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Abstract

Graph convolutional neural networks (GCNN) have been the model of choice for graph

representation learning, which is mainly due to the effective design of graph convolu-

tion that computes the representation of a node by aggregating those of its neighbors.

This thesis reveals the mechanisms behind graph convolution neural networks from the

perspective of graph signal processing theory and focuses on developing theoretic al-

gorithms for modeling complex, richly labeled, and large-scale graph-structured data,

with applications spanning across computer vision, natural language processing, human

action understanding, smart transportation, and malware detection.

We conducted systematic research on analyzing and extending GCNNs from different

theoretical perspectives including graph signal processing and spectral graph theory. Our

spatial analysis shows that the graph convolution in GCN is a special form of Laplacian

smoothing, which is the key reason why GCN works, but it also brings the over-smoothing

problem to deep GCN models. Our spectral analysis revisits GCN and classical label

propagation methods under a graph filtering framework and shows that they extract useful

data representations by a low-pass graph filter.

Our research also contributes to the development of efficient and more powerful GC-
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NNs models, and various high-impact real-world applications. With the new theoretical

insights, we have developed new, efficient, and more powerful models based on graph

convolution for semi-supervised and unsupervised learning, including Improved Graph

Convolutional Networks (IGCN), Generalized Label Propagation (GLP), Adaptive Graph

Convolution (AGC). We also extend 1-D GCNN to 2-D GCNN so as to explore infor-

mative relational information among object attributes, and proposed Dimensionwise

Separable 2-D Graph Convolution (DSGC).

The results have been published in various top AI conferences, including AAAI-18 [1],

IJCAI-19 [2], CVPR-19 [3], KDD-21 [4], and WWW-22 [5].
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Chapter 1

Introduction

Modern machine learning models, especially artificial neural networks, are mainly de-

signed for Euclidean data, i.e., data points represented by n-dimensional vectors, such

as audios, images, and videos. In the last decade, deep neural networks, boosted by the

growing computational power of GPUs and the availability of a huge amount of training

data, have achieved tremendous success in various tasks, including but not limited to

understanding and generation of images, videos, and languages.

Other than Euclidean data, graph-structured data is ubiquitous in the real world. Examples

include citation networks [8], social networks [9], traffic networks [10], protein-protein

interaction networks [11], and knowledge graphs [12, 13]. However, models designed for

Euclidean data can hardly be applied to graph-structured data, due to the large differences

in data form.

Graph-structured data is different from Euclidean data in nature. First, it is not represented

by a high-dimensional vector, but by a set of vertices connected by edges. The edges

1



2 CHAPTER 1. INTRODUCTION

are usually stored in the form of a (sparse) adjacency matrix. Second, the common i.i.d.

assumption for Euclidean data, which assumes that samples are drawn from independent

and identical distributions, does not hold for graph-structured data. Vertex samples of

graph-structured data are not independent of each other but strongly correlated, because

they are connected by edges. Hence, it is of great interest to design new deep-learning

methods for graph-structured data.

Over the past few years, Graph Convolutional Neural Networks (GCNNs) [14–16] have

emerged as a new class of promising models that generalize Convolutional Neural Net-

works (CNNs) from Euclidean space to graph domain and have been successfully applied

in a variety of applications including text classification [15], skeleton-based human ac-

tion recognition[17], traffic flow forecasting [18], zero-shot image recognition [19], and

human tissue recognition [11].

The most popular GCNN model, referred to as graph convolutional networks (GCNs),

was proposed for semi-supervised node classification by Kipf and Welling [15]. It

naturally integrates graph connectivity patterns and node features with a simplified

spatial graph convolutional filter and outperforms many state-of-the-art methods on many

semi-supervised and unsupervised learning tasks on graphs. Nevertheless, it suffers from

similar problems faced by other neural-network-based models. The working mechanisms

of the GCN model were not clear, and the training of GCNs still requires a considerable

amount of labeled data as a validation set for hyper-parameter tuning and model selection,

which is a great disadvantage for semi-supervised learning and unsupervised learning.

In addition, like other GCNN models, the training of GCNs usually takes a long time,

because the mini-batch training can not be directly applied to graph neural networks. Due
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to dense connections between node samples, there is no trivial way to split the training

data into mini-batches without losing critical edge information. As such, a full-batch

training strategy is often used to train GCNs, which is time-consuming and imposes high

requirements on memory capacity, preventing the application of GCNs on large-scale

networks and systems.

Moreover, another major limitation of GCNs is that they commonly adopt one-dimensional

(1-D) graph convolution that operates on the object link graph to model node (object)

relations and features, whose performance critically relies on the quality of the graph.

However, real-life networks are often noisy and sparse. For example, in a web graph such

as Wikipedia, a hyperlink between two webpages does not necessarily indicate that they

belong to the same category, and mixing their features could be harmful for webpage

classification or clustering. Moreover, it has been shown that many real-world networks

are scale-free and there exist many low-degree nodes [20]. Since these nodes may have

very few or even no links to other nodes, it is difficult, or even impossible, to do feature

propagation for semi-supervised learning and unsupervised learning.

In this thesis, we aim to address the important issues of GCNs as mentioned above.

We conduct a systematic study to analyze GCNs from the perspectives of graph signal

processing [21, 22] and spectral graph theory [23, 24]. Our study contributes to the

theoretical understanding of the mechanisms of GCNs and gives rise to simplified GCN

models with improved efficiency and effectiveness. Our study also inspires various

high-impact real-world applications in computer vision, natural language processing,

recommender system, system security, and smart transportation. More specifically, we

made the following contributions.
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Theoretical Insight

Spatial Analysis
of GCN

(AAAI-18) [1]

Spectral Analysis
of GCN

(CVPR-19) [3]

Models and 
Algorithms

Efficient GCN Models
(CVPR-19) [3]

Adaptive Attributed 
Graph Clustering

(IJCAI-19) [2]

Dimensionwise
Separable 2-D GCN 

(KDD-21) [4]

Real-World 
Applications

Zero-short Image
Classification
(CVPR-19) [3]

Product Search
(WWW-22) [5]

Others:
- Action Recognition
- Malware Detection
- Traffic Flow Forecast

Figure 1.1: Research accomplishments.

Contribution 1: Theoretical insights of GCNs. We analyze GCNs from both spatial

and spectral perspectives and reveal the fundamental mechanisms. Our spatial analysis [1]

shows that the graph convolutional filter of GCNs is actually a special form of Laplacian

smoothing, which is the key reason why GCN works, but it also brings up the over-

smoothing problem of deep GCN models. Our spectral analysis [3] revisits GCN and

classical label propagation methods under a graph filtering framework and shows that

what they actually do is extracting useful data representations by a low-pass graph filter.

The findings were published in AAAI-18 [1] and CVPR-19 [3].

Contribution 2: New efficient GCN models and learning algorithms. With the new

theoretical insights, we have developed new, efficient, and more powerful models with

1-D and 2-D graph convolutional filters for unsupervised and semi-supervised learn-

ing, including Improved Graph Convolutional Networks (IGCN) [3], Generalized Label

Propagation (GLP) [3], Adaptive Graph Convolution (AGC) [2] and Dimensionwise Sep-

arable 2-D Graph Convolution (DSGC) [4]. The effectiveness of our proposed models
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and algorithms is verified by extensive experiments on semi-supervised and unsupervised

learning tasks on graphs. The results were published in IJCAI-19 [2], CVPR-19 [3], and

KDD-21 [4].

Contribution 3: Real-world applications. We have successfully applied our proposed

models and algorithms to various real-world applications including zero-shot image

recognition and personalized product search. We also discuss potential applications in

skeleton-based action recognition, traffic flow forecasting and malware detection. Our

models demonstrate higher accuracy than baselines in zero-shot image classification. Our

method significantly improves the performance of state-of-the-art models for personalized

product search. The results were published in CVPR-19 [3] and WWW-22 [5].

Thesis organization. Chapter 2 introduces the background of graph learning, defines

the problem of graph-based semi-supervised and unsupervised learning, and provides an

overview of existing literature. Chapter 3 gives a basic yet comprehensive introduction

to graph signal processing, which serves as the main theoretical tool used in the follow-

ing chapters. Chapter 4 revisits existing 1-D graph-convolution-based methods under

the graph signal processing framework, reveals their mechanisms and drawbacks, and

proposes new models for semi-supervised and unsupervised learning including IGCN,

GLP, and AGC. Chapter 5 explores 2-D graph convolution to jointly model object links

and attribute relations for graph representation learning and proposes computationally

efficient dimensionwise separable 2-D graph convolution (DSGC). Chapter 6 presents

comprehensive experiments to validate the theoretical analysis and proposed methods in

Chapters 4 and 5. Chapter 7 discusses several real-world applications of graph convolu-

tion and presents exemplary and potential solutions.



6 CHAPTER 1. INTRODUCTION



Chapter 2

Background and Related Work

2.1 Graphs

Graphs are data structures widely used to model pairwise relations between objects. A

graph is made up of vertices, which are connected by edges. In the machine learning

context, every vertex is usually associated with a feature vector describing it.

Definition 1 (Graph). A graph G is an ordered triple

G = (V ,A,X), (2.1)

compromising of a vertex set V = {ν1, . . . , νn}, an adjacency matrixA ∈ Rn×n, and an

optional feature matrixX ∈ Rn×m.

An example of a graph is shown in Fig. 2.1. This definition differs from the common

definition of a weighted graph in two ways.

First, the edge set E and weight function are replaced by a single adjacency matrix A,

7
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which encodes the edge weight between vertices. Sometimes, A is also referred to as the

topological structure of the graph. By convention, non-zero aij indicates a connection

between νi and νj while zero value indicates no connection, and hence the edge set can

be defined by E = {(νi, νj)|aij ̸= 0}. We consider graphs with non-negative weights

(aij ≥ 0), unless specified otherwise.

Second, every vertex represents an object (e.g., a document or an entity), which is usually

described by a feature vector. The feature matrix X is of size n × m, where n is the

number of vertices and m is the dimension of the feature vectors:

X =


−−−− x⊤

1 −−−−
−−−− x⊤

2 −−−−
...

−−−− x⊤
n −−−−

 . (2.2)

X contains n rows. The i-th row is the feature vector associated with vertex νi. With X

given, G is also referred to as an attributed graph, and X is also referred to as attributes.

If there are no given features, X can be represented by an identity matrix I or a zero

matrix 0.

According to whether edges are weighted or not, graphs can be categorized into two

types: weighted and unweighted. For unweighted graphs, all edge weights are 1, and the

adjacency matrix is binary where 0/1 indicates the absence/presence of edges.

Definition 2 (Weighted and Unweighted Graph). If the adjacency matrix A is binary,

i.e.,

A ∈ {0, 1}n×n, (2.3)

then the graph is unweighted because all edges have equal weight. Otherwise, the graph
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⋮
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Figure 2.1: Graph.

is a weighted graph.

According to whether edges have direction or not, graphs can be categorized into two

types: directed and undirected. If there is no direction associated with edges, we call it

an undirected graph. In such a case, the existence of edge (νi, νj) indicates the existence

of edge (νj, νi), and aij = aji, which indicates the adjacency matrix is symmetric.

Definition 3 (Directed and Undirected Graph). Graph G is an undirected graph, if and

only if the adjacency matrix is symmetric, i.e., A = A⊤. Otherwise, the graph is a

directed graph.

To turn a directed graph into an undirected graph, one can simply let A := (A+A⊤)/2.
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Table 2.1: Notation Table I.

Notation Description

Bold upper-case letters Matrices, such as A,X,Y

Bold lower-case letters Vectors, such as x, z

Plain lower-case letters Scalars, matrix/vector elements, such as n,m, aij

A⊤ Transpose of A

G = (V ,A,X) Graph

V = {ν1, . . . , νn} Vertex set

E = {(νi, νj)|aij ̸= 0} Edge set

(νi, νj) Edge from νi to νj

A = {aij} ∈ Rn×n
+ Adjacency matrix

aij ≥ 0 Weight between νi and νj

X = [x1, . . . ,xn]
⊤ ∈ Rn×m Feature matrix

xi ∈ Rm Feature vector of νi
n = |V| Number of vertices

m Number of feature dimension

Y ∈ Rn×c Label matrix (one-hot)

c Number of classes

L = {νi}li=0 Labeled vertex set

U = {νi}ni=l+1 Unlabeled vertex set
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2.1.1 Examples of Real-World Graphs and Learning Tasks

Learning tasks on graphs can be divided into three levels: vertex-level, edge-level, and

graph-level. According to whether the learning outcome is continuous or discrete, and

whether the training procedure involves labels or not, we can divide the learning tasks

into three categories: classification, regression, and clustering. Table 2.2 gives several

examples for each category, which are described below in detail.

Citation networks [8, 25–27] are networks that record documents’ citation relationships.

In citation networks, vertices are documents. A pair of vertices are connected by an edge

if and only if one cites another. Besides the citation information between documents, each

document is also associated with a feature vector, which encodes the document content.

Commonly used features are bag-of-words, TF-IDF [28], and text embeddings [29, 30].

At the vertex level, we can perform topic analysis to classify documents into different

topics. At the edge level, we can suggest for a document the papers which it should have

cited but did not. If we include authors in the graph, we can also suggest reviewers for

an academic paper.

Social networks [9] are networks that record social relationships. In social networks,

vertices are people. A pair of vertices are connected by an edge if one person follows

another. Besides the friendship information between users, each person is also associated

with a feature vector extracted from their social profiles, which encodes the user’s inter-

ests, background, and demographic information. The most common task is to predict

whether a user follows another, and recommend people to follow for users.

Traffic networks [10] are networks that record traffic patterns. In traffic networks, ver-
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tices are locations, such as road intersections, stations, airports, harbors, cities, villages,

and so on. These locations are connected by roads, railways, airways, and waterways.

Each location also has its attributes, such as traffic volume, traffic density, and other infor-

mation. The most common task is to predict the traffic flow at vertices, given historical

traffic data.

Protein-protein interaction networks [11] are networks that record protein interactions.

In protein networks, a pair of protein molecules are connected by an edge if they can

react with each other to produce some new molecules. We classify protein roles, which

rely on their cellular functions, and each graph corresponds to a specific human tissue.

Knowledge graphs [12, 13, 31] are heterogeneous information networks, which contain

multiple types of entities, such as people, organizations, locations, movies, books, tools,

vehicles, and countries. They also contain multiple types of relationships, such as

“person A is a friend of person B”, “location A is a part of location B”, “actor A stars

in movie B”, “author A writes book B”, or “company A produces product B”. Such

heterogeneous relationships are referred to as facts or knowledge. Given a knowledge

graph, we can obtain new knowledge by predicting whether there exists a certain type of

relation between two entities.

3D mesh [35, 37] is a set of vertices, edges, and faces that represents the shape of a 3D

object. The faces are usually triangles or other simple convex polygons. Each vertex is

associated with a vector, describing its position, color, or other information. The possible

learning tasks with 3D meshes are 3D object recognition, detection, segmentation, and

retrieval.

Malware [36] is software with malicious purposes, such as privacy collection, remote
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Table 2.2: Example Learning Tasks.

Vertex level

Classification

Document topic analysis [8]

Sensor anomaly detection

Protein role recognition [11]

Regression
Traffic flow prediction [10]

Sensor value forecast

Clustering
Community detection[32]

3D Object segmentation

Edge level
Link prediction

Friend recommendation [33]

Product search [5]

Knowledge reasoning [34]

Regression Chemical bond energy prediction

Graph level
Classification

3D object classification [35]

Malware detection [36]

Clustering 3D content retrieval [37]

control, session hijacking, and remote monitoring. The development of code obfuscation

techniques enables malware to adopt various camouflages and makes them harder to

be detected and analyzed directly from the code level. However, malware can also

be represented as various graphs with different abstraction levels, including control-

flow graphs, data-flow graphs, and function call graphs, which are robust against code

obfuscation. The tasks of interest are to detect malware and analyze the properties of

different malware families.

In general, many kinds of relationships can be represented as graphs, and graph-structured

data are omnipresent. They differ in field, form, scale, and nature. Some data come from

computer science, physics, chemistry, or biology, while some are from social science,
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finance, or economy. Some are text data, and some are images or videos. Small-scale

data contain only dozens of nodes, while large-scale ones may contain millions or trillions

of nodes. The prevalence of wide variety of graph-structured data makes learning on

graphs an important research area.

2.2 Graph-Based Semi-Supervised Learning

It is well known that training a deep neural model typically requires a large amount

of labeled data, which cannot be satisfied in many scenarios due to the high cost of

labeling training data. To reduce the amount of data needed for training, we can adopt a

semi-supervised learning paradigm, where a large amount of unlabeled data is utilized

to boost training with typically a small amount of labeled data.

The problem of semi-supervised classification is defined as follows. We consider an

undirected graph G = (V ,A,X), where V is the vertex set with n vertices, A =

{aij} ∈ Rn×n
+ is the adjacency/affinity matrix, and X ∈ Rn×m is the feature matrix.

The adjacency matrix A encodes edge weights, and is non-negative and symmetric, with

aij = aji ≥ 0. The feature matrix X contains feature vectors of vertices, where the

i-th row is a m-dimensional feature vector of vertex νi. Vertices fall into one of the c

classes. The vertex set are partitioned into two parts, a labeled set L = {ν1, . . . , νl}

and an unlabeled set U = {νl+1, . . . , νn} with |L| = l, |U| = n− l. In semi-supervised

classification, only the labels of a small subset of vertices are given (l ≪ n), and the goal

is to predict the labels of the rest of the vertices.

Much research has shown that if properly used, unlabeled data can significantly improve
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learning performance [38]. The critical issue is maximizing the effective utilization of

structural and feature information in unlabeled data. In the past two decades, semi-

supervised learning has been dominated by graph-based methods, among which the most

widely studied one is label propagation. In recent years, due to the powerful feature

extraction capability and the recent success of deep neural networks, there have been

some successful attempts to revisit semi-supervised learning with neural-network-based

models, including ladder network [39], semi-supervised embedding [40], planetoid [8],

and graph convolutional networks [15].

In graph-based semi-supervised learning, the cluster assumption, which states that nearby

vertices are likely to have the same labels, has been widely adopted in many methods,

either explicitly or implicitly. Under the cluster assumption, the adjacency matrix A is

also referred to as the affinity/similarity matrix, which encodes the similarity between

vertices. Based on this assumption, there are several ways to carry out semi-supervised

learning. One idea is to learn smooth low-dimensional embedding of data points by using

Markov random walks [41], Laplacian eigenmaps [42], and spectral kernels [43, 44].

Another idea hinges on graph partition, where the cuts should agree with the labeled

data and be placed in low-density regions [45–48]. Perhaps the most popular idea is to

formulate a quadratic regularization framework to explicitly capture the consistency with

the labeled data and the cluster assumption, which is known as label propagation [49–

52]. Other methods include modified adsorption [53] and an iterative classification

algorithm [25]. It was shown in Ekambaram et al. [54] and Girault et al. [55] that graph

regularization in many of these methods can be interpreted as low-pass graph filters.

However, these methods are limited in their ability to incorporate vertex features for
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prediction. In many applications, data instances come with feature vectors containing

information not present in the graph. For example, in a citation network, the citation links

between documents describe their citation relations, while the documents are represented

by bag-of-words vectors which describe their contents. Many semi-supervised learning

methods seek to jointly model the graph structure and feature attributes of data. The

common idea is to regularize a supervised learner (e.g., support vector machines, neural

networks) with some regularizer. For example, manifold regularization (LapSVM) [56]

regularizes a support vector machine with a Laplacian regularizer. Deep semi-supervised

embedding [40] regularizes a deep neural network with an embedding-based regularizer.

Planetoid [8] also regularizes a neural network by jointly predicting the class label and

the context of an instance.

Inspired by the success of convolutional neural networks (CNN) on grid-structured data

such as images and videos, a series of works proposed a variety of graph convolutional

neural networks [57–60] to extend CNN to general graph-structured data. These recently

proposed graph convolutional neural networks adopt a different way to integrate graph

topology and feature information, which is graph convolution, and have dominated

modern graph-based semi-supervised learning. In their pilot work, ChebyNet [14]

proposed to use a polynomial filter represented by k-th order polynomials of graph

Laplacian via Chebyshev expansion to avoid the expensive eigen-decomposition. Graph

convolutional networks (GCN) [15] further simplified ChebyNet by using a localized

first-order approximation of spectral graph convolution and achieved promising results

in semi-supervised learning. The GCN model naturally integrates the connectivity

patterns and feature attributes of graph-structured data and outperforms many state-

of-the-art methods significantly on some benchmarks. Other related GCNNs include
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GraphSAGE [11], graph attention networks [16], FastGCN [61], dual graph convolutional

neural network [62], stochastic GCN [63], Bayesian GCN [64], deep graph infomax [65],

LanczosNet [66], etc. We refer readers to two comprehensive surveys [67, 68] for more

discussions.

Despite the promising performance of GCN, it suffers from similar problems faced by

other neural-network-based models. The working mechanisms of the GCN model for

semi-supervised learning were unclear, and the training of GCNs still requires a consid-

erable amount of labeled data for parameter tuning and model selection, which defeats

the purpose of semi-supervised learning. Our papers [1, 3] address these drawbacks of

GCN. First, we reveal its working mechanisms by showing that the success of GCN is

due to performing Laplacian smoothing on data features, which is a smoothing filter in

the spatial domain and a low-pass filter in the spectral domain. Second, guided by our

theoretical analysis, we proposed a two-step framework that greatly improves accuracy

and training speed.

2.3 Graph-Based Unsupervised Clustering

Attributed graph clustering [69] aims to cluster nodes of an attributed graph where each

node is associated with a set of feature attributes. Attributed graphs widely exist in

real-world applications, and clustering plays a vital role in detecting communities and

analyzing the structure of these networks. However, attributed graph clustering requires

joint modeling of graph structures and node attributes to make full use of available data,

which presents significant challenges.
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Some classical clustering methods, such as k-means, only deal with data features. In

contrast, many graph-based clustering methods [70] only leverage graph connectivity

patterns, e.g., user friendships in social networks, paper citation links in citation net-

works . Typically, these methods learn node embeddings using Laplacian eigenmaps,

matrix factorization, random walks, or autoencoder. Methods based on graph Lapla-

cian eigenmaps [71] assume that nodes with higher similarity should be mapped closer.

Methods based on matrix factorization [72, 73] factorize the node adjacency matrix into

node embeddings. Methods based on random walks [74, 75] learn node embeddings

by maximizing the probability of the neighborhood of each node. Autoencoder-based

methods [9, 76, 77] find low-dimensional node embeddings with the node adjacency

matrix and then use the embeddings to reconstruct the adjacency matrix. Nevertheless,

they usually fall short in attributed graph clustering, as they do not exploit informative

node features such as user profiles in social networks and document contents in citation

networks.

In recent years, various attributed graph clustering methods have been proposed, includ-

ing methods based on generative models [78], spectral clustering [79], random walks [80],

nonnegative matrix factorization [81], and graph convolutional networks (GCN) [15].

Attributed graph clustering [82] takes both node connectivity and features into account

and thus differs from topology-only methods. Some model the interaction between graph

connectivity and node features with generative models [78, 83–85]. Some apply nonneg-

ative matrix factorization or spectral clustering to both the underlying graph and node

features to get a consistent cluster partition [79–81, 86]. Some recent methods integrate

node relations and features using GCN [15]. In particular, graph autoencoder (GAE) and

graph variational autoencoder (VGAE) [87] learn node representations with a two-layer
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GCN and then reconstruct the node adjacency matrix with autoencoder and variational

autoencoder respectively. Marginalized graph autoencoder (MGAE) [88] learns node

representations with a three-layer GCN and then applies marginalized denoising autoen-

coder to reconstruct the given node features. Adversarially regularized graph autoencoder

(ARGE) and adversarially regularized variational graph autoencoder (ARVGE) [89] learn

node embeddings by GAE and VGAE, respectively, and then use generative adversarial

networks to enforce the node embeddings to match a prior distribution. In particular,

GCN based methods such as GAE [87], MGAE [88], ARGE [89] have demonstrated

state-of-the-art performance on several attributed graph clustering tasks.

Although graph convolution has been shown very effective in integrating structural and

feature information, there is little study of how it should be applied to maximize clustering

performance. Most existing methods directly use GCN as a feature extractor, where each

convolutional layer is coupled with a projection layer, making it difficult to stack many

layers and train a deep model. In fact, ARGE [89] and MGAE [88] use a shallow two-

layer and three-layer GCN, respectively, in their models, which only take into account

neighbors of each node in two or three hops away and hence may be inadequate to capture

global cluster structures of large graphs. Moreover, all these methods use a fixed model

and ignore the diversity of real-world graphs, which can lead to suboptimal performance.

To address these issues, we propose an adaptive graph convolution (AGC) method for

attributed graph clustering [2]. The intuition is that nearby nodes tend to be in the same

cluster, and clustering will become much easier if nearby nodes have similar feature

representations. To this end, instead of stacking many layers as in GCN, we design a

k-order graph convolution that acts as a low-pass graph filter on node features to obtain
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smooth feature representations, where k can be adaptively selected using intra-cluster

distance. AGC consists of two steps: 1) conducting k-order graph convolution to obtain

smooth feature representations; 2) performing spectral clustering on the learned features

to cluster the nodes. AGC enables easy use of high-order graph convolution to capture

global cluster structures and allows the selection of an appropriate k for different graphs.

2.4 Graph Convolutional Networks

Graph convolutional neural networks (GCNNs) generalize traditional convolutional neu-

ral networks to the graph domain. There are mainly two types of GCNNs [90]: spatial

GCNNs and spectral GCNNs. Spatial GCNNs view the convolution as a “patch operator”

which constructs a new feature vector for each vertex using its neighborhood informa-

tion. Spectral GCNNs define the convolution by decomposing a graph signal x ∈ Rn

(a scalar for each vertex) on the spectral domain and then applying a spectral filter gθ (a

function mapping eigenvalues of Laplacian Ls) on the spectral components [21, 22, 91].

However, this model requires explicitly computing the Laplacian eigenvectors, which is

impractical for real large graphs. A way to circumvent this problem is by approximating

the spectral filter gθ with Chebyshev polynomials up to K-th order [92]. Defferrard

et al. [14] applied this to build a K-localized ChebyNet, where the convolutional filter is

defined as a truncated expansion in terms of Chebyshev polynomials Tk(x) up to K-th

order:

gθ′(Λ) ≈
K∑
k=0

θ′kTk(Λ̃), (2.4)

where Λ̃ = 2
λmax

Λ − I are rescaled eigenvalues, and θ′ ∈ RK is a vector of Chebyshev

coefficients. By the approximation, the ChebyNet is actually spectrum-free and can be
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evaluated in the spatial domain.

gθ′(Ls) ≈
K∑
k=0

θ′kTk(L̃s), (2.5)

where L̃s =
2

λmax
Ls − I .

Kipf and Welling [15] simplified this model by limiting K = 1 and approximating the

largest eigenvalue λmax of Ls by 2. In this way, the filter becomes

gθ′(Ls) = θ′0I + θ′1 (Ls − I) = θ′0I − θ′1As. (2.6)

Furthermore, they restrict θ′0 = −θ′1
∆
= θ, where θ is the only Chebyshev coefficient left.

gθ′(Ls) = θ(I +As). (2.7)

They further applied a renormalization trick to the graph, which is to add a self-loop to

each vertex and replace (I +As) by Ãs:

Ã = A+ I, (2.8)

D̃ = D + I, (2.9)

Ãs = D̃−1/2ÃD̃−1/2, (2.10)

I +As → Ãs. (2.11)

Generalizing the above definition of convolution to a graph signal with m input channels,

i.e., X ∈ Rn×m (each vertex is associated with an m-dimensional feature vector), Kipf

and Welling [15] defined graph convolutional layer. The layer-wise propagation rule of

this simplified model is:

H(l+1) = σ
(
ÃsH

(l)W (l)
)
, (2.12)

where H(l) is the activations in the l-th layer with H(0) = X , and W (l) is the trainable

weight matrix in l-th layer, σ is the activation function, e.g., ReLU(·). This simplified

model is called graph convolutional networks (GCNs).
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Chapter 3

Basics of Graph Signal Processing

As graph convolution becomes an essential component of GNNs, there is a foundational

mathematical branch behind it — graph signal processing. The emerging field of signal

processing on graphs [21, 22] merges the concepts in algebraic graph theory and spectral

graph theory [23] with harmonic analysis. Graph signal processing generalizes classical

harmonic analysis concepts, including signals, filters, convolution, convolution theorem,

and sampling theorem from Euclidean space to graphs and develops a complete theory

for analyzing and manipulating discrete graph signals. It serves as the primary theoretical

tool for this thesis and will be briefly introduced in this chapter.

Classic harmonic analysis studies Euclidean signals, such as voice, images, and videos.

All these signals are continuous by nature, but computers can only deal with discrete

data, so they need to be sampled and discretized before being processed by computers.

The branch of harmonic analysis that studies such discrete signals is discrete signal

processing (DSP). In classic DSP, signals are functions defined on discretized Euclidean

spaces, a.k.a., multidimensional integer space Zn. However, these signals can also be

23



24 CHAPTER 3. BASICS OF GRAPH SIGNAL PROCESSING

1D 2D

Euclidean
Signals

Space structure
as a Graph

0 1 2 3 4 5 6 7 8 9

ℤ
ℤ!

Table 3.1: Zn, the discretized Euclidean space studied by classical DSP, can be considered
as a particular kind of graph — the square grids.

viewed as defined on a particular kind of graph — the square grids. For example, audios,

images, and videos are signals defined on 1-D, 2-D, and 3-D grids, respectively. Audios

are defined on integer set Z. In space Z, each integer is adjacent to two neighbors, its

successor, and its predecessor, so the whole space has a chain-like structure as Table 3.1

shows. As typical 2D signals, images are defined on 2-D integer space Z2. An image

consists of many pixels arranged in rows and columns. Each pixel is adjacent to its four

neighbors, the top, bottom, left, and right ones, so the space Z2 has a grid-like structure.

More generally, the structure of multidimensional integer space Zn, from the viewpoint

of graphs, can be considered as an n-dimensional square grid, hence the classic DSP

theory is actually a special case of graph signal processing.

3.1 Graph Laplacian

Graph Signals Processing extends the concept of signal from regular grids to general

graphs. Given a graph G = (V ,A) with vertex set V and adjacency matrix A, denote the

number of vertices by n = |V|. We only consider positive-weighted undirected graphs,
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i.e., A = A⊤ and aij ≥ 0 for all i, j ≤ n.

Definition 4 (Graph signal). A graph signal on G is a real-valued function x : V → R

that associates each vertex νi with a real value x(νi). All the associated real values are

usually arranged into a vector

x = [x1, · · · , xn]
⊤ ∈ Rn (3.1)

with xi = x(νi).

Graph signals are ubiquitous in graph-structured data. For example, every column of the

feature matrix X in Section 2.1 is a graph signal. If we take an image as a 2-D grid, then

its RGB channels are three different signals on the 2-D grid. Given a sensor network, all

sensor values form a graph signal. Given a social network, the ages of all people in the

network form a graph signal.

In classic harmonic analysis, signals are decomposed into a linear combination of Fourier

basis with different frequencies. In graph signal processing, eigenvectors and eigenvalues

of the graph Laplacian play the same role of Fourier basis and frequencies in parallel

with classical harmonic analysis. This section introduces graph Laplacian and its basic

properties. For a more detailed discussion of graph Laplacian, we refer the readers to

Von Luxburg [24] and Chung [23].

The ordinary Laplace operator, or simply Laplacian, is a differential operator on scalar

fields that measures the divergence of its gradient. Graph Laplacian does the same thing.

Definition 5 (Gradient). Given a signal x, its gradient along a directed edge νi → νj is

defined as

(∇x)ij = aij(xi − xj).
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All gradients together form a gradient matrix∇x ∈ Rn×n.

The above definition of gradient also applies to undirected graphs, by taking each undi-

rected edge {νi, νj} as two directed edges νi → νj and νj → νi. Note that, if there is no

edge from νi to νj , then aij is 0 and so is gradient (∇x)ij . Laplacian L computes the

divergence of the gradient at each vertex. Let y = Lx, then y ∈ Rn and

yi =
∑
j

aij(xi − xj) (3.2)

= xi

∑
j

aij −
∑
j

aijxj (3.3)

= dixi −
∑
j

aijxj. (3.4)

where di =
∑

j aij is the degree of vertex νi. We can arrange the degrees of all vertices

into a diagonal matrix D with the degrees d1, . . . , dn on its diagonal.

D =


d1

d2
. . .

dn

 (3.5)

D is referred to as the degree matrix. It is easy to verify that Lx = (D − A)x, so

applying L to x is equivalent to multiplying x by a matrix D−A, and the matrix D−A

is the so-called Laplacian matrix.

