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Abstract  

Airlines are faced with challenging situations, i.e., narrow profit margins and stochastic 

environments. Consequently, airlines struggle for operational cost reduction and robust 

schedules to enhance their profitability and competitiveness. The maintenance cost, due 

to its significance and expensive nature, has drawn increasing attention. The aircraft 

maintenance routing problem thus becomes increasingly important for airlines. Hence, 

this research study focuses on enhancing decision making in aircraft schedules from 

two aspects, with a view to improve cost-efficiency and robustness. 

 

From the perspective of cost-efficiency enhancement, it can be observed that there is 

an increasing willingness for airlines to contract-out their aircraft maintenance services, 

resulting in procurement circumstances in which maintenance providers offer quantity 

discounts to airlines. However, most of the models in the literature have ignored such 

advantageous policies. This motivates us to construct a new model, with a piecewise 

cost function for exploiting the total quantity discount policy. In solving the proposed 

model, we develop a column generation- based diving heuristic approach, which proves 

its effectiveness and efficiency through computational experiments. In addition, the 

computational results also reveal that the new model enables a noteworthy cost 

reduction compared with the traditional models. 

 

From the perspective of robustness enhancement, this study first concentrates on 

constructing robust aircraft routes with flexibility. The aircraft maintenance outsourcing 

creates a new way for airlines to modify the maintenance arrangements. This motivates 

us to investigate the potential effects of the maintenance distribution structure on the 

robustness of aircraft routings. Based on this exploration, a robustness strategy 

encouraging swapping possibilities is additionally integrated into the aircraft 
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maintenance routing problem. Accordingly, a new robust model is proposed. Our 

computational results demonstrate that a more concentrated maintenance can create 

more swapping possibilities for aircraft routes. Furthermore, the results also suggest 

that the routing solutions resulting from our proposed model enable a further 

improvement in robustness. 

 

On the other hand, attempts are also made in constructing robust aircraft routes with 

improved stability. It is acknowledged that a critical challenge in aircraft routings is the 

stochasticity of maintenance execution, while most of the traditional models of the 

aircraft maintenance routing considered the sources of disruptions in an aggregated 

manner. Therefore, we incorporate the uncertainties of heterogenous maintenance tasks 

into the robust aircraft routing decision framework, while considering other sources of 

disruptions. Accordingly, a new robust model is constructed, along with a tailored 

column generation approach. We analyze the impact of distinct degrees of maintenance 

uncertainties on the robustness of aircraft routes through computational experiments.  

 

In conclusion, the desire for cost and disruption management by airlines motivates the 

research work conducted in this thesis. Firstly, a new aircraft maintenance routing 

model integrating the total quantity discount is proposed. Secondly, the effect of the 

maintenance distribution structure on route robustness is investigated, and a novel 

robust model considering both the total quantity discount and a robustness strategy 

encouraging swapping possibilities is constructed. Thirdly, a new robust aircraft 

maintenance routing model incorporating the maintenance uncertainties of 

heterogenous maintenance tasks is developed. 
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Chapter 1. Introduction 

1.1  Research Background 

1.1.1 The Airline Industry 

The air transport sector is an important enabler of the global economy, with airlines 

facilitating connectivity of city pairs through providing the safest travel means. 

Statistics from the International Air Transport Association (IATA) reveal that airlines 

operated more than 22,000 city-pair connections in 2019, safely servicing 4.5 billion 

passengers (IATA, 2020). Accordingly, air carriers need to upsize and manage their fleet 

to cope with such operational needs. It is reported by the Bureau of Transportation 

Statistics (BTS) that, in 2019, the global active fleet size amounted to 210,981 aircraft 

(BTS, 2020). Notwithstanding such impressive development, there remain tremendous 

challenges for airlines. 

One of the imminent challenges to airlines is that the industry is characterized with 

surprisingly fierce competition, whether internally or externally generated, and narrow 

profitability. According to IATA, there has been a steady decrease in the global 

operating profit margin, from 7.5% of revenue in 2017 to 5.2% in 2019 (IATA, 2021). 

Furthermore, the COVID-19 pandemic has almost eliminated the chance of revenue 

enhancement, ultimately leading to financial deterioration. As also reported by IATA, 

the margin dropped significantly, under the influence of the worldwide pandemic, to   

-28.2% in the year 2020 (IATA, 2021). As a result, in order to survive in a highly 

challenging and competitive environment, airlines endeavored to slash expenses. 

However, among all the expenses, the ownership cost is a fixed cost that is unavoidable 

over a short period of time, while the fuel cost fluctuates with the market price, and is 

uncontrollable for airlines. 
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Furthermore, airline operations are challenged by diverse unexpected disruptions 

that can lead to significant delays, cancellations and prohibitive recovery costs. 

According to BTS, 18.87% of flights arrived more than 15 minutes late in 2019, while 

the cancellation rate reached 2.40% (BTS, 2022a). It was stated by Airlines for America 

that the annual costs of delays were estimated to be US$28 billion in 20181 . The 

resulting cost loss from delays even accounted for approximately 8% of the industry’s 

revenue (Gershkoff, 2016), and, no less crucial, flight delays generated significant 

passenger inconvenience and dissatisfaction.  

In response to intensifying competition and rapidly changing circumstances, 

airlines have already placed a high emphasis on strategic and scheduling decisions. 

Their primary concern should be, due to high operating costs, procuring greater cost 

efficiencies. Therefore, the first goal of this research study aims at improving the 

aircraft maintenance routing decisions under the circumstance of maintenance 

outsourcing, which enables a decrease in operational costs. On the other hand, in face 

of disruptions, airlines strive to improve the reliability of airline schedules. Hence, this 

study also concentrates on enhancing the robustness of aircraft schedules, through 

assessing the impact of the maintenance distribution structure, and integrating multiple 

uncertainties, especially maintenance stochasticity, into the aircraft maintenance 

routing framework. 

1.1.2 Aircraft Maintenance Routing  

Air transport is generally regarded as the safest travel mode of transportation (Chang, 

2012). Behind the scenes, the progressive implementation of preventive maintenance, 

strictly following the Federal Aviation Administration (FAA) regulations, facilitates an 

enhanced safety performance through detecting hazards before they influence aircraft 

airworthiness. To accommodate bigger fleets propelled by the expansion of passenger 

 

1 https://www.airlines.org/dataset/u-s-passenger-carrier-delay-costs/ 
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numbers and the greater need for city connections, the maintenance, repair, and 

overhaul (MRO) market enjoyed a rapid growth. Statistics from Oliver Wyman further 

reveal that a rising trend regarding the total MRO, from 68.4 to 117.7 billion USD, will 

remain in the next decade (Wyman, 2021). In this context, no airline can afford to ignore 

the expensive and significant nature of the aircraft maintenance cost, which has 

attracted particularly increasing attention (Haouari et al., 2013; Safaei & Jardine, 2018). 

The aircraft maintenance routing problem (AMRP), a great, almost striking success of 

operations research, thereby becomes increasingly important and critical in airline 

planning. From the operating perspective, airlines design daily flight schedules and 

determine the exact aircraft type assigned to each flight leg based on market forecasts, 

network analysis and the available resources. Given the above information, AMRP aims 

at constructing cost-efficient aircraft routes that satisfy many conditions, including, but 

not restricted to, maintenance requirements. It is emphasized that different maintenance 

routing schedules contribute to different maintenance costs (Liang et al., 2011; Orhan 

et al., 2011; Sriram & Haghani, 2003). There has been an increasing trend to outsource 

aircraft maintenance services. Under a procurement setting, the maintenance demands 

of airlines are scheduled and satisfied by purchasing services from multiple independent 

providers who may offer exclusive discounts on the service volume. The existing 

research studies regarding aircraft maintenance routing ignored this crucial 

procurement strategy. Therefore, in Chapter 3 of this thesis, the emphasis is on 

enhancing the long-term aircraft maintenance routing decisions in terms of the 

maintenance cost reduction, through integrating the total quantity discount strategy 

offered by independent maintenance third parties. In the following, we first describe 

the two variants of aircraft maintenance routing problem in (1). Then, we introduce the 

background of the quantity discount strategy under the settings of aircraft maintenance 

outsourcing in detail in (2). 
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(1) Aircraft maintenance routing: tactical and operational variants 

Two variants, i.e., tactical and operational problems, have emerged for the AMRP (Al-

Thani et al., 2016; Eltoukhy et al., 2018). Generally, both problems take maintenance 

requirements into consideration, however, the tactical variant focuses on, for relatively 

long term scheduling, generating rotations to be repeated (Feo & Bard, 1989; Sriram & 

Haghani, 2003). The optimization models for tactical aircraft maintenance routing are 

oriented towards constructing more cost-effective aircraft routes, which however 

follow diverse cost representations. As expected, the maintenance cost has been 

extensively considered. The size and complexity of tactical problems are impressively 

large. The number of possible aircraft routes of these problems increases exponentially 

with the number of flights. Therefore, it is often impractical to enumerate all the 

potential routes for tactical AMRP. Accordingly, the column generation technique is 

usually adopted to handle these large-scale problems. On the other hand, as the day of 

operation approaches, detailed conditions such as initial position of the aircraft and 

operational maintenance requirements should be carefully considered to ensure a 

smooth operation. Therefore, the operational aircraft maintenance routing problem is 

introduced, permitting customization to meet diverse operational constrictions, while 

taking the initial conditions of individual aircraft, such as original locations and 

accumulated flying time, into consideration (Al-Thani et al., 2016). 

 

(2) Aircraft maintenance outsourcing 

Aviation maintenance is a highly regulated and crucial issue in the airline industry. It 

can be discerned that before the deregulation of the market in 1978, airlines completed 

the majority of maintenance checks relying on self-inspection. In contrast, after this, 

mounting competition pushed fares so low that, in order to achieve cost savings, 

maintenance was gradually contracted out to third-party maintenance vendors (Czepiel, 

2003). As stated in Tang and Elias (2012), the percentage of outsourced maintenance 
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services was more than 44% in 2011, an increase of over 24% compared with the value 

in 1990. The popularity of purchasing maintenance services by airlines is expected to 

continue, not only impelled by the limitation of the qualified technician supply in the 

labor market, but also on account of its fruitful advantages, e.g., alleviating hard and 

soft costs associated with maintenance, providing reduced ground time and, due to 

improved professionalism, achieving better on- time performance. An upside of this 

procurement situation is that MRO providers usually offer exclusive discounts based 

on the event amount, known as total quantity discount policy, with various practical 

reasons for this widespread economic phenomenon. On the one hand, with the 

increasing reliance on outsourcing, the aviation maintenance industry is saturated with 

independent maintenance third parties, resulting in a higher level of competition. To 

cope with tough competition, suppliers tend to charge lower prices (Bağan & Gerede, 

2019). In addition, MRO providers normally have invested heavily and may suffer from 

huge operational costs, and thus are eager to gain business opportunities. In pursuit of 

stimulating airlines to increase maintenance orders, it is common and operable to 

provide quantity discounts. On the other hand, airlines usually negotiate a contract with 

maintenance suppliers under which the price for a certain order quantity is established 

(Quinlan et al., 2013). Typically, large volume purchasers, by virtue of the larger 

ordering quantities they bring to suppliers, have relatively stronger negotiation power, 

and thus are likely to secure exclusive price discounts in contract negotiations (Bugaj 

et al., 2019; Vega et al., 2016). Airlines have made great attempts to manage their 

maintenance costs, efforts are thus made on incorporating the discount policy into 

tactical aircraft routing decisions to activate cost efficiencies, as described in Chapter 

3. 

1.1.3 Disruption Management 

Although airlines try their hardest to create cost-effective schedules, an obstacle to 
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efficient and prompt operations is the disruption effect, which may force airlines to 

delay their flights and this delay can snowball down the route, hence imposing dire 

consequences (Clausen et al., 2010). Therefore, there has been increasing interest in 

managing randomness in operations to mitigate potential delays. In particular, this goal 

can be achieved through constructing robust airline schedules that possess either of the 

properties: flexibility and stability (Ahmed et al., 2017a; Aloulou et al., 2013; Liang et 

al., 2015).  

The flexibility within the aircraft routing decisions refers to the number of options 

provided to recover from disruptions. As soon as there is a disruption, a series of precise 

adjustments are needed to make it up, and a commonly used, relatively low-cost option 

is swapping aircraft (Hassan et al., 2021; Liang et al., 2018). To be specific, this strategy 

allows a disrupted aircraft to cover a later flight leg that in the original schedule is 

executed by an alternative aircraft. Therefore, a possibility of swapping aircraft enables 

reallocation of slack time, and if there are not many swapping possibilities inserted in 

routing plans, the disrupted flight may be seriously delayed or even cancelled. On that 

account, increasing the number of swapping possibilities in aircraft routing decisions 

becomes one of the most useful and efficient strategies to ensure the robustness of 

aircraft routes (Ageeva, 2000; Burke et al., 2010). The maintenance visit is an important 

procedure for aircraft routes. When implementing routing plans, airlines always expect 

that their aircraft can be released on time after receiving maintenance. However, a 

paradox is that aircraft are rarely maintained as planned. One of the common reasons is 

that maintenance is typically conducted during the night, while the last flight in the day 

may suffer more significant delays because of delay propagation and, as a result, aircraft 

cannot arrive at the maintenance station on schedule. Furthermore, while delays by the 

end of the day may be mitigated during the curfew time, the time is occupied by 

maintenance and hence the aircraft is more likely to start a new operational day with a 

late departure. Another trigger could be the extended maintenance duration caused by 
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unanticipated machine/equipment failures. Consequently, the aircraft is unable to fly on 

time the next scheduled flight early in the following day, further disrupting the routing 

plan for the rest of the day. Therefore, the robustness in maintenance stations is a key 

part of the route robustness, which can be enhanced by improving the number of 

swapping possibilities (Lapp & Cohn, 2012). Aircraft maintenance outsourcing became 

prevalent after deregulation, making it possible for airlines to intelligently modify the 

maintenance distribution structure, namely, deciding which maintenance stations 

should be selected and the number of visits per station. Therefore, efforts are made on 

improving the robustness performance of aircraft routing decisions, in terms of the 

number of swapping possibilities in maintenance stations, through investigating the 

impact of the maintenance distribution structure, as described in Chapter 4. 

On the other hand, stability within the aircraft schedules aims at preventing 

schedules from being influenced by stochastic events. A classical approach is to allocate 

slacks between connecting flights to absorb disruptions caused by uncertainties and 

prevent delay propagation throughout the schedule. Actually, airline operations are 

subject to various sources of disruptions (Choi et al., 2019; Sun et al., 2020). In 

particular, a number of external uncertainties, such as extreme weather and air traffic 

control, etc., are out of airlines’ control. However, BTS found, through examining the 

causes of delays in 2020, that 41% of the total delay time is attributable to airline-related 

disruptions, which include maintenance issues (BTS, 2022b). The airline industry 

operates under some of the most stringent operational conditions, with high reliance on 

aircraft maintenance. While the completion of maintenance tasks enables aircraft to 

leave the ground safely, the dispatch reliability might not be achieved since, in practice, 

maintenance is inherently uncertain, having the potential to cause remarkable 

disruptions. This uncertainty lies in the fact that some breakdowns or defects, e.g., 

electrical wiring discrepancies, may appear during the process of the maintenance 

check. Consequently, more time will be required to troubleshoot and fix such faults and 
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if, depending on the determined aircraft schedule, these faults cannot be eliminated 

within the ground time, the flight immediately after the maintenance will be delayed 

due to aircraft unavailability. More seriously, airline operators may have to completely 

cancel the flight in a case where the extended maintenance time is too long. Furthermore, 

the stochasticity of the maintenance duration can be also attributable to the discrepancy 

in resources at different stations. For instance, a shortage of tools, or spare parts, may 

prohibit aircraft from undergoing maintenance as planned since the aircraft need to wait 

until the tools or parts are available. Besides, maintenance staff may be absent from 

work because of the COVID-19 pandemic (Choi, 2021), leading to higher rates of 

absence, which significantly affects the maintenance capability. Another example 

concerns individuals with various levels of proficiency and productivity, which may 

result in different operating times. In such circumstances, highly skilled staff are able 

to complete tasks quickly, while for less efficient staff, it might not be possible to 

complete checks punctually, leading to long delays. The undeniable impacts of 

maintenance uncertainties on the number and consequence of delays have received 

special attention. According to Knotts (1999), for Boeing 747s, 20% of delays and 

cancellations were attributable to technical issues in checking and repairing the aircraft 

equipment. Specifically, as pointed by Rosenberger (2001), a major airline had to cancel 

up to 71 flights because of mechanical issues on a single day in June, 2000. Hence, it 

becomes very important to integrate the inherent uncertainty of maintenance into airline 

scheduling in order to mitigate the impact of disruptions. In the literature, the sources 

of disruptions are generally studied in an aggregated manner - known as a non-

propagated delay. This approach may underestimate the effects of maintenance 

uncertainties, resulting in aircraft schedules that are vulnerable to disruptions from 

maintenance checks. Therefore, the focus in Chapter 5 is on enhancing the robustness 

performance of aircraft routing decisions with the consideration of maintenance 

uncertainties.  
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1.2  Research Gaps 

In particular, this thesis focuses on bridging the following research gaps: 

 

1. These recent years have witnessed an upward trend in maintenance outsourcing 

(Qin et al., 2020), one that plays an increasing important role in common airline 

practice. This requires airlines to lay great emphasis on procurement-associated 

decisions. Although the total quantity discount policy is able to bring impressive 

cost savings and profit enhancement in real procurement problems, it is much less 

studied in airline planning. Therefore, it is valuable and beneficial to incorporate 

the consideration of the total quantity discount into the AMRP, with the aim of 

further reducing the overall maintenance costs. However, the major existing 

models with respect to AMRP did take maintenance cost into account, but ignored 

this crucial strategy through depending on a vastly oversimplified assumption- 

basically, the per unit maintenance cost remains unchangeable with the increasing 

operation density, leading to a potentially negative impact on the long-term cost 

management for commercial airlines. Our study tries to bridge the gap in the 

literature regarding the integration of the total quantity discount problem into 

AMRP. Obviously, this approach brings challenges in regard to computational 

complexity since the introduction of the total quantity discount policy brings 

various constraints and variables into the traditional aircraft maintenance routing 

model, complicating the decision-making process. 

 

2. Although some research studies have investigated aviation robustness, limited 

research studies focused on the influence of uncertainties occurring at the 

maintenance station on the routing plans. From a practical perspective, airlines 

outsource their maintenance to third-party suppliers and if an aircraft misses the 

appointed arrival time or unexpected maintenance events prolong the downtime, 
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the maintenance supplier cannot release the aircraft on time. This will further 

change the route schedule, causing terrible delays and hence significant costs. 

Therefore, robustness in maintenance airports is of vital importance to airlines’ 

smooth operations.  

 

     It can be seen, from the literature on robust aircraft maintenance routing, that 

robustness enhancement can be achieved by improving the number of swapping 

possibilities. Especially, for airlines, it is preferred to have more swapping 

possibilities in maintenance airports, because swapping aircraft after receiving 

maintenance will not disrupt the original maintenance plans and thus there is no 

need, if taking this action, to further adjust the schedule, i.e., rerouting the aircraft 

to a maintenance airport (Lapp & Cohn, 2012). It is noted that aircraft maintenance 

outsourcing creates an opportunity to judiciously adjust the maintenance 

distribution structure, the way in which airlines arrange regular maintenance. 

However, no studies, to the best of our knowledge, have investigated the impact of 

maintenance distribution structure on the robustness of aircraft maintenance routes, 

in terms of swapping possibilities. Therefore, our study attempts to bridge this gap 

by proposing a framework that analyses the robustness of aircraft routings under 

different maintenance distribution structures, while further enhancing robustness 

by encouraging more swapping possibilities at the maintenance stations.  

 

3. It is noted that an increasing number of publications have placed emphasis on the 

importance of route robustness to alleviate delays, while non-propagated delays, 

in most of the papers, were normally attributable to an aggregate of all types of 

stochasticity. However, this aggregated approach did not pay particular attention 

to specific random sources of disruptions. Thus, some researchers employed an 

alternative approach that considered particular randomness, such as block-time 

uncertainties (Sohoni et al., 2011), non-cruise time variability (Duran et al., 2015), 
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airport congestion (Lee et al., 2020), and the stochasticity of crew availability 

(Cacchiani & Salazar-González, 2017). However, in the literature, the existing 

aircraft maintenance routing models made no attempt to incorporate maintenance 

uncertainties. In practice, maintenance is subject to numerous uncertainties (Dinis 

et al., 2019; Shahmoradi-Moghadam et al., 2021), whereas, in the previous 

research on aircraft routings, the duration of a maintenance task was assumed as a 

deterministic value (Ruther et al., 2017; Safaei & Jardine, 2018). Consequently, 

the generated aircraft schedules poorly addressed the potential uncertainties in 

real-world operations and neglected the risks concerning the capacity to satisfy the 

actual maintenance requirement. In a word, many previous studies set the 

maintenance capacity per day (Liang et al., 2015) and ignored the impact of delays 

on the whole maintenance process, which may result in infeasibilities.  

 

    Furthermore, most of the traditional aircraft routing models generate generic 

routes for homogeneous aircraft respecting primary maintenance checks at regular 

intervals (Lan et al., 2006; Liang et al., 2011). However, they did not consider the 

states of individual aircraft, e.g., the original location at the beginning of the 

planning horizon and the associated pending maintenance tasks. Unlike historical 

practice, nowadays the airlines tend to break letter checks (e.g., A and C checks) 

into smaller tasks, and thus these tasks have smaller scope and shorter durations 

than a typical A check and have to be performed more frequently (Ruther et al., 

2017; Zhou et al., 2020). In such cases, each maintenance task of each aircraft 

hence has its own characteristics, i.e., the maximum flight time limit and, as 

indicated earlier, the execution duration with uncertainty, which need to be 

respected heterogeneously. In this research, we thus strive for the development of 

an alternative approach to construct robust routes for individual aircraft with 

heterogenous maintenance tasks, while taking into account maintenance 

uncertainties. 
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1.3  Research Objectives 

Motivated by the attempts that airlines made to manage their maintenance costs and the 

desperate need for more robust schedules to cope with uncertainties from both internal 

and external environments, this research aims at developing optimization models and 

corresponding algorithms, with the objective of helping airlines to improve their aircraft 

maintenance routing decisions. The cost optimization is vital in helping an airline 

remain ahead in the long run, and therefore this research study focuses on constructing 

a framework that provides cost-effective tactical decisions. The framework is then 

extended to provides greater flexibility so as to better react against disruptions. Our last 

goal aims at scheduling aircraft on a more timely-basis and thus developing an approach 

for building reliable routes that can withstand the forthcoming uncertainties.  

Towards these goals, the concentration is on meeting the following objectives: 

 

1. To investigate the aircraft maintenance routing in the context of maintenance 

procurement, comprising of formulating a model for AMRP that takes the total 

quantity discount into account, and developing an efficient solution approach for 

solving the optimization model. 

 

2. To investigate the potential effects of the maintenance distribution structure on the 

robustness of aircraft routings, measured by the number of swapping possibilities. 

In addition, to formulate a robust AMRP model that further incorporates a 

robustness strategy facilitated by encouraging swapping possibilities. 

 

3. To develop a robust AMRP model that incorporates the uncertainty of 

heterogenous maintenance tasks, while considering other sources of disruptions. 

Furthermore, to construct a tailored column generation solution approach for 

solving the model. 
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1.4  Research Contributions 

The main contributions of this thesis can be stated from two distinct perspectives, i.e., 

maintenance cost optimization and routing robustness enhancement, as described in the 

following.  

 

(1) Maintenance cost optimization 

In Chapter 3, a novel aircraft maintenance routing model and an efficient solution 

algorithm for optimizing the maintenance costs of airlines are proposed. The main 

modelling and methodological contributions are summarized in the following. 

On modelling grounds, a mixed integer programming (MIP) model is formulated, 

with the aim of minimizing a piecewise linear objective function. The proposed model 

is novel since it is the first one that explicitly captures the total quantity discount policy 

in aircraft maintenance routing decisions. Even though this policy has been explored in 

several other transportation problems and is widely applied under real procurement 

settings, it has not been studied in airline planning, especially the AMRP, in which most 

of the existing research models, to the best of our knowledge, made an oversimplified 

assumption, i.e., linear homogeneity in the unit maintenance cost (Eltoukhy et al., 2017; 

Sriram & Haghani, 2003). Therefore, the incorporation of the total quantity discount 

into AMRP makes a significant scientific contribution. Computational experiments 

show that this integrated model has the ability of delivering better cost-effective 

performance compared to the traditional model. On methodological grounds, we 

construct a column generation-based heuristic algorithm that exploits the special 

structure of our optimization model. The framework includes a column generation 

process for solving the linear programming (LP) relaxation of our proposed problem, 

in which a two-label shortest path approach with dominance rules is designed to 

generate promising route candidates. Furthermore, the incorporation of the quantity 

discount introduces new binary variables to the model and thus further complicates the 
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computational process. To handle this, we propose a two-phase branching scheme, 

based on which the selected variables are iteratively kept fixed in order to limit the 

search space. Subsequently, the resulting mixed integer programming sub-problem (i.e., 

sub-MIP) is solved exactly. 

