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Abstract 

Routine gas flaring in the petroleum industry poses a serious environmental challenge in most 

oil-producing nations due to the release of greenhouse gases. In addition to being an 

environmental threat, gas flaring also leads to a huge economic loss on the scale of billions of 

dollars when natural resources are depleted. Furthermore, the gas flaring process steals a clean 

and affordable source of energy from developing nations experiencing energy shortages, such as 

Nigeria and Venezuela. Considering climate change and a partnership aimed at reducing global 

gas flaring (GGFR), it is imperative that we estimate potential reductions in global gas flaring to 

better utilize flare gas within the industry. To this end, this research develops and applies novel 

strategies for achieving cleaner production of natural gas as a means of improving sustainability 

measures across the petroleum industry. Three phases of this research are conceptualized, each 

addressing key research questions concerning energy conversion, economic feasibility of flare 

gas recovery (FGR) technologies, lean production strategies, and optimal ways to alleviate 

energy poverty in selected oil-producing nations. 

The first phase of this research proposes converting waste gas or flare gas into electricity via gas-

to-wire (GTW) process. However, the cost of installing and maintaining a single gas turbine for 

the GTW process is quite high, particularly for a developing nation like Nigeria. A GTW process 

must be implemented at an affordable cost by determining the optimal range of turbine units. 

This phase of the research is therefore highly fundamental, as it involves the development of a 

novel inverse data envelopment analysis (IDEA) model for the design of a cost-effective GTW 

process. Based on the developed IDEA model, optimal turbine units were calculated for the 

deployment of GTW technology in each oil-producing nation. Additionally, the IDEA model 

was successfully applied to implement policies of the World Bank regarding global gas flaring.   

From both an economic and environmental perspective, the second phase of this research 

examines the dynamics of the petroleum industry with respect to the incremental increases in oil 

production. A win-win solution is being proposed to achieve both industry and environmental 

objectives, one that increases oil production while generating less environmental waste in the 

form of flare gas. In order to achieve this objective, a sustainable lean production framework 

(SLPF) based on IDEA models was developed. With the introduction of the lean potential 
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growth (LPG) concept, not only was gas flaring minimized, but it was also possible to determine 

multiple scenarios with increased oil production and reduced volumes of flared gas. In addition, 

the lean framework also addressed the limitations of the developed IDEA model in the first 

phase of this research by minimizing flare gas in efficient oil-producing nations. To meet the 

energy demand of selected oil-producing nations to some extent, gas flaring reductions were 

computed and converted to power with the aid of the GT13E2 gas turbine. Nigeria was found to 

be best positioned to benefit from the energy conversion process, having the highest estimate of 

gross power output. Further, an energy-based technique was developed for ranking the efficient 

producers in terms of their net energy production, and the results closely depict the real-world 

scenario. For the purpose of concluding this second phase, we offer managerial insights for 

production engineers in this industry. It is through these insights that lean practices can be 

implemented in the industry, which are far more rewarding than the conventional cost 

minimization approach. 

The final phase of this research seeks to determine the extent to which flare gas can be fully 

utilized to alleviate energy poverty in some oil-producing nations. This is critical since the gross 

power outputs computed by the lean framework in the second phase are neither maximum nor 

minimum. Instead, they are only associated with marginal increases in oil production. In light of 

this, it is imperative that the maximum amount of power that can be generated by flare gas be 

estimated. This estimation is especially useful when deciding on an optimal energy mix that 

includes gas power generation and renewable energy. This objective was accomplished by 

developing a directional DEA model incorporating both positive and negative data. Based on the 

findings, Venezuela had a promising energy mix, justifying the use of natural gas as a bridge fuel 

towards the transition to renewable energy.  

Keywords: Gas flaring; climate change; petroleum industry; lean production; inverse DEA; gas-

to-wire; optimal energy mix. 
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Chapter 1- Introduction 
 

1.1 Research Background 

A dominant and vital component of the energy sector is the petroleum industry. Crude oil and 

natural gas, which make up the complex mixture of petroleum, are both raw materials that enable 

many aspects of modern life. Even though some experts advocate moving away from fossil fuels 

toward renewable energy due to climate change/global warming, the industry remains highly 

relevant to humanity for the foreseeable future. In some oil-producing nations, oil remains the 

mainstay of the economy, providing billions of dollars in revenue annually while preserving 

industrial civilization. Since the mid-1950s, crude oil has also been the world's most important 

and reliable source of energy. Energy from its products is essential to modern society, primarily 

supplying energy to power plants, heating homes, and providing fuel for vehicles and aircraft 

that transport goods and people around the globe. In addition, refined petroleum products are 

used in the manufacture of nearly all chemical products, such as plastics, fertilizers, detergents, 

paints, and even medicines. 

The 2015 UK Oil and Gas (UKOG) economic report indicates that the industry employs 

hundreds of thousands of people and contributes significantly to the British economy in terms of 

taxes, technologies, and exports. Britain produces about two million tonnes of oil and gas per 

week. The value of this is about £37 million a day to the British people. The United States relies 

on oil, natural gas, and coal for 80% of its energy, and the industry is estimated to provide $1.6 

trillion in federal and state tax revenue between 2012 and 2025, supporting the maintenance of 

schools, hospitals, and public infrastructure across the country (Yergin, 2020). An analysis 

conducted by the U.S Chamber of Commerce indicates that halting oil and gas extraction by 

2025 will result in the loss of 19 million jobs (direct and indirect) across seven states in the 

country. The U.S. trade deficit in 2019 was also estimated to be US$305 billion lower than it 

would have been without domestic oil and natural gas production (Yergin, 2020). 
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Yet, it is pertinent to note that, since its inception, the petroleum industry has yet to embody 

operational sustainability as it generates significant amounts of hazardous wastes throughout its 

supply chain. As the wastes are generated repeatedly, the associated degradation of the 

environment is inevitable. Consequently, industry-wide sustainability measures need to be 

improved urgently. As a means of highlighting the environmental impacts of the petroleum 

industry, a basic understanding of what a typical petroleum supply chain looks like must be 

discussed. The petroleum supply chain is often divided into three sectors as shown in Fig. 1.1. 

I. Upstream: Exploration and production of oil and gas is the core business of this sector 

and accounts for the largest portion of overall production costs, including exploration 

costs, drilling costs, and marginal costs. 

II. Midstream: This sector handles the transportation and storage of crude oil as well as 

associated petroleum gas (APG). Transportation and inventory costs are involved in this 

sector. 

III. Downstream: The sector is primarily responsible for refining crude oil, distributing 

refined petroleum products, and marketing them. 

 

Figure 1.1: Structure of a typical petroleum supply chain (Source: Katopodis and Sfetsos 

(2019)) 
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Regarding the environmental impacts of the petroleum industry, it is vital to note that the 

upstream sector is primarily responsible for the generation of hazardous wastes during the oil 

extraction process. There are two main sources of harmful wastes: oil spills and gas flaring. 

Pollution of water bodies caused by oil spills makes water unsafe for humans and aquatic 

mammals. Gas flaring is the controlled burning of associated petroleum gas (APG) using gas 

flares. APG is technically known as flare gas when it is burned off in oilfields but is called field 

gas when it is converted into electricity for use in homes. It is pertinent to mention that while 

both wastes have been briefly discussed, gas flaring presents a greater threat because of the 

release of greenhouse gases (GHGs) that contribute to global warming. Also, gas flaring 

contributes to air pollution in many oil-producing nations and has been linked to a decrease in 

life expectancy in some developing countries. 

 

 
Figure 1.2: A typical gas flaring site in Southern Nigeria (Source: Aggreko) 
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Gas flaring also results in significant economic losses due to the waste of energy resources on a 

scale of billions of dollars. Therefore, there is an urgent need to check, minimize, or eliminate 

gas flaring so that the negative effects can be reduced or eliminated. 

Although many authors have examined the issue of gas flaring and its associated environmental 

degradation in oil-producing nations in the literature (Agboola et al., 2011; Economides et al., 

2004; Ishisone, 2004; Odumugbo, 2010; Oni & Oyewo, 2011), it is worth noting that these 

works were mainly descriptive analyses of the problem, with technology and infrastructure 

suggestions to reduce gas flaring in the Nigerian oil industry and elsewhere. Therefore, 

Ojijiagwo et al. (2016) were the first to develop an approach to reduce gas flaring and its impacts 

in Nigeria based on semi-structured interviews with industry experts. However, gas flaring is a 

global problem, not unique to a single nation. Further, there is no quantitative approach for 

dealing with global gas flaring reduction in the literature, in contrast to the qualitative approach 

developed by Ojijiagwo et al. (2016) that is only applicable to a single oil-producing nation. This 

study presents for the first time in literature a robust quantitative approach based on novel 

optimization techniques for managing gas flaring, thereby determining the maximum gas flaring 

reductions on a global scale.  

1.2 Problem Statement 

This research involves the development of novel optimization techniques for flare gas 

management across major oil-producing nations around the world. As such, the proposed 

research methodologies address three practical problems in the petroleum industry by developing 

mathematical models for each of these problems within the context of a holistic framework. An 

OPEC (organization of the petroleum exporting countries) member nation, Nigeria, is chosen as 

the main case study. The Niger Delta is the oil rich region of southern Nigeria, and it consists of 

nine oil producing states. Gas flaring at oil production fields in Nigeria is responsible for certain 

health problems within the Niger Delta region. Respiratory illnesses, adverse skin disorders and 

heat burns are among other health problems. The first part of this research would involve 

developing an inverse data envelopment analysis (DEA) model to estimate gas flaring reductions 

within the country. Gas flaring reductions are vital for converting flare gas into electricity to 

alleviate the ongoing energy poverty the country has been facing for more than two decades. 
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This strategy is also expected to reduce air pollution and associated health risks within the oil-

producing states. Hence, a crucial objective of this research is, from a purely technical 

perspective, to determine the maximum amount of flare gas that can be used for power 

generation within the nation. 

The inverse DEA methodology was selected primarily for two reasons. In the first instance, this 

study examines the global issue of gas flaring, which entails multiple oil-producing countries 

utilizing multiple inputs to produce multiple outputs. In DEA analysis, this is referred to as 

homogeneity. The case study, Nigeria, is part of a homogeneous group of oil-producing nations 

that contribute to global gas flaring. Consequently, the productive efficiency of each oil-

producing nation must be evaluated in relation to others. This is a necessary step toward 

benchmarking and standardization of production processes. DEA is an ideal management tool for 

carrying out this initial evaluation as its underlying principle is based strictly on the computation 

of the relative efficiency of each producer. However, a critical inverse problem in the industry 

arises when it is required to compute the optimal changes in inputs and/or outputs such that the 

predetermined efficiency score of each producer is preserved or not compromised. Gas flaring 

reductions at a global scale constitute such an inverse problem, with a higher level of 

complexity, which requires the use of mathematical theorems and proofs to extend and configure 

the traditional DEA model. With the advent of inverse DEA, complex inverse problems 

involving multiple inputs and multiple outputs can be solved in the real world.  

 

Secondly, few works have applied DEA and inverse DEA to the petroleum industry for 

sustainability development and minimizing GHG emissions (Sueyoshi & Wang, 2014; Wegener 

& Amin, 2019). Other related works are restricted to estimates of GHG emissions from gas 

flaring (Anomohanran, 2012; Elvidge et al., 2018; Giwa et al., 2014; Hajilary et al., 2020; Otene 

et al., 2016) and mitigation strategies for a single region or oil producing nation (Elvidge et al., 

2018; Elvidge et al., 2016; Rotty, 1974). Yet, all these studies and innumerable others from the 

literature have failed to address the collective problem of estimating reductions in gas flaring in 

accordance with the global gas flaring reduction partnership (GGFR) launched by the World 

Bank. Therefore, this study closes this critical gap in the literature by developing novel inverse 

DEA models in compliance with the GGFR initiative. In addition, the first part of this study will 
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conclude by designing an algorithm as a policy-making tool for the implementation of another 

World Bank policy called the "Zero Routine Flaring (ZRF) by 2030 Initiative". The goal of this 

initiative is to end global gas flaring at oilfields by 2030. 

 

The lean production philosophy has long been regarded as an effective management technique in 

many industries, including automobiles, cement, aviation, textiles, healthcare, etc. Utilizing lean 

tools has achieved satisfactory results within these industries by eliminating waste and non-

value-added activities, minimizing input resources, and increasing productivity/profitability. 

Unsurprisingly, the petroleum industry lags in the adoption of the lean concept. The industry has 

generated waste products on a continuous basis since its inception, which has had significant 

consequences during periods of falling oil prices resulting in major revenue losses. The second 

part of this study focuses on the development of a framework for sustainable lean production 

based on the inverse DEA. This framework is intended to enable the petroleum industry to 

reduce production wastes, minimize the use of resources and increase productivity. Experts in 

the industry have termed this scenario a win-win solution for both the industry and the 

environment because more revenue could be generated with less environmental waste in the 

form of flared gas. Benchmarking oil producers also requires the use of the lean production 

framework to address the perennial problem of ranking efficiency often encountered in DEA 

analysis. Therefore, it is imperative to establish a hierarchy for efficient producers so that the less 

efficient producers can improve their production practices to be at par with the most efficient 

producers. 

 

The final section of this study is solely concerned with determining an optimal energy mix 

consisting of natural gas power generation and renewable energy for oil-producing developing 

countries such as Nigeria and Venezuela, which are currently experiencing energy poverty. The 

goal is to use natural gas as a bridge fuel to help both countries gradually transition to 100 

percent renewable energy. Many developed countries see the global push for renewable energy 

as a positive development. However, the economic crisis in some developing countries, 

combined with declining purchasing power, suggests that these countries will require more time 

to completely transition to renewable energy sources. This necessitates a short-term reliance on 
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gas power generation for Nigeria and Venezuela, as both countries are among the top seven gas 

flaring countries in the world for the ninth consecutive year, creating an energy economy 

paradox. The motivation for this final part of the study stems from the fact that no previous study 

has developed a mathematical framework for determining the maximum amount of electricity 

that can be generated from flare gas. This estimate is required to determine how much of a 

country's unavailable or lost power capacity can be recovered through flare gas power 

generation. With this information, the remaining capacity loss in installed power can be allocated 

to renewable energy sources. To address the last issue, a directional distance DEA model will be 

developed separately, as this technique is based on determining maximum optimal solutions in 

DEA analysis. 

1.3 Research questions 

This study aims to answer the following research questions, which are critical for improving 

sustainability measures in the petroleum industry in the short and long term: 

 

R1. At current production level of inputs and outputs, and with current technology and                    

workforce, what is the potential reduction in gas flaring for an oil-producing nation?  

R2. With better technology and a more highly skilled workforce, what is the maximum potential      

reduction in gas flaring for an oil-producing nation?  

R3. Can the petroleum industry adopt the Zero Routine Flaring (ZRF) Initiative in any given 

production year? 

R4. What is the optimal sizing required for implementing a gas-to-wire (GTW) process for flare 

gas management? 

R5. Can the industry adopt and implement lean production practices without flare gas recovery 

technology? 

R6. How can the industry adopt and implement lean production practices through flare gas 

recovery technology, such as gas-to-wire (GTW)? 

R8. With the current emphasis on transitioning to renewable energy, what is the optimal energy 

mix for an oil-producing country that combines gas and renewable energy? 
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1.4 Research objectives 

The following objectives will provide the much-needed answers to the research questions posed 

in the previous section: 

1. To develop a novel inverse DEA model for accurately estimating potential reductions in 

global gas flaring. 

2. To develop a new algorithm for effective implementation of the “Zero Routine Flaring by 

2030” initiative. 

3. To determine the optimal sizing of an economically feasible gas-to-wire (GTW) process. 

4. To develop a sustainable lean production framework for improving operational 

sustainability within the petroleum industry. 

5. To develop an optimal energy mix for an oil-producing nation based on flare gas power 

generation. 

1.5 Scope of Research 

This research focuses on flare gas management in the petroleum industry as an effective means 

of alleviating energy poverty in selected OPEC member nations. As opposed to previous studies 

in the literature that have addressed the issue of gas flaring in such nations using a descriptive 

and qualitative research approach, this study employs a quantitative method based on linear 

programming models. There are two different gas flaring policies (the GGFR and ZRF 

initiatives) published by the World Bank that serve as a guide for the entire research. The GGFR 

initiative focuses on the reduction of gas flaring, while the ZRF initiative focuses on eliminating 

gas flaring. In this regard, all the models developed in this study are geared toward the cleaner 

production of natural gas within OPEC member nations.  

