THE HONG KONG
Q POLYTECHNIC UNIVERSITY
& Fenian

Pao Yue-kong Library
BEREEE

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.
By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk




STUDY OF TOPOLOGICAL FORMATION
OF LANTHANIDE LUMINESCENT
SUPRAMOLECULAR EDIFICES

HUI TING HIN

PhD
The Hong Kong Polytechnic University

2023



The Hong Kong Polytechnic University

Department of Applied Biology And Chemical
Technology

Study of Topological Formation of Lanthanide

Luminescent Supramolecular Edifices

Hui Ting Hin

A thesis submitted in partial fulfilment of the
requirements for the degree of Doctor of

Philosophy

Aug 2022



CERTIFICATE OF ORIGINALITY

| hereby declare that this thesis is my own work and that, to the best of my
knowledge and belief, it reproduces no material previously published or written,
nor material that has been accepted for the award of any other degree or
diploma, except where due acknowledgement has been made in the text.

(Signed)

Hui Ting Hin (Name of student)




Abstract

Lanthanide supramolecular self-assembly is an emerging technological advancement
not only in fundamental science but also with wide range of applications such as drug-
delivery system, medical imaging and batteries. The unique photophysical properties
and coordination chemistry provide researchers a great opportunity to devise new
supramolecular system. The control in topological formation in supramolecular
edifices has become particularly crucial in developing biomedical and daily-life
application. This thesis, therefore, aims at studying the correlation between the ligand
structure and their supramolecular self-assembling behaviors. To introduce the area of
supramolecular chemistry, chapter 1 encompasses general chemistry in lanthanide and

the development in lanthanide supramolecular chemistry.

Chapter two focuses on reviewing various pyridine-dicarboxamide (pcam) with
different offsetting and spacing properties and their correlation to their ultimate
supramolecular structure upon complexation to lanthanide. The offsetting angle and
distance are found to be one of deciding parameter in ultimate topologies while the
first lanthanide chiral supramolecular cubes are reported. Additionally, the solvent-

induced self-assembling and transformation is also included.

Supramolecular self-assembly is known to be a collective result from various weak
non-covalent interaction. The thermodynamic stability from lanthanide-ligand
coordination bonds have played an important role to maintain the entropically
disfavored ordered supramolecular architectures. The functionalization of

luminescence and stable 1,2-di- Hydroxypyridinones (HOPO) ligands are, therefore,



included in Chapter 3. This chapter encompasses the detailed synthetic work on
functionalizing HOPO units and basic photophysical properties. Meanwhile, the
investigation on incorporating the HOPO building blocks to ultimate assembly is also

included.

In the view of intrinsic instability and ineffectiveness in lanthanide sensitization of pcam
chromophores, chapter 4 investigate the synthesis in new class of chiral
hydroxyquinoline (HQ) based chromophores while the detailed synthetic attempts are
included. With the new class of chromophores, the effect of chelating strength

towards final supramolecular self-assembling can be studied.
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Chapter 1: Introduction to supramolecular chemistry of

lanthanide complexes

1.1. Introduction to General Lanthanide Chemistry

1.1.1. Introduction

Lanthanides are series of chemical elements with the atomic numbers of 57 — 71 in
period table, from lanthanum through lutetium. These elements are named as
lanthanides since they share similar chemical properties with lanthanum. Although
lanthanum is not always classified as a lanthanide due to lacking in 4f-orbital electron,
they are often included in discussions of the lanthanide chemistry.? In general,
lanthanides have electronic configuration that follow the Aufbau rule ranging from [Xe]
4f™1 6s? except lanthanum, cerium, gadolinium and lutetium due to non-filled, half-filled
or fully filled 4f or 5d subshells. Lanthanides predominantly exists in a form of trivalent
ions with the electronic configuration of [Xe] 4f" where n = 0 — 14 that empower
them unique physical and chemical properties. Lanthanide chemistry was introduced

in different well-written book chapters and reviews.>’

Ground State Electronic Configuration

Elements Symbol y 4

Ln Ln®*
Lanthanum La 57 [Xe]5d" 6s? [Xe]
Cerium Ce 58 [Xe]4f' 5d" 6s? [Xe] 4f'
Praseodymium Pr 59 [Xe]4f 65 [Xe] 4f
Neodymium Nd 60 [Xe]4f* 6s? [Xe] 4f
Promethium Pm 61 [Xe]4f° 65 [Xe] 4f*
Samarium Sm 62 [Xe]4f¢ 652 [Xe] 4f°
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Europium Eu 63 [Xe]4f 65 [Xe] 4f
Gadolinium Gd 64 [Xe]4f 5d'6s? [Xe] 4
Terbium Tb 65 [Xe]4f6s? [Xe] 4
Dysprosium Dy 66 [Xe]4f'06s? [Xe] 4f°
Holmium Ho 67 [Xe]4f" 6s? [Xe] 4f"°
Erbium Er 68 [Xe]4f" 6s? [Xe] 4f"
Thulium Tm 69 [Xe]4f" 6s? [Xe] 4"
Ytterbium Yb 70 [Xe]4f™ 652 [Xe] 4f"
Lutetium Lu 71 [Xe]4f'* 5d'6s? [Xe] 4"

Table 1-1: Ground state electronic configurations of lanthanides

1.1.2. Electronic Properties of Trivalent Lanthanide lons

As mentioned in last section, the ground state electronic configuration of trivalent
lanthanide ions is [Xe]4f" (n = 0 — 14, La to Lu). The 5s5p® electron subshells in Xenon
core with larger radial expansion are shielded by 4f orbitals which attributes the
increase in effective nuclear charge with atomic number. In addition to fully filled Xenon

core, each of the n electrons in Ln"

ions occupies one of the seven 4f ({ = 3)
wavefunctions and associated with a spin of £1/2. Taking both angular momentum and

spin quantum number in consideration, there are numbers of ways to fill n electrons

in 4f orbitals which the multiplicity is given by the following formula.

(41+2)! 14!
n!(414+2-n)! - n!(14—n)!

if { = 3 (4f orbital)

Based on Russell-Saunders coupling scheme, these ways of associating n electrons can
be distinguished with different microstates [(m,, mq)1, (M,, Ms)2, ... (M,, Mq)a]. A set of
microstates are collectively grouped in accordance to its M. and Ms where M. and Ms
is the sum of magnetic quantum number (m) and spin projection quantum number

(ms) respectively." Additionally, M. and Ms also correspond to the projections of one
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value of L and S which are specified with a spectroscopic term i.e. ®*IL; where S
specifies the total spin angular momentum, L refers to the total orbital angular
momentum (S, P, D, F G, ...) and ] is the total angular momentum. Since there are
numerous combinations in electron associations, the calculation processes for entire
all possible spectroscopic term are too tedious except for the ground state term

symbol.

To evaluate the ground state term symbol, Hund’s rule is applied that the term with
the largest spin multiplicity and the largest orbital multiplicity is the lowest in energy.
Taking Eu" as example, the largest spin multiplicity is 3 (m;= 1/2 X 6, Ms = +3, +2, +1,
0, -1, -2, -3, S = 3) while the largest orbital multiplicity is 3 (with Ms = +3, M. = +3, +2,
+1, 0, -1, -2, -3). Therefore, the ground term of Eu(lll) is ’F, with the overall multiplicity
of (25+1)(2L+1) = 49 while the total angular quantum number are given by L+S, L+S-
1, ..., |L=S| i.e. 6,5, 4, 3,2, 1 and 0. Based on the third rule of Hund’s rule, the state
with lowest | will be the lowest in energy if the subshell is less than half-filled and the
state with highest | on the contrary. The ground state energy level for Eu" is thus ’Fo
and the following table summarize ground state term symbol for different trivalent

lanthanide.
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Ln" Multiplicity S L Jmax Jimin Ground term
La" (4F) 1 0 0 0 0 'Sy
Ce" (4f") 14 12 3 72 5/2 *Fsi2
P! (47) 91 1 5 6 4 M,
Nd" (4F) 363 32 6 1512 912 .
Pm" (4f%) 1,001 2 6 8 4 lq
Sm'' (4f) 2,002 512 5 15/2 5/2 *Hsp
Eu" (4) 3,003 3 3 6 0 7Ry
Gd" (4f) 3,432 72 0 72 72 87
Tb" (4%) 3,002 3 3 6 0 "Fe
Dy" (4f) 2,002 52 5 15/2 512 “Husy
Ho" (4f') 1,001 2 6 8 4 °lg
Er' (4f'") 364 312 6 1512 92 s
Tm'" (41 91 1 5 6 4 e
Yb' (4f7) 14 12 3 n 512 %,
Lu' (47 1 0 0 0 0 S

Table 1-2: Electronic properties and Ground term of Ln" free ions*

1.1.3. Optical Properties of Trivalent Lanthanide lons

1.1.3.1. Absorption

Due to intraconfigurational 4f" — 4f" transition (f-f transition hereafter), the absorption
spectra of the lanthanides show sharp absorption bands in UV and Visible light regions
in which the spectra are reported by Prandtl and Scheiner in 1934.® The sharp
absorption bands are attributed to intraconfigurational f-f transition which are parity-
forbidden according to Laporte’s parity selection rules as the initial and final states
share same parity. However, it is relaxed when lanthanide ions are situated in the
influence of a ligand field, non-centrosymmetric interaction allow the mixing of

electronic state with opposite parity into 4f wavefunctions by crystal-field effect. For
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this reason, the transitions become partially allowed and weak absorptions (i.e. molar

extinction coefficient < 10 L mol'cm™) are still observable.

1.1.3.2. Emission

—Tb

Relative Emission Intensity

AN AN

400 500 600 700 800 900 1000 1100 1200 1300 1400 1600 1600
Wavelength/nm

Figure 1-1: Normalized emission spectra of luminescent lanthanide complexes in solution’

The trivalent lanthanide ions exhibit E  |arge Stokes' shift small Stokes’ shift
unique spectral profile (except La" foes® 1 B 4f*
and Lu") which cover wide range of A\ /
spectrum with sharp and narrow Inm af
bands (UV: Gd"; Visible: Pr'", Sm", l, .

| broad [/ sharp
Eulll’ Tblll’ D),III; NIR. Ndlll’ Erlll’ Yblll). -1|
The characteristic sharp emission lines

distance

are attributed from well-shield 4f
Figure 1-2: illustration of Stokes’ Shift for

orbitals by Xenon core. The shielding

Organic compound (left) and lanthanide ions'
results in weak contribution of 4f
orbital in coordination and thus the electron transition involving 4f orbital have less-

pronounced effects on nuclear attractions. Since the intranuclear distance in ground

state and excited state are similar, the small Stokes shift is resulted.
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In general, the lanthanide lumine-scence is realized by the odd-parity electric dipole
(ED), even-parity magnetic dipole (MD) or electric quadrupole (EQ) transitions while
the nature of parity can be easily indicated with inversion symmetry. As similar to
absorption, both the electric dipole operation and f orbital share same symmetry and

" are situated in ligand field, the

thus ED transitions are parity forbidden. When Ln
mixing of higher configurations would result in mixing of f-orbitals with some d-orbital
characters and thus the Laporte-forbidden transitions become partially allowed.'"* |t

is called induced (or forced) electric dipole transition when the oscillator strength of

an induced ED transition is around 10 times of a fully allowed ED transition.

In contrast, MD transition is of even-parity since the rotatory direction is conversed
under inversion while zero net dipole moment in EQ mechanisms also results in even-
parity. Both MD and EQ transitions are parity-allowed but their intensity is weaker
than induced ED (oscillator strength is approximately 10 and 10"° times of a fully
allowed ED transition)." In fact, there is no convincing evidence for electric quadrupole
transition in lanthanide spectra since they are too weak to be observed. Taking other
quantum number in consideration, mathematics of time-dependent perturbation

theory is simplified by Judd and Ofelt and the selection rules are shown below.™"

Mechanism Parity AS AL AP
ED Odd 0 <6(2,4,6if)Jor)=0) <6(2,46if)or) =0)
MD Even 0 0 0, +1
EQ Even 0 0, 1, 2 0, +1, 2

) =0 to )’ = 0 transition are always forbidden

Table 1-3: Selection rules for intra-configurational f-f transition
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Additionally, some induced ED transitions are hyper-sensitive to minute change in the
ligand field environment and sometimes called pseudo-quadrupolar transition as they
obey the selection rule for EQ transition.'® Although the detailed explanations are not

given here, a list of experimentally identified hypersensitive transition is presented in

table 1-4.
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Ln Transition vlem™ A/lnm
Pr Hy- °F, 5,200 1,920
Nd o = *Gsn 17,300 578

*lor, > Hop, “Fsp2 12,400 806
o, = *Grp, Kisn 19,200 521
Sm ®Hs, = *Fip, “Fan 6,400 1,560
Eu "Fo— °D> 21,500 465
'F1 - °Dy4 18,700 535
"F, - *Do 16,300 613
Gd 8S7n = ®Psp, P7n 32,500 308
Tb —2 - —
Dy ®H1s, — *F11n 7,700 1,300
®His = “Grap, *lisn 23,400 427
Ho 3lg — *He 27,700 361
Slg— 3Ge 22,100 452
Er 15 = *Grin 26,400 379
H1sp = Hu1p 19,200 521
Tm He— "Gy 21,300 469
3He > 3Hq4 12,700 787
3He — °F4 5,900 1,695

2 None identified positively, but the *D4s — “Fs transition shows sometimes ligand-induced pseudo-

hypersensitivity

Table 1-4: Experimental observed hypersensitive transition for Ln" ions>'®

1.1.3.3. Antenna Effect

Despite the unique emission spectral profile of Ln" ions, the direct excitation of Ln"
is not ideal due to poor light absorbing ability (i.e., € < 10 L mol'em™"). Chromophores
are, therefore, introduced at proximal distance to harvest light as an antenna and the

excited energy can be transferred towards Ln". In general, three different mechanisms
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have been summarized for intra-molecular energy transition in Ln" complexes as

depicted in figure 1-3.

S, ———— s, — s, —
B’ B . £
T T, T, ;
e F —F 134
E
S, G S ——G S —G
Ligand Ln™ Ligand Ln' Ligand Ln'

Figure 1-3: A simplified Jablonski diagram depicting the sensitization process. Solid arrows: radiative
process; Dotted arrows: non-radiative process; 'S: first singlet excited state; 3T: lowest excited triplet
site; A: absorption; F: fluorescence, L: luminescence; NR: non-radiative deactivation; ISC: intersystem

crossing; RISC: reserve intersystem crossing; ET: energy transfer; BET: back energy transfer.

In the case of Ts-to-Ln sensitization pathway, ligands are excited to singlet excited state
followed by intersystem crossing and energy transfer to Ln" centers for emission.
Another pathway refers to direct sensitization from singlet excited state without going
through T, state. The complex pathway relies on subsequent energy transfer between
ligand and lanthanide which ultimately relaxes down to ground emitting level for
luminescence. The latter two pathways are beyond the scope of this thesis while the
sensitization hereafter will refer to Ti-to-Ln pathway as following simplified Jablonski

diagram depicted.
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15

B 1ET
s T
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i _OET N
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A F {NR BET
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v
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Figure 1-4: A simplified Jablonski diagram depicting the sensitization process. Solid arrows: radiative
process; Dotted arrows: non-radiative process; 'S: first singlet excited state; 3T: lowest excited triplet
site; A: absorption; F: fluorescence, L: luminescence; NR: non-radiative deactivation; ISC: intersystem

crossing; RISC: reserve intersystem crossing; ET: energy transfer; BET: back energy transfer.

In sensitization process, the excitation of chromophore is achieved from the ground
state to the excited singlet S, by absorption of photons. The excited chromophore
can possibly undergo fluorescence, thermal relaxation or intersystem crossing (IS)
from S, to the triplet state Ts. Although such S,-T1 transition is spin-forbidden, it can
be relaxed by spin-orbit coupling by heavy atom effect i.e., Ln". At this stage, there are
three possible energy transfer pathways including reverse intersystem crossing to S,,
phosphorescence and energy transfer to the lanthanide excited states. As stated in
Latva’s empirical rule, the energy transfer would be favored if the energy gap between

T+ and accepting lanthanide excited state is within the range of 2500 — 4000 cm™".""
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Figure 1-5: The illustrated diagram of Férster and Dexter mechanism mechanisms

In general, the energy transfer between chromophores and Ln" can be achieved by
either Dexter or Foérster mechanism.'®? The double-electron exchange mechanism
where an excited electron is transferred from one molecule to second molecule via
electron exchange is termed Dexter mechanism. As a result, this mechanism requires
good orbital overlapping between chromophore (donor) and Ln" (acceptor) and thus
the physical contact at proximal distance is required with the dependence of e(*™".
Another mechanism, namely Forster mechanism, are based on “through space”
interaction which does not require orbital overlap but the overlap of emission
spectrum of donor and the absorption spectrum of acceptor. This process is achieved
by the dipole-dipole coupling between chromophore and Ln" where the rate of

transfer proportional to r*.
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1.1.3.4. Quantum Yield Measurement

As mentioned previously, the sensitization processes are often involved in lanthanide
complexes and thus the calculation of fluorescence quantum yield differs from
conventional organic probes. In general, the ordinary fluorescence quantum yields are
obtained with equation 1.1 in which the entities responsible for absorbing and emitting
photon are essentially identical. However, ligands antennas are often incorporated in
lanthanide system such that the quantum yield of lanthanide complexes is given by

equation 1.2.

number of photons emitted

= humber of photons absorbed ion 1.1
number of photons absorbed (equat o )

Ln _ L .
Ln = nsensQL‘ﬁ ------ (equation 1.2)

whereby QI and QI are defined as quantum yield from indirect and direct excitation
(overall and intrinsic) respectively, while ng.ns represents the efficiency of energy
transfer from ligands to metal ions. The sensitization efficiency depends on two
parameters including efficiency of intersystem crossing process and chromophore-to-
lanthanide energy transfer. It could be measured experimentally by obtaining both the

overall and intrinsic quantum yield or estimated with lifetimes as shown in equation

1.3.32425
_ _ an AL crad .
Nsens = TMisc " Net = an = Ln Tobs) T (equation 1.3)
n
! = A X 3 X It_Ot H 1.4
Ty Amp XD (IMD) ------ (equation 1.4)

The simplified representation of sensitization efficiency is the rate of radiative
relaxation over the rate of overall relaxation.” ' Without considering the mathematical

derivation, this can be related to observed lifetime and radiative lifetime. The observed
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lifetime is typically obtained from measurement while the latter one is calculated
through equation 1.4 where A, is Einstein Coefficient for the MD transition, n is the
refractive index and I;,; and I, are the integrated intensity for entire emission profile

and MD-transition-leading emission respectively.

As mentioned previously, the quantum yield of lanthanide complexes describes the
probability that the excited chromophores are relaxed through energy transfer to
lanthanide centers and subsequent lanthanide f-f emission. The quantum yields can be
measured by either absolute and relative methods while the former one requires the
integrating spheres and latter one compared the result with known standard. The
integrating sphere is designed with materials of close to 100% reflectance (barium
sulphate or Teflon), thus the emitted light can be fully collected by the detector in

both isotropic and anisotropic manner.2?’

m n2 .
by = q)ST(m—SXT) (é ------ (equation 1.5)

The relative methods are generally more common and convenient way to determine
the quantum yields while the relationship between the quantum yield of sample and
the standard could be calculated by equation 1.5. The ideal standard should share
same (more overlapped) excitation and emission range with sample to minimize the
difference in sensitivity of the spectrophotometer in different spectral range.
Meanwhile, it is important to keep all condition including excitation and emission slit
the same in all experiments while the absorbance should be kept under 0.1 to avoid

the innerfilter effect. In order to validate the result, the cross-checking among
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different standards can be performed while the following table lists the literature value

and emission range of common standards used in quantum yield measurements.

Standard Solvent Literature QY Emission Range

Quinine sulphate 0.1 M H,SO4 0.546 400-600
Cs;[Tb(dpa);] aerated water 0.22 480-670
Cs;[Eu(dpa)s] aerated water 0.24 580-690
[Yb(tta)s(H20)s] Toluene 0.0035 950-1080
aerated water 0.028 550-800

[Ru(bpy):]1Cl,
de-aerated water 0.043 550-800

Table 1-5: Common Quantum Yield Standards used in relative quantum yield measurement?®-3"

1.2. Supramolecular Chemistry in Lanthanide Complexes

1.2.1. General Coordination Chemistry in Lanthanide

La Ce Pr Nd Pm Sm Eu Gd Th Dy Ho Er Tm Yb Lu

57 58 59 60 61 62 63 64 65 66 a7 68 a9 70 71

a4 i 4F aft  4f aff  af a4 a4t 4t af? g g

1032 101.0 990 983 970 958 947 938 823 912 901 8§90 880 868 861

Figure 1-6: lonic radii of Ln" in pm®

Along the lanthanide series, the increase in effective nuclear charge (as the atomic
number increases) results in a decrease in ionic radii of Ln" which is often termed
lanthanide contraction. This high charge density makes Ln" as a highly electropositive
Lewis acid. As a hard acid accepter, Ln" interacts preferentially with hard donor (in the
order of O > N > §) in non-directional fashion.’> Hence, the reported coordination

number is ranged from 6 to 12 where coordination geometry with CN = 8 or 9 are

preferable as a result of steric effects and lanthanide contraction.
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Upon ligand complexation, the coordination process mainly contributed from 5d and
6s orbitals due to their large radical expansion while inner 4f electrons are generally
considered to be shielded from the coordination environments. Thus, in trivalent
lanthanide system, the highly shielded f-orbital electrons have minute participations in
bonding and thus the bonding are predominantly ionic in nature. Compared to
transition metals, relatively small stabilization energy (~4.18 k] mol) is obtained from

ESR spectra and further validate the small contribution in coordinations??

1.2.2. Development in Supramolecular Chemistry

1.2.2.1. The Concept of Supramolecular Chemistry

Supramolecular chemistry is the field in chemistry regarding chemical system consisted
of a discrete number of molecules which are held together by collection of various
weak intermolecular interactions. In contrary to conventional covalent bonding
predominated system, supramolecular chemistry emphasizes on weaker and reversible
non-covalent interactions such as hydrogen bonding, metal coordination, van der
Waals forces, -1 interactions and various hydrophobic interaction.?*3¢ In fact, the
concept of supramolecular chemistry was originally initiated with small molecules to
mimic the naturally existed biological molecules such as enzyme with tiny and specific

binding sites.
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Figure 1-7: Chemical Structure of (left) crown ether (mid) cryptands and (right) spherand hosts

As a pioneering researcher in the field, Pedersan first published the work on
synthesizing polyether units which is now named as crown ether*” These tiny
compounds exhibit excellent binding affinity to alkali metals in which the coordination
showed significant differences towards conventional transition metal coordination
complexes. With this foundation, the concept was further explored with two
pioneering chemists in which bicyclic ether cryptands and host molecules spherands
were reported by Lehn and Cram respectively.’®3 In 1987, these three pioneering
chemists were rewarded Nobel Prize in Chemistry for their development of
supramolecules with structure-specific interactions of high selectivity to recognize the

importance of supramolecular chemistry.
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1.2.2.2. Development in Supramolecular Coordination Complexes
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Figure 1-8: The First example of supramolecular coordination complexes (SCCs)**!
In general, supramolecular coordination complexes are discrete architectures typically
obtained from mixing metal and organic ligand precursor to afford supramolecular
coordination complexes (SCCs). These characteristics compounds utilized metal-
ligand coordination bond to synthesize thermodynamically favored complexes.®
Through mixing diphosphine bridging ligand and transition metal carbonyl precursors,
the first example on SCCs was reported to synthesize twenty-member tetranuclear

supramolecular square in 1983 by Verkade and co-workers as depicted above.*
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Figure 1-9: Selected early example of supramolecular coordination complexes (SCCs).#>4
Soon after, different example of 2D polygon and 3D polyhedral are subsequently
reported as shown in Figure 1-9.2% With these elegant examples, the field of
supramolecular chemistry was rapidly expanded. Prof. Stang and Prof Fujita then
reported controlling strategy to systematically construct supramolecular squares.*’*
In Figure 1-10, Prof. Fujita utilized palladium metal precursor with square planar
coordination geometry to construct the transition metal square complexes. With this
metal precursor, two corners are chelated to diamine while another two are directed
to labile nitrates by mixing dipyridine with angularity of 180°, square complexes are

resulted. Using similar approaches, Stang utilized hindered phosphine as coordination

cap to afford similar structure.*



m Introduction to Supramolecular Chemistry of Lanthanide Complexes

‘™ (\NHz b Fh
w1

HN. 7 = HN Ph—P.1 ~Ph
e KO - i M
1+ ~g0° H H
Fujita’s Work
—
Ph
S —
Ph—P< 1 Ph N D N
f M-- == L/
Ph 1 m,L’,L”, M,L7,L",

~g0°
square square

Stang’s Work

Figure 1-10: graphical illustration on rational design of supramolecular squares*#

With the concept of angularity, Stang and co-workers subsequently proposed
“directional bonding” approaches to force the metal coordination in certain direction
and developed molecular libraries of 2-fold symmetric subunits.*>*->* The subunits are
constructed based on two transition metals with square planar coordination geometry.
With the incorporation of labile chelator and coordination caps, the directional

coordination can be achieved with wide range of angularity ranging from 0 to 180°.
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Figure 1-11: The molecular library of 2-fold symmetric subunits.*>4*-54
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Figure 1-12: The predicted two-dimensional structure from ditopic units*

By strategic combination of these ditopic units, different two-dimensional polygons
can be systematically constructed. For example, two ditopic subunits with angle of
120° is likely to result hexagon assembly. To expand the scope from two dimensional
to three-dimensional system, Stang and co-workers simply increase the connectivity
to introduce the driving force of third dimension while the prediction of these three-

dimensional polygon are listed in figure 1-13.
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Figure 1-13: The predicted three-dimensional structure from ditopic and tritopic units®
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Figure 1-14: Selected examples of SCCs construction using bend angle approaches
Using different strategy, Fujita mainly focused on bend angle modulation to construct
higher order M;L,, transition metal spheres. By mixing metal and ligands with different
angularity, different molecular spheres are constructed as depicted in figure 1-14.
With this foundation, Fujita and co-workers revealed that a clear threshold on bend
angle for the formation of different topologies.>**® For example, with the bend angle
experimental threshold between 131° to 134° showed the transition from Misla4

structure to Malss topologies.

In addition to two mentioned approaches focusing on angularity and directionality,
symmetry-interaction approaches are another strategy to construct different
supramolecular assemblies.®® Taking regular transition metal complexes with
octahedral geometry as example, each bidentate chelation defines the coordination
vector while the summation of coordination vector locate the chelating plane and C;
rotational axis. The approaching angle is defined as the angle between C; rotational
axis and the vector that is orthogonal to coordination vector but parallel to two-fold

rotational axis of ligands. By varying approaching angle from regular octahedral with
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approaching angle of 0° to 35.3° tetrahedron is likely resulted. Raymond and co-
workers utilized this symmetry-interaction approach to successfully construct triple
helicate, mesocate and tetrahedron structure.’’

OH
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o WM OH QOH
NH : N’OHO o ¢ oH O \H OH
* &
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NbH HO, 0 HO i o
HO Ho 6
M, L tetrahedron

Figure 1-15: Selected examples of SCCs construction using symmetry-interaction approaches.

1.3. Developing Lanthanide luminescence Supramolecular

edifices

The trivalent lanthanide coordination systems have attracted much attention with
their versatile photophysical properties arising from distinctive 4f-4f transitions. They
generally demonstrated line-like and long-lived emission profile which cover wide
range of spectrum with excellent tunability. With the introduction of proper
chromophore, Ln"-centred luminescence can be effectively sensitized to address
intrinsic low-absorption obstacle. Meanwhile, in term of coordination geometry, the
Ln" complexes heavily depends on ionic radii and steric factors with flexible

coordination numbers and diverse geometries. Despite these characteristic properties,
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employing Ln" as luminescent coordination assembly have faced great challenge in

enhancing luminescence efficiency and controlling coordination morphology.

1.3.1. Enhancing luminescence efficiency

As already mentioned, the photoluminescence of Ln"

complexes is intrinsically
forbidden due to the 4f-4f transitions. In contrast with transition metal complexes,
the sensitized photoluminescence involves the intersystem crossing and energy
transfer to Ln" centres which are basically both spin- and parity-forbidden. Fortunately,
the spin-orbit coupling and heavy atom effect relax the spin rule while the mixing of
opposite parity upon 4f-5d mixing also partially allows ED transitions.' ** According
to equation 1.3, enhancement of luminescence efficiency can be achieved by promoting
intersystem crossing, energy transfer and 4f-4f transition with the suppression of non-
radiative quenching.