 

(2) Routing robustness enhancement 

In Chapters 4 and 5, investigation and mathematical modelling for enhancing the 

robustness performance of aircraft routings are described. The major academic and 

practical contributions are given in the following. 

Firstly, this study deals with an important practical question about the effects of 

the maintenance distribution structure on the robustness of aircraft routing schedules, 

which is still underexplored in the field. Since maintenance is usually scheduled along 

with the aircraft routes, through understanding the characteristic of maintenance 

distribution structure and assessing its possible influence on route robustness, this study 

is able to deliver some suggestions on the strategy of maintenance distribution design 

and aircraft routing plans.  

Secondly, a robust aircraft maintenance routing model with the consideration of 

both the total quantity discount policy and the robustness strategy promoting swapping 

possibilities is proposed. The newly constructed model is novel, which is proven, 

through intelligent maintenance distribution and solution improvement, to derive cost-

efficient aircraft routes with further robustness enhancement.  

Thirdly, this research study is the first attempt, to the best of our knowledge, to 

develop an optimization model that explicitly considers the maintenance uncertainties 

of heterogenous maintenance tasks in constructing robust aircraft maintenance routings. 

In such cases, the duration of a heterogenous maintenance task is stochastically 

modelled using an appropriate probability distribution rather than a deterministic value. 

Besides maintenance stochasticity, we also incorporate the uncertainties associated with 
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other sources of non-propagated delays to explore the superimposed effects of these 

two stochastic variables. Our approach can make the resulting routing schedules more 

robust. Another important contribution is that we improve the maintenance capacity 

constraints from the maximum quantity each day to maximum quantity per hour, 

considering that the maintenance tasks consume resources in terms of person-hours, to 

model the impact of random maintenance duration. Our new approach can circumvent 

the inaccurate estimation of the maintenance facility occupation due to the assumption 

of deterministic maintenance times in previous studies. 

1.5  Structure of this Thesis 

After an introduction of the background, research gaps, objectives, and contributions of 

this research. This thesis is organized as follows. 

Chapter 2 reviews the related literature, while focusing on the aircraft maintenance 

routing problem and operations research approaches for robustness enhancement. We 

also provide discussion on the research gaps.   

Chapter 3 is devoted to the study on the novel aircraft maintenance routing with 

the consideration of the total quantity discount strategy. A new mathematical 

formulation for the proposed problem is presented and discussed. Next, to solve the 

optimization model, we develop a solution approach based on column generation, and 

the computational results and discussion are provided.  

Chapter 4 examines the impact of the maintenance distribution structure on the 

robustness of aircraft routes, based on the model proposed in Chapter 3. Then, to further 

improve the robustness performance, a novel robust aircraft maintenance routing model 

is proposed, which additionally incorporates a robustness strategy, i.e., encouraging 

swapping possibilities. Next, computational experiments are conducted to undergo 

examination and demonstrate the performance of the proposed model. 

Chapter 5 focuses on the aircraft maintenance routing closer to the day of 
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operations. Uncertainties of heterogenous maintenance tasks are included in the robust 

aircraft routing decision framework. Accordingly, a robust aircraft maintenance routing 

model and a tailored column generation solution approach are proposed. The 

computational study is carried out to investigate the impact of maintenance 

uncertainties.  

Chapter 6 gives the conclusions to this thesis, points out limitations, and presents 

potential future directions. 
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Chapter 2. Literature Review 

This chapter presents a review of the relevant literature. First of all, the studies 

regarding the airline planning process are sequentially introduced (Section 2.1). Then, 

we focus on the papers with regard to the two variants of the aircraft maintenance 

routing problem, i.e., tactical models (Section 2.2.1) and operational models (Section 

2.2.2). Next, we discuss two distinct approaches to evaluate and enhance the robustness 

of air transport (Section 2.3), including research on the analytical approach for 

assessing the robustness of aviation network (Section 2.3.1), and studies on the 

operations research techniques for improving the robustness of aircraft routings 

(Section 2.3.2). The applications of quantity discount in the transportation areas are 

then briefly reviewed (Section 2.4). Finally, we highlight the research gaps identified 

from the reviewed literature (Section 2.5).  

2.1  Four-stage Airline Planning 

An airline network is a huge system that consists of masses of flight legs airlines offer, 

hundreds of aircraft belonging to distinct fleets, and a great number of crews with 

different levels of experience. Besides this complexity, the airline planning process can 

be quite challenging, also in the light of demand uncertainties, sets of rules and 

regulations regarding crews and aircraft, and the unstable environment. Therefore, 

airline planning, one of the most difficult issues to deal with, is usually decomposed 

into four stages, i.e., the flight design problem, fleet assignment problem, aircraft 

maintenance routing problem and crew scheduling problem (Barnhart et al., 1998b; 

Gao et al., 2009; Jamili, 2017; Rosenberger et al., 2002). However, these sub-problems 

remain very complex and challenging, with significant computational difficulties. The 

following provides an overview of the basic concepts and optimization process for each 

stage as well as integrated problems. 
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2.1.1 Flight Design Problem 

The first stage of airline scheduling aims at designing the flight schedules based on the 

marketing forecasts, the airline network analysis and the available resources (e.g., 

airport slots) (Yan & Tseng, 2002). A flight schedule includes, in a particular time 

horizon (e.g., a day or a week), a set of flight legs with their corresponding flight 

numbers, origins, destinations, and departure/ arrival times. An example of a flight 

schedule is presented in Table 2-1. 

 

Table 2-1. Example of the flight schedule 

Flight number Origin Destination Departure time Arrival time 

N860DN MSP SMF 11:20 13:20 

… … … … … 

N998DL SAV ATL 16:58 18:10 

 

Flight design is fundamental to an airline’s profitability and its market share. 

Therefore, the objective in this stage, typically, is maximizing the profit. This goal was 

explored by Kim and Barnhart (2007), considering flight schedule design for a charter 

airline, with passenger demand regarding different fare classes. This problem has its 

own characteristics, e.g., a weekly fixed demand that fluctuated day by day within a 

week, and, therefore, it was reasonable to construct a flight schedule that can be 

repeated weekly. They proposed a MIP model for this problem, and solved it through 

an exact and a heuristic approach, respectively. Besides the objective of enhancing 

profits or revenues, some studies also attempted to determine flight schedules, aiming 

at achieving other objectives, e.g., resource utilization. Abdelghany et al. (2017) 

considered the impact of competition between airlines on the passenger demand in their 

flight scheduling model, with the aim of maximizing the passenger revenue, the number 

of possible rotations and the resource utilization, and constructed a heuristic-based 
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solution approach for solving their proposed model. Kepir et al. (2016) developed a 

model and a heuristic for addressing the problems of constructing new flight schedules, 

while considering fleet utilization enhancement and a decrease in the waiting time of 

passengers. 

Considering that airlines do not operate in a deterministic, but an uncertain 

environment, researchers tried to incorporate uncertainties into the process of flight 

scheduling decision-making (Jacquillat & Odoni, 2015; Naumann & Suhl, 2013). For 

example, Lee et al. (2007) improved the schedules of flights, in terms of robustness 

performance, through retiming the departure times, and, accordingly, a multi-objective 

optimization model was constructed. Yan et al. (2008) realized that the daily passenger 

demand in real operations had a significant impact on flight scheduling decisions, and 

thus took this crucial factor into account when designing schedules, while considering 

market share and aircraft resources. Accordingly, a stochastic-demand scheduling 

model was proposed to respond to this randomness. Naumann and Suhl (2013) 

proposed a stochastic optimization model for the flight design problem, with 

consideration of both the jet fuel price uncertainties and passenger demand uncertainties. 

2.1.2 Fleet Assignment Problem 

Once the flight scheduling problems are solved, the generated flight timetables serve as 

input in the fleet assignment stage. Then, the fleet assignment problem focuses on 

assigning a particular aircraft type to individual flight legs, considering various factors 

like the capacity of the aircraft, passenger demand, fleet size, and maintenance (Gu et 

al., 1994; Hane et al., 1995). Typically, there are three main constraints involved in the 

basic fleet assignment model: the coverage constraint ensuring that each flight leg can 

be covered by only one fleet type, the balance constraint requiring that the number of 

inbound and outbound aircraft are the same, and the aircraft availability constraint, for 

each fleet, limiting the quantity of aircraft that can be used for operations (Clarke et al., 
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1996; Sherali et al., 2006). 

Generally, the objective of a fleet assignment problem can be in maximizing profit 

(Barnhart et al., 2002; Belanger et al., 2006; Bélanger et al., 2006; Grothklags, 2003), 

minimizing the total costs (Hane et al., 1995), or maximizing utilization of the resources 

(Dožić et al., 2019; Rushmeier & Kontogiorgis, 1997). For example, Abara (1989) 

proposed an integer linear programming model to formulating the fleet assignment, the 

objective of which was profit maximization, while in the study of Hane et al. (1995), 

the fleet assignment was formulated as a multi-commodity flow problem, with the aim 

of minimizing costs, including the costs for recapturing the “spilled” passengers, and 

the operational costs. This kind of model was seriously degenerated and, therefore, 

exact algorithms including the interior-point algorithm were applied to solve the model. 

Dožić et al. (2019) studied an integrated fleet sizing and fleet assignment problem, for 

the purpose of ensuring the aircraft utilization, because a spilled number of aircraft 

results in lower utilization, while insufficient aircraft means a loss of passenger demand. 

Other works have tried to improve the revenue of flight assignment, taking advantage 

of the network (Barnhart et al., 2009; Jacobs et al., 2008). For instance, the model 

proposed in Barnhart et al. (2009) aimed at assigning fleet types to subnetworks, and 

was more capable of modelling revenue and yielding great profit improvements. 

Furthermore, diverse strategies have been investigated to improve the solutions of 

fleet assignment. For instance, time windows, used to identify how much time is 

allowed for adjusting the departure time, can be helpful in gaining profitability 

improvements in fleet assignment, since connecting itineraries are altered to serve the 

demand (Desaulniers et al., 1997; Jiang & Barnhart, 2009; Sherali et al., 2013). 

Desaulniers et al. (1997) integrated time windows into the fleet assignment problem 

and, owing to the resulting larger set of possible connections, the aircraft capacity was 

better allocated. The experimental results showed that this consideration can improve 

the total profit by up to 21.9%. Furthermore, it is recognized that, in real operations, 
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passenger demand is updated over time, and the initial aircraft fleet assignment plans 

are made based on prediction, with low accuracy. Therefore, Sherali et al. (2005) 

introduced a demand-driven re-fleeting method to dynamically reassign aircraft 

capacities, and developed a MIP model to formulate this problem, as well as several 

valid inequalities to tighten the formulation. However, these research studies assumed 

that the legs were independent from each other. Recognizing the flight dependency on 

revenue, as a consequence of itineraries, Dumas et al. (2009) tried to iteratively enhance 

profits through alternately constructing fleet assignments, which were evaluated using 

a passenger flow model. 

2.1.3 Aircraft Maintenance Routing Problem 

After constructing the flight schedules and assigning a specific aircraft type (i.e., fleet) 

to each flight leg, the aircraft maintenance routing stage focuses on, given the aircraft 

in the same fleet, generating a sequence of flights flown by each aircraft, while 

satisfying the maintenance restrictions set by the FAA and the airlines’ internal 

regulations (Bulbul & Kasimbeyli, 2021; Haouari et al., 2013; Ma et al., 2022). 

Therefore, maintenance issues are significantly important to the aircraft maintenance 

routing decision making.  

Specifically, there are two important elements relating to maintenance activities in 

aircraft routings. One is the maintenance demand, namely, aircraft should perform 

maintenance before reaching the time limitation, i.e., maximum flying hours, maximum 

flying days, and maximum number of take-offs (Al-Thani et al., 2016). The other is the 

maintenance opportunities, namely, aircraft requiring maintenance need to stay 

sufficiently long in a station that has the capacity to execute this activity. This capacity 

in the literature is commonly respected by bounding, for each maintenance station, the 

maximum number of aircraft per night (or per day) (Faust et al., 2017; Khaled et al., 

2018; Maher et al., 2014). Typically, there are four types of maintenance for aircraft, 
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called letter checks; however, most of these checks have long intervals and low 

frequencies, and are out of the scope of aircraft maintenance routing. Instead, the 

literature considered, in the aircraft routing models, line maintenance, such as daily 

checks, that can be regularly conducted whilst the aircraft is still in operation and needs 

to perform a flight mission immediately after maintenance. For example, Haouari et al. 

(2013) proposed a compact model for a daily aircraft maintenance routing problem, 

taking into account the maintenance check with 65-hour constraints and the duration 

for maintenance execution less than 1440 minutes. On the other hand, some studies 

assumed that airlines operate under a much more stringent maintenance regulation, 

requiring aircraft to visit a maintenance station every 40 flying hours or 4 days (Gopalan 

& Talluri, 1998; Talluri, 1998). 

A recent trend in the AMRP literature is to focus on individual tasks, instead of 

maintenance checks with regular intervals. For instance, Ruther et al. (2017) considered 

distinct maintenance requirements for individual aircraft in an integrated problem. The 

problem was solved by a branch-and-price framework, in which there were several 

pricing subproblems to be handled. The authors developed two major approaches, i.e., 

selecting a subset to handle each iteration, and formulating aggregated pricing 

subproblems, implicitly solving a single pricing subproblem instead of dealing with 

several problems. In Safaei and Jardine (2018), each aircraft was assumed to undergo 

over 50 maintenance tasks, differing in cycle intervals, and therefore they proposed 

specific constraints, called generalized maintenance constraints, to ensure that there 

were sufficient maintenance opportunities inserted in the route for completing the tasks 

of individual aircraft. More recently, Lagos et al. (2020) proposed a framework that 

simultaneously makes maintenance plans and tail (i.e., individual aircraft) assignment 

decisions given a set of line-of-flights. The maintenance tasks considered in their 

approach were disclosed dynamically over time and carried out during the night. 

From the perspective of modelling and algorithm development. In particular, much 
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work has been done in modelling approaches, one of which is the compact model that 

consists of polynomial-sized decision variables and constraints (Haouari et al., 2013). 

Accordingly, this kind of formulation has the advantage of strong tractability and hence 

can be tackled by commercial solvers such as Cplex. For example, Liang et al. (2011) 

illustrated their problem in a time-space network and proposed a new compact aircraft 

maintenance routing model. In addition, two pre-processing strategies, i.e., node 

aggregation (node combination) as well as island isolation (arc elimination), were used 

to reduce the problem size. In contrast, Haouari et al. (2013) proposed a new AMRP 

formulation base on a connection network, through defining six different types of arcs. 

Then, a reformulation-linearization technique was used to reconstruct non-linear 

constraints, and two root-node strategies were developed to improve the model, which 

could be addressed quickly, while obtaining high-quality solutions and significant 

savings. Khaled et al. (2018) presented, for the tail assignment problem, a compact 

model with constraints of polynomial-scale and, therefore, this formulation was capable 

of significantly reducing the solution space. Computational experiments showed that 

the largest instance consisting of 1494 flights can be solved (with gaps less than 0.5%) 

by Cplex in three hours. 

In comparison, the other approach, i.e., the set-partitioning based formulation, 

along with a well-applied methodology, i.e., column generation, allows for an efficient 

solvability of large scaled models for aircraft maintenance routing (Liang et al., 2015). 

In particular, these models are typically formulated through the string-based 

formulation. A string is a flight sequence that starts from and ends at (possibly different) 

maintenance available airports. This type of model implicitly satisfies the flow balance 

and maintenance feasibility and, thus, can easily incorporate several operational 

considerations (Zhou et al., 2020). On the other hand, this formulation usually involves 

exponential strings and may be solved by some sophisticated methodologies, that is, 

column generation (Haouari et al., 2013). Column generation is an efficient linear 
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programming technique that can avoid the explicit complete enumeration of all 

potential columns. In aircraft routing research, column generation is usually used for 

addressing large-scale problems, by only generating effective aircraft routes (through 

the labelling approach) that are possible to improve the current solution. Furthermore, 

to obtain optimal integer solutions, column generation is usually embedded in the 

branch and bound approach, which is known as branch-and-price. For instance, Sarac 

et al. (2006) modelled the daily aircraft maintenance routing problem based on set-

partitioning formulation and, to solve the model, adopted the branch and price 

procedure, in which the sub-problem was a constrained shortest path problem, and the 

branching strategies were modified from the classic branch-on, follow-on branching 

rule. 

2.1.4 Crew Scheduling Problem 

As the last stage of airline planning, given the solutions of three previous stages, the 

crew scheduling problem needs to be solved, with the objective of partitioning a group 

of flight legs, respecting a set of specific and complex work rules and regulations, so 

that crew can fly (Barnhart et al., 2003). In light of the complexity of crew scheduling, 

this problem is typical divided into two steps, i.e., the crew pairing problem and the 

crew rostering problem (Chung et al., 2017; Gopalakrishnan & Johnson, 2005; Klabjan 

et al., 2002; Medard & Sawhney, 2007). To be specific, crew pairing aims at providing 

a set of pairings, with minimal costs, to cover all the pre-generated flight legs so that 

each leg can be served exactly once. Then the solutions of crew pairing are taken as the 

inputs of crew rostering, which focuses on creating a schedule, i.e., a roster, for each 

crew member. In this sub-chapter, we review the research work regarding the two steps 

in crew scheduling, respectively. 
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(1) Crew pairing problem 

The goal of the crew pairing problem is in generating and selecting the most satisfying 

pairings, while following specific rules and restrictions regulated by governments, 

unions, and air carriers (Aydemir-Karadag et al., 2013; Barnhart et al., 1995). 

Specifically, crew members have to undertake flying duties, while a duty refers to a 

sequence of flight legs linked by several sits. The sit time is time between two 

consecutive flight legs in a duty. The elapsed time of one duty is called a duty period. 

A pairing is thus a sequence of duties undertaken by a crew, starting and ending at the 

home base where the crew lives (Wen et al., 2020). 

The crew pairing problem is normally formulated as a set-partitioning model that 

can be solved based on the column generation framework. Quesnel et al. (2017) 

considered the base constraints that limits the total working time at every crew base in 

crew pairing, which was modelled based on set-partitioning problem and solved by four 

branch-and-price heuristics. Later, the authors proposed a crew pairing model that 

incorporated language constraints, i.e., some legs should be covered by crews with 

specific language qualifications, and a branch-and-price heuristic with a partial pricing 

strategy was proposed for solving this model (Quesnel et al., 2020a). More recently, in 

the study of Wen et al. (2022), a novel individual cabin crew pairing framework was 

constructed, which enabled crew substitution, and a column generation based heuristic 

was developed for solving the proposed model. 

Because of its large scale, metaheuristic methods were also adopted to solve the 

crew pairing problem. Deveci and Demirel (2018) used two stages to solve the crew 

pairing problem. The first stage tried to generate pairings while the second stage aimed 

at choosing the optimal pairings, with the objective of cost minimization. Three 

evolutionary approaches, including genetic algorithm variants, were developed to 

address this problem. 

As for crew costs, besides the traditional costs adopted by pre-reviewed literature, 
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some efforts have been exerted to capture the diseconomies of scale, which refers to a 

unit cost increase because of the increment in the operation density, through the 

approximate piecewise linear function. For instance, in Mercier and Soumis (2007), a 

piecewise linear waiting cost was included in the total crew costs. More recently, 

Quesnel et al. (2020b) incorporated base constraints in the crew pairing problem, in an 

attempt at balancing the workload among different bases. Accordingly, the problem 

penalized the additional workload following a structure in which the average penalty 

increased along with more workload, which induced a convex piecewise linear 

objective function. 

 

(2) Crew rostering problem 

After generating pairings, the goal of crew rostering problem aims to assign crew 

members to pairings, while respecting a series of restrictions, e.g., crew combability, 

total working days, and requested off-duty period (Cappanera & Gallo, 2004; Caprara 

et al., 1998). Typically, there are two ways to generate crew rostering. One is called 

bidline, which requires airlines to construct anonymous schedules first, and these 

rosters are then assigned to individual crew members according to bids. The other is 

personalized rostering, in which airlines try to create equal share crew schedules (Kohl 

& Karisch, 2004).  

The crew rostering problem is commonly of large size and computationally 

challenging, thus motivating several heuristic approaches in previous studies. For 

instance, Maenhout and Vanhoucke (2010) studied crew rostering with the objective of 

minimizing the costs and, in addition, penalizing deviational constraints regarding 

fairness. This problem was solved through their constructed hybrid scatter search 

heuristic method. More recently, Zhang et al. (2019) proposed a crew rostering model 

with multiple objectives, such as minimizing crew assignment costs and optimizing 

individual preferences. They also developed an improved variable neighborhood search 
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approach for solving such a problem, based on construction methods, e.g., crew-by-

crew. On the other hand, since the problem can be formulated based on a set-partitioning 

model, solution algorithms based on column generation also have been developed. The 

model in Zeren and Özkol (2016) for generating personalized schedules was based on 

the generalized set partitioning approach. Accordingly, a column generation heuristic 

was constructed for solving the large- scale rostering problem. 

2.1.5 Integrated Airline Planning 

A remarkable disadvantage of traditional sequential airline planning is the long lead 

time between the airline planning solution and the implementation date. Due to the 

highly competitive environment, airlines seek approaches to integrate their operational 

subproblems so as to achieve cost reduction, and increased profitability. Here we review 

the literature that integrates aircraft maintenance routing with some other stages of 

airline planning. 

2.1.5.1 Integrated Fleet Assignment and Aircraft Maintenance Routing 

The aircraft maintenance routing and fleet assignment are usually integrated to 

determine fleet and aircraft routing decisions, with the aim of keeping maintenance 

feasibility for the aircraft routing when adopting the solutions of fleet assignment.   

Barnhart et al. (1998a) proposed a model, along with a solution approach to solve 

simultaneously the fleet assignment and AMRP. The proposed model was capable of 

capturing the costs corresponding to aircraft connections and some complicating 

constraints such as maintenance demand. The problems of generating aircraft routes 

and of fleet maintenance scheduling were investigated by El Moudani and Mora-

Camino (2000). In addition, instead of using methods incorporating artificial 

intelligence for airline planning to deal with combinatorial optimization problems, a 

dynamic method to address on-line operation conditions was developed, which was a 
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combination of a dynamic programming for handling the fleet assignment and a 

heuristic for handling the aircraft maintenance routing. Haouari et al. (2009) also 

studied a model integrating the pre-mentioned two problems. Accordingly, a two-phase 

heuristic method was proposed to iteratively solve the minimum-cost flow problem, 

which can be modified to address other extensions, e.g., flexible flight departure times. 

The computational results validated the efficiency of the proposed method, which was 

proven to be able to generate near-optimal solutions (less than 1%) within a very short 

time. Later, two exact algorithms, i.e., benders decomposition and branch and price, 

were proposed by Haouari et al. (2011) to solve the integrated fleet assignment and 

AMRP. For the purpose of reducing the computational time, several acceleration 

strategies have been proposed, including maximal clique cuts and strong benders cuts. 

Through experimental studies, it was shown that the former approach performed better 

in quickly generating near-optimal solutions. In contrast, the latter approach was good 

at delivering optimal solutions.  

2.1.5.2 Integrated Aircraft Maintenance Routing and Crew Paring 

The integration of aircraft maintenance routing and crew scheduling aims at 

incorporating the various regulations and rules, e.g., the minimum turnaround time 

ensuring that two sequential flights can be connected, and the minimal sit time for 

making sure the connection for a crew.  

Some researchers studied these two problems both in a partly and full integrated 

way. Díaz-Ramírez et al. (2014) proposed a model for handling both the AMRP and the 

crew pairing on the condition of only having one fleet with one maintenance and crew 

base, which was applicable for several low-cost airlines. On the one hand, the problems 

were tackled in a traditional way, namely, the AMRP was first solved and then, the crew 

paring was solved by a combined heuristic and column generation method. Lastly, an 

integrated model was formulated and solved. The study of Parmentier and Meunier 
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(2020) was similar, in which they firstly solved these two problems separately. 

Regarding aircraft maintenance, they used a compact integer programming model to 

obtain the optimal solution by commercial MIP solvers, while column generation was 

used to address the crew pairing problem. Lastly, the authors solved the integrated 

problem and obtained near optimal solutions. 

On the other hand, several studies have focused on the full integrated problem. To 

generate minimum-cost routes and crew pairings, Mercier et al. (2005) integrated two 

stages of airline planning (i.e., aircraft routing and crew pairing), and used linking 

constraints to connect crew and route decisions. The authors proposed and compared 

two benders decomposition methods, which had different master problem, i.e., using 

the aircraft routing or the crew pairing. Furthermore, they generated several Pareto-

optimal cuts to improve the convergence, for the purpose of speeding up the 

computation. Similarly, Mercier (2008) also dealt with the integrated problem with 

linking constraints, while restricting the minimum connection time for crews when 

connecting with different aircraft. Furthermore, they proposed a solution method that 

enabled the generation of feasibility cuts, created by a benders decomposition.  

