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ABSTRACT 

Stroke is one of the primary causes of adult hemiplegia globally. Conventional motor recovery 

of the hemiparetic limb necessitates repeated and intensive training for stroke survivors. 

However, the current rehabilitation service for motor restoration after discharge from the 

hospital is insufficient, particularly for the ambulation ability. Although 60%–80% of stroke 

survivors can walk independently, most of them exhibit long-term gait disturbances, including 

high gait asymmetry, lower walking speed, inability to walk far, and being more likely to fall, 

which affect their mobility and integration into the community. Thus, more effective, and 

readily accessible rehabilitation services or methods are required to enhance the ambulation 

ability of chronic stroke survivors to improve their life quality. On the other hand, the 

evaluation of the training effects during neurorehabilitation is also a crucial issue, which is 

commonly conducted by a blinded assessor (e.g., professional physiotherapists). Clinical 

assessment is hard to obtain owing to the shorthanded situation in the current healthcare system, 

e.g., professional therapists. The surface electromyography (sEMG) signals driven quantitative 

and objective evaluations have been used to track the training effects, e.g., the co-contraction 

index (CI) of muscle pairs and activation level of individual muscle. However, these 

quantitative metrics are not available online and cannot be robustly correlated to clinical scores. 

The objectives of this study were: (1) development of a data-driven model involving sEMG for 

facilitating an objective and automated metric of training effects for poststroke rehabilitation 
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assisted by robots, (2) development of an exo-neuro-musculo-skeleton ankle-foot system with 

balance sensing feedback (ENMS-BF) for motor recovery of the paralyzed lower extremity 

after stroke, and (3) investigation of the assistive capability and rehabilitation effects of the 

proposed ENMS-BF on chronic stroke survivors, with both face-to-face individual training and 

remote self-help paired training. This study was implemented in three sections as follows: 

In the first part, we constructed a backpropagation neural network (BPNN) model with the 

sEMG signals as the driven data, which matched the mapping relationship between the sEMG 

characteristics and commonly utilized clinical scales, i.e., the Modified Ashworth Scale (MAS) 

and the Fugl–Meyer Assessment (FMA). Twenty-nine individuals with chronic stroke 

completed a robot-assisted upper limb rehabilitation program, with the sEMG signals collected 

before and after the 20-session intervention. There were significant correlations (P<0.001) 

between the manually assessed and mapped FMA and MAS scores, within the labelled data 

captured before and after the intervention. The results showed that the proposed sEMG-driven 

model based on BPNN enables the automated tracking of motor recovery for chronic stroke 

survivors and demonstrated the potential to be applied in automated assessment post-stroke. 

In the second section, we developed a novel ENMS-BF driven by plantar pressures to assist 

gait training by dynamic correction of foot drop and foot inversion. The ENMS-BF can be 

worn unilaterally onto the paretic lower limb with a weight of 0.47 kg. It consists of a soft-and-

rigid musculoskeletal combination, i.e., musculoskeleton, two-channel neuromuscular 
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electrical stimulation (NMES), and a tactile vibrator. The properties of pressure-to-torque 

transmission of the musculoskeleton were measured quantitatively. The results showed that the 

ENMS-BF could effectively correct foot drop and foot inversion in the hemiparetic gait pattern. 

In the third section, the feasibility and rehabilitative effects of the ENMS-BF-assisted gait 

training after stroke were evaluated. Twelve stroke survivors participated in the individual gait 

training with close supervision. Then, another 12 individuals with chronic stroke were recruited 

in self-help paired training based on a cyber physical social system (CPSS) for remote social 

links. The results indicated that the ENMS-BF assisted gait training was feasible and effective 

in improving the motor function, gait pattern, and plantar pressure of the paralyzed lower limb 

in both groups. The developed ENMS-BF combining with CPSS could effectively facilitate 

self-help gait training with remote management and peer support. 

In conclusion, the developed sEMG-driven model based on BPNN could facilitate the 

automated assessment of motor function recovery post-stroke. The developed ENMS-BF could 

assist in ankle dorsiflexion and self-correction of foot inversion during gait training. The 

ENMS-BF-assisted individual gait training was effective for improvements of lower limb 

motor function, gait pattern, and plantar balance in the paralyzed limb post-stroke. Based on 

the CPSS, the ENMS-BF-assisted paired training could support and facilitate self-help 

rehabilitation with professional management and social links with peers remotely.   
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Stroke is one of the primary causes of disability in adults [1]. By 2016, there were 

approximately 300,000 stroke survivors in Hong Kong and over 8 million in Chinese mainland. 

From 2009 to 2016, the population of stroke exhibited an upward trend with an annual of two 

million new cases in HK and a growth of 8% per year in Mainland China [2]. Globally, by 

2019, the accumulated number of survivors suffering from chronic stroke was around 102 

million, with ~77 million survivors suffering from ischemic stroke and ~25 million survivors 

caused by hemorrhage [3]. In contrast to the growing stroke population, resources in the 

rehabilitation industry (e.g., professional therapists and the length of hospital stay) are limited 

even in developed countries [4].  

Upper limb deficits were present in around 80% of stroke survivors [5], limiting their 

independence in daily living. Moreover, although 60%-80% of stroke survivors can walk 

independently, the majority of them suffer from long-term gait problems, such as significant 

gait asymmetry, walking slowly, cannot walk far, and are more prone to stumble, limiting their 

mobility and integration into the community [6]. Voluntary, extensive, and repetitive practice 

on paretic limbs throughout the subacute and chronic periods is required for effective 
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neurorehabilitation after stroke [7]. Although traditional rehabilitation assumed that significant 

motor recovery predominantly appears in the acute and subacute periods, i.e., within six months 

following the occurrence of stroke [6] [7], some studies have found that after the first six 

months, i.e., in the chronic stroke period, significant improvements of motor function can also 

be accomplished through rehabilitation training with the same intensity as that provided in the 

subacute period [8] [9]. Unfortunately, due to a shortage of professional labor in the current 

healthcare system, discharged stroke survivors usually find it difficult to acquire regular and 

intensive physical training. For public hospitals in Hong Kong, regular rehabilitative training 

was usually provided within the first year following a stroke, comprising physiotherapeutic 

services in hospital stay for 3–4 weeks and twice-weekly out-patient services [10]. In the 

current inpatient lower limb rehabilitation, Significant improvements in motor recovery are 

primarily achieved at the hip and knee (i.e., the proximal joints), which is associated with the 

sequence of proximal to distal joints in spontaneous motor recovery during the early phase of 

stroke. The motor recovery can be enhanced by voluntary physical training during the hospital 

stay. However, most stroke survivors do not obtain sufficient spontaneous motor recovery at 

the distal joints, i.e., the ankle and foot, when they are discharged from the hospital, making 

voluntary physical activity at these joints challenging in early rehabilitation while they are in 

the hospital. This results in commonly observed muscle weakness of ankle dorsiflexors and 

increased spasticity in the plantar flexors [11], leading to the degradation of the gait pattern 
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later, for example, high muscular co-contraction in the paralyzed limb, low balance due to 

asymmetry between the two limbs, high consumption of energy, and high risk of falling [12] 

[13]. 

1.2 Device-assisted Rehabilitation of Lower Limb  

Due to the requirement of physical training with high intensity and repeatability, long-term 

physical therapy post-stroke is time-and-labor consuming and challenging for both the 

therapists and the stroke survivors. Thus, various rehabilitation devices have been designed to 

aid during hemiplegic walking. Passive ankle foot orthoses (AFO) have been commonly used 

in conventional ankle foot rehabilitation post-stroke to avoid foot drop and foot inversion with 

a preset joint angle at the ankle [11]. However, excessive usage of passive AFO could be 

associated with muscular disuse atrophy because that stroke survivors with the long-term 

wearing of AFOs could eventually rely on mechanical fixation instead of stabilizing and 

strengthening the joints with their own muscular efforts. Thus, for the motor restoration of the 

distal joint, i.e., ankle joint, advanced solutions with flexible and necessary assistance are 

needed to improve the muscle coordination at the ankle complex. 

1.2.1 Neuromuscular Electrical Stimulation (NMES) 

One of the alternative solutions to assist in the hemiplegic walking is NMES, which mimics 

nerve-to-muscle stimulation. Repetitive sensorimotor experiences would be generated by 
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cyclic stimulations from the NMES, which could enhance the impaired muscle and activate 

more neuroplasticity pathways [14]. In the previous studies of stroke rehabilitation, two-

channel NMES on the target muscles of ankle dorsiflexion and plantarflexion have been 

applied in the correction of foot drop post-stroke with improved muscular coordination [15]. 

Moreover, it was also found that 30-min NMES on the plantar flexors could effectively release 

the muscular spasticity for individuals with chronic stroke [16]. However, due to a lack control 

of foot inversion in the frontal plane, NMES alone is hard to achieve accurate kinematic 

qualities post-stroke, e.g., correction of foot inversion, which has been found as a leading cause 

of muscular discoordination of the ankle joint [17]. Additionally, assisted by the robot, 

mechanical torque at the target joint could be provided with specific kinematics features using 

actuators to correct foot drop and foot inversion. 

1.2.2 Robot-assisted Rehabilitation 

Currently, various exoskeletal robots for restoration of lower limb motor function post-stroke 

have been developed [18], providing powerful mechanical support for the large and proximal 

joints, e.g., the hip and knee joints. However, these robots are mainly for patients with 

paraplegia, e.g., spinal cord injury, with a bilateral design [19] [20]. Thus, they are bulky for 

the lower limb motor recovery post-stroke, and could hardly facilitate motor relearning after 

stroke, which requires assistance-as-necessary for the goal to walk without external aids [13]. 

Later, unilateral exoskeletal robots were developed for lower limb motor relearning post-stroke 
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[21] [22] [23] with the necessary assistance on the affected side. However, these unilateral 

robots introduced extra and unbalanced weight at the paretic limb, which could generate 

mechanical imbalance load during the swing phase. More recently, soft robots with attempts of 

pneumatic muscles [24] and Bolden cable systems [25] [26] have gained more attention. 

However, for the pneumatic actuated and Bolden cable-powered robot [24] [25], an external 

cable connected to the power unit at the waist could affect the relearning of the gait pattern. 

Moreover, no rehabilitation effects of these robots [24] [26] have been reported in motor 

recovery post-stroke. Meanwhile, the exosuit [25] provides assistance for ankle dorsiflexion 

and plantarflexion in the sagittal plane, neglecting the correction of foot inversion in the frontal 

plane. Biofeedback has been found effective in the correction of foot inversion during gait 

training after stroke [27] [28], while biofeedback only cannot correct foot drop during the motor 

relearning after stroke. Thus, a more lightweight, and compact design of the robot is desirable 

for correction of both foot drop and foot inversion after stroke. It has been found that social 

interactions during the therapy of stroke training are necessary and beneficial for stroke 

survivors engaging in long-term rehabilitation [29]. Up to now, no attempt of integrating the 

robot with social interactions has been reported in the self-help motor recovery of lower limb 

post-stroke. 
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1.3 Assessment of motor function post-stroke 

1.3.1 Clinical Assessment 

In addition to the repetitive and intensive rehabilitation, assessments of training effects are also 

crucial for motor recovery post-stroke. Clinical assessments manually marked by a professional 

assessor are commonly adopted to evaluate training effects before and after the intervention 

related to robot-assisted rehabilitation. For example, the Action Research Arm Test (ARAT) 

[31], the Fugl–Meyer Assessment (FMA) [30], the Modified Ashworth Scale (MAS) [32], and 

the Motors Status Scale (MSS) [33] for upper limb assessment following stroke. Among these 

clinical scales, FMA was commonly used as the primary outcome for the track of motor 

function improvements, and MAS was widely adopted as the secondary outcome to assess the 

changes in muscular spasticity post-stroke [34]. FMA is deemed precise and responsive for the 

assessment of motor performance following stroke. The FMA scale of upper limb owns 66 

points in total, which can be spilt into 42 points for the shoulder and elbow sections, and 24 

points for the wrist and hand parts. Moreover, the FMA lower limb scale has a total of 34 points. 

The MAS is a quantified metric of the passively stretched soft tissues, which generates ranked 

scores at 0, 1, 1+, 2, 3, and 4. For the clinical assessment of lower limb motor function, in 

addition to the commonly used FMA and MAS, the 10-Meter Walk Test (10MWT) [35], the 

Berg Balance Scale (BBS) [36], and the Functional Ambulatory Category (FAC) [37] are also 

widely used clinical assessments of ambulation and balance post-stroke. Although clinical 
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assessments remain the “golden standard” for assessing training effects of motor recovery [38], 

these clinical measurements are performed manually by professional therapists, which is 

confined by the limited professional manpower in the current medical system. The data-driven 

automated assessments are desirable as the objective metrics of training effects during the long-

term robot-assisted rehabilitation post-stroke. 

1.3.2 Data-driven Automated Assessment  

Data-driven automated assessments are the potential to track the effectiveness of long-term 

rehabilitation, with less time- and labor-consumption of professional therapists in comparison 

to the subjective clinical assessment. In the previous studies, the complex interactions between 

the kinematic data and clinical scales were investigated with the neural network [39] [40], 

which had the satisfying performance of nonlinear mapping. However, these kinematic data-

based automated assessments neglected the intrinsic muscle activities, e.g., surface 

electromyography (sEMG) which were related to the muscular coordination in the upper 

extremity movements. More recently, multi-modal models combining the kinematic and sEMG 

data have been developed to quantitatively measure the motor rehabilitation of the impaired 

upper limb during long-term rehabilitation following stroke [41] [42]. However, the predicted 

scores produced by the model were different from manually marked scores, which could be 

hardly accepted by the professionals [38]. Moreover, sEMG-based quantified measurement has 

been attempted to track motor recovery during long-term rehabilitation. For example, previous 
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studies have employed sEMG to predict muscle force [43], monitor neuromuscular changes 

[44] [45], and detect muscle fatigue [46]. Particularly, in our previous studies, improvements 

in motor recovery of the upper extremity were measured based on sEMG data during the robot-

assisted rehabilitation post-stroke [44] [47] [48] [49] [50]. Parameters of the co-contraction 

index (CI) and activation level were calculated from sEMG data to monitor the muscular 

spasticity and coordination throughout the long-term program of rehabilitation for individuals 

with chronic stroke. Nevertheless, the calculated and modified metrics from the sEMG are still 

not practicable and acceptable in the clinical application since the interpretation of the 

mathematical parameters from the sEMG data can be difficult for clinical professionals [51]. 

Therefore, a data-driven automated assessment directly mapping the sEMG data to manually 

marked scores is desirable for tracking motor recovery in the long-term poststroke 

rehabilitation assisted by robots. 

1.4 Objectives of this study 

In summary, due to the shortage of professional therapists in the current healthcare system, 

device-assisted rehabilitation with intensive and repetitive training is in high demand for 

individuals with chronic stroke to restore lower limb motor functions. However, current 

device/technique, e.g., AFO, NMES, and the designed robots, could not well satisfy the motor 

relearning of lower limb post-stroke, which required a lightweight and compact designed robot, 

the advanced control of muscular coordination, and necessary assistance in foot drop and foot 
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inversion during the dynamic ambulation training. On the other hand, even with robot-assisted 

rehabilitation, clinical assessments of training effects are also limited by the shortage of 

professional manpower. Meanwhile, clinical applications have been hindered due to the 

deficient interpretation of sEMG signals to clinical operators. Thus, automated assessment, 

which can directly map the sEMG data to manually marked scores, is of great significance in 

self-help robot-assisted rehabilitation. Thus, objectives of this study could be summarized as: 

(1) To propose a novel data-driven model based on sEMG data during a robotic-hand-assisted 

training for individuals with chronic stroke, mapping sEMG data to the commonly adopted 

clinical scores, i.e., MAS and FMA. 

(2) To develop the lightweight, and compact designed exo-neuro-musculo-skeleton ankle-foot 

system with balance sensing feedback (ENMS-BF) for correction of foot drop and foot 

inversion post-stroke, and to examine the assisting capability of the ENMS-BF. 

(3) To explore the feasibility and rehabilitation effects of the developed ENMS-BF-assisted 

individual gait training, and to validate the viability and effectiveness of the cyber physical 

social system (CPSS) based self-help paired training, with assistance from the developed 

NMES-BF, remote monitoring, and cyber social links. 
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CHAPTER 2 

A DATA-DRIVEN INVESTIGATION ON SURFACE 

ELECTROMYOGRAPHY (SEMG) BASED CLINICAL 

ASSESSMENT IN CHRONIC STROKE 

2.1 Introduction 

As one of the principal etiologies underlying impairment of upper extremity function, stroke, 

i.e., the cerebrovascular accident (CVA), impacts approximately 15 million people per year 

globally [52]. For those chronic stroke survivors, i.e., with the manifestation of 6 months 

following the vascular insult, 65% of them cannot use the paralyzed hand for routine daily 

activities [53]. Motor recovery of the impaired upper limb following a CVA could be enhanced 

by voluntary, reiterated, and intensive physical practice [54]. Traditional rehabilitation facilities 

are based on one-to-one and in-person interventions; current healthcare manpower is limited 

for the rapidly rising numbers of chronic stroke survivors [55]. 

The stress on professional manpower could be reduced by the implementation of robot-assisted 

rehabilitation systems, which could offer ongoing reiterative and intensive therapeutic 

interventions post-stroke [56]. Numerous robotic systems have been designed with feasibility 

tests and proven efficacious for the recovery of upper extremity motor functions, including 

HapticKnob [57], Haptic Master [58] and Robotic Hands [48]. Robot-assisted rehabilitation 
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systems, that are voluntary effort-based for chronic stroke survivors, detect the intention 

activities from remaining neuromuscular pathways. With the voluntary effort-based training, 

return of motor function could be enhanced, which was demonstrated more sustainable in 

comparison to passive robot-assisted interventions that lack voluntary endeavors [59, 60]. 

Voluntary effort can be reflected by surface electromyography (sEMG), which has sufficient 

sensitivity to detect muscular activities. The assistance mechanism driven by sEMG is 

commonly implemented in the developments of robots for stroke rehabilitation in order to 

promote contributions of active motions in the physical training [61, 62]. Earlier publications 

from our team have reported a series of robot-assisted systems driven by sEMG signal for the 

rehabilitation of individuals with chronic stroke, and the sEMG-driven robots have been 

demonstrated to facilitate the return of motor functions of the upper limb [47, 48]. 

To assess the rehabilitation outcome following physical training, clinical assessments should 

be conducted prior to and following the rehabilitation program. Several clinical scales have 

been widely employed for the quantitative appraisal of activities and motor functions for the 

upper extremity, encompassing the Action Research Arm Test (ARAT) [31], the Fugl–Meyer 

Assessment score (FMA) [30], the Motors Status Scale (MSS) [33], and the Modified 

Ashworth Scale (MAS) [32]. Among these, the most commonly utilized scales include the 

FMA and MAS, which provide clinical interpretations of the motor recovery and alterations in 

the muscle spasticity [34, 44, 63]. Such clinical measurements are regarded as the benchmark 
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standards for tracking the outcome of stroke rehabilitation programs [38]. However, these 

clinical assessments depend on professional operators conducting the measurements, which is 

costly in time and the manpower required. An alternative solution for managing the rapidly 

rising need of clinical assessments is the automated rehabilitation process, which can manage 

and optimize the rehabilitation quality. Taking these elements into consideration, automated 

assessments are necessary and desirable to monitor the effectiveness of long-term robot-aided 

training program for individuals with chronic stroke. 

The advantages of automated assessments include a decrease of required professional 

manpower, a programmed method to yield rapid measures of motor recovery, and assistance in 

diagnostic to facilitate customized treatment. Recently, there has been considerable interest in 

the involvement of bioinformatic information to implement automated evaluations. Automated 

assessments based on the kinematic data have been designed, with the clinical scales as their 

development standards, and the kinematic data of upper limb captured by motion capture 

systems as the driving data feeding into the system. For instance, the complicated interaction 

between kinematic information and the clinical scales has been identified by the application of 

neural networks [39, 40], support vector machines [40] and extreme learning machines [64]. 

