b). 

Amplitude-frequency characteristic of ΔPwe,1(t) in frequency domain. 

 

(a)                                                       (b) 

Fig. 4.11. ΔPARC-wt,1(t) and its amplitude-frequency characteristic in Scenario 4.2 in an 

FCWG-integrated 4M2A power system. (a). Plot of ΔPARC-wt,1(t) in time domain. (b). 

Amplitude-frequency characteristic of ΔPARC-wt,1(t) in frequency domain. 

It can be seen from Fig. 4.10 that there are three dominant MSOs at 0.41 Hz, 0.53 Hz, 

and 1.54 Hz monitored on the machine side of FCWG. It is known from Fig. 4.11 that 

the non-inherent MSO of 0.53 Hz is actually the inter-area oscillation mode of the 

external power grid that is introduced by ARC to the machine side of FCWG. While the 
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MSOs of 0.41 Hz and 1.54 Hz are the inherent ones of FCWG that are excited by the 

ARC. 

The imaginary part of the eigenvalue of the non-inherent MSO is estimated as 

2π×0.53j=3.3301j. According to the mentioned Steps 1-7 at the end of Section 4.5, the 

real parts of interested eigenvalues are estimated. The results are listed in Table 4.2. It 

can be found that the numerical estimations from the proposed Steps 1-7 demonstrates 

a high accuracy in Scenario 4.2. 

Table 4.2 Application of EFA for estimating eigenvalues of interested MSOs in 

Scenario 4.2 of an FCWG-integrated 4M2A power system. 

Interested frequency Real eigenvalue Estimated eigenvalue 

0.41 Hz (inherent) -0.0761±2.5889j -0.0760±2.5761j 

0.53 Hz (non-inherent) -0.0682±3.3264j -0.0682±3.3301j 

1.54 Hz (inherent) -0.0997±9.6595j -0.0998±9.6761j 

Through the study in Scenario 4.2, it can be seen that the disturbance of the external 

grid can be propagated to the machine side through ARC and excite the inherent MSOs 

of FCWG. The non-inherent MSO of FCWG can be only triggered by the disturbances 

of the external grid and introduced by ARC to the machine side of FCWG. The damping 

feature of both types of MSOs can be assessed by the extended EFA in this chapter. 

(3) Scenario 4.3 (both PMSG and external grid disturbances) 

In Scenario 4.3, a three-phase short-circuit fault occurs to the external power grid 

at 0.2 s, which lasts for 0.1 s. Meanwhile, a continuous disturbance happens to the 

mechanical power of PMSG. 

The plot of ΔPwe,1(t) and its amplitude-frequency characteristic are given in Fig. 4.12. 
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It can be seen that the three-phase short-circuit fault of the external power grid can bring 

a great risk to the machine side dynamics of FCWG through ARC. 

 

(a)                                                       (b) 

Fig. 4.12. ΔPwe,1(t) and its amplitude-frequency characteristic in Scenario 4.3 in an 

FCWG-integrated 4M2A power system. (a). Plot of ΔPwe,1(t) in time domain. (b). 

Amplitude-frequency characteristic of ΔPwe,1(t) in frequency domain. 

The real parts of eigenvalues of the interested MSOs are estimated, and the results 

are listed in Table 4.3, which still shows a high accurate. 

Table 4.3 Application of EFA for estimating eigenvalues of interested MSOs in 

Scenario 4.3 of an FCWG-integrated 4M2A power system. 

Interested frequency Real eigenvalue Estimated eigenvalue 

0.41 Hz (inherent) -0.0761±2.5889j -0.0761±2.5761j 

0.53 Hz (non-inherent) -0.0682±3.3264j -0.0681±3.3301j 

1.54 Hz (inherent) -0.0997±9.6595j -0.0998±9.6761j 

Through the study in Scenario 4.3, it can be indicated that the superposition of the 

short-circuit fault of the external grid and the disturbance of PMSG can pose a great 

threat to machine-side dynamics of FCWG. Both disturbances would contribute to the 

amplitude of the inherent MSOs. The extended EFA still possesses a high accuracy in 

this scenario. 
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(4) Scenario 4.4 (modal resonance) 

In Scenario 4.4, the settings of disturbances of the external grid and PMSG are same 

with that in Scenario 4.3, but the setting of parameters of MSC is different from those 

in Scenario 4.3. The frequency of the inherent MSO becomes closer to that of the non-

inherent MSO in this scenario. 

The plot of ΔPwe,1(t) and its amplitude-frequency characteristic are given in Fig. 4.13. 

It can be seen that the amplitudes at 0.53 Hz and 0.58 Hz are much larger than the two in 

Scenario 4.3. 

 

(a)                                                       (b) 

Fig. 4.13. ΔPwe,1(t) and its amplitude-frequency characteristic in Scenario 4.4 in an 

FCWG-integrated 4M2A power system. (a). Plot of ΔPwe,1(t) in time domain. (b). 

Amplitude-frequency characteristic of ΔPwe,1(t) in frequency domain. 

There are three dominant MSOs at 0.53 Hz, 0.58 Hz and 1.48 Hz. Among them, the 

MSO of 0.53 Hz is the non-inherent one introduced by ARC, and the MSOs of 0.58 Hz 

and 1.48 Hz are the inherent ones. The real eigenvalues and estimated eigenvalues are 

list in Table 4.4. 
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Table 4.4 Application of EFA for estimating eigenvalues of interested MSOs in 

Scenario 4.4 of an FCWG-integrated 4M2A power system. 

Interested frequency Real eigenvalue Estimated eigenvalue 

0.53 Hz (non-inherent) -0.0751±3.3227j -0.0752±3.3301j 

0.58 Hz (inherent) -0.0799±3.6447j -0.0799±3.6442j 

1.48 Hz (inherent) -0.0889±9.3138j -0.0890±9.2991j 

Through the study in Scenario 4.4, it can be concluded that the improper parameter 

settings of controllers can cause the modal resonance between the inherent and non-

inherent MSOs of FCWG. The extended EFA can accurately estimate the damping 

feature of MSOs to reduce this potential risk. 

