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ABSTRACT 

Abstract of thesis entitled: Measurement Uncertainty Quantification and 

Probability-based Control for Building Central Cooling 

and Air Conditioning Systems 

Submitted by: SUN Shaobo 

For the degree of: Doctor of Philosophy 

at The Hong Kong Polytechnic University in October 2022 

 

Measurements are of great importance to health monitoring, performance evaluation and 

online control of heating, ventilation, and air conditioning (HVAC) systems. The 

accuracy of the measurements used, to a certain extent, determines the reliability of the 

decision-making. Uncertainties inevitably exist in measurements. The uncertainties 

outside the normal/acceptable range may lead to significant negative impacts on the 

performance of HVAC systems. Existing studies tend to use indirect methods to reduce 

the impacts of measurement uncertainties on HVAC systems, such as control 

optimization, and sensor fault detection. Though these methods performed well in their 

respective application scenarios, their flexibility and generalization ability are poor. An 

effective and direct measurement uncertainty quantification method is urgently needed 

for HVAC systems, and online corrections of measurements with unacceptable 

uncertainties also need to be done for improving the reliability of HVAC systems and 

extending the service life of measuring instruments. 

This PhD study proposes a measurement uncertainty quantification framework for HVAC 

systems using Bayesian inference and Markov chain Monte Carlo sampling methods. 
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Based on the framework, two measurement uncertainty quantification methods are 

developed, one based on physical models, and another one based on data-driven models. 

The physical model-based measurement uncertainty quantification method is tested and 

validated systematically on virtual water-cooled multiple chiller plants. The energy and 

mass balance models are established. The test results show that the measurement 

uncertainties (including the systematic uncertainty and random uncertainty) of chilled 

water and cooling water flow rates can be quantified successfully using the developed 

physical model-based method. The data-driven model-based measurement uncertainty 

quantification method is tested and validated systematically on an actual air-cooled chiller. 

A multiple quadratic non-linear regression model is established. The test results show that 

the developed data-driven model-based method can effectively quantify both the 

systematic and random uncertainties of chilled water flow rates, and the relative errors 

are within 10.00%. The two developed methods show satisfactory performance in 

quantifying measurement uncertainties of HVAC systems. 

Based on the physical model-based measurement uncertainty quantification method, a 

probability-based chiller sequencing control strategy is proposed. The measured chilled 

water flow rate is corrected online, and the distribution of real-time cooling load can 

further be obtained. The control decisions are made according to the probability that the 

cooling load is distributed in different intervals, and the risk of decision-making can also 

be quantified. The results show that the root-mean-square error of cooling loads is 

reduced significantly by about 79% after the correction of chilled water flow rates. 

Compared with the conventional cooling load-based chiller sequencing control, the 

impacts of both positive and negative uncertainties on system operation can be reduced 

significantly when using the proposed control strategy. 
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Based on the data-driven model-based measurement uncertainty quantification method, a 

fresh air control optimization strategy for air handling units is proposed. The impacts of 

humidity measurement uncertainties on enthalpy-based fresh air control are evaluated. A 

multiple quadratic non-linear regression model is established to address the uncertainties 

of relative humidity measurements and optimize the fresh air control. The relative 

humidity values of fresh air and return air are corrected and used to calculate their 

enthalpies for control decision making. The proposed strategy is tested on a virtual 

platform. The test results show that the proposed fresh air control optimization strategy 

can significantly reduce the impacts of uncertainties of relative humidity measurements 

on system operation. Compared with the energy consumption before optimization, the 

energy consumption of the air handling unit is reduced by 1.02% - 24.58% after 

optimization. 
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CHAPTER 1 INTRODUCTION 

This chapter gives an overview of this thesis. Section 1.1 introduces the background and 

motivation of this study. Section 1.2 presents the aim and objectives of this study. Section 

1.3 provides a brief description of each chapter and introduces the relationships between 

the main chapters of this thesis. 

1.1 Background and motivation 

Nowadays, almost all modern buildings are equipped with heating, ventilation and air 

conditioning (HVAC) systems for providing cooling or heating to indoor spaces and 

maintaining indoor thermal comfort at an acceptable level. HVAC systems are one of the 

most energy-consuming devices in most buildings. The building sector consumes about 

40% of the total global end-use energy (Song et al., 2020), while the energy consumed 

by HVAC systems accounts for about 60% of the total building energy use (Omrany et 

al., 2016). It attracts considerable attention to the energy savings of HVAC systems. 

The energy efficiency of HVAC systems highly depends on their control systems. In 

recent years, many optimal control strategies are developed for improving the energy 

efficiency of HVAC systems and achieving energy savings (Jia et al., 2021). For example, 

Karami and Wang (2018) achieved 10.5-13.6% of energy savings for an all-variable 

speed water-cooled chiller plant by employing the particle swarm optimization search 

algorithm to optimize the chilled water temperature setpoint, the condenser water 

temperature setpoint, and the threshold of cooling load. Thangavelu et al. (2017) proposed 

an energy optimization methodology to derive optimized operation decisions for a chiller 

plant and achieved 20-40% of energy savings. For the control systems of HVAC systems, 
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online control decisions are generally made based on real-time measurements. The 

control systems regulate the system behaviour/operation by detecting the changes in 

external conditions and/or the deviations of the process variables from their setpoints. A 

number of measuring instruments are installed in HVAC systems for achieving the 

expected control performance. Undoubtedly, the accuracy of the measuring instruments 

used is of vital importance to the reliability of the control systems. The performance of 

control systems must be affected by the uncertainties of measuring instruments. 

Uncertainties inevitably exist in measurements. The uncertainties outside the acceptable 

range may lead to significant biases in making online control decisions, and further affect 

the performance of HVAC systems. In addition to the control systems, the performance 

evaluation and real-time monitoring of HVAC systems are also affected by measurement 

uncertainties, which may make managers or operators make incorrect decisions. 

Generally, the measuring instruments can achieve the expected performance after the 

initial commissioning and their uncertainties are acceptable. But the measurement 

uncertainties tend to be more and more significant with the performance degradation of 

the measuring instruments. It is recommended to calibrate the measuring instruments in 

situ annually for reducing the impacts of measurement uncertainties (ASHRAE, 2014), 

but field calibration of measuring instruments is often not carried out strictly due to site 

constraints and technical feasibility. There are even measuring instruments that are never 

calibrated in their life cycles and always work in unhealthy conditions. Apart from field 

calibration, there is no effective method to address the uncertainties of measuring 

instruments. A reliable and convenient alternative to field calibration of measuring 

instruments is urgently needed. 

Online measurement uncertainty quantification is a very challenging task but can address 

the uncertainties of measuring instruments fundamentally. Effective methods to directly 
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quantify the uncertainties of measuring instruments in HVAC systems are still missing in 

the literature. Measurement uncertainties are not fixed or even random, which leads to a 

significant increase in the difficulty of quantifying them. In addition, the actual 

uncertainty of a measuring instrument always cannot be known exactly, because the 

uncertainty of the standard calibration instrument may also lead to a deviation between 

the calibration value and its true value. It raises a new problem. Even though the 

uncertainty of a measuring instrument can be quantified by a method, the reliability of 

the quantification results cannot be evaluated. The challenges in quantifying the 

uncertainties of measuring instruments in HVAC systems online include method 

development, performance evaluation, reliability analysis, online correction, and so on, 

and they are summarised as follows. This thesis is devoted to coping with these challenges 

and addressing the measurement uncertainties in HVAC systems effectively. 

i. The uncertainties of measuring instruments in HVAC systems are barely investigated. 

An effective measurement uncertainty quantification method is difficult to be 

developed due to the inherent characteristics of measurement uncertainties. 

ii. If a method is developed to quantify measurement uncertainties, it cannot evaluate 

the performance of the method without knowing the actual measurement 

uncertainties. A comprehensive validation and reliability analysis should be 

conducted for this method. 

iii. The uncertainty of a measuring instrument generally follows a distribution. Even if 

the distribution parameters (for example, the mean and standard deviation of a normal 

distribution) are known or can be quantified, it is very difficult to correct the real-

time measurements of the instrument online.  
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1.2 Aim and objectives 

This PhD study, therefore, aims to develop online measurement uncertainty quantification 

methods for HVAC systems and use them to optimize the control systems of HVAC 

systems for reducing the impacts of measurement uncertainties. To achieve this aim, the 

following objectives are addressed effectively: 

i. Develop a physical model-based measurement uncertainty quantification method and 

conduct a systematic validation of it. The method is applicable to quantify 

uncertainties of measuring instruments in the HVAC systems where one or more 

physical models can be established, such as multiple water-cooled chiller systems, 

where energy and mass balance models can be established. 

ii. Propose a probability-based online robust sequencing control strategy for multiple 

water-cooled chiller systems. The developed physical model-based measurement 

uncertainty quantification method is used to correct the real-time cooling load 

measurements online. It can make up for the drawbacks of conventional cooling load-

based chiller sequencing control strategy in confronting measurement uncertainties. 

In addition, the risks of control decision-making can also be assessed, and further the 

reliability of the control decisions made can be evaluated. 

iii. Develop a data-driven model-based measurement uncertainty quantification method 

and conduct a systematic validation of it. The method makes up for the limitation of 

the developed physical model-based measurement uncertainty quantification method 

and is applicable to almost all types of HVAC systems. 

iv. Propose a fresh air control optimization strategy for air handling unit systems, where 

the measurement uncertainties are quantified by the developed data-driven model-
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based method. It can reduce energy waste due to measurement uncertainties and 

improve the reliability of fresh air control. 

1.3 Organization of this thesis 

This thesis consists of eight chapters, which is organized as follows. 

Chapter 1 provides an overview of this thesis, including the background and motivation 

of this study, the aim and objectives of this study, and the organization/structure of this 

thesis. 

Chapter 2 is a comprehensive literature review. Firstly, the impacts of measurement 

uncertainties on the performance of HVAC systems are presented. Secondly, the solutions 

to measurement uncertainties in existing studies are introduced and their limitations are 

analysed. Then the existing studies on uncertainty quantification for building energy 

models are introduced. Finally, a summary of these existing studies and the research gaps 

to be addressed in this study are presented. 

Chapter 3 proposes a measurement uncertainty quantification framework. Firstly, the 

characteristics of measurement uncertainty and the measurement uncertainty 

quantification methods adopted in this study are introduced. Then the proposed 

framework of measurement uncertainty quantification is presented in detail, which is the 

foundation of this study. In addition, the convergence diagnostics and evaluation index 

are presented and will be used to check the convergence and evaluate the performance of 

the measurement uncertainty quantification methods proposed in this study. 

Chapter 4 presents a physical model-based measurement uncertainty quantification 

method for multiple water-cooled chiller systems. It is validated systematically using a 

site test and four simulation tests. The energy and mass balance models are established to 
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realize it. The performance of the proposed method on quantifying measurement 

uncertainties is evaluated by comparing the quantified uncertainties with the “actual 

uncertainties” (they are known to the simulation tests). 

Chapter 5 presents a probability-based online robust sequencing control strategy for 

multiple water-cooled chiller systems. It is developed based on the conventional total 

cooling load-based chiller sequencing control strategy. The physical model-based 

measurement uncertainty quantification method proposed in Chapter 4 is used to address 

the uncertainties of the measuring instruments concerned. The control decisions are made 

based on the probability distributions of total cooling loads and the risks are assessed. 

The proposed control strategy is validated systematically on a virtual test platform.  

Chapter 6 presents a data-driven model-based measurement uncertainty quantification 

method for making up for the limitation of the physical model-based measurement 

uncertainty quantification method. It is validated systematically on an air-cooled chiller 

system by quantifying different levels of measurement uncertainties. The validation 

results are presented and analysed comprehensively. 

Chapter 7 presents a fresh air control optimization strategy for air handling units, where 

the data-driven model-based measurement uncertainty quantification method proposed in 

Chapter 6 is used to address the uncertainties of measuring instruments concerned. The 

impacts of measurement uncertainties on enthalpy-based fresh air control are evaluated. 

And the performance of the proposed fresh air control optimization strategy is validated 

systematically on a virtual platform. The test results are presented and analysed in detail. 

Chapter 8 summarizes the main contributions and conclusions of this PhD study and 

provides suggestions for future work on the research subjects concerned. 
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The relationships between the main chapters of this thesis are shown in Figure 1.1. The 

measurement uncertainty quantification framework is the foundation of this study and is 

presented in Chapter 3. In addition, the general information used throughout this study, 

such as the characteristics of measurement uncertainty, the uncertainty quantification 

methods adopted, and the indexes used for checking convergence and performance 

evaluation, are also presented in this chapter. In Chapter 4, a physical model-based 

measurement uncertainty quantification method is developed based on the framework 

proposed in Chapter 3. Based on the method developed in Chapter 3, a probability-based 

online robust chiller sequencing control strategy is proposed in Chapter 5. In Chapter 6, 

a data-driven model-based measurement uncertainty quantification method is developed. 

Based on the method developed in Chapter 6, a probability-based optimization strategy 

for fresh air control of air handling units is proposed in Chapter 7. 

 

Figure 1.1 Relationships between the main chapters 

Measurement uncertainty 

quantification framework 

proposed in this thesis

(Chapter 3)

Physical model-based measurement 

uncertainty quantification method 

and its validation (Chapter 4)

Probability-based chiller 

sequencing control strategy where 

the measurement uncertainties 

concerned are processed by the 

physical model-based method 

(Chapter 5)

Data-driven model based 

measurement uncertainty 

quantification method and its 

validation (Chapter 6)

Fresh air control optimization 

strategy where the measurement 

uncertainties concerned are processed 

by the data-driven model based 

method (Chapter 7)
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CHAPTER 2 LITERATURE REVIEW 

Measurements are essential to the normal operation of HVAC systems. Uncertainties in 

measurements certainly affect the system performance and may lead to a series of 

undesirable consequences (for example, high energy consumption, short service life, poor 

user experience, etc). The studies on measurement uncertainties of HVAC systems are of 

great interest in recent decades. This chapter conducts a comprehensive literature review 

on the uncertainty analysis of HVAC systems and gives an overview of the existing 

studies and the research gaps. 

The organization of this chapter is as follows. Section 2.1 introduces the accuracy of 

commonly used measuring instruments in HVAC systems. Section 2.2 presents the 

impacts of measurement uncertainties on the operation performance (in the aspects of 

energy efficiency and reliability, etc.) of HVAC systems. Section 2.3 introduces the 

existing solutions to measurement uncertainties and their limitations, including the 

control optimization methods, sensor fault detection, and virtual sensor calibration. 

Section 2.4 focuses on the uncertainty quantification for building energy systems, 

especially the uncertainty analysis methods used. Section 2.5 gives a summary of the 

literature review and highlights the research gaps. 

2.1 Accuracy of commonly used measuring instruments in HVAC 

systems 

Measurement uncertainty is an inherent property of physical measuring instruments. With 

the development of technology, measurement uncertainty can be reduced but cannot be 

removed completely. Generally, there are accuracy requirements for measuring 

instruments. Table 2.1 shows the typical accuracy of commonly used measuring 
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instruments in HVAC systems (ASHRAE, 2014). In engineering practice, if the 

measuring instruments can meet their accuracy, their expected performance is achieved, 

and the measurement uncertainties are acceptable and can be ignored. However, the 

measurement uncertainties cannot be maintained at an acceptable range all the time due 

to performance degradation. The normal operation of HVAC systems must be affected 

with the increases of measurement uncertainties. 

Table 2.1 Typical accuracy of commonly used measuring instruments in HVAC 

systems 

Measuring instrument Accuracy 

Flow meter 2% 

Power meter 1% 

Temperature sensor 2% 

Humidity sensor 2%-5% 

Pressure sensor 1%-5% 

 

2.2 Impacts of measurement uncertainties on HVAC systems 

Measurements in HVAC systems are generally used for decision-making of control 

systems, performance evaluation of system running, real-time monitoring of system status, 

etc. Uncertainties of the measurements used certainly affect these functions and may lead 

to adverse consequences. 

2.2.1 Impacts on control systems 

Control systems are the core of HVAC systems for achieving energy-efficient and reliable 

operation. To some degree, the accuracy of control decisions depends on the 

measurements that participate in the decision-making of control systems. Uncertainties in 
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the measurements tend to make inaccurate control decisions and affect the operation 

performance of HVAC systems. 

The impacts of measurement uncertainties on the main control systems of HVAC systems 

have been investigated systematically (Bae et al., 2021). Yan et al. (2017) found that the 

measurement uncertainties in outdoor air flow control led to a 17% increase in cooling 

energy consumption and a 43% increase in heating energy consumption. The study by 

Goyal et al. (2012) shows that total energy consumption increases by 18% and 16.5% 

during winter and summer days respectively due to the uncertainty in occupancy 

measurements. Lu et al. (2020) found that the measurement errors/uncertainties of the 

outdoor air flow sensor and supply air CO2 sensor in an air handling unit using demand-

controlled ventilation contribute to deviation rates of up to 16.9% and 94.32% in the 

annual energy consumption of an HVAC system and the outdoor air ratio respectively. 

Yoon (2020) reported that the supply air temperature sensor with a systematic error of 

+2 ℃ caused an increase of 38% in the total energy consumption of an air handling unit 

with an outside air economizer. Liao et al. (2014) systematically analysed the impacts of 

measurement uncertainties on the total cooling load-based, return water temperature-

based, direct power-based and bypass flow-based chiller sequencing controls. Compared 

with the benchmark, the chiller switch number is reduced by 5.89% - 32.2%, while the 

supply air temperature tracking error increased dramatically by 50.95% - 14 682.83% due 

to measurement uncertainties concerned. Another study by Liao et al. (2015) also 

concluded that the total cooling load-based chiller sequencing control is affected by the 

measurement uncertainties heavily. The low level and high level of measurement 

uncertainties lead to increases of 20% and 57.1% respectively in the under-cooling 

percentage, which can make the indoor thermal comfort deteriorate severely.  
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Measurement uncertainties influence the reliability of control systems in decision-making, 

which may result in an increase in energy consumption, a decrease in indoor thermal 

comfort, etc. In addition, the higher the level of measurement uncertainties, the more 

significant the impacts. 

2.2.2 Impacts on performance evaluation 

The performance of HVAC systems under different conditions often needs to be 

evaluated based on the measurement data for energy-saving assessment and system health 

detection. The models developed and/or the measures adopted for improving the energy 

efficiency and reliability of HVAC systems need to be evaluated as well. The accuracy 

of the data used is of vital importance for the evaluations. Especially the data-driven 

prediction models, their performance is highly correlated with the quality of training data 

(Sun et al., 2017). Wrong evaluation results may be obtained as a result of the 

measurement uncertainties in the data used. 

Shi et al. (2019) have reported that the measurement uncertainties of operation data affect 

the evaluation of the energy saving potential of an HVAC system, leading to erroneous 

evaluation results. Ohlsson et al. (2022) found that the uncertainty in the model prediction 

of energy savings in building retrofits is mainly caused by measurement uncertainty. The 

study by Li et al. (2021) shows that data uncertainty affects the performance of a data-

driven fault diagnosis model significantly, it makes the accuracy decline from 82.4% to 

61.5%. Measurement uncertainties also lead to risks in evaluating the energy performance 

of energy retrofit projects/measures (Lee et al., 2015). As a consequence, the maximum 

benefit may not be achieved. 
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The measurement uncertainties mainly affect the performance evaluation results and 

further lead to misjudgement by decision-makers. The impacts cannot be ignored and 

should be addressed effectively. 

2.3 Existing solutions to measurement uncertainties and their 

limitations 

Measurement uncertainty is a challenging issue and urgent to be solved for improving the 

energy efficiency and reliability of HVAC systems. A straightforward way to reduce 

measurement uncertainties is to calibrate the measuring instruments regularly. It is 

recommended to calibrate the sensors/meters installed in HVAC systems annually 

(ASHRAE, 2014), but on-site calibration is constrained by site conditions and costs. 

Many sensors are never calibrated in their life cycles and always work in unhealthy 

conditions. 

Therefore, some existing studies make efforts to reduce/eliminate the impacts of 

measurement uncertainties on HVAC systems through indirect ways, including control 

optimization, sensor fault detection, virtual sensor calibration, etc. They are validated and 

perform well in their respective field. 

2.3.1 Control optimization 

As mentioned before, the control systems of HVAC systems are seriously affected by 

measurement uncertainties. In order to reduce/eliminate the effects, many advanced 

methods/techniques are used to optimize the conventional control strategies of HVAC 

systems or used to develop new control strategies for replacing the convention control 

strategies. 
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Data fusion is a technique that integrates the data and knowledge from several sources 

(Castanedo, 2013). It has been successfully used in correcting the cooling load 

measurements for chiller sequencing control. For example, the fusion of available 

redundant measurements (Huang et al., 2011) and the fusion of direct and indirect cooling 

load measurements (Huang et al., 2008; Huang et al., 2009; Sun et al., 2013), are able to 

reduce the measurement uncertainties and enhance the reliability of the total cooling load-

based chiller sequencing controls, the outliers, noises, and biases of measurements are 

processed effectively. 

The control strategies that are insensitive to a certain level of measurement 

uncertainties/errors are a kind of fault-tolerant control strategies, which are often 

developed to deal with the measurement uncertainty in HVAC systems. Zhuang and 

Wang (2020) proposed a risk-based online robust optimal control strategy for cleanroom 

air conditioning systems, where the component performance degradation and 

measurement uncertainties are considered. Compared with the convention control 

strategies, up to 20% of energy saving was achieved. Zhuang et al. (2020) developed 

probabilistic simplified physical cooling load and capacity models to deal with 

measurement uncertainties and optimize the chiller sequencing control. Based on the 

optimal control strategy, the chiller energy efficiency was enhanced, and the indoor 

thermal comfort was ensured. Yang et al. (2014) used a final correcting factor in a fault-

tolerant control strategy to correct the faulty measurements in air conditioning systems. 

The sensors with fixed bias faults and drifting bias faults can be detected, and the negative 

effect on the controller can be avoided by using the corrected measurements. Liao et al. 

(2018) made use of the complementarity of different load indicators to improve the 

robustness of chiller sequencing control under different levels of uncertainties. The 

proposed methods performed well even when the uncertainties were significant.  
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These studies mentioned above have proved that the measurement uncertainties in HVAC 

systems can be addressed by optimizing the control methods involved, which makes the 

control systems can tolerate a certain level of measurement uncertainties and improves 

their robustness. However, an optimal control strategy is generally specially designed for 

a specific system. Many issues should be considered when optimizing the existing control 

systems, such as the system types, structures and configurations, sensor networks, and 

control requirements. The developed optimal control strategy only applies to the specific 

HVAC system. Its flexibility and generalization ability are very poor. Therefore, control 

optimization methods are not the best choice to deal with the measurement uncertainties 

in HVAC systems. 