Nevertheless, assessments driven by kinematic data were found to have a major restriction in 

that they overlooked inherent muscular activity, i.e., the sEMG signals, which initiated upper 

limb motion [38]. More recently, multi-modal fusion systems have been designed, which 
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integrate kinematic data with specific muscle information, e.g., sEMG data, to track motor 

recovery in the impaired upper extremity in this context of stroke from a quantitative 

perspective. These multi-modal fusion automated assessments exhibited a significant 

correlation between the outcomes and the routine clinical scores [41, 42]. However, a modified 

scale was utilized for the outcomes of the multi-modality fusion system, which was at variance 

with the clinical scale, e.g., FMA scores, so that professional therapists could hardly accept the 

modified metric without additional clinical verification [38]. Additionally, clinical therapists 

found it complex to operate the added devices for capturing human kinematic information, so 

in reality, the temporal, financial and labor advantages of these kinematic data-driven 

assessments were limited [39, 40, 42, 64]. 

The usage of sEMG to provide quantitative measurements on the restoration of motor functions 

is a novel strategy. Previous applications of sEMG have been investigated to study the 

pathophysiology [65], to monitor neuromuscular alterations [44, 45], to predict muscle force 

[43], and to recognize muscle fatigue [46]. In our earlier studies, two quantitative metrics 

obtained from sEMG data, i.e. the level of muscle activation reflecting muscular spasticity, and 

the contraction index, CI, which could describe co-activation patterns, were used to assess 

motor function recovery during sEMG-driven robot-assisted rehabilitation [44, 47-49, 62, 66]. 

Additionally, Fuzzy approximate entropy has been proposed as a metric to explore the 

complexity of sEMG signals in the surveillance of functional motor restoration during robot-
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assisted rehabilitation [67]. It was demonstrated that, for chronic stroke survivors, the sEMG 

signal could offer a quantitative interpretation of the impact of sEMG-driven robot-assisted 

rehabilitation intervention. However, a limitation of these sEMG-based assessments was that 

only mathematical derivations from the sEMG data were used to indicate motor function 

improvement; the outcomes were not directly correlated with clinical scores, which severely 

restricted the clinical utilities by professional therapists. A critical impediment to the use of 

sEMG by clinical personnel is the lacking of proper interpretation on sEMG signals [51]. 

Although multi-factor regression analysis can be explicated using a multiple linear regression 

model, a more applicable method for sEMG signal analysis is the backpropagation neural 

network (BPNN). The compatibility of BPNN is greater than the linear regression model when 

there is significant heterogeneity among the input data, e.g., extremities, nonlinearity, and 

missing values [68]. Moreover, the BPNN performed better for non-linear regression processes 

in comparison to the linear regression model [69]. 

Regression mapping tasks related to sEMG data have been solved by BPNN, e.g. joint angle 

approximation [70, 71] and sketching pattern recognition [72]; thus, it appeared promising that 

BPNN could map sEMG information to clinical scales. Recently, a novel technique for the 

assessment of muscular spasticity has been proposed, which mapped the sEMG information to 

MAS using an adaptive neuro fuzzy inference system; notable precision was demonstrated 

between the regression output and the manually assessed MAS scores [73]. Nevertheless, this 
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robotized process solely concentrated on quantified assessments of muscle tensions, neglecting 

the evaluation of recovery of voluntary motor functions, which was usually measured using 

FMA during clinical assessment. Furthermore, this strategy necessitated reiterated passive 

stretches carried out by physical therapists to obtain the sEMG information, therefore, it was 

inappropriate for an automated evaluation of the restoration of motor functions. To the best of 

our knowledge, the mapping relationship between sEMG information to the traditional scales, 

e.g., FMA and MAS, has not been studied for the robotized evaluation during robot-aided 

rehabilitation post-stroke. 

In conclusion, this chapter aims to propose a BPNN model driven by sEMG data, to match the 

relationship between sEMG properties and the commonly employed clinical scores, i.e., MAS 

and FMA scales, during robot-aided training in individuals with chronic stroke. The 

configurations and framework of the BPNN model are explained in Section 2.2. The 

experiment results and discussion are present in Section 2.3 and 2.4, respectively. The periodic 

conclusion is presented in Section 2.5. 

2.2 Methodology 

Participants suffering from chronic stroke were enrolled in a robot-assisted intervention 

program comprising 20-session sEMG-based training assisted by robotic hand. This 

intervention program was carried out at Hong Kong Polytechnic University’s 

neurorehabilitation laboratory. Prior to and following the intervention, clinical assessments 
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Table 2-1. Demographic information for participants in the pilot trial. 

 

 

were carried out and sEMG data in an objective evaluation was acquired. The manually 

acquired clinical scores and corresponding sEMG signals formed the datasets, which were 

further used to construct a BPNN model driven by sEMG to explore the relationship between 

the manually marked clinical scales and sEMG properties. 

2.2.1 Recruitment of Subjects 

The Hong Kong Polytechnic University’s Human Subjects Ethics Committee authorized the 

ethical approval for this study. All subjects were provided with and signed the written informed 

consent before involved in this research. A total of 29 participants suffering from stroke 

participated in the training program, all of whom satisfied the criteria for inclusion: (i) 18-78 

years of age; (ii) at least 6 months since the initial occurrence of cerebral lesion; (iii) capable 

for passive extension of the digit metacarpophalangeal and interphalangeal finger joints to 170°; 

(iv) with muscular spasticity assessed by MAS ≤3 at the finger, wrist and elbow articulations; 

(v) FMA score: 15<FMA<45, indicating moderate-severee motor deficits in the paralyzed 

upper limb; (vi) cognitively intact, i.e., mini-mental state examination assessment score >21; 

participant 

no. 

Gender 

(female

/male) 

Stroke type 

(hemorrhagic

/Ischemia) 

Side of 

hemiparesis 

(left/right) 

Age (years) 

mean±SD 

Years after onset 

of stroke 

mean ± SD 

29 6/23 12/17 17/12 58.7±8.3 7.1±4.0 

 1 
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Figure 2-1. The Setup of experiments and sEMG signal samples. (a) Training assisted by the 

sEMG-driven robotic hand. (b) Data acquisition system in the bare hand reaching task (vertical). 

(c) Raw sEMG samples of four muscles, i.e., ED, TRI, FD, and BIC, within the evaluation task. 

The experiment operator manually marked each movement and pause periods. 

 

and (vii) showing the presence of voluntary sEMG signals, defined as 3*standard deviations 

(SD) higher than mean values of sEMG signal in resting state, within the target musculature of 

the paretic limb, i.e., extensor digitorum (ED), triceps brachii (TRI), flexor digitorum (FD), 

and biceps brachii (BIC) . The participants’ statistical profiles are presented in Table 2-1. 

2.2.2 Intervention aided by Robotic Hand 

Figure 2-1a presents an illustration of the robotic-hand triggered by sEMG employed for upper 
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limb training. Mechanical aid of flexion and extension at the finger joints in the paralyzed upper 

limb could be provided from the robotic hand. The assistance mechanism was triggered by real-

time sEMG data. ED and APB (abductor pollicis brevis) muscle-derived sEMG data were 

exploited as voluntary intention to commence assistance from the robotic hand for the 

consecutive and periodical upper extremity motions, i.e., opening and clenching the hand. 

When the robotic hand had been initiated, the patient needed to make no further effort, which 

was defined as the sEMG-triggered mode. The triggering threshold for mechanical assistance 

was established as three times SD of the baseline sEMG signal during rest period. The detailed 

description of the control mechanism has been shown in our earlier studies [47, 48, 50]. All 

participants were assigned to the robot-assisted intervention, which consisted of 20 sessions 

with aids from the sEMG-triggered robotic hand, with the intensity of 3–5 sessions every week 

within 6 successive weeks. Individual session of robot-assisted intervention necessitated the 

subjects to carry out two sets of 30-minute tasks, comprising lateral and vertical upper limb 

grasping and reaching motions owing a 10-minute rest period in the interval of the two 

assignments to circumvent the muscles becoming exhausted, as discussed previously [48]. The 

electrodes for collecting sEMG (Blue Sensor N, Ambu Inc., 20 x 30 mm in size) were 

positioned on the skin in pairs with their centers 2 cm apart, which is consistent with the 

description published by Cram [74]. The sampling rate of the collected sEMG data (DAQ, 

6218 NI DAQ card; National Instruments Corp.) was 1000 Hz. A preamplifier (INA 333; Texas 
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Instruments Inc.,) was used for achieving a 1000 times signal amplification and to facilitate 

online computation of sEMG level at the target muscles to trigger the aids from the robotic 

system [47]. 

2.2.3 Clinical Assessment 

The FMA and MAS scores were used for the clinical assessment of each participant prior to 

and following the 20-session robot-assisted rehabilitation. In this study, primary and secondary 

outcomes were defined as FMA and MAS, respectively, in keeping with previous work [40], 

[75]. The high sensitivity and responsiveness of FMA to identify functional alterations of the 

upper extremity motion, making it become the primary outcome in clinical investigation of 

rehabilitation after stroke [30, 34]. The FMA score could be subdivided into scores for the 

wrist/hand (FMA-WH)and for the shoulder/elbow (FMA-SE) of 24 and 42, respectively, which 

summed to be a total FMA score of 66 [75]. These sub-scores provided more detailed 

information regarding the distal versus proximal distribution of paralysis in upper limb motor 

functions [76]. Independent from the FMA, the MAS score was applied for the quantification 

of muscular spasticity associated with the involuntary contraction of muscle post-stroke [34]. 

A professional therapist conducted the measurement of the passive ranges of motion for 

extension and flexion of the finger, wrist, and elbow articulations, with a scale of 0, 1, 1+ 

(represented by 1.4 in this study), 2, 3, and 4 [34, 77]. The clinical assessments of MAS and 

FMA were conducted by the same blinded and experienced operator who was unknown about 
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the purpose in this study and any details regarding the research. 

2.2.4 Evaluation Tasks for sEMG Acquisition 

Except for the clinical assessments of MAS and FMA, sEMG signals were recorded in 

evaluation tasks. For the evaluation task for collecting sEMG, four movements were studied, 

including finger extension and flexion, and elbow extension and flexion as the objective 

measurement before and after the robot-aided training [47]. During the evaluation task, the 

corresponding sEMG signals at the ED, TRI, FD, and BIC, were captured as objective 

bioinformation. It was anticipated that there would be some extent of compensatory muscle 

activity within the four muscles, as it is commonly observed for individuals with chronic stroke 

[77-79]. Supervised machine learning was employed to enter the sEMG data to the proposed 

BPNN model (ED, TRI, FD, and BIC), and thus, construct the mapping association between 

the manually marked scores and the properties of sEMG. 

For each evaluation session of sEMG acquisition, the subject was invited to sit in front of a 

table with a distance of 0.3-0.4 meters separating their shoulder from the table surface (Figure 

2-1b). Voluntary muscle contraction was observed whilst the subject carried out the bare hand 

assessment task. During the evaluation task, the sEMG data were captured from the targeted 

musculature with a sampling rate of 1k Hz. The bare hand assessment comprised grasping a 30 

g sponge which was 5 cm in depth, positioning it at the center of a lower shelf, lifting it 

vertically for 17 cm and placing it centrally on the upper shelf. Then, the participant was 



21 

 

instructed to retrieve and return it to its initial point, next, to perform the bare hand reaching 

task with their natural and comfortable speed. Three trials were repeated separated by a 2-

minute rest period to mitigate against muscular fatigue. The commencement of sEMG signal 

recording was the point at which the participant contacted the sponge; the recording was 

concluded when the participant fully put the sponge to its initial position and loosen his/her 

hand. These bare hand tasks were closely observed and timed by an experimental operator. 

Previous work has demonstrated that most chronic stroke survivors were able to take hold of 

the sponge but were unable to release it owing to the spasticity at flexors [47]. Ten seconds was 

set as the time limit, since that some individuals with chronic stroke could assist their paretic 

limbs to take off the sponge with the unaffected limb. Since the paralyzed upper limb could 

exhibit weakness and impaired coordination post-stroke, pauses and movement reiterations 

were permitted. During the recoding of sEMG data, the experimental operator manually 

marked the pause points. These pause period of sEMG signals were subsequently removed 

during offline post-processing. A recording sample of sEMG during the vertical evaluation task 

is illustrated in Figure 2-1c. 

2.2.5 Data Preparation 

Following manual elimination of pause periods during the assessment, the sEMG trials owned 

a mean length of 30.92 ± 9.93 s, with a range of 9.8 – 51.8 s. The large deviation of the time-

consuming was related to the fact that nine participants exhibited improvements in their 
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performance rate following the 20-session robot-assisted intervention, whereas in others, their 

motion speed remained unchanged. Offline processing of the sEMG data included filtering by 

a 10-500 Hz band-pass filter (fourth-order Butterworth filter), together with a notch filter at 50 

Hz (MATLAB, 2019b). Then, the filtered data were input into the constructed model. The 

mapping associations of sEMG data with the FMA-SE and FMA-WH score subsets and the 

MAS scores (at the finger, wrist, and elbow articulations) were investigated. Additional fourth-

order Butterworth lower-pass filtering with cutoff frequencies at 150, 200, 300, 400, and 500 

Hz was implemented within the mapping of MAS. It was conducted to investigate the mapping 

performance using an efficient frequency component of sEMG, to represent the characteristics 

mostly associated with delayed involuntary contractures in a paralyzed muscle  

with muscular tension following stroke [80].  

During offline processing, sEMG data for each trial were segmented into specific time intervals, 

each comprising 400 ms with an overlap of 200 ms, which was consistent with the previous 

study [81] to generate a balance between the requisite information of sEMG data for the 

interpretation of muscle activities and the sEMG interval stationarity. For the individual 400 

ms sEMG intervals, verification of their wide-sense stationarity was performed to ensure that 

the average and autocorrelation function were time-invariant [82]. The segmented sEMG 

signals were then used to extract features and investigate the mapping association between the 

manually marked clinical scales, i.e., FMA-SE, FMA-WH, and MASs (including elbow, wrist, 
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and finger joints) and the sEMG properties. 

According to the Pareto principle, the sEMG interval data were split into two sets; In each trial, 

80% and 20% of sEMG epochs were utilized as the training and testing samples, respectively 

[83, 84]. The sEMG epochs from a participant’s sEMG trial were mapped to the manually 

marked scores obtained in the related assessment of the participant, i.e., prior to and following 

the robot-aided training. A cross-validation with 5-fold approach was utilized to make sure that 

each epoch was also fully used as testing samples. Then, the averaged results within testing 

dataset across the 5-fold was taken as general output of the model [85]. Figure 2-2a depicts the 

workflow of the preparation of the sEMG data and the sEMG-driven BPNN model. 

 

Figure 2-2. (a) Flowchart of signal processing in the proposed model. (b) Diagram of the 

constructed data-driven model, i.e., a backpropagation neural network (BPNN) with three 

layers. 
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2.2.6 The Data-driven Model based on sEMG 

Based on the BPNN, an sEMG-driven model was developed following four phases: (i) sEMG 

feature extraction; (ii) BPNN model setup; (iii) hidden layer configurations; and (iv) selection 

of sEMG features. 

(I) EMG Feature Extraction 

The identification of dynamic muscle activity has been underpinned by a number of abstracted 

temporal sEMG signal characteristics [86, 87], including mean absolute value (MAV), slope 

sign change (SSC), wavelength (WL), root mean square (RMS), and zero crossing (ZC) are 

commonly utilized [88]. Among these, WL, RMS, and MAV principally reflect the sEMG 

amplitude intensity which varies with real-time muscle contraction [87], and is generally 

presumed to correlate with the force of the contraction [89]. The rate of signal variance is 

indicated by SSC and ZC, which represent neural firing information. Thus, SSC and ZC have 

been employed to estimate the firing rate of motor units in the dynamic muscle contraction [90, 

91]. These characteristics can be expressed mathematically by the equations below, where 

𝑥(𝑡) indicates the signal in time domain, and T reflects the number of samples in a single 

epoch (i.e., 400). 

RMS principally represents the absolute values in magnitude of sEMG signals and can be 

described by: 
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𝑅𝑀𝑆(𝑥) = √
1

𝑇
∑ 𝑥2(𝑡)𝑇

𝑡=1 .                           (1) 

Taking the absolute value of the sEMG signals 𝑥(𝑡) as the average, the MAV computation 

can be obtained as given in Equation 2:  

𝑀𝐴𝑉(𝑥) =
1

𝑇
∑ |𝑥(𝑡)|𝑇

𝑡=1 .                           (2) 

The frequency of the zero axis crossing by the sEMG signal amplitude value is given by ZC, 

which can be written as: 

{
𝑍𝐶(𝑥) = ∑ (𝑠𝑖𝑔𝑛(𝑥(𝑡 + 1) × 𝑥(𝑡)) ∩ |𝑥(𝑡) − 𝑥(𝑡 + 1) ≥ 0|)𝑇−1

𝑡=1

𝑠𝑖𝑔𝑛 (𝑥) = {
1，𝑖𝑓 𝑥 ≥ 0
0,        𝑒𝑙𝑠𝑒    

.        (3) 

The frequency of sign changes in the sEMG signal slope is quantified by SSC, which can be 

computed using Equation 4: 

{
𝑆𝑆𝐶(𝑥) = ∑ 𝑓((𝑥(𝑡) − 𝑥(𝑡 − 1)) × (𝑥(𝑡) − 𝑥(𝑡 + 1)))𝑇−1

𝑡=2

𝑓(𝑥) = {
1, 𝑖𝑓 𝑥 ≥ 0
0，   𝑒𝑙𝑠𝑒  

.            (4) 

A cumulative parameter of the signal length, WL, is described by Equation 5: 

𝑊𝐿 =
1

𝑇
∑ |𝑥(𝑡 + 1) − 𝑥(𝑡)|𝑇−1

𝑡=1 .                      (5) 

These five features listed above were retrieved from the segmented sEMG signal of each 

muscle and used as inputs for the data-driven model.  

(II) BPNN Model Setup 

The BPNN was constructed with a three-layer structure, i.e., output, hidden, and input layers, 
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respectively, as the sEMG-driven model for investigating the association between the retrieved 

sEMG features and the manually marked scores (Figure 2-2b). The BPPN was trained by 

diminishing errors within the network outputs using derivatives of error functions; iterative 

backpropagation was employed to update the weight factors. For each iteration, a vector of 

sEMG features was established for the network:𝑋⃑𝑘 = [𝑋 
⃑⃑⃑ ⃑

𝐸𝐷,𝑘
, 𝑋 

⃑⃑⃑ ⃑
𝐹𝐷,𝑘

, 𝑋 
⃑⃑⃑ ⃑

𝐵𝐼𝐶,𝑘
, 𝑋 

⃑⃑⃑ ⃑
𝑇𝑅𝐼,𝑘

 ], where 

k reflects the kth sEMG epoch with respect to the investigated muscles, and 𝑋 
⃑⃑⃑ ⃑

𝑚,𝑘
 is the sEMG 

feature vector of the specific muscle m, according to Equations 1–5. Equation 6 defines the 

projection between the vectors of sEMG features and the clinical scale: 

𝑓(𝑥) = 𝑊 ∙ 𝑋⃑𝑘 + 𝑏,                           (6) 

where 𝑊  and b represent the respective weight matrix and bias vector of the network, 

respectively. Iterative updating of these two parameters was performed by the BP algorithmic 

error function computation [92]. During this process, activation function was assigned as the 

sigmoid function; the network was trained using Bayesian regularization. 

The mapped scores obtained from the BPPN model comprised continuous values with 

decimals; in contrast, the clinical scores were formatted as integral numbers. This occurs owing 

to the exploited sigmoid function and the algorithmic gradient rectification. Thus, the ultimate 

mapped score was calculated as the average output value in the testing set for all sEMG epochs 

of each subject. The precision of the mapped scores was validated using Pearson correlation 

analysis with the manually assessed clinical scales. The correlation's significance threshold was 
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Table 2-2. The correlation coefficients, r, between the manually acquired and mapped FMA 

scores, achieved by the BPNN model with varied numbers of nodes in the hidden layer. 

 

 

set at 0.05, with complementary values of 0.01 and 0.001.  