" centers

1.3.1.1. Promotion of inter-system crossing and energy transfer to Ln
In lanthanide system, effective energy transfer is usually achieved by excitation of T —
1" bands of organic chromophores with large absorption coefficients followed by the
intersystem crossing and energy transfer to Ln" ions. As already described, these
energy transfer processes are generally explained by the Forster and Dexter
mechanisms while the energy gap between triplet state of ligands and excited state of
Ln" are crucial in photosensitization process.'®? According to Latva’s empirical rule’,
the energy transfer would be favored if the energy gap between T; and accepting

lanthanide excited state is within the range of 2500 — 4000 cm™ while the energy back

transfers are likely to be observed if it is smaller than 2500 cm™."
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Engineering the triplet state is, therefore, primary approach to promote luminescence
efficiency. In general, the introduction of conjugation system will result in dramatic
difference in triplet state while electron-withdrawing or donating moieties are
responsible for minute changes. Although the ligand design is often based on energy
gap modelling, it is also noteworthy that the sensitization process is exceedingly
complex with numerous parameters that ligand with similar energy level might result

in dramatic change in optical properties.

1.3.1.2. Promotion of 4f-4f transitions

In addition to engineering triple state, promoting 4f-4f transition is another strategy
to achieve brighter luminescence. It is evident that the radiative rate constant of f-f
transitions is heavily dependent on the geometrical symmetry of Ln" centers in which
the transition probabilities have been promoted by introducing asymmetrical
geometry.®® As mentioned previously, the parity selection rule is relaxed via the mixing
of non-centrosymmetric characters in ED transitions. It is generally agreed that the
ED transition probabilities are enhanced when the coordination lowers the symmetry
around the lanthanide and thus alter the radiative f-f transitions. Numerous studies
have been conducted to enhance such f-f transitions through manipulating the
coordination symmetry such as lowering the symmetry from eight-coordinated square
anti-prismatic (Dad) to a dodecahedral (D14).%% In addition, the decrease in symmetry
surrounding Ln" center also results in enhanced luminescence even with same
ligands.** The phenomena come along with faster radiative f-f transition rate (or

shorter lifetime) and thus compete better with non-radiative quenching.
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1.3.1.3. Suppression of vibrational quenching

Since Ln"

emission is easily de-activated through multiple non-radiative process,
suppression of non-radiative quenching is crucial to achieve bright luminescence.
Among those non-radiative process, vibrational relaxation is especially effective and
thus major concern in enhancing luminescence.® The vibration quenching likely to
occur when the energy gaps between emissive and ground states of Ln ions couple
with the oscillator of chemical bonding (v > 1). Therefore, chemical bonding with high
vibrational frequency i.e., O—H (3600 cm™), N-H (3300 cm™") and C-H (2900 cm"") are
common quenchers which result in rapid non-radiative quenching. On the contrary,
weaker oscillator such as C=0O (1650 cm™), P=O (1120 cm™) and O-D (2200 cm™)
can suppress vibration de-activation. Based on this concept, numerous studies have
been conducted through replacing oscillator in ligands i.e. deuterated ligands from
Hasegawa et. al. and fluorinated ligands from Pikramenous et. al.*’ It is believed that

the vibrational quenching can be minimized with a design of rigid metal-ion

environment and low-energy vibration in order to protect Ln" ions from solvent

interaction.
+ Ln 0O-H 0-D
v=7
v=4
E
E 7 v
S v=0 v=20

Figure 1-16: Graphical illustration of AE between the excited states of Ln" and the next lower state

with harmonics of O-H and O-D oscillators
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1.3.2. Topological control in lanthanide supramolecular self-assembly

In the development of lanthanide supramolecular chemistry, the first lanthanide
helicate was reported by Piguet in 1992.%® Extensive studies were conducted to
investigate different homometallic and heterometallic helical system.®*’" Sixteen years
after, lanthanide-based SCCs was first expanded to 3D polyhedral system in which first
lanthanide tetrahedron was reported by Hamacek and co-workers while it took
another nine years to realize first edge-directed cubic system.”>’* More recently,
various architectures ranged from two-dimensional polygon, three-dimensional
polyhedra and complex helicates have been reported and summarized in few review

articles.”>#2

Although the design principle of transition metal complexes has already been widely
studied, the topological formation of lanthanide self-assembly is still in the infancy stage.
The coordination chemistry among lanthanide systems significantly differs from well-
studied transition metal supramolecular complexes due to their variable angle,
coordination number and flexible stereochemical preferences. However, a concrete

and comprehensive rational topological controlling scheme has not yet been developed.

1.4. Scope of Thesis

Considering the previously mentioned challenges, this thesis examines the topological
control of lanthanide luminescent supramolecular edifices with the investigation on
symmetry manipulation and building block synthesis. Chapter 2 is a study of lanthanide
self-assembling behaviors through ditopic ligands with different symmetry. In chapter

3, it devises the functionalization of luminescent 1,2-HOPO building block and its
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investigation on supramolecular assembling process. Chapter 4 focused on the

development of new chiral hydroxyquinoline-based anionic chelator.
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Chapter 2: Topological Formation of Supramolecular Assembly

from Ditopic Ligands

2.1. Introduction

2.1.1. Background

With the unique properties and potential application in lanthanide system, high order
polynuclear lanthanide supramolecular assembly have attracted raising attention over
the past decades."® With the effort of pioneering researcher, the construction of
different complex supramolecular edifices including two-dimensional polygon, three-
dimensional platonic solids'*®? and complex helicates'®'" have been realized. These
sophisticated examples have initiated the investigation on the relationship between
ligand and ultimate topology while various scholar have proposed different
terminologies such as ligand symmetry, offsetting properties, metal size and templating

effects.!*>12

Supramolecular self-assembly are known to be a collective result from various weak
non-covalent interactions while the metal-to-ligand interaction obviously contributes
as major driving force in such complex architectures in providing both thermodynamic
stability and predetermined coordination preferences.” ' With examples of
transitional metal supramolecular assemblies, Raymond and co-workers have
postulated the symmetry-directed approaches to construct the formation of metal-
organic supramolecular assemblies via manipulation on offsetting properties between

the chelating units and metal centers.'"



m Topological Formation of Supramolecular Assembly from Ditopic Ligands

C, Ligand coordination plane

Y, Cs Va C, Ln coordination axis

Approaching angle

C,

D T T

Figure 2-1: lllustration on geometrical consideration in regular Oy, cubic structure
Taking regular edge-directed cubic cages as demonstration, the cubic assembly adopts
regular Oy cubic symmetry while it must contain four C; rotational axis spanning
vertices of the cubic assembly and six C, rotational axis across the center of each
ligand edge. Meanwhile, the symmetry and approaching angle in pre-engineered ligand
have provided coordination orientation and stoichiometric preferences to guide the
final topology of metal-organic cluster These rationales have governed the foundation
in developing strategic formation of higher-order supramolecular edifices in which

higher-order structure generally require more symmetrical requirements.

As a pioneering work in polynuclear lanthanide supramolecular system, Piguet and
Biinzli have contributed a leading role in developing lanthanide helical system.’®"? With
a series of C,-symmetric benzimidazole-pyridine based chelating units and flexible V-
shaped spacer, first dinuclear triple-helical lanthanide self-assembly Euz(R1)s was
reported in 1992." Through selected metal-to-ligand stoichiometry, europium(lll) ions
was coordinated with six N atoms from benzimidazole unit and another three N atoms
from pyridine moiety to afford stable pseudo tricapped trigonal prism geometry. With

the support of ESI-MS and absorption spectroscopy, it is postulated that the
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construction of triple-stranded helicates is originated from a stepwise self-assembling
process through LnL,, Ln;L, to Ln,Ls while the high concentration and stoichiometry

of ligand promote the formation of thermodynamically stable Eux(S1)s triple-stranded

20, 21

helical structure.
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Figure 2-2: selected example of ditopic ligand
In addition to these benzimidazole-pyridine based ligand, 2,6-pyridnedicarboxamide
(pcam) are another common chelating unit for lanthanide coordination which allow
incorporation of chiral moiety.>?>?* The first X-ray structure Eua(La4b)2 was reported
by Law sevens year after the preceding example in chiral pcam-based helicate
Euz(R>):.> With the combination of chiral pcam-based chelating with rigid non-
twisting spacer, diastereoselective and non-diastereoselective supramolecular
formation behaviors of bimetallic triple-stranded helicate were realized through

extending the point chirality from lanthanide coordination sphere.
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Not soon after, two groundbreaking examples on lanthanide supramolecular
tetrahedral and cubic structures were reported independently. Law and Sun utilized
the offsetting properties of different rigid ligand L1a and Lab to realize the formation
of thermodynamically stable supramolecular edifices.” ? Both findings have acknow-
ledged the important of offsetting properties of ligands and their correlation with the
ultimate topologies of metal assembly. In Sun’s work, it is claimed that the offsetting
distance dictated the final outcomes of the lanthanide assembly, ranging from LnaLs
helicates and Ln4L¢ tetrahedron to Lngli; cubes. Meanwhile, the author also
emphasized on the formation of helicate/tetrahedron mixture from “borderline case”

ligands.

More recently, Law reported helicate-tetrahedron transformation with similar type of
pcam-based ligands. Through systematic variation of spacing distance, ligand spacing
with one to three phenyl rings have been reported. Helicate-to-tetrahedron evolution
is achieved by simply shortening the spacing distance without varying offsetting
distance. With the sufficiently short linker, thermodynamically disfavored tetrahedron
can be resulted by concentration effects through crystallizations. In the investigation,
the dependence on ionic radii towards pcam-based ligands are also observed that
lanthanide with smaller ionic radii is better accommodated and affording more stable
structure. These finding established the new era of lanthanide supramolecular
chemistry and more sophisticated lanthanide polygon and polyhedra have been

reported recently.>®
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With these elegant examples of different topological edifices, it consolidates the ideas
on employing symmetry-interaction approaches in transition metal supramolecular
chemistry to lanthanide system. It is a clear indication that the offsetting properties
and flexibility of ligands have played a critical role in constructing the polynuclear
lanthanide complexes. In general, an ideal spacer should provide sufficient rigidity to
govern the offsetting properties to guide the formation of entropically disfavored
topologies. At the same time, moderate flexibility provides higher thermodynamically
stability and empower the twisting behavior of ligands. However, the correlation
between the offsetting properties and rigidity in ditopic ligand and ultimate topologies
have not yet been comprehensively studied in lanthanide system. Considering this
problem, this chapter aims to investigate the interrelation between supramolecular

self-assembling behaviors and different offsetting properties and symmetry.

2.1.2. Scope of study

In this chapter, a series of pcam-based ligands were compared for their offsetting
properties, spacing distance and rigidity as depicted in figure 2-3. To investigate the
lanthanide contraction, different metal ions were also employed ranged from early
lanthanide to late lanthanide (La, Sm, Eu, Gd, Lu) and synthesized complexes were
studied with mass and NMR spectroscopy while the crystallographic and photophysical
properties were also investigated whenever possible. In addition, The phenomenon of

helicate-to-polyhedra transformation of synthesized complexes were also studied.
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Figure 2-3: Summary of compound in Chapter 2

2.2. Result & Discussion

2.2.1. Design Rationale

Based on preceding literature, each structural similar spacing units are further derived
into two different offsetting angles. For instance, anthracene-2,6-diamine (1a) and
anthracene-1,5-diamine (1b) are categorized into same anthracene-based linker while
pcam-chelating unit were retained for detailed comparison. To correlate the spacing
unit and ultimate topologies, these spacing units are generally categorized into three
groups which include (1) opposing pseudo-C,, (2) offsetting pseudo-C,, symmetric and
(3) non-offsetting pseudo-C,, symmetric, symmetric spacing units as depicted in
Figure 2-4. Due to the unique structure of spacer 4b, two simulated structures will

be resulted based on the orientation of amine periphery group.
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Figure 2-4: illustration of three different group of spacing units

2.2.2. Synthesis & Characterization

2.2.2.1. Synthesis of Ligand

According to reported procedure, the chiral peripheral arm (S)-1-phenylethylamine is
first coupled with dipicolinic acid. Upon standard HATU amide coupling, the resulting
dipicolinic chelating units are coupled with corresponding spacer 1a-4a, 1b-2b to
prepare corresponding ligands. The spacer 2a, 2b, 3-4a are prepared by reduction or
palladium-catalysed amination while spacer 5b was synthesized with 5-steps Wittig
reaction. The synthesized intermediates and ligands are characterized with 'H NMR,
13C NMR and ESI-HRMS whenever possible and detailed characterization are provided

in section 2.4.

2.2.2.2. Synthesis of Complexes

The complexations are performed in pure acetonitrile or mixture of acetonitrile/
methanol (4:1) with lanthanide triflate (La, Sm, Eu, Gd, Lu) at reflux temperature under
the concentration of 2.5 mM unless specified otherwise. Upon overnight reaction, the
resulting solution was concentrated with compressed air followed by precipitation

with diethyl ether. The obtained precipitates are washed with diethyl ether to afford
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pure complexes. All the complexes are characterized with 'H NMR, 'H-'H COSY

NMR, *C NMR ESI-MS, elemental analysis whenever possible.

2.2.2.3. Characterization of Complexes
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Spectrum S2-2: isotopic distribution of selective ion species in SmLi,

Complex LnL.. To characterize the complexes, NMR spectroscopy was performed

to confirm formation of single species in both ligand system. However, NMR
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spectroscopic data is not conclusive which is likely attributed from C=O rich
environments which allow extra hydrogen bonding formation and interaction to metal
sphere. As anticipated with the previous publication, complexation of Li. afford
tetrahedral cages in which characteristic ion peak [Ln4(L1.)s + x OTf —y H]"™ (Ln = Sm,
Euand Lu, n =4 & 5, x & y is variable) as depicted in spectrum S2-1 and S$2-2 while

other characterization data are summarized in appendix section.

Complex LnL;,. To characterize the complexes, NMR spectroscopy was performed
while non-conclusive data is obtained due to C=O rich environment and
intramolecular hydrogen bonding. Therefore, the characterization of complexes LnL1b
mainly replies on HRMS spectrum. As shown in S2-3 and S2-4, the complexes are likely
to be in helicates form in which the characteristic ion peaks are denoted as depicted
while the other characterization data for europium and lutetium are attached in

appendix section.
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Spectrum S2-3: ESI-HRMS spectrum of SmLyp
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Spectrum S2-4: expanded ESI-HRMS spectrum of SmLp
Compared to other complexes of pcam ligands, the spectrum shows a significant
amount of dissembling species including [LnL1b — Sm]™ and [LnL1b — L]™ species
which indicates the instability of resulting complexes while it is likely attributed from

the intermolecular hydrogen bonding.
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Spectrum S2-5: Stacked 'H NMR spectrum of Complex LnL,,

Complex LnL:.. With the NMR spectroscopy, it is evident that only single species

of supramolecular structures are resulted from the complexation of Sm", Eu" and Lu"
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metal while unknown species are formed for LaL,. as shown in spectrum $2-5. In
general, SmL;. and LuL,. has demonstrated similar pattern while paramagnetic shift
was observed in Eul,.. With the aid of 'H-'H COSY NMR spectrum (S§2-7), the
proton NH; can be assigned at approx. 5 ppm as it demonstrates correlation between
the chiral CH;. meanwhile, other protons on pcam chelating unit i.e. He.n are also
influenced by the paramagnetic field of europium and resulting in upfielding shift.
Through similar manner, the proton assignment of other LnL,. complexes were also

conducted and included in S2-61 to S2-67.
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Spectrum S2-6: 'H NMR spectrum of EuL,.
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Spectrum $2-7: 'H-'H COSY NMR spectrum of EuL,,
With the confirmation of single species, ESI-HRMS have identified the helical
conformation with [Lna(L2.); + x OTf - yH]™ species (Ln = Sm, Eu, Gd and Lu, n = 3-
5 x & y = variable) while no other species were identified from the obtained
complexes. As complex LaLz. show no conclusive information in both MS and NMR

analysis, unstable coordination complexes are likely formed.
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Spectrum S$2-8: Stacked 'H NMR spectrum of Complex LnL,s
Complex LnLj. In analogy to complex LnL,,, spectrum S2-8 showed the uniform
pattern in '"H NMR spectrum from samarium to lutetium in our complexation system.
The complex pattern in NMR possibly infers the existence of higher order asymmetric
structure. The detailed proton assignment on aromatic regions is not feasible due to
overlapped signal while only SmL;, demonstrates clear isolation within individual
signal in aliphatic regions. The combination of '"H NMR and '"H-"H COSY NMR reveals
that there are seven different set of non-identical proton environment (denoted as
square and circle with different colors) in a ratio of approx. 1 : 3 with twenty-four -

CHCH; and seventy-two -CHCH3; protons.
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pseudo-C; axis pseudo-C, axis

Figure 2-5: illustration of two different metal environments in cubic structure
Based on seven different proton environments, two inference can be concluded
including (1) eight different metal environments while two of them are of similar (2)
four different metal environment while two of them are of similar. In former case, the
slight difference in metal 1a and 1b leads to other six different proton environments
with pseudo-C; rotational symmetry spanning along two similar metals. For latter case,
there will be four different metal environments while metal 1a and metal 1b are of
similar. Due to ditopic nature of ligand, ligand connecting metal 1a and 2 will have two
different proton environments locating on 1a and 2 separately and thus eight different
proton environments in total are resulted. As metal 1a and 1b are similar, underlying
protons on ditopic ligand connecting metal 1a-2 and metal 3-1b are most likely

identical and ultimately resulted in seven different proton environments.
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Although detailed assignments in
EulL;, and Luly, are not feasible,
the identical patterns are side
evidence on the formation of same
topology. In addition to NMR
spectroscopy, ESI-HRMS spectrum
revealed the existence of [Lng(Lab)n

+ xOTf — yH]™ (Ln = Sm, Eu, Gd &

Lu, n = 4 — 8 x & y = variable)

Figure 2-6: crystal structure of Smg(L2)12

without other species (82-72 to

$2-84). Among the synthesized complexes, the first chiral lanthanide cubes SmLas is
successfully crystallized in the co-solvent of methanol and acetonitrile while x-ray
crystal structure agrees with other previous inference that four different metal

environments are interpreted while two of them are of similar environment.

Complex LnL;, Based on NMR spectroscopy, only single set of protons is identified
in LnLsa (Ln = Sm, Eu, Lu). In analogy to LnL2, LnLsz. (Ln = Sm, Eu, Lu) have shown
similar pattern while up-fielding signal are observed in paramagnetic europium
coordination. With the aid of 'H-"H COSY NMR spectrum, similar proton assignments
are performed as previous illustration while the detailed assignment are included in S

to $2-85 to $2-92.
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Spectrum S$2-11: stacked '"H NMR spectrum of LnLs,
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Spectrum S2-12: ESI-HRMS spectrum of EulL;,
As depicted in spectrum S$2-12, the ESI-HRMS spectrum was initially assigned with
sole helical arrangement from the major signal. Upon detailed analysis on high-mass
regions (S2-13 and $2-14), it indicated that tetrahedron species are identified while
the signal at m/z = 1,444.23 region are actually signal overlapping of both helicates and

tetrahedral species as proved by the isotopic simulation.
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Spectrum S2-13: isotopic distribution of selective ion species in EuLsa (m/z = 1444.23)
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Spectrum S2-14: isotopic distribution of selective ion species in EuLz, (m/z = 1975.28)

Meanwhile, the mass signal at 1,975.28 region further reveals the formation of the

tetrahedral species. This phenomenon is not only observed in europium complexes

but also in Sm and Lu complexes (spectrum S2-93 and S2-94). With these

observations, there are two possibilities including (1) m/z signal of helicates is

fragmented from tetrahedral species and (2) m/z signal of tetrahedral is 1+1 adducts

from constituent helical structure. In facts, it is uncommon that case (2) will occur

while all three lanthanide complexes must have same coincidence on adducts
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formation. Together with single predominated species identification in NMR analysis,
the complexation of ligand L3, most likely resulted in homochiral tetrahedral species

with some minute dissociated helicates.

Complex LnLs, The NMR spectroscopy revealed the formation of single species for
all synthesized complexes including lanthanum, samarium, europium and lutetium. As
expected from previous result, proton in Euz(L4b)3 have experienced the paramagnetic
field. The detailed assignments are not performed as 'H-'H COSY experiment is not
completed while the individual '"H NMR spectrums are reported (S2-95 to $2-98).
The ESI-HRMS spectrum revealed the helical conformation with the characteristic ions

peak [Lny(Ls)s + xOTf —yH ]™ (Ln = La, Sm, Eu, Lu, n = 2-4, x & y = variable).

LuL,,

| LUJJ“J (- qu—;

Eul,, ' Lo
. - ) VLA A _ f - U .'J\A_L R +
[ o
SmL,, |
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Spectrum S$2-15: stacked 'H NMR spectrum of LnLy,
Ligand Ls, In contrast to other ligand systems, synthesis of ligand Ls, have

experienced significant difficulties that the amide coupling of spacers 5b and pcam

chelator cannot properly afford final ligands even with different coupling reagents such
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as PyBOP and thionyl chloride activation. From the synthesis, only minute amounts of
ligands are formed with large amount of impurity which hinder the purification and

subsequent complexation study.

2.2.3. Transformation Among Different Topologies

2.2.3.1. Solvent dependent helicate-to-tetrahedron evolution of LnL,,

With the prediction of similar offsetting properties, L2. are expected to accommodate
tetrahedral topology as L4, does. As discussed previously, direct complexation of L.
result in helical structure. Upon standing the complex solution in d-acetonitrile in
NMR tube, non-bright complexes EuL,, was found to be luminescent after two weeks
of standing. Based on this observation, a series of time-dependent study was then

conducted to investigate the transformation progress.

Time dependent NMR Study. As an initial study, 2 mg of isolated complexes of
Eul.. with approximate concentration of 0.5 mM were dissolved in 0.5 mL molecular
sieved dried d-acetonitrile and the transformation progress is monitored by NMR

Spectroscopy.
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Spectrum $2-16: Initial Time dependent study on transformation of EuL2, (0.5 mM)

The spectrum S2-16 show slow transformation from pure helicate to high-order

structure in 16 days while the species cannot be identified at that moment. To promote

the transformation and expand the investigation, other studies are conducted in higher

concentration of 5 mM using isolated helicate Euz(L2a)s and Smz(L22)s with same

conditions.
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Spectrum S2-17: Time dependent study on transformation of Eua(L2a)3 (5 mM)
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Spectrum S$2-18: Time dependent study on transformation of Smz(L2a)3 (5 mM)
As indicated in the spectrum S2-16, europium helicates started to convert from day
3 and slowly converged to new intermediate species without any helicate structure in
day 5. The further transformation was completed with the duration of 2 weeks by
standing the solution in room temperature. However, the transformation in samarium
is much slower compared to europium in which a mixture of species was identified
after 1 month. Based on the NMR spectroscopy study, there are no observable
difference from t = 16 days and t = 1 month. The transformation in SmL., is believed

to stay in the mixture of helicate and unknown species upon standing.

Solvent dependence study To investigate the formation of tetrahedron species,
the direct complexation of Ligand L. with anhydrous acetonitrile was performed.
However, no desired tetrahedron species were observed even prolonged heating was
employed. Different strategy was therefore employed that the isolated complexes

were dissolved in different solvent in which the result is tabulated in the table 2-1.
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Solvent DCM CHCI; CDCl; THF EA Dioxane CH;CN CD;CN

Emission
x x x x x x v
under UV
Table 2-1: solvent screening on Euy(L2.)s transformation
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Spectrum S2-19: UV spectrum of CH;CN and CD3;CN sample
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Spectrum S2-20: Excitation & Emission spectrum of CH3CN and CD;CN sample
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Spectrum S2-21: stacked emission spectrum of CH3;CN and CD;CN sample
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Spectrum S2-22: LT spectrum of CH3;CN (left) and CD;CN (right) sample

The resulting solution of CD3CN and CH;CN are then further investigated with

photophysical means in terms of emission and lifetimes. From the above photophysical

data, it is cleared that new species were formed in CD;CN with significant deviation

in photophysical properties. The sample in CH3;CN show no europium emission signal

while sample in CD3;CN does. The lifetime measurement further confirmed the results

as species with longer lifetime was only observed in CD3CN sample. Although the
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result can also be attributed from different phonon between C-D and C-H oscillator,
these photophysical data still provide indirect evidence on the formation of new

luminescence species with longer lifetime.

Characterization of transformed species. To characterize the transformed
specie, the transformed solution was directly analyzed with ESI-HRMS while the

spectrum of pure helicate EuL.. was also included for comparison.
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Spectrum S2-23: ESI-HRMS spectrum of Eul,, before transformation
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Spectrum S2-24: ESI-HRMS spectrum of Eul.,. upon transformation
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As indicated in above spectrum, ESI-HRMS spectrum of transformed species agrees
with NMR spectroscopic data that no original helicate are observed. The characteristic
ions peaks [EusL¢]™ (n = 4 — 6) provide solid evidence that tetrahedron species were
formed. However, the detailed assignment of the ions fragment revealed some
interesting findings that the tetrahedral species [Eus(L:)s + 30 Da]™ were mainly

observed instead of anticipated [Eu4(L2.)¢]™ ions signal as depicted in S2-25.
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Spectrum S$2-25: ESI-HRMS spectrum with assignment on [Ln4(L2.)s+30Da]"™ species
Upon detailed assignment on additional 30 Da fragment, it is postulated that auto-
oxidation and tetrahedral transformation are simultaneously occurred and resulting in
+30 Da species. Interestingly, the oxidized species are also another system that this
chapter have investigated. From spectrum S2-26, the unknown species with 30 Da
artifacts were identified as [Eus(L1a)s]™ species with mass error of 3.87 ppm.
Meanwhile, the NMR spectrum of transformed species agrees with the inference that
it show identical signal shift with reported complexes Eus(L12)s. Although the detailed
mechanism of auto-oxidation is still under investigation, it is strongly evident that the
oxidation and transformation occurred in a parallel manner and resulting in a helicate-

to-tetrahedron transformation from Euz(L2.)s to Eua(L1a)s.
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Spectrum S2-26: isotopic distribution of [Eus(L1)s + 5 OTf — 2H]>*

The similar investigations are also performed in obtained mixture of Sma(L2.)s and

newly formed species. The result generally agrees with the findings in NMR study that

a mixture of helicate and tetrahedron species were resulted with the helicate

conformation as major species. Surprisingly, auto-oxidation behaviors are not

observed in SmL,, system that only mixture of Sma(L2.)s and Sma(L2.)e are identified

as shown in S2-27 to S2-29.
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Spectrum S2-27: ESI-HRMS spectrum of SmL,, upon one month transformation
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Spectrum S$2-29: isotopic distribution of [Sm4(Ly,)e + 7OTf]** species

To further understand the auto-oxidation processes, some control experiments are

conducted by standing the solution of 2 mg of Euy(Lz)s; and Sm;y(Lz); in 1 mL d-

acetonitrile in three different conditions in 60°C water bath: (1) under air, (2) under

nitrogen and (3) under dark and nitrogen while the solvent is pre-dried with activated

molecular sieves.
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Condition (3): dark & nitrogen — 24h
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Spectrum $2-30: controlled experiment for Eux(Lz,)3 (24h)

Condition (3): dark & nitrogen — 48h
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Spectrum S2-31: controlled experiment for Eua(L2.)3 (48h)
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As shown in figure $2-30 and S$2-31, the sample in condition (1) and (2) started the
conversion on day 1 and the NMR signal is greatly suppressed upon 48 h which is
attributed from the transformation to intermediates species. Additionally, the sample
in condition (3) stays intact as original helicates without observable changes. On the
contrary, no observable changes in NMR spectrum for sample of Sma(L2.)3 under all
three conditions after 48h. This simple control experiments revealed that the
europium is likely to be determining factor for such transformation while light sources

are possibly required for the transformation.