4.7 Summary 

The key findings of this chapter are listed as follows: (1) the inherent MSO of 

FCWG can be excited by the disturbance of PMSG, while the non-inherent MSO would 

not be excited by the disturbance of PMSG regardless of the installation of ARC. The 

damping feature of inherent MSOs of FCWG can be investigated by the extended EFA 

accurately and efficiently; (2) when ARC is used, the EGO excited by the disturbance 

of the external grid can be introduced to the machine side of FCWG and becomes the 

non-inherent MSO. The inherent MSOs of FCWG can also be excited by the 

propagation of disturbances of the external grid through ARC. The extended EFA can 

perform satisfactorily in obtaining the damping feature of both the inherent and non-

inherent MSO introduced by ARC; (3) the superposition of the short-circuit fault of the 

external grid and the disturbance of PMSG can significantly deteriorate the machine-
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side dynamic performance of FCWG especially for inherent MSOs in terms of the 

oscillatory amplitude, and the accuracy of the estimated damping feature of MSOs can 

be also guaranteed under more severe disturbance condition; and (4) when the 

frequency of the inherent MSO is closer to that of the non-inherent MSO introduced by 

ARC, the severe modal resonance can be triggered on the machine side of FCWG, and 

the accuracy of the extended EFA can be still ensured under this resonance condition. 
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Chapter 5 

Generalization of Energy Flow Analysis for 

Investigating Various Oscillations in Power 

Electronic Converter-penetrated Power Systems 

5.1 Overview 

In Chapter 3, the quantitative investigation of electromechanical oscillations of 

conventional synchronous generators using EFA is proposed. In Chapter 4, the EFA is 

extended to the machine side of FCWG to quantitatively investigate MSOs of FCWG. 

The PECs have brought diversified dynamics to the modern power system, and the EFA 

in Chapter 3 and 4 still shows the limitation to tackle the various oscillations in the 

PEC-penetrated power system. Therefore, it is necessary to further widen the 

application of EFA to investigate the oscillatory stability of PEC-penetrated power 

systems. In this chapter, the generalized oscillation loop is structured based on the 

second-order differential operations in a studied control loop of PEC. On this basis, the 

proposed EFA in Chapter 3 is generalized for quantitatively investigating various 

oscillations in the PEC-penetrated power system. Finally, taking the GSC of the FCWG 

system as an example, the application of the generalized EFA is further discussed and 

tested considering the potential modal resonance between the inherent GSO and non-

inherent GSO (i.e., EGO) to consolidate the oscillatory stability of the PEC-penetrated 

power system. 
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5.2 Generalization of Oscillation Loop and Energy Flow Analysis in 

Power Electronic Converter-penetrated Power Systems 

The schematic of the PEC-penetrated power grid is shown in Fig. 5.1. In this section, 

the electromechanical oscillation loop of the conventional synchronous generator is 

generalized to PECs, and the proposed EFA in Chapter 3 is further generalized to 

quantitatively investigate the various oscillations of the PEC-penetrated power grid, i.e., 

the generalized EFA. 

Renewable 

generations/

New 

transmission 

technologies

PECs

Transformer
Transmission 

line

Grid

 

Fig. 5.1. Schematic of a PEC-penetrated power grid. 

The feature of the electromechanical oscillation loop of the synchronous generator 

is that it has the second-order differential operations for two state variables, i.e., the 

power angle deviation and angular frequency deviation. With the help of this feature, a 

generalized oscillation loop is structured. 

Two state variables of the second-order differential operations are selected in the 

studied control loop of PEC. In order to represent the whole power system considering 

the arbitrary types and control schemes of PECs, the linearization of the whole power 

system is derived as (5.1). 

1, 11 12 1,
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                           (5.1) 

where ΔSV1,i(s) and ΔSV2,i(s) are the first and second selected state variable of the 
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studied control loop of the i-th PEC, respectively; A11, A12, A13, A21, A22, A23, A31, A32 

and A33 are the block sub-matrices of the state matrix; and ΔZ(s) that includes the state 

variables of the whole system except ΔSV1,i(s) and ΔSV2,i(s). 

Then, (5.2)-(5.4) can be obtained, respectively. 

12
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11 11
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= +

− −

13A
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23A
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1, 2,Δ ( ) Δ ( ) Δ ( )i is SV s SV s
s s

= +
− −

31 32

33 33I I

A A
Z

A A
                      (5.4) 

According to (5.2)-(5.4), the construction of the generalized oscillation loop with 

respect to a studied control loop of PEC is shown in Fig. 5.2, where F(s) is an equation 

with respect to ΔSV2,i(s). 

)(Δ ,2 sSV i
12A

)(Δ ,1 sSV i

21A

)(sF

23A

)(Δ sZ

+

22A

s

1

13A

11A

+
s

1

+ + ++

 
Fig. 5.2. Construction of a generalized oscillation loop with respect to a studied 

control loop of PEC. 

For the generalized oscillation loop of the i-th PEC in a system, the virtual torque 

deviation provided by the external controllers of the generalized oscillation loop is 

defined as follows 
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, , 2, , 1,Δ ( ) Δ ( ) Δ ( )v i vd i i vs i iT s K SV s K SV s= +                                (5.5) 

where ΔTv,i(s) is the virtual torque deviation provided by the external controllers of the 

generalized oscillation loop of the i-th PEC; Kvd,i and Kvs,i are the virtual damping and 

synchronizing torque coefficients related to ΔTv,i(s). 

It can be seen from Fig. 5.2 that ΔSV2,i(s) acts as the virtual angular frequency in 

the generalized oscillation loop. According to the definition of the energy, the 

generalized oscillatory energy flow dissipation is defined as (5.6). 

( )
2

, , 2, , 2,
0 0
Δ ( )Δ ( )d Δ ( ) dvd i v i i vd i iW T t SV t t K SV t t

+ +

= =                    (5.6) 

where Wvd,i is the generalized oscillatory energy flow dissipation of the i-th PEC. 

Thus, (5.7) can be further derived. F(t) is the time-domain form of F(s). The virtual 

natural damping is reflected from A22, and the virtual non-natural damping is reflected 

from Kvd,i. 
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                 (5.7) 

The methodology in Chapter 3 is generalized for the quantitative investigation of 

the oscillatory stability of PEC-penetrated power systems. 

