

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

VERIFIABLE DATA SEARCH ATOP BLOCKCHAIN

HAOTIAN WU

PhD

The Hong Kong Polytechnic University

2023

The Hong Kong Polytechnic University
Department of Computing

Verifiable Data Search atop Blockchain

Haotian Wu

A thesis submitted in partial fulfillment of the
requirements for the degree of

Doctor of Philosophy
July, 2022

ii

CERTIFICATE OF ORIGINALITY

I hereby declare that this thesis is my own work and that, to the best of my knowledge

and belief, it reproduces no material previously published or written, nor material that

has been accepted for the award of any other degree or diploma, except where due

acknowledgement has been made in the text.

(Signed)

Haotian Wu (Name of student)

i

ii

Abstract

As an emerging decentralized technology, blockchain has become a compelling

paradigm for trusted data storage owing to the underlying techniques of hashing

chain and consensus schemes. In addition to the on-chain data itself, blockchain can

also be utilized to store key data outsourced from data owners via smart contract. It

can be seen as an important complement and enhancement to existing cloud storage.

However, untrusted clouds necessitate the verifiable data search atop the blockchain.

Apart from blockchain data, raw data or encrypted data can also be outsourced

to the cloud. Therefore, in this thesis, we investigate three types of data, i.e., native

blockchain data, outsourced raw data and outsourced encrypted data, in the scenarios

containing both clouds and blockchain. For the native blockchain data, we employ

clouds to provide efficient query services on the underlying data and design a Verifiable

Query Layer (VQL) to make the query verifiable. In terms of outsourced data, we

let clouds store the data and host query services over it. The blockchain will store

some metadata via the smart contract and facilitate the query verification. For the

outsourced raw data, we focus a complicated data structure, i.e., graph data, and

enable privacy-preserving verifiable query by designing a novel authenticated data

structure (ADS) named PAGB. To handle outsourced encrypted data, we propose a

novel verifiable searchable symmetric encryption (SSE) scheme called Slicer to support

iii

range search on numerical data. The effectiveness and practicality of our designs are

demonstrated by theoretical analysis and extensive evaluations respectively.

iv

Publications

Journal Articles

1. HaotianWu, Zecheng Li, Rui Song, and Bin Xiao. Enabling Privacy-Preserving

and Efficient Authenticated Graph Queries on Blockchain-Assisted Clouds, ac-

cepted in IEEE Transactions on Knowledge and Data Engineering (TKDE),

2023.

2. Haotian Wu, Zhe Peng, Songtao Guo, Yuanyuan Yang, and Bin Xiao. VQL:

Efficient and Verifiable Cloud Query Services for Blockchain Systems, published

in IEEE Transactions on Parallel and Distributed Systems, Jun. 2022.

3. Zecheng Li, Haotian Wu, Lap Hou Lao, Songtao Guo, Yuanyuan Yang, and

Bin Xiao. Pistis: Issuing Trusted and Authorized Certificates With Distributed

Ledger and TEE, published in IEEE Transactions on Parallel and Distributed

Systems, Jul. 2022.

v

Conference Papers

1. Haotian Wu, Rui Song, Kai Lei, and Bin Xiao. Slicer: Verifiable, Secure

and Fair Search over Encrypted Numerical Data Using Blockchain, in Proc. of

IEEE International Conference on Distributed Computing Systems (ICDCS),

Bologna, Italy, 10-13 Jul. 2022.

2. Haotian Wu, Jun Tao, and Bin Xiao. Towards a Stable and Truthful Incentive

Mechanism for Task Delegation in Hierarchical Crowdsensing, in Proc. of the

IEEE International Conference on Communications (ICC), Dublin, Ireland, 7-

11 Jun. 2020.

3. Zhe Peng, Haotian Wu, Bin Xiao, and Songtao Guo. VQL: Providing Query

Efficiency and Data Authenticity in Blockchain Systems, in Proc. of the IEEE

International Conference on Data Engineering Workshops (ICDEW), Macao,

China, 8-12 Apr. 2019.

vi

Acknowledgements

First and foremost, I would like to thank my supervisor, Prof. Bin Xiao, for

inspiring me to conduct innovative research and providing me with tremendous ideas.

His patience and valuable suggestions have given me abundant confidence in tackling

difficult research problems, and his appreciation and acknowledgement of my work

motivate me to persevere in my Ph.D. study.

I would also like to thank our previous and current group members (Dr. Zhe

Peng, Dr. Shang Gao, Zecheng Li, Yu Zhou, Shengyuan Chen, LapHou Lao, Fan Liu,

Xuelong Dai, Kaisheng Liang, Zhonghao Liu, Rui Song, Xinwei Du, Xiaohai Dai, and

Hao Xu) for helping, directly or indirectly, my Ph.D. study. I am also grateful to my

friends in Hong Kong for their company and encouragement. I especially would like

to thank Shuzhen Zhang, Jie Xiong, Xindong Zhang, Ningning Hou, Kaiyan Cui, and

Jie Zhang for their emotional support and selfless help.

I would like to dedicate this thesis to all people who have guided, instructed, or

helped me along the way. My Ph.D. study cannot be accomplished without all of

your kind support. The most importantly, I would like to thank my parents for their

unconditional love and support. The thesis is dedicated to them all.

Hong Kong S.A.R., China Haotian Wu

vii

viii

Table of Contents

Abstract iii

Publications v

Acknowledgements vii

Table of Contents ix

List of Tables xiii

List of Figures xv

1 Introduction 1
1.1 Data Storage on the Blockchain . 1
1.2 Problem Statement . 2
1.3 Thesis Contributions . 4

1.3.1 Efficient and Verifiable Cloud Query Services on Blockchain Data 4
1.3.2 Privacy-Preserving and Efficient Authenticated Queries on Out-

sourced Graph Data . 5
1.3.3 Verifiable, Secure and Fair Search on Encrypted Numerical Data 6

1.4 Thesis Outline . 6

2 Literature Review 9
2.1 Query Services on Blockchain Data 9

2.1.1 Blockchain . 9
2.1.2 Efficient Query . 10
2.1.3 Verifiable Query . 11

2.2 Authenticated Graph Query on Blockchain 12
2.2.1 Authentication Schemes on Graphs. 12
2.2.2 Authenticated Query on Blockchain. 13

2.3 Verifiable Search on Encrypted Numerical Data 14

ix

2.3.1 Reliable Searchable Encryption 14
2.3.2 Numerical Comparison over Encrypted Data 16

3 Efficient and Verifiable Cloud Query Services on Blockchain Data 17
3.1 Overview . 18
3.2 Preliminaries . 22

3.2.1 Blockchain . 22
3.2.2 Merkle Patricia Tree . 23

3.3 VQL Design . 24
3.3.1 System Architecture . 24
3.3.2 Database Verification Scheme 27
3.3.3 Simplified Query Result Verification Scheme 32
3.3.4 Data Authenticity Analysis 39

3.4 Implementations and Evaluation . 41
3.4.1 Prototype Implementation . 42
3.4.2 Performance Evaluation . 42

3.5 Chapter Summary . 53

4 Privacy-Preserving and Efficient Authenticated Queries on Outsourced
Graph Data 55
4.1 Overview . 56
4.2 Preliminaries . 60

4.2.1 Smart Contract . 60
4.2.2 Cryptographic Primitives . 61

4.3 Problem Formulation . 64
4.3.1 System Model . 64
4.3.2 Property Graph . 65
4.3.3 Threat Model . 69

4.4 PAGB Design for Graph Data . 70
4.4.1 PAGB Construction . 70
4.4.2 PAGB Maintenance . 74
4.4.3 Authenticated Query Processing 78

4.5 Optimization . 85
4.5.1 Batch Verification . 85
4.5.2 Product Calculation . 87

4.6 Design Analysis . 89
4.6.1 Security Analysis . 89
4.6.2 Privacy Analysis . 90
4.6.3 Complexity Analysis . 91

4.7 Implementations and Evaluation . 92

x

4.7.1 Accumulator Performance . 93
4.7.2 Batch Verification . 98

4.8 Chapter Summary . 99

5 Verifiable, Secure and Fair Search on Encrypted Numerical Data 101
5.1 Overview . 102
5.2 Preliminaries . 104
5.3 Problem Formulation . 106

5.3.1 Framework Architecture . 106
5.3.2 Threat Model . 107
5.3.3 Design Goals . 108

5.4 Slicer Design . 108
5.4.1 Technical Overview . 108
5.4.2 SORE Scheme . 109
5.4.3 Building Encrypted Indexes and ADS 111
5.4.4 Data Insertion . 112
5.4.5 Verifiable Search Protocol . 114
5.4.6 Extensions . 115

5.5 Design Analysis . 116
5.5.1 Correctness and Security on SORE scheme 117
5.5.2 Security on Encrypted Search 118
5.5.3 Correctness of Verifiable Search 121

5.6 Implementations and Evaluation . 122
5.6.1 Building Performance . 123
5.6.2 Search Performance . 124
5.6.3 Insertion Time . 126
5.6.4 Gas Consumption . 127

5.7 Chapter Summary . 128

6 Conclusion and Future Work 129
6.1 Conclusion . 129
6.2 Future Work . 131

Bibliography 133

xi

xii

List of Tables

3.1 Evaluation of range query. 47

4.1 Notations. 60

4.2 Comparison with Existing Designs. 94

5.1 Comparison with State-of-the-Art Verifiable Searchable Encryption Schemes122

5.2 Gas cost of smart contract . 127

xiii

xiv

List of Figures

1.1 Data storage in the smart contract on Ethereum. 2

1.2 Thesis structure. 3

3.1 Middleware-based cloud query service model for blockchain applications. 25

3.2 Structure of the middleware layer. 26

3.3 Database verification scheme. 29

3.4 An illustrative example of database fingerprints MPT. 34

3.5 Data verification scheme. 35

3.6 Query performance of ETH client and VQL. 43

3.7 Performance of miner database verification. 49

3.8 Performance of simplified query result verification. 52

4.1 Authenticated Query on Blockchain-assisted Clouds. 64

4.2 An Illustrative Example of Knowledge Graph. 68

4.3 Binary Tree Multiplication. 88

4.4 Time Cost of Accumulator Setup. 94

4.5 Memory Cost of Binary Tree Multiplication. 95

4.6 Time Cost of Single Witness Generation. 96

4.7 Gas Consumption. 97

xv

4.8 Graph Data Completeness Construction. 97

4.9 Witnesses of A Connectivity Query on ConceptNet5. 98

4.10 Batch Witness Generation. 99

4.11 Batch Witness Verification. 100

5.1 Verifiable encrypted search using blockchain. 106

5.2 An illustrative example of SORE. 110

5.3 Time cost of Build. 123

5.4 Storage cost of Build. 124

5.5 Time cost of Search. 125

5.6 Overhead generated by Search. 126

5.7 Time cost of Insert. 127

xvi

Chapter 1

Introduction

1.1 Data Storage on the Blockchain

Blockchain is a distributed ledger that is able to reliably record all transactions

in a decentralized network. As depicted in Figure 1.1, a typical blockchain usually

comprises a series of blocks that are chained in order by referring to the preceding

block. A block mainly consists of a block header storing the attributes of the block like

the timestamp and the hash value of its predecessor, and a block body, which contains

the corresponding list of transaction data in the block. In the blockchain network,

each full node keeps a copy of the ledger, the consistency of which is guaranteed

by adopting various consensus algorithms. Smart contract is an advanced function

offered by Ethereum through Ethereum Virtual Machine (EVM). It is a special type of

address with trusted program that digitally performs a contract without third parties.

The execution result of a smart contract is ensured to be correct since the program

code is deterministic and can be executed by all miners. Like the account address,

the contract address also contributes to the block header via the state root, which is

the root of Merkle Patricia Tree (MPT) for all addresses. However, the difference is

that the contract address contains a code hash for its program code, and a storage

1

2

header

transactions

header

transactions

header

transactions

transaction root state root receipt root

a smart contract address

nonce balance

code hash storage root

contract
code

data storage

BlocknBlockn-1 Blockn+1

Fig. 1.1: Data storage in the smart contract on Ethereum.

root of the MPT on the persistent data storage. Besides the transaction data in the

block body, the blockchain can also store the data outsourced by users into the data

storage of a smart contract. Thus, the data storage on the blockchain opens the door

for verifiable search over these data, including the native blockchain data and the

outsourced data.

1.2 Problem Statement

Although the blockchain technology can offer a new approach to data storage,

there still exists concern about the integrity of search results since the servers hosting

search services may be untrusted. Therefore, this thesis focuses on the verifiable

search problem over these data atop the blockchain. According to the storage field

and storage form, we investigate the problem over three types of data, i.e., native

3

Blockchain

Smart Contract

Chapter 3.
Verifiable search on

blockchain data

Chapter 4. Verifiable
search on outsourced

raw graph data

Chapter 5. Verifiable
search on outsourced

encrypted numerical data

Fig. 1.2: Thesis structure.

blockchain data, outsourced raw data and encrypted data on the smart contract. We

present the relationships between these three problems in Figure 1.2.

• Native blockchain data. Searching over the blockchain data is usually ineffi-

cient because its underlying database is not suitable for random reading. Some

designs choose to employ clouds to store the blockchain data and host query

services, but the consistency between the search results and the real blockchain

data cannot be ensured. Hence, the research problem is how to provide efficient

and verifiable query services over the native blockchain data.

• Outsourced raw data. For the outsourced raw data, we choose a popular but

complicated data type, i.e., property graph, to demonstrate the search problem.

It is challenging to guarantee both the soundness and completeness of query

4

results when realizing the verifiable search over graph data. In addition, we de-

sire to guarantee that the search process will not leak any irrelevant information

about the data. Therefore, the second problem becomes how to provide efficient

and privacy-preserving authenticated graph query services using blockchain.

• Outsourced encrypted data. For the outsourced encrypted data, we step

over from the primary keyword-file search to the range search over the numerical

data. Moreover, since the data is encrypted, we require the public verification of

search results so that the data user cannot maliciously deny the correct results

returned from clouds. Thus, the third topic is how to enable public verification

for encrypted numerical search by leveraging the blockchain.

1.3 Thesis Contributions

In this thesis, we propose novel methods to realize the verifiable search based on

the trusted environment provided by the blockchain. We focus on the three afore-

mentioned problems as detailed as follows.

1.3.1 Efficient and Verifiable Cloud Query Services on Blockchain
Data

Despite increasingly emerging applications, a primary concern for blockchain to

be fully practical is the inefficiency of data query. Direct queries on the blockchain

take too much time by searching every block, while indirect queries on a blockchain

database greatly degrade the authenticity of query results. To conquer this authen-

ticity problem, in Chapter 3, we propose a Verifiable Query Layer (VQL) that can

be deployed in the cloud to provide both efficient and verifiable data query services

5

for blockchain systems. The middleware layer extracts data from the underlying

blockchain system and efficiently reorganizes them in databases. The database finger-

print will be first verified by miners and then written into the blockchain. Moreover,

public users can verify the entire databases or several databases that interest them in

the middleware layer. We implement VQL together with the verification schemes and

conduct extensive experiments based on a practical blockchain system. The evalua-

tion results demonstrate that VQL can efficiently support various data query services

and guarantee the authenticity of query results for blockchain systems.

1.3.2 Privacy-Preserving and Efficient Authenticated Queries
on Outsourced Graph Data

Prior research has introduced a new scenario of blockchain-assisted clouds where

the data owner outsources original data to cloud servers and stores some metadata on

the blockchain for verification. Despite research on some primary query types like key-

value query and range query in this hybrid-storage scenario, other more complicated

data types are not supported yet. In Chapter 4, we conduct pioneering research

on authenticated queries for graph data, which is a popular data type due to many

emerging applications, on the blockchain-assisted cloud. The primary challenge is how

to design an authenticated data structure (ADS) that supports authenticated queries

and can be easily maintained by the blockchain. To this end, we propose a novel

ADS, named PAGB, based on the RSA accumulator and completeness set. It can

also prevent the original data from being revealed to the public through blockchain

or irrelevant queries. We further optimize our design to be more efficient in terms

of communication and computation. The effectiveness and efficiency of PAGB are

verified through theoretical analysis and extensive experiments.

6

1.3.3 Verifiable, Secure and Fair Search on Encrypted Nu-
merical Data

Verifiable Searchable Symmetric Encryption (SSE) enables reliable and privacy-

preserving search over encrypted data on untrusted clouds. However, most existing

SSE designs only focus on the keyword-file search type. A more difficult and pervasive

search, range search over encrypted numerical values, remains unsolved. Moreover,

the fairness of search in the mutual distrusted scenario without public verification,

where data users may maliciously deny the results after the local result verification,

is not well addressed yet. In Chapter 5, we take the first step to study the public

verification problem atop the blockchain for encrypted numerical search. We design

a novel verifiable SSE scheme named Slicer based on a Succinct Order-Revealing

Encryption (SORE) scheme to achieve range search on numerical data. We illustrate

the security and practicality of our design through rigorous analysis and extensive

evaluations respectively.

1.4 Thesis Outline

The remainder of the thesis is organized as follows. We first introduce the related

work in Chapter 2. In Chapter 3, we propose a cloud query service called VQL to

provide efficient and reliable query over the blockchain data. In Chapter 4, we design

a novel ADS named PAGB to realize authenticated query over the outsourced graph

data atop the blockchain. In Chapter 5, we present a novel verifiable SSE scheme

called Slicer to achieve verifiable, secure and fair search over the encrypted numerical

data using blockchain. Finally, Chapter 6 concludes the thesis and points out future

work.

7

This thesis involves the following primary research outputs:

• Zhe Peng, Haotian Wu, Bin Xiao, and Songtao Guo. VQL: Providing Query

Efficiency and Data Authenticity in Blockchain Systems, in Proc. of the IEEE

International Conference on Data Engineering Workshops (ICDEW), Macao,

China, 8-12 Apr. 2019.

• Haotian Wu, Zhe Peng, Songtao Guo, Yuanyuan Yang, and Bin Xiao. VQL:

Efficient and Verifiable Cloud Query Services for Blockchain Systems, in IEEE

Transactions on Parallel and Distributed Systems, Jun. 2022.

• HaotianWu, Zecheng Li, Rui Song, and Bin Xiao. Enabling Privacy-Preserving

and Efficient Authenticated Graph Queries on Blockchain-Assisted Clouds, ac-

cepted by IEEE Transactions on Knowledge and Data Engineering (TKDE),

2023.

• Haotian Wu, Rui Song, Kai Lei, and Bin Xiao. Slicer: Verifiable, Secure

and Fair Search over Encrypted Numerical Data Using Blockchain, in Proc. of

IEEE International Conference on Distributed Computing Systems (ICDCS),

Bologna, Italy, 10-13 Jul. 2022.

8

Chapter 2

Literature Review

Many efforts have been devoted to the combination of verifiable search and blockchain

technology. According to the data type that we focus on, we present a comprehensive

literature review in terms of three categories, i.e., query services on blockchain data,

authenticated graph query on blockchain and verifiable search on encrypted numerical

data.

2.1 Query Services on Blockchain Data

2.1.1 Blockchain

As the first successful application of blockchain, Bitcoin [64] has attracted much

attention to the blockchain technique. It provides a new way to store transactions

on the distributed ledger without the risk of tamper. Ethereum [81], as the successor

of Bitcoin, expands the functions by introducing the design of smart contract, which

enables more flexible operations on the cryptocurrency. Apart from cryptocurrency,

the blockchain methodology contributes to other technologies as well. Provenance [6]

establishes the auditable records behind all physical goods for suppliers. ChainSQL

9

10

[63] combines blockchain with distributed databases to facilitate a decentralized, au-

ditable and efficient application platform for database users. Other efforts have been

done to improve the anonymity and security of the blockchain [36, 74].

2.1.2 Efficient Query

Etherscan [3] is a block explorer and analytics platform where users can explore

and analyze data from Ethereum blockchain. With the help of its virtual machine,

Etherscan can also provide extra information like internal transactions and state

changes in the smart contract. Project Toshi [2] is a fully implemented Bitcoin pro-

tocol and supported by PostgreSQL. It offers a RESTful API for large-scale web ap-

plications and blockchain data analysis. Blockchain.com [1] provides developers with

RESTful service by encapsulating the blocks, transactions and address APIs in the

Bitcoin. Aiming to support efficient and accurate queries for certificates, ECBC [89]

utilizes a tree structure to facilitate the retrieval of historical transactions. EtherQL

[54] employs the conventional database to provide efficient queries for blockchain data

analysis. BlockSci [43] can support versatile analysis tasks for different blockchain

systems by virtue of an in-memory and analytical database.

The explorers above contain rich information and enable users to explore blocks,

transactions and accounts by providing basic interfaces, but the functions of these

public APIs are limited. More complex queries (e.g., range queries) for blockchain

data are not supported. Moreover, these systems do not provide verification functions

to ensure the validity of the query result. In other words, those limitations are great

obstacles to providing versatile queries and verifiable query services for blockchain

systems.

11

2.1.3 Verifiable Query

Verifiable query technique that guarantees result integrity is also a hot research

topic and has been extensively studied [26, 87]. These studies mainly focus on out-

sourced databases and can be categorized into two typical methods: circuit-based

verifiable computation (VC) techniques and authenticated data structure (ADS). The

VC approach like SNARKs [68] can support general queries over databases since it is

able to verify arbitrary computation tasks from untrusted workers. But this method

incurs a very high and sometimes unacceptable overhead. In addition, it requires a

preprocessing step to hardcode the data and query information into the proving key

and the verification key, which also degrades the efficiency. To remedy this issue, Ben-

Sasson et al. [16] propose a variant of SNARKs called zk-SNARKs, where the size

of the output circuit depends on the upper-bound size of the query program. More

recently, vSQL [94] provides publicly verifiable SQL queries for dynamic databases by

utilizing the interactive-proof protocol. However, it is only restricted to the relational

database scenario.

The ADS method employs data structures tailored to specific queries, thus it

is generally more efficient in comparison. One of the ADS methods is digital sig-

nature schemes, which can be used to authenticate the content of digital messages

using asymmetric cryptography. Pang et al. [67] present a verifiable B-Tree by adding

signed digests to the B+-tree to authenticate query results based on digital signature.

Merkle Hash Tree (MHT), which is a hierarchical tree, belongs to the ADS method as

well. GSSE [97] utilizes Merkle Patricia Tree, which is a variant of MHT combining

with the prefix tree, to enable verifiable and secure data search in cloud services. Xu

et al. [88] design a framework named vChain that adopts the accumulator-based ADS

12

scheme to achieve dynamic aggregation over various query attributes. To tackle the

problem of inefficient search performance and impractical public key management in

vChain, Wang et al. [80] further propose vChain+ to optimize the system. However,

this approach entails great modification to the underlying blockchain structure and

numerous preprocessing operations. Ji et al. [42] propose a decentralized certification

framework to provide versatile verifiable queries on blockchain data. It achieves con-

stant storage and validation costs via the underlying trusted execution environment.

2.2 Authenticated Graph Query on Blockchain

2.2.1 Authentication Schemes on Graphs.

Research of authentication on graph data usually focuses on the design of ADS.

Martel et al. [60] propose to authenticate trees using Merkle Hash Tree (MHT) and

extend it to the directed acyclic graph. In [38], Goodrich et al. employ the hashing

scheme and digital signature scheme to authenticate graph data. However, the hash

scheme may leak privacy since the verification of hashing involves the hash values

of other unshared graph data. To address the privacy leakage issue, a collision-

resistant hashing scheme combining with tree representation is introduced in [12].

One main disadvantage of the hashing scheme is that some update on the graph data

usually incurs the prohibitive cost of computation. Authors in [38] also introduce

path hash accumulator to address the path property query and path search problem.

Zhu et al. [96] integrate the cryptographic accumulator with digital signature scheme

to provide privacy-preserving authentication for graphs. Kundu and Bertino [48]

propose a structural signature using tree traversal and aggregate signature. Based

on redactable signatures, de Meer et al. [30] utilize the accumulator to construct a

13

provably secure scheme that enables the redaction of any nodes. Camacho and Hevia

[22] give an efficient solution for directed trees based on hashing with common-prefix

proofs.

2.2.2 Authenticated Query on Blockchain.

Authenticated query on blockchain, which enables the integrity verification of

blockchain data or data outsourced to the blockchain, is becoming a hot topic in re-

cent years. Some research works like [54, 61] exploit traditional databases to facilitate

the efficient query on the blockchain data. However, these designs cannot guarantee

the data integrity since the query results may be inconsistent with the blockchain

data. Peng et al. [82] propose to write the database fingerprints into the blockchain

so that the databases can be trusted. To realize the verifiable query over blockchain

databases, Xu et al. [88] propose a novel vChain framework that employs the accu-

mulator as its authenticated data structure. There are also some works that utilize

the blockchain to provide verifiable query services over the outsourced data. Hu et

al. [41] propose a novel searchable encryption scheme based on the smart contract

to ensure the correctness of query results. However, the design is only limited to the

file-keyword search and it is costly to store massive raw data in blockchain. Zhang

et al. [93] put forth a gas-efficient ADS named GEM2-tree in the scenario of hybrid-

storage blockchain, where the raw data is outsourced to off-chain storage while their

digests are recorded in the blockchain. It supports the authenticated range query by

designing novel suppressed Merkle B-trees that can be stored on the smart contract.

Based on GEM2-tree, Zhang et al. [92] further extend to keyword search by build-

ing a Merkle B-tree for each keyword. Nevertheless, the proposed tree structure only

supports range queries for key-value pairs and their keys can be revealed to the public

14

through the smart contract.

2.3 Verifiable Search on Encrypted Numerical Data

2.3.1 Reliable Searchable Encryption

Verifiable searchable encryption enables users to verify search results returned by

untrusted clouds. They can be normally categorized into two types according to the

underlying encryption scheme, i.e., verifiable searchable symmetric encryption and

verifiable public key encryption with keyword search. Chai and Gong [24] propose

the first verifiable symmetric searchable encryption based on a trie-like index named

PPTrie. But it only provides keyword-file search on static data. In [76], Stefanov et

al. achieve the verifiability of dynamic SSE by comparing the message authenticated

code and further support forward security. Bost et al. [20] improve Stefanov’s design

and present generic solutions for verifiable SSE. ServeDB [83] designs a tree-based

index with cube encoding to support verifiable range queries over dynamic encrypted

data. Ge et al. [34] propose a verifiable SSE that supports efficient data dynamic

update by using a novel accumulative authentication tag. GSSE [97] enables generic

and verifiable encrypted search over dynamic data by leveraging Merkle Patricia Tree

(MPT) and multiset hashing. It also designs a timestamp-chain structure to prevent

replay attacks. Liu et al. [59] propose a verifiable searchable symmetric encryption

scheme that enables data update for the multi-user setting. Nevertheless, all these

SSE schemes cannot provide public verifiability, which enables the verification process

to be delegated to a third-party auditor (TPA) without privacy leakage. Soleimanian

and Khazaei [75] propose two publicly verifiable SSE constructions upon basic crypto-

graphic primitives. Based on the public key encryption, Zheng et al. [95] propose the

15

first verifiable attribute-based keyword search (VABKS) scheme over static data. Sun

et al. [77] present an efficient verifiable conjunctive keyword search scheme (VCKS)

for dynamic data. However, these designs remain inefficient and require an extra

trusted party due to the underlying asymmetric encryption scheme.