Condition (3): dark & nitrogen — 48 h
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Spectrum S2-32: controlled experiment for Sma(L2.)s (48h)
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Figure 2-7: proposed mechanism for auto-oxidation of anthracene units
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Considering such parameters, it is inferred that the auto-oxidation process in Euz(L2.)s
is possibly metal-catalyzed radical induced oxidation. As hypothesized mechanism,
anthracene is first activated by absorbing light to form an excited species in initial step.
The excited species lead to the formation of a radical cations (anthracene+) which can
react with water molecules in the system to from anthracene-OH-* radical cation
followed by the H-abstraction to afford anthracene-OH. Upon enol-keto
tautomerization, first stage oxidation is accomplished while the subsequent oxidation

gives anthraquinone while the detailed mechanism is under investigation.



m Topological Formation of Supramolecular Assembly from Ditopic Ligands

2.2.3.2. Solvent dependent helicate-to-cube evolution of LnLa,

Based on the reported literature, it is known that Eua(L2b)s would undergo helicate-
to-cube transformation under concentration effect. Sun reported that the synthesis
of Lng(L2s)12 (Ln = La, Eu & Nd) is achieved by either crystallization by slow diffusion

of antisolvent to Lnz(L2b)s solution or high concentration complexation in CD3NO.,.

To further investigate transformation process, different methodologies are employed
in which the complexation of L, with corresponding lanthanide (La, Sm, Eu, Gd and
Lu) was performed in two different type of solvent system including (1) pure
acetonitrile and (2) mixture of acetonitrile:methanol (4:1) at 70°C. The results
indicated that pure acetonitrile would solely afford the pure helicate regardless of
concentration and temperature in which spectrum S$2-31 revealed no sign of

conversion even with prolonged heating at 70°C.

me- "*"“L“—'JMLMMMLHJ' 'JN.L{%
——— I MUJJL____J__J *Uu._.
o —_

Spectrum S2-33: tlme-dependent study in complexation of SmLj in CD3;CN at 70°C
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Spectrum S2-34: time-dependent study in complexation of SmLa in the mixture of

CD;CN:CD;OD (4:1) at 70°C

Under the same concentration and temperature, the addition of methanol induces the

rapid formation of cubic structure with the detailed HRMS, NMR characterization and

crystallographic data in section 2.2.2.3. The same phenomena are also observed in

other lanthanide system including europium, gadolinium and lutetium. However, in our

study, complexation with lanthanum does not exhibit similar behaviors which is

probably attributed from labile coordination in the presence of protic methanolic

environments.
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Figure 2-8: The experimental set-up for time-depending study of SmL,, transformation
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To understand the formation process of cubic structure, time-dependent NMR study
are conducted at RT and elevated temperature with low concentration of ligands (1
mM). Figure 7 shows the experimental set-up with collection of individual data point

to minimize the mankind artifacts during transferal of solvent within each treatment.
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Spectrum S2-35: time-dependent study in complexation of SmLa in the mixture of

CD;CN:CD;OD (4:1) at RT (1mM)
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Spectrum S2-36: time-dependent study in complexation of SmLap in the mixture of

CDsCN:CDsOD (4:1) at 70°C (1TmM)
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Spectrum S$2-35 and $2-36 indicates that the formation of cubic structure is either
achieved from the evolution from pure helicate to cubic structure or direct
complexation in the presence of methanolic environments. although a clear cubic
formation is resulted in both situations, it is important to note that slightly deviated
patterns are observed between helicate transformed and direct complexation
products which is possibly attributed from different stereochemical or spatial

arrangement in afforded cubic structure.

2.2.4. Correlation Between Offsetting Properties & Ultimate Topology

N T\‘\; S

Initial structure

e
I

Iz

spacing distance

offsetting distance _—
offsetting angle MOPAC optimized structure

Figure 2-9 graphical illustration of computational analysis of spacing units

Spacing  Point Offsetting Offsetting Spacing Interpreted
unit® Group angle distance distance topology
1a Con 71.4 (0.5) 3.22 9.57 Tetrahedron
1b G 43.6 (0.2) 5.49 5.24 Helicates
Helciates or
2a Con 711 (0.7) 3.22 9.43
tetrahedron
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Helicates or

2b Can 41.9 (0.2) 5.42 4.86
cubes

3a Con 712 (1.9) 2.53 7.42 Tetrahedron
3b G 20.7 (1.8) 5.77 2.18 Tetrahedron
4a Can 3.9 (1.5) Nil 9.90 Helicates

Cy 413 (2) Nil 6.61 Helicates
4b°

Con 38.7 (3) 6.58 5.26 Helicates

*The data is obtained by semi-empirical MOPAC software.
® Two simulation results can be obtained based on orientation on amide arm

Table 2-2: summary on selected parameter based on simulated spacer units.

To correlate the offsetting properties and final topology, table 2-2 summarized
simulated offsetting properties and spacing distance of eight bridging units without
consideration of chelating arm while the simulation details are provided in appendix.
In general, spacer unit 3 and 4 generally agree with the prediction that they result in
corresponding supramolecular assembly. However, the experimental results of spacer
unit 1b and 2a deviated from the predication. With reference to table, spacing unit
1b and 2a exhibit similarities in all three parameters including offsetting angle,
offsetting distance as well as spacing distance. It is anticipated to accommodate the
formation of tetrahedral structure and experimental revealed that LnL, affords pure

tetrahedron while LnL;, results in mixture of helical and tetrahedral products.

It is expected that spacing unit with such close parameters should afford similar
supramolecular self-assembling behaviors while the difference should be accounted
from the extra steric bulkiness on C=0 moiety and electrostatic properties in
anthraquinone. The crowded anthraquinone spacer in helical environment possibly

disfavor the formation of helicate. Meanwhile, the electron rich anthraquinone
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apparently provide extra stability by m-m stacking interactions which govern the

formation of tetrahedral structure.

With similar terminology, it is expected that ligand L4 and L, should afford similar
self-assembling arrangements. However, complexation of ligand L1 results in pure
helicates while that of ligand Ljs afford either helicate or cubic structures. The findings
are possibly attributed from unstable helicate species of ligand L1,. Based on the HRMS
spectrum, a significant amount of dissembling species is identified compared to other
synthesized complexes. It is inferred that the intramolecular hydrogen bonding

destabilizes the structure and further hinder the formation of higher order species.

With the similarity in offsetting angle and distance in spacing unit 1a and 3a, they
should share similar self-assembling behaviors. From our interpretation, homochiral
tetrahedron are predominantly resulted from both ligand Lia and Lsa. As there are
significant difference between the simulated properties in 3a and 3b, it is unlikely that
the tetrahedral structure is inherited from naphthalene linkage while it is believed that
the tetrahedron preference is originated from deviation of idealized helicate forming
offsetting angle. Compared to other spacer, spacer 4b has very idealized offsetting
properties for helicate formation while the results agree that only pure helicates are

identified.
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2.3. Conclusion & Future Work

In this chapter, eight ditopic pcam-based ligands with different offsetting and spacing
properties are compared with their supramolecular self-assembling behaviors. Based
on the findings, it reveals that the spacer with similar offsetting angle and offsetting
distance have the possibility to result similar self-assembling topology. Meanwhile,
solvent-dependence complexations are observed in ligand 2a and 2b in our
investigation in which introducing different solvent system significantly affect the result
of self-assembling process especially in labile chelating system. Yet, the comprehensive
relationship between the symmetry and ultimate topology is not fully understood due
to high lability of pcam-based ligand and limited examples. This chapter also revealed
the significance on hydrogen bonding in ultimate topologies. As future works, more
examples with more detailed complexation with different solvent system is suggested.
Meanwhile, the methyl linkage can be employed to suppress the intramolecular

hydrogen bonding so as increase the solubility of the ligand system.
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2.4. Experimental Section

2.41. General Considerations

All chemical used for synthesis were obtained from commercial suppliers and used
without further purification. All moisture-sensitive reactions were conducted under a
nitrogen atmosphere in oven-dried glassware. Anhydrous solvents were freshly
distilled or dried over 4A molecular sieves unless otherwise specified. 1D and 2D NMR
spectra were conducted on a Bruker AVANCE-IIl 400 MHz and 600MHz FT-NMR. The
elemental analysis was performed using an Elementar Vario Micro Cube elemental
analyzer. High Resolution-ESI mass spectrum were obtained from Agilent 6540 Liquid
Chromatography - Electrospray lonization Quadrupole-Time-of-Flight Mass
Spectrometer or Waters Synapt G2-Si lon Mobility Quadrupole MS and the chemical

shifts were determined with tetramethylsilane (TMS) or solvents in parts per million

(ppm).

2.4.2. Synthesis of ligand

anthracene-2,6-diamine (2a)

\H To the slurry mixture of 2,6-diaminoanthracene-9,10-

OOO 2 dione (3.02 g, 12.6 mmol, 1 equiv.) in EEOH/NaOH

ks solution (100 mL, EtOH: 2.5 M NaOH = 1:1 v/v),
activated zinc powder (5.14 g, 76.5 mmol, 6 equiv.)

was added by portion with the duration of 30 minutes. The reaction mixture was then
brought to reflux temperature and reacted for 24h. The reaction mixture was filtered
and washed with hot water until no colored residues were come off. The collected

dull yellow crude was dried and rinsed with minimal acetone to obtain powdery solids.
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The powdery solids were subjected to Soxhlet extraction for 3 days with 200 mL
acetone and another Soxhlet extraction was performed for another 2 days with 200
mL solvent mixture (acetone: methanol = 1:1). The resulting solids were transferred
to centrifuge tube and the resulting solids were washed with acetone (5X, 50 mL) to
afford compound 1a (95% purity) (0.6267, 24%). '"H NMR (400 MHz, DMSO-d¢) & 7.81
(s, 2H), 7.63 (d, ] = 8.9 Hz, 2H), 6.92 (dd, ] = 8.9, 2.2 Hz, 2H), 6.79 (d, ] = 2.2 Hz, 2H),
5.21 (s, 4H). *C NMR (101 MHz, DMSO-d;) & 144.52, 131.12, 128.43, 127.71, 121.82,

120.93, 104.22.

anthracene-1,5-diamine (2b)

NH To the suspension of 1-5-diaminoantracene-9,10-dione (0.6
2

OOO mmol, 1 equiv) in 20 mL isopropyl alcohol, sodium

borohydride (33 equiv) was added with caution under

. nitrogen atmosphere. The reaction mixture was then brought

to reflux temperature for further reaction. After 24h, the reaction mixture was cooled
and filtered to obtain dark oil. The dark oil was then re-dissolved in dichloromethane
and washed with water (3X), brine (2X) and dried over anhydrous sodium sulphate to
afford dark crude. The crude oil was then loaded to column chromatography (silica
gel, hexane to DCM, R¢ = 0.3 in DCM) to yield brown solid (47%). '"H NMR (400 MHz,
Chloroform-d) & 8.35 (s, 2H), 7.51 (d, / = 8.5 Hz, 2H), 7.33 - 7.17 (m, 4H), 6.75 (dd, J
= 7.1, 1.0 Hz, 2H), 4.30 (s, 4H).?C NMR (101 MHz, DMSO-d¢) & 144.63, 131.75,

126.25, 123.40, 120.95, 116.38, 105.17.
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naphthalene-2,6-diamine (3a)

HN To the suspension of 2,6-dibromonaphthalene (1.4299 g,

5 mmol, 1 equiv.), and P(t-Bu); (0.1 M, 0.5 mL, 0.5 mmol,

e 10 mol%) in 15 mL of anhydrous toluene was purged

with nitrogen for 30 mins. The mixture was then added Pd,dba; (114 mg, 125 umol,
2.5 mol%) and LIHMDS (1.3 M, 9.62 mL, 12.5 mmol, 2.5 equiv.) under nitrogen and
reacted in pre-heated oil baths at 80°C. Upon 24 h reaction, 3N HCI (1 mL) was added
to the reaction mixture and further reacted for 3h. The resulting solution was filtered
and washed with EA/H,O. The organic solvent was removed in rotatory evaporator
followed by the dilution of EA/H,O. The ageous layer was then extracted trice with
ethyl acetate. The organic fraction was then dried over anhydrous sodium sulphate
and followed by solvent removal with rotatory evporator. The crude was then loaded
in column chromatography (silica gel, elution with DCM to EA/DCM) and collected
fractions are acidified with acetic acid. Upon removal of solvent, titled compound was
obtained by precipitaed with MeOH/Et,O. '"H NMR (400 MHz, DMSO-d;) 6 7.23 (d, J

= 8.6 Hz, 2H), 6.75 (dd, | = 8.7, 2.2 Hz, 2H), 6.66 (d, | = 2.2 Hz, 2H), 4.81 (s, 4H).

[1.1'-biphenyl]-3,3'-diamine (4a)

To the suspension of 3,3'-dibromo-1,1'-biphenyl (614 mg,

O NH, 2 mmol, 1 equiv.) and P(t-Bu); (0.1 M, 0.8 mL, 80 umol, 4

e O mol%) in 5 mL of anhydrous toluene was purged with
nitrogen for 30 mins. The mixture was then added Pd,dbas

(18.3 mg, 20 pmol, 1 mol%) and LiIHMDS (1.3 M, 3.38 mL, 2.2 equiv.) under nitrogen

and the mixture was heated in pre-heated oil baths at 80°C. Upon 24 h reaction, 3N
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HCI (1 mL) was added to the reaction mixture and further reacted for 3h. The resulting
solution was filtered and washed with MeOH/H,O. The organic solvent was removed
in rotatory evaporator followed by the dilution of DCM/H,O. The aqeous layer was
then extracted trice with dichloromethane. The organic fraction was then dried over
anhydrous sodium sulphate and followed by solvent removal with rotatory evporator.
The crude was then loaded in column chromatography (silica gel, elution with DCM
to EA/DCM) to afford titled compound. '"H NMR (400 MHz, Chloroform-d) & 7.27 (t,
J=7.8Hz 1H), 7.03 (d, ) = 7.6 Hz, 1H), 6.91 (s, 1H), 6.71 (d, ] = 7.8 Hz, 1H), 3.67 (s,
2H). *C NMR (101 MHz, Chloroform-d) & 146.77, 142.64, 129.63, 117.64, 114.20,

113.97.

(E)-3,3'-(ethene-1,2-diyl) dianiline (5b)

OH Br PPh3Br

_0O
/é (i) /é (ii) /é (iif) /é
O,N O,N O,N O2N

2

PPhBr
() O NO - O NH
R R e

To the solution of 3-nitrobenzaldehyde (2.0034 g, 13 mmol, 1 equiv.) in 100 mL
absolute ethanol, sodium borohydride (0.612 g, 16 mmol, 1.22 equiv.) was added at
room temperature. Upon overnight stirring, the reaction mixture was quenched by
H20O and the organic solvent was removed. The aqueous layer was then extracted
with dichloromethane (3X), dried over anhydrous sodium sulphate, filtered, and
concentrated in vacuo. to afford pure pale-yellow oil. (1.64 g, 82%). '"H NMR (400 MHz,

Methanol-ds) & 8.21 (s, 1H), 8.09 (d, ] = 8.2 Hz, 1H), 7.71 (d, ] = 7.6 Hz, 1H), 7.55 (¢,
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] = 7.9 Hz, 1H), 471 (s, 2H). *C NMR (101 MHz, Methanol-ds) & 148.35, 144.08,

132.41, 129.13, 121.58, 120.83, 62.54.

To the solution of (3-nitrophenyl) methanol (5.7026 g, 36.08 mmol, 1 equiv.) in
anhydrous dichloromethane (100 mL), phosphorus tribromide (3.54 mL, 10.7 mmol, 1
equiv.) in anhydrous dichloromethane (20 mL) was added at ice temperature in
dropwise manner. The reaction mixture was slowly warmed to room temperature and
stirred overnight. Upon completion of reaction, the reaction mixture was diluted with
H20O and dichloromethane. The organic extracts were washed with H,O (2X) and
brine (3X), dried over anhydrous sodium sulphate, filtered, and concentrated in vacuo.
to afford white powder. (6.3863 g, 80%). '"H NMR (400 MHz, Chloroform-d) & 8.26 (t,
J =21 Hz, 1H), 822 -812 (m, 1H), 7.73 (dt, ) = 7.7, 1.4 Hz, 1H), 7.54 (t, ] = 7.9 Hz,
1H), 4.54 (s, 2H). *C NMR (101 MHz, Chloroform-d) & 139.75, 134.99, 129.89, 123.93,

123.32, 31.08.

A mixture of 3-nitrobenzyl bromide (6.3869 g, 29 mmol, 1 equiv.), and
triphenylphosphine (7.81. g, 29 mmol, 1 equiv.) in toluene (100 mL) was refluxed
overnight with vigorous stirring. The reaction was cooled to room temperature and
the white solid obtained was filtered, washed with diethyl ether, and dried. The titled
products were obtained as pale beige powder (12.8032 g, 92%) 'H NMR (400 MHz,
DMSO-dq) & 8.15 (d, ] = 4.1 Hz, 1H), 7.91 (ddt, | = 8.9, 5.3, 1.7 Hz, 3H), 7.80 — 7.64

(m, 13H), 7.56 (t, | = 8.0 Hz, 1H), 7.46 (d, | = 9.0 Hz, 1H), 5.34 (d, ] = 15.9 Hz, 2H).
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To a mixture of triphenyl-3-nitrophenylphosphonium bromide (7.17 g, 15 mmol, 1
equiv.) and 3-nitrobenzaldehyde (2.25 g, 1 mmol, 1 equiv.) in anhydrous THF (70 mL)
was added dropwise a solution of potassium tert-butoxide (5.04 g, 45 mmol, 3 equiv.)
in anhydrous tert-butanol (100 mL) over a period of 1.5 h at 0°C. The resulting
reaction was stirred at 0°C for 2 h, and then allowed to stir at room temperature
overnight before quenching with 1N HCI. The solid was then collected by filtration
and judged to be pure with NMR spectroscopy. 1H NMR (400 MHz, DMSO-d) & 8.10
(ddd, ] = 8.0, 2.7, 1.3 Hz, 1H), 8.04 (t, ] = 2.0 Hz, 1H), 7.66 — 7.58 (m, 1H), 7.56 (t, ] =

7.9 Hz, 1H), 6.93 (s, 1H).

To (E)-1,2-bis(3-nitrophenyl) ethene (2.6 g, 9.6 mmol, 1 equiv.) in 50 mL absolute
ethanol, anhydrous tin (ll) chloride (10 g) was added. The resulting suspension was
heated to reflux temperature for overnight reaction. Upon completion of reaction, the
solvent was removed under reduced pressure and the crude was diluted with ethyl
acetate and trace methanol. The yellow solution was then filtered with silica pad (5
cm, eluted from EA (discarded) to 30% MeOH/EA) to afford yellow solid. The yellow
solid was then suspended in water and solids were removed while the resulting filtrate
was dried under reduced pressure to afford titled compound. 'H NMR (600 MHz,

DMSO-dq) 5 6.86 (t, | = 7.7 Hz, 1H), 6.48 (s, 1H), 6.43 — 6.38 (m, 2H), 6.36 (s, TH).
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Ligand L1a'L4a’ L2a-2b
O diamine

=
@ 9 H [ ] =
N N LN o o0
o 0 N NUSTON
= Ho | ] H
=

General Procedure. To the solution of chelator (2.2 equiv.) in 25 mL of anhydrous
DMF was added HATU (3 equiv.). The resulting mixture was stirred at room
temperature for 30 mins before adding diamine spacer (1.15 mmol, 1 equiv.). Upon
stirring for another 30 minutes, DIPEA 6 equiv.) was added and the reaction mixture
was stirred for 3 days before partition with DCM/H,O. The organic solvent was
removed under reduced pressure and the crude was redissolved in ethyl acetate and
washed with H,O (5X); brine (3X) followed by dried over anhydrous magnesium
sulphate to afford crude products. The crude oil was then purified by column

chromatography or precipitation.

Ligand L1.. TH NMR (400 MHz, DMSO-dq) & 11.39 (s, 2H), 9.72 (d, | = 8.8 Hz, 2H),
8.72 (s, 2H), 8.37 (dd, ) = 7.5, 1.4 Hz, 2H), 8.32 (dd, ] = 7.8, 1.5 Hz, 2H), 8.25 (t, | =
7.6 Hz, 2H), 8.02 (dd, ] = 8.7, 1.2 Hz, 2H), 7.78 (d, | = 7.1 Hz, 2H), 7.58 (dd, ] = 8.6,
7.1 Hz, 2H), 7.43 (d, ] = 7.4 Hz, 4H), 7.30 (dd, ] = 8.5, 6.8 Hz, 4H), 7.24 — 7.15 (m, 2H),
5.43 — 5.28 (m, 2H), 1.59 (d, | = 7.0 Hz, 6H). ®C NMR (101 MHz, DMSO-d) 5 163.28,
163.15, 149.71, 149.28, 144.64, 140.21, 133.46, 132.16, 128.79, 128.24, 127.76, 127.22,

126.61, 125.91, 125.69, 125.53, 123.86, 123.10, 48.42, 22.31.
Ligand Ly, 'H NMR (600 MHz, CDCl3) & 14.34 (s, 2H), 9.37 (dt, | = 9.3, 2.0 Hz, 4H),

8.49 (ddd, | = 26.0, 7.7, 1.1 Hz, 4H), 8.15 (t, | = 7.7 Hz, 2H), 7.73 — 7.54 (m, 8H), 7.37

(t,] = 7.7 Hz, 4H), 7.31 — 7.23 (m, 4H), 5.74 — 5.56 (m, 2H), 1.82 (d, ] = 7.0 Hz, 6H).
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3C NMR (151 MHz, CDCl;) 5 186.86, 163.31, 162.71, 149.12, 148.32, 143.50, 141.16,
139.45, 136.20, 134.98, 128.66, 127.22, 126.13, 126.09, 125.87, 125.23, 123.28, 118.02,

48.41, 22.55.

Ligand Lz, 'H NMR (400 MHz, DMSO-dg) & 11.13 (s, 2H), 9.69 (d, | = 8.5 Hz, 2H),
8.70 (d, | = 2.0 Hz, 2H), 8.58 (s, 2H), 8.42 (dd, ] = 6.8, 2.1 Hz, 2H), 8.35 — 8.24 (m,
4H), 8.19 (d, J = 9.2 Hz, 1H), 7.88 (dd, J = 9.1, 2.0 Hz, 2H), 7.55 — 7.47 (m, 4H), 7.44
— 7.34 (m, 4H), 7.32 — 7.21 (m, 2H), 5.34 (p, | = 7.2 Hz, 2H), 1.68 (d, ] = 7.0 Hz, 6H).
3C NMR (101 MHz, DMSO-ds) & 163.13, 162.52, 149.65, 149.16, 144.64, 140.29,
135.16, 131.38, 129.95, 129.09, 128.86, 127.30, 126.65, 125.97, 125.44, 123.13, 117.48,

48.67, 22.31.

Ligand Las. 'H NMR (400 MHz, DMSO-d¢) & 11.32 (s, 2H), 9.66 (d, ] = 8.4 Hz, 2H),
8.67 (d, ] = 2.3 Hz, 2H), 8.44 — 8.20 (m, 12H), 7.95 (d, ] = 8.5 Hz, 2H), 7.56 — 7.45 (m,
4H), 7.38 (t, ] = 7.6 Hz, 4H), 7.35 — 7.22 (m, 4H), 6.93 (dd, | = 8.6, 2.4 Hz, 2H), 6.72
(s, 4H), 5.33 (p, ] = 7.2 Hz, 2H), 1.67 (d, ] = 6.9 Hz, 6H). *C NMR (101 MHz, DMSO-
de) 6 163.28, 163.15, 149.71, 149.28, 144.64, 140.21, 133.46, 132.16, 128.79, 128.24,

127.76, 127.22, 126.61, 125.91, 125.69, 125.53, 123.86, 123.10, 48.42, 22.31.

Ligand Ls. 'H NMR (600 MHz, DMSO-ds) 5 11.08 (s, 1H), 9.66 (d, | = 8.5 Hz, 1H),
8.52 (d, J = 1.9 Hz, 1H), 8.40 (d, J = 7.3 Hz, 1H), 8.31 — 8.22 (m, 2H), 8.04 (d, ] = 8.8
Hz, 1H), 7.87 (d, | = 8.8 Hz, 1H), 7.49 (d, | = 7.7 Hz, 2H), 7.38 (t, | = 7.6 Hz, 2H), 7.26

(t,] = 7.3 Hz, 1H), 5.34 (p, | = 7.3 Hz, 1H), 1.67 (d, | = 7.0 Hz, 3H).
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Ligand La "H NMR (400 MHz, Chloroform-d)  9.92 (s, 2H), 8.85 (d, ] = 8.3 Hz, 2H),
8.25 (dd, ] = 18.8, 7.7 Hz, 4H), 7.90 (t, | = 7.8 Hz, 2H), 7.44 — 7.28 (m, 8H), 7.24 — 7.10
(m, 7H), 7.06 (d, ] = 7.7 Hz, 2H), 5.29 (t, ] = 7.4 Hz, 2H), 1.47 (d, ] = 6.9 Hz, 6H). *C
NMR (101 MHz, Chloroform-d) & 163.07, 162.11, 149.00, 148.53, 143.14, 141.08,
138.89, 137.13, 129.14, 128.56, 127.32, 126.26, 125.48, 124.99, 123.91, 120.15, 49.02,

21.44.

2.4.3. Computation simulations

The simulation of ligand was performed in using semi-empirical calculation software
MOPAC v22.0.4 using KEYWORD: PM7 PRECISE CHARGE=0 EF LET AUX XYZ
BONDS GNORM=0.0100 CHARGE=0 while the initial guess is pre-simplified through

Chem3D. The detailed calculations are summarized on appendix section.
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Chapter 3: Functionalization of stable luminescence 1,2-

HOPO-based building blocks

3.1. Introduction

3.1.1. Background

In the previous chapter, the supramolecular self-assembly of ditopic tridentate ligands
were studied while a series of spacer unit with different offsetting properties and
symmetry have been investigated. However, the lack of the stability in chelating units
obstructs the diverse exploration of higher-order architectures in which the prospect
from spacer modification is hindered from the intrinsic volatility of metal coordination
in pyridine-2,6-dicarboxamide (pcam) moiety. It is not surprised that strong Ln-L
interaction are favored to safeguard the thermodynamic and kinetic stability of final
assembly."? With natural self-assembling processes as example, metal coordination
underlies the construction of many biological molecular assemblies such as daily

example in chlorophyll and hemoglobin.>*

The core investigation of this chapter is, therefore, devising a stable luminescence
building blocks which provide sufficient stability and considerable photophysical
properties. For that purpose, numerous study have been conducted to prepare inert
ligand scaffold such as cryptand, podand or macrocyclic system.*” Among the devised
chelator, 1,2-hydroxypyridionate (1,2-HOPQO) are known to be one of the most

balanced sensitizer for europium which stayed intact in aqueous environments.”"> As
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reported by Raymond, the coordination of di-1,2-HOPO system results in extremely

stable structure even in different temperature and pH environment.”8 11216

S5
Z
-
o
S5
Z

Figure 3-1: graphic illustration of LnL; lock-like coordination
As depicted in the figure, oxygen-rich and anionic 1,2-HOPO ligands complex as stable
ML: lock structure with the oxyphilic and electropositive characteristic of lanthanide
ions.”"” This macrocyclic-like system provides sufficient stability without extensive pre-

organization in bicyclic or other macrocyclic structure such as cryptand and DOTA.

As mentioned in the introduction chapter, Prof. Stang and Prof. Fujita adopt the
concept of angularity and directionality in their transition metal supramolecular self-
assembling complexes. In general, the concept utilizes the directionality in transition
metal originated from d-orbital overlapping that they generally share similar
coordination geometry such as square planar, tetrahedral and octahedral with
predefined metal-coordination directionality. Through selectively capping, transition
metal precursor with certain angularity can be engineered to different ditopic and

tritopic units.
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When the concept is applied to lanthanide system, it is obvious that lanthanide does
not proceed predefined geometry as transition metal. To facilitate the lanthanide
coordination in place, macrocyclic like ligands are preferred as chelating scaffold to
lock trivalent lanthanide ions. With the functionalized building blocks, the C,-rigid
linker and spacer are also introduced to provide angularity and directionality as well as
flexibility for the twisted coordination lock. With the three component or two
component design, it is expected to allow the investigation on the supramolecular self-
assembling behaviors yielding different two-dimensional polygons through systematic

engineering in angularity, directionality and flexibility.