2.3.2 Sensor fault detection 

Sensor fault detection methods provide an indirect means to address measurement 

uncertainties. Its basic idea is shown in Figure 2.1. The health conditions of the sensors 

installed in HVAC systems can be detected effectively using fault detection methods. The 

sensors with significant uncertainties are also sensitive to fault detection. If no faulty 

sensor is found, things are as usual. If one or more faulty sensors are found, the 

maintenance measures, such as field calibration, repair, or replacement of the faulty 

sensors, should be taken.  

Online sensor fault detection can be achieved, which means that the sensor faults can be 

detected in time. The extra measures taken can avoid the usage of faulty sensors and 

ensure that the expected performance of the sensors used can be achieved. Generally, the 

measurement uncertainties of healthy sensors meet their accuracy classes and are 

acceptable in engineering practice. Therefore, the measurement uncertainties of sensors 

can be addressed indirectly using fault detection methods. 
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Figure 2.1 Basic idea of using sensor fault detection methods to address measurement 

uncertainties 

In recent decades, with the rapid development of machine learning techniques, many data-

driven sensor fault detection methods are proposed for HVAC systems. Both 

unsupervised and supervised data mining algorithms, such as principal component 

analysis (PCA) and neural network (NN), are often used to develop sensor fault detection 

models. Table 2.2 presents some of the studies on sensor fault detection for HVAC 

systems. As can be seen from Table 2.2, fault detection for the sensors in HVAC systems 

(including chiller, air handling unit, variable refrigerant flow, variable air volume, etc) is 

conducted systematically. The faults of temperature sensors attract the most attention, and 

those of flow meters and pressure sensors take second place. Bias and drift faults are the 

two most common sensor faults. Accordingly, many existing studies focused on detecting 

them, especially the bias fault. In addition, some attention is also paid to the sensor faults 

of precision degradation and complete failure. 
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Table 2.2 Overview of studies on sensor fault detection for HVAC systems 

Authors (Year) System/component Sensor Method Fault type 

Gao et al. 

(2022) 

Chiller Temperature 

sensors and 

pressure sensors 

Deep recurrent 

canonical 

correlation 

analysis and k-

nearest neighbour 

Drift 

Yan et al. 

(2022) 

Air handling unit Temperature 

sensors and flow 

meters 

Boltzmann 

machine 

Bias and 

drift 

Luo and Fong 

(2020) 

Chiller Temperature 

sensor 

Pattern 

recognition 

Bias, drift, 

precision 

degradation 

Ng et al. (2020) Chiller Temperature 

sensors and flow 

meters 

Bayesian Bias 

Li and Hu 

(2019); Mao et 

al. (2018) 

Chiller Temperature 

sensors, pressure 

sensors and 

power meter 

PCA and 

empirical mode 

decomposition 

Bias 

Guo et al. 

(2017) 

Variable 

refrigerant flow 

Temperature 

sensors and 

pressure sensors 

PCA and 

Satizky-Golay 

Bias 

Yan et al. 

(2016) 

Air handling unit Temperature 

sensors and flow 

meters 

Cluster analysis Bias 

Li et al. (2016) Chiller Temperature 

sensors, flow 

meters, and 

power meter 

Support vector 

data description 

Bias, drift, 

precision 

degradation, 

complete 

failure 
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Xiao et al. 

(2014) 

Variable air 

volume terminals 

Temperature 

sensor and flow 

meter 

Diagnostic 

Bayesian 

network 

Bias and 

complete 

failure 

Du et al. (2014) Air handling unit Temperature 

sensors 

NN Bias, drift, 

complete 

failure 

Zhu et al. 

(2012) 

Air handling unit Temperature 

sensors, flow 

meters, and 

pressure sensor 

NN, wavelet, and 

fractal 

Bias and 

drift 

Yang et al. 

(2011) 

Air handling unit Temperature 

sensor 

Fractal 

correlation 

dimension 

Bias and 

drift 

Chen and Lan 

(2010) 

Building 

heating/cooling 

billing system 

Temperature 

sensor, flow 

meter, differential 

pressure sensor 

PCA Bias, drift, 

complete 

failure 

Wang et al. 

(2010) 

Cooling tower, 

chiller, pumps, 

heat exchangers 

Temperature 

sensors and flow 

meters 

PCA Bias 

Fan et al. 

(2010) 

Air handling unit Temperature 

sensors 

Back-

propagation 

neural network, 

wavelet analysis 

Bias and 

drift 

The expected performance of the sensors used in HVAC systems can be achieved and 

maintained through sensor fault detection, which solves the measurement uncertainties 

indirectly. On the other hand, it may result in high maintenance costs and low reliability. 

False alarms and missed faults are inevitable when using sensor fault detection models. 

The extra measures (field calibration, repair, or replacement) must be taken once the faults 

(including false alarms) are detected. The costs of processing false alarms are wasted but 
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unavoidable. For the missed faults, they affect the reliability of sensor fault detection. If 

the faults are not detected in time, they may cause negative impacts on the system 

involved. Therefore, measurement uncertainties of sensors in HVAC systems cannot be 

solved fundamentally using sensor fault detection methods. 

2.3.3 Virtual sensor calibration 

Virtual in-situ calibration (VIC) is a direct method to solve measurement uncertainties of 

sensors in HVAC systems, it is proposed by Yu and Li (2015) and extended by Yoon and 

Yu (2017). The basic idea of VIC is to minimize the difference between the measurements 

and their benchmarks. It is formulated by Eq. (2.1), the distance function (dx) consists of 

a sensor calibration term and a model calibration term, where Yb and Yc are the benchmark 

and corrected measurement of the corresponding sensor, respectively, Ybo is the 

benchmark output of the system model, YR is the reliable output of the system model and 

can be observed, I is the number of sensors involved, and J is the number of system model 

outputs. 

 ( ) ( )
22

, , , ,

1 1

Sensor calibration term Model calibration term

I J

x b i c i bo j R j

i j

d Y Y Y Y
= =

= − + −    (2.1) 

The corrected measurements are obtained by a correction function with unknown 

parameters to be estimated. The benchmark outputs (Ybo) are the system model outputs 

corresponding to the corrected measurements, and the model can be a statistical model or 

a deterministic (mathematical) model (Yoon and Yu, 2017). 

The effectiveness of VIC methods in sensor calibration of HVAC systems has been 

validated systematically. The study by Wang et al. (2021) shows that the systematic and 

random errors of the sensors concerned were reduced by approximately 95% and 60% on 

average, respectively, after calibration using the VIC method. Zhao et al. (2022) 
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calibrated the temperature and humidity sensors and a flow meter for an air handling unit 

using the VIC method and Gaussian mixture model, results show that the accuracy of all 

sensors concerned was improved by 75% after calibration. Yoon (2020) used VIC 

methods coupled with Bayesian inference and autoencoder to calibrate the supply air 

temperature sensor and mass flow meter for an air handling unit, the impacts of the 

systematic errors of the sensors concerned on the system energy performance were 

removed. Choi and Yoon (2020) proposed a virtual sensor-assisted in-situ sensor 

calibration strategy to calibrate simultaneous sensor errors, including the systematic 

errors of supply air mass flow meter, mixed air temperature sensor and supply air 

temperature sensor in an air handling unit. The use of virtual sensors makes the calibration 

error reduce from 72.7% to 5.2%. 

Though the sensor errors can be calibrated directly using VIC methods, there are 

challenges to using them in engineering practice. The benchmarks and reliable outputs 

(i.e., Yb and YR in Eq. (2.1)) are difficult to obtain. It usually uses the available system 

models to establish them (Yoon and Yu, 2018) and sometimes even requires redundancy 

of sensors for measuring them. Nonetheless, if the benchmarks and reliable data are 

available, it becomes meaningless to calibrate corresponding sensors. In addition, the VIC 

methods show a good performance in calibrating the systematic errors of the sensors 

concerned, but their performance is possibly unsatisfactory in calibrating the random 

errors of the sensors. The measurement uncertainties of sensors are not solved completely 

by VIC methods. 

2.4 Inverse uncertainty quantification for building energy systems 

Inverse uncertainty quantification is a method to estimate unknown parameters of a model 

based on observation data (Tian et al., 2018). Its mathematical formulation is presented 
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in Eq. (2.2). Where, E is the observation data, x is the known parameters/inputs of the 

model, θ is the unknown parameters to be estimated in the model, λ is the model error, ε 

is the random error of observation data, 𝑓(𝑥, 𝜃) is the model outputs with the inputs x and 

θ. 

 ( ),  = + +E f x   (2.2) 

Inverse uncertainty quantification for building energy systems is also called model 

calibration. Bayesian inference is the most commonly used model calibration method. 

Figure 2.2 shows the flow chart of inverse uncertainty quantification for building energy 

systems using Bayesian inference. The building energy model can be established by the 

simulation tools, such as EnergyPlus (Julia et al., 2017) and TRNSYS (Rysanek et al., 

2019). The surrogate model can be used to reduce the computational loads and improve 

the calibration accuracy, it is generally established using the Gaussian process (GP) (Heo 

et al., 2012) or multiple linear regression (MLR) (Tian et al., 2016). Sensitivity analysis 

aims to select the most sensitive/important parameters and calibrate them, it can be 

achieved using the methods of Morris (Booth and Choudhary, 2013), Sobol (Zhu et al., 

2020) and so on. In Bayesian modelling, a prior distribution should be assigned to each 

unknown parameter concerned according to expert knowledge. The posterior 

distributions of the unknown parameters concerned are inferred based on the model and 

observation data according to Bayes’ theorem. 
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Figure 2.2 Flow chart of inverse uncertainty quantification for building energy systems 

Bayesian model calibration generally aims to calibrate the unknown parameters in 

building energy models and is used for the retrofit analysis of existing buildings and 

energy consumption prediction of building stock (Hou et al., 2021). Booth et al. (2012) 

calibrated housing stock models considering different sources of uncertainties, and the 

average percentage error of daily energy consumption prediction is reduced from 17.6% 

to 0.5%. Heo et al. (2015) calibrated the normative energy model of an office building 

and estimated the energy-saving potential of four different energy efficiency measures, 

which found that model calibration can reduce the uncertainty in model predictions and 

support retrofit decision-making under uncertainty. Kang and Krarti (2016) used a 
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Gaussian process emulator to develop a surrogate model for a building energy model and 

expedited the parameter identification process, the effectiveness and robustness of the 

developed approach are validated in an office building.  

Apart from the studies mentioned above, Table 2.3 presents a series of related studies 

published in recent years. The observation data, emulators/surrogates, sensitivity analysis 

methods and simulation tools used in these studies are listed. Energy consumption is the 

main source of observation data, the Gaussian process is the most commonly used 

emulator, and EnergyPlus is frequently used to develop the building energy models. 

Table 2.3 Recent studies on building energy model calibration 

Authors (Year) Observation data 
Emulator/ 

Surrogate 

Sensitive 

analysis 

Simulation 

tool 

Risch et al. (2021) Hourly heat demand GP Morris TEASER 

Yi and Park (2021) Monthly electric energy uses ANN* - EnergyPlus 

Yi et al. (2019) Annual gas and electricity 

energy use 

ANN - EnergyPlus 

Chen et al. (2019) Monthly heat demand GP - IES-VE* 

Chong and 

Menberg (2018) 

Monthly electricity energy 

consumption 

GP Morris EnergyPlus 

Lim and Zhai 

(2018) 

Monthly electricity and gas 

energy consumption 

MLR Sensitivity 

value index 

EnergyPlus 

Chong et al. (2017) Hourly energy consumption GP Morris EnergyPlus 

TRNSYS 

Li et al. (2016) Daily consumption and 

monthly peak demand of 

chilled water 

GP, MLR Lasso EnergyPlus 

*ANN: Artificial neural network. IES-VE: Integrated Environmental Solutions Virtual 

Environment.  
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Both the continuous and discrete parameters in building energy models can be calibrated 

using Bayesian inference. Table 2.4 summarizes the parameters in building energy 

models that are frequently investigated in the literature. There are four groups of 

parameters, including the physical properties, HVAC systems, internal loads and system 

controls. The column ‘Rating’ in Table 2.4 shows the calibration frequencies of the 

corresponding parameters in the literature.  

Table 2.4 Parameters in building energy models that need to be calibrated 

Group Parameter Unit Rating 

Physical property Wall, roof, and window U-values W/(m2·K)  

 Infiltration rate (air changes per hour) 1/h  

 Thermal conductivity W/(m·K)  

 Thermal resistance K/W  

 Solar heat gain coefficient -  

 Window-to-wall ratio -  

 Daylight percentage %  

HVAC system Cooling/heating capacity kW  

 Coefficient of performance -  

 Fan efficiency -  

 Cooling/heating coil efficiency -  

 Ventilation rate m3/h  

Internal load Equipment power density W/m2  

 Lighting power density W/m2  

 Occupant density m2/Person  

System control Cooling/heating temperature setpoint ℃  

 Supply air temperature setpoint ℃  

 Chilled water supply temperature setpoint ℃  
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As can be seen from Table 2.4, most of the studies focused on calibrating the U-values of 

building envelop and the internal loads derived from the equipment, lighting and 

occupants. These parameters generally have a high ranking in the sensitivity analysis and 

have a significant influence on the building energy models. 

Bayesian inference-based model calibration method can directly quantify the 

uncertainties of unknown parameters in building energy models. It has been used for the 

retrofit analysis of existing buildings and energy consumption prediction of building 

stock. Bayesian inference shows a strong ability in uncertainty quantification. It is 

promising to quantify measurement uncertainties in HVAC systems using Bayesian 

inference. 

2.5 Summary 

This chapter provides a comprehensive literature review on the uncertainty analysis of 

HVAC systems. The impacts of measurement uncertainties on HVAC systems are 

analysed and the existing solutions to measurement uncertainties in the literature are 

summarised. In addition, Bayesian inference-based inverse uncertainty quantification 

method is also presented. According to the above review, the research gaps are 

summarised as follows. 

i. Most of the existing solutions adopt indirect methods to deal with measurement 

uncertainties in HVAC systems. Though they performed well in their respective 

application scenarios, their flexibility and generalization ability are poor. An 

effective and direct measurement uncertainty quantification method is urgently 

needed for HVAC systems. 

ii. Bayesian inference has a strong ability in uncertainty quantification of parameters in 

building energy models, but it is rarely used to quantify measurement uncertainties 
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in HVAC systems in the literature. It is worthy of study and the effectiveness of 

measurement uncertainty quantification using Bayesian inference needs to be 

verified. 

iii. Online correction of the measurements with significant/unacceptable uncertainties is 

of vital importance to improve the energy efficiency and reliability of HVAC systems, 

extend the service life of the measuring instruments used and reduce the system 

maintenance costs. It can be achieved after the measurement uncertainties are 

quantified. 
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CHAPTER 3 MEASUREMENT UNCERTAINTY 

QUANTIFICATION FRAMEWORK 

This study proposes to quantify measurement uncertainties directly using Bayesian 

inference and Markov chain Monte Carlo sampling methods. The organization of this 

chapter is as follows. Section 3.1 introduces the characteristics of measurement 

uncertainties. Section 3.2 presents the measurement uncertainty quantification methods 

adopted in this study, i.e., Bayesian inference and Markov chain Monte Carlo sampling 

methods. Then a general framework for quantifying measurement uncertainties is 

proposed in Section 3.3, it is the foundation of this study. The measurement uncertainty 

quantification methods proposed in Chapters 4 and 6 are developed based on this 

framework. Section 3.4 presents the diagnostic methods for convergence of Bayesian 

models and the performance evaluation index for measurement uncertainty quantification 

methods. Section 3.5 is a summary of this chapter. 

3.1 Characteristics of measurement uncertainty 

Measurement uncertainties exist inherently regardless of the measuring instruments used. 

Generally, the measured value (�̃�) of a variable can be divided into two parts: the true 

value (θ) and an uncertain term (𝑢𝜃), as shown in Eq. (3.1). The true value can never be 

determined exactly. In this study, the uncertain term represents measurement uncertainty 

and can be considered to follow a normal distribution with mean  𝜇𝜃  and standard 

deviation (sd) 𝜎𝜃, as shown in Eq. (3.2). Its mean represents the systematic uncertainty 

(bias) of the measurement, and its standard deviation reflects the random uncertainty 

(noise) of the measurement. According to the characteristics of a normal distribution, the 

actual measured value of the variable also follows a normal distribution with mean 
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(𝜃 + 𝜇𝜃) and standard deviation 𝜎𝜃, as shown in Eq. (3.3). The relationship between the 

true value and the measured value is shown in Figure 3.1. The measured value is not a 

constant, but the distribution parameters (i.e., mean 𝜇𝜃 and standard deviation 𝜎𝜃) are 

fixed and need to be quantified. 

 u = +   (3.1) 

 ( )2~ ,  u N      (3.2) 

 ( )2~ N + μ , σ     (3.3) 

 

Figure 3.1 Probability distribution of a measured value 

For building central cooling and air conditioning systems, the measuring instruments 

(Temperature sensors, flow meters and power meters, etc.) inevitably have uncertainties. 

The magnitudes of uncertainties are related to the types, principles, etc of the measuring 

instruments. Generally, they can meet the requirements of measurement accuracy and can 

achieve the expected performance after initial commissioning. In this study, the 

measurement uncertainties that meet the accuracy classes of the measuring instruments 

are thought to be acceptable in engineering practice. However, performance degradation 

of measuring instruments cannot be avoided due to long-time service, poor working 
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environments, improper maintenance, etc. The uncertainties certainly will increase with 

the performance degradations of measuring instruments and further influence the system 

operation. 

3.2 Uncertainty quantification methods adopted 

Bayesian inference is a popular and powerful uncertainty analysis method. It is often used 

in combination with the Markov chain Monte Carlo sampling method for solving 

problems with high computational costs or without analytical solutions. Both methods are 

also used in this study, and this section will introduce them in detail. 

3.2.1 Bayesian inference 

Bayesian inference utilizes prior distribution and likelihood function to compute the 

posterior distribution according to Bayes' theorem. The mathematical formulation of 

Bayes' theorem is stated as Eq. (3.4), 

 ( )
( ) ( )

( )
( ) ( )

|
| |

P E P
P E P E P

P E

 
  


=     (3.4) 

where, θ represents the unknown parameters to be estimated, E is the observational data, 

𝑃(𝜃|𝐸) is the posterior probability, 𝑃(𝐸|𝜃) is the likelihood function, 𝑃(𝜃) is the prior 

probability, and 𝑃(𝐸) is the marginal likelihood. The posterior probability is proportional 

to the prior probability multiplied by the likelihood function. The prior probability is the 

inherent likeliness and reflects the beliefs about θ without considering the observational 

data, while the posterior probability signifies the beliefs about θ considering observational 

data. The posterior probability is calculated using the likelihood function and 

observational data according to Bayes’ theorem, and it is mainly affected by the prior 

probability and the likelihood function. 
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3.2.2 Markov chain Monte Carlo sampling methods 

The Monte Carlo method can achieve the propagation of distributions and is effective to 

explore the distributions of unknown uncertainties (ISO/IEC Guide 98-3/Suppl.1, 2008). 

This study adopts the Markov chain Monte Carlo sampling methods to realize Bayesian 

inference and quantify the measurement uncertainties. The MCMC sampling methods are 

commonly used to compute the posterior distribution in Bayesian analysis, they can draw 

samples from high-dimensional posterior distributions (Tian et al., 2016). Although there 

are many kinds of MCMC algorithms, most of them are plagued by random walk 

behaviour and are sensitive to correlated parameters. The Hamiltonian Monte Carlo 

(HMC) method is one of the most popular MCMC algorithms and can avoid the above 

issues by taking a series of steps based on first-order gradient information (Chong and 

Menberg, 2018). However, the performance of HMC is heavily dependent on two main 

parameters: the leapfrog step size and the number of leapfrog steps per iteration (Chong 

et al., 2017). To solve this problem, an extension of the HMC algorithm is proposed, 

namely No-U-Turn Sampler (NUTS) (Hoffman and Gelman, 2014). NUTS can search 

for the number of leapfrog steps automatically using a recursive algorithm and can adapt 

the leapfrog step size using a primal-dual averaging scheme. NUTS not only does not 

require user intervention or costly tuning runs, but also performs at least as well as the 

HMC method. Therefore, this study uses the NUTS method to generate samples for 

computing the posterior distributions of unknown parameters in Bayesian inference. 

3.3 Measurement uncertainty quantification framework proposed in 

this thesis 

The main objective of this study is to quantify the measurement uncertainties of 

sensors/meters used in building central cooling and air conditioning systems. Figure 3.2 
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shows the proposed measurement uncertainty quantification framework, it consists of 7 

steps. The details are as follows. 

(1) The first step is to select and classify the variables (sensors/meters). Generally, many 

variables are measured using corresponding sensors/meters for system monitoring 

and real-time online control. The model will be very complex and redundant if all the 

variables are used. The selection can be conducted based on the relevance, 

importance, sensibility, availability, etc of available variables. It sometimes also 

needs to consider the availability of the constraint models developed in Step 2 

(especially for the physical models) when selecting the variables. The selected 

variables should further be divided into two categories: the target variables  

{�̃�1, �̃�2, … , �̃�𝑛} and the auxiliary variables {𝑦, 𝑥1, 𝑥2, … , 𝑥𝑚}. The target variables are 

those with significant uncertainties and need to be quantified. In this study, a target 

variable will be represented by a sign with an accent ‘~’, and it also represents the 

measured value of the target variable. The auxiliary variables are those with 

acceptable uncertainties (the uncertainties that meet the accuracy classes of the 

measuring instruments are acceptable) and do not need to be quantified. The factors, 

such as the rates of performance degradations and difficulty levels of on-site 

calibration of the measuring instruments involved, should be considered in classifying 

the variables. 

(2) The second step is to select and develop constraint models. There are two kinds of 

constraint models: the physical models and the data-driven models. Both models are 

to find the mapping relationships between the input (y) and outputs (θ, x). The 

physical model is stated as Eq. (3.5) and the data-driven model is stated as Eq. (3.6). 

The only difference between them is that the data-driven model is always 

accompanied by an error term (e). The error term follows a normal distribution with 
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the mean value of 0, and its standard deviation δ needs to be determined when 

developing the model. The model residuals are the observations of model errors. 

Therefore, the standard deviation of the model residuals can be used to represent the 

standard deviation of the error term. 