(III) Hidden Layer Configurations 

In the phase during which the hidden layer was configured, the Pearson correlation coefficient, 

r, which reflected the robustness of the association between the manually acquired and the 

mapped scores, was assessed using a two-phase technique that used varying neuron numbers 

or nodes contained within the hidden layer [93]. In the configuration, a strong correlation, 

defined by r>0.9 [94], together with a compact number of hidden nodes, was included. The 4-  

channel muscles were represented by 20 nodes in the input layer (i.e., 5 features from each 

specific muscle). 80% of the sEMG epochs, together with the corresponding FMA-SE and 

Number of nodes in 

hidden layer 
r with FMA-SE r with FMA-WH 

10 0.89*** 0.91*** 

15 0.90*** 0.93*** 

20 0.88*** 0.91*** 

30 0.86*** 0.89*** 

40 0.88*** 0.87*** 

50 0.89*** 0.86*** 

100 0.85*** 0.86*** 

150 0.84*** 0.85*** 

200 0.82*** 0.90*** 

 1 
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FMA-WH sub-scores prior to and following the robot-aided training, were used to train BPNN 

models containing 10-200 nodes in the hidden layer (Table 2-2). For the testing phase, the 

remaining 20% sEMG epochs were input into the model; correlation analysis in the testing set 

was performed on the model outputs against the manually marked scores. Since FMA was the 

designated primary outcome as described previously, it was used in the configuration of the 

model. The correlation coefficients between the manually marked and the mapped FMA sub-

scores generated by the configuration models with various numbers of hidden nodes are listed 

in Table 2-2. A three-layer BPNN model, with a hidden layer containing 15 nodes, was utilized 

for the current research as the calculated correlation coefficients for FMA-SE and FMA-WH 

were both >0.9 (Table 2-2), which will be described detailed in the Results section. During the 

training phase, overfitting issues could potentially arise because of the redundant hidden nodes, 

which was avoided using Bayesian regularization [95]. 

(IV) Selection of sEMG Features  

Based on the established BPNN as described previously, the optimal feature vectors were 

selected following the feature extraction of the sEMG data to minimize the dimensions of the 

input to the BPNN [96]. The five sEMG features were subdivided into two cohorts, i.e., MAV, 

RMS, and WL (Group I), which represented the sEMG signal magnitude, and ZC and SCC 

(Group II), which are indicative of the neural firing parameters. Various feature combinations 

from these subsets, with a minimum of one from each of the two groups, were used as BPNN 
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Table 2-3. The correlation coefficients, r, between the manually acquired and mapped FMA 

scores, achieved by various combinations of sEMG feature. 

 

 

input vectors (Table 2-3). This facilitated the investigation of the relationship between the 

mapped and FMA scores. The combined temporal magnitude- and neural-firing-related 

features were used to seek out an optimal combination of neuromuscular characteristics with 

minimized redundancy. The overfitting issue, potentially redundancy arising from the 

decreased input node number, was circumvented with the Bayesian regularization [95]. The 

highest correlation coefficient for FMA-SE and FMA-WH was present using a combination of 

ZC, RMS, SSC and MAV (Table 2-3), which was therefore selected as the input feature vectors 

Feature 

combinations 

r with 

FMA-SE 

r with 

FMA-WH 

Feature 

combinations 

r with 

FMA-SE 

r with 

FMA-WH 

MAV 0.80*** 0.61*** MAV+WL+SSC 0.86*** 0.65** 

ZC 0.78*** 0.82*** MAV+WL+ZC 0.79*** 0.88*** 

SSC 0.73*** 0.73*** RMS+WL+SSC 0.88*** 0.86*** 

RMS 0.71*** 0.59** RMS+WL+ZC 0.85*** 0.66*** 

WL 0.54** 0.60*** MAV+SSC+ZC 0.82*** 0.87*** 

MAV+SSC 0.84*** 0.81*** RMS+SSC+ZC 0.62*** 0.89*** 

MAV+ZC 0.84*** 0.79*** WL+SSC+ZC 0.88*** 0.76*** 

RMS+SSC 0.65*** 0.78*** RMS+WL+SSC+ZC 0.85*** 0.90*** 

RMS+ZC 0.83*** 0.84*** MAV+WL+SSC+ZC 0.91*** 0.89*** 

WL+SSC 0.81*** 0.84*** MAV+RMS+SSC+ZC 0.93*** 0.92*** 

WL+ZC 0.80*** 0.83*** MAV+RMS+WL+SSC 0.89*** 0.82*** 

MAV+RMS+SSC 0.77*** 0.74*** MAV+RMS+WL+ZC 0.89*** 0.88*** 

MAV+RMS+ZC 0.87*** 0.88*** 
MAV+ZC+SSC+RMS

+WL 
0.90*** 0.93*** 

 1 
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in this study. The contents of Table 2-3 are described in the section of results. 

2.2.7 Performance Metrics 

Once the model had been configured and the features had been selected, the evaluation of the 

data-driven model mapping performance was conducted in relation between the manually 

marked and the mapped FMA sub-scores and MASs. The FMA scores were explored further 

using the sub-datasets collected before and after the 20-session robot-aided training, 

respectively, because patterns of the sEMG data differ after the intervention, as revealed in our 

prior pilot trials. [47, 48]. It was probable that the results for the two subsets of data might 

differ in the cross validation with 5 folds. The training set contained 80% of the sEMG epochs 

in a subset of data, while the testing set contained the remaining epochs. Additionally, 

mismatched test data were examined, i.e., the BPNN model was trained within the pre-

intervention dataset and tested the model with the date after the 20-session training (i.e., post-

intervention dataset) [97] to assess the heterogeneity of the two subsets of data and the 

constructed data-driven model’s generalization performance [98]. This mismatched approach 

was also deemed to have possible output with respect to predicting the outcome of the 

intervention according to the participant’s situation prior to the training program. The intrinsic 

generalization was measured using varying proportions of the sEMG epochs (i.e., 50%, 60%, 

70%, 80%, and 90%) obtained after the intervention as the training input. Then, the 

correspondingly remaining sEMG epochs (i.e., 50%, 40%, 30%, 20%, and 10%) were the 
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testing data. During which, the previously determined model (i.e., 16-dimension input vectors 

with 15 nodes in the hidden layer) was trained using five-fold cross validation.  

Furthermore, the distal muscles of FD and ED, and the proximal muscles of TRI and BIC were 

utilized for mapping to the respective FMA-WH and FMA-SE sub-scores It was because the 

function of these proximal and distal muscle pairs dictated the corresponding FMA-SE and 

FMA-WH sub-scores, especially for unimpaired subjects [30, 77]. When only two muscles' 

signals were used, the BPNN was retrained since the input vectors was 8-dimension from the 

two sEMG channels. To avoid possible redundancy arising from the reduced input nodes, 

Bayesian regularization was also used to circumvent issues of overfitting [95]. 

Initially, the model’s mapping performance, i.e., from the sEMG data to the output scores of 

MASs, was explored with varying low-pass cut-off frequencies, i.e., 500, 400, 300, 200, 150, 

and 80 Hz, with the MAS sub-score at the elbow joint obtained prior to and following the 20-

session intervention. Those exhibited the most robust relationships between the output MAS 

and the true clinical scores, were chosen as the cutoff frequencies for continued investigation 

of the projection performances regarding the MAS scores at finger, wrist, and hand joints, 

utilizing both the datasets obtained before and after the robot-aided training. 

Earlier work relating to robot-assisted rehabilitation of the upper limb motor functions 

demonstrated that the sEMG characteristics obtained from the bare hand assessment could 

identify outcomes of the rehabilitation similar to those observed in the manually assessed 
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scores of FMA and MAS [47] [48] [49] [50]. The amplitude of a particular muscle’s sEMG 

signal and the temporal relationships of the contraction within corresponding pairs of muscles 

were given by the sEMG activation level and CI. Additional analysis on the activation levels 

and CI for related muscle pairs was therefore conducted before and after the intervention, to 

identify alternations of these sEMG characteristics at the two time points [44, 47]. 

The computation of a muscle’s sEMG activation level during the evaluation task was performed 

using Equation 7 [44]: 

EMG̅̅ ̅̅ ̅̅ =
1

𝑇
∫ 𝐸𝑀𝐺𝑖(𝑡)𝑑𝑡

𝑇

0
,                           (7) 

where EMG̅̅ ̅̅ ̅̅  indicates the mean values of sEMG envelope at muscle i. 𝐸𝑀𝐺𝑖(𝑡) represents 

the signal envelop acquired following normalization according to the value of the maximal 

muscle contractions during the session, meanwhile, the signal length is represented by T. 

Attenuation in spasticity could be inferred by a decline in the amplitude of the sEMG signal 

quantified by the muscle activation level following the intervention [44]. 

Equation 8 defines the CI between a muscle pair: 

    CI =
1

𝑇
∫ 𝐴𝑖𝑗(𝑡)𝑑𝑡

𝑇

0
,                             (8) 

where Aij(t) represents the envelopes’ overlapping sEMG activity at muscles j and i, and the 

signal length is indicated by T. A rise or fall in the CI index indicated enhanced or diminished 

muscle pair co-contraction, respectively, i.e., a wider or narrower region of imbrication [44]. 
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For this study, the secondary outcomes were the calculated CI and activation level. The 

Shapiro-Wilk test was utilized to examine whether the data was normal distributed; this 

criterion was met by all sEMG measures. A paired test was then applied to the normal sEMG 

parameters [48] to compare any differences between the sessions prior to and following 

intervention. The value of P below 0.05 was considered significant statistically. The clinical 

scale data before and after the 20-session intervention underwent identical testing for 

normality; data from the FMA-WH and FMA-SE sub-scores were found to have a normal 

distribution (p>0.05) but not the MAS score data. Differences between the FMA scores before 

and after the intervention were therefore investigated using a paired t-test; the MAS score data 

was explored with the Wilcoxon test. Statistical significance was set at a p-value of 0.05. 

2.3 Results 

2.3.1 Feature Selection and Model Configuration 

The correlation coefficients describing the relationships between the FMA sub-scores obtained 

clinically and those generated by the BPNN with varying number of hidden nodes are presented 

in Table 2-2. The strongest correlation was obtained in the model of 15 hidden nodes (r=0.93 

and r=0.90 for FMA-WH and FMA-SE, respectively, p<0.001). The r value diminished in trials 

where the hidden nodes were either greater than or below 15. 

The model’s mapping performance with various combinations of input feature vectors, i.e., the 
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amplitude features and the features associated with neural firing, are displayed in Table 2-3. 

The combined features of ZC, RMS, SSC and MAV provided the maximum correlation 

coefficients (FMA-WH r=0.92; FMA-SE, r=0.93, p<0.05). Significant correlations between 

the mapped and clinically obtained FMA sub-scores were obtained with the application of all 

the combinations of features applied (p<0.05). The lowest correlation coefficient was when the 

only input feature was WL (FMA-SE, r=0.54, p<0.05). The greater the number of combined 

sEMG features that were entered, the better the correlation identified between the manually 

assessed and the mapped FMA sub-scores. However, when all five characteristics were 

combined together, the correlation coefficients in relation to the mapped and clinical FMA-

WH and FMA-SE scores led to a correlation coefficient fall of 0.3, and a rise of 0.1, respectively, 

when contrasted against the highest correlation coefficient seen with the ZC, RMS, SSC, and 

MAV feature combination. 

2.3.2 Mapping Performance for MAS and FMA 

Figure 2-3 shows the correlations between the manually assessed and the mapped FMA sub-

scores within the pre-intervention dataset. These reached significance for FMA-WH and FMA-

SE (r=0.93 and r=0.92, respectively, p<0.05). The ranges of the mapped and clinically acquired 

FMA-SE scores were 6.5-32.80 and 5-30, respectively; the respective equivalent data for the 

MA-WH scores were 2.57-17.24 and 2-20. The correlation relationship was strong when the 

scores lay between 11 and 24 for FMA-SE, and between 2 and 9 for FMA-WH. The correlations 
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Figure 2-3. Robust correlations generated by sEMG signals from four muscles, namely BIC, 

ED, TRI, and FD, within the pre-intervention dataset. FMA-WH, Fugl–Meyer Assessment 

wrist/hand sub-score. FMA-SE, Fugl–Meyer Assessment shoulder/elbow sub-score. 

 

 

Figure 2-4. Robust correlations generated by the sEMG from the for muscles, namely TRI, ED, 

FD, and BIC, within the post-intervention dataset. FMA-WH, Fugl–Meyer Assessment 

wrist/hand sub-score. FMA-SE, Fugl–Meyer Assessment shoulder/elbow sub-score. 



36 

 

 

Figure 2-5. Correlations generated by the corresponding sEMG pairs after the robot-aided 

training, i.e., TRI and BIC for FMA-SE, ED and FD for FMA-WH. FMA-WH, Fugl–Meyer 

Assessment wrist/hand sub-score. FMA-SE, Fugl–Meyer Assessment shoulder/elbow sub-

score. 

 

observed between the manually acquired and the mapped FMA sub-scores after the 

intervention are depicted in Figure 2-4. These attained significance for FMA-WH and FMA-

SE (r=0.92 and r=0.93, respectively, p<0.05). The ranges of the manually measured and the 

mapped FMA-SE scores were 12.84-39 and 10-41, respectively; the corresponding ranges for 

the FMA-WH scores were 6.22-21 and 5-22, respectively. The correlation was highest when 

the scores were within the range 15 and 24 for FMA-SE, and between 9 and 15 for FMA-WH. 

For both datasets obtained before and after the intervention, there was a high correlation 

between the manually assessed and the mapped FMA sub-scores.  

The associations for the manually acquired and the mapped FMA sub-scores using sEMG data 
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Figure 2-6. Correlations generated within the mismatched testing condition utilized the sEMG 

data from four muscles, i.e., BIC, FD, TRI, and ED. FMA-WH, Fugl–Meyer Assessment 

wrist/hand sub-score. FMA-SE, Fugl–Meyer Assessment shoulder/elbow sub-score. 

 

from the respectively paired muscles are indicated in Figure 2-5. The corresponding muscle 

pairs comprised FD and ED for the FMA-WH, and TRI and BIC for the FMA-SE. The 

respective correlation coefficients for the clinically acquired scores and the mapped FMA-WH 

and FMA-SE were r=0.58 (p<0.05) and r=0.79 (p<0.05). The mapped ranges for the two scores 

were 13.37-35.85 and 6.67-22.87, respectively. The manually acquired scores were identical to 

those indicated in Figure 2-4. There was a higher correlation between the manually assessed 

and the mapped scores for the FMA-SE in comparison to the FMA-WH. The correlation 

analysis between the manually acquired and the output FMA sub-scores which were acquired 

with the application of the mismatched testing condition is demonstrated in Figure 2-6. No 

significant correlations were observed with respect to either FMA-SE or FMA-WH. The FMA- 
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Table 2-4. The correlation coefficients, r, between the manually assessed and the mapped 

MAS-elbow, produced from filtered sEMG signals with various lowpass cutoff frequencies. 

 

 

SE score ranges were: 5.38-21.62 (mapped scores) and 10-41 (manual scores). The equivalent 

ranges for the FMA-WH scores were: 1.55-41.29 (mapped scores) and 5-22 (manual scores). 

Overall, when the mismatched testing condition was applied, the output scores were lower than 

those obtained clinically. Correlations between the manually assessed and the mapped FMA 

sub-scores generated by the data-driven model with varying percentages data in the training set 

for the evaluation of intrinsic generalization are listed in Table 2-6. The split-half technique 

[99] still yielded a correlation coefficient >0.88 between mapped and clinical scores when the 

training data component was diminished to 50%. 

The correlation analysis output is detailed in Table 2-4 for the manual versus mapped MAS-

elbow score data when varying low-pass cutoff frequencies applied to sEMG signals. All the 

relationships reached significance (p<0.05). The coefficient of correlation reached the 

Cutoff frequency (Hz) r with MAS-elbow 

80 0.76*** 

150 0.89*** 

200 0.92*** 

300 0.81*** 

400 0.75*** 

500 0.42*** 

 1 
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Figure 2-7. Robust correlations between the manually measured and the mapped MASs, 

generated by the 10-200Hz bandpass filtered sEMG signals from TRI, BIC, FD, and ED. 

Correlations between the manually acquired and the mapped MASs (E) at the fingers, (C) wrist, 

and (A) elbow joints within the pre-intervention dataset, (F) at the fingers, (D) wrist, and (B) 

elbow joints for post-intervention dataset. 
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maximum for the increased cutoff frequency values up to 200 Hz (r=0.92, p<0.05). When the 

cutoff frequency exceeded 200 Hz, the association between the mapped and manual scores 

decreased. The correlations between the mapped and the manually assessed MAS scores with 

respect to the use of band-pass filtered sEMG data (10-200Hz) are illustrated in Figure 2-7. 

Using the datasets obtained before the robot-aided training, the following correlation 

coefficients were calculated as: MAS-elbow, r=0.91 (p<0.05); MAS-finger, r=0.91 (p<0.05); 

MAS-wrist, r=0.88 (p<0.05). With the datasets collected after the intervention, the equivalent 

correlation coefficients comprised: MAS-elbow, r=0.92 (p<0.05); MAS-finger, r=0.90 

(p<0.05); MAS-wrist, r=0.80 (p<0.05). A higher association between the manually measured 

and the mapped MAS sub-score (wrist joint) was found within the pre-intervention dataset, 

compared to that within the post-intervention dataset. For the pre-intervention dataset, while  

 

Table 2-5a. The changes in the sEMG parameters before and after the 20-session robot-assisted 

rehabilitation. 

 

 pre-intervention post-intervention P 

 Mean(±std) Mean(±std) 

BIC 0.86(±0.14) 

0.93(±0.07) 

0.83(±0.18) 

0.85(±0.15) 

0.85(±0.16) 

0.36(±0.19) 

0.37(±0.13) 

0.47(±0.21) 

0.39(±0.21) 

0.32(±0.13) 

0.000*** 

FD 0.000*** 

FD-BIC 0.000*** 

FD-TRI 0.000*** 

BIC-TRI 0.000*** 

 1 
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Table 2-5b. The changes in the clinical scales before and after the 20-session robot-assisted 

rehabilitation. 

 

 

Table 2-6. The correlation coefficients, r, between the manually measured and the mapped 

FMA sub-scores, produced by the BPNN model trained with varying distribution proportions 

of the training and testing sets. 

 

 

the manually acquired MAS scores were graded at three and zero, the distances between the 

manual and the corresponding output score were >0.5. For the dataset obtained after the 

training, the distances within the manual and mapped scores were above 0.5 when the manually 

assessed MAS scores of zero, two, or three were assigned. 

 pre-intervention post-intervention P 

 Mean(±std) Mean(±std) 

FMA-WH 8.86(±2.49) 

17.76(±3.03) 

1.52(±0.42) 

1.66(±0.48) 

1.63(±0.55) 

12.90(±2.45) 

25.21(±4.37) 

0.97(±0.39) 

0.83(±0.41) 

0.67(±0.35) 

0.000*** 

FMA-SE 0.000*** 

MAS-elbow 0.001*** 

MAS-wrist 0.000*** 

MAS-finger 0.000*** 

 1 

proportion of training data r with FMA-SE r with FMA-WH 

50% 0.89*** 0.88*** 

60% 0.91*** 0.90*** 

70% 0.89*** 0.92*** 

80% 0.93*** 0.92*** 

90% 0.87*** 0.88*** 

 1 
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Figure 2-8. The alterations of sEMG parameters before and after the 20-session robot-aided 

training. The individual muscles of FD and BIC, and paired muscles, i.e., BIC-TRI, FD-TRI, 

and FD-BIC are indicated on the x-axis. The y-axis shows CIs of the paired muscles and the 

normalized activation level of the individual muscles.  

 

2.3.3 Alterations of Clinical Scales and sEMG Parameters 

The comparisons of normalized sEMG activation levels and CI prior to and following the 

intervention are presented in Figure 2-8. Significant changes in the normalized sEMG 

activation level were detected in relation to the FD and BIC (paired t-test, P<0.05), with the 

values being greater prior to the rehabilitation program. The normalized CI data also decreased 

significantly after the intervention in the muscle pairings, BIC-TRI, FD-TRI and FD-BIC 

(paired t-test, p<0.05). The remaining targeted musculature or paired muscle groups 

demonstrated no significant alterations in these sEMG measures. The changes observed 
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Figure 2-9. The changes of clinical scales before and after the 20-session intervention. (a) Sub-

FMA scores, (b) MASs.  