Another extension was in integrating the last three stages of airline planning. 

Salazar-González (2014) tried to handle an integrated three stages (i.e., fleet assignment, 

aircraft routing and crew pairing) within a daily planning horizon, similar to a 2-depot 

vehicle routing problem. A heuristic approach was used to address this integrated model. 

However, this model did not consider the maintenance operation as they assumed that 

no maintenance was performed during the daytime. Recently, Shao et al. (2017) also 

investigated an integrated problem that incorporated the last three steps of the airline 

planning process. Accordingly, a new model, with consideration of the itinerary-based 

demands was developed, and solved through a benders decomposition approach. 
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2.2  Aircraft Maintenance Routing Variants 

From the perspective of the problem variants, two main branches have emerged, i.e., 

tactical and operational problems (Al-Thani et al., 2016). Generally, both problems take 

maintenance requirements into consideration. The difference is that the tactical aircraft 

maintenance routing creates generic routes, i.e., sequences of flights, that can be 

repeated (Feo & Bard, 1989; Sriram & Haghani, 2003), whereas the operational aircraft 

routing permits customization to meet diverse operational constrictions (Al-Thani et al., 

2016; Eltoukhy et al., 2018). 

2.2.1 Tactical Aircraft Maintenance Routing 

As mentioned earlier, tactical aircraft maintenance routing aims at producing routes for 

homogenous aircraft. To do so, Clarke et al. (1997) studied an aircraft rotation problem, 

where the rotation represented a flying sequence for each aircraft, while allowing the 

execution of maintenance checks. The authors developed a model for this problem and 

compared it with the asymmetric traveling salesman problem (ATSP). Mak and Boland 

(2000) treated the aircraft maintenance routing as the ATSP, where the replenishment 

arc was used to represent the maintenance connection. To solve this problem, the 

authors constructed a heuristic framework in which upper bounds were obtained by a 

simulated annealing approach while lower bounds were generated through adopting a 

subgradient method to address a Lagrangian dual problem. The term “rotation” was 

also used in Liang and Chaovalitwongse (2013), where a new rotation-tour network 

model was developed for a weekly AMRP, which enabled a quite tight LP relaxation. 

Then, based on this formulation, they integrated it with the weekly fleet assignment 

problem, trying to handle two problems simultaneously using a diving heuristic. 

Lacasse-Guay et al. (2010) investigated how the three processes, i.e., strings, big cycle, 

one-day routes, influence the aircraft routing problem, and compared the resulting 

problem variants from different viewpoints. The results showed that the first variant 



 

31 

 

was the most adaptable among the three processes, but costed more computational time. 

The second variant performed the worst in most criteria as it had narrow applicability. 

The optimization models for the tactical AMRP are oriented towards generating 

aircraft routes with cost effectiveness. The maintenance cost has been extensively 

considered. For instance, since Feo and Bard (1989) incorporated maintenance base 

selection into aircraft routing decisions, there were both the fixed cost regarding base 

construction and, in their model, the variable costs with respect to each city. It is 

worthwhile to note that the unit costs stay the same regardless of how much 

maintenance is performed. Furthermore, the maintenance cost is also considered in 

conjunction with other expenditure. Sriram and Haghani (2003) formulated a model 

simultaneously minimizing the total maintenance cost (with stable unit cost for each 

aircraft in each city) as well as the penalties incurred by the misassignment of aircraft 

to origin- destination pairs. In Haouari et al. (2013), a comprehensive objective 

accounting for costs related to aircraft schedules was proposed, which included the 

maintenance cost, but it was assumed nearly constant for the same aircraft type, and the 

value for the connections (e.g., negative through values and short connection penalties, 

etc.). Bazargan (2015) investigated the aircraft dispatch problem, with the objective of 

minimizing the total maintenance costs. Furthermore, the authors considered that 

utilization maximization can be achieved by decreasing the number of expected 

maintenance activities. Finally, computational experiments were conducted, 

demonstrating that this proposed strategy was able to achieve 2%-5% maintenance cost 

savings, compared with other strategies. More recently, Eltoukhy et al. (2017) 

considered, besides the maintenance cost, the impact of labor shortages in the objective 

function. Furthermore, cost cutting can also be achieved during the solution process, 

and has been developed by Safaei and Jardine (2018), who provided a framework 

consisting of a model that minimizes the total route costs, and a new solution approach 

that avoids maintenance misalignment, thus enabling significant maintenance man-
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hour reductions. 

As mentioned earlier, through values were adapted in the objective function of 

Liang et al. (2011). Generally, the through value represents the returns that additional 

passengers are willing to pay when they can stay on the same aircraft instead of 

changing to another aircraft at a stopover station, and can be defined as negative when 

appearing in the cost-oriented models. In contrast, in the profit-oriented models, such 

as Clarke et al. (1997), through values of flight connections are rewarded in the 

objective function. However, very few studies on aircraft maintenance routing adopted 

the total profit maximization in their objectives (Desaulniers et al., 1997; Shao et al., 

2017). 

2.2.2 Operational Aircraft Maintenance Routing 

As airlines operate in a dynamic environment, a long- term plan may be not appropriate 

because it is easily disrupted by unexpected events (Sarac et al., 2006). Furthermore, as 

the day of operation approaches, detailed conditions such as the initial position of the 

aircraft and operational maintenance requirements should be carefully considered to 

ensure the feasibility of aircraft routes in operations. Therefore, the operational aircraft 

maintenance routing problem is introduced, through incorporating the information on 

aircraft closer to the day of operations, such as the original locations and accumulated 

flying time of individual aircraft, into the AMRP decision framework (Başdere & Bilge, 

2014; Sarac et al., 2006). Regarding the objectives in the operational AMRP, 

minimization of the unused flight time (i.e., the difference between the regulated 

maximum flying hours and the actual flying hours since the latest maintenance) has 

been widely explored, with the purpose of reducing the amount of maintenance and, as 

a consequence, cutting the total maintenance costs in the long term (Başdere and Bilge, 

2014). 

Sarac et al. (2006) were the first to construct routes for each individual aircraft, 
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with a surrogate objective, i.e., minimization of the unused flight hours. A new model, 

simultaneously considering maintenance person-hours and slots capacity, was 

developed to formulate the proposed problem. Başdere and Bilge (2014) extended it 

into a new weekly operational aircraft maintenance routing process, where a modified 

connection network was constructed to distinguish the before and after maintenance 

arcs so that the accumulated flight time of each individual aircraft could be tracked. 

This formulation was then solved by two different approaches to compare the exact and 

heuristic methods. One was the branch-and-bound with different branch strategies, i.e., 

selecting variables to branch on first. The other was a heuristic approach derived from 

compressed annealing. The computational results showed that the adjusted compressed 

annealing was able to deal with the large-scale problem. Compared to the model in 

Başdere and Bilge (2014), the compact model developed by Al-Thani et al. (2016) 

allowed the incorporation of various types of maintenance restrictions, that is, three 

maintenance constrictions were integrated into operational aircraft maintenance routing 

decisions. Then, an efficient very large-scale neighborhood search approach was 

applied to quickly generate (nearly) optimal solutions. Recently, some scholars focused 

on the multi- objective optimization problem. For instance, Cui et al. (2019) proposed 

a bi-objective optimization model with the aim of minimizing the number of aircraft 

used as well as the total unused flight hours. Besides the unused flight time 

minimization, some other objectives, such as the profit maximization (Eltoukhy et al., 

2018), have also been reported in the literature on the operational variant. 

2.3  Robustness of Air Transport 

Under an extremely stochastic environment, the operation of airlines often encounter 

various disruptions, which can result in delays and cancellations (Dunbar et al., 2014). 

The significance of delays has motivated abundant research on the robustness of air 

transport. To be specific, the literature mainly focused on evaluating and improving 
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robustness, which leads to two types of methods, i.e., the analytical and operations 

research approaches. 

2.3.1 Analytical Approach for Assessing Network Robustness 

The analytical approach aims at assessing aviation network robustness based on 

topological metrics, e.g., betweenness centrality and degree (Roucolle et al., 2020; 

Zhou et al., 2019).  

Lordan et al. (2016) analyzed the impact of different route network configurations 

(i.e., hub-and-spoke or point-to-point) on the robustness. They tried to assess the 

robustness of the whole network through the size of giant components and the 

simulation results showed that the point-to-point network operated by low-cost airlines 

was more robust. Later, the vulnerability of codesharing networks was examined by 

Klophaus and Lordan (2018), where the average edge betweenness, used to measure 

the efficiency of one node (i.e., airport) to connect with others, was extended to assess 

the robustness. Zhou et al. (2019) constructed a new metric for evaluating the 

robustness of an air transport network, considering the link weights, which meant the 

connection strength between two nodes, in terms of specific indicators, e.g., the route 

quantity and flight frequencies, the authors then adopted the proposed metric to evaluate 

the robustness of eight domestic networks. Chen et al. (2020) conducted an 

investigation of the robustness of China’s air transport network, to analyze how it was 

affected by stochastic failures or targeted attacks.  

In addition to these internal aviation factors, some research studies also paid 

attention to other transportation networks and their impacts on air transportation. In Li 

and Rong (2022), the positive influence of high-speed rail networks on the robustness 

of airline networks was investigated, based on measurement metrics including the travel 

time as well as the service frequency between node pairs.  
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2.3.2 Operations Research Approach for Enhancing Route 

Robustness 

Because of the underlying stochasticity in operations, airline companies and researchers 

put considerable efforts into making smooth aircraft schedules under uncertainties. The 

operations research approach is thus applied, striving to improve the robustness of 

airline schedules through optimization methods, an appropriate application of which is 

the robust aircraft maintenance routing problem (Ahmed et al., 2017b; Kenan et al., 

2018; Maher et al., 2018). This approach is at the route level, and thus needs detailed 

information on the flight schedule, fleet and maintenance airport availability. Then, 

taking possible disruptions into consideration, robust aircraft maintenance routing tries 

to generate aircraft maintenance routes that are less sensitive and more easily recovered 

from uncertainties. Accordingly, robustness can be generally constructed from two 

perspectives, i.e., stability preventing schedules from being influenced by stochastic 

events, and flexibility providing options easily recovered from disruptions (Eltoukhy et 

al., 2019). 

2.3.2.1 Robust Schedules with Flexibility 

The options for the former approach, aiming at enhancing route feasibility, include 

improving the number of aircraft swapping opportunities within the route (Ageeva, 

2000; Burke et al., 2010), guaranteeing sufficient short cycles (Rosenberger et al., 2004), 

and limiting the number of fleets per spoke airport (Smith & Johnson, 2006). Kang 

(2004) divided a flight schedule into independent layers and, as a result, the unexpected 

disruptions in a layer cannot influence the sub-schedules, and was able to significantly 

reduce delays. 

In terms of swapping opportunities, it is acknowledged that aircraft swapping is 

one of the most important and effective recovery policies in the face of disruptions, 

which means that more swapping possibilities inserted in the original schedule create 
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more flexibilities to alleviate the impacts of uncertainties. This motivated researchers 

to enhance schedule robustness by taking swapping possibilities into account (Ageeva, 

2000; Burke et al., 2010).  

In Ageeva (2000), the robustness of aircraft assignment has been improved through 

maximizing the number of overlaps, which occurred if two flight sequences could meet 

at some airports. Based on this criterion, the most robust solution was chosen among 

multiple optimal solutions for the basic aircraft routing model, and the experimental 

results showed that a remarkable improvement in robustness, by at most 35%, can be 

observed compared with models without swapping opportunity consideration. Later, 

Eggenberg (2009) examined three robustness strategies independently, including 

providing more swapping chances, to explore the corresponding impact on airline 

recovery. Recognizing the emphasis on cost competitiveness, these authors proposed 

AMRP models that seek to enhance robustness while maintaining the optimal cost. In 

contrast, the route cost is ignored in Burke et al. (2010), who attempted to achieve a 

robustness improvement through deploying multiple robustness strategies, i.e., retiming 

as well as improving swapping opportunities simultaneously. A hybrid heuristic 

algorithm was proposed to solve this complex problem.  

Since swapping aircraft to cope with disruptions may consequently disrupt the 

original maintenance plans, special attention therefore should be given to maintenance 

robustness. Lapp and Cohn (2012) proposed models aiming at making limited changes 

(i.e., aircraft swaps) so that the possibilities of an aircraft ending its last flight day at a 

maintenance station (they called it maintenance reachability) can be maximized.  

2.3.2.2 Robust Schedules with Stability 

Strategies for creating stability normally involve allocating slack time, i.e., the gap 

between ground time of the flight connection and the minimum turnaround time, such 

that disruptions can be absorbed (Ahmed et al., 2017a; Liang et al., 2015). In general, 
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delays broadly fit into two categories, i.e., non-propagated and propagated delays 

(Dunbar et al., 2012; Lan et al., 2006; Liang et al., 2015; Yan & Kung, 2018). 

Propagated delays occur due to delays in its upstream flight of the same aircraft, while 

non-propagated delays are caused by all types of uncertainties that are not related to 

aircraft routes. Lan et al. (2006) proposed a robust aircraft maintenance routing model, 

with the objective of minimizing the total expected propagated delays, and solved it 

using a column generation approach. A similar objective can be found in Liang et al. 

(2015), where they also considered the maintenance constraints and, like many 

traditional aircraft maintenance routing models, the maintenance capacities in each 

station per day. These studies assumed the non-propagated delays of flights to be 

independently distributed. However, Yan and Kung (2018) proposed a robust 

optimization method that allowed dealing with correlations in flight leg delays, i.e., 

assuming that non propagated delays of flights lay in a prespecified uncertainty set, 

with the objective of minimizing the maximal possible total propagated delay. 

Accordingly, the authors presented an exact method, i.e., column-and-row generation 

approach, to solve this robust model.  

In addition, some studies focused on applying strategies to achieve robust 

schedules (Burke et al., 2010; Cacchiani & Salazar-González, 2020). For example, 

retiming the departure time of flights (within a relatively small time window) is a 

widely-used approach to reallocate slack times and enhance robustness. Ahmed et al. 

(2017a) applied retiming, after obtaining the maintenance routing solution, to add slack 

times to absorb delays. Thus, this kind of retiming did not change the maintenance 

routes and it only impacted on the buffer time and, thereby, improved the on-time 

performance. In contrast, flight departure retiming adopted by Aloulou et al. (2013) can 

have an impact on routing schedules. They proposed a model with the aim of creating 

aircraft routes with robustness, by adjusting and determining the departure times of 

flights, while respecting the slot capacity in each airport, so that the slack times in the 
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flight connections can be reallocated. On the other hand, cruise speed control was also 

applied to improve robustness (Gürkan et al., 2016; Şafak et al., 2017). Gürkan et al. 

(2016) proposed a model that integrated the first three stages of airline planning, while 

considering cruise speed control, which resulted in a larger number of flight connection 

alternatives, and was thus able to generate schedules with enhanced robustness 

performance. Two heuristic methods were presented to address larger size problems. 

In recent years, investigation of particular sources of disruptions has been a 

research hotspot. Sohoni et al. (2011) incorporated block-time uncertainties as random 

variables in their model, while adopting retiming with the aim of enhancing the 

robustness of schedules. The authors also carried out computational experiments, which 

proved that a model considering block-time uncertainties could make a trade-off 

between service level and profitability. Later, in Duran et al. (2015), non-cruise time 

was assumed to be uncertain, and modelled through chance constraints, which were 

reformulated by second-order cone programming constraints, for the purpose of 

guaranteeing the passenger connection level, while cruise time could be adjusted if 

necessary. Through a simulation study, it was shown that the schedules resulting from 

the proposed model, in comparison with the published ones, could enable improved 

delay performance. Most recently, Lee et al. (2020) divided the sources of non-

propagated delays into two classes, i.e., systemic disruptions resulting from airport 

congestion and contingent disruptions, and then integrated them in the recovery 

decision framework.  

In addition, recognizing that one of the disruptions to aircraft schedules in 

operations is the availability of crew, i.e., if the crew assigned to an aircraft is late, the 

aircraft has to wait until the crew is available, and some research studies paid attention 

to constructing robust aircraft schedules that were less vulnerable to late crews through 

improving the crew decisions. For example, Weide et al. (2010) studied a problem that 

integrated the last two steps of airline planning (i.e., aircraft routing and crew pairing), 
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with the aim of minimizing a weighted sum of the costs and improving the robustness 

of schedules. The latter objective was achieved through penalizing aircraft changes for 

crews if the connection time was significantly greater than the minimum required 

ground time. More recently, Cacchiani and Salazar-González (2017) proposed two MIP 

models for the problem integrating the last three steps of airline scheduling and, in 

particular, aircraft maintenance was also considered in the problem. To enhance the 

robustness of the schedules, the goal of the model also aimed at minimizing the total 

times that crews had to change aircraft. To solve the proposed models (i.e., the path-

path and the arc-path model), two exact solution approaches were proposed. 

2.4  Quantity Discount 

The quantity discount policy is frequently observed in the transportation industry and 

therefore has been applied in the related research domain. In a situation with multiple 

third-party suppliers, considering quantity discounts (i.e., lower unit cost for larger 

purchases) can lead to possible cost savings (Manerba & Perboli, 2019; Nguyen et al., 

2014; Podnar et al., 2002; Russell & Krajewski, 1991) and profit improvement (Qiu & 

Lee, 2019; Yin & Kim, 2012).  

Typically, piecewise linear functions are commonly used to formulate this policy. 

For example, Mansini et al. (2012) proposed an integer programming model with 

piecewise linear purchasing costs for capturing total quantity discount and truckload 

shipping costs. Considering that this model was too complex to be solved exactly within 

a reasonable time, an iterative rounding algorithm was constructed to rapidly generate 

good solutions. Through computational experiments, it was shown that the total 

quantity discount had an significant influence on the solution structures. Hanbazazah et 

al. (2019) considered a freight consolidation problem that adopted the all-units (total) 

quantity discount policy, reflecting economies of scales, on shipping costs. A MIP 

model incorporating piecewise shipment costs as well as an exact solution algorithm 
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were proposed accordingly.  

However, very limited attention has been paid to the application of quantity 

discounts in air transportation research. An extremely rare example can be found in 

Shaban et al. (2021), in which the authors integrated the quantity discount offered by 

airlines in their model to encourage freight forwarders to order larger quantities in the 

underutilized routes and thus achieve demand balance. Numerical analysis has proven 

that the application of this strategy (i.e., quantity discount) can lead to a significant 

profit improvement, by more than 25%. 

2.5  Summary 

This chapter presents review works related to airline planning, i.e., flight design, fleet 

assignment, aircraft maintenance routing, crew scheduling, and the integrated problem, 

while highlighting the literature regarding the AMRP. Specifically, we present the two 

branches for the aircraft maintenance routing, i.e., tactical and operational variants, and 

investigate the costs considered in these two problems. Furthermore, realizing that 

airline operations can usually be disrupted by diverse uncertainties in the stochastic 

environment, we thus further investigate the literature concentrating on analyzing or 

enhancing the robustness of airline network and schedules. In addition, the 

incorporation of quantity discounts in transportation research areas is comprehensively 

surveyed, which helps us to understand its importance and significance. From the 

literature reviewed above, several critical research gaps can be identified. 

Firstly, the literature indicates that impressive cost savings can be achieved by 

incorporating the total quantity discount policy in transportation applications 

(Hanbazazah et al., 2019; Mansini et al., 2012). However, the traditional optimization 

models with respect to aircraft maintenance routing have ignored this advantageous 

strategy through adapting an oversimplified cost structure, i.e., the unit maintenance 

costs remain fixed. 
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Secondly, although extensive research efforts have been dedicated to assess the 

aviation network robustness and improve the robustness of airline plans (Eggenberg, 

2009; Li & Rong, 2022; Yan & Kung, 2018; Zou & Hansen, 2012), very limited 

attention has been paid to the robustness in maintenance stations. In particular, they 

unfortunately fail to analyze the underlying structure choice, i.e., the maintenance 

distribution structure, to understand its characteristics and possible impacts on route 

robustness. 

Thirdly, most of the traditional robust aircraft maintenance routing models 

addressed the sources of disruptions in an aggregated manner, however they ignored 

the particular influence of maintenance uncertainties (Lan et al., 2006; Liang et al., 

2015), which can generate aircraft routes that are vulnerable to disruptions stemming 

from maintenance tasks. 
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Chapter 3. The Aircraft Maintenance Routing 

Problem with Piecewise Maintenance 

Cost 

In this chapter, we investigate a novel aircraft maintenance routing problem that 

incorporates the impact of the total quantity discount policy, with the aim of 

constructing aircraft routes at minimal maintenance purchasing cost. This incorporation 

is primarily motivated by the attempts that airlines made to manage their maintenance 

costs, and the significant cost savings accrued by taking advantage of the total quantity 

discount policy in transportation applications, i.e., the price discount relying on the 

interval in which the total quantity falls (Christensen & Labbé, 2015; Hanbazazah et al., 

2019). When it comes to procurement in maintenance operations, by this token, an 

airline will receive discounts (namely, lower unit costs) if the number of events 

scheduled to a maintenance provider exceeds the breakpoint quantity. Therefore, the 

incorporation of a discount policy into aircraft routing decisions may activate 

significant cost efficiencies.  

To integrate the total quantity discount policy into the aircraft routing decision-

making framework, an imminent challenge is that the discount policy itself is one of 

the most technically complicated features of the purchasing problem (Manerba et al., 

2014). Furthermore, in achieving the integration of the total quantity discount and 

aircraft routing, the complexity of the problem can be remarkably increased since 

diverse factors should be taken into consideration, such as (i) a combinatorial decision 

framework comprising of the determination of the subset of flight legs on each route, 

deciding on the total number of maintenance events conducted at each station and, 

based on this choice, assigning the corresponding unit cost; and (ii) various operational 

rules, e.g., the flight sequence condition, maintenance requirement, and capacity 

restrictions, etc. Besides these features, there are a large number of aircraft candidate 
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routes, especially for large- scale networks that the total quantity discount can work on, 

which are computationally expensive. To overcome these difficulties, our mathematical 

formulation is based on the set partitioning problem, making it easier to incorporate 

several operational features and, more notably, avoiding the explicit complete 

enumeration of all potential aircraft routes. In addition, the total maintenance demand 

in each station is modelled as an endogenous continuous variable which can be 

calculated during the process of route selection. The resulting model is strongly NP-

hard, and hence needs a sophisticated solution approach. Therefore, we develop a 

column generation- based diving heuristic framework, which consists of a column 

generation approach for optimizing the linear programming relaxation of the 

constructed model, a diving heuristic where the searching space is limited by a novel 

two-phase branching strategy, and a restricted mixed integer programming problem for 

generating a feasible integer solution. 

The remainder of this chapter is structured in the following way. Section 3.1 is 

devoted to the overall modelling framework, which includes the basic setting of the 

proposed problem (Section 3.1.1), connection network construction (Section 3.1.2), and 

the maintenance cost structure (Section 3.1.3). Then, the new mathematical formulation 

for the stated problem is presented and discussed in Section 3.2. Next, Section 3.3 

illustrates the development of the solution approach. In Section 3.4, we report the 

computational experiments, including examination of the computational performance 

of our proposed algorithm (Section 3.4.2), a comparison between our model and the 

existing modelling approaches which neglect the total quantity discount policy in 

maintenance operations, i.e., with the unit maintenance cost remaining constant at each 

station (Section 3.4.3), and a sensitivity analysis on the key parameters of the cost 

structure (Section 3.4.4). We present the summary of this chapter in Section 3.5. 
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3.1  Problem Description 

In this sub-chapter, we provide a detailed description of the aircraft maintenance routing 

problem that exploits the total quantity discount policy in maintenance operations, in 

which the framework is demonstrated in Figure 3-1. In the following, we describe the 

regulations and rules related to aircraft routing, prepare a connection network for 

generating aircraft routes, and state the maintenance cost structure studied in this 

chapter.  

 

 

Figure 3-1. The tactical aircraft maintenance routing exploiting total quantity discounts 

 

3.1.1 Basic Setting  

Given a flight schedule, a set of homogeneous aircraft which have received 

maintenance, and coordinating with a few maintenance stations located at specific 

airports, the problem addressed in this chapter aims to generate effective and efficient 

aircraft routes with the goal of minimizing the total maintenance cost and, at the same 

time, accounting for some restrictions and regulations, as discussed in the following. 
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Our planning horizon is 14 days, as suggested by Feo and Bard (1989), where it is stated 

that a circulation of an aircraft can be set as multiples of 7.  