 ( )1 2 1 2, ,..., , , ,...,n my f x x x  =   (3.5) 

 ( ) ( )2

1 2 1 2, ,..., , , ,..., ,    ~ 0,n my f x x x e e N   = +   (3.6) 

The selection of constraint models highly depends on the selected variables. The 

development of physical models is based on the real physical relationships between 

the selected variables. The physical models cannot be developed if one or more 

variables involved are unavailable. On the other hand, data-driven models can be 

developed flexibly regardless of whether there are physical relationships between the 

selected variables. The data-driven models can be used in a wider range of 

applications than the physical models. 

(3) The third step is to develop the measurement uncertainty models based on the 

characteristics of measurement uncertainties presented in Section 3.1, as shown in Eq. 

(3.7). The measured value of a target variable (�̃�𝑖) follows a normal distribution. Its 

mean is the sum of the true value (𝜃𝑖) and the systematic uncertainty (𝜇𝑖), and its 

standard deviation (𝜎𝑖) is consistent with the standard deviation of random uncertainty. 

 ( )2~ , ,    1, 2,...,i i i iN i n   + =   (3.7) 

(4) The fourth step is to assign prior distributions to the unknown parameters to be 

quantified, including both the systematic and random uncertainties of each target 

variable, i.e., {𝜇𝑖, 𝜎𝑖}, 𝑖 = 1,2, … , 𝑛 . Prior distributions are important for solving 

Bayesian models, they may affect the speed of convergence. If the prior distribution 
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is inappropriate, it may need to take more iterations to converge, which lead to an 

increase in calculation load. 

In general, the prior distributions can be derived from expert knowledge, experiments, 

surveys, technical reports, and industrial standards, among other sources (Heo et al., 

2012; Tian et al., 2018). The commonly used prior distributions include the uniform 

distributions, triangular distributions, and normal distributions, etc.  

(5) The fifth step is to generate samples from distributions using Markov chain Monte 

Carlo sampling methods.  

(6) The sixth step is to update the prior distributions of the unknown parameters to be 

quantified according to Bayes' theorem, as shown in Eq. (3.8). The true value, 

systematic and random uncertainties of each target variable are unknown. They are 

quantified by many times of iterations. Steps 5 and 6 will be repeated until the pre-

set number of iterations is finished. 

 ( ) ( )( )
( ) ( )( ) ( )

( )

, , , , , ,
, , , ,

, ,

p y x p
p y x

p y x

      
   




=   (3.8) 

(7) The seventh step is to construct the posterior distributions of the systematic and 

random uncertainties of each target variable using the samples generated in Step 5.  
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Figure 3.2 Proposed measurement uncertainty quantification framework 
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3.4 Convergence diagnostics and evaluation index 

This study adopts Stan to develop Bayesian MCMC models and test the proposed 

measurement uncertainty quantification methods. Stan is a powerful and popular 

statistical programming language, which is perfect for coding Bayesian MCMC models 

(Carpenter et al., 2017). 

Three key parameters should be set in programming Bayesian MCMC models: the 

number of Markov chains (Nchain), the number of iterations per chain (Niter) and the 

number of warmup iterations per chain (K). The number of Markov chains will be set to 

4 in this study, and the generated samples from different Markov chains will be used to 

diagnose convergence, they should converge to a same or similar value. The convergence 

is highly dependent on the number of iterations per chain. The more iterations, the more 

likely to converge, but the higher the calculation costs. An appropriate number of 

iterations can not only ensure convergence but also minimize the calculation costs. It will 

be set flexibly for the cases in this study. The warmup iterations are the first K iterations 

(𝐾 < 𝑁𝑖𝑡𝑒𝑟) in each chain, and the rest (𝑁𝑖𝑡𝑒𝑟 − 𝐾) are called post-warmup iterations. The 

samples generated in warmup and post-warmup iterations are called warmup and post-

warmup samples, respectively. In order to improve the reliability of measurement 

uncertainty quantification, only the post-warmup samples will be used to construct the 

posterior distributions of unknown parameters to be estimated, the warmup samples will 

be discarded. In this study, the number of warmup iterations per chain will be set to half 

the number of iterations per chain (i.e., 𝐾 = 𝑁𝑖𝑡𝑒𝑟 2⁄ ). 

It generally needs to iterate many times for convergence. The potential scale reduction 

factor (�̂�) is often used to diagnose convergence in Bayesian inference (Gelman and 

Rubin, 1992). It is the weighted average of within-chain sample variance and cross-chain 



35 

 

sample variance. If the chains have converged, the potential scale reduction factor will be 

very close to 1. A rough convergence criterion is that the potential scale reduction factor 

is no more than 1.1. This study will use a much tighter threshold to diagnose convergence 

for exploring the posterior distributions effectively, i.e., it converges when �̂� ≤ 1.01 

(Vehtari et al., 2021). 

Apart from the potential scale reduction factor, the trace plots and autocorrelations of the 

post-warmup samples can also be sued to diagnose convergence (Annis et al., 2017). The 

trace plots show the sampling path of each chain visually and the convergence can be 

evaluated directly by comparing the sampling paths of different chains. If the samples 

from different chains are mixed well and the samples are difficult to be distinguished 

between individual chains, the convergence is achieved. The autocorrelations can reflect 

the reliability of the samples generated by MCMC algorithms. In MCMC sampling, the 

current sample is only dependent on the previous sample, the correlation between non-

adjacent samples should be small. Therefore, the convergence criterion can be that the 

autocorrelations decrease very quickly with the increase of lag. In addition, a thinning 

technology can be used to reduce the chain length and autocorrelations (Annis et al., 

2017). It is achieved by saving every kth sample from the chain and discarding the rest. 

Finally, the number of samples used for constructing the posterior distributions (Nsam) can 

be calculated by Eq. (3.9). 

 iter
sam chain

N K
N N

k

−
=    (3.9) 

The performance of the proposed measurement uncertainty quantification methods will 

be evaluated using the 95% and/or 99% Bayesian credible interval (BCI), posterior means 

and relative errors (RE). The posterior distributions of the unknown parameters to be 

estimated can be obtained directly by the proposed methods. The posterior means of the 
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parameters can be regarded as the estimated values of the parameters. Therefore, the 

relative error in quantifying a parameter (θ) can be defined by Eq. (3.10). Where, �̅� is the 

posterior mean, and θ is the actual value of this parameter. 

 ( ) 100%RE
 




−
=    (3.10) 

3.5 Summary 

This chapter introduces the characteristics of measurement uncertainties and the 

quantification methods adopted in this study. A framework for quantifying measurement 

uncertainties is presented in detail. Based on this framework, two different measurement 

uncertainty quantification methods will be proposed, and they are presented in Chapters 

4 and 6, respectively. The convergence diagnostics methods, and the performance 

evaluation index of the measurement uncertainty quantification methods are also 

presented. They will be used in the following chapters. 
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CHAPTER 4 PHYSICAL MODEL-BASED 

MEASUREMENT UNCERTAINTY QUANTIFICATION 

METHOD AND ITS VALIDATION 

This chapter presents a physical model-based measurement uncertainty quantification 

method for multiple water-cooled chiller systems. It is systematically validated using a 

site test case and four simulation test cases. The site test case is conducted on a water-

cooled chiller equipped in the Hong Kong International Commerce Centre (ICC), and the 

simulation test cases are conducted on a virtual platform. This chapter is organized as 

follows. The system concerned and the metering arrangement are presented in Section 

4.1. The physical model-based measurement uncertainty quantification method is 

developed in Section 4.2. Section 4.3 introduces the test and validation arrangements for 

the proposed method. Section 4.4 presents the test results and evaluates the performance 

of the proposed method on measurement uncertainty quantification. The conclusions are 

made in Section 4.5. 

4.1 Description of the system concerned and metering arrangements  

Multiple water-cooled chiller systems are widely used in largescale commercial buildings 

due to their high energy efficiency and flexibility (Yu and Chan, 2007). A multiple water-

cooled chiller system typically consists of a chilled water system and a cooling water 

system, as shown in Figure 4.1. The chilled water loop connects the chillers with the 

building. The cooling water loop connects the chillers with the cooling towers. Each 

chiller is interlocked with a constant-speed chilled water pump on the water return side 

and a constant-speed cooling water pump on the water inlet side. A number of temperature 
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sensors, chilled water flow meters (CHWFM), cooling water flow meters (CWFM), 

power meters, etc., are installed in the system for system monitoring and online real-time 

control. For each chiller, the power consumption (𝑃𝐶𝐻,𝑖), chilled water supply temperature 

(𝑇𝑐ℎ𝑤𝑠,𝑖 ) and return temperature (  𝑇𝑐ℎ𝑤𝑟,𝑖 ), chilled water volume flow rate (𝑞𝑐ℎ𝑤,𝑖 ), 

cooling water inlet temperature (𝑇𝑐𝑤𝑖𝑛,𝑖) and outlet temperature (𝑇𝑐𝑤𝑜𝑢𝑡,𝑖), and cooling 

water volume flow rate (𝑞𝑐𝑤,𝑖) are measured. On the main pipe, the main chilled water 

supply temperature (𝑇𝑐ℎ𝑤𝑠) and return temperature (𝑇𝑐ℎ𝑤𝑟), main chilled water volume 

flow rate (𝑞𝑐ℎ𝑤), main cooling water inlet temperature (𝑇𝑐𝑤𝑖𝑛) and outlet temperature 

(𝑇𝑐𝑤𝑜𝑢𝑡), and main cooling water volume flow rate (𝑞𝑐𝑤) are also measured. 

 

Figure 4.1 Schematic of a multiple water-cooled chiller system and metering 

arrangement 

As mentioned above, power meters, temperature sensors and water flow meters are 

installed in chiller systems. The uncertainties of these measuring instruments may reduce 
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the reliability of the control that they participate in, such as the chiller sequencing controls. 

In consideration of the availability of the constraint models, the variables, including the 

power consumption, the chilled water flow rate, supply and return temperatures, the 

cooling water flow rate, inlet and outlet temperatures, are available and can be used to 

develop physical models for measurement uncertainty quantification. These variables 

should be divided into the target variables and the auxiliary variables, which will be based 

on the features and working conditions, etc of the measuring instruments used. 

For the flow meters, the site constraints and unfavourable working environment probably 

lead to performance degradation and make them more likely to suffer significant 

measurement uncertainties. In addition, field calibrations of flow meters are both complex 

and costly, and are even not practically possible (ASHRAE, 2014). In fact, regular field 

calibration of flow meters is not compulsory in Hong Kong and is even not conducted. 

Online calibration of flow meters is cost-effective and could benefit the reliable operation 

of HVAC systems and energy savings. For the temperature sensors, the on-site calibration, 

repair, or replacement of temperature sensors are relatively easier to be implemented. The 

costs of such efforts are much lower than that of the flow meters. Besides, many sensor 

fault detection methods have been developed in recent decades and the abnormality of 

sensors can be detected automatically by these methods (Zhang et al., 2021). With the 

help of fault detection methods for chilled water supply and return temperature sensors, 

such as (Mao et al., 2018), the temperature sensors can be calibrated in time once an 

abnormality is found. Accordingly, it is somehow practical to maintain the accuracy of 

temperature sensors within an acceptable level. Therefore, it could be an easier solution 

and practical choice to reduce the measurement uncertainties of temperature sensors 

through on-site calibration and regular maintenance due to the technical feasibility, lower 

cost and easier implementation. Their uncertainties can be maintained at an acceptable 
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level. For power meters, they are often of high accuracy and easier to calibrate, and they 

are less likely to suffer significant performance degradation. Therefore, the uncertainties 

of flow meters must be considered, but the uncertainties of power meters and temperature 

sensors are acceptable and can be ignored. Accordingly, the target variables are the chilled 

water and cooling water flow rates, and the auxiliary variables are the power consumption, 

chilled water supply and return temperatures, cooling water inlet and outlet temperatures. 

4.2 Development of a physical model-based measurement uncertainty 

quantification method 

This section introduces the procedures and details of developing the physical model-

based measurement uncertainty quantification method. It aims to quantify the 

uncertainties of water flow measurements in multiple water-cooled chiller systems with 

the auxiliaries of power and temperature measurements. 

4.2.1 Outline of the proposed method 

Uncertainty affects the measurement quality, accuracy and reliability of decisions made 

based on the measurements. Quantification of measurement uncertainty is therefore an 

essential means to ensure or improve the accuracy and reliability of decisions. Figure 4.2 

shows the basic procedures of the proposed physical model-based measurement 

uncertainty quantification method. A key feature is that the measurements are the only 

inputs needed. The number of chains is set to 4, and the number of iterations per chain 

can be set properly based on the convergence criteria presented in Section 3.4. The 

assignments of the prior distributions for the uncertain parameters (i.e., the systematic 

and random uncertainties of each flow meter involved) are presented in Section 4.2.2. 

The Markov chain Monte Carlo sampling method is used to generate samples from 

distributions under physical constraints, including the energy and mass balance models. 
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The details about the constraint models are presented in Section 4.2.3. During the iterative 

process, prior distributions are updated continually, and the posterior distributions are 

calculated using the generated samples and the measurement uncertainty models (i.e., 

likelihoods in Bayesian models, which are presented in Section 4.2.4) according to Bayes' 

theorem. The posterior distributions of uncertain parameters are the outputs of the 

measurement uncertainty quantification method and show the possible distributions of 

these unknown parameters.  

 

Figure 4.2 Basic procedures of physical model-based measurement uncertainty 

quantification method 
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4.2.2 Assignment of prior distributions 

In order to estimate the unknown variables and measurement uncertainties, prior 

distributions must be assigned to each of them. The unknown variables include the true 

water flow rates, while the measurement uncertainties include the systematic uncertainty 

and random uncertainty of each flow meter. A normal distribution is chosen as the prior 

distribution of systematic uncertainty. Its mean is set to 0 because the systematic 

uncertainty can be positive or negative. Its standard deviation is determined through the 

hypothesis that the probability of the systematic uncertainty being less than 10% of the 

rated flow rate (𝑞𝑟) is 95%, as shown in Figure 4.3. Therefore, the prior distributions of 

the systematic uncertainties can be determined once the rated flow rates of the 

corresponding water pumps are determined. 

 

Figure 4.3 Prior distribution of systematic uncertainty 
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0, the chi-square distribution with 3 degrees of freedom (𝜒2(3)) is assigned to be the prior 

distributions of random uncertainty of each flow meter, as shown in Figure 4.4. 

 

Figure 4.4 Prior distribution of random uncertainty 

In order to quantify the measurement uncertainties of flow meters more accurately, further 

information about the true water flow rates is considered. Because both chilled water and 

cooling water are driven by constant-speed pumps, their flow rates may follow normal 

distributions as shown in Eq. (4.1) and (4.2). However, the mean values and standard 

deviations (ω) of these distributions are unknown. In principle, the water flow rate can be 

determined by the pump head according to the characteristic curve of the pump concerned. 

The pump head can be measured on-site. The flow rate corresponding to the measured 

pump head on the characteristic curve of the pump is then the reference value of the true 

water flow rate (denoted by 𝑞𝑟𝑒𝑓). In reality, the mean of the true water flow rate may 

deviate from 𝑞𝑟𝑒𝑓, due to the actual pressure heads as well as other factors. The prior 

distributions of the means of the chilled water flow rates (�̅�𝑐ℎ𝑤,𝑖) and cooling water flow 
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systematic uncertainty. It is assumed that the probability that the mean deviates from 𝑞𝑟𝑒𝑓 

by less than 3% is 95%, as shown in Figure 4.5. 

 ( )2

, , ,~ , ,    1, 2,...,chw i chw i chw iq N q i n =   (4.1) 

 ( )2

, , ,~ , ,    1, 2,...,cw i cw i cw iq N q i n =   (4.2) 

 

Figure 4.5 Prior distribution of the mean of true water flow rate 

4.2.3 Energy and mass balance models 

In principle, there are certain numerical relationships between these target and auxiliary 

variables, as they should obey basic rules such as energy and mass balance. Figure 4.6 
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(4→5) and an evaporation process (5→1) to complete a cycle. The state of the refrigerant 

during the cycle can be presented in the pressure-enthalpy (p-h) and temperature-entropy 

(T-s) diagrams, as shown in Figure 4.6 (b) and (c). According to the law of energy balance, 

the input power of the compressor (𝑃𝐶𝐻,𝑖) plus the heat absorption of the evaporator (𝑄𝑖𝑛,𝑖) 

equals the heat rejection of the condenser (𝑄𝑜𝑢𝑡,𝑖), as shown in Eq. (4.3). Where, c is the 

specific heat capacity of water (𝑘𝐽/(𝑘𝑔 ∙ ℃)), and ρ is the density of water (𝑘𝑔/𝑚3).  

 

Figure 4.6 Principle of a water-cooled chiller (Chiller-i): (a) Schematic diagram, (b) p-h 

diagram, (c) T-s diagram 
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In addition, in a multiple water-cooled chiller system, the chilled water from each chiller 
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each chiller should satisfy Eqs. (4.6) and (4.7). These equations are used to constrain the 

MCMC sampling in this study.  

 ,1 ,1 ,2 ,2chws chw chws chw chws chw chws,n chw,nT q T q T q T q =  +  + +    (4.4) 

 
,1 ,2 ,chw chw chw chw nq q q q= + + +   (4.5) 

 
,1 ,1 ,2 ,2cwout cw cwout cw cwout cw cwout,n cw,nT q T q T q T q =  +  + +    (4.6) 

 
,1 ,2cw cw cw cw,nq q q q= + + +   (4.7) 

4.2.4 Measurement uncertainty models 

According to the characteristics of measurement uncertainty mentioned in Section 3.1, 

the measured flow rates follow normal distributions as shown in Eqs. (4.8), (4.9), (4.10) 

and (4.11) respectively. In these equations, only the measured water flow rate (�̃�) is 

available. The true water flow rate (q), mean (μ, systematic uncertainty) and standard 

deviation (σ, random uncertainty) corresponding to each flow meter are unknown and 

should be quantified. These measurement uncertainty models are in fact the likelihoods 

in Bayesian models. 

 ( )2~ ,  ,    1, 2,...,chw,i chw,i chwq,i chwq,iq N q i n + =   (4.8) 

 ( )~ ,  ,    1,2,...,2

cw,i cw,i cwq,i cwq,iq N q i n + =   (4.9) 

 ( )2~ ,  chw chw chwq chwqq N q  +   (4.10) 

 ( )2~ ,  cw cw cwq cwqq N q  +   (4.11) 

In the MCMC sampling process, these unknown parameters involved should satisfy the 

distribution functions above and are constrained by the energy and mass balance models 

described in Section 4.2.3. When the pre-set/enough iterations are done, these effective 
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(post-warmup) samples will be used to construct the posterior distributions of the 

unknown parameters involved and then further analysis can be conducted. 

4.3 Test and validation arrangements for the proposed method 

The proposed physical model-based measurement uncertainty quantification method is 

tested using site data. In practical application, the true values of measurements cannot be 

known exactly, which means that the measurement uncertainty of a meter/sensor cannot 

be known exactly either. Even though the measurement uncertainty of site data can be 

quantified by the proposed method, it is very difficult to judge whether the quantified 

results are correct or not. Hence, four simulation test cases with different levels of 

measurement uncertainty are conducted to further test and validate the method 

systematically. Details about the site test case and simulation test cases are introduced in 

this section. 

4.3.1 Site test 

This section introduces the configurations of the chiller system used for the site test. And 

the models, the data used, and the prior distributions of unknown parameters to be 

quantified, are also presented for quantifying the measurement uncertainties of the water 

flow meters concerned. 

4.3.1.1 Chiller system used for the site test 

The chiller system used for the site test is equipped in the International Commerce Centre, 

which is a super high-rise commercial building in Hong Kong. The system equips six 

identical water-cooled chillers, and each chiller is interlocked with a constant-speed 

cooling water pump and a constant-speed primary chilled water pump. The rated cooling 

capacity of each chiller is 7 230 kW, and the rated flow rates of each cooling water pump 
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and primary chilled water pump are 410.1 L/s and 345.0 L/s respectively. More details 

about the chiller system can be found in references (Ma and Wang, 2009, 2011). 

The chilled water flow rate and the cooling water flow rate of each chiller are measured 

on-site, but the main chilled water flow rate and the main cooling water flow rate are not 

measured in the system. Even so, the proposed physical model-based measurement 

uncertainty quantification method is also applicable to the case. The measurement 

uncertainty models are represented by Eqs. (4.8) and (4.9), subject to the physical 

constraint (i.e. the energy balance model) shown in Eq. (4.3). In this site test, the test 

results from one of the chillers are selected to demonstrate the use and the performance 

of the strategy. The data used in this site test was collected on 31 Aug 2020 with a time 

interval of 5 minutes, and the chiller concerned provided 24-hour service on this day. 

There are 288 data sets in total. 

4.3.1.2 Prior distributions of unknown parameters in the site test 

There are 6 unknown parameters to be quantified in this site test, including the systematic 

uncertainties and the standard deviations of the random uncertainties of chilled water and 

cooling water flow meters, as well as the means of true chilled water and cooling water 

flow rates. The prior distributions of these unknown parameters can be assigned 

according to the rules described in Section 4.2.2, the details are shown in Table 4.1. 
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Table 4.1 Prior distributions of unknown parameters in the site test 

No. Parameter Prior distribution 

1 Systematic uncertainty of chilled water flow meter 𝑁(0, 212) 

2 Systematic uncertainty of cooling water flow meter 𝑁(0, 252) 

3 Random uncertainty of chilled water flow meter 𝜒2(3) 

4 Random uncertainty of cooling water flow meter 𝜒2(3) 

5 Mean of true chilled water flow rate 𝑁(345, 6.32) 

6 Mean of true cooling water flow rate 𝑁(410.1, 7.52) 

 

4.3.2 Simulation tests 

4.3.2.1 Chiller system model used in the simulation tests 

A multiple water-cooled chiller system is simulated. The system consists of three 

identical chillers, three identical chilled water pumps and three identical cooling water 

pumps. The mathematical model of the chiller is obtained by referring to reference (Kang 

et al., 2017). The full load coefficient of performance (COPFL) of the chillers with 

different cooling capacities (Crated) is represented by Eq. (4.12). The ratio (α) of the actual 

(part-load) COP of the chiller to its full load COP is determined by Eq. (4.13), which is a 

function of the part load ratio (rp). The actual COP and the power consumption (PCH) of 

the chillers can be calculated using Eq. (4.14) and Eq. (4.15), respectively. 