There are also some novel research directions that utilize emerging techniques

to enhance the reliability of searchable encryption. Some attempts have been made

to achieve reliable search over encrypted data by delegating the query processing

to trusted execution environment (TEE) [71, 72]. However, these solutions require

trusted hardware on clouds and the memory size of an enclave is quite limited. Be-

sides, the search results in their designs cannot be publicly verified since all search pro-

cesses are sealed in the TEE. Recently, several works have introduced the blockchain

technology to devise verifiable searchable encryption schemes [21, 40, 41, 52]. In [41],

Hu et al. directly store the whole encrypted indexes on the blockchain and execute the

search through the smart contract. Nevertheless, this solution may incur a consider-

able cost of gas since the storage on the smart contract is expensive. To alleviate the

burden of the smart contract, Cai et al. [21] offload the storage of encrypted files and

indexes to the decentralized storage systems. But their design only supports keyword

search over append-only encrypted data due to the immutability of blockchain. In

addition, the verifiability is achieved by letting the selected arbiter shard re-execute

the search process, which is quite centralized in a sense. In [40], Guo et al. design a

verifiable and forward-secure SSE scheme by virtue of the blockchain. Li et al. [52]

design a similar system with some improvements in terms of file deletion and on-chain

storage. The blockchain-based designs can solve the problem of public verifiability in

the mutual distrusted scenario. However, their schemes are limited to keyword-file

16

search and the costs of on-chain storage are still too high to scale.

2.3.2 Numerical Comparison over Encrypted Data

Order Preserving Encryption (OPE) [17] enables the numerical comparison by

directly encrypting the plaintexts, making the ciphertexts preserve the numerical

order of plaintext space. CryptDB [70] utilizes OPE to support functionally rich

queries over encrypted databases. But OPE fails to guarantee the semantic security

of the underlying encryption. It is also vulnerable to inference attacks since the

order and frequency of plaintexts are revealed. To solve this problem, Chenette et

al. [27] propose the first efficient order-revealing encryption (ORE) scheme, which

allows the public comparison between ciphertexts. But it reveals the location of the

first bit where two ciphertexts differ. Lewi and Wu [51] introduce two new ORE

constructions for small domains and large domains respectively. Their design only

leaks the location of the first different block instead of a bit. In [31], Demertzis et

al. present a range SSE scheme by employing a novel tree-like directed acyclic graph.

Guo et al. [90] design an enhanced ORE scheme to further reduce the leakage for

range queries in key-value stores. All schemes above do not consider the verifiability

of the numerical comparison when clouds become dishonest.

Chapter 3

Efficient and Verifiable Cloud
Query Services on Blockchain Data

Despite increasingly emerging applications, a primary concern for blockchain to be

fully practical is the inefficiency of data query. Direct queries on the blockchain take

much time by searching every block, while indirect queries on a blockchain database

greatly degrade the authenticity of query results. To conquer the authenticity prob-

lem, we propose a Verifiable Query Layer (VQL) that can be deployed in the cloud

to provide both efficient and verifiable data query services for blockchain systems.

The middleware layer extracts data from the underlying blockchain system and effi-

ciently reorganizes them in databases. To prevent falsified data from being stored in

the middleware, a cryptographic fingerprint is calculated based on each constructed

database. The database fingerprint will be first verified by miners and then written

into the blockchain. Moreover, public users can verify the entire databases or several

databases that interest them in the middleware layer. We implement VQL together

with the verification schemes and conduct extensive experiments based on a practi-

cal blockchain system. The evaluation results demonstrate that VQL can efficiently

support various data query services and guarantee the authenticity of query results

17

18

for blockchain systems.

3.1 Overview

Cryptocurrencies embodied by Bitcoin and its descendants, acting as a modern

form of digital currency, have sparked a surge of innovation in decentralized com-

puting. Blockchain, as the fundamental technology of cryptocurrencies, offers many

characteristic advantages including decentralized storage and immutability. Besides

payment, the blockchain technique can be used in a far wider area such as smart

contract [46], supply chain management [79], healthcare [85], distributed storage [8]

and IoT [32]. Current blockchain-based systems have tremendous potential in re-

ducing operating costs, increasing resistance to manipulation, preventing fraud and

facilitating execution of contracts.

Though the blockchain technique can bypass data storage fraud using distributed

ledger with consensus mechanisms, most current schemes only provide limited query

services. In pursuit of excellent writing performance, many blockchain systems adopt

the key-value database as the underlying database, e.g., LevelDB for Bitcoin and Go

client of Ethereum. However, this kind of databases are usually based on LSM-tree

[66], which provides barely satisfactory reading performance due to the complicated

processing operations, especially for random reading [84]. In addition to the query

inefficiency, the query types that native clients support are also limited. Thus, how

to provide versatile queries efficiently for all kinds of applications has not been well

solved yet.

One approach to tackling the problem of query limitation in the blockchain sys-

tem is to maintain several extra structures on the peer node, e.g., Project Toshi [2]

19

and ECBC [89]. Project Toshi saves much more information and indexes besides the

native client for richer queries. ECBC builds a tree structure to support efficient

query on transactions. In the Bitcoin network, for instance, the raw blockchain data

does not contain the balance value of each address. Thus, query service providers

can pre-compute and maintain the current balance of each address using the extra

list structure so that they can quickly return the result of the balance query without

traversing all transaction data. Regretfully, this architecture does not meet the re-

quirement of various queries since the balance list can solely solve the balance query

problem. In other words, the extra data structure needs to be customized for the

predefined query type. Assume that the Bitcoin node has already supported the

query for the address balance. When a user wants to further query about several

transaction details related to an address, the peer node still needs to adopt the di-

rect query, searching all blocks in the blockchain for the result. This scheme brings

about additional space cost because the node has to maintain an extra and specialized

transaction list for each address.

Another method is to take the indirect query by searching the database with high

reading performance for blockchain data instead of the original database adopted by

the native client. EtherQL [54] integrates the typical database with the Ethereum to

expedite the process of data query. Blockchain.com [1] is able to provide the address

information since it stores historic transactions in the database in advance. BlockSci

[43] incorporates an in-memory database to boost the data query for blockchain anal-

ysis. However, these systems assume that the server always returns correct results

based on the blockchain data. In fact, the server may return incorrect results that

20

conflict with the true blockchain data due to some interests or security vulnerabili-

ties [73]. In this case, a feasible mechanism to verify the data authenticity is highly

desired. Therefore, our further research problem will be: Can we manage to provide

efficient and verifiable query services for blockchain systems?

This problem involves the following challenges that need to be addressed: (1)

Supporting versatile query services on blockchain data with high efficiency for different

applications. (2) Ensuring the data consistency between the queried data and the

underlying blockchain data. (3) Providing a verification scheme for query users to

validate partial data on the cloud that interests him.

We give an affirmative answer to the problem in this chapter by systematically

designing and implementing a Verifiable Query Layer (VQL), which is a cloud-based

middleware layer providing efficient and verifiable query services for blockchain sys-

tems. Superior to the existing designs, our proposed cloud service is capable of meet-

ing the demands of query efficiency and data authenticity simultaneously. A novel

framework called vChain [88] achieves the verifiable boolean queries over blockchain

data by exploiting an accumulator-based authenticated data structure. However, this

work requires radical modification of the existing blockchain systems.

Our system consists of three layers including the underlying blockchain network,

the middleware layer and the upper application layer. To cater to various queries

from the application layer, the middleware layer will first extract and reorganize the

data stored in the underlying blockchain and then store them into the databases. To

ensure the validity of the middleware data, each constructed database will generate a

fingerprint, which is a cryptographic hash value based on the content and properties of

the database (e.g., name, size, timestamp, etc.). This fingerprint will then be verified

21

by miners and further stored in the blockchain for users to check. By virtue of

the immutability of the blockchain, this verification scheme can prevent any falsified

data from being stored by the middleware layer. Public users can also download

the entire blockchain data to verify the databases if they do not trust the cloud

service. In addition, we provide a simplified query result verification scheme to enable

users to just check the validity of the databases that their query involves. Given the

abundance and popularity of Ethereum-based applications, in this chapter, we employ

one of Ethereum testnets to illustrate the feasibility and effectiveness of our proposed

system. Our architecture can also be extended to other blockchain applications as

VQL can be adapted to any given blockchain system. We conclude our contributions

in this chapter as follows:

• The VQL is a new cloud query service with a three-layer architecture, which

efficiently supports various query services in the blockchain system, e.g., from

account query to complicated range query, with no need to browse each block

in the whole blockchain. The databases in the middleware are dynamically

constructed and updated.

• Our proposed cloud service provides a public verification scheme on the con-

structed databases to ensure its consistency with the underlying blockchain.

The fingerprints of databases are verified and stored in the blockchain by the

miner. Miners or users with blockchain data can verify the correctness of a

database using these fingerprints.

• We utilize the authenticated data structure to manage fingerprints and put forth

a simplified query result verification algorithm for users to verify the received

22

result without downloading all blockchain data. Users can issue the verification

request about the databases involved and efficiently validate their fingerprints.

• We develop the middleware prototype along with the verification schemes and

conduct extensive evaluations based on Ethereum testnet and MongoDB. The

results demonstrate that VQL can efficiently support various query and verifi-

cation services for blockchain systems.

The remainder of this chapter is organized as follows. We first introduce the

preliminary techniques used in our design in Section 3.2 . Then we present the system

design and authenticity analysis in Section 3.3, and show the system implementation

and evaluations in Section 3.4. We finally conclude the chapter in Section 3.5.

3.2 Preliminaries

3.2.1 Blockchain

The first implementation of the blockchain-based application is the Bitcoin system

[64]. By maintaining a distributed ledger, the Bitcoin system creates a decentralized,

open and Byzantine fault-tolerant transaction paradigm, which conforms to the re-

quirements of a new cryptocurrency infrastructure. A blockchain network contains

the following features:

Transparency : The network is accessible to all participants. Any participant can

get the current state of the blockchain system based on the records in the blockchain.

Consensus : All peer nodes in the network will reach consensus on the blockchain

(i.e., no unintentional forks). A valid block discovered by an honest peer will be

recorded on the blockchain and accepted by other peers.

23

Immutable and verifiable: Once a block is discovered and globally accepted, any

further modification of this block is impossible. All participants can verify the current

state based on the records in the blockchain.

3.2.2 Merkle Patricia Tree

The Merkle Patricia Tree (MPT) [4] is first introduced in Ethereum [81], which

is a cryptographically authenticated data structure combining the Trie Tree and the

Merkle tree. MPT can be used to store (key, value) bindings and there are three

kinds of nodes provided in an MPT, i.e., Leaf Nodes (LN), Branch Nodes (BN) and

Extension Nodes (EN). A leaf node represents [key, value] pair, where key is the public

prefix and value is the terminal value at the node. An extension node also represents

[key, value] pair, but here value is the hash of the next node. The branch node is a

17-element array node and used to store viable leaf nodes or extension nodes when

the prefixes of keys differ. Among the 17 elements, the first 16 elements are the hex

characters, representing the possible prefix of the next node. The last element is used

to store the final target value if the path has been fully traversed. In MPT, each

node is encoded in Recursive Length Prefix (RLP) code, which is designed to encode

arbitrarily nested arrays of binary data, and denoted by its hash. It is noted that the

MPT is fully deterministic, which means given the same (key, value) bindings, the

MPT constructed from them is guaranteed to be the same regardless of their insertion

order and thus have the same root hash.

The superiority of MPT is that it provides O(log n) efficiency for inserts, deletes

and searches, while node insertion and deletion in Merkle Tree incur huge time cost.

Moreover, with a publicly known root hash, anyone can prove that there exists a

given value at a specific path in the MPT by providing the nodes along the way.

24

3.3 VQL Design

In this section, we present the design of our proposed VQL that supports effi-

cient and verifiable data query services for blockchain-based applications. We first

introduce the overview of the system architecture and the structure of the middle-

ware layer. In order to guarantee the consistency between the middleware databases

and the underlying blockchain, we then propose a database verification scheme to

prevent falsified data from being stored in the middleware. We further simplify the

verification process and put forth the simplified query result verification scheme for

ordinary users who do not have blockchain data. This scheme enables query users to

validate the query results by downloading partial database data. Finally, we conduct

a comprehensive analysis on the data authenticity of our proposed design.

3.3.1 System Architecture

In this subsection, we introduce the architecture of our proposed cloud query ser-

vice model and the middleware structure along with its update scheme. As illustrated

in Figure 3.1, our cloud service model involves three parties, i.e., a blockchain as a

distributed database storing a ledger, a middleware layer supporting efficient data

query services through reorganizing the blockchain data, and an application layer

providing various services for users.

Underlying Blockchain

In the blockchain system, transactions generated from users are stored in the

blocks and form a public ledger. Some blockchain platforms such as Ethereum provide

APIs to access the transactions stored in each block. In our system, we utilize these

25

Block #1 Block #2 Block #3

Query Service

Underlying blockchain

Middleware Layer

Application Layer

API

Middleware Layer
Cloud

Fig. 3.1: Middleware-based cloud query service model for blockchain applications.

APIs to extract blocks, transaction and balance information stored in the blockchain.

This service model can also be applied to other blockchain systems like logistics and

supply chain, which record the information of goods delivery and market transaction

using consortium blockchain.

Middleware Layer

Based on the blockchain data, the middleware layer extracts and reorganizes all

information, e.g., block, transaction and balance, and constructs databases to support

efficient data query and data analysis. Figure 3.2 gives an illustration of the designed

middleware structure. Our middleware consists of a list of micro databases that

contains the data generated in each time interval (e.g., every day) after the specified

time point. Each database has a header that contains a cryptographic hash value of

the database and some database properties. The hash value of the database can be

utilized to verify the data integrity of the database.

Given the underlying blockchain, the algorithm shown in Algorithm 1 updates the

26

API

Middleware Layer

Block
#16

Block
#17

Block
#18

Block
#19

Block
#20

Block
#21

Block
#98

Block
#99

Block
#100

API API API

...

...

Block
Transaction

Balance

Micro Database

...Block
#13

Block
#14

Block
#15...

Micro Database Micro Database Micro Database

Block
Transaction

Balance

Block
Transaction

Balance

Block
Transaction

Balance

Fig. 3.2: Structure of the middleware layer.

Algorithm 1: Middleware update for Ethereum

Input: BC: Underlying blockchain
Output: DB: Middleware database
1: for each day do
2: Extract block, transaction and balance information from BC;
3: Calculate balance records;
4: Construct a new micro database mDB containing blocks, transactions and

balance;
5: Fingerprint(mDB);
6: Merge mDB into DB;
7: end for
8: return DB;

middleware layer with newly generated blocks. With the blocks being generated in the

blockchain, the system will reorganize the blockchain data and update the middleware

layer at a specific frequency, e.g., once a day as shown in the algorithm. At the end

of each day, based on the new blocks that have been validated and confirmed by the

miners, the middleware layer will be updated in time and support up-to-date query

services. The middleware extracts the block, transaction and balance information

from the blockchain data and constructs the corresponding databases. Specifically,

all attributes of original objects including block and transaction details are retained

27

while the account balance change on each day will be additionally calculated for

query purposes. Then all block, transaction and balance items will be inserted into

corresponding databases respectively. After the data extraction, the fingerprint of

these databases will be calculated. In order to avoid unnecessary modification of the

databases, the middleware will extract information and construct databases only from

the immutable blocks in a ’pull-based’ method. It is noted that the frequency of daily

update is our tentative setting, which can adjust based on the query requirement of

different applications, e.g., hourly update for logistics system.

Application Layer

Since the middleware layer constructs databases based on a mature database soft-

ware, it can provide various data query services for the application layer. Thus, the

application layer can efficiently conduct various data analysis and machine learning

tasks based on the blockchain data. Besides providing query services for normal users

and data platforms, our application layer can also support public audit services for

audit institutions. The auditors are able to audit the information in the underlying

blockchain using easily verifiable evidence returned by the middleware layer.

3.3.2 Database Verification Scheme

In this subsection, we describe the verification scheme of databases, which can be

carried out by miners and public users, that guarantees the consistency between the

middleware and the underlying blockchain.

28

Miner Verification Scheme

Figure 3.3 illustrates the database verification process of the middleware based

on the blockchain system. As shown in this figure, various transactions generated by

users are stored in the blockchain by the miners. First, the middleware layer extracts

transactions stored in the blockchain and reorganizes these data in the databases to

provide efficient query services. Second, to prevent falsified data from being stored

in the middleware, we generate a unique fingerprint for each constructed database

in the middleware layer. Finally, the constructed fingerprint of each database will be

verified by miners and then stored in the underlying blockchain.

User Database Verification Scheme

We provide a public database verification scheme to guarantee that the data

recorded in the middleware layer is consistent with the blockchain and can be verified.

Our proposed middleware layer can be deployed in the cloud to be accessed by the

public users for data query. Query users can usually trust the query results returned

from the middleware layer since the databases stored in the layer have already been

verified by miners. In case users have questions about the databases, they can fetch

the block data from any honest miner and verify the authenticity of databases using

the database fingerprint as the miners do.

Database Fingerprint

The database fingerprint uniquely represents the constructed individual database

in the middleware layer. In our design, the fingerprint of the database is determined

by two terms, i.e., the data content stored in the database and the property of the

constructed database. For the data stored in the database, we first export the data

29

in a unified and cross-platform format. Then a cryptographic hash value of these

data will be calculated based on this format of file using a hash function, e.g., SHA-

256. This hash value can be used by miners to check the consistency between the

data stored in the database and the underlying blockchain data. The constructed

database property contains the database name, the database time, the database size

and the database software version. The property of the database can be used to

construct the database in the subsequent database verification stage. Finally, the

fingerprint can be generated by hashing on the two elements above. It is noted that

the fingerprint value is calculated based on the data itself rather than the files stored

on the disk. Therefore, the fingerprint is platform-independent, which ensures that

miners can obtain an identical fingerprint as long as the data stored in the database

is the same.

Miner

Middleware
Layer DBDBDB DBDBDB DBDBDB

DBDBDBDBDBDBDBDBDB

6d0a 45b2 s86c ...

Database Fingerprint

Properties

Hash value

name, size, time,...

6d0a 45b2 s86c ...

Database Fingerprint

Properties

Hash value

name, size, time,...

6d0a 45b2 s86c ...

Database Fingerprint

Properties

Hash value

name, size, time,...

6d0a 45b2 s86c ...

Database Fingerprint

Properties

Hash value

name, size, time,...

BLK
#0

BLK
#100... BLK

#101
BLK
#200... BLK

#201
BLK
#300... ...BLK

#0
BLK
#100... BLK

#101
BLK
#200... BLK

#201
BLK
#300... ...

Fig. 3.3: Database verification scheme.

Database Verification

Based on the database and its fingerprint, miners can verify the constructed

databases in the middleware to guarantee the consistency between the middleware

30

data and the underlying blockchain data. After constructing a new micro database

to support efficient data query, the middleware layer will first give out its fingerprint.

The algorithm shown in Algorithm 2 describes the proposed database verification

scheme for the constructed middleware layer. Since the miner stores the blockchain

data locally, he can also construct another database based on his own local data using

the same database generation program. The corresponding fingerprint will then be

generated by the miner using the predefined hash function on this local database.

Thus, for each miner, he can verify the consistency of data between the middleware

layer and the underlying blockchain through comparing the two fingerprint values,

i.e., the database fingerprint published by the middleware layer and the database

fingerprint calculated by the miner based on his blockchain data.

Finally, after successfully verifying the consistency between the middleware layer

and the underlying blockchain, miners will store the database fingerprint in the form

of a transaction in the blockchain. The transaction transfers zero value from the

miner to our middleware with the fingerprint information filled in the data field. The

fingerprint is also inserted to an authenticated data structure, i.e., MPT, whose state

will be written into the blockchain as well. Once the database fingerprint is recorded

in the blockchain, this record cannot be tampered with in terms of the consensus

scheme. In the application layer of our system, applications can query data from

the middleware layer with trust after checking the database fingerprint stored in the

blockchain.

1The detailed explanation on the MPT update and synchronization will be further elaborated on
in Section 3.3.3

31

Algorithm 2: Miner Database verification

Input: DBmid: The database constructed in the middleware layer to be verified;
DBbc: The database constructed from blockchain by miner; rootbc: Root of
MPT that maintained by miner; BC: Underlying blockchain.

Output: return ACCEPT if the database is verified correct; otherwise, return
REJECT.

1: Get Fingerprint(DBmid) from middleware;
2: Construct DBbc from BC;
3: if Fingerprint(DBmid) = Fingerprint(DBbc) then
4: Insert Fingerprint(DBmid) into MPT and synchronize MPT to middleware1;
5: Write Fingerprint(DBmid) and MPT root rootbc into BC;
6: return ACCEPT;
7: else
8: return REJECT;
9: end if

Information Record in Blockchain

We propose to write the information regarding the database fingerprints into the

underlying blockchain via transactions. These fingerprints can be publicly accessed

and ensured by the consensus algorithm to be immutable. In this way, we can enable

users to validate the databases using recorded fingerprints without modifying the un-

derlying block structures. Each time the miner verifies the validity of databases in the

middleware layer, in addition to the database fingerprints themselves, he also records

the root of Merkle Patricia Tree, which is used to store all database fingerprints. This

tree root is a deterministic hash generated by all database fingerprints and provides a

form of cryptographic authentication to the data structure. In other words, the tree

root represents a unique state of the entire tree. Therefore, we write the tree root

hash into the blockchain as well for the application layer to check. Note that, the in-

formation writing policy may differ when our verification scheme is applied in diverse

blockchain systems, such as the public blockchain, private blockchain, and consortium

32

blockchain [55]. In case of private blockchain or consortium blockchain, miners can be

forced to write some certain information into the block of specific height. However, in

the scenario of public blockchain, due to the propagation of transaction information

and the competition among transactions, the information cannot be guaranteed to

be written in the stipulated block.

Failed Verification Situation

During the database verification process, we also consider the failed verification

situation. If the local fingerprint calculated by the miner is different from that pro-

vided by the middleware, an error report will be sent to the middleware layer. When

the middleware layer receives a certain amount of failed verification reports, it will

execute a diagnostic procedure to check the correctness of database until no error

reports arrive. In case of extreme situations, e.g., a fork due to network partition,

the middleware and miners will find the correct chain to catch up with. Meanwhile,

the databases will be rebuilt and the fingerprints are revoked. The failed verification

report scheme will help the middleware to correct false database fingerprints.

3.3.3 Simplified Query Result Verification Scheme

The database verification scheme in the last subsection is designed for the min-

ers. For query users without blockchain data, they need to download the entire

blockchain from credible miners and verify all databases by constructing them. It is

a quite radical method to guarantee the authenticity of databases, but sometimes it

is unnecessary for an ordinary user to download all data for just one simple query.

To remedy this issue, we propose to employ the authenticated data structure for fin-

gerprint management and put forth a simplified query result verification algorithm

33

to ease the process of result verification for query users.

Merkle Patricia Tree for Database Fingerprints

Due to the uncertain factors in public blockchain systems, e.g., network delay and

transaction fee, the middleware and users cannot get the height of the block where

the database fingerprint is stored in advance. The block height is determined only

after the fingerprint is indeed written into one block and confirmed by miners. Using

the confirmed block height, users can find the fingerprint in the specified block and

check its correctness. Thus, we employ Merkle Patricia Tree to store these [fingerprint,

height] pairs since it is able to prove the existence or non-existence of a given database

fingerprint. In this way, query users can directly check the correctness of the given

database fingerprint without searching the block containing the information. It is

noted that the MPT is maintained by miners and will be updated each time miners

finish verifying the validity of databases and writing database fingerprints into the

blockchain. Moreover, the MPT data will also be synchronized to the middleware

layer by miners so that the cloud can provide Merkle proofs for query users. The

reason why miners adopt MPT instead of directly returning true or false for every

fingerprint request from users is because providing all users with validation services

is over-demanding for miners. The MPT enables miners only need to show the MPT

root while leaving the proof work to cloud servers.

We use an example shown in Figure 3.4 to instantiate the database fingerprint

storage in MPT. We presume that initially there are four database fingerprints as

presented in the key-value list, in which the key is the database fingerprint hash

and the value represents the height of the block where the fingerprint information is

written. Using these fingerprints, we can build the Merkle Patricia Tree as given in

34

563684

Database Fingerprint Block Height

d d c 12846

d d c 32375

d f a 566876

a 7 3

a 2 f

d f a

0 1 2 3 4 5 6 7 8 9 a b c d e f

d 3 1 f 4 2

Branch Node(BN1)
Type

BN

Type

EN

Key

d

Value

Extension Node(EN1)

Type

LN

Key

3

Value

12846

Leaf Node(LN4)

Type

LN

Key

adfa

Value

566876

Leaf Node(LN2)

Type

LN

Key

1f42

Value

563684

Leaf Node(LN1)

0 1 2 3 4 5 6 7 8 9 a b c d e f

Branch Node(BN2)
Type

BN

Type

EN

Key

ca

Value

Extension Node(EN2)

Type

LN

Key

f

Value

32375

Leaf Node(LN3)

Proof list of the existing fingerprint ‘ddca73’

p0

BN 3 LN1

EN ca p3

BN 2 LN3

d p2 f

7 p4

EN d p1

p1

p2

p3

Proof list of a not existing fingerprint ‘dfadad’

LN2

LN 3p4 12846

p0

BN 3 LN1

LN

d EN2 f

EN d p1

p1

p2

p2

adfa 566876

Fig. 3.4: An illustrative example of database fingerprints MPT.

the figure. Here we neglect the detailed descriptions of the operations in MPT, e.g.,

insertion, update and deletion, since there have already been some implementations

available.