Since OPEC member nations experiencing energy poverty are also developing nations, this 

research also addresses the design of a cost-effective solution scheme for such countries. The 

solution scheme involves determining the maximum amount of energy that can be produced 

through gas turbines based on different scenarios. Also, the commercialization of flare gas that is 

based on the formulated models could serve as a potential source of revenue for OPEC members 

that are not experiencing any form of energy shortage. 
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1.6 Research Contributions 

The contributions of this study can be summarized as follows: 
 

I. This study is the first to develop a robust quantitative approach to address the persistent 

issue of gas flaring in the petroleum industry. Thus, the proposed methodologies were 

developed in strict compliance with the policies of the World Bank regarding gas flaring 

reductions. In consequence, this study offers both short- and long-term policy-making 

tools for sustainable oil and gas production across the industry. 

II. The present study provides a new theoretical basis that allows the practical application of 

DEA models in sustainability and waste management, not only within the petroleum 

industry but also across a wide range of other sectors that require effective management 

strategies to minimize waste and increase productivity. In general, this study 

demonstrated that the inverse DEA model can be used as a lean production tool. To 

combat the increase in gas flaring that is typically associated with increased oil 

production, as well as to prevent oil price crashes due to an excess supply of crude oil, 

this study introduced the concept of lean potential growth to the literature for the first 

time. Managers can also use the lean potential growth formula when optimizing oil 

inventory. 

III. Also, the study was the first in the literature to consider the economic feasibility of 

deploying flare gas recovery technologies such as gas-to-wire (GTW) to reduce or 

eliminate gas flaring at oilfields. This was achieved by developing a formula for the 

optimal sizing of the gas-to-wire (GTW) process. This formula factors in projected 

reductions in gas flaring and the annual gas consumption of a single turbine unit. It is 

possible to save capital costs by calculating the maximum number of turbine units. 

Simply put, any investment beyond the maximum number of turbine units will likely 

result in a financial loss. 

IV. Also, for the first time, an energy transition curve for the petroleum industry is developed 

in this study. Moreover, the study examines the effect of data type on the transition curve, 

which leads to a novel concept of optimal power sizing in the industry. Considering this 
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information, the notion of maximum power generation from flare gas becomes more 

realistic when dealing with positive and negative data in DEA modeling. 

V. Finally, as a contribution to the field of operations research, this study successfully 

introduced new mathematical theorems with proofs and demonstrated that they have 

profound implications when used in DEA analysis for waste management and circular 

economy.  

1.7 Research Significance 

Climate change and global warming are two distinct threats that cannot be overemphasized in the 

present day. Emissions of greenhouse gases (GHG) are a contributing factor to climate change. 

GHG emissions from gas flaring have contributed substantially to the push for a transition from 

fossil fuels to renewable energy sources. The effects of GHG emissions on the atmosphere 

include air pollution, acid rain, and other harmful consequences. The race toward the elimination 

of GHG emissions in the short-term may appear haphazard and somewhat challenging, since the 

policies available to reduce emissions are ineffective or, at best, of limited effectiveness. 

Therefore, in the short term, the best strategy is to tackle a major source of emissions, which in 

this case is gas flaring. 

 

By reducing gas flaring, GHG emissions are greatly reduced, and this results in a decline in the 

number of deaths from air pollution, thus easing pressure on healthcare systems in affected areas. 

In addition, flare gas commercialization represents a significant economic benefit to oil-

producing nations. For instance, this study estimates the maximum revenue that can be generated 

from flare gas in Nigeria to be US$1.379 billion in 2011. According to a financial report by 

PricewaterhouseCoopers (PwC), Nigeria lost US$761.6 million (i.e., N233 billion in local 

currency) to gas flaring in 2018. Fig. 1.3 represents the extent to which this amount can be used 

to finance government projects, such as housing, road and airport improvements, and healthcare. 
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Figure 1.3: Development projects related to flare gas commercialization in Nigeria.  

(Source: PwC (2019)) 

 
It is often difficult to convince national governments to invest in the technological equipment 

and infrastructure necessary to reduce gas flaring due to their high cost. In the GTW process, the 

costs associated with the installation and maintenance of a single turbine unit are quite expensive 

for a developing nation such as Nigeria. Another important benefit of this study is the provision 

of a reliable template for computing the optimal number of turbine units based on the availability 

of gas. With this information, the associated risks of an investment in GTW process can be 

greatly minimized, resulting in cost savings. The cost savings relate to the excess operating costs 

of redundant turbines, should a decision-maker neglect to consider safety and maintenance 

flaring, which is a relatively small fraction of the total volume of flare gas.  
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1.8 Structure of the Thesis 

The remainder of this thesis is organized as follows: 

In Chapter 2, a critical assessment of the literature related to the topics of this research is 

presented. Among the topics addressed in this literature are mitigation strategies for gas flaring, 

gas-to-wire (GTW) processes, lean production tools, DEA, and inverse DEA models. As well, 

the application of DEA models to sustainability studies in a variety of industries is covered in 

detail. Studies involving the use of DEA models in waste management are also critically 

analyzed. Toward the end of this chapter, research gaps are summarized to give a better 

understanding of the research problems and subsequent work in the following chapters. 

Chapter 3 examines the theoretical basis for the development of a novel inverse DEA that 

addresses the problem of global gas flaring. Thus, this chapter constitutes the core of this 

research, as it presents for the first time in the literature a robust mathematical approach that 

results in the optimal sizing of the gas-to-wire (GTW) process.  

Chapter 4 is an extension of chapter 3. By devising a framework for implementing lean 

production practices in the petroleum industry, this extension addresses the limitations of the 

inverse DEA developed in chapter 3. In doing so, chapter 4 introduces the concept of lean 

potential growth to prevent crude oil overproduction and subsequent gas flaring. Furthermore, 

the managerial implications of the applied models are thoroughly discussed. 

Chapter 5 extends both chapters 4 and 3. This chapter presents a novel approach to determining 

the maximum power that can be generated from flare gas. This chapter focuses primarily on the 

waste-to-power concept. Additionally, this chapter discusses in detail the energy transition curve 

and its perturbations due to data type, leading to the notion of optimal power sizing. 

In chapter 6, the overall conclusions of the models described in the previous chapters, the 

limitations of this study, and possible future research directions are presented. 
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Chapter 2 – Literature Review 
 

2.1 Introduction 

This chapter presents a comprehensive review of the pertinent literature, highlighting the 

importance of this research to the industry and society at large. Previously, studies on gas flaring 

have been restricted to descriptive and qualitative analyses of single regions, and in some cases, 

specific oil-producing firms. It is therefore imperative that such studies and those on 

management approaches proposed for the purpose of reducing gas flaring in the industry be 

highlighted and critically reviewed. The relevant literature is divided into four sections.  

This first section examines previous studies regarding gas flaring estimates and their resulting 

GHG emissions. An in-depth review of several strategies for mitigating gas flaring as well as 

technological solutions are presented in the second section. Moreover, since a significant area of 

this study focuses on the design of a lean production framework as an additional mitigation 

strategy, it is imperative that a comprehensive review of lean production tools for waste 

management across several industries also be presented. The third section of this review focuses 

on the applications of DEA models for sustainability, energy efficiency, and waste reduction. 

This is further elaborated by illustrating the perennial ranking issues encountered with the use of 

DEA models for efficiency ranking, and a variety of ranking methods are examined that resolve 

these issues. A brief discussion of inverse optimization is presented in the fourth section, 

followed by applications of inverse DEA to real-world problems. This chapter concludes with 

the identification and discussion of research gaps. 

2.2 Estimating Gas Flaring and associated GHG Emissions 

Several studies have been conducted to estimate the volumes of flare gas and their constituent 

greenhouse gas emissions, a problem that has existed in oil-producing nations for decades. A 

number of these studies investigated causal relationships between oil production and associated 

gas flaring. Other studies were conducted to estimate the actual volume of GHG emissions 

during the gas flaring process. These studies utilized satellite imagery, statistical approaches, and 

algorithms. This section offers a review of related studies. 
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Rotty (1974) was the first to study the relationship between oil production and gas flaring. Based 

on data reported or estimated for 1968 to 1971, this was accomplished by fitting a linear 

regression line as a function of worldwide gas flaring to crude oil production and arriving at 

flared gas estimates for each year since 1935.  

 

Elvidge et al. (2009) then introduced the use of low light imaging by using data provided by the 

Defense Meteorological Satellite Program (DMSP) to provide estimates of annual national and 

global gas flaring over a 15-year period (i.e., 1994-2008). As part of the DMSP estimate, a 

calibration system has been developed using national gas flaring volumes and data from 

individual flares. Additionally, the study assessed the global gas flaring efficiency during this 

period. Flaring efficiency was measured based on the amount of gas flared for every barrel of 

crude oil produced. During the period of 1994 to 2005, worldwide flaring efficiency was 

estimated to have been between seven and eight cubic meters per barrel and declined to 5.6 cubic 

meters per barrel by 2008. It was estimated that 139 billion cubic meters of natural gas were 

flared in 2008, representing 21% of U.S natural gas consumption with a market value of more 

than $68 billion. The study also estimated that the 2008 flaring released more than 278 million 

metric tons of carbon dioxide equivalent (CO2e). In the DMSP estimates of gas flaring volumes, 

a 19% decline has occurred since 2005, with the major reductions occurring in Nigeria and 

Russia, the two countries with the highest level of gas flaring. Both Russia and Nigeria 

experienced an improvement in their flaring efficiency from 2005 to 2008. Therefore, it might be 

suggested that the reduction in gas flaring is because of either better utilization of the gas, 

reinjection, or direct venting of gas into the atmosphere. However, the impact of uncertainties in 

the satellite data cannot be completely excluded. With the advent of satellite data enabling 

estimation of gas flaring volumes, it is anticipated that gas that was previously simply burnt as 

waste will be more effectively utilized this way. 

 

Ismail and Umukoro (2012) have provided an in-depth overview of different approaches utilized 

by researchers to measure flare gas and its resulting emissions. It includes analytical studies, 

numerical studies, modeling, computer simulations, etc. All these approaches are aimed at 

mitigating the consequences of flaring. The study concludes that there does not appear to be a 
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single global method, emission factor, or estimation procedure employed by the oil and gas 

industry around the world to determine the volume of gas flared and whether its emissions are 

related to complete or incomplete combustion. Consequently, there is a continuous problem in 

determining an accurate estimate of the impact of gas flaring on humans and the role it plays in 

the degradation of the environment on a local and global scale. 

Anomohanran (2012) used both descriptive analysis and the reference approach method to 

determine greenhouse gas (GHG) emissions from gas flaring in Nigeria. Initial findings revealed 

that the volume of gas produced in Nigeria from 1999 to 2009 was 502 million cubic meters 

while 237 million cubic meters, or 47%, flared. Moreover, the total amount of gas flared 

decreased from 23 million cubic meters in 1999 to 14 million cubic meters in 2009. As a result, 

the total amount of carbon dioxide emissions between 1999 and 2009 was estimated to be 457 

million metric tons or 23.1 percent more than the global value of 1979 million metric tons. The 

obtained results showed that Nigeria flared 47% of total gas produced over a ten-year period 

(1999 – 2009) and lost an estimated US$11 billion annually. 

As a way to monitor gas flaring on a global scale, Casadio et al. (2012) developed a novel active 

flame detection method that relied on short wavelength infrared measurements (SWIR, 1.6ߤm), 

which was tested using measurements of the Along Track Scanning Radiometer (ATSR) family 

measurements. In addition, a novel algorithm, called ALGO3, was developed based on the 

confirmed assumption that, at SWIR wavelengths, background contributions to the night-time 

total radiation measured by ATSR are negligible, whereas flame-emitted radiation from active 

flames is detectable. Due to their high temperature/small area flames, ALGO3 products can be 

used to detect gas flares. Flaring sites were categorized based on the persistence of hot spots. 

Therefore, hot spots present at a frequency greater than four times a year were considered 

industrial settlements. There has been confirmation of continuity and consistency between the 

ATSR missions and the results pertaining to the 1991-2009 period have been presented. Visual 

inspection of high-resolution images of the Earth's surface has been used to validate the flaring 

site discrimination. There is a high degree of agreement between ALGO3 retrievals and light 

count data from the DMSP. Elvidge et al. (2015) presented a set of new methods for surveying 

natural gas flaring globally using data collected by the Visible Infrared Imaging Radiometer 

Suite (VIIRS). According to the estimates, flared gas volume carries a level of accuracy of 
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±9.5%. The VIIRS is especially useful for detecting and measuring the radiant emissions from 

gas flares based upon the collection of shortwave and near-infrared data at night, as well as 

recording the peak radiant emissions from flares. The number of flare sites identified in 2012 

totaled 7467. According to estimates, the total volume of flared gas is approximately 

143(±13.6) billion cubic meters (BCM), which corresponds to 3.5% of worldwide production. 

Russia leads in terms of volume of flared gas, while the USA has the highest number of flares. 

90% of the flared natural gas volume is found in upstream production areas, 8% is found at 

refineries, and 2% is found at LNG terminals. These findings confirm that natural gas flaring 

primarily occurs in upstream production areas.  

Using Moderate Resolution Imaging Spectroradiometer (MODIS) thermal imagery at 

night, Anejionu et al. (2015) developed a methodology for locating individual active flaring sites 

and the volume of flared gas at those sites. As part of its flare detection technique (MODET), 

MODIS also utilizes a volume estimation technique (MOVET) that combines the absolute and 

contextual radiometric responses of flare sites. Based on independent observations of flare 

location and volume, the detection accuracy and estimation error levels were quantified. An 

archive of MODIS data covering the Niger Delta in Nigeria, a major global hotspot for flaring, 

was used to apply MODET and MOVET. This study illustrates significant spatial and temporal 

variability in gas flaring within the region, across states, and across onshore and offshore sites. 

Thus, while the total volume of gas flared in the region over the study period (350 billion cubic 

meters) is large, the heterogeneity of flaring indicates that its impact will vary widely between 

time and space. Combined, MODET and MOVET offer a consistent and objective way to 

monitor flaring activity across appropriate scales, and the robustness and transferability of these 

methods need to be tested in other oil-producing regions as well. 

A comparative analysis was also provided by Elvidge et al. (2018) based upon satellite-derived 

gas flaring data of 2015 and the GHG reduction targets indicated by those countries in their 

nationally determined contributions (NDC), pursuant to the Paris Agreement. This analysis 

includes three categories of flaring: upstream at oil and gas production sites, downstream at 

refineries, transportation facilities, and other industrial locations. The results indicate that 

upstream flaring accounts for 90.6% of all flaring. Flaring worldwide represents less than 2% of 

the NDC reduction target. Although most gas flaring occurs in a limited set of countries, it is 
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possible that reductions in flaring could make a significant contribution to the NDC targets for 

specific countries. Additionally, the study revealed that states that could achieve their NDC 

targets through gas flaring reductions included Yemen (240%), Algeria (197%), and Iraq 

(136%). The countries that may be able to meet substantial portions of their NDC targets with 

gas flaring reductions include Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and 

Sudan (33%). In contrast, several countries with high flaring levels were only able to meet a 

small portion of their NDC targets by reducing gas flaring, including Russia (2,4%) and the 

United States (0,1%). The findings of these studies may be useful to guide national efforts to 

meet greenhouse gas reduction targets under the NDC. 

 

Giwa et al. (2014) used 49-year (i.e., 1965 – 2013) data to determine the relative amounts of 

black carbon (BC) emissions into the atmosphere via gas flaring in Africa’s largest oil producer, 

Nigeria. They estimated the average annual flare in Nigeria to be 18.27 billion cubic meters. 

Each year of a 49-year period was assigned an emission factor and a volume of gas flared and 

they were used to quantify the amount of BC that was released into the atmosphere. During this 

time, 55% of the gas produced was flared, releasing 4.56 × 105 tons of BC into the 

environment. From the first decade (1965–1974) of gas flaring to the fourth decade (1995–2004), 

BC emissions into the environment increased progressively (5.06 × 104 to 1.27 × 105 tons) with 

a significant decrease (8.74 × 104 tons) in the fifth decade (2005–2013). Emam (2015) also 

provided estimates of gas flaring in terms of actual volume, composition, and distribution; 

thereby highlighting flare gas management systems to reduce or recover flare gas. 