Definition 6 (Laplacian matrix). The unnormalized graph Laplacian matrix is defined

as

L = D −A. (3.6)

Theorem 1 (Spectrum of unnormalized Laplacian). If the graph is positively weighted

and undirected, i.e., A ≥ 0 and A = A⊤, then the graph Laplacian matrix L satisfies

the following properties:



3.1. GRAPH LAPLACIAN 27

1. For every signal x ∈ Rn,

x⊤Lx =
1

2

∑
ij

aij(xi − xj)
2. (3.7)

2. L has non-negative, real-valued eigenvalues 0 = λ1 ≤ λ2 ≤ . . . λn. The smallest

eigenvalue 0 has an all-one eigenvector 1⃗.

3. If the graph is connected, then the multiplicity of eigenvalue 0 is equal to 1, i.e.,

λ2 > 0.

4. The largest eigenvalue λn ≤ 2dm where dm = maxi di is the largest vertex degree.

5. The largest eigenvalue λn = 2dm if and only if the graph is both regular and

bipartite.

Proof.

1. We first prove Eq. (3.7):

1

2

∑
ij

aij(xi − xj)
2 =

1

2

∑
ij

aijx
2
i +

1

2

∑
ij

aijx
2
j −

∑
ij

aijxixj

=
1

2

∑
i

dix
2
i +

1

2

∑
j

djx
2
j − x⊤Ax

=
∑
i

dix
2
i − x⊤Ax

= x⊤Dx− x⊤Ax = x⊤Lx.

2. As a direct consequence of Eq. (3.7), L is symmetric and positive semi-definite, so

all its eigenvalues λi are non-negative. It is easy to verify that L1⃗ = 0⃗, so the smallest

eigenvalue λ1 = 0, and all-one vector 1⃗ is the corresponding eigenvector.
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3. If the graph is connected, then Lx = 0⃗ implies xi = xj for all i, j, so x = α1⃗

for some α ∈ R. The dimension of the eigenspace of eigenvalue 0 is 1, and so is its

multiplicity.

4. x⊤Lx has the following upper bound.

x⊤Lx =
1

2

∑
ij

aij(xi − xj)
2

≤
∑
ij

aij(x
2
i + x2

j) (3.8)

=
∑
i

dix
2
i +

∑
j

djx
2
j

= 2
∑
i

dix
2
i .

By the property of the largest eigenvalue and inequality (3.8), we have

λn = max
x

x⊤Lx

x⊤x
(3.9)

≤ 2

∑
i dix

2
i

∥x∥22
(3.10)

≤ 2dm. (3.11)

So, Property 4 is proved.

5. The equalities in (3.8) and (3.10) hold if and only if xi = −xj for all connected

vertex pairs (νi, νj), which indicates the graph is bipartite. In this case, λn = 2
n

∑
i di.

If the equality in (3.11) also holds, then all nodes must have the same degree, which

requires the graph to be regular. In summary, eigenvalues of L are bounded by 2dm, and

the maximum 2dm is taken if and only if the graph is both regular and bipartite.

We can also derive a range for eigenvalues ofA from that ofL. We know thatA = D−L,
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eigenvalues of D fall in [0, dm], and eigenvalues of L fall in [0, 2dm], so eigenvalues of

the adjacency matrix A fall in [−dm, dm].

Disconnected Graph Another interesting fact about graph Laplacian is that the mul-

tiplicity of eigenvalues 0 is the number of connected components in the graph. Assume

the graph contains k connected components C1, . . . , Ck with n1, . . . , nk vertices respec-

tively. Without loss of generality, we assume vertices of every component are numbered

consecutively, i.e., the first n1 vertices belong to C1, and the next n2 vertices belong to C2,

and so on. Then the graph Laplacian matrix L and the adjacency matrix A is in block

diagonal form:

L =


L1

L2

. . .
Lk.

 (3.12)

Every block is a graph Laplacian matrix of a connected component, and thus it has an

eigenvalue 0 with multiplicity 1. Eigenvalues of sub-blocks are also eigenvalues of the

whole graph, and the multiplicity equals the sum of multiplicity in sub-blocks. Eigenvalue

0 of the whole Laplacian L has a multiplicity of k, equal to the number of connected

components. The corresponding eigenspace is spanned by {1⃗C1 . . . , 1⃗Ck}, where 1⃗Cj is

indicator vector of component Cj . If xi ∈ Cj , then i-th component of 1⃗Cj is 1, otherwise

0. These properties enable us to focus only on connected graphs because a disconnected

graph can be easily divided into several connected components and discussed separably.
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3.2 Signal Frequency and Fourier Transform

We rewrite Eq. (3.7) here.

x⊤Lx =
1

2

∑
ij

aij(xi − xj)
2. (3.7)

This equation actually only sums over connected vertex pairs, as any unconnected vertex

pair has 0 weight, i.e., aij = 0. Intuitively, x⊤Lx computes the differences between

each adjacent pair and measures how volatile the signal is. This observation allows us to

define signal frequency.

Definition 7 (Signal Average Frequency). The frequency of a signal x is defined as the

Rayleigh quotient for L and x:

ω(x) =
x⊤Lx

x⊤x
. (3.13)

According to Theorem 1, we have the following facts about ω(x).

1. ω(x) is non-negative.

2. The more a signal x differs between adjacent nodes, the higher ω(x) it has. A

low-frequency signal appears to be “smooth”, and a high-frequency signal appears

to be “rough”.

3. If the graph is connected, ω(x) is 0 if and only if the signal is constant at every

vertex, i.e., x = α1⃗ for some constant α. If the graph is not connected, ω(x) = 0

indicates x is constant within each connected component.

4. When the graph is bipartite, ω(x) can reach its maximum 2dm.The signal x with

the highest frequency satisfies xi = −xj for all connected vertex pairs (νi, νj).
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In other words, one step walk on the graph will go from the signal’s crest to the

signal’s trough.

5. ω(x) does not depend on the scale of the signal, i.e., ω(x) = ω(αx) for all α ̸= 0.

These facts make ω(x) consistent with the properties of frequency in classic harmonic

analysis, which justifies our definition. Because L is symmetric, it is diagonalizable and

has the following eigen-decomposition

L = ΦΛΦ⊤, (3.14)

where Λ is a diagonal matrix storing eigenvalues, and Φ is the eigenbasis. Eigenvalues

and eigenvectors are arranged in such an order that λi corresponds exactly to eigenvector

ϕi:

Λ =


λ1

λ2

. . .
λn

 , Φ =


∣∣∣∣ ∣∣∣∣ ∣∣∣∣
ϕ1 ϕ2 · · · ϕn∣∣∣∣ ∣∣∣∣ ∣∣∣∣

 . (3.15)

Since L is symmetric, its eigenbasis Φ is unitary, i.e.,

Φ⊤Φ = I, Φ−1 = Φ⊤. (3.16)

The frequency of eigenbasis is exactly the corresponding eigenvalues. Formally, if

(λi,ϕi) is a pair of eigenvalue and eigenvector of L, then the frequency of ϕi is λi:

ω(ϕi) =
ϕ⊤

i Lϕi

ϕ⊤
i ϕi

=
λiϕ

⊤
i ϕi

ϕ⊤
i ϕi

= λi. (3.17)

In graph signal processing, Φ serves as the Fourier basis. Fourier transform calculates the

weight of these basis vectors in signals. Given the basis, we can define Fourier transform

as follows.
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Definition 8 (Fourier transform). The Fourier transform is anRn → Rn mapping, which

computes the projection of a signal x on eigenbasis Φ:

c = Φ⊤x with ci = ϕ⊤
i x. (3.18)

c is referred to as Fourier coefficients of x, and ci is the “amplitude” of ϕi-component

in x.

Fourier transform enables us to analyze the signal in the frequency (spectral) domain.

|ci| reflects how much ϕi-component x contains. The larger the magnitude ci has, the

more ϕi-component is present in the signal. Given Fourier coefficients c, we can recover

the original signal by inverse Fourier transform.

Definition 9 (Inverse Fourier transform). Inverse Fourier transform recovers the signal

x from its Fourier coefficients c:

x = Φc =
∑
i

ciϕi. (3.19)

Eq. (3.19) also states that a signalx can be decomposed into a sum of several components

with different frequencies. Φc is referred to as the Fourier decomposition of x.

In classic harmonic analysis, Parseval’s theorem states that the Fourier transform does

not change the energy of the signal, which is also true in graph signal processing.

Definition 10 (Energy of a signal). The energy E(x) of a signal x is defined as the

squared ℓ2 norm of x:

E(x) =
n∑

i=1

x2
i . (3.20)

The energy of eigenbasis vectors is always one, i.e., E(ϕi) = 1 for all i. If we decompose

signal x into n components as in Eq. (3.19), the energy of each component is equal to
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the squared coefficient:

E(ciϕi) = c2i . (3.21)

Theorem 2 (Parseval’s theorem). Let c be the Fourier coefficient of x, then the energy

of x is the sum of squared Fourier coefficients, i.e., E(x) = E(c), and

E(x) =
n∑

i=1

E(ciϕi) =
n∑

i=1

c2i = E(c), where c = Φ⊤x. (3.22)

Proof. This theorem directly follows that the eigenbasis Φ is unitary:

E(x) = x⊤x = x⊤ΦΦ⊤x = c⊤c.

Eq. (3.22) also tells us that the energy of ϕi-components is c2i , and the energy of a signal

can be considered as distributed in each Fourier component. In turn, the components’

energy also affects the signal frequency in the following way.

Theorem 3. The frequency of a signalx is equal to a weighted average of the frequencies

of Fourier basis, and the weights are components’ energy:

ω(x) =
n∑

i=1

c2i
∥c∥22

λi, where c = Φ⊤x. (3.23)

Proof. By L = ΦΛΦ⊤, we have

ω(x) =
x⊤Lx

x⊤x
=

x⊤ΦΛΦ⊤x

x⊤x
=

c⊤Λc

c⊤c
=

n∑
i=1

c2i
∥c∥22

λi.

Eq. (3.23) tells us that the frequency of components decides the frequency of a signal.

The signal has a low frequency if most energy is distributed in low-frequency compo-
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nents. The signal has a high frequency if most energy is distributed in high-frequency

components.

In summary, the eigenbasis of Laplacian serves as the Fourier basis, and the eigenvalues

are interpreted as frequency. Given the Fourier basis, we can define the Fourier transform

and the inverse Fourier transform for graph signals. Fourier transform enables us to ana-

lyze the signal in the frequency (spectrum) domain. A signal x can be decomposed into

a sum of several components with different frequencies. The weight of each component

is determined by its amplitude |ci|. The larger the amplitude is, the more ϕi-component

is present in the signal. If a particular (low or high) frequency component dominates the

signal, then the signal frequency will be close to it.

3.3 Normalized Laplacian

In addition to unnormalized Laplacian L, there are two types of normalized Laplacian:

symmetrically normalized Ls and row normalized Lr. Sometimes they are also used to

define frequency as unnormalized Laplacian does. Ls and Lr are related to two types of

normalized adjacency matrices: symmetrically normalized As and row normalized Ar,

which are given by the following equations:

As = D−1/2AD−1/2, (3.24)

Ls = D−1/2LD−1/2 = I −As, (3.25)

Ar = D−1A, (3.26)

Lr = D−1L = I −Ar. (3.27)
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Ls and As are still symmetric, as unnormalized L. Lr and Ar are not symmetric, but

they are closely related to random walks because Ar is the transition probability matrix.

Row sums of Ar are equal to 1, and row sums of Lr are equal to 0.

Theorem 4 (Spectra of normalized Laplacians). Lr andLs have the following properties.

1. For every signal x ∈ Rn,

x⊤Lsx =
1

2

∑
ij

aij

(
xi√
di

− xj√
dj

)2

. (3.28)

2. Lr and Ls have exactly the same eigenvalues. λ is an eigenvalue of Lr with

eigenvector ϕ, if and only if λ is an eigenvalue of Ls with eigenvectorD1/2ϕ.

3. Lr and Ls have n eigenvalues, which fall in the range [0, 2], i.e.,

0 = λ1 ≤ · · · ≤ λn ≤ 2. (3.29)

4. λn is 2 if and only if the graph is bipartite.

5. The smallest eigenvalue λ1 is 0, and the corresponding eigenvectors are 1⃗ and

D1/21⃗ for Ls and Lr respectively.

Proof.

1. Eq. (3.28) follows Eq. (3.7):

x⊤Lsx =
(
D−1/2x

)⊤
L
(
D−1/2x

)
=

1

2

∑
ij

aij

(
xi√
di

− xj√
dj

)2

.
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2. If Lrϕ = λϕ, we can multiply both side by D1/2, and get

Lrϕ = λϕ

⇐⇒ D−1Lϕ = λϕ

⇐⇒ D−1/2Lϕ = λD1/2ϕ

⇐⇒ D−1/2LD−1/2(D1/2ϕ) = λD1/2ϕ

⇐⇒ Ls
(
D1/2ϕ

)
= λ

(
D1/2ϕ

)
,

so λ is also an eigenvalue of Ls, and the corresponding eigenvector is D1/2ϕ .

3. Eq. (3.28) indicates that Ls is positive semi-definite, and thus all eigenvalues of Ls

are non-negative. Next, we consider the largest eigenvalue λn. Let y = D−1/2x, then

x⊤Lsx = y⊤Ly. Analogous to inequality (3.8), we have

x⊤Lsx = y⊤Ly =
1

2

∑
ij

aij(yi − yj)
2

≤
∑
ij

aij(y
2
i + y2j ) = 2

∑
i

diy
2
i

= 2y⊤Dy = 2x⊤x,

(3.30)

so the largest eigenvalue λn is less than or equal to 2:

λn = max
x

x⊤Lsx

x⊤x
≤ 2.

By property 2, Lr has exact same eigenvalues as Ls and they also fall in the range [0, 2].

4. Equality in (3.30) holds, if and only if xi = −xj for any two connected vertices νi

and νj . The maximum 2 is achieved in such case, and the graph is bipartite.

5. It is easy to verify that

Lr1⃗ = 0⃗ = Ls(D
1/21⃗), (3.31)
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Table 3.2: Let ϕs = D1/2ϕr, then the following four equations are equivalent.

Symmetrically normalized Row normalized Eigenvalue range

Laplacian Lsϕs = λϕs Lrϕr = λϕr [0, 2]

Adjacency Asϕs = (1− λ)ϕs Arϕr = (1− λ)ϕr [−1, 1]

so property 4 is proved.

Spectra of As,Ar are closely related to spectra of Ls and Lr.

Theorem 5 (Spectra of normalized adjacency matrix). Spectra ofAs,Ar relate toLs,Lr

in the following ways.

1. Ar has exactly the same eigenvectors as Lr. λ is an eigenvalue of Lr with

eigenvector ϕ, if and only if ϕ is also an eigenvector ofAr with eigenvalue 1− λ.

2. As has exactly the same eigenvectors with Ls. λ is an eigenvalue of Ls with

eigenvector ϕ, if and only if ϕ is also an eigenvector ofAs with eigenvalue 1− λ.

Proof. By definitions of Ls and Lr, we have

Lsϕ = λϕ

⇔ (I −As)ϕ = λϕ

⇔ Asϕ = (1− λ)ϕ

Lrϕ = λϕ

⇔ (I −Ar)ϕ = λϕ

⇔ Arϕ = (1− λ)ϕ.

Ar,Lr have same eigenvectors, and so do Ar,Lr. Relations among spectra of Ls, Lr,

As, Ar are summarized in Table 3.2
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3.3.1 Frequency and Fourier Transform under Normalized Lapla-

cian

Theorem 4 shows that Ls and Lr share lots of similar properties with L, so we have the

following alternatives to defining signal frequency:

ωs(x) =
x⊤Lsx

x⊤x
, ωr(x) =

x⊤Lrx

x⊤x
. (3.32)

ωs(x) and ωr(x) share most properties of ω(x) as in Section 3.2. In this case, the

eigenbasis of Ls or Lr serves as the Fourier basis instead of the one of L. Assume we

have the following eigen-decomposition for Ls and Lr
∗:

Ls = ΦsΛΦ⊤
s , Lr = ΦrΛΦ−1

r . (3.33)

We can still define the Fourier transform and the inverse Fourier transform.

Definition 11. If the eigenbasis of Ls or Lr serves as the Fourier basis, then the Fourier

transform is defined as

cs = Φ⊤x or cr = Φ−1
r x, (3.34)

and the inverse Fourier transform is defined as

x = Φcs or x = Φcs. (3.35)

Parseval’s theorem is also true for Ls, and the signal frequency is still a weighted average

over components’ frequency by component energy:

E(x) = ∥cs∥22 , ωs(x) =
1

∥ci∥22

∑
i

(cs)
2
iλi. (3.36)

∗Note that Lr is not symmetric, so its eigenbasis Φr is not unitary.
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However, Eq. (3.36) is not true for Lr, because Φr is not unitary.

The main advantage of normalized Laplacians over the unnormalized one is that their

polynomials are also the polynomials of the corresponding adjacency matrix, which

brings convenience to defining graph convolution in the next section.

3.4 Graph Convolution

3.4.1 Graph Filter

Analogous to classical signal processing, filters are transformations between signals.

Definition 12 (Filter). A graph filter h : Rn → Rn is a function that takes a signal as the

input and produces another signal:

y = h(x). (3.37)

There are various filters, among which linear filters are of particular interest to us.

Definition 13 (Linear filter). A filter h is said to be linear if and only if for all graph

signals x,y ∈ Rn and α, β ∈ R, linearity holds:

h(αx+ βy) = αh(x) + βh(y). (3.38)

All filters satisfying Eq. (3.38) are indeed linear transformations. If filter h(·) is linear,

there must exist a matrix H such that

h(x) = Hx.
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3.4.2 Graph Convolution

Convolution is a special family of linear filters. Here we introduce the whole story in the

context of symmetrically normalized Laplacian Ls.

Definition 14. (Convolution) A graph convolutionH is a polynomial of adjacencymatrix

As:

H = p(As) =
K∑
k=0

θkA
k
s , (3.39)

where p(·) is a polynomial of degreeK and θ = [θ0, . . . , θK ] are polynomial coefficients.

We call p(·) the convolution kernel and K the size of the kernel.

Here, p(·) denotes a polynomial that can be evaluated on both scalars and square matrices.

For example, a polynomial p(t) = 1 + 2t + 3t2, when evaluated on matrix A, is

p(A) = I + 2A+ 3A2.

Eq. (3.39) gives us a clear spatial interpretation of convolution — for each vertex, the

convolution result is a weighted sum of nearby signal values, and the weights are θ. If

there exists a path of length k from νi to νj , we say νj is a k-hop neighbor of νi. The

non-zero elements are closely related to such k-hop neighbors:

(Ak
s )ij ̸= 0 ⇐⇒ νj is a k-hop neighbor of νi,

so Ak
s only connects a vertex with its k-hop neighbors. For example, A0

s = I only

connects each vertex with itself, so θ0 is the weight for the vertex itself during convolution.

A1
s = As only connects each vertex with its neighbors, so θ1 is the weight for these direct

neighbors. A2
s = A2 connects each vertex with its neighbors’ neighbors, and so on. This

spatial interpretation is consistent with the convolution definition in classic harmonic
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analysis, which is also a weighted sum of neighbors. Denote the shortest-path distance†

between two vertices by d(νi, νj), we have the following theorem.

Theorem 6 (Locality of convolution). For any convolutional filter H = p(As), if the

degree of polynomial p(·) is K, then the result of each vertex only relies on its K-hop

neighborhood, i.e.,

d(νi, νj) > K =⇒ Hij = 0. (3.40)

For any signal y = H(x), we have

yi =
∑

νj∈NK(νi)

Hijxj. (3.41)

where NK(νi) = {νj|d(νi, νj) ≤ K} is the neighbors of νi within K hops.

Proof. For k = 0, 1, . . . , K, if d(νi, νj) > K, then (Ak
s )ij = 0. Note that H =∑K

k=0 θkA
k
s , so Eq. (3.40)) is true. Eq. (3.41) is a direct consequence of Eq. (3.40).

NK(νi) = {νj|d(νi, νj) ≤ K} is referred to as the reception field of νi. This theorem

explains why polynomial degree K is named as the kernel size because it controls the

size of the reception field.

In harmonic analysis, convolutional filters are linear and shift-invariant, and all linear

shift-invariant filters are convolutional filters. This is also true in the graph domain.

Given a signal x, shifting it by one step is to multiply it by the adjacency matrix As to

get Asx.

Definition 15 (Shift-invariant filter). Shift-invariant filters are the filters satisfying

Ash(x) = h(Asx), (3.42)
†Shortest-path distance between two vertices is the length of the shortest path connecting them, denoted

by d(νi, νj).
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i.e., filters that are inter-changeable with shifting operation.

Theorem 7 (Linear shift-invariant filter). A filter is a convolution if and only if it is both

linear and shift-invariant.

Proof. Convolution is linear by definition. Here, we show it is also shift-invariant:

AsHx = (AsH)x =

(
K∑
k=0

θkA
k+1
s

)
x = (HAs)x = HAsx. (3.43)

The proof for the other direction — all linear shift-invariant filters are conventional filters,

can be found in Sandryhaila and Moura [21].

3.4.3 Convolution Theorem

Note that Ls = I −As, so polynomials of Ls and As are also polynomials of each other.

Theorem 8. A polynomial ofAs with degreeK is also a polynomial of Ls with a degree

at most K. A polynomial of Ls with degree K is also a polynomial of As with a degree

at most K.

Proof. By Ls = I −As, we have

p(Ls) =
K∑
k=0

θkA
k
s =

K∑
k=0

θk(I −As)
k. (3.44)

Apparently, the right side, after expansion, is a polynomial of As with a degree at most

K. The proof for the other direction is similar.

Theorem 8 shows that convolutional filters can also be defined as polynomials of Ls:

H = p(Ls) =
K∑
k=0

θkL
k
s . (3.45)
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This definition is convenient for proving the convolution theorem. In classic harmonic

analysis, the convolution theorem states that applying a convolution to a signal is equiv-

alent to scaling the signal’s Fourier coefficients in the frequency domain.

Theorem 9 (Convolution theorem). Given a convolutional filterH = p(Ls) with kernel

p(·), if signals x,y satisfy y = Hx, then they have Fourier coefficients c(x) = Φ⊤x and

c(y) = Φ⊤y such that

c(y) = p(Λ)c(x), (3.46)

or in element-wise form

c
(y)
i = p(λi)c

(x)
i , (3.47)

for i = 1, 2, . . . , n.

Proof. According to the properties of matrix polynomial, p(Ls) is similar to p(Λ):

p(Ls) =
K∑
k=0

θkL
k
s =

K∑
k=0

θkΦsΛ
kΦ⊤

s

= Φs

(
K∑
k=0

θkΛ
k

)
Φ⊤

s = Φsp(Λ)Φ⊤
s , (3.48)

where p(Λ) is a diagonal matrix with i-th diagonal element equal to p(λi):

p(Λ) =



∑
k

θkλ
k
1∑
k

θkλ
k
2

. . .∑
k

θkλ
k
n


=


p(λ1)

p(λ2)
. . .

p(λn).

 (3.49)

Substitute p(Ls) by Eq. (3.48), and the theorem is proved as follows:

y = Hx

=⇒ y = Φsp(Λ)Φ⊤
s x

=⇒ Φ⊤
s y = p(Λ)Φ⊤

s x

=⇒ c(y) = p(Λ)c(x).
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In element-wise form,

c
(y)
i = p(λi)c

(x)
i . (3.50)

Real-valued polynomial p(λ) : R → R is referred to as the frequency response function,

because p(λi) is the scaling ratio for the component of frequency λi. In practice, response

functions are not necessarily a polynomial but can be any real-valued function, due to

the following reason.

Definition 16. For any real-valued function f(·) : R → R, it is evaluated on matrix Ls

as

f(Ls) = Φsf(Λ)Φ⊤
s = Φs



f(λ1)

f(λ2)

. . .

f(λn)


Φ⊤

s , (3.51)

i.e., apply f(·) to every eigenvalue of Ls.

Theorem 10. For any real-valued function f(·) : R → R, there exists a polynomial p(·)

such that f(Ls) = p(Ls), such that f(Ls) is a valid convolutional filter.

Proof. We only need to find a polynomial p such that

f(λi) = p(λi), for i = 1, 2, . . . , n. (3.52)

The interpolation theorem tells us that there exists a polynomial of degree at most n− 1

to satisfy the requirement.

As a result, any real-valued function can serve as the response function of convolutional

filters. We can extend the definition of convolution from polynomials p(Ls) to f(Ls). Ex-
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tending available response functions to any real-valued functions gives us more freedom

to design convolutional filters.

3.4.4 Unnormalized and Row-Normalized Convolution

Unnormalized Convolution We can also define convolution as a polynomial of unnor-

malized Laplacian L or adjacency matrix A:

H1 = p(L), H2 = p(A). (3.53)

The two definitions are not equivalent to the previous ones based on Ls and are not

equivalent to each other either. H1 cannot be interpreted as the weighted sum of

neighborhoods. H2 does not satisfy the convolution theorem unless we change the

Fourier basis from the eigenbasis of L to the eigenbasis of A.

Row-normalized Convolution Another definition of convolution is based on row-

normalized Laplacian Lr or adjacency matrix Ar:

Hr = p1(Lr) = p2(Ar). (3.54)

Since polynomials of Lr or Ar are also polynomials of each other, the two definitions are

equivalent. The definitions relate to those based on symmetrically normalized Laplacian

in the following way:

p1(Lr) = D−1/2p1(Ls)D
1/2, (3.55)

p2(Ar) = D−1/2p2(As)D
1/2. (3.56)
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3.4.5 Efficient Computation of Convolution

If we want to apply a convolutional filter H to a signal x, the straightforward way is to

calculate the filter itself first by

H = p(As) =
K∑
k=0

θkA
k
s , (3.57)

and then apply it to x

y = Hx. (3.58)

Assume the graph has n vertices, and the degree of p(·) is K, then calculating single

matrix multiplication requires O(n3) operations and Eq. (3.57) requires O(K2) matrix

multiplications, so the overall computational complexity isO(K2n3), which is very high.

Since polynomials can be calculated iteratively, e.g.,

1 + 2t+ 3t2 + 4t3 = 1 + t(2 + t(3 + 4t))

, it inspires us to calculate Hx iteratively as follows:

y(0) = θKx,

y(1) = θK−1x+Asy
(0),

y(2) = θK−2x+Asy
(1), (3.59)

...

y(K) = θ0x+Asy
(K−1).

It is easy to verify that y(K) = Hx. Each iteration takes O(n2) operations, and there

are K iterations, so the total complexity is O(Kn2). In addition, if the graph is sparse,

i.e., only a few elements in As are non-zero, then the complexity is even lower. Denote

the number of non-zero elements in As by N with N ≪ n2, and then the complexity is

O(KN).
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3.5 Low-pass Filters

Recall the convolutional theorem,

f(Ls) = Φf(Λ)c =
N∑
i=0

f(λi)ciϕi, (3.60)

where f(λ) is the frequency response function, and f(λi) is the scaling coefficient for the

component of frequency λi. A filter is said to be low-pass if it removes high-frequency

components and reserves low-frequency components. Specifically, f(λ) approaches 1,

when λ approaches 0, and f(λ) approaches 0, when λ is large. A basic fact is that

eigenvalues of normalized Laplacian are bounded in [0, 2] and eigenvalues of unnor-

malized Laplacian are bounded in [0, 2dm], where dm is the graph degree. Thus, high

frequency means frequencies close to 2 for normalized graphs, and those close to 2dm

for unnormalized graphs.

Ideal Low-Pass Filter An ideal low-pass filter has a cutoff frequency λcut. It removes

all components with frequency higher than λcut and reserves those with frequency lower

than λcut. The response function is in the form of

f(λ) =


1 if λ ≤ λcut

0 if λ > λcut,

(3.61)

and the filter is

f(Ls) =
∑

0≤λi≤λcut

ϕiϕ
⊤
i .

However, computing such a filter requires eigen-decomposition of the graph Laplacian,

which is impractical for large graphs.
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Taubin Filter Taubin filter [93] is a polynomial approximation of the ideal low-pass

filter within a fixed range, such as [0, 2]. It is defined as

p(λ) =
[
(1− sλ)(1− tλ)

]K
, (3.62)

p(Ls) =
[
(1− sLs)(1− tLs)

]K
, (3.63)

where s ∈ [0, 1
2
] and t ≤ −s. Note that p(0) = 1, p(s) = p(t) = 0, and

λ ∈ [0,
1

t
+

1

s
] =⇒ p(λ) ∈ [1,+∞), (3.64)

λ ∈ (
1

t
+

1

s
,
1

s
] =⇒ p(λ) ∈ [0, 1). (3.65)

Apparently, Taubin filter amplifies components of frequency in [0,
1

t
+
1

s
], and suppresses

those of frequency in (
1

t
+

1

s
,
1

s
]. When K is sufficiently large, p(λ) approximates zero

for λ ∈ (
1

t
+

1

s
, 2]. So, the cutoff frequency is λcut =

1

t
+

1

s
. If we already know the

desired λcut, the parameters s, t can be chosen as follows:
1

s
= 2

λcut =
1

t
+

1

s

=⇒


s =

1

2

t =
1

λcut − 2

. (3.66)

Gaussian Filter Another typical low-pass filter is the Gaussian filter. It is a low-pass

filter with a Gaussian response function

f(λ) = exp

(
−λ2

σ2

)
, (3.67)

where parameter σ controls the strength of the filter. Small σ indicates strong smoothness.

Obtaining a precise Gaussian filter also requires to compute the eigen-decomposition of

the graph Laplacian. However, we can approximate f(λ) by its Taylor series centered

around 0:

f(λ) ≈ p(λ) =
K∑
k=0

(−1)k
1

k!

(x
σ

)2k
. (3.68)
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The larger K is, the more accurate the approximation is. Eigenvalues of normalized

Laplacian are bounded in [0, 2], so only a few terms are sufficient to get a good approxi-

mation. The final filter will be

p(Ls) =
K∑
k=0

(−1)k

k!σ2k
L2k

s . (3.69)

We could also approximate f(λ) in range [0, 2] by Chebyshev series

f(λ) ≈ p(λ) =
K∑
k=0

θkTk(λ− 1), (3.70)

where Tk(·) is the k-th Chebyshev polynomial. The parameter is decided by

θk =

∫ 2

0

Tk(λ− 1)f(λ). (3.71)

In this case, the filter becomes

p(Ls) =
K∑
k=0

θkTk(Ls − I) =
K∑
k=0

θkTk (−As) . (3.72)

Random Walk Filter Another practical low-pass filter for machine learning is

p(L) = (1− 1

u
L)k, (3.73)

where u is a proper upper bound of eigenvalues. For normalized Laplacian, u should be

2. For unnormalized Laplacian, if the degree dm of the graph is known, u can be 2dm.

Otherwise, dm is bounded by the number of vertices n, so u can be 2n. If the graph is a

s-NN graph, dm is bounded by 2s, so u can be 4s. The response function f(λ) here is

designed to go through points (0, 1) and (u, 0). The exponent k controls the strength of

low-passness.
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Table 3.3: Notation Table II.

Notation Description

1⃗ (Bold) All-one vector

0⃗ (Bold) All-zero vector

I Identity matrix

x,y Signals

di =
∑

j aij Degree of νi
D = diag([d1, . . . , dn]) (Diagonal) degree matrix

L = D −A Unnormalized Laplacian matrix

{Ck} Connected components of the graph

λi,ϕi Eigenpair of the Laplacian matrix

ω(x) =
x⊤Lx

x⊤x
Signal frequency

L = ΦΛΦ−1 Eigen-decomposition of Laplacian

As = D−1/2AD−1/2 Symmetrically normalized adjacency matrix

Ls = D−1/2LD−1/2 = I −As Symmetrically normalized Laplacian

Ar = D−1A Row normalized Laplacian matrix

Lr = D−1L = I −Ar Row normalized adjacency matrix

H
Linear filter, or

hidden layer of neural networks

d(νi, νj) Distance between (νi, νj)

Nk(νi) = {νj|d(νi, νj) ≤ k} k-hop neighborhood of νi
N (νi) = {νj|(νi, νj) ∈ E} Direct neighbors of νi
p(λ) : R → R Polynomial evaluated on scalar λ

p(A) : Rn×n → Rn×n Matrix polynomial evaluated on square matrix A

f(λ) : R → R Real-valued function

f(A) : Rn×n → Rn×n Apply f(·) to eigenvalues of A

Tk(·) k-order Chebyshev polynomial
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3.6 Multi-dimensional Graph Signal Processing

1D 2-D

Euclidean
Signals

Discretized Euclidean
space as a Graph

0 1 2 3 4 5 6 7 8 9

ℤ
ℤ!