Simplified Query Result Verification Process

Figure 3.5 illustrates the relationships among the miners, users and the middleware-

based cloud in our data verification scheme. Our system comprises three parties:

miners, who mine the blocks and maintain credible block data in the underlying

blockchain layer; users, who lie in the application layer and send queries to the cloud

about the data in blockchain; cloud query services, which belong to the middleware

layer and provide query services for users. The dashed arrow from miners to the cloud

35

services signifies the aforementioned miner database verification, while the solid ar-

rows represent the interactions in the simplified query result verification scheme. In

our simplified scheme, miners only need to synchronize the MPT to the cloud ser-

vices and provide the MPT root hash for query users if they request verification.

Each time the user sends a data query to the cloud, the server will return a query

result along with the database back-up files that this query involves and their corre-

sponding Merkle proofs. This function of database back-up and reconstruction can

be supported by some commercial database systems, e.g., MongoDB. Combining with

the credible MPT root hash obtained from miners, the user can easily check the va-

lidity of those database fingerprints based on the Merkle proofs. If the user wants

to further confirm the information about the root hash and database fingerprints, he

can search the blocks according to the corresponding block height stored in MPT.

Cloud query services

Miners Users
MPT root

Verification request

database verification
query result verification

Fig. 3.5: Data verification scheme.

Algorithm 3 shows the simplified query result verification algorithm performed by

query users. When the user requests a data query to the middleware, he will get a

query result resultmid from the server together with the fingerprints of all databases

36

involved, i.e., DBs. After downloading the corresponding database back-up files, the

user can reconstruct these databases and calculate their fingerprints. Meanwhile, he

will send a verification request to the miners and thereby get the latest MPT root hash

rootbc, which signifies the newest state of all verified databases. With the database

fingerprints calculated, the user can send them to the middleware layer and obtain

the Merkle proof for every fingerprint. Based on the proof for each fingerprint, he

will calculate the root hash rootm by themselves and then compare with the true root

hash rootbc. When the two root hashes are equal and the key is in accord with the

path, the correctness of this fingerprint can be guaranteed. The process of proving

the presence of the fingerprint using MPT root and Merkle proof is included in Prove

function and will be detailed in the Merkle proof part. If all databases involved are

confirmed correct, then the user can query the databases that are locally constructed

from back-up files and get the query result resultl. When this result is identical to the

previous result resultmid from the middleware, the user can finally trust and accept

the result.

Merkle Proof for Fingerprints

Now suppose a query user wants to check the existence of the database fingerprint

’ddca73’ which already exists in the MPT (see Figure 3.4). The value of this key

is stored in the leaf node LN4 and its search path from root to leaf is {EN1, BN1,
EN2, BN2, LN4}. Based on the path, our middleware layer can provide a Merkle

proof, which is a list of RLP code of the nodes along the path (see the right part of

Figure 3.4), for the user to prove the existence of the key. In this case, the Merkle

proof for ’ddca73’ is a 5-element array, i.e., p0 to p4. Each node is referenced inside

the previous element except the root node p0. Using this list, the user can check the

37

Algorithm 3: Simplified query result verification

Input: rootbc: Root of MPT stored in blockchain; DBs: Middleware databases
that the user query involves; resultmid: Query result provided by middleware
layer; proof : Merkle proof of a given database fingerprint;

Output: return ACCEPT if resultmid is correct; otherwise, return REJECT.
1: Get the latest MPT root rootbc recorded in blockchain from miners;
2: verified ← FALSE;
3: for each DB ∈ DBs do
4: Construct DB from the back-ups in the middleware layer;
5: Send Fingerprint(DB) to the middleware layer;
6: Get the Merkle proof proof from the middleware layer;
7: verified ← Prove(rootbc, fingerprint, proof);
8: if not verified then
9: break;
10: end if
11: end for
12: if verified then
13: Query DBs locally and get the query result resultl;
14: if resultmid = resultl then
15: return ACCEPT;
16: else
17: return REJECT;
18: end if
19: else
20: return REJECT;
21: end if

correctness of the value and RLP code of each element in the array successively from

head to tail, i.e., in the order from root to leaf. If the root hash finally calculated is

identical to the publicly known root value and the prefixes along the path equal to

the fingerprint, then this database fingerprint is considered to truly exist. Algorithm

4 shows the pseudo-code of the Prove algorithm executed by the query user to verify

whether the database fingerprint exists in MPT.

Similarly, we can also utilize the Merkle proof to prove the non-existence of a given

38

Algorithm 4: Prove algorithm

Input: rootbc: Root of MPT stored in blockchain; fingerprint: Fingerprint of the
database to be checked; proof : a n-element list of pi, i.e., Merkle proof of the
given database fingerprint;

Output: return TRUE if fingerprint exists in MPT; otherwise, return FALSE.
1: if Hash(p0) �= rootbc then
2: return FALSE;
3: end if
4: for i← 0 to n− 1 do
5: if i = n− 1 then
6: if key in pi conforms to fingerprint then
7: return TRUE;
8: else
9: return FALSE;
10: end if
11: end if
12: if i < n− 1 then
13: if key in pi conforms to fingerprint and key’s value = RLP(pi+1) then
14: continue;
15: else
16: return FALSE;
17: end if
18: end if
19: end for

key. Suppose a user reconstructs a database using broken or tampered files and thus

calculates a wrong fingerprint, e.g., ’dfadad’ in the figure, which does not exist in the

MPT. Our server will return the Merkle proof based on the search path {EN1, BN1,
LN2}, i.e., p0 to p2 as shown in the figure. Here the hash of root p0 can be verified by

calculating from head to tail and still equals to the root hash obtained from miners.

Nevertheless, the prefixes generated by the proof differ from the fingerprint key, which

means the fingerprint does not exist in the MPT.

39

3.3.4 Data Authenticity Analysis

Since the user receives the query result from the middleware, as long as the queried

database is consistent with the underlying blockchain, the authenticity of the queried

data is guaranteed. Thus, we conduct the data authenticity analysis from three as-

pects: the rewarding scheme for miners, the integrity of databases and the verifiability

of query results.

Rewarding Scheme for Miners

In our cloud service, the verification of databases in the middleware layer is real-

ized by miners, which may cost some computing resources and storage space. Thus,

a rational rewarding scheme is required to incentivize miners to verify the databases.

Owing to the different demands and scenarios of the blockchain systems, the reward-

ing schemes for miners in our query model may differ. For the private blockchain

system, since the miners and middleware layer are private to provide services, the

verification and record fees are not needed. As for the consortium blockchain sys-

tem, depending on the various agreements between communities in the consortium,

the middleware layer may need to pay the fees or not. When applied to the public

blockchain system, our middleware will give some rewards to the miners or mining

pools [50] who successfully validate the databases.

Since the above rewarding scheme for database verification is not supported by the

existing blockchain systems, we give two possible solutions to make our verification

scheme practical. First, we can implement a new blockchain system based on an

existing open-source project, incorporating the incentive mechanism for verification.

In order to get the rewards, miners can validate the middleware databases and record

40

corresponding database fingerprints into the blockchain. The validation process, the

rewarding mechanism and the management of fingerprints are all hard-coded in the

blockchain peer nodes. Second, we can deploy the smart contract on the current

blockchain system to facilitate the verification process of miners. Miners can construct

the database from their own blockchain data using the same database generation code

provided by our middleware. Then the database fingerprint can be calculated and

sent to the smart contract for confirmation. Finally, our middleware will announce

the correct fingerprint and send the rewards to the miners who correctly verified

the database. More miners will participate in the verification task if the reward is

attractive enough. The smart contract can also maintain the MPT storage of database

fingerprints in the simplified query result verification process.

The Integrity of Databases

The consistency between the databases in the middleware layer and the under-

lying blockchain data is realized through the database verification scheme by the

miners. Each time a new database is constructed, the middleware layer will back

up the database and publish the back-up files and its fingerprint. In the meantime,

miners can construct another database based on his blockchain data following the

same rules and calculate its fingerprint using the predefined hash function. If the

fingerprint of this database is the same as the one given by the middleware, then the

database is verified correct. Moreover, the integrity information is immutable since

the fingerprint will be written into the blockchain after verification and managed by

the MPT structure.

41

The Verifiability of Query Results

After the integrity of databases in the middleware layer is guaranteed, the query

results that users receive should also be consistent with the middleware databases. We

provide two methods to realize the verifiability of query results, i.e., user verification in

the database verification scheme and the simplified query result verification scheme.

The user database verification requires users to download all blockchain data and

check the consistency like miners, the authenticity analysis of which is just conducted.

It is noted that when we request data from the miners, we will first connect to

the anchor nodes in the blockchain network, which means the miners we query are

assumed to be absolutely reliable. Therefore, the situation of malicious miners is

trivial and out of the scope of this thesis. The simplified query result verification

scheme allows users to download only the involved databases rather than all databases

and check the validity of their fingerprints by leveraging the MPT structure. Since

the databases are reconstructed based on the back-up files and their fingerprints are

calculated locally by users, the authenticity of the involved databases can be ensured

if these fingerprints indeed exist in the MPT maintained by miners. Finally, users

can query the valid databases locally and check whether the result is consistent with

the query result returned by the middleware layer.

3.4 Implementations and Evaluation

To test the feasibility and performance of our cloud query service, we implement

a prototype on a testnet of the well-known blockchain system Ethereum.

42

3.4.1 Prototype Implementation

Our middleware supports user-friendly APIs for user applications and APIs for

the underlying blockchain. The user application APIs support various queries and

database verification for auditing, including the query interface and validation in-

terface for the block, the transaction and the balance information. Meanwhile, the

blockchain APIs support query functions to collect records from the blockchain, e.g.,

the data request interface for the block, the transaction and the global state of the

blockchain. We employ the popular document-oriented database MongoDB for data

storage of the middleware. The reason why we use MongoDB is that it can support ef-

ficient query on general and rich data, e.g., arbitrary forms of transactions and smart

contracts. It can also achieve good reading performance by building the indexes. The

MPT for fingerprint storage is implemented in JavaScript and stored in LevelDB. To

evaluate the system performance without the interference of network communication,

we build up the experiment platform on a cloud server with Intel Xeon 2.67GHz CPU

and 32 GB RAM, running Ubuntu 16.04 LTS. Our data query services are based on

the blockchain data of Rinkeby network, one of the popular Ethereum testnets, with

the block height varying from 0 to 8,000,000.

3.4.2 Performance Evaluation

The process of synchronization from scratch in blockchain systems usually needs

to be done only once because of the fact that blockchain data is immutable. Moreover,

the time cost of the synchronization process is generally dominated by the network

bandwidth and the performance of the physical machine. Nodes with low network

bandwidth or bad performance may take several days to catch up with other peers.

43

Therefore, the evaluation of blockchain synchronization is out of the scope of this

thesis. We test various data query services in terms of throughput, block query,

transaction query, account query and range query. We contrast our proposed VQL

with the Geth client, which is an official Go implementation of the Ethereum protocol,

in terms of query efficiency.

Query category
Block Transaction Account

Q
ue

rie
s p

er
 se

co
nd

0

500

1000

1500

2000

2500

ETH client
VQL (5 105 blks)
VQL (4 106 blks)
VQL (8 106 blks)

(a) Throughput

Number of blocks 104
1 2 3 4 5

Q
ue

ry
 T

im
e

(s
)

0

5

10

15

20

25

ETH client
VQL (5 105 blks)
VQL (4 106 blks)
VQL (8 106 blks)

104
2 4

0

200

(b) Block query

Number of transactions 104
1 2 3 4 5

Q
ue

ry
 T

im
e

(s
)

0

500

1000

1500
ETH client
VQL (5 105 blks)
VQL (4 106 blks)
VQL (8 106 blks)

(c) Transaction query

Number of accounts 104
1 2 3 4 5

Q
ue

ry
 T

im
e

(s
)

0

5

10

15

20

25

ETH client
VQL (5 105 blks)
VQL (4 106 blks)
VQL (8 106 blks)

104
2 4

20
60

100

(d) Account query

Fig. 3.6: Query performance of ETH client and VQL.

Throughput

We first evaluate the throughput performance of our proposed system VQL com-

paring with ETH client. The ETH client synchronizes the blockchain to about

44

8,000,000 and our VQL also organizes all information within the same block height.

In addition to the comparison between the ETH client and VQL, we also evaluate the

query efficiency of VQL with different blocks synchronized, i.e., 500,000, 4,000,000

and 8,000,000. Three kinds of queries are conducted, including querying a block by

the block number, querying a transaction by transaction hash, and querying the bal-

ance of an account by address. As shown in Figure 3.6a, the throughput of VQL is

about 13.2, 2.1, 5.5 times as that of ETH client in terms of block, transaction and

account query respectively. When we query a block by the block number, the VQL

and ETH client can support 1.88K queries/s and 142 queries/s, respectively. For

querying a transaction by the transaction hash, the VQL and ETH client are able to

process about 70.6 queries/s and 33.5 queries/s. If we query the balance of an account

by address, both systems can achieve higher throughput (i.e., 2.14K queries/s and

387.9 queries/s) because of the relatively smaller amount of accounts. The results

show that our proposed VQL can achieve higher throughput than the native ETH

client. From the performance of VQL under different load scenarios, we can see that

the increasing number of synchronized blocks will degrade the query throughput of

all query categories. The throughput of transaction query drops rapidly because the

amount of transactions increases sharply as the block height grows.

Block Query

In our experiments, query efficiency is a critical criterion for the proposed query

supported system. In the blockchain, various transactions generated by users are

stored in the blocks. Thus, we first compare the block query time of different systems

(e.g., ETH client and VQL) to show the query efficiency of our system. ETH client

provides a JSON RPC API to support the block query. Accordingly, we develop an

45

API in the middleware layer to provide query services about blocks.

Since a single block query can usually be completed in milliseconds, we query for

a randomly selected list of blocks and record the time of completing these queries.

We conduct experiments of block query based on scenarios with block number from

0 to 50,000. As shown in Figure 3.6b, the block query time is compared with ETH

client and VQL will different loads. With more blocks queried, the query time is

significantly increased using ETH client, while the time of VQL can still remain at

a relatively lower level. This ETH client requires plenty of query time, for example,

351.9 seconds in the evaluation of the 50,000-block scenario. On the contrary, our

proposed system VQL can save much query time, which optimizes the data storage

for faster queries (e.g., 26.6 seconds in 50,000-block scenario). From the comparison

between different loads of VQL, we observe that the number of synchronized blocks

has limited effects on the query efficiency since the query time only increases slightly.

Transaction Query

The query about individual transaction information is also supported in our sys-

tem and we conduct experiments on the query time of transactions. The native ETH

client provides limited APIs for the retrieval of transaction details while our VQL can

support queries on transactions by all attributes that a transaction has. In this ex-

periment, we choose the common API, i.e., query by the transaction hash, to present

the comparison of the query efficiency.

As shown in Figure 3.6c, the transaction query time is compared between ETH

client and VQL with different loads. Since a single transaction query can usually

be completed very fast, we query for a bunch of randomly selected transactions to

46

evaluate the time. We test cases with different numbers of transactions in the ex-

periment, from 0 to 50,000 transactions. The number of transactions almost linearly

promotes the query time in all cases. But VQL takes only about half of the time that

ETH client uses to query the same amount of transactions under the same data load.

As for the comparison between different number of synchronized blocks in VQL, the

query time of 8,000,000-block scenario is much longer than that of 500,000-block case.

It is because the volume of transactions grows dramatically when the block height

increases.

Account Query

In our middleware layer, each constructed micro database contains two parts of

data: the transaction details and the balance details of all accounts. Apart from the

original blockchain data, the account balance also provides an extra historical balance

description for each account, e.g., balance change in each day. Since the native ETH

client only provides the API for current balance query, we also test the same function

in our VQL system.

As shown in Figure 3.6d, we conduct experiments to evaluate the query time of

account balance for ETH client and VQL. Because the query time of a single account

is too small to measure, we still query for a randomly selected list of accounts to test

the efficiency of balance queries. Scenarios with different numbers of accounts, from

0 to 50,000 accounts are tested in the experiment. We can see that the query time

of account balance increases linearly as the number of accounts grows. The query

of account balance with the same amount in VQL can be completed within one fifth

of the time that the ETH client takes, i.e., 128.9s. This is because, in our proposed

middleware, the information of account balance is calculated in advance and well

47

ETH client VQL

Temporal
range query

Block 40.53s 0.04ms
Transaction 1625.88s 0.036ms
Balance 10.23s 0.041ms

Numerical
range query

Block — 0.034ms
Transaction — 0.033ms
Balance — 0.036ms

Table 3.1: Evaluation of range query.

organized in databases. In addition, the comparison between different loads in VQL

shows that the number of synchronized blocks slightly promotes the query time.

Range Query

Besides the individual account query, range query is also supported by the mid-

dleware layer since the application layer is usually required to conduct various data

analysis and machine learning tasks. For these tasks, many features will be extracted

through a range of data, e.g., accounts that have transactions in one day or trans-

actions with amount over 100 ETH. Our middleware can provide this ability of data

query within a specific range while the native ETH client cannot perfectly support.

In our experiments, we conduct performance evaluation about range query for

block, transaction and account, respectively. Considering many applications related

to data analysis, we implement two kinds of range queries, i.e., temporal range query

and numerical range query, for the information of block, transaction and balance. The

temporal range query means the query on blockchain data within a specific time range,

e.g., the transactions generated last month. The numerical range query represents the

query on some numerical fields of the data, e.g., the transactions with value less than 1

ETH. As shown in Table 3.1, the time of different range query categories is compared

with ETH client and VQL. We query blocks generated in one day and record the

48

query time. The VQL can finish the query with 0.04ms while the ETH client needs

40.53s. Then we query transactions within a randomly chosen day and record the

time used. Our VQL completes the query within 0.036ms and the ETH client costs

1625.88s. Finally, we query the account balances that have changes in one day, which

means transactions are performed between these accounts. The experiment result

shows that the VQL needs 0.041ms while the ETH client uses 10.23s. It is noted that

the ETH client does not directly support temporal range query. To achieve it, we

traverse the blocks using the block number and get the transactions inside. However,

the numerical range query cannot be supported even using this method since the

ETH client has to read all blockchain data to judge the numerical values, which is

excessively time-consuming. Therefore, we mark the inapplicability using ′−′ in the

table for numerical range query. In general, the proposed VQL needs much less time

to finish different range queries than the ETH client. Our VQL shows remarkable

advantages over the ETH client due to the well-organized micro databases in the

middleware, which are very efficient for range queries.

Database Verification

Database verification efficiency is also an important criterion for our proposed

system. We set the generation frequency of database fingerprint to be once a day,

which means the middleware produces the fingerprints for block, transaction and

balance using the respective daily data. As shown in Figure 3.7a, we record the time

of database verification after the blocks are generated in the blockchain each day.

When the middleware layer has constructed databases based on the blockchain for

180 days, the verification time of block databases for a miner is 242.4s and that of

transaction databases is 75.6s. The balance databases take the least time, i.e., 2.98s

49

for 180 days, since the size of involved information is quite small. With more daily

databases generated by the middleware, the database verification time increases. We

can see that there is a fluctuation in the transaction database between 50 and 100

days. This is because the amount of transactions in these days suddenly grows, which

leads to more verification time. Thus, our proposed system is able to efficiently verify

databases constructed in the middleware layer and applicable to practical blockchain

systems.

Number of days
0 50 100 150

Ti
m

e
(s

)

0

50

100

150

200

250
Block
Transaction
Balance

(a) Verification time

Number of blocks 105
0 1 2 3 4 5

Si
ze

 (B
yt

es
)

109

0

1

2

3

4
Block
Transaction
Balance

(b) Database size

Fig. 3.7: Performance of miner database verification.

Database Size

Considering the storage space efficiency, we also test the size of databases to

be verified in the middleware layer during the database verification process. We

record the size of each database for block, transaction and balance as the blocks are

generated in the blockchain. As shown in Figure 3.7b, when the middleware layer has

constructed databases for 500,000 blocks in the blockchain, the size of transaction

database stored in the middleware layer reaches about 4GB while the size of block

database is around 500 MB. We can observe from the figure that the size of the

50

transaction database increases notably twice due to the large amount of transactions

in some blocks. The balance database always occupies the least storage and its size

is only 12MB even when the number of blocks reaches 500,000. Thus, our proposed

system can efficiently store the databases constructed in the middleware layer to

provide query services and database verification.

Proof Cost in MPT

The cost of simplified query result verification is dominated by the communication

overhead incurred by Merkle proof. The size of Merkle proof is mainly decided by

the number of layers in MPT. The deeper the leaf node locates in MPT, the longer

its search path becomes. Thus, we measure the size of proof that the middleware

layer returns for each database fingerprint. In our evaluation, we employ SHA-256

hash function to generate the fingerprint for the database, thus the key to be stored

in MPT has 256 bits. We insert 2,000 keys into the MPT and record the average

length of Merkle proof that MPT provides by invoking the prove function for each

key. As presented in Figure 3.8a, the size of Merkle proof is only a few kilobytes and

closely associated with the depth of key. The depth of the fingerprint is principally

distributed between 7 and 13, and the proof size gradually increases as the depth

grows, which conforms to our previous analysis. This is because Merkle proof is a list

of nodes along the path and the RLP code of one node is about 100 bytes. Compared

with the size of the block data needed in miner database verification, the overhead of

giving the Merkle proof is practically negligible.

51

Storage Cost in MPT

Since the MPT for database fingerprint is updated by miners and will be syn-

chronized to the middleware layer, it will cost storage space in both miners and the

middleware layer. In order to show the storage cost of MPT with the amount of fin-

gerprint increasing, we investigate the size of the LevelDB database files generated by

the MPT when the total amount is 1,000, 5,000, 10,000, 20,000, 30,000, 50,000. Ob-

serving from Figure 3.8b, we can see that the amount of fingerprint linearly promotes

the storage cost, which indicates that MPT does not bring about much cost of extra

storage space as the amount of fingerprint grows. The storage cost increases to 90 MB

when the fingerprint amount reaches 50,000, which is relatively small compared with

the size of databases constructed in the miner database verification process. There-

fore, the storage cost is acceptable to achieve our simplified query result verification

scheme.

Throughput and Proof Size

In our simplified verification scheme, the middleware layer will return a Merkle

proof for each query from users. Thus, we investigate how many verification requests

the middleware is able to handle concurrently and how much overhead it costs to

return a Merkle proof. The performance is presented in Figure 3.8c, which includes

the throughput and proof size under various number of fingerprints. We observe that

the throughput of returning proofs decreases when the amount of fingerprints grows.

This is because the MPT becomes larger when more fingerprints are stored, which

leads to longer search time for each fingerprint. The middleware can support 3,000

verification requests per second with 50,000 fingerprints stored, which is acceptable

52

Depth of fingerprint
7 8 9 10 11 12 13

Pr
oo

f s
iz

e
(K

B
)

1.1

1.2

1.3

1.4

1.5

1.6

1.7

(a) Proof cost with depth

Fingerprint amount (104)
0 1 2 3 4 5

St
or

ag
e

si
ze

 (M
B

)

0

20

40

60

80

100

(b) Storage cost

Fingerprint amount (104)
0 1 2 3 4 5

Th
ro

ug
hp

ut

3000

3100

3200

3300

Pr
oo

f s
iz

e
(K

B
)

1

1.2

1.4

1.6

Throughput
Proof size

(c) Throughput and proof size

Depth of fingerprints
6 8 10 12 14

Pr
op

or
tio

n
(%

)

0

20

40

60 1,000
20,000
50,000

(d) Depth distribution

Fig. 3.8: Performance of simplified query result verification.

53

as well. Meanwhile, we can also see that the average size of Merkle proof rises slowly

when the number of fingerprints increases.

Depth Distribution

We further investigate the reason behind the proof size and observe that the

distribution of fingerprint depth greatly changes under different cases. Figure 3.8d

shows how fingerprint depth distributes under scenarios with different fingerprint

amounts. When the amount of fingerprints is 1,000, the depth mainly distributes

around 7 and the proportion of 7 exceeds 65%. As the amount increases, the majority

of fingerprint depth rises slightly. The depth of 9 accounts for more than 60% of the

whole fingerprints when the total amount reaches 20,000. In the scenario with 50,000

fingerprints, the proportion of depth 11 gradually grows to about 30%, leading to

a higher average depth. Combining with the previous observation from the proof

cost in Figure 3.8a, the increasing average proof size conforms to the distribution of

fingerprints. Compared with the size of database itself in the middleware, the proof

cost in our simplified query result verification is relatively small.

3.5 Chapter Summary

In this chapter, we propose VQL, a cloud query service layer that can provide effi-

cient and verifiable query services for the blockchain system. The proposed framework

has a three-layer architecture, including the underlying blockchain network, the mid-

dleware layer and the application layer. To realize this system, first, the middleware

layer extracts the data stored in the underlying blockchain and reorganizes them in

databases to provide various query services efficiently for the upper application layer.

Second, to prevent falsified data from being stored in the middleware, a cryptographic

54

hash value, named as fingerprint, is calculated based on each constructed database.

Finally, the database fingerprint is recorded in the blockchain after being verified

by miners. In order to ensure the data integrity, we design the database verifica-

tion scheme for miners and the simplified query result verification scheme for public

users. We implement VQL on the cloud and conduct extensive experiments based on

a practical blockchain system Rinkeby. The evaluation results demonstrate that VQL

can effectively and efficiently support various data query services and guarantee the

authenticity of query results for the blockchain system. Our proposed query service

can be deployed on the cloud for practical applications and accessed by public users

for efficient and versatile data queries.

Chapter 4

Privacy-Preserving and Efficient
Authenticated Queries on
Outsourced Graph Data

Prior research has introduced a new scenario of blockchain-assisted clouds where

the data owner outsources original data to cloud servers and stores some metadata

on the blockchain. Despite some research on key-value query and range query in

this hybrid-storage scenario, other more complicated data types are not supported

yet. In this chapter, we conduct pioneering research on authenticated queries for

graph data, which is a popular data type due to many emerging applications, on the

blockchain-assisted cloud. The primary challenge is how to design an authenticated

data structure (ADS) that supports authenticated queries and can be easily main-

tained by the blockchain. To this end, we propose a novel ADS, named PAGB, based

on the RSA accumulator and completeness set. It can also prevent the original data

from being revealed to the public through blockchain or irrelevant queries. We further

optimize our design to be more efficient in terms of communication and computation.

The effectiveness and efficiency of PAGB are verified through theoretical analysis and

extensive experiments.