 

A study conducted by Umukoro and Ismail (2017) provides material balance equations and 

presents a prediction technique for non-hydrocarbon emissions such as CO2, CO, NO, NO2, and 

SO2, from flaring of twelve samples of natural gas representative of natural gas originating 

worldwide. With the aid of a computer program, the material balance equations for six reaction 

types and combustion conditions were coded. Based on an average annual global flaring rate of 

126 BCM per year (between 2000 and 2011), the expected gaseous emissions from flaring 

natural gas are 560MMT, 48 MMT, 91 MMT, 93MMT, and 50MMT for CO2, CO, NO, NO2 and 

SO2, respectively. In their developed model, gaseous emissions are predicted in relation to 
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possible combustion types and conditions. Conrad and Johnson (2017) performed an in-situ field 

study of BC emission rates and volume-specific BC yields from a variety of flaring systems. In 

accordance with the results obtained, flare gas volume-specific BC yields were highly correlated 

with flare gas heating values. Their study concluded by stating that based on the newly derived 

correlation between current field data as well as previous lab data, the effects of flaring in the 

energy industry may indeed be underestimated. 

2.3 Gas Flaring Mitigation Strategies 

In the literature, various proposals have been made to mitigate gas flaring and associated GHG 

emissions since it is a persistent global problem. In this section, we review these proposals and 

their significant findings.  

 

In a comparison between three strategies for flare gas recovery at the Asalooye Gas Refinery, 

Rahimpour et al. (2012) studied GTL production, gas compression, and the production of 

electricity using gas turbines. As a result of their findings, it was found that GTL had the highest 

return rate but required the greatest amount of capital investment. Having established a lower 

rate of return for gas compression, they recommended it for the refinery along with lower capital 

investment. A study by Davoudi et al. (2013) explained the process of managing gas flares in 

Iranian gas processing plants and explained their robust strategy for minimizing the associated 

wastes. To investigate and design the optimal layout of flare gas recovery hybrid systems using 

liquid ring compressors (LRC) and aqueous amine solvent, Yazdani et al. (2020) constructed 

three sets of configurations. Specifically, the third configuration showed a lower amine 

consumption than the first and second configurations by 67% and 44%, respectively. However, 

compared with the first and second configurations, the third configuration required an increase in 

power of 58% and 53%, respectively. Abdulrahman et al. (2015) used the triple bottom line 

approach for analyzing a sustainable gas flare recovery project in Egypt. According to the 

findings, GHG emission reductions could generate an expected annual revenue of US$ 1.5 

million and create job opportunities in the Egyptian petroleum industry. Additionally, it was 

determined that the removal of energy subsidies will make the study more beneficial to Egypt in 

the long run, regardless of the revenues from the clean development mechanism (CDM). 
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Ojijiagwo et al. (2016) investigated the economic feasibility of gas-to-wire technology in 

Nigerian oil fields. Based on interviews with industry experts across gas and electricity 

companies in the country, they used a qualitative research methodology. Initial findings suggest 

that the gas firm flared about 8.33% of the total volume of gas produced on a daily basis, while a 

gas turbine unit rated for 150MW power output consumes approximately 0.93 million cubic 

meters of gas per day. According to the main results, 50 turbine units are sufficient to generate 

7500MW of electricity for the country based on the total gas consumption of 46.5 million cubic 

meters. Finally, in the context of the general economic benefits for the Nigerian economy, the 

project is projected to generate total revenue of £2.68 billion with a rate of return of 16.3% and a 

payback period of six years. Hajilary et al. (2020) proposed a novel approach for reducing flare 

gas at the second and third phases of the South Pars refinery. The approach was based on 

detailed case histories and simulated conditions, which revealed bottlenecks. Results indicate a 

significant decline in flare gas from 190 to 31 million cubic meters per day. CO2 emissions 

decreased by 83.4%, and in total, GHG emissions decreased by over 700% as a result. To 

effectively extract huge amounts of CO2 from natural gas while generating electricity, 

Interlenghi et al. (2019) have proposed the use of a combination of gas-to-wire and carbon 

capture systems. Khalili-Garakani et al. (2020) have provided an in-depth review of the potential 

of gas flare recovery technologies in Iran. 

2.3.1 Technology solutions for gas flaring 

 
With a portable gas compression unit, gas that would otherwise be flared could be compressed, 

transported, and used elsewhere in the operating area rather than being flared. According to the 

U.S Environmental Protection Agency (EPA), it was estimated that at least 89% of compressed 

natural gas (CNG) could be recovered via natural gas compression technique in the western 

region of North Dakota. Furthermore, General Electric (GE) and Ferus Natural Gas Fuels, Inc. 

(Ferus NGF) have developed and tested a system called the “Last Mile Fuelling Solution” for 

transporting CNG across the final distance or last mile from the point of supply to the point of 

use without the use of conveying pipes. Additionally, gas-to-liquids (GTL), liquefied natural gas 

(LNG), and gas reinjection are viable options that must be discussed separately. 
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2.3.1.1 Gas-to-liquid (GTL) technology 

 
Gas-to-liquids (GTL) systems have been developed to convert natural gas to liquid products such 

as high-grade diesel fuel, methanol, and zero sulphur diesel. The GTL produces diesel fuel that 

provides almost the same amount of energy density as conventional diesel, however the cetane 

number is higher, so it is possible to design engines that can run better (Stanley, 2009). 

Furthermore, GTL products not only enhance the value of conventional products, but they also 

produce less pollution because of their reduced emissions. As well, synthetic liquid fuel (SLF) 

has been substituted for GTL in Russian literature (Eliseev, 2009). In this process, two 

technologies are used: direct conversion from gas, and indirect conversion via synthesis gas. By 

utilizing direct technology, methane can be directly transformed into synthetic gas at a lower 

cost. By using Fischer-Tropsch (F-T) synthesis or methanol, indirect technology could be 

applied. Chemical transformation of simple organic compounds into complex hydrocarbons is 

required by F-T reactors. Cobalt or iron catalysts are typically employed in this process. The F-T 

synthesis is depicted in Fig. 2.1, which shows a flowchart of the entire process and the final 

products - LPG, naphtha, and diesel. 

 

 
Figure 2.1: Schematic of the F-T process (Source: Ojijiagwo et al. (2016) ) 
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With respect to relevant studies, Stanley (2009) evaluated GTL conversion systems as a means 

of reducing gas flaring in Nigeria. Additionally, the conversion process reduced the 

overdependence on imported refined petroleum products. Rahimpour et al. (2011) proposed a 

GTL simulation approach based on reactors for the production of gasoline from synthesis gas. 

Results showed significant reductions in CO2 and an increase in gasoline production.  

Using a base-case flowsheet synthesis and computer-aided simulation, Bao et al. (2010) carried 

out a techno-economic analysis of the GTL process. The goal was to find opportunities for cost 

reductions and energy efficiency without sacrificing the environment. A break-even point and 

return on investment were also estimated based on an economic analysis. Fei et al. (2014) have 

also introduced Bio-GTL by providing an overview of bioprocess technologies that use methane 

as an alternative carbon source. The study further outlined major challenges and research needs 

for microbial lipid accumulation from methane sources in the future. Upon analysis of raw 

materials, methane-derived diesel fuel may be more cost effective than petroleum-derived fuel. 

2.3.1.2 Liquified natural gas (LNG) 

 
In LNG technology, natural gas is cooled to a temperature of approximately -260 degrees Celsius 

and at atmospheric pressure. Transport of natural gas over long distances is highly effective with 

this technology, particularly between countries, and it accounts for about 25% of the world's gas 

transportation. Since LNG is primarily composed of liquid methane, it presents a viable option 

for storage and transportation. In most cases, the development of LNG involves large financial 

investments in liquefaction plants as well as LNG carriers. As a result, this technology presents 

significant challenges to gas management, in particular in remote stranded gas fields. Due to this, 

the economic feasibility of developing remote offshore gas by way of LNG is influenced by the 

cost of transporting the gas to shore.  

Fig. 2.2 illustrates the entire process involved in producing LNG from raw natural gas. It begins 

with the initial processing of natural gas to remove impurities. Thereafter, further purification is 

accomplished using refrigeration and distillation. The liquefaction process involves the 

conversion of natural gas into liquid before any other nitrogen compounds/oxides are removed 
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via the nitrogen rejection process. The final product is pure LNG for domestic and international 

markets. 

 
Figure 2.2: Flowchart for production of LNG  (Source: Indriani (2005)) 

2.3.1.3 Gas re-injection process 

Natural gas re-injection involves the injection of gas back into an underground reservoir, 

typically one which already contains each oil and gas. By injecting gas back into the reservoir, 

the pressure within the reservoir is increased, thereby inducing crude oil flow. A very high 

pressure of 70 000 kPa is normally required for this process (Jahn et al., 2008). Re-injection of 

gas is commonly employed in cases where there is no market outlet for the gas. It is possible to 

inject associated gas that cannot be flared into reservoirs in order to maintain reservoir pressure 

and increase recovery. There will be an initial liquid separation, and due to the high pressure, it is 

crucial to dehydrate the gas first. In light of the fact that gas pressures in compressors are much 
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higher than those in gas pipelines, it is imperative that lubricants used in them do not dissolve in 

high-pressure gas. The Sanha Condensate Project in Angola is an example of a gas re-injection 

process. By gathering, processing, and re-injecting associated gas, the project is intended to 

eliminate flaring from existing platforms and to increase oil production.   

 

 
Figure 2.3: Schematic of gas re-injection process (Source: Indriani (2005)) 

 

2.3.2 Lean production as a potential mitigation strategy 

In the preceding section, recommendations for strategies and solutions to gas flaring were 

addressed from a technological perspective; however, one major obstacle to the adoption of some 

technology solutions is the considerable capital expenditure required. Developing countries that 

produce oil are at a greater disadvantage in this regard. Thus, there is a possibility of adopting an 

alternative approach to address the persistent problem of gas flaring. In this context, this section 

introduces the lean concept as an effective managerial approach that aims to minimize waste (in 

the form of flare gas) while improving the overall productivity of the industry. Hence, this 

section will provide an overview of lean production as well as a review of related works. 

 

Lean production, which was developed by Toyota Production System (TPS) in the automotive 

sector, proposes that waste (i.e., ‘muda’ in Japanese) can be reduced or eliminated in a work 

system to increase productivity, profitability, and efficiency. During the past four decades, lean 
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production has become ingrained in many manufacturing companies in the United States (Shah 

& Ward, 2007). In order to achieve lean operations, considerably emphasis is placed on 

minimizing the volume of resources utilized while eliminating all waste or non-value-added 

activities in an organization. In an increasingly competitive environment, lean production 

provides a competitive advantage. It has even been suggested that lean production may be the 

dominant manufacturing strategy of the 21st century. Lean production can generate a number of 

benefits, including, but not limited to, increased customer satisfaction, reduced inventory levels 

and costs, better utilisation of equipment, and reduced idle time. Other industries which have 

successfully adopted lean production techniques include healthcare, aviation, construction, 

cement, textiles, pharmaceutical, and electrical. Thus, it is crucial to give some insight into the 

extent to which lean tools are being adopted in these industries. 

 

Masmali (2021) implemented Value Stream Mapping (VSM) as a lean framework at a cement 

company. In the initial investigation, it became apparent that excess inventory between 

workstations was a source of waste that needed to be reduced, prevented, or eliminated. Also, the 

Kanban system and CONWIP approach were utilized for inventory control and work-in-process, 

respectively. According to the main results, non-value time was reduced from 23 days to 4 days 

in the Kanban approach and 2 days in the CONWIP approach, respectively. It was thus 

recommended that the company adopt the CONWIP approach. Tortorella et al. (2021) conducted 

a study that identified potential paths for the implementation of lean automation. By collecting 

and analysing data based on multivariate techniques, their findings led to three hybrid 

configurations of lean practices and industry 4.0 (I4.0) technologies. Research findings indicate 

that companies with higher performance are deploying a more extensive or robust combination 

of lean practices and I4.0 technologies. During the implementation process of lean 

manufacturing, Sadiq et al. (2021) incorporated blue ocean manufacturing techniques to achieve 

manufacturing excellence. After applying both methods to the production/assembly line of an 

automotive spare parts supplier, it was determined that the reductions in lead-time, value-added 

time, and GHG emissions were 26%, 39%, and more than 50%, respectively. 
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According to Agyeman (2021), the implementation of lean principles within the Boeing 

production system has influenced the production of Boeing aircraft. It is based on prior research 

that looked at Boeing's pursuit of the lean management approach over the course of many 

decades and the significant benefits realized across the organization. Based on findings in the 

study, Boeing showed a robust approach to managing the company's value stream by putting an 

emphasis on customer demands, industry standards, and novel ways to improve system 

efficiency. Hao et al. (2021)  conducted a study based on the complementarity theory to 

investigate the effects of lean techniques and servitization of manufacturing on sustainability 

practice across three different dimensions of practice. Findings indicate that the overall impact of 

lean practices on sustainability is not always satisfactory. However, the combination of 

servitization and lean practices led to significant improvements in operational sustainability.  

 

Based upon the use of SciMAT and VOSviewer tools, Furstenau et al. (2021) have provided an 

in-depth bibliometric analysis of lean production over a 42 year period. According to the study, a 

total of 4412 articles were reviewed, based on the analysis of various indices, including the 

overall performance of the publications, the reputation of researchers in the field, and the ranking 

of universities and their regions. Results indicate that the most relevant themes of the study are 

related to manufacturing, managerial approaches, and human resources. Galeazzo (2021) 

conducted a study to investigate the extent to which a firm will be able to adhere to lean 

production through the application of lean techniques. Furthermore, a hypothesis was tested to 

see if lean maturity would have any significant impact on the financial performance of firms. 

Research findings indicate that lean maturity is positively correlated with financial performance 

and that there is a causal relationship between leanness and financial performance. In a 

production system characterized by lean production and industry 4.0, Mrugalska and Wyrwicka 

(2017) studied the coexistence of these concepts. Based on this investigation, they concluded that 

both approaches can be interconnected without compromising each other. Uzochukwu and Ossai 

(2016) advocated cellular production as a lean tool for improving overall performance of oil 

firms in Nigeria. Using the Pearson product moment correlation, their study revealed that there is 

a positive correlation between cellular production and service delivery. 
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The petroleum industry, in spite of the lean concept having been adopted by many other 

industries, has been very slow to adopt and implement it. There are several reasons for this. 

There has been a lack of sustainability in the petroleum industry from its inception, especially in 

regards to the practice of waste minimization (Ratnayake & Chaudry, 2017). There are many 

redundant operations, both onshore and offshore, that result in wasteful activities, which 

eventually lead to a decline in overall efficiency and productivity (Santamarta et al., 2016). 

Although this research emphasizes flare gas as a significant waste stream in the industry, there 

are other hazardous wastes that are generated during exploration and production activities. These 

include produced waters, drilling fluids, and other associated wastes. Considering that waste 

minimization is at the core of lean production, it is obvious that the persistent generation of these 

wastes is an essential justification for adopting and implementing lean practices. 

It is also worth noting that the fall in oil prices during 2014 led to a decline in the profit margins 

of the top oil exploration and production companies (E&P) (Santamarta et al., 2016). Due to the 

2014 oil price crash, some E&P companies were forced to reduce their workforces and suspend 

or cancel a number of scheduled projects. As a result, these actions negatively impacted the 

upstream sector, resulting in further declines in revenue and profitability. Recent events, 

culminating most recently in an oil price war and the devastating impact of COVID-19, made it 

impossible to maintain oil prices at their current levels and caused an unprecedented economic 

crisis within the industry. Besides posing an environmental risk, gas flaring remains a 

tremendous waste source, which further degrades the industry's efficiency. Oil price volatility 

along with the negative impact of gas flaring have shifted the dynamic of the industry in such a 

way that production managers are forced to consider better strategies other than cost 

minimization. Under low oil prices, it is imperative that the industry secure its competitiveness 

by increasing productivity, optimizing resource utilization, and reducing waste. Rats et al. (2015) 

have suggested that, to improve the overall performance of the industry, the lean concept can be 

an effective strategy. It thus stands to reason that one of the driving forces behind this research is 

the need for the petroleum industry to implement lean production practices. 
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2.4 DEA as a performance evaluation tool 

The topic of performance evaluation is one that is of paramount concern to most managers as it 

can serve as a foundation for decisions made about the allocation of resources, such as budgets 

and bonus schemes. In conventional terms, performance can be defined both as the inputs and 

outputs of an organization, or as the relationship between them, usually referred to as efficiency. 

Across a variety of academic disciplines, the terms 'efficiency' and 'productivity' have been used 

interchangeably. In essence, both terms are used in the same context, but each has slightly 

different meanings. Efficiency is a technical measure of the performance of a firm or an 

organization. In addition, the term can also be defined as the ability of a firm to ensure a low 

level of resource consumption to achieve a maximum level of output, and this also implies a case 

of lean production. This is practically possible when, for instance, a firm employs the right 

people and machine to perform the task correctly (Kvadsheim & Wasamba, 2014). Conversely, 

the productivity of an inimitable unit is the ratio of its output to the input necessary to produce its 

output (Haksever & Render, 2013). In general, evaluation characteristics have multidimensional 

attributes, therefore they cannot be aggregated in a proper way. Thus, it can be said that the main 

issue of performance measurement is determining the relative efficiency of each business unit 

within an organization (Tien-Hui, 2011).  