3.1.2. Scope of study

HOOC HZN COOH NH,
0
NH HN NH HN OsNH HN.__O Oy NH HN._.O
~ N-OH HO-N / \ N-OH HO-N &OH HO;NE %’IOH HO\EE
0 x> o o = N o o S
ngand A ngand B Ligand C Ligand D

Figure 3-2: Summary in the functionalization of di-1,2-HOPO unit in Chapter three
In Chapter Three, there are two parts consisting of (1) functionalization of di-1,2-
HOPO building blocks and (2) investigation in supramolecular self-assembly with
functionalized di-1,2-HOPO moiety. The functionalized designs are shown in Figure 3-
2 which their detailed synthesis, characterization and photophysical properties are
shown in the first section. The second section summarize the current investigation on

adopting such units in supramolecular self-assembling system.
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3.2. Result & Discussion

3.2.1. Synthesis & Characterization

3.2.1.1. Synthesis & Characterization of Ligand

Z4 Z4 Z4
» F202, o )
TFA, H,0,, 80°C 10% KOH, 80°C
X OH X - - OH
Br N Br N (0] N

| OH
N
0 O O OH O
1h 2h
BnBr, MeOH = oxalyl chloride = TEA, thiaz = S\\]/S
reflux \ OH DMF, toluene ‘ cl THF ‘ N\)
07N 0" "N o= N
OBn O OBn O OBn O
3h 4h 5h

Figure 3-3: synthetic scheme of HOPO compound
Synthesis of 1,2-HOPO-OBn derivative. Based on the reported procedure®, 2-
bromopiconlic acid are first oxidized to afford N-oxide followed by heating in strongly
basic hydroxide medium to afford 1,2-HOPOQ. The subsequent benzyl protection yields
1,2-HOPO-OBn with satisfactory yield and purity. The compound 3h is then either
activated by oxalyl chloride for amide coupling or converted to stable HOPO-thiaz
with two-steps procedure. The former acid chloride version is freshly prepared and
used directly without further purification while the compound 5h is stored in the dark
and fridge to avoid degradation. All the compound except compound 4h are isolated
and purified while the detailed synthetic procedure and structural characterization are

included in experimental section.
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Figure 3-4: Synthetic Scheme of ligand La
Synthesis and characterization of ligand La. The methyl protection of
diaminobenzoic acid is performed in standard Fischer esterification with the catalyst
of concentrated H,SO.."® ' Upon purification, the compound La-1 are then coupled
with compound 4h in dichloromethane to afford compound La-2. Two subsequent
deprotection of methyl group and benzyl group afford ligand La. In this section, all the
listed compounds are isolated and purified with standard column chromatography in

silica while the detailed synthetic procedures are provided in experimental section.
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Spectrum S$3-2: illustration on spilt-like signal in *C NMR spectrum of La-2
Due to the asymmetric nature of intermediate La=2 and La-OBn and ligand La, some

of the carbon will experience two environments when the asymmetric acid/ester
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moiety is in close proximity. With the illustration of the spectrum S$3-1, there are
splitting-like carbon signal (denoted as denoted as 9’ to 19.) while some may
occasionally disappear due to resolution of NMR spectroscopy. In contrast to *C NMR,
"H-NMR is generally not sensitive to such minimal environment change as indicated in
spectrum S$3-3. Without the detailed discussion, the characterization of all
intermediates and ligand La are assigned with similar manner and listed in experimental

sections.
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Spectrum S$3-3: 'H NMR spectrum of La
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Figure 3-5: Synthetic Scheme of Ligand Ls
Synthesis and Characterization of ligand Ls. To prepare ligand Ls, diamino-
nitrobenzene is first protected with Fmoc-OSu in weakly basic biphasic system. The
purified bright yellow intermediates Lg-1 are reduced with hydrogen balloon under
Pd/C catalysts to afford compound Lg-2. With dropwise addition of compound 4h to
the solution of Lg-2 in freshly distilled dichloromethane and triethylamine, compound
Le-3 are isolated and purified with column chromatography. To facilitate further
investigation, both protection and unprotection version of final ligand Le-fmoc and

Lg are synthesized while the detailed synthetic procedure is provided in experimental
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section. In analogy to ligand La, asymmetric nature leads to splitting-like carbon signal
in compound Lg-3, Lg-OBn and two final ligands. The detailed proton assignment and

carbon count are performed in spectrum $3-18 to $3-27.
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Figure 3-6: Synthetic Scheme of Ligand L¢
Synthesis and characterization of ligand Lc. In contrast to previous ligand, the
ligand Lc is synthesized with different methodology. Dimethylbenzoic acid is first
protected with standard Fischer esterification. The protected intermediates Lc-1 is

brominated using radical substitution in nitrogen-purging system. Upon completion of
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reaction, the mixture is then purified and re-crystallized from hot hexane to afford

pure intermediates Lc-2.20%

| X
0.0 0.0
Br Br RHN NHR
Lc-2 L¢c - 6, R = phthalimide, X = CH;
45% Lc-7,R=H,X=tBu

Lc-8,R=H,X=Bn
Figure 3-7: Synthesis of compound L¢c=6, Lc-7 & Lc-8
To avoid the use of sodium azide, the initial protocol makes use of Gabriel synthesis
which substitutes bromide with Sn2 nucleophilic substitution to afford compound Lc-
6. Upon purification, the compound is deprotected with either (i) NaOH, followed by

HCI neutralization or (ii) hydrazine hydrate to afford compound Lc-4.22%
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Spectrum 3-4: '"H NMR spectrum of compound Lc-4 obtained from phthalimide deprotection.
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The proton NMR of obtained compound is shown in spectrum $3-4 which it is
evident with mass spectroscopy data that desired intermediates are afforded. However,
the subsequent amide coupling failed to afford the desired compound Lc-5 with
different activation and amide coupling reagent such as HATU, thiaz, NHS, EDCI and
HOBt. To address the issue, the protecting group is modified to t-butyl group and
benzyl group (compound Lc-7 and Lc-8) while no successful trials in amide coupling

are obtained.

/| CDI, NH3 /|
H NH
07N © 07N 2
OBn O OBn O
3h 6h

Figure 3-8: amide conversion of compound 3h
As an alternative approach, compound 3h is converted to amide 6h using CDI coupling.
Multiple attempts were then employed to couple compound 6h and compound L¢-2

using copper or palladium catalyst. However, no desired compounds are identified.

The ultimate scheme using sodium azide followed by reduction amination to yield
intermediates Lc-4.2**® The subsequent amide coupling with compound 5h is
successful using high concentration condition in N, N’-dimethylformamide. It is
inferred that the phthalimide salt residues or trace side products from previous step
hinder the subsequent amide coupling. Upon purification in column chromatography,
the obtained compound undergoes two deprotection to obtain final ligand Lc. All the
obtained intermediates are isolated and purified except instable compound Lc=3. The
detailed experimental procedures are listed in section 3.4.2 while the completed

characterizations are included in spectrum $3-28 to $3-38.
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Figure 3-9: Synthetic Scheme of Ligand Lp
Synthesis and Characterization of ligand Lp. The synthesis of ligand Lp start
with amidation of 5-nitroisophthalic acid with CDI coupling followed by reduction with
Pd/C as catalyst.?¢ The intermediates Lp-2 is further reduced with borane reagent to
afford intermediates Lp-3. The obtained crude is then hydrolyzed with 3N HCI and
the hydroscopic solids are collected with MeOH/Et,O precipitation and used without
further purification. Upon amide coupling with compound 5h, the purified compound
Lo-OBn is then deprotected under glacial acetic acid and concentrated hydrochloric
acid to afford final ligand Lp. With the exception of highly hydroscopic intermediate
Lo-3, all the compounds are isolated and purified while the detailed synthetic
procedures and characterization are included in experimental section and appendix

respectively.
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3.2.1.2. Complexation of Ligand A-D and Structural Characterization of Complexes
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Figure 3-10: Synthetic Scheme of complexes EuL,

General Procedure of Complexation To the solution of ligand (2 equiv., 20 mg,
20mL, Chloroform/MeQOH, 1:1) is added 2 drops of pyridine. Upon 30 minutes stirring
at 50°C, lanthanide(lll) chloride hexahydrate (1.025 equiv.) in 1 mL methanol is added.
The reaction is stirred overnight at same temperature before solvent removal in vacuo.
The crude plate is redissolved with hot methanol followed by precipitation with diethyl

ether. The complexes are then collected with centrifuge followed by few washings of
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diethyl ether. The obtained complexes are investigated with HRMS, '"H NMR, "H-'H

COSY NMR spectroscopy whenever possible.

Characterization of Complexes Due to the paramagnetic nature of some

lanthanide complexes, the characterization with NMR spectroscopy is less informative

for coordinated structure. The synthesized complexes are mainly characterized with

ESI-HRMS. As illustration, synthesized europium complexes are analyzed as depicted

in spectrum S$3-5 to S3-10 while the full spectrums are included in the appendix

section for clarity. From TOF-ESI-HRMS spectrum, it is evident that anticipated ML,

complexes are resulted while the amino functionalized ligand demonstrated another

typical signal of [MLCL] (S3-6 & $3-10).
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Spectrum S3-5: simulated & observed isotopic distribution of complexes EuLa
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20220828 EUB (0.025) Is (1.00,1.00) CEEH4TEUNT0O16

1004

13852291
LI
o
1385
20220828 EUB 31 (0.283) Cm (30:39)
100
{ 1385 2007
2 i
fl
Il
|l
\
11
|
P P _
1385

1367 2316
13862323
:
1386 1387
1387 2101
i
I
Il
| |
12385.2178 H
1 | ‘
I
IR
I
_ . . — M
1386 1387

TOF MS ES-
3.06e12

Simulation

1388 2341
‘ 1390.2395
T miz
1388 1389 1390 1391
TOF MS ES-
1.18ed
Observed
1355?159
|\
il
1389.2118
\ 13902213
s S S _ S
1388 1389 IS‘JD 1391
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Spectrum $3-9: simulated & observed isotopic distribution of complexes EuLp (ML, species)
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3.2.1.3. Photophysical Measurement
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Figure 3-11: summary on reference and synthesized ligands

ABS e (M- @ @ ©(H:0) ©(D;0)
(nm) 1 cm-1) TOT Eu Nsens (I’-S) (llS)
Reference complexes
[Eu(Rs)2] 342 21,020 6.2% 36.5% 17% 536 734
[Eu(R4)2] 333 16,264 22% 43.6% 50% 733 1022

Synthesized complexes®
29,669 8.5%:

- o, o/d
[Eu(La)2] 340 (3,000 21% 40.0% 5.3% 494 636
[Eu(Le- 28,861 3.4% o o4 410 481
fmoc),] 356 (2,000 0.7%" 378%  19% 118 131
[Eu(Lc)2] 332 18,844 5.8%° 41.7% 13.9%* 729 996

C)2 (Soo)f .0/ A/ .7/
. 16,264  16.0% . ve 714 987
[Eu(lo)]® 332 2000 3.7% 412%  9.0% 138 346

a The measurement is performed in Edinburgh Instruments FLSP920 spectrophotometer

b The measurement is performed in HORIBA Fluoromax-4 Spectrofluorometer

¢ Calculation is based on the QY obtained from Edinburgh Instruments FLSP920 spectrophotometer
d Calculation is based on the QY obtained from HORIBA Jobin Yvon Fluoromax-4 Spectrofluorometer
e All the measurements are conducted in 5% DMSO/H,O (duplicate) and 5% DMSO/0.1 M HEPES (1x)
f Standard deviation from the measurements

Table 3-1: Summary in basic photophysical measurement on complex Euly
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To understand the photophysical properties of synthesized complexes, some basic
photophysical measurements are conducted and the results are summarized in table
3-1. Due to the malfunction of Edinburgh Instruments FLSP920 spectrophotometer,
HORIBA Jobin Yvon Fluoromax-4 spectrofluorometer are used for secondary

equipment for quantum yield (QY) measurements.

As depicted in the table, same compound exhibits a substantial four-fold difference in
QY even quantum yields are obtained in relative to freshly prepared quinine sulphate
standard (in 0.1 M H,SO4, 4,,= 350 nm, ® = 0.546%). As all measurements from two
instruments have been repeated for at least triplicate set with good statistical fit (i.e.
R? is close to 0.996 - 1) while the obtained spectrum is included in appendix. It is
believed that the deviation in fluoromax spectrophotometer is attributed from the

inherent instrumentation limitation that hinder the detection of emission.

As shown in Table 3-1, the ligand La and Ls are considered to be derivatives of ligand
R; while ligand Lc and Lo are categorized as derivatives of ligand Rs. In general, the
obtained quantum yields from R; derivatives are higher than those from R4 with three
to five-fold differences. This agrees with the literature findings that the ligand with five-
carbon spacing between chelating units generally possess higher quantum yields. It is
believed that the metal-ligand distance take an important role in such enhancement as
the energy transfer mechanism are generally distance-dependent. In addition Table 3-
1 show 3-fold increases from complexes EuLa to Eulc. At the same time, the
introduction of acid moiety likely to promote the quantum yield while that of amino

moiety would suppress the emission.
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Figure 3-12: Stacked emission spectrum of EulLx
In figure 3-12, the emission spectrum of four complexes is stacked without
normalization. It is clearly indicated that complexes EuLa and EuLg have significantly
lower emission intensity while complexes C and D shared similar patterns in the

hypersensitive transition.

[Eu(La):l  [Eu(Le-fmoc),]  [Eu(Lo)] [Eu(D):]
Parker’s 0.1° 0.7° 0.1 0.2 4.9°
Equation
Horrocks’

j 0.2 0.06° 0.6° 0.06 0.09° 45°
Equation

2 calculated from long-lived species and short-lived species respectively

Table 3-2: summary on hydration state calculation

For further investigation, the emission lifetime measurements are performed and
reveals that ligand La and Lc with acid moiety generally agree with mono-exponential
decay while ligand Lg-fmoc and Lp fit better in bi-exponential decay. To identify the
unknown species, the hydration number is calculated with both Parker’s Equation and
Horrocks’ Equation.?®?’ From the table, it can be observed that the short-lived species

in synthesized EuLg-fmoc and EuLp complexes have higher hydration state which is
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probably coordinated to the aqueous medium. Gathering the information from HRMS,
it is likely that the mixture of ML and ML, coordination complexes exist in amino-
functionalized complexes EuLg-fmoc and Eulp which is likely attributed to

coordination with solvent molecules.

3.2.1. Investigation in Supramolecular Self-Assembly
3.21. Design Principle

To examine the supramolecular self-
assembling behaviors of 1,2-di-HOPO-based
building blocks, photoluminescent ligand LC
and Lp are employed for further investigation.

In general, the design consists of three

components containing (1) linker units, (2) . . ) o
Figure 3-13: Bicapped trigonal prismatic

spacer units and (3) HOPO- based chelating

molecular geometry of reference’
units. With reference to crystal structure of
reference compound,’ the synthesized chelating units are most likely to be complexed

with distorted bicapped trigonal prismatic (Ca) geometry. In such ML, systems, the

ligands must align in a specific manner to facilitate the coordination.

angularity

directionality flexibility

/\ linker

= Spacer

A J

&, chelator

Tetradentate Chelation

Figure 3-14: Design principle on di-HOPO-based ditopic ligands
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Taking advantage of such characteristics, different linker and spacing units can be
employed to modify the supramolecular self-assembling preference. For the linker, it
should contain sufficient steric bulkiness to avoid twisting and provide a directing angle
to guide the coordination. Meanwhile, non-conjugated spacing units are required to
promote the energy sensitization and govern the flexibility. With such design, it is
anticipated that different topologies can be resulted through varying the different

angularity on the ligands as depicted in figure 3-15.

ML, coordination
'\I/\I/'
¢ . ‘ ] .
UN

¢
direction
approach
Figure 3-15: graphic illustration on possible self-assembly
3.2.1. Investigation on ligand L

As a primary investigation, pyridine-2,6-dicarboxamide units are employed as linker
which provides directing angle towards same sides. To synthesize the compound,
dipicolinic acids are first functionalized with aminophenol followed by connecting with
four-carbon spacing units as shown in figure 3-17. With the characterization of 'H,
13C NMR spectroscopy and ESI-HRMS, compound Le=-OBn is successfully prepared
while the subsequent deprotection is failed upon detailed investigation. As shown in
spectrum S$3-15, protected ligand Le-OBn should contain three amide protons

(denoted as proton ¢, k and m). However, all proton signals from amide are
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disappeared with the benzyl protons e upon deprotonation with acidic medium which
indicate the dissociation of ligand structure. As most aromatic regions are remained
intact from the spectrum. The most likely dissociation is occurred at ether linkage
between spacer and linker units. For further investigation, alternative linkage is under
investigation while investigations on other two ligand design L¢ and Lg are conducted

in parallel.

01

0] = 0]
H H
HNM’O N N/ N OMNH
(0] (0]
O NH HN (0] O NH HN @]
= N,OH HO\\I\I x p N,OH HO\N X
Le

Figure 3-16: illustration on the dissociation in ligand
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Figure 3-17: synthetic scheme of Ligand Le
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3.21. Investigation on ligand Lr & Lc
In addition to primary design, the synthesis of two different ligands based on ligand L¢

and Lp are attempted as shown in following figure.

(0] (0]
H H
H2NNH2 /\OJ]\/\/N\‘\/‘/[!N\/\)J\O/\
Lg-1

0 o}
H H
"""" > HO)J\/\/N N\/\)J\OH g ’\Q
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NH,
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N N
HO OH Ox_NH  HN_O
_ORRO.

© under investigation
\]

O O
H H
0. NH HN (0] O ()

NH HN
pZ N/OR RO\N X %’\LOR RO;“E
2 o o = 2 o o =

Figure 3-18: Synthetic scheme of ligand L¢
To synthesize the intermediate Lg=1, the slow addition of ethyl bromobutyrate (1.9
equiv.) with low concentration in dichloromethane to diamine (1 equiv.) is required to
suppress the di-alkyl products. Upon completion of reaction, the mixture can be
purified with column chromatography while the subsequent deprotection can be
attempted in KOH solution. However, the initial attempt of amide coupling with HATU

standard coupling is not successful. Upon detailed investigation, it is found that



m Functionalization of stable luminescence 1,2-HOPO-based building blocks

intramolecular cyclization products are observed which is probably attributed from

extra stability of five-member ring closure.

H
N.
HaNT >"""Boc

NH
HZN/\/\/ 2

Lg-1-boc

HZN\‘\/‘/NHZ [ |

Lg-2-iodide

H
N .B
_______________ \/\/\N ocC
H
H

HN" > Nogog
Figure 3-19: Synthetic scheme of ligand Le

In contrast to ligand L, ligand Le require an amino end spacing unit while it require
two precursor including mono-protected diamine spacer and iodinated linker. Based
on the experimental results, only boc group can be successfully synthesized in bulk
quantities while the reaction kinetics of fmoc or Cbz are too fast that di-protected
products are resulted even in low concentrations and temperature. Meanwhile, the
iodination of diamine is realized by one-pot Sandmeyer reaction with KI/NaNO,/p-
TsOH system. However, the subsequent Pd-catalyzed coupling is still under

investigation.

3.3. Conclusion & Future Work

To conclude, this chapter have successfully functionalized di-1,2-HOPO-based ligand
with four different variations while their basic photophysical properties are
investigated. The photophysical measurement revealed that functionalization of di-1,2-

HOPO would still retain their optical properties while a mixture of ML and ML,
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coordination complexes are observed. With these building blocks, synthesis of three
di-HOPO-based ditopic ligands Lg, Le & Lc is attempted but still under investigation
while the successful coupling in Le-OBn demonstrate the possibility to engine high-

order ditopic ligands with functionalized building blocks.

3.4. Experimental Section

3.41. General Consideration

All chemical used for synthesis were obtained from commercial suppliers and used
without further purification. All moisture-sensitive reactions were conducted under a
nitrogen atmosphere in oven-dried glassware. Anhydrous solvents were freshly
distilled or dried over 4A molecular sieves unless otherwise specified. 1D and 2D NMR
spectra were conducted on a Bruker AVANCE-IIl 400 MHz and 600MHz FT-NMR. The
elemental analysis was performed using an Elementar Vario Micro Cube elemental
analyzer. High Resolution-ESI mass spectrum were obtained from Agilent 6540 Liquid
Chromatography - Electrospray lonization Quadrupole-Time-of-Flight Mass Spectro-
meter or Waters Synapt G2-Si lon Mobility Quadrupole MS and the chemical shifts

were determined with tetramethylsilane (TMS) or solvents in parts per million (ppm).

3.4.2. Synthetic Details

Synthesis of HOPO derivatives

Compound 1h 6-bromopicolinic acid (20.5 g, 96 mmol) was dissolved in
trifluoroacetic acid (250 mL) at room temperature. The hydrogen peroxide (30%, 50
mL) was added dropwise with caution. The orange solution was heated to 80°C and

stirred for 48 h. the orange solution was concentrated to a quarter of original volume
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and poured into 1000 mL of water. The product was collected by filtration and washed
with water. The powder was heated with ethyl acetate and methanol followed by
filtration to remove remaining starting material. The obtained pale pink powder was
judged to be pure without further purification. (17.52 g, 81%) 'H NMR (400 MHz,
DMSO-d%) & 8.39 (dd, ) = 8.2, 1.9 Hz, 1H), 8.34 (dd, | = 7.9, 2.0 Hz, 1H), 7.80 (¢, ] =
8.0 Hz, 1H). *C NMR (101 MHz, DMSO-d¢) & 160.95, 138.89, 135.15, 133.04, 131.89,
128.25. Melting point: 200.0°C (3 replicates). Elemental analysis (%) calcd for

C¢H4BrNO:s: C, 33.06; H, 1.85; N, 6.43. Found: C, 33.01; H, 1.925; N, 6.25.

Compound 2h To a round bottom flask, compound 1h (17.52 g, 78 mmol) was
dissolved in aqueous potassium hydroxide solution (10%, 350 mL, 673 mmol) and
stirred for 3 days at 80°C. The cooled solution was then acidified with concentrated
hydrochloric acid and the pale-yellow precipitate was collected by filtration. The
obtained was judged to be pure without further purification (Yield: 11.52 g, 95%). 'H
NMR (400 MHz, DMSO-d¢) & 7.44 (dd, ] = 9.0, 7.0 Hz, 1H), 6.71 (dd, | = 9.0, 1.7 Hz,
1H), 6.63 (dd, J = 7.0, 1.7 Hz, 1H). *C NMR (101 MHz, DMSO-d;) & 160.95, 138.89,
135.15, 133.04, 131.89, 128.25. Melting point: 179.5°C (3 replicates). Elemental analysis

(%) caled for C¢HsNO4: C, 46.46; H, 3.25; N, 9.03. Found: C, 46.14; H, 3.186; N, 8.9.

Compound 3h To the suspension of compound 2h (11.52 g, 73 mmol) in MeOH,
benzyl bromide (15.37 g, 88 mmol) and potassium carbonate (20.3223 g, 145 mmol)
was added. After refluxing for 24 h, the mixture was filtered, and the solvent removed
in vacuo. The yellow residue was taken up in water and acidified to pH = 2 with 6 N

HCI. The white precipitate was collected by filtration and dried under vacuum (Yield:
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15.34 g, 85%). '"H NMR (400 MHz, DMSO-d;) & 7.49 — 7.33 (m, 6H), 6.67 (dd, | = 9.3,
1.7 Hz, 1H), 6.47 (dd, ] = 6.8, 1.7 Hz, 1H), 5.25 (s, 2H)."*C NMR (101 MHz, DMSO-
de) & 162.31, 158.35, 142.07, 139.41, 134.23, 130.13, 129.54, 128.93, 123.67, 106.05,
78.34. Melting Point: 176°C (3 replicates). Elemental analysis (%) calcd for C13H11NO4:

C, 63.67; H, 4.52; N, 5.71. Found: C, 63.66; H, 4.383; N, 5.53.

Compound 4h In two-neck round bottom flask, compound 3h (2 g, 8 mmol, 1 equiv.)
was vacuumed for an hour and subsequently suspended in 100 mL anhydrous toluene.
Oxalyl chloride (1.26 mL, 14 mmol, 1.81 equiv.) and few drops of DMF were
sequentially added at room temperature under nitrogen. The reaction was stirred 4
hours to result in yellow reaction mixture. The solvent and excess oxalyl chloride were
removed under rotatory evaporator and mixture was further dried under high vacuum

to afford a yellow sticky mixture which was then used without further purification.

To the separated round-bottom flask of compound 4h (8 mmol, 1 equiv.) and 2-
mercaptothaizoline (0.95 g 8 mmol, 1 equiv), 50 mL of freshly distilled
dichloromethane was added under nitrogen. The triethylamine (1.33 mL, 9.6 mmol,
1.2 equiv.) was then then added to 2-mercaptothiazoline. Compound 4h in DCM was
then transferred to dropping funnel through cannula and dropped slowly to diamine
with the duration of 30 minutes. The reaction was stirred under room temperature
and monitored with TLC and mass spectroscopy. After completion of reaction, the
reaction crude was partitioned with DCM and water. The organic layer was washed
with HCI (1N, 20 mL, 3X), K,COs (0.5 N, 20 mL, 3X) and brine (2X) followed by
drying under rotatory evaporator to afford yellow oil. The yellow crude was loaded to
column chromatography (silica, 5% EA/DCM, R¢ = 0.2) to afford pare yellow plate. The
crude was then redissolved in ethyl acetate and precipitated with hexane to afford pale

yellow powder. 'H NMR (400 MHz, Chloroform-d) & 7.43 (dd, J = 6.7, 3.0 Hz, 2H),
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7.39 —7.32 (m, 3H), 7.29 — 7.21 (m, 3H with d-chloroform), 6.75 (dd, J = 9.2, 1.6 Hz,
1H), 6.14 (dd, | = 6.9, 1.7 Hz, 1H), 5.29 (s, 2H), 442 (t, ] = 7.4 Hz, 2H), 3.12 (t, /= 7.4
Hz, 2H).

Synthesis of ligand La

Compound La-1 To the suspension of 3,4-methyl-diaminobenzoic acid (2 g, 12.6
mmol, 1 equiv.) in 60 mL methanol, concentrated sulphuric acid (catalytic amount) was
added dropwise under ice cooling. The organic solvent was dried under rotatory
evaporator and resulting crude was partitioned in ethyl acetate and saturated sodium
bicarbonate solution. Upon three times extraction with ethyl acetate, the organic
extracts were washed with satd NaHCO; followed by brine solution and the solvent
was removed in vacuo. The resulting mixture was load to column chromatography
(silica gel, EA: DCM = 1:1, R = 0.8 in ethyl acetate). (1.1859, 55%). LCMS (ESI): calcd.
for CsH1oN,O, M*: 293.09; found 293.09. 'H NMR (400 MHz, Chloroform-d) & 7.48
(dd, ) =8.1,1.9 Hz, 1H), 7.43 (d, ] = 1.9 Hz, 1H), 6.69 (d, | = 8.1 Hz, 1H), 3.86 (s, 3H).
13C NMR (101 MHz, CDCI3) & 167.33 (s), 140.40 (s), 133.11 (s), 123.32 (s), 121.18

(s), 118.40 (s), 114.94 (s), 51.68 (s).

