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Abstract  

Topology Optimization (TO) is a powerful tool for engineers to help them explore 

suitable structures. More importantly, it can find the topologies of electric motors that 

never existed before. This thesis work is oriented toward the TO of electric motors by 

developing various aspects of the subject. First, an optimization framework for TO is 

developed and tested. Since a complete optimization process for an electric motor 

requires a motor performance evaluator and an optimization algorithm working together, 

a coupling is done using both.  Furthermore, a TO methodology is developed and 

tested based on the binary encoded genetic algorithm (GA) and filtering process. A 

well-known synchronous reluctance motor (SynRM) test case is used to accomplish the 

tests and validate the tools and methodology. Afterward, the methodology is applied to 

an asymmetric rotor interior permanent magnet (AIPM) motor, representing a more 

realistic test case. A high-resolution interpolation and edge-smoothing method are 

employed to increase modeling accuracy. An asymmetric rotor pole is presented for 

different problem formulations. Finally, deep learning (DL) and physics-informed 

generative adversarial network (PIGAN) are investigated for faster magnetic field 

approximation for the simulation of coaxial magnetic gear (CMG) and permanent 

magnet linear synchronous motor (PMLSM). These examples allow us to experience 
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the feasibility and efficiency of employing DL algorithms for the performance 

evaluation of electric motors, which can significantly benefit the optimization work.
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Chapter 1.  Introduction 

In recent years, developing high-performance motors has become important for 

realizing high-efficiency electric vehicles (EV). Electric motors need a more complex 

topological structure for EV to satisfy higher standards and constraints in different 

fields like structural stress, thermal, noise, vibration, and harshness (NVH). For this 

reason, topology optimization (TO) has become an efficient way for designers to 

explore the distribution of materials of electric motors. 

This chapter begins by providing the background of this research, followed by the 

research objectives and contributions, and finally, an overview of the thesis. 

1.1 Background 

We live in an era of rapid electric vehicle (EVs) development. Electricity has 

become the mainstream power due to its high efficiency and controllability in 

transportation. The transportation industry accounts for a quarter of global carbon 

emissions, which has become the protagonist of a new round of electrification change 

[1]. Electric motors have many advantages compared to the traditional internal 

combustion engine (ICE). Commonly, the energy efficiency of the conventional ICE 

can only reach 40%. 
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In comparison, an electric motor can convert at least 85% of electric energy into 

mechanical energy, and the energy conversion process is clean and pollution-free. 

Moreover, compared with the complex structures of an ICE, electric motors with simple 

structures are also overwhelming for the manufacturing process. Power density, torque 

density, efficiency, reliability, production costs, and speed range make the ICE itself has 

no advantage over the electric motor. Furthermore, with the development of many 

battery-related studies [2], [3], the only shortage of electric machine energy density of 

the power supply will be overcome without any doubt. Therefore, various countries and 

regions have begun formulating relevant laws and regulations to promote EVs. For 

example, Europe and Japan plan to ban the sale of vehicles powered by internal 

combustion engines (ICEs) starting in 2035 [4], [5]. 

1.2 Motivation and Objective of this thesis 

1.2.1 Motivations 

Although the existing EVs are equipped with many high-performance motors, 

these motors are optimized and designed using parametric models. Restricted 

parameters and constraints limit these parametric motor models based on size 

optimization; hence the optimized solution cannot reach the limit of the design domain 

in terms of performance and efficiency. 
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On the other hand, additive manufacturing (AM) technology has become a hot 

topic and has much research in motor manufacturing [6]–[8]. Although additive 

manufacturing systems are slower and less reliable than traditional production methods, 

they can produce topology-optimized structures, which opens up another route for the 

development of the manufacture of electric motors. Therefore, the development of AM 

makes the topology optimization for electric motors more practical and feasible. 

In this study, both algorithms and frameworks will be developed to find optimized 

topologies of electric motor designs. The whole system will be based on numerical tools 

and methods that help electrical engineers resolve complex electric motor design 

problems in a computationally efficient manner. 

1.2.2 Aim & Objectives 

The aim is to design a high-performance electric motor through topology 

optimization in a limited time.  

The first objective is to develop a universal framework for optimizing electric 

motors. The performance evaluator can be based on either open-source or commercial 

software for solving FE numerical models. Multi-Objective Evolutionary Algorithms 

are selected for solving optimization problems. A coupling of both will have to be done 

to create an efficient optimization framework. For this purpose, a universal evolutionary 

optimization framework will be developed based on a scripting programming language.  
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The second objective is to develop an efficient methodology for topology 

optimization. A one-material topology optimization case will be used to evaluate the 

effectiveness of the proposed method. 

Furthermore, the third objective is to develop a vectorized model for TO. The high-

resolution vectorized model will be extended to apply the proposed optimization 

framework and methodology to a more complex model: an IPM motor. The new model 

should be composed of isotropic and anisotropic materials, thus making the optimized 

model easy to manufacture. 

Finally, the fourth objective of this thesis is to develop an ultra-fast, physics-

informed magnetic field approximation method to reduce the computing time during 

the simulation of electric machines; meanwhile, the nonlinear behavior is considered. 

A 2-D coaxial magnetic gear (CMG) and a permanent magnet linear synchronous 

machine (PMLSM) will be used to represent a more realistic test case and, hence, a 

more reasonable assessment.   

1.3  Thesis Outline 

The manuscript is divided into seven chapters:  

Chapter 2: A state-of-the-art of the various existing TO methods is done. The 

technique used to complement the proposed methodology of this thesis work is justified. 

The conventional FE analysis, DL-based magnetic field approximation, and 
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optimization frameworks are elaborated, as they will further be used to compose the 

TO tool developed. 

Chapter 3: The development of the optimization framework is introduced. A 

parametric and topology optimization methodology based on the existing methods is 

proposed. The multi-objective TO of the rotor top of the synchronous reluctance motor 

(SynRM) is presented using FE computation and binary-encoded multi-objective 

genetic algorithm. The proposed topological filter, two-stage simulation, and hand-

made TO framework are verified on the SynRM model. 

Chapter 4: Since the binary-encoded topology will bring jagged boundary for the 

optimized rotor, multi-objective TO of the asymmetric rotor of the IPM motor is 

investigated based on high-resolution interpolation and edge-smoothing method using 

FE computation. The proposed method generates vectorized CAD model, which 

significantly improves the edge quality. The objective functions are maximizing the 

torque and minimizing the torque ripple. In addition, the vectorized model makes the 

optimized solution easy to manufacture. 

Chapter 5: The topology optimization based on genetic algorithm is time-

consuming duo to the objective function evaluation method is FE computation. A novel 

magnetic field approximation method for electric machines using AI is proposed to 

reduce topology optimization's computation time. Proposed AI model verifies a coaxial 
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magnetic gear model with different pole-pair combinations. The approximation time of 

the magnetic field is 30-times faster than that of the FE method. 

Chapter 6 proposes a novel magnetic field approximation method for electric 

machines using a physics-informed generative adversarial network (PIGAN). The 

magnetic field can be visually estimated and governed by Maxwell’s equations. The 

magnetic field calculation time is significantly reduced while the accuracy is close to 

the FE computation. 

Chapter 7 concludes the thesis, and perspectives and scopes for future works are 

given.  
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Chapter 2.  Literature review 

2.1 Introduction 

A comprehensive overview of the state-of-art theory relating to the topics in this 

thesis and limitations in literature is given in this chapter. Section 2.2 provides an 

overview of the development of TO, while the optimization framework, as a core part 

of the process of TO, is discussed in Section 2.3. Finally, the numerical tools for TO are 

discussed in Section 2.4. 

2.1.1 Optimal design of structures 

A problem of optimal design (material, shape, and topology optimization) of 

structures is defined by three ingredients [9]:  

(a) a model (typically a partial differential equation) to evaluate (or analyze) the 

mechanical behavior of a structure, 

(b) an objective function that must be minimized or maximized, or sometimes 

several objectives (also called cost functions or criteria),  

(c) a set of admissible designs defines the optimization variables, including 

possible constraints.  

The kind of optimal design problems which we focus on in this thesis can be 

roughly divided into three categories, from the easiest to the most difficult one:  



 

8 

 

1. Parametric or sizing optimization, for which designs are parametrized by a 

few variables (for example, changing the size variables such as the cross-sectional 

dimensions of slots or the thicknesses of magnets.), implying that the set of admissible 

designs is considerably simplified. The parametric optimization changes the sizes of 

geometric or other properties’ parameters in a candidate design. This is the easiest and 

earliest approach to improving structural performance. The optimization process of size 

optimization is shown in Fig. 2-1. 

2. Shape optimization is mainly performed on continuum structures by modifying 

the predetermined boundaries to achieve the optimal designs. For example, for a bread-

shaped magnet, the location of nodes is defined as design variables. A permanent 

magnet synchronous motor model with bread-shape permanent magnets is shown in 

Fig. 2-2. The number of nodes in the boundary of the permanent magnet is twenty-two, 

as is shown in Fig. 2-3. The accuracy will be reduced if the number of nodes is reduced. 

 

Fig. 2-1. Workflow for FEA-based size optimization. 
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3. Topology optimization (TO), where the shape and topology of the admissible 

designs can vary without explicit or implicit restrictions. TO for discrete structures of 

electric motors, such as flux barriers, is to search for the optimal spatial order and 

connectivity of the empty region. Fig. 2-4 demonstrates topology optimization of a 

synchronous reluctance motor using the density method.  

Fig. 2-2 Model of permanent magnet synchronous motor with bread shape permanent magnets 

Fig. 2-3 Boundary definition of the permanent magnet. 
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2.1.2 Definition of Topology 

In the design process, the topology is usually considered a sub-field of geometry. 

The first work related to topology was the Konigsberg bridge problem proposed by 

Euler. This was entitled "The solution of a problem relating to the geometry of 

position," which indicated that the distance was irrelevant. Etymologically, the word is 

derived from the Greek noun “topos” which means location, place, space, or domain. 

In mathematics, topology concerns an object that can be deformed, twisted, or stretched 

arbitrarily. If two things have the same topology properties, they are said to be 

homomorphic. 

Optimize a topology, i.e., to arrange materials or position structures properly and 

make the objective reaches its global optimal. Therefore, topology optimization differs 

Fig. 2-4. A demonstration of topology optimization of the rotor of a synchronous reluctance 

motor. [10] 
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from shape optimization, where only the shape of the boundary or an interface of an 

object can be modified. It also allows for the introduction of structures, therefore, 

appropriately changing the topology. This work will be concerned with topology 

optimization. 

Traditionally, it can be divided into two approaches, micro-structure topology 

optimization and macro-structure optimization [11], [12]. 

2.1.2.1 Micro-Structure 

In microstructure approaches, the design domain is defined by a fixed lattice mesh. 

Typically, the mesh is uniformly and rectangular distributed in space, and the 

optimization is to determine whether the element of mesh is filled with materials or not. 

It is the density method if a density is applied to represent the material. If it only has a 

Boolean value, i.e., 0 or 1, it is the ON/OFF method [13]. 

2.1.2.2 Marco-Structure 

Unlike the microstructure approach, the macrostructure approach does not work 

with a fixed finite element mesh. Instead, it changes with the variation of boundaries of 

the design. 

Meanwhile, the topology of design can be changed by adding degenerating 

material or inserting specific geometric shapes in the solid body. The very beginning 
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work related to adding or removing material in macro-structure design was developed 

by Rodriguez and Seireg [14]. 

Another primary method of macro-structure topology optimization is to insert 

holes at specific points in the design domain iteratively, called the "bubble" method. It 

starts with a finely designed initial model for a pre-defined design domain. Then a shape 

optimization is applied to develop a most fitting structure within the given boundaries 

and constraints of variables. Detailed work was demonstrated in [13]. 

2.1.3 Topology for Electric Motors 

For automotive traction, it seems that the IPM machine and its variations will be 

favored over the SPM machine in the foreseeable future due to the essential advantages 

of the reluctance torque. The reluctance torque generated by the IPM design also means 

that the rotor design is critical to machine performance. The rotor design of these 

machines has progressed from basic flat magnets through various configurations of U-, 

V-, W-shaped magnets and double V-shaped, and several others, including variations in 

magnet sizes from pole to pole. Fig. 2-5 shows the rotor design of IPM machines of 

recent production vehicles, where it can be noted, for example, the progression of the 

Toyota Prius from a single V in 2010 to a double V in 2017. Correspondingly, with 

double V and multiple Vs, the magnet volume per Nm of torque has also progressively 

increased. For comparison, [15] estimates that single V motors use less than 4 g/Nm 

versus 4 to 7 g/Nm for double Vs. Since nearly all the traction machines in surveyed in 
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this study use high strength rare earth magnets, this upward trend of magnet 

consumption is quite disconcerting. 

  

Two important machine topologies that operate on the reluctance principle to 

produce torque are the synchronous reluctance (SynRM) machine and switched 

reluctance machine (SRM). Both machines have simple construction of a rotor 

composed of only thin steel laminations with no windings or magnets, the difference 

between the rotors being that SRM has salient pole construction. At the same time, the 

SynRM is typically non-salient, even though it can be designed with saliency. Fig. 2-6 

shows the evolution of the SynRM over the years since its invention in the 1920s [41]. 

Another difference between the construction of the machines is that the stator of the 

Fig. 2-5. Rotor design of the interior permanent magnet (IPM) machine of production traction 

motors: (a) 2010 Prius [16] V-shaped rotor; (b) 2017 Prius double U rotor [17]. (c) 2017 Tesla 

Model 3 IPM V rotor [18], (d) 2016 Chevy Volt IPM rotor [19]. 
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SRM is salient and wound with concentrated coils around each pole. At the same time, 

that of the SynRM typically has a distributed winding. SynRMs are appealing in terms 

of their robustness, high efficiency, low torque ripple, and simplicity (low cost) of 

control. These machines have only recently been commercially available for industrial 

applications as they are seen as a great alternative to variable speed-controlled induction 

machines. However, SynRMs have a disadvantage with low power factor, which affects 

their operational performance and the power converter sizing. Concerning automotive 

applications, SynRMs have been investigated for traction drive systems [27–28], with 

some recent prototypes built and tested for these applications [42]. For traction drives, 

SynRMs have relatively low CPSR. 

 

Fig. 2-6. Evolution of synchronous reluctance machines (SynRMs) showing different rotor 

designs [20]  (a) the original Kostko rotor; (b) rotor adapted from an induction motor rotor; (c) 

rotor with multiple barriers; (d) rotor with saturable bridges; (e) segmented rotor; (f) axially 

laminated V rotor (g) axially laminated U-rotor; (h) modern transverse laminated rotor.  
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2.2 The Development of Topology Optimization 

2.2.1 Homogenization Method 

The homogenization method (HM) is the earliest topology optimization solution, 

first introduced in the 1980s. In 1988, Bendsøe and Kikuchi proposed a 

Homogenization approach based on the homogenization theory and numerical methods, 

which is a big step for TO [21]. After that, Bendsøe introduced the Direct approach [22] 

based on the HM, but more straightforward in the application and more engineer 

oriented.  

Due to the use of structured grids in HM, and the large size of the grid, this greatly 

limits the number of algorithms that can be selected. Most of the work on HM uses 

gradient-based optimization algorithms. The more common are sequential linear 

programming (SLP) [23], [24], and the moving asymptote method (MMA) [25]. 

The HM, primarily derived for mechanical/structural designs, has been chiefly 

applied to the topology optimization of cantilever beams, bridges, and trusses. Its 

application to electromagnetic problems is quite rare and is dreaded due to a large 

number of variables. One of the few works presented on TO using HM was [26] in 2000. 

The model and optimal solution are given in Fig. 2-7 
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(a) (b) 

Another work that proposed a novel interpolation method based on HM is 

presented in [27] in 2008. The authors proposed a novel interpolation method for HM 

to obtain more stable solutions. The optimal results show that the proposed interpolation 

method has improved performance compared with the previous method. The initial 

model and optimal solutions of this work are given in Fig. 2-8. 

 

(a) 

Fig. 2-7. The quarter model cutting view of an H-magnet. (a) The design domain for the TO. 

(b) The optimal solution.[26] 
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(b) 

2.2.2 Density-based Method 

The density-based approach is derived from the homogenization approach, an 

essential branch in the TO for electric motors. The density-based method is mainly used 

for structural optimization design. Especially, Solid Anisotropic Materials with Penalty 

(SIMP) is a very efficient topology optimization method. The material distribution in 

its design domain is represented by a scalar field, the relative density of each element 

in the discrete domain. The magnetic permeability for the SIMP method cells is often 

defined as in ( 2-1 ), in which 𝑝  is the penalty factor, that generally takes values 

between 3 and 5. 