 

between the sEMG measures before and after the intervention are demonstrated in Table 2-5a. 

The comparisons of the clinical scales prior to and following the intervention are displayed in 

Figure 2-9. The two FMA sub-scores increased significantly following the intervention (paired 

t-test, P<0.05) whereas MASs significantly decreased post-intervention (Wilcoxon test, 

P<0.05). These differences in clinical scores are also listed in Table 2-5b. 

2.4 Discussion 

In this study, a BPNN Model driven by sEMG data for the mapping of sEMG signals against 

commonly utilized clinical scores, i.e., FMA sub-scores (FMA-WH and FMA-SE), and MASs, 

was developed. Optimization of the model was carried out by adjusting the node number in the 

hidden layer and by modifying the input feature vectors of the BPNN model. Strong 
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correlations were exhibited within the output scores yielded by the model and the scores 

acquired clinically (r>0.9), for both the datasets collected prior to and following the 

intervention (Figures, 2-3, 2-4, and 2-7). 

2.4.1 Model Configuration 

A three-layer BPNN was constructed to underpin the sEMG-data-driven model. The hidden 

layer neuron count was determined using the two-step technique, and the model outputs with 

varying node numbers in the middle layer, i.e., 200, 100, 50, 40, 30, 20, 15, and 10, were 

evaluated. The correlations obtained from all the models between the output and manually 

obtained scales were high (r>0.8), which implies that the established BPNN with three layers 

is capable and adequate for projection to the FMA sub-scores acquired manually using the 

sEMG data [100, 101]. The optimal model for matching the sEMG data to the FMA subscales 

was the BPNN with a hidden layer containing 15 nodes, as revealed by the correlation 

coefficient in Table 2-2. The hidden layer with 15 nodes was 75% of the input layer 

dimensionality (20 nodes, consistent with the rule of the thumb method, which proposed that 

the number of hidden nodes should be between 70% and 90% of the input feature dimension 

[102]. The output of models with a higher number of hidden nodes (>15) was inferior because 

of overfitting issues; complicated fitting between the misleading sEMG features and the 

manual scores was potentially present in such models with excessive hidden nodes, which 

diminished the precision of generalization on the testing dataset [103]. Meanwhile, the opposite 
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problem, i.e., underfitting, was suspected in the models with hidden nodes less than 15, leading 

to insufficient plasticity in relation to the linear regression and thus diminishing the accuracy 

of interpretation for the testing dataset [104]. 

2.4.2 Input Feature Selection 

The selection of sEMG features, i.e., WL, ZC, RMS, SSC, and MAV, were tested in varying 

combinations of these features as BPNN model input vectors (Table 2-3). Significant 

correlations (moderate, r≥0.54) between the mapped and clinically acquired scores were 

achieved using a lone sEMG feature as the model input vectors [94]. This implied that sufficient 

neuromuscular information relating to the restoration of motor functions during robot-assisted 

rehabilitation was encompassed within the individual sEMG features, which could be identified 

by the utilized BPNN model. The performance of the models was enhanced when the sEMG 

features associated with magnitudes (i.e., WL, RMS, and MAV) and neural firing information 

(i.e., WL and ZC) were incorporated, indicating the necessity for the inclusion of neural-firing-

related and magnitude-related features for optimal mapping by the model. The model 

performance was also promoted when the number of combined sEMG features was extended, 

but interestingly, the most robust correlation between mapped and clinical scores was noted 

with the combination of features ZC, SSC, RMS, and AMV, rather than all the five sEMG 

features were utilized. It is possible that WL may be the superfluous feature attenuating model 

output accuracy. This is substantiated by the fact that as an isolated input vector, WL gave rise 
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to the lowest correlation coefficient (r=0.54), suggesting its lack of efficacy for matching the 

sEMG data to manually acquired scales of FMA. Thus, the BPNN input feature vector for this 

study comprised the combination of ZC, RMS, SSC and MAV. This optimalization of feature 

vectors was consistent with the feature reduction and selection in earlier work of sEMG signal 

classification [96]. 

2.4.3 Relationship between the sEMG Data and FMA Sub-scores 

In this work, the sEMG data on the FD, BIC, TRI, and ED muscles were projected to clinical 

scores of FMA-WH and FMA-SE, yielding robust correlations prior to and following the 20-

session rehabilitation (Figures 2-3 and 2-4). The optimal regression output was observed in 

relation to the average values of the manual scores, e.g., 17.76 (Figure 2-3a), which arose as in 

the training datasets, the manually assessed FMA sub-scores were normally distributed (Figure 

2-3a, µ=17.76, =3.03). The training data were inadequate for model learning regarding 

appropriate association within sEMG data and FMA sub-scores, since the training data were 

centered on the average values, where the manually assessed scores deviated from the average 

value.  

Furthermore, sEMG data from two antagonistic pairs, i.e., ED and FD for distal motions, BIC 

and TRI for proximal motions were projected to the manually acquired FMA-WH and FMA-

SE sub-scores using the data-driven BPNN model. These correlations within the manually 

assessed and the mapped FMA sub-scores using sEMG data of the corresponding antagonistic 
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muscle pairs were weaker than that utilized sEMG data from the four muscles (Figure 2-5). 

These observations indicate that compensatory muscular movements, particularly in the 

proximal muscles, is a crucial issue in the sEMG based evaluation tasks for stroke survivors, 

during the robot-aided training. During the motor recovery measurement, compensation at 

proximal muscles was observed more frequently compared to that at distal muscles, which 

explains the stronger correlation (Figure 2-4) within the mapped and clinically acquired FMA-

SE scores generated from the proximal TRI-BIC muscles, compared to that within the manually 

assessed FMA-WH and the mapped scores from the distal FD-ED muscle pair.  

2.4.4 Generalization of the Model 

The mismatched testing condition, i.e., utilizing the pre-intervention dataset in the training 

stage and testing the trained model with the post-intervention dataset, was applied for the 

evaluation of the model generalization. The model was unable to project sEMG data to the 

manually acquired FMA scores within the post-intervention data, with the model trained by the 

pre-intervention dataset, which was indicated by the lack of significant correlations between 

the manually marked and the mapped FMA-SE and FMA-WH scores (Figure 2-6). This finding 

was further explicated by the significant differences in calculated parameters of sEMG, i.e., the 

normalized and CI sEMG activation level prior to and following the intervention (Table 2-5a, 

Figure 2-8). Moreover, a correlation coefficient of 0.88 was observed between the manually 

marked and the mapped FMA sub-scores, despite diminishing the proportion of training data 
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to half (Table 2-6), this finding implied that the internal generalization of the established model 

was satisfying, even with restricted samples [105]. 

Overall, the mapped FMA-SE and FMA-WH sub-scores had a lower value in comparison to 

those acquired manually (Figure 2-6), suggesting that the motor recovery was underestimated 

by the constructed model following the intervention, which was because the pre-intervention 

dataset was exploited for model training, which included significantly lower values of manual 

FMA sub-scores, in comparison to the post-intervention dataset (Table 2-5b, Figure 2-9). Thus, 

although the constructed model could project the sEMG data to the clinically acquired FMA 

sub-scores within datasets collected prior to and following the intervention (with the stable 

pattern of muscle activity), it lacked the prognosis capacity to predict the FMA sub-scores after 

the robot-aided training. 

2.4.5 Relationship between the sEMG Data and MASs 

The sEMG data-driven model was further tested for its capability of matching sEMG data to 

the manual MAS scores. Thus, low-pass filtering of the sEMG data was performed, with the 

cutoff frequency set based on the sEMG characteristics and according to previous studies on 

the involuntary muscle contractions associated with muscular spasticity [106, 107]. When the 

low-pass filter (200 Hz) was applied to the sEMG data, the best performance, i.e., the highest 

correlation, was observed between the manually marked MASs and the mapped scores using 

the data-driven model. This suggested that the slow and passive contraction in spastic muscles 
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post-stroke were efficaciously represented by the lower frequency domain of sEMG data [80]. 

When the cutoff frequency of the low-pass filter was set as 200 Hz, the correlation achieved a 

peak value, in comparison to the values of 300 and 150 Hz. This implies that for the passively 

tensioned muscle, the most effective frequency of sEMG data is around 200 Hz. This infers 

that low-frequency firing motor units are predominant within muscles affected by spasticity 

and supports observations found in earlier work [107]. The correlation coefficient between the 

manually marked and the mapped MAS scores decreased when the applied cut-off frequency 

was less than 200 Hz (Table 2-4), suggesting that the bio-information associated with muscular 

spasticity was lost in the much lower frequency band of sEMG signals.  

Robust correlations within the manually acquired and the mapped MAS scales (Figure 2-7) 

demonstrate that the constructed model enables the projection from the sEMG data to MAS 

scales with a high consistency, which facilitates its potential application in estimation of 

passive muscle tensions for individuals with chronic stroke. Nevertheless, the model 

performance was less accurate for the MAS scales zero and three, with the distances separating 

the output and manually acquired scores greater than 0.5. This could be explained as the 

participants owning 0<MAS<3 according to the inclusion criteria, which limited the model 

learning the characteristics of MAS grading at 0 and 3 from the restricted training data. This 

issue was also recognized in the previous studies [41] [73]. Moreover, the manually marked 

and the mapped MAS-wrist scores showed the higher correlation in the pre-intervention dataset, 
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in comparison to that within the post-intervention dataset. The better performance of using the 

pre-intervention dataset is owing to the widespread distribution of the training data. A weaker 

correlation was observed using the post-intervention dataset since the manual MAS-wrist 

scores decreased significantly after the robot-assisted training (Table 2-5b, Figure 2-9), and the 

training data were congregated within the lower scores. 

Some limitations were identified in this study. Implemented by the mismatched testing, 

unsatisfactory generalization of the data-driven model was observed, which could potentially 

result from: (i) the limited sample size (n=29) compared to larger sample sizes in previous 

studies >100[108, 109]; and (ii) the marked heterogeneities in sEMG characteristics and 

clinical scores between the datasets collected prior to and following the intervention, as detailed 

in Tables 2-5a and 2-5b, and Figures 2-8 and 2-9. The insignificant correlations in the 

mismatched testing suggested that the sEMG information and manually acquired scores 

following the robot-aided training were interpreted to be fresh data by the trained model. In 

future work, more sEMG data and the corresponding clinical scores will be involved with 

additional participants, for the enhanced generalization of the constructed model on the fresh 

and unmarked inputs in the testing stage. Moreover, sEMG-based index, such as CI and the 

activation level, together with diagnostic biomarks will be integrated into the feature vectors 

for the enhanced robustness of the data-driven model. Additionally, interpretation of the data-

driven model, i.e., non-linear mapping, would be carried out for the clinical practitioners for 
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future clinical applications. 

2.5 Periodic Summary 

In this chapter, a sEMG-driven model based on BPNN, was constructed for the mapping of 

sEMG data during the evaluation tasks to two commonly utilized clinical scores, i.e., FMA and 

MAS. The performance of the constructed model was optimized and the relatively optimal one 

was obtained with the sEMG feature combination of ZC, RMS, SSC, and MAV. Strong 

correlations were found within the manually marked and the mapped MAS scores and FMA 

sub-scores, indicating that the sEMG-driven model enables the measurement of the upper limb 

motor function with sEMG data. The promising findings suggest that once the model’s extrinsic 

generalization being improved with enlarged samples, this data-driven model could be applied 

in clinical practice as an automated assessment without the need for intensive operation or 

supervision by a clinical professional. 
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CHAPTER 3  

AN EXO-NEURO-MUSCULO-SKELETON WITH BALANCE 

SENSING FEEDBACK FOR LOWER LIMB 

REHABILITATION AFTER STROKE 

3.1 Introduction 

Stroke has been one of the primary causes of disability in adult [1]. There were around 300,000 

stroke survivors in Hong Kong and over 45 million in Chinese mainland by 2019, with annually 

new occurrence of 4 million and an annual augment of 8% from 2009 to 2019 [2]. In contrast 

to the growing stroke population, resources in the rehabilitation industry (e.g., professional 

therapists and the length of hospital stay) are limited even in industrialized countries [4]. 

Restoration of locomotion for the lower limbs has a high priority in traditional early stroke 

rehabilitation [6]. It is because that paralysis in the affected lower limb due to post-stroke 

hemiplegia is easy to cause immobilization, which is a leading cause of further deterioration of 

the whole body. However, the current rehabilitation service of the lower limb is insufficient, 

particularly after discharging. Although around 60%–80% of stroke survivors could obtain 

some extent of independent walking, most of them suffer from long-term gait disturbances, 

e.g., high gait asymmetry, walking slower, cannot walk far, and more likely to fall, affecting 

their mobility and integration into the community [6]. More effective and easy-to-access 

rehabilitation services, or methods, are needed to improve the gait function of stroke survivors 
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with the purpose to improve their life quality. 

Effective neurorehabilitation of the paretic lower limb relies on the extensive and repeated 

voluntary practice throughout the subacute and chronic periods [7]. Although traditional 

rehabilitation indicated that primary recovery of motor functions was mainly observed in the 

acute and subacute periods, i.e., within 6 months of the stroke occurrence [6], Some studies 

have found that after the first six months, i.e., during the chronic stroke period, significant 

returns of motor function could be achieved via rehabilitation training at the same intensity as 

that provided during the subacute period [8] [9]. Unfortunately, due to a shortage of skilled 

manpower in the existing healthcare system, discharged stroke survivors usually find it hard to 

obtain regular and extensive physical training. In the current inpatient lower limb rehabilitation, 

primary returns of lower motor function are usually exhibited in the the hip and the knee joints, 

i.e., the proximal joints, which could be associated with the sequence of proximal to distal 

joints in spontaneous motor recovery during the early periods of stroke, enhanced by the 

voluntary rehabilitation training during the hospital stay. However, most of the patients have 

not obtained enough spontaneous motor recovery at the ankle and foot joints, i.e., the distal 

joints, by the time of discharge, which makes voluntary physical practice at these joints difficult 

in early rehabilitation when they stay in the hospital. It leads to less restored ankle foot 

functions, contributing to the deterioration of the hemiplegic walking in later stages, e.g., 

muscle weakness in the paretic limb, imbalance due to asymmetry between the two limbs, high 
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energy consumption, and risk of fall [12] [13]. 

Neurorehabilitation post-stroke is a long-term relearning process of motor functions on the 

paralyzed limbs, which could be regained by intensive and repetitive physical practice of the 

desired movements with the voluntary motor effort of a patient [110]. The success of motor 

rehabilitation poststroke is also dependent on limb coordination practice that close to normal 

walking pattern, which could prevent excessive muscular compensations of both the lower 

limbs. Joint deformities at the ankle foot complex after stroke are consequences of muscle 

spasticity and muscular discoordination in the lower limb [111]. Compared to normal gait, 

reduced patterns of muscle synergies with muscular spasticity and compensatory synergies 

with learned disuse were found in stroke gait. The paralyzed foot of stroke survivors exhibited 

uncontrolled plantarflexion and inversion in comparison to the unimpaired foot [112], 

associated with the respective symptoms of foot drop and foot inversion. The foot drop has 

been found to be the results of weakness in the ankle dorsiflexors [11] and increased spasticity 

in the plantar flexors, which imposed over 50% resistance than a normal ankle [113]. The 

heterogeneity of dorsiflexors and plantar flexors implies that different levels of assistance are 

required in the target muscles during the gait training post-stroke. Long-term excessive strain 

on muscles of the ankle plantarflexion in stroke patients also resulted in greater weight loading 

on the fore and lateral regions of paretic foot, leading to foot inversion and an unstable ankle 

joint [17]. Both foot drop and foot inversion cause that the stroke survivors are more likely to 
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fall and deviate the post-stroke gait from the normal patterns [112]. In the traditional post-

stroke ankle foot rehabilitation, passive ankle foot orthoses (AFO) have been widely applied 

to correct the foot position with a fixed joint angle at the ankle [11]. The AFO can significantly 

improve the plantarflexion deformity of foot drop immediately. However, it could not 

dynamically correct the abnormal gait pattern. Excessive use of passive AFO has been found 

to cause muscular disuse atrophy, since the users will gradually rely on the mechanical fixation 

by the AFO, rather than using their own muscular effort to stabilize and strengthen the joints 

[114]. More advanced ankle foot rehabilitation methods are needed to improve the muscle 

coordination at the ankle foot complex for a better motor restoration in the distal joints of the 

lower limb after stroke. 

Due to the requirement of high intensity and repeatability of physical training poststroke, 

physical therapy is a labor-and-time consuming tasks for both the professionals and stroke 

survivors. Thus, different robotic skeletons powered by mechanical motors were proposed and 

released to assist in the extensive and repeated practices [18]. However, current exoskeletal 

robots for lower limb are mainly designed for paraplegia, e.g., spinal cord injured patients with 

permanent disabilities in both lower limbs. They are bulky, heavy, expensive, and designed for 

bilateral mechanical support. Strong mechanical supports with powerful motors were usually 

provided to the large and proximal joints, i.e., the hip and knee. In these robots, the mechanical 

supports to the ankle foot were usually oversimplified as a passive AFO or a mechanical joint 
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with one degree of freedom in the sagittal plane controlled by a single motor. The dynamic 

correction of the muscular discoordination on foot drop and foot inversion has not been well 

considered in these robots. Although the direct application of these bilateral lower limb robots 

to stroke rehabilitation has been proposed in the literature [19] [20], difficulties were still 

encountered in improving the distal joints at the ankle and foot functions. Furthermore, current 

bilateral lower limb robots with the original application to paraplegia provided excessive 

mechanical supports to both the affected and unaffected limbs of stroke survivors. It may not 

be an optimized rehabilitation strategy to promote post-stroke motor relearning, where support-

as-necessary is required during stroke rehabilitation with the goal to ambulate without aids 

[13]. Although unilateral exoskeletal lower limb robots have been developed for in individuals 

with chronic stroke [115] [21] [22] [23], the unbalanced weight applied to the paretic lower 

limb has already caused the mechanical asymmetry and introduced additional load in the swing 

phase. There was also no significant breakthrough in the ankle foot control or mechanical 

design in the current unilateral exoskeletons to correct muscular discoordination, based on a 

direct adoption from the bilateral robots for paraplegia. Attempts have been made by using 

pneumatic muscles [116] [24] and Bowden cable systems [25] [26] in unilateral robot design 

(i.e., soft robot) for the ankle foot complex, with the main purpose to reduce the weight of the 

device. However, soft robots actuated by pneumatic muscles usually require gas tanks with 

high pressure, e.g., CO2 cylinders [116] and pneumatic pump [24] encased in the waist belt, 
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which makes the whole system bulky, particularly during inflation. For the soft cable system 

with a weight of 0.9 kg distributed along the paretic lower limb [25], actuators were mounted 

around the waist of a user for dragging the cables that provide assistive torque for plantar and 

dorsal flexions. In both designs of the pneumatic muscle and the cable system [116] [25], 

correction of foot inversion at the ankle joint has not been involved. More recently, the variable 

stiffness pneumatic actuators [24] and the gearmotor-driven rack-and-pinions [26] were 

integrated in the exosuit-assisted correction of foot drop, for restricting ankle inversion by 

mechanical fixation at the ankle joint, however, they only demonstrated the feasibility on 

mechanical support in the gait, whereas the rehabilitative effects have not been reported yet. 

More lightweight automation systems with compact design, advanced control on muscular 

coordination for the correction of foot drop and foot inversion are needed for effective post-

stroke gait restoration. 