 9 2 42.886 10 0.293 10 4.711FL rated ratedCOP C C− −=   +   +   (4.12) 

 
3 20.569 0.258 1.520 0.321p p pr r r = −  −  +  +   (4.13) 

 FLCOP COP=    (4.14) 



50 

 

 
CH

Q
P

COP
=   (4.15) 

The rated cooling capacity of each chiller used in the simulation tests is 600 kW. The full 

load COP is 4.73. The service time of the chillers is between 7:30 and 23:00 during the 

test period. The cooling load in the test period ranges between 1 200 kW and 1 800 kW 

as shown in Figure 4.7 (94 points in total), with all three chillers running during the test 

period.  The cooling load is equally distributed to each of the three chillers in the tests, 

and the rated flow rates of the chilled water pumps and cooling water pumps are 28.6 L/s 

and 34.7 L/s, respectively. In addition, the measurement uncertainty models are 

represented by Eqs. (4.8), (4.9), (4.10) and (4.11), subject to physical constraints shown 

in Eqs. (4.4), (4.5), (4.6) and (4.7), where n = 3. 

 

Figure 4.7 Cooling load profile used in the simulation tests 

4.3.2.2 Prior distributions of unknown parameters in the simulation tests 

There are eight flow meters in total in the chiller system used in the simulation tests, i.e., 

the chilled water and cooling water flow meters of each chiller and the main chilled water 

and cooling water flow meters. There are 22 unknown parameters in the simulation tests, 

including the systematic uncertainties and standard deviations of random uncertainties of 
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each flow meter, and the means of true chilled water and cooling water flow rates of each 

chiller. The prior distributions of these unknown parameters are assigned according to the 

rules described in Section 4.2.2. The details are shown in Table 4.2. 

Table 4.2 Prior distributions of unknown parameters in the simulation tests 

No. Parameter Prior distribution 

1-3 Systematic uncertainty of chilled water flow meter 1-3 𝑁(0, 1.462) 

4-6 Systematic uncertainty of cooling water flow meter 1-3 𝑁(0, 1.792) 

7 Systematic uncertainty of main chilled water flow meter 𝑁(0, 4.382) 

8 Systematic uncertainty of main cooling water flow meter 𝑁(0, 5.372) 

9-11 Random uncertainty of chilled water flow meter 1-3 𝜒2(3) 

12-14 Random uncertainty of cooling water flow meter 1-3 𝜒2(3) 

15 Random uncertainty of main chilled water flow meter 𝜒2(3) 

16 Random uncertainty of main cooling water flow meter 𝜒2(3) 

17-19 Mean of true chilled water flow rate from chiller 1-3 𝑁(28.6, 0.4382) 

20-22 Mean of true cooling water flow rate from chiller 1-3 𝑁(34.7, 0.5312) 

4.3.2.3 Measurement uncertainty generation 

In these simulation tests, chiller plant simulation is conducted without measurement 

uncertainties. The “actual measurements” are generated by adding uncertainties to the 

simulation outputs. The simulation outputs are considered to be the true values without 

measurement uncertainties. The measurement uncertainties of the flow meters are 

generated according to the characteristics of measurement uncertainty. As mentioned in 

Section 3.1, the measurement uncertainty of a flow meter follows a normal distribution. 

Hence, the measurement uncertainty of each flow meter is generated randomly by a given 

normal distribution, as shown in Eqs. (4.16), (4.17), (4.18) and (4.19). 
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2

, , ,~ ( , ),    1,2,3chwq i chwq i chwq iu N i  =   (4.16) 

 
2

, , ,~ ( , ),    1,2,3cwq i cwq i cwq iu N i  =   (4.17) 

 
2~ ( , )chwq chwq chwqu N     (4.18) 

 
2~ ( , )cwq cwq cwqu N     (4.19) 

Because the sample size is limited and the generation of random numbers is pseudo-

random, the generated measurement uncertainties may not follow the given normal 

distribution strictly. In addition, there is more than one variable should be considered 

simultaneously. Therefore, the conditioned Latin hypercube sampling (cLHS) method 

(Minasny and McBratney, 2010; Minasny and McBratney, 2006) is used to cope with this 

challenge, as it can generate near-random samples for each variable from a multi-variable 

distribution. In these simulation tests, the measurement uncertainties of all flow meters 

are generated according to given normal distributions. 940 000 data sets are generated 

first, then 94 data sets are sampled from the population. 

Table 4.3 lists the pre-set values of these unknown parameters in the simulation tests, 

including the systematic uncertainties and the standard deviations of the random 

uncertainties of each flow meter. The levels of measurement uncertainties in the four 

simulation test cases are different. The systematic uncertainties of the flow meters in Case 

1 and Case 4 are about 10% of the rated flow rates of corresponding water pumps, while 

they are about 5%. in Case 2 and Case 3. In addition, the systematic uncertainties of the 

flow meters in Case 1 and Case 2 are positive, which tends to result in the measured flow 

rate being greater than the true flow rate. Conversely, the systematic uncertainties of the 

flow meters in Case 3 and Case 4 are negative, which tends to result in that the measured 
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flow rate is less than the true flow rate. The standard deviations of the random 

uncertainties follow a slowly rising trend in all tests. 

Table 4.3 Pre-set values of measurement uncertainties in the simulation tests (Unit: L/s) 

Flow meter 
Case 1 

(10%) 

Case 2 

(5%) 

Case 3 

(-5%) 

Case 4 

(-10%) 

Systematic uncertainty 

Main chilled water flow meter 8.50 4.50 -4.50 -8.50 

Chilled water flow meter 1 2.50 1.50 -1.50 -2.50 

Chilled water flow meter 2 2.75 1.75 -1.75 -2.75 

Chilled water flow meter 3 3.00 1.25 -1.25 -3.00 

Main cooling water flow meter 10.00 5.00 -5.00 -10.00 

Cooling water flow meter 1 3.25 2.00 -2.00 -3.25 

Cooling water flow meter 2 3.75 1.50 -1.50 -3.75 

Cooling water flow meter 3 3.50 1.75 -1.75 -3.50 

Standard deviation of random uncertainty 

Main chilled water flow meter 1.50 1.75 2.00 2.25 

Chilled water flow meter 1 1.25 1.00 1.75 1.50 

Chilled water flow meter 2 0.75 1.50 1.25 2.00 

Chilled water flow meter 3 1.00 1.25 1.50 1.75 

Main cooling water flow meter 1.75 2.00 2.25 2.50 

Cooling water flow meter 1 1.00 1.75 1.50 2.00 

Cooling water flow meter 2 1.25 1.50 2.00 1.75 

Cooling water flow meter 3 1.50 1.25 1.75 2.25 
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4.4 Performance evaluation of the proposed method on flow 

measurement uncertainty quantification 

The proposed method is validated by using it to quantify the measurement uncertainties 

of flow meters in five different test cases, including a site test case using real site data and 

four simulation test cases with different levels of measurement uncertainties. The possible 

distributions (i.e., posterior distributions) of measurement uncertainties (both systematic 

and random uncertainties) are obtained. In order to systematically analyse and evaluate 

the results, 95% and/or 99% Bayesian credible intervals and the posterior means of the 

parameters to be quantified are also presented. Moreover, the site test case iterates 500 

000 times per chain and each simulation test case iterate 2 000 times per chain for 

convergence. 

4.4.1 Site test  

The measurement uncertainties of both chilled water and cooling water flow meters can 

be quantified successfully. It does 500 000 iterations in total, but 250 000 “warmup” 

samples are discarded. In addition, the thinning technique is used to reduce the 

autocorrelations and chain length in this test case. It saves every 250th sample from the 

Markov chain and the rest are discarded. Figure 4.8 shows the traces and autocorrelations 

of the post-warmup MCMC samples in this test case. As can be seen from Figure 4.8, the 

Markov chains of random uncertainties are well convergent and their autocorrelations 

decay fast. Although the Markov chains of systematic uncertainties do not converge as 

well as the random uncertainties, they are also acceptable. These post-warmup MCMC 

samples can be used to construct the posterior distributions of the unknown parameters 

involved. 
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Figure 4.8 Traces and autocorrelations of post-warmup MCMC samples in site test case 

Table 4.4 shows the quantified measurement uncertainties in the site test case. It can be 

observed that both the systematic uncertainty and the random uncertainty of the cooling 

water flow meter are larger than that of the chilled water flow meter. The posterior mean 

of the systematic uncertainty of the chilled water flow meter is 4.17% of the rated flow 

rate of the chilled water pump, while the posterior mean of the systematic uncertainty of 

the cooling water flow meter is 11.99% of the rated flow rate of the cooling water pump. 
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Table 4.4 Quantified measurement uncertainties in the site test case 

Flow meter 
95% credible 

interval (L/s) 
Posterior mean (L/s) Percentage 

Systematic uncertainty 

Chilled water flow meter [5.53, 23.18] 14.39 4.17% 

Cooling water flow meter [41.16, 57.30] 49.18 11.99% 

Standard deviation of random uncertainty 

Chilled water flow meter [2.56, 4.00] 3.34 - 

Cooling water flow meter [16.00, 18.81] 17.34 - 

The ranges of the 95% Bayesian credible intervals are relatively narrow. They are 17.65 

L/s and 16.14 L/s for the systematic uncertainties of the chilled water and cooling water 

flow meters respectively. The corresponding random uncertainties are 1.44 L/s and 2.81 

L/s for the chilled water and cooling water flow meters respectively, which are rather 

small. In statistics, a narrow credible interval can generally provide more information 

about the population parameter. Therefore, the above results seem to be reliable. 

According to the specifications of the flow meters used, the accuracy of the insertion flow 

meters is about 2% (ASHRAE, 2014), and the actual site installation and aging may also 

affect the accuracy of flow measurements. Hence, a systematic uncertainty of 4.17% is 

quite acceptable for chilled water flow meters in practical buildings. Concerning the 

cooling water flow meter, a systematic uncertainty of 11.99% is obviously beyond normal 

deviations caused by meter accuracy and installation, giving it a high probability of being 

in an unhealthy condition. These results may also reflect errors from other sensors, like 

the power meter and temperature sensors.  
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It is hard to fully confirm whether the quantified results are correct because the 

measurement errors and uncertainties of the two flow meters cannot be known exactly. 

On-site verification of the flow meters at such a range of flow measurement deviation is 

very difficult due to the limitations of site conditions. In fact, the true flow rate cannot be 

obtained no matter how accurate the measuring instruments used are. Therefore, 

simulation tests are a simpler and more direct means to further test and validate the 

method. 

4.4.2 Simulation test 1: High level of positive uncertainty 

Figure 4.9 and Figure 4.10 show the traces and autocorrelations of post-warmup MCMC 

samples in this simulation test case respectively. 1000 warmup samples are discarded. As 

can be seen from the figures, the Markov chains of each parameter are well converged 

and the autocorrelations of MCMC samples are reduced rapidly. These post-warmup 

MCMC samples can be used to construct the posterior distributions of the unknown 

parameters involved. 
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Figure 4.9 Traces of post-warmup MCMC samples in Simulation test case 1 

μ
ch

w
q

1000 1250 1500 1750 2000

6

7

8

9

10

σ
ch

w
q

1000 1250 1500 1750 2000

1.25

1.50

1.75

2.00

μ
cw

q

1000 1250 1500 1750 2000

8

9

10

11

12

σ
cw

q

1000 1250 1500 1750 2000

1.25

1.50

1.75

2.00

2.25

2.50

Post-warmup Iteration

Post-warmup Iteration

Post-warmup Iteration

Post-warmup Iteration

μ
ch

w
q
,1

1000 1250 1500 1750 2000

2

3

σ
ch

w
q
,1

1000 1250 1500 1750 2000

1.0

1.2

1.4

1.6

μ
cw

q
,1

1000 1250 1500 1750 2000

2

3

4

σ
cw

q
,1

1000 1250 1500 1750 2000

0.6

0.8

1.0

1.2

Post-warmup Iteration

Post-warmup Iteration

Post-warmup Iteration

Post-warmup Iteration
μ

ch
w

q
,2

1000 1250 1500 1750 2000

2.0

2.5

3.0

3.5

4.0

σ
ch

w
q
,2

1000 1250 1500 1750 2000

0.4

0.6

0.8

1.0

μ
cw

q
,2

1000 1250 1500 1750 2000

3.0

3.5

4.0

4.5

5.0

σ
cw

q
,2

1000 1250 1500 1750 2000

1.0

1.2

1.4

1.6

1.8

Post-warmup Iteration

Post-warmup Iteration

Post-warmup Iteration

Post-warmup Iteration

μ
ch

w
q
,3

1000 1250 1500 1750 2000

1.5

2.0

2.5

3.0

3.5

4.0

σ
ch

w
q
,3

1000 1250 1500 1750 2000

0.7

0.9

1.1

1.3

1.5

μ
cw

q
,3

1000 1250 1500 1750 2000

3

4

5

σ
cw

q
,3

1000 1250 1500 1750 2000

1.25

1.50

1.75

2.00

Post-warmup Iteration

Post-warmup Iteration

Post-warmup Iteration

Post-warmup Iteration

Chain No.:

1

2

3

4



59 

 

 

Figure 4.10 Autocorrelations of post-warmup MCMC samples in Simulation test case 1 

Table 4.5 shows the quantified measurement uncertainties in Simulation test case 1, 

where the systematic uncertainties of the water flow meters are set to around 10% of the 

rated flow rates of the corresponding pumps. The 95% Bayesian credible intervals and 

the posterior means are presented. The pre-set values of the measurement uncertainties 

(both the systematic uncertainties and the standard deviations of random uncertainties) of 

the flow meters are also listed in the table for comparison. As shown in Table 4.5, the 

pre-set values fall within the 95% Bayesian credible intervals, and the posterior means 

are very close to the corresponding pre-set values. Particularly for the systematic 

uncertainties of the main chilled water and cooling water flow meters, their posterior 

means are almost the same as their pre-set values. 
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Table 4.5 Quantified measurement uncertainties in Simulation test case 1 

Flow meter 
Pre-set 

value (L/s) 

95% credible 

interval (L/s) 

Posterior 

mean (L/s) 

Relative 

error (%) 

Relative systematic 

uncertainty (%) 

Systematic uncertainty 

Main CHWFM 8.50 [7.40, 9.68] 8.52 0.24 0.02 

CHWFM-1 2.50 [1.95, 3.32] 2.63 5.20 0.45 

CHWFM-2 2.75 [2.11, 3.41] 2.77 0.73 0.07 

CHWFM-3 3.00 [2.15, 3.48] 2.84 5.30 0.56 

Main CWFM 10.00 [8.77, 11.17] 9.99 0.10 0.01 

CWFM-1 3.25 [2.73, 4.06] 3.38 4.00 0.37 

CWFM-2 3.75 [3.15, 4.54] 3.85 2.67 0.29 

CWFM-3 3.50 [2.86, 4.32] 3.62 3.43 0.35 

Standard deviation of random uncertainty 

Main CHWFM 1.50 [1.27, 1.83] 1.53 2.00 - 

CHWFM-1 1.25 [1.03, 1.44] 1.22 2.40 - 

CHWFM-2 0.75 [0.55, 0.91] 0.72 4.00 - 

CHWFM-3 1.00 [0.85, 1.23] 1.03 3.00 - 

Main CWFM 1.75 [1.53, 2.16] 1.80 2.86 - 

CWFM-1 1.00 [0.73, 1.10] 0.90 10.00 - 

CWFM-2 1.25 [1.08, 1.52] 1.28 2.40 - 

CWFM-3 1.50 [1.38, 1.89] 1.62 8.00 - 

 

The relative error and the “relative systematic uncertainty” are also presented in Table 

4.5. The relative error has been defined in Section 3.4. Similarly, the relative systematic 

uncertainty is defined as the absolute error of the uncertainty estimation (i.e., the 

difference between the pre-set value of the uncertain parameter and the posterior mean) 

divided by the design flow rate associated with the flow meter concerned or the rated flow 

rate of the corresponding water pump. It can be observed that the maximum relative errors 

are 5.30% and 10.00% for the quantified systematic uncertainties and quantified random 
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uncertainties respectively, indicating reasonably good accuracy. In addition, the relative 

systematic uncertainties are very small, ranging between 0.01% and 0.56%. This method 

can therefore be used to validate flow meters and improve measurement accuracy 

effectively.  In fact, relative systematic uncertainty may be a better index to evaluate the 

quantified results in practical application, since the actual systematic uncertainties (pre-

set values) are unknown. As can be seen from the test results, the measurement 

uncertainties of flow meters can be quantified successfully with high accuracy in this 

simulation test case. 

4.4.3 Simulation test 2: Medium level of positive uncertainty 

Figure 4.11 and Figure 4.12 show the traces and autocorrelations of post-warmup MCMC 

samples in this simulation test case respectively. It can be observed that the Markov 

chains of each parameter are well converged and the autocorrelations of MCMC samples 

are reduced rapidly. These post-warmup MCMC samples can be used to construct the 

posterior distributions of the unknown parameters involved. 
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Figure 4.11 Traces of post-warmup MCMC samples in Simulation test case 2 
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Figure 4.12 Autocorrelations of post-warmup MCMC samples in Simulation test case 2 

Table 4.6 shows the quantified measurement uncertainties in Simulation test case 2, 

where the systematic uncertainties of the water flow meters are set to around 5% of the 

rated flow rates of the corresponding pumps. It can be observed that the pre-set values 

fall within the 95% Bayesian credible intervals, and since the posterior means are close 

to the pre-set values, the measurement uncertainties in this test case have been quantified 

successfully. For the quantified systematic uncertainties in this test case, the relative 

errors are larger than that in Simulation test case 1, as the maximum relative error is 

20.00%. The relative systematic uncertainties are still small (0.31-0.87%). The proposed 

method can still be used to validate flow meters and improve measurement accuracy. For 

the quantified random uncertainties in this test case, the relative errors are small, with a 

maximum value of 12.80%. Therefore, the method performs better in quantifying random 

uncertainties than systematic uncertainties in this simulation test case. 
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Table 4.6 Quantified measurement uncertainties in Simulation test case 2 

Flow meter 
Pre-set 

value (L/s) 

95% credible 

interval (L/s) 

Posterior 

mean (L/s) 

Relative 

error (%) 

Relative systematic 

uncertainty (%) 

Systematic uncertainty 

Main CHWFM 4.50 [3.89, 6.11] 5.02 11.55 0.61 

CHWFM-1 1.50 [0.90, 2.26] 1.59 6.00 0.31 

CHWFM-2 1.75 [1.25, 2.66] 1.94 10.86 0.66 

CHWFM-3 1.25 [0.84, 2.16] 1.50 20.00 0.87 

Main CWFM 5.00 [4.29, 6.63] 5.48 9.60 0.46 

CWFM-1 2.00 [1.14, 2.60] 1.89 5.50 0.32 

CWFM-2 1.50 [0.94, 2.41] 1.68 12.00 0.52 

CWFM-3 1.75 [1.29, 2.67] 1.98 13.14 0.66 

Standard deviation of random uncertainty 

Main CHWFM 1.75 [1.52, 2.18] 1.83 4.57 - 

CHWFM-1 1.00 [0.70, 1.09] 0.89 11.00 - 

CHWFM-2 1.50 [1.25, 1.76] 1.48 1.33 - 

CHWFM-3 1.25 [1.08, 1.52] 1.29 3.20 - 

Main CWFM 2.00 [1.64, 2.33] 1.96 2.00 - 

CWFM-1 1.75 [1.49, 2.04] 1.75 0.00 - 

CWFM-2 1.50 [1.34, 1.84] 1.58 5.33 - 

CWFM-3 1.25 [1.19, 1.67] 1.41 12.80 - 

 

4.4.4 Simulation test 3: Medium level of negative uncertainty 

Figure 4.13 and Figure 4.14 show the traces and autocorrelations of post-warmup MCMC 

samples in this simulation test case respectively. It can be observed that the Markov 

chains of each parameter are well converged and the autocorrelations of MCMC samples 

are reduced rapidly. These post-warmup MCMC samples can be used to construct the 

posterior distributions of the unknown parameters involved. 
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Figure 4.13 Traces of post-warmup MCMC samples in Simulation test case 3 
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Figure 4.14 Autocorrelations of post-warmup MCMC samples in Simulation test case 3 

Table 4.7 shows the quantified measurement uncertainties in Simulation test case 3, 

where the systematic uncertainties of the water flow meters are set to be around -5% of 

the rated flow rate of corresponding pumps. For the quantified systematic uncertainties 

of the main chilled water and cooling water flow meters, the pre-set values do not fall 

within the 95% Bayesian credible intervals, and so the 99% Bayesian credible intervals 

are also presented. It can be observed that the pre-set values are very close to the lower 

limits of the 99% Bayesian credible intervals. The differences between the pre-set values 

and the posterior means are significant. For the quantified systematic uncertainties of the 

other flow meters in this test case, the pre-set values are close to the lower limits of the 

95% Bayesian credible intervals, and the differences between the pre-set values and the 

posterior means are also relatively significant. The relative errors in this test case are more 

significant than that in Simulation test case 1 and Simulation test case 2, with the 

maximum error being 38.57%. The relative systematic uncertainties are still within a 

relatively small range (1.33-2.24%). The results show that the method is still effective for 

validating flow meters and improving measurement accuracy, and it can also provide 
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valuable and meaningful information in practical application. For the quantified random 

uncertainties of the flow meters in this test case, the pre-set values fall within the 95% 

Bayesian credible intervals, and the posterior means are very close to the pre-set values. 

The maximum relative error is 12.44% and the relative errors are within an acceptable 

range. The random uncertainties of flow meters in this test case are quantified with 

satisfactory accuracy. The method performs better in quantifying random uncertainties 

compared with systematic uncertainties in this test case. 