 µ𝑟 = (µ𝐹𝑒(𝐵) − µ𝑎𝑖𝑟(𝐵))𝜌
𝑝 + µ𝑎𝑖𝑟  

( 2-1 ) 

 

Where ρ = 1 means solid and ρ = 0 means the void.  

Fig. 2-8. Modified asymmetric magnetic actuator model and FEA result: (a) geometry of the 

initial model (unit: mm) and (b) Optimization result. [27] 
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Like HM, the SIMP method also uses the Moving Asymptote Method (MMA) 

optimizer. Its techniques are not usually combined with evolutionary algorithms 

because of the high computational cost associated with having multiple intermediate 

material states [28]. Compared to binary mesh cell densities (either 0 or 1), the 

consideration of intermediate material states vastly increases the complexity of the 

model. Therefore, SIMP approaches are generally coupled with gradient-based 

procedures, with adjoint variable methods [29], [30] being the most widespread, as they 

can significantly reduce the computation time of derivatives compared to FD or FE 

method. 

Based on the previous works, the gradient-based optimization algorithm is the most 

popular optimization algorithm used with the density-based method. The method of moving 

asymptotes (MMAs) and its branch, the globally convergent version of MMA (GCMMA), 

are the most selected algorithm applied to mathematical programming owing to their faster 

convergence [10], [31]–[35]. 

The SIMP method has numerous applications in the topology optimization of 

electromagnetic equipment. 

[33] proposes a simultaneous magnetic and structural topology optimization of a 

SynRM rotor using a SIMP-based method with the GCMMA. In [10], torque is enhanced 

by using SIMP and MMA. In [36], a structurally stable rotor is developed using the density-
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based method, and a prototype is manufactured (c.f. Fig. 2-9). In [30], combined topology 

optimization and control are considered. The results can be found in Fig. 2-10. 

 

 

2.2.3 Level-set Method 

Osher and Sethian developed the modern concept of the level-set method in 1988 

[37]. The original purpose for the level-set method was to approximate the multi-phase 

flows [37], [38] and to segment the images [39]–[41]. The level-set method is not 

generally used in the optimal design of electromagnetic devices. In [42], a hybrid 

ON/OFF and level-set method is proposed. The authors employ a two-stage operation 

Fig. 2-9. Manufactured SynRMs considering structural stress and electromagnetic torque. 

Fig. 2-10. Manufactured prototypes considering structure-safety and control strategy. 
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during the optimization, in which the global search is performed by the ON/OFF 

method, and the local search is carried out by the level-set method. Fig. 2-16 shows the 

comparative results of the hybrid method after optimization. In [43], the shape and 

topology optimization of the rotor of SynRM using the adaptive level set method and 

the continuum sensitivity analysis is implemented. Using the adaptive level set method, 

the material properties are distributed clearly, and meshing is efficient. In [44], the 

design shape of a synchronous reluctance motor is efficiently and easily represented by 

the level set function. The shape sensitivity procedure is employed for the velocity field 

of the level set method. The results show that level set method is feasible and effective 

for optimal design of SynRM. 

 

 

Fig. 2-11 Normal velocity field on the boundary. Its value determines the boundary shape. 
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Fig. 2-12 The boundary is defined by the value of level set function 𝜙(𝑥) = 0 

Fig. 2-13. The different solutions of stator teeth obtained by TO. 

Fig. 2-14. The design domain of stator teeth for TO using level-set method.  
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2.2.4 ON/OFF Method 

The ON/OFF method uses discretized grid in topology optimization for 

electromagnetic devices. However, each cell in the grid only has 0 or 1 value, while 

density-based methods commonly use continuous value.  

Fig. 2-15 Optimization process using the level set approach. 

Fig. 2-16. Optimized shape using hybrid level-set method. (a) conventional ON/OFF, (b) hybrid 

method (ON/OFF + Level-Set method). [42] 
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Therefore, ON/OFF method can take advantage of the evolutionary algorithm in 

the TO process. 

 

Genetic Algorithms (GA) are often used [45]–[51], and they could combine with other 

local search methods. In [52], the authors propose using a hybrid GA with the ON/OFF 

method to optimize the shape of a rotor pole to reduce the cogging torque. In [45],  

sensitivity analysis and GA are performed to optimize the magnetic actuator’s yoke. In [53], 

different rotor topologies are explored using GA with the On/Off method based on the 

normalized Gaussian network. In [54], The ON/OFF method is extended by the 

unstructured mesh and immune algorithm, improving the toque performance.  

2.3 Optimization Frameworks 

The optimal design of electric motors is a nonlinear optimization problem. Typical 

objectives, such as highest efficiency, lowest cost, and minimum weight of active 

Fig. 2-17. Blurring technique for ON/OFF method. [27]  
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materials, must be simultaneously met by a process in which the electromagnetic 

problem is solved considering the mechanical, thermal, and material aspects. 

This section reviews the recent development of optimization algorithms and the 

optimal design of electric motors, mainly focusing on the search algorithm, which leads 

to the global optimum with minimum computational efforts.  

2.3.1 Deterministic Optimization Frameworks 

Deterministic optimization refers to optimization with only one scalar objective, 

which means the optimum set only has one solution. Many deterministic methods are 

applied for electric machine design optimization problems, and the gradient-based 

optimization framework is the most common algorithm for HM, density-based method, 

and LSM in TO. The most commonly used deterministic optimization algorithm in TO 

is MMA, which is based on MATLAB and Python [55]. 

2.3.2 Stochastic Optimization Frameworks 

Stochastic optimization methods are procedures for maximizing or minimizing 

objective functions when stochastic problems are considered. Stochastic methods are 

not computationally efficient for TO and need more evaluations than gradient-based 

deterministic optimization algorithms like MMA. However, they can fully use parallel 

computing during optimization. The stochastic optimization framework can have lots 

of algorithms inside, including genetic algorithm (GA), particle swarm optimization 
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(PSO), simulated annealing (SA), and differential evolution. Table 2-1 lists the most 

popular evolutionary optimization frameworks, tools, and libraries.   

 

Library PL Year Algorithm Description 

GALib[56] C++ 1996 GA GALib was developed over UNIX operating 

system. The library was utilized in parallel systems 

and employed within distributed computing. It is 

built on platforms and is implemented to support 

distributed/parallel environments. 

PISA[57] C++ 2003 Most EAs and 

simulated annealing     

PISA was used to solve multi-objective problems 

for optimizing more than one conflicting criterion. 

JMetal[58] Java 2011 Many metaheuristic 

algorithms 

Employs the object-oriented architecture, multi-

objective algorithms, and parallel algorithms 

Opt4J[59] Java 2011 DE, PSO, and SA It provides SPEA2 and NSGA2 multi-objective 

algorithms; it supports knapsack problems and has 

module-based implementation with GUI. 

DEAP[60] Python 2012 GA, GP, ES, PSO, 

DE 

It supports parallelism and supply benchmarks 

which contain different test functions that could be 

utilized for evaluation 

PyGMO and 

PyKEP[61] 

Python and 

C++ 

2012 Adaptive version of 

differential 

evolution (jDE) 

Support scripting for massively parallel 

optimization of aerospace-related problems 

(interplanetary trajectory optimization) 

MOEA 

Framework[62] 

Java 2015 MOEAs and other 

general-purpose 

MO optimization 

algorithms 

It is extensible with custom algorithms, problems, 

and operators and provides tools for building and 

statistically testing new optimization algorithms. 

Inspyred[63] Python 2015 EA, swarm 

intelligence, and 

immune computing 

It provides easy-to-use canonical versions of many 

bio-inspired algorithms for users who do not need 

much customization. 

PlatEMO[64] MATLAB 2017 MOEAs Open-source tool supported by graphical user 

interface. It includes many MOEAs and test 

problems. 

Table 2-1 Evolutionary Computation Frameworks, Tools, and Libraries. 
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Platypus 

[65](our 

foundation) 

Python 2018 MOEAs It differs from existing optimization libraries, 

including PyGMO, Inspyred, and DEAP, by 

providing customizable templates for 

optimization algorithms and analysis tools for 

multi-objective optimization.    

2.3.3 The framework of multi-objective optimal design 

In the typical electric machine design stage, the analytical electric machine model 

will be designed first. If the analytical electric machine model is accurate enough, the 

design optimization can provide reliable parameters that can accurately predict the 

machine performance. However, compared with the FE model, the nonlinearity of the 

material leads to less accuracy in the analytical model. In addition, the increased 

complexity of electric machine topologies makes modeling even harder, resulting in 

more effort to achieve an accurate analytical model. Although the analytical electric 

machine model still plays an essential role in the design phase, there is a general 

relationship between host parameters and details of machine performance. Therefore, 

FE simulations are still need engineers and research to verify their final design. Due to 

the complexity of design optimization with multiple variables, finding an optimal 

design that meets the design goals is more practical.  

The specifications of electric machine design are usually conflicting, for example, 

between high power density and low magnet volume. Highly coupled electric machine 

parameters affect generally the final performance of the machine at the same time. This 

makes it difficult to distinguish the sensitivity of parameters that leads to the design of 
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the electric machine that meets all the requirements. As described in (2-2) to (2-5), 

electric machine design usually belongs to a class of nonlinear multi-objective 

optimization problems with multiple constraints. [14] 

Design Parameters: 

 �⃗� = [𝑥1, 𝑥2, 𝑥3, . . . , 𝑥𝐷], �⃗� ∈ 𝑅
𝐷 

( 2-2 ) 

Design restrictions: 

 𝑔𝑗(�⃗�) ≤ 0, 𝑗 = 1,2,3, . . . , 𝑚 
( 2-3 ) 

Parameters boundaries: 

 𝑥𝑖
𝐿 < 𝑥𝑖 < 𝑥𝑖

𝑈, 𝑖 = 1,2, . . . , 𝐷 
( 2-4 ) 

Objective function set: 

 𝑓(�⃗�) = [𝑓1(�⃗�), 𝑓2(�⃗�), . . . , 𝑓𝑘(�⃗�)] 
( 2-5 ) 

Duan and Ionel [66] reported that the metaheuristic methods have been widely 

used in optimal electric machine design, and evolutionary algorithms and simulated 

annealing are typical modern heuristic methods based on biological metaphors and 

thermodynamics correspondingly. In this project, evolutionary strategies will play an 

important role among these methods due to the nonlinearity of the optimization problem.  
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Generally, compared with the traditional gradient-based optimization method, the 

evolutionary method has the following differences: variables encoding rather than the 

variables themselves; operates on populations of solutions rather than on individual 

solutions; uses objective function values rather than derivatives. Nevertheless, it must 

be noted that the steady-state evolutionary algorithm uses random numbers when doing 

genetic operation, so the result cannot be repeated. Also, convergence and 

computational inefficiency are two main issues of evolutionary algorithms. In this 

proposal, a modified NSGA-II algorithm will be selected for optimization. The 

algorithm was initially proposed by Deb, Pratap, Agarwal, and Meyarivan [67], and 

modified by Durillo and Nebro[58]. It uses the Differential Evolution (DE) algorithm 

introduced by Storn and Price as a mutation operation, and the algorithm structure is 

illustrated in Fig. 2-18. 

 

Fig. 2-18 Optimization process of NSGA-II. 
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 Due to the complexity of the electric machine topology, it is not obvious how to 

locate the proper design parameters at the very beginning. Initial design of electric 

machines can be given by a knowledge-based electric machine design system. By 

generating the crossover and mutation operations in iterations, the generating set of 

electric machines migrates from the initial knowledge-based electric machine design 

system generated set to the set of solutions constrained by the user-defined limitations. 

The result of the optimal solutions is a group of solutions that belong to the Pareto 

optimal set. 

2.4  Numerical Tools 

Apart from the appropriate optimization method, a suitable choice of numerical 

tools is the key for successful TO. Faster numerical methods for magnetic fields can 

reduce the computational cost for traditional closed-form equations. The optimization 

algorithm can be of any type, i.e., local search, global search, or hybridized, and the 

modeling tool can be with FE, Neural Networks (NN). The FE method is usually 

preferred for precise modeling and accurate electromagnetic modeling and analysis 

results. 

A lot of free and open-source FE tools and solver are available online, for example, 

Elmer [68], Fenics Project [69], GetDP [70], FreeFEM [71], OpenFOAM [72], deal. II  

[73], CalculiX [74]. Most solvers have a very long development history and can be 
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somewhat versatile. For example, Elmer, Fenics, and GetDP can solve multi-physics 

field problems. In addition, these solver libraries also support scripting languages. 

In terms of commercial FE tools, Ansys Maxwell was selected as the motor 

topology optimization tool due to its powerful scripting system and motor performance 

calculation capabilities. 

In addition, artificial intelligence (AI), machine learning (ML), and neural network 

(NN) will also be utilized to accelerate electromagnetic field analysis. These advanced 

technologies can significantly improve the speed of TO and make TO more valuable. 

The following sections briefly describe how each tool works. 

2.4.1 Magnetic Field Approximation using FE Method 

FE calculations are essentially based on the resolution of Maxwell's equations to 

solve electromagnetic problems in magnetostatic and magneto dynamic situations. Both 

linear and nonlinear materials can be utilized for calculations. In addition, linear 

translation or rotational motion can be specified for solving motor transient problems. 

2.4.1.1 Boundary Conditions 

Boundary conditions define the behavior of the electric or magnetic field at object 

interfaces or edges of the problem region (Fig. 2-12). They are always necessary to 

ensure the uniqueness of the electromagnetic field calculation. Different boundary 

conditions can be used to solve different partial differential equations. Currently, 
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boundary conditions include Dirichlet Boundary Condition, Neumann Boundary 

Condition, Robin Boundary Condition, Mixed Boundary Condition, and Cauchy 

Boundary Condition [75], [76]. 

  

 Ω

 

They can also be used to: 

1. Simulate magnetically isolated, electrically insulated, or electrically isolated 

structures. 

2. Set the electric or magnetic potential at a surface to a constant value or a function 

of position to define the behavior of the electric or magnetic field on that surface 

3. Simulate the existing field patterns in a structure while modeling only part of it. 

To do this, you can define planes of symmetry where electric or magnetic fields are 

either tangential to or normal to the surface. Additionally, you can define planes of 

symmetry where the field on one surface matches the field's magnitude and direction 

(or opposite direction) on another surface. 

4. Simulate the field patterns produced by thin resistive layers on conductors (DC 

conduction solver) or eddy currents with tiny skin depths in conductors (eddy current 

Fig. 2-19. Resolution domain and boundary 
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solver), without explicitly drawing, assign materials to, or solve for fields inside the 

objects in question. 

2.4.1.2 Magnetostatic Field Simulation 

The magnetostatic field is conducted in this section since the eddy current is not 

covered in the TO of electric motors. Static magnetic fields from DC currents and other 

sources like permanent magnets and external magnetic fields can be computed. 

Magnetic fields in both linear and nonlinear materials can be simulated. The general 

magnetostatic field solution verifies the following two Maxwell's equations: 

 ∇ × 𝐻 = 𝐽  
(2-6) 

 ∇ ⋅ 𝐵 =  0 
(2-7) 

with the following constitutive (material) relationship being also applicable: 

 𝐵 = μ(𝐻 +𝑀) 
( 2-8 ) 

In a 2-D problem, the magnetic vector potential, 𝐴𝑧(𝑥, 𝑦) in this field equation is: 

 𝐽𝑧(𝑥, 𝑦) = 𝛻 × (
1

𝜇0𝜇𝑟
(𝛻 × 𝐴𝑧(𝑥, 𝑦))) 

( 2-9 ) 

where 𝐴𝑧(𝑥, 𝑦)  is the z component of the magnetic vector potential, 𝐽𝑧(𝑥, 𝑦)  is the 

given current density field flowing in the direction of transmission, 𝜇𝑟 is the relative 

permeability of each material, 𝜇0 is the permeability of free space. Given 𝐽𝑧(𝑥, 𝑦) as 



 

33 

 

an excitation, the magnetic vector potential 𝐴𝑧(𝑥, 𝑦)  at all points in space can be 

calculated. The finite element (FE) method is the most commonly used in 

electromagnetism for solving this PDE. 