Substitute (5.3) and (5.4) into (5.2), and then (5.8) can be derived. 
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Substitute (5.2) and (5.3) into (5.4), and then (5.9) can be derived. 
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Substitute (5.8) and (5.9) into (5.3), and (5.10) can be obtained. 
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Similarly, (5.11) can be also derived. 
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Substitute a pair of eigenvalues of an interested oscillation λg=σg±jwg observed in 

the studied control loop of PEC, and (5.12) can be obtained. 

2,
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Δ ( )
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i g

F λ
λ

SV λ
=                                             (5.12) 

Convert (5.12) from the frequency domain to time domain by the Parseval’s 

theorem, i.e., (5.13). Eq. (5.13) is the time-domain form of the generalized EFA-based 

methodology. 
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where ΔSV
2,i

wg
(t | σg) is the reconstructed and decomposed signal from ΔSV2,i(t); and 

ΔSV2,i(t) is the time-domain form of ΔSV2,i(s). Specifically, ΔSV2,i(t) is multiplied by 
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e
-σ

g
t
 and then is decomposed with respect to wg. F

wg
(t | σg) is the reconstructed and 

decomposed signal from F(t); and F(t) is the time-domain form of F(s). Specifically, 

F(t) is multiplied by e
-σ

g
t
 and then is decomposed with respect to wg. 

5.3 Application of Generalized Oscillation Loop and Energy Flow 

Analysis for Grid-side Converter of Full Converter-based Wind 

Generation 

5.3.1 Control Loops of Grid-side Converter of Full Converter-based Wind 

Generation 

In this section, FCWG is taken as an example to demonstrate and explain the 

application of the generalized oscillation loop and EFA for GSOs of FCWG. 

The main components of FCWG have been discussed in Chapter 4, which are not 

repeated here. Generally, PMSG and MSC do not respond to the dynamics of the 

external power grid since they are decoupled from the external power grid by the DC-

link. 

Since this chapter focuses on the GSOs of FCWG, the typical control loops of GSC 

and PLL are introduced in Fig. 5.3 and 5.4, respectively. It can be seen that there are 

mainly four control loops for GSC: DC capacitor voltage control loop, d-axis current 

control loop, q-axis current control loop, and reactive power control loop. 
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Fig. 5.3. The control configuration of GSC of FCWG. 
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Fig.5.4. The control configuration of PLL of FCWG. 

In Fig. 5.3, the meanings of major variables of the DC capacitor voltage control 

loop of the i-th FCWG are as follows: Vpdc,i(s) is the DC voltage across the capacitor, 

xp4,i(s) is an intermediate variable, Pin,i(s) is the active power input, Pout,i(s) is the active 

power output, Cp,i is the capacitance, Vpdc0,i is the steady-state value of DC voltage, Kpp4,i 

is the proportional time constant, Kpi4,i is the integral time constant. For reactive power, 

d-axis and q-axis current control loops of the i-th FCWG, Ipcd,i(s) and Ipcq,i(s) are the d-

axis and q-axis output currents of GSC, xp5,i(s), xp6,i(s) and xp7,i(s) are intermediate 

variables, Kpp5,i, Kpp6,i and Kpp7,i are proportional time constants, Kpi5,i, Kpi6,i and Kpi7,i 

are integral time constants; Vpcd,i(s) and Vpcq,i(s) are the d-axis and q-axis output voltages 

of GSC, ΔVpd,i(s) and ΔVpq,i(s) are the d-axis and q-axis voltages at the point of common 

coupling (PCC), respectively. In Fig. 5.4, the meanings of major variables of PLL of 
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the i-th FCWG are as follows: xpll,i(s) is an intermediate variable, Kppll,i is the 

proportional time constant, Kipll,i is the integral time constant. For the above-mentioned 

variables, prefix Δ can represent the deviation of the related variable, which will not be 

repeated in Subsection 5.3.2 and 5.3.3. 

5.3.2 Demonstration in DC Capacitor Voltage Control Loop 

For the DC capacitor voltage control loop of GSC of the i-th FCWG, ΔSV1,i(s) is 

Δxp4,i(s), and ΔSV2,i(s) is ΔVpdc,i(s). The related differential equations are shown as 

follows 

4, 4, ,( ) ( )p i pi i pdc is x s K V s =                                          (5.14) 

( ), , ,

, 0,

1
( ) ( ) ( )pdc i in i out i

p i pdc i

s V s P s P s
C V

 =  −                           (5.15) 

The output power from the DC-link can be represented as 

, 0, , 0, , 0, , 0, ,( ) ( ) ( ) ( ) ( )out i pd i pcd i pq i pcq i pcd i pd i pcq i pq iP s V I s V I s I V s I V s =  +  +  +   (5.16) 

where Ipcd0,i and Ipcq0,i are the steady-state values of d-axis and q-axis output currents of 

GSC, respectively. Vpd0,i and Vpq0,i are the steady-state values of d-axis and q-axis 

voltages at PCC, respectively. 

Then, (5.15) can be further derived as 
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    (5.17) 

Thus, the generalized oscillation loop with respect to the DC capacitor voltage 

control loop of GSC of the i-th FCWG is derived in Fig. 5.5. 



 

98 

 

 

 

)(Δ , sP iin

s

K ipi ,4

sVC ipdcip ,0,

1 )(Δ , sV ipdc

ipdV ,0-

)(Δ ,4 sx ip

ipdipp VK ,0,4-

)(Δ , sI ipcq

)(Δ , sV ipd )(Δ , sV ipq

ipcdI ,0- ipcqI ,0-

+

+
+

+

+

+

ipqV ,0-

 
Fig. 5.5. Generalized oscillation loop with respect to DC capacitor voltage control 

loop of GSC. 