Table 3.4: N-dimensional discretized Euclidean space. Zn = Z× Z× · · · × Z.

3.6.1 Cartesian product of Graphs

In Euclidean space, signals are categorized according to the dimension of the space they

lie in. For example, sound waves lie in 1-D Euclidean space, so they are 1-D signals;

images lie in 2-D Euclidean space, so they are 2-D signals. An N -dimensional space

is actually the Cartesian product of N 1-D spaces. The concepts of dimension and

Cartesian product also exist in the graph domain. As Table 3.4 illustrates, the Cartesian

product of two chains (graph representation of Z) results in a 2-D grid, which is the graph

representation of Z2. In this section, we will briefly introduce multi-dimensional graph

signal processing. Readers may refer to Kurokawa et al. [94] for a more comprehensive

introduction.

Given two graphs G(1) = (V(1),A(1)) and G(2) = (V(2),A(2)) with edge set E (1) and E (2),

their Cartesian product G(1) □ G(2) is another graph with vertex set

V = V(1) × V(2) = {(ν(1)
i1

, ν
(2)
i2

)|i1 = 1, . . . , n1; i2 = 1, . . . , n2}, (3.74)
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where n1 = |V(1)|, n2 = |V(2)| are the numbers of vertices in G(1),G(2) respectively. The

resulted product G has n1n2 vertices, and its adjacency matrix A is of shape n1n2×n1n2.

The following formula specifies edge weights:

a(i1i2),(j1j2) = a
(1)
i1j1

I(i2, j2) + a
(2)
i2j2

I(i1, j1), (3.75)

where function I(·, ·) is defined as

I(i, j) =


1, if i = j,

0, if i ̸= j.

(3.76)

Readers may think of I as an identity matrix of infinite size and i, j as element indices.

Intuitively, there is an edge between (νi1 , νi2) and (νj1 , νj2) in the product graph, if and

only if νi1 = νj1 and there is an edge between νi2 , νj2 in G(2), or νi2 = νj2 and there is an

edge between νi1 , νj1 in G(1), i.e.,

a(i1i2),(j1j2) ̸= 0 ⇐⇒
(
(a

(1)
i1j1

̸= 0) and (i2 = j2)
)

or
(
(i1 = j1) and (a

(2)
i2j2

̸= 0)
)
.

(3.77)

Eq. (3.75) describes edge weights of Cartesian product in element-wise manner. However,

we can describe Eq. (3.75) more concisely with the help of Kronecker product and

Kronecker sum. A Kronecker product [95] of A ∈ Rm×n and B ∈ Rp×q is a matrix

given by

A⊗B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB

 ∈ Rmp×nq. (3.78)

For two square matrices A ∈ Rm×m and B ∈ Rn×n, their Kronecker sum is defined by

A⊕B = A⊗ In + Im ⊗B, (3.79)
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𝒢! 𝒢" 𝒢

G = G1 □ G2

Figure 3.1: An example of graph product. Orange edges come from G1; blue ones come

from G2.

where In and Im are identity matrices of size n×n and m×m respectively. It is easy to

verify that the adjacency matrix A of the product graph is the Kronecker sum of factor

graphs’ adjacency matrices A(1),A(2):

G(1) □ G(2) = (V ,A) =⇒ A = A(1) ⊕A(2). (3.80)

Then, we can define the Cartesian product of graphs.

Definition 17 (Cartesian product of graphs). Given two graphs G(1) = (V(1),A(1)) and

G(2) = (V(2),A(2)), their Cartesian product, denoted by G(1) □ G(2), is another graph

G = (V ,A) = G(1) □ G(2), (3.81)

where

V = V(1) × V(2) and A = A(1) ⊕A(2). (3.82)

We refer to G as the product graph, and G(1),G(2) as factor graphs.
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3.6.2 Properties of Kronecker Product

The rest of this section heavily relies on Kronecker product. Here, we introduce several

important properties of Kronecker product. We refer readers to Wikipedia [95] for more

properties about Kronecker product.

1. Kronecker Product is bilinear and associative:

A⊗ (B +C) = A⊗B +A⊗C, (3.83)

(B +C)⊗A = B ⊗A+C ⊗A, (3.84)

(kA)⊗B = A⊗ (kB) = k(A⊗B), (3.85)

(A⊗B)⊗C = A⊗ (B ⊗C). (3.86)

As a result, Kronecker sum and the graph Cartesian product are also associative:

(A1 ⊕A2)⊕A3 = A1 ⊕ (A2 ⊕A3), (3.87)

(G1 □ G2) □ G3 = G1 □ (G2 □ G3). (3.88)

2. Kronecker Product is non-commutative. Usually, A ⊗B ̸= B ⊗A. However, they

are permutation equivalent, i.e., there exist two permutation matrices P and Q such that

A⊗B = P (B ⊗A)Q. (3.89)

What’s more, if A and B are square matrices, then P = Q⊤. As a consequence, A⊕B

and B ⊕A are generally not equal either, but permutation equivalent:

A⊕B = P (B ⊕A)Q. (3.90)

This property derives the following properties of the graph Cartesian product.

Theorem 11. G(1) □ G(2) and G(2) □ G(1) are isomorphic.
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Proof. Denote their adjacency matrices by A12 and A21 respectively, then

A12 = A(1) ⊕A(2),

A21 = A(2) ⊕A(1).

Because A12 and A21 are square, there exists a permutation matrix P , such that

A12 = PA21P
⊤.

In other words, A12 and A21 differ from each other merely by a vertex reordering, so

G(1) □ G(2) and G(2) □ G(1) are isomorphic.

3. Mixed-product property:

(A⊗B)(C ⊗D) = (AC)⊗ (BD), (3.91)

where AC and BD are ordinary matrix products. This also applied to chained matrix

multiplication:

(A1 ⊗A2 ⊗A3)(B1 ⊗B2 ⊗B3) = (A1A2A3)⊗ (B1B2B3). (3.92)

4. Transpose, inverse, and the diag operator are distributive over Kronecker product.

(A⊗B)⊤ = A⊤ ⊗B⊤, (3.93)

(A⊗B)−1 = A−1 ⊗B−1, (3.94)

diag(A⊗B) = diag(A)⊗ diag(B), (3.95)

diag−1(a⊗ b) = diag−1(a)⊗ diag−1(b). (3.96)

Here, operator diag : Rn×n → Rn puts diagonal elements of a matrix into a vector, and

diag−1 : Rn → Rn×n creates a diagonal matrix from the given elements in a vector.

a = diag(A), where ai = Aii, (3.97)

A = diag−1(a), where Aii = ai and Aij = 0 ∀i ̸= j. (3.98)
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3.6.3 Laplacian of Cartesian Product

The benefit of considering a graph as the product of other graphs is that its Laplacian

and other concepts with Laplacian including Fourier transform and convolution, can be

factored into the corresponding concepts of the factor graphs, thus greatly reducing the

complexity of both analysis and computation.

Theorem 12 (Laplacian of Cartesian Product). Denote the adjacencymatrix ofG,G(1),G(2)

by A,A(1),A(2), and the degree matrix byD,D(1),D(2), and the Laplacian Matrix by

L,L(1),L(2), respectively. If G = G(1) □ G(2), then

A = A(1) ⊕A(2), (3.99)

D = D(1) ⊕D(2), (3.100)

L = L(1) ⊕L(2). (3.101)

Proof. Eq. (3.99) is obtained by the definition of graph Cartesian Product. To prove

Eq. (3.100), we consider the degree vector d of graphs, which is equal to the row sum of

the adjacency matrix A:

d ≜ diag(D) = A1⃗n1n2 ,

where 1⃗n1n2 denotes an all-one vector of length n1n2. For simplicity, the subscript, e.g.,

n1n2, may be omitted if vector length can be inferred from the context. By facts of
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1⃗n1n2 = 1⃗n1 ⊗ 1⃗n2 and mixed-product property of Kronecker product,

d = A
(
1⃗n1 ⊗ 1⃗n2

)
=
(
A(1) ⊕A(2)

)
(1⃗⊗ 1⃗)

=
(
A(1) ⊗ I + I ⊗A(2)

)
(1⃗⊗ 1⃗)

= (A(1) ⊗ I)(1⃗⊗ 1⃗) + (I ⊗A(2))(1⃗⊗ 1⃗)

= (A(1)1⃗)⊗ (I1⃗) + (I1⃗)⊗ (A(2)1⃗)

= d(1) ⊗ 1⃗+ 1⃗⊗ d(2).

By the fact that diag−1(·) is distributive over Kronecker product,

D = diag−1(d)

= diag−1
(
d(1) ⊗ 1⃗

)
+ diag−1

(
1⃗⊗ d(2)

)
= diag−1

(
d(1)
)
⊗ diag−1(1⃗) + diag−1(1⃗)⊗ diag−1

(
d(2)
)

= D(1) ⊗ I + I ⊗D(2)

= D(1) ⊕D(2).

Hence, Eq. (3.100) is proved. Next, we consider the Laplacian:

L = D −A

=
(
D(1) ⊗ I + I ⊗D(2)

)
−
(
A(1) ⊗ I + I ⊗A(2)

)
=
(
D(1) ⊗ I −A(1) ⊗ I

)
+
(
I ⊗D(2) − I ⊗A(2)

)
=
(
D(1) −A(1)

)
⊗ I + I ⊗

(
D(2) −⊗A(2)

)
= L(1) ⊗ I + I ⊗L(2)

= L(1) ⊕L(2).

As such, Eq. (3.101) is proved.
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3.6.4 Fourier Basis of Product Graph

Eq. (3.101) tells us that the product graph’s Laplacian is the Kronecker sum of those of

the factor graphs. Moreover, the eigenvalues and eigenvectors of the Laplacian of the

product graph also closely relate to those of the factor graphs.

Theorem 13. (Fourier Basis of Product Graph) For any eigenpair λ(1)
i , ϕ

(1)
i of L(1) and

eigenpair λ(2)
j , ϕ

(2)
j of L(2), let

λij ≜ λ
(1)
i + λ

(2)
j , (3.102)

ϕij ≜ ϕ
(1)
i ⊗ ϕ

(2)
j , (3.103)

then ϕij is the eigenvector of the Laplacian of the product graph with eigenvalue λij , i.e.,

Lϕij = λijϕij. (3.104)

In other words, assume factor graphs’ Laplacians have eigen-decomposition

L(1) = Φ(1)Λ(1)Φ(1)⊤, (3.105)

L(2) = Φ(2)Λ(2)Φ(2)⊤, (3.106)

then the Laplacian of the product graph has eigen-decomposition

L = ΦΛΦ⊤, (3.107)

where

Λ ≜ Λ(1) ⊕Λ(2), Φ ≜ Φ(1) ⊗Φ(1). (3.108)

Proof. Notice that

L = L(1) ⊕L(2) = L(1) ⊗ In2 + In1 ⊗L(2),
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and

In1 = Φ(1)In1Φ
(1)⊤,

In2 = Φ(2)In2Φ
(2)⊤.

(3.109)

Substitute In1 and In2 by Eq. (3.109), and apply mix-product property of Kronecker

product, we get

L = L(1) ⊕L(2) = L(1) ⊗ In2 + In1 ⊗L(2)

=
(
Φ(1)Λ(1)Φ(1)⊤)⊗ (Φ(2)IΦ(2)⊤)+ (Φ(2)Λ(2)Φ(2)⊤)⊗ (Φ(1)IΦ(1)⊤)

=
(
Φ(1) ⊗Φ(2)

) (
Λ(1) ⊗ I

) (
Φ(1)⊤ ⊗Φ(2)⊤)

+
(
Φ(1) ⊗Φ(2)

) (
I ⊗Λ(2)

) (
Φ(1)⊤ ⊗Φ(2)⊤)

=
(
Φ(1) ⊗Φ(2)

) (
Λ(1) ⊗ I + I ⊗Λ(2)

) (
Φ(1)⊤ ⊗Φ(2)⊤)

=
(
Φ(1) ⊗Φ(2)

) (
Λ(1) ⊕Λ(2)

) (
Φ(1) ⊗Φ(2)

)⊤
≜ ΦΛΦ⊤.

This theorem can help us avoid explicitly calculating the eigen-decomposition of the

Laplacian of the product graph in most cases. Instead, we may just calculate the eigen-

decomposition of the Laplacian of the factor graphs, which reduces the computational

complexity from O(n3
1n

3
2) to O(n3

1 + n3
2).

3.6.5 Signals and Fourier Transform on Product Graph

We may represent signals on a product graph as a vector, just as in previous sections, but

organizing them in matrix form is more convenient and natural.
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Definition 18. (Signals on Product Graph) Given graphs G(1), G(2) with n1 nodes and n2

nodes respectively, a signal defined on their Cartesian product G(1) □ G(2) is a matrix

X ∈ Rn1×n2 , where xij is the value associated to node (ν
(1)
i , ν

(2)
j ).

To represent a signal in vector form as in previous sections, we may vectorize X:

vec(X) =



x11

x12

...

x21

x22

...

xn1n2


. (3.110)

Operator vec(·) reshapes a matrix into a vector in row-major order, i.e., traversing the

matrix row by row. Other material may define vec(·) in column-major order. The

inverse operator vec−1(·) reshapes a vector back to a matrix of proper size according to

the context. With the help of vec(·), we may write the mixed Kronecker matrix-vector

product as

(A⊗B)x = vec(AXB⊤), (3.111)

where x = vec(X) and X = vec−1(x).

Theorem 14. (Fourier Transform on Product Graph) For product graph G = G(1) □ G(2)

and a signalX on G (in matrix form), its Fourier coefficients c satisfy

c = Φ vec(X) = vec(Φ(1)XΦ(2)⊤). (3.112)

The inverse transform is

X = Φ(1)⊤ vec−1(c)Φ(2). (3.113)
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This is a direct consequence of the fact of Φ = Φ(1)⊗Φ(2) and mixed Kronecker matrix-

vector product property. Similar to representing signals on the product graph, it is more

convenient and natural to organize Fourier coefficients as a matrix.

Definition 19. The spectrum of a signal on a product graph is a matrix C ∈ Rn1×n2:

C = vec−1(c) = Φ(1)XΦ(2)⊤. (3.114)

We may recover the signal from the spectrum by

X = Φ(1)⊤CΦ(2). (3.115)

3.6.6 Convolution on Product Graph

As described in the previous sections, there are two equivalent definitions of graph

convolution: one is in the spatial domain, and another is in the spectral domain. Here, we

consider the convolution in the spectral domain. According to the convolution theorem,

applying a convolution to a signal is equivalent to scaling the signal’s Fourier coefficients

in the frequency domain. Given a scaling factor P ∈ Rn1×n2 , we can apply it to the

spectrum of X by

Z = Φ(1)⊤(C ◦ P )Φ(2). (3.116)

However, it requires to know the Fourier basis of G1 and G2, which are computationally

expensive to obtain. To alleviate this problem, we may parameterize the entries of the

spectral kernel P as a two-variable polynomial p(·, ·) of eigenvalues λ(1), λ(2) such that

pij = p(λ
(1)
i , λ

(2)
j ), i.e.,

pij = p(λ
(1)
i , λ

(2)
j ) =

n1−1∑
k1=0

n2−1∑
k2=0

θk1,k2

(
λ
(1)
i

)k1 (
λ
(2)
j

)k2
, (3.117)



62 CHAPTER 3. BASICS OF GRAPH SIGNAL PROCESSING

or in matrix form:

P =
n−1∑
k1=0

m−1∑
k2=0

θk1k2
(
Λ(1)

)k1
1⃗n1×n2

(
Λ(2)

)k1
, (3.118)

where 1⃗n1×n2 denotes all-one matrix of shape n1 × n2. Substitute P in Eq. (3.116) by

Eq. (3.118) and afer some rearrangement, the graph convolution becomes

Z =

n1−1∑
k1=0

n2−1∑
k2=0

θk1k2Φ
(1)
(
C ◦

((
Λ(1)

)k1
1⃗n1×n2

(
Λ(2)

)k1))
Φ(2)⊤

=

n1−1∑
k1=0

n2−1∑
k2=0

θk1k2Φ
(1)
(
Λ(1)

)k1 (
C ◦ 1⃗n1×n2

) (
Λ(2)

)k1
Φ(2)⊤

=

n1−1∑
k1=0

n2−1∑
k2=0

θk1k2Φ
(1)
(
Λ(1)

)k1
C
(
Λ(2)

)k1
Φ(2)⊤

=

n1−1∑
k1=0

n2−1∑
k2=0

θk1k2Φ
(1)
(
Λ(1)

)k1
Φ(1)⊤ (Φ(1)CΦ(2)⊤)Φ(2)⊤ (Λ(2)

)k1
Φ(2)⊤

=

n1−1∑
k1=0

n2−1∑
k2=0

θk1k2

(
Φ(1)

(
Λ(1)

)k1
Φ(1)⊤

)
X
(
Φ(2)

(
Λ(2)

)k1
Φ(2)⊤

)⊤
=

n1−1∑
k1=0

n2−1∑
k2=0

θk1k2
(
L(1)

)k1
X
(
L(2)⊤)k2 . (3.119)

The second equality is because
(
Λ(1)

)k1 and
(
Λ(2)

)k2 are diagonal. Eq. (3.119) shows

how to perform convolution purely in the spatial domain to avoid calculating the Fourier

basis. Parameters Θ = {θk1k2} ∈ Rn1×n2 in Eq. (3.119) are called the (spatial) kernel

of this convolution. Similar to Defferrard et al. [14], this spatial convolutional filter is

localized. Denote by K1 and K2 the largest exponent of L1 and L2 in the polynomial,

i.e., k1 > K1 or k2 > K2 implies θk1k2 = 0, then Eq. (3.119) becomes

Z =

K1∑
k1=0

K2∑
k2=0

θk1k2
(
L(1)

)k1
X
(
L(2)⊤)k2 . (3.120)

In this way, kernel Θ is of size (K1 + 1) × (K2 + 1). The convoluted signal zij of

vertex pair (ν(1)
i , ν

(2)
j ) only depends on the neighbourhood of ν(1)

i within K1 hops and

the neighbourhood of ν(2)
j within K2 hops, so the filter is said to be K1-localized on G1

and K2-localized on G2.
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3.6.7 Multi-Dimensional Graph

In previous subsections, we introduced the Cartesian product of two graphs and the

corresponding Laplacian, Fourier basis, and convolution, which is referred to as 2-D

graph signal processing. However, most of the results in the 2-D case can be generalized to

the Cartesian product of more than two graphs, which is referred to as multi-dimensional

graph signal processing.

In this subsection, we consider the chained product as following:

G = G1 □ G2 □ . . . □ GN . (3.121)

Since there are N factor graphs, we refer to G as an N -Dimensional graph or simply an

N -D graph.

The order of factors in a Cartesian product does not matter much. Products of the same

set of graphs in different orders are isomorphic. For example, Theorem 11 tells

G1 □ G2
∼= G2 □ G1,

where ∼= denotes isomorphism.

Theorem 15. For any permutation i1, i2, . . . , iN of 1, 2, . . . , N ,

G1 □ G2 □ · · · □ GN
∼= Gi1 □ Gi2 □ · · · □ GiN . (3.122)

In other words, the graph Cartesian product is commutative under graph isomorphism

equivalence.

Proof. We first prove that if factor graphs are isomorphic, products are also isomorphic.
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Lemma 1. For any graph G,G1,G2, if G1
∼= G2, then

G □ G1
∼= G □ G2

∼= G1 □ G ∼= G2 □ G. (3.123)

Consider their adjacency matrices A,A1,A2. Since G1
∼= G2, there exists a permutation

matrix P such that

A1 = PA2P
⊤.

Now we consider the adjacency matrices of the product graphs. By applying the mix-

product property several times, we have

A⊕A1 = A⊗ I + I ⊗A1

= A⊗ (PP⊤) + I ⊗ (PA2P
⊤)

= (I ⊗ P )(A⊗ I)(I ⊗ P⊤) + (I ⊗ P )(I ⊗A2)(I ⊗ P⊤)

= (I ⊗ P )(A⊗ I + I ⊗A2)(I ⊗ P⊤)

= (I ⊗ P )(A⊕A2)(I ⊗ P )⊤.

It is easy to verify that I ⊗ P is also a permutation matrix, so G □ G1 is isomorphic

with G □ G2. By commutativity, we also have G1 □ G ∼= G2 □ G. This lemma tells

if factor graphs are isomorphic, then products are also isomorphic. Next, we prove

that exchanging any two adjacent factors in the product chain will result in isomorphic

products.

G1 □ · · · Gi □ Gj · · · GN

= G1 □ · · · (Gi □ Gj) · · · GN

∼= G1 □ · · · (Gj □ Gi) · · · GN

= G1 □ · · · Gj □ Gi · · · GN
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The second line and last line are from the associativity of graph Cartesian product

(Section 3.6.2). By the fact that Gi □ Gj is isomorphic with Gj □ Gi (Theorem 11) and

the lemma above, the third line holds.

Finally, we can get any permutation of factor graphs by exchanging adjacent factors

for a finite number of times, and the products are kept isomorphic, so the theorem is

proved.

This theorem enables us to ignore the order of factors in graph Cartesian product, so

the below discussion applies to any order of product. We denote the chained Kronecker

product and sum by

N⊗
i=1

Ai ≜ A1 ⊗A2 · · · ⊗AN , (3.124)

N⊕
i=1

Ai ≜ A1 ⊕A2 · · · ⊕AN . (3.125)

Theorem 16. Assume G = G1 □ G2 □ . . . □ GN , and denote the degree matrices of

factor graphs by D(i), Laplacians by L(i), Fourier basis by Φ(i), eigenvalues by Λ(i),

and those of the product graph byD,L,Φ,Λ. Then we have

L =
N⊕
i=1

L(i), D =
N⊕
i=1

D(i),

Φ =
N⊗
i=1

Φ(i), Λ =
N⊕
i=1

Λ(i).

Proof. This is a direct consequence of Theorems 12 and 13.

Definition 20. It is natural to organize a signal on N -dimensional graphs as an N -

dimensional tensor

X ∈ Rn1×n2×···×nN , (3.126)

and xi1,i2,...,iN is the value associated to vertex (ν
(1)
i1

, ν
(2)
i2

, . . . , ν
(N)
iN

).
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mode-1 filters (column) mode-2 filters (row) mode-3 filters (tube)

×1L
(1)

×2L
(2)

×3L
(3)

X =⇒

X

X = X×1 G1 ×2 G2 ×3 G3

Figure 3.2: Mode-n filters and multi-dimensional graph filtering.

When N = 1, X is a vector; and when N = 2, X is a matrix.

The n-Mode Product Tensors can be multiplied together. The notations are more

complex than matrix product, though. For a full treatment of tensor multiplication,

see Kolda and Bader [96]. Here we only consider the tensor n-mode product, i.e.,

multiplying a tensor by a matrix (or a vector) in mode n. Such a product is actually

a matrix-vector product applied to fibers of a tensor. Tensors’ fibers are the higher-

dimension analogous to the rows and columns of a matrix. A fiber is a vector defined by

fixing the indices of all dimensions/modes but one. The columns of a matrix are mode-1

fibers, and the rows are mode-2 fibers. Similarly, a 3-dimensional tensor X has three

types of fibers: rows, columns, and tubes (Fig. 3.2). The n-mode (matrix) product of a

tensor X ∈ RI1×I2×···×IN with a matrix A ∈ RJ×In is denoted by X×n A and is of size
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I1 × · · · × In−1 × J × In+1 × · · · × IN . Elementwisely, we have

(X×n A)i1i2...in−1inin+1...iN =
∑
j

xi1i2...in−1jin+1...iNajin . (3.127)

Theorem 17. (Multi-Dimensional Fourier Transform and Inverse Transform) The spec-

trum of signal X is a tensor C of the same shape as X, which can be obtained by

C = X×1 Φ
(1) ×2 Φ

(2) · · · ×N Φ(N), (3.128)

where C = {ci1...iN}, and ci1...iN is the coefficient of Fourier baseϕ(1)
i1

⊗ϕ
(2)
i2

⊗· · ·⊗ϕ
(N)
iN
.

Given the spectrum C, we can recover signal X by

X = C×1 Φ
(1)⊤ ×2 Φ

(2)⊤ · · · ×N Φ(N)⊤. (3.129)

Here, we just present the formula of multi-dimensional graph convolution in the spatial

domain. One may verify that the N -D graph convolution also obeys the convolution

theorem and Parseval’s theorem.

Theorem 18. (Multi-dimensionalGraphConvolution)AssumeG = G1 □ G2 □ . . . □ GN ,

and denote Laplacians of factor graphs by L(i). Given a signal X on G and a spatial

convolution kernel Θ ∈ RK1×K2···×KN , applying the convolution kernel to X results in a

new signal X̄ such that

X̄ =

n1∑
k1

n2∑
k2

· · ·
nN∑
kN

θk1k2...kN

(
X×1

(
L(1)

)k1 ×2

(
L(2)

)k2 · · · ×N

(
L(N)

)kN)
.

(3.130)

The convolution is of size K1 ×K2 · · · ×KN and Ki-localized on Gi.
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Table 3.5: Notation Table III.

Notation Description

X,Y,Z,C Tensors (Calligraphy letters)

1⃗ (Bold) All-one vector

0⃗ (Bold) All-zero vector

I Identity matrix

O All-zero matrix

G1□G2 Graph Cartesian product

G1
∼= G2 Graph isomorphism

A⊗B Kronecker product

A⊕B Kronecker sum

A ◦B Hadamard product (element-wise product)

X×n A n-mode product

x = vec(X) Vectorize a matrix

X = vec−1(x) Reshape a vector back to a matrix (with proper shape)

d = diag(D) Arrange diagonal elements of a matrix as a vector

D = diag−1(d) Create a diagonal matrix from elements in vector d
n⊗

i=0

Ai Chained Kronecker product
n⊕

i=0

Ai Chained Kronecker sum
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Chapter Review

This chapter introduces the basic concepts of graph signal processing in detail, from graph

Laplacian, graph signals, and signal frequency, to graph convolutional filters, Parseval’s

theorem, convolution theorem, and low-pass filters. These concepts and theorems serve

as the main theoretical tools to analyze various convolution-based methods for learning

on graphs in Chapter 4. The last section of this chapter generalizes these concepts to

multi-dimensional graphs, which serve as the theoretical background for Chapter 5.
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Chapter 4

Learning with 1-D Graph Convolution

Many interesting problems in machine learning have been studied with new deep learning

methods. For graph-based semi-supervised learning, a recent important development is

graph convolutional networks (GCNs) [15], which nicely integrate local vertex features

and graph topology in the convolutional layers. Although the GCN model compares

favorably with other state-of-the-art methods, its mechanisms are not clear, and it still

requires a considerable amount of labeled data for validation and model selection.

Graph-based methods have been demonstrated as one of the most effective approaches for

semi-supervised learning, as they can exploit the connectivity patterns between labeled

and unlabeled data samples to improve learning performance. However, existing graph-

based methods are either limited in their ability to jointly model graph structures and

data features, such as the classical label propagation methods, or require a considerable

amount of labeled data for training and validation due to high model complexity, such as

the recent neural-network-based methods.

71
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This chapter addresses graph-based semi-supervised learning and unsupervised learning

from a graph filtering perspective. Specifically, we propose a graph filtering framework

that injects graph similarity into data features by taking them as signals on the graph and

applying a low-pass graph filter to extract useful data representations for classification or

clustering, where label efficiency can be achieved by conveniently adjusting the strength

of the graph filter. Interestingly, this framework unifies two seemingly very different

methods — label propagation and graph convolutional networks.

Revisiting them under the graph filtering framework leads to new insights that improve

their modeling capabilities and reduce model complexity. Especially, we reveal the

fundamental mechanisms of graph convolutional networks via both spatial and spectral

analysis. Our spatial analysis shows that the graph convolution of the GCN model

is actually a special form of Laplacian smoothing, which is the crucial reason why

GCN works, but it also brings up the over-smoothing problem of deep GCN models.

Our spectral analysis revisits GCN and classical label propagation methods under a

graph filtering framework and shows that what they actually do is to extract useful data

representations by a low-pass graph filter.

With the new theoretical insights, we have developed new, efficient, and more pow-

erful models based on graph convolution for semi-supervised and unsupervised learn-

ing, including Improved Graph Convolutional Networks (IGCN), Generalized Label

Propagation (GLP), and Adaptive Graph Convolution (AGC). Experiments on various

semi-supervised classification and clustering tasks on four citation networks and one

semi-supervised regression task for zero-shot image recognition validate our findings

and proposals.
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4.1 Generalized Label Propagation

In this section, we first review label propagation methods (LP) in detail. Next, we cast LP

in the context of graph signal processing and identify its three components: signal, filter,

and classifier. Then we propose generalized label propagation methods by extending

the three components of LP. Finally, we establish the connections between the graph

convolution networks and GLP.

Label propagation was a popular method for semi-supervised learning in the early 2000s.

The problem of semi-supervised classification is defined as follows. We consider on

undirected graph G = (V ,A,X), where V is the vertex set with n = |V| vertices,

A = {aij} ∈ Rn×n
+ is the adjacency matrix, X ∈ Rn×m is the feature matrix. The

adjacency matrix A encodes edge weights, and is non-negative and symmetric, with

aij = aji ≥ 0. The feature matrix X = [x1, . . . ,xn]
⊤ contains features of each vertex,

where xi ∈ Rm is the feature vector of vertex νi. Vertices fall into one of the c classes.

The vertex set are partitioned into two part, labeled set L = {ν1, . . . , νl} and unlabeled

set U = {νl+1, . . . , νn} with |L| = l, |U| = n− l. In semi-supervised classification, only

the labels of a small subset of vertices are given (l ≪ n), and the goal is to predict the

labels of the rest of the vertices. The labels are usually given in one-hot encodings yi,

and arranged in a binary label matrix Y = {yij} ∈ Rn×c. Label matrix Y is also split

into labeled part YL and unlabeled part YU such that Y = YL + YU . Denote all-zero

matrices of proper size by O, then we have
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Y =



−− y1 −−
...

−− yl −−
−− yl+1 −−

...

−− yn −−


YL =



−− y1 −−
...

−− yl −−

O(n−l)×c


YU =



Ol×c

−− yl+1 −−
...

−− yn −−


(4.1)

4.1.1 Label Propagation

Label propagation methods [46, 49, 51] only take the graph weight matrix A and the

labeling matrix Y as input without using the feature matrix X . It should be noted that

in real-world networks, e.g., citation networks, A (citation links) naturally exists and

contains different information with X . The objective of the LP method is to find a

prediction (embedding) matrix Z ∈ Rn×c of the same size as the labeling matrix Y by

minimizing both fitting error and manifold regularization penalty:

Z = argmin
Z

{||Z − YL||2F︸ ︷︷ ︸
fitting error

+ αTr(Z⊤LZ)︸ ︷︷ ︸
regularization

}, (4.2)

where the graph Laplacian L is defined as L = D − A with di =
∑

j aij and D =

diag(di) as the degree matrix. We can also use the row normalized graph Laplacian

Lr = D−1L or the symmetrically normalized graph Laplacian Ls = D− 1
2LD− 1

2 . In

Eq. (4.2), the fitting term enforces the embedding matrix Z to agree with the label matrix

YL, while the regularization term enforces each column of Z to be smooth along the

edges. The scalarα is a balancing parameter. A closed-form solution to the unconstrained

quadratic optimization problem can be obtained by taking the derivative of the objective

function and setting it to zero:

Z = (I + αL)−1YL. (4.3)
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With the learned embedding matrix Z, each unlabeled vertex vi is then classified by

simply finding the largest element in Z(i, :) (some normalization may be applied to the

columns of Z first [46]).

4.1.2 Rethink Label Propagation

From the perspective of graph filtering, we show that LP comprises three components:

signal, filter, and classifier. We can see from Eq. (4.3) that the input signal matrix of LP

is simply the label matrix YL, which has c channels, and each column YL(:, i) can be

considered as a graph signal.

The convolutional filter of LP is:

pap(L) = (I + αL)−1 = Φ(I + αΛ)−1Φ−1, (4.4)

with the frequency response function:

pap(λ) =
1

1 + αλ
. (4.5)

We name it the AP filter, as it encodes the absorption probability of random walks on

graphs [97].