2.4.1.3 Finite Element Method 

The finite element (FE) method is an advanced tool for approximating magnetic 

fields. It views the solution domain as consisting of many small, interconnected 

subdomains called finite elements, assumes a suitable (simpler) approximate solution 

for each unit, and then derives a solution to the problem by solving the total satisfying 

conditions of this domain (e.g., the equilibrium conditions of the structure).  

The basic steps of finite element analysis are listed as follows. 

Step 1 Pre-processing. Define the solution model according to the actual problem, 

including the following aspects: 

(1) Define the geometric region of the problem: The physical properties and 

geometric region of the solution domain are approximated according to the actual 

problem. 

(2) Defining the cell type: 

(3) Define the material properties of the cell: 

(4) Define the geometrical properties of the unit, such as length and area. 

(5) Define the connectivity of the cell: 

(6) Define the basic functions of the cell; 
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(7) Define the boundary conditions: 

(8) Define the load. 

Step 2 Assembly solution: Assembly of cells into a total matrix equation (joint 

system of equations) for the entire discrete domain. The assembly is performed at the 

nodes of adjacent cells. The continuity of state variables and their derivatives (if 

possible) is established at the nodes. Direct and iterative methods can do the solution 

of the joint system of equations. The result of the solution is an approximation of the 

state variables at the cell nodes. 

Step 3 Post-processing: The solved solution is analyzed and evaluated according 

to the relevant criteria. Post-processing allows the user to extract information and 

understand the calculation results. 

2.4.1.4 Force and Torque 

The force and torque can be calculated based on Maxwell Stress Tensor Method 

and Virtual Work (VW) Method. In this study, the VW method is employed in FE 

analysis. 

In the equation shown below, the force on the plate in the direction of the 

displacement, s, is given by the following relationship (c.f. (2-2)). The motion is 

performed at constant flux [77]. A similar expression can be deduced from the 

variations of the co-energy 𝑊’ at constant current 𝑖, with the co-energy 𝑊’ calculated 
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using integration over a volume v inside a domain 𝐷’  of the induction B and the 

magnetic field 𝐻. 

 𝐹𝑠 =
𝜕𝑊′

𝜕𝑠
|𝑖 = 𝑐𝑜𝑛𝑠𝑡. ,    𝑤𝑖𝑡ℎ 𝑊′ = ∫∫𝐵 𝑑𝐻 𝑑𝑣

ℎ

0𝐷′

 
( 2-10) 

Different techniques can then be used to compute such forces:  

The first method requires two solutions to the problem, one for each position. Then, 

the force can be deduced from both energy values using ( 2-10). Even if a very fine 

mesh is not needed for this method, numerical errors can appear if the displacement 

step (for calculating the derivate) is too high.  

The second method is only to perform one computation of the problem. Given the 

different fields on each element, the magnetic energy is calculated for two positions of 

an object.  

The third method involves taking an air layer surrounding an object. The nodes of 

the layer are then virtually displaced. The energy is calculated for each deformation.  

In commercial FEM software, the VW method is performed using volume 

integration of 3-D meshes or surface integration of 2-D meshes.  

2.4.2 Deep Learning-based Magnetic Field Approximation 

Although the FE method is accurate enough for magnetic field approximation in 

TO, a relatively long computation time is an inevitable weakness when the number of 

mesh is large. In recent years, with the development of AI technology, the AI-based 
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field approximation offers an alternative approach to improving magnetic gears' 

performance. AI is commonly used for classification and regression, especially in 

computational visual processing. It has been gradually used for complex data fitting 

with the continuous development of data-driven methods [78]–[83]. Both supervised, 

and unsupervised learning approaches have been applied to magnetic field 

approximation [14], [84]–[87]. 

So far, a series of AI and DL concepts have been proposed, including deep neural 

networks with fully connected networks (FCN), convolutional networks (CNN), and 

generative adversarial networks (GAN) [14], [88], [89]. 

These preliminary results show that deep neural networks can learn the 

relationship between structural geometry and magnetic field distribution. Still, they also 

highlight critical challenges to the approach [90]. One challenge is that the computation 

cost of creating the training data set itself can be huge. A simple, fully connected dense 

network described by a few geometric parameters requires tens of thousands to 

hundreds of thousands of samples for training. Promising results are derived with these 

networks, but the training of these models relies on sufficient data, the generation of 

which is extremely time-consuming. In this regard, GAN-based technology can reduce 

the number of training samples and obtain better generalization capabilities among 

many neural networks [21]. 
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Besides, deep learning (DL) has been studied extensively in the field of TO. In the 

field of TO for electric machines, Doi et al. investigate the capability of employing DL 

in the multi-objective topology optimization of rotating machines [87]. Sasaki and 

Igarashi developed a new topology optimization of IPM motor using GA and DL [91], 

[92]. Transfer learning [93] and reinforcement learning [94] are also introduced in 

topology optimization to reduce computing costs significantly. 

In this section, the DL-based magnetic field approximation method is discussed. 

2.4.2.1 Existing Physics-based Datasets 

Existing physics-based datasets can be broadly classified into three categories:  

1) Parameter-level models. These datasets are the parameters collected using 

sensors or calculated based on conventional data, including the electric motor control 

parameter dataset [95], [96], and electric motor temperature dataset [97].  

2) Particle-level models. These datasets are usually collected by short-range depth 

scanners, such as FlareNet[98].  

3) Field-level models. The majority of these datasets are generated explicitly for 

physics-based field approximation such as StreeNet [99], electromagnetic field dataset 

[100]–[102], and flow dataset [103], [104] 
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2.4.2.2 Electromagnetic Field Approximation 

Recently, the development of machine learning-based field approximation shows 

a promising solution to this problem. Machine learning is commonly used for 

classification and regression, especially in computational vision processing. It has 

gradually been used for complex data fitting with the continuous development of data-

driven methods [78]–[82], [105]. Both supervised, and unsupervised learning 

approaches have been applied to the magnetic field approximation [78], [84]–[86], 

[106]. Most studies are based on supervised training with parameters since it is very 

difficult to obtain more high- dimensional data, such as obtaining the 2-D or 3-D flux 

density distribution of a magnetic field in the real world. And if we use simulated data, 

it also costs considerable computation time for simulation. 

So far, a series of machine learning concepts have been proposed, including deep 

neural networks with fully connected networks (FCN), convolutional networks (CNN), 

and generative adversarial networks (GAN)[78], [88], [89]. 

These initial demonstrations show that neural networks can learn the relationship 

between structural geometry and magnetic field distribution. Still, they also highlight 

critical challenges to the approach [90]. One challenge is that the computational cost of 

creating the training data set can be huge. A simple, fully connected dense network 

described by a few geometric parameters requires tens of thousands to hundreds of 

thousands of samples for training. Promising results are derived with these networks, 



 

39 

 

but the training of these models relies on sufficient data, the generation of which is 

exceedingly time-consuming. In this regard, GAN-based technology can reduce the 

number of training samples and obtain better generalization capabilities among many 

neural networks [85]. 

2.4.2.3 Force and Torque 

In this study, the magnetic force and torque calculated by Python and NumPy [107] 

are done using the Maxwell Stress Tensor (MST) Method [108]–[111] and was 

implemented based on the works of [112].  

In terms of MST method, the following tensor is calculated: 

 Tij = μ0(HiHj − 1/2δijH
2)           with       i, j = x, y, z (2-11) 

where H is the magnetic field given by its components in the Cartesian frame (𝑥, 𝑦, 𝑧), 

δij is the Kronecker sign (δij = 1 if 𝑖 = 𝑗 otherwise δij = 0). 

For the MST method, the force can be calculated using a surface integration on 

surface Γ′, over a domain D′. Then the force is calculated using the divergence of the 

MST[113]: 

 𝐹 = ∫𝑑𝑖𝑣𝑻𝑑𝑣

𝐷

= ∮μ0((𝑯 ∙ 𝒏)𝐻 − 1/2|𝑯|
2𝒏)𝑑𝑠

Γ

 (2-12) 

where the vector 𝒏 is the normal on the surface Γ′. The classical formulation detailed 

in (2-12) induces the permeability to be equal to the constant air permeability. So, the 
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force calculation has to be performed in an air region surrounding the studied part. The 

MST presents several advantages. Indeed, linear or nonlinear cases can be evaluated, 

and only the meshed part of the surface integration is concerned, which is easy to get 

the results from the magnetic field solution obtained by AI. 

However, MST method is susceptible to the mesh quality and density of the region 

where the surface integration is taken. It is preferable to have enough air layers on the 

D’ domain surrounding the parts on which the forces have to be calculated. This is 

particularly the case in the air-gap areas, where high field changes usually occur. It is 

suggested that acceptable results can be obtained with at least three air layers [111]. 

2.5  Summary 

This chapter conducts a comprehensive review of TO, i.e., the requirement of the 

material distribution methods, the tools for FE modeling, and optimization. We can now 

proceed with tests of new methodologies and their application to electromagnetic 

devices to find new topologies. Table 2-2 summarizes the tools chosen from the 

literature review for further use. 

 

Tool Choice Main reason 

FE analysis Ansys Maxwell 

Full functional FE software for 

electric motors with a powerful 

python script toolbox 

Optimization Framework Platypus Multi-objective evolutionary 

Table 2-2. Recap of Tool and Frameworks Chosen 
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optimization framework written 

in python with many powerful 

parallel computing libraries. 

Modification accessible. 

Material Distribution Method Bitmap + Level-Set 

Compatible with the FE 

software and optimization 

framework. 

Regarding the optimization algorithm, we will use binary-encoded NSGA-II in 

most cases.  

A novel topology optimization framework based on evolutionary algorithms and 

parallel computing is presented in Chapter 3. Topology optimization of the symmetric 

and asymmetric rotor of a SynRM is conducted. The feasibility of the framework is 

verified. 

Besides, the method for accelerating the speed of numerical methods using AI is 

presented in Chapter 5 and Chapter 6. 
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Chapter 3.  Topology Optimization of 

SynRM using Bit-Array Encoded Genetic 

Algorithm 

3.1  Introduction 

In this section, an optimal synchronous reluctance motor (SynRM) design using 

the evolutionary approach-based topology optimization method is carried out. This 

study aims to design multiple flux barriers applied to the rotor to reduce the torque 

ripple. A multi-objective optimization framework for electric motors to obtain a 

possible topology is presented. In general, the TO using gradient algorithms with 

material optimization like the ON/OFF method often produces complex shapes that are 

very hard to create in prototyping. In addition, lattice meshes were required for the 

ON/OFF method. 

For this reason, it results in poor expression ability for curved surfaces and 

restriction of mesh generation and increases the algorithm's complexity. To solve this 

problem, the optimization algorithm uses steps in a polar coordination system instead 

of meshes in a rectangular coordination system. The present method is applied to 

concurrent structural and material optimization of synchronous motors, and 

optimization results show that feasible shapes are obtained, and two objective functions 

(torque and torque ripple property) are improved. 



 

43 

 

3.2 Optimization Framework 

3.2.1 The Architecture of Scalable Multi-Objective Genetic Algor

ithm Framework 

Population-based metaheuristic optimization for multi-objective optimization 

problems (MOPs), such as Non-dominated Sorting Genetic Algorithm II (NSGA-II) 

and strength Pareto evolutionary algorithm (SPEA2), has been widely practiced in 

design optimization [114], [115]. However, the limitation of computational resources 

in the local host prevents these algorithms from working as efficiently as expected. The 

computational time highly relies on the performance of local computers when doing the 

evaluation process, and the actual time consumption can be far more than expected 

because sometimes designs have errors, and solutions cannot be obtained.  

In this section, an efficient, robust, and scalable multi-objective genetic algorithm 

framework for a cloud computing environment is proposed for searching the solution 

of electromagnetic device design.  

Three levels, consisting of GA Manager, Task Manager, and Resource Allocator, 

are designed in this framework to achieve robustness, scalability, and efficiency. Each 

module is interconnected, as described in Fig. 3-1.  
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3.2.2 On-Demand Computing Resource Allocation  

Benefitting from the development of virtualization technology, cloud computing 

can bring great convenience and advantages in electromagnetic device design 

optimization. While evaluating the performance of an electromagnetic device, some 

models may have errors, such as intersection, and lead FE solver stops unexpectedly. 

In this case, no valid solution can be obtained. A checking algorithm is proposed to 

validate the solution. If the checking algorithm finds any abnormal solution, a new task 

with a new design will be added to the task queue to repeat the evaluation process. For 

the traditional architecture of the local computing environment, when a new task is 

added, not all CPU cores can be fully used. The unused computing resources will be 

wasted waiting for the newly added task to finish. However, cloud computing has taken 

advantage of the efficiency and agility realized by virtualization. In a cloud computing 

Fig. 3-1. Architecture of proposed GA Framework. 
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environment, the idle clusters can be released through the API command; hence costs 

can be reduced when evaluating the newly added task.  

3.3 Methodology for Topology Optimization 

Checkerboard is an unstable structure in topology optimization; therefore, filter or 

smooth operators are introduced to reduce these structures, especially in the boundary 

design. Fig. 3-2 shows a typical checkerboard structure. 

Filters are inspired by image-processing approaches. The filter can be formulated 

as follows: 

 Ψ(𝑥) = 𝐹 × 𝐺 = ∫ 𝐹(𝑥)𝐺(𝑥 − 𝑦)𝑑𝑦
𝑅2

 ( 3-1 ) 

where G satisfies the law of energy conservation.  

 

In this study, a Gaussian filter is applied. The Gaussian filter is an image-blurring 

filter that uses a Gaussian function (which also expresses the normal distribution in 

Fig. 3-2 Example of Checkerboard 
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statistics, c.f. ( 3-2 )) for calculating the transformation to apply to each pixel in the 

image. 

 

 

( 3-2 ) 

Fig. 3-3 in the following indicates a sample matrix produced by sampling the 

Gaussian filter kernel (with σ = 1) at the midpoints of each pixel and then normalizing. 

Note that the center element (at [2, 2]) has the biggest value, decreasing symmetrically 

from the center. 

 

Fig. 3-4 shows how the filter works and the influence of filtering on encoded 

topology data. The number of checkerboard structures is filtered significantly, and they 

gradually form several holes in the topology as the number of filtering increases. 

 

(a)                  (b)             (c)                 (d) 

Fig. 3-3 The 5*5 Gaussian filter kernel. 

Fig. 3-4 Unfiltered and filtered encoded data. (a) is unfiltered encoded data, (b) is filtered once, 

(c) is filtered twice, (d) is filtered three times. 



 

47 

 

3.4 Experiments and Results  

Two case study are investigated to realize the proposed topology optimization 

techniques. 

Fig. 3-5 shows the optimization model of the Synchronous Reluctance Motor. The 

motor consists of twenty-four slots and four poles. There are two layers in each slot, 

and the coil pitch is one. Three-phase current source iu(t), iv(t) and iw(t) are applied 

to the coils, they are defined as follows: 

 𝑖𝑢(𝑡) = 𝐼𝑚𝑠𝑖 𝑛(𝜔𝑡 + 𝜋/4) 
( 3-3 ) 

 𝑖𝑣(𝑡) = 𝐼𝑚𝑠𝑖 𝑛(𝜔𝑡 − 2π/3 + 𝜋/4) 
( 3-4 ) 

 𝑖𝑤(𝑡) = 𝐼𝑚𝑠𝑖 𝑛(𝜔𝑡 − 4π/3 + 𝜋/4)  
( 3-5 ) 

where 𝐼𝑚 is the maximum amplitude of the input current (10A * 26 turns), the rotor 

works at the rated speed of 3600 rpm, and the current phase angle is fixed as + 𝜋/4 

when working at the rated speed. 
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(a)                               (b) 

The control circuit is not considered in topology optimization because the 

magnetic source is derived from the current source. The nonlinear material of stator and 

rotor is M19-29G, one of the most prevalent silicon steels. The mechanical rotating 

pitch of the rotor is 7.5 degrees, and the rotation of a 30-degree mechanical angle 

evaluates the torque. The air gap length is set to 0.5 mm, and the air gap region is not 

included in the design domain for topology optimization. The analysis region is 

spatially discretized into quadrilateral first-order elements. The number of elements is 

3337 (23*71). 

 

Table 3-1. Specification of reluctance motor 

Property Value 

Number of Slots 24 

Number of Poles  4 

Fig. 3-5 Synchronous Reluctance Motor Model. (a) Optimization model. (b) Reference Model. 