The virtual inertia constant Mdc,i, virtual natural damping coefficient Ddc,i, virtual 

natural synchronizing coefficient Sdc,i in the DC capacitor voltage control loop can be 

derived as 

, , 0,
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=
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M C V
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



                                              (5.18) 

Thus, the pair of open-loop eigenvalues λdc0,i of the inherent GSO of the DC 

capacitor voltage control loop of the i-th FCWG are calculated as 

2
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dc i dc i dc i dc i
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D D M S
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

−  −
=                                   (5.19) 

Substitute related variables into (5.13), the close-loop damping σdc,i of the 

inherent/non-inherent GSO of the DC capacitor voltage control loop of the i-th FCWG 

with respect to the oscillation angular frequency wdc,i is given by (5.20). 
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5.3.3 Demonstration in Phase Locked Loop 

For the PLL, ΔSV1,i(s) is Δθpll,i(s), and ΔSV2,i(s) is Δxpll,i(s). The related differential 

equations are shown as follows 

, , , ,( ) ( ) ( )pll i pll i ppll i pq is θ s x s K V s =  +                             (5.21) 

, , ,( ) ( )pll i ipll i pq is x s K V s =                                      (5.22) 

Generally, ΔVpq,i(s) can be represented as (5.23). 

( ), 0, , ,Δ ( ) Δ ( ) Δ ( )pq i pcc i pcc i pll iV s V θ s θ s −                            (5.23) 

where Vpcc0,i is the steady-state value of the PCC voltage, and Δθpcc,i(s) is the deviation 

of the PCC voltage angle. 

Consequently, the generalized oscillation loop with respect to PLL of the i-th 

FCWG is derived as Fig. 5.6. 
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Fig. 5.6. Generalized oscillation loop with respect to PLL. 

The virtual inertia constant Mpll,i, virtual damping coefficient Dpll,i, virtual 

synchronizing coefficient Spll,i of PLL of the i-th FCWG can be derived as 

,
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Thus, the pair of open-loop eigenvalues λpll0,i of the inherent GSO in PLL of the i-
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th FCWG are calculated as 
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Substitute the related variables into (5.13), the close-loop damping σpll,i of the 

inherent/non-inherent GSO in PLL of the i-th FCWG with respect to the oscillation 

angular frequency wpll,i can be calculated from (5.26). 
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It is worth pointing out that the open-loop analysis has very limited influence on the 

calculation of the oscillation frequency (i.e. the imaginary part of eigenvalue). Thus, 

the simplification is suitable for the parameter setting of control loops of GSC to 

prevent potential resonance with EGO. 

5.4 Case Studies 

The generalized EFA in Section 5.3 is verified in Subsections 5.4.1 through an 

FCWG-integrated 4M2A power system. Then the application of the generalized 

oscillation loop and generalized EFA to consolidate the oscillatory stability of the PEC-

penetrated power system is discussed in Subsection 5.4.2 through an FCWG-integrated 

16M5A power system. 

5.4.1 Verification in a 4-machine 2-area Power System with a Full Converter-based 

Wind Generation 

The line diagram of a 4M2A power system with an FCWG has been given by Fig. 
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4.8, which is not repeated here. There is an FCWG installed at bus 5. The base capacity 

of this power system is 100 MVA. A disturbance occurs to the mechanical power of G1 

at 0.2 s and its value becomes 1.05 of the original one, which lasts for 0.1 s. The major 

parameters of control loops of GSC of FCWG are given in the Appendix A.5. 

(1) Scenario 5.1 

In this scenario, there is no resonance among each oscillation mode. Fig. 5.7 shows 

the characteristics of ΔVpdc,i(t) in both time and frequency domains. It can be seen that 

there are mainly two modes in the DC capacitor voltage control loop, in which 0.53 Hz 

is the non-inherent GSO (i.e., the EGO) and 0.28 Hz is the inherent GSO of the DC 

capacitor voltage control loop. Table 5.1 provides the verification of the quantitative 

assessment of GSOs in the DC capacitor voltage control loop using the generalized 

EFA. 

 

(a)                                                          (b) 

Fig. 5.7. ΔVpdc,i(t) and its amplitude-characteristic in Scenario 5.1 in an FCWG-

integrated 4M2A power system. (a). Plot of ΔVpdc,i(t) in time domain. (b) Amplitude-

frequency characteristic of ΔVpdc,i(t) in frequency domain. 
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Table 5.1 Verification of EFA for estimating eigenvalues of interested GSOs in DC 

capacitor voltage control loop in Scenario 5.1 of an FCWG-integrated 4M2A power 

system. 

Interested mode Real eigenvalue Estimated eigenvalue 

0.53 Hz 

(non-inherent GSO) 
-0.0707±3.3278j -0.0707±3.3301j 

0.28 Hz 

(inherent GSO) 
-0.0266±1.7410j -0.0266±1.7593j 

Fig. 5.8 shows the characteristics of ΔVpq,i(t) in both time and frequency domains. 

It can be seen that there are mainly two modes in the PLL, in which 0.53 Hz is the non-

inherent GSO (i.e., the EGO) and 1.0 Hz is the inherent GSO of PLL. Table 5.2 provides 

the verification of the quantitative assessment of GSOs in PLL using the generalized 

EFA. 

 

(a)                                                   (b) 

Fig. 5.8. ΔVpq,i(t) and its amplitude-characteristic in Scenario 5.1 in an FCWG-

integrated 4M2A power system. (a). Plot of ΔVpq,i(t) in time domain. (b). Amplitude-

frequency characteristic of ΔVpq,i(t) in frequency domain. 

Table 5.2 Verification of EFA for estimating eigenvalues of interested GSOs in PLL in 

Scenario 5.1 of an FCWG-integrated 4M2A power system. 

Interested mode Real eigenvalue Estimated eigenvalue 

0.53 Hz 

(non-inherent GSO) 
-0.0707±3.3278j -0.0707±3.3301j 

1.0 Hz 

(inherent GSO) 
-0.0626±6.2994j -0.0626±6.2832j 

Through this scenario, the following conclusions can be summarized: in the case of 
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no resonance, both inherent and non-inherent GSOs can be observed in the related 

control loop of GSC, and the generalized EFA showes a good accuracy. 

(2) Scenario 5.2 

In this scenario, there is a resonance between the non-inherent GSO (i.e., EGO) and 

inherent GSO in the DC capacitor voltage control loop. Specifically, through adjusting 

the integral time constant of the DC capacitor voltage control loop, the frequency of its 

inherent GSO gradually approaches that of its non-inherent GSO. 

When the frequency of the inherent GSO of the DC capacitor voltage control loop 

approaches that of the non-inherent GSO, the resonance phenomenon can occur. Fig. 