Consider a pre-defined flight schedule that contains a set of legs, each of which is 

characterized by a departure and arrival time, while starting from the origin and 

reaching the destination without any intermediate stop. Following actual practice, we 

say that two legs can be connected if (i) the arrival airport of the preceding leg happens 

to be the departure airport of the subsequent leg, and (ii) the minimum turnaround time 

requirement, i.e., the time spent on necessary operations between two consecutive 

flying tasks, is met. In addition, considering the improvement in aircraft utilization, the 

ground time should be no more than 24 hours (Cui et al., 2019). Hence, a sequence of 

flight connections consecutively covered by the same aircraft constitutes a route. Note 

that, to maintain the continuity of services, the route should also obey the maintenance 

requirements as discussed below.  

 

• Maintenance requirements 

According to the FAA’s regulations, aircraft must undergo a series of checks with 

increasing scope, duration and conversely decreasing frequency. In general, the 

frequency of maintenance checks is based on the accumulated flight hours, flight cycles 

or calendar days, whichever happens first. Practically, airlines usually operate a 

restrictive rule, i.e., every 4 calendar days (Feo & Bard, 1989; Talluri, 1998). We use 

𝑚𝑎𝑥𝐷 to represent the maximum calendar days between two successive maintenance 

activities. It often costs several hours to complete the maintenance check, and usually 

there is not enough time during the day for conducting maintenance checks; therefore, 

it should be conducted at night. In order to implement this restriction, each aircraft is 

forced to visit a maintenance airport, at least once every 4 days, where an overnight 

maintenance opportunity exists, i.e., allowing the aircraft to stay overnight at the airport 

for at least 8 hours, while ensuring that the capacity restriction at the station, which 
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limits the number of aircraft undergoing maintenance activities every night, can be 

satisfied.  

3.1.2 Network Structure 

We construct a network for generating feasible routes for aircraft. In the literature, there 

are two common approaches, i.e., time-space and connection network, used to represent 

the flight network (Zhou et al., 2020). The time-space network, in which each node 

denotes a departure or arrival event, consists of three types of arcs, i.e., a leg arc 

representing a scheduled flight, a ground arc standing for aircraft staying on ground, 

and a wrap-around arc indicating an overnight stay (Liang et al., 2011). In contrast, the 

flight legs in the connection network are represented by nodes in the network, while the 

arcs denote feasible connections between two successive flight legs. The time-space 

network can be used to generate Eulerian tours as routes. However, such a method fails 

to deliver the flight connections and individual aircraft routes explicitly. In comparison, 

individual aircraft routes can be constructed from the results of the decision variables 

by the connection network (Safaei & Jardine, 2018). Therefore, we employ, during the 

candidate route generation process, the connection network structure and modify it so 

as to be applicable to our problem (Başdere & Bilge, 2014; Sarac et al., 2006).  

In particular, this structure 𝐺 = (𝑉, 𝐴) contains a set of nodes and arcs, where 𝑉 

and 𝐴 stand for node and arc sets, respectively. Each operational flight leg of the flight 

set (denoted by 𝐹) can be represented by a node in 𝑉. Furthermore, dummy nodes, 

source 𝑜 and sink 𝑡, can be treated as a special type of flight leg with duration 0 and, 

therefore, 𝑉 consists of all legs, including source and sink, namely, 𝑉 = 𝐹 ∪ {𝑜} ∪

{𝑡}. In the network 𝐺, arc sets can be constructed in advance based on the scheduled 

flight timetable, so that the precedence relationship can be naturally built. By doing so, 

redundancy arcs can be eliminated in order to simplify the structure of the connection 

network and to improve the efficiency of solving the problem. To be specific, the set of 
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arcs 𝐴 further consists of two types of arcs, i.e., connection arcs (represented by 𝐴𝑓) 

and maintenance arcs (denoted by 𝐴𝑚 ). A feasible connection arc (i.e., non-

maintenance connection) is included in the network if the conditions identified for the 

flight connections given in Section 3.1.1 can be satisfied. In addition, if there is a 

potential maintenance connection (or opportunity) between two successive flight legs, 

a maintenance arc that belongs to 𝐴𝑚  should then be added. We assume that a 

maintenance check occurs at night, and a maintenance arc starts with an end-day node 

and connects a node departing from the same airport in the following day. It is 

worthwhile to mention that since all flight legs are ordered according to their departure 

time, 𝐺 is unsurprisingly a directed acyclic graph. For the sake of clarity, an example 

is shown in Figure 3-2, in which there is a maintenance station located at airport B and 

the ground time between flight legs 𝑖 and 𝑗 is longer than the required maintenance 

execution time. 

 

 

Figure 3-2. An example for the connection network structure. 

 

3.1.3 Maintenance Cost Structure  

Before developing the mathematical formulation, we first define the maintenance cost 

structure, on which the objective function to be studied depends. As mentioned earlier, 

the cost structure explicitly exploits, under the setting of maintenance outsourcing, the 
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total quantity discount policy, i.e., the unit maintenance cost depends on the discount 

interval in which the scheduled maintenance activities fall. Not surprisingly, this 

approach is generally in line with the normal practice since, in the purchasing process, 

the independent vendors submit quotations (bids) with quantity discounts for larger 

orders to stimulate demand, while airlines decide on the winners and associated 

quantities with the aim of minimizing the total maintenance costs as well as meeting 

the maintenance requirements satisfactorily. Therefore, airlines commonly observe a 

piecewise maintenance cost, which is non-decreasing in the number of scheduled 

maintenance operations in each station. 

Considering that airlines generally prefer to undertake their maintenance activities 

at the base airports and, without loss of generality, we suppose that one supplier is 

chosen from the maintenance station in each base airport. Now, consider a maintenance 

station (used to represent the third-party service provider at that base hereafter) 𝑠 ∈ 𝑆, 

the cost function of which has a set of intervals (segments) 𝐿𝑠 = {1, ⋯ , 𝑙𝑠} and each 

interval 𝑙 ∈ 𝐿𝑠 is associated with a unique unit cost 𝑐𝑙𝑠, which changes as long as the 

number of maintenance operations exceed a pre-determined breakpoint 𝑏𝑙𝑠. Beyond 

this breakpoint, the total maintenance cost for each station linearly increases with the 

number of maintenance operations assigned to the station increasing, until the next 

breakpoint. By the problem definition, this cost structure results in a lower unit cost for 

a greater amount of maintenance due to the offered discounts. For clarity of illustration, 

we present an example of the developed cost structure in Figure 3-3. 
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Figure 3-3. Piecewise cost structure. 

 

3.2  Mathematical Formulation 

In this sub-chapter, we strive for a mathematical formulation of the problem defined in 

the previous section. As stated in Section 3.1.3, the maintenance cost in each station 

follows a piecewise structure. Typically, there are three classic and common 

formulations for the representation of a discontinuous and piecewise function, i.e., 

multiple-choice model, incremental model, and convex combination model, whose 

linear programming relaxations are proven equivalent (Croxton et al., 2003). The 

multiple-choice model is recommended when the number of intervals, in the 

transportation problem, is comparatively small (Christensen & Labbé, 2015). Therefore, 

in this research, we construct the model based on the multiple-choice model to 

formulate the proposed maintenance cost structure. Hence, the novel aircraft 

maintenance routing model incorporating piecewise costs (AMR-PC) can be then stated 

in the following way. 
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Sets 

𝐹 the set of operational flight legs 

𝑅 the set of potential routes 

𝐷 the set of days 

𝑆 the set of maintenance stations 

𝐿𝑠 the set of intervals for station 𝑠 ∈ 𝑆 

 

Parameters 

𝑖    index for flight legs 

𝑟 index for routes 

𝑑 index for days 

𝑠 index for maintenance stations 

𝑙 index for intervals 

𝑏𝑙𝑠 the breakpoint for interval 𝑙 ∈ 𝐿𝑠, 𝑠 ∈ 𝑆 

𝑐𝑙𝑠 the unit maintenance cost allocated to interval 𝑙 ∈ 𝐿𝑠, 𝑠 ∈ 𝑆 

𝐾 the total number of aircraft 

𝐶𝑎𝑝𝑑𝑠     the maximum number of aircraft can be maintained at station 𝑠 ∈ 𝑆 on         

           day 𝑑 ∈ 𝐷  

𝜃𝑖𝑟 = {
1  if route 𝑟 contains flight leg 𝑖 ∈ 𝐹                                      
0  otherwise                                                                                  

 

𝜑𝑟
𝑑𝑠 = {

1  if maintenance at station 𝑠 ∈ 𝑆 on day 𝑑 ∈ 𝐷 belongs to route 𝑟
0  otherwise                                                                                                      

 

 

Variables  

𝑦𝑟 = {
1   if route 𝑟 is selected                              
0   otherwise                                                 

 

𝑣𝑙𝑠 = {
1   if  the maintenance demand lies in interval 𝑙 ∈ 𝐿𝑠, 𝑠 ∈ 𝑆  
0   otherwise                                                                                        

 

𝑢𝑙𝑠 the total maintenance demand in interval 𝑙 ∈ 𝐿𝑠, 𝑠 ∈ 𝑆 
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AMR-PC 

min   ∑ ∑ 𝑐𝑙𝑠𝑢𝑙𝑠

𝑙∈𝐿𝑠 𝑠∈𝑆 

                                                                                      (3-1) 

𝑠. 𝑡.  

∑ 𝑦𝑟

𝑟∈𝑅

≤ 𝐾,                                                                                            (3-2) 

 ∑ 𝜃𝑖𝑟𝑦𝑟

𝑟∈𝑅

= 1,                               ∀ 𝑖 ∈ 𝐹                                           (3-3) 

  ∑ 𝜑𝑟
𝑑𝑠𝑦𝑟

𝑟∈𝑅

≤ 𝐶𝑎𝑝𝑑𝑠,                     ∀ 𝑑 ∈ 𝐷 𝑎𝑛𝑑 𝑠 ∈ 𝑆                     (3-4) 

  ∑ ∑ 𝜑𝑟
𝑑𝑠𝑦𝑟

𝑑∈𝐷𝑟∈𝑅

= ∑ 𝑢𝑙𝑠

𝑙∈𝐿𝑠 

,           ∀ 𝑠 ∈ 𝑆                                          (3-5) 

𝑏𝑙−1,𝑠𝑣𝑙𝑠 ≤ 𝑢𝑙𝑠,                              ∀ 𝑙 − 1, 𝑙 ∈ 𝐿𝑠 𝑎𝑛𝑑 𝑠 ∈ 𝑆         (3-6) 

𝑢𝑙𝑠 ≤ 𝑏𝑙𝑠𝑣𝑙𝑠,                                   ∀ 𝑙 ∈ 𝐿𝑠 𝑎𝑛𝑑 𝑠 ∈ 𝑆                    (3-7) 

∑ 𝑣𝑙𝑠

𝑙∈𝐿𝑠 

≤ 1,                                    ∀ 𝑠 ∈ 𝑆                                         (3-8) 

𝑦𝑟𝜖{0,1},                                          ∀ 𝑟 ∈ 𝑅                                        (3-9) 

𝑢𝑙𝑠 ≥ 0, 𝑣𝑙𝑠  𝜖{0,1},                         ∀ 𝑙 ∈ 𝐿𝑠 𝑎𝑛𝑑 𝑠 ∈ 𝑆                 (3-10) 

The objective function (3-1) aims at minimizing the total maintenance cost. This 

strategy exploits a maintenance cost structure in which the cost per unit is selected 

depending on the total number of the maintenance operations scheduled at a station, 

which is calculated using the left side of Constraint (3-5). It is worthwhile to note that 

this objective function is generic so as to include other cost structures like constant unit 

cost adopted by most of traditional models for AMRP, through fixing the value of first 

interval to 1. Furthermore, because the proposed model is constructed based on the 

multiple-choice model, the cost function can be slightly modified (through adding the 

intercept-related terms) to formulate the incremental discount type. Hence, the mix of 

these cost structures can clearly be achieved. 

Constraints (3-2)- (3-4) define the important factors or restrictions with which 
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general aircraft scheduling is of concern. To be specific, Constraint (3-2) enforces the 

required number of aircraft not to exceed the fleet size, while Constraint (3-3) is the 

coverage constraint, making sure that every flight leg can be covered exactly once. 

Moreover, the maintenance capacity at each station, limiting the maximum number of 

aircraft per day (we only count the aircraft receiving maintenance starting on that day), 

is bounded by Constraint (3-4).  

It can be readily observed that the above four constraints are closely related to the 

aircraft routes, which are followed by Constraint (3-5), which makes sure that the 

maintenance demand allocated to each station can be fulfilled. Constraints (3-6) and (3-

7) warrant that the maintenance allocation (i.e., the total maintenance operations 

allocated to each station) is in line with the corresponding upper and lower bounds of 

the interval, respectively. Furthermore, Constraint (3-8) guarantees that at most one 

interval can be selected for each station. Note that it is possible that none of the intervals 

will be chosen, which implies that the corresponding station will not be selected by the 

airline. Lastly, Constraints (3-9) and (3-10) define the domain of the decision variables. 

3.3  Solution Approach 

There are several challenges in solving the proposed AMR- PC. Firstly, the constructed 

problem consists of too many potential aircraft routes (or variables in the modelling 

level) to be explicitly enumerated. Secondly, the problem involving the total quantity 

discount is strongly NP-hard thus motivating study of effective and efficient heuristic 

methods for the solution (Manerba & Perboli, 2019). Thirdly, the incorporation of 

quantity discount introduces new binary variables to the model and thus further 

complicates the computational process. 

In aircraft routing research, column generation is an efficient linear programming 

algorithm for addressing such large-scale problems, by only generating effective 

aircraft routes that are possible for improving the current solution. Furthermore, it is 
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noted that matheuristic algorithms, such as primal heuristics, enable generating good, 

feasible solutions to large- scale optimization problems, through taking advantage of 

the exact algorithm methods (Sadykov et al., 2019). Therefore, we accordingly 

construct a suitable column generation-based heuristic algorithm for solving the model. 

Algorithm 1 provides the pseudo-code of the proposed algorithm. 

 

Algorithm 1 Tailored column generation- based diving heuristic algorithm 

Input: Instances 

Output: Integer feasible solutions with value of 𝑦-, 𝑣- and 𝑢- variables 

Initialize the restricted master problem and solve it via column generation (Section 

3.3.1 and 3.3.2); 

Diving heuristic with sub-MIP (Section 3.3.3) 

  for stations with the highest number of intervals 𝑙𝑚𝑎𝑥 do  

    if 𝑣𝑙𝑚𝑎𝑥,𝑠 is fractional then  

      create a node according to phase I of the branching scheme; 

      conduct column generation process; 

    end if 

  end for 

  if 𝑦- variable is fractional then 

    create a node according to phase II of the branching scheme; 

    conduct column generation process; 

  end if 

  Solve the resulting mixed integer programming problem exactly. 

 

Specifically, our solution algorithm framework is composed of two interdependent 

modules, one of which is the column generation scheme that endeavors to iteratively 

solve a restricted master problem as well as a corresponding pricing subproblem, 
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illustrated in Section 3.3.1 and Section 3.3.2, respectively. Secondly, to obtain a good- 

quality integer solution, this complete column generation process is properly embedded 

in the diving heuristic with sub-MIP. Considering that the model (i.e., AMR- PC) 

contains two types of variables, i.e., route variables for selecting the optimal aircraft 

routes and interval selection variables for identifying which interval will be chosen for 

the corresponding unit maintenance cost, to handle this, we introduce a two-phase 

branching scheme, based on which the selected variables are iteratively kept fixed to 

limit the search space. The details of the extended diving process are demonstrated in 

Section 3.3.3.  

3.3.1 Restricted Master Problem 

Model AMR-PC has an exponential number of route / column variables, which makes 

it impossible to solve directly. Hence, the LP relaxation of the master problem (i.e., 

AMR-PC) is considered, which we refer to as L- AMR-PC, and in order to apply the 

column generation procedure, which solves the LP relaxation with a set of route 

variables 𝑅′ ⊆ 𝑅 only, called restricted L- AMR-PC. The restricted L- AMR-PC takes 

charge of selecting the ideal aircraft routes from the current candidates. To maintain the 

feasibility in the initial stage, we therefore introduce one artificial variable to each flight 

coverage constraint. Next, the restricted L- AMR-PC is optimized through the linear 

programming technique, and the dual information corresponding to route-related 

constraints is then transferred into the pricing subproblem for finding effective routes 

(columns) with negative reduced costs, which are again fed into the solution pool of the 

restricted master problem. Hence, the next iteration begins with the updated restricted 

master problem. On the other hand, if no such promising route can be found (namely, 

no improvement on the current solution is expected), the LP relaxation is confirmed to 

be optimal and the whole column generation process terminates. 
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3.3.2 Pricing Subproblem 

As illustrated earlier, checking for the optimality of the LP relaxation (or the termination 

criterion for the column generation process), and generating promising routes can be 

achieved by solving the pricing subproblem, which is a shortest path problem with one 

resource constraint (i.e., the maintenance requirement in this problem). That is, a route 

is said to be feasible on condition of meeting the restriction, i.e., the aircraft must 

receive maintenance at least once every four days. Therefore, we address this problem 

based on the directed acyclic network with additional maintenance arcs, as described in 

Section 3.1.2. Now, given current solutions of the restricted L- AMR-PC, we can obtain 

the following dual variables. 

 

Dual variables 

𝜏 dual variable of the fleet size constraint (3-2) 

𝛼𝑖  dual variable associated with the coverage constraint (3-3) for flight leg 𝑖 

𝛽𝑑𝑠 dual variable with respect to the maintenance capacity constraint (3-4) for 

the maintenance station 𝑠 on day 𝑑 

𝛾𝑠 dual variable corresponding to the maintenance counting constraint (3-5) for 

station 𝑠 

     

Thus, the reduced cost �̅�𝑟 of the route 𝑟 is defined as 

�̅�𝑟 = −𝜏 − ∑ 𝛼𝑖𝜃𝑖𝑟

𝑖∈𝐹

− ∑ ∑(𝛽𝑑𝑠 + 𝛾𝑠)𝜑𝑟
𝑑𝑠

𝑑∈𝐷𝑠∈𝑆 

                             (3-11) 

where the first term 𝜏 is a constant derived from the restricted master problem, and we 

hence assign −𝜏 to the cost of the source node. The second and last terms are the costs 

contributed by the flight selections and maintenance checks along the route, 

respectively. It is noticeable that our pricing subproblem is different from the previous 

ones in the AMRP literature due to the cost derived by the maintenance counting (i.e., 
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the existence of 𝛾𝑠). 

The pricing subproblem searches for the optimal route with the most negative 

reduced cost, simultaneously meeting the maintenance restriction. Therefore, a two-

label approach that follows the dynamic programming process is developed. In this 

approach, a label is comprised of two components where the reduced cost associated 

with the route checks the optimality and accumulated flying days to ensure the 

feasibility of the routes in the network. Algorithm 2 provides the pseudo-code of the 

two-label approach, which works on the connection network 𝐺 = (𝑉, 𝐴) proposed in 

Section 3.1.2. 

Let 𝑒𝑖 = (𝑤𝑖, 𝜔𝑖) be a label of node 𝑖 (which can be a flight leg, source or sink), 

where 𝑤𝑖  tracks the total reduced cost while 𝜔𝑖  records the elapsed calendar days 

since the last maintenance. We employ a dominance rule to avoid the explicit 

enumeration of all possible (partial) routes with the purpose of shortening the 

computational time. To be specific, we consider two labels 𝑒𝑖
′ = (𝑤𝑖

′, 𝜔𝑖
′) and 𝑒𝑖

′′ =

(𝑤𝑖
′′, 𝜔𝑖

′′)  representing two different partial routes reaching the node 𝑖 . Then, 𝑒𝑖
′  is 

defined to dominate 𝑒𝑖
′′ on condition that 𝑤𝑖

′ ≤ 𝑤𝑖
′′and 𝜔𝑖

′ ≤ 𝜔𝑖
′′.  

To start the algorithm, we assign a label (−𝜏, 0) to the source node and ∅ to the 

label set of the remaining nodes. In view of the fact that the network is proven acyclic, 

the nodes therefore can be checked in topological order, and each time a node is 

processed, we successively address the labels belonging to this node. Recall that the 

network contains two arc types: connection arc and maintenance arc, whose costs and 

flying days are completely distinct. As a result, when extending a label of node 𝑖, all the 

arcs emanating from this node should be successively processed according to the 

corresponding arc type, which is illustrated in the following. 
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Algorithm 2 two-label algorithm 

Input: fleet size dual 𝜏, flight dual 𝛼𝑖, maintenance capacity dual 𝛽𝑑𝑠 and counting 

dual 𝛾𝑠 

Output: route with most negative reduced cost 

Initialize the source node’s label set as {(−𝜏, 0)} while the remaining nodes as ∅; 

for each node 𝑖 ∈ 𝑉 do 

  for each label (𝑤𝑖, 𝜔𝑖) of node 𝑖 do 

    for each connection arc (𝑖, 𝑗) ∈ 𝐴𝑓 do 

      𝜔𝑗 = 𝜔𝑖 + (day of flight 𝑗 − day of flight 𝑖); 

      𝑤𝑗 = 𝑤𝑖 − 𝛼𝑗;  

      if 𝜔𝑗 ≤ 𝑚𝑎𝑥𝐷 and (𝑤𝑗 , 𝜔𝑗) is not dominated by any label tied with 𝑗 then 

        delete the label(s) dominated by (𝑤𝑗, 𝜔𝑗); 

        add (𝑤𝑗, 𝜔𝑗) into the label set for node 𝑗; 

      end if 

    end for   

    for each maintenance arc (𝑖, 𝑗) ∈ 𝐴𝑚 do 

      𝜔𝑗 = day of flight 𝑗 − day of flight 𝑖; 

      𝑤𝑗 = 𝑤𝑖 − 𝛼𝑗 − 𝛽𝑑𝑠 − 𝛾𝑠; 

      if 𝜔𝑗 ≤ 𝑚𝑎𝑥𝐷 and (𝑤𝑗 , 𝜔𝑗) is not dominated by any label tied with 𝑗 then 

        delete the label(s) dominated by (𝑤𝑗, 𝜔𝑗); 

        add (𝑤𝑗, 𝜔𝑗) into the label set for node 𝑗; 

      end if 

    end for 

  end for 

end for 

Select the label for the sink node with the minimum reduced cost 𝑤𝑗
∗; 

if 𝑤𝑗
∗ < 0 then 

  generate the route; 

end if 
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1. Regarding a connection arc (𝑖, 𝑗) ∈ 𝐴𝑓 , only the cost with respect to flight 

selection (i.e., −𝛼𝑗) should be assigned to the arc, and thus contributes to the cost 

for the subsequent node 𝑗 (i.e., 𝑤𝑗). Moreover, the accumulated flying days for 

the subsequent node (i.e., 𝜔𝑗) is updated based on the label of the predecessor 𝑖 

(i.e., 𝜔𝑖) and the past days of this arc (i.e., the difference between the scheduled 

operation day of 𝑖 and 𝑗).  

 

2. Considering a maintenance arc (𝑖, 𝑗) ∈ 𝐴𝑚 with the condition that the flight 𝑖 is 

operated on day 𝑑  and the maintenance station 𝑠  is located in the departure 

airport of the subsequent flight 𝑗, then the cost associated with this arc becomes 

−𝛼𝑗 − 𝛽𝑑𝑠 − 𝛾𝑠. Note that 𝜔𝑗 in this step is set as the past days of this maintenance 

arc.  

 

After the calculation, we check whether 𝜔𝑗 ≤ 𝑚𝑎𝑥𝐷 and, if yes, the (partial) path 

is feasible and we can take the next action, namely, checking the dominance conditions. 

In this regard, two situations should be considered: If the resulting label is not 

dominated by any other label tied with the subsequent flight (node) 𝑗, this label hence 

can be added into the label list of the node 𝑗; otherwise it will be discarded, and ii) if a 

label, in the label set of the node 𝑗, is dominated by the resulting label then it should be 

deleted. Once all nodes are processed, the algorithm selects the route with the minimum 

reduced cost and, if all �̅�𝑟 ≥ 0 , the whole column generation process terminates. 

Otherwise, this qualified route should be added into the solution pool of the restricted 

master problem.   

3.3.3 Diving Heuristic with Sub-MIP 

The column generation is usually combined with the branch and bound approach, which 
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is known as branch-and-price, in order to obtain an optimal but comparatively 

computationally expensive integer solution. Therefore, with the hope of identifying an 

acceptable solution in a relatively reasonable time, we construct a diving heuristic in 

such a way that, at each node of the branch and price tree, column generation should be 

implemented, and after finding optimal LP solutions, the algorithm creates and 

processes only one child node. Furthermore, this diving process is then incorporated 

with sub-MIP which solves a restricted MIP directly (Sadykov et al., 2019).  