 

49 

 

Type Reluctance Motor 

Design Domain Materials Iron or Air 

Speed  3600 RPM 

Air Gap Length 0.5 mm 

Excitation Source Ideal Current Source 

 

The design goal is to improve the average torque and minimize the torque ripple. 

Hence, the optimization problem can be formulated as follows: 

 

min ∶
𝜌

 𝐹 = 𝐹(𝐮(𝜌), 𝜌) = ∫𝑓(𝐮(𝜌), 𝜌)𝑑𝑉
Ω

𝑠. 𝑡. ∶  𝐺0(𝜌) = ∫𝜌(𝐱)𝑑𝑉 − 𝑉0 ≤ 0
Ω

         ∶  𝐺𝑗(𝐮(𝜌), 𝜌) ≤ 0, 𝑗 = 1,… ,𝑀

         ∶  𝜌(𝐱) = 0 𝑜𝑟 1, ∀ 𝐱 ∈ Ω }
  
 

  
 

 
( 3-6 ) 

The two objective functions are defined as 

 {
F1 = −Ta
F2 = Tmax − Tavg

 
( 3-7 ) 

where Ta is the average torque, Tmax is the maximum Torque and Tavg is the average 

torque. The torque-time curve is evaluated by the FE software using the VW method. 

3.4.1 Case of Design Domain with Symmetric Rotor Part 

Three-phase current source iu(t) , iv(t)  and iw(t)  is applied to the coils. The 

structure of the rotor is shown in Fig. 3-6. The size of the rotor is equivalent to the 

symmetric rotor, but the degree of freedom was increased. The total mesh number is 

1633, as shown in Fig. 3-6. In addition, a mirror operation is adopted in drawing the 

topology process, as shown in  Fig. 3-6(a). The winding layout is slightly changed 
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from an asymmetric position to a symmetric position. This modification makes the 

topology symmetric.  

 

(a)                                    (b)                         

The total evaluation number is 4000, and it costs 20 hours to obtain the solution 

set after 100 iterations. The results show that the non-gradient evolutionary algorithm 

is practical without sensitivity calculation. However, the efficiency of ES is relatively 

low compared with other works. For example, a SIMP-based optimization process of 

similar size SynRM only costs around 12 to 17 hours. The efficiency of the proposed 

algorithm should be improved in the future.  

Fig. 3-7 is the Pareto-front of the optimization, and an optimized solution from the 

turning point of the  Pareto-front is selected. 

Table 3-2 lists the torque and ripple comparison between the selected optimized 

model and the reference model. The optimized rotor forms a salient pole (c.f. Fig. 3-8 

Fig. 3-6 (a) is the mesh structure in the design domain and (b) is the winding layout of 

symmetric rotor SynRM. 
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and Fig. 3-9), and flux line distribution is getting close to the reference model, as shown 

in Fig. 3-10. However, the jagged edge in the rotor could introduce more harmonics in 

the flux density in the air gap, which enlarges the detent torque. 

 

 

Model 𝐓𝐚[𝐍𝐦] 𝐓𝐫[𝐍𝐦] Elapsed time[h] 

Reference 6.44 0.48 - 

Symmetric Rotor 3.77 1.97 8 

CPU: AMD Ryzen 1700X @ 3.4GHz & 32GB Memory 

Fig. 3-7 Pareto Front of Solution of Symmetric Rotor 

Table 3-2 Optimization Results with Symmetric Rotor Part 
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Fig. 3-8 Encoded Topology of symmetrical rotor pole. 

Fig. 3-9 Full model and winding layout of symmetric rotor pole. 
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(a) (b) 

 

Fig. 3-10 Flux line distribution. (a) is the reference model, and (b) is the optimized symmetric 

rotor model. 

Fig. 3-11 Torque characteristics derived from the design domain with symmetric rotor part. 
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3.4.2 Case of Design Domain with Asymmetric Rotor Part 

The asymmetric synchronous reluctance motor is presented in this section. The 

design domain is shown in Fig. 3-12. The total number of evaluations is 6000, and the 

iteration number 𝑘𝑜𝑝𝑡 is 200. The optimization time consumption is 25 hours.  

Fig. 3-13 is the Pareto-front of the results obtained from TO of asymmetric SynRM, 

and an optimized solution from the turning point of the Pareto-front is selected. 

Compared with the reference model, the optimized model forms a 4-pole structure, 

and it has a similar torque and torque ripple value to the reference model, while the 

topology is different. Moreover, the resolution of structure is relatively low in the design 

domain Ω𝑑, as is shown in Fig. 3-14 and Fig. 3-15.  

 

 

 

Fig. 3-12 Design domain and winding configuration of a 24-slot 4-pole asymmetric rotor IPM 

motor. 
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Model 𝐓𝐚[𝑵𝒎] 𝐓𝒓[𝑵𝒎] Elapsed time[h] 

Reference 6.17 0.48 - 

Asymmetric Rotor 6.15 0.57 25 

CPU: AMD Ryzen 1700X @ 3.4GHz & 32GB Memory 

Fig. 3-13 Pareto Front of Solution of asymmetric SynRM. 

Fig. 3-14 Encoded Topology of the optimal solution of AIPM motor. 

Table 3-3 Optimization Results with Asymmetric Rotor Part 
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Fig. 3-15 Full structure and winding layout of the asymmetric rotor (Minimum torque ripple) 

Fig. 3-16 Torque characteristics derived from the design domain with asymmetric rotor part 
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3.5 Summary 

This section presents the multi-objective topology optimization of PMSM based 

on binary-encoded GA. Gaussian filter is employed to avoid checkboard problems. 

Both the symmetric and asymmetric rotor of the SynRM model is tested in simulation. 

The obtained results verify the feasibility and effectiveness of the proposed method. 

However, the sharp and jagged edge in the optimized solution may bring a higher 

torque ripple. In the next chapter, a high-resolution edge-smoothing method will be 

proposed to bring a smooth rotor edge. 

Regarding multi-objective evolutionary optimization, NSGA-II is a good choice 

for its elitism and easiness. The optimization method helps eliminate the meshing 

process and uses randomness to reduce the time consumption of topology change 

operations. However, it also has many issues, like a jagged or irregular shape, which is 

unsuitable for manufacturing; the performance of local search in shape remains terrible. 

At the same time, this algorithm requires a complete filter to determine if the generated 

model is viable, and we can use machine learning methods for preliminary screening 

and prediction. In addition, the FE calculation takes a lot of time. On the one hand, this 

method can be replaced with machine learning.  
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Chapter 4.  Multi-Objective Topology 

Optimization of Asymmetric IPM motor 

using High-Resolution Interpolation and 

Edge-Smoothing Method 

4.1  Introduction 

Asymmetric interior-PM (AIPM) motors have been of increasing research interest 

in the last decade, which are recognized as promising candidates for aircraft and traction 

applications due to a low manufacturing cost, less use of rare earth, and high thermal 

resistance. However, the AIPMs have disadvantages such as high ripple and low 

average torque. Designing a high-performance AIPM through parametric optimization 

is challenging since the limited parameters prevent the optimization algorithm from 

finding the design space that contains the global optimum. 

In this chapter, a three-phase AIPM has four rotor poles, and twenty-four stator 

slots will be optimized (c.f. Fig. 4-1) using TO. The iron core of the rotor and stator 

consists of laminated and stacked non-oriented silicon steel. During the TO of the AIPM 

motor, maximum torque per Ampere (MTPA) is employed as a control strategy, and the 

rated current i0 and its phase angle 𝛾𝑀𝑇𝑃𝐴 vary jointly when the topology and shape of 
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stator and rotor change, which would normally require several FE simulations to 

acquire accurate torque.  

                                

Design region

Rotor
Stator

16mm

27.5mm

5
6
m

m

0.5mm

 

 

4.2 Two-stage Simulation 

Two-stage simulation is proposed to acquire the accurate torque angle for rotors 

with PM inside like IPM motor and PM-assisted SynRM.  

The output torque of an interior permanent magnet (IPM) motor is composed of 

two components, namely the PM torque and the reluctance torque. The output torque 

can be expressed as: 

Fig. 4-1. Definition of a candidate model. 

. 
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 𝑇𝑠𝑦𝑛 = 𝑇𝑝𝑚 + 𝑇𝑟𝑒𝑙 =
3𝑝

2
[𝜓𝑝𝑚𝑖𝑠 𝑐𝑜𝑠 𝛽 +

1

2
(𝐿𝑞 − 𝐿𝑑)𝑖𝑠

2 𝑠𝑖𝑛 2𝛽] 
( 4-1 ) 

where, 𝑇𝑠𝑦𝑛, 𝑇𝑝𝑚, and 𝑇𝑟𝑒𝑙 are the synthetic torque, the PM torque and the reluctance 

torque, respectively; 𝑝 is the pole-pair number; 𝛹𝑝𝑚  is the PM flux linkage; 𝑖𝑠 is the 

amplitude of phase current; 𝛽 is the current advancing angle; and 𝐿𝑑 and 𝐿𝑞 are d- 

and q-axis inductances, respectively. 

As clearly shown in (4-1), the frequencies of the PM torque and the reluctance 

torque waveform are different, where the frequency of reluctance torque is twice that 

of the PM torque, as shown in Fig. 4-2. The synthetic torque represents the actual output 

torque of the IPM motor. The maximum value of synthetic torque occurs at a current 

advancing angle between the maximum values of the PM torque and the reluctance 

torque.  

 

Fig. 4-2. The torque waveform of IPM motors when the rotor is locked [116]. 
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As the current advancing angle of the maximum value of synthetic torque of an 

IPM motor is uncertain due to the variation of machine topology and the initial rotor 

position, it is important to perform the simulation of machine performance in two steps. 

The initial current advancing angle of maximum synthetic torque is captured in the first 

step, and the full-load simulation is conducted to obtain the average torque and torque 

ripple in a subsequent step. In the following sections, the principle of MTPA control 

strategy is introduced at first, and the detailed operation method of obtaining the 

maximum value of average torque and minimum value of torque ripple in the full-load 

operation of an IPM motor is described in a later section. 

4.2.1.1 MTPA control strategy 

In the IPM machine system, the transformation of coordination systems is usually 

performed to convert the static three-phase coordination system to the rotational two-

phase coordination system. Clarke transformation and Park transformation are applied 

in this process. As a result, the three-phase armature currents can be decoupled to d- 

and q-axis currents, and a Vector Control (VC) can be realized.  

MTPA is the abbreviation of Maximum Torque Per Ampere, which is a common 

control strategy in IPM motors. Compared to the Id=0 control strategy, MTPA is suitable 

for electric machines with a notable difference between d- and q-axis inductances, 

including IPM machines, PM-assisted synchronous reluctance machines (PMA-

SynRM), and so on. With a suitable distribution of d-axis and q-axis currents, the output 
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torque over the unit armature current can be maximized. Fig. 4-3 presents the current-

torque characteristics of PMSM machines. The MTPA curve is obtained by connecting 

the closest point to the origin of the constant torque curves. 

 

The MTPA curve can also be obtained by using the concept of the current limit 

circle as shown in (4-2)-(4-5): 

 2 2

d qi i= +
s

i  ( 4-2 ) 

 arctan( / )d qi i =  ( 4-3 ) 

 0
syndT

d
=  

( 4-4 ) 

 
2

2
0

synd T

d
  

( 4-5 ) 

Fig. 4-3 The current-torque characteristics of MTPA control strategy [117] 
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where, is is the vector expression of stator current. When the magnitude of is remains 

constant, the MTPA control strategy can realize a maximum output torque. Meanwhile, 

the MTPA control strategy can improve the system's dynamic response and overall 

efficiency. 

4.2.2 Realization of MTPA in the simulation of AIPM machines 

As stated in previous sections, the MTPA control strategy is suitable for IPM 

machines to generate the largest torque with stator armature currents with a constant 

magnitude. In the machine optimization process, the maximum value of output torque 

and minimum value of torque ripple are usually taken as the objectives. Therefore, it is 

necessary to perform the simulation in two steps. Fig. 4-4 shows the workflow for two-

stage simulation during the MOGA. 

4.2.2.1 Simulation of output torque when the rotor is locked 

In the first simulation, the rotational speed of the IPM rotor is set to be zero, and 

the armature current is input as normal three-phase currents for the generation of a 

rotational magnetic field as shown in (4-6) - (4-8).  

 sin(2 )a si i ft=  ( 4-6 ) 

 sin(2 2 / 3)b si i ft = −  
( 4-7 ) 
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 sin(2 +2 / 3)c si i ft =  
( 4-8 ) 

where, 𝑖𝑠 is the amplitude of stator phase currents and 𝑓 is the electric frequency of 

armature currents. The maximum output torque of the machine occurs at a certain 

electric angle between the magnetic fields generated by the armature currents on the 

stator and the excitation PM on the rotor, which is the initial current advancing angle 

we would like to capture in this step. Ansys Maxwell is used in the simulation process. 

The initial current advancing angle is obtained as a value of the initial time 𝑡0 of the 

current phase, where the initial current advancing angle 𝛽0 can be obtained by 𝛽0 =

2𝜋𝑓𝑡0. The output torque at the initial current advancing angle 𝛽0 is the maximum 

torque that can be generated at a stator current with a constant magnitude, which 

conforms to the working principle of the MTPA control strategy.  

4.2.2.2 Simulation of output torque in full-load operation 

As the initial current angle 𝛽0 is obtained in the previous step, and the full-load 

simulation of output torque is conducted in the subsequent step. The initial phase of the 

current angle is modified by inserting the time 𝑡0 into the expression of phase currents 

as shown in (4-9) - (4-11): 

 0sin(2 ( ))a si i f t t= +  ( 4-9 ) 
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 0sin(2 ( ) 2 / 3)b si i f t t = + −  
( 4-10) 

 0sin(2 ( ) 2 / 3)c si i f t t = + +  
( 4-11) 

 

Meanwhile, the machine's rotor is set to rotate at the rated operation speed. With a 

corresponding frequency of the armature three-phase currents, the rotor excitation field 

and the stator armature field are coupled, and stable output torque is produced. The 

machine's average torque and torque ripple are obtained in this second step simulation 

process, and the optimization is proceeded according to the results of machine 

performance.  

 

Fig. 4-4. Workflow of two-stage simulation to get the accurate degree of torque angle for 

symmetric and asymmetric IPM motor. 
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4.3 High-Resolution Encoding in Two-Dimension 

Since the genetic algorithm (GA) is employed as the optimization algorithm in this 

study, a novel high-resolution encoding in 2-D as the chromosomes of GA and the 

detailed definition and implementation is described in the following subsections. 

4.3.1 Two-Dimension Encoding and Interpolation 

The linear bit string encoding is the symbolic feature of GAs, and most of the state-

of-art GAs have been designed based on linear encoding.  

The offspring variables are encoded into one-dimensional(1-D) chromosomes to 

fit the linear strings, as shown in Fig. 4-5. However, for the distribution of material, 

such as topology, the connection of specified features will be truncated.  

1 1 1 1 1

1 0 1 1 0 1 1

Bit-array

Topology
 

The broken feature only has part of the useful features and could lead to poor 

convergence characteristics. Therefore, 2-D encoding became an alternative solution 

for certain problems. A demonstration of 2-D encoded topology is shown in Fig. 4-6. 

Fig. 4-5. 1-D encoding bit-array and equivalent topology. 



 

67 

 

The bitmap matrix ( Fig. 4-6 (b)) only has 0 and 1 values, which is a binary-encoded 

bitmap. 

Cohoon and Paris first proposed 2-D encodings and demonstrated moderate 

success in solving such a problem [118]. This approach led to the development of 

various crossover methods, which will be described in the following subsection.  

1 1

1 1

1

1

1

1 1 1 1

1 1 1

0 1 1

10

1

1

1 1 1 1

1

0

0

Topology Bitmap

 

(a)                               (b) 

4.3.2 Two-dimension Genetic Operation 

Compared with one-dimension encoding, 2-D encoding consists of more graphic 

information [52], [118], [119]. In this study, 2-D binary crossover and mutation are 

proposed.  

A crossover operator conventionally exchanges some information between two 

chromosomes with probability 𝑃𝑐. For 2-D binary crossover, the input is two binary-

Fig. 4-6. An example of topology bitmap representation (1–filled, 0–void) 
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encoded chromosomes cp1 and cp2. The output is two-binary encoded chromosomes co1 

and co2. The 2-D crossover is described as follows. 