Compound La-2 To two necks round bottom flask, compound 3h (3.0 g, 11.9 mmol,
1 equiv.) was vacuumed for an hour and subsequently suspended in 20 mL anhydrous
toluene. Oxalyl chloride (2 mL, 22.8 mmol, 1.9 equiv.) and few drops of DMF were
sequentially added at room temperature under nitrogen. The reaction was stirred 2
hours to result in yellow reaction mixture. The solvent and excess oxalyl chloride were
removed under rotatory evaporator and mixture was further dried under high vacuum
to afford a yellow sticky mixture (compound 4h) which was then used without further

purification.
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To the separated round-bottom flask of compound 4h (5 mmol, 5 equiv.) and methyl-
3,4diaminobenzoate (0.1568 g, 1 mmol, 1 equiv.), 25 mL of dry dichloromethane was
added under nitrogen. The pyridine (0.18 mL, 2.2 mmol, 2.2 equiv.) was then added to
compound La-1. The compound 4h in dichloromethane was then transferred to
dropping funnel through cannula. The compound 4h was dropped slowly to diamine
with the duration of 30 minutes under ice cooling. The reaction was stirred under
room temperature for 1 day. The reaction crude was extracted with water (20 mL x
3) and organic extracts were dried with anhydrous sodium sulphate, dried in vacuo to
afford brown oil. The crude oil was loaded to column chromatography (silica gel,
gradient from 5% to 25% MeOH/EtOAc, Rf = 0.6 in 5% MeOH/EtOAc). The oil was
taken up in dichloromethane and precipitated in hexane to obtain beige product (Yield:
302.3 mg, 49%). LCMS (ESI): calcd. for C34HsN4Os: 620.62; found 621.73 [C34H28N4Os-
H*], 643.47 [C34H28N4Og-Na™], 659.27 [C34H128N4Os-K*], 1262.93 [(C34H2sN4Os)2-Na*].
'H NMR (400 MHz, DMSO) & 10.54 (d, J = 23.6 Hz, 2H), 8.28 (s, 1H), 7.92 (d, /= 7.5
Hz, 2H), 7.64 - 7.26 (m, 12H), 6.74 (d, | = 8.7 Hz, 2H), 6.55 (dd, | = 19.9, 5.7 Hz, 2H),
5.33 (s, 4H), 3.91 (s, 3H). ®C NMR (101 MHz, CDCl;) & 165.97 (s), 159.11 (s), 158.49
(d, J = 13.1 Hz), 142.56 (s), 142.35 (s), 138.59 (s), 133.81 (s), 132.70 (d, J = 4.8 Hz),
130.03 (s), 129.78 (s), 129.37 (d, ) = 12.4 Hz), 128.51 (d, ] = 10.4 Hz), 128.12 (s), 127.39
(d, ] = 7.4 Hz), 126.62 (s), 123.71 (d, | = 13.8 Hz), 122.99 (s), 106.65 (d, ] = 16.3 Hz),

100.00 (s), 79.52 (d, | = 12.2 Hz), 77.41-76.77 (m, CDCl;), 53.47 (s, CH.Cl), 52.34 (s).

Compound LA-OBn To round bottom flask, compound La-2 (0.1968 g, 0.32 mmol)

was suspended in the mixture of THF/H2O (40 mL, 1:1). To the mixture, 3.06 mL 1N
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KOH aqueous solution (1.44 mL, 1.9mmol, 6 equiv.) was charged under room
temperature. With the monitoring of mass spectroscopy, the mixture was reacted for
2 days and resulting mixture was dried under compressed air at room temperature.
The yellow crude was taken up with water and acidified with 1N HCI. The beige
precipitate was collected with filtration (Yield: 143 mg, 75%). '"H NMR (400 MHz,
DMSO-ds) & 10.53 (d, J = 21.0 Hz, 2H), 8.29 (d, | = 1.9 Hz, 1H), 7.95 — 7.78 (m, 2H),
7.64 —7.30 (m, 12H), 6.73 (dt, J = 9.3, 2.2 Hz, 2H), 6.53 (ddd, J = 15.3, 6.8, 1.7 Hz,
2H), 5.32 (d, ] = 2.8 Hz, 4H). LCMS (ESI): calcd. for C33H,6N4Os: 606.18; found 607.60

[C33H2N4Os-H"], 629.27 [C33H26N4Og-Na*], 645.27 [Ci3H2N4Ogs-K*].

Ligand La To round bottom flask, compound La-OBn (143.4 mg, 231 pmol) was
dissolved in glacial acetic acid and concentrated hydrochloric acid (1 : 1 v/v, 14 mL).
The reaction was stirred under room temperature for 2 days. The solvent was
removed in vacuo and desired product was taken up in methanol and precipitated in
diethyl ether. The centrifuged products were dried under high vacuum to obtain pale
yellow products and judged to be pure. (Yield: 83.7 mg, 82%). LCMS (ESI): calcd. for
Ci9H14N4Os: 426.08; found 427.53 [CisH1sN4Os -H'], 852.80 [(C19H14N4Osg)2-H"],
874.87 [(C19sH14N4Os).-Na*]. 'H NMR (400 MHz, DMSO-d;) 6 10.84 (s, 1H), 10.61 (s,
1H), 8.23 (d, ] = 1.9 Hz, 1H), 7.95 (d, ] = 8.5 Hz, 1H), 7.87 (dd, J = 8.5, 2.1 Hz, 1H),

7.48 (ddd, | = 10.8, 6.5, 2.8 Hz, 2H), 6.80 — 6.54 (m, 4H).

Synthesis of Lg derivatives

Compound Lg-1 To a solution of 2-nitro-1,4-diamine (2.0040 g, 7.74 mmol, 1 equiv.)

and sodium bicarbonate (1.4652 g, 17.1 mmol, 2.2 equiv.) in 200 mL water, (9H-
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fluoren-9-yl)methyl (2,5-dioxopyrrolidin-1-yl) carbonate (2.9356 g, 8.5 mmol, 1.1 equiv.)
in 50 mL dioxane was added slowly under ice cooling. The reaction mixture was stirred
overnight to afford orange suspension. The resulting solution was extracted three
times with ethyl acetate followed by washing with 0.5 N HCI (20 mL x 3). The orange
solution was dried over anhydrous sodium sulphate and rotatory evaporator. The
orange oil was taken up in ethyl acetate and precipitated in hexane to afford yellow
precipitate (Yield: 2.176 g, 99%) and judged to be pure without further purification.
LCMS (ESI): calcd. for CyH1sN3O;: 375.38; found 414.45 [CxH19sN:O»-K*]. 'H NMR
(400 MHz, DMSO-dc) 8 9.66 (s, 1H), 8.19 (s, 1H), 7.90 (d, ] = 7.5 Hz, 2H), 7.74 (d, | =
7.5 Hz, 2H), 7.42 (t, ] = 7.4 Hz, 4H), 7.39 — 7.20 (m, 4H), 6.97 (d, ] = 9.1 Hz, 1H), 4.47
(d, ] = 6.6 Hz, 2H), 4.30 (¢, ] = 6.6 Hz, 1H). *C NMR (101 MHz, DMSO) & 154.03 (s),
144.24 (s), 143.08 (s), 141.28 (s), 129.87 (s), 128.15 (s), 127.59 (s), 125.57 (s), 120.64

(s), 120.07 (s), 66.06 (s), 47.13 (s).

Compound Lg-2 To round bottom flask, compound Lg=1 (1.0299 g, 2.58 mmol) was
vacuumed for 30 minutes and subsequently dissolved in the mixture of EtOAc/MeOH
(40/160 mL). To the reaction mixture, 10% Pd/C (141 mg, 0.129 mmol) was added as
catalysts. Upon degassed with small vacuum, the reaction was allowed to stir 24 h with
hydrogen balloons. The resulting crude was filtered with celite and dried to afford dark
orange product. The crude was then suspended in small amount of dichloromethane.
LCMS (ESI): caled. for CiiH19sN3O2: 345.40; found 384.08 [Cy1H19sN3O,-K*]. The
product was then obtained with filtration and used for next step without further
purification (Yield: 767.6 mg, 81%). 'H NMR (400 MHz, DMSO-d¢) & 9.11 (s, 1H), 7.90

(d, ] = 7.5 Hz, 2H), 7.74 (d, | = 7.4 Hz, 2H), 7.42 (t, | = 7.4 Hz, 2H), 7.38 — 7.28 (m,
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2H), 6.70 (s, TH), 6.41 (t, ] = 11.7 Hz, 2H), 4.47 — 4.05 (m, 7H). *C NMR (101 MHz,
DMSO) & 144.39 (s), 141.22 (s), 135.77 (s), 128.11 (s), 127.56 (s), 125.70 (s), 121.85
(s), 120.55 (d, | = 11.0 Hz), 114.95 (s), 65.43 (s), 47.18 (s), 40.61 (s), 40.30 (d, ] = 20.9

Hz), 39.98 (s), 39.67 (d, J = 21.1 Hz), 39.37 (s), 39.36 (s)

Compound Lg-3 The acid chloride 4h is prepared with similar procedure described
previously. To the separated round-bottom flask of compound 4h (5 mmol, 5 equiv.)
and (9H-fluoren-9-yl)methyl (3,4-diaminophenyl)carbamate (0.3560 g, 1 mmol, 1
equiv.), 40 mL of dry dichloromethane was added under nitrogen. The pyridine (0.3
mL, 2.2 mmol) was then added to compound LB-2 . The compound 4h in
dichloromethane was then transferred to dropping funnel through cannula and
dropped slowly to diamine with the duration of 30 minutes under ice cooling. The
reaction was stirred under room temperature for 2 days. The reaction crude was
partitioned with DCM and water. The organic layer was washed with brine followed
by drying under rotatory evaporator to afford yellow oil. The dried oil was afforded
to column chromatography (silica gel, 5% MeOH/EtOAC to 10% MeOH/EtOAc,
gradient elution, Rf = 0.3 in 1% MeOH/EtOAc) to yield yellow oil. The resulting oil was
precipitated with dichloromethane and hexane to obtain pale brown powder (Yield:
278.3 mg, 35%). LCMS (ESI): caled. for C47H37N5Os: 799.84; found 800.20 [C47H37N5Os-
H*], 800.47 [C4/H37NsOg-Na™], 838.47 [C47H37N5Os-K*], 1621.07 [(C47H37N5Os)2-Na*],
1637.00 [(C47H37N5Os)>-K*]. '"H NMR (400 MHz, CDCls) & 9.10 (s, 1H), 8.88 (s, 1H),
7.82 (d,J =7.5Hz, 2H), 7.67 (d, ] = 7.4 Hz, 2H), 7.58 (s, 1H), 7.45 (t, | = 7.2 Hz, 4H),
7.37 (t, ) = 7.3 Hz, 2H), 7.33 — 7.08 (m, 14H), 6.83 (s, 1H), 6.60 (td, | = 9.6, 1.4 Hz,

2H), 6.38 — 6.23 (m, 2H), 5.20 (d, | = 3.1 Hz, 4H), 4.62 (d, | = 6.4 Hz, 2H), 432 (t, | =
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6.4 Hz, 1H). *C NMR (101 MHz, MeOD) & 159.52 (s), 159.22 (s), 158.95 (d, J = 3.3
Hz), 144.07 (s), 143.33 (d, | = 8.6 Hz), 141.34 (s), 139.23 (d, J = 3.7 Hz), 133.77 (d, | =
12.7 Hz), 130.97 (s), 130.19 (d, ] = 19.5 Hz), 129.29 (d, ] = 5.3 Hz), 128.56 (d, | = 4.1
Hz), 127.81 (s), 127.20 (s), 126.30 (s), 125.13 (s), 124.37 (s), 123.25 (s), 120.03 (s),

116.61 (s), 115.14 (s), 105.94 (s), 79.10 (s), 66.34 (s).

Ligand Lg-fmoc To round bottom flask, compound Lg=3 (322 mg, 396 pmol) was
dissolved in glacial acetic acid and concentrated hydrochloric acid (1 : 1 v/v, 24 mL).
The reaction was stirred under room temperature for 2 days with the monitoring of
mass spectroscopy. The solvent was removed in vacuo and desired product was taken
up in methanol. The diethyl ether was added to precipitate out the yellow powdery
product. The product was collected with filtration and washed with diethyl ether
(Yield: 170.5 mg, 60%). LCMS (ESI): caled. for C33HasNsOs: 619.59; found 620.19
[C33H2sNsOg-H*]. '"H NMR (400 MHz, DMSO-d;) & 10.46 (d, | = 43.5 Hz, 2H), 9.93 (s,
1H), 7.92 (d, | = 7.5 Hz, 2H), 7.78 (d, | = 7.4 Hz, 2H), 7.54 (d, ] = 8.8 Hz, 1H), 7.42
(ddt, J =294, 22.9, 7.2 Hz, 8H), 6.75 — 6.59 (m, 4H), 4.47 (d, | = 6.9 Hz, 3H), 4.32 (t,

J = 6.9 Hz, 2H).

Compound Lg-OBn To the solution of compound Lg-3 (300 mg, 375 umol, 1
equiv.) in dichloromethane (10 mL), methylpiperidine (90 pL, 750 pmol , 2 equiv.) was
added under nitrogen atmosphere. Upon reacting for 2 days under room temperature,
the reaction crude was partitioned by ethyl acetate and H,O. The aqueous layer was
extracted trice with ethyl acetate followed by washing of brine. The organic fraction

was then dried over anhydrous sodium sulphate and dried under reduced pressure to
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afford brown oil. The brown oil was then loaded with column chromatography
(TEA/EA-flushed, DCM to DCM/EA, gradient elution) to afford brown solid (102 mg,
20%). 'H NMR (400 MHz, DMSO-dq) & 9.99 (s, 1H), 9.84 (s, 1H), 7.51 - 7.28 (m, 13H),
7.04 (d, /] = 8.5 Hz, 1H), 6.94 (d, ] = 2.5 Hz, 1H), 6.63 (ddd, | = 9.2, 3.4, 1.7 Hz, 2H),
6.43 (dd, | = 8.6, 2.6 Hz, 1H), 6.39 (dd, J = 6.8, 1.7 Hz, 1H), 6.31 (dd, ] = 6.8, 1.7 Hz,
1H), 5.29 (s, 2H), 5.24 (s, 4H). *C NMR (101 MHz, Chloroform-d) & 158.36, 158.28,
141.96, 141.89, 138.23, 138.17, 132.84, 131.26, 130.37, 130.35, 129.54, 129.47, 128.60,

128.55, 126.69, 124.55, 124.42, 118.79, 112.93, 109.85, 107.36, 107.23.

Compound Lg To round bottom flask with compound Lg-OBn (55 mg, 95 pmol),
the mixture of glacial acetic acid and concentrated hydrochloric acid (5 mL, 1:1, v/v)
was added under room temperature. Upon three days stirring, the reaction crude was
co-evaporated with methanol trice under reduced pressure. The crude was then
precipitated by MeOH/Et20 followed by washing of DCM/Hexane to afford brown
solid (40 mg, 80%). '"H NMR (400 MHz, DMSO-d¢) & 10.71 (s, 1H), 10.60 (s, 1H), 7.76
(d, J = 2.6 Hz, 1H), 7.67 (d, | = 8.6 Hz, 1H), 7.44 (ddd, | = 8.9, 7.0, 2.0 Hz, 2H), 7.18
(dd, ] = 8.7, 2.4 Hz, 1H), 6.73 — 6.56 (m, 4H). *C NMR (101 MHz, DMSO-d;) & 159.51,
159.35, 157.86, 157.82, 141.69, 141.47, 137.40, 137.26, 131.67, 127.12, 120.31, 106.21,

105.92.

Synthesis of Ligand Lc

Compound Lc-1 To the solution of 3,5-dimethylbenzoic acid (10.34 g, 65.4 mmol, 1
equiv.) in methanol (50 mL, 1 mol, 18 equiv.), concentrated sulphuric acid (2 mL, 36.7
mmol, 0.5 equiv.) was added with caution. After overnight reaction at reflux

temperature, the reaction mixture was cooled down to room temperature and
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partially evaporated. The resulting mixture was diluted with water and extracted with
dichloromethane (3X), washed with sodium bicarbonate solution. The organic fraction
was then washed with sodium bicarbonate solution, dried with anhydrous magnesium
sulphate and in vacuo to obtain colorless oil. (6.9145 g, 64%) '"H NMR (400 MHz,
Chloroform-d) & 7.77 — 7.55 (m, 2H), 7.15 (s, 1H), 3.88 (s, 3H), 2.33 (s, 6H). *C NMR
(101 MHz, Chloroform-d) & 167.34, 137.93, 134.50, 130.01, 127.28, 51.87, 21.06.

Compound Lc¢-2 To the suspension of compound Le=1 (7.01 g, 42 mmol, 1 equiv.)
in 200 mL nitrogen-purged acetonitrile, N-bromosuccinimide (16.01 g, 89 mmol, 2.1
eqiuv.) and benzoyl peroxide (688 mg, 0.05 equiv.) were added. After heating at reflux
temperature overnight with nitrogen purging, the reaction mixture was diluted with
water and extracted with dichloromethane. The organic layer was homogenized in hot
hexane and settled overnight for crystallization to afford white powders. (8.09 g, 60%)
'H NMR (400 MHz, Chloroform-d) & 8.01 (d, J = 1.8 Hz, 2H), 7.63 (d, J = 1.9 Hz, 1H),

451 (s, 4H), 3.95 (s, 3H).

Compound Lc-3 & Lc-4 To the solution of compound Lc=2 (1 g, 3.1 mmol, 1 equiv.)
in acetone (25 mL) was added solution of sodium azide (0.65 g, 10 mmol, 3.2 equiv.)
in H,O (10 mL). The mixture was then heated at 60°C for 4h before quenching with
large excess of H,O. The ethyl acetate is added for phase partition and the mixture
was then extracted trice with ethyl acetate. The solvent is then dried over anhydrous
sodium sulphate and removed in caution under compressed air to afford compound
Lc-3 which is used without further purification. The obtained intermediates are
diluted with 50 mL tetrahydrofuran and added triphenylphosphine (2.94 g, 11.2 mmol,

2.6 equiv.). The resulting mixture was stirred for 6h and added 2 mL H,O for overnight
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reaction. Upon completion of reaction, ethyl acetate was added for partition and the
organic fraction are extracted with 2N HCI (20 mL x 5). The obtained acidic extracts
are washed with dichloromethane and evaporated. The solid residues are dissolved in
boiling methanol, filtered and precipitated with diethyl ether. The product was then
obtained by filtration as a mixture of diamine hydrochloride and diamine

dihydrochloride salts.

Compound Lc-5 To the solution of compound Lc-4 (265 mg, 1 mmol, 1 equiv.) in
20 mL anhydrous N,N’-dimethylformamide, triethylamine (0.55 mL, 4 mmol, 4 equiv.)
was added under nitrogen atmosphere. Upon 30 minutes stirring, compound 5h (0.69
g, 2 mmol, 2 equiv.) was added by portion under nitrogen and stirred in the dark for
2 days. Upon completion of reaction, the reaction mixture was partitioned with water
and extract trice with dichloromethane. The crude oil was then loaded to column
chromatography (silica, EA to 5% MeOH/EA) to afford pale yellow solution. The
solution was then uptake by tetrahydrofuran and precipitated in hexane to afford beige
solids (98 mg, 15%). '"H NMR (400 MHz, Chloroform-d) & 7.86 (d, ] = 1.7 Hz, 2H),
7.44 (dq, ) = 5.7, 3.1 Hz, 2H), 7.39 — 7.26 (m, 11H), 6.76 (s, 2H), 6.67 (dd, ] = 9.3, 1.7
Hz, 2H), 6.28 (dd, | = 6.7, 1.7 Hz, 2H), 5.24 (s, 4H), 4.30 (d, ] = 6.1 Hz, 4H), 3.98 (s,
3H). *C NMR (101 MHz, Chloroform-d) & 166.56, 160.84, 158.34, 142.51, 138.21,
137.87, 133.34, 130.71, 130.54, 129.46, 129.11, 128.63, 127.34, 124.26, 105.32, 78.97,
52.31, 43.00.

Compound Lc-OBn To round bottom flask, compound Lc-OBn (120 mg, 0.19 mmol)
was suspended in the mixture of THF/H,O (40 mL, 1:1). To the mixture, 1N KOH
aqueous solution (6 equiv.) was charged under room temperature. With the

monitoring of mass spectroscopy, the mixture was reacted for 2 days and resulting
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mixture was dried under compressed air at room temperature. The yellow crude was
took up with water and acidified with 1N HCI. The aqueous fraction was then
extracted by ethyl acetate trice and obtained organic extracts were dried over
anhydrous sodium sulphate and evaporated under rotatory evaporator. The solid
residues were redissolved in tetrahydrofuran followed by precipitation to afford beige
solids (102 mg, 87%). '"H NMR (600 MHz, Chloroform-d) & 7.77 (d, | = 1.7 Hz, 2H),
7.44 —7.18 (m, 15H), 6.72 (dd, | = 9.3, 1.7 Hz, 2H), 6.40 (s, 2H), 6.22 (dd, ] = 6.7, 1.7
Hz, 2H), 5.22 (s, 4H), 4.21 (s, 4H). ®C NMR (151 MHz, Chloroform-d) & 168.90,
160.96, 158.48, 142.34, 138.17, 137.84, 133.37, 130.93, 130.16, 129.60, 129.26, 128.73,

127.61, 124.56, 105.45, 79.08, 42.99.

Ligand Lc To the round-bottom flask with compound Lc-OBn (100 mg),
concentrated hydrochloric acid and glacial acetic acid was added (10 mL, 1:1). Upon 3
days stirring at room temperature, the solvent was removed in vacuo. and few drops
of triethylamine was treated. The resulting mixture was dissolved in methanol and
precipitated with diethyl ether to afford pale brown solids. (41 mg, 53%). '"H NMR
(600 MHz, DMSO-ds) & 9.39 (s, 2H), 7.83 (s, 2H), 7.54 (s, 1H), 7.36 (d, | = 37.7 Hz,
3H), 6.58 (s, 2H), 6.33 (s, 2H), 4.49 (s, 4H). *C NMR (151 MHz, DMSO-d¢) & 167.64,

160.95, 157.98, 142.49, 139.75, 137.72, 131.54, 130.81, 127.30, 119.98, 104.28, 42.56.

Synthesis of Ligand Lp

Compound Lp-1 To the solution of 5-nitroisophthalic acid (6 g, 28 mmol, 1 equiv.)
in 250 mL tetrahydrofuran, 1,1'-carbonyldiimidazole (14 g, 85 mmol, 3 equiv.) was
added in caution under ice temperature. Upon stirring for 2h, ammonias solution (28%,

50 mL, 315 mmol, 10 equiv.) was added to the slurry mixture. Upon overnight reaction,
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the organic solvent was removed under reduced pressure and methanol was added to
induce precipitation. The precipitates were collected by filtration and washed by

methanol and tetrahydrofuran to afford white powdery products (2.0257 g, 33%).

Compound Lp-2 To the solution of compound Lp-1 (2.0257 g, 9.5 mmol, 1 equiv.)
in methanol (200 mL), 10% Pd/C (200 mg, catalytic amount) was added and mixture
was stirred at room temperature under hydrogen balloons. After 2 days reaction, the
reaction mixture was filtered, and the residues were washed by water and methanol.
The solvent was removed under reduced pressure and precipitated with EA/Hexane
to afford white powder (0.88 g, 52%). '"H NMR (400 MHz, DMSO-d;) & 7.68 (s, 1H),
7.39 (t, ] = 1.6 Hz, 1H), 7.19 (s, 1H), 7.09 (d, ] = 1.5 Hz, 1H), 5.33 (s, 1H).

Compound Lp-3 To the suspension of Compound Lp-2 (0.88 g, 4.86 mmol, 1 equiv.)
in anhydrous tetrahydrofuran (10 mL), borane dimethyl sulphide (2 mL, 19.5 mmol, 4
equiv.) was added in caution at reflux temperature under nitrogen atmosphere. The
resulting solution was refluxed overnight before addition of hydrochloric acid (1 mL,
6N) for hydrolysis. Upon hydrolysis at reflux temperature for 2 hours, the solvent was
removed under reduced pressure. The slurry mixture was uptake by hot methanol and
precipitated in diethyl ether as hydrochloride salt. (700 mg, 68%) 'H NMR (400 MHz,
Deuterium Oxide) & 7.91 (t, ] = 1.6 Hz, 1H), 7.64 (d, ] = 1.6 Hz, 2H), 7.29 (d, ] = 1.6
Hz, 2H), 7.25 (d, = 1.6 Hz, 4H), 4.08 (s, 4H).

Compound Lp-OBn. To the solution of compound Lp.; (700 mg, 3.7 mmol, 1
equiv.) and potassium carbonate (2.08 g, 15 mmol, 4 equiv.) in freshly 100 mL distilled
dichloromethane, triethylamine (1.15 mL, 8.2 mmol, 2.2 equiv.) was added under
nitrogen atmosphere. Upon 30 minutes stirring, compound 5h (2.61 g, 7.4 mmol, 2
equiv.) in 100 mL freshly distilled dichloromethane was added under nitrogen and

stirred in the dark for 2 days. Upon completion of reaction, the reaction mixture was
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partitioned with water and extract trice with dichloromethane. The crude oil was then
loaded to column chromatography (silica, EA to 5% MeOH/EA) to afford pale yellow
solution. The solution was then uptake by tetrahydrofuran and precipitated in hexane
to afford brown solids. (724 mg, 56%). LCMS (ESI): caled. for Cs4H31NsO¢: 605.65;
found 606.31 [C34H31N506-H*], 628.22 [C34H31NsO¢-Na*], 644.20 [C34H3:NsO4-K*]. 'H
NMR (400 MHz, DMSO-de) 6 9.28 (t, /] = 6.0 Hz, 2H), 7.48 (dd, | = 9.3, 6.7 Hz, 2H),
7.45 —7.32 (m, 10H), 6.65 (dd, | = 9.2, 1.7 Hz, 2H), 6.43 (d, | = 6.5 Hz, 3H), 6.33 (dd,
] =6.7,1.7 Hz, 2H), 5.25 (s, 4H), 4.22 (d, / = 5.9 Hz, 4H).*C NMR (101 MHz, DMSO-
ds) 5 160.80, 158.00, 149.17, 144.49, 139.48, 139.39, 134.35, 130.08, 129.45, 128.93,
122.92, 114.55, 112.15, 104.52, 78.79, 43.04.

Ligand Lo to the round-bottom flask with compound Lp-OBn (82 mg, 0.1 mmol),
concentrated hydrochloric acid and glacial acetic acid was added (10 mL, 1:1). Upon 3
days stirring at room temperature, the solvent was removed in vacuo. and few drops
of triethylamine was treated. The resulting mixture was dissolved in methanol and
precipitated with diethyl ether to afford pale brown solids. (20 mg, 35%). LCMS (ESI):
caled. for CyH19sNsOg: 425.40; found 426.31 [CroH1sNsO4-H'], 448.11 [CaoH19NsO¢-
Na*]. 'H NMR (400 MHz, Methanol-ds) & 7.54 (t, ] = 7.9 Hz, 3H), 7.34 (s, 2H), 6.80
(d, ] = 8.9 Hz, 2H), 6.73 (d, ] = 7.0 Hz, 2H), 4.64 (s, 4H).

3.4.3. Photophysical & Lifetime Measurement

General Consideration Unless stated otherwise, photophysical measurements
were average of triplicates. UV-Vis absorption spectra were recorded with an HP UV-
8453 spectrophotometer while photoluminescence measurements data are obtained
with either (1) Edinburgh Instruments FLSP 920 spectrophotometer equipped with a
Xe900 continuous xenon lamp (450 W) or (2) HORIBA Fluoromax-4

Spectrofluorometer as stated in previous section.
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Quantum yield measurement. The quantum yield was determined relative to
freshly prepared quinine sulphate in 0.1 M sulphuric acid (Aey, = 350 nm, © = 0.547).
The spectrophotometric grade solvents used in measurements are purchased from
Sigma-Aldrich. The 0.1 M HEPES buffer is freshly obtained by dilution of purchased

spectroscopic grade 1 M HEPES and 0.1 M sulphuric acid.

Lifetime Measurement. The luminescence lifetimes of visible emissions were
acquired with FLSP 920 spectrophotometer equipped with nanosecond flash-lamp

(nF900) and the decay curve was fitted with Origin 8.5.
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Chapter 4: Study in the effect of chelating strength towards

supramolecular self-assembly

4.1. Introduction

4.1.1. Background

As mentioned in chapter two, the neutral pcam chelator have intrinsic weakness on
chelating ability and stability. Hence, the effect of spacer modification might not be fully
transferred to the lanthanide environment due to the labile coordination of pcam units.
In addition to these weaknesses, the chromophores are also known to be poor
lanthanide sensitizer for extended system and possess poor solubility in biological
medium.'” To address the issues, 8-hydroxyquinoline-based (8-HQ-based)
chromophore are investigated by different research group*’ in which NIR emission
from its Ln complexes are observed as illustrated in figure 4-1 and figure 4-2 while

both of them utilize the amide- modified hydroxyquinoline ligands.