Data envelopment analysis is a useful tool for assessing performance and has been used several 

times in the literature for evaluating the efficiency of decision-making units (DMUs). When 

discussing a DMU here, we are referring to a producer or service provider. With its 

nonparametric nature, DEA is an ideal benchmark for relative comparisons of units and can 

estimate production frontiers. It has also been demonstrated to be an excellent linear 

programming tool because it can find ways to improve efficiency not apparent in other 

techniques, particularly when dealing with multiple inputs and multiple outputs. The purpose of 

this section is to provide a comprehensive review of applications of DEA models for 

environmental efficiency, waste management and/or reduction, pollution control, and water 

treatment. 
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Sueyoshi and Wang (2014) used DEA to evaluate the unified performance of selected petroleum 

firms in the United States. Based on their results, it was determined that integrated petroleum 

firms were more efficient than their independent counterparts. Molinos-Senante et al. (2014) 

conducted the first study to evaluate the efficiency of sixty water treatment plants throughout 

Spain by incorporating environmental impacts. The benchmarks they identified in their study 

were the best treatment plants, and the potential reductions of GHG emissions were computed 

for each plant. Wu et al. (2016c) used DEA to evaluate two subsystems of the Chinese 

transportation network. By applying a decomposition approach to their evaluation, they were 

able to determine the maximum efficiency of each subsystem across 30 selected regions in 

Chinese provinces. Upon detailed analysis, it was found that most regions had low subsystem 

and overall efficiencies, leading to recommendations for a balance between the largest Chinese 

territories. Riccardi et al. (2012) used DEA to evaluate the global cement industry considering 

CO2 as an undesirable output. According to their findings, countries using unconventional 

feedstocks have higher efficiency. Wu et al. (2016b) conducted an in-depth examination of a 

hybrid treatment system using the DEA model, and the results closely reflect the environmental 

conditions in the eight regions examined. Through a proposed DEA model, Moutinho et al. 

(2017) assessed the relative impacts of income and other relevant indicators on selected 

European nations.  

 

Khanna and Kumar (2011) applied the directional distance DEA method to evaluate the ability of 

environmental management systems (EMS) to decrease toxic emissions and increase 

environmental efficiency. Twenty nine administrative regions of China were evaluated between 

2000 and 2008 using the DEA methodology in order to determine their energy and 

environmental efficiency (Wang et al., 2013). The DEA and Malmquist productivity index (MPI) 

were used to measure OECD countries' energy and environmental efficiency (Mavi & Mavi, 

2019). Lee et al. (2014) investigated the environmental performance of major port cities in the 

world using the slacks-based DEA model while taking emissions (i.e., sulphur dioxide, NO2, and 

CO2) into account as bad outputs. Yang et al. (2020) proposed the zero-sum gains DEA model as 

a template for calculating the optimal CO2 reductions for China's provinces in 2030. In 

consideration of the technological gap between the cities and the heterogeneity of energy use in 
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each, DEA models have been used to analyse the reduction of emissions and energy efficiency in 

selected Chinese cities (Sun et al., 2018). A non-radial DEA model with undesirable outputs was 

developed to measure the level of environmental efficiency over an eight-year period in EU 

member states (Vlontzos et al., 2014). An analysis of the environmental performance of dairy 

farms in four regions of Ireland has been done using DEA and linear regression. There were 

significant differences in environmental performance among all regions, with Northern Ireland 

having significantly higher nutrient surpluses than other regions (Adenuga et al., 2018).  

A hybrid approach, combining both DEA and stochastic frontier analysis, was proposed by 

Hoang and Nguyen (2013) to analyse variation in material-based environmental efficiency of 

selected rice farms in South Korea. 

 

Liu et al. (2017) applied parallel DEA models that consider CO2 emissions as undesirable 

outputs to assess the levels of efficiency in the transportation subsectors in China. Chang et al. 

(2014) developed an SBM-DEA model to assess the environmental performance of 27 global 

airlines. Asia's airlines are generally more efficient than those in Europe and America, according 

to the results. L. Chen and Jia (2017) integrated DEA and big data theory to analyse the 

environmental performance of Chinese provinces over a four-year period. The results indicated 

that China's industrial sector is inefficient at reducing environmental impact. The SBM DEA 

model presented by Song et al. (2014) calculated desirable and undesirable outputs separately, 

effectively resolving the dependency problem of desirable and undesirable outputs.  

 

Halkos and Polemis (2018) proposed a novel power generation efficiency calculation technique 

for the United States, using window data envelopment analysis (W-DEA). According to the 

model, the relationship between environmental efficiency and regional economic growth is N-

shaped when it comes to global or total pollution. However, the model predicts an inverted N-

shaped curve for local pollutants. Geng et al. (2021) integrated the total factor productivity 

method with the slack-based DEA model to assess the inherent energy structure of 24 countries 

over an 11-year period.  
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2.4.1 The perennial problem of efficiency ranking in DEA. 

 
Although DEA methodologies are highly capable of evaluating efficiency, they occasionally fail 

to separate the computed efficiency of units into well-defined ranks, and this seems to be a 

recurring issue. The problem of ranking has been dealt with in several works, but not without 

controversy. Presented here is an overview of the prior ranking methods in the literature that 

addressed this issue. The cross-efficiency method of ranking is credited to Sexton et al. (1986) 

who developed a matrix that is used to evaluate each unit two times with regard to its own self-

efficiency and its relative efficiency. A unit's self-efficiency is represented by the diagonal of the 

matrix. As part of this method, an analyst compares the efficiency scores of a selected DMU with 

those of other homogeneous DMUs n times. There have been numerous developments and 

demonstrations of this technique (Contreras, 2012; Ramón et al., 2011; Rödder & Reucher, 2011; 

Wu et al., 2015; Wu et al., 2016a). 

DEA and AHP techniques were combined by An et al. (2018) for ranking DMUs based on their 

cross-efficiency. As part of the super efficiency method, a particular unit is removed and 

evaluated alongside other units. Several authors have demonstrated the use of this technique 

(Amirteimoori et al., 2005; Andersen & Petersen, 1993; Balf et al., 2012; Y. Chen et al., 2013; 

Jahanshahloo et al., 2004; Jahanshahloo et al., 2006; Mehrabian et al., 1999) with further 

developments. A robust methodology, developed by (Oukil, 2018), combines three techniques 

for ranking efficient units without bias.  Recently, Soleimani-Chamkhorami et al. (2020) 

developed a novel inverse DEA for ranking units according to their growth potential. 

2.5 Inverse Optimization 

In linear programming, the standard procedure is to find an optimal solution in the forward 

direction with respect to a set of well-defined parameters. Generally, the optimal solution is 

regarded as one that is consistent with the given objective function. Conversely, when some of 

the parameters of a model are unknown or when a prediction is desired given an already 

determined optimal solution, a classic case of an inverse problem is presented in reverse order. 

This is the basis of inverse optimization, which is also called reverse optimization.  
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Inverse optimization traces its historical roots back to the works of geophysical scientists who 

attempted to estimate unknown parameters or parameters that, at the time, were impossible to 

calculate, such as the radius of the earth's core. For example, Tarantola (1987) described the 

following inverse problem in the geophysical sciences: 

“Imagine a physical system denoted by P. Assume there is a set of model parameters Q used to 

describe the system P. It is possible that there is some element ݍ ∈ ܳ that cannot be measured 

directly such as the radius of the earth's core. A situation such as this might require the 

definition of another set R of observable parameters that depends on the real value of ݍ. Based 

on an understanding of the model parameters, predicting the values of the specified observable 

parameter(s) ݎ ∈ ܴ is necessary to solve the forward problem. In contrast, the reverse or inverse 

problem is solved by generating values for model parameters based on predetermined values for 

the observable parameters”.  

The observable parameters in the above example correspond to the optimal decision variables 

given the values of the model parameters, such as the cost coefficients and the right-hand side 

vector. Still within the realm of geophysical sciences, inverse problems are further demonstrated 

in the works of Neumann-Denzau and Behrens (1984), Nolet (1987), and Woodhouse and 

Dziewonski (1984). Predicting the movements of earthquakes is an important application in this 

area. Modelling earthquake movement can be achieved by considering a network formed by 

discretizing a geologic zone into several square cells. Each point in the network corresponds to 

an adjacent cell, and these points are connected by arcs. As arcs are shown as time intervals 

between earthquake waves, the cost of an arc is determined by the transmission time of particular 

seismic waves which is not such an accurate measurement. At various observation stations, the 

arrival times of earthquakes and resulting earthquake perturbations are then observed in relation 

to earthquakes. Consider the assumption that earthquakes travel along the shortest path between 

cells. In light of this, geologists face the challenge of re-establishing transmission times between 

cells using the shortest time waves and prior historical information of the region being 

investigated. This challenge poses an inverse shortest path problem (Ahuja & Orlin, 2001).    

 
 



 
 
 

32 
 
 
 

Among mathematicians, the papers by Burton and Toint (1992); (Burton & Toint, 1994) 

generated a great deal of interest in inverse optimization problems. This led to a variety of 

inverse optimization problems studied by researchers in the operations research community over 

the past few years (Ahuja & Orlin, 2001). Other interesting applications of inverse optimization 

include medical imaging and traffic optimization.  

As inverse optimization is a broad field with a variety of real-world inverse problems, it is 

important to define the nature of inverse problems for this study. In this connection, we provide 

the following example of a classic inverse problem as part of the DEA methodology for this 

study: 

“Consider a production work system with ݔ and ݕ as its input and output parameters, 

respectively. Let ߠଵ denote the optimal solution of the system at time  ݐ = 1. Suppose at time ݐ =

2, the output parameter, ݕ, changes to ݕ ±  ,is known ݕ∆  ଶ. Ifߠ ,to give an optimal solution ,ݕ∆

we want to determine the corresponding change in input parameter, ∆ݔ, that will give a new 

input, ݔ ± ଵߠ such that ,ݔ∆ =  ଶ (i.e., the optimal solution of the system is retained). Thisߠ

summarizes the evaluation mechanism of the inverse data envelopment analysis (DEA) model 

which belongs to the family of inverse optimization techniques”. 

2.5.1 Inverse DEA as an advanced management tool 

As an inverse optimization process, inverse DEA is the reverse implementation of conventional 

DEA. As opposed to DEA, inverse DEA determines the optimal variations of input and output 

data based upon a predetermined efficiency score of a DMU. In addition, the inverse DEA model 

provides a greater degree of flexibility. With the advent of practical inverse problems in various 

work systems, the conventional DEA needed an extension, thereby resulting in the inverse 

DEA. In the current state of research, there are few works examining the application of inverse 

DEA to real-world problems. Considering its potential capabilities as an optimization technique, 

its application to other work systems is of great interest. This notwithstanding, the literature 

continues to offer some interesting applications of inverse DEA that should be reviewed in this 

section. 
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The inverse DEA was first proposed and developed by Wei et al. (2000) in order to address 

inverse problems, such as: “Given a group of production firms, suppose we decide to maintain 

the efficiency of each firm while increasing some inputs, what will be the corresponding increase 

in outputs?” As well, the reverse is an inverse problem (i.e., to estimate the corresponding 

increase in inputs due to a specified increase in outputs). They demonstrated the potential of 

their proposed inverse DEA model using practical examples. The development was closely 

followed by Yan et al. (2002), who then modified the inverse DEA to allocate resources as 

efficiently as possible. 

 

Recent years have seen the emergence of new inverse DEA models developed using directional 

distance DEA, such as the study by Gattoufi et al. (2014), which proposed a novel inverse DEA 

for bank mergers. Specifically, their proposed model addressed the issue of merging competing 

banks into a single entity to achieve a significantly improved level of efficiency. The study 

utilized 42 banks as a case study to demonstrate the practical application of the model, with 

promising results overall. Lim (2016) proposed an inverse DEA model for use with time series 

that includes frontier changes. The application of the model to a case study concerning engine 

development provided valuable insight into how to make optimal decisions regarding the setting 

of product targets. Amin et al. (2017a) developed an inverse DEA for determining whether 

formed mergers in a particular industry represent a major or minor consolidation. Specifically, a 

major consolidation is a combination of at least two decision-making units, where the combined 

unit perturbs the efficiency frontier relative to a specified set of market or industry standards. 

Alternatively, if the efficiency frontier shows no perturbation after the formation of a merger or 

mergers, it is a minor consolidation. Furthermore, all the criteria necessary for a decision-maker 

to distinguish between the two consolidations were demonstrated using mathematical theorems 

and real-world applications from the banking industry.   

 

An inverse DEA model has been developed by Amin et al. (2017b) to help managers plan for the 

possible scenarios that can occur when a number of homogenous units decide to restructure in 

order to increase their overall efficiency. The model developed was referred to as the generalized 

inverse DEA because it assists the pre-structuring units to achieve the efficiency target after the 
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entire restructuring phase has been completed. To validate the findings of their study, an 

application to the banking industry was presented, and overall, the results were satisfactory, 

illustrating the effectiveness of the inverse DEA as a restructuring tool. Ghiyasi (2017a) 

developed inverse DEA models for the short, mid, and long-term planning of 19 Iranian 

provinces based on scenarios that involved pollution-generating and better technologies. CO2 

was the undesirable output that required reduction, whereas GDP was the only desirable output. 

The results indicated that overall input capital savings were as high as 150%, with the fifth and 

eighth provinces being the most efficient with respect to all inputs. In addition, with an improved 

technology, CO2 reduction required extra inputs to increase desirable output and decrease 

undesirable output. Ghiyasi (2017b) developed inverse DEA models that can be applied with 

price data to measure the efficiency of decision-making units regarding revenues and costs. 

Using real-world examples, the developed models were able to maintain both types of efficiency. 

Essentially, estimates of input changes were determined in response to perturbations caused by 

changes in output, while maintaining levels of efficiency for the units. 

 

Hassanzadeh et al. (2018) employed an inverse DEA based on semi-oriented radial measures 

(SORM) in both input and output formats to allocate resources and develop investment strategies 

across different European countries. Both positive and negative data can be handled by the 

developed SORM InvDEA models. To evaluate the sustainability of each country, the outputs 

and efficiency scores were maintained while determining the optimal changes in input for the 

input orientation format. In contrast, for the output orientation, optimal changes in output were 

determined while maintaining the inputs and efficiency of each country. Overall, their findings 

suggest that their inverse DEA can be an effective sustainability tool. Amin and Al-Muharrami 

(2018) proposed a new inverse DEA model for merging units when negative data is available, in 

which the merger has the ability to determine the required inputs and outputs from the initial 

units to achieve a specific level of efficiency. Emrouznejad et al. (2019) conducted the first study 

examining the reduction of CO2 emissions in China with the aid of the inverse DEA 

method. They accomplished this in their study by developing a robust inverse DEA model for 

assigning each Chinese region its optimal share of the total emissions in the country. In the first 

instance, data on the reductions of CO2 emissions reported by the Chinese government was 
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obtained. Then they applied their developed model to allocate the reductions to several 

manufacturing industries. The model was also capable of assigning further reductions to the 

provinces from the industries. Validation of the model was conducted using data from Chinese 

industries. Wegener and Amin (2019) developed a novel inverse DEA model that addressed the 

issue of persistent GHG emissions across a set of 23 oil firms in North America. The developed 

model determines, specifically, for a group of homogenous firms, how much can be increased in 

the production of the desirable outputs while generating little or no GHG emissions from the 

group. Initial findings show that 57% of the firms were inefficient, indicating that there is 

potential to reduce GHG emissions at each of these firms. Their study concluded with 

recommendations for potential reductions in GHG emissions through effective regulations.  

 

Ghiyasi (2019) developed novel inverse DEA models as a tool to investigate DMUs under 

perturbation. Comparative analysis was performed to validate the newly developed models 

against the existing ones. New models outperformed existing ones, solving some persistent 

difficulties that are characteristic of the existing models. Guijarro et al. (2020) developed a new 

technique incorporating genetic algorithms and inverse DEA for the purpose of achieving 

specified levels of efficiency in mergers. With the aid of several assumptions and scenarios, their 

approach attempts to assess a global efficiency score for mergers with a lesser focus on 

minimizing input resources. The proposed methodology involves calculating potential input 

resource savings through inverse DEA, while a genetic algorithm is used to solve the 

combinatorial issue of mergers. Ghiyasi and Zhu (2020) presented an inverse DEA that considers 

broader returns-to-scale properties when dealing with negative data. Based on the application of 

the developed model to a set of China's banks, it was found to be feasible when a combination of 

positive and negative data was used. In addition, the results were also satisfactory in comparison 

with the real world. 