Table 4.7 Quantified measurement uncertainties in Simulation test case 3 

Flow meter 

Pre-set 

value 

(L/s) 

95% credible 

interval (L/s) 

99% credible 

interval* (L/s) 

Posterior 

mean 

(L/s) 

Relative 

error (%) 

Relative 

systematic 

uncertainty 

(%) 

Systematic uncertainty 

Main CHWFM -4.50 [-4.27, -1.97] [-4.60, -1.61] -3.11 30.89 1.62 

CHWFM-1 -1.50 [-1.71, -0.25] - -0.98 34.67 1.82 

CHWFM-2 -1.75 [-1.78, -0.45] - -1.11 36.57 2.24 

CHWFM-3 -1.25 [-1.56, -0.11] - -0.83 33.60 1.47 

Main CWFM -5.00 [-4.54, -2.09] [-4.94, -1.74] -3.31 33.80 1.62 

CWFM-1 -2.00 [-2.08, -0.63] - -1.34 33.00 1.90 

CWFM-2 -1.50 [-1.83, -0.26] - -1.04 30.67 1.33 

CWFM-3 -1.75 [-2.06, -0.54] - -1.28 26.86 1.35 

Standard deviation of random uncertainty 

Main CHWFM 2.00 [1.61, 2.30] - 1.93 3.50 - 

CHWFM-1 1.75 [1.62, 2.22] - 1.89 8.00 - 

CHWFM-2 1.25 [1.13, 1.62] - 1.35 8.00 - 

CHWFM-3 1.50 [1.30, 1.82] - 1.54 2.67 - 

Main CWFM 2.25 [2.14, 2.98] - 2.53 12.44 - 

CWFM-1 1.50 [1.32, 1.86] - 1.57 4.67 - 

CWFM-2 2.00 [1.83, 2.52] - 2.14 7.00 - 

CWFM-3 1.75 [1.63, 2.23] - 1.91 9.14 - 
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4.4.5 Simulation test 4: High level of negative uncertainty 

Figure 4.15 and Figure 4.16 show the traces and autocorrelations of post-warmup MCMC 

samples in this simulation test case respectively. It can be observed that the Markov 

chains of each parameter are well converged and the autocorrelations of MCMC samples 

are reduced rapidly. These post-warmup MCMC samples can be used to construct the 

posterior distributions of the unknown parameters involved. 
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Figure 4.15 Traces of post-warmup MCMC samples in Simulation test case 4 
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Figure 4.16 Autocorrelations of post-warmup MCMC samples in Simulation test case 4 

Table 4.8 shows the quantified measurement uncertainties in Simulation test case 4, 

where the systematic uncertainties of the water flow meters are set to around -10% of the 

rated flow rate of the corresponding pumps. Both the 95% and 99% Bayesian credible 

intervals of the quantified systematic uncertainties in this test case are presented. Besides 

the main chilled water and cooling water flow meters, the pre-set values of the quantified 

systematic uncertainties fall within the 99% Bayesian credible intervals. The differences 

between the pre-set values and the posterior means are significant, leading to large 

relative errors with a maximum value of 30.40%. The relative systematic uncertainties 

range between 1.27% and 2.66%. Similar to the previous simulation test cases, the method 

can provide valuable and meaningful information in applications.  For the quantified 

random uncertainties in this test case, the pre-set values fall within the 95% Bayesian 

credible intervals, and the posterior means are very close to the pre-set values. The 

maximum relative error is 4.50% and the relative errors are within an acceptable range. 

The method also performs better in quantifying random uncertainties than systematic 

uncertainties in this simulation test case. 
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Table 4.8 Quantified measurement uncertainties in Simulation test case 4 

Flow meter 

Pre-set 

value 

(L/s) 

95% credible 

interval (L/s) 

99% credible 

interval (L/s) 

Posterior 

mean 

(L/s) 

Relative 

error (%) 

Relative 

systematic 

uncertainty 

(%) 

Systematic uncertainty 

Main CHWFM -8.50 [-7.64, -5.25] [-8.16, -4.80] -6.44 24.24 2.40 

CHWFM-1 -2.50 [-2.44, -1.06] [-2.68, -0.85] -1.74 30.40 2.66 

CHWFM-2 -2.75 [-2.74, -1.26] [-2.98, -1.06] -1.99 27.64 2.66 

CHWFM-3 -3.00 [-3.03, -1.57] [-3.25, -1.40] -2.30 23.33 2.45 

Main CWFM -10.00 [-9.23, -6.74] [-9.60, -6.34] -7.98 20.20 1.94 

CWFM-1 -3.25 [-3.56, -2.08] [-3.80, -1.85] -2.81 13.54 1.27 

CWFM-2 -3.75 [-3.73, -2.23] [-3.95, -2.01] -2.99 20.27 2.19 

CWFM-3 -3.50 [-3.62, -2.04] [-3.86, -1.75] -2.82 19.43 1.96 

Standard deviation of random uncertainty 

Main CHWFM 2.25 [1.98, 2.79] - 2.35 4.44 - 

CHWFM-1 1.50 [1.29, 1.82] - 1.54 2.67 - 

CHWFM-2 2.00 [1.63, 2.25] - 1.91 4.50 - 

CHWFM-3 1.75 [1.49, 2.07] - 1.77 1.14 - 

Main CWFM 2.50 [2.23, 3.07] - 2.60 4.00 - 

CWFM-1 2.00 [1.66, 2.28] - 1.94 3.00 - 

CWFM-2 1.75 [1.46, 2.06] - 1.73 1.14 - 

CWFM-3 2.25 [1.90, 2.61] - 2.22 1.33 - 

 

4.4.6 Discussion and comparison of the test results 

According to the outputs of the four simulation test cases presented in Section 4.4.2-4.4.5, 

the measurement uncertainties of water flow meters, including both the systematic 

uncertainties and the random uncertainties, can be quantified effectively by the proposed 

method. Figure 4.17 summarizes the measurement uncertainty quantification results of 
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the four simulation test cases. The relative errors and absolute errors of the measurement 

uncertainty quantification are presented. It can be observed that the errors in quantifying 

the random uncertainties of flow meters in all test cases are very small, but the errors in 

quantifying the systematic uncertainties of flow meters vary from case to case. The errors 

are small for case 1 and case 2, but they are significant for case 3 and case 4.  

 

Figure 4.17 Relative errors and absolute errors of measurement uncertainty 

quantification for simulation test cases 

The proposed method performs very well in quantifying systematic uncertainties in 

Simulation test cases 1 and 2. Although the performance of the method in quantifying 

systematic uncertainties in Simulation test cases 3 and 4 is not as good as that in 

Simulation test cases 1 and 2, its performance is still acceptable. The method is still 

effective for validating flow meters and improving measurement accuracy and can 

provide valuable and meaningful information in practical applications. In addition, the 

random uncertainties of the flow meters can be quantified accurately by the method no 

matter how significant they are. In general, the method performs better in quantifying 

random uncertainties than systematic uncertainties. 
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The levels of the quantified measurement uncertainties in the four simulation test cases 

are consistent with the levels of the pre-set measurement uncertainties. In other words, 

the levels of the measurement uncertainties of different flow meters can be identified by 

the method. The information is also meaningful and valuable in practical application. If 

the identified measurement uncertainties of one or more flow meters are obviously higher 

than that of other flow meters, more attention should be paid to these flow meters and 

calibrations on the measurement accuracy of these flow meters are needed or decisions 

requiring flow rate measurements of high accuracy should be avoided. For example, as 

presented in Section 4.4.1, the quantified measurement uncertainty of the cooling water 

flow meter in the site test case is much larger than the typical uncertainty range of flow 

measurement. If this cooling water flow measurement is used by a critical decision-

making strategy, priority should be given to checking/calibrating the flow meter or re-

consider the decision-making strategy itself. 

As mentioned in Section 3.2, for the Bayesian models, both prior distributions and 

likelihoods may affect posterior distributions. It is possible to improve the accuracy of 

the proposed method from these two aspects. The likelihoods are associated with 

observational data. In principle, the posterior distributions are mainly affected by 

likelihoods if the quantity of observational data is large enough. However, the 

computational load will increase significantly if the number of observational data 

increases. Therefore, the size of the observational data cannot be increased without limit. 

A trade-off between the quantity of observational data and the computational load should 

be made. On the other hand, the assignments of the prior distributions of the parameters 

to be quantified are based on expert judgement. A good prior distribution will be of great 

help in accurately quantifying the measurement uncertainty. Maximum utilization of 
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information about the parameters to be quantified should be achieved to obtain the best 

prior distributions. 

The proposed physical model-based measurement uncertainty quantification method is 

promising to be put into practice. The flow meters can be calibrated at any time by the 

method. A threshold of acceptable uncertainty can be set for each flow meter. If the 

quantified uncertainty of a flow meter is greater than the threshold, the operators can 

conduct an on-site calibration for the flow meter or replace the flow meter directly, and 

the impacts of the unacceptable uncertainty on system operation can be reduced. 

4.5 Summary 

This chapter presents the physical model-based measurement uncertainty quantification 

method. It is validated systematically using a site test case and four simulation test cases 

with different levels of measurement uncertainties. The test cases are conducted on 

multiple water-cooled chiller systems. The measurement uncertainties (including the 

systematic and random uncertainties) of water flow meters are quantified with the 

auxiliaries of power meters and temperature sensors based on energy and mass balance 

models. Based on the results of the test cases, the main conclusions can be drawn as 

follows. 

• The physical model-based measurement uncertainty quantification method can 

effectively quantify the measurement uncertainties (including the systematic and 

random uncertainties) of chilled water and cooling water flow meters in multiple 

water-cooled chiller systems. 

• The performance of the method in quantifying systematic uncertainties is satisfactory. 

The method is effective for validating flow meters and improving their measurement 
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accuracy, and it can provide valuable and meaningful information in practical 

application. 

• The random uncertainties can be quantified accurately by the proposed method no 

matter how significant they are. The method performs better in quantifying random 

uncertainties than systematic uncertainties. 

• The levels of measurement uncertainties of different flow meters can be identified by 

the quantification method. It can be used to detect which flow meters need to be 

calibrated and assess the reliability of flow measurements, particularly concerning 

critical decision-making. 
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CHAPTER 5 PROBABILITY-BASED ONLINE ROBUST 

CHILLER SEQUENCING CONTROL STRATEGY WITH 

MEASUREMENT UNCERTAINTIES PROCESSED BY 

PHYSICAL MODEL-BASED METHOD 

This chapter presents a probability-based robust sequencing control strategy for multiple 

water-cooled chiller plants under flow measurement uncertainties. Since Chapter 4 has 

shown that the physical model-based measurement uncertainty quantification method has 

good performance. This chapter also uses the method to correct the target measurements 

online and optimize the conventional total cooling load-based chiller sequencing control 

strategy. The organization of this chapter is as follows. Section 5.1 introduces the 

conventional total cooling load-based chiller sequencing control strategy and its 

drawbacks. Section 5.2 presents the proposed probability-based chiller sequencing 

control strategy. Section 5.3 presents the online test platform and arrangement for the 

proposed control strategy. The test results are presented in Section 5.4. Section 5.5 

discusses the advantages and application potential of the proposed control strategy. And 

the conclusions are made in Section 5.6. 

5.1 Conventional total cooling load-based chiller sequencing control 

strategy and its drawbacks 

Figure 5.1 shows the schematic diagram of a typical water-cooled chiller plant, where 

only the primary chilled water distribution loop is presented. Each chiller is interlocked 

with a constant-speed cooling water pump and a constant-speed chilled water pump. 

Sensors and meters are installed for system monitoring and real-time online control. And 
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here only the sensors/meters installed in the main pipe are concerned. The measured 

variables mainly include the main chilled water volume flow rate ( 𝑞𝑐ℎ𝑤 ), return 

temperature (𝑇𝑐ℎ𝑤𝑟) and supply temperature (𝑇𝑐ℎ𝑤𝑠), and the main cooling water volume 

flow rate (𝑞𝑐𝑤), inlet temperature (𝑇𝑐𝑤𝑖𝑛) and outlet temperature (𝑇𝑐𝑤𝑜𝑢𝑡), and the power 

consumption of chillers (𝑃𝐶𝐻).  

 

Figure 5.1 Schematic diagram of a typical water-cooled chiller plant 

The cooling load-based chiller sequencing control strategy is commonly used to control 

the staging of chillers. The start and stop of the chillers are controlled according to the 

instantaneous building load and the chiller capacities. Figure 5.2 shows the conventional 

cooling load-based chiller sequencing control strategy. For the cooling plants with 

identical chillers, the thresholds of cooling load for switching on the (N+1)th chiller (𝑄𝑁+1
𝑜𝑛 ) 

and switching off the Nth chiller (𝑄𝑁
𝑜𝑓𝑓

) are defined by Eqs. (5.1) and (5.2) respectively. 

Where Crated is the rated chiller capacity, l is the chiller capacity loss rate, and d is a dead 

band. The chiller capacity loss is introduced because the actual maximum chiller capacity 
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deviates from its rated value in different working conditions. The dead band is used to 

avoid frequent switching of chillers when the cooling load varies around the thresholds. 

The number of operating chillers at the next time instant (Nt+1) can be determined by Eq. 

(5.3). Where, the subscript “t” represents the sampling time, and Qt is the instantaneous 

building load at the current time instant. In this study, the chiller capacity loss rate l is set 

to 2.50%, and the dead band d is set to 0.10. 

 

Figure 5.2 Conventional cooling load-based chiller sequencing control strategy 
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The instantaneous building load is estimated based on the measured total chilled water 

flow rate, return and supply temperatures, as shown in Eq. (5.4). c is the specific heat 

capacity of water (kJ/(kg·℃)). ρ is the density of water (kg/m3). The unavoidable 

measurement uncertainties may lead to significant errors in cooling load measurements, 

and further affect the performance of the cooling load-based chiller sequencing control. 
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According to the previous analysis (in Section 4.1) about the measuring instruments used 

in chiller systems, only the measurement uncertainties of water flow meters are 

considered here as well, while the measurement uncertainties of power meters and 

temperature sensors are deemed to be acceptable and not considered. 

 ( ), , ,t chw t chwr t chws tQ c q T T=   −   (5.4) 

The real-time measured chilled water flow rate (�̃�𝑐ℎ𝑤,𝑡) and cooling water flow rate (�̃�𝑐𝑤,𝑡) 

are denoted by Eq. (5.5) and Eq. (5.6), respectively. The measured water flow rate (�̃�𝑡) 

equals the true water flow rate ( 𝑞𝑡 ) plus the measurement uncertainty (u). The 

measurement uncertainty includes the systematic uncertainty (μ) and the random 

uncertainty (σ) of the corresponding flow meter. 

 ( )2

, , ,       ~ ,chw t chw t chwq chwq chwq chwqq q u u N  = +   (5.5) 

 ( )2

, , ,       ~ ,cw t cw t cwq cwq cwq cwqq q u u N  = +   (5.6) 

The performance of the conventional cooling load-based chiller sequencing control 

strategy heavily depends on the accuracy of chilled water flow measurements. In order to 

reduce the impacts of flow measurement uncertainties on direct cooling load 

measurements, a probability-based online robust chiller sequencing control strategy is 

proposed. In addition to the chilled water flow rate, supply and return temperatures, the 

proposed control strategy also uses the cooling water flow rate, inlet and outlet 

temperatures, and the total power consumption of chillers, as shown in Figure 5.1. The 

details of the proposed control strategy and its validation will be presented in the 

following sections. 
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5.2 The proposed probability-based online robust chiller sequencing 

control strategy 

This section presents the probability-based online robust chiller sequencing control 

strategy in detail, including the outline of the control strategy, the uncertainty processing 

model used for quantifying the flow measurement uncertainties, the analysis of cooling 

load distributions, and the online decision-making scheme and risk assessment for the 

control strategy. 

5.2.1 Outline of the probability-based online robust chiller sequencing control strategy 

In the proposed online robust probability-based chiller sequencing control strategy, the 

chiller staging is determined according to the probability distributions of cooling loads. 

Figure 5.3 shows the outline of the proposed control strategy. The real-time 

measurements, including the power consumption, chilled water flow rate, supply and 

return temperatures, cooling water flow rate, inlet and outlet temperatures, are input into 

an uncertainty processing model for handling the uncertainties in flow measurements. 

The model is developed based on an energy balance model and the characteristics of flow 

measurement uncertainty using Bayesian inference and Markov chain Monte Carlo 

sampling methods. Then the probability distribution (posterior distribution) of the main 

chilled water flow rate can be constructed using the effective samples generated by the 

uncertainty processing model. Accordingly, the probability distribution of the cooling 

load can further be determined, which is the corrected cooling load. Based on the 

distribution function, the probabilities of the cooling load distribution in different ranges 

can be obtained according to the empirical cumulative distribution function (ECDF). 

Finally, the control decision is made, and the risk is assessed according to the probabilities. 
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The details about the proposed probability-based online robust chiller sequencing control 

strategy are illustrated in Sections 5.2.2-5.2.4. 

  

Figure 5.3 Outline of the probability-based online robust chiller sequencing control 

strategy 
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5.2.2 Uncertainty processing model of flow measurements 

The measured chilled water and cooling water flow rates follow the normal distributions 

as shown in Eq. (5.7) and Eq. (5.8), respectively. These two distribution functions are the 

likelihoods in Bayesian models. The uncertainties in flow measurements could be 

determined by the proposed physical model-based measurement uncertainty 

quantification method based on historical system operating data. In the uncertainty 

processing model, only the actual chilled water flow rate (𝑞𝑐ℎ𝑤,𝑡) and cooling water flow 

rate (𝑞𝑐𝑤,𝑡) are unknown and need to be quantified. The energy balance model, as shown 

in Eq. (5.9), is used to constrain the MCMC sampling. The generated samples by MCMC 

should satisfy this equation. 

 ( )2

, ,~ ,chw t chw t chwq chwqq N q  +   (5.7) 

 ( )2

, ,~ ,cw t cw t cwq cwqq N q  +   (5.8) 

 ( ) ( ), , , , , , ,CH t chw t chwr t chws t cw t cwout t cwin tP c q T T c q T T +   − =   −   (5.9) 

The developed uncertainty processing model of flow measurements can be updated 

regularly by operating data to adapt to system changes. Though the posterior distributions 

of both chilled water and cooling water flow rates can be obtained simultaneously, this 

study only needs the chilled water flow rate for calculating the cooling load. 

5.2.3 Probability distribution of cooling load and analysis 

The posterior distribution of the main chilled water flow rate (𝑞𝑐ℎ𝑤,𝑡
′ ) is obtained by the 

uncertainty processing model, a sketch map of the distribution is shown in Figure 5.4. 

The cooling load (𝑄𝑡
′) is calculated by Eq. (5.10). The probability distribution of cooling 

load is then obtained, and a sketch map is shown in Figure 5.5. The cooling load 
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distribution form is the same as the total chilled water flow rate distribution form because 

the measurement uncertainties of temperature sensors are not considered. 

 ( ), , ,t chw t chwr t chws tQ c q T T =   −   (5.10) 

 

Figure 5.4 Sketch map of the posterior distribution of the main chilled water flow rate 

 

Figure 5.5 Sketch map of the probability distribution of cooling load 
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𝑜𝑛  (the thresholds are consistent 

with the thresholds in conventional chiller sequencing control strategy), the area of each 

part represents the probability that the cooling load is within the corresponding range. 

These probabilities are calculated by the empirical cumulative distribution function 

(ECDF), as shown in Eq. (5.11). Figure 5.6 shows the sketch map of the ECDF curve. 
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Figure 5.6 Sketch map of the ECDF curve of cooling load 

The probabilities, P1,t, P2,t and P3,t, are the core of the proposed control strategy and will 

be used for online decision-making and risk assessment. Details of their usages are 

presented in Section 5.2.4. 

5.2.4 Online decision-making scheme and risk assessment 

Figure 5.7 shows the decision-making scheme of the probability-based online robust 

sequencing control strategy for the cooling plants with identical chillers. The number of 

operating chillers at the next time instant (Nt+1) is determined by comparing the 

magnitudes of the probabilities (i.e. P1,t, P2,t and P3,t), as shown in Eq. (5.12). If P1,t is the 

maximum probability (Pmax,t), one of the operating chillers should be switched off; If P2,t 

is the maximum probability, the current chiller running status should be kept; If P3,t is the 
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Figure 5.7 Online decision-making scheme of the proposed control strategy 
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The risk (𝑟𝑡 ) is defined as the probability of an incorrect decision made by the 

proposed control strategy, as shown in Eq. (5.13). According to its definition, the risk 

reaches its minimum value of 0 when one of the probabilities is equal to 1 and its 

maximum value of 0.67 when the three probabilities are equal (𝑃1,𝑡 = 𝑃2,𝑡 = 𝑃3,𝑡 ≈ 0.33). 

Hence, the risk would range from 0 to 0.67. The risks are used to evaluate the reliabilities 

of decisions made by the proposed control strategy under low-quality and uncertain 

measurements. The lower the risk, the higher the reliability. A risk boundary (𝑟𝑏) is set 

for distinguishing between the high-risk control decisions and the low-risk control 

decisions. If the risk of a control decision is higher than the risk boundary, the control 

decision needs to be double-checked by operators for the sake of reliable operation. In 

this study, the risk boundary is set to 0.30. 
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 ( )1, 2, 3,1 max , ,t t t tr P P P= −   (5.13) 

5.3 Test platform and validation arrangements for the proposed 

sequencing control strategy 

The online robust probabilistic chiller sequencing control strategy has been tested on a 

dynamic virtual platform built based on the chiller plant serving a real high-rise building. 

5.3.1 Description of the chiller plant used in the tests 

The studied chiller plant has been mentioned previously in Chapter 4. It serves a super 

high-rise commercial building (i.e., ICC) in Hong Kong, where cooling is demanded 

throughout the year. Table 5.1 presents the specifications of the main equipment in the 

chiller plant. The central cooling system consists of six identical chillers with a rated 

coefficient of performance (COP) of 5.37. Each chiller is interlocked with a constant-

speed cooling water pump and a constant-speed primary chilled water pump. The chillers 

produce supply chilled water with a temperature setpoint of 5.5 ℃. And the heat is 

rejected by 11 cooling towers with a total capacity of 51 709 kW. 

Table 5.1 Specifications of the main equipment in the chiller plant 

No. Equipment Number 
Rated capacity 

(kW) 

Flow rate 

(L/s) 

Power 

(kW) 

1 Chiller 6 7 230 - 1 346 

2 Cooling tower A 6 5 234 - 152 

3 Cooling tower B 5 4 061 - 120 

4 Chilled water pump 6 - 345.0 126 

5 Cooling water pump 6 - 410.1 202 
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Figure 5.8 shows the weekly cooling load profile used for testing the proposed control 

strategy. The data is extracted from the building management system (BMS) directly, and 

it is regarded as the actual cooling load (i.e., without measurement uncertainties). The 

cooling is required all day, and the chiller plant needs to provide 24-hour service. 

 

Figure 5.8 Weekly cooling load profile used for testing the proposed control strategy 

5.3.2 TRNSYS-Python co-simulation test platform 

A TRNSYS-Python co-simulation test platform is used to validate the effectiveness of 

the proposed control strategy. The transient system (TRNSYS) simulation tool is 

designed for simulating the dynamic behaviour of thermal energy systems. The studied 

chiller plant can be well modelled in TRNSYS. Python is a popular programming 

language with powerful computational capabilities. The uncertainty processing model of 

flow measurements and the online robust probabilistic chiller sequencing controller can 

be programmed easily in Python. TRNSYS provides a user-friendly component (Type 

169) to communicate with Python, which makes TRNSYS play well with Python. As 

shown in Figure 5.9, the measurements from the chiller plant model are firstly processed 

by the uncertainty processing model. Then the online robust probabilistic sequencing 

controller makes decisions, and the control signals are sent back to the chiller plant 

platform. As an external input, the measurement uncertainties of chilled water and cooling 
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water flow rates are input to the chiller plant model directly to obtain the measurements. 