NN
§ \
Figure 4-1: Ln helicates based on hydroxyquinoline®'
— - Y
OH O H )l( N
/N [;]/\/\N/\/N\/\/N N/
X X H O OH
- -2
Y
L 4, X = HICH;
Y = HISO;"

Figure 4-2: hydroxyquinoline-based podand like ligands*
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In addition to NIR emission, the anionic and oxygen-rich nature of the chromophores
facilitate the chelation of lanthanide with the oxophilic hard acid nature while the
strong chelation of HQ units exclude water from the coordination environment even

in aqueous medium.4

Meanwhile, two novel carboxyl-functionalized HQ-like

derivatives  8-hydroxy-,5-naphthyridine-2-carboxylic O"E'@\o
R N
acid (R = H) and 7-cyano-8-hydroxy- |,5-naphthyridine- [ | N N o
A~
N 3

2-carboxylic acid (R = CN) are reported with excellent

Figure 4-3: 1,5-naphthyridine
photoluminescence quantum vyield (up to 28% in

based complexes
aqueous medium).'® more recently, Sun have reported
8-hydroxyquinoline-based bidentate ligands which affords different supramolecular

two-dimensional architectures including triangle, square, hexagon and octagon as

shown in figure 4-4. "

o CFI M IU? pase
N < N N” N 3+
H HJ\©)LH H Ln
/I o
Ln3* SN ’N‘H " OH base
— —_—
polymer H NN =
o |/

Figure 4-4: Graphical illustration on 8-HQ based ditopic ligands!!

Unlike ordinary bidentate ligands, the V-shaped bidentate ligand does not simply afford
helicate-like structure but also two-dimensional structure. This is probably attributed
from higher-than-usual available coordinating sites from the ligand (i.e. 4 coordinates

for each side). The high coordination number sufficiently stabilize the lanthanide
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complexes in which only two ligands are required for such complexes. Meanwhile, the
high stability also provides an opportunity to form relatively steric-bulky 2D topologies.
The addition of base deprotonates hydroxyl groups on 8-hydroxyquinoline which
further strengthen the coordinating ability as lanthanide prefer anionic chelation to

achieve tetranuclear square or octagon.

4.1.2. Scope of study

In light of the characteristic properties in both optical and coordination chemistry
from 8-HQ units. This chapter aims at devising new class of chiral chelator based on
8-HQ units which empower the ligands stronger chelation and chiroptical properties.
With the functionalization of 8-HQ units, the investigation on the effect of chelating

strength toward the ultimate supramolecular self-assembling topologies.

’
| H
J N
N N (o) OH
H H
OH (0] N N
I N
(o) . OH H
Z N
X N N
H

OH o

Iz

Figure 4-5: Two primary designs in Chapter four
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4.2. Result & Discussion

4.2.1. Synthetic Scheme 1

OH OH OH H
Ns NBS, chloroform N Br Buchwald-Hartwig Cross Coupling Ns N

f oxidation
\
0] y OH H
HO ‘ N
=

As an initial attempt, the radical bromination of quinolinol is conducted with reported

Figure 4-6: synthetic scheme 1a

procedure.' " In this bromination, quinolinol (1 equiv.) in chloroform was treated with
N-bromosuccinimide (0.98 equiv.) as a bromination source. Based on the experimental
results, it is found that the high reaction temperature might induce dibrominated
product and thus N-bromosuccinimide was added under ice temperature in low
concentration and slowly raised to 50 °C to suppress unwanted side products. Upon
completion of reaction, the solvent of the reaction crude is first evaporated to obtain
a pale brown creamy solid. The solids are suspended in deionized water and the

suspensions are collected by filtration.

To introduce the chiral group, different coupling scheme and conditions were
attempted to couple the chiral amine on the bromide group. The initial attempts were
palladium catalysed Buchwald-Hartwig coupling with different combination of base,
phosphine, and solvent. However, no desired products were obtained with these
coupling conditions. Therefore, copper-catalyzed coupling is attempted with simple

Cul/proline system.
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Entry Reaction Condition

1 Pd,(dba)s, P(o-tol); NaOt-Bu, toluene, 100°C
21416 Pd,(dba);, BINAP, NaOt-Bu, toluene, 100°C
3" Pd»(dba)s, dppf, NaOt-Bu, toluene, 100°C
Pd,(dba)s, xantphos, NaOt-Bu, toluene, 100°C
Pd,(dba)s;, BINAP, LIHMDS, THF, 100°C
Pd,(dba)s, BINAP, Cs,CO;, dioxane, 100°C
Cul, L-proline, K,CO3, 100°C

O 0 o U»i1 h

Cul, L-proline, NaOt-Bu, 100°C

Table 4-1: list of entry with reaction condition performed in synthetic scheme 1a

Unfortunately, no desired products were identified. Based on the structure and
literature, the failure is probably attributed from the hydroxyl group next to the
coupling site which hinder the formation of catalytic intermediates species. With this

hypothesis, a protecting scheme was devised and discussed in next section.

OH 0]
Br N low yield (<10%) Br N
AN > N
= =
Figure 4-6: benzyl protection scheme of bromoquinolinol
Entry Reaction condition Results
1 BnBr, K,COs3, methanol, reflux, 2 days 3%
2 BnBr, K,COs, KI, methanol, reflux, 2 days 3%
3 BnBr, K,CO;, DMF, reflux, 2 days 5%
4 BnBr, KOH, DMF, reflux, 2 days 5%
5 BnBr, NaH, THF, 0°C to reflux, 2 days 5%
6 BnBr, NaH, THF, 0°C to reflux, 2 days 7%

Table 4-2: list of entry with reaction condition performed in benzyl protection
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The benzyl protecting group is initially selected due to their tolerance in relatively
harsh reaction conditions and ease in deprotection. Different substitution schemes are
attempted with different base, solvent, and mole ratio.’® ' However, the completion
of reaction had never been accomplished even with high equivalent of benzyl bromide
and bases, lengthening of reaction duration and elevated temperature. The plausible
reason for such failure is attributed from five-member ring formation with
deprotonated hydroxyl and quinolinium nitrogen. Additionally, the benzyl group is

quite bulky to the crowded environment.

OH OBn OBn
Ny, BnBr, K,CO3, DMF - Ny NBS, chloroform ~ Br N

/

= 100°C = =

Figure 4-7: synthetic scheme 1b

a
b c+h
c a:b:c:d:e :f:g:h:l
1:2:2:2:1:1:1:1:1
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1 l
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e |
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i f ba e
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T:/ \el\a’ |l \eof
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ARA ;F,,“ﬁ:r\ <
g 3 [BEyse 2

Spectrum S4-1: '"H NMR spectrum of para-brominated product
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With the failure in protecting bromogquinolinol, the reaction sequence is modified that
the quinolinol is first protected followed by bromination. The protection was first
employed prior to bromination in which it successfully affords the benzyl protected
intermediates with higher yield. However, the following bromination failed to give
ortho-brominated but solely para-brominated product which was probably attributed

from the steric effect.

0] (0] (I? (0]
= = =

Figure 4-8: synthetic scheme 1c
Upon successful protection of methyl group on bromoquinolinol, the subsequent
oxidation was performed using standard oxidation reagents mCPBA to synthesize N-
oxide. However, the subsequent cyanation failed to yield the desired cyano-

intermediates.

4.2.2. Synthetic Scheme 2

| A mCPBA | A TMSCN | X 3N NaOH | =

— — Z - = pZ —Q——— > HO Z

N DCM, 24h N 100°C, O/N NC™ °N reflux, O/N N
OH O OH OH o) OH

M1 -1 M1 -2 M1 -3

58% 41%

Figure 4-9: Synthetic Scheme 2a
In the view of previous failure, oxidation is conducted prior to the bromination to
avoid reduced activity towards sequential oxidation procedures. Based on the modified
literature procedure? ?', the compound M1-3 is synthesized. The synthesis started
with oxidation of 8-quinolinol to 8-quinolinol N-oxide which are generally obtained

from either oxidation with 30% H,O, or mCPBA. The experimental results showed
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that oxidation through solid mCPBA oxidants have higher performance with better

yield (58% compared to 22%).

Following the literature®, the cyanation of compound M1-1 are conducted neat
reaction with trimethylsilyl cyanaide (TMSCN) in neat TMSCN at 80°C through auto-
catalysis mechanism. The synthesized cyanide intermediates are hydrolyzed directly
without further work-up procedures. Upon completion of reaction with the indication

of TLC, the reaction mixture was cooled and washed with dichloromethane (3X).

The remaining aqueous extract is acidified with 1N HCI until formation of permanent
solid. The solution was then extracted trice with dichloromethane/acetone (95:5 vy,
3X) and the resulting organic extracts were washed with brine, dried over anhydrous
sodium sulphate, solvent removed under reduced pressure to afford yellow plate. The
yellow crude was then redissolved in dichloromethane/tetrahydrofuran and

precipitated with hexane to afford yellow powder.

A NBS, tBuNHz m conc. sto4 m Mel, cho3 m
o (o]
N ; “toluene/DOM MeOH reflux " omE ON
OH o -100°C to RT
M1-6
Figure 4-10: Synthetic Scheme 2b

With the compound M1-3, it is selectively brominated with N-bromosuccinimide
(NBS) according to literature modified literature protocol.?, the selective bromination

of phenol-like compounds was achieved by eliminating hydrogen bromide by

precipitating with tert-butylamine in toluene-based reaction medium under -100°C.
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Otherwise, para-brominated (X = Br, Y = H) and dibrominated (X =Y = Br) products

will be generated and hinder the formation of desired products (X = H, Y = Br)

X

| bromination |
HO = HO

X
_ + HBr|
N Y

o) OH o) OH

Figure 4-11: selective bromination of quinoline
In the synthetic scheme 2b, compound M1-3 require great amount of polar protic
solvent for dissolution which simultaneously hinder the precipitation t-butyl bromide
and temperature control. Meanwhile, highly polar products require 20% methanol/EA
for elution to complicate the purification processes. Hence, the reaction scheme 2b

has severe dibrominated products up to 50% due to low solubility of the precursor

~ conc. H,S0, N NBS, tBuNHz m{ Mel, cho3 m{
A oH — ", N O
N MeOH, reflux N toluene/DCM DMF O/N
OH 0 ON OH o -100°C to RT
M1-3 M1-4
Figure 4-12: Synthetic Scheme 2c

Considering the solubility issue of compound M1-3, the new scheme 2c is devised to
perform acid protection prior to the bromination. The methyl protection significantly
enhances the solubility of precursor resulting in high toluene content in reaction
medium and reduction of overall solvent. It is inferred these two factors simultaneously
promote the desired bromination while the unwanted bromination on methyl arm via
radical substitution was not identified. It is probably attributed from low temperature
condition that inactivate and suppress radical formations. Meanwhile, the dibrominated

products were significantly suppressed from 50% to less than 10% which further

improve the overall efficiency.
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~,
0o o
o)
Br N7 ~ NH, \ N N RN
O 0 H o o

M1-6 M1-7

Figure 4-13: Synthetic Scheme 2d

X X
Br N7 O HzN/'\© - N N7 O
O ! ool !
M1 -6

M1-8

Figure 4-14: Synthetic Scheme 2e

With the protected compound M1-6, two synthetic scheme are investigated in
parallel manner in which scheme 2d directly couple compound M1-6 to desired spacer
followed by acid group deprotection for chiral amine coupling. As alternative pathway,
compound M1-6 is first coupled with chiral amine to synthesize M1-8 followed by
deprotection to acquire desired compounds. In the initial screening of catalytic system
for reaction scheme 2d, six different phosphine was employed, and the result is

summarized in following table 4-3.

Bromide Amine tBuONa [Pd] Phosphine
Entry Condition Result
(equiv.) (equiv.) (equiv.) (mol %) (mol %)

Pd(OAc), BINAP Toluene

A 1.9 I 2 -ve
(6 mol %) (6 mol %) 100°C
Pd,(dba); P(t-Bu); Toluene

B 1.9 I 2 -ve
(3 mol %) (6 mol %) 100°C
Pd,(dba P(C Toluene

C 1.9 | 2 H(dba)s ©): ve
(3 mol %) (6 mol %) 100°C
Pd,(dba); P(o-tol); Toluene

D 1.9 I 2 -ve
(3 mol %) (6 mol %) 100°C
Pd,(dba); PPh; Toluene

E 1.9 I 2 -ve
(3 mol %) (6 mol %) 100°C
Pd(OAc), DPEPhos Toluene

F 1.9 I 2 -ve
(5 mol %) (3 mol %) 100°C

AThe result is interpreted from 'H NMR and HRMS

Table 4-3: list of entry with reaction condition performed in synthetic scheme 2d
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Based on the screen results, the further attempts on scheme 2d are discouraged as no
successful trial over wide range of ligand system. For reaction scheme 2e, different
coupling schemes were attempted previously while Pd/P(t-Bu)s;/NaOt-Bu was found to
be effective catalytic system that shows consumption of starting materials. With this
previous finding, different palladium-based coupling was attempted to couple the amine
to the intermediate bromide. Unfortunately, no positive results were shown yet even
less steric hindrance achiral amine was employed as shown table 4-4. It was inferred
that the bromide is not sufficiently active for coupling reaction such that the
conversion of bromide to higher activity moiety such as iodide, triflate, mesylate and

boronic moiety was investigated.

Entry Reaction condition Result

Chiral amine with bromide

1 NaOt-Bu, Pd,(dba)s, dppf, toluene, 80°C -ve in both MS & '"HNMR
2 NaOt-Bu, Pd,(dba)s;, BINAP, toluene, 80°C -ve in both MS & 'HNMR
3 NaOt-Bu, Pd,(dba)s, BINAP, dioxane, 80°C enhanced solubility

Achiral amine with bromide

4 NaOt-Bu, Pd,(dba)s, BINAP, dioxane, 80°C -ve in both MS & "THNMR
5 NaOt-Bu, Pd,(dba)s, xantphos, dioxane, 80°C -ve in both MS & 'HNMR
6 NaOt-Bu, Pd,(dba)s, P(t-Bu)3, dioxane, 80°C -ve in both MS & "THNMR

Achiral amine with iodide
7 NaOt-Bu, Pd,(dba)s;, BINAP, dioxane, 100°C successful
8 NaOt-Bu, Pd,(dba)s, P(t-Bu)3, dioxane, 100°C successful

Table 4-4: list of entry with reaction condition performed in synthetic scheme 2e
Due to the synthetic difficulties, the boronic moiety was not feasible while the
conversion to triflate and mesylate were still under investigation. Among those, iodide

was first synthesized substrate and similar reaction condition were adopted with
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ordinary Pd,dbas/P(t-Bu)s;/NaOt-Bu and Pd,dbas/(%)-BINAP/NaOt-Bu. Upon comple-
tion of reaction, the reaction crude is analyzed with '"H NMR spectroscopy which show

positive sign of reaction and reaction conditions are further optimized with different

screening.
4 ~ )
O =
- N |
/ © O~ \
X X
R o N R
R N | - N H
0 O o} O

Qansmidation Products Competing reaction! Buchwald Hartwig Pmduy

Figure 4-15: competing product between two competing pathways

Upon detailed investigation, it is revealed that the transamidation products were
afforded which share similar NMR spectrum with desired Buchwald Hartwig products.
To investigate the mechanism of transamidation, several microscale experiments were
conducted without palladium or phosphine under room temperature and elevated
temperature. It is found that no transamidation reaction occurred without the catalyst

of palladium and phosphine ligands.

X X EDCI, DMAP X
1N KOH t-BUOH
H
| NN O NN ————— N” O\~/
O o} O o) O o)

M1 - 6 - iodide M1-9 M1-10

Figure 4-16: Synthetic Scheme 2f

To suppress the transamidation, the steric protecting group was introduced by two

subsequent steps. The compound M1-6 was first deprotected with 1N KOH. With
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the monitoring of NMR spectroscopy, the deprotection was completed with 5 equiv.
of hydroxide in 2 days. The acid intermediates were isolated and purified under
standard work-up procedures followed by EDCl-catalyzed esterification to afford
compound M1-10 ("H and BC NMR characterized). The obtained intermediates were

then subjected to another round of condition screening.

B B
\{/O N" | — \{/O N" N
0 O 0 o "

M1-10 M1-11
Figure 4-17: Synthetic Scheme 2g
Pd source Base Phosphine Amine
Entry Result
(mol %) (equiv.) (mol %) (equiv.)
Pd.dba; NaOt-Bu SPhos (S)-EtPh
1 (1.5 mol %) (3 equiv.) (3 mol%) (2 equiv.) "
Pd(OAc), CsCO; SPhos (S)-EtPh
2 3 mol %) (3 equiv.) (3 mol%) (2 equiv.) "
Pd,dba; NaOt-Bu SPhos (S)-EtPh
? (1.5 mol %) (3 equiv.) (3 mol%) (2 equiv.) "
Pd(OAc), CsCO; SPhos (S)-EtPh
) 3 mol %) (3 equiv.) (3 mol%) (2 equiv.) "
Pd.dba; NaOt-Bu Xantphos (S)-EtPh
> (1.5 mol %) (3 equiv.) (3 mol%) (2 equiv.) "
Pd.dba; KOt-Bu Xantphos (S)-EtPh
° (1.5 mol %) (2 equiv.) (3 mol%) (3 equiv.) "
Pd.dba; KOt-Bu BINAP (S)-EtPh
7 12%
(1.5mol %) (2equiv) (B mol%) (3 equiv.)
Pd(OAC), KOt-Bu BINAP (S)-EtPh )
(3 mol%) (2 equiv.) (3 mol%) (3 equiv.) o%
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(H2O act.)
Pd(OAc),
KOt-Bu Brettphos (S)-EtPh
9 (3 mol%) n.d.
(2 equiv.) (3 mol%) (3 equiv.)
(H20O act.)
Pd(OAC)z
KOt-Bu Xphos (S)-EtPh
10 (3 mol%) n.d.
(2 equiv.) (3 mol%) (3 equiv.)
(H2O act.)

Table 4-4: list of entry with reaction condition performed in synthetic scheme 2g

In general, as shown in the following scheme, the t-butyl protection shields the
carboxylate moiety which promote the oxidation addition of iodide moiety. The
subsequent Pd-amine bond formation were competed with hydride formation which

hinder the formation of desired product (reductive amination product).

| RS
R’o N X
L, Pd"
\
L, Pd" x
transamidation product
d'L, L,Pd!
R’ H
L, Pd'
reductive amination hydride products
product (o] |
I N
0”0
R

Pd-amine bond formation

Figure 4-18: simplified catalytic cycle in synthetic scheme 2g

Although products were identified, there are still substantial starting materials and

hydride products while the detailed synthetic procedure and characterization is
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included in experimental section and appendix respectively. In the further study,
different reaction condition must be employed to facilitate Pd-amine bond formation
while base equivalent and temperatures will also be another factor to affect the rate

of oxidation addition and hydride formation.

4.2.3. Amide coupling study

To investigate the amide coupling conditions, previous precursor is deprotected under
KOH to afford compound M1-12 for condition screening as the obtained amount of
chiral precursor is synthetically limited. As depicted in the following table, the amide

coupling with different condition and procedures were employed.

B B
- N Br N Br
0 O o) O

M1 -6 M1 -12
Figure 4-19: Synthetic Scheme 3a

o) NH,
oo™ Cco o
HoN HN HoN
o) NH,

Figure 4-20: list of amine employed for the trials

As an initial trials, standard HATU coupling was employed with room temperature and
elevated temperature. However, both show no signs of reaction from NMR spectrum.
Using strong activation agent SOClI,, one-pot and two stage attempts were both
conducted while no sign of di-coupled products was observed in the NMR spectrum.
The sequential HATU coupling is therefore employed in which the acid was coupling

to anthraquinone in a stepwise manner. As depicted in the following NMR spectrum,
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there are sufficient information that new species were formed during the coupling step.
However, due to limited solubility, the detailed characterization of di-coupled products

and deprotected products were not feasible.

M1-12-(anthraquinone)-M1-12 (deprotected)

U A.J“J U
o —_— AJM.\“\J‘U\L_/JuA_J“L—“‘*"_‘*——-AW—-—M'M“‘HJ - .-““‘L\AJ L/h J
M1-12-(anthraquinone)-M1-12 |
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Spectrum S4-2: the stacked 'H NMR spectrum from sequential HATU coupling

As the solubility of the coupling products were limited, stronger coupling agents i.e.,
PCl; was then employed to promote reaction and avoid unreacted intermediates. The
stacked NMR spectrum revealed that HATU was more effective coupling procedure
compared to PCl; as only minute amount of mono-coupled products were identified

even excess of acid and PCl; was employed.
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M1-12-(anthraquinone)-NH, using ITCI3 ‘ ' Ulf\

J
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M1-12-(anthraquinone)-NH, using HATU
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Spectrum S4-3: the stacked 'H NMR spectrum from two different amide coupling
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] MLN_J\L_JL_JWJ -

M1-12-(phenylene)-NH,

\ |
Aot | ‘.LM__,_,J Mo L/
M1-12-(anthraquinone)-NH, l;_ -
x u__m_u__ﬂ__ull}b{ \ L J N -
M1-12 q
L L J . B
-

Spectrum S4-4: the stacked '"H NMR spectrum of mono-coupled species with different amines

To investigate the sequential HATU coupling, two less bulky diamine including 2,6-
naphthalenediamine and 1,4-phenylenediamine were employed. As depicted in the
above spectrum, naphthalene version also successfully affords mono-coupled products
while the characterization of phenyl products is not feasible due to limited solubility.

In addition, the di-coupled product of naphthalenediamine also suffers from solubility
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issues that no NMR signal was obtained. This revealed that the reduction of bulkiness

on center linker apparently has adverse effect on the solubility.
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Figure 4-21: Complexation condition of Compound M1-12 -(1,5-nap)- M1-12
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Spectrum S$4-5: HRMS spectrum of Sm complexes of Compound M1-12 —-(1,5-nap)- M1-12

Compared to other series, the amide coupling with 1,5-napthalenediamine using

HATU coupling successfully afford the ligand and the subsequent complexation are

conducted. Using triethylamine as deprotonating bases, the ligand are complexes with
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lanthanide triflates. Upon purification, HRMS analysis show characteristic peak of

[Lny(L-2H)L,]** for lanthanum, samarium, europium and gadolinium complexes.

4.3. Conclusion & Future Work

To conclude, this chapter investigated different synthetic pathway to functionalize the
8-hydroxyquinoline unit with coupling amine coupling sites. The sequential HATU
coupling of the 8-hydroxyquinoline towards different linkers are also developed.
Chapter Four have explored different synthetic possibility while it underlies the
foundation of ditopic ligand synthesis. However, the complete pathway on synthesizing
the 8-hydroxyquinoline-based chiral ditopic ligands are not yet successful due to the

synthetic difficulties.

4.4. Experimental Section

4.4.1. General Considerations

All chemical used for synthesis were obtained from commercial suppliers and used
without further purification. All moisture-sensitive reactions were conducted under a
nitrogen atmosphere in oven-dried glassware. Anhydrous solvents were freshly
distilled or dried over 4A molecular sieves unless otherwise specified. 1D and 2D NMR
spectra were conducted on a Bruker AVANCE-IIl 400 MHz and 600MHz FT-NMR.
High Resolution-ESI mass spectrum were obtained from Agilent 6540 Liquid
Chromatography - Electrospray lonization Quadrupole-Time-of-Flight Mass
Spectrometer or Waters Synapt G2-Si lon Mobility Quadrupole MS and the chemical

shifts were determined with tetramethylsilane (TMS) or solvents in parts per million

(ppm).
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4.4.2. Synthesis & Characterization
Compound M1-1 To the solution of quinoline-8-ol (10.02 g, 68.5
I N: mmol, 1 equiv) in 300 mL dichloromethane, meta-
O OH  chloroperoxybenzoic acid (27.8 g 137 mmol, 2 equiv.) was added
under ice temperature. The reaction mixture was then stirred
overnight under nitrogen atmosphere. The solvent was then removed, and residue was
diluted with ethyl acetate. The organic extracts were then washed with sodium
bicarbonate solution (3X), brine (2X), dried over anhydrous sodium sulphate and dried
under reduced pressure to obtain pale yellow solids. The crude was then loaded to
column chromatography (silica gel, Hex to 50% EA/Hex, R¢ = 0.3 in 20% EA/Hex). The
obtained product was suspended in saturated sodium thiosulphate solution for
overnight stirring. The solids was then filtered and dried to afford pale yellow solids.
(5.56 g, 50%) 'H NMR (400 MHz, Chloroform-d) & 15.05 (s, 1H), 8.25 (dd, J = 5.9, 1.1
Hz, 1H), 7.79 (dd, J = 8.5, 1.0 Hz, 1H), 7.49 (t, ] = 8.0 Hz, 1H), 7.25 (dd, | = 8.4, 6.2

Hz, 1H), 7.07 (dd, ] = 7.9, 1.2 Hz, 1H).

Compound M1-2. To compound M1-1 (2 g, 12 mmol, 1 equiv.)

N I N: in 100 mL two neck flask, trimethylsilyl cyanide (4.65 mL, 36.8
OH  mmol, 3 equiv.) was added in caution under nitrogen atmosphere.

e The reaction was slowly heated to 80°C for overnight reaction.
Upon completion of reaction, trimethyl cyanide was removed under reduced pressure

with the neutralization of base trap and cold trap. The resulting solid was then used in

next step without further purification. 'H NMR (400 MHz, Chloroform-d) & 8.27 (d, J
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= 8.4 Hz, 1H), 7.67 (d, | = 8.4 Hz, 1H), 7.59 (t, | = 7.9 Hz, 1H), 7.48 (dd, | = 8.3, 1.3

Hz, 1H), 7.28 (dd, | = 7.7, 1.3 Hz, 1H).

Compound M1-2. To the crude solid of CHT M2 - 02 (24

HO mmol, 1 equiv.), sodium hydroxide solution (3N, 24 mL, 3

A/

1 equiv.) was added. The resulting mixture was heated to 100°C

- and stirred 24h for reaction. Upon completion of reaction with
the indication of TLC, the reaction mixture was cooled and extracted with
dichloromethane (100 mL, 3X). The obtained aqueous extract is acidified with 1N HCI
until solid appears. The solution was then extracted trice with ethyl acetate (3X) and
the resulting organic extracts were washed with brine, dried over anhydrous sodium
sulphate, solvent removed under reduced pressure to afford brown solids. (2.23 g,
45%). '"H NMR (400 MHz, DMSO-ds) & 10.17 (s, 1H), 8.51 (dd, ] = 8.5, 2.1 Hz, 1H),
8.08 (dd, | = 8.6, 2.1 Hz, 1H), 7.68 — 7.55 (m, 1H), 7.47 (d, ] = 8.2 Hz, 1H), 715 (d, | =
7.7 Hz, 1H). *C NMR (101 MHz, DMSO-d;) & 165.58, 154.29, 144.75, 138.81, 136.94,

130.92, 130.40, 120.43, 118.06, 112.47.

Compound M1-4 (2b). To the solution of t-butylamine
N
- OH (249 mL, 23.2 mmol, 2.2 equiv.) in anhydrous toluene (80
Br N
OH o mL), N-bromosuccinimide (1.81 g, 10 mmol, 0.95 equiv.)

M1-4 (2b)
was added under acetone/liquid nitrogen cooling bath.
Upon stirring for 30 minutes, compound M1-3 (2.02 g, 10.6 mmol, 1 equiv.) in

tetrahydrofuran (30 mL) was added in dropwise manner at same temperature. The

solution mixture was then slowly back to room temperature over 3 hours and stirred
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overnight under room temperature. Upon completion of reaction, the mixture was
then diluted with minimal ethyl acetate and methanol, filtered with thick pad of silica
(5 cm) and washed with ethyl acetate. The residues bed was then eluted with 50%
EA/MeOH (v/v) and the solvent was removed under reduced pressure. The residues
were then uptake by ethyl acetate and precipitated in hexane to obtain semi-pure
product (1.21 g, yield: 36%). '"H NMR (400 MHz, DMSO-d;) & 8.30 (d, J = 8.4 Hz, 1H),

8.06 (d, | = 8.4 Hz, 1H), 7.64 (d, | = 8.7 Hz, 1H), 7.18 (d, | = 8.7 Hz, 1H).