Step 1: Generate a random number R representing the 2-D crossover probability. 

Step 2: If R<𝑃𝑐, skip the crossover operation; otherwise, perform a 2-D binary 

crossover. 

Step 3: Generate four random integer numbers x, y, dx, dy to represent the start 

position (x,y) in cp1 and cp2, and the horizontal and vertical distance of a small 

rectangular mask (dx, dy).  

Step 4: The masked 2-D rectangle will make a copy but only swap the masked 

area. Detailed operation can be found in Fig. 4-7, the (x,y) = (6,1), (dx, dy) = (2,7), and 

the masked area size is 14. 

Step 5: The content inside the masked area (inside the red box) will be 

interchanged; the interchanged outputs are Co1 and Co2. 

Parents Children

Interchange 

randomly 

selected genes
Parent A

Parent B Child B

Child A

 



 

69 

 

The mutation is a genetic operator used to maintain the genetic diversity of a 

population of chromosomes between generations with the probability Pm. For 2-D binary 

mutation, the input is one binary-encoded chromosome cp. The output is one binary 

encoded chromosome co. The 2-D mutation is described as follows. 

Step 1: Generate a random number R representing the 2-D mutation probability. 

Step 2: If R<𝑃m, skip the mutation operation; otherwise, perform a 2-D binary 

mutation. 

Step 3: Generate four random integer numbers x, y, dx, dy to represent the start 

position (x,y) in cp1 and cp2, and the horizontal and vertical distance of a small 

rectangular mask (dx, dy).  

Step 4: The masked 2-D rectangle will make a copy, the new copy is the 

unprocessed output Co. Detailed operation can be found in Fig. 4-8, the (x,y) = (5,2), 

(dx, dy) = (3,4), and the masked area size is 12. 

Step 5: The content inside the masked area (inside the red box) will be flipped in 

Co, and the interchanged output is the flipped Co. 

Parents Children

Parent A Child A

Bitmap 

mutation

 

Fig. 4-7. Illustration of 2-D binary crossover. 
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4.3.3 High-Resolution Interpolation 

Although 2-D encoding could solve real problems, Sigmund points out that for 

non-gradient topology optimization (NGTO) problems, coarse elements in the design 

domain cannot correctly represent the underlying physical problems [28]. Moreover, 

the coarse element will not cover optimal solutions with fine scale. However, in TO for 

electric motors, the number of holes inside the rotor is relatively small. Therefore, 

though fine mesh with additional elements is needed for the TO of electric motors, the 

topology is simpler than mechanical TO. The binary-encoded GA can be a potential 

solution for TO.  

This section uses an interpolation method to make the bitmap, i.e., the 2-D coarse 

topology, into a high-resolution topology. The interpolation method is B-spline 

interpolation with a smoothing factor of zero. Fig. 4-9 shows a demonstration of 2-D 

topology interpolation.  

The level of the interpolated topology is determined by a constant c. 

Fig. 4-8. Illustration of 2-D binary mutation. 
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(a) (b)

 

4.4  Convert CAD Model using Edge Smoothing Method 

Most topology results obtained using density-based methods are described in 

matrix-based elemental densities during topology optimization. Since the 2-D matrix-

based topology describing the finite element model is based on a constructed mesh, this 

introduces a jagged shape that leads to inaccurate results, making it difficult to evaluate 

some critical properties of the motor, such as cogging torque, with this approach. 

Therefore, manual interventions are required to process the topology optimization 

results to produce accurate computer-aided design (CAD) models. The density 

threshold method is the most widely used; in this method, the contours of the density 

matrix are used to extract the boundaries. 

However, this method requires a suitable density threshold to obtain valid results. 

Moreover, if this method is used to obtain CAD models of complex structures, fragile 

Fig. 4-9. A demonstration of a bitmap using 2-D interpolation with the contour parameter c=0.5. 

(a) original topology (40*46), (b) interpolated topology (200*230). 
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parts, rough surfaces, and disconnected structural components (isolated islands) may 

appear. 

This section proposes an automatic process of converting bitmap topologies into 

DXF models. After the generated topologies, the small size of topologies volumes is 

sieved, and the large ones are kept. This method is described as follows. 

Step 1:  Find the boundaries of the topologies. 

Step 2:  Extract the boundary points and use a cubic uniform B-spline curve to 

obtain the fitting curves of the topology. 

Step 3: Identifying the small features. Find the small, closed, disconnected 

structural topologies and remove them based on the predefined threshold. 

Step 4: Approximate B-spline curve using a two-point line to reduce model 

complexity when generating mesh in finite element analysis.  

The whole process can be found in Fig. 4-10. 
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4.5 Experiment Verification 

4.5.1 Machine configuration 

The design object is the rotor of a 24-slot 4-pole AIPM. The motor characteristics 

are as follows; the stator outer diameter is 112mm, the stator inner diameter is 56 mm, 

the stator stack length is 50 mm, outer rotor diameter is 55 mm, the inner diameter of 

rotor lamination is 16 mm, lamination thickness is 0.35 mm. The number of stator slots 

is twenty-four. The design region is not one-eighth but one-fourth of the rotor region, 

as shown in Fig. 4-12, because we assume that the rotor shape is asymmetric in one 

 

Fig. 4-10. The overall process of high-resolution interpolation and edge smoothing method. (a) 

is binary encoded topology (10*10) for genetic algorithm, (b) is interpolated bitmap topology 

(50*50), (c) is smoothed edge based on using suitable density threshold, i.e., 0.5 in this figure, 

and (d) is the vectorized boundary for FE model. 
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pole region. At the first iteration we will design the distribution of the material in 1840 

cells, composed of 46 by 40 parts.  

This optimization aims to maximize the torque average and minimize the torque 

ripple of the IPM motor. 

The two objective functions are defined by 

 {
𝐹1 = −𝑇𝑎𝑣𝑔
𝐹2 = 𝑇𝑚𝑎𝑥 − 𝑇𝑎𝑣𝑔

 
(4-12) 

F1 and F2 are minimized, which are the average torque and torque ripple.  

This study applies a modified non-dominated sorting genetic algorithm II (NSGA-

II) method with a two-stage torque angle evaluation process. Two objective functions, 

including maximizing average torque (F1) and minimizing torque ripple (F2), are 

evaluated using finite element analysis (FEA).  

The population with a high ranking is reproduced in the next generation. We 

adopted 2-D binary crossover and 2-D binary mutation to produce a diversified 

population. The numbers of populations and generations are 40 and 250, respectively. 

The crossover factor is 0.9, and the mutation factor is 0.1. The optimization process is 

shown by the flowchart of Fig. 4-11. 
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Fig. 4-11. The flowchart of modified NSGA-II for TO. 

4.5.2 Design Domain of Asymmetric Rotor 

The stator and the asymmetric rotor for the considered optimization problem are 

presented in Fig. 4-12.  And the design parameters are listed in Table 4-1. A 40 × 46 

(totaling 1840 variables) 2-D matrix was used to represent the distribution of the IPM 

rotor, as is shown in Fig. 4-13. 
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                   (a)                             (b) 

 

 

Table 4-1. Specification of reluctance motor 

Property Value 

Number of Slots 24 

Number of Poles  4 

Type Reluctance Motor 

Design Domain Materials Iron or Air 

Speed  3600 RPM  

Air Gap Length 0.5 mm 

Excitation Source Ideal Current Source 

 

 

Fig. 4-12.  (a) is the configuration of the 24-slot 4-pole IPM motor, and (b) is the reference 

model. 
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46 cells

40 cells

 

 

4.5.3 Experimental environments 

The FE software used in this study is Ansys Maxwell, and the optimization 

framework is developed based on Python combined with Platypus [65] and NumPy 

[107].  

This study shows that for the 100th generation, the computation time on two Intel 

Xeon Gold 6145@2.5 GHz is about 144 hours, with the number of cells and generations 

set to 46*40 = 1840 and 10000, respectively.  

Fig. 4-13. The design domain of the rotor. 
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4.5.4 Optimal Solution for Asymmetric Rotor 

Final optimization results are obtained by the topology optimization framework 

using the proposed methods. The obtained Pareto-front solution is shown in Fig. 4-14.  

The strategy for selecting the optimized model from the Pareto-front solution is 

mainly based on the complexity of generated topology. Therefore, the optimized models 

with a relatively simple rotor surface and a feasible, manufacturable topology can be 

selected as the candidate models from the Pareto-front solution. 

The values of 𝑇𝑎𝑣𝑔, 𝑇𝑟𝑖𝑝𝑝𝑙𝑒  of selected optimized models are shown in Fig. 4-15. 

It can be observed from these results that both 𝑇𝑎𝑣𝑔 and 𝑇𝑟𝑖𝑝𝑝𝑙𝑒  are improved by the 

proposed method. As a result, the solution obtained by this present method has a smaller 

objective function value than the conventional method.  

Fig. 4-17 shows the comparison of torque waves of the proposed method and the 

conventional method. Model 0 has lower torque and lower torque ripple, while model 

1 has higher torque and higher torque ripple. Compared with the reference model, both 

of the selected optimized models have at least a 30% torque increment. However, the 

torque ripple of model 1 is 60% larger than the reference model. Therefore, regarding 

the topological structure's feasibility and performance, model 0 is selected for further 

simplification. Figure 4-18 shows the complete mechanical structure of the original 

model 0 and simplified model 0. Resin epoxy is used to fill the empty parts. A 0.25 mm 

thick carbon fiber sleeve prevents the optimized AIPMSM rotor from expanding due to 
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radical acceleration. The performance of simplified model 0 is slightly better than the 

original one. The von Mises stress distributions of the original model 0 and the 

simplified model 0 are shown in Fig. 4-19. The 3-D model of simplified model 0 is 

presented in Fig. 4-20. The simplified model can be manufactured by the low-speed 

wire electrical discharge machine. 

 

 

 

Fig. 4-14. Obtained Pareto-front solution of every ten iterations. Tripple is defined by the 

maximum torque minus the minimum torque over the average torque.  
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(a) (b) 

 

 

  
(a) (b) 

Fig. 4-15. Comparison of torque and torque ripple between model 0 (a), model 1 (b), and 

reference model (c). 

Fig. 4-16. Magnetic flux line of optimal model 0 (a) and model 1 (b). 

Fig. 4-17. Comparison of torque performance among Model 0, Model 1, and reference model. 
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Fig. 4-18. The whole model of the selected topology optimized AIPMSM rotors. The yellow 

parts are filled with resin epoxy, and a carbon fiber sleeve protects the whole rotor. (a) is the 

original model 0, the torque is 2.419 Nm, and the torque ripple is 0.308 Nm; (b) is the simplified 

model 0, the torque is 2.452 Nm, and the ripple is 0.366 Nm. 

 

  
(a) (b) 

 

 

 

Fig. 4-19. The von Mises stress distributions at 3600 rpm for topology-optimized AIPMSM 

rotors, (a) is distribution of the original selected model 0, and the maximum von Mises stress 

is 77.1700 MPa, and (b) is the distribution of the simplified model, and the maximum von Mises 

stress is 69.8488 MPa.. 
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4.6  Summary 

This chapter proposes a novel topology optimization method for AIPM based on 

two-stage simulation, high-resolution encoding, and edge smoothing. In this present 

method, the global search is conducted using modified binary-encoded NSGA-II. Then, 

the solution obtained by the global search is improved by the post-processing method 

to simplify the optimized model. The topology of the rotor of AIPM has been optimized 

to test this present method. Compared with the reference model, we have found that the 

performance of the optimized solutions is much improved by this method. Despite the 

increased computational time of the model, better results are obtained with the help of 

the CAD model during the TO, representing a more feasible electromagnetic structure. 

  

Fig. 4-20. A 3-D view of simplified model 0. 
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Chapter 5.  A Fast Magnetic Field 

Approximation Method for Simulation of 

Magnets using AI 

5.1  Introduction 

This chapter introduces a new concept for the magnetic performance evaluation 

method by approximating magnetic fields directly from a conditional generative 

adversarial network (cGAN). Our approach can evaluate the performance of any 

electromagnetic device, such as air gap flux density and transmission torque, with modest 

computational cost in terms of novel design. Unlike the analytical method, the model 

proposed in this chapter could derive the entire magnetic field distribution in the design 

space, which is beneficial for further analysis. In addition, we utilize a physics-based 

loss function to ensure that the network training is directly performance parameters. 

A neural network for solving the magnetic field distribution of coaxial magnetic gears 

(CMG) will be trained and evaluated in this study. 

This study is divided into seven parts. Section 5.2 introduces the general 

knowledge about magnetic gear (MG) and the torque calculation method. Section 5.3 

deals with the preliminary background and concept of generative adversarial networks 

(GANs). Section 5.4 is concerned with the methodology used for this study. This section 

introduces the working principle, the architecture of the proposed network, the training 
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process, the PM representation method, and neural network configurations. Section 5.5 

presents the key parameters that influence the neural network's performance.  Section 

5.6 demonstrates the preliminary results obtained from the proposed network. The 

conclusion is drawn in Section 5.7. 

5.2  Technical Preliminaries 

This section formulates the magnetic gear working principle and the torque 

calculation using the Maxwell stress tensor method in the polar coordinate system. 

5.2.1 Magnetic Gears 

Magnetic gears have attracted much attention due to the advantages of free-of-

contact, inherent overload capability, silent operation, and high reliability compared 

with mechanical gears [120], [121]. The coaxial magnetic gear (CMG), which 

comprises coaxial inner and outer rotors on the two sides of ferromagnetic segments, 

realizes a better utilization of PMs and transmits significantly higher torque density 

compared with other types of MGs [122], [123]. Therefore, CMGs have been employed 

in critical environments to meet the high requirement and harsh working conditions. 

For example, high-efficiency and high-performance magnetic gears have been used in 

electric vehicles (EVs) [2], electricity propelled ships [124], [125], and electric aircraft 

[126]–[128]. 
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Many methods are developed to improve the performance of magnetic gears, such 

as the analytical method  [121], [129], equivalent magnetic circuit method [130], finite 

element (FE) method, and so on [131]–[133]. However, the current calculation methods 

have some shortcomings. The FE method is an accurate tool for simulation but 

exceedingly highly time-consuming. On the contrary, the analytical method requires 

few computation resources, but the generalization ability is limited.  

Since Magnetic gears utilize the energy exchange between magnetic field energy 

and mechanical energy, they have many advantages compared with traditional 

mechanical gears. 

The first high-performance magnetic gear was proposed in 2001 [134]. The main 

components of this CMG are shown in Fig. 5-1.  

 

 

Fig. 5-1. Two-dimensional structure of surface-mounted type permanent magnet (PM) coaxial 

magnetic gear. 
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The operation of CMG is based on modulating the magnetic field produced by the 

rotating magnetic poles of the high-speed rotor in the iron poles of the stationary part; 

meanwhile, the low-speed rotor will be driven in the opposite direction by the magnetic 

field modulated in the modulation iron. It has been shown that the highest torque 

transmission is obtained with the following equality: 

 𝑝𝑜𝑢𝑡 = 𝑁𝑠 − 𝑝𝑖𝑛 
( 5-1 ) 

where 𝑝𝑖𝑛  is the number of poles pair for the inner (high-speed) rotor, 𝑁𝑠  is the 

number of modulation iron segments, and 𝑝𝑜𝑢𝑡 is the number of outer (low speed) rotor, 

respectively. 

The correlation between the output (ω𝑜𝑢𝑡) and input (ω𝑖𝑛) speed and the gear ratio 

(gr) are: 

 𝜔𝑜𝑢𝑡 = 𝑔𝑟 × 𝜔𝑖𝑛  
( 5-2 ) 

 
𝑔𝑟 =   

𝜔𝑜𝑢𝑡
𝜔𝑖𝑛

= −
𝑝𝑖𝑛
𝑝𝑜𝑢𝑡

 
( 5-3 ) 

Furthermore, an optimal combination exists among 𝑝𝑜𝑢𝑡, 𝑝𝑖𝑛 and 𝑁𝑠, which can 

significantly reduce the torque ripple when CMG is in operation [135]. This relationship 

can be defined by a coefficient 𝑘𝑟. 
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 𝑘𝑟 =
2𝑝𝑖𝑛 × 𝑁𝑠

𝐿𝐶𝑀(2𝑝𝑖𝑛 , 𝑁𝑠)
 

( 5-4 ) 

 

where LCM indicates the 'least common multiple' between 𝑝𝑖𝑛  and 𝑁𝑠 . The 

minimal ripple exists when the coefficient 𝑘𝑟 reaches 1. 