As one of the alternative solutions to bulk robots, neuromuscular electrical stimulation (NMES) 

could mimic nerve-to-muscle stimulation. Assisted by the NMES, repetitive sensorimotor 

experiences would be generated by cyclic stimulation on the target muscles, which could 

enhance the impaired muscles and activate the damaged neuroplasticity pathways. A 

mechanism for the therapeutic effects of NMES is that repetitive sensorimotor experiences 

would be produced by a periodic electrical stimulation on muscles [14]. NMES also could 

improve learned disuse and limb neglect after stroke through precisely stimulating on the 
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impaired muscles, which could elicited afferent inputs to the nervous system [14]. Therefore, 

one-channel NMES on the dorsiflexors of the ankle has been applied in the treatment of foot 

drop after stroke, with the purpose to improve the muscle force in the dorsiflexors during the 

swing phase of a gait cycle [16]. Furthermore, two-channel NMES on ankle plantar flexor and 

dorsiflexor recruitment has been suggested to improve the muscular coordination related to 

both push-off and foot drop in hemiparetic gait [15]. Moreover, the muscular spasticity of 

plantarflexors could be effectively released by applying NMES on the muscle belly of the 

paralyzed lower limb for half an hour [16]. However, phasic control of multi-channel NMES 

during dynamic gait is still challenging for stroke survivors, since difficulties could be 

encountered in the identification of gait events in the paretic lower limb associated with diverse 

patterns different from the normal patterns [111]. Furthermore, NMES alone is hard to correct 

the foot inversion in the ankle foot rehabilitation, due to a lack of control on foot rotation in 

the frontal plane and the mechanical stabilization at the ankle joint, which has been found be a 

main cause related to the muscle discoordination of the ankle joint [17]. 

In contrast to the conventional verbal reminders for correcting foot inversion by a 

physiotherapy [117], which requires intensive manpower, wearable devices with biofeedback, 

e.g., audio, visual, and tactile feedback, have great potential to improve the paretic gait of 

chronic stroke survivors. In a previous study, the visual kinematic feedback based on the 

detected ground reaction forces (GRFs) was given to the Parkinson and stroke survivors, which 
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has been suggested to improve symmetries in stance/swing time between two legs [27]. In our 

previous study, the plantar pressure could be detected by force sensitive resistors (FSRs), to 

provide the instant vibrotactile feedback, which could improve the plantar imbalance of stroke 

survivors with foot inversion [28]. However, the long-term rehabilitation effect of the tactile 

feedback on plantar balance has not been investigated. Moreover, most stroke survivors could 

not perform ankle dorsiflexion and regain muscular contraction of dorsiflexors with only the 

biofeedback during the gait training [13]. 

In this study, a multi-modal system, combining the soft pneumatic muscle, the rigid exoskeletal 

techniques, NMES, and vibrotactile feedback, was designed for gait restoration post-stroke, 

namely exoneuromusculoskeleton with balance sensing feedback (ENMS-BF). Mechanical 

combinations of the soft pneumatic muscle and the rigid exoskeleton, i.e., muscluloskeleton, 

can enable a compact size with a fast response rate, whose similar design was adopted in our 

previous study to provide mechanical assistance in joint extension for upper limb training after 

stroke [118]. Assistances from NMES and the mechanical fixation by the muscluloskeleton, 

together with the balance sensing feedback of vibrotactile, allow the attainment of the near-

normal muscle coordination at the ankle joint with minimized compensatory movements. In 

addition, the FSRs under the paretic foot have been employed to capture the real-time plantar 
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Figure 3-1. Overview of the designed ENMS-BF to restore gait functions during dynamic 

hemiparetic walking. (a) Frontal view, (b) bottom view, and (c) back view of the ENMS-BF 

worn onto the paretic lower limb. (d) Dimensions of the musculoskeleton with the exoskeletal 

extensions and the pneumatic muscle. (e) Illustration of dynamic assistance provided by the 

designed ENMS-BF during the specific gait phases in one cycle (the right side is indicated in 

black), adapted from [119, 120]. MCU, microprocessor-based control unit; NMES, 

Neuromuscular electrical stimulation; FSRs, force sensitive resistors; App, mobile application. 

 

pressures, which can detect the dynamic gait events during the gait cycles [116] [24], to realize 

the phasic control of the assistance from the ENMS-BF.  
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This chapter aims to 1) present the designed plantar pressure driven ENMS-BF, which assists 

the post-stroke survivors in dynamic gait training with correction of foot drop and foot 

inversion; 2) assess the capability of assistance from the designed ENMS-BF on individuals 

with chronic stroke. 

3.2 Methodology 

The ENMS-BF was designed to restore gait functions after stroke by correcting the foot 

inversion and foot drop dynamically. It can be worn onto a stroke survivor’s paralyzed lower 

limb with a total weight of 0.47kg (Figure 3-1a). The ENMS-BF has a soft-and-rigid 

musculoskeletal combination, i.e., musculoskeleton, which can provide mechanical fixation to 

the ankle joint in the stance phase of a gait cycle to prevent foot inversion. The musculoskeleton 

can be mounted onto the paretic ankle joint by an elastic bracing system with two skeletal 

containers located above the ankle joint bilaterally and a pneumatic muscle across the heel from 

the bottom of the foot (Figure 3-1a). NMES is delivered to the agonist muscles related to ankle 

dorsal/plantar flexion during the swing/stance phases respectively for correction of foot drop. 

Meanwhile, a tactile vibrator attached to the forefoot provides sensory cue to a user for self-

correction of the stability in the terminal stance phase when plantar imbalance is detected by 

FSRs attached to the bottom of the foot. The assistive events provided by the ENMS-BF in a 

gait cycle is illustrated in Figure 3-1e. The ENMS-BF can be interfaced with a user via a 

smartphone application (APP) for easy operation (Figure 3-1a). 
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Figure 3-2. Systematic architecture of the control in the ENMS-BF. FSRs, force sensitive 

resistors, A/D, analog to digital convertor. 

 

3.2.1 The ENMS-BF System Architecture 

The systematic diagram of the ENMS-BF is illustrated in Figure. 3-2. The microprocessor-

based control unit (MCU, STM32F103C8T6 microprocessor, STMicroelectronics Inc.) 

coordinates with the balance sensing feedback unit, the NMES unit, and the musculoskeletal 

unit and communicated with the smartphone (system of Android 10 with at least 3G network) 

via a Bluetooth module (HC-05, FEASYCOM. Co., Ltd). The whole system is powered by a 

12-V rechargeable lithium battery for continuously working for 4 hours when fully charged. 

The electronic circuits of the system were separated into two flexible boards, i.e., the control 
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board and actuated board, which were fixed inside the two skeletal containers respectively, 

together with the battery (Figure 3-1a). Specifically, the actuated board contains the 

musculoskeletal unit and the NMES unit, and the control board includes the MCU and 

Bluetooth module. These two boards communicate through a miniature 20-pin flat data cable 

wrapped in a spandex textile bag between the two skeletal containers (Figure 3-1c). 

The balance sensing feedback unit is composed of the tactile vibrator (Eccentric Rotating Mass, 

ERM vibration motor-E610, NFP-Motor Co., Ltd) and three FSRs (RP-C18.3-LT, LEGACT 

Co., Ltd) (Figure 3-1b). The vibrator is controlled by the MCU according to the inputs from 

the FSRs via an analog to digital (A/D) converter (Figure 3-2) with a sampling frequency of 6 

Hz. The three FSRs are attached to the respective 1st, the 5th metatarsal heads, and the center 

of the calcaneus at the bottom of the paretic foot of a stroke survivor, with the purpose to detect 

the balance of plantar pressures between the medial and lateral forefoot, and to recognize 

dynamic gait events, e.g., heel strike, as we did previously [28]. The tactile vibrator (6.5 mm 

in diameter × 17.5 mm in height) can produce a constant vibration with a full magnitude 

(18,000 RPM with normalized amplitudes of 4.8 G) as the sensory feedback to a user when the 

imbalance condition is detected, and this vibration magnitude could be successfully perceived 

by unimpaired human subjects reported previously [121]. The vibrator is attached between the 

1st and 2nd proximal phalanges, with a similar size and shape to the thorn of a flip-flop sandal, 

for the wearable design. Foot inversion with the reduced plantar pressure close to the 1st 
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metatarsal head was commonly observed in stroke survivors [122]. The position of the vibrator 

in this design is to give a close sensory reminder to the target plantar region of a user for self-

correction during walking. Both the tactile vibrator and three FSRs are extended from the 

control board using fine copper leads (0.8 mm in diameter) with a miniature connector (8 × 3 

× 1.5 mm) near the foot arch, whose sizes, or shapes, would not disturb gait or bring 

uncomfortable experience to a user when wearing the system into a sport shoe (Figure 3-4c).  

There are 2 channels of electrical stimulators in the NMES unit, which interface with a user 

transcutaneously via surface electrodes to the target muscles for assistance of ankle dorsiflexion 

and plantarflexion (Figure 3-2). The 2-channel electrical stimulators can discharge symmetrical 

square pulse bursts with a frequency of 40 Hz, amplitude of 72V, and customized width of 0–

300 μs in each pulse to vary the stimulation intensity, which is a range that can achieve effective 

muscular contractions in paretic muscles after stroke [123]. Two surface electrodes pairs 

(Axelgaard-Platinum-Electrodes-AXEG-00004, Axelgaard Manufacturing Co., Ltd. 5 × 5 cm 

in size) are attached to the following locations: (1) the area of common peroneal nerve (CPN) 

and the muscle belly of the tibialis anterior (TA), and (2) the motor points at the muscle belly 

of the gastrocnemius (GA). The minimal intensity of motor-level NMES will be delivered to 

the TA muscle for the muscular contraction of effective ankle dorsiflexion of an individual user, 

with an ankle joint range of motion (ROM) greater than 15° in dorsiflexion. The maximal 

intensity of sensory-level NMES will be applied to the GA muscle, providing sensory cue for 
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plantarflexion without muscular contraction. The motor-level NMES is only applied to the TA 

because that the extensors in lower limb, e.g., GA, commonly exhibited the involuntary 

muscular contraction in spasticity post-stroke, in contrast to the flexors, e.g., TA, presenting 

muscle weakness and discoordination post-stroke [124].   

The musculoskeletal unit consists of a pneumatic pump (WP27B-6D, Micro Energy, Co., Ltd), 

a valve (WV110A-3A, Micro Energy, Co., Ltd), an air pressure sensor (MCP-H10, 

BOTLAND, Co., Ltd), and the musculoskeleton, i.e., an integration of two exoskeletal 

extensions at both ends of a pneumatic muscle and the two skeletal containers seated onto the 

respective exoskeletal extensions fixed with screws (Figure 3-1d). The inflation and deflation 

of the pneumatic muscle is controlled by the MCU in different gait events (Figure 3-2). The 

exoskeletal extensions, together with the pneumatic muscle, were wrapped into the elastic 

bracing system (spandex) for easy mounting to the ankle joint with a Velcro bandage. The 

exoskeletal extensions and the two skeletal containers were three-dimensional (3D) printed by 

photopolymer. The two skeletal containers can be fastened above the ankle joint bilaterally 

with two elastic Velcro bandages (14 × 3.5 cm), and the surface of the containers contacting 

the skin of the calf was designed to be curved for providing a comfortable and close contact to 

the curvature of the human body (Figure 3-1d). Additionally, a layer of sponge cushion (2 mm 

in thickness) is set between the container and the skin for comfortable wearing. The pneumatic 
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Figure 3-3. The flowchart of the plantar pressure driven control design during dynamic gait 

cycles. 

 

muscle is a soft tube made by polyvinyl chloride (PVC) membrane. It was divided into two 

parts by compacting and sealing the PVC tube in the middle section with a length of 50 mm as  

the heel contact area (Figure 3-1d). The exoskeletal extensions sealed by epoxy at both ends of 

the PVC tube provide the connection between pneumatic muscle and the skeletal containers. 

The musculoskeleton can provide mechanical torque fixation from both medial and lateral sides 

of the ankle joint when the pneumatic muscle is inflated. In this work, we adopted two sizes of 

the musculoskeleton with the heights of the pneumatic muscle part of 130 mm and 115 mm, 

according to gender differences in anthropometrics of Asian adults [125]. The dimensional 
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design of the musculoskeleton is illustrated in Figure 3-1d and followed the lower limb 

anthropometrics [126]. 

The pneumatic muscle located bilaterally at the ankle joint can be inflated or deflated through 

an air tube with two heads connected to the pneumatic pump and the valve, sharing the same 

air pressure inside. Additionally, there is an air pressure sensor connected to the pneumatic 

muscle feeding back the real-time pressure to the MCU. The maximal air pressure inside the 

pneumatic muscle was preset as 50 kPa in this work, as an empirical value which could provide 

enough fixing torque to the ankle joint of persons after stroke and a safe value to maintain the 

stability of the materials in repeated usage. 

3.2.2 Plantar Pressure driven Control Design 

The plantar pressure captured by the three FSRs in gait cycles was adopted as the driving signal 

to control the ENMS-BF. The flowchart of the control design during a gait cycle is shown in 

Figure 3-3. Sequential assistance from the musculoskeletal, NMES, and balance sensing 

feedback units will be delivered to a user, according to the detected gait events of heel-off, toe-

off, and heel-strike (bold in Figure 3-1e).  

The assistance of the ENMS-BF was started from the heel-off event of the paretic limb detected 

by the real-time values of the FSRs under the respective 1st (FSR1), the 5th metatarsal heads 

(FSR5), and the center of the calcaneus (FSRHeel) for a user after stroke, which is shown in Eq. 
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1,  

           𝐹𝑆𝑅𝐻𝑒𝑒𝑙  ≤ T𝑆𝐻𝑒𝑒𝑙 𝑎𝑛𝑑 𝐹𝑆𝑅1 >  𝑇𝑆1 𝑎𝑛𝑑   𝐹𝑆𝑅5 >  𝑇𝑆5 ,        (1) 

where 𝐹𝑆𝑅𝐻𝑒𝑒𝑙, 𝐹𝑆𝑅1, and 𝐹𝑆𝑅5 are the real-time values of the respective FSRs, and T𝑆𝐻𝑒𝑒𝑙, 

T𝑆1, and T𝑆5 are the preset thresholds of the respective FSRs. Before using the ENMS-BF, 

the maximum values of each FSR would be measured by walking on the level ground (10-m) 

with a natural speed of a user when wearing the system but without any assistance. The initial 

threshold of each FSR was 50% of the maximum value, which was achievable for most stroke 

users to detect their gait events and adopted in the previous study [116]. Considering that some 

users after stroke could suffer from weakness of ankle plantarflexion to perform heel-off, the 

thresholds could be further fine-tuned for each user based on the trade-off between the false 

alarm or missing of the target gait events. In the heel-off event, the musculoskeleton would be 

deflated with the pump turned off and the valve open. Meanwhile, the sensory-level NMES to 

the GA muscle would be turned on for the assistance of ankle plantarflexion for 2 seconds, 

after which, the vibrator would be switched on until the heel-strike event was detected, if the 

imbalance condition was detected by the peak values of 𝐹𝑆𝑅1  and 𝐹𝑆𝑅5  within the 2 

seconds. The vibration during the pre-swing and swing phases could be a reminder for 

correction of the stability in the terminal stance phase of the next gait cycle (Figure 3-3). The 

2 seconds of terminal stance and pre-swing phases was set as an educational period for motor 

relearning of the plantarflexion, since some stroke survivors could not perform clear 
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plantarflexion because of the weakness at the ankle joint [13]. The imbalance condition was 

recognized mathematically according to Eq. 2, 

         0.5 ∗  𝑀𝑎𝑥5  >  𝑀𝑎𝑥 1 ,                      (2) 

where Max5 and Max1 are the peak values of the FSR5 and FSR1 during the 2 seconds, i.e., the 

peak plantar force at the lateral forefoot (FSR5) exceeds twice as much that at the medial 

forefoot (FSR1) in the 2 seconds of the terminal stance and pre-swing phases [28]. 

When the gait cycle entered into the toe-off event detected by the three FSRs, the 

musculoskeleton would be inflated by the pump with the valve closed for the preparation of 

the following stance phase, as shown in Eq. 3: 

          𝐹𝑆𝑅𝐻𝑒𝑒𝑙 ≤  𝑇𝑆𝐻𝑒𝑒𝑙 𝑎𝑛𝑑 𝐹𝑆𝑅1 ≤  𝑇𝑆1 𝑎𝑛𝑑 𝐹𝑆𝑅5 ≤  𝑇𝑆5 ,                  (3)  

where 𝐹𝑆𝑅𝐻𝑒𝑒𝑙, 𝐹𝑆𝑅1, and 𝐹𝑆𝑅5 are the real-time values of the respective FSRs, and T𝑆𝐻𝑒𝑒𝑙, 

T𝑆1, and T𝑆5 are the preset thresholds of the respective FSRs. Meanwhile, the motor-level 

NMES to the TA muscle would be turned on to evoke muscle contraction of ankle dorsiflexion 

until the heel-strike event was detected. In this study, with the muscular contraction of ankle 

dorsiflexion during the swing phase, heel-strike event was represented as the detection of the 

three FSRs in Eq. 4, 

       𝐹𝑆𝑅𝐻𝑒𝑒𝑙  >  𝑇𝑆𝐻𝑒𝑒𝑙 𝑎𝑛𝑑 𝐹𝑆𝑅1 ≤  𝑇𝑆1 𝑎𝑛𝑑 𝐹𝑆𝑅5 ≤  𝑇𝑆5,                 (4) 

where 𝐹𝑆𝑅𝐻𝑒𝑒𝑙, 𝐹𝑆𝑅1, and 𝐹𝑆𝑅5 are the real-time values of the respective FSRs, and T𝑆𝐻𝑒𝑒𝑙, 
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Figure 3-4. Pressure/torque transmission and assistive capability of the ENMS-BF. (a) The 

schematic diagram of the experimental setup for the measurement of pressure/torque properties 

of the musculoskeleton (b) without air volume limit and (c) with air volume limit. 

 

T𝑆1 , and T𝑆5  are the preset thresholds of the respective FSRs. Then, the vibrator, and the 

motor-level NMES to the TA muscle would be turned off. Meanwhile, when the air pressure 

inside the pneumatic muscle reached to 50 kPa, the pump would be turned off and the valve 

would remain closed to maintain the inner air pressure for a constant torque support to the ankle 

joint during the loading response and mid-stance phases, until the next heel-off event was 

detected.  

3.2.3 Pressure-to-torque Properties of the Musculoskeleton 

The musculoskeleton can convert the pressure inside the pneumatic muscle to torque support 

to the ankle joint together with the skeletal structures. The pressure/torque transmission 

properties and the response rate were measured by the experimental setup as shown in Fig. 3-
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4. The pressure/torque properties were evaluated in two configurations, i.e., Fig. 3-4a&b 

(without air volume limitation) and Fig. 3-4c (with different air volume limitations), which 

simulated the scenarios of wearing the device in a shoe with different tightness. The integrated 

structure of the pneumatic muscle and the skeletal extensions was fastened onto a cylinder rod 

(65 mm in diameter), to simulate the calf above the ankle joint when wearing the 

musculoskeleton and was positioned on a horizontal platform for evaluation on the torque 

against foot inversion. Meanwhile, the pneumatic muscle part dangled away from any support 

with the lower edge of the Velcro bandage as the axis of rotation, and the distance from the 

bottom of heel and the axis of rotation was set as 75 mm (Fig. 3-4a), according to the average 

foot height of the ankle joint in Asian adults [126]. In the setting of Fig. 3-4c, each side of the 

pneumatic muscle was clamped by two splints (cardboard, 3g in each weight) with two Velcro 

bandages (1g). The total weight of the splints and bandages was around 15g, which would be 

considered in the later calculation of torque.  

Then, the tolerance of the inflated musculoskeleton with varied inner pressure to different 

inversion torques was measured with the configuration of no limitation on the air volume first. 

The musculoskeleton was inflated to the preset maximum air pressure of 50 kPa (error range: 

±2.5 kPa) with the valve closed, and the position of the dangling pneumatic muscle around the 

axis of rotation was regarded as the initial stage (i.e., 0° at the horizontal position). Next, a 

sandbag with variable weight was hung to the pneumatic muscle (Fig. 3-4a) to evaluate the 
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tolerance to torques generated by the hanging sandbag. The weight of the sandbag was 

increased till the inflated pneumatic muscle flexed around the rotation axis by an angle of 15° 

for a preset inner pressure of the pneumatic muscle. It was because that the foot inversion of 

15° was typically regarded as the threshold angle to cause ankle sprains in human biomechanics 

[127]. The change in the rotation angle was measured by a protractor, whose midpoint was 

aligned with the rotation center of the dangling pneumatic muscle. Then, the air pressure inside 

the musculoskeleton was decreased from 50 kPa to 5kPa with a step of 5 kPa (±1 kPa) to record 

the weight of the sandbag and the corresponding inner air pressure. The mechanical torque was 

then calculated as follows, 

𝑡𝑜𝑟𝑞𝑢𝑒 = 𝐿 · 𝑊 · cos 15°                              (5) 

where L is the distance between the rotation axis and the bottom of heel (i.e., 0.075m, Fig. 2A) 

and W is the weight of load (i.e., the sandbag together with the weight on the pneumatic muscle). 