Note that this also holds for the normalized graph Laplacians. As shown in Fig. 4.1, the

frequency response function of LP is low-pass. For any α > 0, pap(λ) is near 1 when λ is

close to 0 and pap(λ) decreases and approaches 0 as λ increases. Apply the filter on the

i-th channel of signal YL(:, i), it will produce a smooth signal Z(:, i) in which vertices

in the same class have similar values and vertices in class i have larger values than others

under the cluster assumption. The balancing parameter α controls the degree of manifold
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pap(λ) = (1 + αλ)−1

Figure 4.1: Response functions of AP filters.

regularization. When α increases, the filter becomes more low-pass (Fig. 4.1) and will

produce smoother embeddings. Finally, LP applies a nonparametric classifier on the

embeddings to classify the unlabeled vertices.

Y = softmax(Z) (4.6)

predict(xi) = argmax
j

zij (4.7)

Generalized Label Propagation

The above analysis shows that LP only takes the given graph W and the label matrix

Y into account but excludes the feature matrix X . This is one of its major limitations

in dealing with datasets that provide both W and X , e.g., citation networks. Here, we

propose generalized label propagation (GLP) methods by naturally extending the three

components of LP.

We propose a generalized label propagation (GLP) framework by naturally generalizing

the three components of LP:
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• Signal: Use the feature matrix X instead of the labeling matrix Y as the input

signal.

• Filter: The filter G can be any low-pass, linear, shift-invariant filter.

• Classifier: The classifier can be any classifier trained on the embeddings of labeled

vertices.

The low-pass, linear, shift-invariant graph filter G is applied to the feature matrix X to

obtain a smooth feature matrix X̄ ∈ Rn×m:

X̄ = GX. (4.8)

The next step is to train a supervised classifier (e.g., multilayer perceptron, convolutional

neural networks, support vector machines, etc.) with the filtered features of labeled data

and then apply the classifier to the filtered features of unlabeled data to predict their

labels.

GLP combines graph and feature information naturally and seamlessly by Eq. (4.8) and

allows taking advantage of a powerful supervised classifier. The rationale behind GLP is

to learn representative feature vectors of each class to ease the downstream classification

task. After being filtered by G, vertices in the same class are expected to have more

similar and representative features (as shown in Fig. 4.2), making it much easier to train

a good classifier with only a small set of samples.

Consider an extreme case where each class is a connected component of the graph. In

such a case, we can learn perfect features by an extremely low-pass filter G, whose

spectrum p(·) is unit impulse function, i.e., p(0) = 1 and p(λ) = 0 if λ ̸= 0. We can

compute G = Φp(Λ)Φ−1 in the spatial domain. In particular, Gij =
1
lk

if vi and vj are of
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(a) Raw (b) Filtered

Figure 4.2: Visualizing raw and filtered features.

the same class, otherwise Gij = 0, where lk is the number of labeled samples in class k.

After being filtered by G, vertices in the same class will have an identical feature vector,

which is the class mean. Then any classifier that can correctly classify the labeled data

will achieve 100% accuracy on the unlabeled data, and only one labeled example per

class is needed to train the classifier.

4.2 Revisit and Improve Graph Convolutional Networks

The recently proposed graph convolutional networks (GCN) [15] have demonstrated

superior performance in semi-supervised learning and attracted much attention. The

GCN model consists of three steps. First, a so-called renormalization trick is applied on

the adjacency matrix A by adding a self-loop to each vertex, resulting in a new adjacency

matrix Ã = A + I with the degree matrix D̃ = D + I , which is then symmetrically
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normalized as Ãs = D̃− 1
2 ÃD̃− 1

2 . Second, define the layer-wise propagation rule:

H(l+1) = σ
(
ÃsH

(l)W (l)
)
, (4.9)

where H(l) is the matrix of activations fed to the l-th layer and H(0) = X , W (l) is

the trainable weights, and σ is an activation function, e.g., ReLU(·) = max(0, ·). The

graph convolution is defined as multiplying the input of each layer with the renormalized

adjacency matrix As from the left, i.e., ÃsH
(l). The convoluted features are then fed

into a projection matrix W (l). Third, stack two layers up and apply a softmax function

on the output features to produce a prediction matrix:

Z = softmax
(
Ãs ReLU

(
ÃsXW (0)

)
W (1)

)
, (4.10)

and then train the model with the cross-entropy loss on labeled samples.

4.2.1 Spatial Analysis

In this subsection, we demystify the GCN model for semi-supervised learning. In

particular, we show that the graph convolution of the GCN model is simply a special form

of Laplacian smoothing, which mixes the features of a vertex and its nearby neighbors.

The smoothing operation makes the features of vertices in the same cluster similar, thus

greatly easing the classification task, which is the key reason why GCNs work so well.

However, it also brings potential concerns of over-smoothing. If a GCN is deep with

many convolutional layers, the output features may be over-smoothed, and vertices from

different clusters may become indistinguishable. Also, adding more layers to a GCN will

make it much more difficult to train.

However, a shallow GCN model such as the two-layer GCN used in Kipf and Welling
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Figure 4.3: Performance comparison of GCNs, label propagation, and our method for

semi-supervised classification on the Cora citation network.

[15] has its own limits. Besides it requires many additional labels for validation, it also

suffers from the localized nature of the convolutional filter. When only a few labels are

given, a shallow GCN cannot effectively propagate the labels to the entire data graph.

As illustrated in Fig. 4.3, the performance of GCNs drops quickly as the training size

shrinks, even for the one with 500 additional labels for validation.

Why GCNs Work

To understand the reasons why GCNs work so well, we compare them with the simplest

fully-connected networks (FCNs), where the layer-wise propagation rule is

H(l+1) = σ
(
H(l)W (l)

)
. (4.11)

Clearly, the only difference between a GCN and a FCN is the graph convolution matrix

Ãs = D̃− 1
2 ÃD̃− 1

2 (Eq. (4.10)) applied on the left of the feature matrix X . To see the

impact of the graph convolution, we tested the performances of GCNs and FCNs for
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Table 4.1: GCNs vs. Fully-connected networks

One-layer FCN Two-layer FCN

FCN 0.530860 0.559260

GCN 0.707940 0.798361

semi-supervised classification on the Cora citation network with 20 labels in each class.

The results can be seen in Table 4.1. Surprisingly, even a one-layer GCN outperformed

a one-layer FCN by a very large margin.

Laplacian Smoothing Let us first consider a one-layer GCN. It actually contains two

steps. 1) Generating a new feature matrix Z from X by applying the graph convolution:

Z = ÃsX. (4.12)

2) Feeding the new feature matrix Y to a fully connected layer. Clearly, graph convolution

is the key to the huge performance gain.

Let us examine the graph convolution carefully. Suppose that we add a self-loop to each

vertex in the graph, then the adjacency matrix of the new graph is Ã = A + I . The

Laplacian smoothing [93] on each channel of the input features is defined as

zi = (1− γ)xi +
γ

di

∑
j

ãijzj (for 1 ≤ i ≤ n), (4.13)

where 0 < γ ≤ 1 is a parameter that controls the weighting between the center vertex’s

features and its neighbors’ features.. We can write the Laplacian smoothing in matrix

form:

Z = X − γL̃rX = (I − γL̃r)X, (4.14)
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where L̃r = I − Ãr, and Ãr = D̃−1Ã. By letting γ = 1, i.e., only using the neighbors’

features, we have Z = ÃrX , which is the standard form of Laplacian smoothing.

Now if we replace the row-normalized Laplacian L̃r with the symmetrically normalized

Laplacian L̃s and let γ = 1, we have Z = ÃsX , which is exactly the graph convolution

in Eq. (4.12). We thus call the graph convolution a special form of Laplacian smoothing

– symmetric Laplacian smoothing. Note that here the smoothing still includes the current

vertex’s features, as each vertex has a self-loop and is its own neighbor.

The Laplacian smoothing computes the new features of a vertex as the weighted average

of itself and its neighbors. Since vertices in the same cluster tend to be densely connected,

the smoothing makes their features similar, which makes the subsequent classification

task much more manageable. As we can see from Table 4.1, applying the smoothing

only once has already led to a huge performance gain.

Multi-layer Structure. We can also see from Table 4.1 that while the 2-layer FCN only

slightly improves over the 1-layer FCN, the 2-layer GCN significantly improves over

the 1-layer GCN by a large margin. This is because applying smoothing again on the

activations of the first layer makes the output features of vertices in the same cluster more

similar and further eases the classification task.

When GCNs Fail

We have shown that the graph convolution is essentially a type of Laplacian smoothing.

A natural question is how many convolutional layers should be included in a GCN? it

is certainly not that the more the better. On the one hand, a GCN with many layers is
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(a) 1-layer GCN (b) 2-layer GCN (c) 3-layer GCN

(d) 4-layer GCN (e) 5-layer GCN

Figure 4.4: Vertex embeddings of Zachary’s karate club network with GCNs.

difficult to train. On the other hand, repeatedly applying Laplacian smoothing may mix

the features of vertices from different clusters and make them indistinguishable. In the

following, we illustrate this point with a popular dataset.

We apply GCNs with different numbers of layers to the Zachary’s karate club dataset [98],

which has 34 vertices of two classes and 78 edges. The GCNs are untrained with the

weight parameters initialized randomly as in Glorot and Bengio [99]. The dimension of

the hidden layers is 16, and the dimension of the output layer is 2. The feature vector

of each vertex is one-hot. The outputs of each GCN are plotted as two-dimensional

points in Fig. 4.4. We can observe the impact of the graph convolution (Laplacian

smoothing) on this small dataset. Apply the smoothing once, and points are not well-

separated (Fig. 4.4(a)). Apply the smoothing twice, and the points from the two classes

are separated relatively well. Apply the smoothing again and again, and the points are

mixed (Fig. 4.4(c-e)). As this is a small dataset and vertices between two classes have
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quite many connections, the mixing happens quickly. The mixing speed depends on

the spectral gap of the filter (e.g., Ãs). Generally, the larger the spectral gap, the more

quickly the mixing happens. A graph with dense connections tends to have an Ãs with a

large spectral gap.

In the following, we will prove that by repeatedly applying Laplacian smoothing many

times, the features of vertices within each connected component of the graph will converge

to the same values. For the case of symmetric Laplacian smoothing, they will converge

to be proportional to the square root of the vertex degree.

Suppose that a graph G has k connected components {Ci}ki=1, and the indication vector

for the i-th component is denoted by 1(i) ∈ Rn. This vector indicates whether a vertex is

in component Ci, i.e.,

1⃗
(i)
j =


1, vj ∈ Ci

0, vj ̸∈ Ci
(4.15)

Theorem 19. If a graph has no bipartite components, then for anyx ∈ Rn, andα ∈ (0, 1],

lim
l→+∞

(I − αLr)
lx = [1⃗(1), 1⃗(2), . . . , 1⃗(k)]θ1,

lim
l→+∞

(I − αLs)
lx = D1/2[1⃗(1), 1⃗(2), . . . , 1⃗(k)]θ2,

where θ1 ∈ Rk,θ2 ∈ Rk, i.e., they converge to a linear combination of {1⃗(i)}ki=1 and

{D1/21⃗(i)}ki=1 respectively.

Proof. Recall properties of spectrums of Lr and Ls in Theorem 4. Lr and Ls have

the same n eigenvalues (by multiplicity) with different eigenvectors. If a graph has no

bipartite components, the eigenvalues all fall in [0, 2). The eigenspaces of Lr and Ls

corresponding to eigenvalue 0 are spanned by {1⃗(i)}ki=1 and {D1/21⃗(i)}ki=1 respectively.
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For α ∈ (0, 1], the eigenvalues of (I − αLr) and (I − αLs) all fall into (−1, 1], and

the eigenspaces of eigenvalue 1 are spanned by {1⃗(i)}ki=1 and {D1/21⃗(i)}ki=1 respectively.

Since the absolute value of all eigenvalues of (I − αLr) and (I − αLs) are less than

or equal to 1, after repeatedly multiplying them from the left, the result will converge

to the linear combination of eigenvectors of eigenvalue 1, i.e. the linear combination of

{1⃗(i)}ki=1 and {D1/21⃗(i)}ki=1 respectively.

Note that since an extra self-loop is added to each vertex, there is no bipartite component

in the graph. Based on the above theorem, over-smoothing will make the features

indistinguishable and hurt the classification accuracy.

The above analysis raises potential concerns about stacking many convolutional layers

in a GCN. Besides, a deep GCN is much more difficult to train. In fact, the GCN used

in Kipf and Welling [15] is a 2-layer GCN. However, since the graph convolution is

a localized filter – a linear combination of the feature vectors of adjacent neighbors, a

shallow GCN cannot sufficiently propagate the label information to the entire graph with

only a few labels. As shown in Fig. 4.3, the performance of GCNs (with or without

validation) drops quickly as the training size shrinks. In fact, the accuracy of GCNs

decreases much faster than the accuracy of label propagation. Since label propagation

only uses graph information while GCNs utilize both graph structure and vertex features,

it reflects the inability of the GCN model to explore the global graph structure.

Another problem with the GCN model in Kipf and Welling [15] is that it requires an

additional validation set for early stopping in training, which is essentially using the

prediction accuracy on the validation set for model selection. If we optimize a GCN

on the training data without using the validation set, it will have a significant drop in
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performance. As shown in Fig. 4.3, the performance of the GCN without validation

drops much sharper than the GCN with validation. In Kipf and Welling [15], the authors

used an additional set of 500 labeled data for validation, which is much more than the

total number of training data. This is certainly undesirable as it defeats the purpose of

semi-supervised learning. Furthermore, it makes comparing GCNs with other methods

unfair, as other methods, such as label propagation, may not need the validation data at

all.

4.2.2 Spectral Analysis

In this subsection, we analyze GCN in the frequency domain and explain its implicit

design features, including the choice of the normalized graph Laplacian and the renor-

malization trick on the adjacency matrix.

GCN conducts graph filtering on H(t) in each layer with the filter Ãs. We have Ãs =

I − L̃s, where L̃s is the symmetrically normalized graph Laplacian of the graph Ã.

Eigen-decompose L̃s as L̃s = ΦΛ̃Φ−1, then the filter becomes

Ãs = I − L̃s = Φ(I − Λ̃)Φ−1, (4.16)

with a frequency response function

p(λ̃) = 1− λ̃. (4.17)

Clearly, as shown in Fig. 4.5, this function is linear and low-pass when λ ∈ [0, 1], but not

when λ ∈ [1, 2].
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Figure 4.5: Response functions of the renormalization filters (RNM).

Why Two-Layer structure? If we perform all the graph convolutions in Eq. (4.10) in

the input layer by exchanging the renormalized adjacency matrix Ãs in the second layer

with the internal ReLU function, GCN is a special case of GLP, where the input signal

matrix is X , the filter is Ãs
2, and the classifier is a two-layer multi-layer perceptron

(MLP). One can also see that GCN stacks two convolutional layers because Ãs
2 is more

low-pass than Ãs, which can be seen from Fig. 4.5 that (1− λ)2 is sort of more low-pass

than (1− λ) by suppressing the large eigenvalues harder.

Why Use Normalized Graph Laplacian? GCN uses the normalized Laplacian Ls

because the eigenvalues ofLs fall into [0, 2] (Theorem 4), while those of the unnormalized

Laplacian L are in [0,+∞]. If using L, the frequency response in Eq. (4.17) will amplify

eigenvalues in [2,+∞], which will introduce noise and undermine performance.

Why the Renormalization Trick Works? We illustrate the effect of the renormaliza-

tion trick used in GCN in Fig. 4.6, where the frequency responses on the eigenvalues of

Ls and L̃s on the Cora citation network are plotted respectively. By adding a self-loop to
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Figure 4.6: Effect of the renormalization trick. Left two figures plot points (λi, p(λi)).

Right two figures plot points (λ̃i, p(λ̃i)).

each vertex, we can see that the range of eigenvalues shrinks from [0, 2] to [0, 1.5], which

avoids amplifying eigenvalues near 2 and reduces noise. Hence, although the response

function (1− λ)k is not completely low-pass, the renormalization trick shrinks the range

of eigenvalues and makes L̃s resemble a low-pass filter. It can be proved that if the largest

eigenvalue of Ls is λm, then all the eigenvalues of L̃s are no larger than dm
dm+1

λm, where

dm is the largest degree of all vertices.

Theorem 20. If the largest eigenvalue of Ls is λm, then the largest eigenvalue of L̃s is

no more than
dm

dm + 1
λm, where dm = max

i
di is the graph degree (the largest degree of

vertices).
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Proof. According to the property of eigenvalue,

λ̃m = max
x

x⊤L̃sx

x⊤x
(4.18)

= max
x

x⊤(D + I)−
1
2L(D + I)−

1
2x

x⊤x

= max
x

x⊤(D + I)−
1
2D

1
2LsD

1
2 (D + I)−

1
2x

x⊤x

Let z = D
1
2 (D + I)−

1
2x, then

λ̃m = max
z

z⊤Lsz

z⊤(D + I)D−1z
(4.19)

= max
z

z⊤Lsz∑
i
di+1
di

z2i

≤ max
z

z⊤Lsz
dm+1
dm

∑
i z

2
i

(4.20)

=
dm

dm + 1
max

z

z⊤Lsz

z⊤z
(4.21)

=
dm

dm + 1
λm

4.2.3 Improved Graph Convolutional Networks

A notable drawback of the current GCN model is that one cannot easily control filter

strength. One has to stack multiple layers to increase filter strength and produce smoother

features. However, since in each layer the convolution is coupled with a projection matrix

by the ReLU, stacking many layers will introduce many trainable parameters. This may

lead to severe overfitting when the label rate is low.

To fix this, we propose an improved GCN model (IGCN) by replacing the filter Ãs with

Ãs
k:

Z = softmax
(
Ãs

k ReLU
(
Ãs

k
XW (0)

)
W (1)

)
. (4.22)
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We call prnm(L̃s) = Ãs
k the renormalization (RNM) filter, with frequency response

function

prnm

(
λ̃
)
=
(
I − λ̃

)k
. (4.23)

IGCN can achieve label efficiency by using the exponent k to adjust the filter strength

conveniently. This way, it can maintain a shallow structure with a reasonable number of

trainable parameters to avoid overfitting.

4.3 Filter Design and Computation

Here, we give out several available low-pass filters and efficient ways to calculate them.

Absorption Probability

The absorption probability (AP) filter is the one used in LP:

pap(Ls) = (I + αLs)
−1,

pap(Lr) = (I + αLr)
−1,

pap(L) = (I + αL)−1.

(4.24)

We call pap the absorption probability filter, as it has an interpretation in absorption

probability as shown in Wu et al. [97]. We have shown pap is low-pass in Section 4.1.2.

However, the computation of pap(L) involves matrix inversion, which is computationally

expensive with complexity O(n3). Fortunately, we can circumvent this problem by

approximating pap by polynomials.

Theorem 21. Let Ls,Lr,L be symmetrically normalized, row-normalized, and unnor-

malized Laplacian, respectively. For any α > 0, the AP filters based on them can be
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approximated by

(I + αLs)
−1 =

1

1 + α

+∞∑
k=0

[
α

1 + α
As

]k
, (4.25)

(I + αLr)
−1 =

1

1 + α

+∞∑
k=0

[
α

1 + α
Ar

]k
, (4.26)

(I + αL)−1 =
∞∑
k=0

[
(
1

α
I +D)−1A

]k
(I + αD)−1. (4.27)

Proof. Consider sum of geometric series 1, t, t2, . . . in R:

1

1− t
=

∞∑
k=0

tk, (|t| < 1). (4.28)

This equation can also be applied to any matrix M , whose eigenvalues λ1, . . . , λn are

all of magnitude less than 1, i.e., (|λi|) < 1 for all i.

{eigenvalues of M} ⊂ (−1, 1) =⇒ (I −M )−1 =
∞∑
k=0

M k. (4.29)

Let M :=
α

1 + α
(I −Ls) =

α

1 + α
As, whose eigenvalues are apparently of magnitude

less than 1, then we get

(
1

1 + α
I +

α

1 + α
Ls)

−1 =
∞∑
k=0

[
α

1 + α
As

]k
=⇒ (I + αLs)

−1 =
1

1 + α

∞∑
k=0

[
α

1 + α
As

]k
.

Similarly, Let M :=
α

1 + α
(I −Lr) =

α

1 + α
Ar, whose eigenvalues are also of magni-

tude less than 1, then we get

(I + αLr)
−1 =

1

1 + α

∞∑
k=0

[
α

1 + α
Ar

]k
.

Above two equations are of the same form, because they are both Taylor series of

f(t) = (1 + αt)−1 at t = 1.
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Let M := (
1

α
I +D)−1A, whose eigenvalues are also of magnitude less than 1, then we

have

(I − (
1

α
I +D)−1A)−1 =

∞∑
k=0

[
(
1

α
I +D)−1A

]k
. (4.30)

Left side =

[
(
1

α
I +D)−1(

1

α
I +D −A)

]−1

(4.31)

= (
1

α
I +D −A)−1(

1

α
I +D) (4.32)

= (
1

α
I +L)−1(

1

α
I +D) (4.33)

= (I + αL)−1(I + αD) (4.34)

whence

(I + αL)−1(I + αD) =
∞∑
k=0

[(
1

α
I +D

)−1

A

]k
(4.35)

=⇒ (I + αL)−1 =
∞∑
k=0

[(
1

α
I +D

)−1

A

]k
(I + αD)−1 (4.36)

We can then compute Zs = pap(Ls)X and Zr = pap(Lr)X iteratively with

Z(0)
s = X,

Z(k+1)
s = X +

α

1 + α
AsZ

(k)
s

Zs ≈
1

1 + α
Z(K)

s

,



Z(0)
r = X,

Z(k+1)
r = X +

α

1 + α
ArZ

(k)
r

Zr ≈
1

1 + α
Z(K)

r

. (4.37)

Or, compute Z = pap(Ls)X with

Z(0) = X,

Z(k+1) = X +

(
1

α
I +D

)−1

AZ(k)

Z ≈ Z(K)(I + αD)−1

(4.38)
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Empirically, we find that k = ⌈4α⌉ is enough to get a good approximation. Hence, the

computational complexity is reduced to O(nmα+Nmα) (note that X is of size n×m),

where N is the number of nonzero entries in L, and N ≪ n2 when the graph is sparse.

Renormalization

The renormalization (RNM) filter is an exponential function of the renormalized adja-

cency filter used in GCN:

prnm(L̃s) =
(
I − L̃s

)k
. (4.39)

We have shown in Section 4.2.2 that although the response function prnm(λ) = (1−λ)k is

not low-pass, the renormalization trick shrinks the range of eigenvalues of L̃s and makes

prnm resemble a low-pass filter. The exponent parameter k controls the low-pass effect

of prnm. When k = 0, prnm is all-pass. When k increases, prnm becomes more low-pass.

Note that for a sparse graph, matrix (I − L̃s) is also sparse. Hence, the fastest way to

compute Z = prnm(L̃s)Z is to left multiply X by (I − L̃s) repeatedly for k times, which

has the computational complexity O(Nmk).

Random Walk

We also propose to design a random walk (RW) filter:

prw(Lr) =

(
1

2
(I +Ar)

)k

=

(
I − 1

2
Lr

)k

. (4.40)

We call prw the random walk filter because 1
2
(I +Ar) is a stochastic matrix of a lazy

random walk which at each step returns to the current state with probability 1
2
, and(

1
2
(I +Ar)

)k is the k-step transition probability matrix. Similarly, we can derive the
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Figure 4.7: Response functions of AP, RNM, and RW filters, and their comparison.

response function of prw as

prw(λ) = (1− 1

2
λ)k. (4.41)

Note that Lr has the same eigenvalues with Ls, with range [0, 2]. Unlike the RNM, prw

is a typical low-pass filter on [0, 2], as shown in Fig. 4.7(c). The fastest way to compute

Z = prnm(Lr)Z is to left multiply X by (I − Lr) repeatedly for k times, and thus RW

filter has the same complexity O(Nmk) as RNM filter.

Filter Strength

The strength of the AR, RNM, and RW filters is controlled by parameters α and k,

respectively. However, choosing appropriate α and k for different application scenarios
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(a) Raw features (b) k = 1 (c) k = 5 (d) k = 10

Figure 4.8: Visualization of raw and filtered Cora features (using the RNM filter with

different k).

is non-trivial. An important factor that should be taken into account is the label rate.

Intuitively, when there are very few labels in each class, one should increase filter strength

so that distant nodes can have similar feature representations as the labeled nodes for ease

of classification. However, over-smoothing often results in inaccurate class boundaries.

Therefore, when the label rate is reasonably high, reducing filter strength would be

desirable to preserve feature diversity to learn more accurate class boundaries.

Fig. 4.8 visualizes the raw and filtered features of Cora produced by the RNM filter and

projected by t-SNE [100]. It can be seen that as k increases, the RNM filter produces

smoother embeddings, i.e., the filtered features exhibit a more compact cluster structure,

making classification possible with only a few labels.

Empirically, the following three response functions perform similarly to each other.

prnm(λ) = (1− λ)k

prw(λ) = (1− 1

2
λ)2k

pap(λ) = (1 + 2kλ)−1

(4.42)

For example, the curves of (1 − λ)2 and (1 − 1
2
λ)4 are very close as Fig. 4.7(d) shows,

which implies that to have the same level of low-pass effect, k in prw should be set twice
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as large as in prnm. This may be explained by the fact that the two functions (1− λ)k and

(1− 1
2
λ)2k have the same derivative k at λ = 0.

However, all the above-mentioned principles for filter strength selection are based on

intuition and qualitative. Even with these principles, α and k are still hyper-parameters

requiring manual tuning. A method to quantitatively select filter strength is proposed in

our paper Zhang et al. [2], which will be introduced in Section 4.4.

4.4 Adaptive Graph Convolution for Clustering

Attributed graph clustering [69] aims to cluster vertices of an attributed graph where each

vertex is associated with a set of feature attributes. Attributed graphs widely exist in real-

world applications such as social networks, citation networks, protein-protein interaction

networks, etc. Clustering plays a vital role in detecting communities and analyzing the

structures of these networks. However, attributed graph clustering requires joint modeling

of graph structures and vertex attributes to make full use of available data, which presents

great challenges. Recent progress on graph convolutional networks has proved that graph

convolution is effective in combining structural and content information. Several recent

methods based on it have achieved promising clustering performance on some real

attributed networks. However, there is a limited understanding of how graph convolution

affects clustering performance and how to use it properly to optimize performance for

different graphs. Existing methods essentially use graph convolution of a fixed and low

order that only takes into account neighbors within a few hops of each vertex, which

under-utilizes vertex relations and ignores the diversity of graphs. In this section, we

propose an adaptive graph convolution method for attributed graph clustering that exploits
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high-order graph convolution to capture global cluster structure and adaptively selects

the appropriate order for different graphs. We establish the validity of our method by

theoretical analysis and extensive experiments on benchmark datasets. Empirical results

show that our method compares favorably with state-of-the-art methods.

Graph Vertex Clustering Given a non-directed graph G = (V ,A,X), where V =

{ν1, ν2, ..., νn} is a set of vertices with |V| = n, and A = {aij} ∈ Rn×n is the adjacency

matrix, and X = [x1,x2, · · · ,xn]
⊤ ∈ Rn×m is a feature matrix containing feature

vectors of all vertices, where xi ∈ Rm is the feature vector of vi. Our goal is to partition

the vertices V into c clusters C = {C1, C2, · · · , Cc}.

4.4.1 k-Order Random Walk Graph Convolution

To make clustering easy, it is desired that vertices of the same class should have similar

feature representations after graph filtering, which is achievable by low-pass filters. Here,

we design a low-pass graph filter with the frequency response function

p(λq) = 1− 1

2
λq. (4.43)

As shown by the red line in Fig. 4.9, one can see that p(·) in Eq. (4.43) is decreasing and

nonnegative on [0, 2]. Note that all the eigenvalues λq of the symmetrically normalized

graph Laplacian Ls fall into the interval [0, 2] [23], which indicates that p(·) in Eq. (4.43)

is low-pass. The graph filter G with p(·) in Eq. (4.43) as the frequency response function

can then be written as

G = Φp(Λ)Φ−1 = Φ(I − 1

2
Λ)Φ−1 = I − 1

2
Ls. (4.44)
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Figure 4.9: Frequency response

By performing graph convolution on the feature matrix X , we obtain the filtered embed-

dings Z:

Z = GX, (4.45)

where Z = [z1, z2, · · · , zn]
⊤ are the filtered vertex features or embeddings. Applying

such a low-pass graph filter on the feature matrix makes adjacent vertices have similar

feature values within each channel, i.e., the graph signals are smooth. Based on the

cluster assumption that nearby vertices are likely to be in the same cluster, performing

graph convolution with a low-pass graph filter will make the downstream clustering task

easier.

Note that the proposed graph filter in Eq. (4.44) is different from the graph filter used

in GCN. The graph filter in GCN is G = I − Ls with the frequency response function

p(λ) = 1 − λ [3], which is clearly not low-pass as its magnitude increase with λ for

λ ∈ (1, 2].

k-Order Graph Convolution However, the first-order graph convolution in Eq. (4.44)

may not be adequate to achieve this, especially for large and sparse graphs, as it updates
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each vertex vi by the aggregation of its 1-hop neighbors only, without considering

long-distance neighborhood relations. To capture global graph structures and facilitate

clustering, we propose to use k-order graph convolution.

We define the k-order convolutional filter as

Z = GX = (I − 1

2
Ls)

kX, (4.46)

where k is a positive integer, and the corresponding frequency response in Eq. (4.46) is

p(λq) = 1− 1

2
λk
q .prw(λ) = (1− 1

2
λ)k. (4.47)

As shown in Fig. 4.9, p(λ) in Eq. (4.47) becomes more low-pass as k increases, indicating

that the filtered vertex features Z will be smoother.

The iterative calculation formula of k-order graph convolution is

Z(0) = X,

Z(1) =
1

2

(
Z(0) +AsZ

(0)
)
,

...

Z(k) =
1

2

(
Z(k−1) +AsZ

(k−1)
)
,

(4.48)

and the final Z(k) is the Z we want.

From Eq. (4.48), one can easily see that k-order graph convolution updates the features of

each vertex vi by aggregating the features of its k-hop neighbours iteratively. As k-order

graph convolution takes into account long-distance data relations, it can be helpful for

capturing global graph structures to improve clustering performance.

Theoretical Analysis As k increases, k-order graph convolution will make the vertex

features smoother on each dimension. In the following, we prove this using the Laplacian-
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Beltrami operator ω(·) defined in Eq. (3.32). Denote by x a column of the feature matrix

X , which can be decomposed as x = Φc.

ωs(x) =
x⊤Lsx

x⊤x
=

c⊤Λc

∥c∥22
=

∑n
i=1 λic

2
i∑n

i=1 c
2
i

. (4.49)

Theorem 22. If the frequency response function p(λ) of a graph filterG is non-increasing

and nonnegative for all λi, then for any signal x and the filtered signal z = Gx, we

always have

ωs (z) ≤ ωs (x) .

Proof. We first prove the following lemma by induction. The following inequality

S(n)
a =

∑n
i=1 aiTi∑n
i=1 ai

≤
∑n

i=1 biTi∑n
i=1 bi

= S
(n)
b (4.50)

holds, if T1 ≤ · · · ≤ Tn and a1
b1

≥ · · · ≥ an
bn

with ∀ai, bi ≥ 0. It is easy to verify that it

holds when n = 2.

Now assume that S(n−1)
a ≤ S

(n−1)
b holds. Then, consider the case of S(n)

a and S
(n)
b .

S(n)
a =

∑n
i=1 aiTi∑n
i=1 ai

=

∑n−1
i=1 aiTi + anTn∑n−1

i=1 ai + an

=

(∑n−1
i=1 ai

)
S
(n−1)
a + anTn∑n−1

i=1 ai + an

≤
(∑n−1

i=1 ai
)
S
(n−1)
b + anTn∑n−1

i=1 ai + an
.

(4.51)

Since S
(n−1)
b =

∑n−1
i=1 biTi∑n−1
i=1 bi

≤
∑n−1

i=1 biTn−1∑n−1
i=1 bi

= Tn−1, we have S
(n−1)
b ≤ Tn. Also note

that
∑n−1

i=1 ai∑n−1
i=1 bi

≥ an
bn

. Since the lemma holds when n = 2, we have

(∑n−1
i=1 ai

)
S
(n−1)
b + anTn∑n−1

i=1 ai + an
≤
(∑n−1

i=1 bi
)
S
(n−1)
b + bnTn∑n−1

i=1 bi + bn
=

∑n
i=1 biTi∑n
i=1 bi

= S
(n)
b , (4.52)

which shows that the inequality S
(n)
a ≤ S

(n)
b also holds. By induction, the above lemma

holds for all n = 2, 3, . . . .
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We can now prove Theorem 1 using this lemma. For convenience, we arrange the

eigenvalues λi of Ls in increasing order such that 0 ≤ λ1 ≤ · · · ≤ λn. Since p(λ) is

nonincreasing and nonnegative, p(λ1) ≥ · · · ≥ p(λn) ≥ 0. Theorem 1 is then proved

with the above lemma by letting

Ti = λi, ai = p2(λi)z
2
i , bi = z2i . (4.53)

Assuming that zk−1 and zk are obtained by (k− 1)-order and k-order graph convolution,

respectively, one can immediately infer from Theorem 1 that zk is smoother than zk−1.