 

 

 

 



 
 
 

36 
 
 
 

2.6 Research Gaps 

Based on the literature review above, the following research gaps have been identified: 

1. There have been several studies ranging from the estimation of gas flaring volumes 

(Elvidge et al., 2018; Elvidge et al., 2009; Rotty, 1974) to extensive descriptive analyses 

of GHG emissions from gas flaring (Anomohanran, 2012; Conrad & Johnson, 2017; 

Giwa et al., 2014; Giwa et al., 2017). Other studies have also shed light on the use of 

satellite imagery (Elvidge et al., 2009), the use of material balance equations (Ismail & 

Umukoro, 2012), and other techniques (Anejionu et al., 2015; Casadio et al., 2012; 

Elvidge et al., 2015; Umukoro & Ismail, 2017) to monitor global gas flaring. Despite this, 

none of the studies addressed the reduction of global gas flaring in the industry. However, 

it is important to emphasize that Ojijiagwo et al. (2016) proposed a method to reduce gas 

flaring, the study remained primarily a qualitative investigation based on semi-structured 

interviews with field experts. A further limitation is that the study only covered one 

nation (Nigeria). Therefore, there have been no studies in the literature that have 

developed a quantitative method for estimating reductions in gas flaring at a global level. 

As such, this study fills a significant gap in the literature. 
2. Regarding mitigation strategies for gas flaring, some studies have utilized cost-benefit 

analyses as the basis or main evaluation tool of their methodologies (Davoudi et al., 

2013; Interlenghi et al., 2019; Ojijiagwo et al., 2016; Rahimpour et al., 2012). In these 

studies, the final results are usually more or less the estimated rate of return, from which 

conclusions can be drawn, however, none of them consider the availability of gas for 

utilization. Based on information from the World Bank archives about routine gas flaring, 

the availability of gas for use is determined by the difference between the total volume of 

flared gas and the volume of non-routine flaring. In the context of offshore operations, 

non-routine flaring is the occurrence of safety and maintenance flaring to minimize or 

prevent risks to personnel. It is undeniable that this information is crucial to the 

implementation of all gas flaring mitigation strategies; however, no study has ever 

considered the effects of non-routine flaring in determining the amount of recoverable 

gas. Thus, this study fills a critical gap in the literature by integrating a mathematical 

theorem that is applicable to all forms of non-routine flaring in the industry. 
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3. Further, technological solutions to gas flaring such as GTL, GTW, and LNG are very 

expensive or require huge capital. Consequently, the adoption of these technologies in 

developing nations is considerably more difficult. In a developing nation like Nigeria, for 

instance, when the currency is devalued often, the capital expenditure for a technology 

such as GTW will be higher. Thus, there exists another gap in the literature pertaining to 

the design of a cost-effective solution scheme for the deployment of GTW technology.  
4. The advent of lean production by Toyota Production System (TPS) has led to the 

adoption of lean practices by many manufacturing companies throughout the world. 

There is also increasing interest among researchers in the application of lean tools to 

several industries (Agyeman, 2021; Hao et al., 2021; Masmali, 2021; Sadiq et al., 2021; 

Tortorella et al., 2021). Since lean production places a great emphasis on waste reduction, 

and that flare gas is hazardous waste, it is rather surprising that no study in the literature 

has attempted to apply the principles of lean to the issue of gas flaring. Aside from 

minimizing gas flaring, lean practices can also improve oil production in the industry 

with the minimum use of resources. In this context, no study has examined the 

application of any lean tool to operations management in the petroleum industry. This 

leaves another gap in the literature. 
5. One major limitation of all the studies reviewed on gas flaring is that none of them have 

been able to determine the maximum amount of energy that can be generated from flare 

gas. Information such as this is highly relevant for policymakers who are seeking to 

reduce the frequency of blackouts and power outages in some oil-producing nations. 

Additionally, it facilitates the development of an optimal energy mix of gas power 

generation and renewable energy in developing nations. Another void in the literature is 

filled in this study by developing a separate model for such a purpose. 
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To bridge the identified research gaps, five models are proposed, and their corresponding 

computational experiments are conducted in this research work. This first model is a novel 

inverse DEA, which is the most substantial and robust model since it enables the first three 

research gaps to be filled. Based on the proposed inverse DEA, a mathematical theorem is 

presented that deals with non-routine flaring in the industry, leading to the emergence of a 

new algorithm as a policy-making tool, and the resulting development of a new formula for 

the optimal sizing of the gas-to-wire (GTW) process. In response to the third research gap, 

which concerns the design of a sustainable lean production framework (SLPF) for the 

petroleum industry, the second, third, and fourth models are proposed.  

A fifth model influenced by both positive and negative data is formulated for bridging the 

last research gap. Chapters 3-5 provide detailed descriptions, formulations, and solutions 

available for each model. 
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Chapter 3 – A Novel Inverse DEA for Estimating Global Gas Flaring                                                                        
Reductions 
 

3.1 Introduction 

An overview of routine gas flaring has been presented in the previous chapters. However, before 

addressing the problem from a managerial perspective, it is important to shed more light on the 

main causes/reasons for gas flaring in the industry, policies on gas flaring, the current energy 

situation in Nigeria (i.e., the major case study for this research), as well as further details of the 

chosen technology, GTW. GTW technology is an ideal choice for this study since it is the only 

mitigation strategy that converts waste or flare gas into electricity, which contributes to reducing 

energy poverty in oil-producing nations such as Nigeria and Venezuela. 

Gas flaring is usually associated with crude oil extraction. This environmental hazard has arisen 

because of decades of dependence on crude oil as the engine of global civilization. An increase 

in oil production due to an increase in oil demand typically causes an increase in flare gas, which 

illustrates the domino effect in the petroleum industry. Although this domino effect may be 

deemed as an external factor, it should be noted that there may also be internal factors or 

underlying causes of gas flaring within the industry. Globally, the flaring of gas is estimated to 

result in the loss of billions of dollars each year, which could have served as potential revenue 

for the global economy, and all major oil-producing nations contribute to this loss. Aregbe 

(2017), for instance, claims that Nigeria flared approximately 12,602,480 cubic feet of gas over a 

period of 15 years (i.e., 1996 to 2010). This is equivalent to approximately 12,967 × 1012 BTU of 

energy. It is estimated that hundreds of thousands of Nigerian households could benefit from this 

amount of energy.  

3.2 Causes of gas flaring. 

The raw form of natural gas is associated petroleum gas (APG) because large quantities are 

naturally dissolved in crude oil. To extract crude oil, APG must be separated using three 

different methods. The two common separation methods in developed oil-producing nations are 

gas reinjection and the conversion of excess gas into electricity for use in oilfields. However, 
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developing nations rely significantly more on the burning of excess gas as it is the cheapest and 

fastest method of separation. The first two methods are expensive, or they require significant 

capital investments which developing countries cannot afford. Another cause of gas flaring is the 

inevitable occurrence of safety and maintenance flaring, which experts claim helps reduce 

operational risks during offshore operations. Nevertheless, many oil-producing nations still take 

advantage of this circumstance by continuously flaring beyond the levels permitted by law. 

Accordingly, routine flaring is intentional and/or beyond safety standards and not to be confused 

with any form of non-routine flaring. Despite this, there should be a concerted effort to reduce all 

non-routine flaring. 

3.3 World Bank policies on gas flaring 

The World Bank launched the Global Gas Flaring Reduction partnership (GGFR) in August 

2002 at a summit held in Johannesburg as a means of promoting a global reduction in gas flaring. 

As a result of climate change, the GGFR was created to serve as a regulatory policy for 

governments of oil-producing nations to reduce gas flaring over time. According to World Bank 

archives, over 140 billion cubic meters of natural gas are flared annually, containing more energy 

than the continent of Africa consumes each year (750kWh). Along with the GGFR, the World 

Bank and United Nations launched the "Zero Routine Flaring (ZRF) by 2030” initiative as a new 

industry benchmark to assist in eliminating all forms of routine flaring by 2030. United States-

based Occidental was the first oil firm to endorse the ZRF initiative, while in the Middle East, 

Saudi Arabia's Aramco endorsed the initiative in late 2019. Furthermore, the IEA annual report 

for 2019 has encouraged the development of novel techniques for offshore practices. These 

techniques would help in conserving or utilizing excess APG in compliance with the ZRF 

initiative. Despite these laudable efforts, there was a noticeable rise in gas flares around the 

world during 2018. This can be attributed to political tensions in the Middle East and Venezuela 

(Bamji, 2019). Another contributing factor was the increase in shale oil production, which made 

the U.S. the largest oil producer in the world in 2018.  
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According to the PwC 2019 report, gas flaring cost the global economy approximately 20 billion 

U.S. dollars in 2018. Specifically, Nigeria lost US$761.6 million due to gas flaring in the same 

year (i.e., approximately 3.8% of the total loss). In Fig. 3.1 we can see that Nigeria ranks ninth in 

the world in terms of gas reserves but is number one on the African continent. However, despite 

the country's abundant gas reserves along with high volumes of flare gas, Nigeria still faces 

issues with energy shortages to this day. This can be characterized as a classic case of an energy 

paradox. 

 

Figure 3.1: Global economic losses resulting from gas flaring in 2018 (Source: PwC (2019)) 

3.4 The Gas-to-Wire (GTW) process 

The gas-to-wire (GTW) process converts natural gas into electricity by means of simple or 

combined cycle turbines. It is common for the conversion process to involve integration or 

coupling with a Carbon Capture System (CCS) to further reduce any residual carbon compounds 

or oxides. In many cases, this type of integration is referred to as a hybrid system, which is more 

effective in reducing gas flaring. Fig. 3.2 illustrates the mechanism of the hybrid structure, which 

begins by processing the gas from the wells. A turbine power plant converts the processed gas 
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into electricity, which is then distributed to end-users or the final market. During the conversion 

process, a small fraction of gas is burned to produce harmful carbon by-products, referred to as 

exhaust gas or flue gas. The flue gas contains a high carbon content (i.e., CO2), and this is the 

point where the CCS would be useful in capturing and injecting this CO2 back into underground 

reservoirs to yield more crude oil. In addition, a significant amount of processed gas is purified 

and dispatched to different segments of the final market based on the type of demand.  

 
Figure 3.2: Power generation using a hybrid GTW and CCS system (Source: JPT (2018)) 

In spite of its effectiveness as a mitigation strategy, GTW technology is quite costly. Ojijiagwo 

et al. (2016) provided information about capital expenditures required for the installation and use 

of the technology in Nigeria. According to their study, GTW can be adopted and implemented in 

Nigeria with a 16.3% ROI and a 6-year payback period. A study by Interlenghi et al. (2019) also 

demonstrated a 20% return on investment for investing in GTW technology. However, both of 

these studies fail to consider the availability of gas for the GTW process in relation to safety and 

maintenance flaring. For real-life scenarios, it is highly likely that estimates of the actual volume 

of gas used for both studies may not be adequate or might be excessive for the GTW process. 

Further, gas turbines have a moderate demand around the world due to their high capital cost. 

For example, the popular GT13E2 turbine manufactured by General Electric (GE) has undergone 

several modifications and improvements in terms of its thermal efficiency and power rating. In 



 
 
 

43 
 
 
 

spite of this, demand for the GT13E2 is still average at best, and as of 2011, only 146 units had 

been installed globally for power generation. Thus, a decision-maker is faced with uncertainty 

when assessing the optimal number of turbine units for the GTW process based on the 

availability of gas. This can be resolved by calculating the minimum and maximum turbine units 

necessary for the GTW process. In this way, an investor will be aware of the prudent practice of 

not investing beyond the maximum number of turbines in order to prevent financial losses. As a 

practical matter, a decision-maker is responsible for determining the optimal sizing of a cost-

effective GTW process, not only for a single oil producer but also for a group of homogenous oil 

producers. 

3.5 The Nigerian energy statistics 

At present, all thermal and hydropower plants in Nigeria have a combined installed capacity of 

12522 MW. Over the course of time, poor maintenance and ineffective management have led to 

a loss of around 43%, leaving 7141MW as the utilizable capacity for producing electricity. Other 

challenges, such as power losses and the uncertain volume of natural gas, reduce capacity to 

3879 MW (refer to Fig. 3.3). In addition to political factors, this loss of combined power capacity 

is one of the major causes of frequent power outages in the country. Consequently, it is 

anticipated that the implementation of a cost-effective GTW system will compensate for the 

combined loss in capacity for Nigeria. 
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Figure 3.3: Installed power plants capacity in Nigeria (Source: GET.invest) 

3.6 Problem statement 

As a preface to the development of an inverse DEA for the reduction of gas flaring, it is essential 

to briefly describe the problem to be addressed within this chapter. 

The amount of flared gas that goes to waste each year is difficult to quantify as some oil-

producing countries offer plausible explanations for gas flaring, such as safety and 

maintenance. Therefore, a conundrum arises which is analogous to asking a fundamental 

research question regarding the most effective way to account for non-routine flaring: "With 

successful implementation of GTW technology, what will be the minimum and maximum 

reduction in waste or flare gas?”. An accurate response to this question is crucial to the 

successful implementation of the GGFR. Further, it is imperative to determine the level of 

commitment that the government of each oil-producing nation has to the ZRF initiative. A 

second research question may be formulated as follows: "In real-life scenarios, is the ZRF 

initiative feasible for an efficient oil-producing nation?" A feasible GTW process requires the 



 
 
 

45 
 
 
 

determination of its optimal sizing for cost-effectiveness. This simply refers to the range of 

turbine units that can be considered economically feasible for the GTW process, since a single 

turbine unit will require a significant amount of capital. As a result, a more pressing question is: 

"How do we determine the minimum and maximum number of turbine units for a group of oil-

producing countries in need of GTW technology?" In general, this chapter proposes a novel 

methodology to find optimal solutions to these questions. 

3.7 Methodology 

3.7.1 Nomenclature  

Although DEA models have almost similar nomenclatures in several studies in literature, 

nonetheless, in order to facilitate an accurate representation of all the parameters and variables 

within this chapter, the following nomenclature applies to all models developed and applied to 

flare gas management in the industry: 

 :ݏݎ݁ݐ݁݉ܽݎܽܲ ݈ܽݎ݁݊݁ܩ

݊: number of decision-making units (DMUs) 

 number of inefficient decision-making units (DMUs) :ݐ

݉: number of inputs of each DMU 

 number of good outputs of each DMU :ݏ

 number of bad outputs of each DMU :ݍ

 :ݏݎ݁ݐ݁݉ܽݎܽܲ ܽݐܽܦ

݆ ) ௜௝: ݅th input of DMU௝ݔ = 1, … , ݊) 

௥௝ݕ
௚ ݆ )  th good output of DMU௝ݎ : = 1, … , ݊ )  

௣௝ݕ
௕ th bad output of  DMU௝݌ :  ( ݆ = 1, … , ݊ ) 

ො௥ݕ
௚: desired production quantity of ݎth good output by inefficient DMUs 

 :ݏ݈ܾ݁ܽ݅ݎܸܽ ݊݋݅ݏ݅ܿ݁ܦ

݇ ) ௞: inefficiency score of DMU௞ߠ = 1, … , ݊ ) 

௝:        weight assigned to DMU௝ߣ   (݆ = 1, … , ݊)  

݇) ௜௞:  change in ݅th input of DMU௞ߙ = 1, … ,  (ݐ

݇)  th good output of DMU௞ݎ ௥௞: change inߚ = 1, … ,  (ݐ
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݇ )  th bad output of DMU௞݌ ௣௞:  change inߛ = 1, … ,  (ݐ

߮௨௞: units of turbine ݑ required by DMU௞  (݇ = 1, … ,  (ݐ

݇)  required by DMU௞ ݑ ௨௞: annual gas consumption of turbineߨ = 1, … ,  (ݐ

௣௞ߛ
௠௜௡:  minimum change in ݌th bad output of DMU௞ (݇ = 1, … ,  (ݐ

௣௞ߛ
௠௔௫:  maximum change in ݌th bad output of DMU௞ (݇ = 1, … ,  (ݐ

3.7.2 Base DEA for efficiency evaluation  
 
To develop an inverse DEA for this study, it is necessary to describe the base model adopted. 