55

56

4.1 Overview

With the rapid advance of cloud computing, many data owners including individu-

als and enterprises desire to outsource their data to cloud service providers. However,

this paradigm needs data owners to fully trust the cloud servers, which does not con-

form to practical cases. The potentially compromised cloud service providers may

return incorrect or incomplete results to query users. Besides the intentional behav-

iors due to some commercial interests, the dishonest behaviors may also arise from

software bugs, hardware failures and other security vulnerabilities [78]. This issue can

be thwarted by introducing verifiable query processing that requires cloud servers to

prove the authenticity of its results [9, 11].

Thanks to the emergence of the blockchain technology, the smart contract [81]

provides a new paradigm for trusted storage and trusted computation environment.

Some data owners choose to store data on blockchain as a complement to cloud

servers. However, storing original data directly on-chain is almost infeasible due to

the limited storage space and excessive gas cost. One approach to this problem is to

employ the blockchain-assisted cloud [13, 56, 93], where both on-chain storage and

off-chain storage are adopted. The data owners still outsource their raw data to off-

chain storage like Google Cloud Storage or Amazon Simple Storage Service, but only

store some metadata (e.g., hash value of original data) on-chain as notarization of

the outsourced data. To ensure the integrity of the data retrieved from the untrusted

off-chain storage, the on-chain metadata can be utilized to authenticate the query

result.

The major problem that the introduction of blockchain can tackle is the freshness

of the outsourced data, which is barely solved by most existing designs [91]. This

57

defect renders the system vulnerable to the replay attack where the cloud may re-

turn a stale or currently invalid signature to query users. In existing authentication

schemes, data owners usually generate the authenticated data structure (ADS) , in-

cluding tree-based structures [83, 87], aggregate signatures [47, 48] and cryptographic

accumulators [38, 96], based on his local data. Then they will sign the ADS using the

standard digital signature scheme and provide the signature for query users to check.

Due to the online burden, the data owners will not keep or distribute the signature to

all query users after each update, but delegate it to the cloud instead. This approach

is vulnerable to replay attacks [14], i.e., the cloud may return a stale or currently in-

valid signature to query users. Fortunately, the blockchain-assisted cloud is immune

to attacks on data integrity, including data tampering and replay attacks, because the

integrity of ADS is guaranteed by the safety of blockchain and the freshness of ADS

can be ensured by the liveness of blockchain. Since the ADS is accommodated in the

blockchain, data owners are also free from storing and distributing the ADS while

still being able to provide authenticated query services. In addition, all updates on

the outsourced data can be publicly recorded in the blockchain for further forensics

and provenance.

Some primary query types like key-value queries, range queries [93] and file-

keyword [41] queries have been well investigated. However, graph data, which is

another significant but more complicated data structure, has not been supported yet.

Graph data has attracted a tremendous amount of interest thanks to many emerging

applications based on the graph model, like social networks [58], biological networks

[62], healthcare [86] and knowledge management [69]. Adopting the aforementioned

hybrid-storage model, data owners can resort to cloud servers for the storage and

58

management of graph data using some mature graph databases, e.g., Neo4j [5] and

TITAN [7]. Meanwhile, the metadata will be generated from their original data and

sent to the blockchain. In this way, the integrity of the query result obtained from

the cloud can be verified based on the trusted ADS maintained by the blockchain.

To provide authenticated queries on graph data in blockchain-assisted clouds,

several challenges lie ahead: (1) The ADS needs to be lightweight and can be easily

maintained by the blockchain since the cost of storage and computation is high on

the blockchain. Traditional methods like tree-based ADS and aggregate signatures,

require much storage and excessive modification on updates since they do not support

dynamic data. Hence, these methods are no longer applicable to the blockchain. (2)

The query result usually has to satisfy the demands of soundness and completeness,

the latter of which requires no valid answer missing, making the authentication design

more difficult. Traditional Merkle Hash Tree (MHT) based ADS [48, 93] is incapable

of providing proofs of non-existence for an element, e.g., proving the queried node has

no outbound edges. (3) The cloud and the blockchain cannot reveal any extraneous

information to users except the knowledge of the query itself as there may be some

privacy-sensitive data that cannot be public.

To address these challenges, we design a novel ADS, named Privacy-preserving

Accumulator for Graphs in Blockchain (PAGB), that provides authenticated queries

on graph data in the blockchain-assisted cloud while guaranteeing the soundness and

completeness of query results. We take the property graph [10, 25], one graph type

represented by knowledge graph that has enormous potential in artificial intelligence

[57], as an example to illustrate the effectiveness. In order to meet the demand of

result completeness and privacy preserving, we construct a completeness set to extract

59

extraneous pairs from the original graph so that the non-existence of one item can be

proved. On the blockchain side, we calculate the prime representative for each object

as the metadata to update its accumulator, which also hinders the potential leakage

of privacy. To further improve the efficiency, we optimize the solution by reducing

the verification cost and accelerating the process of multiplication.

To the best of our knowledge, our PAGB is the first query authentication scheme

for property graph data using blockchain while possessing the desirable characteristics

of dynamics and privacy preserving. Our design can be applied to practical systems

since the verification for the query user can be finished in several milliseconds based

on an extra proof of hundreds of bytes. In addition, the gas consumption for ADS

maintenance in blockchain is relatively low as well. We summarize the contributions

made in this chapter as follows:

• We take the first step to formulate the authenticated query problem over prop-

erty graph data in the scenario of the blockchain-assisted cloud.

• We design a privacy-preserving ADS called PAGB based on the completeness

set and dynamic accumulator. We then propose authenticated query processing

algorithms that satisfy the soundness and completeness for a number of queries.

• We further make the design more practical by incorporating non-interactive

protocols and designing a binary tree multiplication method.

• We formally analyze the design and conduct extensive experiments to evaluate

the performance, which demonstrates the effectiveness and efficiency of our

design.

60

Table 4.1: Notations.

Symbol Meaning

x,X a prime number, and a prime number set

v, V a node, and a node set

e, E an edge, and an edge set

na, nav node attribute, and node attribute value

ea, eav edge attribute, and edge attribute value

λ security parameter

Hprime(·) random function that computes a prime
representative for the input

φ(·) Euler totient function

The structure of this chapter is organized as follows. We first present the pre-

liminaries in Section 4.2 and give the problem formulation in Section 4.3. We then

describe the construction, maintenance and query processing of PAGB in Section 4.4

and further optimize the design in Section 4.5. We formally analyze our design in

Section 4.6 and conduct the evaluation of our design to validate the performance in

Section 4.7. Section 4.8 finally concludes this chapter.

4.2 Preliminaries

In this section, we briefly present some related preliminaries that will be used in

our solution design. The notations we often use in this chapter are listed in Table

4.1.

4.2.1 Smart Contract

To trigger the execution of the smart contract, a blockchain user can send a

transaction with input data to the contract address. Since the execution may involve

61

data storage in blockchain and computational operations, some fees will be charged

by the miner. In the smart contract of Ethereum platform [81], the transaction

cost is denominated in gas and a maximum gas limit, i.e., 8,000,000, is set to avoid

excessive consumption of resources. The transaction cost is determined by the size of

the compiled contract code and the execution cost run by the virtual machine, which

consists of the storage of global variables and the runtime of functions. According

to [81], storing a new value into the blockchain costs 20,000 gas while writing to

the existing storage costs 5,000 gas. Since the storage cost in the smart contract is

expensive, massive data storage is inapplicable to the blockchain.

4.2.2 Cryptographic Primitives

Cryptographic Hash Function. Given an arbitrary-size string as input, a cryp-

tographic hash function can output a fixed-size hash value. It is infeasible for a

probabilistic polynomial time (PPT) adversary to find the original string given the

output value since the function is preimage resistant. The hash function is also colli-

sion resistant, which means it is difficult to find two different strings with an identical

hash value.

Cryptographic Accumulator. A cryptographic accumulator is a one-way and

collision resistant structure that maps a set to a fixed-size digest. According to the

underlying contract implementation, a cryptographic accumulator can be commonly

categorized into the RSA accumulator [15] and the bilinear-map accumulator [65].

The RSA accumulator employs modular exponentiation with an RSA modulus while

the bilinear-map accumulator uses elliptic curve operations instead. One feature of the

RSA accumulator, which we choose in this thesis, is that it can prove the membership

and non-membership of an arbitrary element by generating the corresponding witness.

62

Let n be the RSA modulus and g be the generator. The accumulation value Ac =

gxp mod n, where X is the prime set and xp is the product of all elements in X, i.e.,

xp =
∏

x∈X x. The RSA accumulator can provide the following functions [53]:

• Setup(1λ): It takes 1λ as input and outputs a random λ-bit modulus n that

satisfies: n = pq, where p and q are random safe primes. It also generates a

generator g ∈ QRn \ {1}, where QRn is the group of quadratic residues modulo

n.

• Accumulation(X): It takes a set of prime numbers X as input and outputs the

accumulation value Ac using Ac = gxp mod n, where xp is the product of all

numbers in X, i.e., xp =
∏

x∈X x.

• MemWit(x): It can generate a proof of existence for the member element. It

outputs the membership witness for the element x ∈ X as: mw = gxp/x mod n.

• VerifyMem(x,mw): It can verify the validity of the membership witness. It

takes the element x and the corresponding witness mw as input, and outputs

True if mwx mod n equals Ac, otherwise outputs False.

• NonmemWit(x): It can produce a proof to prove that one element does not exist

in the set. If x /∈ X, it will first find a and b such that axp + bx = 1, and then

outputs a and d = gb mod n as the non-membership witness nmw.

• VerifyNonmem(x, a, d): It can verify the validity of the non-membership witness.

It takes the non-existent element x and its witness a, d as input, and outputs

True if Acadx mod n equals g, otherwise outputs False.

63

More elaborated construction and authentication of our accumulator will be pre-

sented in Section 4.4.

Non-interactive Proof of Exponentiation. Non-interactive Proof of Exponenti-

ation (NI-PoE) is a succinct variant of Protocol PoE (Proof of Exponentiation) that

can be utilized to improve the efficiency of verification [18]. Let G be a group and

both the prover and verifier know (x, u, w). By reducing x to a residue r, it only

takes constant time for the prover to convince the verifier that w = ux holds in G.

Specifically, NI-PoE has the following functions:

• ProveNIPoE(x, u, w): given x, u and w, it will first generate a prime number l

based on (x, u, w). Then a quotient q will be calculated q = �x/l� and a proof

Q will be returned using Q = uq mod n.

• VerifyNIPoE(x, u, w,Q): given x, u, w and the proof Q, it will first generate the

same prime number l using (x, u, w) and calculate a residue r as r = x mod l.

It will return True if Qlur mod n equals w, otherwise return False.

Non-interactive Proof of Knowledge of Exponent. Non-interactive Proof of

Knowledge of Exponent (NI-PoKE2) is a non-interactive version of Protocol PoKE2

(Proof of Knowledge of Exponent) using the Fiat-Shamir heuristic [18]. It provides a

succinct argument of knowledge of discrete logarithm by converting the exponent to

some small items. Specifically, the verifier is only given (u, w) while the prover is able

to convince the verifier that w = ux holds in G. Since the prover does not tell the

verifier the value of x, NI-PoKE2 can save the communication overhead of sending x.

To achieve this, NI-PoKE2 has the following functions:

• ProveNIPoKE2(x, u, w): given x, u and w, it will first generate an element g in

64

group G based on (u, w) and another element z = gx mod n. Then a prime

number l is generated based on (u, w, z) and a number α is produced using

(u, w, z, l). Based upon l, a quotient q and a residue r are calculated using

q = �x/l� and r = x mod l respectively. Finally, it will return a proof including

z,Q = ugαq mod n, r.

• VerifyNIPoKE2(u, w, z,Q, r): given u, w and the proof z,Q, r, it will produce

the same g, l and α using the same methods as the prover. It will return True

if Ql(ugα)r mod n equals wzα mod n, otherwise return False.

4.3 Problem Formulation

In this section, we will formulate the problem of authenticated graph query on

blockchain-assisted clouds.

4.3.1 System Model

Cloud Service
Provider

Data Owner Query Users

... ...

Blockchain

Smart ContractSmart Contract

Fig. 4.1: Authenticated Query on Blockchain-assisted Clouds.

In this subsection, we introduce the framework of authenticated graph query in

the hybrid storage of cloud and blockchain. As illustrated in Figure 4.1, our system

65

consists of four parties, i.e., a data owner (DO) who wishes to outsource his data to

the cloud, a cloud service provider (CSP) who stores data and provides query services,

a blockchain system (BC) that supports smart contract, and query users who issue

authenticated queries to the cloud. When the DO has some data to insert or update,

he will first calculate the metadata of the graph, which will be elaborated on in Section

IV. Then the metadata will be sent to the BC and the CSP for the construction or

update of ADS. In addition, the original graph data is outsourced to the CSP so

that the query service on the data can be supported. Note that the ADS will be

maintained by both the CSP and BC using the metadata. The ADS in the CSP is

used to generate the verification object (VO) for the query user to verify, while the

ADS in the BC can provide the trusted state due to the authenticity of smart contract.

The data freshness guaranteed by BC may be weaker if the block confirmation time

becomes longer, but the time cost, e.g., about 1 minute for Ethereum, is acceptable

in most circumstances where data update is not frequent.

4.3.2 Property Graph

In this chapter, we focus on the property graph to illustrate our solution. But

actually, our design is also applicable to any general directed graph. We model a

property graph as G = (V,E), where V ⊆ N is the node set and E ⊆ V × V is

the edge set. Each node in V has a node property that contains one or more node

attributes (e.g., name, URL, etc.), which can be normally represented via a set of

key-value pairs. Thus, a node v ∈ V can be denoted by (id, [〈nak, navk〉]), where
id is the unique identifier and [〈nak, navk〉] is the set of its node attribute nak and

corresponding attribute value navk. We use an ordered pair of nodes e = (vi, vj) ∈ E

signify a directed edge from node vi to node vj, where vi, vj ∈ V . Here vi and vj

66

are only the values of their identifiers. Each edge in E has the edge property, which,

similar to the node property, is a sequence of edge attributes (e.g., the relation weight).

Formally, we can denote the edge e ∈ E as (vi, vj, type, [〈eak, eavk〉]), where type is

the edge type and [〈eak, eavk〉] is the set of the edge attribute eak with respective

value eavk. Note that the value of the node attribute and edge attribute can be in

many forms like a numerical value, a string value or even a list of objects [10], which

we will not further discuss.

The authenticated queries on property graphs in this chapter include the following

types:

• node property query: Users may wish to query about the property of a

certain node. Specifically, a node property query can be in three forms as

follows:

– node property(id, na, nav): return whether node id has the attribute na

with a value of nav.

– node property(id, na): return the value of attribute na for node id.

– node property(id): return all attributes {nak} and their values {navk} that
node id contains.

• edge property query: Query users can also get the property information

about a certain edge. Analogously, we have the following forms of an edge

property query:

– edge property(vi, vj, type, ea, eav): return whether the edge from vi to vj

with type has the attribute ea with a value of eav.

67

– edge property(vi, vj, type, ea): return the value of attribute ea for edge from

vi to vj with type.

– edge property(vi, vj, type): return all attributes {eak} and their values

{eavk} that edge from vi to vj with type contains.

– edge property(vi, vj): return all relation types that edge from vi to vj has.

• connectivity query: In addition to property queries, users may hope to get the

connectivity information of the graph. More detailedly, we have the following

forms:

– outbound(vi, [typek], K): return all destination nodes that node vi can reach

within K steps while the type of each edge along the path is in [typek].

– inbound(vj, [typek], K): return all source nodes that can reach node vj

within K steps while the type of each edge along the path is in [typek].

We use an example of the knowledge graph shown in Figure 4.2 to illustrate the

authenticated query problem on graphs. We assume that there are four entity nodes,

i.e., Liverpool, George Harrison, John Lennon and The Beatles, as presented in green

boxes. Each node has a unique identifier id and two related attributes together

with respective values. The directed edges linking the nodes, which are marked in

blue boxes, represent the relation between these entities. Each edge uses a type

identifier to show the detailed relation. In addition, each relation edge is described

by two attributes, i.e., a source attribute to denote the knowledge source and a weight

attribute to express the strength of this assertion.

When a user issues a request of node property query like node property(‘John

68

Attriubute

value

Birthday

1940.10.09

Lifespan

40

id: John Lennon

Attribute

Value

Source

wikipedia

Weight

1.0

type: memberOf

Attriubute

value

Birthday

1943.02.25

Lifespan

58

id: George Harrison

Attriubute

value

Founding time

1943.02.25

Website

thebeatles.com

id: The Beatles

Attribute

Value

Source

wikipedia

Weight

1.0

type: memberOf

Attriubute

value

Founding time

1207

Population

494,814

id: Liverpool

Attribute

Value

Source

wikipedia

Weight

1.0

type: foundedIn
Attribute

Value

Source

wikipedia

Weight

1.0

type: bornIn

edge

node

Fig. 4.2: An Illustrative Example of Knowledge Graph.

Lennon’, ‘Birthday ’, ‘1940.10.09 ’), the result he gets is True. If the value of birth-

day he sends is wrong, the result will be False. A user may also send node prop-

erty(‘The Beatles ’, ‘Website’) to get the value of The Beatle’s website, but a query

like node property(‘The Beatles ’, ‘Birthday ’) will receive a result that the specified

attribute does not exist. We can find all attributes of node Liverpool, i.e., {‘Founding
time’, ‘Population’}, with the query of node property(‘Liverpool ’). The edge property

queries are quite similar to the node property queries, thus they can be formed like-

wise. Specifically, a user can query about all relation types, i.e., memberOf, from the

node John Lennon and The Beatles using edge property(‘John Lennon, The Beatles ’).

69

For the connectivity query, users may get the node The Beatles and Liverpool from

George Harrison by using outbound(‘George Harrison’, {‘memberOf ’, ‘foundedIn’},
2). Similarly, we can find the two members of The Beatles, i.e., George Harrison and

John Lennon, through the query of inbound({‘memberOf ’}, ‘The Beatles ’, 1). It is

noted that all results mentioned above should be accompanied with a corresponding

VO for verification.

4.3.3 Threat Model

In our hybrid-storage system, we model the DO and BC as fully trusted parties.

The query users are assumed to be curious about the outsourced data, which means

they may attempt to learn extraneous information apart from query results. The

CSP does not care about the data and will not leak it to others. However, the CSP is

considered untrusted as it may be dishonest about query results. This can arise from

the consideration of resource saving, hardware errors, malware or media failures. To

this end, the untrusted CSP needs to provide a VO, which contains the verification

information, along with its query result. After examining the state of ADS in the

BC, the query user can validate the soundness and completeness of the query result

using VO:

• Soundness. All objects in the result conform to the query conditions and

originate from the DO.

• Completeness. No valid object is missing from the result set.

The objective problem in this chapter is how to provide query processing and

result verification for graph queries based on our system model and threat model.

Meanwhile, we need to achieve the following goals when designing the ADS:

70

• Dynamics. The data dynamics including the operations of insertion, deletion

and update on the outsourced data should be supported.

• Privacy preserving. We assume the CSP in our model is trusted for privacy.

The BC is trusted but may passively leak information since it is publicly ac-

cessible. Therefore, the original data can only be retrieved from the DO and

CSP, otherwise privacy leakage occurs. In addition, the query user cannot get

any extraneous information of the graph except the knowledge required by the

query itself.

• Efficiency. The efficiency is embodied in the following three aspects. 1) Gas

efficiency: It costs a reasonable amount of gas for the smart contract to maintain

the ADS accommodated in the BC. 2) Communication efficiency: The verifi-

cation scheme to guarantee the data integrity incurs small network bandwidth

usage, i.e., the size of VO is small. 3) Computational efficiency: The time cost

of ADS maintenance, VO generation and VO verification is acceptable.

4.4 PAGB Design for Graph Data

In this section, we first present the construction and maintenance of the pro-

posed PAGB. We then illustrate the authenticated query processing for target query

problems and perform security analysis on our design.

4.4.1 PAGB Construction

Our PAGB construction mainly consists of four phases, i.e., setup, completeness

construction, prime representation and accumulation. As shown in Algorithm 5, the

construction involves the participation of the DO, CSP and BC. The DO executes all

71

four phases locally during the construction and then gives the constructed ADS to

the BC. The CSP also does the accumulation to maintain the ADS.

Algorithm 5: PAGB Construction on Graph Data

Input: security parameter λ, node set V , edge set E;
1 DO
2 (p, q, n, g) ← Setup(1λ); X ← φ;
3 C ← CompletenessConstruction(V, E);
4 for v ∈ V do
5 X ← X ∪ Hprime(v);

6 for e ∈ E do
7 X ← X ∪ Hprime(e);

8 for c ∈ C do
9 X ← X ∪ Hprime(c);

10 Ac← Accumulation(X);
11 Send n, g, X, V,E,C to CSP;
12 Send n, g, X,Ac to BC;

13 CSP
14 Store V,E into the graph database;
15 Ac∗ ← Accumulation(X);
16 Send Ac∗ to BC;

17 BC
18 Check whether Ac equals Ac∗;
19 Record n, g and Ac via the smart contract;

Setup. The goal of the setup phase is to generate the public key and secret key used

in PAGB. It is initially conducted by the DO and only conducted once. The DO

invokes the key generation algorithm Setup(1λ), where λ is the security parameter,

to get the system parameters, i.e., p, q, n and g. Among the four parameters, p and q

belong to the secret key and are generated and kept only by the DO. The remaining

n and g are the public key and available to all parties.

72

Completeness Construction. The completeness construction phase aims to gen-

erate completeness elements so that the information leakage of each query can be

limited to the answer itself when guaranteeing the result completeness. For instance,

suppose we have already stored node v = (id, [〈nak, navk〉]) into PAGB. Then a user

wishes to get the attribute value of na in node v by issuing a node property query,

i.e., node property(id, na). But actually node v does not have the attribute na. Intu-

itively, the CSP needs to return v and its membership witness as the VO to convince

the query user of the non-existence of na. As a consequence, all information of v is

revealed to the query user, whereas all attributes of v are not relevant to the query.

The user can get extraneous knowledge about the graph data, which violates the

principle of privacy preserving. To this end, the CSP needs to give (id, na) and its

non-membership as the VO so that the features of result completeness and privacy

preserving can both be guaranteed. In order to further cover all query types, we

propose the completeness construction algorithm as depicted in Algorithm 6.

This algorithm creates a completeness set C to hold all completeness elements re-

quired by the authenticated query types listed in Section 3.2. It extracts the identifier

id, each attribute (id, na) and each attribute-value pair (id, na, nav) for every node.

Similarly, for every edge, the identifier (vi, vj, type), each attribute (vi, vj, type, ea)

and each attribute-value pair (vi, vj, type, ea, eav) are also added to the set. More-

over, we also record the pair (vi, vj), the node outbound type (vi, out, type), the node

inbound type (vj, in, type), all types per pair (vi, vj, [typek]), all nodes per outbound

type (vi, out, type, [vk]) and all nodes per inbound type (vj, in, type, [vk]).

Prime Representation. As in [53], the input domain of the accumulator must be

prime numbers. Since the sets of nodes, edges and completeness generated in the last

73

Algorithm 6: Completeness Construction

Input: node set V , edge set E;
1 Function CompletenessConstruction(V,E)

2 C ← φ; Dic← φ;
3 for v = (id, [〈nak, navk〉]) ∈ V do
4 C ← C ∪ id;
5 for 〈na, nav〉 ∈ [〈nak, navk〉] do
6 C ← C ∪ (id, na) ∪ (id, na, nav);

7 for e = (vi, vj, type, [〈eak, eavk〉]) ∈ E do
8 C ← C ∪ (vi, vj) ∪ (vi, vj, type);
9 for 〈ea, eav〉 ∈ [〈eak, eavk〉] do

10 C ← C ∪ (vi, vj, type, ea) ∪ (vi, vj, type, ea, eav);

11 Dic[(vi, vj)].append(type);
12 Dic[(vi, out , type)].append(vj);
13 Dic[(vj, in , type)].append(vi);
14 C ← C ∪ (vi, out , type) ∪ (vj, in , type);

15 for key, value ∈ Dic do
16 C ← C ∪ (key, value);

17 return C;

74

phase are all arbitrary tuples of several objects, we need to map these tuples to prime

numbers through the prime representation phase. Some solutions to solve this have

been proposed in prior works like [35, 37]. In this thesis, we generate the random

prime representative through a random oracle algorithm Hprime(·), which computes

a prime representative for the input. It first concatenates the object in order with

reserved notations and converts it into a string, based on which a hash value can be

produced. The hash can be transformed to a corresponding integer and the output

prime is the smallest prime not less than this integer.

Accumulation. The accumulation phase is aimed to generate the ADS state, i.e.,

the accumulation value of the accumulator, for query authentication. The algorithm

first computes the product of all elements and then calculates the accumulation value

using Ac = g
∏

x∈X x mod n. On the BC side, it will produce Ac and directly give it to

the BC for further maintenance. As for the CSP side, the algorithm will first store

the node set and edge set into the graph database for normal search. Then he also

computes his own ADS state Ac∗ and sends it to the BC. After receiving the two

accumulation values from the DO and the CSP, the BC will check the validity of the

CSP’s Ac∗ by comparing it with the trusted Ac from the DO. The BC will store Ac on

the smart contract as well as the public key n and g if the validity passes. Note that

φ(n) = (p− 1) ∗ (q− 1) can be utilized on the BC side to speed up the accumulation

via Ac = g
∏

x∈X x mod φ(n) mod n.

4.4.2 PAGB Maintenance

In this subsection, we present the algorithms for PAGB maintenance, including

graph insertion, deletion and update.

Insertion. When the DO has some graph data to add, which may contain nodes

75

Algorithm 7: PAGB Insertion or Deletion

Input: node to add or delete v, edge to add or delete e;
1 Graph Data Insert or Delete (by DO)
2 Xadd ← φ; Xdel ← φ;;
3 if Add then
4 (Cadd, Cdel)← CompletenessInsert(v, e);
5 Xadd ← Xadd ∪ Hprime(v) ∪ Hprime(e);

6 if Delete then
7 (Cadd, Cdel)← CompletenessDelete(v, e);
8 Xdel ← Xdel ∪ Hprime(v) ∪ Hprime(e);

9 for c ∈ Cadd do
10 Xadd ← Xadd ∪ Hprime(c);

11 for c ∈ Cdel do
12 Xdel ← Xdel ∪ Hprime(c);

13 Send Xadd, Xdel, v, e, Cadd, Cdel to CSP;
14 Send Xadd, Xdel to BC;

15 Authenticated Query Insert or Delete (by CSP)
16 if Add then
17 V ← V ∪ v; E ← E ∪ e;

18 if Delete then
19 V ← V \ v; E ← E \ e;
20 C ← C ∪ Cadd; C ← C\Cdel;
21 X ← X ∪Xadd; X ← X\Xdel;

22 Ac∗ ← g
∏

x∈X x mod n;
23 Send Ac∗ to BC;

24 PAGB Insert or Delete (by BC)

25 if Ac∗
∏

x∈Xdel
x == Ac

∏
x∈Xadd

x mod n then
26 Ac← Ac∗;

76

and edges, the original data will be sent to the CSP. Meanwhile, the metadata is

computed by the DO and then sent to the CSP and BC so that their accumulation

values can be updated. The process of PAGB insertion is described in Algorithm

7. Due to the newly added node v and edge e, the DO will invoke the function

CompletenessInsert(v, e) to update the completeness set. This function computes

the completeness elements that will be added to and removed from the accumulator.