In other words, k-order graph convolution will produce smoother features as k increases.

Since vertices in the same cluster tend to be densely connected, they are likely to have

more similar feature representations with large k, which can benefit clustering.

4.4.2 Clustering via Adaptive Graph Convolution

We perform the classical spectral clustering method [24, 101] on the filtered feature

matrix Z to partition the vertices of V into c clusters, similar to [88]. Specifically, we

first apply the linear kernel K = ZZT to learn pairwise similarity between vertices.

Then we calculate W =
1

2
(|K| + |K⊤|) to make sure that the similarity matrix is

symmetric and nonnegative, where | · | means taking the absolute value of each element

of the matrix. Finally, we perform spectral clustering on W to obtain clustering results

by computing the eigenvectors associated with the c largest eigenvalues of W and then

applying the k-means algorithm on the eigenvectors to obtain cluster partitions.

The central issue of k-order graph convolution is how to select an appropriate k. Although
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(a) Raw features (b) k = 1 (c) k = 12 (d) k = 100

Figure 4.10: t-SNE visualization of Cora’s raw and filtered node features with different

k.

k-order graph convolution can make nearby vertices have similar feature representations,

k is definitely not the larger the better. Too large k will lead to over-smoothing, i.e.,

the features of vertices in different clusters are mixed and become indistinguishable.

Fig. 4.10 visualizes the raw and filtered vertex features of the Cora citation network with

different k, where the features are projected by t-SNE [100] and vertices of the same class

are indicated by the same colour. It can be seen that the vertex features become similar

as k increases. The data exhibits clear cluster structures with k = 12. However, with

k = 100, the features are over-smoothed, and vertices from different clusters are mixed.

To adaptively select the order k, we use the clustering performance metric – internal

criteria based on the information intrinsic to the data alone [102]. Here, we consider

intra-cluster distance (intra(C) for a given cluster partition C = {C1, C2, · · · , Cc}), which

represents the compactness of the partition and is defined as:

intra(C) = 1

c

∑
Ck∈C

1

|Ck|(|Ck| − 1)

∑
vi,vj∈Ck,
vi ̸=vj

∥zi − zj∥2. (4.54)

Note that inter-cluster distance can also be used to measure clustering performance given

fixed data features. A good cluster partition should have a large inter-cluster distance

and a small intra-cluster distance. However, by Theorem 1, the vertex features become
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smoother as k increases, which could significantly reduce both intra-cluster and inter-

cluster distances. Hence, the inter-cluster distance may not be reliable for measuring

the clustering performance w.r.t. different k. So we propose to observe the variation of

intra-cluster distance for choosing k.

Our strategy is to find the first local minimum of intra(C) w.r.t. k. Specifically, we

start from k = 1 and increment it by 1 iteratively. In each iteration t, we first obtain

the cluster partition C(t) by performing k-order (k = t) graph convolution and spectral

clustering, then we compute intra(C(t)). Once intra(C(t)) is larger than intra(C(t−1)), we

stop the iteration and set the chosen k = t− 1. More formally, consider ∆intra(t− 1) =

intra(C(t))− intra(C(t−1)), the criterion for stopping the iteration is ∆intra(t− 1) > 0,

i.e., stops at the first local minimum of intra(C(t)). So, the final choice of cluster partition

is C(t−1). The benefits of this selection strategy are two-fold. First, it ensures finding

a local minimum for intra(C) that may indicate a good cluster partition and avoids

over-smoothing. Second, it is time efficient to stop at the first local minimum of intra(C).

4.4.3 Algorithm Procedure and Time Complexity

The overall procedure of AGC is shown in Algorithm 1. Denote by n the number of

vertices, m the number of attributes, c the number of clusters, and N the number of

nonzero entries of the adjacency matrix A. Note that for a sparse A, N << n2. The

time complexity of computing Ls in the initialization is O(N). In each iteration, for

a sparse Ls, the fastest way of computing k-order graph convolution in (Eq. (4.46)) is

to left multiply X by I − 1
2
Ls repeatedly for k times, which has the time complexity

O(Ndk). In each iteration, the time complexity of performing spectral clustering on
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Algorithm 1 AGC
Require: Vertex set V , adjacency matrix A, feature matrix X , and maximum iteration

number max_iter.

Ensure: Cluster partition C.

1: Initialize t = 0 and intra(C(0)) = +∞. Compute the symmetrically normalized

graph Laplacian Ls = I −D− 1
2AD− 1

2 .

2: repeat

3: Set t := t+ 1 and k := t.

4: Perform k-order graph convolution by Eq. (4.46) and get Z.

5: Apply the linear kernel K = ZZT , and calculate the similarity matrix W =

1
2
(|K|+ |KT |).

6: Obtain the cluster partition C(t) by performing spectral clustering on W .

7: Compute intra(C(t)) by Eq. (4.54).

8: until ∆intra(t− 1) > 0 or t > max_iter

9: Set k := t− 1 and C := C(t−1).

X is O(n2m + n2c). The time complexity of computing intra(C) in each iteration is

O(1
c
n2m). Since c is usually much smaller than n and m, the time complexity of each

iteration is approximate O(n2m+Ndk). If Algorithm 1 iterates t times, the overall time

complexity of AGC is O(n2dt+Ndt2). Unlike existing GCN-based clustering methods,

AGC does not need to train the neural network parameters, which makes it time efficient.

Chapter Review

This chapter reveals the fundamental mechanisms of GCNs, provides new insights into

GCNs for semi-supervised learning, and points out the over-smoothing problem. Our

spectral analysis revisits GCN and classical label propagation methods under a unified

graph filtering framework and shows the critical importance of low-pass graph filtering.
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Inspired by the new theoretical insights, we propose an efficient decoupled framework for

graph-based semi-supervised and unsupervised learning. We also provide guidelines to

adaptively adjust the filter strength for semi-supervised learning and develop algorithms

to properly select the parameter of convolutional filters.
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Chapter 5

Learning with 2-D Graph

Convolutional

Existing GCN variants commonly use 1-D graph convolution that solely operates on

the object link graph without exploring informative relational information among object

attributes. This significantly limits their modeling capability and may lead to inferior

performance on noisy and sparse real-world networks. This chapter explores 2-D graph

convolution to jointly model object links and attribute relations for graph representation

learning. Specifically, we propose a computationally efficient dimensionwise separable

2-D graph convolution (DSGC) for filtering node features. Theoretically, we show that

DSGC can reduce the intra-class variance of node features on both the object dimension

and the attribute dimension to learn more effective representations. Empirically, we

demonstrate that by modeling attribute relations, DSGC achieves significant performance

gain over state-of-the-art methods for node classification and clustering on a variety of

real-world networks.

107



108 CHAPTER 5. LEARNING WITH 2-D GRAPH CONVOLUTIONAL

Learning effective node representations by utilizing graph structures and other aspects

of information, such as node content, has proved very useful for unsupervised and semi-

supervised learning on graphs. Previous approaches for unsupervised learning have ex-

plored applying non-negative matrix factorization, random walk statistics, and Laplacian

eigenmaps on both graph structures and node attributes [103, 104] to learn node repre-

sentations. For semi-supervised learning, a common way is to regularize a supervised

classifier trained with node features by a Laplacian regularizer or an embedding-based

regularizer to take into account graph structures, e.g., manifold regularization [56], mani-

fold denoising [105], deep semi-supervised embedding [40], and Planetoid [8]. However,

these methods model node connectivity and node content separately and hence may not

be able to fully utilize the information.

In the past few years, graph convolutional neural networks (GCN) and variants have

dominated the research of graph representation learning and achieved new state-of-the-

art results in various learning tasks on graphs, especially in unsupervised learning [2, 88]

and semi-supervised learning [3, 11, 15, 16]. The success is mainly attributed to graph

convolution, a function that naturally combines node connectivity and node content for

feature propagation and smoothing, which computes the representation of a node by

aggregating the features of its neighbors. The effective utilization of both modalities

of data gives the unique advantage to GCN-based methods over previous approaches,

including topology-only models [74, 75] and graph regularization-based methods [8, 56].

Despite their empirical success, one major limitation of most existing GCN-based meth-

ods is that they commonly adopt one-dimensional (1-D) graph convolution that operates

on the object link graph to model node (object) relations and features, whose performance
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critically relies on the quality of the graph. However, real-life networks are often noisy

and sparse. For example, in a web graph such as Wikipedia, a hyperlink between two web

pages does not necessarily indicate that they belong to the same category. Mixing their

features could be harmful to webpage classification or clustering. Moreover, it has been

shown that many real-world networks are scale-free, and there exist many low-degree

nodes [20]. Since these nodes may have very few or even no links to other nodes, it

is difficult, and even impossible, to do feature propagation to endow them with similar

features as other same-class nodes to facilitate downstream learning tasks.

To address the above limitation, we propose to explore data relations in another dimen-

sion by constructing an attribute affinity graph, which encodes relations between object

attributes. The underlying assumption is attributes that indicate the same category should

have strong relations. For example, in a citation network, object attributes are words,

and documents of the AI category usually contain words such as “learning”, “robotics”,

“machine”, “neural”, etc. These indicative words for the AI category should be more

closely related than other non-indicative words. These informative relations can then be

utilized for feature smoothing, similar to the use of object links. Notably, the attribute

affinity graph can be a useful complement to the object link graph in learning node

representations.

To formalize the above insight, we propose to perform graph convolution on the attribute

affinity graph (Fig. 5.1 (c)). Further, we develop an efficient two-dimensional (2-D)

graph convolution to perform feature smoothing on both the object link graph and the

attribute affinity graph to learn more effective node representations (Fig. 5.1 (d)). Our

main contributions are described as follows.
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Figure 5.1: t-SNE visualization of the “20 Newsgroups” dataset. (a) Raw features; (b)

Filtered by the regular object graph convolution; (c) Filtered by our proposed attribute

graph convolution; (d) Filtered by our proposed dimensionwise separable graph convo-

lution (DSGC).

• Methodology: We propose to use 2-D graph convolution to jointly model object

links, attribute relations, and object features for node representation learning.

Furthermore, we develop a computationally efficient dimensionwise separable 2-D

graph convolutional filter (DSGC), which is equivalent to performing 1-D graph

convolution alternately on the object dimension and the attribute dimension, as

illustrated in Fig. 5.2. Finally, we propose two learning frameworks based on

DSGC for unsupervised node clustering and semi-supervised node classification.

• Theoretical insight: We show that the regular 1-D graph convolution on the

object link graph can reduce the intra-class variance of node features, which helps

to explain the success of many existing methods. Further, we show that the same

can be proved for graph convolution on a properly constructed attribute affinity
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graph. Jointly, they provide a theoretical justification for DSGC.

• Empirical study: We implement DSGC for semi-supervised node classification

and unsupervised node clustering and conduct extensive experiments on various

real-world networks, including email networks, citation networks, and web graphs.

The comparison with state-of-the-art methods demonstrates the advantages of

DSGC over the regular 1-D graph convolution. Moreover, we show that DSGC can

be easily plugged into some strong GCN-based methods to further improve their

performance substantially.

5.1 2-D Graph Convolution

Graph signal processing has been an active research field in recent years. It generalizes

basic concepts in harmonic analysis, including signals, filters, Fourier transform, and

convolution, to the graph domain. Given a graph G with a vertex set V and an adjacency

matrix A, if we associate each vertex νi with a real value xi, then a signal on G can be

defined as a vector x = [x1, . . . , xn]
⊤. Graph filters are defined as mappings between

input and output signals. Let G be a polynomial of A (usually normalized), i.e.,

G = p(A), then G is a legit convolutional filter on graph G, and the corresponding 1-D

graph convolution is defined as

z = Gx, (5.1)

where z is the output signal. Existing graph convolutional filters are all defined in this

way and have achieved considerable success in various learning tasks on graphs.

However, previous research mainly focuses on designing and applying 1-D graph convolu-
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tion. This section presents a 2-D graph convolution for learning node representations. A

comprehensive introduction to multi-dimensional graph convolution is provided by [94].

Based on the theory developed by [94], we propose a localized 2-D graph convolution

to circumvent the computationally intensive graph Fourier transform. Furthermore, we

propose an even simpler dimensionwise separable 2-D graph convolution to model both

object links and attribute relations efficiently.

5.1.1 2-D Graph Signal and Spectral Convolution

2-D Graph Signal A 2-D graph signal is a function defined on the Cartesian product

of the vertex sets of two graphs. Formally, given two graphs G1 and G2 with n and m

nodes respectively, and denote the vertex sets by V1 and V2. A real-valued signal defined

on them is a function x : V1 ×V2 → R. For convenience, we simply denote x(ν(1)
i , ν

(2)
j )

by xij and organize then as a matrix:

X = (xij) ∈ Rn×m, xij = x(ν
(1)
i , ν

(2)
j ), (5.2)

Signal X associates each node pairs (ν(1)
i , ν

(2)
j ) ∈ V1 × V2 with a real number xij . For

example, the feature matrix given by usual node classification tasks is a 2-D signal defined

on the object link graph and the attribute affinity graph.

2-D Graph Fourier Transform Define the graph Laplacian of G1 and G2 as L1 =

D1−A1 and L2 = D2−A2, where A1, A2 are adjacency matrices and D1, D2 are the

corresponding degree matrices. ∗ Assuming two Laplacian matrices have the following

∗Discussion below also applies to row-normalized Laplacian Lr = I −D−1A, column-normalized

Laplacian, Lc = I −AD−1, and symmetric normalized Laplacian Ls = I −D−1/2AD−1/2.
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eigen-decomposition

L1 = UΛU−1, L2 = V MV −1, (5.3)

where Λ,M stores the eigenvalues λi, µj of two Laplacian matrices in their main di-

agonals, U = [u1, · · · ,un] and V = [v1, · · · ,vm] store the corresponding unit-length

eigenvectors in their columns. This eigen-decomposition is always attainable for undi-

rected graphs and nearly always attainable for directed graphs.

All n×m outer products uiv
⊤
j together form a basis for space Rn×m. It is known as the

2-D graph Fourier basis – an analogy of the Fourier basis in classical harmonic analysis

in the graph domain. A 2-D graph signal X can be decomposed into this basis with

coefficients sij:

X =
∑

ij
sij
(
uiv

⊤
j

)
, (5.4)

or in matrix form:

X = USV ⊤, where S = (sij) ∈ Rn×m. (5.5)

S is called the spectrum or Fourier coefficients of signal X and can be obtained by

formula

S = U−1X(V −1)⊤. (5.6)

Eq. (5.6) is so-called 2-D graph Fourier transform; Eq. (5.5) is the corresponding inverse

transform.

2-D Spectral Graph Convolution Given the decomposition above, we can now manip-

ulate the spectrum of 2-D signals and define 2-D spectral graph convolution. Convolution

is an operation that takes a signal as input and outputs another signal. By convolution

theorem, convolution is equivalent to scaling entries of the spectrum. Thus, given a
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signal X with spectrum S, a 2-D spectral graph convolution with X as input is defined

as:

Z = U(S ◦ P )V ⊤, (5.7)

where P is the convolution’s spectral kernel (parameters in the spectral domain), and ‘◦’

is Hadamard (entry-wise) product. P is also referred to as the frequency response of the

convolution.

5.1.2 Fast Localized 2-D Graph Convolution

Although Eq. (5.7) well defines 2-D graph convolution, it is often impractical to perform

convolution in the spectral domain due to the high cost of computing Fourier basis U

and V . Similar to what [14] did to 1-D graph convolution, we propose 2-D spatial

graph convolution here to avoid intensive computation. To achieve this goal, we need

to parameterize the entries of spectral kernel P as a two-variable polynomial p(·, ·) of

eigenvalues λ, µ such that pij = p(λi, µj). Denote coefficients of the polynomial by

Θ = (θk1k2) ∈ Rn×m, then P is parameterized as

pij = p(λi, µj) =
n−1∑
k1=0

m−1∑
k2=0

θk1k2λ
k1
i µk2

j . (5.8)

or in matrix form:

P =
n−1∑
k1=0

m−1∑
k2=0

θk1k2Λ
k11⃗n×mM

k2 , (5.9)
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where 1⃗n×m denotes all-one matrix of shape n ×m. Substitute Eq. (5.9) into Eq. (5.7)

and rearrange it, 2-D graph convolution will become

Z =
n−1∑
k1=0

m−1∑
k2=0

θk1k2U
(
S ◦ (Λk11⃗n×mM

k2)
)
V ⊤

=
n−1∑
k1=0

m−1∑
k2=0

θk1k2UΛk1
(
S ◦ 1⃗n×m

)
M k2V ⊤

=
n−1∑
k1=0

m−1∑
k2=0

θk1k2UΛk1SM k2V ⊤

=
n−1∑
k1=0

m−1∑
k2=0

θk1k2
(
UΛk1U−1

)
X
(
V M k2V −1

)⊤
=

n−1∑
k1=0

m−1∑
k2=0

θk1k2L
k1
1 X(Lk2

2 )⊤ (5.10)

Eq. (5.10) is called 2-D spatial graph convolution, as it manipulates the signal X in the

spatial domain. Eigen-decomposition of Laplacian and Fourier transformation of X is

no longer required. Parameters Θ = (θk1k2) in Eq. (5.10) are called the (spatial) kernel

of this convolution. Similar to [14], this spatial convolutional filter is localized. Denote

by K1 and K2 the largest exponent of L1 and L2 in the polynomial, i.e., k1 > K1 or

k2 > K2 implies θk1k2 = 0, then Eq. (5.10) becomes

Z =

K1∑
k1=0

K2∑
k2=0

θk1k2L
k1
1 X(Lk2

2 )⊤. (5.11)

In this way, kernel Θ only need to be of size (K1+1)× (K2+1). The convoluted signal

zij of vertex pair (ν(1)
i , ν

(2)
j ) only depends on the neighbourhood of ν(1)

i within K1 hops

and the neighbourhood of ν(2)
j within K2 hops, so the filter is said to be K1-localized on

G1 and K2-localized on G2.
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Figure 5.2: Conceptual illustration of DSGC by a toy example. The node representations

(row vectors) obtained by DSGC (GXF ) are better than those in the original feature

matrix (X) or filtered by 1-D graph convolution (GX), in the sense that nodes of the

same class have more similar features.

5.1.3 Dimensionwise Separable 2-D Graph Convolution (DSGC)

Although the above spatial graph convolution avoids the computationally expensive

Fourier transform, its general form with kernel size K1 × K2 still involves at least

K1 × K2 matrix multiplications. Inspired by the depth-wise separable convolution

proposed in [106], we streamline spatial graph convolution by restricting the rank of Θ

to be one. Consequently, Θ is able to be decomposed as an outer product of two vectors

θ(1) ∈ Rn and θ(2) ∈ Rm, i.e., Θ = θ(1)θ(2)⊤ and θk1k2 = θ
(1)
k1
θ
(2)
k2

. Finally, the 2-D

spatial graph convolution in Eq. (5.10) becomes

Z =

K1∑
k1=0

K2∑
k2=0

θ
(1)
k1
θ
(2)
k2
Lk1

1 X(Lk2
2 )⊤ (5.12)

=

(
K1∑

k1=0

θ
(1)
k1
Lk1

1

)
X

(
K2∑

k2=0

θ
(2)
k2
Lk2

2

)⊤

= GXF , (5.13)

where G =

K1∑
k1=0

θ
(1)
k1
Lk1

1 and F =

K2∑
k2=0

θ
(2)
k2
(Lk2

2 )⊤. (5.14)
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We refer to Eq. (5.13) as dimensionwise separable graph convolution (DSGC), G as

the object graph convolutional filter, and F as the attribute graph convolutional filter.

The fastest way to compute it only requires K1 + K2 matrix multiplications, much

less than the K1 × K2 matrix multiplications needed by a general 2-D spatial graph

convolution. Fig. Fig. 5.2 illustrates how G and F can work together to learn better node

representations with DSGC.

5.2 Variance Reduction by DSGC

Given a data distribution, the lowest possible error rate a classifier can achieve is the

Bayes error rate [107], which is caused by the intrinsic overlap between different classes

and cannot be avoided. In this section, we show that DSGC, with proper filters, can re-

duce the intra-class variance of the data distribution while keeping class centers roughly

unchanged, hence reducing the overlap between classes and improving learning perfor-

mance.

Intra-class Variance and Inter-class Variance Suppose samples xi and their labels

yi are observations of a random vector X = [X1, · · · ,Xm]
⊤ and a random variable Y

respectively. We define the variance of random vector X as the sum of the variance of

each dimension Xj , i.e., the trace of the covariance matrix of X.

Var (X) =
m∑
j=1

Var (Xj) = Tr (Cov (X)) (5.15)

According to the law of total variance [108], the variance of X can be divided into
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intra-class variance and inter-class variance:

Var (X) = E [Var (X|Y)]︸ ︷︷ ︸
Intra-class Variance

+Var (E [X|Y])︸ ︷︷ ︸
Inter-class Variance

, (5.16)

where the conditional variance Var (X|Y = k) is the variance of class k and the condi-

tional expectation E [X|Y = k] is the k-th class center. Intra-class variance (IntraVar)

measures the average divergence within each class, while inter-class variance (InterVar)

measures the divergence among class centers. We are interested in the IntraVar/InterVar

ratio. Desired node representations should have low intra-class variance (i.e., compact

and dense for each class) and high inter-classes variance (large margins between classes).

5.2.1 Intra-class Variance Reduction by Object Graph Convolution

Commonly used object graph convolution reduces variance by averaging over the neigh-

borhood. For any node νi, object graph convolutionGX produces a new feature vector

zi =
∑

j Gijxj . When G is a stochastic matrix, the output feature vector zi is a weighted

average of the neighbours of xi. Denote by Z a random vector of zi. Intuitively, as long

as each node i has enough same-class neighbors, Z will have a smaller
IntraVar
InterVar

ratio

than X.

Formally, assume that objects from the same class are connected with probability r, and

objects from different classes are connected with probability q, i.e., the adjacency matrix

A1 of the object graph obeys the following distribution:

if yi = yj if yi ̸= yj

Pr(aij ̸= 0) r q

Pr(aij = 0) 1− r 1− q

We also assume that classes are balanced, i.e., Pr(Y = k) = 1/K for all k. Then, we
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have the following theorem with the stochastic graph filter G = D−1A1.

Theorem 23. When q is sufficiently small, the IntraVar/InterVar ratio of Z is less than

or equal to that of X, i.e.,

E [Var (Z|Y)]
Var (E [Z|Y]) ≤ E [Var (X|Y)]

Var (E [X|Y]) . (5.17)

Proof. The proof consists of two parts. In the first part, we prove that inter-class variance

is unchanged after object graph convolution when q approximates 0, i.e.,

lim
q→0

Var (E [Z|Y]) = Var (E [X|Y]) . (5.18)

In the second part, we prove that intra-class variance becomes smaller after object graph

convolution, i.e.,

E [Var (Z|Y)] ≤ E [Var (X|Y)] , (5.19)

when G is a stochastic matrix.

Part 1. Inter-class variance is unchanged. Since zi =
∑

j Gijxj , we have

E [zi|yi = k] =
∑
j

E [Gij]E [xj]

=
∑
j,yj=k

E [Gij]E [xj] +
∑
j,yj ̸=k

E [Gij]E [xj]

=

∑
j,yj=k E [aij]E [xj] +

∑
j,yj ̸=k E [aij]E [xj]∑

j E [aij]

=
r
∑

j,yj=k E [X|Y = k] + q
∑

j,yj ̸=k E [xj]
N
K
(r − q) +Nq

=

N
K
rE [X|Y = k] + q

∑
j E [xj]− q

∑
j,yj=k E [xj]

N
K
(r − q) +Nq

=
N
K
(r − q)E [X|Y = k] +NqE [X]

N
K
(r − q) +Nq

=
(r − q)E [X|Y = k] +KqE [X]

(r − q) +Kq
(5.20)
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When q approximates 0, Eq. (5.20) approximates E [X|Y = k], so

E [Z|Y = k] =
∑
i,yi=k

Pr(Z = zi|yi = k)E [zi|yi = k]

=
∑
i,yi=k

Pr(Z = zi|yi = k)E [X|Y = k]

= E [X|Y = k] .

Take variance of both sides, and we get

Var (E [Z|Y]) = Var (E [X|Y]) . (5.21)

Part 2. Intra-class variance becomes smaller. Denote by Cov (·, ·) the covariance of

two random variables. We have the following inequality about variance.

Var

(∑
j

Gijxj

)
=
∑
j

G2
ijVar (xj) +

∑
j,l

GijGilCov (xj,xl)

≤
∑
j,l

GijGil

√
Var (xj)

√
Var (xl)

=

(∑
j

Gij

√
Var (xj)

)2

. (5.22)

Consider the variance of filtering result zi for each sample in class k. It is less than the

variance of X of that class:

Var (zi|yi = k) = Var

(∑
j

Gijxj

∣∣∣∣∣ yj = k

)

≤
(∑

j

Gij

√
Var (xj|yj = k)

)2

# by inequality (5.22)

=

(∑
j

Gij

√
Var (X|Y = k)

)2

=
(√

Var (X|Y = k)
)2

# since
∑
j

Gij = 1

= Var (X|Y = k) ,



5.2. VARIANCE REDUCTION BY DSGC 121

Then the variance of random vector Z for each class is less than the variance of X of that

class:

Var (Z|Y = k) =
∑
i,yi=k

Pr(Z = zi|yi = k)Var (zi|yi = k)

≤ Var (X|Y = k) .

Sum them over all classes:

E [Var (Z|Y)] =
∑
k

Pr(Y = k)Var (Z|Y = k)

≤
∑
k

Pr(Y = k)Var (X|Y = k)

= E [Var (X|Y)] . (5.23)

Combining Eq. (5.21) and Eq. (5.23), we prove that when q is sufficiently small,

E [Var (Z|Y)]
Var (E [Z|Y]) ≤ E [Var (X|Y)]

Var (E [X|Y]) . (5.24)

This theorem tells that under the assumption that connected nodes are most likely to be of

the same class, object graph convolutionGX can efficiently reduce the IntraVar/InterVar

ratio.

5.2.2 Intra-class Variance Reduction by Attribute Graph Convolu-

tion

A proper attribute graph convolutional filter F can also reduce the IntraVar/InterVar

ratio. We use the convention that the random vector X is a column vector, and hence the
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attribute graph convolutionXF results in a new random vector F⊤X. We also assume

that the node features are mean-centered, i.e., E [X] = 0.

Theorem 24. If the attribute graph convolutional filter F is a doubly stochastic matrix,

then the output of attribute graph convolution has an intra-class variance less than or

equal to that of X, i.e.,

∑
i
Fij =

∑
j
Fij = 1 and Fij ≥ 0,∀ i, j

⇒ E
[
Var
(
F⊤X|Y

)]
≤ E [Var (X|Y)] .

Proof. We first prove a lemma that the variance of each class will not increase after

attribute graph convolution, i.e., Var
(
F⊤X|Y = k

)
≤ Var (X|Y = k). Denote by Cov (·)

the covariance matrix of a random vector. Based on our definition of variance at the

beginning of Section 5.2, we have

Var
(
F⊤X|Y = k

)
= Tr

(
Cov

(
F⊤X|Y = k

))
= Tr

(
F⊤Cov (X|Y = k)F

)
# property of covariance

= Tr
(
Cov (X|Y = k)F⊤) # cyclic property of trace

=
∑
ij

Cov (Xi,Xj|Y = k) (F⊤)ij # property of trace

≤∑ij

√
Var (Xi|Y = k)

√
Var (Xj|Y = k) (F⊤)ij
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Let σ ∈ Rm be a vector of variances with σi ≜
√

Var (Xi|Y = k), then we have

Var
(
F⊤X|Y = k

)
≤
∑
ij

σiσj(F
⊤)ij

= σ⊤F⊤σ

≤ ∥σ∥22 # eigenvalues of F is no more than 1

=
∑
i

Var (Xi|Y = k)

= Var (X|Y = k) .

Next, we prove the theorem with the above lemma.

E
[
Var
(
F⊤X|Y

)]
=
∑
k

Pr(Y = k)Var
(
F⊤X|Y = k

)
≤
∑
k

Pr(Y = k)Var (X|Y = k)

= E [Var (X|Y)]

To achieve a low IntraVar/InterVar ratio, in addition to reducing intra-class variance,

we also need to keep the class centers apart after convolution. This depends on the

quality of the attribute affinity graph. A good attribute affinity graph should con-

nect attributes that share similar expectations conditioned on Y. Formally, each at-

tribute Xj has K conditional expectations w.r.t. Y, which are denoted as a vector

ej = (E [Xj|Y = 1] , · · · ,E [Xj|Y = K]) ∈ RK . We have the following.

Theorem 25. If ∀Fij ̸= 0, ∥ei − ej∥2 ≤ ε, then the distance between ej and êj =∑
i Fijei is also less than or equal to ε, i.e.,

∥ei − ej∥2 ≤ ε, ∀Fij ̸= 0 ⇒ ∥ej − êj∥2 ≤ ε,
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and ε can be arbitrarily small with a proper F .

Proof.

∥ej − êj∥2 =
∥∥∥∥∥ej −

∑
i

Fijei

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

Fij(ej − ei)

∥∥∥∥∥
2

# since
∑
i

Fij = 1

≤
∑
i

Fij ∥ej − ei∥2 # Cauchy-Schwarz inequality

≤
∑
i

Fijε = ε

Next, we prove that there exists such an F that ε is 0. This is equivalent to finding a

doubly stochastic F satisfying
∑

i Fijei = ej for all j. Given a trivial solution F = I ,

this equation is solvable. In most real-world attributed networks, the number of attributes

is far greater than the number of classes, so the number of variables in this linear system

is greater than the number of equations. Given that it is solvable, it must have an infinite

number of solutions other than I . Thus, ε can be arbitrarily small with a proper F .

By Theorem 25, the conditional expectations of each attribute (i.e., class means) may

change little after attribute graph convolution, and so does the inter-class variance.

Combining Theorems 24 and 25, it suggests that a proper attribute affinity graph should

connect attributes that have similar class means in order to achieve a low IntraVar
InterVar ratio and

improve performance.
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5.3 Unsupervised and Semi-Supervised Learning with

DSGC

5.3.1 Learning Frameworks

Given an attributed graph with node feature matrix X , we can learn node representations

Z in an unsupervised manner by applying DSGC on X , i.e.,

Z = GXF , (5.25)

and then perform various downstream learning tasks with the node representations Z.

Unsupervised Node Clustering Any standard clustering algorithm can be applied on

Z for clustering as long as it is suitable for the present data. In experiments, we use the

popular spectral clustering method [24, 101] along with linear kernel K = ZZ⊤.

Semi-supervised Node Classification After obtaining the unsupervised node repre-

sentations Z, we may adopt any proper supervised classifier and train it with Z and a

small portion of labels for semi-supervised classification. This two-step framework is

semi-supervised in nature. In experiments, we choose a multi-layer perceptron with a

single hidden layer as our classifier. In addition to the two-step framework, we can also

plug DSGC into existing end-to-end graph-convolution-based methods. In experiments,

we improve several popular methods, including GCN, GAT, and GraphSAGE, by replac-

ing their 1-D graph convolution with DSGC. For example, to incorporate DSGC into the

vanilla GCN, we can modify the first layer propagation of GCN as

H(1) = σ(GXFW (1)), (5.26)
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where H(1) is the hidden units in the first layer, W (1) ∈ Rm×l is the trainable parameters

of GCN, and σ is an activation function such as ReLU.

Importantly, Eq. (5.26) can be considered as feeding a filtered feature matrix XF instead

of the raw feature matrix X to GCN. Our above analysis shows that a proper attribute

graph convolutional filter F can reduce intra-class variance, making XF much easier to

classify and guarantees to help train a better model. Furthermore, the parameters of GCN

are freely chosen from the parameter space W (1), while the model trained by Eq. (5.26)

is restricted in a subspaceFW (1). Since the chosen filterF is low-pass Section 5.3.2 and

thus is nearly singular, FW (1) is a subspace of Rm×l projected by F . Model parameters

in this subspace are generally better in generalization performance due to the variance

reduction property of F . However, the model learned by Eq. (5.26) can hardly be learned

by GCN, since the subspace FW (1) has measure zero, which is a tiny subset of Rm×l.