Then, the peak inversion torque and the associated response rate for the musculoskeleton were 

measured with different air volumes (Fig. 3-4c). Firstly, the maximum air volume of the fully 

inflated musculoskeleton (50kPa without air volume limit) was 240 milliliters (ml), which was 

measured by a gas-flowmeter (SFM3003, Sensirion China Co. Ltd.). Secondly, different 

volumes of air, i.e., 240, 210, 180, 150, 120, and 90 ml (quantified by the gas-flowmeter), were 

inflated into the pneumatic muscle without loading weight in the sandbag. Then, the splints 

were fastened to the pneumatic muscle by the adjusted Velcro bandages, to make the inner air 
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Table 3-1. Marks of Varying Assistance Schemes from the ENMS-BF. 

 

 

pressure reach the preset maximum of 50 kPa (±2.5 kPa). The peak inversion torque against 

the fully inflated musculoskeleton (with different air volumes) was measured and calculated as 

in Fig. 3-4a. Thirdly, with the corresponding configuration of fastened splints at different air 

volume limitations, the musculoskeleton was fully deflated first, and then was inflated again to 

50kpa for measuring the inflation time, i.e., the response rates of different air volume. Each 

measurement on the pressure/torque transmission and the response rate was repeated thrice. 

3.2.4 Evaluation of the Capability of Assistance from the Developed ENMS-BF 

The system capability of the ENMS-BF was assessed with chronic stroke survivors, to 

investigate the assistive contributions of the musculoskeleton, NMES, and the tactile vibrator 

to ground ambulation, with five assistance schemes (Table 3-1).  

After obtaining ethic approval from the Human Subjects Ethics Sub-committee of the Hong 

Kong Polytechnic University, ten participants with chronic stroke were recruited in the 

Notation of assistance schemes Description 

N0M0V0 None of assistance 

N1M0V0 Assistance from the NMES only 

N0M1V0 Assistance from the musculoskeleton only  

N0M0V1 Assistance from the balance sensing feedback only  

N1M1V1 
Assistance from the NMES, the musculoskeleton, and the balance 

sensing feedback 
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evaluation of assistive capability, all of whom signed the informed consent before the 

evaluation. The inclusion criteria in this study were as follows: (1) at least 6-month following 

the onset of stroke; (2) without inflammatory disease or pathogenic alterations in the lower 

extremity joints; (3) no visual, cognitive, or attention deficits as measured by the Mini-Mental 

State Examination (MMSE) score >21 [128]; (4) the spasticity of the ankle joint ≤3 as 

measured by the Modified Ashworth Scale (MAS) [32]; (5) mild-to-moderate motor 

impairment in the affected lower limb with gait abnormalities of foot drop and foot inversion, 

measured by the Fugl-Meyer Assessment (FMA, total score on the lower extremity) ≥16 [30] 

[129], Functional Ambulatory Category (FAC) ≥3 [37], and Berg Balance Scale (BBS) ≥40 

[36]; (6) capable of walking without manual assistance for extended periods (at least 15-min). 

In an evaluation session, each participant was mounted with the ENMS-BF on the paretic lower 

limb and had 10 mins to get familiar with the respective assistance of NMES, musculoskeleton, 

and the tactile vibrator as a warm-up. Then, the participant was instructed to walk on a 6m level 

walkway cleared of obstacles with an assistance scheme of the ENMS-BF at a natural speed. 

The five assistive schemes were conducted in a random order with each scheme repeated thrice. 

A 5-min break was provided every three consecutive trials to avoid fatigue. In the walking, 

each participant used a quad cane and was followed by an experimental operator for safety. 

An eight-camera motion tracking system (Vicon Nexus 2.12.1, Vicon Motion Systems Ltd.), 

synchronized with two force platforms (OR6, AMTI, Watertown) embedded midway on the 6-
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m level walkway, sampling at 250Hz, was utilized to measure the kinematic angles at the ankle 

joint during ground walking with different assistance from the ENMS-BF. In the sagittal and 

frontal planes, dynamic angle values of the ankle joint were investigated, because of the 

representative poststroke foot drop and inversion mainly captured in these two planes [112]. A 

built-in lower body marker set, i.e., Plugin Gait Lower Body Model [130], was adopted with 

16 spherical reflective markers (14 mm in diameter) bilaterally attached to at the anterior 

superior iliac spine, the posterior superior iliac spine, the lateral thigh, the flexion-extension 

axis of the knee, the lateral shanks, the lateral malleolus, the heel, and the second metatarsal 

head. Then, kinematic parameters i.e., peak angles of the ankle, knee, and hip joints in both 

stance and swing phases, and GRFs of the affected limb were calculated using the Dynamic 

Plugin Gait Model (low-pass filtered at 6 Hz by a 4th-order Butterworth filter) [131]. The 

standard deviation (SD) of ankle inversion/eversion angles (stance phase) and the peak angle 

of ankle dorsiflexion (swing phase) on the affected side were calculated to quantify the stability 

and range of motion (ROM) at the ankle joint, respectively. 

In the evaluation of assistive capability of the ENMS-BF, the normality tests of the SD of ankle 

inversion/eversion angles and the peak angles of ankle dorsiflexion were conducted using the 

Shapiro-Wilk test with a significant level of 0.05[132]. The peak angles of ankle dorsiflexion 

followed the normal distribution, while the SD of ankle inversion/eversion angles did not obey 

it. Thus, one-way repeated measures analysis of variance (ANOVA) with 
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Figure 3-5. Pressure/torque transmission and assistive capability of the ENMS-BF. (a) 

Pressure/torque relationship of the inflated musculoskeleton without air volume limit. (b) The 

peak torque and response time of the fully inflated musculoskeleton (50kPa) with different air 

volumes. 

 

 

Figure 3-6. Comparisons of (a) the peak angle of ankle dorsiflexion during the swing phase 

and (b) the standard deviation (SD) of ankle inversion/eversion angles in the stance phase, 

under the five different assistance schemes for evaluation of the assistive capability of the 

ENMS-BF. Significant differences are indicated by “**” (P<0.01). 
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Bonferroni post hoc test was used to evaluate the differences of the peak angles of ankle 

dorsiflexion across the five assistive schemes. Friedman tests with Wilcoxon signed-rank post 

hoc test (Bonferroni correction), were performed to evaluate the differences in the SD of ankle 

inversion/eversion angles across the five assistive schemes. 

3.3 Results 

3.3.1 Pressure-to-torque properties of the Musculoskeleton 

The pressure/torque transmission properties and the response rate of the inflated 

musculoskeleton is shown in Fig. 3-5. There was a significant linear relationship between the 

inner pressure and assistive torque of the musculoskeleton (P<0.001, R2 = 0.989) (Fig. 3-5a). 

The maximal inner pressure of the inflated musculoskeleton reached 50 kPa and the 

corresponding torque was 0.99 ± 0.03 Nm (mean ± SD), with the torque-to-weight ratio at 9.9 

Nm/kg (because the weight of the musculoskeleton was 100g). Without loading weight in the 

sandbag, the inner air pressure of the musculoskeleton reached the maximum of 50 kPa within 

14.54 ± 0.13 s (Fig. 3-5b, air volume of 240 ml). When the air volume was limited at 210, 180, 

150, 120, and 90 ml, the assistive torque against the inflated musculoskeleton (50 kPa) were 

above 1 Nm (1.06 ± 0.03 Nm), with a minimum response rate of 6.68 ± 0.01 s, i.e., limiting the 

air volume to 90ml. 
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Table 3- 2 Means and 95% confidence intervals for the peak angle of ankle dorsiflexion (swing 

phase) and the SD of ankle inversion/eversion angles (stance phase) on the affected side, 

measured under the five assistive schemes, as well as the probabilities of the statistical analysis. 

 

 

3.3.2 Assistive capability of the ENMS-BF 

Fig. 3-6 show the peak angles of ankle dorsiflexion (swing phase) and the SD of ankle 

inversion/eversion angles (stance phase) on the affected side, with different assistive schemes. 

With the assistive schemes of N1M0V0 and N1M1V1, the peak angles of the ankle dorsiflexion 

were significantly higher than that without any assistance from the system (N0M0V0) (Fig. 3-

6a, P<0.01). Under the assistive schemes of N0M1V0 and N1M1V1, the SD of ankle 

inversion/eversion angles was significantly lower (Fig. 3-6b, P<0.01), compared to no 

assistance from the system (N0M0V0). No significant difference was found in the peak GRFs 

and the other kinematic parameter, i.e., peak angles of the knee and hip joints in the sagittal 

and frontal plane, across the five assistance schemes. Detailed statistics of kinematics are 

shown in Table 3-2 . 
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3.4 Discussion  

The plantar pressure driven ENMS-BF was designed to facilitate post-stroke gait training by 

dynamic corrections of foot drop and foot inversion. The pressure-to-torque properties of the 

proposed musculoskeleton were measured and the capability of assistance from the ENMS-BF 

was evaluated with varying assistance strategies of the musculoskeleton, NMES, and the tactile 

vibrator, on individuals with chronic stroke. 

3.4.1 Design and assistive capability of the ENMS-BF 

The ENMS-BF integrated the musculoskeleton, NMES, and vibrotactile feedback to correct 

foot drop and foot inversion in dynamic gait training post-stroke. The total weight of the 

designed ENMS-BF is around 0.47 kg, which is lighter in weight compared to the unilateral 

robotics for post-stroke gait training developed by other research groups, e.g., the soft exosuit 

(0.9 kg alongside the paretic limb) [25] and the robot-assisted AFO (0.5 kg to the waist and 0.5 

kg at the ankle joint) [133]. Besides, the compact design of the mobile ENMS-BF (i.e., the 

wireless communication via Bluetooth) makes it feasible to mount the whole system on the 

ankle joint bilaterally. As revealed by the oral feedback from the ten stroke participants, they 

could walk comfortably and lightly wearing the designed ENMS-BF, without the hindrance of 

a power cord or data-communication cable. The calf-fit cambered skeletal container and the 

soft pneumatic muscle, together with the bracing system, enable a comfortable wearing 

experience of the ENMS-BF. No discomfort of wearing experience was reported from the ten 
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recruited participants in the gait training. The FSRs are attached to the specific locations under 

the foot sole by medical rubberized fabric, which means that the ENMS-BF can be customized 

for individual users during the gait training, without the limitation by shoes.  

The mechanical torque from the musculoskeleton was applied to the ankle joint as the joint 

fixation in the frontal plane, to avoid foot inversion in the paretic gait pattern of stroke 

survivors, which could be caused by muscle spasticity in their ankle plantar flexors [17]. When 

the maximum pressure inside the musculoskeleton reached 50 kPa, the musculoskeleton 

provided a maximum torque of 1 Nm across the ankle joint(Figure 3-5a), which is greater 

compared to the peak torque of ankle inversion (i.e., 0.5 Nm) produced by the plantar flexors, 

e.g., the medial gastrocnemius [134]. The musculoskeleton can provide fixation (i.e., the torque 

of 1 Nm) to avoid foot inversion during the gait training for the chronic stroke participants in 

this study. Besides, five participants (amongst the ten participants) wear an AFO in their daily 

living, and all of them expressed that they could walk confidently with the mechanical fixation 

by the musculoskeleton during the ENMS-BF-assisted gait training. All the participants 

perceived the mechanical fixation at the ankle joint from the musculoskeleton with the inner 

pressure reaching 30 kPa, corresponding to the torque of 0.6 Nm at the ankle joint (Figure 3-

5a), which exceed the peak ankle inversion torque of 0.5 Nm caused by plantar flexors [134] 

and could provide adequate mechanical fixation at the paretic ankle joint. The pressure inside 

the musculoskeleton could be inflated to 50 kPa within 6.68 s, when the air volume inside the 
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musculoskeleton was limited to 90 ml (Figure 3-5b). Moreover, for the adaptation of the 

educational period of relearning plantar balance and ankle plantarflexion during the ENMS-

BF-assisted gait training, the participant was instructed to walk with a low speed, which 

enabled the air pressure inside the musculoskeleton to attain 30–50 kPa to provide the 

mechanical fixation, i.e., the corresponding torque of 0.6–1 Nm, at the ankle joint in the stance 

phase of the affected side. 

Most stroke survivors suffered from foot drop and foot inversion, which causes their difficulties 

in ankle dorsiflexion during the swing phase and ankle stability during the stance phase [112]. 

Thus, assisting the ankle joint to achieve increased angle of dorsiflexion and improved is 

essential in poststroke rehabilitation of hemiplegic gait [17]. With the assistance from NMES 

(N1M0V0 and N1M1V1), the peak angle of ankle dorsiflexion in the sagittal plane was 

significantly higher than that measured without assistance (N0M0V0) (Figure 3-6a). This result 

indicated that ankle dorsiflexion was sensitive to the assistance of NMES, and the developed 

ENMS-BF was immediately effective for the correction of foot drop poststroke. In the frontal 

plane during the stance phase, the SD of ankle inversion/eversion angle when applying 

mechanical support (N0M1V0 and N1M1V1) was significantly lower, compared to that 

measured without assistance from the developed ENMS-BF (N0M0V0) (Figure 3-6b). These 

results implied that the ENMS-BF had immediate effects on corrections of foot drop (swing 

phase) and foot inversion (stance phase), which could be capable for long-term rehabilitation 
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after stroke. Although there was no significant difference with the assistance of balance sensing 

feedback (vibrator), the capability was reported in the previous study [28]. Its long-term 

rehabilitative effect could be investigated in the pilot trial of gait training poststroke. 

3.5 Periodic Summary 

A novel ENMS-BF was developed driven by plantar pressures, integrating the two-channel 

NMES, vibrotactile feedback, and musculoskeleton to correct foot drop and foot inversion for 

chronic stroke survivors with lower limb motor impairment. The developed system could be 

worn bilaterally above the paretic ankle joint, with a lightweight and compact design, for 

intensive and repetitive gait training. The results indicate that the assistive torque from the 

musculoskeleton could provide mechanical fixation at the ankle joint during the dynamic gait 

training, and the ENMS-BF was immediately effective for corrections of foot drop and foot 

inversion in poststroke rehabilitation of hemiplegic gait. 
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CHAPTER 4 

INVESTIGATION OF THE FEASIBILITY AND 

REHABILITATION OF THE ENMS-BF WITH INDIVIDUAL 

AND SELF-HELP PAIRED GAIT TRAINING 

4.1 Introduction 

The ENMS-BF was a mobile multi-modal robot suitable for self-help training in 

unconventional environments, e.g., at home or outdoors, with the compact and light-weighted 

design of the whole system. The team designed a mobile ENMS for multi-joint coordinated 

training of the upper limb previously, which has been successfully applied to the self-help 

telerehabilitation in home environments in Hong Kong during the COVID-19 epidemic, where 

outpatients could continue the device-assisted upper limb training with remote professional 

supervision [135]. However, the remote supervision between the professional and the patient 

at home limited the social interactions during the training, in comparison to the scenarios in the 

traditional treatment rooms where one therapist coordinated a group of patients in physical 

practices with mutual communications and affective supports. It has been found that the social 

interactions besides the physical treatments are equally necessary for a person after stroke to 

be well motivated and committed in the long-term rehabilitation [29], as post-stroke motor 

restoration is a motor relearning process requiring incentive mechanism to promote persistence 

in acquiring motor skills [136]. Therefore, a cyber physical social system (CPSS) based paired 
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gait training with rewarding schemes was further developed in this work. It could provide a 

platform to facilitate 1) remote interactive social communication among different patients when 

their training progresses were paired together; 2) remote progress coordination by the 

professional on the paired patients for the rehabilitative management on multiple patients 

together. In the CPSS-based ENMS-BF-assisted gait training, ENMS-BF provided the physical 

contacts with individual patients and delivered the parameters of rehabilitative progress to the 

professional via the cyber network, which also built up the tele-social links among all parties. 

To our knowledge, self-help remote rehabilitation management based on CPSS incentives has 

not been well studies. 

The purposes of this chapter were to 1) investigate the viability and rehabilitation effects of the 

designed ENMS-BF with individual gait training supervised by a professional; 2) explore the 

viability and training effectiveness of the self-help CPSS-based paired gait training with 

distanced monitoring by a professional. 

4.2 Methodology 

After the assistive capability evaluation of the ENMS-BF, pilot clinical trials were carried out 

to investigate the rehabilitative effect of the ENMS-BF on gait restoration with close 

supervision from a professional, which simulated the one-to-one manual practice in the 

conventional post-stroke services (individual training). Then, we also conducted another 

independent pilot trial on self-help ENMS-BF assisted gait training when participants were  
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Table 4-1. Demographic characteristics of the participants recruited in the individual group and 

CPSS group with chronic stroke. 

 

 

paired in the training progress with remote professional supervision/coordination based on a 

CPSS platform associated with the ENMS-BF (CPSS-based paired training). This was to 

evaluate the feasibility and rehabilitative effects of the remote management on the 

rehabilitation progresses by cyber social interactions with minimized physical contact, as in the 

pandemic with restricted social distances.  

A total of 39 stroke survivors from local areas were screened using the same inclusion criteria 

as in the evaluation of the system assistive capability. Finally, twelve chronic stroke participants 

satisfying the inclusion criteria were recruited in the individual gait training (individual group). 

Then, another group of twelve participants suffering from hemiparetic gait pattern post-stroke 

and satisfied the criteria, conducted the CPSS-based paired gait training (CPSS group). The 

sample size (n=12) was estimated using G*power with the preliminary score of FMA from the 

previous study [133]. All the participants signed the written informed consents before the 
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Figure 4-1. (a) The training protocol of the individual and CPSS-based paired gait training 

presented with timeline. (b) The systematic architecture of the CPSS-based paired training 

assisted by the ENMS-BF. 
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Figure 4-1. (c) The system setup of the ENMS-BF-assisted gait training in the 25-m straight 

corridor. (d) The schematic diagram of foot regions: Medial Rearfoot, MR; Lateral Rearfoot, 

LR. Medial Midfoot, MM; Lateral Midfoot, LM; Medial Forefoot, MF; Lateral Forefoot, LF. 

 

training. Table 4-1 presents the statistical characteristics of the participants in each group. 

Figure 4-1a shows the training protocol of the individual and paired gait training  

4.2.1 Individual Gait Training with Close Professional Supervision 

All the participants in the individual group received the 20-session gait training assisted by the 

ENMS-BF, with a training intensity of 4–5 sessions weekly, within five successive weeks. 
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Before each session of gait training, an experimental operator assisted the participant in the 

system setup, which included wearing the ENMS-BF and calibrations of the preset parameters, 

i.e., thresholds of the three FSRs, the 2-channel NMES, and the maximal air pressure. Then, 

the participant was instructed to walk over the level ground along a straight corridor (25m long 

level ground) cleared of obstacles with minimal turning points for 45 minutes, with the 

assistance from the ENMS-BF (Figure 4-1c). The experiment operator walked alongside the 

participant to ensure his/her safety from falling and would provide verbal reminders to the 

participant to focus on the assistance from the ENMS-BF, enhancing the engagement in the 

gait training, particularly in the first several sessions of the training program. During the ‘2-

second’ educational period in the ENMS-BF-assistance, a participant was instructed to hold for 

a while from the heel-off to toe-off events of the paretic limb, the length of which should be 

long enough to cover the educational period, with the purpose of helping the participant to 

relearn the plantar balance and ankle plantarflexion. Additionally, the same quad cane was 

provided in the gait training for safety and a 5-min rest interval was allowed within two 

successive 15-min gait training to avoid fatigue. 