For v, e and the elements to be added and deleted, i.e., Cadd and Cdel, we will find their

prime representatives and then send them to the CSP and BC. Based on the primes

Xadd and Xdel, the CSP will update his accumulator as Ac∗ ← g
∏

x∈X∪Xadd\Xdel
x mod n

and send Ac∗ to the BC for check. After receiving the primes and the CSP’s accumu-

lation value, the BC will validate Ac∗ by checking Ac∗
∏

x∈Xdel
x ?
= Ac

∏
x∈Xadd

x mod n,

and accept it if it is correct.

The completeness insertion function, as shown in Algorithm 8, is aimed to replace

the elements in the completeness set due to the newly inserted node and edge. In

another word, the algorithm will delete old completeness elements and add new ones.

The elements to be deleted are stored in Cdel. These elements consist of all types per

pair (vi, vj, [typek]), all nodes per outbound type (vi, out, type, [vk]) and all nodes per

inbound type (vj, in, type, [vk]). They become stale as the new edge e is inserted. As

the elements to be added, i.e., Cadd, they contain all updated completeness elements,

which is almost the same as the construction in Algorithm 6.

Deletion. The deletion procedure of PAGB is similar to the insertion operation as

shown in Algorithm 7. The main difference is that the DO will generate the change

of completeness set using CompletenessDelete(v, e). The process of completeness

deletion is presented in Algorithm 9. For the part of attributes that node v and edge

77

Algorithm 8: Completeness Insertion

Input: node to add v, edge to add e;
1 Function CompletenessInsert(v, e)
2 Cadd ← φ; Cdel ← φ;
3 Cadd ← Cadd ∪ id;
4 for 〈na, nav〉 ∈ [〈nak, navk〉] do
5 Cadd ← Cadd ∪ (id, na) ∪ (id, na, nav);

6 Cadd ← Cadd ∪ (vi, vj) ∪ (vi, vj, type);
7 for 〈ea, eav〉 ∈ [〈eak, eavk〉] do
8 Cadd ← Cadd ∪ (vi, vj, type, ea) ∪ (vi, vj, type, ea, eav);

9 Cdel ← Cdel ∪ (vi, vj, C[(vi, vj)]);
10 C[(vi, vj)].append(type);
11 Cadd ← Cadd ∪ (vi, vj, C[(vi, vj)]);
12 Cdel ← Cdel ∪ (vi, out, type, C[(vi, out, type)]);
13 C[(vi, out, type)].append(vj);
14 Cadd ← Cadd ∪ (vi, out, type, C[(vi, out, type)]);
15 Cdel ← Cdel ∪ (vj, in, type, C[(vj, in, type)]);
16 C[(vj, in, type)].append(vi);
17 Cadd ← Cadd ∪ (vj, in, type, C[(vj, in, type)]);
18 Cadd ← Cadd ∪ (vi, out, type) ∪ (vj, in, type);
19 C ← C ∪ Cadd; C ← C\Cdel;
20 return (Cadd, Cdel)

78

e have, we can simply delete them from the completeness set. As for the remaining

three categories, that is all types per pair (vi, vj, [typek]), all nodes per outbound type

(vi, out, type, [vk]) and all nodes per inbound type (vj, in, type, [vk]), besides reducing

the lists, we also need to remove the element of (vi, vj), (vi, out, type) and (vj, in, type)

if their corresponding lists become empty.

Update. Intuitively, the update operation can be seen as inserting a new node or

edge after deleting the old one. Hence, the update of PAGB and completeness set can

be easily achieved by successively invoking the corresponding deletion and insertion

algorithms, which we will not further discuss.

4.4.3 Authenticated Query Processing

In this subsection, we describe the query processing and result verification of the

target graph queries, i.e., node property query, edge property query and connectivity

query. It is noted that we only address the authentication challenges in this chapter.

The storage of graph data in the databases and the efficiency of data query are beyond

the scope of our work since there are already some mature graph databases available.

At a high level, the design rationale of the authenticated query processing is to

give answers of the exact level that the query requires. If the object exists, then the

membership is returned. Otherwise, the non-existence is given without revealing other

additional information. We also define leakage functions revealed by corresponding

algorithms.

Node Property Query. For the node property query, we provide the following

fine-grained queries.

• node property(id, na, nav): If node id has the attribute na with a value of

79

Algorithm 9: Completeness Deletion

Input: node to delete v, edge to delete e;
1 Function CompletenessDelete(v, e)
2 Cadd ← φ; Cdel ← φ;
3 Cdel ← Cdel ∪ id;
4 for 〈nak, navk〉 ∈ [〈nak, navk〉] do
5 Cdel ← Cdel ∪ (id, na) ∪ (id, na, nav);

6 Cdel ← Cdel ∪ (vi, vj, type);
7 for 〈ea, eav〉 ∈ [〈eak, eavk〉] do
8 Cdel ← Cdel ∪ (vi, vj, type, ea) ∪ (vi, vj, type, ea, eav);

9 Cdel ← Cdel ∪ (vi, vj, C[(vi, vj)]);
10 C[(vi, vj)].remove(type);
11 if len(C[(vi, vj)]) == 0 then
12 Cdel ← Cdel ∪ (vi, vj)

13 else
14 Cadd ← Cadd ∪ (vi, vj, C[(vi, vj)]);

15 Cdel ← Cdel ∪ (vi, out, type, C[(vi, out, type)]);
16 C[(vi, out, type)].remove(vj);
17 if len(C[(vi, out, type)]) == 0 then
18 Cdel ← Cdel ∪ (vi, out, type)

19 else
20 Cadd ← Cadd ∪ (vi, out, type, C[(vi, out, type)]);

21 Cdel ← Cdel ∪ (vj, in, type, C[(vj, in, type)]);
22 C[(vj, in, type)].remove(vi);
23 if len(C[(vj, in, type)]) == 0 then
24 Cdel ← Cdel ∪ (vj, in, type)

25 else
26 Cadd ← Cadd ∪ (vj, in, type, C[(vj, in, type)]);

27 C ← C ∪ Cadd; C ← C\Cdel;
28 return (Cadd, Cdel)

80

nav, the CSP returns the result True along with the membership witness of

Hprime(id, na, nav) for verification. Otherwise, it will return the result False

and the non-membership witness of Hprime(id, na, nav). The leakage function

is Ln1 = (True, False).

• node property(id, na): If node id has the attribute na, the CSP returns the value

of attribute na for node id as the result. In addition, a membership witness

of Hprime(id, na, nav) will be sent for verification. If the attribute na does not

exist in node id, it will report the non-existence and give the non-membership

witness of Hprime(id, na) as the VO. The leakage function is Ln2 = (nav, φ).

• node property(id): If node id exists, the CSP returns all attribute-value pairs

[〈nak, navk〉] that node id contains and the membership witness of Hprime(v)

for verification. Otherwise, it will report the non-existence of id and the non-

membership witness ofHprime(id). The leakage function is Ln3 = ([〈nak, navk〉], φ).

Edge Property Query. Similarly, we also support the following authenticated

queries for edge property problems.

• edge property(vi, vj, type, ea, eav): If edge from vi to vj with type has the at-

tribute ea with a value of eav, the CSP returns the result True along with the

membership witness of Hprime(vi, vj, type, ea, eav) as the VO. Otherwise, it will

give the result False and the non-membership witness ofHprime(vi, vj, type, ea, eav).

The leakage function is Le1 = (True, False).

• edge property(vi, vj, type, ea): If edge from vi to vj with type has the attribute

ea, the CSP returns the value of attribute ea for edge (vi, vj, type) as the result.

In addition, a membership witness of Hprime(vi, vj, type, ea, eav) will be sent for

81

verification. If the attribute ea does not exist in edge (vi, vj, type), it will report

the non-existence and give the non-membership witness ofHprime(vi, vj, type, ea)

for verification. The leakage function is Le2 = (eav, φ).

• edge property(vi, vj, type): If edge from vi to vj with type exists, the CSP

returns all attribute-value pairs [〈eak, eavk〉] that edge (vi, vj, type) contains

and the membership witness of Hprime(e) for verification. Otherwise, it will

report the non-existence of (vi, vj, type) and the non-membership witness of

Hprime(vi, vj, type). The leakage function is Le3 = ([〈eak, eavk〉], φ).

• edge property(vi, vj): If edge from vi to vj exists, the CSP returns all relation

types that edge (vi, vj) contains and the membership witness ofHprime(vi, vj, [typek]).

Otherwise, it will report the non-existence of (vi, vj) and the non-membership

witness of Hprime(vi, vj). The leakage function is Le4 = ([typek], φ).

Note that the CSP will return the result and corresponding VO of just one single

witness for both node property query and edge property query. To verify the result,

the query user only needs to generate the prime representative of the tuple and check

the correctness of the witness using the aforementioned VerifyMem or VerifyNonmem.

Connectivity Query. Different from single witness in the prior two queries, the

connectivity query often produces a result of node set and the corresponding VO of

witness set. We take the outbound query as an example to illustrate our algorithms.

• outbound(vi, [typek], K): As described in Algorithm 10, we propose the OutboundQuery

function that will be executed by the CSP to generate the result NodeSet and

the VO ProofSet based on the depth-first search. For each edge type in the

desired type list [typek], the original node v will check whether it has such an

82

outbound relation type. On one hand, if node v has such an outbound edge,

the destination nodes will be added to the result set. Meanwhile, the tuple (v,

out, type, C[(v, out, type)]) and its membership witness are added to the VO for

verification. As for the destination nodes in the successor set, when K is larger

than 1, which means further search is required, the OutboundQuery function

will be invoked recursively by each node with parameter K changing to K − 1.

On the other hand, if v does not have the desired type, the authenticated query

needs to return the tuple (v, out, type) along with its non-membership witness.

The leakage function is Lc1 = ([〈vk, [(vk, out, [typek])]〉]), where vk is any node

that initial node vi can reach along the way and [(vk, out, [typek])] means the

node list that vk connects to via outbound edges with [typek].

Algorithm 11 shows the VerifyOutbound function for the query user side to

validate the result and VO. Similar to the CSP, it will traverse the nodes from

v to get the set of nodes by calling the recursive function GetOutbound. If the

set is identical to the result NodeSet returned by the CSP, then the result will

be accepted. In the function GetOutbound, for each desired type relation, the

user will find out whether the original node has the successor nodes. If not,

it will verify the validity of the non-membership witness using VerifyNonmem.

Otherwise, the user can verify the membership witness with VerifyMem and

then add the destination nodes to the search list. If K is greater than 1, the

traversal will proceed from each successor node.

• inbound(vj, [typek], K): the procedure is almost the same as the outbound except

changing out to in. Accordingly, the leakage function is Lc2 = ([〈vk, [(vk, in, [typek])]〉]).

83

Algorithm 10: Authenticated Outbound Query (by CSP)

Input: initial node v, a set of desired types [typek], step number K;
1 Function OutboundQuery(v, [typek], K)

2 NodeSet← φ; ProofSet← φ;
3 for type ∈ [typek] do
4 if C[(v, out, type)] �= φ then
5 NodeSet← NodeSet ∪ C[(v, out, type)];
6 o← (v, out, type, C[(v, out, type)]);
7 if o has not been checked then
8 x← Hprime(o);
9 mw ← MemWit(x);

10 ProofSet← ProofSet ∪ 〈o,mw〉;
11 if K > 1 then
12 for node ∈ C[(v, out, type)] do
13 (nSet, pSet)← OutboundQuery(node, [typek], K − 1);
14 NodeSet← NodeSet ∪ nSet;
15 ProofSet← ProofSet ∪ pSet;

16 else
17 o← (v, out, type);
18 if o has not been checked then
19 x← Hprime(o);
20 nmw ← NonmemWit(x);
21 ProofSet← ProofSet ∪ 〈o, nmw〉;

22 return NodeSet, ProofSet;

84

Algorithm 11: Result Verification of Outbound Query (by Query User)

Input: initial node v, a set of desired types [typek], step number K, result Set
NodeSet, VO ProofSet, accumulation value Ac from BC;

1 Function VerifyOutbound(v, [typek], K,NodeSet, ProofSet, Ac)
2 nSet← GetOutbound(node, [typek], K, ProofSet, Ac);
3 Check whether nSet equals NodeSet;

4 Function GetOutbound(v, [typek], K, ProofSet, Ac)
5 nSet← φ;
6 for type ∈ [typek] do
7 Find 〈o,mw or nmw〉 regarding (v, out, type) in ProofSet;
8 x← Hprime(o);
9 if o is (v, out, type) then

10 VerifyNonmem(x, nmw, Ac);

11 else
12 VerifyMem(x,mw, Ac);
13 nSet← nSet ∪ C[(v, out, type)];
14 if K > 1 then
15 for node ∈ C[(v, out, type)] do
16 nSet← nSet ∪

GetOutbound(node, [typek], K − 1, P roofSet, Ac);

17 return nSet;

85

4.5 Optimization

In this section, we propose two optimization methods, i.e., batch verification and

product calculation, to reduce time cost and network overhead in practice.

4.5.1 Batch Verification

When processing some authenticated queries, e.g., connectivity queries, the CSP

needs to return the query result along with the VO, which consists of numerous

membership and non-membership witnesses. The large amount of witnesses not only

brings too much communication cost, but also takes a lot of time for the query users

to verify the witnesses one by one. Inspired by [18], we utilize the batch technique to

improve the efficiency of query processing.

Membership Witness. Assume we have a prime number set X that contains

all elements in the accumulator and a subset XA ⊆ X is the set that we need to

prove its membership. The product of all elements in X is signified as xp =
∏

x∈X x.

Instead of calculating the witness for each element in XA, we can directly compute the

product of these elements, denoted as xa =
∏

x∈XA
x, and provide the witness of this

product. In detail, through the function MemWit(XA), we can get the witness mw =

gxp/xa mod n for XA. Using this witness, the query user can verify the membership

by the function VerifyMem(xa,mw), i.e., whether Ac equals mwxa mod n. When the

amount of elements in XA gets larger, the value of xa rises and it takes more time for

the user to calculate mwxa .

We hereby employ the aforementioned NI-PoE to reduce the computation com-

plexity of the query user. The CSP can invoke ProveNIPoE(xa,mw,Ac) to generate

the proof Q and send it to the query user. After receiving the proof, the user can

86

call the verification function VerifyNIPoE(xa,mw,Ac, Q) to check the validity. This

NI-PoE method only needs an extra λ-bit of proof Q to avoid many modular expo-

nentiation operations for the query users.

Non-membership Witness. Different from the membership witness, i.e., a λ-bit

integer, the non-membership witness is a proof that consists of two elements. Assume

we have another prime number set XB that XB ∪ X = φ, and the product of all

elements in XB is xb, i.e., xb =
∏

x∈XB
x. Since xp and xb are co-prime, the witness

generation first calculates the Bezout coefficients a, b ∈ Z satisfying the relation

axp + bxb = 1. Then the CSP will return a and d = gb mod n as the witness and the

query user needs to check whether Acadxb mod n equals g. Suppose the number of

elements in XB is |XB| and each element is a s-bit prime integer. As to the batch

verification, the coefficient a is |XB|s-bit and gets larger when |XB| rises, which leads

to a big size of VO and much computation complexity for the user to check.

To avoid transmitting the coefficient a from the CSP to the user, we exploit NI-

PoKE2 method to prove the validity of Aca to the user without telling a. Specifically,

the CSP calls the function ProveNIPoKE2(a,Ac,Aca) to generate the non-interactive

proof (z,Q, r) and send it to the query user. The correctness of Aca will then

be validated by the user using VerifyNIPoKE2(Ac,Aca, z, Q, r). With the value of

Aca, the non-membership witness can be verified easily. According to the function

ProveNIPoKE2, the size of proof (z,Q, r) is s + 2λ bits, which is much smaller than

|XB|s bits. This can help maintaining the constant size of VO and reducing a lot of

modular exponentiation operations during the verification phase.

Since the size of xb itself is very large, it is costly to calculate dxb as well.

Based on the correct Aca, we can further employ NI-PoE to save the computation

87

time. Specifically, the CSP can invoke ProveNIPoE(xb, d, g(Ac
a)−1) to convince the

query user that Acadxb = g holds with the proof Q. The query user then calls

VerifyNIPoE(xb, d, g(Ac
a)−1, Q) to validate the result.

Batch Algorithms. With the batch verification techniques, some minor modifi-

cation on the authenticated query processing of connectivity query is needed. In

Algorithm 10, the tuples and their prime representatives are still produced, but the

membership or non-membership witness will not be calculated individually by MemWit

nor NonmemWit. Instead, all membership primes and non-membership primes will be

multiplied and aggregated into one witness respectively. As for the result verification

in Algorithm 11, it will only check the correctness of the tuples and perform the

search in advance. The validity of the membership witness and the non-membership

witness will be verified at the last step using the batch verification.

4.5.2 Product Calculation

During the setup phase of the accumulator, we need the product of the represen-

tatives of elements, i.e., the prime numbers, to do the accumulation. Meanwhile, the

batch verification also involves the product computation of the batch prime number

set. Intuitively, we can multiply them one by one to calculate the product of these

elements. The underlying multiplication method can be the grade-school multiplica-

tion or the Karatsuba algorithm, which is a fast multiplication algorithm of O(n1.58)

complexity for two large integers. However, this successive multiplication method

proceeds quite slowly when it comes to a dataset of large size regardless of the mul-

tiplication method. This is because the prior product will contain too many bits

and the next element is much smaller, degrading the performance of the Karatsuba

algorithm. To this end, we propose a binary tree multiplication method to expedite

88

the process of product computation.

Our method will first expand the prime number set X to the size that equals the

smallest 2n, i.e., power of 2, not less than |X| and pad the set with integer 1. Hence,

the elements can be transformed into the form of binary tree and the multiplication

operations can be conducted from the bottom to the top to produce the final result.

Figure 4.3 shows an example of our method working on a prime number set of 7

elements. The total amount is expanded from 7 to 8 by padding the set with one

default value 1, i.e., the last leaf marked dark in the figure. When the two integers are

both large, e.g., p12 and p34, the Karatsuba algorithm works faster than the grade-

school multiplication. The efficiency improvement becomes more notable as the two

multipliers get larger. Therefore, we use the grade-school multiplication at the low

layers, e.g., the leaf layer, and employ the Karatsuba algorithm for the upper layers

(marked in green).

p12=x1*x2 p34=x3*x4 p56=x5*x6 p7=x7*1

p14=p12*p34 p57=p56*p7

p17=p14*p57

x1 x2 x3 x4 x5 x6 x7 1

Fig. 4.3: Binary Tree Multiplication.

89

4.6 Design Analysis

4.6.1 Security Analysis

We first give the formal definition of security for our ADS and authenticated

algorithms.

Definition 1 (Secure). The authenticated graph query algorithms on ADS is sound
and complete if for any PPT adversary A, the probability to succeed in the following
experiment is negligible.

• A chooses a graph dataset D. The algorithms generate the ADS and the corre-
sponding state Ac via D and give them to A;

• In response to a query Q, A returns a result R and a proof VO to the query
user. A conducts a successful attack if the VO passes the verification using Ac
and R meets: {o|o /∈ Q(D) ∧ o ∈ R} �= φ ∨ {o|o ∈ Q(D) ∧ o /∈ R} �= φ.

This property indicates that it is infeasible for a malicious CSP to convince the

query user if the result is incorrect or incomplete. We then prove that our algorithms

achieve this security property.

Lemma 1. The construction of our underlying RSA accumulator is secure.

Proof. The proof of the security of our underlying RSA accumulator is omitted here,
as it has been well investigated under the strong RSA assumption in [53].

Theorem 1. Our authenticated graph query algorithms based on PAGB are secure if
the hash function is collision resistant and the underlying RSA accumulator is secure.

Proof. Based on Lemma 1, we prove it by contradiction.
{o|o /∈ Q(D) ∧ o ∈ R} �= φ states that there exists some objects in the result R

that do not conform to the query Q on the original dataset D. During the process of
prime representation, each object in D will first produce a hash value using the con-
catenation of reserved notations and then find a corresponding prime representative
through random oracle. Due to the security property of the RSA accumulator, the
membership witness of such an incorrect result cannot be forged, which means that
there exist two objects with different contexts but identical hash value. This indicates
the collision occurs in the underlying hash function, which violates our assumption.
{o|o ∈ Q(D) ∧ o /∈ R} �= φ means that some qualified objects are missing from

the result R. Our authentication query algorithms require the CSP to give the proof

90

of non-existence. For the node property and edge property query, the CSP needs
to provide the corresponding non-membership witness if the queried object does not
exist. As for the connectivity query, during the depth-first search along the path,
the CSP is required to return the non-membership witness if the node does not have
such an edge. Moreover, the membership witness of the list of successor nodes is also
needed. Since the unforgeability of the witness is guaranteed by the security of the
RSA accumulator, a missing answer can only be caused by a hash collision between
the valid result and the tampered result. Then we get a contradiction to the given
assumption.

4.6.2 Privacy Analysis

Besides the leakage revealed during the query, i.e., Lquery = (Ln1,Ln2,Ln3,Le1,Le2,

Le3,Le4,Lc1,Lc2) in Section 4.3, we also define the leakage from the BC side as

Lbc = (|x|q), where |x| is the bit length of the prime representative and q is the

amount of all elements. Based on Lquery and Lbc, we present the formal definition of

privacy preserving in our design as below:

Definition 2 (Privacy preserving). The authenticated graph query algorithms on ADS
achieve the property of privacy preserving if for all PPT adversaries A, the probability
to succeed in the following experiment is negligible.

• A chooses a graph dataset D. The algorithms generate the ADS and the corre-
sponding state Ac via D and give them to A;

• In response to a query Q, A returns a result R and a proof VO to the query
user. The privacy of D is successfully leaked to A if the following condition is
satisfied: {l|l ∈ {R, V O} ∧ l /∈ {Lquery,Lbc}} �= φ.

This property states that it is infeasible for the query user to get any extraneous

information from R and VO except the desired leakages, i.e., Lquery and Lbc. We then

show that our proposed PAGB ensures the privacy preserving property.

Theorem 2. Our authenticated graph query algorithms based on PAGB are privacy-
preserving if the underlying hash function is preimage resistant.

91

Proof. From the authenticated query side, our query processing algorithms will not
leak any information other than Lquery. As shown in Section 4.3, we choose to return
the non-existence proof instead of offering the entire data of the desired object, which
prevents any extraneous information irrelevant to the query being accessed. For node
property and edge property query, we make the CSP return the answer of the exact
granularity that query Q has. It will return the answer if D has, otherwise, it will
report the non-existence instead of presenting the entire related data. When process-
ing the connectivity query, the CSP only gives the list of all successor nodes, i.e.,
(Lc1,Lc2), which are the basic knowledge of the connectivity information. Therefore,
A cannot learn any irrelevant information about the data.

As for the blockchain side, the original graph data will not be revealed to the public
through the blockchain. We can prove this case by contradiction. The metadata sent
from the DO to the smart contract is a list of prime numbers, which are generated
based on the hash values of objects in the graph data. Hence, the only leakage is the
bit length and total amount of these numbers, i.e., Lbc. Any leakage of the original
data from the blockchain indicates that A can infer the original objects only from the
hash values, which violates the assumption of preimage resistance.

Despite the leakage profiles of our query type having been explicitly defined, our

query processing algorithms are vulnerable to some leakage-abuse attacks. Under

these attacks, adversaries with some prior knowledge will be able to infer some useful

information of original data based on the given leakages. For instance, suppose an

adversary has the knowledge that there is only one girl in the dataset, then he can

easily tell a node with a ‘female’ gender property is actually Alice. Hence, her name

property can be seen as extra leakage since it is out of the defined leakage profile.

4.6.3 Complexity Analysis

We also investigate the complexity of our design. Assume n, e, a denote the node

number, edge number and average attribute number respectively, the size of com-

pleteness set is O(a ∗ (n+ e)). The complexity of Prime Representation is O(log4 p),

where p is the prime number. It will find the primes for O(log p) times in average and

92

each time Miller–Rabin primality test is invoked, whose complexity is O(log3 p). The

PAGB maintenance, including insertion, deletion and update, takes time of O(log s),

where s is the bits of prime. The complexity of property queries is O(1) and the path

query is of O(q) size, where q is the number of qualified nodes. The single mem-

bership and non-membership witness Prove and Verify both take O(s) time while

batch Prove and Verify both take O(b ∗ s) time, where b is the batch size. The gas

consumption in our PAGB, which will be presented in Section 4.7, is relatively lower

than other designs like [41, 93]. The first reason is that we store only two variables

on the smart contract instead of all original data since storing a new value is quite

expensive on the blockchain. The other reason is that the modular exponentiation

in our PAGB can be finished in time of O(log s), where s is the bit number of the

exponent.

4.7 Implementations and Evaluation

In this section, to better demonstrate the effectiveness and efficiency of our design,

we conduct the evaluation for the DO, CSP and the query users, including the test

programs1. In addition, we construct a smart contract in Solidity and deploy it to the

official Ethereum test network Rinkeby. The contract address and its owner account

in Rinkeby are

• 0x8279c1f690af25d0b5777856eb6253f7e2333913.

• 0x71de049070119ab79b6189be6cb4acb099a291ca.

We run the experiments on a machine with i9-9900K CPU, 32 GB memory and 1

TB SSD. All tests are written in Python 3.8.0 and conducted only in one CPU core

1Online at https://github.com/tripleday/PAGB.