5.3.2 Implementation of Filters

Object Graph Convolutional Filter In most cases, the object graphA1 is given as part

of the dataset. All we need is to design the filter. There are various graph convolutional

filters available [2, 3, 14, 15], but the key principle of filter design for semi-supervised

and unsupervised learning is low-pass [3, 109]. Following this principle, we use the

2-order row-normalized affinity matrix as the object graph filter, i.e.,

G = (I −L(1)
r )2 = (D−1

1 A1)
2. (5.27)

Attribute Graph Convolutional Filter A key issue in implementing DSGC is to

construct a suitable attribute affinity graph A2. Possible ways to construct attribute
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affinity graphs include extracting entity relation information from existing knowledge

bases, building a similarity graph from features, or identifying correlations by domain

knowledge. In experiments, we evaluate our methods on text dataset as in [11, 15, 16],

and leverage two suitable attribute affinity graphs for text data described below.

Positive point-wise mutual information (PPMI) is a common tool for measuring the

association between two words in computational linguistics [110]. PPMI between words

wi and wj is defined by

a
(2)
ij = PPMI(wi, wj) =

[
log

Pr(wi, wj)

Pr(wi) Pr(wj)

]
+

, (5.28)

wherePr(wi) is the probability of occurrence of wordwi, andPr(wi, wj) is the probability

of two words occurring together. If there is a semantic relation between two words, they

tend to co-occur more frequently and thus share a high PPMI value. Here, we use

PPMI between words as the corresponding weights in the attribute affinity matrix A2 and

symmetrically normalize it as Kipf and Welling [15].

Word embedding based k-NN graphs. Word embedding is a collection of techniques

that map vocabularies to vectors in a Euclidean space. Embeddings of words are pre-

trained vectors learned from the corpus with algorithms such as GloVe [111]. Since

word embeddings capture semantic relations between words [112], they can be used for

constructing an attribute affinity graph. We construct a k-NN graph from the embedding

vectors by some proximity metric, such as the Euclidean distance.

With the constructed attribute affinity graph A2, we use one-step lazy random walk

filter [3] in our experiments, i.e.,

F = (I − 1

2
Ls) =

1

2
(I +D

−1/2
2 A2D

−1/2
2 ). (5.29)
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Chapter Review

In this chapter, we systematically discuss how to build 2-D graph convolution neural net-

works and propose a simple yet efficient dimensionwise separable 2-D graph convolution

(DSGC) for unsupervised and semi-supervised learning on graphs. We demonstrate that

by exploiting attribute relations in addition to object relations, DSGC can learn better

node representations than existing methods based on the regular 1-D graph convolution,

leading to promising performance on node classification and clustering tasks.



Chapter 6

Empirical Study

In this chapter, we first demonstrate the effectiveness of our proposed methods with

1-D graph convolution, including GLP, IGCN, and AGC, on semi-supervised classifi-

cation and unsupervised clustering tasks. Then, we demonstrate the effectiveness of

our proposed dimensionwise separable 2-D graph convolution and its advantages over

regular 1-D graph convolution, also on semi-supervised classification and unsupervised

clustering.

6.1 Semi-supervised Classification

To validate the performance of our methods GLP and IGCN, we test our methods GLP and

IGCN on three tasks.∗ 1) Semi-supervised document classification on citation networks,

where nodes are documents and edges are citation links. The goal is to classify the

documents into topics with only a few labeled documents. 2) Semi-supervised entity

∗Code is available at https://github.com/liqimai/Efficient-SSL

129
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classification on a knowledge graph. A bipartite graph is extracted from the knowledge

graph [8], and there are two kinds of nodes: entity and relation, where the edges are

between the entity and relation nodes. The goal is to classify the entity nodes with only

a few labeled entity nodes. 3) Semi-supervised handwritten digit recognition. The goal

is to recognize the handwritten digits with only a few labeled digits.

6.1.1 Datasets and Settings

We evaluate our methods on four citation networks – Cora, CiteSeer, PubMed [25], and

Large Cora, one knowledge graph – NELL [113], and one handwritten digit recognition

— MNIST [114]. The dataset statistics are summarized in Table 6.1.

Citation networks [25] Citation networks are networks that record documents’ citation

relationships. In citation networks, vertices are documents, and edges are citation links.

A pair of vertices are connected by an undirected edge if and only if one cites another.

Besides the graph structure, each document is associated with a feature vector that

encodes the document content. In three citation networks we tested on, CiteSeer, Cora,

and PubMed, features are 0/1 vectors that have the same length as dictionary size and

indicate words appearing in documents. The statistics of datasets are summarized in

Table 6.1. On citation networks, we test two scenarios – 4 labels per class and 20 labels

per class.

Never Ending Language Learning (NELL) [113] NELL is a knowledge graph intro-

duced by Carlson et al., and processed by Yang et al.. In [8], Yang et al. extracted an
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entity classification dataset from NELL and changed the knowledge graph into a single

relation graph as below. For each relation type r, they create two new vertices r1 and r2

in the graph. For each triplet (e1, r, e2), they create two edges (e1, r1) and (e2, r2). We

follow [15] to extend the number of features by assigning a unique one-hot representation

for every relation node, effectively resulting in a 61,278-dim sparse feature vector per

node. Dataset statistics are also in Table 6.1. On NELL, we test three scenarios – 0.1%,

1%, and 10% label rates.

MNIST [114] MNIST contains 70,000 images of handwritten digits from 0 to 9 of

size 28 × 28. Each image is represented by a dense 784-dimensional vector where

each element is a gray intensity pixel value. A 20-NN graph is constructed based on

the Euclidean distance between images. If the i-th image is within the j-th image’s 20

nearest neighbors or vice versa, then wij = wji = 1, otherwise wij = wji = 0.

Table 6.1: Dataset statistics.

Dataset Type Vertices Edges Classes Features

CiteSeer Citation network 3,327 4,732 6 3703

Cora Citation network 2,708 5,429 7 1433

PubMed Citation network 19,717 44,338 3 500

NELL Knowledge graph 65,755 266,144 210 5414

MNIST Handwritten Digits 70,000 2,060,504 10 784

Baselines. We compare GLP and IGCN with the state-of-the-art semi-supervised classi-

fication methods: manifold regularization (ManiReg) [56], semi-supervised embedding

(SemiEmb) [40], DeepWalk [74], iterative classification algorithm (ICA) [25], Plane-

toid [8], graph attention networks (GAT) [16], multi-layer perceptron (MLP), LP [97],
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and GCN [15].

Settings. We use MLP as the classifier of GLP and test GLP and IGCN with RNM and

AP filters. We follow Kipf and Welling [15] to use a two-layer structure for all neural

networks, including MLP, GCN, and IGCN. Guided by our analysis in Section 4.3, the

filter parameters k and α should be set large if the label rate is low, and should be set

small if the label rate is high. Specifically, when 20 labels per class on citation networks

are available, or 10% entities of NELL are labeled, we set k = 5 for RNM and α = 10 for

AP filters in GLP. In other scenarios with fewer labels, we set k = 10, α = 20 for GLP.

The k, α chosen for IGCN is equal to the above k, α divided by the number of layers –

2. We follow Kipf and Welling [15] to set the parameters of MLP, GCN, and IGCN: for

citation networks, we use a two-layer network with 16 hidden units, 0.01 learning rate,

0.5 dropout rate, and 5× 10−4 L2 regularization, except that the hidden layer is enlarged

to 64 units for Large Cora; for NELL, we use a two-layer network with 64 hidden units,

0.01 learning rate, 0.1 dropout rate, and 1 × 10−5 L2 regularization. For a more fair

comparison with different baselines, we do not use a validation set for model selection

as in Kipf and Welling [15]. Instead, we select the model with the lowest training loss

in 200 steps. All results are averaged over 50 random splits of the dataset. We set α of

LP to 100 for citation networks and 10 for NELL. Parameters of GAT are the same as

Velickovic et al. [16]. Results of other baselines are taken from Yang et al. [8], Kipf and

Welling [15].



6.1. SEMI-SUPERVISED CLASSIFICATION 133

Table 6.2: Classification Accuracy with 20 labels per class.

Cora CiteSeer PubMed

SVM DT LR MLP SVM DT LR MLP SVM DT LR MLP

GLP(Raw) 22.0 45.0 54.6 56.3 50.0 42.2 58.8 57.0 63.2 58.0 68.9 68.0

GLP(RNM) 55.8 64.1 74.8 80.2 62.8 50.9 66.8 68.2 69.5 65.8 73.7 76.3

GLP(RW) 55.8 65.2 74.8 80.3 62.9 50.5 67.0 68.3 69.5 67.8 73.8 76.3

GLP(AP) 51.8 63.7 74.6 81.0 62.0 52.4 67.3 69.3 70.4 67.6 74.2 77.2

6.1.2 Results and Discussion

Citation Networks and Knowledge Graph

GLP with Various Classifiers To demonstrate the benefit of GLP, our first experiment

is to compare the raw features with the filtered features in training different supervised

classifiers, including support vector machine (SVM), decision tree (DT), logistic regres-

sion (LR), and multilayer perceptron (MLP). The results are summarized in Table 6.2,

where ‘Raw’ means using raw features. We can see that there is a huge improvement in

classification accuracy for all classifiers and datasets with the smooth features produced

by the three filters we proposed. This clearly demonstrates the advantage of filtered

features over raw features.

GLP & IGCN v.s. Baselines The results of citation networks and NELL are sum-

marized in Table 6.3, where the top 3 classification accuracies are highlighted in bold.

Overall, GLP and IGCN perform best. Especially when the label rates are very low, they

significantly outperform the baselines. Specifically, on citation networks, with 20 labels

per class, GLP and IGCN perform slightly better than GCN and GAT but outperform
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Table 6.3: Classification accuracy on citation networks and NELL.

Label rate 20 labels per class 4 labels per class 10% 1% 0.1%

Cora CiteSeer PubMed L-Cora Cora CiteSeer PubMed L-Cora NELL

ManiReg 59.5 60.1 70.7 - - - - - 63.4 41.3 21.8
SemiEmb 59.0 59.6 71.7 - - - - - 65.4 43.8 26.7
DeepWalk 67.2 43.2 65.3 - - - - - 79.5 72.5 58.1
ICA 75.1 69.1 73.9 - 62.2 49.6 57.4 - - - -
Planetoid 75.7 64.7 77.2 - 43.2 47.8 64.0 - 84.5 75.7 61.9
GAT 79.5 68.2 76.2 67.4 66.6 55.0 64.6 46.4 - - -
MLP 55.1 55.4 69.5 48.0 36.4 38.0 57.0 30.8 63.6 41.6 16.7
LP 68.8 48.0 72.6 52.5 56.6 39.5 61.0 37.0 84.5 75.1 65.9
GCN 79.9 68.6 77.6 67.7 65.2 55.5 67.7 48.3 81.6 63.9 40.7

IGCN(RNM) 80.9 69.0 77.3 68.9 70.3 57.4 69.3 52.1 85.9 76.7 66.0
IGCN(AP) 81.1 69.3 78.2 69.2 70.3 58.0 70.1 52.5 85.4 75.7 67.4
GLP(RNM) 80.3 68.8 77.1 68.4 68.0 56.7 68.7 51.1 86.0 76.1 65.4
GLP(AP) 80.8 69.3 78.1 69.0 67.5 57.3 69.7 51.6 80.3 67.4 55.2

other baselines by a considerable margin. With 4 labels per class, GLP and IGCN sig-

nificantly outperform all the baselines, demonstrating their label efficiency. On NELL,

GLP and IGCN with the RNM filter and IGCN with the AP filter slightly outperform

two very strong baselines – LP and Planetoid, and outperform other baselines by a large

margin.

Compared with methods that only use graph information, e.g., LP and DeepWalk, the

large performance gains of GLP and IGCN clearly come from leveraging both graph and

feature information. Compared with methods that use both graph and feature information,

e.g., GCN and GAT, GLP and IGCN are much more label efficient. The reason is that they

allow stronger filters to extract higher-level data representations to improve performance

when label rates are low, which can be easily achieved by increasing the filter parameters

k and α. But this cannot be easily achieved in the original GCN. As explained in

Section 4.2, to increase smoothness, GCN needs to stack many layers, but a deep GCN
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Table 6.4: Running time on citation networks and NELL.

Label rate 20 labels per class 4 labels per class 10% 1% 0.1%

Cora CiteSeer PubMed L-Cora Cora CiteSeer PubMed L-Cora NELL

MLP 0.6s 0.6s 0.6s 0.8s 0.6s 0.5s 0.6s 0.6s 2.1s 1.1s 1.0s
LP 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.1s 0.7s 1.8s 1.9s
GCN 1.3s 1.7s 9.6s 7.5s 1.3s 1.7s 9.8s 7.4s 33.5s 33.5s 33.2s

IGCN(RNM) 1.2s 1.7s 10.0s 7.9s 1.3s 1.7s 10.3s 8.1s 42.4s 44.0s 46.6s
IGCN(AP) 2.2s 2.6s 11.9s 11.0s 3.0s 3.4s 13.6s 13.6s 77.9s 116.0s 116.0s
GLP(RNM) 0.9s 1.0s 0.6s 1.8s 0.7s 0.8s 0.6s 1.1s 35.9s 37.3s 38.5s
GLP(AP) 1.0s 1.2s 0.7s 2.4s 0.8s 1.1s 0.8s 2.3s 57.4s 76.6s 78.6s

is difficult to train with few labels.

Training time Table 6.4 reports the total training time of the methods tested by us. All

neural-network-based methods are trained for 200 epochs. We can see that GLP with the

RNM filter runs much faster than GCN in most cases, and IGCN with the RNM filter has

similar time efficiency as GCN.

Results of Image Data

The results of MNIST are summarized in Table 6.5. It can be seen clearly that for every

case, our methods outperform all baselines significantly. The error rates are decreased

by 38-62% when compared with GCN, by 37-68% when compared with CNN, and by

10-39% when compared with LP. The performance gain comes from two factors: 1)

the smooth features produced by the graph filters, as shown in Fig. 6.1; 2) the powerful

classifier CNN. This again shows the flexibility of the GLP framework – it can be coupled

with any suitable classifier based on the data type. In contrast, GCN cannot take advantage

of CNN in dealing with image data. Among the baselines, LP performs the best, but as
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(a) Raw (b) Filtered

Figure 6.1: Visualizing raw and filtered hand-written digits.

Table 6.5: Classification Accuracy on MNIST.

Labels per class 10 20 30 40 50

GCN 83.3 85.6 90.1 90.6 91.3
LP 91.3 91.2 91.4 91.9 92.1
MLP 74.9 81.3 83.1 85.2 86.9
CNN 79.7 83.4 88.0 90.2 91.6

RNM+CNN 93.7 93.7 94.4 94.7 95.2
RW+CNN 93.5 93.8 94.6 94.7 95.1
AP+CNN 92.2 93.1 93.9 94.5 94.7

it cannot fully leverage the image features, its performance grows slowly as the number

of labels increases.
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6.2 Unsupervised Clustering

6.2.1 Datasets and Settings

We evaluate our method, adaptive graph convolution (AGC), on four benchmark at-

tributed networks. Cora, CiteSeer, and Pubmed [87] are citation networks where nodes

correspond to publications and are connected if one cites the other. Wiki [80] is a webpage

network where nodes are webpages and are connected if one links to the other. The nodes

in Cora and CiteSeer are associated with binary word vectors, and the nodes in Pubmed

and Wiki are associated with tf-idf weighted word vectors. Table 6.6 summarizes the

details of the datasets.

Cora A citation network where the nodes correspond to the publications and are

connected by an undirected edge if one cites the other. There are 2708 nodes, 5429 edges

in Cora, and each node is associated with a binary vector of 1433 dimensions. The nodes

are classified into 7 categories. [87, 88]

CiteSeer A citation network with 3327 nodes and 4732 edges. The nodes correspond

to the publications, which are represented by binary vectors of 3703 dimensions. The

nodes are classified into 6 categories.

Pubmed A citation network with 19717 nodes and 44338 edges. The nodes correspond

to the publications with 500 dimension feature vectors and are divided into 3 classes.
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Dataset #Nodes #Edges #Features #Classes

Cora 2708 5429 1433 7

CiteSeer 3327 4732 3703 6

Pubmed 19717 44338 500 3

Wiki 2405 17981 4973 17

Table 6.6: Dataset statistics.

Wiki A webpage network where the nodes are webpages and are connected if one links

to the other. There are 2405 nodes and 17981 edges in Wiki. The nodes are represented

by 4973 dimension feature vectors and are divided into 17 classes.

Baselines and Evaluation Metrics

We compare AGC with three kinds of clustering methods. 1) Methods that only use

node features: k-means and spectral clustering (Spectral-f) that construct a similarity

matrix from the node features by the linear kernel. 2) Structural clustering methods

that only use graph structures: spectral clustering (Spectral-g) that takes the node ad-

jacency matrix as the similarity matrix, DeepWalk [74], and deep neural networks for

graph representations (DNGR) [77]. 3) Attributed graph clustering methods that utilize

both node features and graph structures: graph autoencoder (GAE) and graph varia-

tional autoencoder (VGAE) [87], marginalized graph autoencoder (MGAE) [88], and

adversarially regularized graph autoencoder (ARGE) and variational graph autoencoder

(ARVGE) [89].

To evaluate the clustering performance, we adopt three widely used performance mea-

sures [102]: clustering accuracy (Acc), normalized mutual information (NMI), and macro
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F1-score (F1).

Parameter Settings

For AGC, we set max_iter = 60. For other baselines, we follow the parameter settings

in the original papers. In particular, for DeepWalk, the number of random walks is 10,

the number of latent dimensions for each node is 128, and the path length of each random

walk is 80. For DNGR, the autoencoder is of three layers with 512 neurons and 256

neurons in the hidden layers, respectively. For GAE and VGAE, we construct encoders

with a 32-neuron hidden layer and a 16-neuron embedding layer and train the encoders

for 200 iterations using the Adam optimizer with a learning rate of 0.01. For MGAE,

the corruption level p is 0.4, the number of layers is 3, and the parameter λ is 10−5.

For ARGE and ARVGE, we construct encoders with a 32-neuron hidden layer and a 16-

neuron embedding layer. The discriminators are built by two hidden layers with 16 and

64 neurons, respectively. On Cora, CiteSeer and Wiki, we train the autoencoder-related

models of ARGE and ARVGE for 200 iterations with the Adam optimizer, with the

encoder learning rate and the discriminator learning rate both as 0.001; on Pubmed, we

train them for 2000 iterations with the encoder learning rate 0.001 and the discriminator

learning rate 0.008.

6.2.2 Result Analysis

We run each method 10 times for each dataset and report the average clustering results

in Table 6.7, where the top 2 results are highlighted in bold. The observations are as

follows.
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Figure 6.2: ∆intra(k) and clustering performance w.r.t. k.

1) AGC consistently outperforms the clustering methods that only exploit either node

features or graph structures by a very large margin due to the clear reason that AGC

makes better use of available data by integrating both kinds of information, which can

complement each other and greatly improve clustering performance.

2) AGC consistently outperforms existing attributed graph clustering methods that use

both node features and graph structures. This is because AGC can better utilize graph

information than these methods. In particular, GAE, VGAE, ARGE, and ARVGE only

exploit the 2-hop neighborhood of each node to aggregate information, and MGAE only

exploits the 3-hop neighborhood. In contrast, AGC uses k-order graph convolution with

an automatically selected k to aggregate information within the k-hop neighborhood to

produce better feature representations for clustering.

3) AGC outperforms the strongest baseline MGAE by a considerable margin on Cora,

CiteSeer, and Pubmed, and is comparable to MGAE on Wiki. This is probably because

Wiki is more densely connected than others, and aggregating information within the 3-
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Methods Input
Cora CiteSeer Pubmed Wiki

Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1% Acc% NMI% F1%

k-means Feature 34.65 16.73 25.42 38.49 17.02 30.47 57.32 29.12 57.35 33.37 30.20 24.51

Spectral-f Feature 36.26 15.09 25.64 46.23 21.19 33.70 59.91 32.55 58.61 41.28 43.99 25.20

Spectral-g Graph 34.19 19.49 30.17 25.91 11.84 29.48 39.74 3.46 51.97 23.58 19.28 17.21

DeepWalk Graph 46.74 31.75 38.06 36.15 9.66 26.70 61.86 16.71 47.06 38.46 32.38 25.74

DNGR Graph 49.24 37.29 37.29 32.59 18.02 44.19 45.35 15.38 17.90 37.58 35.85 25.38

GAE Both 53.25 40.69 41.97 41.26 18.34 29.13 64.08 22.97 49.26 17.33 11.93 15.35

VGAE Both 55.95 38.45 41.50 44.38 22.71 31.88 65.48 25.09 50.95 28.67 30.28 20.49

MGAE Both 63.43 45.57 38.01 63.56 39.75 39.49 43.88 8.16 41.98 50.14 47.97 39.20

ARGE Both 64.00 44.90 61.90 57.30 35.00 54.60 59.12 23.17 58.41 41.40 39.50 38.27

ARVGE Both 63.80 45.00 62.70 54.40 26.10 52.90 58.22 20.62 23.04 41.55 40.01 37.80

AGC Both 68.92 53.68 65.61 67.00 41.13 62.48 69.78 31.59 68.72 47.65 45.28 40.36

Table 6.7: Clustering performance.

hop neighborhood may be enough for feature smoothing. But it is not good enough for

larger and sparser networks such as CiteSeer, and Pubmed, on which the performance

gaps between AGC and MGAE are wider. AGC deals with the diversity of networks well

via adaptively selecting a good k for different networks.

To demonstrate the validity of the proposed selection criterion ∆intra(t − 1) > 0, we

plot ∆intra(k) and the clustering performance w.r.t. k on Cora and Wiki respectively in

Fig. 6.2. One can see that when ∆intra(k) > 0, the corresponding Acc, NMI, and F1

values are the best or close to the best, and the clustering performance declines afterward.

It shows that the selection criterion can reliably find a good cluster partition and prevent

over-smoothing. The selected k for Cora, CiteSeer, Pubmed, and Wiki are 12, 55, 60,

and 8 respectively, which are close to the best k ∈ [0, 60] – 12, 35, 60, and 6 on these

datasets respectively, demonstrating the effectiveness of the proposed selection criterion.
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AGC is quite stable. The standard deviations of Acc, NMI and F1 are 0.17%, 0.42%,

0.01% on Cora, 0.24%, 0.36%, 0.19% on CiteSeer, 0.00%, 0.00%, 0.00% on Pubmed,

and 0.79%, 0.17%, 0.20% on Wiki, all very small.

The running time of AGC (in Python, with NVIDIA Geforce GTX 1060 6GB GPU) on

Cora, CiteSeer, Pubmed, andWiki is 5.78, 62.06, 584.87, and 10.75 seconds respectively.

AGC is a little slower than GAE, VGAE, ARGE, and ARVGE on CiteSeer but is more

than twice faster on the other three datasets. This is because AGC does not need to train

the neural network parameters as in these methods and hence is more time efficient even

with a relatively large k.

6.3 2-D Convolution v.s. 1-D Convolution

To demonstrate the superiority of 2D convolution over 1D convolution, we conduct

extensive experiments in semi-supervised node classification and node clustering on

seven real-world networks, including 20 Newsgroups (20 NG) [115], Large Cora (L-

Cora) [3, 116], Wikispeedia (Wiki) [117, 118], and four subsets of WebKB (Cornell,

Texas, Wisconsin, and Washington). †

6.3.1 Datasets

The statistics of all datasets are summarized in Table 6.8, where the last row shows the

intra-class edge ratio of the object link graph of each dataset, which can reflect the quality

†Note that we did not use the “Cora”, “Citeseer” and “PubMed” datasets as in [8, 15, 25], since the

attribute (word) lists are not provided.
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of the graph.

20 Newsgroups (20 NG) [115] is an email discussion group, where each object is

an email, and there are 18846 emails in total. Each email is represented by a 11697-

dimension tf-idf feature vector. Two emails are connected by an edge if they reply to the

same one.

Wikispeedia (Wiki) [117, 118] is a webpage network in which the objects are 3767

Wikipedia web pages, and the edges are web hyperlinks. Each webpage is described

by a 18316-dimension tf-idf vector. We removed several tiny classes, so the web pages

distribute more evenly across the remaining 9 categories.

Large Cora (L-Cora) [116] is a citation network in which the objects are computer

science research papers represented by 3780 dimensions of tf-idf values. Two papers are

connected by an undirected edge if and only if one cites the other. These citation links

form an object graph. After removing the papers that belong to no topic and those with no

authors or title, a subset of 11881 papers is obtained [119]. We name this dataset “Large

Cora” to distinguish it from the “Cora” dataset with 2708 papers used in [8, 15, 25].

WebKB ‡ is a webpage dataset collected by Carnegie Mellon University. We use its

four sub-datasets: Cornell, Texas, Wisconsin, and Washington. The objects are web

pages, and the edges are hyperlinks between them. The web pages are represented by

tf-idf feature vectors and manually classified into five categories: student, project, course,

staff, and faculty.
‡http://www.cs.cmu.edu/afs/cs.cmu.edu/project/theo-20/www/data/
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Table 6.8: Dataset statistics.

Dataset #vertices #edges #cls #features
ratio of

intra-class edges

20 NG 18,846 147,034 20 11,697 96.8%
Wiki 3,767 129,597 9 18,316 38.0%
L-Cora 11,881 64,898 10 3,780 76.5%
Corn. 247 384 5 3371 23.7%
Texa. 255 205 5 3371 19.8%
Wisc. 320 721 5 3371 26.3%
Wash. 265 417 5 3371 40.3%

6.3.2 Variance Reduction and Visualization

First of all, to verify our analysis in Section 5.2, we illustrate the variance reduction effect

of both object graph convolution and attribute graph convolution. As shown in Fig. 6.4,

1-D graph convolution (GX orXF ) already greatly reduces the IntraVar/InterVar ratio,

and 2-D graph convolution (GXF ) reduces it even further.

In Fig. 6.3, we visualize the results of performing graph convolution on the object

features of 20 NG by t-SNE. It can be seen that both object graph convolution and

attribute graph convolution can successfully reduce the overlap among classes, and 2-D

graph convolution (DSGC) is more effective than 1-D.
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Figure 6.3: t-SNE visualization of the “20 Newsgroups” dataset. (a) Raw features; (b)

Filtered by the regular object graph convolution; (c) Filtered by our proposed attribute

graph convolution; (d) Filtered by our proposed dimensionwise separable graph convo-

lution (DSGC).
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6.3.3 Semi-supervised Node Classification

Baselines We compare DSGC with the following baselines: label propagation

(LP) [97], multi-layer perceptron (MLP), graph convolutional networks (GCN) [15],

generalized label propagation (GLP) [3], GraphSAGE [11], graph attention networks

(GAT) [16], deep graph infomax (DGI) [120], GCNII [121], jumping knowledge net-

works (JK-MaxPool & JK-Concat) [122], and GRAND [123]. We also try to improve

GCN, GAT, and GraphSAGE by DSGC as described in Section Section 5.3.1. Our meth-

ods with mere object graph filter (G) or mere attribute graph filter (F ) are also tested

for the purpose of ablation study. PPMI and Emb denote attribute affinity graphs con-

structed by positive point-wise mutual information and word embedding, respectively, as

described in Section 5.3.2).

Settings For 20 NG, L-Cora, and Wiki, we test two scenarios – 20 labels/class and 5

labels/class. We follow GCN [15] and many others to set aside a validation set containing

500 samples for hyper-parameter tuning. For the four small sub-datasets of WebKB, we

randomly split them into 5/30/65% as train/valid/test set and ensure each class has at

least 1 label. Hyper-parameters of all methods, including ours and baselines, are tuned

by grid search according to validation. The reported results of all methods are averaged

over 50 runs.

Performance Classification accuracies are summarized in Table 6.9 and 6.10. The

top 2 accuracies are highlighted. Results of improved GAT, GCN, and GraphSAGE

are shown in Table 6.11. The following observations can be made. Firstly, object

graph convolution (G) does not always help. On 20 NG and L-Cora, methods based
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Table 6.9: Classification accuracy on 20 NG, L-Cora, and Wiki.

Dataset 20 NG L-Cora Wiki

Method G F 20 labels/cls. 5 labels/cls. 20 labels/cls. 5 labels/cls. 20 labels/cls. 5 labels/cls.

MLP ✗ ✗ 63.76± 0.17 38.67± 0.38 52.97± 0.41 39.56± 0.85 67.23± 0.25 54.41± 0.66

LP [46] ✓ ✗ 16.39± 0.20 8.62± 0.20 55.77± 0.97 38.97± 3.15 9.53± 0.05 10.54± 0.19

GLP [3] ✓ ✗ 74.99± 0.11 52.62± 0.45 68.95± 0.29 56.42± 0.85 60.05± 0.11 48.45± 0.54

GCN [15] ✓ ✗ 76.25± 0.11 53.78± 0.49 67.75± 0.33 54.27± 0.82 59.81± 0.30 47.93± 0.56

GAT [16] ✓ ✗ 76.33± 0.16 56.02± 0.57 68.88± 0.78 56.89± 1.53 50.97± 0.54 46.99± 0.83

DGI [120] ✓ ✗ 73.34± 0.27 66.57± 0.63 61.39± 0.50 54.77± 1.24 49.70± 1.63 43.64± 1.89

GraphSAGE [11] ✓ ✗ 65.73± 0.17 42.48± 0.77 57.28± 0.71 46.79± 1.91 65.52± 0.62 48.81± 0.76

GCNII [121] ✓ ✗ 77.41± 0.12 58.10± 0.85 68.18± 0.19 57.02± 0.55 43.65± 1.03 35.98± 4.45

JK-MaxPool [122] ✓ ✗ 71.00± 0.19 49.09± 0.27 67.44± 0.18 51.63± 0.52 45.26± 0.37 44.13± 0.38

JK-Concat [122] ✓ ✗ 72.24± 0.13 49.76± 0.27 67.47± 0.19 51.96± 0.46 47.24± 0.30 45.21± 0.29

GRAND [123] ✓ ✗ 74.45± 0.72 57.97±2.79 69.30± 0.59 52.12± 0.73 62.25± 0.93 47.17± 3.38

DSGC (GX) ✓ ✗ 75.60± 0.13 53.84± 0.46 67.74± 0.30 55.67± 0.72 58.73± 0.34 47.34± 0.54

DSGC (XF )
✗ Emb 66.27± 0.13 48.04± 0.38 58.70± 0.30 46.41± 0.55 69.76± 0.20 59.76± 0.58

✗ PPMI 75.36± 0.11 59.61± 0.34 61.01± 0.23 48.31± 0.62 69.91± 0.21 60.13± 0.61

DSGC (GXF )
✓ Emb 76.53± 0.15 59.91± 0.31 69.81± 0.26 58.63± 0.75 60.50± 0.26 49.69± 0.56

✓ PPMI 81.69± 0.12 68.94± 0.32 70.20± 0.24 59.43± 0.68 58.84± 0.26 48.51± 0.54

⋆ ✓ and ✗ indicate using/not using G or F .

on it, like DSGC (GX), GCN, and GAT, all outperform MLP significantly. However,

on Wiki and the four subsets of WebKB, object graph convolution severely harms the

performance. This is because the hyperlink graphs are highly noisy. Only a small portion

of edges connect nodes of the same class, much lower than that of 20 NG (96.8%) and

L-Cora (76.5%) (see Table 6.8). This shows the limitation of object graph convolution.

Secondly, attribute graph convolution works. As shown in Table 6.9, DSGC with mere F

already outperforms MLP significantly. Especially, on Wiki and WebKB, object graph

convolution fails while attribute graph convolution is still effective. Thirdly, 2-D graph

convolution is useful. On datasets with good object link graphs like 20 NG and L-

Cora, DSGC with both G and F performs much better than with either one of them only.

Especially, DSGC (GXF ) with PPMI achieves the best performance among all methods.
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Table 6.10: Classification accuracy on four subsets of WebKB.

Method F Corn. Texa. Wisc. Wash.

GCN [15] ✗ 50.25 ±0.66 60.31 ±1.06 52.74 ±0.92 53.83 ±1.36
GLP [3] ✗ 50.86 ±0.75 59.40 ±1.27 55.28 ±0.97 55.87 ±1.32
GAT [16] ✗ 51.21 ±1.40 60.06 ±1.08 52.92 ±1.18 56.85 ±2.00
GRAND [123] ✗ 49.01 ±1.04 57.38 ±0.26 49.30 ±0.22 42.09 ±1.25

DSGC (GX) ✗ 51.22 ±0.77 59.35 ±1.26 56.26 ±0.93 55.77 ±1.30

DSGC (XF )
Emb 62.14 ±1.02 68.00 ±0.75 73.50 ±0.81 65.78 ±1.27
PPMI 60.10 ±0.91 67.34 ±0.94 72.88 ±0.78 65.40 ±1.35

DSGC (GXF )
Emb 53.02 ±0.67 61.89 ±0.94 58.64 ±1.12 59.05 ±1.21
PMI 52.35 ±0.52 61.83 ±0.91 56.40 ±1.04 57.01 ±1.20

Table 6.11: Baselines improved by DSGC.