Considering the proposed model includes two different binary variables, based on 

the features of each variable type, we propose a two-phase branching scheme that starts 

from an optimal solution of the restricted master problem. In phase I, we first present 

some observations regarding the interval selection variable (𝑣𝑙𝑠 ) which represents 

whether the corresponding discount interval 𝑙 ∈ 𝐿𝑠 of the station 𝑠 ∈ 𝑆 is selected or 

not. Goossens et al. (2007) proposed an optimal solution for LP relaxation of the total 

quantity discount problem which selects the highest segment for each vendor. That is, 

services or goods are delivered, in the final LP solution, at the cheapest prices provided 

by the vendor. Therefore, the value of the 𝑣-variable for the highest segment can pose 

a significant influence on the solution quality, which motivates us to design a branching 

strategy based on these variables. Let 𝑙𝑚𝑎𝑥 be the maximal number of intervals among 

the maintenance stations and 𝑆̅  be the set of stations satisfying 𝑙𝑠 = 𝑙𝑚𝑎𝑥 . At each 

iteration, we select 𝑠 ∈ 𝑆̅ whose 𝑣𝑙𝑠,𝑠  is fractional with a value 𝑎, denoted by 𝑣𝑙𝑠,𝑠 
′ . 

Then, we have two branching constraints: 

𝑣𝑙𝑠,𝑠
′ + 𝑧𝑡 ≥ 1           ∀𝑠 ∈ 𝑆̅                                                 (3-12) 

𝑣𝑙𝑠,𝑠
′ − 𝑧𝑡 ≤ 0           ∀𝑠 ∈ 𝑆̅                                                   (3-13)    

Since the current restricted master problem with already-generated routes may 

become infeasible due to the additional constraints during the column generation 

process, we thus introduce in each iteration (referring to 𝑡) an artificial variable 𝑧𝑡, 
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penalized by a “big M” cost, to guarantee feasibility. When implementing this scheme, 

Constraint (3-12) is added to the restricted master problem if 𝑎 ≥ 0.5 or the value of 

∑ 𝑢𝑙𝑠𝑙∈𝐿𝑠   falls in the interval 𝑙𝑠  of the station 𝑠 ∈ 𝑆̅ , while Constraint (3-13) is 

employed otherwise. At each iteration, after adding a branching constraint, the 

restricted master problem is then solved. 

Moving to Phase II, in terms of the variables representing the route selection 

decisions, our branching scheme is thus based on the so-called branch-on follow-on, 

which is widely applied in the AMRP (Lan et al., 2006; Sarac et al., 2006). In particular, 

the basic idea is in selecting a pair of flight legs (𝑖, 𝑗)  through counting 𝑝(𝑖,𝑗) =

∑ 𝑦𝑟𝑟∈𝑅(𝑖,𝑗)  , where 𝑅(𝑖,𝑗)  denotes a line of routes in which the pair (𝑖, 𝑗)  is 

consecutively covered. This calculation is done to detect a pair such that 0 < 𝑝(𝑖,𝑗) <

1, reflecting that it appears in several routes with fractional values. Moreover, suppose 

that more than one such pair can be found, the one closest to an integer, i.e.,  (𝑖, 𝑗) =

arg min
(𝑖,𝑗):0<𝑝(𝑖,𝑗)<1

{min[𝑝(𝑖,𝑗) , 1 − 𝑝(𝑖,𝑗)]} , is selected for branching and for creating a 

node, where the flight legs 𝑖 and 𝑗 should be non-consecutively flown by the same 

aircraft if 𝑝(𝑖,𝑗) is close to 0, otherwise the pair (𝑖, 𝑗) is directly connected.  

We stop the branch-on follow-on process if no branching leg pair can be detected 

and thus the integrality of 𝑦 - variable is guaranteed. However, since not all the 𝑣 - 

variables are fixed during the diving heuristic process, to obtain a feasible integer 

solution of the proposed model, the restricted master problem is thus transferred into a 

restricted MIP problem and is then solved by a standard branch and bound process. 

3.4  Computational Experiments 

Here, we describe computational experiments to validate the effective performance of 

the model as well as the solution framework proposed in this research. The coding 

implementation used Java programming language while the restricted master problem 

and restricted MIP were solved through the Concert Technology in CPLEX Studio IDE 
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12.10. In addition, all the experiments were run on a laptop with Intel(R) Core (TM) 

i7-9750H CPU@ 2.60GHz and a Windows 10 operational system. Subsequently, we 

first prepare the data sets and necessary parameters for the experiments. Following 

these, we first examine the efficiency of the proposed algorithm, and the newly 

developed two-phase branching scheme. Next, we investigate the advantages of the 

model incorporating piecewise maintenance costs through comparative experiments. 

Finally, we conduct sensitivity analysis on the key parameters of the cost structure. 

3.4.1 Data Description 

In the computational study, we used data from a major U.S. airline’s operation schedule 

during January 2020, which was accessible on the website of the United States Bureau 

of Transportation Statistics (BTS, 2021). We focused on the Boeing 757 fleet and 

derived a total of eight scenarios, comprising a broad range of problem sizes over a 

two-week period. The scenario information is summarized in Table 3-1. In particular, 

each scenario is characterized by the number of flights, aircraft, involved airports and 

maintenance stations. We record them in an increasingly large manner, in which the 

first scenario is a small-scale problem with less than 200 flight legs, with the remainder 

middle and large ones.  

With regard to the maintenance cost structure, considering that it was not given in 

the original data, we assumed in our test that each maintenance station (located at the 

base airports belonging to the airline) had three cost intervals with two breakpoints (i.e., 

10 and 30). In particular, quantity discounts (i.e., 5% and 8%) were assigned the second 

and third intervals, respectively. Taking the first station as an example, we had the unit 

variable costs with respect to the three segments: 𝑐11 , 𝑐21 = 0.95 ∗ 𝑐11  and 𝑐31 =

0.92 ∗ 𝑐11 . In addition, the constant unit cost for each station, prepared for the 

comparative experiments, was equal to the one for the correspondingly first interval 

(called the basic price hereafter), which was generated around 500. The resulting 
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scenarios thus have discontinuous, non-decreasing costs. In addition, we then present 

the general setting for the required operational parameters: the minimum turnaround 

time between two successive legs is 40 minutes, and the maintenance duration is set as 

8 hours.   

 

Table 3-1. Characteristics for scenarios. 

Scenario No. of flights No. of aircraft No. of airports No. of maintenance stations 

1 152 6 16 3 

2 205 8 16 3 

3 263 10 21 4 

4 368 14 21 4 

5 424 16 22 5 

6 512 19 22 6 

7 560 20 21 6 

8 636 23 21 7 

 

3.4.2 Computational Performance 

3.4.2.1 Performance Analysis 

Computational experiments were carried out to verify the performance of the algorithm 

proposed in this chapter through solving the proposed AMR-PC. The numerical results 

are illustrated in Table 3-2, where the “Depth” is depth of the diving heuristic process, 

i.e., the number of created nodes in the partial branch and price tree, and “No. of routes” 

gives the total number of existing routes when solving the restricted MIP. Moving to 

the fourth and fifth columns, “LP objective” represents the lower bound, i.e., the 

optimal LP solution at the root node, while the “IP objective” stands for the integer 

solution obtained at the end of the solution process. Given the lower bound and the 
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integer solution (i.e., upper bound), “Gap” means the difference in percentage, which 

is calculated by (IP objective - LP objective)/ IP objective. Furthermore, the last column 

records the computational time of each scenario.    

 

Table 3-2. Computational performance of the proposed solution approach when solving 

AMR-PC. 

Scenario Depth No. of routes LP objective IP objective Gap (%) Run time (s) 

1 113 483 9025 9125 1.10% 24 

2 259 2903 11875 11975 0.84% 230 

3 365 3452 14378 14530 1.05% 682 

4 790 4764 19833 20010 0.88% 2204 

5 997 5717 22235 22700 2.05% 3145 

6 1499 9201 26875 27175 1.10% 8394 

7 1553 11589 28205.4 28675 1.64% 17109 

8 2093 19314 31923.8 32465 1.67% 31224 

 

We first focus particular attention on the run time, where it is clearly observed that, 

regardless of the size, all scenarios are solved within a reasonable time, which validates 

the efficiency of our proposed solution approach. To be specific, the small-sized 

problem, i.e., scenario 1, requires an extraordinarily short time (i.e., only 24 seconds). 

Another reflective finding is that the computational time generally grows in line with 

the increasing problem scale. For instance, it only takes 230 seconds to identify a 

solution for scenario 2; however, this value soars to 3145 seconds with respect to 

scenario 5, where the flight amount and fleet size are almost doubled. There are two 

main reasons behind this dramatic growth: i) the increasing number of constraints and 

route candidates complicates the restricted master problem, and ii) a significant increase 

in the complexity of dynamic programming since it should traverse all nodes (i.e., 
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flights) and connections. Despite that, our algorithm is able to find a satisfactory 

solution for the large-scale scenario, comprising 636 flight legs and 23 aircraft, within 

9 hours.        

From the respective of the solution quality, as can be seen in Table 3-2, seven of 

our test scenarios are shown to be near-optimal with very small optimality gaps (around 

1%), while the remaining one (i.e., scenario 5) also generates a relatively high- quality 

solution (with a gap slightly above 2%). It should be pointed out that the gaps result in 

large part from the relaxation of the interval selection variables (i.e., the binary variables 

𝑣) in the restricted master problem. In particular, we can clearly see, from Table 3-3, 

that the customized column generation- based approach is capable of identifying 

optimal solutions in most cases (five of eight scenarios while the remaining three have 

minor gaps) when adopted to address the traditional model without a piecewise function.  

 

Table 3-3. Performance comparisons of models with distinct maintenance cost 

structures. 

Scenario 
Traditional model AMR-PC Cost 

reduction LP objective IP objective Gap (%) IP objective 

1 9500 9500 0.00% 9125 375 

2 12500 12500 0.00% 11975 525 

3 15080 15080 0.00% 14530 550 

4 21540 21540 0.00% 20010 1530 

5 24100 24100 0.00% 22700 1400 

6 29020 29080 0.21% 27175 1905 

7 30580 30660 0.26% 28675 1985 

8 34560 34600 0.12% 32465 2135 
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3.4.2.2 Performance of the Proposed Branching Scheme 

In our diving approach, we propose a two-phase branching scheme, the effectiveness 

of which is validated through comparing it with the other strategy, i.e., only branch-on 

follow-on is employed (called base scheme hereafter). The computational results are 

illustrated in Figure 3-4, where we present the integrality gaps obtained through solving 

all scenarios using the solution approach with two distinct branching strategies. In this 

figure, it can be clearly observed that the integrality gaps yielded by the base scheme 

are significantly larger than those by the proposed strategy in all scenarios. Special 

attention is paid to scenario 8, where our strategy reduces the gap by 3.46% (compared 

to the base one), which shows the advantages of our two-phase branching scheme in 

terms of effectiveness. 

 

  

Figure 3-4. Comparison of two branching schemes. 

3.4.3 Advantages of the AMR-PC 

The model (i.e., AMR-PC) proposed in Section 3.2 exploits the total quantity discount 

policy through adapting piecewise maintenance costs. To examine the benefits brought 

about by this novel approach, we carried out a comparative study through further 
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solving the traditional model with constant unit variable costs on all scenarios. The 

corresponding results are shown in Table 3-3, where columns 2 to 4 record the 

computational performance of the traditional model, while column 5 displays the results 

of our newly developed model, which is copied from Table 3-2 for the convenience of 

comparison. In addition, the difference between the objective values of the two distinct 

models (i.e., the reduction in the total maintenance cost) can be found in the last column. 

Looking at Table 3-3, an intuitive observation is that remarkable cost savings can 

be achieved by the model proposed in this chapter. Taking scenario 4 as an example, 

we can see a dramatic drop in the objective value, by 1530. Therefore, AMR-PC, taking 

advantage of the appealing cost structure, shows a clear superiority over the traditional 

models. This result is consistent with expectations since the average cost stemming 

from the total quantity discount policy is much less than the constant one and, as a result, 

significantly drives down the total maintenance cost. We demonstrate the particular 

impact of this strategy through presenting the solution details of scenario 7, given in 

Figure 3-5, where the maintenance stations are displayed in a nondecreasing order 

according to the corresponding basic price.  

 

 

Figure 3-5. Solution details of scenario 7. 
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It can be clearly seen, in Figure 3-5, that the maintenance distribution structure is 

radically altered, that is, maintenance is more centrally scheduled at the station on EWR 

(up to 40) after employing our proposed model. The centralization structure reflects 

that, with the ultimate aim of pursuing a lower unit cost, it is preferrable to concentrate 

more maintenance activities on the same provider, rather than multiple, individual third 

parties, in order to accumulate orders, with the aim of pursuing discounts. This is 

especially true when the basic price offered by different suppliers happens to be 

identical. Therefore, we can observe that, considering that the basic prices of ORD, 

SFO and EWR are assumed the same, some of maintenance activities originally 

scheduled in ORD and SFO in the solution of the traditional model are assigned to EWR 

if the AMR-PC is applied. In addition, we would do well to pay special attention to the 

station with a smaller basic price, i.e., IAH. A straightforward finding is that, while 

selecting it is taken for granted in the case of the traditional model (to minimize total 

costs), fewer maintenance events are allocated at the station when solving AMR-PC. 

Going into the reasons, we find that there are only a slight number of maintenance 

opportunities provided at this station, therefore not sufficient to reach the discounting 

threshold. In contrast, although the basic price of EWR is a little higher, it can be 

lowered by exploiting the total quantity discount due to a larger number of scheduled 

events. In this circumstance, centralized scheduling maintenance (at EWR) may be 

more beneficial.      

Focusing on the performance of different scaled scenarios, we can unsurprisingly 

observe a generally bigger comparative solution gap along with the growth in fleet size, 

a direct reason of which is that more cost advantages are gained due to larger scale of 

operations. As shown in Table 3-1 and Table 3-3, we can witness an impressive 

improvement in cost reduction, by 1585, when the number of aircraft increases from 10 

to 23. However, there is a slight exception: scenario 5 performs slightly worse than 
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scenario 4 in terms of a smaller cost reduction. This might be because (i) the different 

set of maintenance stations with distinct cost distributions, and (ii) less flexibility in the 

flight network structure of scenario 5, as a result of which the maintenance distribution 

is forced to be decentralized in order to retain feasibility of the routing schedules. 

Despite that, it is worthwhile to note that the total maintenance cost falls significantly 

by USD 2135 in the scenario of the largest size (i.e., scenario 8). Considering there are 

52 weeks over the course of a year, the potential cost reduction on an annual basis can 

be equivalent to 2135*26 = 55510 USD. More encouragingly, the cost saving is 

expected to increase for commercial airlines with larger sized fleets. 

3.4.4 Impacts of Parameters 

Here, we examine the performance of key parameters of the proposed cost structure on 

the model performance. To this end, we generated more parameter combinations by 

varying three parameters (i.e., the number of intervals, the breakpoint and the discount 

rate of the highest interval), and conducted computational experiments on scenario 5 

for each combination. The results are illustrated in Table 3-4, where the first row 

presents the different combinations of previously mentioned three parameters, the 

second row records the corresponding total maintenance costs, and the last five rows 

show the solution details. It should be pointed out that the setting (1/0/0) represents the 

case of the traditional model in which the unit cost is fixed without any discounts, while 

the combination (3/30/8%) stands for the parameter setting in Section 3.4.1.  

According to columns 3 and 4, the total maintenance cost reduces notably by 345, 

as expected, when the discount rate increases slightly from 8% to 10 %. In contrast, it 

is observed that even though the number of intervals decreases (referring to columns 3 

and 5), the results record a very slight variation in total cost. This is because under both 

settings, the maintenance amount scheduled to EWR (35 and 34, respectively) can fall 

into the highest discount interval. However, taking a closer look at the last column, 
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since the breakpoint cannot be reached in condition of (2/40/8%), the cost is the same 

as the solution of traditional model.  

 

Table 3-4. Computational performance of various parameter combinations (scenario 5). 

Parameter 

combinations 
(1/0/0) (3/30/8%) (3/30/10%) (2/30/8%) (2/40/8%) 

Cost (USD) 24100 22700 22355 22740 24100 

IAD 0 0 0 0 0 

SFO 15 9 11 10 17 

EWR 29 35 33 34 27 

DEN 3 3 3 3 3 

LAX 1 1 3 1 1 

 The three parameters in each combination are the number of intervals, the breakpoint and the 

discount rate of the highest interval, respectively. 

 

3.5  Summary 

Operating in an increasingly competitive and volatile environment, major airlines are 

gradually contracting-out services, including maintenance operations, in order to 

release fixed assets and therefore enhance cost efficiency. As a result of outsourcing 

and strong negotiation power, airlines may enjoy quantity discounts from the 

maintenance providers in the purchase of services. Total quantity discounts can be 

commonly found in the literature on transportation in general, helping the industry to 

save significant money. However, in most traditional studies, this phenomenon is not 

adopted regarding aircraft routing problems. Instead, an oversimplifying assumption 

(i.e., conforming to a general pattern in which the unit variable costs always remain 

constant) was applied, which overestimated the total maintenance costs. Recognizing 

the research gaps and the actual practice of airlines, in this chapter, we consider the 
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tactical aircraft maintenance routing while exploiting the total quantity discount in 

purchasing maintenance events, which aims to achieve cost efficiencies. A piecewise 

objective function is central to our proposed model (i.e., AMR-PC). Furthermore, to 

solve this complex model, we construct a column generation-based heuristic algorithm, 

which comprises a restricted master problem for optimizing the current solution pool, 

a dynamic programming process with an appropriate dominance rule for generating a 

best-quality route candidate and a diving heuristic with Sub-MIP for quickly finding an 

integer solution.  

To verify the performance of our algorithm, computational experiments based on 

real airline schedules were conducted. The results show that our developed algorithm 

is capable of obtaining near-optimal solutions, in most cases, with a very small 

integrality gap in acceptable time limits, which demonstrates the effectiveness and 

efficiency of our column generation-based algorithm. Specifically, the algorithm can 

solve the largest scenario consisting of 636 flights in less than 9 hours. In addition, we 

also carry out computational experiments to examine the efficiency of the newly 

developed two-phase branching scheme. It is shown that the proposed branching 

scheme can yield smaller integrality gaps, by at most 3.46%, than a strategy solely 

employing the branch-on branch-follow. Then, we examine the benefits brought by the 

model proposed in this study through comparing with the results from the traditional 

models with constant unit variable costs. It is observed that remarkable cost savings can 

be achieved by the AMR-PC. Lastly, to examine the impact of these parameters on the 

computational performance, sensitivity analysis on key parameters of the cost structure, 

including the number of intervals, the breakpoint and the discount rate of the highest 

interval, is conducted. It is revealed that when the breakpoints are set smaller, it should 

be easier to get discounts. 

In addition, several managerial implications can be derived from the computational 

results. On the one hand, total quantity discount enables great cost saving for 
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commercial airlines, arising from the fact that the cost reduction is at most USD 2135 

per fortnight compared with traditional models. This can encourage airlines to further 

outsource maintenance operations and take this policy in procurement negotiation into 

consideration when making aircraft scheduling decisions. Through further analyzing 

the detailed solution of the two approaches, interesting findings emerged. That is, the 

maintenance distribution structure is radically altered, i.e., maintenance is centrally 

scheduled at the station on EWR (up to 40) after employing our proposed model, which 

may motivate airlines to place more importance on their maintenance distribution 

structure. Another interesting finding is that airlines do not always choose the supplier 

whose original (or basic) price is cheaper, since other suppliers may provide discounts 

due to larger volume and thus the corresponding price is reduced, maybe less than the 

original cheapest price. Therefore, airlines are recommended to modify the 

maintenance distribution structure, i.e., concentrate more services on fewer providers, 

through optimally restructuring the aircraft routes. The same also applies to airlines that 

employ an in-house maintenance strategy, where economies of scale, in terms of 

network size and route structure, can be better exploited through focusing more on 

fewer stations and thus further cost enhancement can be achieved. On the other hand, 

larger airlines may benefit more from this attractive cost structure, owing to the 

potentially more accumulated operations assigned to maintenance providers.  
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Chapter 4. Assessing the Impact of Maintenance 

Distribution Structure on Aircraft 

Routings’ Robustness 

In this chapter, we focus our attention to two aspects. Firstly, it is acknowledged that, 

from the computational results of Chapter 3, the introduction of a total quantity discount 

strategy offered by the third-party maintenance vendors when making aircraft 

maintenance routing decisions is able to alter the maintenance distribution structure (i.e., 

which maintenance stations should be selected and the number of visits per station), 

that is, it is expected that the maintenance distribution will be concentrated in order to 

get greater discounts and lower maintenance costs. We then investigate how the 

maintenance distribution structure affects the robustness performance of aircraft 

maintenance routings, measured by the number of swapping possibilities, and then 

uncover evidence for the choice of such structure made by airlines. Differing from the 

traditional literature that assesses network robustness through the analytical approach 

(e.g., topological metrics) (Roucolle et al., 2020; Zhou et al., 2019), our investigation 

is based on an optimization approach, i.e., through formulating and solving models, and, 

considering the significance of delays in maintenance stations, we focus our attention 

on the maintenance robustness. More specifically, we further introduce the aircraft 

maintenance routing model incorporating the total quantity discount policy (called 

AMRTQD) proposed in Chapter 3. Through using a major U.S. airline as a case study 

in Section 4.3.2, we solve the model and evaluate the robustness of the resulting 

solution by calculating the number of swapping possibilities in the maintenance stations, 

and compare it with the solutions using the traditional model without consideration of 

the total quantity discount policy. Secondly, we make further efforts on robustness 

enhancement through additionally incorporating a robustness strategy, i.e., encouraging 

swapping possibilities, into the aircraft routing problem. We hence propose an 
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integrated AMRP model (named as IAMRP) that considers two specific features, i.e., 

the total quantity discount policy to exploit the impact of the maintenance distribution 

structure and a robustness strategy facilitated by encouraging swapping possibilities, 

which is proven capable of constructing aircraft routes that enable a further 

improvement in robustness.     

The rest of this chapter is organized as follows. Section 4.1 presents the 

background of the problem investigated (Section 4.1.1), and states the situation of 

swapping possibilities (Section 4.1.2). Then, in Section 4.2, the IAMRP model is 

proposed (Section 4.2.2), which can be reduced to the AMRTQD model, and a solution 

algorithm is accordingly constructed (Section 4.2.3). Next, Section 4.3 describes 

computational studies to examine the robustness of aircraft routings with distinct 

maintenance distribution structures (Section 4.3.2) and demonstrates the performance 

of the IAMRP model (Section 4.3.3). We present the summary of this chapter in Section 

4.4. 

4.1  Problem Statement 

Basically, aircraft maintenance routing aims to construct aircraft routes with minimum 

costs on condition of satisfying the rules and regulations in the industry, while robust 

aircraft maintenance routing additionally concerns the ability to react to disruptions. 

Our intention of building a robust aircraft maintenance routing model is to (i) analyze 

how the maintenance distribution structure affects route robustness and (ii) produce 

aircraft routing solutions with further robustness improvement, while preserving cost 

savings. In achieving the first goal, we incorporate the total quantity discount policy 

into the model in order to create an alternative maintenance distribution structure for 

the reason that the maintenance orders may be accumulated in pursuit of discounts, 

resulting in reduced costs and a more centralized maintenance plan. Note that route 

robustness is assessed through calculating the number of aircraft swapping possibilities. 
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Furthermore, to seek additional robustness enhancement, i.e., the second goal, we 

further introduce a robustness strategy that encourages swapping possibilities into the 

model.  

4.1.1 Regulations 

A feasible aircraft route is a sequence of flights executed by the same aircraft, which, 

in general, conforms to two practical rules: 

Flight connection: This refers to flight pairs that can be successively covered by 

the same aircraft. To be specific, given a group of pre-scheduled flight legs 𝐹 which is 

indexed by 𝑖 and 𝑗, a flight connection (𝑖, 𝑗) can be constructed to be flown by the 

same aircraft as long as the time gap between the departure of flight 𝑗 and arrival of 

flight 𝑖 exceeds the minimum turnaround time allocated for the completion of ground 

service while this service is conducted at the same airport.  

Maintenance requirement: This denotes the maximum calendar days between two 

successive maintenance activities, which is regulated by the FAA and the internal rules 

of the airline. To follow this regulation, aircraft must arrive at an airport in which a 

qualified maintenance station is located before the maximum allowable days become 

due, while staying here overnight to permit the completion of maintenance (the duration 

of maintenance is denoted as 𝑚𝑖𝑛𝑀). We remark here that there exists an additional 

maintenance opportunity (or connection) for a flight connection that satisfies the above 

conditions. 

4.1.2 Aircraft Swapping Possibilities 

We adopt the concept of move-up crew for the robust crew pairing from Shebalov and 

Klabjan (2006) and extended it to apply to the aircraft maintenance routing problem. 

Precisely, we focus on the robustness in the maintenance airports. Then, the definition 

of the aircraft swapping possibility for evaluating and improving robustness of aircraft 



 

75 

 

routings is introduced. An example is also demonstrated in Figure 4-1 for the 

convenience of presentation.    

  

 

 

Figure 4-1. An example to demonstrate a swapping possibility for flight 𝑓 departing 

from a maintenance airport and originally flown by 𝑘1. 