N Compound M1-5 (2b). To the solution of M1-4 (2b)
Z o
Br N ~ (2.5 g) in 150 mL fresh methanol was added concentrated
OH o
M1-5 (2b) sulphuric acid (1.5 mL, cat.). The resulting mixture was

then heated to reflux temperature. Upon overnight
reaction, the reaction crude was diluted with H,O and the organic solvents were
removed by rotatory evaporator before partition with EA/H,O. The organic extracts
were then washed trice with sat'd NaHCO;, brine, dried over anhydrous sodium
sulphate followed by rotatory evaporation. The obtained oil was precipitated with
DCM/Hex and collected by filtration. 'H NMR (400 MHz, Acetonitrile-ds) & 10.57 (s,

1H), 8.57 (d, | = 8.6 Hz, 1H), 8.14 (d, | = 8.5 Hz, 1H), 7.83 (d, | = 8.8 Hz, 1H), 7.50 (d,

J = 8.8 Hz, 1H).
S Compound M1-4. To the suspension of compound M1-3
< (o)
N ~ (12 g, 13 mmol, 1 equiv.) in 500 mL fresh methanol was
OH (0]
M1-4 charged conc. H,SO4 (5 mL) in caution under nitrogen

atmosphere. The resulting mixture was heated at reflux
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temperature overnight before quenching of sodium bicarbonate solution. The aqueous
layer was then extracted trice with ethyl acetate while the combined organic layer was
washed with sodium bicarbonate solution (3X), brine (2X), drying over anhydrous
sodium sulphate, solvent removed under reduced pressure to give crude solids. The
crude was then loaded to column chromatography (silica gel, gradient from hex to
DCM) to afford titled compounds. '"H NMR (400 MHz, Chloroform-d) & 8.36 (dt, | =
2.4, 1.2 Hz, 1H), 8.26 (d, | = 8.5 Hz, 1H), 8.14 (d, ] = 8.5 Hz, 1H), 7.54 (¢, ] = 8.0 Hz,
1H), 7.36 (dd, | = 8.3, 1.2 Hz, 1H), 7.27 — 7.14 (m, 1H), 4.03 (s, 3H). *C NMR (101
MHz, Chloroform-d) & 165.50, 153.20, 145.42, 137.74, 137.25, 130.26, 129.72, 121.65,

117.66, 110.98, 52.92.

Compound M1-5. To the slurry mixture of NBS (555

N
Br NG Ol mg 3.1 mmol, 0.95 equiv.) and t-butylamine (0.77 mL, 7.1

OHN” 5 © mmol, 2.2 equiv.) in toluene (40 mL) was added CHT — M1

— 04 (667 mg, 3.2 mmol, 1 equiv.) in dichloromethane (10

mL) in dropwise manner at -100°C in acetone/liq. N, bath. At the same temperature,
the mixture was stirred for another 30 minutes before slowly warmed to room
temperature over 2 hours. The resulting reaction mixture was then further stirred at
room temperature overnight. Upon completion of reaction, the solvent was removed
in rotatory evaporator and the crude was partitioned in ethyl acetate and H,O. The
aqueous layer was extracted trice with ethyl acetate while the combined organic layer
was then washed H20O (3X) and brine (2X), followed by drying over anhydrous
magnesium sulphate, solvent removed under reduced pressure to afford crude solids.

The solids were then loaded to column chromatography (silica gel, gradient from DCM

to 20% EA/DCM, R = 0.2 in DCM) to yield titled compounds. '"H NMR (400 MHz,
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Chloroform-d) & 9.11 (s, 1H), 8.30 (d, ] = 8.5 Hz, 1H), 8.20 (d, ] = 8.5 Hz, 1H), 7.75
(d, ] = 8.8 Hz, 1H), 7.37 — 7.22 (m, 1H, with d-CDCl;), 5.31 (s, 1H), 4.08 (s, 3H).”*C
NMR (101 MHz, Chloroform-d) & 165.21, 150.85, 146.10 137.87, 137.49, 133.73,

128.71, 121.77, 118.22, 53.43, 53.08.

Compound M1-6. To the suspension of compound

A
B NZ 0 M1-5 (2.67 g 94 mmol, 1 equiv) and potassium
o< 0 carbonate (1.5732 g, 11.3 mmol, 1.2 equiv.) in 25 mL DMF

M1-6

was charged methyl iodide (0.66 mL, 10.3 mmol, 1.1
equiv.). The resulting mixture was stirred overnight before precipitating in 500 mL of
H,O. The titled compound was then obtained by filtration followed by washing of H,O.
'H NMR (400 MHz, DMSO-d;) 6 8.51 (d, ] = 8.6 Hz, 1H), 8.06 (d, /] = 8.4 Hz, 1H), 7.81
(d, ] = 9.0 Hz, 1H), 7.69 (d, ] = 8.7 Hz, 1H), 4.09 (s, 3H), 3.90 (s, 3H). *C NMR (101
MHz, DMSO-d¢) & 165.52, 162.97, 153.79, 147.59, 142.10, 138.85, 132.94, 130.27,

124.81, 121.75, 116.85, 62.65, 53.33.

Compound M1-5 iodide. To the slurry mixture of NIS

N (1.05 g, 4.4 mmol, 0.95 equiv.) and t-butylamine (1.1 mL,
7 o
~
! OH N 10.3 mmol, 2.2 equiv.) in toluene (250 mL) was added
M1-5 - iodide compound M1-4 (1.0 g, 4.68 mmol, 1 equiv.) in 25 mL

dichloromethane in dropwise manner at -100 °C in
acetone/lig. N, bath. At the same temperature, the mixture was stirred for another
30 minutes before slowly warmed to room temperature over 2 hours. The resulting
reaction mixture was then further stirred at room temperature overnight. Upon

completion of reaction, the solvent was removed in rotatory evaporator and the crude
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was partitioned in ethyl acetate and H,O. The aqueous layer was extracted trice with
ethyl acetate while the combined organic layer was then washed H2O (3X) and brine
(2X), followed by drying over anhydrous magnesium sulphate, solvent removed under
reduced pressure to afford crude solids. The solids were then loaded to column
chromatography (silica gel, gradient from DCM to 20% EA/DCM, R¢= 0.2 in DCM) to
yield titled compounds (0.8185 g, 55%). '"H NMR (400 MHz, Chloroform-d) & 8.23 (d,
J = 8.5 Hz, 1H), 8.15 (d, | = 8.4 Hz, 1H), 7.85 (d, ] = 8.7 Hz, 1H), 7.14 (d, ] = 8.7 Hz,

1H), 4.02 (s, 3H).

Compound M1-6-iodide. To the suspension of

compound M1-5-iodide (0.81 g, 2.5 mmol, 1 equiv.) and

potassium carbonate (0.5158 g, 3.70 mmol, 1.5 equiv.) in 10
M1-6-iodide

mL DMF was charged methyl iodide (0.19 mL, 2.95 mmol,

1.2 equiv.). The resulting mixture was stirred overnight before precipitating in 100 mL

of H,O. The titled compound was then obtained by filtration followed by washing of

H.O. (0.5351 g, 63%). '"H NMR (400 MHz, Chloroform-d) & 8.25 (d, ] = 8.5 Hz, 1H),

8.16 (d, ] = 8.5 Hz, 1H), 7.92 (d, | = 8.7 Hz, 1H), 7.33 (d, | = 8.7 Hz, 1H), 4.27 (s, 3H),

4.02 (s, 3H).
N Compound M1-9. To the Compound M1-6-iodide (1.6
I
HO NG | & 4.66 mmol, 1 equiv.) in 25 mL tetrahydrofuran was added
o OH
M1-9 1IN KOH (23 mL, 23.3 mmol, 5 equiv.) under room

temperature and reacted for 2 days. The organic solvent was

removed under rotatory evaporation followed by dilution with DCM/H,O. The
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aqueous phase was first extracted trice with DCM followed by acidification to
precipitate white powder. The tilited products were then collected by simple filtration

and dried under vacuum.

Br N
LD
NH,
(o]

O

Compound M1-12-(anthraquinone)-NH:; To the solution of M1-12 (100 mg,
0.373 mmol, 1 equiv.) in 5 mL anhydrous N,N’-dimethylformamide was added HATU
(312 mg, 0.82 mol, 2.2 equiv.). Upon 30 minutes stirring, 2,6-diaminoanthracene-9,10-
dione (89 mg, 0.373 mmol, 1 equiv.) was added. With additional 30 miuntes stirring,
DIPEA (142 pL, 0.82 mmol, 2.2 equiv.) was added. Upon 2 days stirring, the resulting
slurry mixture was added H2O and the precipitates were collected by filtration and
washed with dichloromethane. The obtaine solids were analyzed with NMR

Spectroscopy.

YU DY
YT OO R L
/O (o) N |N\ Br
(o) H y/

Compound M1-12-(anthraquinone)-M1-12 To the solution of compound M1-
12 (100 mg, 0.373 mmol, 1 equiv.) in 5 mL anhydrous N,N’-dimethylformamide was
added HATU (312 mg, 0.82 mol, 2.2 equiv.). Upon 30 minutes stirring, mono-coupled
products M1-12-(anthraquinone)-NH: (1 equiv.) was added. With additional 30
miuntes stirring, DIPEA (142 pL, 0.82 mmol, 2.2 equiv.) was added. Upon 2 days stirring,

the resulting slurry mixture was added H2O and the precipitates were collected by
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filtration and washed with dichloromethane. The obtained solids were analyzed with

NMR spectroscopy.

/I H o)
> N
AR N0es ’
o]
¥
o}

(o) (o)
N Br
| N
*@(j

Compound HO-M1-12-(anthraquinone)-M1-12-OH To the suspeonsion of

OH

Lignad T — CHT M1 — Br — OMe (1 equiv.) in chloroform was added boron tribromide
(1.0 M in DCM, 2 equiv.) under nitrogen atmosphere. Upon 2 days reaction, the reactio
mixture was precipitated with H2O and the precipitates were collected by filtration

and analyzed with NMR spectroscopy.

-z
] H ~
B SN N Sl N
r \©\ Br N O NH,
(o) (o)
~N NH, O\ (0]

Compound M1-12-(phenylene)-NH; & M1-12-(napthalene)-NH,. To the
solution of compound M1-12 (100 mg, 0.375 mmol, 1 equiv.) in 5 mL anhydrous N,N’-
dimethylformamide was added HATU (157 mg, 0.412 mmol, 2.2 equiv.). Upon 30
minutes stirring, benzene-1,4-diamine or naphthalene-1,5-diamine (20.3 or 29.7 mg,
0.188 mmol, 1 equiv.) was added. With additional 30 miuntes stirring, DIPEA (72 pL,
0.412 mmol, 2.2 equiv.) was added. Upon 2 days stirring, the resulting slurry mixture
was added H,O and the precipitates were collected by filtration and washed with

dichloromethane. The obtaine solids were analyzed with NMR spectroscopy.
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Chapter 5: Appendix

5.1.  Appendix of Chapter 2
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Spectrum S$2-38: *C NMR spectrum of ligand 1b
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Spectrum $2-40: *C NMR spectrum of Linker 2a
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Spectrum S$2-42: *C NMR spectrum of Ligand L,
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Spectrum S2-44: 'H NMR spectrum of Ligand La
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Spectrum $2-46: '"H NMR spectrum of Linker 3a
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Spectrum $2-48: 'H NMR spectrum of Linker 4b
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Spectrum $2-50: 'H NMR spectrum of Ligand Ly
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Spectrum $2-51: *C NMR spectrum of Ligand L4
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Spectrum $2-52: 'H NMR spectrum of Linker 5a-1
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Spectrum S$2-55: *C NMR spectrum of Linker 5a-2
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Spectrum S$2-56: 'H NMR spectrum of Linker 5a-3
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Spectrum S2-59: (top) ESI-HRMS spectrum of Complex EuL4, & (bot) isotopic distribution of

selected species
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Spectrum S$2-62: 'H NMR spectrum of Complex SmLa,
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Spectrum $2-63: 'H-"H COSY NMR spectrum of Complex SmL,,
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Spectrum S$S2-64: 'H NMR spectrum of Complex EuL,,
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Spectrum S$2-66: 'H NMR spectrum of Complex LuL,,
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Spectrum $2-68: 'H NMR spectrum of Complex LaL,s
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Spectrum $2-70: "H NMR spectrum of Complex SmLa,
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Spectrum S2-72: ESI-HRMS spectrum of Complex SmLa,
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Spectrum S2-74: (top) expanded ESI-HRMS spectrum of species [Smg(Lav)12]"* (bot) isotopic
distribution of [smg(LZb)n_ +110Tf - 6H]7+
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Spectrum S2-75: 'H NMR spectrum of Complex EuL,p
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Spectrum S2-76: ESI-HRMS spectrum of Complex Eul;p
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MATT EULS POS 20211121 49 (0.845) Cm (43:51) TOF MS ES+
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[EugLy, +110TF-7H]5*
mass error: -3.00 ppm

Spectrum S2-77: (top) expanded ESI-HRMS spectrum of species [Eus(L2b)12]%* (bot) isotopic
distribution of [Eug(L2)12 +110Tf — 7H]**
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MATT EULS POS 20211121 49 (0.845) Cm (43:51) TOF MS ES+
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1807 [EugL,, +100Tf-7H)"* 1ece
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Spectrum S2-78: (top) expanded ESI-HRMS spectrum of species [Eug(L2)12]”* (bot) isotopic
distribution of [Eug(L2b)12 +100Tf — 7H]™
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Spectrum S$2-79: ESI-HRMS spectrum of Complex GdL
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Spectrum S2-80: (top) expanded ESI-HRMS spectrum of species [Gds(L2v)12]¢* (bot) isotopic
distribution of [Gds(L2b)12 +120Tf — 6H]**
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Spectrum S2-81: (top) expanded ESI-HRMS spectrum of species [Gds(L2b)12]"* (bot) isotopic
distribution of [Gds(L2b)12 +110Tf — 6H]™*



Chapter 5 Appendix

LuL2b
CD3CN

NH
[ o
ot i
HN" g

I T T T T T T T T T T T T T 1

13 12 11 10 9 8 7 6 5 4 3 2 1 ppm
Spectrum $2-82: 'H NMR spectrum of Complex LuLy
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Spectrum S2-83: ESI-HRMS spectrum of Complex LuLa,
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MATT LULS POS 20211121 88 (1.167) Cm (67:79)
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Spectrum S2-84: (top) expanded ESI-HRMS spectrum of species [Lug(L2b)12]¢* (bot) isotopic

distribution of [Lug(L2b)12 +120Tf — 6H]**
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Spectrum S2-85: 'H NMR spectrum of Complex SmLs,
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Spectrum S$2-86: 'H-'H COSY NMR spectrum of Complex SmL;,
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Spectrum S2-87: *C NMR spectrum of Complex SmLs,
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Spectrum S$2-88: 'H NMR spectrum of Complex EulLs,
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Complex 3a - Eu
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Spectrum $2-89: 'H-"H COSY NMR spectrum of Complex EulL;,
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Spectrum $2-90: 'H NMR spectrum of Complex LulLs,
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Complex 3a - Lu - COSY
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Spectrum $2-91: 'H-'H COSY NMR spectrum of Complex LulLs,
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Spectrum $2-92: *C NMR spectrum of Complex LuLs,
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Spectrum $2-93: (top) ESI-HRMS spectrum of complex SmL;, (bot) isotopic distribution of

[Sm4(L33)6 +90Tf]3+
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MATT 20220810 LU3A SAMPLE POS 265 (2 288) Cm (240-282) TOF MS ES+
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Spectrum $2-94: (top) ESI-HRMS spectrum of complex LuLs, (bot) isotopic distribution of

[Lus(Ls.)s +9OT*
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Spectrum $2-96: 'H NMR spectrum of Complex SmLyp
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Spectrum $2-97: 'H NMR spectrum of Complex LuLgs
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Spectrum $2-98: *C NMR spectrum of Complex LuLgs
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SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

Wed Nov 2 11:47:01 2022

Empirical Formula: C18 H14 N2 O4 = 38 atoms

PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

Linkerla.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED

HEAT OF FORMATION = -77.60902 KCAL/MOL = -324.71613 KJ/MOL
GRADIENT NORM = 425.10822 = 68.96166 PER ATOM
DIPOLE = 2.15655 DEBYE POINT GROUP: C2h

NO. OF FILLED LEVELS = 60

IONIZATION POTENTIAL = 9.148965 EV

HOMO LUMO ENERGIES (EV) = -9.149 -1.621

MOLECULAR WEIGHT = 322.3196

COSMO AREA = 333.22 SQUARE ANGSTROMS

COSMO VOLUME = 358.23 CUBIC ANGSTROMS
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MOLECULAR DIMENSIONS (Angstroms)

Atom

H 38 H 35

H

H 37

SCF CALCULATIONS =

WALL-CLOCK TIME =

COMPUTATION TIME =

28 H 27

Atom

H 36

Distance

16.73086

6.15388

1.77817

FINAL GEOMETRY OBTAINED

PM7

CHARGE=0

Linkerla.mop

o o o o o o o o o O

-0.01622639 +1

1.39267054 +1

2.02829825 +1

1.30764476 +1

-0.09134460 +1

-0.70950277 +1

2.10213640 +1

1.27995508 +1

-0.11317113 +1

-0.88043996 +1

-0.16692171 +1

-0.15089238 +1

1.11411756 +1

2.30832991 +1

2.20871697 +1

0.96845522 +1

3.56665101 +1

4.85449822 +1

4.71186799 +1

3.51284918 +1

35
2.918 SECONDS

17.406 SECONDS

PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100

-0.00000524 +1
-0.00002965 +1
-0.00010219 +1
-0.00023358 +1
-0.00008571 +1
0.00002396 +1
-0.00066981 +1
-0.00093480 +1
-0.00052014 +1

-0.00010186 +1
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a Z O O a o a 0O

T LT &K T @©m T &m T =T X O O o O o Z

1.89623816 +1

1.18929660 +1

-0.15471576 +1

-0.85158625 +1

-2.10779608 +1

3.26090472 +1

-1.11894682 +1

-0.76378178 +1

2.27218759 +1

1.97069269 +1

3.18604391 +1

0.75366059 +1

-2.00201963 +1

0.41603460 +1

-0.53279282 +1

3.16265258 +1

-1.86050060 +1

3.05649183 +1

1.71284734 +1

-1.98375616 +1

-2.07793015 +1

3.24770559 +1

3.80079749 +1

3.79825648 +1

6.03991740 +1

7.24844828 +1

7.13464139 +1

5.94091004 +1

3.47174946 +1

3.57529373 +1

8.32830860 +1

9.62661120 +1

-1.18783533 +1

-2.57622001 +1

-3.43645084 +1

-2.99238401 +1

10.49169725 +1

10.04731774 +1

-1.16810649 +1

1.18411865 +1

0.96612195 +1

6.08940202 +1

8.21778104 +1

5.86117689 +1

8.02799657 +1

-0.97748322 +1

-3.23759866 +1

-3.24028514 +1

-0.00154474 +1
-0.00177519 +1
-0.00126201 +1
-0.00065041 +1
0.00021305 +1
-0.00083999 +1
-0.00112437 +1
-0.00306707 +1
0.00014515 +1
-0.00107669 +1
-0.00073735 +1
-0.00220526 +1
-0.00263614 +1
-0.00485818 +1
-0.00002585 +1
-0.00011630 +1
0.00014043 +1
-0.00190289 +1
-0.00233131 +1
-0.00027492 +1
-0.00011476 +1
0.00059434 +1
-0.88817854 +1

0.88903072 +1
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2.93155211 +1 -4.50658769 +1 -0.00275560 +1
-2.61375625 +1 10.28540715 +1 -0.89024978 +1
-2.61057776 +1 10.28884890 +1 0.88792196 +1

-1.74879534 +1 11.55629426 +1 -0.00518644 +1
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SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

Wed Nov 2 13:39:52 2022

Empirical Formula: C18 H14 N2 O4 = 38 atoms

PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

Linker1b.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED

HEAT OF FORMATION = -58.60994 KCAL/MOL = -245.22399 KJ/MOL
GRADIENT NORM = 618.14926 = 100.27705 PER ATOM
DIPOLE = 1.77738 DEBYE POINT GROUP: C2

NO. OF FILLED LEVELS = 60

IONIZATION POTENTIAL = 9.259763 EV

HOMO LUMO ENERGIES (EV) = -9.260 -2.189

MOLECULAR WEIGHT = 322.3196

COSMO AREA = 318.43 SQUARE ANGSTROMS

COSMO VOLUME = 352.16 CUBIC ANGSTROMS
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MOLECULAR DIMENSIONS (Angstroms)

Atom Atom Distance
H 38 H 35 13.31264
H 29 H 25 7.84592

H 33 H 32 2.14859

SCF CALCULATIONS

WALL-CLOCK TIME

COMPUTATION TIME

25

FINAL GEOMETRY OBTAINED

PM7

PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100

CHARGE=0

Linker2b.mop

o o o o o o o o o O

-0.04300501 +1

1.35046579 +1

2.10457660 +1

1.44107319 +1

-0.03760016 +1

-0.74236979 +1

2.06999506 +1

1.35611578 +1

-0.11581682 +1

-0.81265914 +1

-0.18949526 +1

-0.16533846 +1

1.02402130 +1

2.23620819 +1

2.29280766 +1

1.03379307 +1

3.54826817 +1

4.77530806 +1

4.80059216 +1

3.48595054 +1

2.215 SECONDS

13.141 SECONDS

-0.01112951 +1

-0.02438728 +1

-0.02063702 +1

0.00237077 +1

-0.02169181 +1

-0.01822453 +1

0.03362097 +1

-0.02109628 +1

-0.12209466 +1

-0.08593150 +1
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a Z O O a o a 0O

T LT &K T @©m T &m T =T X O O o O o Z

2.04371587 +1

1.35756225 +1

-0.03217276 +1

-0.79595193 +1

-1.99150278 +1

3.33905732 +1

-2.11878134 +1

-3.06670115 +1

3.47596798 +1

4.46248981 +1

3.98117286 +1

5.49535865 +1

-2.74048764 +1

-4.25639330 +1

-0.60255368 +1

1.85471238 +1

-1.82408517 +1

3.13442095 +1

1.91456729 +1

0.52668624 +1

2.57295075 +1

3.92963859 +1

3.19991192 +1

3.63443727 +1

6.00202061 +1

7.23669007 +1

7.20524717 +1

6.03448178 +1

3.43444658 +1

3.61867720 +1

6.05182838 +1

7.01592294 +1

0.95878851 +1

0.05417349 +1

-1.17343627 +1

0.18563073 +1

8.26506342 +1

6.83247297 +1

-1.09580459 +1

-1.15736891 +1

1.07531094 +1

5.97309378 +1

8.14129001 +1

8.19427593 +1

5.09022595 +1

1.93284800 +1

-0.92336721 +1

-2.00257504 +1

-0.01674811 +1

-0.12446043 +1

-0.25329755 +1

-0.25676137 +1

-0.12172305 +1

0.09932529 +1

-0.44643794 +1

-0.23489616 +1

-0.08979679 +1

0.21101106 +1

1.07128553 +1

-0.07185861 +1

0.57260664 +1

-0.66491778 +1

-0.01150045 +1

-0.08495445 +1

-0.03927761 +1

0.05528701 +1

-0.12033276 +1

-0.40174066 +1

-0.73517395 +1

-0.38934003 +1

1.79740740 +1

0.44067665 +1
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T - T =T

4.85161012 +1

-2.02540466 +1

-2.34193570 +1

-3.65795595 +1

-1.55499540 +1

8.04416988 +1

9.06054134 +1

8.66561052 +1

1.63971507 +1

1.36931319 +1

-0.06762842 +1

1.04567437 +1
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SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

Wed Nov 2 12:00:36 2022

Empirical Formula: C18 H16 N2 O2 = 38 atoms
PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

Linker2a.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED

HEAT OF FORMATION =  -6.27546 KCAL/MOL = -26.25653 KJ/MOL
GRADIENT NORM = 365.06485 = 59.22134 PER ATOM
DIPOLE = 0.56607 DEBYE POINT GROUP: C2h

NO. OF FILLED LEVELS = 55

IONIZATION POTENTIAL = 7.928705 EV

HOMO LUMO ENERGIES (EV)=  -7.929 -0.919

MOLECULAR WEIGHT =  292.3366

COSMO AREA = 324.02 SQUARE ANGSTROMS

COSMO VOLUME = 344.23 CUBIC ANGSTROMS

MOLECULAR DIMENSIONS (Angstroms)

Atom Atom Distance
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H 38 H 35 16.68357
H 25 H 28 6.14161

H 33 H 34 1.78989

SCF CALCULATIONS = 24
WALL-CLOCK TIME = 1.902 SECONDS
COMPUTATION TIME = 11.281 SECONDS

FINAL GEOMETRY OBTAINED
PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

Linker2a.mop

-0.05578948 +1 -0.21785328 +1 -0.00009923 +1
1.45536985 +1 -0.07140333 +1 -0.00021125 +1
2.03213133 +1 1.11624963 +1 -0.00029340 +1
1.36091930 +1 2.34032804 +1 -0.00007983 +1

-0.07446478 +1 2.32994789 +1 0.00034637 +1

C

C

C

C

C

C -0.76954971 +1 0.99243930 +1 0.00019196 +1
C 2.04607379 +1 3.51635506 +1 -0.00008132 +1
C 1.23354305 +1 4.74853855+1 0.00051664 +1
C -0.12689369 +1 4.67500402 +1 0.00113321 +1
C -0.81406032 +1 3.48965508 +1 0.00100966 +1
C

1.96914635 +1 6.04934437 +1 0.00054496 +1
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1.21591636 +1

-0.19725896 +1

-0.85959835 +1

-1.04242634 +1

-0.75941567 +1

2.27004628 +1

1.90941439 +1

3.18738002 +1

0.76386669 +1

-1.96666831 +1

0.44743569 +1

-0.51797239 +1

3.15582686 +1

-1.85638148 +1

3.10064612 +1

-1.90144828 +1

3.06102167 +1

1.73081582 +1

1.95224819 +1

2.07081510 +1

3.25836800 +1

3.80474610 +1

3.79756597 +1

2.93866159 +1

7.22849175 +1

7.15784837 +1

5.90049573 +1

8.21757136 +1

9.63300791 +1

-1.18119166 +1

-2.57123031 +1

-3.42503594 +1

-2.97712953 +1

10.43931376 +1

10.01185855 +1

-1.16051310 +1

1.17774095 +1

0.98153714 +1

3.57541999 +1

3.45804366 +1

6.05563204 +1

8.20802276 +1

5.86352044 +1

8.01127942 +1

-0.97081253 +1

-3.20786525 +1

-3.21073098 +1

-4.49798993 +1

0.00148193 +1

0.00243855 +1

0.00214150 +1

0.00427136 +1

0.00455957 +1

0.00040833 +1

0.00000442 +1

0.00329053 +1

-0.00222107 +1

0.00904914 +1

0.00152997 +1

-0.00019515 +1

-0.00039880 +1

0.00035057 +1

-0.00040567 +1

0.00148192 +1

-0.00012413 +1

0.00155208 +1

0.00286949 +1

0.00610787 +1

0.00150742 +1

-0.88885686 +1

0.90103224 +1

0.00051350 +1
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H -2.59695549 +1 10.23858899 +1 -0.88021543 +1
H -2.58840887 +1 10.24043796 +1 0.90475076 +1

H -1.73346383 +1 11.51801925 +1 0.00677703 +1
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SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

Wed Nov 2 13:39:56 2022

Empirical Formula: C18 H16 N2 O2 = 38 atoms

PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

Linker2b.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED

HEAT OF FORMATION = 0.07035 KCAL/MOL = 0.29432 KJ/MOL
GRADIENT NORM = 462.27429 = 74.99079 PER ATOM
DIPOLE = 0.81052 DEBYE POINT GROUP: C2h

NO. OF FILLED LEVELS = 55

IONIZATION POTENTIAL = 7.823330 EV

HOMO LUMO ENERGIES (EV) = -7.823 -1.038

MOLECULAR WEIGHT = 292.3366

COSMO AREA = 318.44 SQUARE ANGSTROMS

COSMO VOLUME = 343.38 CUBIC ANGSTROMS
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MOLECULAR DIMENSIONS (Angstroms)