4.2.2 Self-help CPSS-based Paired Gait Training with Cyber Social Interactions 

In the CPSS group, each participant received the 20-session ENMS-BF-assisted gait training 

by pairing with another participant and sharing quantified training progress throughout the 

program based on the cyber platform. The cyber social interactive platform was established 
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based on the ENMS-BF-assisted training, with incentive schemes between the pair and remote 

communication channels among the experimental operator and the paired participants. The 

overview of the CPSS-based paired training is shown in Figure 4-1b, including the cyber 

channels for social interactions among all parties, the incentive/correction audio feedback 

provided based on the ENMS-BF-assisted training, and the milestone rewards along the 

training program.  

Before the commencement of the paired training, an online tutorial session was conducted to 

match the 12 participants into 6 pairs, according to their baseline clinical scores of FMA, which 

was measured thrice before the training by the blinded assessor. A stroke participant with the 

FMA below 20 would own priority to pair with another participant with the FMA > 20, which 

was set for enhancing the complementary benefits in the paired training [137]. Meanwhile, 

operational rules of the CPSS-based paired gait training, including the cyber social interaction 

channels, incentive/correction audio feedback, and the milestone rewards, were interpreted to 

the participants in the tutorial session. In the first session of the CPSS-based paired gait training, 

the experimental operator fully assisted the participant in the system setup and supervised the 

gait training with supplementary explanations of the CPSS-based training regulations. In the 

second and third sessions of the paired training, a caregiver, who was blinded to the pilot 

clinical trial, assisted in the system setup of the ENMS-BF with minimum assistance, 

observation, and interpretation by the experimental operator. In the following CPSS-based 
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paired training (i.e., the 4-20th sessions), the participant completed the gait training with the 

caregiver assisting in the system setup and following during the training to avoid falling. The 

experimental operator monitored the self-help gait training with a distance away from the 

patient and provided help if required (e.g., the possible situation of a broken FSR lead). For 

safety issue in the pilot ENMS-BF-assisted dynamic gait training, all participants performed 

the CPSS-based paired training in the campus, with distanced monitoring from the 

experimental operator, to simulate the remote management in the self-help CPSS-based 

telerehabilitation assisted by the ENMS-BF, when the patients and caregivers were within the 

sight of the operator. In each session of the CPSS-based ENMS-BF-assisted paired training, a 

participant walked along a 25-m corridor for 45 min with the quad cane, which was same with 

that in the individual training. A 5-min rest interval was allowed within two successive 15-min 

gait training to avoid fatigue. The training intensity and frequency of each participant in the 

CPSS group were same as that in the individual group.  

During each session of the CPSS-based training, incentive/correction audios would be fed back 

to a participant via the smartphone according to the real-time cumulatively total steps and 

imbalanced steps from the ENMS-BF. After each session of the paired gait training, the 

quantified daily training progress, i.e., the total steps and imbalanced steps, would be 

uploaded/stored in the cloud server and notified to both participants in the same pair via a 

common cyber social platform, i.e., WhatsApp, to establish the cyber social interactions 
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between the paired participants, without face-to-face physical contact. The professional would 

monitor the training progresses of the paired participants and interact with the pair in the cyber 

social platform, based on the log data in the cloud server. The professional also coordinated the 

dialogue in the cyber communication of the paired participants, with the purpose to promote 

the motivation of completing the training by the participants and encouragements between the 

pair to strengthen the social link. Milestone rewards would be delivered to the participant in 

the midway (i.e., the 10th session) and end of the 20-session training as the material incentives 

to avoid drop out through the training program. 

4.2.3 Outcome Measures 

In this study, the rehabilitation effectiveness of the ENMS-BF-assisted gait training were 

assessed by clinical assessments, kinematic and kinetic parameters, temporal-spatial gait 

parameters, and plantar pressure distributions. These assessments were conducted before the 

gait training (Pre), immediately after the 20th training session (Post), and three months after 

the last training session (3-month FU), by a blinded assessor who was unknown about the 

training protocols. The clinical assessment was measured thrice before the training within 2 

weeks for evaluating the baseline stability.  

The clinical assessment adopted in this study included: (1) the FMA for lower limb assessment 

of motor function with the full score of 34 [30]; (2) the MAS at the ankle, knee, and hip joints 

for the examination of joint spasticity during passive muscle stretching with 4-level scale [32]; 
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(3) the FAC for assessing functional ambulation on the level and nonlevel surfaces with 6-level 

scale [37]; (4) the BBS for measuring balance ability with the full score of 56 [36]; (5) the 10-

Meter Walk Test (10MWT) for measuring walking speed [35]. In this study, the FMA was 

recognized as the primary outcome. 

These five clinical scores were supplemented by kinematic and kinetic investigation for the 

interpretations of the changes in spatial-temporal gait performance at the Pre, Post, and 3-

month FU assessments. The same motion capturing configuration as in the evaluation of 

assistive capability, synchronized with two force platforms (OR6, AMTI, Watertown) 

embedded midway on the 6-m level walkway, was used for the investigation. After attachments 

of the kinematic markers to the target positions, participants were instructed to walk along the 

6-m level walkway at their natural speed holding the quad cane, without wearing the ENMS-

BF. At least three trials of gait cycles were selected for further investigation on the GRFs at the 

affected side, when the affected foot wholly located in the force platform. A 5-min rest interval 

was permitted every three successive trials to prevent fatigue. After low-pass filtered (4th-order 

Butterworth filter) of 6 Hz, all kinematic and kinetic data were analyzed using the Dynamic 

Plugin Gait Model [131]. Kinematic parameters of both limbs, i.e., peak angles of the ankle, 

knee, and hip joints in the sagittal and frontal plane, kinetic parameters of the affected limb, 

i.e., the peak GRFs, and temporal-spatial gait parameters of both limbs, i.e., the walking speed, 

stance time, swing time, and step length, were obtained from the three trials of each participant 
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as the metrics of gait performance. The peak GRFs were normalized to the body weight and all 

the kinematic and kinetic parameters were averaged across the repeated trials.  

The plantar pressure distributions in dynamic gait of each participant were further measured 

utilizing an in-shoe measurement system (Novel Pedar-X system, Novel Inc.) for evaluation of 

the spatial-temporal gait performance and plantar balance in different portions [28] [138] [139]. 

In this experiment, each participant (without wearing the ENMS-BF) was instructed to walk 

along the level 6-m level walkway at a natural speed with the quad cane with a repletion of 

three trials. Parameters of both limbs, i.e., peak plantar pressures at the six regions (Figure 4-

1d), i.e., medial rearfoot, MR; lateral rearfoot, LR; medial midfoot, MM; lateral midfoot, LM; 

medial forefoot, MF; lateral forefoot, LF, were obtained from the repeated trials as the metrics 

of plantar pressure distributions. Meanwhile, the spatial-temporal gait parameters of both limbs, 

i.e., the contact area, were further calculated from the plantar pressure measurements. 

For the CPSS group, the same clinical assessment as in the individual group was conducted to 

investigate the rehabilitative effects. The quantified social interactions between the pairs, and 

the training parameters recorded by the App in each session for a participant, i.e., the total steps 

and imbalanced steps, were evaluated to understand the interaction between the social linkage 

and rehabilitation progress. 
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4.2.4 Statistical Analysis 

Statistical Package for Social Science (SPSS, version 22.0.0.0, IBM Corp.) was used for the 

statistical analysis. The normality tests of the clinical scores (i.e., the BBS, FMA, and the 

10MWT), kinematic and kinetic parameters, plantar pressure distribution parameters, and 

temporal-spatial gait parameters were conducted with the Lilliefors method with a significant 

level of 0.05 [132], all of which were confirmed to obey the normal distribution (P > 0.05). For 

the normal-distributed clinical scores and kinetic parameters of the affected limb, one-way 

repeated measures analysis of variance (ANOVA) was performed to investigate the intra-group 

differences at the three time points (i.e., Pre, Post, and 3-month FU) using Bonferroni post hoc 

tests. For the clinical scores of MAS and FAC, which are ordinal scales, Friedman tests were 

performed to assess the differences in relation to the time points using Wilcoxon signed-rank 

test as the post hoc test. For the kinematic parameters, plantar pressure distribution parameters, 

and temporal-spatial gait parameter of both sides, two-way repeated measures ANOVA was 

conducted to examine the main effects of time points and limbs (i.e., the affected side and the 

unaffected side), as well as the interaction effect within the two variables (time points × limbs). 

Then, the intra-group differences at the three time points and between the two limbs were 

evaluated by one-way repeated measures ANOVA (with Bonferroni post hoc tests) and paired 

t-test, respectively, as conducted in the previous studies [50] [140].  

In the trial of CPSS group, the clinical scores (i.e., FMA, BBS, and 10MWT) and the total steps 
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followed the normal distribution, with the quantified social interactions, imbalanced steps, and 

the clinical scores of MAS and FAC not obeying it, after the Shapiro-Wilk test of normality. 

Thus, one-way repeated measures ANOVA was utilized to evaluate the differences of FMA, 

BBS, and 10MWT across the five time points, and to evaluate differences of the total steps 

across the 20 training sessions. Friedman tests with Wilcoxon signed-rank post hoc test 

(Bonferroni correction), were conducted to detect the differences of MAS and FAC across the 

three time points, and to detect the differences of the social interactions and imbalanced steps 

across the 20 sessions of CPSS-based paired training. In this study, Statistical Package for 

Social Science (SPSS, version 22.0.0.0, IBM Corp.) was utilized in the statistical analysis with 

0.05 as the significant level. The significance levels of 0.01 and 0.001 were also indicated.  

4.3 Results 

Totally 24 participants (including the 10 participants in the system evaluation) attended the 20-

session gait training assisted by the ENMS-BF, from Sep. 2021 to Sep. 2022. Two participants 

in the individual group lost to the 3-month FU assessment session due to the local outbreak of 

COVID-19. Up to now, all the 12 participants completed the individual gait training, by 

contrast, eight participants in the CPSS group completed the paired gait training, with 4 

participants in process of the CPSS-based paired training assisted by the ENMS-BF. 
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Figure 4-2. Clinical scores (mean ± SE) assessed before (Pre), immediately following (Post), 

3-month following (3-month FU) the individual gaiting training: (a) FMA; (b) BBS; (c) 

10MWT; (d) FAC; (e) MAS scores at the ankle, knee, and hip joints.  

 

4.3.1 Training Effects for the Individual Group 

All the 12 participants in the individual group completed the 20-session gait training assisted 

Hip Knee Ankle
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Table 4-2. Clinical scores and the kinetic parameters measured before (Pre), immediately 

following (Post), and 3-month following (3-month FU) the individual gaiting training, as well 

as the probabilities of the statistical analysis. 

 

 

by the ENMS-BF. Participants could perform the gait training with the sequential assistance of 

the musculoskeleton, NMES, and the tactile vibrator. No wearing discomfort caused by the 

device was reported from the participants. The vulnerable point of the developed system 

reported from the operator was the broken leads of FSRs under foot due to the repeated tramples, 

which was solved by replacing a new FSRs module reinforced by the hot melt adhesive. 

(I) Clinical assessments 

In the individual group, the lower limb motor function measured by the clinical assessments 

Clinical assessments
Pre Post 3-month FU One-way Repeated Measures ANOVA

Mean (95% confidence interval) P (Partial η²) F

FMA (max. 34) 21.50 (17.84–25.16) 27.13 (23.57–30.68) 26.38 (22.77–29.98) 0.000*** (0.828) 33.58

BBS (max. 56) 48.42 (45.93–50.91) 51.63 (48.40–54.85) 51.88 (48.70–55.05) 0.000*** (0.766) 22.87

10MWT (m/s) 0.66 (0.51–0.81) 0.71 (0.56–0.85) 0.84 (0.70–0.98) 0.002** (0.600) 10.49

Clinical assessments
Pre Post 3-month FU Friedman Test

Mean (95% confidence interval) P (X2) W

MAS 

(max. 4)

-Hip 0.52 (0.10–0.93) 0.25 (0.00–0.64) 0.25 (0.00–0.64) 0.018* (8.000) 0.500

-Knee 1.17 (0.66–1.69) 0.73 (0.04–1.41) 0.75 (0.01–1.49) 0.034* (6.741) 0.421

-Ankle 1.68 (1.04–2.31) 0.98 (0.61–1.34) 0.98 (0.61–1.34) 0.009** (9.391) 0.587

FAC (max. 5) 3.75 (3.36–4.14) 4.25 (3.66–4.84) 4.13 (3.59–4.66) 0.039* (6.500) 0.406

GRF parameters (N/kg)
Pre Post 3-month FU One-way Repeated Measures ANOVA

Mean (95% confidence interval) P (Partial η²) F

Vertical Force
@loading 

response 
8.65 (6.98–10.21) 9.73 (9.02–10.44) 9.95 (9.49–10.41) 0.105 (0.372) 3.548

Vertical Force
@terminal 

stance
9.13 (8.45–9.80) 9.19 (8.42–9.95) 9.22 (8.62–9.83) 0.630 (0.074) 0.481

Braking Force
@loading 

response 
-0.67 (-0.98– -0.37) -0.92 (-1.32– -0.52) -0.94 (-1.38– -0.50) 0.02* (0.478) 5.500

Propulsive 

Force

@terminal 

stance
0.49 (0.32–0.67) 0.58 (0.41–0.75) 0.60 (0.42–0.79) 0.01* (0.539) 7.021
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are depicted in Figure 4-2. There was a significant augment in FMA scores following the 

gaiting training (Figure 4-2a, P < 0.001, one-way repeated measures ANOVA with Bonferroni 

post hoc tests), and the increase was sustained significantly after 3-month (Figure 4-2a, P < 

0.01, one-way repeated measures ANOVA with Bonferroni post hoc tests). The BBS 

significantly increased after the training and the augment was maintained in the 3-month FU 

assessment (Figure 4-2b, P < 0.01, one-way repeated measures ANOVA with Bonferroni post 

hoc tests). As shown in Figure 4-2c, the 10MWT parameters significantly increased 3 months 

after the gait training, compared to both in the pre and post assessments (P < 0.05, one-way 

repeated measures ANOVA with Bonferroni post hoc tests). There was a significant augment 

of the FAC scores after the gait training ((P < 0.05, the Friedman test with the Wilcoxon signed 

rank post hoc test). Figure 4-2e presents the significant decreases of MASs at the knee and 

ankle joints after the gait training, and the decrease at the ankle joint was sustained after 3 

months (P < 0.05, the Friedman test with the Wilcoxon signed-rank post hoc test). Table 4-2 

presents the detailed clinical scores (i.e., mean ± the 95% confidence intervals as well as the 

one-way repeated measures ANOVA and the probabilities and estimated EFs of Friedman test) 

measured in this study. 

(II) Kinematic and kinetic parameters 

For the individual gait training, the kinematic (i.e., the peak angles of the hip, knee, and ankle 

joints.) and kinetic (peak GRFs) parameters are depicted in Figure 4-3. Table 4-2&3 shows the 



99 

 

 

   

Figure 4-3. Kinematic and kinetic parameters (mean ± SE) of the both limbs assessed before 

(Pre), immediately following (Post), 3-month following (3-month FU) the individual gaiting 

training: peak angles of (a) ankle dorsiflexion (sagittal plane); (b) ankle inversion (frontal 

plane); (c) knee varus (frontal plane); (d) hip abduction ( frontal plane) during the swing phase, 

and peak ground reaction force (GRF) of (e) the braking force (during the loading response 

phase) and (f) the propulsive force (during the terminal stance phase).  
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detailed kinematic and kinetic parameters of both limbs using the two-way repeated measures 

ANOVA with the probabilities and estimated EF values. Peak angles of the ankle dorsiflexion 

(on the affected side) during swing phase significantly increased and the augment was 

maintained after the gait training and after 3 months (Figure 4-3a, P < 0.05, one-way repeated 

measures ANOVA with Bonferroni post hoc tests). For the unaffected side, peak ankle 

dorsiflexion angles significantly increased in the 3-month FU assessment compared to those 

measured in the Pre and Post assessments (Figure 4-3a, P < 0.05, one-way repeated measures 

ANOVA with Bonferroni post hoc tests). For the peak angles of ankle eversion/inversion (i.e., 

in the frontal plane) during the swing phase, there was a significant augment following the 

training and the increase was sustained after 3-month (Figure 4-3b, P < 0.05, one-way repeated 

measures ANOVA with Bonferroni post hoc tests). Before the gait training, there was a 

significant difference in peak angles of ankle eversion/inversion between the affected side and 

unaffected side (unaffected side > affected side), and this significant difference reappeared 3-

month after the training (Figure 4-3b, P < 0.05, the paired t-test). Figure 4-3c shows a 

significant decrease in peak angles of the knee varus (on the affected side) during the swing 

phase following the gait training, and the significant decrease was sustained 3-month following 

the training (P < 0.05, one-way repeated measures ANOVA with Bonferroni post hoc tests). 

After the gaiting training (including the Post and 3-month FU assessment), the peak angles of 

knee varus (swing phase) of the unaffected side were significantly larger than those measured 
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Table 4-3. Gait parameters measured of both limbs before (Pre), immediately following (Post), 

and 3-month following (3-month FU) the individual gaiting training, as well as the probabilities 

of the statistical analysis.  
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Table 4-4. Gait parameters measured of both limbs before (Pre), immediately following (Post), 

and 3-month following (3-month FU) the individual gaiting training, as well as the probabilities 

of the statistical analysis (Continued). 

 

 

on the affected side ((Figure 4-3b, P < 0.05, the paired t-test). There were significantly larger 

angles of peak hip abduction (on the paretic limb) during the swing phase in the Post and 3-

month FU assessment, compared to those measured in the pre assessment (Figure 4-3d, P < 

0.05, one-way repeated measures ANOVA with Bonferroni post hoc tests). 

For the kinetic parameters, i.e., the GRFs, of the affected limb, the absolute values of peak 

braking forces during the loading response increased following the gait training, and the 

significant augment was retained in the 3-month FU assessment (Figure 4-3e, P < 0.05, one-

way repeated measures ANOVA with Bonferroni post hoc tests). Figure 4-3f shows that the 

peak propulsive forces (on the affected side) during the terminal stance in the Post and 3-month 
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Figure 4-4. Plantar pressure distribution parameters (mean ± SE) of both limbs assessed before 

(Pre), immediately following (Post), 3-month following (3-month FU) the individual gaiting 

training: peak averaged pressures at the regions of (a) medial midfoot, MM; (b) lateral rearfoot, 

LR; (c) medial forefoot, MF.  

 

FU assessments, were significantly larger than those measured in the pre assessment (P < 0.05, 

one-way repeated measures ANOVA with Bonferroni post hoc tests). No significant differences 

were detected in the other kinematic (including the joint of pelvic and the kinematic parameters 

in the level plane) and kinetic parameters of other gait phases among the three time points. 
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(III) Plantar pressure distribution parameters 

In the individual group of gait training, Figure. 4-4 presents the plantar pressure distribution 

parameters of both limbs before, after, and 3-month after the training. The two-way repeated 

measures ANOVA probabilities and the EFs with respect to the plantar pressure distribution 

parameters are integrated in Table 4-3. The peaks of the averaged plantar pressure at the MM 

region (the affected limb) 3-month after the gait training, were significantly greater than those 

measured prior to the training (Figure 4-4a, P < 0.05, one-way repeated measures ANOVA 

using Bonferroni post hoc tests). Meanwhile, before the gait training, the peaks of the averaged 

plantar pressure of the MM region of the paralyzed limb were significantly lower than those 

measured on the unaffected limb (Figure 4-4a, P < 0.01, the paired t-test). As shown in Figure 

4-4b, the peaks of the plantar pressure at the LR region (the affected limb) in the 3-month FU 

assessment was significantly greater than those measured prior to the training (P < 0.05, one-

way repeated measures ANOVA using Bonferroni post hoc tests), and they are higher on the 

unaffected side compared to those measured on the affected side in the pre assessment (P < 

0.05, the paired t-test). Regarding to the peaks of the averaged plantar pressure at the MF region 

(the affected limb), there was a significant increase after the gait training, and the augment was 

maintained 3-month after the training (Figure. 4-4c, P < 0.05, one-way repeated measures 

ANOVA using Bonferroni post hoc tests). The peaks of the averaged plantar pressure (MF 

region) of the unaffected limb were significantly greater than those measured at the paretic 



105 

 

  

Figure 4-5. Temporal-spatial gait parameters (mean ± SE) of both limbs assessed prior to (Pre), 

immediately following (Post), 3-months following (3-month FU) the individual gaiting training: 

(a) foot-floor contact area; (b) swing time; (c) stance time.  