 

Suppose there are two distinct aircraft denoted by 𝑘1 and 𝑘2, respectively. Let 𝑓 

be the first flight leg to be covered after 𝑘1 receives maintenance, while a maintenance 

connection (𝑖, 𝑗) is prepared for 𝑘2. We further use 𝑎𝑟𝑟𝑇𝑗 and 𝑑𝑒𝑝𝑇𝑗 to indicate the 

arrival and departure times of flight leg 𝑗 , respectively, and 𝑑𝑒𝑝𝐴𝑗  to denote the 

departure airport of 𝑗 . Then, a swapping possibility for flight leg 𝑓  (flown by the 

aircraft 𝑘1) exists if the following conditions are satisfied. 

Airport consistency: 𝑑𝑒𝑝𝐴𝑗 = 𝑑𝑒𝑝𝐴𝑓 . That is, the flight legs 𝑗  and 𝑓  should 

depart from the same maintenance airport so that swapping is possible.  

Later departure: 𝑑𝑒𝑝𝑇𝑗 > 𝑑𝑒𝑝𝑇𝑓. This inequality means that if the immediately 

preceding leg of 𝑓  is delayed or the maintenance duration is prolonged and, as a 

consequence, 𝑘1 cannot be released punctually from the maintenance station and thus 
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cannot execute 𝑓  as planned (namely, aircraft 𝑘1  is disrupted),  𝑘1  and 𝑘2  can be 

swapped so that 𝑘1  is assigned to cover the later leg 𝑗 . As a result, delay may be 

avoided.  

Maintenance feasibility: 𝑎𝑟𝑟𝑇𝑖 + 𝑚𝑖𝑛𝑀 ≤ 𝑑𝑒𝑝𝑇𝑓. This condition is defined to 

make sure that sufficient downtime is left for aircraft 𝑘2 to complete its maintenance 

after swapping, i.e., a maintenance connection between 𝑖  and 𝑓  can also be 

constructed for 𝑘2.  

4.2  Mathematical Formulation and Solution Framework 

Based on the above problem statement, a mixed integer programming model for our 

integrated problem (i.e., IAMRP) is derived, along with a tailored solution algorithm. 

While the IAMRP incorporates both the total quantity discount policy and the 

robustness strategy motivating swapping possibilities, we simplify IAMRP by only 

considering the discount policy to get AMRTQD, which is the basis for investigating 

our first goal. 

4.2.1 Basic Notation 

Before introducing the model for the proposed problem, we summarize the index, 

parameter and variable definitions of the model. It is noted that, in this chapter, we use 

the same notations used in Chapter 3, regarding constraints for classic AMRP and the 

total quantity discount, such as 𝑏𝑙𝑠 , 𝑐𝑙𝑠  and 𝐶𝑎𝑝𝑑𝑠 . In addition to these notations 

presented in Chapter 3, we further introduce notations used for encouraging aircraft 

swapping possibilities, which are summarized as follows: 
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Indices 

𝐹𝑚 the set of maintenance flights, 𝑖 ∈ 𝐹𝑚  if it is feasible to schedule a 

maintenance before flight 𝑖 ∈ 𝐹; 

  

Parameters 

𝑎 the award for a swapping possibility 

𝑀 a considerably large number 

𝜇𝑖𝑟 = 1 if a maintenance check scheduled immediately before leg 𝑖 belongs to 

𝑟; 0 otherwise 

𝜌𝑖𝑟 = 1 if a swapping possibility for maintenance leg 𝑖 ∈ 𝐹𝑚 belongs to 𝑟; 0 

otherwise 

  

Variables 

𝑧𝑖 the total number of swapping possibilities for maintenance flight 𝑖 ∈ 𝐹𝑚   

 

4.2.2 Model Description 

Based on the problem statement presented in the previous sub-chapter, we build the 

mathematical model in order to help understand our analytical work. In our case, the 

proposed problem is modelled as a set partitioning problem, which captures information 

carried on the aircraft route (𝑟 ∈ 𝑅). It should be noted that in the set of routes 𝑅, all 

the constraints (i.e., regulations) with respect to one route (e.g., the precedence 

relationship of flight connection, and maintenance requirements) can be implicitly 

satisfied.  

Note here that the total quantity discount policy is exploited when constructing 

aircraft routing schedules, for the purpose of achieving our first goal, i.e., examining 
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the impact of the maintenance distribution structure. Thus, our IAMRP model needs to 

incorporate this feature, which is also investigated in Chapter 3. Therefore, our IAMRP 

model includes constraints (3-2) - (3-10) of Chapter 3. 

It should be mentioned here that robustness can be further enhanced by motivating 

more swapping possibilities in maintenance airports in which the maintenance station 

is located. We thus introduce decision variable 𝑧  to count the number of swapping 

possibilities for maintenance flights before which it is feasible to schedule a 

maintenance activity, and reward the possibilities in the objective function. Then, the 

following constraints are employed: 

 

𝑧𝑖 ≤ 𝑀 ∑ 𝜇𝑖𝑟𝑦𝑟

𝑟∈𝑅

,                        ∀𝑖 ∈ 𝐹𝑚                                          (4-1) 

𝑧𝑖 ≤ ∑ 𝜌𝑖𝑟𝑦𝑟

𝑟∈𝑅

,                             ∀𝑖 ∈ 𝐹𝑚                                          (4-2) 

 

Constraint (4-1) guarantees that only the swapping possibilities for the 

maintenance flight leg before which a maintenance event is immediately scheduled can 

be counted. That is, if 𝜇𝑖𝑟 = 0, meaning that there is no maintenance visit before leg 𝑖 

within the route 𝑟 , then 𝑧𝑖 = 0 , otherwise the big M sets the maximum number of 

swapping possibilities in the stations. Consequently, the model focuses on the swapping 

possibilities after receiving maintenance. Constraint (4-2) calculates the number of 

swapping possibilities for each maintenance flight 𝑖 ∈ 𝐹𝑚. To facilitate the calculation, 

given the route 𝑟, 𝜌𝑖𝑟 is used to record whether there is a swapping possibility prepared 

for maintenance leg 𝑖. Furthermore, in addition to these decision variables bounded in 

Chapter 3, we further define the bounds on the decision variable 𝑧𝑖 using the following 

constraint. 

 

𝑧𝑖 ≥ 0,                                               ∀𝑖 ∈ 𝐹𝑚                                    (4-3) 

 

The aim of our model is in encouraging robustness improvement while achieving 
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cost reductions, resulting in a bi-criteria objective function that integrates the 

minimization of maintenance costs and maximization of the total number of swapping 

possibilities, as follows.  

 

min   ∑ ∑ 𝑐𝑙𝑠𝑢𝑙𝑠

𝑙∈𝐿𝑠 𝑠∈𝑆 

− 𝑎 ∑ 𝑧𝑖

𝑖∈𝐹𝑚

                                                    (4-4) 

 

It is worthwhile to note that the constraints (3-2) - (3-10) of Chapter 3, together 

with the objective function with only the first component, result in an aircraft 

maintenance routing model that only considers the total quantity discount policy (i.e., 

AMRTQD). We seek to use the resulting model to analyze how the maintenance 

distribution structure affects route robustness, which is described in Section 4.3.2. 

4.2.3 Solution Framework 

Our optimization model is strongly NP- hard, hence requiring a heuristic algorithm for 

generating solutions of acceptable accuracy within a reasonable time. Therefore, we 

construct a column generation based a heuristic algorithm. Column generation is an 

efficient linear optimization technique to address large-scale problems and, in general, 

consists of two interdependent parts, i.e., the restricted master problem and the pricing 

subproblem (Taş, 2021). Here, the restricted master problem is a relaxed version of 

IAMRP with only a finite number of feasible routes. When implementing column 

generation, the restricted master problem is solved and the resulting dual information 

is passed to the pricing subproblem for the generation of promising routes with negative 

reduced cost, which are in turn fed to the restricted master problem. This process iterates 

until no such route can be found and so we obtain the optimal linear solution.  

4.2.3.1. Pricing Subproblem: Generating Promising Route 

The purpose of solving the pricing subproblem is in searching for columns with 
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negative reduced cost, which implies that the current solution is non-optimal. Seeing 

that the pricing subproblem is constructed based on the dual information from the 

restricted master problem, we first define the notations on dual variables: 

 

Dual variables 

𝜏 continuous, derived from the fleet size constraint 

𝛼𝑖  continuous, derived from the coverage constraint for flight leg 𝑖 

𝛽𝑑𝑠 continuous, derived from the maintenance capacity constraint for the 

maintenance station 𝑠 on day 𝑑 

𝛾𝑠 continuous, derived from the maintenance counting constraint for station 𝑚 

𝜁𝑖 continuous, derived from the swapping possibility bound constraint for 

maintenance flight 𝑖 

𝜂𝑖 continuous, derived from the swapping possibility counting constraint for 

maintenance flight 𝑖 

 

Based on the above definition, the reduced cost 𝑅𝐶̅̅ ̅̅
𝑟  of a route 𝑟  can be 

formulated as follows. 

 

𝑅𝐶̅̅ ̅̅
𝑟 = −𝜏 − ∑ 𝜃𝑖𝑟𝛼𝑖

𝑖∈𝐿

− ∑ ∑ 𝜑𝑟
𝑑𝑠(𝛽𝑑𝑠 + 𝛾𝑠)

𝑑∈𝐷𝑠∈𝑆 

 + 𝑀 ∑ 𝜇𝑖𝑟𝜁𝑖

𝑖∈𝐹𝑚

+ ∑ 𝜌𝑓𝑟𝜂𝑓

𝑓∈𝐹𝑚

 (4-5) 

 

The pricing subproblem is a shortest path problem with resource constraints (in 

this chapter the resource is the maximal days between two successive maintenance 

events), typically addressed by a labelling algorithm. The reader is referred to Irnich 

and Desaulniers (2005) for a comprehensive description of the solution algorithm. For 

convenience of illustration, we introduce a connection network 𝐺(𝑉, 𝐴), where the set 

of nodes 𝑉 includes flight legs together with a source and sink, while the set of arcs 𝐴 

is comprised of flight connections and maintenance connections. Next, the reduced cost 
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of a route, i.e., 𝑅𝐶̅̅ ̅̅
𝑟 can be demonstrated in this way. It is noted that the first component, 

i.e., 𝜏, is a constant, while the second component, i.e., ∑ 𝛼𝑖𝜃𝑖𝑟𝑖∈𝐿 , is equivalent to the 

sum of the dual costs corresponding to the flight legs (i.e., nodes in our constructed 

network) covered by the route. The remaining components are calculated by summing 

the costs associated with the maintenance connections employed to extend the 

unprocessed path of route 𝑟. Specifically, for a maintenance connection (𝑖, 𝑗) 𝜖 𝐴𝑚 in 

the station 𝑠  on day 𝑑 , the cost −𝛽𝑑𝑠 − 𝛾𝑠  should be further added to this arc. In 

addition, considering it is a maintenance arc, therefore, flight 𝑗  is naturally a 

maintenance node and 𝑀𝜁𝑗 should be recorded. In addition, for each maintenance leg 

𝑓 𝜖 𝐹𝑚, we check if the connection can also serve as a swapping candidate for 𝑓, that 

is, the conditions described in Section 4.1.2 can be satisfied. If yes, 𝜌𝑓𝑟 = 1, and then 

an additional cost 𝜂𝑓 should be further added to the arc; otherwise, 𝜌𝑓𝑟 = 0. Suppose 

that 𝐹�̅� stands for the set of maintenance legs satisfying 𝜌𝑓𝑟 = 1 when processing this 

maintenance arc. Hence, we can conclude that the cost for this connection is thus 

recorded as −𝛼𝑗 − 𝛽𝑑𝑠 − 𝛾𝑠 + 𝑀𝜁𝑗 + ∑ 𝜂𝑓𝑓∈𝐹�̅̅̅�
. 

4.2.3.2. Procedure of Column Generation-based Heuristic 

For the purposing of creating integer solutions, the column generation process is nested 

in a diving heuristic framework, see Sadykov et al. (2019). A diving heuristic selects 

and addresses only one branch in the branch-and-bound tree and owing to the existence 

of two different types of binary variables in our proposed model, distinct branching 

strategies are accordingly employed. Our solution framework in this chapter is similar 

with that is proposed in Chapter 3, while the pricing subproblem is a different one. 

According to the above analysis, the overall algorithm is elaborated as follows: 

Step 1: Initialize the restricted master problem by adding artificial variables to the flight 

coverage constraint and conduct the column generation process, in which the 

pricing subproblem is solved by the approach proposed in Section 4.2.3.1. 
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Step 2: Branch the fractional variable 𝑣. Note that, to maintain feasibility of the diving 

process, only variables with respect to the highest number of intervals are 

addressed. Check whether such variables have fractional values. If yes, round a 

fractional value and create a node, and then update the route pool through 

conducting the column generation process; otherwise, go to the next step. 

Step 3: Branch the fractional route selection variable 𝑦 through the branch-on follow-

on strategy (Sarac et al., 2006). Select a flight pair with the fractional value 

closest to an integer and create a node, and then update the route pool through 

conducting the column generation process. If no fractional pairs can be found, 

go to the next step. 

Step 4: Given the resulting route pool, add the integrality conditions into the restricted 

master problem and solve the MIP model. 

4.3  Computational Experiments 

This section demonstrates the computational experiments conducted to examine the 

potential effects of maintenance distribution structure on robustness of aircraft routings, 

and to reveal the performance of our proposed model in improving robustness. 

4.3.1 Data and Experimental Setup 

The experiments were carried out on a laptop with Intel Core i7-9750H CPU 2.60GHz 

and Windows 10 operation system. The model and solution framework were 

implemented in Java programming language, which facilitates CPLEX Studio IDE 

12.10 as the LP and MIP optimizers. 

We collected two weeks of flight data, from a commercial U.S. airline via the 

Bureau of Transportation Statistics. Then, we established a total of six instances to 

represent flight networks at different scales, through utilizing a portion of the flight 

operation data, and we show the detailed information about these instances in Table 
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4-1. After constructing all the test instances, the operational parameters were set as 

follows. 

 

Table 4-1. Detailed description of instances. 

Instances No. of flights Fleet size Maintenance stations 

1 189 7 4 

2 277 10 4 

3 335 12 5 

4 427 15 5 

5 488 17 5 

6 569 20 5 

 

The minimum turnaround time was assumed to be 40 minutes, while the maximum 

calendar days between two successive maintenance checks should be 4 days, taking 8 

hours to complete the whole maintenance check (i.e., 𝑚𝑖𝑛𝑀). Parameters concerning 

the maintenance cost structure, including interval bounds and discount rates, were 

applied to all stations (service suppliers) that were located in the hub airports (bases). 

To be specific, unit costs for each interval 𝑙 ∈ 𝐿𝑠 of each station 𝑠 ∈ 𝑆 were calculated 

as 𝑐𝑙𝑠 = (1 − 𝑞𝑙) ∗ 𝑐1𝑠, where 𝑞𝑙 represents the discount rate for interval 𝑙 and 𝑐1𝑠 is 

the unit cost for the first interval of each 𝑠 ∈ 𝑆, which can be regarded as the constant 

unit cost for traditional models without a piecewise cost structure. The number of 

intervals was set as 3, with discount rates of 0, 5% and 8%, respectively. Furthermore, 

data regarding the 𝑐1𝑠 were randomly generated around 500. As a consequence, each 

station can observe a discontinuous, non-decreasing cost. Lastly, since higher priority 

is given to the maintenance costs, for the purpose of preserving costs to the most extent 

while enhancing robustness, the award for a maintenance possibility (i.e., 𝑎) was set as 

1, much less than the unit maintenance cost. 
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4.3.2 The Impact of Maintenance Distribution Structure on 

Robustness 

Here, we investigate the influence of the maintenance distribution structure on the 

robustness of aircraft routes. To meet this aim, we solve two models which are expected 

to produce solutions following different maintenance distribution structures. One is the 

proposed model without elements associated with swapping possibilities (i.e., removing 

constraints used from Chapter 3, and the second component of the objective function), 

as demonstrated in Section 4.2.2. By doing so, the model (i.e., AMRTQD) attempts to 

exert direct effects on the maintenance distribution structure through taking advantage 

of the total quantity discount policy. The other is the traditional AMRP model (named 

as TAMRP) with constant unit maintenance costs. Then, based on the aircraft routing 

solutions, we assess the robustness through counting the number of swapping 

possibilities at the maintenance stations. Table 4-2 gives detailed information on the 

solutions. 

The maintenance distribution structure from the aircraft routing solutions, in 

particular, firstly requires our attention since different structures are the prerequisite for 

the analysis. We thus keep an eye on columns 4 to 8 of Table 4-2, and observe a more 

concentrated maintenance assignment from solutions of the model exploiting the total 

quantity discount policy compared with that of TAMRP. To be specific, the resulting 

aircraft schedule from AMRTQD assigns a higher maintenance amount to the 

maintenance airport “JFK”. For example, it is interesting to witness, for Instance 5, an 

increase in the number of maintenance events scheduled at JFK, from 21 to 35, while 

an opposite trend is observed for the maintenance airports BOS, LAX and FLL. The 

rationale behind this concentrated structure is that maintenance is accumulated in 

pursuit of higher discount rates in order to achieve cost savings, as can be seen from 

column 3 in which the total maintenance costs are reduced for all instances after 

considering the total quantity discount policy in the model. 



 

85 

 

 

Table 4-2. Solution details of AMRTQD and traditional model. 

Instance Model 
Maintenance 

Cost (USD) 

The number of planned maintenance 

activities in each station 
No. 

of SP 

SP 

improvement BOS JFK LAX SFO FLL 

1 
AMRTQD 10252 1 16 3 1 - 9 

3 
TAMRP 10600 1 10 9 1 - 6 

2 
AMRTQD 14659 2 22 5 1 - 18 

5 
TAMRP 15160 9 16 4 1 - 13 

3 
AMRTQD 17545.2 5 31 1 0 0 29 

9 
TAMRP 18600 10 18 4 1 4 20 

4 
AMRTQD 21483.6 4 33 6 2 0 51 

27 
TAMRP 22670 10 21 10 2 2 24 

5 
AMRTQD 24422 6 35 7 3 0 61 

34 
TAMRP 25650 10 21 15 2 3 27 

6 
AMRTQD 28717.2 8 41 8 2 1 75 

28 
TAMRP 30170 12 27 14 2 5 47 

 

Having acquired two different maintenance distribution structures, we then 

analyze the corresponding robustness performances. It is intuitive to see, from the last 

two columns of Table 4-2, that AMRTQD creates dramatically more swapping 

possibilities in maintenance airports than TAMRP. To take Instance 5 as an example 

again, we note that the number of swapping possibilities from the solutions generated 

by AMRTQD rises significantly, by 34, in comparison to TAMRP. This proves that the 

maintenance distribution structure has a major impact on the robustness of aircraft 

routings. More specifically, a more concentrated structure is shown to be advantageous, 

in terms of robustness performance, over the unconcentrated one. This outperformance 

is reasonable because a concentrated maintenance assignment means an increase of 
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aircraft staying at the same maintenance airport on an operating day, which allows an 

aircraft to have more candidate aircraft to choose for swapping, and as such, making it 

easier to be recovered from operational disruptions. 

4.3.3 The Performance of the Proposed Model 

To examine the robustness performance of our proposed model (i.e., IAMRP) which, 

compared with AMRTQD, further incorporates a robustness enhancement strategy that 

inspires swapping possibilities, we conducted comparison experiments. It is noticed 

that Constraint (4-1) of IAMRP includes the big M constant, which imposes an upper 

bound on the number of swapping possibilities for each maintenance flight. In most 

mixed integer programming problems, the constraints including big M constants should 

be improved to get a tighter equivalent formulation, making it faster to solve the 

problem. For the IAMRP model, in view that the maintenance capacity limits the 

maximum amount of maintenance assigned to each station per day and, getting rid of 

the maintenance operation immediately scheduled before the maintenance flight, we 

thus have 𝑀 = max
𝑑,𝑠

𝐶𝑎𝑝𝑑𝑠 − 1 . The performance comparisons of IAMRP and 

AMRTQD are shown in Table 4-3. 

It can be clearly noted, from the last two columns of Table 4-3, that our constructed 

model (i.e., IAMRP) incorporating both strategies (i.e., a more centralized maintenance 

distribution benefiting from the total quantity discount policy and encouraging 

swapping possibilities) consistently outperforms AMRTQD which purely exploits the 

advantage of the maintenance distribution structure, with the number of swapping 

possibilities of IAMRP increasing for all instances. Of special attention is Instance 3, 

where IAMRP creates strikingly more swapping possibilities (i.e., 15) in contrast to 

AMRTQD. This also demonstrates in the robustness strategy facilitated by encouraging 

swapping possibilities, exhibiting good performance. On the other hand, it should be 

noted that the total maintenance cost derived by IAMRP turns out to be no greater than 
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that by AMRTQD, which proves that our proposed model is able to retain the 

advantages in cost reduction resulting from the exploitation of the total quantity 

discount policy. In some cases, for example, instances 2 and 6, the comparative 

advantage in maintenance costs is more remarkable because IAMRP has more features, 

which may motivate the generation of promising routes.  

 

Table 4-3. Comparison of solutions for IAMRP and AMRTQD. 

Instance   Model 
Maintenance cost 

(USD) 
No. of SP SP improvement 

1 
IAMRP 10252 14 

5 
AMRTQD 10252 9 

2 
IAMRP 14643.5 26 

8 
AMRTQD 14659 18 

3 
IAMRP 17545.2 44 

15 
AMRTQD 17545.2 29 

4 
IAMRP 21483.6 59 

8 
AMRTQD 21483.6 51 

5 
IAMRP 24422 71 

10 
AMRTQD 24422 61 

6 
IAMRP 28686.4 87 

12 
AMRTQD 28717.2 75 

 

As demonstrated in the previous section, AMRTQD shows a better performance in 

terms of robustness enhancement and cost reduction compared with TAMRP. Therefore, 

the degree of solution improvement for the proposed IAMRP can be even more 

remarkable when we set TAMRP as a benchmark. Based on the above analysis, it is 

concluded that our constructed model is capable of generating aircraft routing schedules 

with enhanced robustness through exploiting the more centralized maintenance 
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distribution resulting from taking advantage of the total quantity discount policy and 

the robustness strategy encouraging swapping possibilities, while achieving the cost 

savings. 

4.4  Summary   

In a dynamic environment, airline operations are subject to diverse uncertainties, and 

thus it is of great importance to improve the robustness of aircraft maintenance routes 

so as to be less vulnerable to disruptions. One of the most effective and significant 

strategies is providing flexibility when operating their flights and aircraft. Among all 

flexibility strategies, improving swapping possibilities is a widely used and efficient 

approach to achieve robustness of aircraft routings. On the other hand, the trend in 

growth of contracting-out aircraft maintenance has relieved airlines from fixed costs 

corresponding to maintenance, which also allows airlines to restructure their 

maintenance distributions. However, the impact of the maintenance distribution 

structure on aircraft routing robustness is under-explored in the literature. 

Acknowledging these research gaps, we investigate a principal question about how 

distinct maintenance distribution structures affect the robustness of aircraft routes, 

through solving the models with and without exploiting the total quantity discount. In 

addition to the attempts to enhance robustness by exploiting the maintenance 

distribution structure resulting from taking advantage of the total quantity discount 

policy, this study further considers a robustness strategy, namely, encouraging swapping 

possibilities, into aircraft maintenance routing, with the aim of pursuing further 

robustness improvement. To this end, a novel robust aircraft maintenance routing model 

incorporating both the discount policy and the swapping possibility count is proposed, 

along with a solution approach.  

To examine the effects of maintenance distribution structure on route robustness, 

computational experiments based on data established from real-world flight operations 
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were carried out to identify the difference, in terms of robustness performance, between 

divergent maintenance distribution structures. The results demonstrate that the strong 

impacts of the maintenance distribution structure on robustness can be observed, in 

view of the outperformance of a more concentrated structure, e.g., the number of 

swapping possibilities were increased by at most 34 in comparison to unconcentrated 

maintenance assignment. Furthermore, experiments are also conducted to assess the 

performance of solutions derived from the proposed model (i.e., IAMRP). It is revealed, 

from the results, that the newly constructed model with the further consideration of 

swapping possibilities is able to generate cost- efficient aircraft routes with improved 

robustness, e.g., a growth in the number of swapping possibilities, from 75 to 87 in the 

largest-scale instance. 