In order to avoid frequent switching of chillers and reduce computational load, the time 

interval of decision-making in the controller is set as 5 minutes. 

 

Figure 5.9 TRNSYS-Python co-simulation test platform 

5.3.3 Arrangement of online validation tests 

The proposed control strategy is systematically validated by two test cases with different 

measurement uncertainties, as shown in Table 5.2. In case 1, the systematic uncertainties 

are positive, and the measured water flow rates tend to be greater than the actual water 

flow rates. In case 2, the systematic uncertainties are negative, and the measured water 

flow rates tend to be less than the actual water flow rates. In addition, the systematic 

uncertainty of the chilled water flow meter (30.0 L/s) in both test cases is 8.70% of the 

rated flow rate of the chilled water pump. Such a level of measurement uncertainty may 

affect the chiller sequencing control significantly and cannot be ignored. The flow 

measurement uncertainty is generated according to the normal distributions in Table 5.2. 
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The measured water flow rates are obtained by adding the generated uncertainties to the 

actual water flow rates (TRNSYS outputs). 

Table 5.2 Measurement uncertainty of flow meters in each case (Unit: L/s) 

 No. Chilled water flow meter Cooling water flow meter 

Case 1 ~𝑁(30.0,  8.02) ~𝑁(40.0,  10.02) 

Case 2 ~𝑁(−30.0,  8.02) ~𝑁(−40.0,  10.02) 

 

5.4 Performance evaluation of the probability-based chiller sequencing 

control strategy 

The errors of cooling loads and the chiller plant performance are used to evaluate the 

proposed probability-based online robust chiller sequencing control strategy. The risks in 

the decision-making processes are used to evaluate the reliability of the proposed control 

strategy. 

5.4.1 Validation test 1: Measured cooling loads > Actual cooling loads 

5.4.1.1 Comparison between quantification errors and measurement errors of cooling 

loads in test case 1 

The chilled water flow rates are quantified by the uncertainty processing model, and the 

distributions of cooling loads are then obtained. The means and 95% Bayesian credible 

intervals are used to show the quantified cooling loads, as shown in Figure 5.10. The 

results of cooling load quantification were evaluated by comparing the measurement 

errors and the quantification errors of cooling loads. The measured cooling loads (�̃�𝑡) and 

the means of the quantified cooling loads (�̅�𝑡
′) can be calculated by Eq. (5.14). The 

measurement error (�̃�𝑡) is defined as the difference between the measured cooling load 
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and the actual cooling load, and the quantification error (𝑒𝑡
′) is defined as the difference 

between the mean and the actual cooling load, as shown in Eq. (5.15), where 𝑄𝑡 is the 

actual cooling loads. Figure 5.11 shows the distributions of the measurement errors and 

the quantification errors of cooling loads. It can be observed that the measurement errors 

of cooling loads were much more significant than the quantification errors, and they were 

distributed in a wide range (0 - 900 kW). The quantification errors of cooling loads were 

concentrated in an acceptable narrow range of around 0 kW. The root-mean-square error 

(RMSE) of the measured (�̃�𝑅𝑀𝑆) and quantified (𝐸𝑅𝑀𝑆
′ ) cooling loads can be calculated 

by Eq. (5.16), where ns is the total number of samples. They were 416.14 kW and 84.42 

kW respectively in this test case. Compared with the measured cooling loads, the RMSE 

of the quantified cooling loads was reduced remarkably by 79.71%. The uncertainty 

processing model of the proposed control strategy was effective in solving the positive 

measurement uncertainties of flow meters and reducing the errors of cooling loads. 

Because the conventional control strategy uses the measured cooling loads directly, the 

measurement errors may lead to significant faults in decision-making. In the proposed 

control strategy, the quantified cooling loads are used. The faults in decision-making can 

be reduced as the quantification errors are small. 

 

Figure 5.10 Quantified cooling loads of Case 1 using the proposed control strategy 
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Figure 5.11 Error distributions of measured and quantified cooling loads in Case 1 
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off with a delay when the conventional control strategy was used. And the operating 

chiller number varied frequently, especially in the last two days. However, the frequent 

switching of chillers was avoided using the proposed control strategy. The total switching 

number of chillers is calculated and presented in Table 5.3. It had been reduced by 35.71% 

compared with that when the conventional control strategy was used. 

 

Figure 5.12 Number of chillers in operation during the test period in case 1 

In order to further evaluate the operating performance of the chiller plant under the 

conventional and proposed control strategies, the total energy consumption and the 
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decisions in real time. The cumulative unmet cooling load of the chiller plant (𝑄𝑢𝑛𝑚𝑒𝑡,𝑐𝑢𝑚) 
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chilled water temperature setpoint. As shown in Table 5.3, compared with the 

conventional control strategy, the total energy consumption of the chiller plant was 

reduced by 0.49% and the cumulative unmet cooling load of the chiller plant was 

increased by 3.14%. 

 ( )( )
168 168

, , , ,
0 0

t t

unmet cum unmet t chw t chws t set
t t

Q Q dt c q T T dt
= =

= =
= =   −    (5.17) 

Table 5.3 Operation performance of chiller plant using the conventional and proposed 

control strategies 

Control 

strategy 

Total switching 

number 
Total energy consumption 

Cumulative unmet 

cooling load  

- Reduction (%) kWh Reduction (%) kWh Increment (%) 

Conventional 56 - 380 585 - 3 117 - 

Proposed 36 35.71 378 715 0.49 3 215 3.14 

 

In this case, when using the proposed control strategy, the overall performance of the 

chiller plant is satisfactory. The proposed control strategy could significantly reduce the 

number of unnecessary chiller switching. The total energy consumption had also been 

reduced slightly. The drawback was that the cumulative unmet cooling load was increased 

a little (3.14%). But the compromise between the significant decrease in total chiller 

switching number and the slight increase in cumulative unmet cooling load was perfectly 

acceptable. To conclude, the proposed control strategy can tolerate the positive 

measurement uncertainties. 

5.4.1.3 Risk assessment of decision-making in test case 1 

Figure 5.13 shows the quantified risks of control decision-making in case 1 under the 

proposed control strategy. It can be observed that the risks of most control decisions were 
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lower than the risk boundary. The high-risk control decisions only accounted for 0.25% 

of the total control decisions, 99.75% of control decisions were reliable and did not need 

to be double-checked by operators.  

 

Figure 5.13 Quantified risks of control decision-making in case 1 using the proposed 

control strategy 

5.4.2 Validation test 2: Measured cooling loads < Actual cooling loads 

5.4.2.1 Comparison between quantification errors and measurement errors of cooling 

loads in test case 2 

Figure 5.14 shows the quantified cooling loads of case 2. The distributions of 

measurement errors and quantification errors of cooling loads are presented in Figure 5.15. 

The measurement errors were distributed in a wide range (-900 - 0 kW), while the 

quantification errors were concentrated in an acceptable narrow range of around 0 kW. 

In addition, the RMSEs of the measured and quantified cooling loads were 411.92 kW 

and 85.09 kW, respectively. The measurement errors were much higher than the 

quantification errors. The uncertainty processing model of the proposed control strategy 

was also effective in solving the negative uncertainties in flow measurements, the RMSE 

of the quantified cooling loads was reduced by 79.34% compared with the measured 

cooling loads. 
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Figure 5.14 Quantified cooling loads in case 2 using the proposed control strategy 

 

Figure 5.15 Error distributions of measured and quantified cooling loads in case 2 

5.4.2.2 Evaluation of chiller operation performance in case 2 

Figure 5.16 shows the number of chillers in operation during the test period in case 2 

under the conventional and the proposed control strategies. There was a little bit of 

difference between the variations of the number of chillers in operation under the two 

control strategies. Due to the existence of negative measurement uncertainties, the 

cooling loads were under-estimated. The chillers tended to be switched on with a delay 

and switched off in advance when using the conventional control strategy. The cumulative 

5000

10000

15000

20000

Hour

C
o

o
li

n
g
 l

o
a
d
 (

k
W

)

0 12 24 36 48 60 72 84 96 108 120 132 144 156 168

Mean

95% Bayesian credible interval

0.000

0.001

0.002

0.003

0.004

0.005

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300

Error of cooling load (kW)

D
e
n
si

ty

-900 -800 -700 -600 -500 -400 -300 -200 -100 0 100 200 300

Error of cooling load (kW)

Measurement error

Quantification error



96 

 

unmet cooling load would increase, and as a result, the indoor thermal comfort would be 

compromised. 

 

Figure 5.16 Number of chillers in operation during the test period in case 2 

Table 5.4 shows the total switching number, the total energy consumption and the 

cumulative unmet cooling load of the chiller plant when the conventional and the 

proposed control strategies are used. Their differences are also presented. It can be 

observed that the cumulative unmet cooling load increased significantly compared with 

that in case 1. It was consistent with the above analysis. Compared with the conventional 

control strategy, the total switching number and the total energy consumption of the 

chiller plant were increased by 5.56% and 0.08%, respectively. The cumulative unmet 

cooling load was reduced significantly by 31.22%. 
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In this case, the overall performance of the chiller plant is also satisfactory when the 

proposed control strategy is used. The proposed control strategy reduced the cumulative 

unmet cooling load significantly with slight increases in the total chiller switching number 

and the total energy consumption of the chiller plant. To conclude, the proposed strategy 

can also tolerate the negative measurement uncertainties. 

5.4.2.3 Risk assessment of decision-making in test case 2 

The quantified risks of control decision-making in case 2 under the proposed control 

strategy are shown in Figure 5.17. It can be observed that the risks of most control 

decisions were lower than the risk boundary. The high-risk control decisions only 

accounted for 0.30% of the total control decisions, 99.70% of control decisions were 

reliable and did not need to be double-checked by operators. 

 

Figure 5.17 Quantified risks of control decision-making in case 2 using the proposed 

control strategy 

5.5 Discussion 

According to the test results and analysis presented in Section 5.4, the measurement 

uncertainties of flow meters show significant impacts on the conventional cooling load-
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benchmark, the positive flow measurement uncertainties led to a significant increase of 

55.56% in unnecessary chiller switching, while the negative flow measurement 

uncertainties led to a significant increase of 45.39% in the cumulative unmet cooling load. 

Similar results were obtained in the literature. For example, an existing study has reported 

that a medium level of measurement uncertainties led to a decrease of about 43% in 

overall chiller switching number and an increase of about 41% in under-cooling 

percentage when using cooling load-based chiller sequencing control (Liao et al., 2015). 

Another study found that the total chiller switching number decreased by 23.1%, but the 

cumulative supply air temperature tracking error increased significantly by 146.8 times 

(equivalent to an increase in the average tracking error from 0.004 K to 0.630 K), due to 

measurement uncertainties (Liao et al., 2014). Both above-mentioned studies indicated 

that cooling load-based chiller sequencing control was affected by measurement 

uncertainties significantly, which is consistent with the results of this study. But the 

degrees of influence in these studies were different, which possibly depends on the 

measurement uncertainty levels and types, cooling load profiles, system specifications, 

etc. 

Validation results showed that the proposed control strategy performed much better than 

the conventional control strategy. The proposed control strategy could tolerate both the 

positive and negative flow measurement uncertainties. The root-mean-square error of 

cooling loads was reduced dramatically by about 79% after being processed by the 

developed uncertainty processing model of flow measurements. Compared with the 

conventional control strategy, the total chiller switching number and the cumulative 

unmet cooling load were reduced by 35.71% and 31.22% respectively. While the total 

energy consumption in both validation test cases only changed a little (< 0.50%). This is 

possible because the actual cooling loads (Figure 5.8) did not change no matter if the flow 
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measurement uncertainties were handled or not. The slight reduction or increment of 

energy consumption was probably caused by the working time of individual electrical 

devices (including the chillers, pumps, and cooling towers) and the part load performance 

of chillers. The literature (Liao et al., 2014) also found that the total energy consumption 

reduced slightly by 4.12% under measurement uncertainty. Based on the proposed control 

strategy, the flow meters with significant measurement uncertainties can still be safely 

used in chiller plants. The service life of flow meters can be extended dramatically, and 

the operating and maintenance costs can decrease significantly.  

For the risk assessment, the risk boundary can be set flexibly according to the actual 

requirements. The higher the requirement for reliability, the lower the risk boundary 

should be set. However, if the risk boundary is set too low, the proportion of high-risk 

control decisions may increase. And the operating cost would increase as the operators 

need to spend more time double-checking the high-risk control decisions. A trade-off 

between the reliability level and the operating cost should be made. 

The test and validation of the proposed control strategy are based on a cooling plant with 

identical chillers. The key function of this strategy is to calibrate and correct the measured 

cooling loads. Therefore, it is also applicable to cooling plants with non-identical chillers 

using cooling load-based sequencing control. In the case of the non-identical chillers, the 

control logic and the settings of cooling load thresholds will be slightly different as the 

priority of chillers should be taken into consideration. 

Generally, due to the degradation of sensor performance, its measurement uncertainty 

may increase over time. The uncertainty processing model in the proposed control 

strategy should be updated regularly to cope with this problem. The physical model-based 

measurement uncertainty quantification method proposed in Chapter 4 gives an 

opportunity to update the uncertainty processing model automatically. In addition, a 
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simple energy balance model is involved in the development of the uncertainty processing 

model, similar physical models can be developed easily in HVAC systems. Therefore, it 

is potential to generalize the proposed control strategy to other HVAC systems with a 

little modification. The proposed control strategy has high flexibility and strong 

generalization ability. These advantages of the proposed control strategy make it have 

wider applicability compared with the existing fault-tolerant control strategies. 

The proposed probability-based online robust chiller sequencing control strategy aims to 

optimize the conventional cooling load-based chiller sequencing control under flow 

measurement uncertainties. The uncertainties of flow measurements are quantified using 

Bayesian inference and Markov chain Monte Carlo sampling methods. The measured 

cooling loads can be calibrated and corrected online. The control decisions are made 

based on “probability values” of cooling load distribution over a range rather than a 

specific value. The risks can also be assessed simultaneously. The proposed control 

strategy is innovative. In addition, both the systematic and random uncertainties of flow 

meters are considered simultaneously in this strategy. Compared with existing studies 

which considered random uncertainties only, such as Li et al. (2014); Liao et al. (2014); 

Liao et al. (2015), this study is more comprehensive and more in line with practical 

application scenarios.  

5.6 Summary 

Chiller sequencing control is crucial to the reliable operation of multiple-chiller plants. 

This chapter proposed a probability-based online robust sequencing control strategy for 

chiller plants under low-quality and uncertain measurements. The proposed control 

strategy can tolerate uncertainties in water flow measurements. An uncertainty processing 

model of flow measurements was developed based on an energy balance model using 
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Bayesian inference and Markov chain Monte Carlo sampling methods. As the core of the 

proposed control strategy, the uncertainty processing model of flow measurements can 

quantify the distributions of chilled water flow rates and obtain the probability 

distributions of cooling loads. Chiller sequencing control decisions were made based on 

the probability distributions of the quantified cooling loads. The risks in the decision-

making process were also assessed. Based on the validation results, the main conclusions 

can be drawn as follows: 

• The proposed probability-based online robust chiller sequencing control strategy 

dramatically reduced the major impacts of both positive and negative flow 

measurement uncertainties on the multiple-chiller plants. Compared with the 

conventional total cooling load-based chiller sequencing control strategy, the total 

switching number of chillers was reduced by 35.71% under the positive flow 

measurement uncertainties, and the cumulative unmet cooling load was reduced by 

31.22% under the negative flow measurement uncertainties. 

• As the core of the proposed control strategy, the uncertainty processing model of flow 

measurements could quantify the chilled water flow rates accurately, which led to a 

significant decrease (about 79%) in the RMSE of cooling loads. 

• The risks in the decision-making process could be quantified to evaluate the reliability 

of the proposed control strategy and the high-risk decisions could be avoided through 

double-checking by operators. 

 



102 

 

CHAPTER 6 DATA-DRIVEN MODEL BASED 

MEASUREMENT UNCERTAINTY QUANTIFICATION 

METHOD AND ITS VALIDATION 

In Chapter 4, it has been shown that the physical model-based measurement uncertainty 

quantification method performs well, but the method is not applicable for the cases where 

the physical models cannot be established, or extra costs (e.g., installation of extra sensors) 

should be paid to establish the physical models. For example, the energy balance model 

of an air-cooled chiller system cannot be built easily based on existing measurements as 

the heat rejection of the condenser is very difficult to measure or estimate. This limitation 

may largely affect the application of the method. Therefore, this chapter develops a data-

driven model-based measurement uncertainty quantification method to cope with this 

challenge. It is validated systematically by quantifying both the systematic and random 

uncertainties of a chilled water flow meter in an actual air-cooled chiller. 

The organization of this chapter is as follows. Section 6.1 introduces the development of 

the proposed data-driven model-based measurement uncertainty quantification method in 

detail. Section 6.2 presents the test platform and validation arrangements for the proposed 

data-driven model-based measurement uncertainty quantification method. Section 6.3 

presents the validation results of the proposed method and evaluates its performance in 

quantifying different levels of flow measurement uncertainties. A discussion of the 

proposed method is presented in Section 6.4. The conclusions are made in Section 6.5. 
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6.1 Development of the data-driven model-based measurement 

uncertainty quantification method 

This section presents the development of the proposed data-driven model-based 

measurement uncertainty quantification method with one target variable (θ) and a series 

of auxiliary variables (y, x1, x2, …, xm). The data-driven model development and the 

measurement uncertainty quantification procedures will be introduced respectively. 

6.1.1 Outline of the proposed method 

Figure 6.1 shows the outline of the proposed data-driven model-based measurement 

uncertainty quantification method. It mainly consists of two parts: (a) Data-driven model 

development, and (b) Measurement uncertainty quantification. For part (a) data-driven 

model development, the normal operation data (reference data of the target variable) is 

used and should be pre-processed first. Then the pre-processed data are used to develop 

the data-driven regression model. Its function form (f (·)) and error distribution (δ, 

standard deviation) need to be determined. For part (b) measurement uncertainty 

quantification, the actual measurement data also should be pre-processed first. Then the 

uncertainty of the target variable in the actual measurements is quantified based on the 

developed regression model using Bayesian inference and Markov chain Monte Carlo 

sampling methods. Accordingly, the posterior distributions of both the systematic 

uncertainty (µ) and random uncertainty (σ) of the target variable can be discovered 

effectively. The data-driven model development and the measurement uncertainty 

quantification procedures will be presented in detail in Sections 6.1.2 and 6.1.3, 

respectively. 
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Figure 6.1 Outline of the proposed data-driven mode-based measurement uncertainty 

quantification method 

6.1.2 Data-driven model development 

The data-driven regression model is the core of the proposed measurement uncertainty 

quantification method. It is to establish a mapping relationship between the inputs 

(independent variables) and the output (dependent variable). The regression function of 

output y and inputs X = |𝜃𝑟𝑒𝑓 , 𝑥1, 𝑥2, … , 𝑥𝑚| (including the target variable (θref) and other 

related/available auxiliary variables) is denoted by Eq. (6.1). The function is always 

accompanied by an error term (e) and it follows a normal distribution with mean 0 and 

standard deviation δ.  
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To determine the regression function form 𝑓(X) and the error distribution, the data-driven 

regression model should be trained by a series of normal operation data, as shown in 

Figure 6.1a. Firstly, the raw dataset should be pre-processed. The meaningless samples 

(a sample is defined as a group of data points collected at the same time) and the samples 

with missed values should be removed from the training dataset. Then the regression 

model is developed using the pre-processed data, and the regression function form can be 

determined. The error distribution can be constructed by the model residuals as the 

residuals are the observations of the model error. 

The developed regression model is a benchmark model. The normal operation data should 

be collected when the system operates normally with no significant measurement 

uncertainties due to performance degradation of sensors/meters used. The sensors/meters 

work at the expected performance. The measurement errors meet the accuracy classes of 

corresponding sensors/meters, such levels of uncertainties are unavoidable but acceptable 

in engineering practice. In other words, the normal operation data is the reference data 

with acceptable measurement uncertainties. 

6.1.3 Measurement uncertainty quantification procedures 

The proposed method aims to quantify the measurement uncertainty of the target variable 

in the actual measurement data. According to the description in Section 3.1, the measured 

value of the target variable (�̃�) is equal to the reference value (θref) plus an uncertain term 

(u), as shown in Eq. (6.2). The uncertain term follows a normal distribution with mean μ 

and standard deviation σ. The mean represents the systematic uncertainty, and the 

standard deviation represents the random uncertainty. According to the characteristics of 

normal distribution, the measured flow rates would follow the normal distribution with 

mean (𝜃𝑟𝑒𝑓 + 𝜇) and standard deviation σ, as shown in Eq. (6.3). In the distribution 
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function (Eq. (6.3)), only the measured value of the target variable is available, the 

reference value of the target variable, systematic uncertainty and random uncertainty are 

unknown and should be quantified. 

 ( )2,       ~ ,  ref u u N   = +   (6.2) 

 ( )2~ ,  refN   +   (6.3) 

Similarly, the output y of the regression model presented in Section 6.1.2 would follow a 

normal distribution with mean 𝑓(𝜃𝑟𝑒𝑓 , 𝑥1, 𝑥2, … , 𝑥𝑚) and standard deviation δ, as shown 

in Eq. (6.4). It is worth noting that the target variable in Eq. (6.4) is its reference value 

rather than its measured value. Its measured value may not satisfy Eq. (6.1) due to 

measurement uncertainty. 

 ( )( )2

1 2~ ,  ,  ,  ...,  ,  ref my N f x x x    (6.4) 

The measurement uncertainty quantification procedures are presented in Figure 6.1b. 

Firstly, the actual measurement data (possibly with significant uncertainties relative to 

the reference data) are pre-processed to remove outliers. Then the measurement 

uncertainty of the target variable is quantified based on the well-trained regression model 

(Eq. (6.4)) and the measurement uncertainty model (Eq. (6.3)) using Bayesian inference 

and Markov chain Monte Carlo sampling methods. The posterior distributions of both 

systematic and random uncertainties of the target variable can be obtained. 