5.9 shows the characteristics of ΔVpdc,i(t) in both time and frequency domains in this 

scenario. It can be seen that the oscillatory amplitude is obviously increased, that is to 

say, the harm of the oscillation is greatly increased. Table 5.3 provides the verification 

of the related quantitative assessment in this scenario. 

 

(a)                                                    (b) 

Fig. 5.9. ΔVpdc,i(t) and its amplitude-characteristic in Scenario 5.2 in an FCWG-

integrated 4M2A power system. (a). Plot of ΔVpdc,i(t) in time domain. (b). Amplitude-

frequency characteristic of ΔVpdc,i(t) in frequency domain. 
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Table 5.3 Verification of EFA for estimating eigenvalues of interested GSOs in DC 

capacitor voltage control loop in Scenario 5.2 of an FCWG-integrated 4M2A power 

system. 

Interested mode Real eigenvalue Estimated eigenvalue 

0.53 Hz 

(non-inherent GSO) 
-0.0857±3.3481j -0.0861±3.3301j 

0.47 Hz 

(inherent GSO) 
-0.0360±2.9397j -0.0360±2.9531j 

Through this scenario, the following conclusions can be summarized: when the 

frequency of the inherent GSO approaches that of the non-inherent GSO from small to 

large in the DC capacitor voltage control loop, the inherent GSO plays a positive role 

for the damping of the non-inherent GSO. The generalized EFA shows a good accuracy. 

(3) Scenario 5.3 

On the basis of Scenario 5.2, through further adjusting the integral time constant of 

the DC capacitor voltage control loop, the frequency of the inherent GSO becomes 

slightly higher than that of the non-inherent GSO in the DC capacitor voltage control 

loop, i.e., Scenario 5.3. 

In this scenario, the inherent GSO still shows the resonance effect with the non-

inherent GSO in the DC capacitor voltage control loop. Fig. 5.10 shows the 

characteristics of ΔVpdc,i(t) in both time and frequency domains in this scenario. Table 

5.4 provides the verification of the related quantitative assessment in this scenario. 
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(a)                                                       (b) 

Fig. 5.10. ΔVpdc,i(t) and its amplitude-characteristic in Scenario 5.3 in an FCWG-

integrated 4M2A power system. (a). Plot of ΔVpdc,i(t) in time domain. (b). Amplitude-

frequency characteristic of ΔVpdc,i(t) in frequency domain. 

Table 5.4 Verification of EFA for estimating eigenvalues of interested GSOs in DC 

capacitor voltage control loop in Scenario 5.3 of an FCWG-integrated 4M2A power 

system. 

Interested mode Real eigenvalue Estimated eigenvalue 

0.53 Hz 

(non-inherent GSO) 
-0.0449±3.2943j -0.0449±3.3301j 

0.59 Hz 

(inherent GSO) 
-0.0981±3.7054j -0.0980±3.7071j 

Through this scenario, the following conclusions can be summarized: when the 

frequency of the inherent GSO exceeds that of the non-inherent GSO in the DC 

capacitor voltage control loop, the inherent GSO plays a negative role for the damping 

of the non-inherent GSO. The generalized EFA still shows a good accuracy. 

(4) Scenario 5.4 

In this scenario, there is a resonance between the inherent and non-inherent GSOs 

of PLL. Specifically, through adjusting the integral time constant of PLL, the oscillation 

frequency of the inherent GSO of PLL gradually approaches to that of the non-inherent 

GSO (i.e., EGO). 
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Fig. 5.11 shows the characteristics of ΔVpq,i (t) in both time and frequency domains 

in this scenario. It can be seen that the resonance can occur, and the harm of the 

oscillation is obviously increased. Table 5.5 provides the verification of the related 

quantitative assessment in this scenario. 

 

(a)                                                      (b) 

Fig. 5.11. ΔVpq,i(t) and its amplitude-characteristic in Scenario 5.4 in an FCWG-

integrated 4M2A power system. (a). Plot of ΔVpq,i(t) in time domain. (b). Amplitude-

frequency characteristic of ΔVpq,i(t) in frequency domain. 

Table 5.5 Verification of EFA for estimating eigenvalues of interested GSOs in PLL in 

Scenario 5.4 of an FCWG-integrated 4M2A power system. 

Interested mode Real eigenvalue Estimated eigenvalue 

0.53 Hz 

(non-inherent GSO) 
-0.0850±3.3312j -0.0852±3.3301j 

0.48 Hz 

(inherent GSO) 
-0.0549±3.0111j -0.0548±3.0159j 

Through this scenario, the following conclusions can be summarized: when there is 

a resonance between the inherent and non-inherent GSOs in PLL, and the frequency of 

the inherent GSO is slightly less than that of the non-inherent GSO, the inherent GSO 

plays a positive role for the damping of the non-inherent GSO. The generalized EFA 

can still show a good performance. 

(5) Scenario 5.5 
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On the basis of Scenario 5.4, by further adjusting the integral time constant of PLL, 

the frequency of the inherent GSO becomes slightly higher than that of the non-inherent 

GSO in PLL, i.e., Scenario 5.5. 

In this scenario, the inherent GSO of PLL still shows the resonance effect with the 

non-inherent GSO of PLL. Fig. 5.12 shows the characteristics of ΔVpq,i (t) in both time 

and frequency domains. It can be seen that the harm of the oscillation is still severe. 

Table 5.6 provides the verification of the related quantitative assessment in this scenario. 

 

(a)                                                (b) 

Fig. 5.12. ΔVpq,i(t) and its amplitude-characteristic in Scenario 5.5 in an FCWG-

integrated 4M2A power system. (a). Plot of ΔVpq,i(t) in time domain. (b). Amplitude-

frequency characteristic of ΔVpq,i(t) in frequency domain. 

Table 5.6 Verification of EFA for estimating eigenvalues of interested GSOs in PLL in 

Scenario 5.5 of an FCWG-integrated 4M2A power system. 