Based on the numerical experiments, this research is favorable for policy makers 

from several aspects. Firstly, we provide references for the choice of the maintenance 

distribution structure. The high frequency of the maintenance checks creates significant 

costs for airlines and thus great efforts are made, through intelligently scheduling 

aircraft routes, to cut down their costs. At the same time, suffering from delays, airlines 

also impose great emphasis on the robustness of aircraft routes, especially when aircraft 

stay at a maintenance airport. A more concentrated maintenance distribution, achieved 

by considering the total quantity discount policy in aircraft maintenance routing, can 

deliver aircraft routes with improved robustness and reduced cost, and can achieve what 

airlines hope for. As a consequence, it is of significant importance for policy makers to 

understand the effects of the maintenance distribution structure, which guides the policy 

development. Secondly, it can provide a theoretical framework for airlines to construct 

their routing schedules with an increased ability to cope with delays. Our proposed 

robust aircraft maintenance routing model, by both exploiting the impact of 

maintenance distribution structure benefiting from the total quantity discount policy 

and awarding the creation of swapping possibilities, is capable of generating aircraft 
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routes with further enhanced robustness that better withstand common disruptions in 

their day-to-day operations, which can significantly benefit airlines. 
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Chapter 5. Robust Aircraft Maintenance Routing 

Problem under Uncertainties 

Considering Heterogenous Maintenance 

Tasks 

In this chapter, we focus attention on aircraft maintenance routing much closer to the 

day of operation in order to create routes for individual aircraft, with consideration of 

the original airport and heterogenous maintenance tasks. Acknowledging the 

significance of the stochasticity of maintenance execution and the research gaps in the 

literature, we aim to develop a novel robust aircraft maintenance routing model that 

minimizes the total propagated delays. A customized column generation-based 

algorithm is then developed to solve the model. Unlike most of the traditional robust 

aircraft maintenance routing models in the literature that considered the sources of 

disruptions in an aggregated manner, our model incorporates the uncertainties of 

heterogenous maintenance tasks, while considering other uncertainties, and is capable 

of constructing robust aircraft routes that are less vulnerable to disruptions.  

The outline of this chapter is as follows. Firstly, Section 5.1 describes the problem 

to be studied, while highlighting the modelling of maintenance uncertainties. Next, 

Section 5.2 presents the proposed robust aircraft maintenance routing model (Section 

5.2.1), along with the pricing subproblems (Section 5.2.2), while constructing solution 

approach for the pricing subproblems (Section 5.2.3). Section 5.3 discusses, based on 

the flight data derived from real-world schedules, a computational study used to analyze 

the impact of distinct degrees of maintenance uncertainties on the robustness of aircraft 

routes, and sensitivity analysis to analyze the value of the maintenance capacity. Lastly, 

a summary of this chapter is presented in Section 5.4. 
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5.1  Problem Description 

Given a set of scheduled flight legs, the goal of robust aircraft maintenance routing is 

to generate feasible aircraft routes that are robust to disruptions, and subject to the rules 

and regulations in the industry. In particular, we first describe the maintenance 

requirements in the following. 

 

• Maintenance requirements 

The maintenance restrictions are normally set by the FAA and airlines’ internal 

regulations (Haouari et al., 2013). Typically, a series of maintenance requests are 

batched into packages that, traditionally, are classified as A, B, C, and D checks, which 

must be performed regularly (Zhou et al., 2020). The A check is conducted every 400-

600 flying hours and takes, for a narrow body aircraft, at most 24 hours, whereas the B 

check, the next higher-level maintenance, should be conducted every 6-8 months. The 

C and D checks, which take an aircraft out of flight service for several weeks, are more 

extensive and complex, and thus carried out much less frequently. Practically, to 

integrate maintenance into aircraft routings for ensuring airworthiness of flight 

operations, airline companies commonly carry out minor maintenance checks right 

before a scheduled flight. Some of these checks are performed every 65 flight hours, 

the so- called daily check (Zhou et al., 2020). The maintenance durations are usually 

assumed as fixed parameters, and, in addition, airlines usually need to monitor aircraft 

instruments and equipment. The inoperative equipment, which still meets airworthiness 

requirements, is recorded in a Minimum Equipment List (MEL). MEL is tracked by a 

so-called transit check, which requires aircraft to fly at most 40 hours between two 

consecutive maintenance checks (Eltoukhy et al., 2017; Talluri, 1998). Furthermore, 

some airlines also apply a stringent rule, i.e., the 4- day restriction (Talluri, 1998). Only 

airports with maintenance capability, i.e., maintenance stations, are allowed to carry out 

maintenance activities.  
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Recently, in light of the tighter flight schedules, airlines tended to apply a 

maintenance approach that involves individual tasks, instead of maintenance checks 

with regular intervals. These individual heterogenous maintenance tasks are generated 

through breaking the traditional letter checks into smaller packages (Ruther et al., 2017; 

Zhou et al., 2020). As a result, these heterogenous tasks have shorter durations, 

compared to traditional checks, and can achieve better flexibility in operation since they 

can be more easily scheduled and conducted during the time on the ground, and in turn 

have higher frequencies, with respect to the corresponding remaining flight hours. 

Accordingly, to reflect the real practice, we model each aircraft at the individual level, 

considering its initial airport and heterogenous maintenance tasks, which differ in 

maximum flying time and duration.  

 

Maintenance is typically performed during the night, as seen in most of the traditional 

studies, and the exact capacity of stations is constrained through limiting the number of 

aircraft receiving maintenance activities simultaneously each night (or day) in each 

station (Faust et al., 2017; Khaled et al., 2018; Sriram & Haghani, 2003). We assume 

that maintenance activities are not necessarily conducted overnight, but any time when 

the aircraft is on the ground. Furthermore, considering that the maintenance durations 

of these tasks are highly uncertain (Dinis et al., 2019), and that delays of flights 

immediately before the maintenance execution will significantly influence the 

maintenance starting time, we model the capacity per station per hour to accommodate 

the actual maintenance requirements. Our goal aims at generating and selecting aircraft 

routes that incur the minimum total expected propagated delays. 

The route generation process is carried out based on a connection network 𝐺(𝑉, 𝐴), 

similar to the one proposed in Chapter 3. The set of nodes 𝑉  includes flight legs, 

together with a source and a sink (represented by 𝑠 and 𝑜, respectively), while the set 

of arcs 𝐴 is comprised of connection arcs and maintenance arcs (denoted by 𝐴𝑓 and 
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𝐴𝑚, respectively). Specifically, given two flight legs 𝑖 and 𝑗, they can be connected 

(thus resulting in a connection arc) if the time gap between the scheduled ground time 

(signified by 𝑑𝑖𝑗) exceeds the minimum turnaround time allocated for the completion 

of the ground service, while this service is conducted at the same airport. Furthermore, 

if this airport happens to be a maintenance station, then there is an additional 

maintenance arc between 𝑖 and 𝑗. 

As aforementioned, our modelling framework provides robust routes that enables 

disruption absorption. To be specific, the disruptions of any flight can be categorized 

into two classes, i.e., maintenance and incidental uncertainties. Incidental uncertainties 

refer to other sources of disruptions, except for maintenance uncertainties. Whereas 

maintenance arcs may encounter both uncertainties, flight connections only have 

incidental delays. Thus, the two types of arcs should be treated separately when 

generating routings. To facilitate the illustration, we define the delays of flight 𝑖 caused 

by incidental uncertainty as 𝐼𝐷𝑖, while 𝑃𝐷𝑖 refers to the propagated delays of flight 𝑖. 

Based on these definitions, the 𝑃𝐷𝑗  occurring in a connection arc, in which flight 𝑖 is 

the predecessor flight of 𝑗 in the route, can be calculated, adapted from Eq. (3) of Lan 

et al. (2006), by: 

𝑃𝐷𝑗 = max{𝑃𝐷𝑖+𝐼𝐷𝑖 + 𝑀𝑇𝑇 − 𝑑𝑖𝑗 , 0}     (5-1) 

Note that the incidental delay is stochastic and assumed to follow a specific 

distribution obtained from historical data, similar to Lan et al. (2006) and Marla et al. 

(2018). As the number of flights along the route increases, the calculation of the 

propagated delay can become remarkably difficult because of the high-dimensional 

complexity resulting from recursion. To simplify the computation, we apply a method 

from the reference (Dunbar et al., 2012), in which the uncertainty of the previous 

propagated delay is ignored, and its expectation is used to represent the delay, i.e., 

𝑃𝐷𝑗 = max{𝐸[𝑃𝐷𝑖]+𝐼𝐷𝑖 + 𝑀𝑇𝑇 − 𝑑𝑖𝑗, 0}  (5-2) 
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Then, we introduce the maintenance uncertainties in the following. 

 

• Maintenance duration uncertainty 

To satisfy maintenance requirements, aircraft should visit a maintenance station before 

the due time of the corresponding task. If the ground time is not sufficient for punctual 

maintenance execution, the subsequent flight leg will be delayed. A great challenge is 

due to the maintenance task duration being highly uncertain due to unexpected failures 

and shortage in repair resources, significantly contributing to flight delays. For the 

purpose of incorporating the maintenance uncertainty in the aircraft routing decision 

framework, we introduce 𝐷𝑡  to model the duration of task 𝑡 , which is assumed to 

follow a truncated lognormal distribution, independent of 𝐼𝐷𝑖 (Dinis et al., 2019; Kline, 

1984). The parameters of the distribution can be obtained through applying big data and 

forecasting tools (Chung, 2021; Chung et al., 2020), from historical data that can be 

monitored by blockchain technology (Choi & Siqin, 2022). Then, supposing that a 

maintenance task 𝑡 is conducted through a maintenance arc (𝑖, 𝑗), the propagated delay 

of the flight 𝑗 in Eq. (5-2) should be adapted by: 

𝑃𝐷𝑗 = max{𝐸[𝑃𝐷𝑖] + 𝐼𝐷𝑖 + 𝐷𝑡 − 𝑑𝑖𝑗 , 0} (5-3) 

As stated earlier, the incidental delay and maintenance duration are modelled using 

specific distributions. To simplify the notation, we further use 𝑓(𝑥)  and 𝑔(𝑧)  to 

represent the probability density functions of stochastic variables 𝐼𝐷𝑖  and 𝐷𝑡 , 

respectively, and 𝑏  to denote all the deterministic items, i.e., 𝑏 ≜ 𝐸[𝑃𝐷𝑖] − 𝑑𝑖𝑗 .  

Subsequently, the expectation of 𝑃𝐷𝑗 , i.e., 𝐸[𝑃𝐷𝑗], can be calculated by: 
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𝐸[𝑃𝐷𝑗] = 𝐸[max{𝐸[𝑃𝐷𝑖] + 𝐼𝐷𝑖 + 𝐷𝑡 − 𝑑𝑖𝑗, 0}]

= ∫ ∫ max{𝑥 + 𝑧 + 𝑏, 0} 𝑓(𝑥)𝑔(𝑧)𝑑𝑥𝑑𝑧
+∞

0

+∞

0

= ∫ [∫ (𝑥 + 𝑧 + 𝑏)𝑓(𝑥)𝑑𝑥
+∞

max(−𝑧−𝑏,0)

] 𝑔(𝑧)𝑑𝑧
+∞

0

(5-4)

 

 

5.2  Mathematical Formulation and Column Generation 

A column generation-based framework is proposed for formulating and solving the 

proposed robust aircraft maintenance routing problem. Specifically, our proposed 

framework involves two interdependent modules, i.e., a master problem for the 

selection of aircraft routes with the minimum expected propagated delays, and its 

corresponding pricing subproblems for the generation of promising routes with the 

most negative reduced cost. Column generation is an efficient linear programming 

optimization technique that iteratively solves the restricted master problem and the 

pricing subproblems. To be specific, the restricted master problem is the linear 

programming relaxation of the master problem, and is initialized by introducing one 

artificial variable to each flight coverage constraint. Then, after obtaining the optimal 

solutions of restricted master problem, its dual information is used to construct pricing 

subproblems, which are solved to generate, for each aircraft, the most promising routes. 

These routes are then fed into the solution pool of the restricted master problem. This 

iteration terminates if no routes with negative cost can be generated. Finally, the 

restricted master problem with routes constructed by the column generation process is 

thus transferred into an integer programming problem, and solved to obtain the integer 

solution. 

5.2.1 Master Problem 

The master problem defines the aircraft count, coverage and maintenance capacity 
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constraints, while maintenance requirements are handled in the pricing subproblems. 

First, we define the important indices, parameters and variables. 

 

Indices 

𝐹 the set of operational flight legs, indexed by 𝑖 and 𝑗. 

𝐻 the set of hours, indexed by ℎ. 

𝐾 the set of aircraft, indexed by 𝑘. 

𝑅𝑘 the set of potential routes of aircraft 𝑘 ∈ 𝐾, indexed by 𝑟. 

𝑆 the set of maintenance stations, indexed by 𝑠. 

𝑇𝑘 the set of heterogenous maintenance tasks for aircraft 𝑘, indexed by 𝑡. 

  

Parameters 

𝐸[𝑃𝐷𝑗] the expected propagated delays of flight leg 𝑗 ∈ 𝐹. 

𝑀ℎ𝑠  the maximum number of aircraft can be maintained in station 𝑠 ∈ 𝑆 at hour 

ℎ ∈ 𝐻. 

𝜃𝑖𝑟 = 1 if flight leg 𝑖 ∈ 𝐹 belongs to 𝑟 ∈ 𝑅𝑘; 0 otherwise. 

𝜑𝑟
ℎ𝑠 = 1 if a maintenance task for route 𝑟 ∈ 𝑅𝑘 is scheduled in station 𝑠 ∈ 𝑆 at 

hour ℎ ∈ 𝐻; 0 otherwise.  

  

Variables 

𝑦𝑘𝑟 = 1 if potential route 𝑟 of aircraft 𝑘 ∈ 𝐾 is selected; 0 otherwise. 

 

Then, the master problem can be formulated as follows: 

 

min   ∑ ∑ (∑ 𝐸[𝑃𝐷𝑗]

𝑗∈𝑟

) 𝑦𝑘𝑟

𝑟∈𝑅𝑘𝑘∈𝐾 

                                    (5-5) 

𝑠. 𝑡.  
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∑ 𝑦𝑘𝑟

𝑟∈𝑅𝑘

≤ 1,                                           ∀𝑘 ∈ 𝐾               (5-6) 

     ∑ ∑ 𝜃𝑖𝑟

𝑟∈𝑅𝑘𝑘∈𝐾

𝑦𝑘𝑟 = 1,                              ∀𝑖 ∈ 𝐹                     (5-7) 

∑ ∑ 𝜑𝑟
ℎ𝑠𝑦𝑘𝑟

𝑟∈𝑅𝑘𝑘∈𝐾

≤ 𝑀ℎ𝑠 ,                         ∀ ℎ ∈ 𝐻 𝑎𝑛𝑑 𝑠 ∈ 𝑆           (5-8) 

The objective function (5-5) minimizes the total expected propagated delays for 

the selected routes. Constraint (5-6) ensures aircraft count, i.e., an aircraft can fly at 

most one possible route, while Constraint (5-7) guarantees each flight can be covered 

by only one aircraft. Lastly, the number of aircraft can be maintained in each station per 

hour is limited by Constraint (5-8).  

5.2.2 Pricing Subproblem 

The pricing subproblem is a shortest path problem corresponding to a route of an 

aircraft (Barnhart et al., 1998a; Liang et al., 2015; Yan & Kung, 2018), with the 

objective of minimizing the reduced cost under maintenance constraints, i.e., the 

maximum flight time allowed for each heterogenous task of this aircraft. The shortest 

path problem is addressed on the proposed connection network 𝐺(𝑉, 𝐴). Then, given 

the current solutions of the restricted master problem, we can define the following dual 

variables. 

 

Dual variables 

𝜏 dual variable of the aircraft count constraint (5-6) 

𝛼𝑖  dual variable associated with the coverage constraint (5-7) for flight leg 𝑖 

𝛽ℎ𝑠 dual variable with respect to the maintenance capacity constraint (5-8) for 

the maintenance station 𝑠 at hour ℎ 
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Then, the reduced cost for the route 𝑟 of aircraft 𝑘, denoted by 𝑅𝐶𝑘𝑟, is  

 

𝑅𝐶𝑘𝑟 = ∑ 𝐸[𝑃𝐷𝑖]𝜃𝑖𝑟

𝑖∈𝐹

− ∑ 𝛼𝑖 𝜃𝑖𝑟

𝑖∈𝐹

− ∑ ∑ 𝛽ℎ𝑠

ℎ∈𝐻

𝜑𝑟
ℎ𝑠

𝑠∈𝑆 

− 𝜏𝑘     (5-9) 

 

Specifically, the first and second terms are the costs incurred by flights comprising 

the route, where ∑ 𝐸[𝑃𝐷𝑖]𝜃𝑖𝑟𝑖∈𝐹  is equal to the summation of the expected propagated 

delays and ∑ 𝛼𝑖𝜃𝑖𝑟𝑖∈𝐹  is equivalent to the sum of the dual costs corresponding to the 

flight legs of the route. The third component, i.e., ∑ ∑ 𝛽ℎ𝑠ℎ∈𝐻 𝜑𝑟
ℎ𝑠

𝑠∈𝑆  , is associated 

with the maintenance. To be specific, when processing an arc (𝑖, 𝑗) ∈ 𝐴𝑚 in which the 

task 𝑡 ∈ 𝑇𝑘 is conducted, we have the starting time of this execution 𝑏𝑡 = 𝐸[𝑃𝐷𝑖] +

𝐸[𝐼𝐷𝑖] + 𝐴𝑟𝑟𝑖, where 𝐸[𝐼𝐷𝑖] is the expected incidental delay of flight 𝑖 and 𝐴𝑟𝑟𝑖 is 

the scheduled arrival time of flight 𝑖 , and the ending time 𝑒𝑡 = 𝑏𝑡 + 𝐸[𝐷𝑡] , where 

𝐸[𝐷𝑡] is the expected duration of task 𝑡. If the time window [𝑏𝑡, 𝑒𝑡] covers ℎ ∈ 𝐻 and 

the task 𝑡  is carried out in the station 𝑠 , then 𝜑𝑟
ℎ𝑠 = 1 . Lastly, 𝜏𝑘  is a constant in 

regard to aircraft 𝑘.   

5.2.3 Solving the Pricing Subproblem 

To solve the pricing subproblem, we propose a multi-label algorithm augmented by 

dominance rules. The reduced cost is computed using Eq. (5-9), where the 𝐸[𝑃𝐷𝑖] is 

calculated based on Eqs. (5-2) and (5-4). The nonlinear nature of 𝐸[𝑃𝐷𝑖] hence forces 

the labels to track both 𝑅𝐶 and 𝐸[𝑃𝐷𝑖]. In the pricing subproblem, the only constraint 

is the maintenance requirement, which is limited by the feasibility resource, i.e., the 

maximum flight time of the current processing task (represented by 𝑚𝑎𝑥𝐹𝑇 ). 

Therefore, the accumulated flying time (represented by 𝑎𝑐𝑐𝐹𝑇 ) is traced to be no 

longer than 𝑚𝑎𝑥𝐹𝑇. Note that, in our problem, each task of an individual aircraft has 

its own 𝑚𝑎𝑥𝐹𝑇; therefore the task being handled should also be dynamically recorded. 

As a result, our label must track (1) the cost of the (partial) route, (2) the expected 
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propagated delay, (3) the current processing task, and (4) the accumulated flight time. 

We now describe the proposed multi-label algorithm in detail. For ease of illustration, 

we specify that the route in the following is prepared for a given aircraft 𝑘 , with 

simplified notation, i.e., the index 𝑘 is omitted. 

Let 𝜋 be a 𝑠 − 𝑜 route in 𝐺 (an ordered collection of nodes {𝑠, 𝑖1, ⋯ , 𝑖𝑞 , 𝑜} in 𝑉 

with (𝑠, 𝑖1), (𝑖𝑞 , 𝑜) ∈ 𝐴 and (𝑖𝑙, 𝑖𝑙+1) ∈ 𝐴 for all 𝑙 = 1, ⋯ , 𝑞 − 1). For 𝑖 ∈ 𝜋, let 𝜋(𝑖) 

stand for the ordered collection of nodes in the route 𝜋, truncated so that the final node 

in the list is 𝑖. We use 𝐸[𝑃𝐷𝜋(𝑖)] to denote the expected propagated delay at node 𝑖, 

computed along the route 𝜋(𝑖) , 𝑡𝜋(𝑖)  to represent the current task and 𝑎𝑐𝑐𝐹𝑇𝜋(𝑖)  to 

stand for the accumulated flight time at node 𝑖  along the route 𝜋(𝑖) . Then, as the 

maintenance duration is enumerated in minutes and the maintenance capacity is 

controlled hourly, we can define the reduced cost of the truncated route: 

𝑅𝐶𝜋(𝑖) = ∑ (𝐸[𝑃𝐷𝑗] − 𝛼𝑗)

𝑗∈𝜋(𝑖)

− ∑ ∑ 𝛽ℎ𝑠

ℎ∈𝐻𝜋(𝑖)𝑠∈𝑆 

− 𝜏    (5-10) 

where 𝐻𝜋(𝑖) refers to the set of hours covered by the maintenance execution time along 

the route.  

It is noted that a node may connect to two types of arcs (i.e., connection and 

maintenance arcs). When extending two labels 𝜋(𝑖) and 𝜂(𝑖) through a maintenance 

arc (𝑖, 𝑗) ∈ 𝐴𝑚  where the arrival airport of 𝑖 , i.e., 𝑎𝑟𝑟𝐴𝑖 , is 𝑎 . That is to say, the 

maintenance station on the arc (𝑖, 𝑗) is denoted by 𝑎. The costs of the labels of node 𝑗 

are: 

𝑅𝐶{𝜋(𝑖),𝑗} = 𝑅𝐶𝜋(𝑖) + 𝐸[𝑃𝐷{𝜋(𝑖),𝑗}] − 𝛼𝑗 − ∑ 𝛽ℎ𝑎

ℎ∈𝐻{𝜋(𝑖),𝑗}

(5-11) 

and 

𝑅𝐶{𝜂(𝑖),𝑗} = 𝑅𝐶𝜂(𝑖) + 𝐸[𝑃𝐷{𝜂(𝑖),𝑗}] − 𝛼𝑗 − ∑ 𝛽ℎ𝑎

ℎ∈𝐻{𝜂(𝑖),𝑗}

(5-12) 
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where 𝐻{𝜋(𝑖),𝑗}  and 𝐻{𝜂(𝑖),𝑗}  refer to the set of hours covered by the maintenance 

execution time on the arc (𝑖, 𝑗) for two extended routes, which depends, as mentioned 

earlier, on the expected propagated delay of 𝑖 and the expected duration of the planned 

maintenance. Therefore, if the values of 𝐸[𝑃𝐷𝜋(𝑖)]  and 𝐸[𝑃𝐷𝜂(𝑖)]  are different and 

two labels address distinct maintenance tasks, 𝐻{𝜋(𝑖),𝑗}  and  𝐻{𝜂(𝑖),𝑗}  are different. 

Consequently, we are unable to compare the values of ∑ 𝛽ℎ𝑎ℎ∈𝐻{𝜋(𝑖),𝑗}
  and 

∑ 𝛽ℎ𝑎ℎ∈𝐻{𝜂(𝑖),𝑗}
. This leads to the following dominance rule for routes destined for the 

same node. 

Definition 1 (Dominance rule). Let 𝜋(𝑖) , 𝜂(𝑖)  be two different (partial) routes 

destined for the same node 𝑖 . Then, we say that 𝜋(𝑖)  dominates 𝜂(𝑖)  if 𝑅𝐶𝜋(𝑖) ≤

𝑅𝐶𝜂(𝑖),  𝐸[𝑃𝐷𝜋(𝑖)] = 𝐸[𝑃𝐷𝜂(𝑖)], 𝑡𝜋(𝑖) = 𝑡𝜂(𝑖) and 𝑎𝑐𝑐𝐹𝑇𝜋(𝑖) ≤ 𝑎𝑐𝑐𝐹𝑇𝜂(𝑖). 

The dominance condition originates from the following Lemma 1. 

Lemma 1. Let 𝑗 ∈ 𝑉  such that (𝑖, 𝑗) ∈ 𝐴 . I  𝜋(𝑖)  dominates 𝜂(𝑖)   then {𝜋(𝑖), 𝑗} 

dominates {𝜂(𝑖), 𝑗}. 