Atom

H 37

H

H 35

SCF CALCULATIONS =

WALL-CLOCK TIME

COMPUTATION TIME =

29 H

Atom

H 34

23

H 36

Distance

13.89942

9.17926

1.78067

25

= 2.273 SECONDS

FINAL GEOMETRY OBTAINED

PM7

PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100

CHARGE=0

Linker2b.mop

o o o o o o o o o O

-0.04571299 +1

1.41051499 +1

2.08392385 +1

1.38526978 +1

-0.06840080 +1

-0.69755434 +1

1.99148258 +1

1.36029027 +1

-0.10130341 +1

-0.70018509 +1

-0.14953506 +1

-0.14992534 +1

1.03084231 +1

2.29149067 +1

2.28283741 +1

1.00868645 +1

3.55763495 +1

4.72909538 +1

4.72254547 +1

3.44614776 +1

13.406 SECONDS

0.00003004 +1

0.00005206 +1

0.00004172 +1

0.00015874 +1

0.00012004 +1

0.00000806 +1

0.00035564 +1

0.00037697 +1

0.00028215 +1

0.00022117 +1
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O o o O

a o o o o o zZ Z

T &-n o @&m o o&@m o o@m o o@m o o@mo o@m o o@m o@m om o

2.00871256 +1

1.31953877 +1

-0.10925042 +1

-0.81842629 +1

3.45443735 +1

-2.16292242 +1

-3.19465478 +1

4.47867435 +1

-2.89950292 +1

-4.55450716 +1

4.19520916 +1

5.84678865 +1

-0.54468026 +1

1.92716029 +1

-1.83197898 +1

3.14167350 +1

-1.84977977 +1

3.11889014 +1

1.83561852 +1

-0.63460302 +1

3.84892385 +1

-2.55788742 +1

-4.73268282 +1

-5.32562100 +1

5.98118233 +1

7.18212605 +1

7.19138512 +1

5.95722778 +1

1.19479864 +1

5.82462326 +1

6.87523726 +1

0.07355889 +1

8.07080108 +1

6.27130731 +1

-1.00255477 +1

0.73939487 +1

-1.12661869 +1

-1.12611305 +1

1.01589492 +1

3.59830680 +1

3.41526314 +1

5.99660175 +1

8.13891404 +1

8.13520819 +1

2.11622658 +1

4.89651068 +1

5.63987998 +1

7.06007282 +1

0.00050430 +1

0.00062731 +1

0.00053022 +1

0.00029193 +1

-0.00072779 +1

-0.00055001 +1

0.00199663 +1

0.00198630 +1

0.00554378 +1

-0.00062832 +1

0.00502778 +1

-0.00063941 +1

-0.00004422 +1

0.00003437 +1

-0.00008580 +1

0.00057364 +1

0.00031995 +1

0.00052350 +1

0.00072394 +1

0.00059426 +1

-0.00268959 +1

-0.00266395 +1

0.88644583 +1

0.00320027 +1
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-4.73253582 +1 5.64854456 +1 -0.89384162 +1
6.02192119 +1 1.37126316 +1 0.88678279 +1

6.61796196 +1 -0.04941424 +1 0.00296592 +1

T - T =T

6.02182195 +1 1.36314246 +1 -0.89381938 +1
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SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

Wed Nov 2 13:56:07 2022

Empirical Formula: C14 H14 N2 O2 = 32 atoms

PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

Linker3a.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED

HEAT OF FORMATION = -15.69393 KCAL/MOL = -65.66342 KJ/MOL
GRADIENT NORM = 534.43104 = 94.47495 PER ATOM
DIPOLE = 0.94800 DEBYE POINT GROUP: C2h

NO. OF FILLED LEVELS = 46

IONIZATION POTENTIAL = 8.589788 EV

HOMO LUMO ENERGIES (EV) = -8.590 -0.624

MOLECULAR WEIGHT = 242.2768

COSMO AREA = 277.39 SQUARE ANGSTROMS

COSMO VOLUME = 288.19 CUBIC ANGSTROMS
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MOLECULAR DIMENSIONS (Angstroms)

Atom

H 32

H 22 H

H 31

SCF CALCULATIONS

WALL-CLOCK TIME

COMPUTATION TIME

Atom
H 28
21

H 30

Distance

14.35749

5.47949

1.78598

27

FINAL GEOMETRY OBTAINED

PM7

PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100

CHARGE=0

linker3a.mop

o o o o o o o o o O

-0.01603551 +1

1.46338925 +1

2.08259400 +1

1.31191827 +1

-0.10307445 +1

-0.72270093 +1

1.94364968 +1

1.26059209 +1

-0.15390161 +1

-0.83810240 +1

-0.12660551 +1

-0.02525964 +1

1.14947536 +1

2.43315750 +1

2.29263313 +1

1.05060495 +1

3.69407948 +1

4.76302241 +1

4.72796416 +1

3.49445717 +1

1.508 SECONDS

8.984 SECONDS

-0.00005234 +1

-0.00002336 +1

-0.00006508 +1

-0.00028031 +1

-0.00034027 +1

-0.00013624 +1

-0.00052166 +1

-0.00095948 +1

-0.00109789 +1

-0.00071506 +1
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N
C
C
O
N
C
C
O
H
H
H
H
H
H
H
H
H
H
H
H
H
H

2.21646251 +1

1.92983445 +1

3.16925768 +1

0.79541334 +1

-1.04177563 +1

-0.63621756 +1

-1.93291703 +1

0.39903187 +1

-0.50325708 +1

3.15577755 +1

-1.82385912 +1

3.05975574 +1

1.74984162 +1

1.91939695 +1

3.30467607 +1

3.78300983 +1

3.77907575 +1

2.91388339 +1

-2.03866594 +1

-2.55670931 +1

-2.55295864 +1

-1.67385545 +1

-1.22035201 +1

-2.49950290 +1

-3.41317598 +1

-2.91963103 +1

5.91199982 +1

7.19638343 +1

8.10011393 +1

7.60394153 +1

-1.12215946 +1

1.24559884 +1

1.00988541 +1

3.67595063 +1

5.80542485 +1

3.45117457 +1

-0.93323551 +1

-3.19468099 +1

-3.19747804 +1

-4.45261532 +1

5.62092312 +1

7.89489772 +1

7.89840967 +1

9.15216533 +1

SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

0.00017496 +1

-0.00045726 +1

0.00069689 +1

-0.00159463 +1

-0.00146791 +1

-0.00262980 +1

-0.00196672 +1

-0.00372615 +1

0.00001754 +1

0.00001457 +1

-0.00007628 +1

-0.00032195 +1

-0.00125881 +1

-0.00074648 +1

0.00084898 +1

-0.88794006 +1

0.89259248 +1

-0.00157323 +1

-0.00082754 +1

-0.89329390 +1

0.89268719 +1

-0.00463747 +1
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Wed Nov 2 13:39:17 2022

Empirical Formula: C14 H14 N2 O2 = 32 atoms
PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

Linker3b.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED
HEAT OF FORMATION =  -57.32892 KCAL/MOL= -239.86420 KJ/MOL
GRADIENT NORM = 0.00988 = 0.00175 PER ATOM
DIPOLE = 2.81500 DEBYE POINT GROUP: C2

NO. OF FILLED LEVELS = 46

[ONIZATION POTENTIAL = 8.320379 EV

HOMO LUMO ENERGIES (EV)=  -8.320 -0.646

MOLECULAR WEIGHT = 2422768

COSMO AREA = 270.96 SQUARE ANGSTROMS

COSMO VOLUME = 285.82 CUBIC ANGSTROMS

MOLECULAR DIMENSIONS (Angstroms)
Atom Atom Distance

H 32 H 28 12.77209
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H

O

SCF CALCULATIONS

WALL-CLOCK TIME

COMPUTATION TIME

19 H

18 H 27

23

7.15562

1.71715

219

FINAL GEOMETRY OBTAINED

PM7

PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100

CHARGE=0

Linker3b.mop

Z O o o o o o o o o O

@

@

0.06955231 +1

1.47711038 +1

2.11938207 +1

1.36454734 +1

-0.04560108 +1

-0.67558210 +1

1.99457220 +1

1.24943724 +1

-0.15816218 +1

-0.80046561 +1

3.52678450 +1

4.41467668 +1

5.86590220 +1

-0.12757169 +1

-0.07525790 +1

1.14509295 +1

2.37271680 +1

2.29559660 +1

1.02317452 +1

3.64517054 +1

4.79591769 +1

4.74356853 +1

3.52320053 +1

1.23381390 +1

0.24607931 +1

0.59600924 +1

13.277 SECONDS

1 MINUTE AND 17.922 SECONDS

0.04047244 +1

0.10607758 +1

0.14196740 +1

0.10877846 +1

0.10832508 +1

0.05074646 +1

0.05238186 +1

0.04234529 +1

0.10705127 +1

0.14183645 +1

0.24829751 +1

-0.18775565 +1

-0.00069568 +1
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4.03650198 +1

-2.20791627 +1

-3.09566584 +1

-4.54695443 +1

-2.71735442 +1

-0.41293482 +1

2.03604535 +1

-1.75840155 +1

3.07742951 +1

1.73195781 +1

0.71708833 +1

3.90017999 +1

6.16268135 +1

6.11234193 +1

6.49850789 +1

-2.58147619 +1

-4.84369725 +1

-4.79361179 +1

-5.17943514 +1

-0.79421092 +1

3.43437225 +1

4.42258156 +1

4.07253963 +1

5.46334800 +1

-1.10384055 +1

-1.01380437 +1

0.95561944 +1

3.71275821 +1

5.77222389 +1

5.68211770 +1

2.10285006 +1

1.45960460 +1

0.80981714 +1

-0.25164319 +1

2.56497805 +1

3.20965150 +1

3.85759835 +1

4.92059255 +1

-0.67068807 +1

0.24738492 +1

-0.18788872 +1

-0.00150007 +1

-0.66968564 +1

-0.01568440 +1

0.12198489 +1

-0.01106135 +1

-0.00869962 +1

-0.01289704 +1

0.12318069 +1

0.61515040 +1

-0.61062227 +1

1.04718763 +1

-0.31543207 +1

0.61323703 +1

-0.61244108 +1

1.04610271 +1

-0.31541075 +1

SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

Wed Nov 2 14:00:10 2022
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Empirical Formula: C16 H16 N2 O2 = 36 atoms

PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

linker4b-cis.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED

HEAT OF FORMATION =  -11.81515 KCAL/MOL =  -49.43459 KJ/MOL
GRADIENT NORM = 41131242 —  68.55207 PER ATOM
DIPOLE = 7.73663 DEBYE POINT GROUP: C2v

NO. OF FILLED LEVELS = 51

[ONIZATION POTENTIAL = 8.168319 EV

HOMO LUMO ENERGIES (EV)=  -8.168 -0.184

MOLECULAR WEIGHT =  268.3146

COSMO AREA = 307.25 SQUARE ANGSTROMS

COSMO VOLUME = 320.92 CUBIC ANGSTROMS

MOLECULAR DIMENSIONS (Angstroms)
Atom  Atom  Distance

H 31 O 20 11.83697

H 35 H 23 8.73330

H 36 H 32 1.81939
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SCF CALCULATIONS = 29

WALL-CLOCK TIME =

COMPUTATION TIME =

FINAL GEOMETRY OBTAINED

PM7

PRECISE CHARGE=0 EF LET AUX XYZ BONDS

CHARGE=0

linker4b-cis.mop

O =z O o o o o o o o o o a 0

-0.08782493 +1

1.45120634 +1

-0.72754241 +1

0.00548327 +1

1.39888556 +1

2.09365435 +1

-2.19336421 +1

-2.97552349 +1

-4.38912594 +1

-5.05209394 +1

-2.80863351 +1

-4.25185326 +1

1.90184338 +1

3.37320353 +1

-0.00221386 +1

-0.04543185 +1

1.16526281 +1

2.37512983 +1

2.38325863 +1

1.20481677 +1

1.17715411 +1

2.25839506 +1

2.27311522 +1

0.96760731 +1

-0.10250675 +1

-0.21724142 +1

-1.30224941 +1

-1.68179375 +1

1.992 SECONDS

11.906 SECONDS

-0.00199088 +1

-0.00061144 +1

-0.00052099 +1

0.00110483 +1

0.00118646 +1

0.00059231 +1

-0.00084675 +1

-0.01517663 +1

-0.01607779 +1

-0.00060829 +1

0.01531117 +1

0.01472458 +1

-0.00111840 +1

-0.00093475 +1

GNORM=0.0100
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C
O
N
C
C
O
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H
H

3.49063571 +1

4.19277383 +1

-4.70799129 +1

-6.08210206 +1

-6.16434284 +1

-7.04016969 +1

-0.53453659 +1

-0.54519397 +1

1.92540979 +1

3.20293015 +1

-2.50301798 +1

-4.96898856 +1

-6.12003557 +1

-2.27055955 +1

1.29048562 +1

3.04956595 +1

4.57608825 +1

3.05251149 +1

-4.02072166 +1

-5.69289355 +1

-7.23138913 +1

-5.69627839 +1

-3.15515208 +1

-0.86229736 +1

-1.49783684 +1

-1.97377813 +1

-3.44298133 +1

-1.16715279 +1

-0.94674506 +1

3.36549642 +1

3.31935520 +1

1.18371786 +1

3.31537278 +1

3.12283355 +1

0.91966300 +1

-0.99830978 +1

-2.07965146 +1

-3.63756740 +1

-3.44217234 +1

-3.63301164 +1

-2.23643803 +1

-3.89760359 +1

-3.78643176 +1

-3.87288238 +1

-0.00411895 +1

0.00115811 +1

0.02972698 +1

0.03478511 +1

0.05478098 +1

0.02302878 +1

-0.00408282 +1

0.00257207 +1

0.00165752 +1

0.00093811 +1

-0.02874224 +1

-0.02661374 +1

-0.00087706 +1

0.02800906 +1

-0.00244858 +1

0.88463809 +1

-0.00310159 +1

-0.89687241 +1

0.03986197 +1

-0.82621317 +1

0.05756371 +1

0.94996566 +1
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SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

Wed Nov 2 13:38:44 2022

Empirical Formula: C16 H16 N2 O2 = 36 atoms
PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

linker 4b - trans.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED

HEAT OF FORMATION = -17.73992 KCAL/MOL = -74.22382 KJ/MOL
GRADIENT NORM = 378.32128 = 63.05355 PER ATOM
DIPOLE = 0.48332 DEBYE POINT GROUP: C2h

NO. OF FILLED LEVELS = 51

IONIZATION POTENTIAL = 8.847141 EV

HOMO LUMO ENERGIES (EV) = -8.847 -0.750

MOLECULAR WEIGHT = 268.3146

COSMO AREA = 308.61 SQUARE ANGSTROMS

COSMO VOLUME = 323.71 CUBIC ANGSTROMS
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MOLECULAR DIMENSIONS (Angstroms)

Atom

H 35

H

H 34 H 36

SCF CALCULATIONS

WALL-CLOCK TIME

COMPUTATION TIME

28 H

Atom

H 31

23

Distance

15.13727

7.56465

1.77406

FINAL GEOMETRY OBTAINED

PM7

PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100

CHARGE=0

linker 4b - trans.mop

o o o o o o o o o O

0.01918073 +1

1.41328324 +1

-0.73927216 +1

0.00389915 +1

1.34403018 +1

2.11406837 +1

-2.18382615 +1

-2.85192890 +1

-4.38741416 +1

-5.03387514 +1

-0.10450121 +1

-0.07710307 +1

1.16594467 +1

2.31598205 +1

2.33723280 +1

1.14023911 +1

1.07212543 +1

2.28441832 +1

2.21032514 +1

1.03853259 +1

38

2.609 SECONDS

15.516 SECONDS

-0.00252339 +1

-0.00136825 +1

0.00326880 +1

0.00707728 +1

0.00489305 +1

0.00140992 +1

0.00106132 +1

-0.03564259 +1

-0.03703572 +1

-0.00833372 +1
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@)

@

-2.91154197 +1

-4.32042475 +1

-4.94389702 +1

-6.25547044 +1

-6.48241355 +1

-7.15911775 +1

1.97994163 +1

3.32271775 +1

3.56080597 +1

4.24684686 +1

0.52580902 +1

0.55188918 +1

1.91221592 +1

3.21233969 +1

-2.41074958 +1

-6.12473846 +1

-2.37830754 +1

-4.81909438 +1

-4.23158239 +1

-6.02571077 +1

-7.53162597 +1

-6.01920290 +1

1.31638028 +1

3.10529877 +1

-0.21458018 +1

-0.19415800 +1

3.49767122 +1

3.83772632 +1

5.36515646 +1

3.01690883 +1

-1.33126175 +1

-1.71990802 +1

-3.18291136 +1

-0.81769677 +1

-1.03142202 +1

3.28041620 +1

3.30330503 +1

1.16536990 +1

3.17225781 +1

0.99835273 +1

-1.10084119 +1

-1.12013057 +1

4.29856739 +1

5.82646433 +1

5.59396775 +1

5.77908912 +1

-2.12130016 +1

-3.64762323 +1

0.03424510 +1

0.02685877 +1

-0.07190229 +1

-0.08556629 +1

-0.12702326 +1

-0.06719448 +1

-0.00345561 +1

-0.00518478 +1

-0.00929869 +1

-0.00357200 +1

-0.00809274 +1

0.01207134 +1

0.00581832 +1

0.00086598 +1

-0.06092430 +1

-0.01117961 +1

0.06166012 +1

0.04849599 +1

-0.08990300 +1

0.74939432 +1

-0.13698749 +1

-1.02343020 +1

-0.00442104 +1

0.87684815 +1
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H 4.62114022 +1 -3.42996529 +1 -0.01058530 +1

H 3.10425448 +1 -3.64259916 +1 -0.89740461 +1



Chapter 5 Appendix

SUMMARY OF PM7 CALCULATION

MOPAC v22.0.4 Windows

Wed Nov 2 13:38:56 2022

Empirical Formula: C16 H16 N2 O2 = 36 atoms
PM7 PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100
CHARGE=0

linker 4a.mop

GEOMETRY OPTIMISED USING EIGENVECTOR FOLLOWING (EF).

SCF FIELD WAS ACHIEVED

HEAT OF FORMATION = -12.82549 KCAL/MOL = -53.66187 KJ/MOL
GRADIENT NORM = 416.69769 = 69.44962 PER ATOM
DIPOLE = 0.58005 DEBYE POINT GROUP: C2h

NO. OF FILLED LEVELS = 51

IONIZATION POTENTIAL = 8.353665 EV

HOMO LUMO ENERGIES (EV) = -8.354 -0.704

MOLECULAR WEIGHT = 268.3146

COSMO AREA = 304.14 SQUARE ANGSTROMS

COSMO VOLUME = 321.51 CUBIC ANGSTROMS
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MOLECULAR DIMENSIONS (Angstroms)

Atom

H 36 H 33

H

H 34 H 35

SCF CALCULATIONS

WALL-CLOCK TIME

COMPUTATION TIME

21

Atom

H 27

Distance

14.58560

6.62547

1.80823

41

FINAL GEOMETRY OBTAINED

PRECISE CHARGE=0 EF LET AUX XYZ BONDS GNORM=0.0100

PM7

CHARGE=0

linker 4aSSSS.mop
C -0.10191913 +1
C 1.35510465 +1
C 1.96365474 +1
C 1.21702676 +1
C -0.06879661 +1
C -0.78901597 +1
C -0.88896179 +1
C -2.32288276 +1
C -3.06799255 +1
C -2.37306227 +1

-0.09749257 +1

-0.10677043 +1

1.09697183 +1

2.27648450 +1

2.30993245 +1

1.03432914 +1

3.54027636 +1

3.54289482 +1

4.81295823 +1

6.02459165 +1

2.914 SECONDS

17.438 SECONDS

0.00032762 +1

0.00021533 +1

-0.00014163 +1

-0.00112699 +1

-0.00117632 +1

-0.00001107 +1

-0.00262215 +1

-0.01023254 +1

-0.01184509 +1

-0.00662040 +1
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@)

@

-0.93862822 +1

-0.17982569 +1

-2.96370522 +1

1.94591788 +1

3.28276594 +1

4.41476259 +1

3.47936888 +1

-4.35000086 +1

-5.42512116 +1

-4.51129067 +1

-0.62894009 +1

3.08733355 +1

1.82047552 +1

-1.89150725 +1

-2.84247069 +1

-4.08378870 +1

-0.39983261 +1

0.84187850 +1

-2.31378115 +1

1.28584350 +1

4.40439239 +1

4.41279418 +1

5.39058446 +1

-5.43302806 +1

6.01106304 +1

4.85626485 +1

7.24521931 +1

-1.35549301 +1

-1.79817434 +1

-0.80351722 +1

-2.98153985 +1

7.63219438 +1

6.73342167 +1

8.89915896 +1

-1.07435446 +1

1.18040538 +1

3.24980156 +1

1.02428355 +1

2.64832023 +1

4.70504272 +1

6.94513735 +1

4.85122503 +1

8.08517643 +1

-2.19424799 +1

-0.15608615 +1

-0.15627360 +1

-1.33913257 +1

6.04436847 +1

0.00110127 +1

0.00368368 +1

-0.00788932 +1

0.00087408 +1

-0.00176780 +1

-0.00714879 +1

0.00016677 +1

-0.01780037 +1

-0.02941852 +1

-0.01522746 +1

0.00076647 +1

0.00065426 +1

-0.00189138 +1

0.00062766 +1

-0.01459109 +1

-0.01666194 +1

0.00533938 +1

0.00973641 +1

-0.00086175 +1

0.00362780 +1

-0.90867001 +1

0.89458098 +1

-0.01166258 +1

-0.93437462 +1
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H -5.45108502 +1 6.04281235+1 0.87381405 +1

H -6.41484904 +1 7.22653797 +1 -0.03885105 +1
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5.2.  Appendix of Chapter 3
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Spectrum S$3-12: 'H NMR spectrum of Compound La-1
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Spectrum S$3-13: C NMR spectrum of Compound La-1
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Spectrum S$3-14: "H NMR spectrum of Compound La-2
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Spectrum S$3-15: 3C NMR spectrum of Compound La-1
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Spectrum S$3-17: C NMR spectrum of ligand La
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Spectrum S$S3-18: 'H NMR spectrum of Compound Lg-1
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Spectrum S$3-19: C NMR spectrum of Compound Lg-1
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Spectrum S$3-20: 'H NMR spectrum of Compound Lg-2
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Spectrum $3-23: C NMR spectrum of Compound Lg-3
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Spectrum S$3-24: 'H NMR spectrum of Compound Lg-fmoc
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Spectrum $3-25: 'H NMR spectrum of Compound Ls-OBn
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Spectrum S$3-26: *C NMR spectrum of Compound Lg-OBn
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Spectrum S3-

27: 'H NMR spectrum of Compound Lg
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Spectrum S$3-29: 'H NMR spectrum of Compound Lc-2
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Spectrum S$3-30: *C NMR spectrum of Compound Lc-2
LC - 04
D20
Ia
0.0
\ b
HoN NH,
c d ©
b ¢ b’
84 83 82 841 80 79 78 7.7 ppm
(=] - ©@ w
s R g g ‘
o™ (=] - (=]
d a
T T T T T T T T T T 1
10 9 8 7 6 5 4 3 2 1 ppm
g Bl
QMMM o™ (2}
q[hqﬂ ]
NO O 1] ™«

Spectrum $3-31: 'H NMR spectrum of Compound La-4



Chapter 5 Appendix

LC - 05
CDC13
h
|
0.0
a
i
[+
0, NH HN 0 !
I d k
e&ORROﬁ 1
f
=Y 0 o =
g
a : ' a:b:c:d:e:f:g:h:i:j:k:I
d f, b, j-l ae g 2:1:4:2:2:2:2:3:4:4:4:2
78 76 74 72 70 68 66 64 ppm
S R 02 8
= S e 8 =
o~ o« N N o~
o ,
f | -
i c h
) T T T T T T T T T T
10 9 8 7 6 5 4 3 2 1 ppm
L) j)l | I\
o~ P~ M o ~ @| (v
- ‘0‘5 ce C!‘ o~ '-.{C‘.
(3] L] o (3] - = |™
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Spectrum S$3-33: *C NMR spectrum of Compound Lc-5
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Spectrum S$3-35: C NMR spectrum of Compound Lc-OBn
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Spectrum $3-37: *C NMR spectrum of Ligand L¢
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Spectrum $3-38: 'H-'H COSY NMR spectrum of Ligand Lc
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Spectrum $3-39: 'H NMR spectrum of Compound Lp-1
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Spectrum $3-40: *C NMR spectrum of Compound Lp-1
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Spectrum $3-41: 'H NMR spectrum of Compound Lp-2
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Spectrum S$3-43: 'H NMR spectrum of Compound Lp-OBn



Chapter 5 Appendix

Ligand D
MeOD
a
NH,
b
d
0._NH © HN_O
e i
£ 2y -OHHOS A
X =
%o o
gc b ) f h )
7.8 7.6 7.4 7.2 7.0 6.8 6.6 6.4 ppm
o ™ o N
o™ (=23 <D
S & & o
© - - |-
I e _ (L ot L b
d
I T T T T T T T T T T 1
10 9 8 7 6 5 4 3 2 1 ppm
Iy |
58 e 5
[=11-] | (=]
] B k| o
Spectrum S$S3-44: 'H NMR spectrum of Ligand Lp
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Spectrum S3-45: ESI-HRMS spectrum of complexes EuLa
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Spectrum $3-46: ESI-HRMS spectrum of complexes EuLg-fmoc
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Spectrum S3-47: ESI-HRMS spectrum of complexes EuLc
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Spectrum S3-48: ESI-HRMS spectrum of complexes EuLp
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Spectrum $3-50: Absorbance spectrum of Eula
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Spectrum S$3-52: quantum yield linearity fit of EuLa
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Spectrum $3-53: Decay curve of luminescence lifetime of EuLa in 5% DMSO/H,O

(mono-exponential fit)
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Spectrum S3-54: Decay curve of luminescence lifetime of EuLa in 5% DMSO/H,O

(Bi-exponential fit)
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Spectrum $3-55: Decay curve of luminescence lifetime of EuLa in 5% DMSO/D,O

(mono-exponential fit)
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Spectrum $3-56: Normalized Emission spectrum of GdLa (RT & 77K)
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Spectrum S$3-57: Combined Spectrum of complexes EulLg-fmoc
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Spectrum $3-58: Absorbance spectrum of EuLg-fmoc
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Spectrum $3-60: quantum yield linearity fit of EuLg-fmoc
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Spectrum $3-61: Decay curve of luminescence lifetime of EuLg-fmoc in 5% DMSO/H,O

(mono-exponential fit)
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Spectrum S3-62: Decay curve of luminescence lifetime of EuLg-fmoc in 5% DMSO/H,O

(Bi-exponential fit)
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Spectrum $3-63: Decay curve of luminescence lifetime of EuLg-fmoc in 5% DMSO/D,0O
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Spectrum $3-64: Normalized Emission spectrum of GdLg-fmoc (RT & 77K)
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Spectrum $3-66: Absorbance spectrum of Eulc
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Spectrum $3-68: quantum yield linearity fit of EuLc
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Spectrum $3-69: Decay curve of luminescence lifetime of EuLa in 5% DMSO/H,O

(mono-exponential fit)
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Spectrum S3-70: Decay curve of luminescence lifetime of EulLc in 5% DMSO/H,O

(Bi-exponential fit)
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Spectrum S$3-71: Decay curve of luminescence lifetime of EuLc in 5% DMSO/D,O
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Spectrum S3-72: Combined Spectrum of complexes EulLp
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Spectrum S$3-73: Absorbance spectrum of EulLp
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Spectrum $3-74: Absorptivity plot of EuLp
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Spectrum $3-75: quantum yield linearity fit of EuLp
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Spectrum $3-76: Decay curve of luminescence lifetime of EuLp in 5% DMSO/H,O

(mono-exponential fit)
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Spectrum $3-77: Decay curve of luminescence lifetime of EuLp in 5% DMSO/H,O

(Bi-exponential fit)
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Spectrum S3-78: Decay curve of luminescence lifetime of EuLp in 5% DMSO/D,O

(mono-exponential fit)
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Spectrum $3-79: Decay curve of luminescence lifetime of EuLp in 5% DMSO/D,O

(Bi-exponential fit)
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Spectrum S$3-80: Normalized Emission spectrum of GdLp (RT & 77K)
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5.3.  Appendix of Chapter 4
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Spectrum $4-6: '"H NMR spectrum of compound M1-3
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Spectrum S4-7: *C NMR spectrum of compound M1-3
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Spectrum $4-8: 'H NMR spectrum of compound M1-4

ml-5-iodide
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Spectrum $4-9: '"H NMR spectrum of compound M1-5-iodide
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Spectrum S4-10: 'H NMR spectrum of compound M1-6-iodide
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Spectrum S4-11: 'H NMR spectrum of compound M1-6-iodide
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Spectrum S4-12: 'H NMR spectrum of compound M1-9
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Spectrum S4-13: 'H NMR spectrum of compound M1-10



Chapter 5 Appendix

13C
T8 5 8ERE RY : eszz o o
2k §zhbs s
RV Y [ AN

84 5

13 le ]

ol
12 10 N7Y2 !
“1

T T T T T T T T T T T T T
210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 O ppm

Spectrum S4-14: *C NMR spectrum of compound M1-10
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Spectrum S4-15: 'H NMR spectrum of compound M1-11
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