Interested mode Real eigenvalue Estimated eigenvalue 

0.53 Hz 

(non-inherent GSO) 
-0.0587±3.3252j -0.0587±3.3301j 

0.57 Hz 

(inherent GSO) 
-0.0809±3.6269j -0.0816±3.5814j 

Through this scenario, the following conclusions can be summarized: when the 

frequency of the inherent GSO of PLL slightly exceeds that of the non-inherent GSO 

of PLL, the inherent GSO plays a negative role for the damping of the non-inherent 
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GSO. The generalized EFA is still perfect for the quantitative assessment. 

When there is the resonance between the inherent GSO and the non-inherent GSO, 

the wind system operator should pay more attention to the oscillatory stability and 

modify the control parameters to consolidate the stability if necessary. 

5.4.2 Application in a 16-machine 5-area Power System with a Full Converter-

based Wind Generation 

The line diagram of the 16M5A power system with an FCWG is illustrated in Fig. 

5.13. The capacity of this FCWG is 1.0 MVA. The generators are all equipped with 

AVR but no PSS. The base capacity of this 16M5A power system is 100 MVA. The 

main parameters of control loops of GSC of FCWG are listed in the Appendix 5.4. A 

step-up disturbance happens to G1 at 0.2 s and its mechanical power becomes 1.05 times 

of the original value, lasting for 0.1 s. 
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Fig. 5.13. Line diagram of a 16M5A power system with an FCWG. 

It is assumed that the wind system operator is familiar with the frequencies of the 
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main EGOs. As discussed in Section 5.3, the open-loop analysis has very limited 

influence on the frequency (i.e. the imaginary part of the eigenvalue), which is suitable 

for the parameter setting to adjust the frequency of the inherent GSO. Thus, the 

resonance can be avoided by adjusting the integral time constant of the control loop of 

GSC. 

In the case that the resonance cannot be avoided due to some reasons, the analysis 

of the virtual natural damping in Section 5.3 also provides the basis for the wind system 

operator to adjust the virtual natural damping of the inherent GSO to consolidate the 

stability. 

Taking the PLL as an example, the real parts of eigenvalues and oscillation 

frequencies of the inherent and non-inherent GSOs observed in PLL are recorded as the 

case of no resonance in Table 5.7. 

When the integral time constant of PLL changes from 43 to 12, there is an obvious 

resonance between the inherent and non-inherent GSOs of PLL, and their real parts of 

eigenvalues as well as oscillation frequencies are recorded as the case of with resonance 

& no PLL adjustment in Table 5.7. It can be seen that the damping of the inherent GSO 

of PLL decreases significantly compared with the case of no resonance. If the wind 

system operator wants to increase the damping of the inherent GSO of PLL to its 

original level, the wind system operator can adjust the proportional time constant of 

PLL from 0.12 to 0.17 to increase the virtual natural damping of the inherent GSO of 

PLL, and the results are recorded as the case of with resonance & PLL adjustment in 

Table 5.7. 
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Table 5.7 An example of application of generalized oscillation loop and EFA in PLL 

of an FCWG-integrated 16M5A power system for consolidating the stability. 

Interested 

mode 

No resonance 
With resonance &  

no PLL adjustment 

With resonance &  

PLL adjustment 

Damping Frequency Damping Frequency Damping Frequency 

Inherent 

GSO 
-0.0597 1.01 Hz -0.0370  0.52 Hz -0.0529  0.52 Hz 

Non-

inherent 

GSO 

-0.1348 0.57 Hz -0.1581 0.57 Hz -0.1656 0.57 Hz 

5.5 Summary 

The key findings of this chapter are listed as follows: (1) when there is the resonance 

between the inherent and non-inherent GSOs of the DC capacitor voltage control loop 

or PLL, the inherent and non-inherent GSOs show the obvious modal influence between 

each other; (2) the quantitative assessment of the damping of inherent and non-inherent 

GSOs can be conducted with the help of the generalized EFA; and (3) with the help of 

the generalized oscillation loop, the oscillatory stability is consolidated by improving 

the virtual natural damping of the inherent GSO when the large-scale system model is 

unknown. 
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Chapter 6 

Conclusions and Future Work 

6.1 Conclusions 

With the rapid development of various renewable power generations and emerging 

transmission technologies, the increasing number of PECs have penetrated to the power 

grid, which considerably complicates the dynamics and hence oscillations of the 

conventional power system. In order to investigate the emerging oscillation problems 

without the precise and high-dimensional modeling in the large-scale system, a 

measurement-based method (i.e., EFA) is systematically studied. The conclusions of 

this thesis are summarized as follows. 

(1) DTA and EFA are derived to be essentially consistent. Specifically, the 

aggregated damping torque coefficient is newly defined and derived for DTA to 

characterize the integration effect of the damping contribution from the whole power 

system. Then, the pre-processing of measurements at the terminal of a local generator 

is conducted for EFA, and the frequency-decomposed energy attenuation coefficient is 

defined to screen and determine the damping contribution with respect to the frequency 

of interest. On this basis, the strict proof on the connection between DTA and EFA is 

carried out in assessing the damping performance of electromechanical oscillations of 

power systems, which is general for arbitrary models of synchronous generators in 

multi-machine power systems. 
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(2) A novel EFA is proposed with two implementation forms (i.e., TDI and FDI) to 

quantitatively investigate the electromechanical oscillation. For TDI, the new concept 

of the mode-screened damping torque coefficient with respect to an electromechanical 

oscillation mode is defined. For FDI, the Parseval’s Theorem is applied to transform 

the proposed EFA from the time domain to frequency domain. On this basis, the 

connection between the proposed EFA and MA is essentially revealed in quantitatively 

investigating the electromechanical oscillation of the multi-machine power systems. 

The conclusion drawn is general to arbitrary models and parameters of synchronous 

generators. Hence, the proposed EFA indicates a prospect for the quantitative 

investigation of electromechanical oscillations in the large-scale multi-machine power 

systems without models. 

(3) The proposed EFA in (2) is extended for quantitatively investigating MSOs of 

FCWG, and its consistency with MA is strictly revealed considering the arbitrary 

control schemes of FCWG in the multi-machine environment. On this basis, the 

extended EFA is applied to investigate the damping feature of multiple types of MSOs 

of FCWG in different scenarios through the case studies. 