93

rather than in parallel to assess the worst case. Our design is able to be accelerated

rapidly by parallel computation if applied to practical systems. In our experiments,

we select three types of real-world graph datasets, i.e., ca-CondMat2, cage153 and

ConceptNet54, to comprehensively evaluate the performance of our design. The edge

attributes of ConceptNet5 are reduced to 2 for simplicity. The public key n in our

RSA accumulator generation is set to be 256-bit and the prime representatives are

limited to be 128-bit integers, which are not absolutely secure but suffice for normal

applications.

Table 5.1 lists the comparison between our design and other relevant designs for

authenticated queries. In order to ensure fairness, we skip the quantitative comparison

with other designs since most related designs do not possess the first three features

listed in the table. The only work that we can compare is the traditional MHT

adopted in [93]. However, the cost of storing graph data in the format of MHT using

smart contract is too prohibitive to present, of O(n2) storage on BC rather than our

O(1) storage (n is the node number). Besides, MHT is incapable of privacy-preserving

authenticated queries since all keys are exposed on the smart contract.

4.7.1 Accumulator Performance

Accumulator Setup. We first evaluate the performance of the accumulator setup,

which includes prime representation, product calculation and accumulation, in Fig-

ure 4.4. We contrast our binary tree multiplication method with the normal succes-

sive multiplication for product calculation. When the amount of elements reaches

2Available at https://snap.stanford.edu/data/ca-CondMat.html.
3Available at https://sparse.tamu.edu/vanHeukelum/cage15.
4Available at http://conceptnet5.media.mit.edu/.

94

Table 4.2: Comparison with Existing Designs.

Design Authentication Method(s)
General

Graph

Property

Graph
Dynamics

Privacy

Preserving

ADS

Freshness

[22]
Hashing with

Common-prefix Proofs
× × √ √ ×

[30]
Cryptographic Accumulator

with Merkle Hash Tree
× × × √ ×

[48]
Tree Traversals and

Aggregate Signatures

√ × × √ ×

[12]
Hashing with

Tree Representation

√ × × √ ×

[33] Redactable Graph Hashing
√ × × √ ×

[96]
Cryptographic Accumulator

with Digital Signature

√ × √ √ ×

[93] Suppressed Merkle B-tree × × √ × √

Our PAGB
Dynamic Accumulator

with Blockchain

√ √ √ √ √

1,000,000, our proposed method is over 50 times more efficient than the simple grade-

school multiplication. The time cost of prime representation and accumulation are

both nearly linear to the size of the element set. When the size is up to 1,000,000,

the prime representation, multiplication and accumulation take about 1,100, 12,900

and 60 seconds respectively.

Amount of Elements 105
0 2 4 6 8 10

Ti
m

e
(s

)

0

200

400

600

800

1000

Prime Representation
Multiplication (successive)
Multiplication (binary tree)
Accumulation

105
0 5 10

2000
6000

10000

Fig. 4.4: Time Cost of Accumulator Setup.

Figure 4.5 shows the memory cost of our proposed binary tree multiplication. We

95

evaluate the method in the best case (the total number is a power of 2), the worst

case (the total number is 1 plus power of 2) and the case of 1,000,000 elements. Since

the multiplication proceeds from the bottom layer to the root, we count the total size

of all elements involved in each step. We can observe that the size drops rapidly as

the process goes to the root of the binary tree and finally remains at a level that is

proportional to the total number. When the case switches from the best case to the

worst one, the initial size at the leaf layer will increase a lot because our method will

pad the set with a lot of ’1’ at first. However, it will diminish quickly to the normal

size within 5 steps. This is because in the worst case, the number of padding ’1’

decreases and extra memory cost for them becomes negligible as a result.

Layer Number from the Bottom
0 5 10 15 20

Si
ze

 (B
yt

es
)

107

0

1

2

3

4

5
524,288 (219)
524,289 (219+1)
1,000,000

Fig. 4.5: Memory Cost of Binary Tree Multiplication.

Single Witness. Figure 4.6 depicts the generation time of one single membership

witness and non-membership witness, which are widely adopted in the node property

query and edge property query. We can see that the time costs of the two witnesses

are close and both accrue almost proportional to the amount of elements. The reason

behind both cases sharing similar proportional relationship is that the main time costs

of membership and non-membership witness generation both depend on the modular

96

exponentiation, where the size of the power is determined by the number of existing

elements. It takes about 1 minute to generate a membership or non-membership

witness when the size reaches 1, 000, 000.

Amount of Elements 105
0 2 4 6 8 10

G
en

er
at

io
n

Ti
m

e
(s

)

0

10

20

30

40

50

60 Membership Witness
Non-membership Witness

Fig. 4.6: Time Cost of Single Witness Generation.

Gas Consumption. We also test the gas consumption of the PAGB maintenance

in the smart contract. Since both the add and deletion operations of the graph data

turn out to be an element insertion into the accumulator, we present the transaction

cost and execution cost with increasing element amount in Figure 4.7. The average

gas cost for an extra element is only about 25,000 gas. Compared with traditional

structures like tree-based ADS in [93], where all data and tree roots are stored on

smart contract, our PAGB is much more efficient because only the accumulation value

is updated.

Completeness Set. As for the accumulator setup based on various graph datasets,

the main differences lie in the size of their completeness sets. We evaluate the com-

pleteness construction for different graph datasets in Figure 4.8. As shown in Figure

4.8a, the completeness set generated from ca-CondMat is small and only a bit bigger

than the node set. This is because ca-CondMat is a simple directed graph with no

97

Amount of Elements
2 4 6 8 10 12 14

G
as

 C
on

su
m

pt
io

n
(g

as
)

105

0.5

1

1.5

2

2.5

3

3.5
Execution Cost
Transaction Cost

Fig. 4.7: Gas Consumption.

attributes or edge types, during the completeness construction, the algorithm only

needs to generate elements about outbound and inbound nodes. As for the cage15

dataset that has one edge attribute, known as the weight, it also produces tuples for

edge attributes. Figure 4.8b shows that the corresponding completeness set is larger

than the node set and edge set. Figure 4.8c depicts the completeness construction

of ConceptNet5, which is a directed graph with 24 edge types and 2 edge attributes.

The size of completeness set is about 4.7 times the sum of the node and edge set

because of many elements for edge types during the construction.

Amount of Lines 105
0.5 1 1.5

A
m

ou
nt

 o
f E

le
m

en
ts

104

0

5

10

15 Node
Edge
Completeness

(a) ca-CondMat

Amount of Lines 105
0 2 4 6

A
m

ou
nt

 o
f E

le
m

en
ts

105

0

2

4

6

8 Node
Edge
Completeness

(b) cage15

Amount of Lines 105
0 2 4 6

A
m

ou
nt

 o
f E

le
m

en
ts

106

0

1

2

3

4 Node
Edge
Completeness

(c) ConceptNet5

Fig. 4.8: Graph Data Completeness Construction.

98

4.7.2 Batch Verification

To illustrate the necessity of the batch verification, we present the amount of

membership witnesses and non-membership witnesses that a connectivity query on

ConceptNet5 involves in Figure 4.9a and Figure 4.9b respectively. We take the Con-

ceptNet5 as an example and show the amount of membership witnesses and non-

membership witnesses under an outbound query in Figure 4.9a and Figure 4.9b re-

spectively. Both the step K and the size of type list [typek] vary from 1 to 10.

When either of K and the amount of types are small, the average amount of mem-

bership witnesses needed remains small as well. However, the average amount of

non-membership witnesses is relatively larger than that of membership witnesses. In

addition, from Figure 4.9b we can see that, K affects the amount of non-membership

witnesses more than the type amount. Observe that the amount of membership and

non-membership witnesses will increase rapidly when K and amount of types both

become larger.

10

Amount of Types

9876543211234567

K

8910

0

100

50

A
m

ou
nt

 o
f M

em
be

r W
itn

es
se

s

10987678910

2500

500
1500

(a) Membership witness

Amount of Types

109876543211234567

K

8910

50

0

100

A
m

ou
nt

 o
f N

on
-m

em
be

r W
itn

es
se

s

109876678910

4000
2000

(b) Non-membership witness

Fig. 4.9: Witnesses of A Connectivity Query on ConceptNet5.

99

We further evaluate the performance of the batch technique in terms of witness

generation and witness verification. We conduct the experiment on a set that contains

100,000 elements with the batch size increasing from 1,000 to 10,000. As shown in

Figure 4.10, compared with the normal verification which verifies the product directly

without any protocols, the batch witness generation only takes negligible extra time.

However, from Figure 4.11 we can observe that, the verification speed can be raised

about 5 and 10 times for membership witness and non-membership witness respec-

tively. Moreover, the batch proofs in these two cases also remain constant in size, 120

bytes for membership witness and 344 Bytes for non-membership witness. Therefore

our design achieves both computational efficiency and communication efficiency.

Batch Size
0 5000 10000

G
en

er
at

io
n

Ti
m

e
(s

)

0

5

10

15

20

Normal Verification
Batch Verification

(a) Membership witness

Batch Size
0 5000 10000

G
en

er
at

io
n

Ti
m

e
(s

)

0

500

1000

Normal Verification
Batch Verification

(b) Non-membership witness

Fig. 4.10: Batch Witness Generation.

4.8 Chapter Summary

In this chapter, we take the first step to investigate the authenticated graph query

problem on the blockchain-assisted cloud. To address the challenges of authenticated

query and privacy leakage, we put forth a novel ADS, named PAGB, that can be

easily maintained by the blockchain at a low cost. The freshness and integrity of

ADS can be perfectly ensured by the blockchain. We further improve the efficiency

100

Batch Size
0 5000 10000

V
er

ifi
ca

tio
n

Ti
m

e
(s

)

0

0.2

0.4

0.6

0.8 Normal Verification
Batch Verification

(a) Membership witness

Batch Size
0 5000 10000

V
er

ifi
ca

tio
n

Ti
m

e
(s

)

0

0.5

1

1.5
Normal Verification
Batch Verification

(b) Non-membership witness

Fig. 4.11: Batch Witness Verification.

by virtue of the non-interactive protocols and binary tree multiplication. Our design

possesses the desirable features of dynamics and privacy preserving, and theoretical

analysis and prototype implementation demonstrate its effectiveness.

Our work offers an unprecedented paradigm for graph data storage on blockchain

along with its authenticated query. It opens up a new direction for storage of com-

plicated data structures on blockchain. The main constraint of our design is that we

assume the CSP will not leak any data since the outsourced data is raw rather than

encrypted. Moreover, the query types on graph data we can support do not include

some complicated ones that involve numerical values, e.g., shortest path query. In the

future, besides the above constraints, it will also be interesting to investigate how to

support other complex graph queries such as subgraph queries and graph similarity

queries since our basic connectivity information may help.

Chapter 5

Verifiable, Secure and Fair Search
on Encrypted Numerical Data

Verifiable Searchable Symmetric Encryption (SSE) enables reliable and privacy-

preserving search over encrypted data on untrusted clouds. Most existing SSE designs

only focus on keyword-file search. However, a more difficult but useful search, range

search over encrypted numerical values remains unsolved. Moreover, the fairness

of search in the mutual distrusted scenario without public verification, where data

users may maliciously deny the results after the local result verification, is not well

addressed yet. In this chapter, we take the first step to study the public verification

problem atop the blockchain for encrypted numerical search. We design a novel

verifiable SSE scheme named Slicer based on a Succinct Order-Revealing Encryption

(SORE) scheme to achieve range search on numerical data. We illustrate the security

and practicality of our design through rigorous analysis and extensive evaluations

respectively.

101

102

5.1 Overview

Outsourcing data to clouds has become a strong trend for data owners to relieve

great storage costs and heavy online burdens. Since the outsourced data may involve

private information, e.g., medical records or business secrets, data owners usually

encrypt the data while maintaining the ability to search over it. Some powerful and

generic techniques like multi-party computation and homomorphic encryption cannot

be applied to this scenario due to practical inefficiency despite high security. To this

end, searchable symmetric encryption (SSE), which is a structured encryption based

on symmetric encryption, has been extensively studied [29, 44] owing to its prominent

efficiency.

Most traditional SSE schemes assume that clouds are honest but curious, which

means they will honestly follow the stipulated protocols but attempt to learn informa-

tion about the outsourced data. This assumption, however, does not always suffice in

practical scenarios where dishonest clouds may deviate from the protocols and return

non-conforming results. To alleviate this concern, verifiable SSE has become one of

the focuses of active research (e.g., [20, 24, 59, 77, 95, 97]). Nevertheless, there still

remain the following three limitations that have not been well addressed.

First, most verifiable SSE schemes [34, 59, 75, 77, 95, 97] are limited to the

keyword-file search type, and incapable of range search over the data content. How-

ever, numerical data exists ubiquitously in the real world, such as ages in medical

records, and transaction values in business secrets. How to enable the encrypted

search over numerical data is challenging, since the solution of employing the tradi-

tional keyword-file search to traverse all values is totally infeasible.

In addition, many existing verifiable SSE designs [20, 24, 34, 59, 76, 97] let data

103

users locally verify the search results based on the assumption that data users will

honestly report the verification outcome. But in practice, to avoid paying search

fees, data users are strongly motivated to repudiate the search results despite of their

correctness. Therefore, public verification of search results is highly desired to ensure

fairness in this scenario, where data users and clouds are mutual distrusted. To

achieve this, we should properly address two challenges: 1) The public verification

cannot reveal any privacy of original data; 2) The process of public verification needs

to be trusted. A recent work ServeDB [83] enables verifiable range queries over

encrypted data, but its verification requires the decryption of data, which violates

the first rule. Several designs [40, 41, 52] based on blockchain have been proposed

to tackle the problem. Unfortunately, none of them support the range search over

numerical data and excessive data is required to be stored on blockchain.

Lastly, data updates are also significant in real-world applications. This require-

ment entails the following two main challenges. First, the data freshness should be

guaranteed in the multi-user scenario where data users may not be the data owner.

Data users need to be convinced that the search results are from the newest data.

Moreover, forward security [19], which prevents the insertion operation from leaking

whether the newly added data matches former searches, is another important privacy

requirement for data dynamics.

In this chapter, we are the first to investigate the public verification problem atop

the blockchain for encrypted numerical search. To support numerical search, we devise

a Succinct Order-Revealing Encryption (SORE) scheme that works like a slicer to slice

an order condition into several slices, each of which can be treated as a keyword search.

Further, we design a public verification algorithm for these slices using multiset hash

104

and RSA accumulator. We adopt the blockchain as the trusted party to fairly execute

the public verification and guarantee the data freshness. We also incorporate the

trapdoor permutation to achieve forward security so that insertion privacy can be

guaranteed. In general, our contributions are summarized as follows:

• We take the first step to propose a framework of verifiable encrypted search

over numerical data using blockchain. It supports public verification so that

fairness can be ensured in the mutual distrusted scenario.

• We step over from the normal keyword search to the numerical search by de-

vising the SORE scheme. Further, we design a novel verifiable and secure SSE

scheme called Slicer, including Build, Search and Insert protocols.

• We strictly prove the correctness and security of the proposed SORE scheme

and the encrypted search protocol.

• We implement a prototype and conduct extensive experiments to evaluate the

performance. The result validates the effectiveness and efficiency of our design.

The rest of this chapter is organized as follows. We first give the preliminaries in

Section 5.2. We then formulate the problem in Section 5.3 and describe our design in

Section 5.4. We further analyze the design in Section 5.5 and present the evaluation

in Section 5.6. Section 5.7 finally concludes our chapter.

5.2 Preliminaries

In this section, we briefly present some related preliminaries that will be used in

our solution design.

105

Symmetric Encryption. A symmetric encryption scheme usually consists of three

algorithms {KGen,Enc,Dec}: KGen takes the security parameter λ as input and

returns a symmetric key KR; Enc takes the key KR and a plaintext m as input and

returns a ciphertext m′; Dec takes KR and m′ as input and returns the plaintext m.

Pseudo-Random Function. Define pseudo-random function (PRF) F : K × X →
Y , if for all PPT distinguishers D, there exists a negligible function negl such that:
∣∣Pr [DFk(·) (1λ) = 1

]− Pr
[
Dfλ(·) (1λ) = 1

]∣∣ ≤ negl(λ), where k is randomly chosen

from K and fλ(·) is a truly random function from X to Y .
Trapdoor Permutation. A trapdoor permutation is a function that can be com-

puted in one direction easily, but difficult in the inverse direction without the trap-

door. Formally, π is a trapdoor permutation if for any PPT adversaryA, Pr[y $←−M,

x← A (
1λ, pk, y

)
: πpk(x) = y] ≤ negl(λ) while πpk

(
π−1
sk (x)

)
= x and π−1

sk (πpk(x)) =

x. Here pk and sk are generated public key and secret key respectively, and πpk(·)

and π−1
sk (·) can be efficiently calculated.

Multiset Hash Function. The multiset hash function maps a multiset to a fixed-

size string. Define a triple of PPT algorithms (H,≡H,+H) and it is a multiset hash

function if for multiset M and N :

• H(M) ≡H H(M).

• H(M ∪N) ≡H H(M) +H H(N).

In this chapter, we employ the MSet-Mu-Hash construction in [28]. It is defined as

H(M) =
∏

b∈B H(b)Mb , where M is a multiset of elements of a countable set B and

Mb is the number of times that b appears in M . H(·) is a poly-random function that

maps a set to a finite field GF (q). It is proved that H is multiset collision resistant

under the discrete log assumption.

106

This chapter also employs four functions of RSA accumulator mentioned in Section

4.2, i.e., Setup(1λ), Accumulation(X), MemWit(x) and VerifyMem(x,mw).

5.3 Problem Formulation

In this section, we present our model of verifiable encrypted search over numerical

data and design goals.

5.3.1 Framework Architecture

CloudsClouds

Data OwnerData Owner

Data UserData UserData User

... ...
Blockchain

Smart ContractSmart Contract

Blockchain

Smart Contract

... ...
Blockchain

Smart Contract

ADS

Search

Verify

Fig. 5.1: Verifiable encrypted search using blockchain.

As shown in Figure 5.1, our search framework is comprised of four parties, i.e., data

owners, data users, clouds and blockchain. The data owner outsources his encrypted

data and established indexes to clouds for their storage and search services. He also

gives his secret keys to authorized data users so that they can generate search tokens

on their own. The blockchain can publicly verify the results returned by clouds via

smart contract.

107

The workflow starts from the initialization of the data owner. In addition to the

data, indexes and secret keys, the data owner also generates the authenticated data

structure (ADS) and sends it to the blockchain. When the data user wants to search

over the encrypted data, he calculates the search tokens and gives it to the blockchain

as well as the payment for the cloud’s search services. Then the cloud retrieves the

search tokens and executes the search to get the results. It also returns the proofs

for further result verification on blockchain. The verification is performed by the

smart contract using the received search tokens, results and proofs. If the verification

passes, the payment will be transferred to the cloud, otherwise it will be refunded.

5.3.2 Threat Model

We regard the data owner and blockchain as fully trusted parties. The data owner

faithfully builds the encrypted indexes and ADS, and delivers them with encrypted

data. The blockchain guarantees the trusted storage and program execution via

underlying consensus protocols. For data users, we model them as quasi-honest, which

means they are honest about secret keys maintenance and search token generation.

But they may become dishonest about the result verification after receiving search

results and proofs from clouds. They can save the search fees if they deliberately deny

the returned results regardless of their correctness. For the clouds, we assume two

aspects of dishonest behaviors. First, the cloud may maliciously return incorrect or

incomplete results due to commercial interests or security vulnerabilities. The other

aspect is that they might attempt to learn the content of the outsourced data for

further abuse.

108

5.3.3 Design Goals

Our design aims to cover the following goals: (1) We cross over from the encrypted

keyword-file search to the encrypted search on dynamic numerical data. (2) The data

user can verify the data freshness without the online participation of the data owner.

(3) The updated data should not reveal any information about previously searched

tokens, i.e., forward security. (4) The result verification process needs to be publicly

performed so that the fairness between data users and clouds can be ensured.

5.4 Slicer Design

5.4.1 Technical Overview

We denote the numerical database as a list of key-value pair records, i.e., DB =

{(R, v)}, where R is the unique record ID and v is the corresponding numerical value.

The range search over numerical data is usually comprised of two types, i.e., equality

search and order search. The former one means searching for records that have a

certain value while the latter represents the search for records whose value is smaller

or greater than the given value. Formally, a query consists of a value v and a matching

condition mc = {“=”,“>”,“<”}.
The equality search can be seen as a variant of traditional keyword-file search,

where the value becomes the file and the record ID is the keyword. Therefore, some

previous schemes like multiset hash functions [28] can be adopted to facilitate the

result verification by computing a set hash for each value. Nevertheless, these schemes

cannot be directly applied to the order search due to the excessive amount of values.

Our intuition for solving the order search verification is to slice the entire value field

under the order condition into a fixed number of slices like a slicer. Each slice can be

109

seen as a unique tuple and the total number is only the bit count of the value. The

original value satisfies the order condition if and only if it contains the same slice.

We manufacture this slicer via the design of Succinct Order-Revealing Encryption

(SORE) scheme.

5.4.2 SORE Scheme

Design Rationale. First, we need the smallest ciphertext space to compose a

lightweight ORE scheme, because the verification cost is high on the blockchain.

To this end, we generate only one ciphertext for each bit rather than the divided

block. In order to avoid the one-by-one comparison on ciphertexts, we tokenize the

orders and convert the computation to the tuple matching. Specifically, we embed

the order relations into the encryption so that the order can be regarded as a one-bit

value. Based on the left/right framework [51], we devise the tuple to make sure there

exists one and only one common tuple matched if the ciphertext satisfies the query

condition. Therefore, the order comparison between two values is transformed to the

exact match among tuples, which can be further exploited to build encrypted indexes.

SORE Construction. We present our construction based on positive integers for

simplicity since all numerical values in practical can be transformed into this form

through scaling. Given a b-bit integer v, let vi represent the ith bit of the value,

and v|i−1 denote the bits from 1 to i − 1, i.e., the entire prefix of vi. We use v̄i

to denote the inverse value derived by the bitwise NOT operation of vi. Let F :

{0, 1}λ × {0, 1}b+1 → {0, 1}λ be a secure PRF. During the setup phase, given a

security parameter λ, our scheme outputs a uniformly random PRF key k as the

secret key. Let ‖ denote the concatenation operation. We define the core part of

SORE scheme Π = {SORE.Token, SORE.Encrypt, SORE.Compare} as follows:

110

• SORE.Token(k, v, oc): Given the queried value v and the order condition oc ∈
{“>”, “<”}, the algorithm generates query tokens to find all answers a satisfying

v oc a. For each i ∈ [1, b], it computes a tuple tki ← v|i−1‖vi‖oc. Then

it shuffles all tuples and outputs corresponding PRF values as tokens tk =

{Fk(tk1), Fk(tk2), · · · , Fk(tkb)}.

• SORE.Encrypt(k, v): For each bit i ∈ [1, b], it computes a tuple cti ← v|i−1‖v̄i‖cmp(v̄i, vi),

where cmp(v̄i, vi) ∈ {“>”, “<”} denotes the comparison result between v̄i and

vi. Then the algorithm randomly shuffles all tuples and outputs their PRF

values as ciphertexts ct = {Fk(ct1), Fk(ct2), · · · , Fk(ctb)}.

• SORE.Compare(ct, tk): Given the ciphertexts ct = {Fk(ct1), Fk(ct2), · · · , Fk(ctb)}
and the query tokens tk = {Fk(tk1), Fk(tk2), · · · , Fk(tkb)}, the algorithm checks

whether they have one and only one value in common. If the common value

exists, output True. Otherwise, output False.

null || 1 || '>' 0 || 0 || '<' 01 || 1 || '>' 010 || 0 || '<'

5 = (0101)

6 = (0110) > x ?

null || 0 || '>' 0 || 1 || '>' 01 || 1 || '>' 011 || 0 || '>'

null || 1 || '>'0 || 0 || '<' 010 || 0 || '<' 01 || 1 || '>'

null || 0 || '<' 1 || 1 || '>' 10 || 1 || '>' 100 || 1 || '>'

8 = (1000)

1 || 1 || '>'100 || 1 || '>' null || 0 || '<' 10 || 1 || '>'shuffled tuple

tuple

plaintext

4 = (0100) < x ?

null || 0 || '<' 0 || 1 || '<' 01 || 0 || '<' 010 || 0 || '<'

query

query tuple

ciphertexts

query tokens

0 || 1 || '>' 01 || 1 || '>' 011 || 0 || '>' null || 0 || '>' 0 || 1 || '<' null || 0 || '<' 010 || 0 || '<' 01 || 0 || '<'shuffled tuple

Fig. 5.2: An illustrative example of SORE.

We give an illustrative example of our SORE scheme in Figure 5.2. Suppose

we have two plaintexts, i.e., 5 = (0101) and 8 = (1000), to be encrypted, and two

query conditions, i.e., 6 = (0110) and 4 = (0100), to be executed. Among the

111

tuples generated by the corresponding algorithms, we mark the matched tuples for

the two comparison results. Since the tuples are shuffled, the matched bit index can

be concealed during each single query.

5.4.3 Building Encrypted Indexes and ADS

Algorithm 12: Build: Indexes and ADS Building

Input : PRF key K; encryption key KR; key-value database DB; secure PRFs
{F,G}; multiset hash function H; random oracle function Hprime.

Output: Encrypted index I; ADS information (X,Ac).
1 foreach (R, v) ∈ DB do
2 for i = 1 to b do
3 cti ← v|i−1‖v̄i‖cmp (v̄i, vi);
4 Put (R, cti) into DB;

5 Initialize a dictionary I for indexes, T for trapdoor states and S for set hashes;
6 foreach w ∈ {v} ∪ {cti} do
7 Randomly generate a trapdoor t0;
8 T.put(w, (t0, 0));
9 G1 ← G (K,w‖1); G2 ← G (K,w‖2); c← 0;

10 h← H(φ);
11 foreach R ∈ DB(w) do
12 l ← F (G1, t0‖c);
13 d← F (G2, t0‖c)⊕ Enc(KR, R);
14 I.put(l, d); c++;
15 h← h+H H(Enc(KR, R));

16 S.put(t0‖0‖G1‖G2, h);

17 Initialize a list X for primes;
18 foreach (g, h) ∈ S do
19 x← Hprime(g‖h); X.add(x);

20 Ac← Accumulation(X);
21 Send (I,X,Ac) to the cloud;
22 Send Ac to the blockchain;
23 Send (K,KR, T) to the data user;

112

Algorithm 12 presents the building process of the encrypted indexes and ADS. Fol-

lowing SORE.Encrypt, we generate the tuples (line 1 to 4) and produce the encrypted

indexes (line 5 to 16) and ADS, i.e., RSA accumulator (line 17 to 20), together with

the values. To enable the forward security, we employ the trapdoor permutation [19]

to make the updated values unlinkable to previous searches until the newest search

token is issued. Specifically, we first generate a random trapdoor and two tokens G1

and G2 using the PRF G. G1 and G2 can hide the true values and be further used to

build the indexes via the PRF F . Note that we use the concatenation of the trapdoor

and a self-incremental counter c to index the encrypted R via l and d. As for the RSA

accumulator, we first get a random hash through the multiset hash function H on the

qualified result set for each w, i.e., the original value v or tuple cti. Then we calculate

a prime representative for the concatenation of the search token and corresponding

set hash, and get the accumulation value Ac by accumulating all primes. Ac is sent

to both the cloud and the blockchain while the prime list X will be uploaded only to

the cloud for the generation of proof, known as verification object (VO). Moreover,

the data user keeps the trapdoor states for further search requests.