6.2 Test platform and validation arrangements for the proposed method 

The proposed data-driven model-based measurement uncertainty quantification method 

is tested and validated systematically on a real air-cooled chiller system. The 
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measurement uncertainty of the chilled water flow meter is quantified using the proposed 

method under the auxiliary measurements of the power meter and temperature sensors. 

Figure 6.2 shows the overall validation processes. Firstly, the operation data of an air-

cooled chiller is extracted from BMS, and the data is pre-processed and divided into two 

data subsets. Secondly, one data subset (Dataset-1) is used to develop the benchmark 

regression model, and the other data subset (Dataset-2) is combined with the pre-set flow 

measurement uncertainty to generate an uncertain dataset. Thirdly, the flow measurement 

uncertainty in the uncertainty dataset is quantified using the proposed measurement 

uncertainty quantification method. Finally, the performance of the proposed method in 

quantifying flow measurement uncertainties is evaluated by comparing the quantified 

results with the pre-set values. 

 

Figure 6.2 The overall validation processes 

6.2.1 The air-cooled chiller system used in the tests 

The studied air-cooled chiller serves a campus building in Hong Kong. Figure 6.3 shows 

the air-cooled chiller and its schematic diagram. The power consumption (𝑃𝐶𝐻), chilled 
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(Tchws) are measured for system monitoring and online real-time control. The heat 

absorption of the evaporator (Qin) and power consumption of the compressor can be 

obtained easily, but the heat rejection of the condenser (Qout) can hardly be measured 

directly. It is a typical case where the physical model (energy balance model) is 

unavailable. But the data-driven model is fully applicable to this case. 

   

Figure 6.3 The studied air-cooled chiller and its schematic diagram 

Table 6.1 shows the specifications and design parameters of the studied chiller. The rated 

cooling capacity and nominal power input of the chiller are 900.0 kW and 256.4 kW, 

respectively. And its integrated part load value (IPLV) and coefficient of performance 

(COP) are 5.80 and 3.51, respectively. The designed inlet and outlet water temperatures 

are 12.5 ℃ and 7.0 ℃ respectively. And the designed chilled water flow rate is 39.0 L/s. 
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Table 6.1 Specifications and design parameters of the studied air-cooled chiller 

No. Parameter Unit Value 

1 Rated cooling capacity kW 900.0 

2 Nominal power input kW 256.4 

3 Integrated part load value - 5.80 

4 Coefficient of performance - 3.51 

5 Designed inlet water temperature °C 12.5 

6 Designed outlet water temperature °C 7.0 

7 Designed chilled water flow rate L/s 39.0 

 

6.2.2 Data description and pre-processing 

The data used in this study were collected in 2019. The variables collected include the 

chiller power, chilled water flow rate, supply and return chilled water temperatures, and 

ambient air temperature (Tair). All variables are recorded every 10 minutes simultaneously. 

The service time of the chiller is generally from 7:00 AM to 11:00 PM on weekdays. 

Therefore, the data collected during non-working hours are meaningless and should be 

removed. In addition, the samples that contain any missing value are also removed. After 

pre-processing, the dataset contains 2 974 samples in total and is used for modelling and 

validation. 

The 2 974 samples are divided into two subsets randomly, a subset with 1 974 samples 

(Dataset-1) is used to train the regression model, and a subset with 1 000 samples 

(Dataset-2) is used to generate uncertain data. More details are presented in the following 

sections. 
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6.2.3 Non-linear regression model development 

The target variable is the chilled water flow rate, and the auxiliary variables are the power 

consumption of the chiller, the chilled water supply and return temperatures, and the 

outdoor air temperature. The method should be validated systematically by quantifying 

different levels of measurement uncertainties (both systematic and random uncertainties) 

of the chilled water flow meter. 

A multiple quadratic non-linear regression model is developed based on Dataset-1. Eq. 

(6.5) presents the function form of the regression model. The output (dependent variable) 

is the power consumption of the chiller, and the inputs (independent variables) include 

the reference chilled water flow rate, the chilled water return and supply temperatures, 

and the outdoor air temperature. 
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where, a1-5 are the coefficients, c is the specific heat capacity of water (kJ/(kg·℃)), and 

ρ is the water density (kg/m3). 

The model is trained using Dataset-1. The coefficients and the residual distribution are 

determined using the ordinary least squares (OLS) method. The sum of the squares of the 

differences between the observed output and those predicted by the regression function 

of the inputs should be minimized. Figure 6.4 shows the residual distribution of the 

predicted power consumption. The normal quantile-quantile (Q-Q) plot of the residuals 

is also drawn for estimating the similarity between the residual distribution and a 

theoretical distribution, as shown in Figure 6.5. Most of the points fall on a straight line, 

but the points at the ends deviate a little from the line, and a thin-tailed distribution is 
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found. It indicates that the residual distribution approximately fits a normal distribution. 

Its mean is 0, and its standard deviation (δ) is 11.39. The coefficients, including the 

residual distribution parameter, are presented in Table 6.2. The coefficient of 

determination (R2) of the model is 0.92, indicating that the regression model is not ideal 

but acceptable. 

  

Figure 6.4 Residual distribution of the non-linear regression model 
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Figure 6.5 Normal quantile-quantile plot for residuals 

Table 6.2 Coefficients and residual distribution parameter of the non-linear regression 

model 

Coefficient a1 a2 a3 a4 a5 δ 

Value 0.0001582 0.09859 0.1470 -1.313 -16.89 11.39 

 

6.2.4 Measurement uncertainty quantification for chilled water flow meter 

In order to evaluate the performance of the proposed data-driven model-based 

measurement uncertainty quantification method systematically, a new operation dataset 

with measurement uncertainty is needed. Dataset-2 is used to construct the uncertain 

dataset. Firstly, the uncertainties of chilled water flow measurements are generated 

artificially based on a given normal distribution. Then the uncertain dataset is obtained 

by adding the generated uncertain term to the chilled water flow rates of Dataset-2. The 

distribution parameters (mean and standard deviation) of the generated uncertainties in 

the uncertain dataset will be quantified by the proposed method for its validation. 
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According to the characteristics of normal distribution and the regression model 

developed in Section 6.2.3, Eq. (6.6) is established. The reference chilled water flow rate 

(𝑞𝑐ℎ𝑤,𝑟𝑒𝑓) is involved in this equation and it satisfies Eq. (6.7). The two equations are the 

likelihood functions in Bayesian analysis. The systematic uncertainty (μ) and random 

uncertainty (σ) are unknown and need to be quantified. Their posterior distributions will 

be obtained using the proposed method. 
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It is of great importance to assign an appropriate prior distribution to each of the 

parameters to be quantified, i.e., the systematic and random uncertainties of the flow 

measurements. In this study, the prior distribution of systematic uncertainty is normal and 

assigned based on a hypothesis. It assumes that the probability of the systematic 

uncertainty being less than 10% of the designed chilled water flow rate is 95%. As shown 

in Figure 6.6, the mean and standard deviation of the prior distribution are 0 and 1.99 

respectively. The standard deviation of random uncertainty must be non-negative. The 

half-normal distribution (~|𝑁(0,1)|) is used as its prior distribution, as shown in Figure 

6.7. 
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Figure 6.6 Prior distribution of systematic uncertainty 

 

Figure 6.7 Prior distribution of random uncertainty 
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the proposed method in quantifying different levels of flow measurement uncertainties. 

Therefore, four cases with different levels of measurement uncertainties are used to 

systematically test and validate the proposed method. Table 6.3 shows the detailed pre-

set/introduced uncertainties in each case. The measurement uncertainties of the chilled 

water flow meter are generated randomly based on the given normal distributions in Table 

6.3. The uncertain dataset mentioned in Section 6.2.2 is obtained by adding the generated 

uncertainties to a normal dataset (Dataset-2) and used to test the proposed measurement 

uncertainty quantification method. 

As can be seen from Table 6.3, the systematic uncertainties of Case 1 and Case 2 are 

positive, and they are negative in Case 3 and Case 4. Case 1 and Case 4 have a high level 

of uncertainties, their systematic uncertainties are 10.26% of the designed chilled water 

flow rate. Case 2 and Case 3 have a low level of uncertainties, their systematic 

uncertainties are 5.13% of the designed chilled water flow rate. For the random 

uncertainties of these cases, they are gradually increased. These cases cover the common 

scenarios in practical applications, and they can be used to test and validate the proposed 

method comprehensively. 

Table 6.3 Actual measurement uncertainty of chilled water flow rate in each case 

Case No. Uncertainty level 
Systematic uncertainty 

(L/s) 

Random uncertainty 

(L/s) 

Case 1 High 4.0 1.5 

Case 2 Low 2.0 2.0 

Case 3 Low ‒2.0 2.5 

Case 4 High ‒4.0 3.0 
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The measurement uncertainties of chilled water flow measurements in each Case are 

generated randomly based on the given normal distributions in Table 6.3. The uncertain 

dataset mentioned in Section 6.2.4 is obtained by adding the generated uncertainties to a 

normal dataset (Dataset-2) and used to test the proposed method. 

6.3 Performance evaluation of the proposed method on flow 

measurement uncertainty quantification 

The trace plots, autocorrelations and potential scale reduction factors of the systematic 

and random uncertainties of flow measurements are presented to diagnose the 

convergence of the quantification in each case. The posterior distributions of both 

systematic and random uncertainties are obtained and their posterior means, 95% 

Bayesian credible intervals and relative errors are provided to evaluate the performance 

of the proposed strategy in quantifying flow measurement uncertainties. 

The number of iterations per chain is set to 4000 for each case, and the thinning technique 

is not used (i.e., k = 1). 

6.3.1 Systematic uncertainty quantification of flow measurements 

6.3.1.1 Convergence diagnostics of systematic uncertainty quantification 

Figure 6.8 shows the sampling paths in quantifying the systematic uncertainty of flow 

measurements in each case. The potential scale reduction factors are also presented in the 

upper right corner of each sub-figure. As can be seen that the post-warmup samples of 

systematic uncertainty in each case had strong centralized tendencies. They fluctuated 

around a certain value, and the samples from different chains could not be distinguished 

easily. The potential scale reduction factor in each case was equal to 1.00. These all 

indicated convergence to posterior distributions. In addition, the autocorrelations of post-
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warmup samples are used to further diagnose the convergence, as shown in Figure 6.9. 

The autocorrelations of post-warmup samples in each case were reduced to about 0 

rapidly with the increase of lag, which also demonstrated convergence. Therefore, these 

post-warmup samples were qualified to construct the posterior distributions of the 

systematic uncertainties of flow measurements in each case. 

 

Figure 6.8 Sampling paths in quantifying the systematic uncertainty of flow 

measurements in (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4 
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Figure 6.9 Autocorrelations of post-warmup samples in quantifying the systematic 

uncertainty of flow measurements in each case 

6.3.1.2 Posterior distributions of systematic uncertainties 

Figure 6.10 shows the posterior distribution of systematic uncertainty of flow 

measurements in each case, which is constructed using the corresponding post-warmup 

samples in Figure 6.8. Corresponding to the posterior distributions, the numerical results 

are presented in Table 6.4. For the quantified systematic uncertainty of flow 

measurements in each case, its posterior mean was very close to its pre-set value (see 

Table 6.3). And the 95% Bayesian credible interval was narrow and contained its pre-set 

value. In addition, the relative error of the posterior mean relative to its pre-set value was 

within 7.5%, which was fully acceptable in engineering practice. 
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Figure 6.10 Posterior distributions of systematic uncertainty of flow measurements in 

(a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4 

Table 6.4 Numerical results of systematic uncertainty quantification 

 Posterior mean (L/s) 95% Bayesian credible interval (L/s) Relative error (%) 

Case 1 3.95 [3.69, 4.22] 1.25 

Case 2 2.07 [1.79, 2.36] 3.50 

Case 3 -1.85 [-2.15, -1.55] 7.50 

Case 4 -3.78 [-4.09, -3.46] 5.50 

 

In summary, different levels of systematic uncertainties in flow measurements were 

quantified successfully using the proposed method, which indicates that the performance 
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of the method in quantifying the systematic uncertainties of flow measurements was 

satisfactory. 

6.3.2 Random uncertainty quantification of flow measurements 

6.3.2.1. Convergence diagnostics of random uncertainty quantification 

Figure 6.11 shows the sampling paths in quantifying the random uncertainty of flow 

measurements in each case. The potential scale reduction factors are also presented in the 

upper right corner of each sub-figure. As can be seen from Figure 6.11 that the post-

warmup samples of random uncertainty in each case fluctuated around a certain value, 

they had strong centralized tendencies. Besides, the samples from different chains could 

not be distinguished easily. The potential scale reduction factor in each case was equal to 

1.00. These all indicated convergence to posterior distributions. In addition, the 

autocorrelations of post-warmup samples are shown in Figure 6.12, which are used to 

further diagnose the convergence. The autocorrelations of post-warmup samples in each 

case were reduced to about 0 rapidly with the increase of lag, which also demonstrated 

convergence. Therefore, these post-warmup samples were qualified to construct the 

posterior distributions of the random uncertainties of flow measurements in each case. 
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Figure 6.11 Sampling paths in quantifying the random uncertainty of flow 

measurements in (a) Case 1, (b) Case 2, (c) Case 3 and (d) Case 4 
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Figure 6.12 Autocorrelations of post-warmup samples in quantifying the random 

uncertainty of flow measurements in each case 

6.3.2.2. Posterior distributions of random uncertainties 

The posterior distribution of random uncertainty of flow measurements in each case was 

constructed using the corresponding post-warmup samples in Figure 6.11, as shown in 

Figure 6.13. Corresponding to the posterior distributions, the numerical results are 

presented in Table 6.5. For the quantified random uncertainty of flow measurements in 

each case, its posterior mean was very close to its pre-set value (see Table 6.3). And the 

95% Bayesian credible interval was narrow and contained its pre-set value. In addition, 

the relative error of the posterior mean relative to its pre-set value was within 10%, such 

a level of error was also acceptable in engineering practice. 
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Figure 6.13 Posterior distributions of random uncertainty of flow measurements in (a) 

Case 1, (b) Case 2, (c) Case 3 and (d) Case 4 

Table 6.5 Numerical results of random uncertainty quantification 

 Posterior mean (L/s) 95% Bayesian credible interval (L/s) Relative error (%) 

Case 1 1.64 [1.32, 1.97] 9.33 

Case 2 2.10 [1.79, 2.42] 5.00 

Case 3 2.50 [2.18, 2.82] 0.00 

Case 4 2.94 [2.61, 3.26] 2.00 

 

In summary, different levels of random uncertainties in flow measurements were 

quantified successfully using the proposed method, which indicates that the performance 

of the method in quantifying the systematic uncertainties of flow measurements was 

satisfactory. 
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6.4 Discussion 

The validation results showed that the proposed method was effective to quantify flow 

measurement uncertainties. Different levels of flow measurement uncertainties, including 

the systematic and random uncertainties, could be quantified accurately. The performance 

of the proposed method in quantifying both systematic and random uncertainties of flow 

measurements was quite satisfactory. Compared with the physical model-based 

measurement uncertainty quantification method developed in Chapter 4, which performs 

poorly on negative systematic uncertainty quantification, the data-driven model-based 

method have a better performance on measurement uncertainty quantification. In addition, 

the data-driven model-based method has great advantages in model development, leading 

to greater application potential. 

The accuracy of the proposed method in quantifying flow measurement uncertainties 

mainly depends on the data-driven benchmark regression model. Since the uncertainties 

quantified by the method are relative to the data used to train the regression model, the 

actual uncertainties in a dataset are the sum of the quantified uncertainties and the 

uncertainties in the training dataset. If the uncertainties in the training dataset are 

significant, the quantified results may be unreliable. Hence, the selection of the training 

dataset is of vital importance. The performance of the sensors/meters used is generally as 

expected after initial commissioning. It is recommended to use the data collected right 

after the systems/sensors are commissioned. In addition, the benchmark model or the 

training data can also be provided by the sensor/meter manufacturers. 

In the test period, the case studies adopted a multiple quadratic non-linear regression 

model as the benchmark model. The regression model was not very accurate, the 

coefficient of determination was 0.92 and the standard deviation of residual was 11.39. 
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But this defect did not affect the performance of the method, because the error (residual) 

distribution of the benchmark model is considered in the Bayesian model. It is not 

necessary to develop a perfect regression model. The proposed method has strong 

adaptability. In addition, the data-driven regression model can be developed based on the 

available data, it is not necessary to install extra sensors for measuring more variables. 

There is almost no additional cost to implement this method. It shows great flexibility and 

economy. 

The proposed data-driven model-based measurement uncertainty quantification method 

can be used for online sensor/meter calibration. It has a huge advantage compared with 

on-site calibration. The measurement uncertainty of a measuring instrument may change 

over time due to performance degradation. It is recommended that the measuring 

instruments should be calibrated on an annual basis (ASHRAE, 2014). But such measure 

is often not conducted due to the limitations of site conditions and high manpower costs. 

Online sensor/meter calibration is a promising and cost-effective solution to such 

practical problems. It can be done automatically as long as there are enough operation 

data. In addition, the interval of sensor/meter calibration can also be set flexibly according 

to the actual needs. The online sensor/meter calibration based on the proposed method is 

cost-effective and has great practical value. 

6.5 Summary 

A data-driven model-based flow measurement uncertainty quantification method is 

proposed in this study for enhancing the reliability and energy performance of HVAC 

systems. As the core of the proposed method, the data-driven regression model is the 

benchmark and is developed using the system’s normal operation data. The flow 

measurement uncertainties are quantified based on the regression model using Bayesian 
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inference and Markov chain Monte Carlo sampling methods. The performance of the 

proposed method in quantifying flow measurement uncertainties is tested and validated 

systematically considering different levels of measurement uncertainties. Based on the 

validation results, the main conclusions are listed as follows. 

• The proposed method can effectively quantify different levels of flow measurement 

uncertainties. It is applicable to quantify both the systematic and random uncertainties 

of flow measurements in HVAC systems. 

• In the test period, the 95% Bayesian credible intervals contained the pre-set values of 

corresponding parameters, the difference between the posterior mean and the pre-set 

value of each parameter was very small, and the relative errors in quantifying flow 

measurement uncertainty were within 10%. The performance of the proposed method 

in quantifying flow measurement uncertainties was quite satisfactory. 
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CHAPTER 7 FRESH AIR CONTROL OPTIMIZATION 

STRATEGY FOR AIR HANDLING UNIT WITH 

MEASUREMENT UNCERTAINTIES PROCESSED BY 

DATA-DRIVEN MODEL-BASED METHOD 

Fresh air control of air handling units plays an important role in maintaining indoor air 

quality and achieving energy savings for HVAC systems during transition seasons. Its 

performance is also affected by the uncertainties of the measurements used. Wrong 

control decisions are possible to be made and the aim of energy saving may not be 

achieved. This chapter quantitatively analyses the impacts of humidity measurement 

uncertainties on enthalpy-based fresh air control. An optimization strategy for the fresh 

air control is proposed to reduce the impacts, where the measurement uncertainties of 

relative humidity sensors are addressed by the data-driven model-based method 

developed in Chapter 6. And a systematic validation of the proposed control optimization 

strategy is conducted. 

The organization of this chapter is as follows. Section 7.1 introduces the enthalpy-based 

fresh air control method of air handling units. Section 7.2 analyses the impacts of 

measurement uncertainties on enthalpy-based fresh air control. Then the fresh air control 

optimization strategy is proposed in Section 7.3. And it is validated systematically in 

Section 7.4. Finally, the conclusions are made in Section 7.5. 

7.1 Enthalpy-based fresh air control of air handling units 

An air handling unit (AHU) is one of the most important parts of an HVAC system and 

is used to provide cooling or heating for large-scale buildings (Yu et al., 2014). The air 
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(fresh air and return air) is conditioned by AHU and supplied to the indoor spaces for 

fulfilling the space ventilation and sensible/latent cooling functions (ASHRAE, 2020). 

Figure 7.1 shows the schematic diagram of an air handling unit (only cooling is provided). 

It mainly consists of a filter, a cooling coil, a supply fan, a return fan, and air dampers. 

The air dampers are modulated to control the quantities of fresh air (FA) and return air 

(RA). The fans are equipped with variable speed drives (VSD) and their frequency can 

be regulated to control the supply and return air flow rates according to the space cooling 

demand. 

 

Figure 7.1 Schematic diagram and fresh air control system of an air handling unit 

Figure 7.1 also shows the enthalpy-based fresh air control system. Fresh air control is 

very important for an AHU as the air quality of the conditioned space(s) highly depends 

on the quantity of fresh air intake. In addition, in the transition season, the energy 

consumption of mechanical cooling can be reduced by using the cooling of fresh air as 

much as possible. Generally, an air-side economizer is used to modulate the fresh air 

quantity according to the dry-bulb temperatures and/or enthalpies of the return air and 

fresh air.  

Conditioned 

space(s)

Supply air

Return air

Fresh 

air

Exhaust 

air

Chilled 

water

Cooling coil Supply fan

Return fan

M

P
T

T H

H

Controller

Filter

T Temperature sensor

P Power meter

H Humidity sensor

ActuatorM Air damper



129 

 

The dry-bulb temperature-based fresh air control method applies to the regions with dry 

climates, while the enthalpy-based fresh air control method applies to the regions with 

hot-humid climates (Yao and Wang, 2010). In Hong Kong, the enthalpy-based fresh air 

control method is preferred as the ambient air is often moist. Figure 7.2 shows the 

enthalpy-based operating sequencing of an AHU in the cooling season. It is implemented 

by comparing the enthalpies of fresh air and return air. There are three cooling modes: (1) 

Total free cooling mode, (2) Partial free cooling mode, and (3) Mechanical cooling mode. 

In Mode 1, the enthalpy of the fresh air is small and less than that of the return air. The 

indoor space is cooled totally by fresh air, and no mechanical cooling is required, the 

return air is all exhausted. In Mode 2, the enthalpy of the fresh air is also less than that of 

the return air. The fresh air is also used to cool the indoor space, but the cooling of fresh 

air is not sufficient to meet the cooling demand. Mechanical cooling is required, and the 

return air is also exhausted. In Mode 3, the enthalpy of the fresh air is greater than that of 

the return air, which makes the cost of cooling fresh air higher than that of cooling return 

air. Therefore, the fresh air is modulated to the minimum, and the return air is recycled. 

   

Figure 7.2 Enthalpy-based operating sequencing of an air handling unit in the cooling 

season 
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In general, the enthalpies of fresh air (hFA) and return air (hRA) are calculated by their dry-

bulb temperatures (TFA, TRA) and relative humidity values (φFA, φRA). Corresponding 

sensors should be installed for measuring their enthalpies, as shown in Figure 7.1. 