(4) With the help of the second-order differential operations in the studied control 

loop of PEC, a generalized oscillation loop is structured. Then, the proposed EFA in (2) 

is further generalized to quantitatively investigate various oscillations in the PEC-

penetrated power systems. Taking the GSC of the FCWG system as an example, the 

generalized oscillation loop and generalized EFA are further demonstrated to 

investigate GSOs considering the potential resonance. The generalized oscillation loop 
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and generalized EFA have the prospect to consolidate the oscillatory stability of the 

large-scale PEC-penetrated power system when the system model is unknown. 

The research in this thesis has the following practical values: (1) as any oscillation 

problem is essentially reflected by the dissipation of the oscillatory energy flow, the 

EFA can provide a clear physical understanding about the damping mechanism of 

oscillation modes; (2) the assessment is a model-free design based on WAMS and data 

analytics technique, which is suitable for the large-scale PEC-penetrated power system 

with unknown or changing internal control; and (3) the monitoring and analyzing 

technique only need the local information and hence is more efficient and reliable, 

which can easily coordinate with damping control strategies to mitigate the oscillations 

and align with the system development trend. 

The social influence is summarized as follows: (1) the research in this thesis is 

beneficial to both the stable power grid operation and sustainable development, which 

is crucial to the modern society; and (2) this thesis can further increase the development 

of renewable generations and new transmission technologies. 

6.2 Future Work 

This thesis has proposed a series of EFA theories to investigate the various 

oscillations of PEC-penetrated power systems. To make the current work more 

comprehensive, the following work can be conducted in the future. 

(1) The proposed EFA theories can be applied to more types of renewable power 

generation systems, such as the doubly fed induction generator-based wind farm and 
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photovoltaic power generation system. 

(2) The proposed EFA theories can be further tested in the new transmission 

technologies-integrated power system to deal with more kinds of emerging oscillation 

problems. 

(3) The proposed EFA theories can be tested in the time sequential simulation. On 

this basis, the planning and operation strategies can be proposed for the modern power 

grid with the integration of renewable power generations and new transmission 

technologies. 
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Appendix 

A.1 Models and Parameter Settings in Case Studies of Chapter 2 

The 6th-order model of synchronous generators is given by (A.1). The transfer 

functions of AVR and PSS of the i-th generator are shown in Fig. A.1. 
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             (A.1) 

where T’d0,i denotes the time constant of the field winding of the i-th generator; Eq,i(t) 

denotes the q-axis excitation voltage of the i-th generator; Efd,i(t) denotes the excitation 

voltage of the i-th generator; E'fd,i(t) denotes the transient excitation voltage of the i-th 

generator; Vt,i(t) denotes the output voltage of the i-th generator; Vtref,i is the output 

voltage reference of the i-th generator; upss,i(t) denotes the stabilizing signal of PSS of 

the i-th generator; Ka,i is the gain of AVR of the i-th generator; Ta,i is the time constant 

of AVR of the i-th generator; Yi(t) is the intermediate variable of the i-th generator; 

Kpss,i is the proportional coefficient of PSS of the i-th generator; and T1,i, T2,i ,T3,i and 



 

116 

 

 

 

T4,i are the time constants of PSS of the i-th generator. 
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(b) 

Fig. A.1. Transfer functions of AVR and PSS of the i-th generator under the Fourier 

analysis. (a) Transfer function of AVR. (b) Transfer function of PSS. 

The parameters in the SMIB power system are listed as follows. 

TJ=8.0 s; D=0; ω0=314.0 rad/s; T’d0=5.0 s; 

Xd=0.8 p.u.; Xq=0.4 p.u.; X’d=0.05 p.u.; Pm0=0.6 p.u.; 

Xt=0.3 p.u.; V1=Vt=1.05 p.u.; V2=1.0 p.u.; Vtref=1.05 p.u.; 

Ka=10.0; Ta=0.01 s; Kpss=0; T2=T4=0; and T1=T3=9999. 

where Xd is the d-axis synchronous reactance; Xq is the q-axis synchronous reactance; 

X’d is the d-axis transient reactance; V1 and V2 are the voltage at nodes 1 and 2; Xt is the 

reactance of the transmission line and transformer; Pm0 is the initial mechanical power; 

the meanings of other parameters have been given in (2.1) and (A.1). 

The parameters in the 4M2A power system are listed as follows. 

TJ,1=TJ,2=117.0 s; TJ,3=TJ,4=111.15 s; D1=D2=D3=D4=0; 

ω0,1=ω0,2=ω0,3=ω0,4=314.0 rad/s; Pm0,1=8.67 p.u.; 

Pm0,2=Pm0,3=Pm0,4=7.0 p.u.; Xd,1=Xd,2=Xd,3=Xd,4=0.2 p.u.; 

Xq,1=Xq,2=Xq,3=Xq,4=0.1889 p.u.; X’d,1=X’d,2=X’d,3=X’d,4=0.0333 p.u.; 
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T’d0,1=T’d0,2=T’d0,3=T’d0,4=8.0 s; Vt,1=Vt,3=1.03 p.u.; 

Vt,2=Vt,4=1.01 p.u.; Vtref,1=Vtref,3=1.03 p.u.; Vtref,2=Vtref,4=1.01 p.u.; 

X15=X36=X29=X48=0.0167 p.u.; X56=X89=0.025 p.u.; 

X67=X78=0.055 p.u.; Pload6=9.67 p.u.; Qload6=1.00 p.u.; 

Pload8=20.0 p.u.; Qload8=1.0 p.u.; Qc6=-2.0 p.u.; Qc8=-3.5 p.u. 

where X15, X36, X29, X48, X56, X89, X67, and X78 are the reactance of transmission lines 

and transformers of this 4M2A power system; Pload6, Qload6, Pload8, and Qload8 are the 

active power and reactive power of loads in this 4M2A power system; and Qc6 and Qc8 

are the reactive power compensation at loads. 

A.2 Parameter Settings in Case Studies of Chapter 3 

The parameters of generators in the 4M2A power system are listed as follows. 