5.4.4 Data Insertion

As shown in Algorithm 13, the forward-secure insertion protocol follows the similar

procedure as the Build protocol. The main trick that achieves the forward security

during the insertion lies in the trapdoor update when w has been searched before

(line 12 to 16). Specifically, the data owner needs to use the trapdoor permutation

π to get a new trapdoor based on the former one via π−1
sk (t), where sk is the secret

key of π. The new trapdoor is saved to the state dictionary together with the update

times j.

113

Algorithm 13: Insert: Forward-Secure Insertion

Input : PRF key K; encryption key KR; trapdoor secret key sk; key-value
pairs to insert DB+; secure PRFs {F,G}; multiset hash function H;
random oracle function Hprime.

Output: Updated encrypted index I; updated ADS information (X,Ac).
1 foreach (R, v) ∈ DB+ do
2 for i = 1 to b do
3 cti ← v|i−1‖v̄i‖cmp (v̄i, vi);
4 Put (R, cti) into DB+;

5 Initialize a list X+ for primes to add;
6 foreach w ∈ {v} ∪ {cti} do
7 G1 ← G (K,w‖1); G2 ← G (K,w‖2); c← 0;
8 if T.find(w) =⊥ then
9 h← H(φ);

10 Randomly generate a trapdoor t; j ← 0;
11 T.put(w, (t, j));

12 else
13 t, j ← T.get(w);
14 h← S.pop(t‖j‖G1‖G2);
15 t← π−1

sk (t); j ++;
16 T.put(w, (t, j));

17 foreach R ∈ DB’(w) do
18 l ← F (G1, t‖c);
19 d← F (G2, t‖c)⊕ Enc(KR, R);
20 I.put(l, d); c++;
21 h← h+H H(Enc(kR, R));

22 S.put(t‖j‖G1‖G2, h);
23 x+ ← Hprime(t‖j‖G1‖G2‖h); X+.add(x+);

24 X ← X ∪X+;
25 Ac← Accumulation(X);
26 Send (I,X,Ac) to the cloud;
27 Send Ac to the blockchain;
28 Send T to the data user;

114

5.4.5 Verifiable Search Protocol

Algorithm 14: Search: Search Token Generation

Input : PRF key K; encryption key KR; trapdoor public key pk; query value
v; matching condition mc; secure PRFs {F,G}.

Output: Search tokens sts.
1 User.Token
2 if mc ∈ {“>”,“<”} then
3 for i = 1 to b do
4 tki ← v|i−1‖vi‖mc;

5 Randomly shuffle {tki};
6 W ← {tki};
7 else
8 W ← {v};
9 Initialize a list sts for search tokens;

10 foreach w ∈ W do
11 if T.find(w) �=⊥ then
12 tj, j ← T.get(w);
13 G1 ← G (K,w‖1); G2 ← G (K,w‖2);
14 sts.add((tj, j, G1, G2));

15 Send sts and payment to the blockchain;

Algorithm 14 describes the search token generation executed by the data owner in

the Search protocol. Following SORE.Token, the data owner first produces the token

list {tki}. Along with v, he then generates the corresponding search tokens for each

item, including the trapdoor, the update times, G1 and G2, if it exists in the trapdoor

states. Finally, he sends the search tokens and the payment to the blockchain.

After retrieving the search tokens from the blockchain, the cloud starts the search

as shown in Algorithm 15. The cloud will traverse from the newest indexes by using

PRF on the concatenation of the newest trapdoor tj and the counter c. After each

traversal, it computes the previous trapdoor using πpk(ti), where pk is the public key

115

Algorithm 15: Search: Cloud Search

Input : Search tokens sts; trapdoor public key pk; secure PRF {F}; multiset
hash function H, random oracle function Hprime.

Output: Encrypted matched results er; verification objects {vo}.
1 Cloud.Search
2 foreach (tj, j, G1, G2) ∈ sts do
3 for i = j to 0 do
4 for c = 0 until I.find(l) =⊥ do
5 l ← F (G1, ti‖c);
6 r ← F (G2, ti‖c)⊕ I.get(l);
7 er.add(r); c++;

8 ti−1 ← πpk(ti);

9 h← H(er); x← (Hprime(tj‖j‖G1‖G2‖h);
10 vo← MemWit (x);
11 Send er and vo to the blockchain;

of the trapdoor permutation, and proceeds the next round. When all traversals end,

the algorithm calculates the set hash on the result list and derives the prime number

accordingly. The membership witness of the prime will be generated from MemWit

and then sent to the blockchain with the results.

We present the result verification by the blockchain in Algorithm 16. It only needs

to reproduce the prime number based on the search tokens and corresponding results.

Then VerifyMem of the RSA accumulator will be invoked to validate the correctness

of the VOs.

5.4.6 Extensions

Data Deletion and Update. Although the data deletion cannot be directly sup-

ported by our scheme, but it can be addressed by duplicating the original construction

[19]. In another word, we can use one instance for all inserted data while the other

116

Algorithm 16: Search: Result Verification

Input : Search tokens sts; encrypted matched results er; verification objects
{vo}; multiset hash function H, random oracle function Hprime;
encryption key KR.

Output: Verification result vr.
1 Blockchain.Verify
2 vr ← True;
3 foreach (tj, j, G1, G2, er, vo) do
4 h← H(er); x← (Hprime(tj‖j‖G1‖G2‖h);
5 vr ← VerifyMem (x, vo);
6 if vr=False then
7 Refund the payment;

8 Proceed with the payment;
9 The data user decrypts all er using Dec(KR, er);

one stores all deleted data. In this way, the final search result becomes the difference

between the corresponding results from the two instances. As for the update on one

record, it can be regarded as a combination of one deletion operation and one inser-

tion operation. Note that we do not allow a repetitive insertion of the same record

ID in both instances since the ID is unique.

Data with Multiple Attributes. Our design can be easily extended to data with

multiple attributes a, i.e., DB = {(R, {(a, v)})}, which is a more popular and practical

data type. Specifically, we can incorporate the attribute name a into the token and

the ciphertext, i.e., tki ← a‖v|i−1‖vi‖oc and cti ← a‖v|i−1‖v̄i‖cmp(v̄i, vi), for each

value.

5.5 Design Analysis

We perform a formal analysis on the correctness and security of our SORE scheme

and encrypted search protocol.

117

5.5.1 Correctness and Security on SORE scheme

Our SORE scheme is inspired by the ORE schemes in [27, 51, 90]. We devise

a lightweight scheme to enable the efficient encrypted search and public verification

while remaining comparable security. In this subsection, we present the correctness

analysis of SORE and discuss its leakage.

Correctness Analysis. We prove the correctness by giving the proof of the following

theorem:

Theorem 3. Given the PRF key k, two values x, y, and the order condition oc ∈
{“>”, “<”}, write tk← {Fk(tk1), Fk(tk2), · · · , Fk(tkb)} generated by SORE.Token(k, x)
and ct ← {Fk(ct1), Fk(ct2), · · · , Fk(ctb)} generated by SORE.Encrypt(k, y). x oc y
stands if and only if SORE.Compare(ct, tk) =True.

Proof. Because secure PRF is applied to both sides, SORE.Compare(ct, tk) can be
reduced to the comparison between {x|i−1‖xi‖oc} and {y|i−1‖ȳi‖cmp(ȳi, yi)} before
shuffle. We first argue that if {x|i−1‖xi‖oc} and {y|i−1‖ȳi‖cmp(ȳi, yi)} have tuples in
common, the amount of the tuples must be 1. We will give the proof by contradiction.
Since the length of the tuple is determined by the bit index due to the prefix, the
same tuple must share the same index. Suppose we already have an identical tuple
at index m, i.e., x|m−1‖xm‖oc= y|m−1‖ȳm‖cmp(ȳm, ym). This means x|m−1 = y|m−1

and xm = ȳm. Then we assume there exists another common tuple at index n. If
n < m, since xn = yn, then xn �= ȳn must stand, which contradicts the assumption
of the common tuple at n. If n > m, then x|n−1 �= y|n−1 because xm �= ym. It also
violates the previous assumption. Thus, the claim follows.

Next, we prove the correctness in two situations:

• Suppose x oc y stands. Let m be the smallest index where the bit value differs,
i.e., x|m−1 = y|m−1 and xm = ȳm. Because m is the smallest differing bit index,
the order between x and y coincides with that between xm and ym, which means
oc = cmp(ȳm, ym). Then SORE.Compare(ct, tk) outputs True since the tuple at
index m is the desired common one.

• Suppose that SORE.Compare(ct, tk) =True, i.e., there exists one and only one
common tuple, and letm be the bit index of the tuple. Now we have x|m−1‖xm‖oc=
y|m−1‖ȳm‖cmp(ȳm, ym), which means x|m−1 = y|m−1, xm = ȳm, and oc= cmp(ȳm, ym)
all hold. Apparently, the order between x and y is determined by that between
xm and ym since it is the first differing bit. Then x oc y follows.

118

Leakage Discussion. Solely adopting our SORE scheme leaks the index of the first

differing bit among query tokens or among ciphertexts. Specifically, given a list of

query tokens generated by SORE.Token, we can find out the leakage between any

two values by counting how many common tuples exist. The leakage among the

ciphertexts that is produced by SORE.Encrypt can be learned likewise. Nevertheless,

the risk brought by the leakage among ciphertexts can be eliminated by Build and

Insert protocol. It is because the indexes are derived through secure PRF and stored

in a history-independent dictionary, which totally conceals the relationships among

ciphertexts. As for each pairwise comparison between query tokens and ciphertexts,

the SORE.Compare has no leakage owing to the semantic security of PRF and the

shuffle operations. The formal security analysis of the encrypted search equipped

with SORE is presented in the next subsection.

5.5.2 Security on Encrypted Search

In this subsection, following the security notion of SSE [23, 29, 44], we prove the

security of our encrypted search protocol. Before presenting the security theorem, we

first give the formal definitions of our four leakage functions. After the data owner

initially builds the encrypted indexes and ADS, we have the following information

leakage:

Lbuild(DB) = (〈|l|, |d|〉p, |x|q) ,

where DB is the record-value pairs. 〈|l|, |d|〉 are bit lengths of the encrypted index I

and p is the size of I. |x| is the bit length of the prime number, q denotes the size

of the prime list X. When the data user issues a search request to the cloud, the

119

leakage captured by the server is defined as:

Lsearch(v,mc) =
({

tj, j, G1, G2, {〈l, d, er〉ci}j , h, x, vo
}
n

)
,

where v is the queried value and mc is the queried matching condition. This leakage

is a n-size list of search tokens and corresponding results. tj, j, G1, G2 form the search

token and {〈l, d, er〉ci}j are matched indexes and encrypted results in each loop. h is

the multiset hash, x is the prime representative and vo is the verification object. The

leakage function during the data insertion can be defined as:

Linsert(DB+) =
(〈|l+|, |d+|〉p+ , |x+|q+

)
,

where DB+ is the inserted records. 〈|l+|, |d+|〉p+ are newly added indexes whose size

is p+. |x+| is the bit length of the added prime number and q+ is the number of

primes. Moreover, we have a leakage function to track repeated queries:

Lrepeat(Q) =
(
Mr×r,

{
r, {〈l, d, er〉ci}j , h, x

})
,

where Q is r number of historical queried tokens and Mr×r is a symmetric bit matrix

that records the repeat information. All elements in Mr×r are initially set to 0. If the

i-th search token is identical to the j-th one, then Mi,j and Mj,i are equal to 1. Given

the above leakages, we adopt the simulation proof technique and give the following

security definition:

Definition 3. Let Ω = (KGen,Build, Search, Insert) be our encrypted search scheme,
and let Lbuild, Lsearch, Linsert and Lrepeat be the leakage functions. For a PPT adver-
sary A and a PPT simulator S, we define the games RealA(λ) and IdealA,S(λ) as
follows:

RealA(λ): The data owner generates a private key K using KGen(1λ). A chooses
a dataset DB and asks the data owner to build encrypted indexes and ADS via Build.
Next, A repeatedly requests a polynomial number of verifiable queries or data inser-
tions. To respond, the game runs Search or Insert with corresponding inputs. Even-
tually, A returns a bit that the game adopts as the output.

120

IdealA,S(λ): A selects a dataset DB, and S builds simulated indexes and ADS
based on the given leakage Lbuild. Next, A repeatedly requests a polynomial number of
verifiable queries or data insertions. To respond to the queries, S generates the simu-
lated search tokens and results based on Lsearch and Lrepeat. In response to insertion,
S updates the indexes and ADS based on Linsert. Finally, A returns a bit that the
game adopts as the output.

We say Ω is adaptively secure with (Lbuild, Lsearch, Linsert, Lrepeat) leakages if
for all adversaries A, there exists a simulator S such that: Pr [RealA(λ) = 1] −
Pr [IdealA,S(λ) = 1] ≤ negl(λ), where negl(λ) denotes a negligible function in λ.

Theorem 4. Ω is adaptively secure with (Lbuild, Lsearch, Linsert, Lrepeat) in the
random-oracle model if F,G are secure PRFs, and (Enc,Dec) is CPA-secure.

Proof. We first define random oracles {OF , OG, Omh, Oprime} and then sketch the
execution of the simulator S. At the build-up phase, S generates the simulated
indexes and ADS based on Lbuild. Specifically, it includes p entries of |l|-bit and |d|-
bit random string pairs, i.e., 〈l′, d′〉, as the indexes, and q number of |x|-bit random
prime numbers denoted as x′.

Given the first query (v,mc), if mc is “=”, S simulates G′
1 = OG(K

′‖v‖1) and
G′

2 = OG(K
′‖v‖2) as the tokens, where K ′ is a random string. Otherwise, S first

generates b number of tuples v|i−1‖vi‖mc and then randomly pick each one to produce
G′

1 = OG(K
′‖v|i−1‖vi‖mc‖1) and G′

2 = OG(K
′‖v|i−1‖vi‖mc‖2). A random trapdoor

t′j, j, G′
1 and G′

2 form a simulated search token. For i from j to 1, the random
oracle OF is programmed so that OF (G

′
1‖ti‖c) = l′ on c from 0 to ci to find the

matched indexes, where ti randomly generated in each loop. For each matched entry,
S operates OF to satisfy OF (G

′
2‖ti‖c)⊕ l′ = OR(K

′
R‖α)⊕R, where OR is a random

oracle, α is a random string and R is the record ID. Moreover, Omh is programmed
so that Omh({er}) = h′, where h′ is a random string. Oprime is programmed to
meet Oprime(t

′
j‖j‖G′

1‖G′
2‖h′) = x′. Then a simulated vo′ is generated through the

membership witness algorithm using x′. At last, for each matched entry r, S sets
M ′

r,r to 1 and records corresponding information.
For the subsequent queries, S will generate the tokens and check whether each

token appeared before through M ′. If yes, S returns the repeated matching entry
and generates vo′ accordingly. Otherwise, S will simulate the query tokens and cor-
responding results in the same way as the first query process. Eventually, S updates
M ′ and stores the repetition information.

To respond to each adaptive data insertion request, S simulates p+ entries of
random indexes and q+ number of random primes, who have the same sizes as stated
in Linsert.

Due to the pseudo-randomness of PRFs and the semantic security of symmetric
encryption, it is infeasible for A to distinguish between the real outputs and the

121

simulated ones. The definition of forward security in [19] requires the insertion should
not reveal any information about the added keywords. Our Linsert only contains some
random strings and numbers as well as their amounts, thus meeting forward security.

Despite the security analysis above, our design may still be vulnerable to some

leakage-abuse attacks, where our defined privacy leakage can be abused to infer plain-

text information. For instance, by observing a series of relations between query to-

kens and result size, adversaries can learn sensitive information about the indexes and

plaintexts. This is also known as volume attacks [39, 45, 49] based on the volume-

pattern leakage, which will be revealed in our leakage profiles.

5.5.3 Correctness of Verifiable Search

We prove the correctness of verification in terms of soundness and completeness.

Definition 4. We say a verifiable query algorithm is correct if for any PPT adversary
A, the following experiment has negligible possibility to succeed:

• A chooses a key-value dataset DB. The algorithm constructs the indexes and
ADS based on DB, and gives the ADS state Ac to A;

• To respond to a query Q, A outputs a result {rs}n and a proof {vo}n to the query
user. A performs a successful attack if the proof passes the verification using
Ac and R satisfies: {R|R /∈ Q(DB) ∧ R ∈ {rs}n} �= φ ∨ {R|R ∈ Q(DB) ∧ R /∈
{rs}n} �= φ.

Theorem 5. Ω is correct if the multiset hash function and prime representation
function are collision resistant, and the underlying RSA accumulator is secure.

Proof. We give the proof by contradiction. The first case, i.e., {R|R /∈ Q(DB) ∧R ∈
{rs}n} �= φ, indicates that there exists a record R in the result that does not satisfy
Q(DB). The second one means that some records that conform to the query condition
are not included in the result. Let rs′ be the result containing the incorrect or
incomplete records and the corresponding proof be vo′. Due to the security of the
RSA accumulator [53], the membership witness of an element cannot be forged. It
means that if vo′ can pass the verification, the true rs shares the same multiset hash
or the same prime representative with rs′. This violates the assumption of collision-
resilience of the multiset hash function and prime representation function.

122

5.6 Implementations and Evaluation

We first list state-of-the-art related studies on verifiable SSE in Table 5.1. To the

best of our knowledge, our Slicer is the first system that supports all desired features

including data dynamics, numerical comparison, data freshness, forward security and

public verifiability.

Table 5.1: Comparison with State-of-the-Art Verifiable Searchable Encryption
Schemes

Designsa Dynamicsb
Numerical

comparison
Freshnessc

Forward

security
d Public

verifiability
e

Traditional

designs

[24] × × N/A N/A ×
[76]

[20]

√ × N/A
√ ×

[83]
√ √ × × ×

[34]
√ × × × ×

[97]
√ × √ × ×

[59]
√ × × × ×

[75] × × N/A N/A
√

[95] × × N/A N/A ×
[77]

√ × × × √

Blockchain-based

designs

[41]

[40]

[52]

√ × √ √ √

[21] × × √ √ √

Ours
√ √ √ √ √

a We exclude TEE-based solutions because they can achieve arbitrary functionalities through
customized programs. But they cannot provide public verifiability due to the encapsulation of
TEE.

b The dynamics covers operations including addition, update and deletion over the encrypted
data.

c The data freshness can be verified by the data user without the online participation of the data
owner. ’N/A’ means the freshness property does not apply to the design because it is either a
static-data scenario or a single-user scenario (the owner is the user).

d ’N/A’ means the schemes without data addition inherently do not support forward security.
e The integrity of the search result needs to be publicly verified in case of malicious data users.

To demonstrate the practical efficiency of our design, we implement a prototype1,

including the data owner, data user and clouds in Python 3.8.0 and the blockchain in

Solidity. We perform the evaluation on a machine with i9-9900K CPU, 32 GB memory

1Online at https://github.com/tripleday/Slicer.

123

and 1 TB SSD. For cryptographic primitives, we employ AES-128 for the symmetric

encryption, HMAC-128 for the pseudo-random function, and RSA implementation

for the trapdoor permutation. We evaluate the time cost and overhead size based on

randomly simulated key-value records, where the value has 8, 16 and 24 bit settings.

5.6.1 Building Performance

Figure 5.3 presents the time cost of our Build protocol. We evaluate the time of

index building and ADS building at three bit settings based on the records of 10K,

20K, 40K, 80K, 160K entries. As we can see from Figure 5.3a, the time cost of index

building raises linearly in all cases as the amount increases. It only takes roughly 38s

to build encrypted indexes 160K records of 8-bit values. As for the ADS building

in Figure 5.3b, the time cost for 8-bit values is almost a constant value, i.e., around

0.5s for any amount of records. This is due to the limited value space under the 8-bit

setting. Regarding the 16-bit and 24-bit settings, the ADS building time increases

rapidly as the growing amount incurs larger value space.

Number of records 104
2 4 6 8 10 12 14 16

Ti
m

e
co

st
 (s

)

0

50

100
8-bit value
16-bit value
24-bit value

(a) Indexes

Number of records 104
2 4 6 8 10 12 14 16

Ti
m

e
co

st
 (s

)

0

500

1000
8-bit value
16-bit value
24-bit value

(b) ADS

Fig. 5.3: Time cost of Build.

We show the storage cost of the indexes and the ADS during the building phase

124

in Figure 5.4a and Figure 5.4b respectively. The index storage is proportional to the

amount of records since each record maps to a constant number of index entries. For

the storage of ADS, i.e., the size of the prime list, upon 8-bit values, it keeps constant

as 0.04MB due to the aforementioned value space. Under the other two settings, the

storage grows linearly but still remains at a practical level.

Number of records 104
2 4 6 8 10 12 14 16

St
or

ag
e

co
st

 (M
B

)

0

200

400

600

800

8-bit value
16-bit value
24-bit value

(a) Indexes

Number of records 104
2 4 6 8 10 12 14 16

St
or

ag
e

co
st

 (M
B

)

0

20

40

60

80
8-bit value
16-bit value
24-bit value

(b) ADS on cloud

Fig. 5.4: Storage cost of Build.

5.6.2 Search Performance

To evaluate the performance of search, we select random numbers to execute the

protocol and average the outcomes. Figure 5.5 depicts the time of cloud search,

including the result generation and VO generation, for the equality search and order

search. For the result generation time of equality search in Figure 5.5a, the time

rises faster on the 8-bit values than the 16-bit values because the number of qualified

results is larger. In contrast, the time costs for order search in Figure 5.5c under

two settings both increase due to the similar number of results. Although the result

generation for equality search costs more time than order search, its VO generation

time in Figure 5.5b keeps steadily at about 0.04s. The VO generation for order search

125

costs around 0.32s when the amount of records reaches 160K. When the bit count

extends from 8 to 16, the VO generation time grows significantly for both search

types.

Number of records 104
2 4 6 8 10 12 14 16

Ti
m

e
co

st
 (m

s)

0

2

4

6

8-bit value
16-bit value

(a) Result generation for equality

Number of records 104
2 4 6 8 10 12 14 16

Ti
m

e
co

st
 (s

)
0

2

4

6

8
8-bit value
16-bit value

(b) VO generation for equality

Number of records 104
2 4 6 8 10 12 14 16

Ti
m

e
co

st
 (s

)

0

0.2

0.4

0.6

0.8 8-bit value
16-bit value

(c) Result generation for order

Number of records 104
2 4 6 8 10 12 14 16

Ti
m

e
co

st
 (s

)

0

20

40

60

80

8-bit value
16-bit value

(d) VO generation for order

Fig. 5.5: Time cost of Search.

Figure 5.6 presents the overhead, i.e., search tokens, encrypted results and verifi-

cation objects, produced by Search protocol. The amount of search tokens generated

by the 8-bit setting stays relatively stable while the 16-bit setting produces more

tokens since the records gradually fill the value space. As shown in Figure 5.6b and

Figure 5.6c, the size of encrypted results under all settings is proportional to the

126

amount of records. As for the VO in Figure 5.6d, its size under the 8-bit setting is

always smaller than 60 Bytes, whereas the size of 16-bit setting slowly increases and

levels off due to the constant number of tuples.

Number of records 104
2 4 6 8 10 12 14 16

To
ke

n
si

ze
 (B

yt
e)

0

500

1000

1500

2000

2500
equality search (8-bit)
equality search (16-bit)
order search (8-bit)
order search (16-bit)

(a) Search token

Number of records 104
2 4 6 8 10 12 14 16

R
es

ul
t s

iz
e

(B
yt

e)

104

0

1

2

3

4

5 equality search (8-bit)
equality search (16-bit)

(b) Equality result

Number of records 104
2 4 6 8 10 12 14 16

R
es

ul
t s

iz
e

(K
B

)

0

2000

4000

6000

8000

order search (8-bit)
order search (16-bit)

(c) Order result

Number of records 104
2 4 6 8 10 12 14 16

V
O

 si
ze

 (B
yt

e)

0

200

400

600
equality search (8-bit)
equality search (16-bit)
order search (8-bit)
order search (16-bit)

(d) Verification object

Fig. 5.6: Overhead generated by Search.

5.6.3 Insertion Time

We pre-load 160K amount of records and assess the insertion efficiency in terms

of indexes and ADS. In Figure 5.7, we can find that as the number of inserted records

increases, the time cost grows in similar proportions. We can see that when the bit

count achieves up to 24, the ADS takes much more time to compute since the amount

127

of prime numbers becomes larger.

Number of inserted records 104
0.5 1 1.5 2 2.5 3

Ti
m

e
co

st
 (s

)

0

10

20

30

40 8-bit value
16-bit value
24-bit value

(a) Indexes

Number of inserted records 104
0.5 1 1.5 2 2.5 3

Ti
m

e
co

st
 (s

)

0

100

200

300

400 8-bit value
16-bit value
24-bit value

(b) ADS

Fig. 5.7: Time cost of Insert.

5.6.4 Gas Consumption

Table 5.2: Gas cost of smart contract

Operations Gas cost

Deployment 745,346 gas

Data insertion 29,144 gas

Result verification 94,531 gas

We list the gas cost of the smart contract conducted on Rinkeby testnet in Table

5.2. The data insertion in our design is very cheap in gas since it only needs to change

one storage value of the ADS on smart contract. It only costs 29, 144 gas per time

regardless of the amount of items to insert. Regarding the gas of result verification for

an equality search, it costs around 94, 531 gas, i.e., approximately 0.28$ when ETH

is at the price of 3000$. The gas appears practically low because the verification of

the ADS can be finished in O(λ).