 

limb (Figure 4-4c, P < 0.05, the paired t-test). No significant increase or decrease was found 

among the three time points in the plantar pressure distribution parameters of other foot regions. 

(IV) Temporal-spatial gait parameters 

In the individual gait training, Figure 4-5 shows the temporal-spatial gait parameters, which 

exhibited significant variations among the three time points and between the two limbs. The 
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Figure 4-6. Clinical scores (mean ± SE) and the training parameters measured in the CPSS-

based training: (a) FMA scores; (b) BBS scores; and (c) MAS at the ankle joint measured in 

the three Pre assessment, and the Post and 3-month FU assessments. The variation of daily 

training parameters, i.e., (d) the social interactions between the paired participants, and (e) the 

total steps/imbalanced steps, across the CPSS-based paired training sessions. Significant 

differences are indicated by “*” (P<0.05), “**” (P<0.01), and “***” (P<0.001). 

 

detailed temporal-spatial gait parameters are depicted in Table 4-4, with the two-way repeated 

measures ANOVA probabilities and the estimated EF values. A significant increase was found 

in the foot-floor contact area (affected limb) following the gait training, and the augment was 

maintained 3-month following the training (Figure 4-5a, P < 0.05, one-way repeated measures 

ANOVA with Bonferroni post hoc tests). The foot-floor contact area of the unaffected limb was 
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significantly greater than that measured on the affected side before and after the gait training 

(Figure 4-5a, P < 0.01, the paired t-test). Three months after the training, the foot-floor contact 

area of the unaffected limb was significantly larger than that measured on the affected limb 

with a reduced significance (Figure 4-5a, P < 0.05, the paired t-test). Before the gaiting training 

the swing time of the paretic limb was significantly longer compared to that measured on the 

unaffected side (Figure 4-5b, P < 0.01, the paired t-test). The significantly longer swing time 

of the affected limb, compared to that measured on the unaffected side, reappeared 3-month 

after the training (Figure 4-5b, P < 0.01, the paired t-test). A significant augment of the stance 

time on the affected side was observed after the gait training (Figure 4-5c), and the significant 

increase was maintained in the 3-month FU assessment (P < 0.05, one-way repeated measures 

ANOVA using Bonferroni post hoc tests). Before the gait training, the stance time on the 

unaffected side was significantly longer than that measured of the paretic limb (Figure 4-5c, P 

< 0.01, the paired t-test). No significant differences of other temporal-spatial gait parameters 

were detected among the time points and between both lower limbs. 

4.3.2 Training effects for the CPSS group 

Twelve participants were matched into 6 pairs in the CPSS based paired training. All of them 

completed the 20-session training and clinical assessments at the five time points. No wearing 

discomfort and no complaint of the CPSS-based paired training was reported from the 

participants.  
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Table 4-5. Means and 95% confidence intervals for the clinical scores measured at Pre, Post, 

and 3-month FU assessments in the CPSS based paired training, as well as the probabilities of 

the statistical analysis. 

 

 

Fig. 4-6a-c summarizes the clinical scores measured at five different time points in the CPSS 

group. Significant increases were observed in the FMA scores (Fig. 6a, P<0.01) and BBS (Fig. 

6b, P<0.05) after the CPSS-based paired training, and these increases were maintained 3-month 

after the paired training. As shown in Fig. 6c, the MAS declined significantly at the ankle 

(P<0.01) joint and the knee joint (P<0.05) after the paired training, and it was maintained for 3 

months. No significant difference was found in the clinical scores of FAC, 10MWT and MASs 

(hip joint) among the five time points. Detailed statistics of the clinical scores are summarized 

in Table 4-5.  

Fig. 6d&e presents differences of the total steps, imbalanced steps, and the quantified social 

interactions between the pairs, across the 20-session CPSS-based paired training. 



109 

 

Accompanying with the significant increases of social interactions (Fig. 6d, P<0.001), the 

count of total steps increased significantly (Fig. 6e, P<0.001), and the imbalanced steps 

significantly declined (Fig. 6e, P<0.001) across the 20-session paired training. 

4.4 Discussion 

Pilot clinical trials were also carried out to validate the viability and effects of the individual 

and CPSS-based paired gait training, respectively, both of which were fully assisted by the 

ENMS-BF. 

4.4.1 The ENMS-BF-assisted Individual Gait Training 

The feasibility of the proposed ENMS-BF-assisted individual gait training was measured, and 

all the 12 participants finished the 20-session training with close supervision from the 

experimental operator. No accident of falling or other side effects was reported during the 

individual gait training. All the participants could wear the ENMS-BF with assistance from the 

experimental operator. Three of the twelve participants with chronic stroke encountered the 

problem of missing detection of heel-off event at the beginning training session, which was 

caused by the muscular discoordination of the plantar flexors in chronic stroke [141]. Verbal 

cues from the experimental operator (mainly in the first three sessions of gait training), together 

with the sensory-level NMES, could remind the participants focusing on the dynamic 

assistance from the ENMS-BF and performing heel-off event, which was similar to the 
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biofeedback in the intervention of plantar flexors post-stroke [142]. Supervised by the 

experimental operator, all the participants could complete the 45min ENMS-BF-assisted gait 

training with all the three gait events, i.e., heel-off, toe-off, and heel-strike, recognized 

successfully based on the real-time plantar pressures captured by the FSRs. 

Clinical scores at the Pre, Post, and 3-month FU assessment sessions showed that the ENMS-

BF-assisted gait training enhanced motor function of the paralyzed lower limb and released the 

muscular spasticity at the ankle, knee, and hip joints. The paretic limb’s motor recovery was 

demonstrated by the significant augment in the FMA at Post assessment (i.e., FMA + 5.63), 

and the improvement was maintained at the 3-month after the gait training (i.e., FMA + 4.88). 

Both the increases at the Post and 3-month FU assessments were greater than the minimal 

detectable change (MDC) of 4 points in individuals with chronic stroke [143]. A significant 

increase was also found in the FAC at the Post assessment, which also suggested improved 

functional ambulation in the community. The significant increases of BBS in the Post and 3-

month FU assessments indicated the improvement in balance ability, which could be associated 

with the assistance of NMES and vibrotactile feedback during the gait training [144] [145] 

[146]. Due to passive muscular tension and compensation in the paretic limb, stroke survivors 

usually show joint deformities [111]. Flexor spasticity was observed to be released at the knee 

and ankle joints following the gait training, associated with the significantly decreased MAS 

scores at the Post assessment. The release of muscular spasticity at the ankle joint was 
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maintained 3-month following the gait training. The decreases in MASs at both the knee and 

ankle joints also suggested the improved synergic control of muscles in the distal and proximal 

joints [147]. With the motor-level NMES to the extensor, i.e., TA muscle, and the sensory-level 

NMES to the flexor, i.e., GA muscle, the muscular spasticity at the ankle joint was effectively 

reduced, which indicated the improved muscle coordination within the antagonist muscle pairs 

in the ankle. This result was similar to those studies on post-stroke rehabilitation assisted by 

NMES [148] [149]. The non-significant increase in gait speed after the training could be 

explained by the “2-second” educational period in the gait training, which helped the 

participants to relearn plantarflexion and plantar balance with a slow walking speed. It is 

interesting to note that the gait speed significantly increased 3-month after the training, with 

the maintained improvements of motor function and balance ability in the lower limb and 

sustained release of muscle spasticity at the ankle joint. The augment of gait speed in the 3-

month FU period was because the stroke participants persisted in self-training in the 

community with the relearned gait pattern, even without assistance from the ENMS-BF.   

The 20-session individual training assisted by the ENMS-BF improved the gait pattern as 

indicated by the results of kinematic, kinetic, and spatial-temporal gait parameters. In the 

sagittal plane, the peak angle of the paretic ankle dorsiflexion during the swing phase 

significantly increased after the gait training indicating the improved voluntary ankle 

dorsiflexion, which might be related to the strengthened dorsiflexor and the reduced spasticity 
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of plantar flexor benefiting from the NMES [124] [150] [151]. In the frontal plane, the peak 

angle of ankle inversion during the swing phase increased significantly after the gait training, 

which suggested the relief of ankle varus by the vibrotactile feedback [28]. The improvement 

of foot inversion could also be related to the improved postural balance, as revealed by the 

increase of BBS after the gait training. The difference of the peak ankle inversion between the 

affected and unaffected limb suggested the improved spatial asymmetry after the gait training, 

which could also be revealed by the swing time (Figure 4-5b). The improvements of asymmetry 

could be explained by the improved pattern of temporal asymmetry characterized by a shorter 

stance time of the affected limb [152] [153], which increased significantly after the gait training 

(Figure 4-5c). The improvements of spatial and temporal gait asymmetry could also be related 

to the relief of spasticity of the affected ankle plantar flexors [154], which was reduced with 

the assistance of NMES in this study. However, this asymmetry of both limbs on peak foot 

inversion/eversion and swing time reappeared in the 3-month FU assessment in this study, 

which might be related to the long-term gait adaptability of the chronic stroke participants to 

various environmental characteristics in their daily living [13]. The peak angles of knee varus 

and hip abduction of the paretic limb decreased significantly during the swing phase, which 

might be associated with the reduced commentary motions of hip circumduction [155]. The 

reduced compensatory movement of the isolated joint was consistent with those interventions 

that assisted with NMES for chronic stroke survivors [150, 156]. In the stance phase of the 
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affected side, the absolute peaks of braking force and propulsive force increased significantly 

after the ENMS-BF-assisted gait training, which might be correlated to the muscular activity 

of ankle dorsiflexion and plantarflexion assisted by NMES from the ENMS-BF [157]. The 

improvements in braking and propulsive force on the paretic limb indicated that the participants 

could gain confidence in standing on the paralyzed limb with better walking capability [158], 

which was also supported by the significantly increased stance time and foot-floor contact area 

of the paralyzed limb following the ENMS-BF-assisted gait training (Figure 4-5a&c). After the 

gait training, the stance time of the affected side increased without significant changes in the 

walking speed assessed by the motion capture system, which also indicated that the 

improvements in the hemiparetic gait pattern were not due to the intentional changes in walking 

speed during the assessments [155]. 

The improvements in plantar balance during the stance phase were indicated by the changes in 

plantar pressure distributions and foot-floor contact areas of both sides. The significant 

increases of peak pressure at the MF and MM regions of the affected limb indicated the 

improved plantar balance of the paretic foot on the medial side. This improvement of plantar 

balance at the affected limb could also be related to the improved postural balance and reduced 

foot inversion in the swing phase [159]. Meanwhile, the increase of peak pressure at the LR 

region after the gait training could be related to the increased braking and propulsive forces, 

together with the increased foot-floor contact area in the stance phase after the training, which 
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also indicated the improved walking capability with confidence on the affected limb. The inter-

limb asymmetry of plantar pressure was improved at the MM, MF, and LR regions, as revealed 

by the changes in peak plantar pressure at the related plantar regions after the gait training, 

which might be related to the improved static balance [160], as also revealed by the increased 

clinical score of BBS after the training. This finding of improvement in plantar balance was 

consistent with the previous studies with the biofeedback to correct foot inversion and plantar 

imbalance [28] [161]. It was found that the haptic feedback potentially to enhance 

proprioception for stroke survivors [162] [163]. In this study, the vibrotactile feedback came 

from the tactile vibrator, which was placed nearby the imbalanced region of the paretic foot 

sole to enhance the interaction effect of afferent vibrotactile and proprioceptive feedback. In 

the self-correction of plantar imbalance and foot inversion during the dynamic gait training, 

the afferent feedback of the vibrotactile, together with the proprioceptive stimulation under the 

foot sole, might contribute to the strengthened plastic changes in the relearned gait pattern, 

which were demonstrated in the previous study of neural plasticity [164].  

4.4.2 The CPSS-based ENMS-BF-assisted Paired Gait Training 

Eight participants fully completed the self-help ENMS-BF-assisted paired gait training based 

on the CPSS incentive mechanism, with monitoring by a distanced professional, suggesting the 

integration of the CPSS and ENMS-BF is feasible for the gait training post-stroke without 

temporal and spatial restrictions. Meanwhile, as revealed from the feedback of the participants 
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during the gait training, both the incentive/correction audio feedback and milestone rewards 

could enhance the motivation and engagement in the self-help ENMS-BF-assisted gait training, 

without close supervision from the professional, which was also found in the previous studies 

of rehabilitation post-stroke using goal setting [165] and serious games [166]. The recovery of 

voluntary motor function and posture balance in the lower limb was revealed by the 

significantly increased clinical scores of FMA and BBS after the 20-session CPPS-based paired 

training. The release of muscular spasticity at the knee and ankle flexors were indicated by the 

significantly decreased MAS, which also suggested improved muscular coordination and 

synergic activities between the distal and proximal joint [15]. The significant increasement of 

total steps and decrease in the imbalance steps, together with the significantly increased social 

interactions across the 20-session training, indicated that the CPSS-based ENMS-BF-assisted 

paired training can facilitate effective motor recovery for chronic stroke with remote 

management and social interactions. 

4.5 Periodic Summary 

In conclusion, the feasibility and rehabilitation effectiveness of the developed ENMS-BF were 

investigated with the individual gait training supervised by a professional and the self-help 

CPSS-based paired training managed remotely by the professional. Participants could complete 

the 20-session ENMS-BF-assisted gait training in both the individual and CPSS-based paired 

groups. After the ENMS-BF-assisted individual gait training, all the participants showed 
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enhanced motor recovery, release of involuntary muscle tension of the paretic limb, together 

with the improved gait pattern and plantar balance. Based on the CPSS-based incentive 

mechanism, participants completed the self-help paired gait training assisted by the ENMS, 

accompanying cyber social interactions with both the professional and the paired participants. 

These results indicated that both the individual and CPSS-based gait training, assisted by the 

ENMS-BF, could facilitate efficient gait training for stroke survivors. 
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CHPATER 5 

CONSLUSIONS 

Robot-assisted training and automated assessments are the two crucial issues in automated 

rehabilitation for stroke patients. Rehabilitation robots could assist in the repetitive and 

intensive physical training during the motor recovery of the paralyzed limb, meanwhile, the 

automated assessment could monitor the training effects and facilitate the customized training 

strategy assisted by the robot. Three experiments were carried out in this study to 1) explore 

the sEMG data-driven model for the robotized assessment of training effects in the robot-aided 

training, 2) develop and verify the capacity of a novel exo-neuro-musculo-skeleton with 

balance sensing feedback (ENMS-BF) for lower limb motor recovery, 3) investigate the 

feasibility and rehabilitation effectiveness of using the developed ENMS-BF for both the 

individual training and the self-help paired training with cyber physical interactions. 

In the first experiment, a three-layer BPNN model driven by the sEMG data was established 

for the projection of the sEMG characteristics to the FMA and MASs, which are the commonly 

used clinical scores during the upper limb motor recovery post-stroke. Significant correlations 

(P<0.05) were observed within the manually marked and mapped scores of FMA and MAS, 

suggesting that the data-driven model enables measurements of upper limb motor functions 

and muscular spasticity for chronic stroke survivors. The constructed model could potentially 
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facilitate the automated assessment of motor functions with minimum assistance and 

supervision from the professionals, during the robot-assisted rehabilitation after stroke. 

In the second section, an ENMS-BF driven by plantar pressures was designed for the dynamic 

correction of foot drop and foot inversion in lower limb motor recovery post-stroke. The 

ENMS-BF combined the pneumatic muscle, exoskeleton, NMES, and vibrotactile feedback, 

which was immediately effective for ankle dorsiflexion and correction of foot inversion during 

dynamic gait. The lightweight and compact design of the ENMS enable it to be worn bilaterally 

above the ankle joint of the paralyzed foot with a comfortable experience.  

In the third experiment, the feasibility and rehabilitation effects of the ENMS-BF were 

investigated with two training strategies, i.e., the individual training supervised by an 

experimental operator, and the self-help CPSS-based paired training with remote management 

and peer interactions. All participants completed the individual gait training assisted by the 

developed ENMS-BF, with improved motor function, reduced muscular spasticity, and 

enhanced gait pattern and plantar balance of the paralyzed lower limb after the 20-session 

training. Eight participants completed the self-help CPSS-based paired training with cyber 

interactions with peers and remote monitoring from the professional, accompanying improved 

motor functions after the paired gait training. These results suggested that both the ENMS-BF 

alone, and integration with the CPSS incentive mechanism, could facilitate effective motor 

recovery of the lower limb for individuals with chronic stroke.  
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In conclusion, this study proposed the potential solution of automated assessment for post-

stroke robot-assisted rehabilitation, which could track the training effects to customize the 

training strategy during the rehabilitation program. Moreover, a novel ENMS-BF with a 

lightweight and compact design was developed for the motor recovery of the paretic lower limb 

after stroke. The developed ENMS-BF, together with the CPSS incentive mechanism, could be 

feasible for self-help training monitored by a distanced professional, and this novel training 

strategy could provide effective motor recovery of the lower limb, accompanying cyber peer 

interactions with minimized physical contacts, during the long-term rehabilitation of stroke.  

Future investigations will be carried out to (1) improve the generalization performance of the 

data-driven model with semi-supervised learning (e.g., transfer learning) and multi-mode 

feature vectors, e.g., the sEMG parameters and clinical diagnostic information; (2) explore the 

training effectiveness of the ENMS-BF-assisted gait training in home/community environment 

with randomized control trials; (3) explore the feasibility of utilizing the data-driven model for 

automated assessment in the lower limb ENMS-BF-assisted rehabilitation post-stroke; and (4) 

establish the CPSS-based platform for both upper and lower limb robot-assisted 

telerehabilitation.  
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APPENDICES 

Appendices 1: Clinical Assessments for Upper Limb 

1.1 Mini-mental State Examination (MMSE) 
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Adapted from: http://www.heartinstitutehd.com/Misc/Forms/MMSE.1276128605.pdf 
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1.2 Modified Ashworth Scores (MAS) 

 

Adopted from: https://www.sralab.org/sites/default/files/2017-

06/Modified%20Ashworth%20Scale%20Instructions.pdf 

https://www.sralab.org/sites/default/files/2017-06/Modified%20Ashworth%20Scale%20Instructions.pdf
https://www.sralab.org/sites/default/files/2017-06/Modified%20Ashworth%20Scale%20Instructions.pdf
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1.3 Fugl-Meyer Assessment for Upper Extremity (FMA-UE) 
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Adopted from: https://www.gu.se/en/neuroscience-physiology/fugl-meyer-assessment 

https://www.gu.se/en/neuroscience-physiology/fugl-meyer-assessment
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1.4 Action Research Arm Test (ARAT) 
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Adopted from: https://www.physio-pedia.com/Action_Research_Arm_Test_(ARAT) 

  

https://www.physio-pedia.com/Action_Research_Arm_Test_(ARAT)
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Appendices 2: Clinical Assessments for Lower Limb 

2.1 Functional Ambulation Category (FAC) 

 

Adopted from: https://strokengine.ca/en/assessments/fac/ 
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2.2 Berg Balance Scale (BBS) 
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Adopted from: http://www.chiropractic.on.ca/wp-content/uploads/fp-berg-balance-scale.pdf 
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2.3 Modified Ashworth Scale (MAS) 

 

Adopted from: https://www.sralab.org/sites/default/files/2017-

06/Modified%20Ashworth%20Scale%20Instructions.pdf  
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2.4 Fugl-Meyer Assessment for Lower Extremity (FMA-LE) 
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Adopted from: https://www.gu.se/en/neuroscience-physiology/fugl-meyer-assessment 

https://www.gu.se/en/neuroscience-physiology/fugl-meyer-assessment
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2.5 10 Meter Walk Test (10MWT) 
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Adopted from: https://www.sralab.org/rehabilitation-measures/10-meter-walk-test 
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Appendices 3: Consent Form 

3.1 Consent Form for Chapter 3 and Chapter 4 
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