According to 2021 ASHRAE Handbook – Fundamentals (ASHRAE, 2021), the enthalpy 

of moist air (h, kJ/kg) can be calculated by Eq. (7.1).  

 ( )2501 1.86mh= 1.006 T + d T  +    (7.1) 

where T is the dry-bulb air temperature in ℃, and dm is the humidity ratio of the moist air 

in kgw/kga. The humidity ratio can be calculated by Eq. (7.2).  

  m

s

p
d = 0.621 945

p p







− 
s   (7.2) 

where φ is the relative humidity of the moist air, p is the atmospheric pressure in Pa, and 

ps is the corrected saturation water vapor pressure in Pa. The corrected saturation water 

vapor pressure can be estimated by Eq. (7.3), which is developed by Buck (1996). 
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7.2 Impact evaluation of measurement uncertainties on enthalpy-based 

fresh air control 

The measurement uncertainties of both the temperature and relative humidity sensors may 

affect the performance of enthalpy-based fresh air control. Generally, temperature sensors 

are very stable and their accuracy can be maintained at an acceptable level for many years, 

but relative humidity sensors are difficult to maintain their accuracy, they even cannot 

meet the accuracy levels that their manufacturers claimed (Taylor and Cheng, 2010). In 

addition, relative humidity has large spatial variability, which leads to more significant 
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uncertainty (Hempel et al., 2018). This section, therefore, focuses on evaluating the 

impacts of measurement uncertainties of relative humidity sensors on enthalpy-based 

fresh air control, and it is conducted on a virtual platform. 

7.2.1 Description of the system concerned and the virtual platform used 

A virtual building system with an air handling unit is developed using TRNSYS, and the 

enthalpy-based fresh air controller is programmed using Python. As shown in Figure 7.3, 

the measurement uncertainties are introduced artificially. The measurements (i.e., the sum 

of the simulation outputs and introduced uncertainties) are input to the enthalpy-based 

fresh air controller. Then the control decisions are made, and the control signals are sent 

to the air handling unit. The actuator of the fresh air controller modulates the quantities 

of fresh air and return air according to the control signals. 

The focus of this part is to evaluate the performance of the air handling unit considering 

measurement uncertainties. The cooling load of the air handling unit is simulated by the 

component of Type 88, which is a single zone building model with lumped capacitance. 

The cooling coil of the air handling unit is simulated by Type 752, whose cooling capacity 

is unlimited. The supply fan (variable speed) is modelled by Type 147, and the air 

enthalpy is calculated by Type 33 based on its temperature and humidity. Type 169 is 

used to connect Python to TRNSYS. 

Table 7.1 shows the main parameters of the developed virtual system, including the 

thermodynamic parameters and the area of the building, the heat gains from lighting, 

equipment and occupants, the rated fan power and the overall coefficient of performance 

of the air handling unit. It should be noted that the overall coefficient of performance of 

the air handling unit is assumed to be a constant in this study, i.e., 2.5. 
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Figure 7.3 The system developed on a virtual platform 

Table 7.1 Main parameters of the developed virtual system 

Classification Parameter Value 

Building Overall energy loss coefficient 1.39 W/(m2·K) 

 Thermal capacitance 1 000 kJ/K 

 Specific heat of building air 1.007 kJ/(kg·K) 

 Density of building air 1.2 kg/m3 

 Floor area 1 000 m2 

 Occupant density 5/100 m2 

Load Lighting load 13 W/m2 

 Equipment load 21.5 W/m2 

 Occupancy load 139 W/Occupant 

AHU system Rated power of supply fan 25 kW 

 Overall coefficient of performance 2.5 
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7.2.2 Arrangements for the evaluation 

Four cases with different levels of measurement uncertainties are used to evaluate the 

impacts of measurement uncertainties on enthalpy-based fresh air control. The 

measurement uncertainties of relative humidity sensors in each case are introduced 

artificially. They are generated randomly based on the parameters (mean and standard 

deviation) of a given normal distribution, as shown in Table 7.2. The measurements are 

simulated by adding the generated uncertainties to the simulation outputs of 

corresponding variables. A reference case without uncertainties is conducted and will be 

used as the benchmark. The main difference between the other cases is the plus-minus 

sign of systematic uncertainties. A positive systematic uncertainty tends to make the 

measured humidity greater than the actual humidity. On the contrary, a negative 

systematic uncertainty tends to make the measured humidity less than the actual humidity. 

These four cases cover all the possible scenarios in real applications, and the impacts of 

measurement uncertainties on fresh air control can be evaluated systematically based on 

them. 

Table 7.2 Pre-set measurement uncertainties of relative humidity sensors (%) 

 Fresh air humidity sensor Return air humidity sensor 

 
Systematic 

uncertainty 

Random 

uncertainty 

Systematic 

uncertainty 

Random 

uncertainty 

Reference 0 0 0 0 

Case 1 8.0 3.0 6.0 1.5 

Case 2 8.0 2.5 -6.0 2.0 

Case 3 -8.0 2.0 6.0 2.5 

Case 4 -8.0 1.5 -6.0 3.0 
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The running of the air handling unit system on a typical day is simulated. The states of 

fresh air on this day, including the relative humidity, dry-bulb temperature and enthalpy, 

are presented in Figure 7.4. The fresh air is suitable for cooling the indoor space and the 

purpose of evaluating the performance of fresh air control under measurement 

uncertainties can be achieved. The simulation time step is 10 seconds. The time interval 

of the data collection and control decision-making is 5 minutes. 

 

Figure 7.4 Fresh air states during the test period 

7.2.3 Evaluation results and analysis 

Table 7.3 shows the energy performance of the air handling unit system in each case. 

Compared with the reference case, the energy performance of other cases declines due to 

the existence of measurement uncertainties. In Case1, the cooling energy consumption 

increases a little and the fan energy consumption is reduced slightly, but the total energy 

consumption increases by 3.64%. In Case 2, the cooling energy consumption increases 

significantly (more than twice the reference value), but the fan energy consumption is 

reduced a little. It leads to a significant increment of 35.56% in total energy consumption. 

In Case 3, though the cooling energy consumption is reduced dramatically, the fan energy 
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consumption increases significantly, resulting in the total energy consumption increasing 

by 17.95%. In Case 4, the cooling energy consumption is reduced moderately, while the 

fan energy consumption increases significantly. The total energy consumption increases 

by 29.66%. Therefore, it can be concluded that the measurement uncertainties can affect 

the performance of fresh air control significantly and further decline the energy 

performance of air handling unit systems. The impacts cannot be ignored and should be 

addressed. 

Table 7.3 Energy performance of the air handling unit system under different levels of 

humidity measurement uncertainties 

 
Cooling energy 

consumption (kWh) 

Fan energy 

consumption (kWh) 

Total energy 

consumption (kWh) 

Increment 

(%) 

Reference 42.67 88.36 131.03 - 

Case 1 48.37 87.43 135.80 3.64 

Case 2 89.72 87.90 177.62 35.56 

Case 3 4.43 150.11 154.54 17.95 

Case 4 26.77 143.13 169.89 29.66 

 

The increment in energy consumption caused by the measurement uncertainties is 

different in different Cases, which is possibly related to the directions (plus-minus signs) 

of the introduced uncertainties. The uncertainties in Case 1 make the measured enthalpies 

of both fresh air and return air greater than their actual enthalpies. The impact is small as 

the results are often consistent when comparing the magnitudes of their measured or 

actual enthalpies. The uncertainties in Case 2 make the measured fresh air enthalpy 

greater than its actual enthalpy and the measured return air enthalpy less than its actual 

enthalpy, the air handling unit tends to operate under Mode 2 or 3, resulting in a 

significant increase in cooling energy consumption. On the contrary, the uncertainties in 
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Case 3 make the measured fresh air enthalpy less than its actual enthalpy and the 

measured return air enthalpy greater than its actual enthalpy, the air handling unit tends 

to operate under Mode 1, leading to a significant decrease in cooling energy consumption, 

but the fan energy consumption increases dramatically as more fresh air is needed to meet 

the cooling demand. The uncertainties in Case 4 make the measured enthalpies of both 

fresh air and return air less than their actual enthalpies. Possibly due to the influence of 

systematic uncertainties, the air handling unit tends to operate under Mode 1 or 2, causing 

an increase in fan energy consumption. 

7.3 Fresh air control optimization strategy 

The temperature and humidity of the return air are the same as those of the indoor air 

without considering the heat transfer in the air duct. Generally, an effective controller (for 

example, a feedback controller) makes the indoor air temperature always fluctuate around 

its setpoint. It means that the return air temperature is almost fixed. The return air 

temperature cannot take any effect to quantify the uncertainties of humidity 

measurements. Hence, it will be not used to develop the following models. The aim of 

the proposed fresh air control optimization strategy is to correct the relative humidity 

measurements of fresh air and return air online, and further they are used to calculate the 

enthalpies. The relative humidity of fresh air and return air are the target variables, and 

the auxiliary variables are the power consumption of the supply fan and the fresh air 

temperature. 

7.3.1 Outline of the proposed fresh air control optimization strategy 

The core of the measurement uncertainty quantification method developed in Chapter 6 

is a data-driven benchmark model. Figure 7.5 shows the outline of the proposed fresh air 

control optimization strategy for air handling units. The data-driven benchmark model 
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should be developed firstly using the normal operation dataset. Then the method 

developed in Chapter 6 is used to quantify the uncertainties of fresh air and return air 

relative humidity measurements based on the historical operation dataset. Then the real-

time relative humidity measurements are corrected online based on the benchmark model 

with known uncertainty distribution parameters. Finally, the enthalpies of fresh air (hFA,cor) 

and return air (hRA,cor) are calculated based on the corrected humidity and used to make 

control decisions. More details about the strategy are presented in Sections 7.3.2 and 7.3.3. 

 

Figure 7.5 Outline of the proposed fresh air control optimization strategy 
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Similarly, the proposed fresh air control optimization strategy is validated on the virtual 

platform, as shown in Figure 7.6. Compared with the system developed in Figure 7.3, a 

component is added to correct the relative humidity measurements online with known 

distribution parameters of uncertainties. Then the corrected values are sent to the 

controller and make control decisions. 

 

Figure 7.6 Validation of the proposed strategy on the virtual platform 

7.3.2 Benchmark model development 

A multiple quadratic regression model is developed as the benchmark model in this study. 

The fan power consumption (Pfan) is the dependent variable. The independent variables 
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The model is trained by the simulation data of the reference Case, where no measurement 

uncertainties exist. The ordinary least squares method is adopted. The model is developed 

with an R2 of 0.98, showing that the data fit the model well. These coefficients (including 

the standard deviation of the model error, which is replaced by the standard deviation of 

model residuals) to be determined are presented in Table 7.4. 

Table 7.4 Coefficients of the developed data-driven model 

Coefficient a1 a2 a3 a4 a5 a6 a7 δ 

Value -0.0592 0.0017 0.0913 2.3713 -0.2284 -3.9320 31.2957 0.1637 

 

7.3.3 Online correction of relative humidity measurements and enthalpies 

Once the benchmark model is developed, the uncertainty parameters of fresh air and 

return air humidity measurements can be quantified using the method developed in 

Chapter 6, it will not be repeated here. Of course, the uncertainty parameters can also be 

obtained by other methods, such as field calibration. The real-time relative humidity 

measurements can be corrected using Bayesian inference and Markov chain Monte Carlo 

sampling methods. The Bayesian models are shown in Eq. (7.5), where only the actual 

relative humidity of fresh air (φFA,t) and return air (φRA,t) are unknown and need to be 

estimated. 
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The Bayesian models in this study are coded using the stan programming language. The 

range of relative humidity is between 0 and 100. Therefore, a uniform distribution is used 

as the prior distribution of the relative humidity, as shown in Figure 7.7. 

 

Figure 7.7 Prior distribution (uniform) of relative humidity 

The posterior distributions of the fresh air and return air humidity measurements can be 
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calculate/correct the enthalpies of fresh air and return air. Then the control decisions are 

made based on the corrected enthalpies. 
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7.4.1 Comparison of the measured enthalpies and corrected enthalpies 

Figure 7.8-7.8 shows the enthalpies of fresh air and return air in each case during the test 

period, including the actual values, corrected values, measured values and 95% credible 

intervals. As can be seen from these figures, the measured enthalpies of fresh air and 

return air deviate from their actual enthalpies obviously due to measurement uncertainties 

of relative humidity, but the corrected enthalpies are very close to their actual values, and 

almost all the actual values are located within their 95% credible intervals. 

 

Figure 7.8 Enthalpies of fresh air and return air in Case 1 during the test period 
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Figure 7.9 Enthalpies of fresh air and return air in Case 2 during the test period 

 

Figure 7.10 Enthalpies of fresh air and return air in Case 3 during the test period 

3
0

3
5

4
0

Time (Hour)

E
n

th
al

p
y

 (
k

J/
k

g
)

0 2 4 6 8 10 12 14 16 18 20 22 24

3
0

3
5

4
0

Time (Hour)

E
n

th
al

p
y

 (
k

J/
k

g
)

0 2 4 6 8 10 12 14 16 18 20 22 24

Actual value Corrected value Measured value 95% credible interval

(a) Fresh air

(b) Return air

3
0

3
5

Time (Hour)

E
n
th

al
p
y
 (

k
J/

k
g
)

0 2 4 6 8 10 12 14 16 18 20 22 24

3
5

4
0

Time (Hour)

E
n
th

al
p
y
 (

k
J/

k
g
)

0 2 4 6 8 10 12 14 16 18 20 22 24

Actual value Corrected value Measured value 95% credible interval

(a) Fresh air

(b) Return air



143 

 

 

Figure 7.11 Enthalpies of fresh air and return air in Case 4 during the test period 

The root-mean-square errors of the measured and corrected enthalpies are also calculated 
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and the average root-mean-square error of return air enthalpy is reduced by 91.39% (from 
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Table 7.5 Root-mean-square errors of the measured and corrected enthalpies 

 Fresh air enthalpy Return air enthalpy 

 
Measured 

(kJ/kg) 

Corrected 

(kJ/kg) 

Reduction 

(%) 

Measured 

(kJ/kg) 

Corrected 

(kJ/kg) 

Reduction 

(%) 

Case 1 2.3791 0.3561 85.03 3.1051 0.2427 92.18 

Case 2 2.3692 0.3153 86.69 3.0636 0.2470 91.94 

Case 3 2.2576 0.2588 88.54 3.1441 0.2719 91.35 

Case 4 2.2699 0.1950 91.41 3.1236 0.3094 90.09 

Average 2.3190 0.2813 87.87 3.1091 0.2678 91.39 

 

7.4.2 Energy performance of the air handling unit after optimization 

Figure 7.12 compares the energy consumption of the air handling unit before and after 

optimization. Compared with the energy consumption before optimization, the energy 

consumption after optimization is reduced significantly by 1.02% - 24.58%. The energy 

savings are achieved after optimization. The conclusion can be drawn that the impacts of 

humidity measurement uncertainties are reduced significantly using the proposed fresh 

air control optimization strategy. 
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Figure 7.12 Energy consumption of the air handling unit before and after optimization 

7.5 Summary 

This chapter analyses the impacts of measurement uncertainties of relative humidity 

sensors on enthalpy-based fresh air control of air handling units. In order to reduce the 

impacts, a fresh air control optimization strategy is proposed, where the uncertainties of 

relative humidity measurements are processed by the data-driven model-based method 

developed in Chapter 6. The measured relative humidity of fresh air and return air is 

corrected online and used to calculate their enthalpies. The control decisions are made 

based on the corrected enthalpies of fresh air and return air. The proposed optimization 

strategy is validated systematically on a virtual platform. The main conclusions are as 

follows. 

• The performance of the fresh air control method is affected significantly by the 

measurement uncertainties of relative humidity sensors (fresh air and return air). It 

may lead to an increase of up to 35.56% in the energy consumption of air handling 

units. 
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• The measured enthalpies of fresh air and return air deviate from their actual values 

due to the uncertainties of relative humidity measurements. The deviations can be 

reduced by correcting the relative humidity measurements online. Compared with the 

measured enthalpies, the average root-mean-square error of the fresh air enthalpy and 

return air enthalpy is reduced by 87.92% and 91.39% respectively after correction. 

• The proposed fresh air control optimization strategy can significantly reduce the 

impacts of measurement uncertainties of relative humidity sensors. Compared with 

the energy consumption before optimization, the energy consumption of the air 

handling unit is reduced by 1.02% - 24.58% after optimization. 
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CHAPTER 8 CONCLUSIONS AND SUGGESTIONS FOR 

FUTURE RESEARCH 

This PhD thesis proposed a physical model-based and a data-driven model-based 

measurement uncertainty quantification methods, and they are used to optimize the chiller 

sequencing control and enthalpy-based fresh air control under measurement uncertainties. 

The proposed methods and control strategies are tested and validated systematically. This 

chapter summarises the research work in this thesis, which is organized as follows. 

Section 8.1 presents the main contributions of this PhD study. Section 8.2 presents the 

conclusions drawn based on the work done in this thesis. Section 8.3 gives suggestions 

for future research. 

8.1 Main contributions of this study 

This study focuses on the quantification of measurement uncertainties for HVAC systems 

and the optimization of their control systems under measurement uncertainties. The main 

contributions of this study are summarised as follows. 

i. A physical model-based and a data-driven model-based measurement uncertainty 

quantification methods are proposed. The measurement uncertainties of 

sensors/meters in HVAC systems can be quantified accurately using the methods. 

The energy efficiency and reliability of HVAC systems can be improved, and 

maintenance costs can be reduced. 

ii. The proposed measurement uncertainty quantification methods provide a cost-

effective and promising alternative for on-site sensor/meter calibration in 
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engineering practice, which facilitates the facility management and maintenance of 

HVAC systems. 

iii. The proposed methods apply to the measurement uncertainties quantification of 

sensors/meters in most HVAC systems. It depends on the available information/data 

of the system in choosing between the physical model-based method and the data-

driven model-based method. 

iv. The measurements with significant/unacceptable uncertainties can be corrected 

online, which greatly enhanced the reliability of decisions made based on them. And 

the service life of corresponding sensors/meters can be extended dramatically as the 

sensors/meters with uncertainties can still be used. 

8.2 Conclusions 

On the physical model-based measurement uncertainty quantification method 

• The physical model-based measurement uncertainty quantification method can 

effectively quantify the measurement uncertainties (including the systematic and 

random uncertainties) of chilled water and cooling water flow meters in multiple 

water-cooled chiller systems. 

• The performance of the method in quantifying systematic uncertainties is satisfactory. 

The method is effective for validating flow meters and improving their measurement 

accuracy, and it can provide valuable and meaningful information in practical 

application. 

• The random uncertainties can be quantified accurately by the proposed method no 

matter how significant they are. The method performs better in quantifying random 

uncertainties than systematic uncertainties. 
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• The levels of measurement uncertainties of different flow meters can be identified by 

the quantification method. It can be used to detect which flow meters need to be 

calibrated and assess the reliability of flow measurements, particularly concerning 

critical decision-making. 

On the probability-based online robust chiller sequencing control strategy 

• The proposed probability-based online robust chiller sequencing control strategy 

dramatically reduced the major impacts of both positive and negative flow 

measurement uncertainties on the multiple-chiller plants. Compared with the 

conventional total cooling load-based chiller sequencing control strategy, the total 

switching number of chillers was reduced by 35.71% under the positive flow 

measurement uncertainties, and the cumulative unmet cooling load was reduced by 

31.22% under the negative flow measurement uncertainties. 

• As the core of the proposed control strategy, the uncertainty processing model of flow 

measurements could quantify the chilled water flow rates accurately, which led to a 

significant decrease (about 79%) in the RMSE of cooling loads. 

• The risks in the decision-making process could be quantified to evaluate the reliability 

of the proposed control strategy and the high-risk decisions could be avoided through 

double-checking by operators. 

On the data-driven model-based measurement uncertainty quantification method 

• The proposed method can effectively quantify different levels of flow measurement 

uncertainties. It is applicable to quantify both the systematic and random uncertainties 

of flow measurements in HVAC systems. 

• In the test period, the 95% Bayesian credible intervals contained the pre-set values of 

corresponding parameters, the difference between the posterior mean and the pre-set 
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value of each parameter was very small, and the relative errors in quantifying flow 

measurement uncertainty were within 10%. The performance of the proposed method 

in quantifying flow measurement uncertainties was quite satisfactory. 

On the fresh air control optimization strategy under measurement uncertainties 

• The performance of the fresh air control method is affected heavily by the 

measurement uncertainties of relative humidity sensors (fresh air and return air). It 

may lead to an increase of up to 35.56% in the energy consumption of air handling 

units. 

• The measured enthalpies of fresh air and return air deviate from their actual values 

due to the uncertainties of relative humidity measurements. The deviations can be 

reduced by correcting the relative humidity measurements online. Compared with the 

measured enthalpies, the average root-mean-square error of the fresh air enthalpy and 

return air enthalpy is reduced by 87.92% and 91.39% respectively after correction. 

• The proposed fresh air control optimization strategy can significantly reduce the 

impacts of measurement uncertainties of relative humidity sensors. Compared with 

the energy consumption before optimization, the energy consumption of the air 

handling unit is reduced by 1.02% - 24.58% after optimization. 

8.3 Suggestions for future research 

This PhD study focuses on the direct quantification of measurement uncertainties in 

HVAC systems using Bayesian inference and optimization of their control systems under 

measurement uncertainties. Further efforts are suggested to be made in the following 

aspects for improving the quality of the studies conducted in this thesis and promoting 

the application of the developed methods and strategies in engineering practice. 
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• The measurement uncertainty quantification methods developed in this study can be 

regarded as a black-box model. The interpretability of the quantification results is 

poor. Further study should be conducted to figure out why the results are obtained. 

Especially the physical model-based method, as it performs very differently in 

quantifying different levels and types of uncertainties. 

• This study evaluated the impacts of measurement uncertainties on HVAC systems 

and validated the performance of proposed control strategies, but the test period is 

short (a day or a week). A long-term test can be conducted in future for assessing the 

impacts of measurement uncertainties on the lifespan of equipment and the 

maintenance costs, etc. 

• The data-driven models developed in this thesis using the ordinary least square 

method are multiple quadratic regression models. There are many other 

methods/algorithms that can be used to develop regression models, such as the support 

vector machine and the artificial neural network. The effectiveness and robustness of 

using other regression models to quantify measurement uncertainties are worthy of 

study, and the impacts of model accuracy and complexity on the quantification results 

should be studied further. 
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