128

5.7 Chapter Summary

Many traditional verifiable SSE schemes are limited to keyword-file search and

leave the range search blank. In addition, the mutual distrusted scenario where

data users may lie about the result verification necessitates the public verification of

search results. In this chapter, we first propose a fair framework for encrypted search

based on blockchain. We then design the SORE scheme to handle numerical search

and enable the verifiable search using multiset hash and RSA accumulator. At last,

we prove the security via formal analysis and show the efficiency through extensive

experiments.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Blockchain can be utilized to supplement and improve the untrusted cloud storage

due to its capability of trusted storage and computation. We propose novel methods

to solve the verifiable search problem atop the blockchain over three types of data,

i.e., native blockchain data, outsourced raw graph data and outsourced encrypted

numerical data.

To conquer the authenticity problem over native blockchain data, we propose a

Verifiable Query Layer (VQL) that can be deployed in the cloud to provide both effi-

cient and verifiable data query services for blockchain systems. The middleware layer

extracts data from the underlying blockchain system and efficiently reorganizes them

in databases. To prevent falsified data from being stored in the middleware, a cryp-

tographic fingerprint is calculated based on each constructed database. The database

fingerprint will be first verified by miners and then written into the blockchain. More-

over, public users can verify the entire databases or several databases that interest

them in the middleware layer. We implement VQL together with the verification

129

130

schemes and conduct extensive experiments based on Ethereum testnet. The evalu-

ation results demonstrate the efficiency of our design.

For the outsourced raw graph data, we conduct pioneering research on authen-

ticated queries on the blockchain-assisted cloud, where the data owner outsources

original data to cloud servers and stores some metadata on the blockchain. The pri-

mary challenge is how to design an ADS that supports authenticated queries and can

be easily maintained by the blockchain. To this end, we propose a novel ADS, named

PAGB, based on the RSA accumulator and completeness set. It can also prevent

the original data from being revealed to the public through blockchain or irrelevant

queries. We further optimize our design to be more efficient in terms of communi-

cation and computation. The effectiveness and efficiency of PAGB are verified via

theoretical analysis and extensive experiments.

To enable the verifiable search over encrypted numerical data, we take the first

step to study the public verification problem atop the blockchain. We design a novel

verifiable SSE scheme named Slicer based on a Succinct Order-Revealing Encryption

(SORE) scheme to achieve range search on numerical data. The fairness of search

in the mutual distrusted scenario, where data users may maliciously deny the results

after the local result verification, can be perfectly guaranteed by the public verification

on the smart contract. Moreover, we achieve the forward-security during the data

insertion via the incorporation of trapdoor permutation. We illustrate the security

and practicality of our design through rigorous analysis and extensive evaluations

respectively.

Since the three contributions in this thesis are based on different system models

and threat models, they cannot be simultaneously equipped in one system. Instead,

131

they can be seen as an incremental process in which application requirements of se-

curity and versatility are gradually raised. It is noted that although this thesis takes

Ethereum or its testnets as examples to illustrate the feasibility of our designs, our

work can be generalized to any permissionless or permissioned blockchain systems

with smart contract functions. It does not make any difference what consensus mech-

anism the system adopts as well.

6.2 Future Work

Blockchain has brought novel insights and new challenges to the reliable search

on untrusted clouds. Based on our work, we indicate three future research directions

as follows.

More search types. Besides the verifiable query types over graph data that

have been addressed in this thesis, other complicated but interesting ones can be

investigated. For example, the shortest path query authentication in the graph is

challenging since the computation process involves all nodes and edges. Meanwhile,

some popular data types like spatial data and time-series data and their corresponding

queries are well worth the exploration.

More privacy-preserving schemes. In addition to the symmetric encryption

scheme in the thesis, data privacy can also be protected by the asymmetric encryption

scheme or differential privacy technology. Since these schemes involve more compli-

cated constructions, it may need some innovative ideas to integrate them with the

reliable search on the top of blockchain.

More trusted techniques. Similar to the trusted environment provided by the

smart contract on the blockchain, some other techniques can also provide trusted

132

computation or storage like trusted execution environment (TEE) or multi-party

secure computation. It will be interesting and challenging to combine these methods

to enhance the query verification.

Bibliography

[1] Blockchain.info. https://blockchain.info/.

[2] Coinbase: Toshi project. https://github.com/martindale/toshi.

[3] Etherscan. https://etherscan.io/.

[4] Merkle patricia tree. https://github.com/ethereum/wiki/wiki/Patricia-T

ree.

[5] Neo4j. https://neo4j.com/.

[6] Provenance. https://www.provenance.org/.

[7] TITAN. http://titan.thinkaurelius.com/.

[8] Muneeb Ali, Jude C Nelson, Ryan Shea, and Michael J Freedman. Blockstack: A

global naming and storage system secured by blockchains. In Proc. of USENIX

Annual Technical Conference (ATC), pages 181–194, 2016.

[9] Lindsey Allen, Panagiotis Antonopoulos, Arvind Arasu, Johannes Gehrke,

Joachim Hammer, James Hunter, Raghav Kaushik, Donald Kossmann, Jonathan

Lee, Ravi Ramamurthy, et al. Veritas: Shared verifiable databases and tables

in the cloud. In 9th Biennial Conference on Innovative Data Systems Research

(CIDR), 2019.

[10] Renzo Angles, Angela Bonifati, Stefania Dumbrava, George Fletcher, Keith W

Hare, Jan Hidders, Victor E Lee, Bei Li, Leonid Libkin, Wim Martens, et al.

133

134

PG-Keys: Keys for property graphs. In Proceedings of the 2021 International

Conference on Management of Data, pages 2423–2436, 2021.

[11] Panagiotis Antonopoulos, Raghav Kaushik, Hanuma Kodavalla, Sergio Ros-

ales Aceves, Reilly Wong, Jason Anderson, and Jakub Szymaszek. SQL Ledger:

Cryptographically verifiable data in Azure SQL database. In Proceedings of the

2021 International Conference on Management of Data, pages 2437–2449, 2021.

[12] Muhammad U Arshad, Ashish Kundu, Elisa Bertino, Krishna Madhavan, and

Arif Ghafoor. Security of graph data: hashing schemes and definitions. In

Proceedings of the 4th ACM Conference on Data and Application Security and

Privacy, pages 223–234, 2014.

[13] Gbadebo Ayoade, Vishal Karande, Latifur Khan, and Kevin Hamlen. Decentral-

ized IoT data management using blockchain and trusted execution environment.

In 2018 IEEE International Conference on Information Reuse and Integration

(IRI), pages 15–22. IEEE, 2018.

[14] Sumeet Bajaj, Anrin Chakraborti, and Radu Sion. ConcurDB: Concurrent query

authentication for outsourced databases. IEEE Transactions on Knowledge and

Data Engineering, 2019.

[15] Niko Barić and Birgit Pfitzmann. Collision-free accumulators and fail-stop sig-

nature schemes without trees. In International Conference on the Theory and

Applications of Cryptographic Techniques, pages 480–494. Springer, 1997.

[16] Eli Ben-Sasson, Alessandro Chiesa, Eran Tromer, and Madars Virza. Succinct

non-interactive zero knowledge for a von neumann architecture. In 23rd USENIX

Security Symposium (USENIX Security 14), pages 781–796, 2014.

[17] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O’neill. Order-

preserving symmetric encryption. In Annual International Conference on the

135

Theory and Applications of Cryptographic Techniques, pages 224–241. Springer,

2009.

[18] Dan Boneh, Benedikt Bünz, and Ben Fisch. Batching techniques for accumula-

tors with applications to iops and stateless blockchains. In Annual International

Cryptology Conference, pages 561–586. Springer, 2019.

[19] Raphael Bost. Σoφoς: Forward secure searchable encryption. In Proceedings of

the 2016 ACM SIGSAC Conference on Computer and Communications Security,

pages 1143–1154, 2016.

[20] Raphael Bost, Pierre-Alain Fouque, and David Pointcheval. Verifiable dynamic

symmetric searchable encryption: Optimality and forward security. IACR Cryp-

tol. ePrint Arch., 2016:62, 2016.

[21] Chengjun Cai, Jian Weng, Xingliang Yuan, and Cong Wang. Enabling reliable

keyword search in encrypted decentralized storage with fairness. IEEE Transac-

tions on Dependable and Secure Computing, 2018.

[22] Philippe Camacho and Alejandro Hevia. Short transitive signatures for directed

trees. In Cryptographers’ Track at the RSA Conference, pages 35–50. Springer,

2012.

[23] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit S Jutla, Hugo

Krawczyk, Marcel-Catalin Rosu, and Michael Steiner. Dynamic searchable en-

cryption in very-large databases: data structures and implementation. In NDSS,

volume 14, pages 23–26. Citeseer, 2014.

[24] Qi Chai and Guang Gong. Verifiable symmetric searchable encryption for semi-

honest-but-curious cloud servers. In 2012 IEEE International Conference on

Communications (ICC), pages 917–922. IEEE, 2012.

136

[25] Hongzhi Chen, Bowen Wu, Shiyuan Deng, Chenghuan Huang, Changji Li,

Yichao Li, and James Cheng. High performance distributed OLAP on property

graphs with grasper. In Proceedings of the 2020 ACM SIGMOD International

Conference on Management of Data, pages 2705–2708, 2020.

[26] Qian Chen, Haibo Hu, and Jianliang Xu. Authenticated online data integration

services. In Proceedings of the 2015 ACM SIGMOD International Conference on

Management of Data, pages 167–181. ACM, 2015.

[27] Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. Practical

order-revealing encryption with limited leakage. In International conference on

fast software encryption, pages 474–493. Springer, 2016.

[28] Dwaine Clarke, Srinivas Devadas, Marten Van Dijk, Blaise Gassend, and G Ed-

ward Suh. Incremental multiset hash functions and their application to memory

integrity checking. In International conference on the theory and application of

cryptology and information security, pages 188–207. Springer, 2003.

[29] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable

symmetric encryption: improved definitions and efficient constructions. Journal

of Computer Security, 19(5):895–934, 2011.

[30] Hermann de Meer, Henrich C Pöhls, Joachim Posegga, and Kai Samelin.

Redactable signature schemes for trees with signer-controlled non-leaf-redactions.

In International Conference on E-Business and Telecommunications, pages 155–

171. Springer, 2012.

[31] Ioannis Demertzis, Stavros Papadopoulos, Odysseas Papapetrou, Antonios Deli-

giannakis, and Minos Garofalakis. Practical private range search revisited. In

Proceedings of the 2016 International Conference on Management of Data, pages

185–198, 2016.

137

[32] Ali Dorri, Salil S Kanhere, Raja Jurdak, and Praveen Gauravaram. Blockchain

for IoT security and privacy: The case study of a smart home. In Proc. of IEEE

PerCom, pages 618–623, 2017.

[33] Andreas Erwig, Marc Fischlin, Martin Hald, Dominik Helm, Robert Kiel, Florian

Kübler, Michael Kümmerlin, Jakob Laenge, and Felix Rohrbach. Redactable

graph hashing, revisited. In Australasian Conference on Information Security

and Privacy, pages 398–405. Springer, 2017.

[34] Xinrui Ge, Jia Yu, Hanlin Zhang, Chengyu Hu, Zengpeng Li, Zhan Qin, and

Rong Hao. Towards achieving keyword search over dynamic encrypted cloud

data with symmetric-key based verification. IEEE Transactions on Dependable

and Secure computing, 2019.

[35] Rosario Gennaro, Shai Halevi, and Tal Rabin. Secure hash-and-sign signatures

without the random oracle. In International Conference on the Theory and

Applications of Cryptographic Techniques, pages 123–139. Springer, 1999.

[36] Arthur Gervais, Ghassan O Karame, Karl Wüst, Vasileios Glykantzis, Hubert

Ritzdorf, and Srdjan Capkun. On the security and performance of proof of work

blockchains. In Proc. of ACM SIGSAC Conference on Computer and Commu-

nications Security (CCS), pages 3–16, 2016.

[37] Michael T Goodrich, Roberto Tamassia, and Jasminka Hasić. An efficient dy-

namic and distributed cryptographic accumulator. In International Conference

on Information Security, pages 372–388. Springer, 2002.

[38] Michael T Goodrich, Roberto Tamassia, and Nikos Triandopoulos. Efficient

authenticated data structures for graph connectivity and geometric search prob-

lems. Algorithmica, 60(3):505–552, 2011.

138

[39] Zichen Gui, Oliver Johnson, and Bogdan Warinschi. Encrypted databases: New

volume attacks against range queries. In Proceedings of the 2019 ACM SIGSAC

Conference on Computer and Communications Security, pages 361–378, 2019.

[40] Yu Guo, Chen Zhang, and Xiaohua Jia. Verifiable and forward-secure encrypted

search using blockchain techniques. In ICC 2020-2020 IEEE International Con-

ference on Communications (ICC), pages 1–7. IEEE, 2020.

[41] Shengshan Hu, Chengjun Cai, Qian Wang, Cong Wang, Xiangyang Luo, and Kui

Ren. Searching an encrypted cloud meets blockchain: A decentralized, reliable

and fair realization. In IEEE INFOCOM 2018-IEEE Conference on Computer

Communications, pages 792–800. IEEE, 2018.

[42] Yang Ji, Cheng Xu, Ce Zhang, and Jianliang Xu. Dcert: towards secure, efficient,

and versatile blockchain light clients. In Proceedings of the 23rd conference on

23rd ACM/IFIP International Middleware Conference, pages 269–280, 2022.

[43] Harry Kalodner, Malte Möser, Kevin Lee, Steven Goldfeder, Martin Plattner,

Alishah Chator, and Arvind Narayanan. BlockSci: Design and applications of

a blockchain analysis platform. In 29th USENIX Security Symposium (USENIX

Security 20), pages 2721–2738, 2020.

[44] Seny Kamara, Charalampos Papamanthou, and Tom Roeder. Dynamic search-

able symmetric encryption. In Proceedings of the 2012 ACM conference on Com-

puter and communications security, pages 965–976, 2012.

[45] Georgios Kellaris, George Kollios, Kobbi Nissim, and Adam O’neill. Generic

attacks on secure outsourced databases. In Proceedings of the 2016 ACM SIGSAC

Conference on Computer and Communications Security, pages 1329–1340, 2016.

[46] Ahmed Kosba, Andrew Miller, Elaine Shi, Zikai Wen, and Charalampos Papa-

manthou. Hawk: The blockchain model of cryptography and privacy-preserving

139

smart contracts. In IEEE Symposium on Security and Privacy (SP), pages 839–

858, 2016.

[47] Ashish Kundu and Elisa Bertino. How to authenticate graphs without leak-

ing. In Proceedings of the 13th International Conference on Extending Database

Technology, pages 609–620, 2010.

[48] Ashish Kundu and Elisa Bertino. Privacy-preserving authentication of trees and

graphs. International journal of information security, 12(6):467–494, 2013.

[49] Marie-Sarah Lacharité, Brice Minaud, and Kenneth G Paterson. Improved re-

construction attacks on encrypted data using range query leakage. In 2018 IEEE

Symposium on Security and Privacy (SP), pages 297–314. IEEE, 2018.

[50] Yoad Lewenberg, Yoram Bachrach, Yonatan Sompolinsky, Aviv Zohar, and Jef-

frey S Rosenschein. Bitcoin mining pools: A cooperative game theoretic analysis.

In Proceedings of the 2015 International Conference on Autonomous Agents and

Multiagent Systems, pages 919–927. International Foundation for Autonomous

Agents and Multiagent Systems, 2015.

[51] Kevin Lewi and David J Wu. Order-revealing encryption: New constructions,

applications, and lower bounds. In Proceedings of the 2016 ACM SIGSAC Con-

ference on Computer and Communications Security, pages 1167–1178, 2016.

[52] Han Li, Hongliang Zhou, Hejiao Huang, and Xiaohua Jia. Verifiable encrypted

search with forward secure updates for blockchain-based system. In International

Conference on Wireless Algorithms, Systems, and Applications, pages 206–217.

Springer, 2020.

[53] Jiangtao Li, Ninghui Li, and Rui Xue. Universal accumulators with efficient

nonmembership proofs. In International Conference on Applied Cryptography

and Network Security, pages 253–269. Springer, 2007.

140

[54] Yang Li, Kai Zheng, Ying Yan, Qi Liu, and Xiaofang Zhou. EtherQL: A query

layer for blockchain system. In International Conference on Database Systems

for Advanced Applications, pages 556–567. Springer, 2017.

[55] Zhetao Li, Jiawen Kang, Rong Yu, Dongdong Ye, Qingyong Deng, and Yan

Zhang. Consortium blockchain for secure energy trading in industrial internet of

things. IEEE Transactions on Industrial Informatics, 2017.

[56] Bin Liu, Xiao Liang Yu, Shiping Chen, Xiwei Xu, and Liming Zhu. Blockchain

based data integrity service framework for IoT data. In 2017 IEEE International

Conference on Web Services (ICWS), pages 468–475. IEEE, 2017.

[57] Weijie Liu, Peng Zhou, Zhe Zhao, Zhiruo Wang, Qi Ju, Haotang Deng, and

Ping Wang. K-bert: Enabling language representation with knowledge graph. In

Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages

2901–2908, 2020.

[58] Wenhe Liu, Dong Gong, Mingkui Tan, Javen Qinfeng Shi, Yi Yang, and Alexan-

der G Hauptmann. Learning distilled graph for large-scale social network data

clustering. IEEE Transactions on Knowledge and Data Engineering, 32(7):1393–

1404, 2019.

[59] Xueqiao Liu, Guomin Yang, Yi Mu, and Robert H Deng. Multi-user verifiable

searchable symmetric encryption for cloud storage. IEEE Transactions on De-

pendable and Secure Computing, 17(6):1322–1332, 2018.

[60] Charles Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April

Kwong, and Stuart G Stubblebine. A general model for authenticated data

structures. Algorithmica, 39(1):21–41, 2004.

[61] Trent McConaghy, Rodolphe Marques, Andreas Müller, Dimitri De Jonghe,

Troy McConaghy, Greg McMullen, Ryan Henderson, Sylvain Bellemare, and

141

Alberto Granzotto. BigchainDB: a scalable blockchain database. white paper,

BigChainDB, 2016.

[62] Antonio Messina, Antonino Fiannaca, Laura La Paglia, Massimo La Rosa, and

Alfonso Urso. BioGraph: a web application and a graph database for querying

and analyzing bioinformatics resources. BMC systems biology, 12(5):75–89, 2018.

[63] Muhammad Muzammal, Qiang Qu, and Bulat Nasrulin. Renovating blockchain

with distributed databases: An open source system. Future Generation Computer

Systems, 90:105–117, 2019.

[64] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[65] Lan Nguyen. Accumulators from bilinear pairings and applications. In Cryptog-

raphers’ track at the RSA conference, pages 275–292. Springer, 2005.

[66] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil. The log-

structured merge-tree (LSM-tree). Acta Informatica, 33(4):351–385, 1996.

[67] HweeHwa Pang and K-L Tan. Authenticating query results in edge computing.

In Proceedings. 20th International Conference on Data Engineering, pages 560–

571. IEEE, 2004.

[68] Bryan Parno, Jon Howell, Craig Gentry, and Mariana Raykova. Pinocchio:

Nearly practical verifiable computation. In 2013 IEEE Symposium on Security

and Privacy, pages 238–252. IEEE, 2013.

[69] Subrata Paul, Chandan Koner, Robiul Islam Kabir, and Anirban Mitra. Issues of

knowledge management in deep web and its graph-based analysis. In Proceedings

of the 3rd International Conference on Communication, Devices and Computing,

pages 213–223. Springer, 2022.

142

[70] Raluca Ada Popa, Catherine MS Redfield, Nickolai Zeldovich, and Hari Balakr-

ishnan. CryptDB: Protecting confidentiality with encrypted query processing. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Prin-

ciples, pages 85–100, 2011.

[71] Christian Priebe, Kapil Vaswani, and Manuel Costa. EnclaveDB: A secure

database using SGX. In 2018 IEEE Symposium on Security and Privacy (SP),

pages 264–278. IEEE, 2018.

[72] Kui Ren, Yu Guo, Jiaqi Li, Xiaohua Jia, Cong Wang, Yajin Zhou, Sheng Wang,

Ning Cao, and Feifei Li. HybrIDX: New hybrid index for volume-hiding range

queries in data outsourcing services. In 2020 IEEE 40th International Conference

on Distributed Computing Systems (ICDCS), pages 23–33. IEEE, 2020.

[73] Kui Ren, Cong Wang, and Qian Wang. Security challenges for the public cloud.

IEEE Internet Computing, 16(1):69–73, 2012.

[74] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian

Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous

payments from bitcoin. In IEEE Symposium on Security and Privacy (S&P),

pages 459–474, 2014.

[75] Azam Soleimanian and Shahram Khazaei. Publicly verifiable searchable sym-

metric encryption based on efficient cryptographic components. Designs, Codes

and Cryptography, 87(1):123–147, 2019.

[76] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical dynamic

searchable encryption with small leakage. In NDSS, volume 71, pages 72–75,

2014.

[77] Wenhai Sun, Xuefeng Liu, Wenjing Lou, Y Thomas Hou, and Hui Li. Catch you if

you lie to me: Efficient verifiable conjunctive keyword search over large dynamic

143

encrypted cloud data. In 2015 IEEE Conference on Computer Communications

(INFOCOM), pages 2110–2118. IEEE, 2015.

[78] Hamed Tabrizchi and Marjan Kuchaki Rafsanjani. A survey on security chal-

lenges in cloud computing: issues, threats, and solutions. The journal of super-

computing, 76(12):9493–9532, 2020.

[79] Feng Tian. An agri-food supply chain traceability system for china based on

rfid & blockchain technology. In Proc. of IEEE Service Systems and Service

Management (ICSSSM), pages 1–6, 2016.

[80] Haixin Wang, Cheng Xu, Ce Zhang, Jianliang Xu, Zhe Peng, and Jian Pei.

vchain+: Optimizing verifiable blockchain boolean range queries. In 2022 IEEE

38th International Conference on Data Engineering (ICDE), pages 1927–1940.

IEEE, 2022.

[81] Gavin Wood. Ethereum: A secure decentralised generalised transaction ledger.

Ethereum Project Yellow Paper, 151:1–32, 2014.

[82] Haotian Wu, Zhe Peng, Songtao Guo, Yuanyuan Yang, and Bin Xiao. VQL:

Efficient and verifiable cloud query services for blockchain systems. IEEE Trans-

actions on Parallel and Distributed Systems, 33(6):1393–1406, 2021.

[83] Songrui Wu, Qi Li, Guoliang Li, Dong Yuan, Xingliang Yuan, and Cong Wang.

ServeDB: Secure, verifiable, and efficient range queries on outsourced database.

In 2019 IEEE 35th International Conference on Data Engineering (ICDE), pages

626–637. IEEE, 2019.

[84] Xingbo Wu, Yuehai Xu, Zili Shao, and Song Jiang. LSM-trie: An LSM-tree-

based ultra-large key-value store for small data items. In 2015 USENIX Annual

Technical Conference (USENIX ATC 15), pages 71–82, 2015.

144

[85] Qi Xia, Emmanuel Boateng Sifah, Kwame Omono Asamoah, Jianbin Gao, Xi-

aojiang Du, and Mohsen Guizani. Medshare: Trust-less medical data sharing

among cloud service providers via blockchain. IEEE Access, 5:14757–14767, 2017.

[86] Yuhang Xia and Chenglin Sun. Property graph database modeling and appli-

cation of electronic medical record. In 2018 Eighth International Conference on

Instrumentation & Measurement, Computer, Communication and Control (IM-

CCC), pages 963–967. IEEE, 2018.

[87] Cheng Xu, Jianliang Xu, Haibo Hu, and Man Ho Au. When query authentication

meets fine-grained access control: A zero-knowledge approach. In Proceedings

of the 2018 International Conference on Management of Data, pages 147–162.

ACM, 2018.

[88] Cheng Xu, Ce Zhang, and Jianliang Xu. vChain: Enabling verifiable boolean

range queries over blockchain databases. In Proceedings of the 2019 International

Conference on Management of Data, pages 141–158, 2019.

[89] Yuqin Xu, Shangli Zhao, Lanju Kong, Yongqing Zheng, Shidong Zhang, and

Qingzhong Li. ECBC: A high performance educational certificate blockchain with

efficient query. In International Colloquium on Theoretical Aspects of Computing,

pages 288–304. Springer, 2017.

[90] Xingliang Yuan, Xinyu Wang, Cong Wang, Baochun Li, Xiaohua Jia, et al. En-

abling encrypted rich queries in distributed key-value stores. IEEE Transactions

on Parallel and Distributed Systems, 30(6):1283–1297, 2018.

[91] Bo Zhang, Boxiang Dong, and Wendy Hui Wang. Integrity authentication for

SQL query evaluation on outsourced databases: A survey. IEEE Transactions

on Knowledge and Data Engineering, 2019.

145

[92] Ce Zhang, Cheng Xu, Haixin Wang, Jianliang Xu, and Byron Choi. Authenti-

cated keyword search in scalable hybrid-storage blockchains. In 2021 IEEE 37th

International Conference on Data Engineering (ICDE), pages 996–1007. IEEE,

2021.

[93] Ce Zhang, Cheng Xu, Jianliang Xu, Yuzhe Tang, and Byron Choi. GEMˆ2-

tree: A gas-efficient structure for authenticated range queries in blockchain. In

2019 IEEE 35th International Conference on Data Engineering (ICDE), pages

842–853. IEEE, 2019.

[94] Yupeng Zhang, Daniel Genkin, Jonathan Katz, Dimitrios Papadopoulos, and

Charalampos Papamanthou. vSQL: Verifying arbitrary SQL queries over dy-

namic outsourced databases. In 2017 IEEE Symposium on Security and Privacy

(SP), pages 863–880. IEEE, 2017.

[95] Qingji Zheng, Shouhuai Xu, and Giuseppe Ateniese. VABKS: Verifiable

attribute-based keyword search over outsourced encrypted data. In IEEE IN-

FOCOM 2014-IEEE conference on computer communications, pages 522–530.

IEEE, 2014.

[96] Fei Zhu, Wei Wu, Yuexin Zhang, and Xiaofeng Chen. Privacy-preserving au-

thentication for general directed graphs in industrial IoT. Information Sciences,

502:218–228, 2019.

[97] Jie Zhu, Qi Li, Cong Wang, Xingliang Yuan, Qian Wang, and Kui Ren. Enabling

generic, verifiable, and secure data search in cloud services. IEEE Transactions

on Parallel and Distributed Systems, 29(8):1721–1735, 2018.