5.2.2 Magnetic performance of CMGs 

5.2.3 Air Gap Flux Density 

Air-gap flux density is one of the most critical parameters to optimize when 

designing permanent magnet (PM) devices.  

This parameter directly indicates the performance of the PM device design in 

terms of torque. The air-gap flux density is typically derived from simulations during 

the PM device design stage.   

Flux density distribution in the air gap generally reveals the performance of torque 

ripple and the order of harmonics of the motor. The high-order harmonics will increase 

cogging torque and the eddy current loss.  

Therefore, it is an inevitable metric while designing a PM device. The air gap flux 

density can commonly be represented in the polar coordinate system in 2-D design or 

the cylindrical coordinate system in 3-D design to simplify the calculation process. It 

consists of two parts while ignoring the Z component, which can be expressed by 
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 {
𝐵𝜌 = 𝐵𝑥 𝑐𝑜𝑠(𝜃) + 𝐵𝑦 𝑠𝑖𝑛(𝜃)

   𝐵𝜃 = −𝐵𝑥 𝑠𝑖𝑛(𝜃) + 𝐵𝑦 𝑐𝑜𝑠(𝜃)
 

( 5-5 ) 

 

where 𝐵𝑥 is x-component of the B vector, 𝐵𝑦 is y-component of the B vector, 𝐵𝜌 

is radial-component of the B vector, 𝐵𝜃 is tangential-component of the B vector. 

5.2.4 Magnetic Torque Calculation 

Magnetic torque is one of the most critical performance indicators of magnetic 

gears. After determining the magnetic field distribution in the polar coordinate system 

in the two air gaps, the torque applied to the inner and outer rotors 𝑇𝑖 and 𝑇𝑜 can be 

obtained by using the Maxwell stress tensor [135], and is given by: 

 𝑇𝑖 =
𝐿𝑟𝑖

2

𝜇0
∫ 𝐵ρ(𝑟𝑖, θ)𝐵θ(𝑟𝑖, θ)𝑑𝜃
2π

0

 
( 5-6 ) 

 𝑇𝑜 =
𝐿𝑟𝑜

2

𝜇0
∫ 𝐵𝜌(𝑟𝑜, 𝜃)𝐵𝜃(𝑟𝑜 , 𝜃)𝑑𝜃
2𝜋

0

 
( 5-7 ) 

where 𝐿 is the length of the model, 𝑟𝑖 and 𝑟𝑜 are the radius of the integration paths 

along the inner and outer air gaps, respectively. 

5.3  GANs for Magnetic field Approximation 

This section proposes a method capable of addressing the introduced problem, 

namely, physics-informed GAN. GAN is a machine learning framework designed by 
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Goodfellow et al. in 2014 [88], i.e., two neural networks compete in a zero-sum game, 

where the gains of one agent are the losses of the other agent.  

5.3.1 Conditional GAN and Pix2Pix 

Conditional GAN (cGAN) is one of GAN's earliest variants, changing the original 

GAN probabilities to conditional probabilities, i.e., cGANs learn a mapping from 

observed input x and random noise vector 𝑧, to 𝑦, 𝐺 ∶  {𝑥, 𝑧}  →  𝑦. This condition can 

be pictures and annotations, making cGAN widely used in image processing and 

conversion. 

Similar to GAN, the architecture of cGAN also consists of generator and 

discriminator models. The generator model can be responsible for generating new 

specious examples. Ideally, these examples are indistinguishable from the real 

examples in the dataset. The discriminator model is a classification network responsible 

for classifying a given input as ground-truth (extracted from the dataset) or fake 

(generated). 

Pix2Pix is an efficient cGAN for image synthesis; it can effectively synthesize the 

output from labels, reconstruct objects from edge maps, and colorize images [89]. The 

objective function of Pix2Pix is defined as: 

 𝐺∗ = 𝑎𝑟𝑔min
𝐺
max
𝐷
𝐿𝑐𝐺𝐴𝑁 (𝐺, 𝐷) + λ𝐿𝐿1(𝐺) 

( 5-8 ) 
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where 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) is the loss function of PatchGAN, 𝐿𝐿1(𝐺) is the loss function of 

the generator (also is known as the mean absolute error (MAE)), and 𝐺∗ is the final 

objective.  

In our case, the generator network 𝐺 is trained to generate the magnetic fields that 

match the material distribution of the input. The discriminator 𝐷 is trained to determine 

whether the given inputs are constrained by the physical properties of magnetic fields. 

5.3.2 Loss Functions for Magnetic Field Approximation 

In Pix2Pix, the loss function of cGAN and L1 are: 

 𝐿𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝐸𝑥,𝑦[log𝐷 (𝑥, 𝑦)] + 𝐸𝑥,𝑧 [log (1− 𝐷(𝑥, 𝐺(𝑥, 𝑧)))] 
( 5-9 ) 

 𝐿𝐿1(𝐺) = 𝐸𝑥,𝑦,𝑧(||y − 𝐺(𝑥, 𝑧)||) 
( 5-10) 

where G tries to minimize this objective against an adversarial D that tries to maximize 

it. 

For the Pix2Pix model, the generator not only fools the discriminator but is also 

close to the ground-truth output in an L2 sense. Nevertheless, L1 distance is used rather 

than L2 as L1 encourages less blurring  [89]. 

In magnetic field approximation, we have additional information on the 

underlying physics of magnetic fields. We not only want to generate a visually 
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appealing result, but we also want the generated magnetic field can be used for the 

performance calculation of magnetic gears.  

Existing research with excellent prediction ability employs a sum of square error 

(SSE) to measure the squared error between the predicted field and the results obtained 

by using FEM [84], which usually can be written as: 

 𝐿𝑆𝑆𝐸 =∑(𝐵𝑁𝑁 − 𝐵𝐹𝐸𝑀)
2 

(5-11) 

where 𝐵𝑁𝑁 and 𝐵𝐹𝐸𝑀  are the calculated magnitude data by the neural network and the 

FEM at each point.  

Moreover, since torque is the critical parameter when analyzing magnetic gears, 

the torque can be obtained by the Maxwell stress tensor and given by (5-6) and (5-7). 

We can find the torque obtained by calculating the integral of the radial component 

times the tangential component of flux density. Therefore, minimizing the absolute 

error between the sum of the predicted magnetic field and the sum of the magnetic field 

obtained from FE simulation can be an effective method to find the solution. 

The sum absolute error (SAE) of predicted results and FE simulation results is 

defined as: 

 𝐿𝑆𝐴𝐸 =∑|𝐵𝑁𝑁 − 𝐵𝐹𝐸𝑀|

𝑛

𝑖=1

 
( 5-12) 

where 𝐵𝑁𝑁 is the prediction, 𝐵𝐹𝐸𝑀  is the results obtained from the FE simulation.  

Our final loss function used during training is formulated as follows: 
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 L = 𝐿𝑐𝐺𝐴𝑁 + λ𝐿𝑆𝐴𝐸 
( 5-13) 

 

where  𝐿𝑐𝐺𝐴𝑁 is loss of discriminator and 𝐿𝑆𝐴𝐸 is the loss of our generator, and λ 

is one. 

5.3.3 Neural Network Architecture 

5.3.3.1 Generator 

Two types of generators were implemented for the GANs in this work, and they 

are U-net and ResU-net 

The U-net architecture does not have any fully connected layers, and they are 

replaced by upsampling operators that are added skip connections between each 

convolutional layer. An overview of this type of network is shown in Fig. 5-2, where 

the blue line represents the PM and iron inputs. Each blue box corresponds to a multi-

channel feature map, including a convolutional layer, a batch-normalization layer, and 

a ReLU activation. The number of channels is denoted on top of the box. The x–y size 

is provided at the lower-left edge of the box.  The arrows denote the different 

operations.  

The residual block was first introduced in residual networks (ResNets) [136]. It 

has demonstrated significant performance across many benchmarks in the computer 
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vision field. Each residual block contains two convolution layers, two batch-normal 

layers, and two ReLU activations (c.f. Fig.5-2 (b)). The arrows denote the different 

operations. 

ResU-net, a variant of U-net, combines the advantage of U-net and residual blocks 

[27]. It consists of a fine-to-coarse down-sampling path and a coarse-to-fine 

upsampling path with shortcut connections. Other network parameters are the same as 

the original U-net for every two convolutional layers at the same resolution level in U-

net. The details of each block are given in Fig. 5-2 (b). Both U-net and ResU-net were 

tested in our work with fine-tuning. 

5.3.3.2 Discriminator 

The overview of the discriminator network is shown in Fig. 5-3, where the blue 

line on the left represents the inputs, and the gray line represents the magnetic field data 

obtained from the FE simulation. This discriminator tries to classify if each M×N patch 

in an image is real or fake using a convolutional block and averages all responses to 

provide the ultimate output of D. 
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(a) 

 

(b) 

 

  

 

Fig. 5-2. The overview of the architecture of generator network. (a) ResU-net. (b) Details of 

blocks. 

Fig. 5-3. The overview of the architecture of discriminator network. 
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5.4  Performance evaluation using GAN-based Magnetic 

field Approximation 

This section presents the working principle and the training process of the 

proposed GAN model for magnetic field approximation in CMG. 

5.4.1 Working Principle 

Our model uses a ResU-net generator to approximate the magnetic field for CMG, 

see Fig 5-4. The detailed processes are described in the following: 

Step 1: Material separation - the CMG model will be divided into two parts: 

⚫ Permeable materials – The relative permeability is greater than one and does not 

have a magnetization direction vector. 

⚫ Magnetic materials – The relative permeability is close to one and has a 

magnetization direction vector. 

Step 2: Coordinate system (CS) conversion – we convert the input from the 

polar coordinate system into a rectangular coordinate system 

Step 3: Pre-processing - we construct two tensors, namely the relative 

permeability tensor and the magnetization direction vector tensor. Then perform scaling 

and normalization operations on these two tensors, respectively. Then we do a padding 
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operation on the preprocessed tensor to make its shape convenient for neural network 

model training and processing. 

Step 4: Evaluation - Feeding the input of the data into the neural network model 

and obtaining the output. 

Step 5: Inverse data manipulation - we slice the generator's output to obtain the 

shape before the padding operation for post-processing. 

Step 6: Inverse coordinate system conversion – we utilize coordinate system 

conversion on the output, i.e., convert 𝐵𝑥, 𝐵𝑦 to 𝐵𝜌, 𝐵𝜃.  

Step 7: Performance evaluation – we post-process the output to find the air gap 

magnetic flux density and torque. 

In this way, users no longer need to learn how to use finite elements and prepare 

high-performance computers for performance evaluation, significantly reducing the 

user's learning threshold. 
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5.4.2 Training Process 

The detailed training process is demonstrated in Fig. 5-5. The FE simulation comes 

with a high computational cost but is executed only once. Moreover, the FE simulation 

can be generated in parallel and with a distributed computing platform.  

First, many FE simulations are done with different random combinations of the 

input variables. The output data are extracted from FE solutions.  

In the second step, we assemble the dataset and implement data preprocessing 

from extracted solution data from the FE simulation. This process is described in the 

following:  

Fig 5-4. The workflow of magnetic field approximation for coaxial magnetic gears 
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1. Matrix scaling - The output is scaled concerning the magnitude of flux density, 

ranging from 0 to 3 Tesla. 

2. Matrix normalization - All the input and output variables are normalized. In 

this study, we use min-max normalization. 

 𝑥′ =
𝑥 −𝑚𝑖𝑛(𝑥)

𝑚𝑎𝑥(𝑥) − 𝑚𝑖𝑛(𝑥)
 

(5-14) 

 

3. Matrix padding – In the process of convolution, padding is sometimes needed 

to avoid information loss. 

Afterward, the preprocessed dataset is used for the training of the cGAN. For 

cGAN, the generator should be saved, and it will be used to evaluate the magnetic field 

of CMG.  
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5.4.3 Physical Property Representation 

Magnetization of PM could influence the performance of CMG using FEM. In this 

study, we use a normalized vector to express the magnetization direction of the material. 

The first element of the vector represents the radial component, and the second element 

represents the tangential component. For example, (1, 0) indicates that the magnetizing 

direction is the positive radial direction, and (-1, 0) indicates that the magnetizing 

direction is the negative radial direction. (0,0) means non-magnetic material (cf. Fig 

5-4). 

Fig. 5-5. The training process of magnetic field approximation for CMG using Pix2Pix. 
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5.4.4 Dataset Generation 

Only the magneto-static problem is considered for a coaxial magnetic gear 

operating at low speed. The governing equation for the static magnetic field analysis, 

including a PM, is derived from Maxwell's equations as: 

 ∇ × (
1

μrμ0
B) = ∇ × 𝐻 = 𝐽 = 0 

(5-15) 

 ∇ ⋅ 𝐵 =  0 
(5-16) 

 𝐵 = μ(𝐻 +𝑀) 
(5-17) 

where μ𝑟 denotes the relative magnetic permeability, μ0 is the vacuum permeability 

(i.e., 4π × 10−7𝑁/𝐴2), B is the magnetic flux density, and 𝐵𝑟 is the remanence of the 

PM material (i.e., the residual magnetic flux density), 𝐻 stands for the magnetic field 

strength, 𝑀 represents the magnetization strength of PM, and 𝐽 represents the current 

density vector, which is determined as zero in this model. The parametric model of 

CMG is given in Fig. 5-6. 

The training dataset is used to train the parameters of the GAN model, and the 

testing dataset is used to check the performance of the cGAN model on the unseen data. 

The FE simulation results produced both the training and testing datasets.  

The input tensor and output tensor of our Pix2Pix model have the exact size of 

512× 768 pixels. The tensor, including material distribution and PM magnetization, 
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were interpolated from the results of the FE simulation with a spatial resolution of 

0.1mm × 0.5 degree. 

The magnetic field (𝐵𝑥, 𝐵𝑦) are calculated in the 2-D FE simulation, then we use 

equation (5-6) to convert flux density B from Cartesian CS to Polar CS (c.f. Step 2 in 

Fig.5-4.). 

The geometry parameters of the template CMG model are listed in Table I. 

Arbitrary pole pair of the high-speed and low-speed rotor, size of the yoke of the high-

speed and low-speed rotor, and the open slot ratio of modulation iron segments and PM 

are simulated in the datasets. The rotor position was also randomly selected, as shown 

in Table II. The material of magnets is N35-NdFeB, the material of iron segments and 

two rotors is DW310, and the nonlinear B–H curve is shown in Fig. 5-7. 
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We compute the resulting 2-D magnetic field and store 5,000 samples of these into 

the dataset, which is then used to train our neural networks. The hardware list of the 

training workstation is given in Table III. 

 

Table 5-1. List of fixed parameters of the CMGs 

 Parameter Value Unit 

Ro The outside radius of the MG 92 mm 

Tlspm The thickness of the PMs on the low-speed rotor 7.8 mm 

Thspm The thickness of the PMs on the high-speed rotor 7.8 mm 

Ts The thickness of the modulation iron segments 13 mm 

g The length of the air gap 0.6 mm 

L Stack length 40 mm 

 

Table 5-2. List of variables of the CMGs 

 Parameter Min. Max. Unit 

Phs Number of pole-pairs at HS rotor 3 5 - 

Pls Number of pole-pairs at LS rotor 10 25 - 

Ns Number of modulation iron segments 10 25 - 

Toy The thickness of the yoke of the outer rotor 5 10 mm 

Tiy The thickness of the yoke of the inner rotor 5 10 mm 

Rai 
Slot open of modulation iron segments = 

𝜃1/(𝜃1 + 𝜃2)
 

0.3 0.7 - 

Rapm Ratio PM = 𝜃3/(𝜃3 + 𝜃4) 0.5 1 - 

φls Low-speed rotor position 0 360 Deg. 

 

Table 5-3. Hardware list for magnetic field approximation  

Hardware Model Specification 

CPU Intel Core i7-10870H 8-core @ 2.2GHz 

GPU NVIDIA GeForce RTX 3080 M 16GB RAM 

RAM DDR4 3200MHz 64GB 

 

Fig. 5-6. The definition of the parametric CMG model. 
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5.5  Influence of Key Parameters of Proposed Fast Magnetic 

Approximation Method 

To discover the relationships between the key parameters and performances of 

magnetic field approximation, the influences that key parameters have on the network 

are investigated in this section. Except for specifically indicated parameters, design 

parameters of the CMG are fixed as given in Table I in the investigation of the influence 

of critical parameters. 