Every inverse DEA model rely on efficiency scores computed by a base DEA model. The 

mechanism is as follows: the base DEA model performs forward optimization, while the inverse 

DEA model performs backward or reverse optimization. The underlying novelty of this chapter 

is that both models form a closed-loop optimization process. This refers to an entire loop in 

which the inefficiency score of each inefficient producer is initially maximized through the base 

DEA (i.e., reaches a theoretical maximum) but then decreases to zero after the inverse DEA is 

applied so that an inefficient producer undergoes a complete transition from a state of 

inefficiency to that of a state of efficiency. Therefore, the following DEA introduced by Chung 

et al. (1997) will serve as the base model for this chapter, due to its suitability for waste 

reduction or management: 

௞ߠ    :1ܯ
∗ = max  ߠ

.ݏ            .ݐ

          ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ௜௞ݔ                                ݅ = 1, … , ݉ 

         ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ (1 + ௥௞ݕ(ߠ
௚ ݎ                 = 1, … ,  ݏ

         ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= (1 − ௣௞ݕ(ߠ
௕ ݌                = 1, … ,  ݍ

        ෍ ௝ߣ = 1
௡

௝ୀଵ
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௝ߣ         ≥ 0           ݆ = 1, … , ݊                   

There are ݊ decision-making units (DMUs) in model 1ܯ that utilize ݉ inputs to produce ݎ 

good/desirable outputs and ݍ bad/undesirable outputs. The aim of 1ܯ is to reduce as much as 

possible the bad/undesirable outputs of the unit under evaluation (i.e., ܷܯܦ௞). As a rule of 

thumb, ܷܯܦ௞ is considered efficient if its inefficiency score, ߠ௞
∗ = 0 or if its efficiency score, 

௞ߝ = 1. The relationship between these two scores is expressed as follows: ߝ௞ =

(1 − ௞ߠ
∗) (1 + ௞ߠ

∗)⁄  has a second benefit in that it increases the good/desirable outputs to 1ܯ  .

the maximum extent.  

3.7.3 Inverse DEA for minimizing GHG emissions.  

Wegener and Amin (2019) used 1ܯ as the basis for an inverse DEA model that minimizes GHG 

emissions in 23 oil firms located in North America. During the development of their model, they 

kept the structure of 1ܯ by considering changes in inputs that may lead to changes in both good 

and bad outputs. In mathematical terms, they pondered the following scenario within an 

inefficient oil firm: 

“Suppose an inefficient oil firm denoted by ܷܯܦ௞ increases its ݅th input by a certain amount 

 th݌ ௣௞ in theߛ th good output andݎ ௥௞ in theߚ ௜௞; then, corresponding changes will be observedߙ

bad output. If we also consider ܵ to be the set of inefficient units or firms (i.e., ݇ ∈ ܵ) that need 

to manage their GHG emissions, then the collective aim/goal should be to minimize the change 

 ௣௞ in all of the bad outputs." In order to address this problem mathematically and with respectߛ

to 1ܯ, Wegener and Amin (2019) developed the inverse DEA model shown below: 

Min    :2ܯ  ߛ = ൫ߛଵଵ, … , ,௤ଵߛ … , ଵ௧ߛ , … ,  ௤௧൯ߛ
.ݏ              .ݐ
              ෍ ௝ߣ

௞ݔ௜௝
௝ఢி

+ ෍ መ௟ߣ
௞

௟ఢீ

௜௟ߙ) + (௜௟ݔ − ௜௞ߙ) + (௜௞ݔ ≤ 0                              ∀݇ ∈ ܵ,   ݅ = 1, … , ݉  

  
          ෍ ௝ߣ

௞ݕ௥௝
௚

௝ఢி

+ ෍ መ௟ߣ
௞

௟ఢீ

൫ߚ௥௟ + ௥௟ݕ
௚൯ − ൫1 + ෠௞൯ߠ × ൫ߚ௥௞ + ௥௞ݕ

௚ ൯ ≥ 0          ∀݇ ∈ ܵ, ݎ   = 1, … ,   ݏ
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        ෍ ௝ߣ
௞ݕ௣௝

௕

௝ఢி

+ ෍ መ௟ߣ
௞

௟ఢீ

൫ߛ௣௟ + ௣௟ݕ
௕ ൯ − ൫1 − ෠௞൯ߠ × ൫ߛ௣௞ + ௣௞ݕ

௕ ൯ = 0        ∀݇ ∈ ܵ, ݌  = 1, … ,  ݍ

                       
             ෍ ௝ߣ

௞

௝ఢி

+ ෍ መ௟ߣ
௞

௟ఢீ

= 1             ∀݇ ∈ ܵ       

             ෍ ௥௞ߚ
௞ఢௌ

= ො௥ݕ
௚                       ݎ = 1, … ,                                                                 ݏ

 
௜௞ߙ            ≥ 0, ௥௞ߚ ≥ 0, ௣௞ߛ ≥ 0  ∀݇ ∈ ܵ,  ݅ = 1, … , ݎ   ݉ = 1, … , ݌  ݏ = 1, … ,  ݍ

௝ߣ           
௞ ≥ 0, መ௟ߣ

௞ ≥ 0   ∀݇, ݈ ∈ ,ܩ   ∀݆ ∈                                                  ܨ

The set ܵ, which is convex, consists of two distinct subsets ܨ and ܩ. Subset ܨ contains all 

efficient firms, whereas subset ܩ contains all inefficient firms. Additionally, there are ݐ DMUs in 

ܵ, and each ܷܯܦ௞ in ܵ can be represented as a convex combination of the efficient and 

inefficient units in ܨ and ܩ, respectively. Note that units in ܨ have weights represented as ߣ௝
௞ ≥

0  ݆ ∈ መ௟ߣ have weights represented as ܩ while units in ,ܨ
௞ ≥ 0  ݈ ∈  To ensure that the .ܩ

predetermined efficiency score of each unit does not degrade after producing additional outputs, 

a decision-maker should set ߠ෠௞ ≤ ௞ߠ
∗ as part of the application. Continuing with their model 

development, Wegener and Amin (2019) used a mathematical theorem to support the conclusion 

that, after the production of additional outputs, the efficiency frontier created by efficient firms 

will remain the same. The result was the reduction of the model to a simpler one as follows: 

Min     :3ܯ ߛ = ଵߛ) + ,+ଶߛ … +  (௧ߛ
.ݏ                .ݐ
              ෍ ௝ߣ

௞ݔ௜௝
௝ఢி

− ௜௞ߙ) + (௜௞ݔ ≤ 0                               ∀݇ ∈ ܵ,   ݅ = 1, … , ݉  

  
             ෍ ௝ߣ

௞ݕ௥௝
௚

௝ఢி

− ൫1 + ෠௞൯ߠ × ൫ߚ௥௞ + ௥௞ݕ
௚ ൯ ≥ 0         ∀݇ ∈ ܵ, ݎ   = 1, … ,   ݏ

                                                 
            ෍ ௝ߣ

௞ݕ௣௝
௕

௝ఢி

− ൫1 − ෠௞൯ߠ × ൫ߛ௣௞ + ௣௞ݕ
௕ ൯ = 0         ∀݇ ∈ ܵ, ݌  = 1, … ,  ݍ
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            ෍ ௝ߣ
௞

௝ఢி

= 1                                                                 ∀݇ ∈ ܵ       

            ෍ ௥௞ߚ
௞ఢௌ

= ො௥ݕ
௚                                                         ݎ = 1, … ,                                                                 ݏ

௜௞ߙ           ≥ 0, ௥௞ߚ ≥ 0, ௣௞ߛ ≥ 0  ∀݇ ∈ ܵ,  ݅ = 1, … , ݎ   ݉ = 1, … , ݌  ݏ = 1, … ,  ݍ

௝ߣ         
௞ ≥ 0, መ௟ߣ

௞ ≥ 0   ∀݇, ݈ ∈ ,ܩ   ∀݆ ∈                          ܨ

Although 3ܯ was successfully applied to GHG emissions in oil firms, there is no guarantee that 

it can also be applied to gas flaring in the same industry. There are two factors at work here. As a 

first limitation, 3ܯ is not equipped to handle negative data, such as the current account balances 

of oil-producing nations. Current account balances provide information about the import/export 

status of oil-producing nations. Typically, within the broader field of macroeconomics, a surplus 

current account balance is regarded as positive data and a deficit current account balance as 

negative data. 3ܯ was developed specifically to handle GHG emissions in oil companies in the 

United States and Canada, thus information such as the current account balance is not 

necessary. However, the present study focuses on a global problem involving several oil-

exporting nations with current account balances that must be modeled. Therefore, it is of vital 

importance to test the feasibility of 3ܯ when applied to global gas flaring in the industry. This 

feasibility study will be the first stage in developing a novel inverse DEA for this chapter. 

In addition, a major limitation of 3ܯ, as demonstrated in the practical examples provided by 

Wegener and Amin (2019), is that it did not reduce the GHG emissions in the selected firms. 

Instead, it only minimized GHG emissions due to an increase in oil production. Therein lies the 

greatest challenge associated with the use of 3ܯ to estimate gas flaring reductions in the 

industry. Therefore, 3ܯ will need to be further developed and configured to address the research 

questions contained within this chapter. Such development will be addressed in the second stage 

of model development discussed in this chapter. 

 



 
 
 

50 
 
 
 

3.7.4 Model development (stage one) 

To overcome the first limitation of 3ܯ, it is necessary to incorporate negative data into it, as well 

as into its base model 1ܯ. This is imperative since both models must have the same structure. 

The failure to restructure both models will contradict the fundamental theorems of DEA 

formulations. Following this, it is necessary to determine whether the source of negative data is 

input-oriented or output-oriented. For this study, negative data comes from the input variables, 

thus the models to be developed will only be able to deal with negative inputs.  

 

To deal with negative inputs, we refer to the inputs’ constraint of 1ܯ, and assume a special case 

of only two DMUs (i.e., ݆ = 1,2) with input ݅ having positive value for  ܯܦ ଵܷ and negative 

value for ܷܯܦଶ 

 ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ௜௞ݔ       … … … … constraint 1 of 1ܯ  

The LHS of the above constraint can be rewritten to include both positive and negative inputs as:       

௜ଵݔଵߣ − ௜ଶݔଶߣ ≤  ௜௞ݔ

By decomposition, this inequality can be represented as the sum of two inequalities: 

௜ଵݔଵߣ                                                             ≤      ௜௞ ………………. (3.1)ݔ

௜ଶݔଶߣ−                                                   ≤ 0    ……………… (3.2) 

Both can also be represented as:        ߣଵݔ௜ଵ ≤  ௜௞  ………………  (3.3)ݔ

≤ ௜ଶݔଶߣ                                                            0     ……………… (3.4) 

Rewriting both types of inputs as ݔ௜ଵ ௜ଵݔ =
ା  and ݔ௜ଶ = ݔ௜ଶ

ି , translates to the following pair:  

௜ଵݔଵߣ     
ା ≤  ௜௞  ……………… (3.5)ݔ

௜ଶݔଵߣ                                                                  
ି ≥ 0      …………….  (3.6)                                                         

In general, all positive and negative inputs ݅ for all ܷܯܦs including ܷܯܦ௞ can be expressed as: 

௜௝ݔ௝ߣ                                                            
ା ≤ ௜௞ݔ

ା   ……………… (3.7) 

௜௝ݔ௝ߣ                                                                  
ି ≥ ௜௞ݔ

ି       …………… (3.8) 

Constraint 1 of 1ܯ can now be expressed as two distinct constraints: 

∑ ௜௝ݔ௝ߣ
ା௡

௝ୀଵ ≤ ௜௞ݔ
ା  (Positive input ݅)  and   ∑ ௜௝ݔ௝ߣ

ି௡
௝ୀଵ ≤ ௜௞ݔ

ି  (Negative input ݅) 
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If ܷܯܦ௞ has no negative input ݅, then ݔ௜௞
ି = 0. Similarly, if ܷܯܦ௞ has no positive input ݅, then 

௜௞ݔ
ା = 0. In other words, ݔ௜௞ = ௜௞ݔ

ା + ௜௞ݔ
ି , such that ݔ௜௞ = ௜௞ݔ

ା  if ݔ௜௞
ି = 0, and ݔ௜௞ = ௜௞ݔ

ି   if ݔ௜௞
ା =

0.With this classification of positive and negative inputs, models 1ܯ and 3ܯ are transformed 

into models 2ܯ and 4ܯ, respectively.  

௞ߠ  :2ܯ
∗ = max  ߠ

.ݏ          .ݐ

         ෍ ௝ߣ
௝ୀଵ

௜௝ݔ
ା ≤ ௜௞ݔ

ା                                    ݅ = 1, … , ݉  

         ෍ ௝ߣ
௝ୀଵ

௜௝ݔ
ି ≤ ௜௞ݔ

ି                                    ݅ = 1, … , ݉  

         ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ (1 + ௥௞ݕ(ߠ
௚ ݎ                       = 1, … ,  ݏ

        ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= (1 − ௣௞ݕ(ߠ
௕ ݌                       = 1, … ,  ݍ

        ෍ ௝ߣ = 1
௡

௝ୀଵ

 

௝ߣ         ≥ 0                                                ݆ = 1, … , ݊                      

Min     :4ܯ ߛ = ଵߛ) + ,+ଶߛ … +  (௧ߛ
.ݏ                .ݐ
              ෍ ௝ߣ

௞ݔ௜௝
ା

௝ఢி

− ௜௞ߙ)
ା + ௜௞ݔ

ା ) ≤ 0                               ∀݇ ∈ ܵ,   ݅ = 1, … , ݉  

 
              ෍ ௝ߣ

௞ݔ௜௝
ି

௝ఢி

− ௜௞ߙ)
ି + ௜௞ݔ

ି ) ≥ 0                                ∀݇ ∈ ܵ,   ݅ = 1, … , ݉  

 
             ෍ ௝ߣ

௞ݕ௥௝
௚

௝ఢி

− ൫1 + ෠௞൯ߠ × ൫ߚ௥௞ + ௥௞ݕ
௚ ൯ ≥ 0         ∀݇ ∈ ܵ, ݎ   = 1, … ,   ݏ

                                                 
            ෍ ௝ߣ

௞ݕ௣௝
௕

௝ఢி

− ൫1 − ෠௞൯ߠ × ൫ߛ௣௞ + ௣௞ݕ
௕ ൯ = 0         ∀݇ ∈ ܵ, ݌  = 1, … ,  ݍ

      
             ෍ ௝ߣ

௞

௝ఢி

= 1                                                                  ∀݇ ∈ ܵ       
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             ෍ ௥௞ߚ
௞ఢௌ

= ො௥ݕ
௚                                                              ݎ = 1, … ,          ݏ

௜௞ߙ            ≥ 0, ௥௞ߚ ≥ 0, ௣௞ߛ ≥ 0  ∀݇ ∈ ܵ,  ݅ = 1, … , ݎ   ݉ = 1, … , ݌  ݏ = 1, … ,  ݍ
௝ߣ           

௞ ≥ 0, መ௟ߣ
௞ ≥ 0   ∀݇, ݈ ∈ ,ܩ   ∀݆ ∈                          ܨ

It is important to state here that models 2ܯ and 4ܯ are developed based on the assumption that 

every input ݅ has both positive and negative values for all DMUs. However, the application of 

both models might differ due to type of input data in the real world. If only one input takes a 

negative value for at least one ܷܯܦ, the application of 2ܯ and 4ܯ requires partitioning the 

input set. The semi-oriented radial measure (SORM) introduced by Emrouznejad et al. (2010) 

can be easily used for this, thereby transforming 2ܯ and 4ܯ into 5ܯ and 6ܯ, respectively: 

௞ߠ  :5ܯ
∗ = max  ߠ

.ݏ          .ݐ

         ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ݅                                  ௜௞ݔ = 1, … ,   ଵܫ ߳ ݅         ݉

         ෍ ௝ߣ
௝ୀଵ

௜௝ݔ
ା ≤ ௜௞ݔ

ା                                   ݅ = 1, … ,   ଶܫ ߳ ݅        ݉

         ෍ ௝ߣ
௝ୀଵ

௜௝ݔ
ି ≤ ௜௞ݔ

ି                                   ݅ = 1, … ,   ଶܫ ߳ ݅        ݉

         ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ (1 + ௥௞ݕ(ߠ
௚ ݎ                    = 1, … ,  ݏ

       ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= (1 − ௣௞ݕ(ߠ
௕ ݌                     = 1, … ,  ݍ

       ෍ ௝ߣ = 1
௡

௝ୀଵ

 