Methods F 20 NG L-Cora Wiki

GAT [16]
✗ 76.33 ± 0.16 68.88 ± 0.78 50.97 ± 0.54

PPMI 78.01 ± 0.30 67.38 ± 0.65 55.43 ± 0.51

GCN [15]
✗ 76.25 ± 0.11 67.75 ± 0.33 59.81 ± 0.30

PPMI 81.60 ± 0.10 67.87 ± 0.25 61.33 ± 0.28

GraphSAGE [11]
✗ 65.73 ± 0.17 57.28 ± 0.71 65.52 ± 0.62

PPMI 76.27 ± 0.33 60.23 ± 1.81 67.26 ± 0.52
⋆ ✗ indicates not using F .

On datasets with bad object link graphs such as Wiki and the four subsets of WebKB,

DSGC with both G and F improves upon DSGC with mere G and outperforms most

baselines. Especially, DSGC with mereF achieves the best performance, which improves

upon the best baseline by 3.63% and 5.72% in absolute accuracy in two scenarios.

Remarkably, it can be seen from Table 6.11 that by incorporating DSGC, the performance

of baselines including GCN, GAT, and GraphSAGE is improved substantially in most

cases, which again confirms that attribute graph convolution is a useful complement to

object graph convolution.
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6.3.4 Node Clustering

Baselines We test the proposed node clustering method with DSGC (Section 5.3.1)

with or without G and F in five cases, and compare them with existing strong baselines

including GAE and VGAE [87], MGAE [88], ARGE and ARVGE [89], and AGC [2].

We also compare them with the spectral clustering (Spectral) method that operates on a

similarity graph constructed by a linear kernel.

Performance We adopt two widely-used clustering measures [102]: clustering ac-

curacy (Acc) and normalized mutual information (NMI), and the results are shown in

Table 6.12 with the top 2 results highlighted. We can make the following observations.

1) Attribute graph convolution is highly effective. On 20 NG, DSGC (XF ) with PPMI

outperforms most baselines by a very large margin. On Wiki, DSGC (XF ) with PPMI or

Emb significantly outperforms all the baselines. 2) 2-D graph convolution is beneficial,

as validated in the classification experiments. On 20 NG, DSGC (GXF ) with PPMI can

further improve upon the already very strong performance of DSGC (XF ) with PPMI

and performs the best; On L-Cora, DSGC (GXF ) with PPMI or Emb improves upon

either DSGC (GX) or DSGC (XF ) and outperforms most baselines significantly. On

Wiki, DSGC (XF ) performs better than DSGC (GXF ) due to the low-quality object

link graph, as explained above.
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Table 6.12: Clustering performance.

Dataset 20 NG L-Cora Wiki

Method G F Acc(%) NMI(%) Acc(%) NMI(%) Acc(%) NMI(%)

Spectral ✗ ✗ 25.29± 1.01 28.18± 0.74 28.22± 1.01 11.61± 0.04 29.25± 0.00 21.83± 0.00

GAE [87] ✓ ✗ 38.92± 1.39 44.58± 0.40 34.45± 0.76 22.38± 0.18 33.78± 0.32 22.88± 0.20

VGAE [87] ✓ ✗ 25.04± 0.81 25.72± 0.77 29.45± 1.25 17.53± 0.15 33.83± 0.45 21.46± 0.19

MGAE [88] ✓ ✗ 47.83± 2.33 56.14± 1.00 35.87± 0.97 30.57± 0.98 32.73± 1.16 27.95± 2.29

ARGE [89] ✓ ✗ 42.04± 0.50 44.13± 0.91 36.07± 0.05 27.74± 0.01 26.49± 0.10 17.17± 0.05

ARVGE [89] ✓ ✗ 21.10± 0.61 21.79± 0.49 26.45± 0.03 12.94± 0.01 33.82± 0.13 21.42± 0.11

AGC [2] ✓ ✗ 38.83± 0.84 47.08± 1.57 41.76± 0.01 33.65± 0.01 32.74± 0.01 24.90± 0.01

DSGC (GX) ✓ ✗ 38.42± 0.66 46.28± 0.93 38.26± 0.02 30.66± 0.02 31.43± 0.09 24.16± 0.18

DSGC (XF )
✗ Emb 28.99± 0.06 33.22± 0.10 30.80± 0.56 17.46± 0.21 35.45± 0.91 33.44± 0.66

✗ PPMI 48.36± 2.40 53.27± 2.17 36.46± 0.06 22.53± 0.03 38.10± 0.01 36.07± 0.02

DSGC (GXF )
✓ Emb 43.40± 0.66 50.97± 0.58 40.75± 0.02 33.05± 0.04 30.50± 0.01 25.48± 0.03

✓ PPMI 52.25± 1.97 61.34± 1.07 41.24± 0.04 30.92± 0.01 31.37± 0.08 26.06± 0.20

⋆ ✓ and ✗ indicate using/not using G or F .

Chapter Review

This chapter presents experimental results of our proposed methods compared with the

state-of-the-art on various learning tasks. Sections 6.1 and 6.2 focus on 1-D graph convo-

lution. Section 6.1 demonstrates the advantage of IGCN and GLP proposed in Chapter 4

over vanilla GCN and several other semi-supervised learning methods. Section 6.2 val-

idates our proposed framework for unsupervised clustering and our proposed strategy

AGC for adaptive filter strength selection. Section 6.3 focuses on 2-D graph convolution.

The experiments in Section 6.3 verify the theorems in Chapter 5 and show the superiority

of 2-D graph convolution, when properly used, over 1-D graph convolution.



Chapter 7

Applications

In this chapter, we discuss several real applications of graph convolution. We first show

two applications of 1-D graph convolution, including zero-shot image classification and

personalized product search. Then, we describe several potential applications of 2-D

graph convolution, including malware detection, skeleton-based action recognition, and

traffic flow forecasting.

7.1 Zero-Shot Image Classification

The proposed GLP and IGCN methods can also be used for semi-supervised regression.

In Wang et al. [19], GCN was used for zero-shot image recognition with a regression

loss. Here, we replace the GCN model used in Wang et al. [19] with GLP and IGCN to

test their performance on the zero-shot image recognition task.

Zero-shot image recognition in Wang et al. [19] is to learn a visual classifier for the

151
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categories with zero training examples, with only text descriptions of categories and

relationships between categories. In particular, given a pre-trained CNN for known

categories, Wang et al. [19] propose to use a GCN to learn the model/classifier weights

of unseen categories in the last layer of the CNN. It first takes the word embedding of

each category and the relations among all the categories (WordNet knowledge graph) as

the inputs of GCN, then trains the GCN with the model weights of known categories in

the last layer of the CNN and finally predicts the model weights of unseen categories.

Datasets. We evaluate our methods and baselines on the benchmark of ImageNet [124].

ImageNet is an image database organized according to the WordNet hierarchy. All

categories of ImageNet form a graph through “is a kind of” relation. For example,

drawbridges are a kind of bridge, bridges are a kind of construction, and construction is

a kind of artifact. According to Wang et al. [19], the word embedding of each category

is learned from Wikipedia by the GloVe text model [111].

Baselines. We compare our methods GLP and IGCN with six state-of-the-art zero-shot

image recognition methods, namely Devise [125], SYNC [126], GCNZ [19], GPM [127],

DGPM [127] and ADGPM [127]. The prediction accuracies of these baselines are taken

from their papers. Notably, the GPM model is exactly our IGCN with k = 1.

Settings. There are 21K different classes in ImageNet. We split them into a training

set, and a test set similarly as in Kampffmeyer et al. [127]. A ResNet-50 model was

pre-trained on the ImageNet 2012 with 1k classes. The weights of these 1000 classes in

the last layer of CNN are used to train GLP and IGCN for predicting the weights of the

remaining classes. The evaluation of zero-shot image recognition is conducted on the

AWA2 dataset [128], which is a subset of ImageNet. For IGCN and the classifier (MLP)
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of GLP, we both use a two-layer structure with 2048 hidden units. We test k = 1, 2, 3 for

IGCN and k = 2, 4, 6 for GLP. Results are averaged over 20 runs.

Table 7.1: Results for unseen classes in AWA2.

Method Devise SYNC GCNZ GPM DGPM ADGPM

Accuracy 59.7 46.6 68.0 (1840s) 77.3 (864s) 67.2 (932s) 76.0 (3527s)

Our Method
IGCN(RNM) GLP(RNM)

k=1 k=2 k=3 k=2 k=4 k=6

Accuracy 77.9 (864s) 77.7 (1583s) 73.1 (2122s) 76.0 (12s) 75.0 (13s) 73.0 (11s)

Performance and Results Analysis. The results are summarized in Table 7.1, where

the top 3 classification accuracies are highlighted in bold. We can see that IGCN with

k = 1, 2 and GPM [127] perform the best, and outperform other baselines including

Devise [125], SYNC [126], GCNZ [19], and DGPM [127] by a significant margin. GLP

with k = 2 is the second best compared with the baselines, only slightly lower than GPM.

We observe that smaller k achieves better performance on this task, probably because the

diversity of features (classifier weights) should be preserved for the regression task [127].

This also explains why DGPM [127] (that expands the node neighborhood by adding

distant nodes) does not perform very well. It is also worth noting that by replacing the

6-layer GCN in GCNZ with a 2-layer IGCN with k = 3 and a GLP with k = 6, the

performance boosts from 68% to around 73%, demonstrating the low complexity and

training efficiency of our methods. Another thing to notice is that GLP runs hundreds of

times faster than GCNZ and tens of times faster than others.
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7.2 Personalized Product Search

Product search is an essential module in online shopping platforms, which guides users

to browse and purchase products from a massive collection of commodities. Products are

mainly represented by short texts such as titles and descriptions, which may not always

be informative. Other than texts, products are also associated with diverse relational

data, including ontology, spec sheets, figures, etc. There are also various types of user-

item interactions in e-commerce platforms. Users can browse, click, review, purchase a

product or put it in their cart.

Utilizing such rich information for personalized product search would be highly desirable

yet challenging. Existing methods mainly exploit text data and model product search as

an information retrieval task [129–132]. However, they are limited in their ability to

model user preferences, which is the core problem in product search. A common way to

represent users is by the products they’ve visited during a period, but long-term historical

user behavior usually contains noisy preference signals [129–131]. For computational

efficiency, user behavior sequences are usually truncated, and only recent behaviors

are considered. While this helps to eliminate noisy preference signals, short-term user

behavior may not contain sufficient preference signals.

To improve user preference modeling and learn better product representations, we propose

to utilize a global successive behavior graph and perform graph convolution over the graph

to capture implicit and complex collaborative signals. Here, we adopt an efficient graph

convolution layer with jumping connections and provide theoretical analysis to show its

advantage.
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Efficient Graph Convolution. In the past few years, graph convolutional networks

(GCN) and variants have been successfully applied to learn useful graph node represen-

tations for various graph learning and mining tasks. In each layer of GCN, it performs

feature propagation and transformation with connected nodes in the graph

H(l) = σ
(
AsH

(l−1)W (l)
)
, (7.1)

where H(l) is the node embeddings produced by layer l, W (l) denotes trainable param-

eters, and σ is a non-linear function such as ReLU(·). However, as observed from our

empirical study, the projection layers may distort the semantic product representations

learned by the language model in methods such as ZAM or HEM. Hence, we propose

to use graph convolution without the projection layers to enrich product representations.

Following the efficient design in Li et al. [3], we remove the projection layers and ac-

tivation layers. Further, we add a balancing parameter ω to control the strength of

self-information:

H(l) = (ωI + (1− ω)As)H
(l−1), (7.2)

Jumping Graph Convolution Layer. Since user purchase behavior is often sparse, it

is helpful to aggregate high-order information on the successive behavior graph to model

potential user interest. However, the ordinary graph convolution suffers from the well-

known over-smoothing problem, i.e., stacking too many convolution layers may make the

node features (product representations) indistinguishable. To address this issue, Chen

et al. [133] proposed GCNII that adds initial residual connections to each GCN layer.

We follow the same design to add jumping connections, i.e., feeding each convolution

layer an additional input of the initial product representations H(0), i.e.,

H̃(l) = (ωI + (1− ω)As)
(
βH(0) + (1− β)H̃(l−1)

)
, (7.3)
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where β is a weight parameter determining the portion of initial features. We call this

jumping graph convolution layer.

We provide a theoretical analysis of the jumping group convolution by investigating the

diversity of the convoluted product representations using the Laplacian-Beltrami operator

Ω(·) [23]. We compare the diversity of the convoluted product representations with

jumping connections (H̃(l) in Eq. (7.3)) and those without jumping connections (H(l) in

Eq. (7.2)). Laplacian-Beltrami operator measures the total variance of connected nodes:

Ω(H) =
∑
k

∑
i,j

aij(Hi,k −Hj,k)
2. (7.4)

High Ω(H) indicates high diversity, and low Ω(H) indicates severe over-smoothing.

The following theorem shows that the jumping connection can substantially alleviate the

over-smoothing effect of graph convolution.

Theorem 26. If the initial diversity Ω(H(0)) > 0, then for any l > 0, β ∈ (0, 1), and

ω ∈ (0.5, 1), H̃(l) is strictly more diverse thanH(l), i.e.,

Ω
(
H̃(l)

)
> Ω

(
H(l)

)
. (7.5)

When l approaches infinity, jumping connection can prevent the diversity of product

representations from collapsing to 0 (over-smoothing):

lim
l→∞

Ω
(
H̃(l)

)
> lim

l→∞
Ω
(
H(l)

)
= 0. (7.6)

Proof. Let L = I −D−1A, then Ω(·) becomes

Ω(H) =
∑
k

H⊤
:,kLH:,k, (7.7)

where H:,k is the k-th column of H . Denote arbitrary column of H by h, then we only

need to prove

(h̃(l))⊤Lh̃(l) = Ω(h̃(l)) > Ω(h(l)) = (h(l))⊤Lh(l)
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and

lim
l→0

Ω(h̃(l)) > lim
l→0

Ω(h(l)) = 0.

Let F = (ωI + (1− ω)D−1A). From Eq. (7.2) and Eq. (7.3), we could obtain general

formula for h(l) and h̃(l):

h(l) =F lh(0) (7.8)

h̃(l) =

(
(1− β)lF l + β

l∑
k=1

(1− β)k−1F k

)
h(0) (7.9)

Denote the eigen-decomposition of L by UΛU⊤, where U is the eigenbasis and Λ is a

diagonal matrix storing corresponding eigenvalues, then

F = (I − (1− ω)L) = U(I − (1− ω)Λ)U⊤ = UMU⊤ (7.10)

where M = I − (1− ω)Λ. Denote c = U⊤h(0) and substitute F in Eq. (7.8) and (7.9)

by Eq. (7.10):

Ω(h(0)) =c⊤Λc =
∑
i

λic
2
i , (7.11)

Ω(h(l)) =c⊤M 2lΛc =
∑
i

(1− (1− ω)λi)
2lλic

2
i (7.12)

=
∑
i

g2l (λi)λic
2
i , (7.13)

Ω(h̃(l)) =c⊤

(
(1− β)lM l + β

l∑
k=1

(1− β)k−1M k

)2

Λc (7.14)

=
∑
i

f 2
l (λi)λic

2
i , (7.15)

where

gl(λ) =(1− (1− ω)λ)l, (7.16)

fl(λ) =(1− β)lgl(λ) + β
l∑

k=1

(1− β)k−1gk(λ). (7.17)
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Now, we only need to compare gl(λ) and fl(λ). Notice that ω ∈ (0.5, 1) and λ is the

eigenvalue of normalized graph laplacian L, so λ ∈ [0, 2] and 1 − (1 − ω)λ ∈ (0, 1].

Then gl(λ) is positive and decreases as l increases:

gl1(λ) ≥ gl2(λ) > 0, for any l2 > l1. (7.18)

The equality holds only if λ = 0. When it comes to fl(λ), we have

fl(λ) ≥
(
(1− β)l + β

l∑
k=1

(1− β)k−1

)
gl(λ) = gl(λ) > 0. (7.19)

Given Eq. (7.13), (7.15) and (7.19), we can conclude

Ω(h̃(l)) ≥ Ω(h(l)) (7.20)

Notice that initial diversity Ω(h(0)) > 0, so there exists such λi that λic
2
i > 0 and λi ̸= 0,

then the equality does not hold and inequality Eq. (7.5) is proved.

Now we consider the limits of fl(λ) and gl(λ):

lim
l→∞

fl(λ) =
β(1− (1− ω)λ)

1− (1− β)(1− (1− ω)λ)
> 0, (7.21)

lim
l→∞

gl(λ) =0, for all λ > 0. (7.22)

As a consequence,

lim
l→0

Ω(h̃(l)) > lim
l→0

Ω(h(l)) = 0. (7.23)

Eq. (7.6) is also proved.

Let the rows of H(0) represent the learned entity embeddings. We perform L iterations

of graph convolution as in Eq. (7.3) and obtain the entity representations H̃(L).

Experiments on Amazon review dataset [134, 135] show that our methods significantly

improves over ZAM [129] by 7.76% to 41.39% in different domains, and also outperforms

other state-of-art baselines, including HEM [130], DREM [136] and GraphSRRL [137].
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Notation Element Description

X xij If APPi invokes APIj , thenxij = 1; otherwisexij = 0.

A aij
Indicate whether two malware are similar to each

other, constructed as Fan et al. [138].

B bij
Co-block [139]. If APIi and APIj are invoked in the

same code block, then bij = 1; otherwise, bij = 0.

P pij
Co-package [139]. If APIi and APIj are provided by

same package, then pij = 1; otherwise, pij = 0.

Table 7.2: Features and relations.

7.3 Malware Detection and Analysis

Malware are software that contains malicious behaviors. They have become a severe

security issue on various platforms that cannot be ignored. It brings huge harm to

users, including stealthy tariff consumption, privacy disclosure, and remote control. An

in-depth study of malware is of great significance to the sound development of the

application ecosystem. However, malware detection and analysis is challenging in that 1)

malware are usually camouflaged as benign applications, so they are actually dominated

by benign codes, and malicious codes only take a small portion even in malware; 2)

obfuscation techniques enable malware to appear very differently while reserving the

same malicious behaviors; 3) Analysis and labeling malware require considerable expert

knowledge, and thus labeled data are scarce [36].

Feature Extraction We propose to detect and classify malware by our dimension-wise

separable graph convolution (DSGC) network. The features we consider are sensitive

APIs invoked by each application. Malware are software that contains malicious behav-
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iors. To conduct malicious behaviors, malware must invoke some APIs to finish various

tasks, such as sending texts, recording videos and audio, taking photos, or sending data

to remote servers. All sensitive APIs invoked by a malware are obfuscation-invariant

and well define apps’ behavior. Assuming we have n APPs and m sensitive APIs, binary

matrix X ∈ {0, 1}n×m indicates whether an APP invokes an API. An independent simi-

larity graph between APPs is constructed as described in Fan et al. [138]. In short, APPs

are transformed into function call graph (FCG), then embeddings are learned from the

graph by struc2vec [140], and finally similarity matrix A ∈ Rn×n are calculated from

the distance between embeddings. Inspired by Hou et al. [139], we consider following

two kinds of relations between APIs: 1) co-block, two APIs being invoked in the same

code block. 2) co-package, two APIs being provided by the same package.

Classifier Denote the Laplacian of APP-APP graph by L1 and Laplacian of APP-API

graph by L2. We first perform a dimension-wise separable graph convolution to fuse the

information encoded in feature X , APP similarity graph A and API similarity graph B

or P :

Z =

(
K1∑

k1=0

θ
(1)
k1
Lk1

1

)
X

(
K2∑

k2=0

θ
(2)
k2
Lk2

2

)⊤

= GXF ,

where G =

K1∑
k1=0

θ
(1)
k1
Lk1

1 and F =

K2∑
k2=0

θ
(2)
k2
(Lk2

2 )⊤.

Then, we apply a standard MLP to get final prediction.

ŷi = MLP(zi) (7.24)

The MLP is trained by minimizing cross-entropy loss.

min
∑
i

CrossEntropy(yi, ŷi). (7.25)
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7.4 Skeleton-based Action Recognition

Human action recognition is to identify what action a person is performing in an image

or video, which plays an important role in automated surveillance, human intention pre-

diction, elderly behavior monitoring, human-computer interaction, content-based video

retrieval, and video understanding [17, 141, 142]. There are multiple modalities from

which action can be recognized, including RGB videos, depth videos, optical flow, and

human skeletons. Among them, RGB videos are the most studied modality, upon which

many vision-based methods are developed, such as CNNs.

Another modality of particular interest to us is dynamic human skeletons. Human

skeletons model the human body as a set of 3D coordinates of joints, such as wrists,

elbows, knees, hips, and shoulders, and these joints are connected by bones. A dynamic

human skeleton is a series of consecutive frames of human skeletons, which records

a person’s actions in a period. The main advantages of skeleton-based methods are

that it takes less storage space, less memory space, and less computation than vision-

based methods. A typical 1080p colorful image contains 1920 × 1080 × 3 ≈ 6.22m

8-bit integers. A 10-second 1080p 30fps video takes about 1.87 GB of memory space.

Processing such video, and recognizing human action from it also requires tons of

float operations. In contrast, a frame of a human skeleton only contains dozens of

3D coordinates of joints. Take NTU-RGB+D dataset as an example [142], each frame

consists of 25 body joints, whose coordinates are stored as 25× 3 = 75 float32 numbers.

A 10-second 30fps dynamic human skeleton takes only 9KB memory space, less than

RGB videos by about 200,000 times. As a consequence of the extremely small data

scales, skeleton-based methods are also faster than vision-based ones by several orders of
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magnitude. However, skeleton-based methods also have limitations. First, it is not good

at recognizing actions that involve interactions with the environment. For actions such as

playing basketball or sitting in a chair, vision-based methods could directly perceive the

existence of basketballs or chairs and thus make correct recognition, while skeleton-based

methods must guess what objects are being interacted with. Second, most of the current

skeleton data are estimated from RGB videos, although it is not necessarily obtained from

RGB videos. Skeleton estimation plus skeleton-based recognition is actually a two-stage

vision-based method, which degraded the advantages brought by the data efficiency

of human skeletons. However, skeleton data is not necessarily estimated from RGB

videos. We can obtain skeletons from depth images, radar, LiDAR, and even directly

from wearable devices.

7.4.1 Dynamic Human Skeletons

Formally, a human skeleton is a graph, where vertices V are human joints and edges

are bones. The 3D coordinates of joints are stored in a matrix X ∈ RN×3. A finite

time period is a chain graph with vertices {0, 1, 2 . . . } and vertex t represents t-th

timestamp. Consecutive timestamps are connected by edges. A dynamic human skeleton

is a Cartesian product graph of time and skeleton. Each vertex in a dynamic human

skeleton is a tuple (t, ν) represents a joint at t-th frame. There are two types of edges,

temporal edges and spatial edges. Temporal edges connect the same joints at two

consecutive frames.

(t, ν) ∼ (t+ 1, ν) (7.26)

(t, ν) ∼ (t− 1, ν) (7.27)
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Figure 7.1: Spatial connections and temporal connections in a dynamic human skeleton.

Spatial edges connect joints within a frame that are spatially connected by bones.

(t, νi) ∼ (t, νj) ⇐⇒ νi ∼ νj (7.28)

Assume there are N joints and T frames, the coordinates of joints at different frames are

stored in a tensor X = [X1,X2, . . . ,XT ] ∈ RT×N×3.

7.4.2 Spatial Temporal Graph Convolutional Networks

We design a general 2-D spatial-temporal graph convolution network to recognize human

actions from dynamic human skeletons, which demonstrates the mixed usage of graph

convolution and Euclidean convolution. The existing spatial-temporal graph convolution

designed for action recognition [17, 143] are special variants of DSGC, which convolves

in different dimensions separately. Different from existing ones, we exploit general 2-D

convolution here for a higher model capacity.
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Dimension-wise Separable Convolutional Layer The first several layers, as the main

body of the network, are spatial-temporal graph convolutional layer. Denote the input

of l-th layer by X(l−1) ∈ RT×N×Cl−1 , and output by X(l) ∈ RT×N×Cl , then forward

propagation formula for convolutional layer is

pl(A) =
K∑
k=0

αkA
k, (7.29)

X(l) = X(l−1) ∗1 θ(l) ×2 pl(A)×3 W
(l). (7.30)

“∗1” is normal 1-D convolution at the temporal (first) dimension, and θ(l) is the kernel.

“×2” is n-mode product at the spatial (second) dimension. pl(A) is a graph convolutional

filter, so “×2pl(A)” is the spatial convolution. Finally, W (l) ∈ RCl−1×Cl is a forward

transform matrix, performed at the channel (third) dimension. In each layer, θ(l), αk, and

W (l) are trainable parameters. The input to first layer is X, i.e., X(0) = X.

General 2-D Spatial-Temporal Convolution Besides above dimension-wise separable

style convolution, we can also exploit general 2-D convolution to substitute Eq. (7.30)

for a higher model capacity:

X(l) =

K1∑
i

K2∑
j

X(l−1) ×1 S
i ×2 A

j ×3 W
(l)
ij , (7.31)

where S is the shift matrix, and sij = 1 if i = j + 1, sij = 0 otherwise.

Pooling Layer Different samples may have different lengths of time T , so a pooling at

the temporal dimension is needed.

Z = Pool1(X
(l)) (7.32)
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Pool1 is a reduce operator performed at the temporal dimension, such as reduce sum,

reduce mean or max pooling. After pooling, we getZ ∈ RT×Cl , whose shape is irrelevant

to T , the length of time .

Softmax Layer Finally, we vectorize Z and get the final classification result by a

softmax layer.

z = vec(Z) (7.33)

y = softmax(Wz) (7.34)

W is the trainable parameter.

The core of the network is spatial-temporal convolutional layers, which serve as a powerful

feature extractor. It exploits two types of convolution to extract features from joint

coordinates. Temporal convolution could extract time-related features, such as joint

velocity and acceleration. Spatial convolution could extract space-related features, such

as distance between joints, direction of bone, bone length, the angle between two bones,

and the center of mass. Their combination could extract features that rely on both space

and time, such as the rotational speed of a bone and the velocity of the mass center.

Such spatial-temporal convolution provided plenty of useful features for downstream

classification tasks.

7.5 Traffic Flow Forecasting

Another application of spatial-temporal convolution is traffic flow forecasting. Traffic

Flow Forecasting is to forecast the traffic flow passing by each node in a traffic network,
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given the historical flow of all nodes and some other helpful information about the

network. There are mainly two types of methods to forecast traffic flow, CNN and GNN.

CNN-based methods take traffic flow at a time point as a heat map image and treat it as

a video prediction task [6, 144]. GNN-based methods treat traffic flow as a sequence of

graphs and predict the flow by graph neural networks [7, 18, 145]. In general, modeling

traffic networks as graphs is more natural, saving both memory space and computational

resources.

Most GNN-based methods utilize Spatial-Temporal Graph Convolutional Networks (ST-

GCN). Spatial-temporal convolutional (ST-Conv) layers, as the network’s main body,

rely on both spatial convolution and temporal convolution to extract features useful

for downstream prediction. The existing ST-Conv filters designed for traffic flow fore-

casting [7, 18, 145] are also special variants of DSGC (Eq. (7.30)), which convolves

in different dimensions separately. To improve model capacity, we propose to exploit

general 2-D graph convolution.

The whole network architecture is similar to the one for skeleton-based action recognition,

because traffic flow forecasting and skeleton-based action recognition are both dealing

with spatial-temporal graphs. However, they differ in two ways: 1) Traffic flow forecasting

is a node-level task, which require to predict for each spatial node, while action recognition

is a graph-level task; 2) Traffic flow forecasting is a regression task, and action recognition

is a classification task. Therefore, the ST-GCN designed for traffic flow forecasting shares

nearly the same architecture as the one for action recognition, except that it uses a node-

level prediction layer instead of a softmax layer, and a mean square loss instead of a

cross-entropy loss.
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Figure 7.2: Left: traffic flow as a heat map image [6]. Right: traffic flow as a sequence

of graphs [7].

Suppose there is a graph with N nodes and an adjacency matrix A. Each node is

described by a C-channel feature vector, containing its flow and other information at t-th

time slice, like vehicle speed, wind speed, precipitation, etc. All features for t-th time

slice are stored in a matrix Xt ∈ RN×C . We know all features before time T , stored in a

tensor X = [X1,X2, . . . ,XT ] ∈ RT×N×C , and we want to predict the traffic flow of all

nodes Y =
[
yT+1,yT+2, . . . , yT+Tp

]
∈ RTp×N after time T .

Spatial-Temporal Convolutional Layer. We exploit the general 2-D graph convolution

as in Eq. (7.31).

Prediction Layer. After several convolutional layers, it follows the final prediction

layer:

Ŷ = WT (X
(l) ×c wc), (7.35)

where wc ∈ RCl is a vector, and the product “×c” eliminates the channel dimension, i.e.,

(X(l) ×c wc) ∈ RT×N . WT ∈ RTp×T is a transform matrix in the temporal dimension.

Finally, we get the prediction of traffic flow, Ŷ ∈ RTp×N , of all N nodes in the next TP
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time slices. The network is trained by minimizing the MSE loss between the prediction

Ŷ and the ground truth Y :

min∥Y − Ŷ ∥2F . (7.36)

Chapter Review

In this chapter, we introduce several real applications of graph convolution, including

zero-shot image classification, personalized product search, malware detection, skeleton-

based action recognition, and traffic flow forecasting. We discuss possible solutions for

each application and present some preliminary results for some applications.



Chapter 8

Conclusion and Future Works

In this thesis, we have introduced a set of techniques for analyzing graph convolutional

filters in both spatial and spectral domains. With these techniques, we reveal fundamental

mechanisms of graph convolutional networks for unsupervised and semi-supervised

learning. Our spatial analysis [1] shows that the graph convolution of GCN is actually

a special form of Laplacian smoothing, which is the key reason why GCN works. It

also brings up the over-smoothing problem, which is a fundamental limitation of deep

GCN models. Our spectral analysis [3] revisits GCN and classical label propagation

methods under a unified graph filtering framework, revealing critical insight that they

both essentially learn data representations using a low-pass graph filter. The analysis

provides useful guidelines for designing new graph convolutional filters and facilitates

filter comparison.

With the theoretical analysis, we have developed new efficient models with graph convo-

lution for semi-supervised and unsupervised learning, including Improved Graph Con-

volutional Networks (IGCN) [3], Generalized Label Propagation (GLP) [3], Adaptive

169
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Graph Convolution (AGC) [2] and Dimensionwise Separable 2-D Graph Convolution

(DSGC) [4]. IGCN extends vanilla GCN and is more flexible and efficient. GLP

extends classic Label Propagation (LP) methods to deal with attributed graphs and is

a simplified version of GCN. AGC is a simple node clustering method for attributed

graphs, which efficiently uses an adaptive graph convolutional filter and outperforms

state-of-the-art methods. DSGC generalizes beyond 1-D graph convolution and designs

an efficient dimensionwise separable 2-D graph convolutional filter for unsupervised and

semi-supervised learning on attributed graphs. The effectiveness of our proposed models

and algorithms have been verified by extensive experiments carried out on real-world

benchmark datasets.

Further, we have applied our proposed models and algorithms to various real-world

applications across multiple areas. Particularly, we have demonstrated the effectiveness

of our IGCN and GLP models in zero-shot image classification [3], and successfully

applied IGCN to model user behaviour for personalized product search [5]. We have

also discussed the potential application of our proposed 2-D graph convolutional filters

to malware detection, skeleton-based action recognition, and traffic flow forecasting.

The significance of this thesis is three-fold:

• The thesis pioneers in analyzing GCNs from both spatial and spectral perspec-

tives, revealing key insights and fundamental limitations of GCNs, and laying the

foundation for many follow-up studies.

• The thesis proposes a set of efficient models and algorithms for unsupervised

and semi-supervised learning on graphs and provides comprehensive experimental

results, which can serve as solid baselines for future research.
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• This thesis presents successful and potential applications of the proposed mod-

els and algorithms to a variety of real-world applications in computer vision,

e-commerce, cyber security, and smart transportation.

Future work The following issues are left for future exploration.

1) Data-driven filter design. Most of existing GCN models use manually designed graph

convolutional filters. The filter parameters are manually tuned and selected through

extensive experiments. In Section 4.3, we draw a qualitative conclusion about how

to decide filter strength according to label rate for semi-supervised node classification.