The stochastic gradient-based optimization algorithm, Adam [136], is used in our 

network. The learning rate value determined was 2 × 10−4. The proposed model is 

implemented in Python 3 with TensorFlow [137]. 

To objectively demonstrate the superiority of the proposed method, all the 

experiments were quantitatively evaluated using the structural similarity (SSIM) index 

Fig. 5-7. The B-H curve of steel DW310 in the modulation iron segment and two rotors. 
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and the peak signal-to-noise ratio (PSNR). The SSIM index measures the similarity of 

structural information in two images, where zero indicates no similarity and 1 indicates 

total positive similarity. PSNR measures image distortion and noise level between two 

images. A higher PSNR value indicates a higher image quality. SSIM and PSNR are 

used for similarity verification of magnetic fields [138]. 

5.5.1 Layer Type of Generator 

ResU-net is a fully convolutional neural network designed to get high performance 

with fewer parameters. It is an improvement over the existing U-net architecture. ResU-

net takes advantage of both the U-net architecture and the deep residual learning. 

The ResU-net consists of an encoding network, decoding network, and a bridge 

connecting these networks, just like a U-net. The U-net uses two 3  3 convolutions, 

where a ReLU activation function follows each. In the case of ResU-net, these layers 

are replaced by a pre-activated residual block. 

5.5.2 MAE and SAE combined with 𝝀 

Since the difference between MAE and SAE is the number n of elements used for 

the computation, a comparison between SAE and MAE used for generators in Pix2Pix 

is conducted. For SAE, equivalent 𝜆  (i.e., 512768 = 393,216) is used in the 

comparison. Also, we investigate the relationship between the indicators and the value 

of 𝜆 ranging from 1 to 108. 
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5.5.3 Quantitative evaluation 

U-net and ResU-net are implemented by employing two different kinds of loss 

functions. Table 5-4 presents the performance on average MAE, SSIM, and PSNR 

across each method. It can be seen that the ResU-net combined with SAE demonstrates 

superior performance in cases compared to U-net, indicating that ResU-net works better 

along with the SAE in this work.  

It is observed that the value 𝜆 between 104 and 106 has better performance than 

other values under the same generators, in which Pix2Pix, with equivalent 𝜆 value at 

786,432 (5127682) has achieved the best MAE, PSNR, and SSIM. 

Table 5-4. Comparison of metrics with different generators 

Generator Loss  𝜆 MAE (10-3) ↓ SSIM ↑ PSNR ↑ 

U-net 
MAE a 100 19.90 0.8964 29.45 

SAE 1b 7.39 0.9811 39.23 

ResU-net 
MAE 100 13.39 0.9311 30.01 

SAE 1b 2.62 0.9962 47.42 

ResU-net MAE 

100 75.67 0.7526 18.91 

101 85.16 0.7124 18.15 

102 12.73 0.9422 30.89 

103 6.46 0.9712 32.16 

104 3.55 0.9942 43.95 

105 2.91 0.9954 46.83 

106 3.59 0.9941 44.87 

107 3.66 0.9956 45.88 

108 3.65 0.9952 45.74 

MAE, SSIM, and PSNR are calculated based on the mean value of the whole dataset. The arrow “↓" means lower is better, 

and “↑" means higher is better. 

aU-net+MAE is the original configuration of the generator in Pix2Pix. 

bThe equivalent value of λ using MAE is 786,432 (5127682), which is between 105 and 106. 
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5.6  Experimental Verification 

In the following section, we evaluate our novel method for magnetic field 

approximation and calculate the performance of CMG. In order to validate the proposed 

model, the predicted results have been compared with 2-D FE simulations obtained 

using ANSYS Maxwell software. The geometrical parameters given in Table V are 

considered. 

The optimizer is Adam, with a learning rate value of 2 × 10−4. The generator is a 

U-shape network (c.f. 5-2 (a)), including encoders and decoders. It consists of 12 blocks 

with skip connections, including six down-sampling blocks and six up-sampling blocks. 

The last output layer in the decoder will have a convolutional operation with a Sigmoid 

function, mapping the output to the number of the output channel. The discriminator 

architecture is an encoder, as is shown in Fig.5-3. After the last layer, a convolution is 

applied to map to a 1-dimensional output, followed by a Sigmoid function. 

The training of our final model takes 76 hours. As for the evaluation process, the 

total magnetic field approximation time of the 360-step CMG model using our model 

is 26 seconds, of which the total neural network evaluation takes 11.65 second (the first 

step takes 4.4 seconds for initialization), the file read takes 10.55 seconds, and the 

torque calculation takes 0.44 second, the remaining time was used for preprocessing 
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and postprocessing. In comparison, the conventional FE simulation takes 26 minutes, 

and each step takes 4 seconds on average. Convergence is achieved in around 800k to 

1000k iterations depending on the network configuration, as is shown in Fig.5-8.   

 

 

 Parameter Value Unit 

Ro Outside radius of the MG 92 mm 

Tlspm The thickness of the PMs on the low-

speed rotor 

7.8 mm 

Thspm The thickness of the PMs on the high-

speed rotor 

7.8 mm 

Ts The thickness of the modulation iron 

segments 

13 mm 

g The length of the air gap 0.6 mm 

L Stack length 40 mm 

Phs Number of pole-pairs at HS rotor 3 - 

Pls Number of pole-pairs at LS rotor 22 - 

Ns Number of modulation iron segments 25 - 

Toy The thickness of the yoke of the outer 

rotor 

10 mm 

Fig. 5-8. Overview of SAE after 1000k-iteration training. The generator is the ResU-net, 

combined with SAE as the loss function. 

 

Table 5-5. List of fixed parameters of the CMGs 
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Tiy The thickness of the yoke of the inner 

rotor 

3.4 mm 

Rai Slot open of modulation iron segment = 

𝜃1/(𝜃1 + 𝜃2) 

0.5 - 

Rapm Ratio PM = 𝜃3/(𝜃3 + 𝜃4) 0.9 - 

 

5.6.1 Flux Density Distribution 

Our model has been tested using a CMG with the parameters listed in Table V. Fig. 

5-9 shows the results of predicting the magnetic field of a specific magnetic gear after 

using various combinations of loss functions and network structures. It can be observed 

that almost all the predictions are similar to the FEM solution, and the errors are hard 

to find visually as the mean absolute percentage error of each is less than 1%. 
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Fig. 5-9. Qualitative analysis on magnetic field prediction in the experimental 2-D setup with a 

generator network. The input and the predicted magnetic field of  𝐵𝜌 , 𝐵𝜙  and 𝐵𝑚𝑎𝑔  are 

presented. Visually, our method achieves to reconstruct the magnetic field obtained by FE 

simulation almost perfectly. 
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(a) 

 

(b) 

 

Fig. 5-10. Flux density distribution in the middle of the inner air gap (r = 66.9mm): (a) radial 

component and (b) tangential component. 
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(a) 

 

(b) 

The corresponding flux density distributions (radial and tangential components) in 

the middle of the inner air gap (r = 66.9mm) and in the middle of the outer air gap (r = 

Fig. 5-11. Flux density distribution in the middle of the outer air gap (r = 80.5mm): (a) radial 

component and (b) tangential component. 
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80.5mm) are plotted, respectively.  Fig. 5-10 (a) and Fig. 5-10 (b) show the radial and 

tangential components of the magnetic flux density in the inner air gap of CMG. 

Furthermore, the radial and tangential components of the flux density distribution in 

the middle of the outer air gap are shown in Fig. 5-11 (a) and Fig. 5-11 (b). We can 

observe a very good agreement between the results predicted by our model and the 

results obtained from FE simulation for both radial and tangential components. 

5.6.2 Torque 

Fig. 5-12 shows the torque variation exerted on the inner rotor while keeping the 

pole-pieces ring and the outer rotor fixed. The inner rotor rotates with a phase angle 

varying from 0 to 120 degrees. The predicted results are in good agreement with those 

obtained by the FEM.  
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5.7  Summary 

This chapter proposes a fast magnetic field approximation method for CMGs using 

cGAN. Based on the magnetic field approximation technique in the 2-D polar 

coordinate system, the flux density and torque for a magnetic field produced by PMs in 

CMGs have been presented. 

The empirical analyses showed that the cGAN model could accurately 

approximate the magnetic fields for CMGs, and its generalization ability is excellent, 

allowing various combinations of pole pairs. The predicted magnetic torque obtained 

by the air gap flux density and Maxwell tensor method is consistent with the FE 

simulation results.  

In addition to improved predictive performance, our model required a significantly 

lower model prediction time, making neural networks more practical for adoption in 

optimization processes. 

We note that our model performs excellent magnetic field approximation within 

the design space. The proposed cGAN model-based performance evaluation method 

can be advantageous in the real-time magnetic field approximation for the optimal 

design of electric machines. 

  

Fig. 5-12. The torque–angle curve predicted by our model (ResU-net as the generator, combined 

with SAE as the loss function). 
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Chapter 6.  Physics-Informed GAN for 

Simulation of Electric Machines 

6.1  Introduction 

With the development of digital twin technology, the speed of traditional 

numerical calculation methods is much lower than expected, and solving physical field 

problems faster has become the most urgent need, especially for the optimal design of 

electric machines [139]–[141]. 

There are two main reasons for this problem in engineering, and the first is that 

there is no efficient algorithm implementation. The mainstream of numerical algorithms 

relies on iteration; hence it is almost impossible to simulate practical engineering 

problems in real time when the data is in a complex structure. The second reason is that 

numerical computing researchers in different fields are not proficient in transforming 

complex theories into efficient codes, resulting in many numerical calculation methods 

that cannot be applied well in engineering. 

Many data-driven deep learning networks already lead to multi-physics simulation 

calculations, such as fluid field, stress, sound, and medicine. However, the application 

of AI in the electromagnetic field is underestimated. For example, we usually use 

numerical algorithms to simulate electromagnetic problems based on Maxwell 

equations in integral or differential form. The main algorithms include the analytical, 
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finite difference (FD), and finite element (FE) methods. The FE method is a general 

tool with a settled sequence of operations when analyzing different problems. 

The FE simulation involves mesh generation, global matrix assembly, and inverse 

matrix solving, which is exceedingly time-consuming. On the contrary, the analytical 

method requires few computation resources, but its accuracy and flexibility are limited. 

Therefore, we hope to use the existing electromagnetic problem dataset to promote 

the development of electromagnetic field approximation. Our dataset, LiM2-D, 

represents linear machines' two-dimension (2-D) electromagnetic field, i.e., the flux 

density distribution (B) of the linear machines in operation. It consists of material 

distribution, current density, the magnetization of permanent magnets (PMs), moving 

band, and flux density on the x-axis and y-axis. 

The specific details are in Section 6.3. We made definitions of multiple channels 

for the input. Unlike the previous work, multiple channels with separated properties, 

such as material, vectorized magnetization field, current density direction, and motion 

band, achieve the dataset's scalability. Different channels of input can interact in a way 

that influences the prediction. Therefore, the electromagnetic field problems for a given 

model with appropriate channels of materials, boundaries, and source conditions over 

a finite region of space can be adequately solved. 

Based on this dataset, some key challenges are pointed out in Section 6.5. In 

particular, the feasibility of dealing with large-scale problems like three-dimension (3-
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D) issues is discussed. Second, a nonlinear material representation that makes the 

electromagnetic field approximation meet more engineering problems is concerned. 

Moreover, the third concern is setting boundary conditions in electromagnetic field 

approximation. Lastly, the integration error of prediction is conducted. Note that this 

chapter does not aim to thoroughly tackle these challenges but expose them to the 

community for future research. 

Overall, our main contributions are: 

a) Physics-informed loss functions. 

b) A linear motor electromagnetic field dataset. 

c) An in-depth study of channel definition of input and output metrics. 

Some challenges faced in the electromagnetic field approximation for linear 

motors are highlighted, which can spark innovations in applications such as real-time 

electromagnetic simulation, digital twins, and optimal design for the renewable energy 

system. 

6.2  Physics-Informed GAN 

The physically informed GAN (PIGAN) is a conditional GAN. The generator can 

produce results almost identical to those calculated by the laws of physics through 

supervised learning. 
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The training datasets can be produced by numerical computing or measured by 

actual instruments. A well-trained generator can give nearly identical training results 

and conform to the physical properties. 

For example, in Fig. 6-1, the magnetic permeability, magnetization direction, and 

current density of the material are used as inputs to obtain the magnetic field produced 

by the generator. 

 

Fig. 6-1. Overview of novel DL approach for magnetic field approximation. A generator neural 

network is trained to predict the magnetic field values. 
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6.2.1 Problem definition for magnetic approximation 

The induced current can be ignored for a linear motor operating at low speed; only 

the magneto-static problem is considered. The governing equation for the static 

magnetic field, including PMs, is derived from Maxwell’s equations: 

 ∇ ⋅ 𝐵 =  0 
( 6-1 ) 

 ∇ × 𝐻 = ∇ × (
1

μrμ0
B) = 𝐽 

( 6-2 ) 

 𝐵 = μ(𝐻 +𝑀) 
( 6-3 ) 

where μ𝑟 denotes the relative magnetic permeability, μ0 is the vacuum permeability 

(i.e., 4π × 10−7𝑁/𝐴2), B is the magnetic flux density, and 𝐵𝑟 is the remanence of the 

PM material (i.e., the residual magnetic flux density), 𝐻 stands for the magnetic field 

strength, 𝑀 represents the magnetization strength of PM, and 𝐽 represents the current 

density vector. 

6.2.2 The physics-informed loss functions 

This work is inspired by generative image synthesis from the research area of 

computer vision, where GANs are trained to synthesize the new image based on the 

input identified image. Ideally, the generated result �̂� should match x0 in all the image 

pixels available and mimic the ground-truth full image x. Hence, a l1 loss, 𝐿𝑚𝑎𝑡𝑐ℎ, 
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between the predicted result �̂� and the given input image x0 and a second l1 loss is 

formulated: 

 𝐿𝑚𝑎𝑡𝑐ℎ = ||𝑥0 − �̂�|| 
( 6-4 ) 

For magnetic field approximation using a neural network, the rule of magnetic 

distribution information, i.e., Maxwell’s Equation, can be embedded. The results 

obtained are not only numerically close to the physical results but are also bound by 

physical laws. By adding physical loss terms to the loss function, the proposed DL 

method becomes physics-informed and can be seen as a regularization for generating 

magnetic fields. The first physical loss term is Gauss’s law for magnetism, which states 

that: 

 𝐿𝑑𝑖𝑣 = ∇ ⋅ 𝐵 =  0 
( 6-5 ) 

If we further assume the absence of electric current density J or changing electric 

field E over time t, Ampère’s circuital law can be simplified to: 

 𝐿𝑐𝑢𝑟𝑙 = 𝛻 × 𝐵 = 𝜇0𝐽 + 𝜇0𝜖0
𝛿 𝐸

𝛿 𝑡
 

( 6-6 ) 

where 𝜇0 is the vacuum permeability and 𝜖0 is the vacuum permittivity. 

In the case of the Maxwell Stress Tensor (MST), I have to calculate the divergence 

of the following tensor: 
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 𝑇𝑖𝑗 = μ0 (𝐻𝑖𝐻𝑗 −
1

2
𝛿𝑖𝑗𝐻

2) 
( 6-7 ) 

With H the magnetic field given by its values in the Cartesian frame (𝑥, 𝑦, 𝑧) 

𝐻(𝐻𝑥𝐻𝑦𝐻𝑧). 𝛿𝑖𝑗is the Kronecker sign (𝛿𝑖𝑗 =1 if i=j otherwise 𝛿𝑖𝑗  = 0). 

The Maxwell Stress Tensor (MST) is performed by calculating of the force using 

a surface integration on 𝛤’, over a 𝐷’ domain. The force can be obtained using the 

following formula: 

 

𝐿𝑀𝑆𝑇 = ∫𝑑𝑖𝑣 𝑇 𝑑𝑣

𝐷

 

                   = ∮ 𝜇0 ((𝐻. 𝑛)𝐻 −
1

2
|𝐻|2𝑛) 𝑑𝑠

Γ
 

( 6-8 ) 

The vector n is the normal on the surface 𝛤’. The MST method presents several 

advantages: 

• Linear or nonlinear cases can be evaluated. 

• The choice of surface integration is undistinguished. 

• Only one part of the mesh is concerned. 