௝ߣ        ≥ 0                                              ݆ = 1, … , ݊                      

Note that 5ܯ is the new base model with partitioned input sets. ܫଵ is the set of inputs that take 

only positive value for all ݏܷܯܦ, while ܫଶ is the set of inputs that take negative value for at least 

one ܷܯܦ.  
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Similarly, the inverse DEA with partitioned input sets is expressed as follows: 

Min     :6ܯ ߛ = ଵߛ) + ,+ଶߛ … +  (௧ߛ
.ݏ                .ݐ
              ෍ ௝ߣ

௞ݔ௜௝
௝ఢி

− ௜௞ߙ) + (௜௞ݔ ≤ 0                             ∀݇ ∈ ܵ, ݅ = 1, … ,   ଵܫ ߳ ݅    ݉

 
              ෍ ௝ߣ

௞ݔ௜௝
ା

௝ఢி

− ௜௞ߙ)
ା + ௜௞ݔ

ା ) ≤ 0                              ∀݇ ∈ ܵ, ݅ = 1, … ,    ଶܫ ߳ ݅   ݉

 
              ෍ ௝ߣ

௞ݔ௜௝
ି

௝ఢி

− ௜௞ߙ)
ି + ௜௞ݔ

ି ) ≥ 0                               ∀݇ ∈ ܵ, ݅ = 1, … ,    ଶܫ ߳ ݅   ݉

 
             ෍ ௝ߣ

௞ݕ௥௝
௚

௝ఢி

− ൫1 + ෠௞൯ߠ × ൫ߚ௥௞ + ௥௞ݕ
௚ ൯ ≥ 0         ∀݇ ∈ ܵ, ݎ         = 1, … ,   ݏ

                                                 
            ෍ ௝ߣ

௞ݕ௣௝
௕

௝ఢி

− ൫1 − ෠௞൯ߠ × ൫ߛ௣௞ + ௣௞ݕ
௕ ൯ = 0         ∀݇ ∈ ܵ, ݌        = 1, … ,  ݍ

      
             ෍ ௝ߣ

௞

௝ఢி

= 1                                                                  ∀݇ ∈ ܵ       

             ෍ ௥௞ߚ
௞ఢௌ

= ො௥ݕ
௚                                                              ݎ = 1, … ,                           ݏ

௜௞ߙ            ≥ 0, ௥௞ߚ ≥ 0, ௣௞ߛ ≥ 0  ∀݇ ∈ ܵ,  ݅ = 1, … , ݎ   ݉ = 1, … , ݌  ݏ = 1, … ,  ݍ
௝ߣ           

௞ ≥ 0, መ௟ߣ
௞ ≥ 0   ∀݇, ݈ ∈ ,ܩ   ∀݆ ∈  ܨ

With their current structure, both models 5ܯ and 6ܯ are fully capable of handling negative 

inputs and will be used for conducting a feasibility study. Specifically, the feasibility study is 

designed to investigate whether the inverse model 6ܯ can be utilized to minimize the increase in 

gas flaring associated with increased oil production.  

3.7.5 Model development (stage two) 

To compute gas flaring reductions, model 6ܯ must be further developed in accordance with the 

GGFR. As it stands, 6ܯ is only suitable for preventing an increase in gas flaring associated with 

increasing oil production. Specifically, the following research questions (i.e., R1 to R5 from 

section 1.3) will aid in the further development of 6ܯ: 
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 At current production level of inputs and outputs, and with current technology and                    

workforce, what is the potential reduction in gas flaring for an oil-producing nation?  

 With better technology and a more highly skilled workforce, what is the maximum 

potential reduction in gas flaring for an oil-producing nation?  

 Could an energy transition curve be developed for the petroleum industry based on 

investments in flare gas recovery technology and effective management techniques? 

 Can the petroleum industry adopt the Zero Routine Flaring (ZRF) Initiative in any given 

production year? 

 Based on the potential reductions in gas flaring, what is the optimal sizing required for 

implementing a gas-to-wire (GTW) system for flare gas management? 

As a starting point for the first research question, all the changes in the inputs and desirable 

outputs of 6ܯ must be equal to zero, i.e., at current production rates, ߙ௜௞ = ௜௞ߙ
ା = ௜௞ߙ

ି = ௥௞ߚ =

0. Then the anticipated gas flaring reduction necessitates that  ߛ௣௞ must be a negative change in 

the current level of flare gas. Toward cleaner natural gas production, a new objective function 

arises in the form of maximizing the reduction in gas flaring for each DMU. As well, there is 

only one undesirable output for this study (i.e., flare gas), so the index of bad output ݌ = 1. The 

integration of these new changes and features into 6ܯ results in a new model 7ܯ applicable to 

same group of DMUs. 

Max     :7ܯ ߛ = ଵߛ) + ,+ଶߛ … +  (௧ߛ
.ݏ                .ݐ
              ෍ ௝ߣ

௞ݔ௜௝
௝ఢி

− ௜௞ݔ ≤ 0                            ∀݇ ∈ ܵ,    ݅ = 1, … ,   ଵܫ ߳ ݅  ݉

 
              ෍ ௝ߣ

௞ݔ௜௝
ା

௝ఢி

− ௜௞ݔ
ା ≤ 0                             ∀݇ ∈ ܵ,    ݅ = 1, … ,    ଶܫ ߳ ݅  ݉

 
              ෍ ௝ߣ

௞ݔ௜௝
ି

௝ఢி

− ௜௞ݔ
ି ≥ 0                              ∀݇ ∈ ܵ,    ݅ = 1, … ,  ଶܫ ߳ ݅  ݉

 
             ෍ ௝ߣ

௞ݕ௥௝
௚

௝ఢி

− ൫1 + ෠௞൯ߠ × ௥௞ݕ
௚ ≥ 0         ∀݇ ∈ ܵ, ݎ    = 1, … ,   ݏ
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            ෍ ௝ߣ
௞ݕ௣௝

௕

௝ఢி

− ൫1 − ෠௞൯ߠ × ൫ݕ௣௞
௕ − ௣௞൯ߛ = 0         ∀݇ ∈ ܵ, ݌  = 1, … ,  ݍ

      
             ෍ ௝ߣ

௞

௝ఢி

= 1                                                                  ∀݇ ∈ ܵ       

௣௞ߛ              ≤ ௣௞ݕ
௕  

௜௞ߙ            ≥ 0, ௥௞ߚ ≥ 0, ௣௞ߛ ≥ 0  ∀݇ ∈ ܵ,  ݅ = 1, … , ݎ   ݉ = 1, … , ݌  ݏ = 1, … ,  ݍ
௝ߣ           

௞ ≥ 0, መ௟ߣ
௞ ≥ 0   ∀݇, ݈ ∈ ,ܩ   ∀݆ ∈  ܨ

The new constraint in 7ܯ (i.e.,  ߛ௣௞ ≤ ௣௞ݕ
௕ ) places an upper bound on the potential reduction in 

flare gas. It is worth noting that 7ܯ still focuses on a group of DMUs or producers, and partially 

answers the first research question of this study, which refers to gas flaring reduction for each 

oil-producing nation. Accordingly, 7ܯ must be relaxed for a single producer with one bad output 

to provide the following inverse DEA model: 

Max     :8ܯ ∗ߛ =  ௣௞ߛ
.ݏ                .ݐ
              ෍ ௝ߣ

௞ݔ௜௝
௝ఢி

≤ ݅                                            ௜௞ݔ = 1, … ,   ଵܫ ߳ ݅    ݉

 
              ෍ ௝ߣ

௞ݔ௜௝
ା

௝ఢி

≤ ௜௞ݔ
ା                                             ݅ = 1, … ,    ଶܫ ߳ ݅   ݉

 
              ෍ ௝ߣ

௞ݔ௜௝
ି

௝ఢி

≥ ௜௞ݔ
ି                                             ݅ = 1, … ,    ଶܫ ߳ ݅    ݉

 
             ෍ ௝ߣ

௞ݕ௥௝
௚

௝ఢி

≥ ൫1 + ෠௞൯ߠ × ௥௞ݕ
௚ ݎ                        = 1, … ,   ݏ

                                                 
            ෍ ௝ߣ

௞ݕ௣௝
௕

௝ఢி

= ൫1 − ෠௞൯ߠ × ൫ݕ௣௞
௕ − ݌       ௣௞൯ߛ = 1, … ,  ݍ

      
             ෍ ௝ߣ

௞

௝ఢி

= 1                                                                      

௣௞ߛ              ≤ ௣௞ݕ
௕  

௜௞ߙ            ≥ 0, ௥௞ߚ ≥ 0, ௣௞ߛ ≥ 0    
           ݅ = 1, … , ݎ   ݉ = 1, … , ݌  ݏ = 1, … ,  ݍ
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௝ߣ           
௞ ≥ 0, መ௟ߣ

௞ ≥ 0   ∀, ݈ ∈ ,ܩ   ∀݆ ∈  ܨ

 is the fully developed inverse DEA model that estimates potential reductions in gas flaring 8ܯ

for an inefficient oil-producing nation. It provides the definitive answer to the first research 

question in this study. To preserve the efficiency score of ܷܯܦ௞, and to keep 8ܯ feasible at all 

times due to negative data, one must set ߠ෠௞ < ௞ߠ
∗. As an example, but under the full discretion of 

the decision-maker, one can define ߠ෠௞ as 1% less than ߠ௞
∗. Where ߠ௞

∗ is the optimal solution of 

base model 5ܯ. The value of ߛ∗ in 8ܯ is the minimum potential reduction in gas flaring (i.e., 

∗ߛ = ௣௞ߛ
௠௜௡ ). A rare case of ߛ∗ = 0 implies the producer under evaluation flared the least volume 

of natural gas relative to other producers. A mathematical relationship does exist between ߛ∗ and 

 ෠௞, and this leads to a theorem and proof. In this study, all proposed models are solved using theߠ

LINGO 18 solver. 

THEOREM 

The maximum potential reduction occurs at zero inefficiency i.e., when ߠ෠௞ = ௣௞ݕ  ,0
௕ = ௣௞ߛ

௠௔௫.  

This theorem illustrates the transition phenomenon whereby the directional distance DEA or 

base model (i.e., 5ܯ) initially maximizes ߠ෠௞ for an inefficient unit. This is the preliminary stage 

of the optimization process. Based on the predetermined value of ߠ෠௞, the inverse DEA model 

(i.e., 8ܯ ) calculates the initial potential reduction (i.e., also known as the minimum reduction, 

௣௞ߛ
௠௜௡). Due to the inherent structure of 8ܯ, this is mathematically correct since inefficiency (i.e., 

 are inversely related. It follows that a maximum value of (௣௞ߛ ,.i.e) ෠௞) and potential reductionsߠ

 ௣௞. Accordingly, the converse must also apply to a caseߛ ෠௞ corresponds to a minimum value ofߠ

in which a minimum value of ߠ෠௞ corresponds to a maximum value of ߛ௣௞. Therefore, by 

decreasing the value of ߠ෠௞ in constant intervals to its minimum value of zero, the corresponding 

values of ߛ௣௞ will surely increase to a theoretical maximum. The increase of ߠ෠௞ to its maximum 

value by base model 5ܯ and subsequent decrease to its minimum value of zero by inverse model 

 – represent a closed-loop optimization process, like the motion of an object under gravity 8ܯ

one that attains maximum height and returns to its projection point. 
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Proof 

In model ܨ ,8ܯ denotes the subset of efficient producers that created the efficiency frontier of 

base model 5ܯ and need no further improvement. In constraints 4 and 5 of 8ܯ, the terms 

 ∑ ௝ߣ
௞ݕ௥௝

௚
௝ఢி  and ∑ ௝ߣ

௞ݕ௣௝
௕

௝ఢி  only apply to efficient producers in ܨ, while the terms ൫1 + ෠௞൯ߠ ×

௥௞ݕ
௚  and ൫1 − ෠௞൯ߠ × ൫ݕ௣௞

௕ −  ௞ that needs improvement. Atܷܯܦ ௣௞൯ only apply to the inefficientߛ

zero inefficiency, ܷܯܦ௞ is considered efficient and added to set ܨ. This implies from constraint 

5 that no further improvement in gas flaring reduction is needed for ܷܯܦ௞ and we have that: 

൫1 − ෠௞൯ߠ × ൫ݕ௣௞
௕ − ௣௞൯ߛ = 0 

When ߠ෠௞ = ௣௞ݕ ,0
௕ − ௣௞ߛ = 0  

௣௞ݕ 
௕ = ௣௞ߛ = ௣௞ߛ

௠௔௫ and this completes the proof. 

Further evidence for the validity of this theorem is provided in later sections through a sensitivity 

analysis. Based on this theorem, the second research question in this study is answered, while the 

sensitivity analysis will provide the energy transition curve for the industry, thereby answering 

the third research question. Moreover, two corollaries are provided to illustrate the implications 

of this theorem. 

Corollary 1: It is practically possible for the industry to achieve efficiency and reduce gas flaring 

with investment in better technology, a more highly skilled force, and effective management 

strategies. 

Corollary 2: It is practically difficult for the industry to simultaneously achieve efficiency and 

zero routine flaring. 

The connection between both corollaries is the use of state-of-the-art technology since it allows 

easier conversion of gases that would be flared to other industrial uses. Nevertheless, non-routine 

flaring may prevent a producer from achieving an ideal efficiency level with zero flares. 

 

3.7.5.1  The zero routine flaring initiative. 

In 2015, the World Bank and United Nations launched the ZRF initiative to eliminate routine gas 

flaring no later than 2030 by bringing together governments and oil and gas companies. While 

some industry experts contend that oil-producing nations have sufficient time to standardize their 

production processes and eliminate routine flaring, the recent spike in global gas flaring suggests 
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that this is not the case. It has been stated that this is partly because the technical means needed 

to implement this initiative effectively are not available. In short, it is difficult to determine the 

extent to which oil-producing nations are committed to this goal. The following definitions and 

algorithm are presented to determine whether this initiative can be adopted by any petroleum 

industry. 

DEFINITION ONE: Through model 8ܯ, the maximum reduction of bad output ߛ௣௞
௠௔௫ occurs at 

෠௞ߠ = 0 or ߝ௞ = 1 

DEFINITION TWO: Zero routine flaring initiative is adoptable, if and only if, ݕ௣௞
௕ = ௣௞ߛ

௠௔௫. 

ALGORITHM 

Step 1: Through model 5ܯ evaluate ߠ௞
∗ for each DMU௝ ∀ ݆ = 1,2, … , ݊ 

Step 2: If ߠ௞
∗ = 0 add DMU௝ to set ܨ and go to step 3; if ߠ௞

∗ > 0 add DMU௝ to set ܩ and go to step 

4 

Step 3: For all DMU௝ ∈ ݆ If  ܨ < ݊ go to step 1; if ݆ = ݊ go to step 5 

Step 4: For all DMU௝ ∈ ݆ If  ܩ < ݊ go to step 1; if ݆ = ݊ go to step 5 

Step 5: Apply 8ܯ by combining all DMU௝ ∈ with each DMU௝ ܨ ∈  and go to step 6 ܩ

Step 6: Through definition one, determine ߛ௣௞
௠௔௫ 

Step 7: Zero routine flaring initiative is adoptable through definition two. 

This algorithm provides the answer to the fifth research question because it yields a zero 

difference if the maximum reduction of bad output is equal to the actual amount of bad output. 

To provide a more detailed explanation of this algorithm, please refer to Fig. 3.4. As a first step, 

each producer's inefficiency score is evaluated. The producer with a zero-inefficiency score is 

considered efficient and is included in the subset F of efficient producers. Otherwise, such a 

producer will be added to the subset G of inefficient producers. If a producer is inefficient, the 

maximum reduction in gas flaring, ߛ௠௔௫, can be achieved by setting its inefficiency score to zero 

(i.e., assuming the producer is efficient). If the maximum reduction is equal to the actual volume 

of gas flared (i.e., ݕ௕) then the ZRF initiative can be adopted by such a producer. Otherwise, we 

calculate the deviation from a zero flare. Production processes are cleaner when deviations are 

smaller. 
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Figure 3.4: Solution algorithm for the Zero Routine Flaring Initiative 

3.7.6 Optimal sizing of gas-to-wire (GTW) process 

A GTW process that is economically feasible requires a range of turbine units that is optimal. To 

determine the optimal range, the minimum and maximum turbine units must be computed. With 

the application of model 8ܯ, the minimum and maximum units can be determined for any 

producer ݇ by utilizing the optimal values of its minimum (i.e., ߛ௣௞
௠௜௡) and maximum (i.e., ߛ௣௞

௠௔௫) 
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potential reductions in gas flaring. Accordingly, the optimal sizing can be expressed 

mathematically as follows:                        

௣௞ߛ
௠௜௡

௨௞ߨ
≤ ߮௨௞ ≤

௣௞ߛ
௠௔௫

௨௞ߨ
 … … … … … … … … … … … … … … . . (3.9) 

Specifically, ߮௨௞ is units of turbine ݑ required by DMU௞, while ߨ௨௞ is the annual gas 

consumption of turbine ݑ required by DMU௞. 