When only a few labels are given, one should increase filter strength; and when label

rate is high, reducing filter strength would be desirable. While this rule is helpful, it

still requires manual tuning to decide filter parameters. It would be much more desirable

if we can find a quantitative relation between filter parameters and data statistics (e.g.,

label rate, graph size, and node degree) to directly determine filter parameters. Further,

it would be interesting to investigate if the filter parameters can be fully automatically

learned like CNN parameters, i.e., setting the filter parameters as trainable and learning

them from data during training.

2) Applications of 2-D and multi-dimension graph convolution. In Chapter 7, we discuss

several potential applications of 2-D graph convolution. It would be interesting to

implement the proposed 2-D graph convolutional filters and explore their potential for

these applications. In Section 3.6, we introduce multi-dimension graph convolution.

The application of multi-dimension graph convolution is also worth exploring. Potential

applications include meteorological sensor network data analysis, recommender systems,

and point cloud compression.
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3) Scalability of graph neural networks. One of the most important issues for graph

neural networks is scalability, which hinders their application in industry. Normal neural

networks scale well to extremely large datasets of gigabyte or terabyte size, thanks to

the batch training technique. However, applying batch training to graph-structured data

is non-trivial because each batch can only cover the edges whose two end nodes both

appear in the batch, and the cross-batch edges are discarded. As a result, nearly all graph

neural networks resort to a full-batch training strategy, which is slow and requires large

GPU memory. It is vital to design a proper batch splitting strategy that can efficiently

cover as many edges as possible to improve the scalability of graph neural networks.



Bibliography

[1] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolu-

tional networks for semi-supervised learning. In Proceedings of the Association

for the Advancement of Artificial Intelligence 2018, pages 3538–3545. AAAI,

2018.

[2] Xiaotong Zhang, Han Liu, Qimai Li, and Xiao-Ming Wu. Attributed graph

clustering via adaptive graph convolution. InProceedings of the 28th International

Joint Conference on Artificial Intelligence, pages 4327–4333, 2019.

[3] Qimai Li, Xiao-Ming Wu, Han Liu, Xiaotong Zhang, and Zhichao Guan. La-

bel efficient semi-supervised learning via graph filtering. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9582–

9591, 2019.

[4] Qimai Li, Xiaotong Zhang, Han Liu, Quanyu Dai, and Xiao-Ming Wu. Dimen-

sionwise separable 2-d graph convolution for unsupervised and semi-supervised

learning on graphs. In Proceedings of the 27th ACM SIGKDD Conference on

Knowledge Discovery and Data Mining (KDD ’21), New York, NY, USA, 2021.

ACM.

[5] Lu Fan, Qimai Li, Bo Liu, Xiao-Ming Wu, Xiaotong Zhang, Fuyu Lv, Guli Lin, Sen

173



174 BIBLIOGRAPHY

Li, Taiwei Jin, and Keping Yang. Modeling user behavior with graph convolution

for personalized product search. In Proceedings of the Web Conference, 2022.

[6] Kun Ouyang, Yuxuan Liang, Ye Liu, Zekun Tong, Sijie Ruan, David Rosenblum,

and Yu Zheng. Fine-grained urban flow inference. IEEE transactions on knowledge

and data engineering, 2020.

[7] Ken Chen, Fei Chen, Baisheng Lai, Zhongming Jin, Yong Liu, Kai Li, Long Wei,

Pengfei Wang, Yandong Tang, Jianqiang Huang, et al. Dynamic spatio-temporal

graph-based cnns for traffic flow prediction. IEEE Access, 8:185136–185145,

2020.

[8] Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-

chine learning, pages 40–48, 2016.

[9] Fanghua Ye, Chuan Chen, and Zibin Zheng. Deep autoencoder-like nonnegative

matrix factorization for community detection. In Proceedings of the 27th ACM In-

ternational Conference on Information and Knowledge Management, pages 1393–

1402. ACM, 2018.

[10] Ning Wu, Wayne Xin Zhao, Jingyuan Wang, and Dayan Pan. Learning effective

road network representation with hierarchical graph neural networks. In Proceed-

ings of the 26th ACM SIGKDD Conference on Knowledge Discovery and Data

Mining (KDD ’20), pages 6–14, 2020.

[11] Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learn-

ing on large graphs. In Advances in Neural Information Processing Systems,

volume 30. Curran Associates, Inc., 2017.



BIBLIOGRAPHY 175

[12] Pengyang Wang, Kunpeng Liu, Lu Jiang, Xiaolin Li, and Yanjie Fu. Incremental

mobile user profiling: Reinforcement learning with spatial knowledge graph for

modeling event streams. In Proceedings of the 26th ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD ’20), pages 853–861, 2020.

[13] Shichao Pei, Lu Yu, Guoxian Yu, and Xiangliang Zhang. REA: robust cross-

lingual entity alignment between knowledge graphs. In Proceedings of the 26th

ACM SIGKDDConference on Knowledge Discovery and Data Mining (KDD ’20),

pages 2175–2184, 2020.

[14] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional

neural networks on graphs with fast localized spectral filtering. In Advances in

Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[15] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph

convolutional networks. In InternationalConference onLearningRepresentations,

2017.

[16] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro

Liò, and Yoshua Bengio. Graph attention networks. In International Conference

on Learning Representations, 2018.

[17] Sijie Yan, Yuanjun Xiong, and Dahua Lin. Spatial temporal graph convolutional

networks for skeleton-based action recognition. In Thirty-second AAAIConference

on Artificial Intelligence, 2018.

[18] Shengnan Guo, Youfang Lin, Ning Feng, Chao Song, and Huaiyu Wan. Attention

based spatial-temporal graph convolutional networks for traffic flow forecasting.



176 BIBLIOGRAPHY

InProceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

922–929, 2019.

[19] Xiaolong Wang, Yufei Ye, and Abhinav Gupta. Zero-shot recognition via semantic

embeddings and knowledge graphs. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 6857–6866, 2018.

[20] Réka Albert and Albert-László Barabási. Statistical mechanics of complex net-

works. Reviews of modern physics, 74(1):47, 2002.

[21] Aliaksei Sandryhaila and José MF Moura. Discrete signal processing on graphs.

IEEE Transactions on Signal Processing, 61(7):1644–1656, 2013.

[22] David I Shuman, Sunil K Narang, Pascal Frossard, Antonio Ortega, and Pierre

Vandergheynst. The emerging field of signal processing on graphs: Extending

high-dimensional data analysis to networks and other irregular domains. IEEE

Signal Processing Magazine, 30(3):83–98, 2013.

[23] Fan RK Chung. Spectral Graph Theory. American Mathematical Society, 1997.

[24] Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing,

17(4):395–416, 2007.

[25] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. Collective classification in network data. AI Magazine, 29(3):

93–106, 2008.

[26] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.

Automating the construction of internet portals with machine learning. Information

Retrieval, 3(2):127–163, 2000.



BIBLIOGRAPHY 177

[27] C Lee Giles, Kurt D Bollacker, and Steve Lawrence. Citeseer: An automatic

citation indexing system. In Proceedings of the third ACM conference on Digital

libraries, pages 89–98, 1998.

[28] Anand Rajaraman and Jeffrey David Ullman. Mining of massive datasets. Cam-

bridge University Press, 2011.

[29] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation

of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[30] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-

training of deep bidirectional transformers for language understanding. arXiv

preprint arXiv:1810.04805, 2018.

[31] T. Mitchell, W. Cohen, E. Hruschka, P. Talukdar, J. Betteridge, A. Carlson,

B. Dalvi, M. Gardner, B. Kisiel, J. Krishnamurthy, N. Lao, K. Mazaitis, T. Mo-

hamed, N. Nakashole, E. Platanios, A. Ritter, M. Samadi, B. Settles, R. Wang,

D. Wijaya, A. Gupta, X. Chen, A. Saparov, M. Greaves, and J. Welling. Never-

ending learning. InProceedings of the Twenty-Ninth AAAI Conference on Artificial

Intelligence (AAAI-15), 2015.

[32] Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):

75–174, 2010.

[33] Xing Xie. Potential friend recommendation in online social network. In 2010

IEEE/ACM Int’l Conference on Green Computing and Communications & Int’l

Conference on Cyber, Physical and Social Computing, pages 831–835. IEEE,

2010.



178 BIBLIOGRAPHY

[34] Xiaojun Chen, Shengbin Jia, and Yang Xiang. A review: Knowledge reasoning

over knowledge graph. Expert Systems with Applications, 141:112948, 2020.

[35] Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object

detection in a point cloud. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), June 2020.

[36] FAN Ming, LIU Ting, LIU Jun, LUO Xiapu, YU Le, and GUAN Xiaohong.

Android malware detection: A survey. Scientia Sinica Informationis, 50(8):1148–

1177, 2020.

[37] Yin-min Li, Zan Gao, Ya-bin Tao, Li-li Wang, and Yan-bing Xue. 3d object

retrieval based on non-local graph neural networks. Multimedia Tools and Appli-

cations, 79(45):34011–34027, 2020.

[38] X. Zhu and A.B Goldberg. Introduction to semi-supervised learning. Synthesis

Lectures on Artificial Intelligence and Machine Learning, 3(1):1–130, 2009.

[39] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani

Raiko. Semi-supervised learning with ladder networks. In Advances in Neural

Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

[40] Jason Weston, Frédéric Ratle, Hossein Mobahi, and Ronan Collobert. Deep

learning via semi-supervised embedding. In International conference on machine

learning, pages 1168–1175. PMLR, 2008.

[41] M. Szummer and T Jaakkola. Partially labeled classification with Markov random

walks. In Advances in Neural Information Processing Systems, pages 945–952,

2002.



BIBLIOGRAPHY 179

[42] M. Belkin and P Niyogi. Semi-supervised learning on Riemannian manifolds.

Machine Learning, 56(1):209–239, 2004.

[43] O. Chapelle, J. Weston, and B Scholkopf. Cluster kernels for semi-supervised

learning. In Advances in Neural Information Processing Systems, pages 601–608,

2003.

[44] T. Zhang and R.K Ando. Analysis of spectral kernel design based semi-supervised

learning. In Advances in Neural Information Processing Systems, pages 1601–

1608, 2006.

[45] A. Blum and S Chawla. Learning from labeled and unlabeled data using graph

mincuts. In International conference on machine learning, pages 19–26, 2001.

[46] Xiaojin Zhu, Zoubin Ghahramani, and John D Lafferty. Semi-supervised learning

using gaussian fields and harmonic functions. In International conference on

machine learning, pages 912–919, 2003.

[47] T Joachims. Transductive learning via spectral graph partitioning. In International

conference on machine learning, pages 290–297, 2003.

[48] A. Blum, J. Lafferty, M.R. Rwebangira, and R Reddy. Semi-supervised learning

using randomized mincuts. In International conference on machine learning,

page 13, 2004.

[49] Denny Zhou, Olivier Bousquet, Thomas N Lal, Jason Weston, and Bernhard

Schölkopf. Learning with local and global consistency. In Advances in Neural

Information Processing Systems, pages 321–328, 2004.



180 BIBLIOGRAPHY

[50] O. Chapelle and A Zien. Semi-supervised classification by low density separation.

In International Workshop on Artificial Intelligence and Statistics, pages 57–64,

2005.

[51] Y. Bengio, O. Delalleau, and N Le Roux. Label propagation and quadratic criterion.

Semi-supervised Learning, pages 193–216, 2006.

[52] B. Kveton, M. Valko, A. Rahimi, and L Huang. Semisupervised learning with

max-margin graph cuts. In International Conference on Artificial Intelligence and

Statistics, pages 421–428, 2010.

[53] Partha Pratim Talukdar and Koby Crammer. New regularized algorithms for

transductive learning. In Joint European Conference on Machine Learning and

Knowledge Discovery in Databases, pages 442–457. Springer, 2009.

[54] Venkatesan N Ekambaram, Giulia Fanti, Babak Ayazifar, and Kannan Ramchan-

dran. Wavelet-regularized graph semi-supervised learning. In Global Conference

on Signal and Information Processing, pages 423–426, 2013.

[55] Benjamin Girault, Paulo Gonçalves, Eric Fleury, and Arashpreet Singh Mor. Semi-

supervised learning for graph to signal mapping: A graph signal wiener filter

interpretation. In Conference on Acoustics, Speech and Signal Processing, pages

1115–1119, 2014.

[56] M. Belkin, P. Niyogi, and V Sindhwani. Manifold regularization: A geometric

framework for learning from labeled and unlabeled examples. Journal of Machine

Learning Research, 7(1):2399–2434, 2006.

[57] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-



BIBLIOGRAPHY 181

works and locally connected networks on graphs. International Conference on

Learning Representations, 2014.

[58] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional networks on

graph-structured data. arXiv preprint arXiv:1506.05163, 2015.

[59] David K Duvenaud, Dougal Maclaurin, Jorge Iparraguirre, Rafael Bombarell,

Timothy Hirzel, Alán Aspuru-Guzik, and Ryan P Adams. Convolutional networks

on graphs for learning molecular fingerprints. In Advances in neural information

processing systems, pages 2224–2232, 2015.

[60] James Atwood and Don Towsley. Diffusion-convolutional neural networks. Ad-

vances in neural information processing systems, 29, 2016.

[61] Jie Chen, Tengfei Ma, and Cao Xiao. FastGCN: Fast learning with graph con-

volutional networks via importance sampling. In International Conference on

Learning Representations, 2018.

[62] Chenyi Zhuang and Qiang Ma. Dual graph convolutional networks for graph-

based semi-supervised classification. In Proceedings of the 2018 World Wide Web

Conference, pages 499–508, 2018.

[63] Jianfei Chen, Jun Zhu, and Le Song. Stochastic training of graph convolutional net-

works with variance reduction. In International Conference onMachine Learning,

pages 941–949, 2018.

[64] Yingxue Zhang, Soumyasundar Pal, Mark Coates, and Deniz Ustebay. Bayesian

graph convolutional neural networks for semi-supervised classification. In Pro-



182 BIBLIOGRAPHY

ceedings of the AAAI Conference on Artificial Intelligence, volume 33, pages

5829–5836, 2019.

[65] Petar Velickovic, William Fedus, William L Hamilton, Pietro Liò, Yoshua Bengio,

and R Devon Hjelm. Deep graph infomax. In Proceedings of the International

Conference on Learning Representations (ICLR), volume 2, page 4, 2019.

[66] Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard Zemel. Lanczosnet:

Multi-scale deep graph convolutional networks. In International Conference on

Learning Representations, 2019. URL https://openreview.net/forum?id=

BkedznAqKQ.

[67] Ziwei Zhang, Peng Cui, and Wenwu Zhu. Deep learning on graphs: A survey.

IEEE Transactions on Knowledge and Data Engineering, 2020.

[68] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan

Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks: A

review of methods and applications. AI Open, 1:57–81, 2020.

[69] Hongyun Cai, Vincent W Zheng, and Kevin Chen-Chuan Chang. A comprehen-

sive survey of graph embedding: Problems, techniques, and applications. IEEE

Transactions on Knowledge and Data Engineering, 30(9):1616–1637, 2018.

[70] Satu Elisa Schaeffer. Graph clustering. Computer science review, 1(1):27–64,

2007.

[71] Mark EJ Newman. Finding community structure in networks using the eigenvec-

tors of matrices. Physical review E, 74(3):036104, 2006.

https://openreview.net/forum?id=BkedznAqKQ
https://openreview.net/forum?id=BkedznAqKQ


BIBLIOGRAPHY 183

[72] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Grarep: Learning graph repre-

sentations with global structural information. In Proceedings of the 24th ACM

International on Conference on Information and Knowledge Management, pages

891–900. ACM, 2015.

[73] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. Match-

ing node embeddings for graph similarity. In Thirty-first AAAI Conference on

Artificial Intelligence, pages 2429–2435, 2017.

[74] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of

social representations. In Proceedings of the 20th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 701–710. ACM,

2014.

[75] Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for net-

works. In Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pages 855–864. ACM, 2016.

[76] Daixin Wang, Peng Cui, and Wenwu Zhu. Structural deep network embedding. In

Proceedings of the 22th ACM SIGKDD Conference on Knowledge Discovery and

Data Mining, pages 1225–1234, 2016.

[77] Shaosheng Cao, Wei Lu, and Qiongkai Xu. Deep neural networks for learn-

ing graph representations. In Proceedings of the AAAI Conference on Artificial

Intelligence, pages 1145–1152, 2016.

[78] Jonathan Chang and David Blei. Relational topic models for document networks.

In Artificial Intelligence and Statistics, pages 81–88, 2009.



184 BIBLIOGRAPHY

[79] Rongkai Xia, Yan Pan, Lei Du, and Jian Yin. Robust multi-view spectral clustering

via low-rank and sparse decomposition. In Proceedings of the AAAI Conference

on Artificial Intelligence, pages 2149–2155, 2014.

[80] Cheng Yang, Zhiyuan Liu, Deli Zhao, Maosong Sun, and Edward Y Chang.

Network representation learning with rich text information. In Proceedings of the

28th International Joint Conference on Artificial Intelligence, pages 2111–2117,

2015.

[81] Xiao Wang, Di Jin, Xiaochun Cao, Liang Yang, and Weixiong Zhang. Semantic

community identification in large attribute networks. In Proceedings of the AAAI

Conference on Artificial Intelligence, pages 265–271, 2016.

[82] Tianbao Yang, Rong Jin, Yun Chi, and Shenghuo Zhu. Combining link and

content for community detection: a discriminative approach. In Proceedings of

the 15th ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, pages 927–936, 2009.

[83] Jaewon Yang, Julian McAuley, and Jure Leskovec. Community detection in

networks with node attributes. In 2013 IEEE 13th International Conference on

Data Mining (ICDM), pages 1151–1156. IEEE, 2013.

[84] Dongxiao He, Zhiyong Feng, Di Jin, Xiaobao Wang, and Weixiong Zhang. Joint

identification of network communities and semantics via integrative modeling

of network topologies and node contents. In Thirty-First AAAI Conference on

Artificial Intelligence, pages 116–124, 2017.

[85] Aleksandar Bojchevski and Stephan Günnemann. Bayesian robust attributed graph



BIBLIOGRAPHY 185

clustering: Joint learning of partial anomalies and group structure. In Thirty-

Second AAAI Conference on Artificial Intelligence, 2018.

[86] Ye Li, Chaofeng Sha, Xin Huang, and Yanchun Zhang. Community detection in

attributed graphs: an embedding approach. InProceedings of the AAAIConference

on Artificial Intelligence, pages 338–345, 2018.

[87] Thomas N Kipf and Max Welling. Variational graph auto-encoders. NIPS Work-

shop on Bayesian Deep Learning, 2016.

[88] Chun Wang, Shirui Pan, Guodong Long, Xingquan Zhu, and Jing Jiang. Mgae:

Marginalized graph autoencoder for graph clustering. In Proceedings of the 2017

ACM on Conference on Information and KnowledgeManagement, pages 889–898.

ACM, 2017.

[89] Shirui Pan, Ruiqi Hu, Guodong Long, Jing Jiang, Lina Yao, and Chengqi Zhang.

Adversarially regularized graph autoencoder for graph embedding. InProceedings

of the 28th International Joint Conference on Artificial Intelligence, pages 2609–

2615, 2018.

[90] Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Van-

dergheynst. Geometric deep learning: going beyond euclidean data. IEEE Signal

Processing Magazine, 34(4):18–42, 2017.

[91] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral net-

works and locally connected networks on graphs. International Conference on

Learning Representations, 2014.

[92] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. Wavelets on



186 BIBLIOGRAPHY

graphs via spectral graph theory. Applied and Computational Harmonic Analysis,

30(2):129–150, 2011.

[93] Gabriel Taubin. A signal processing approach to fair surface design. InConference

on Computer Graphics and Interactive Techniques, pages 351–358, 1995.

[94] Takashi Kurokawa, Taihei Oki, and Hiromichi Nagao. Multi-dimensional graph

fourier transform. arXiv preprint arXiv:1712.07811, 2017.

[95] Crowd Source. Kronecker product - Wikipedia. https://en.wikipedia.org/

wiki/Kronecker_product, 2022. [Online; accessed 24-June-2022].

[96] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications.

SIAM review, 51(3):455–500, 2009.

[97] Xiao-Ming Wu, Zhenguo Li, Anthony M. So, John Wright, and Shih-fu Chang.

Learning with Partially Absorbing Random Walks. In Advances in Neural Infor-

mation Processing Systems, pages 3077–3085, 2012.

[98] Wayne W Zachary. An information flow model for conflict and fission in small

groups. Journal of anthropological research, 33(4):452–473, 1977.

[99] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep

feedforward neural networks. In Proceedings of the thirteenth international con-

ference on artificial intelligence and statistics, pages 249–256. JMLR Workshop

and Conference Proceedings, 2010.

[100] L.J.P. Van der Maaten and G.E. Hinton. Visualizing high-dimensional data using

t-sne. Journal of Machine Learning Research, 9:2579–2605, 2008.

https://en.wikipedia.org/wiki/Kronecker_product
https://en.wikipedia.org/wiki/Kronecker_product


BIBLIOGRAPHY 187

[101] Pietro Perona and William Freeman. A factorization approach to grouping. In

ECCV, pages 655–670, 1998.

[102] Charu C Aggarwal and Chandan K Reddy. Data Clustering: Algorithms and

Applications. CRC Press, Boca Raton, 2014.

[103] Shirui Pan, Jia Wu, Xingquan Zhu, Chengqi Zhang, and Yang Wang. Tri-party

deep network representation. Network, 11(9):12, 2016.

[104] Xiao Huang, Jundong Li, and Xia Hu. Accelerated attributed network embedding.

In SIAM ICDM, pages 633–641, 2017.

[105] Matthias Hein and Markus Maier. Manifold denoising. In Advances in Neural

Information Processing Systems, pages 561–568, 2007.

[106] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun

Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. Mobilenets: Effi-

cient convolutional neural networks for mobile vision applications. arXiv preprint

arXiv:1704.04861, 2017.

[107] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Elsevier,

2013.

[108] Charles M Grinstead and James Laurie Snell. Introduction to probability. Amer-

ican Mathematical Soc, 2012.

[109] Hoang NT and Takanori Maehara. Revisiting graph neural networks: All we

have is low-pass filters. In 25th International Conference on Pattern Recognition,

ICPR’20, 01 2021.



188 BIBLIOGRAPHY

[110] Kenneth Ward Church and Patrick Hanks. Word association norms, mutual infor-

mation, and lexicography. Computational Linguistics, 16(1):22–29, 1990.

[111] Jeffrey Pennington, Richard Socher, and Christopher D Manning. Glove: Global

vectors for word representation. In Proceedings of the 2014 conference on empir-

ical methods in natural language processing (EMNLP), pages 1532–1543, 2014.

[112] Amir Bakarov. A survey of word embeddings evaluation methods. CoRR,

abs/1801.09536, 2018.

[113] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hr-

uschka Jr, and Tom M Mitchell. Toward an architecture for never-ending language

learning. In Proceedings of the AAAI Conference on Artificial Intelligence, pages

1306–1313, 2010.

[114] Y. LeCun, L. Bottou, Y. Bengio, and P Haffner. Gradient-based learning applied

to document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[115] Ken Lang. Newsweeder: Learning to filter netnews. In International conference

on machine learning, pages 331–339, 1995.

[116] Andrew McCallumzy, Kamal Nigamy, Jason Renniey, and Kristie Seymorey.

Building domain-specific search engines with machine learning techniques. In

Proceedings of the AAAI Spring Symposium on Intelligent Agents in Cyberspace,

pages 28–39. Citeseer, 1999.

[117] Robert West, Joelle Pineau, and Doina Precup. Wikispeedia: An online game

for inferring semantic distances between concepts. In Proceedings of the 28th

International Joint Conference on Artificial Intelligence, pages 1598–1603, 2009.



BIBLIOGRAPHY 189

[118] Robert West and Jure Leskovec. Human wayfinding in information networks. In

WWW, pages 619–628, 2012.

[119] Claudio Saccá, Michelangelo Diligenti, and Marco Gori. Collective classification

using semantic based regularization. In 2013 12th International Conference on

Machine Learning and Applications, volume 1, pages 283–286, 2013.

[120] Petar Velickovic, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio,

and R. Devon Hjelm. Deep graph infomax. In International Conference on

Learning Representations, 2019.

[121] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple

and deep graph convolutional networks. In International conference on machine

learning, 2020.

[122] Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi

Kawarabayashi, and Stefanie Jegelka. Representation learning on graphs with

jumping knowledge networks. In International Conference on Machine Learn-

ing, volume 80 of Proceedings of Machine Learning Research, pages 5453–5462.

PMLR, 10–15 Jul 2018.

[123] Wenzheng Feng, Jie Zhang, Yuxiao Dong, Yu Han, Huanbo Luan, Qian Xu, Qiang

Yang, Evgeny Kharlamov, and Jie Tang. Graph random neural networks for semi-

supervised learning on graphs. In Advances in Neural Information Processing

Systems, volume 33, 2020.

[124] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, et al.



190 BIBLIOGRAPHY

Imagenet large scale visual recognition challenge. International Journal of Com-

puter Vision, 115(3):211–252, 2015.

[125] Andrea Frome, Greg S Corrado, Jon Shlens, Samy Bengio, Jeff Dean, Tomas

Mikolov, et al. Devise: A deep visual-semantic embedding model. In Advances

in Neural Information Processing Systems, pages 2121–2129, 2013.

[126] Soravit Changpinyo, Wei-Lun Chao, Boqing Gong, and Fei Sha. Synthesized

classifiers for zero-shot learning. In Proceedings of the IEEE/CVF Conference on

Computer Vision and Pattern Recognition, pages 5327–5336, 2016.

[127] Michael Kampffmeyer, Yinbo Chen, Xiaodan Liang, Hao Wang, Yujia Zhang,

and Eric P Xing. Rethinking knowledge graph propagation for zero-shot learning.

arXiv preprint arXiv:1805.11724, 2018.

[128] Yongqin Xian, Christoph H Lampert, Bernt Schiele, and Zeynep Akata. Zero-shot

learning-a comprehensive evaluation of the good, the bad and the ugly. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 2018.

[129] Qingyao Ai, Daniel N Hill, SVN Vishwanathan, and W Bruce Croft. A zero

attention model for personalized product search. In Proceedings of the 28th ACM

InternationalConference on Information andKnowledgeManagement, pages 379–

388, 2019.

[130] Qingyao Ai, Yongfeng Zhang, Keping Bi, Xu Chen, and W Bruce Croft. Learning

a hierarchical embedding model for personalized product search. In Proceedings

of the 40th International ACM SIGIR Conference on Research and Development

in Information Retrieval, pages 645–654, 2017.



BIBLIOGRAPHY 191

[131] Keping Bi, Qingyao Ai, and W Bruce Croft. A transformer-based embedding

model for personalized product search. In Proceedings of the 43rd International

ACM SIGIR Conference on Research and Development in Information Retrieval,

pages 1521–1524, 2020.

[132] Christophe Van Gysel, Maarten de Rijke, and Evangelos Kanoulas. Learning latent

vector spaces for product search. In Proceedings of the 25th ACM international

conference on information and knowledge management, pages 165–174, 2016.

[133] Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple

and deep graph convolutional networks. In International Conference on Machine

Learning, pages 1725–1735. PMLR, 2020.

[134] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substi-

tutable and complementary products. In Proceedings of the 21th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, pages 785–

794, 2015.

[135] Jianmo Ni, Jiacheng Li, and Julian McAuley. Justifying recommendations using

distantly-labeled reviews and fine-grained aspects. In Proceedings of the 2019

conference on empirical methods in natural language processing and the 9th

international joint conference on natural language processing (EMNLP-IJCNLP),

pages 188–197, 2019.

[136] Qingyao Ai, Yongfeng Zhang, Keping Bi, and W Bruce Croft. Explainable

product search with a dynamic relation embedding model. ACM Transactions on

Information Systems (TOIS), 38(1):1–29, 2019.



192 BIBLIOGRAPHY

[137] Shang Liu, Wanli Gu, Gao Cong, and Fuzheng Zhang. Structural relationship

representation learning with graph embedding for personalized product search.

In Proceedings of the 29th ACM International Conference on Information &

Knowledge Management, pages 915–924, 2020.

[138] Ming Fan, Xiapu Luo, Jun Liu, Meng Wang, Chunyin Nong, Qinghua Zheng, and

Ting Liu. Graph embedding based familial analysis of android malware using

unsupervised learning. In 2019 IEEE/ACM 41st International Conference on

Software Engineering (ICSE), pages 771–782. IEEE, 2019.

[139] Shifu Hou, Yanfang Ye, Yangqiu Song, and Melih Abdulhayoglu. Hindroid: An

intelligent android malware detection system based on structured heterogeneous

information network. In Proceedings of the 23rd ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, pages 1507–1515, 2017.

[140] Leonardo FR Ribeiro, Pedro HP Saverese, and Daniel R Figueiredo. struc2vec:

Learning node representations from structural identity. In Proceedings of the

23rd ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, pages 385–394, 2017.

[141] Amir Hossein Shabani, David A Clausi, and John S Zelek. Improved spatio-

temporal salient feature detection for action recognition. In The British Machine

Vision Conference (BMVC), pages 1–12. Citeseer, 2011.

[142] Amir Shahroudy, Jun Liu, Tian-Tsong Ng, and Gang Wang. Ntu rgb+ d: A large

scale dataset for 3d human activity analysis. InProceedings of the IEEE conference

on computer vision and pattern recognition, pages 1010–1019, 2016.



BIBLIOGRAPHY 193

[143] Qingqing Huang, Fengyu Zhou, Jiakai He, Yang Zhao, and Runze Qin. Spatial–

temporal graph attention networks for skeleton-based action recognition. Journal

of Electronic Imaging, 29(5):053003, 2020.

[144] Junbo Zhang, Yu Zheng, and Dekang Qi. Deep spatio-temporal residual networks

for citywide crowd flows prediction. In Thirty-first AAAI Conference on Artificial

Intelligence, 2017.

[145] Bing Yu, Haoteng Yin, and Zhanxing Zhu. Spatio-temporal graph convolutional

networks: a deep learning framework for traffic forecasting. In Proceedings of the

27th International Joint Conference on Artificial Intelligence, pages 3634–3640,

2018.


	Abstract
	Publications
	Acknowledgement
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Graphs
	Examples of Real-World Graphs and Learning Tasks

	Graph-Based Semi-Supervised Learning
	Graph-Based Unsupervised Clustering
	Graph Convolutional Networks

	Basics of Graph Signal Processing
	Graph Laplacian
	Signal Frequency and Fourier Transform
	Normalized Laplacian
	Frequency and Fourier Transform under Normalized Laplacian

	Graph Convolution
	Graph Filter
	Graph Convolution
	Convolution Theorem
	Unnormalized and Row-Normalized Convolution
	Efficient Computation of Convolution

	Low-pass Filters
	Multi-dimensional Graph Signal Processing
	Cartesian product of Graphs
	Properties of Kronecker Product
	Laplacian of Cartesian Product
	Fourier Basis of Product Graph
	Signals and Fourier Transform on Product Graph
	Convolution on Product Graph
	Multi-Dimensional Graph


	Learning with 1-D Graph Convolution
	Generalized Label Propagation
	Label Propagation
	Rethink Label Propagation

	Revisit and Improve Graph Convolutional Networks
	Spatial Analysis
	Spectral Analysis
	Improved Graph Convolutional Networks

	Filter Design and Computation
	Adaptive Graph Convolution for Clustering
	k-Order Random Walk Graph Convolution
	Clustering via Adaptive Graph Convolution
	Algorithm Procedure and Time Complexity


	Learning with 2-D Graph Convolutional
	2-D Graph Convolution
	2-D Graph Signal and Spectral Convolution
	Fast Localized 2-D Graph Convolution
	Dimensionwise Separable 2-D Graph Convolution (DSGC)

	Variance Reduction by DSGC
	Intra-class Variance Reduction by Object Graph Convolution
	Intra-class Variance Reduction by Attribute Graph Convolution

	Unsupervised and Semi-Supervised Learning with DSGC
	Learning Frameworks
	Implementation of Filters


	Empirical Study
	Semi-supervised Classification
	Datasets and Settings
	Results and Discussion

	Unsupervised Clustering
	Datasets and Settings
	Result Analysis

	2-D Convolution v.s. 1-D Convolution
	Datasets
	Variance Reduction and Visualization
	Semi-supervised Node Classification
	Node Clustering


	Applications
	Zero-Shot Image Classification
	Personalized Product Search
	Malware Detection and Analysis
	Skeleton-based Action Recognition
	Dynamic Human Skeletons
	Spatial Temporal Graph Convolutional Networks

	Traffic Flow Forecasting

	Conclusion and Future Works