Proof. for (𝑖, 𝑗) ∈ 𝐴𝑓, from Eq. (5-2) we have  

𝐸[𝑃𝐷{𝜋(𝑖),𝑗}] = max{𝐸[𝑃𝐷𝜋(𝑖)] + 𝐸[𝐼𝐷𝑖] + 𝑀𝑇𝑇 − 𝑑𝑖𝑗 , 0} (5-13) 

and 

𝐸[𝑃𝐷{𝜂(𝑖),𝑗}] = max{𝐸[𝑃𝐷𝜂(𝑖)] + 𝐸[𝐼𝐷𝑖] + 𝑀𝑇𝑇 − 𝑑𝑖𝑗, 0} (5-14) 

Because 𝐸[𝑃𝐷𝜋(𝑖)] = 𝐸[𝑃𝐷𝜂(𝑖)] , we have𝐸[𝑃𝐷{𝜋(𝑖),𝑗}] = 𝐸[𝑃𝐷{𝜂(𝑖),𝑗}] . For the 

processing task and accumulated flight time 

𝑡{𝜋(𝑖),𝑗} = 𝑡𝜋(𝑖) and 𝑎𝑐𝑐𝐹𝑇{𝜋(𝑖),𝑗} = 𝑎𝑐𝑐𝐹𝑇𝜋(𝑖) + 𝐷𝑢𝑟𝑗 (5-15) 

and 

𝑡{𝜂(𝑖),𝑗} = 𝑡𝜂(𝑖) and 𝑎𝑐𝑐𝐹𝑇{𝜂(𝑖),𝑗} = 𝑎𝑐𝑐𝐹𝑇𝜂(𝑖) + 𝐷𝑢𝑟𝑗 (5-16) 

Because 𝑡𝜋(𝑖) = 𝑡𝜂(𝑖)  and 𝑎𝑐𝑐𝐹𝑇𝜋(𝑖) ≤ 𝑎𝑐𝑐𝐹𝑇𝜂(𝑖) , we have 𝑡{𝜋(𝑖),𝑗} = 𝑡{𝜂(𝑖),𝑗} 
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and 𝑎𝑐𝑐𝐹𝑇{𝜋(𝑖),𝑗} ≤ 𝑎𝑐𝑐𝐹𝑇{𝜂(𝑖),𝑗}. We also have 

𝑅𝐶{𝜋(𝑖),𝑗} = 𝑅𝐶𝜋(𝑖) + 𝐸[𝑃𝐷{𝜋(𝑖),𝑗}] − 𝛼𝑗 (5-17) 

and  

𝑅𝐶{𝜂(𝑖),𝑗} = 𝑅𝐶𝜋(𝑖) + 𝐸[𝑃𝐷{𝜂(𝑖),𝑗}] − 𝛼𝑗 (5-18) 

Because 𝐸[𝑃𝐷{𝜋(𝑖),𝑗}] = 𝐸[𝑃𝐷{𝜂(𝑖),𝑗}] and 𝑅𝐶𝜋(𝑖) ≤ 𝑅𝐶𝜂(𝑖), we have 𝑅𝐶{𝜋(𝑖),𝑗} ≤

𝑅𝐶{𝜂(𝑖),𝑗}.  

On the other hand, for (𝑖, 𝑗) ∈ 𝐴𝑚, from Eq. (5-5) we have  

𝐸[𝑃𝐷{𝜋(𝑖),𝑗}] = max {𝐸[𝑃𝐷𝜋(𝑖)] + 𝐸[𝐼𝐷𝑖 + 𝐷𝑡𝜋(𝑖)
] − 𝑑𝑖𝑗 , 0} (5-19) 

and 

𝐸[𝑃𝐷{𝜂(𝑖),𝑗}] = max {𝐸[𝑃𝐷𝜂(𝑖)] + 𝐸[𝐼𝐷𝑖 + 𝐷𝑡𝜂(𝑖)
] − 𝑑𝑖𝑗 , 0} (5-20) 

Because 𝑡𝜋(𝑖) = 𝑡𝜂(𝑖) , then 𝐸[𝐷𝑡𝜋(𝑖)
] = 𝐸[𝐷𝑡𝜂(𝑖)

] , and we have 𝐸[𝑃𝐷𝜋(𝑖)] =

𝐸[𝑃𝐷𝜂(𝑖)], thus 𝐸[𝑃𝐷{𝜋(𝑖),𝑗}] = 𝐸[𝑃𝐷{𝜂(𝑖),𝑗}]. For the processing task and accumulated 

flight time 

𝑡{𝜋(𝑖),𝑗} = 𝑡𝜋(𝑖) + 1 and 𝑎𝑐𝑐𝐹𝑇{𝜋(𝑖),𝑗} = 𝑎𝑐𝑐𝐹𝑇𝑡{𝜋(𝑖),𝑗}
+ 𝐷𝑢𝑟𝑗 (5-21)  

and 

𝑡{𝜂(𝑖),𝑗} = 𝑡𝜂(𝑖) + 1 and 𝑎𝑐𝑐𝐹𝑇{𝜂(𝑖),𝑗} = 𝑎𝑐𝑐𝐹𝑇𝑡{𝜂(𝑖),𝑗}
+ 𝐷𝑢𝑟𝑗 (5-22) 

Because 𝑡𝜋(𝑖) = 𝑡𝜂(𝑖)  and 𝑎𝑐𝑐𝐹𝑇𝜋(𝑖) ≤ 𝑎𝑐𝑐𝐹𝑇𝜂(𝑖) , we have 𝑡{𝜋(𝑖),𝑗} = 𝑡{𝜂(𝑖),𝑗} 

and 𝑎𝑐𝑐𝐹𝑇{𝜋(𝑖),𝑗} ≤ 𝑎𝑐𝑐𝐹𝑇{𝜂(𝑖),𝑗}. We also have  

𝑅𝐶{𝜋(𝑖),𝑗} = 𝑅𝐶𝜋(𝑖) + 𝐸[𝑃𝐷{𝜋(𝑖),𝑗}] − 𝛼𝑗 − ∑ ∑ 𝛽ℎ𝑠

ℎ∈𝐻{𝜋(𝑖),𝑗}𝑠∈𝑆 

(5-23) 

and  

𝑅𝐶{𝜂(𝑖),𝑗} = 𝑅𝐶𝜂(𝑖) + 𝐸[𝑃𝐷{𝜂(𝑖),𝑗}] − 𝛼𝑗 − ∑ ∑ 𝛽ℎ𝑠

ℎ∈𝐻{𝜂(𝑖),𝑗}𝑠∈𝑆 

(5-24) 

Because 𝐸[𝐷𝑡𝜋(𝑖)
] = 𝐸[𝐷𝑡𝜂(𝑖)

]  and  𝑡𝜋(𝑖) = 𝑡𝜂(𝑖) , 𝑏𝑡𝜋(𝑗)
= 𝑏𝑡𝜂(𝑗)

  and 𝑒𝑡𝜋(𝑗)
=
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𝑒𝑡𝜂(𝑗)
. In addition, we have 𝑅𝐶𝜋(𝑖) ≤ 𝑅𝐶𝜂(𝑖), so 𝑅𝐶{𝜋(𝑖),𝑗} ≤ 𝑅𝐶{𝜂(𝑖),𝑗}. Thus, the proof 

is completed. 

 

Particularly, by induction, suppose 𝜔 is a route that starts at node 𝑗 and terminates at 

sink 𝑜, and (𝑖, 𝑗) ∈ 𝐴, Lemma 1 indicates that 𝑅𝐶{𝜋(𝑖),𝜔} ≤ 𝑅𝐶{𝜂(𝑖),𝜔}. Equipped with 

the dominance rules, we can use the proposed multi-label algorithm to solve (5-9). To 

be specific, at each node, we only create labels for those routes that are not dominated 

by any other routes at that node. In addition, for the purpose of saving computational 

effort, a heuristic pricing algorithm is also adopted before using our proposed 

dominance rule. That is, considering that the difficulty of comparing two labels lies in 

the existence of the dual variables (𝛽ℎ𝑠)ℎ∈𝐻,𝑠∈𝑆, these elements are not first allocated 

to the maintenance arcs and, as a consequence, the dominance rule can be relaxed, 

which becomes 𝑅𝐶𝜋(𝑖) ≤ 𝑅𝐶𝜂(𝑖) , 𝐸[𝑃𝐷𝜋(𝑖)] ≤ 𝐸[𝑃𝐷𝜂(𝑖)] , 𝑡𝜋(𝑖) = 𝑡𝜂(𝑖)  and 

𝑎𝑐𝑐𝐹𝑇𝜋(𝑖) ≤ 𝑎𝑐𝑐𝐹𝑇𝜂(𝑖). We solve the shortest path problem with the relaxed dominance 

rule, and then add the corresponding 𝛽ℎ𝑠 into the reduced cost. If the cost is negative, 

we add the route to the restricted master problem, and this process is repeated until no 

negative route can be found. Then, we allocate dual variables (𝛽ℎ𝑠)ℎ∈𝐻,𝑠∈𝑆 to the arcs 

again, and apply our proposed dominance rule to obtain the optimal solutions for the 

pricing subproblem. 

5.3  Computational Study 

Here, we report the results of the computational experiments. The experiments were 

conducted on a laptop with Intel Core i7-9750H and a Windows 10 operating system. 

The modelling and solution algorithm framework were implemented in Java 

programming language, which facilitates IBM ILOG-CPLEX Studio IDE 12.10 as the 

linear programming and integer programming optimizers. First, we describe the test 

scenarios constructed for the experiments, along with the parameter settings. Then, we 
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demonstrate how the degree of maintenance uncertainty impacts on the robustness of 

aircraft routings through comparative experiments. Lastly, the benefits of the 

maintenance capacity are examined. 

5.3.1 Data Description and Experimental Setup 

In the experiments, we extracted flight data based on real operational schedules 

belonging to a major U.S. hub-and-spoke airline available on the BTS. Our planning 

horizon was set as one week because it is widely used in the literature (Liang et al., 

2011; Liang et al., 2015). Furthermore, this horizon is close to the day of operation and, 

thus, it is possible to construct better schedules by capturing more accurate information. 

Therefore, we chose scheduled flights on a random week in January 2020 as an example, 

for conducting the computational experiments.  

A total of five scenarios were established from the Boeing 737-800 fleet, for 

representing the flight networks of different sizes. Detailed information about the 

scenarios is summarized in Table 5-1. Specifically, for each scenario, we give an ID, 

the number of flight legs, aircraft, airports and maintenance stations. Note that since the 

maintenance stations are not known from the flight network, we hence assign the 

airports, with the number of departure/arrival flight legs exceeding a threshold, to be 

the maintenance stations of each scenario. After constructing all the scenarios, the 

operational parameters were set as follows. The minimum turnaround time was set as 

40 minutes, and the maintenance capacity per hour two thirds of the total number of 

aircraft in each scenario. The aircraft have heterogenous maintenance tasks, whose 

durations fit truncated lognormal distributions with values between the lower and upper 

bounds. 
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Table 5-1. Summary of scenarios. 

Scenario No. of legs No. of aircraft No. of airports No. of stations 

1 79 3 17 1 

2 128 5 37 2 

3 181 7 53 2 

4 221 9 52 2 

5 274 11 55 2 

 

5.3.2 The Impact of Maintenance Uncertainties on Robustness 

As aforementioned, the maintenance duration follows a truncated distribution defined 

on a specific interval. The width of the interval indicates the degree of maintenance 

uncertainty and, specifically, the wider the interval, the greater the uncertainty. It is 

clear that the idea of airline robust plans stems from attempts to construct schedules 

that enable the tolerance of a certain degree of uncertainty in operations. Then a 

question logically arises about how the degree of maintenance duration uncertainty 

affects the robustness performance of the routing solutions. To find the answer, we 

conducted comparative experiments through solving the proposed model, given two 

duration intervals with different widths (i.e., [150, 300] and [120, 480]) that indicate 

distinct degrees of maintenance uncertainties, and comparing the objective values of 

the corresponding solutions, i.e., the total expected propagated delays. The 

computational results are displayed in Table 5-2, where the second and third columns 

report the expected propagated delay in minutes of the solutions when the random 

maintenance durations are truncated to the intervals, i.e., [150, 300] and [120, 480], 

respectively. The fourth column indicates the growth in the expected propagated delays 

in minutes when the width of interval for task durations increases, while the last column 

records the increased percentage of the expected propagated delays. 
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Table 5-2. Comparison results under distinct degrees of uncertainty. 

Scenario [150, 300] [120,480] 
EPD increased 

(minutes) 
% of EPD increased 

1 1283 1940 657 51.21% 

2 2682 3544 862 32.14% 

3 3308 4509 1201 36.31% 

4 3696 5542 1846 49.95% 

5 3539 4868 1329 37.55% 

 [150, 300] represents the duration interval, in which 150 and 300 (minutes) are the lower 

bound and the upper bound, respectively. 

 

It is intuitive to observe, from Table 5-2, that with increase of the interval width, 

the total expected propagated delays of the resulting aircraft routings increase 

significantly. Taking scenario 5 as an example, the case with task durations lying 

between 120 and 480 minutes suffers from much more propagated delays, i.e., 1329 

minutes, than the model that applies the duration interval bounded by 150 and 300 

minutes, respectively. From the perspective of the increase rate, the duration interval 

[120,480] worsens delays by 37.55%, in scenario 5, as compared with a narrower 

interval. This implies that the disruptions stemming from the higher stochasticity in the 

maintenance tasks provide less planning flexibility and may cause more damage to the 

flight network. In addition, the variability in the delays in selected routes also highlights 

the importance of capturing maintenance uncertainties within the aircraft routing 

framework. 

5.3.3 The Benefits of Maintenance Capacity 

Airlines tend to purchase maintenance services from suppliers in maintenance stations. 

The capacity a maintenance station provides to an airline is exactly the maintenance 
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slot quotas, specifying the maximum number of aircraft receiving maintenance per hour, 

that the airline can and is willing to buy. The maintenance capacity is a scarce resource, 

and, therefore, it is critical for airlines to decide how many quotas are needed to allow 

smooth operations. Hence, in this section, we report experiments examining the value 

of the maintenance capacity. To this end, we assigned the numbers 2 to 6, in turn, to the 

maintenance capacity and recorded the corresponding propagated delays the resulting 

routes produce, as shown in Figure 5-1. 

 

 

Figure 5-1. The benefits of maintenance capacity. 

 

It can be seen that the total expected propagated delays are reduced when the 

maintenance capacity is larger. For instance, as the capacity increases from 2 to 3, the 

propagated delays decrease significantly, by 396 minutes. The underlying reason is that 

the improvement in capacity provides more opportunities for aircraft to visit the station 

and thus creates more potential route candidates. Such results demonstrate that when 

the flight schedules are relatively tight, and when facing maintenance resource supply 

tension, airlines can benefit from buying maintenance quotas, which are helpful in 

improving the aircraft schedules.  

On the other hand, it is also found that the resulting objective value remains stable, 
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as the value of maintenance quotas increases from 5 to 6. Such results indicate that the 

improvement in maintenance capacity cannot significantly influence the aircraft routing 

schedules. This observation may be due to the sufficient supply of maintenance capacity, 

which implies that, in such cases, it becomes uneconomical to purchase more quotas 

from suppliers. 

5.4  Summary 

In an unpredictable and volatile environment especially due to the current Covid-19 

pandemic, airline operations are subject to diverse disruptions globally, and thus it is 

important to improve the robustness of aircraft maintenance routes so as to be less 

vulnerable to disruptions. The inherent uncertainty of the maintenance duration, one of 

the most significant disruptions, has received more and more attention from both the 

aviation industry and academia, which, however, remains under-explored in the 

literature in regard to the aircraft maintenance routing problem. On the other hand, in 

light of this uncertainty, the daily planned capacity of maintenance stations, as in many 

previous studies, may be underutilized or overloaded. To overcome this shortcoming, 

we propose a novel approach to construct robust aircraft maintenance routings, through 

taking into account the stochasticity of the durations with regard to heterogenous 

maintenance tasks. Accordingly, a robust aircraft maintenance routing model is 

proposed. Because of flight delays and uncertain task durations, the maintenance 

capacity of each station is modelled hourly to reflect the actual maintenance capacity 

constrictions, thus complicating the computational process. To address this newly 

developed model, a tailored column generation-based approach with augmented 

dominance rules is constructed.  

    Computational experiments based on the data established from real-world flight 

operations were carried out to validate managerial implications in terms of robustness 

performance between distinct degrees of maintenance uncertainties. The results 
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demonstrate that the strong impacts of maintenance duration variability on the 

robustness of aircraft routes can be observed, seeing that a wider duration interval with 

more uncertainties produces schedules with worse performance, i.e., the total expected 

propagate delays significantly increased by at most 51.21%, compared with the 

solutions generated by a narrower duration interval. Furthermore, experiments were 

also conducted to evaluate the value of the maintenance capacity, i.e., how many aircraft 

can be maintained per hour. From the computational results, it is revealed that, under 

certain circumstances, the improvement in maintenance capacity can significantly 

reduce the expected propagated delays. For instance, a reduction of 396 minutes can be 

observed when the maintenance capacity increases from 2 to 3.  

One of the derived managerial implications is that airlines should put a high 

premium on the duration uncertainties of maintenance tasks, and deliberately consider 

stochastic factors into the decision framework of the aircraft maintenance routing 

problem. The durations of tasks are inherently stochastic and become a significant 

source of disruptions in airline operations. As a consequence, ignoring the stochasticity 

of maintenance may result in aircraft routes lacking robustness. Hence, it is beneficial 

for airlines to adopt the framework provided in our study, through considering both 

maintenance and incidental uncertainties, to construct more robust routing schedules.  

Secondly, considering that more uncertainties regarding maintenance tasks are able 

to disrupt aircraft schedules, airline operations can benefit from some useful strategies 

that may reduce the duration uncertainty of maintenance tasks. For instance, sharing 

information with maintenance stations (e.g., resource shortages). Taking advantage of 

these strategies may help airlines to generate routes with less delays.  

Thirdly, it is important for airlines to comprehend the potential risks caused by 

maintenance uncertainties and to determine appropriate maintenance capacities for 

increasing economic efficiency. To be more specific, if the flight schedules are 

comparatively tight, it may be beneficial for airlines to purchase more maintenance slot 
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quotas, with the objective of further robustness enhancement. On the other hand, 

maintenance cost control is also crucial to airlines. As a consequence, there should be 

a trade-off between the delay cost that airlines can suffer and the procurement cost that 

airlines are willing to pay. In comparison, when the maintenance resources are over-

supplied or the maintenance slot quotas are sufficient, improving the maintenance 

capacity is not likely to offer significant operational performance improvement to 

airlines. In such cases, there is a need to seek other strategies to further improve the 

aircraft maintenance routing solutions. 
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Chapter 6. Conclusions and Suggestions for Future 

Research 

6.1  Conclusions 

Although air transport remains a crucial part of the global economy and development, 

airlines are faced with dwindling profit margins and stochastic environments. As a 

result, they endeavor to slash expenses and create robust schedules. In regard to this, 

operations research plays a significant role in adding value to airline operations, through 

proposing models and methodologies for effectively addressing airline planning 

processes, and one of the successful applications is the aircraft maintenance routing 

problem. While maintenance plays a key part in ensuring safety and airworthiness in 

the airline industry, there is the significant fact that maintenance checks of aircraft result 

in considerable costs and uncertainties. Obviously, different maintenance routing 

schedules contribute to different maintenance costs and reliability performance. To 

enhance airlines’ competitiveness, this research thus concentrates on improving the 

decision making on aircraft routings from two perspectives: cost-efficiency and 

robustness. More specifically, in view of the significance nature of maintenance costs 

and the actual practice of maintenance outsourcing, we propose a new aircraft 

maintenance routing model with consideration of total quantity discounts, which 

enables impressive maintenance cost reduction. Furthermore, recognizing the 

prohibitive consequences of unanticipated disruptions that airlines encounter under the 

operating environment, two robustness strategies are investigated. One exploits the 

impacts of the maintenance distribution structure and further integrating the approach 

encouraging swapping possibilities in the decision-making process. The other is 

incorporating maintenance uncertainties and other random disruptions into the robust 

aircraft maintenance routing framework. 
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     To provide an overview of the current studies, Chapter 2 gives a detailed review 

on the literature with respect to the airline planning process, while concentrating on the 

tactical and operational aircraft maintenance routing issues. Furthermore, we also draw 

attention to the contributions, i.e., significant cost savings, made through incorporating 

quantity discounts in transportation process, which illustrates the importance and 

benefits of considering the total quantity discounts into the tactical aircraft maintenance 

routing decision-making process. In addition, the approaches in the literature to 

evaluate and enhance the robustness are investigated, based on which significant 

research gaps are identified.  

The research gaps regarding the tactical aircraft maintenance routing problem and 

the procurement strategy existing in common airline practice motivate us to conduct 

the research work presented in Chapter 3. To be specific, we develop a new aircraft 

maintenance routing model with a piecewise cost function for capturing the impact of 

the total quantity discount policy adopted when purchasing maintenance services. The 

objective of this novel model is in minimizing the total maintenance costs. On the other 

hand, to solve this complex model and facilitate the computational process, a 

customized solution algorithm based on column generation is then developed. Actually, 

from the computational results, the proposed algorithm is proven effective and efficient 

in solving all the scenarios. Furthermore, owing to the impact of the total quantity 

discounts, the proposed model demonstrates its advantages in terms of significant cost 

reduction compared to the existing modelling approaches which neglect the discount 

strategy in maintenance operations. The results of the comparative experiments also 

reveal, through analyzing the details of the resulting solutions, the alterability of the 

maintenance distribution after integrating the total quantity discounts, helping to drive 

some managerial implications for improving cost efficiencies of airlines, and 

facilitating the further investigation of the maintenance distribution structure. 

Recognizing the approach discovered in Chapter 3 for airlines to modify the 
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maintenance distributions, in Chapter 4, we investigate the potential impact of 

maintenance distribution structure on the robustness of aircraft routes, measured by the 

number of swapping possibilities. To be specific, through solving the models with and 

without consideration of the total quantity discounts, and calculating the number of 

swapping possibilities of the solutions, the results demonstrate the excellent 

performance, in terms of robustness, of a more concentrated maintenance distribution. 

Furthermore, based on the fact that airlines expect their aircraft routings, while 

maintaining minimum costs, to be ideally as robust as possible, a novel aircraft 

maintenance routing model is constructed, with consideration of both the total quantity 

discounts to take advantage of the impact of the maintenance distribution structure and 

a robustness strategy encouraging swapping possibilities. The proposed robust model 

shows a clear superiority, through providing more swapping possibilities (i.e., 

flexibility) to cope with the disruptions, over the traditional models. 

Then, observing more accurate information on aircraft, our concern turns to the 

operational aircraft maintenance routing, and recognizing the research gaps regarding 

the maintenance process under a stochastic environment, we provide robust solutions 

from the perspective of schedule stability. Therefore, in Chapter 5, a new robust aircraft 

maintenance routing model is provided, with consideration of the maintenance 

uncertainties of the heterogenous maintenance tasks, while taking into account other 

sources of disruptions. The objective of this proposed model is in minimizing the total 

expected propagated delays. Accordingly, a tailored column generation algorithm is 

proposed. With the incorporation of maintenance uncertainties, the constructed robust 

model demonstrates the significant impacts of the degree of maintenance uncertainty 

on the aircraft routing solutions’ robustness performance. To be specific, the greater 

uncertainty of maintenance tasks produces more expected propagated delays, which 

drives managerial implications on managing maintenance uncertainties. Furthermore, 

the computational experiments on the investigation of maintenance capacity helps us to 
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gain more managerial insights on the maintenance slot quota decisions. 

6.2  Suggestions for Future Research 

Although this thesis presents new models and algorithms for the aircraft maintenance 

routing problem, there are some limitations. 

 

1. The model proposed in Chapter 3 (i.e., AMR-PC) considers only the total 

maintenance cost for the exploitation of the total discount policy. However, there 

are several other costs to be considered in the aircraft maintenance routing problem, 

which are also of concern to airlines. Furthermore, in the decision-making 

framework of Chapter 3, only scheduled maintenance activities are considered. 

However, unanticipated maintenance, such as repairing malfunctioned 

components, may occur in regular operations, which should be addressed to ensure 

safety. This would incur additional costs for airlines and therefore should be 

carefully taken into account. 

 

2. This study pays special attention to uncertainties in maintenance stations. 

Furthermore, the improvement of the workforce in maintenance stations may 

shorten the maintenance duration and mitigate delays. However, the importance of 

workforce in stations has not been investigated. 

 

3. In Chapter 5, we propose a robust model that considers maintenance uncertainties 

in the planning stage. However, how maintenance uncertainties influence the 

recovery stage has not been investigated. 

 

Therefore, based on the research work that has been done in this thesis, several potential 

research directions worthy of investigating have emerged, which are summarized in the 

following. 
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1. It would an interesting direction to integrate more types of operational costs, e.g., 

through values and penalties for short connections, into the model proposed in 

Chapter 3, and explore how to make a trade-off between these costs. Moreover, 

another desirable direction would be further extending this study into the robust 

aircraft maintenance routing decision-making framework through integrating the 

unscheduled maintenance demand. 

 

2. It would be valuable to investigate the impact of independent maintenance third 

parties’ ability on the aircraft routing schedules. To be specific, if a service supplier 

has sufficient resources, e.g., workforce, the normal duration of maintenance can 

be reduced through assigning more technicians and, as a consequence, the delays 

resulting from unexpected maintenance or propagated delays can be alleviated, 

which can help airlines to save significant recovery costs. Additional maintenance 

resource allocation, however, will trigger increased maintenance costs. It is 

therefore decisive to achieve a reasonable trade-off between maintenance costs and 

penalties for delays. 

 

3. In the future, it would be valuable to integrate other robust strategies, such as cruise 

speed control and time windows, into our robust aircraft routing framework, to 

further enhance route robustness. On the other hand, it would be an interesting 

topic to incorporate the maintenance uncertainties into the aircraft recovery 

problem, which may help airlines to have more savings in recovery costs. 
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