Our final loss function used during training is formulated as follows: 

 
𝐿 = λ𝐸𝑀𝐺𝐴𝑁𝐿𝐸𝑀𝐺𝐴𝑁 + λ𝑚𝑎𝑡𝑐ℎ𝐿𝑚𝑎𝑡𝑐ℎ + 𝜆𝑑𝑖𝑣𝐿𝑑𝑖𝑣  

+𝜆𝑐𝑢𝑟𝑙𝐿𝑐𝑢𝑟𝑙 + 𝜆𝑀𝑆𝑇𝐿𝑀𝑆𝑇 

( 6-9 ) 

where 𝜆𝐸𝑀𝐺𝐴𝑁  , 𝜆𝑚𝑎𝑡𝑐ℎ  , 𝜆𝑑𝑖𝑣  , 𝜆𝑐𝑢𝑟𝑙 and 𝜆𝑓𝑜𝑟𝑐𝑒 are the penalty coefficients for each 

single loss term and define their relative importance. 



 

121 

 

6.3  The Linear Electric Machine Dataset 

This section describes the definition of the 2-D electromagnetic field 

approximation problem, the generation process, and the dataset's input. Unlike other 

datasets directly using pre-defined parameters, our dataset is a field-based dataset with 

multiple channels. 

6.3.1 The PMLSM Model 

To evaluate the nonlinear material property in the proposed method, we consider 

a permanent magnet linear synchronous machine (PMLSM) in this study. The geometry 

of PMLSM is shown in Fig. 6-2, the core material is Electrical Steel DW310 for 

simulation, and the nonlinear B–H curve is shown in Fig. 6-3. 

Three-dimensional parameters, namely, the width of edge (We), the width of slot 

(Ws), the width of teeth (Wt), and the height of slot (h1), are chosen as the geometry 

design variables. In addition, the input current also varies from 1A to 16A.  
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6.3.2 Definition of Physics-based Channels 

The definitions of each channel are based on two criteria. 1) Each channel should 

have a clear and unambiguous physical meaning, and it should consist of the component 

in each axis or direction if the property is a vector, such as 2 channels for a 45-degree 

magnetization vector M = (1, 1) in 2-D problem, 3 channels for a z-direction current 

density J  =  (0,  0,  2 × 106 A /m2  ) in 3-D problem. 2) Different channels should 

d q
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Fig. 6-2. Cutting view of the whole PMLSM 

Fig. 6-3. Nonlinear B-H curve of stator material in PMLSM FE model. 
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have significant variance in terms of geometric structure or property. I identify these 

four types of channels in the dataset, as listed below. Figure 6-1 shows the examples of 

our annotations. 

Current density – The applied current excitation of the linear motor will be 

converted to the current density, which is applied to the material based on the size of the 

mesh grid. The number of channels of current density is one in the 2-D problem and 3 

in the 3-D problem. 

Magnetic materials – The relative permeability of magnetic material is close to 

one, and this material involves channels for the magnetization direction vector. The 

magnetization will have two channels in the 2-D problem and three channels in the 3-

D problem. We will only add one channel if the magnetization is in one direction. 

Motion band – The moving part will be marked as one, and the materials and 

approximated fields inside the moving band will be extracted after approximation. The 

number of channels of motion band is one. 

Permeable materials – The relative permeability of this kind of material is more 

significant than one and does not have a magnetization direction vector. The number of 

channels of permeable material is one if the material is isotropic. Anisotropy material 

will have two channels in the 2-D problem and three channels in the 3-D problem. 
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6.3.3 Generating Linear Machine Models 

A 2-D PM linear motor model is selected in this study. The model consists of a 

series of initial condition setups. All initial conditions are implemented as the network 

input, including the relative magnetic permeability µr, the magnetization direction of 

PMs, and the current source defined in the excitation matrix. Since the input is more 

like a matrix, all input is determined based on density, i.e., the current (I, unit is Ampere) 

is converted to current density (J, unit is 𝐴/𝑚𝑚2) 

Then the physical properties of the field are sampled using the FE software to 

simulate the field and then extract the data from the solution with a structured mesh 

grid. An example of a test dataset is shown in Table 6-1. The three columns indicate the 

transient status of a linear motor when it moves at the speed of 1mm/s from the start 

point to the endpoint. Each column contains all status of the linear motor at a specified 

time. The first four rows are pre-processed input, and the last two rows are the FE 

solutions without scaling. 
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Table 6-1. Examples of our test dataset.  
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6.4  Results 

6.4.1 Evaluation Metrics 

Two types of evaluation metrics are considered in this study, including image 

synthesis metrics and Electromagnetic metrics. 

6.4.1.1 Image Synthesis Metrics: 

 There are no existing metrics for electromagnetic field synthesis. To objectively 

demonstrate the superiority of the proposed method, we quantitatively evaluated all the 

experiments using the structural similarity (SSIM) index and the peak signal-to-noise 

ratio (PSNR). The SSIM index measures the similarity of structural information in two 

images, where zero indicates no similarity and 1 shows total positive similarity. PSNR 



 

126 

 

measures image distortion and noise level between two images. A higher PSNR value 

indicates a higher image quality. SSIM can be used in physics-based image restoration 

[138], [142], [143], and a higher SSIM index means that the synthetic fundus image is 

more close to the real one. 

6.4.1.2 Electromagnetic Metric 

Magnetic force is one of the most critical performance indicators of linear motors. 

It can be obtained by flux density. Flux density distribution in the air gap generally 

reveals the performance of force ripple and the order of harmonics of the electric 

machines. The high-order harmonics will increase cogging force and the eddy current 

loss. Besides, the air-gap flux density is one of the most critical parameters to optimize 

when designing permanent magnet (PM) devices. During the PM device design stage, 

the air-gap flux density is typically derived from simulations. Therefore, it is an 

inevitable metric while designing a PM device. In LiM2-D, the air gap flux density can 

be obtained by motion band. 

After determining the magnetic field distribution in the Cartesian coordinate 

system, the force applied to the mover in the x direction and y direction 𝐹𝑥 and 𝐹𝑦 can 

be obtained by using the Maxwell Stress Tensor (MST) method, and is given by: 

 𝐹𝑥 =
𝐿

μ0
∫ 𝐵𝑥(𝑥𝑎𝑖𝑟 , 𝑦𝑎𝑖𝑟)𝐵𝑦(𝑥𝑎𝑖𝑟 , 𝑦𝑎𝑖𝑟)𝑑𝑥
𝑔𝑎𝑝

 ( 6-10 ) 
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 𝐹𝑦 =
𝐿

2𝜇0
∫ [𝐵𝑦(𝑥𝑎𝑖𝑟 , 𝑦𝑎𝑖𝑟)

2 − 𝐵𝑥(𝑥𝑎𝑖𝑟 , 𝑦𝑎𝑖𝑟)
2]𝑑𝑥

𝑔𝑎𝑝

 ( 6-11 ) 

6.4.2 Predicted results of linear machine 

The investigated PMLSM is a flat iron core LMG10-050 from ETEL. Table 2-1 

lists the performance of the PMLSM. This linear motor is a one-pole pair structure with 

a pole pitch τp = 16mm, and a force constant Kt of 88.8N/A. The air gap thickness is 

about 0.8mm, and the NdFeB permanent magnets have a residual flux density of 

approximately 1.23Tesla. 

 

 Current(A) FEM 
Prediction 

Pix2Pix PIGAN 

Continuous force (N) 2.23A 190 150 192 

Peak force (N) 15A 950 800 980 

Detent force (N) - 12 35 20 

 

It can be found in Fig. 6-4, Fig. 6-5, and Fig. 6-6 that the results using Pix2Pix 

have a higher loss in MAE, PSNR, and SSIM than that of the proposed model. Also, it 

can be observed that the employment of the proposed model predicts with higher 

precision.  

Table 6-2. Comparative study of magnetic field approximation for simulation of the test linear 

machine using FEM, Pix2Pix and proposed PIGAN 
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The training of our final model takes 15 hours for 200k iterations. As for the 

evaluation process, the total magnetic field approximation time of the 30-step PMLSM 

model using the proposed PIGAN is 1 second; each step costs 33.3 ms on average. In 

comparison, the conventional 30-step FE simulation takes 45 seconds, and each step 

takes 1.5 seconds on average. Convergence is achieved in around 150k to 200k 

iterations depending on the network configuration, as is shown in Fig. 6-4, Fig. 6-5, and 

Fig. 6-6. 

In addition, magnetic force can be obtained by calculating the integral of radial 

component times tangential component of flux density using the Maxwell Stress Tensor 

(MST) (c.f. (6-10) and (6-11)). It helps minimize the physics-informed loss function 

between the prediction and the ground truth and can quickly find the optimal model. 

Fig. 6-9 shows the torque variation exerted on the mover while the current is 2.23 

Arms. Fig. 6-12 displays the torque variation exerted on the mover while the current is 

15.5 Arms. The mover translates toward a positive direction on X-axis from 0mm to 

30mm. The predicted results are in good agreement with those obtained by the FEM. 
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Fig. 6-4. The MAE loss curve of PIGAN and Pix2Pix.  

Fig. 6-5. The PSNR curve of PIGAN and Pix2Pix.  
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Fig. 6-6. The SSIM curve of PIGAN and Pix2Pix.  

Fig. 6-7. The prediction and FEM results of x-axis air gap flux density when PMLSM works 

with continuous current. 
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Fig. 6-8. The prediction and FEM results of y-axis air gap flux density when PMLSM works 

with the continuous current. 

Fig. 6-9. The prediction results and FEM results of thrust force when PMLSM works with the 

continuous current. 
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Fig. 6-10. The prediction and FEM results of x-axis air gap flux density when PMLSM works 

with peak current. 

Fig. 6-11 The prediction and FEM results of y-axis air gap flux density when PMLSM works 

with peak current. 
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6.5  Challenges 

In this section, several critical challenges revealed by our dataset are identified. 

Then the possible solutions are proposed to overcome the obstacles, eventually 

improving the performance of electromagnetic field approximation. Note that this 

section is not aiming to offer new algorithms. Instead, it is trying to generalize the 

existing pipelines from the perspective of dataset characteristics. 

6.5.1 3-D Problem 

For 3-D problems, the input size is at least several hundred times larger than 2-D 

problems. Suppose the 3-D model with structured mesh and its electromagnetic field is 

approximated using the image synthesis method. In this case, only the newly added axis 

Fig. 6-12 The prediction and FEM results of thrust force when PMLSM works with peak 

current. 
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will cause the number of input variables to increase by several hundred times, and the 

number of channels will also increase. 

For example, if the axis of input of a 2-D problem is [100, 512, 512, 4], then the 

equivalent input of the 3-D model is [100, 512, 512, 512, 6] if the length of the z-axis 

is 512, and two 2-D channels are converted to 3-D channels. Moreover, as for 

anisotropic material properties, the 3-D problem will be more complicated 

In the future, it is suggested that 3-D problems can be processed as 3-D mesh 

segmentation or point cloud processing instead of using structured grids like pictures. 

The data structure will also be more complicated. It is necessary to arrange the input 

data structure and memory location reasonably. If it is heterogeneous computing, it is 

essential to consider sharing the same memory instead of the existing time-consuming 

and complex algorithms such as copying the memory data to the video memory. 

6.5.2 Materials 

Nonlinear electromagnetic material is widely used, and researchers have deeply 

investigated the characteristic for decades. The nonlinear material properties that need 

to be considered will increase the number of input channels. 

In addition, nonlinear materials require proprietary databases and formulas for 

fitting queries. As for anisotropic materials, the material in each direction can be 

vectorized. The material property makes it more complicated in data preprocessing. If 
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a multi-physics problem is considered, the model’s input will change because the input 

dimension, such as the channels, will be added, leading the model to be retrained. 

6.5.3 Boundary conditions 

Boundary conditions (b.c.) are constraints necessary to solve a boundary value 

problem. The significant influence of b.c. is that the input and output of the dataset 

cannot be cropped simply without the b.c. Our dataset uses the Dirichlet boundary 

condition, and the value is determined to be zero. Therefore, the initial b.c. channels are 

neglected in the input. 

If a non-zero b.c. is considered, the channels should be added, making the problem 

even more complex. Some preliminary results [144] show that image inpainting 

techniques from computer vision can be beneficial to this issue. 

6.5.4 Integration error 

When calculating the magnetic torque, the integration will be performed, which 

will enlarge the total error even if the error of each point is small. For example, the 

concepts of force and torque using MST method in the electromagnetic field require 

producing and integrating the alternating magnetic field near the moving object, and 

the calculation error rises extremely fast. 

Furthermore, 64-bit floating numbers (FP64) for scientific calculation are pretty 

common, while machine learning algorithms use 16-bit (FP16) or 32-bit (FP32) floating 
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numbers. The cost-performance ratio would be extremely low if the dedicated hardware 

trains the model. 

6.6  Summary 

In this chapter, a PIGAN for electromagnetic field approximation is introduced. 

The proposed method of generating FE model data and defining input channels 

achieves better electromagnetic field approximation accuracy. A physics-informed loss 

function outperforms the naive benchmark models through extensive benchmarking, 

improving forecasting performance.  

Moreover, several open challenges are highlighted, including 3-D problems for 

electromagnetic field approximation, material property consideration, and integration 

error in fundamental performance estimation.  

Additionally, PIGAN, as a neural network, has a standard development process. 

The standardized development process can significantly reduce the difficulty of 

software development, and it will be easier to put PIGAN into industrial applications 

than FE solvers. With the accumulation of data, PIGAN can evolve itself to improve its 

computational accuracy further. Hopefully, PIGAN can be a steppingstone towards 

advancing research in related areas.  
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Chapter 7. Conclusions  

7.1 Summary and contribution 

Topology optimization is a powerful tool for the optimal design of electric motors, 

especially for the rotor design. This section summarizes essential contributions in this 

thesis.  

First, the study extends the limited research on topology optimization using the 

multi-objective genetic algorithm and its application in the optimal design of 

synchronous reluctance motors. A TO tool based on FE computation and a multi-

objective optimization framework are developed. Meanwhile, a bitmap-encoded 

genetic algorithm for topology optimization is proposed. A SynRM with a complex 

structure was used for testing. The study employs a gaussian filter to remove the small 

parts in the topology matrix, thus reducing the computation time and making the 

optimized candidate model feasible. 

Second, no previous study has explored the impact of using the vectorized model 

for FE simulation in the topology optimization of the asymmetric rotor of electric 

motors. This study proposes a novel topology optimization algorithm, including 

considering the control strategy, using MPTA, and using high-resolution interpolation 

and edge-smoothing methods. Despite the increased computational time of the model, 
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the research shows that results obtained with the help of the vectorized CAD model 

during the TO can increase the optimized model's performance. 

Third, existing research on objective function evaluation methods of topology 

optimization of electric motors has primarily focused on FE simulation other than other 

methods. This study is one of the earlier studies to assess deep learning and its impact 

on employing AI in the objective function evaluation method. Generative networks are 

used for fast electromagnetic field approximation to reduce the motor's computation 

time. Novel network structure and several loss functions are employed, including those 

based on physical information. The results show that the proposed PIGAN can 

significantly reduce the calculation time while maintaining high precision. 

7.2 Recommendations for future research 

This research comprehensively studies TO applications for electric motors using 

the multi-objective evolutionary algorithms and the PIGAN. However, due to the 

limited time, the study has not combined the proposed PIGAN based on deep learning 

and the TO framework to optimize the electric motor. Therefore, further research can 

be studied in the future. 

Firstly, research on combining multi-objective multi-physics topology 

optimization is necessary and worthwhile. Multi-physics, such as combined thermal, 

mechanical, and electromagnetic TO for electric machines, remains challenging. 
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Previous studies consider these problems separately and assume initial/final conditions 

associated with both these problems. These assumptions can result in a loss of 

optimality and flexibility to expose tradeoffs.  

Secondly, a computationally efficient, PIGAN-based electromagnetic field solver 

can be developed to accelerate the speed of electric machine multi-physics topology 

optimization. As far as electric machines are concerned, the moving parts make the 

equivalent FE model time-consuming for multi-step simulation. An AI-based solver 

like PIGAN can dramatically reduce computation time, making multi-physics topology 

optimization feasible. 

Finally, a prototype machine can be rigorously manufactured and tested to verify 

the final optimized IPM motor model obtained by the proposed high-resolution 

interpolation and edge-smoothing method. 
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