TJ,1=TJ,2=117.0 s; TJ,3=TJ,4=111.15 s; D1=D2=D3=D4=0; 

Ka,1=Ka,2=Ka,3=Ka,4=65.0; Ta,1=Ta,2=Ta,3=Ta,4=0.1 s; 

Kpss,1=Kpss,2=Kpss,3=Kpss,4=8.5; T1,1=T1,2=T1,3=T1,4=5.5 s; 

T2,1=T2,2=T2,3=T2,4=3.5 s; T3,1=T3,2=T3,3=T3,4=5.5 s; 

T4,1=T4,2=T4,3=T4,4=3.5 s; Pm,1=8.67 p.u.; Pm,2=Pm,3=Pm,4=7.0 p.u. 

The parameters of generators in the 16M5A power system are listed as follows. 

TJ,1=42.0 s; TJ,2=30.2 s; TJ,3=35.8 s; TJ,4=28.6 s; TJ,5=26.0 s; 

TJ,6=34.8 s; TJ,7=26.4 s; TJ,8=24.3 s; TJ,9=34.5 s; TJ,10=31.0 s; 

TJ,11=28.2 s; TJ,12=92.3 s; TJ,13=496.0 s; TJ,14=TJ,15=300.0 s; 

TJ,16=450.0 s; D1~D16=0; Ka,1~Ka,16=3.95, Ta,1~Ta,16=0.1 s; 
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Kpss,1~Kpss,16=0, T1,1~T1,16=9999 s; T2,1~T2,16=0 s; 

T3,1~T3,16=9999 s; T4,1~T4,16=0 s; Pm,1=2.5 p.u.; Pm,2=5.45 p.u.; 

Pm,3=6.5 p.u.; Pm,4=6.32 p.u.; Pm,5=5.052 p.u.; Pm,6=7.0 p.u.; 

Pm,7=5.6 p.u.; Pm,8=5.4 p.u.; Pm,9=8.0 p.u.; Pm,10=5.0 p.u.; 

Pm,11=10.0 p.u.; Pm,12=13.5 p.u.; Pm,13=36.1258 p.u.; 

Pm,14=17.85 p.u.; Pm,15=10.0 p.u.; Pm,16=40.0 p.u. 

A.3 Parameter Settings in Case Studies of Chapter 4 

The parameters of PMSG in the SMIB power system are as follows. 

Ppm,1=1.0 p.u.; Hpr,1=8.0 s; Xpd,1=0.2 p.u.; Xpq,1=0.2 p.u.; Xpf,1=0.02 p.u. 

where Xpd,1 is the d-axis reactance of the stator winding; Xpq,1 is the q-axis reactance of 

the stator winding; and Xpf,1 is the filter reactance. 

The parameters of MSC in the SMIB power system are as follows. 

Kpp-wt,1=1.25; Kp-wt,1=70.0; Kpp-iq,1=0.08; Kp-iq,1=30.0; 

Kpp-id,1=1.01; Kp-id,1=10.0 

The parameters of the conventional synchronous generator in the SMIB power 

system are as follows. The meanings of variables can be found in the Appendix A.1, 

which are not repeated here. 

TJ=8.0 s; D=0; ω0=314.0 rad/s; T’d0=5.0 s; Xd=0.8 p.u.; Xq=0.4 p.u.; 

X’d=0.05 p.u.; Pm0=0.6 p.u. 

The parameters of PMSG in the 4M2A power system are as follows. 

Ppm,1=1.0 p.u.; Hpr,1=8.0 s; Xpd,1=0.2 p.u.; Xpq,1=0.2 p.u.; Xpf,1=0.02 p.u. 



 

119 

 

 

 

The parameters of MSC in Scenarios 4.1-4.3 of the 4M2A power system are as 

follows. 

Kpp-wt,1=1.05; Kp-wt,1=50.0; Kpp-iq,1=0.07; Kp-iq,1=20.0; Kpp-id,1=0.04; Kp-id,1=30.0 

The parameters of MSC in Scenario 4.4 of the 4M2A power system are as follows. 

Kpp-wt,1=1.05; Kp-wt,1=92.0; Kpp-iq,1=0.07; Kp-iq,1=20.0; Kpp-id,1=0.04; Kp-id,1=30.0 

The parameters of ARC in the 4M2A power system are as follows: 

T1=0.3 s; T2=0.03 s; T3=0.3 s; T4=0.03 s; TW=0.05 s; KW=0.8 

The parameters of conventional synchronous generators in the 4M2A power system 

are as follows. 

TJ,1=TJ,2=117.0 s; TJ,3=TJ,4=111.15 s; D1=D2=D3=D4=0; 

ω0=314.0 rad/s; T’d0,1=T’d0,2=T’d0,3=T’d0,4=8.0 s; 

Xd,1=Xd,2=Xd,3=Xd,4=0.2 p.u.; Xq,1=Xq,2=Xq,3=Xq,4=0.1889 p.u.; 

X’d,1=X’d,2=X’d,3=X’d,4=0.0333 p.u.; Pm0,1=6.0 p.u.; 

Pm0,3=7.5 p.u.; Pm0,2=Pm0,4=7.0 p.u. 

A.4 Parameter Settings in Case Studies of Chapter 5 

The parameters of GSC of FCWG in the 4M2A power system are listed as follows. 

Kpp5,1=0.5; Kpi5,1=100; Kpp6,1=1.0; Kpi6,1=10.0; Kpp7,1=0.5; Kpi7,1=100.0; 

Scenario 5.1: Kpp4,1=1.0; Kpi4,1=90.0; Kppll,1=0.12; Kipll,1=39.27; 

Scenario 5.2: Kpp4,1=1.0; Kpi4,1=260.0; Kppll,1=0.12; Kipll,1=39.27; 

Scenario 5.3: Kpp4,1=1.0; Kpi4,1=400.0; Kppll,1=0.12; Kipll,1=39.27; 

Scenario 5.4: Kpp4,1=1.0; Kpi4,1=90.0; Kppll,1=0.12; Kipll,1=9.0; 
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Scenario 5.5: Kpp4,1=1.0; Kpi4,1=90.0; Kppll,1=0.12; Kipll,1=13.0 

The parameters of GSC of FCWG in the 16M5A power system are listed as follows. 

Kpp4,1=0.5; Kpi4,1=20.0; Kpp5,1=0.2; Kpi5,1=80.0; Kpp6,1=3.1; Kpi6,1=10.0; 

Kpp7,1=0.5; Kpi7,1=50.0; Kppll,1=0.12; Kipll,1=43.0 
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