In the case of a single bad/undesirable output (i.e., flare gas), we have that the index ݌ = 1 and 

the expression reduces to: 

௞ߛ
௠௜௡

௨௞ߨ
≤ ߮௨௞ ≤

௞ߛ
௠௔௫

௨௞ߨ
 … … … … … … … … … … … … … … . . (3.10) 

The process flow diagram (PFD) illustrated in Fig. 3.5 summarizes the steps required to achieve 

this optimal range. Using the same five inputs in step one of the PFD, all DMUs will produce the 

same desirable output and undesirable output (flare gas). In the next step, the inefficiency scores 

will be determined using model 5ܯ, and this will result in the classification of producers. 

Through proposed model 8ܯ, reductions in gas flaring are calculated for each inefficient 

producer. It is possible to determine the optimal sizing for each producer using equation (3.10). 

In general, equation (3.10) answers the last research question for this chapter. 
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Figure 3.5: Process Flow Diagram for the GTW process 
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3.7.7 Data collection and description 

The OPEC Annual Statistical Bulletin (ASB) for 2016 provides production data for the 13 

members of OPEC in 2011. The official OPEC website provides access to open data contained in 

this bulletin. In this bulletin, OPEC presents data for a five-year period (i.e., from 2011 to 

2015). OPEC member nations were chosen for this study since they supply a combined 43.5 

percent of global crude oil and hold 81.9 percent of global oil reserves. A second reason for our 

study is that Nigeria is a major OPEC member nation and is still the largest oil producer in 

Africa. Considering Nigeria's performance in relation to other OPEC members is imperative.  

 

The rationale for selecting the year 2011 for this study is briefly discussed in this section. To 

begin with, this is a pioneering study in the literature that develops an optimization model for 

global gas flaring reductions. In an earlier attempt, Ojijiagwo et al. (2016) used a qualitative 

approach, consisting of semi-structured interviews with industry experts. It is noteworthy that 

only Nigeria was included in their analysis, which was based on an average flare report for a 

period of 49 years (i.e., 1965 to 2013). This time frame is inclusive of the production year (2011 

in this case) chosen for this study. As a measure of the performance of the proposed model 8ܯ, 

it is pertinent that the results obtained for Nigeria in 2011 be compared with those reported by 

Ojijiagwo et al. (2016). There is also the issue of OPEC not providing recent flare data. Some 

OPEC members do not provide flare data on a regular basis. Flare data for all member nations 

were last published by OPEC in 2015, and other flare data sources conflict with those found in 

the ASB bulletin. It should be noted, however, that the methodology proposed in this chapter is 

suitable for a group of oil companies located within one oil-producing nation. Gas flaring is a 

global problem in this study, so it is interesting to examine it at a local level in a country or 

region. Additionally, Nigeria had the highest volume of flared gas (14270 million cubic meters) 

over the five-year period. Consequently, this chapter will analyze results in the context of the 

2011 production year. 

 

Throughout this chapter, the same sets of five inputs and two outputs have been selected for all 

producers to ensure homogeneity in the subsequent analysis. Each producer is required to submit 

data regarding inputs and outputs annually to OPEC. 
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Inputs 

I. Current account balance 

When trying to determine whether an oil-producing nation is a net exporter or importer, it 

is imperative to know its current account balance. Having a positive balance on the 

current account establishes the producer as a net exporter, while a negative balance 

establishes the producer as a net importer. Crude oil production rates are affected by both 

factors over the long term. In general, countries with a surplus current account tend to 

have higher GDPs, while those with deficit current accounts usually have lower GDPs. 

Positive inputs are surpluses, while negative inputs are deficits. 

 

II. Wells completed. 

This refers to the number of oil wells developed and completed for oil production. 

 

III. Producing wells 

The figure represents the total number of oil wells completed throughout the production 

year (excluding uneconomical wells). 

 

IV. Active rigs 

It is the total number of oil rigs that are currently in operation (including workover rigs) 

during the course of the production year which is assigned to the production of crude oil. 

The number of active rigs and wells completed has a significant impact on the amount of 

refined petroleum produced by a refinery. In other words, as more rigs are engaged and 

more wells are completed, the refinery capacity will be upgraded to accommodate more 

crude oil input. 

 

V. Refining capacity 

It is the maximum amount of crude oil that can be processed by a refinery to yield 

petroleum products, usually expressed in barrels per calendar day (1000b/cd). There is a 

direct relationship between this input and the volume of refined products available for 

both export and domestic consumption. In addition, countries that have large refining 
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capacities, such as Saudi Arabia and Iran, generate a significant amount of revenue in 

both the short and long term by exporting refined products to foreign markets. Sadly, this 

is not the case for an oil giant such as Nigeria with a low refinery capacity and utilization 

rate. Nigeria currently has four functional refineries - Kaduna Refining and 

Petrochemicals (KRPC) Limited, Port Harcourt Refining Company (PHRC), Warri 

Refining and Petrochemicals Company (WRPC), and Niger Delta Petroleum Resources 

(NDPR). These refineries together have a refining capacity of 446 thousand barrels per 

day (see Table 3.1), although their combined utilization in 2017 was 8.67 percent. This 

explains why Nigeria continues to import refined petroleum products from foreign 

countries despite having a crude oil production capacity of 2.5 million barrels per day. 

Through a swap deal, crude oil is exported, and refined products are bought back from 

foreign refineries. Even with this decades-old strategy, a persistent scarcity of refined 

products such as gasoline, kerosene, and diesel still exist within Nigeria, as the demand 

for refined products vastly exceeds the supply. It is expected that the proposed Dangote 

refinery will increase refining capacity by an additional 650 thousand barrels per day, 

however, it is still in the construction stage and will require more time to be completed. 

In the meantime, Nigeria will have to continue to import refined products from overseas. 

This results in the nation losing out on extra revenue that could have been generated if all 

its refineries were operating at full capacity. Additionally, Nigeria incurs additional costs 

when purchasing such products from foreign refineries. 
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Table 3.1: Annual Domestic Refining Capacity Utilization in Nigeria (1000 b/cd) 

 Kaduna Refining 
& Petrochemical  
Company 

Port Harcout 
Refining 
Company 
(New) 

Port Harcout 
Refining 
Company 
(Old) 

Warri Refining 
& Petrochemical 
Company 

Niger Delta 
Petroleum 
Resources  

Total  Capacity 
Utilization, % 

Designed Capacity, 
BPSD 

 
110,000.00 

 
150,000.00 

 
60,000.00 

 
125,000.00 

 
1000.00 

 
446,000.00 

 
 

Crude Oil 
Processed, 
BPSD 

2010 21,986.72 19,345.38           - 53,345.20        - 94,677.30 21.23 

2011 20,896.79 31,853.02           - 49,731.41 222.03 102,703.25 23.03 
2012 31,981.86 24,530.97           - 34,868.71 557.45 91,938.99 20.61 
2013 32,452.43 44,937.47           - 20,925.04 185.18 98,500.12 22.09 
2014 12,160.39 23,557.15           - 24,049.59 503.71 60,270.84 13.51 
2015 3,297.36 9,274.21           - 8,337.64 714.66 21,623.87 4.85 

2016 10,310.69 32,669.98           - 14,746.13 605.43 58,332.23 13.08 
2017 16,597.23 6,998.94           - 14,775.66 696.90 39,068.73 8.67 

 

(Note: Old Port Harcout Refinery was not operational during the period under review) 

Source: 2017 Nigerian Oil and Gas Industry Report by the Department of Petroleum Resources (DPR)
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Good Output 

I. GDP per capita  

In US dollars per person, this is calculated as GDP divided by current oil prices. In 

general, this economic output is defined as the amount of wealth earned by member 

states of the Organization of Petroleum Exporting Countries per capita from the 

exportation of crude oil and refined petroleum products. A case in point is Qatar, 

which was a member of OPEC from 1961 until the end of 2018 and remains the 

richest country in the world in terms of gross domestic product per capita. Population 

is, therefore, an influential factor in this study because the production rates of crude 

oil could be misleading. For instance, in 2011, Nigeria produced more crude oil than 

any other African oil-producing nation but had the lowest GDP per capita compared 

to Algeria, Angola, and Libya. The reason for this can be attributed to Nigeria's large 

population. Thus, in relation to the size of the Nigerian population, there is a pressing 

need to improve production efficiency and generate more revenue for the Nigerian 

economy. 

Bad Output 

I. Routinely flared gas 

In each OPEC member nation, this is the volume of flared gas expressed in million 

standard cubic meters. The ASB records this information annually, however, some 

members do not report theirs due to the relatively low levels of flaring observed in a 

particular year. Two members did not report flare data for the 2011 production year. It 

is reasonable to assume that the proportion of gas flared in both nations is very low 

(i.e., negligible). In this case, it would be more appropriate to assume that both 

nations have had no flares. Thus, we consider two scenarios in this chapter, one 

excluding both nations, and the other presuming that both nations had no flares. It is 

pertinent to note that the first scenario involves only 11 members, without any 

assumptions. In contrast, the second scenario involves all 13 members based on the 

assumption that both nations adopted zero routine flare. Subsequent analyses will 

compare the results of both scenarios. 
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3.8 Application, Results and Analyses 

To begin this section, an assessment of the feasibility of the developed base model (i.e., 5ܯ) 

and its inverse model (i.e., 6ܯ) is conducted based on real-life data from the petroleum 

industry. The original inverse DEA model, 3ܯ, developed by Wegener and Amin (2019) 

aimed at preventing increases in GHG emissions and therefore lacked the capability of 

reducing GHG emissions. The premise here is that if the developed inverse DEA model, 6ܯ, 

can also prevent an increase in gas flaring, it is logical to conclude that the further developed 

and relaxed inverse DEA model, 8ܯ, will reduce gas flaring. 

3.8.1  Results of feasibility study 

By using the proposed model 5ܯ, the inefficiency scores of 11 OPEC members were 

calculated and presented in Table 3.2. Let ܨ and ܩ represent the subset of efficient and 

inefficient producers, respectively. This implies  ܨ = {DMUଶ, DMUଷ, DMU଺, DMU଻, DMUଽ}, 

and ܩ = {DMUଵ, DMUସ DMUହ, DMU଼, DMUଵ଴DMUଵଵ, }.  

 

Table 3.2: Production data and inefficiency scores for 11 OPEC members 

DMU     Current 

Account 

Balance 

(m US$) 

 Wells 

Completed 

Producing 

Wells 

Active 

Rigs 

Refining  

Capacity 

(1000b/cd) 

GDP per 

Capita  

(US$/person) 

Routinely 

Flared  

Gas 

(M cu m) 

Ineff. 

(θ) 

1-Algeria 17770 249 2010 33 592 5453.5 3604 0.83 

2-Angola 13085 112 1476 22 65 4666.95 7183 0 

3-Ecuador -402 207 3079 39 188.4 5193.04 539 0 

4-Indonesia 1685 838 10423 80 1125 3121 2452 0.78 

5-Iraq 26365 76 1695 59 810 5571.55 9612 0.91 

6-Kuwait 65743 523 1798 32 936 41672 217 0 

7-Libya 3173 76 609 55 380 5858 1302 0 

8-Nigeria 10757 124 2116 38 445 2451.75 14270 0.91 

9-Qatar 51906 29 517 6 283 97983.27 558 0 

10-UAE 50948 266 1592 19 675 40819.31 982 0.55 

11-

Venezuela 

16342 1050 14915 116 1872 10283.2 9284 0.94 

 

 

Thus, every ܷܯܦ ∈  has more room for minimizing gas flaring compared to the efficient ܩ

∋ ݏܷܯܦ  ݏܷܯܦ In this connection, a decision-maker can select any number of inefficient .ܨ
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from set ܩ to form a smaller subset ܵ with a cardinality of ݐ (i.e., ݐ = |ܵ|). To ensure the 

feasibility study is robust, two different cases will be presented in this section. In the first 

case, we consider the smallest group or set of two random ݏܷܯܦ where ݐ = 2, as 

demonstrated by Wegener and Amin (2019), and gradually increase the cardinality to the 

total number of inefficient ݏܷܯܦ in ܩ. 

 

Case 1: As an example, let ܵ = ,଼ܷܯܦ} ܯܦ ଵܷଵ}. When real-life scenarios are considered, an 

increase in the GDP per capita of an oil-producing nation is largely dependent upon an 

increase in oil production. The reason for this is the fact that the revenues generated from the 

exportation of crude oil and refined petroleum products take up a substantial portion of their 

GDP. There is, however, a tendency for such an increase in oil production to be accompanied 

by an increase in gas flaring as well. Therefore, this feasibility study will aim to determine, 

based on the application of the proposed inverse DEA, 6ܯ, an optimal increase in GDP per 

capita for the group of producers in ܵ that will minimize an increase in gas flaring. Table 3.3 

presents three different scenarios for potential growth in GDP per capita for the selected 

producers. From Table 3.3, it is evident that both producers can achieve a combined GDP per 

capita growth rate of US$100/person, US$200/person, and US$300/person without increasing 

their flare gas volumes (i.e., ߛଵ,଼ = ଵ,ଵଵߛ = 0). Among the three scenarios in Table 3.3, only 

଼,ଵߚ ,.achieved growth in GDP per capita (i.e (Nigeria) ଼ܷܯܦ = ොଵݕ
௚). However, we see that 

ܯܦ ଵܷଵ(Venezuela) has no potential for an increase in GDP per capita (i.e., ߚଵ,ଵଵ = 0)  under 

the same scenarios. Considering the results of table 3, Nigeria currently dominates Venezuela 

when both producers are tasked with meeting a combined growth in GDP per capita. 

Consequently, it is imperative to investigate further by extending the cardinality of the subset 

ܵ from 2 to 6 ݏܷܯܦ. With the addition of ܯܦ ଵܷ(Algeria) to the set ܵ, there was no increase 

in their current levels of flare gas as shown in Table 3.4 (i.e., ߛଵ,ଵ = ଼,ଵߛ = ଵ,ଵଵߛ =

0). However, like Table 3.3, only ܯܦ ଵܷ could achieve an increase in GDP per capita in each 

scenario. Accordingly, the other two producers (i.e., ଼ܷܯܦ and ܯܦ ଵܷଵ)  cannot boost GDP 

per capita without a corresponding increase in flare gas. It can be argued that ܯܦ ଵܷ has the 

greatest potential for GDP growth while maintaining its current flare gas level. The sample 

size of ܵ was increased to four, five, and six to determine if this dominance of ܯܦ ଵܷ remains 

true for other combinations with the same increases in GDP per capita. These other three 

samples had the same results, with ܯܦ ଵܷ being the only producer to increase GDP per 
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capita, although no increase in flare gas levels was observed in any of the 

scenarios. Therefore, it is imperative to also investigate this dominance in the reverse 

direction by testing sample sizes of ܵ, beginning with ݐ, ݐ − 1, ݐ − 2, … ,1. The findings 

revealed a consistent pattern of dominance where the inefficient ܷܯܦ with the lowest value 

of ݇ is assigned to dominate the other ܷܯܦs in ܵ. For instance, at ݐ = 6, just like the original 

set, ܯܦ ,ܩ ଵܷ (i.e., having the smallest ݇ value of 1) was the only producer that achieved 

growth in GDP per capita. When ܯܦ ଵܷ is removed from set ܵ, the smallest ݇ value in the set 

becomes 4. As a result, ܷܯܦସ becomes the dominant unit. This resulted in ܯܦ ଵܷଵ being 

placed at the bottom of the dominance hierarchy because of this pattern. Therefore, the 

dominance hierarchy created by the proposed model, 6ܯ, can be summarized as follows:  

ܯܦ                         ଵܷ > ସܷܯܦ > ହܷܯܦ > ଼ܷܯܦ > ܯܦ ଵܷ଴ > ܯܦ ଵܷଵ 

Generally, there are many other combinations of ݏܷܯܦ that can form the subset ܵ, but we 

can see from the examples presented here that only one ܷܯܦ per combination dominates or 

has room for growth in GDP per capita. This further explains why, in the first example, only 

ܯܦ with a lower ݇ value increased GDP per capita in comparison to ଼ܷܯܦ ଵܷଵ with a higher 

݇ value. To put it another way, a lower ݇ value indicates a dominant ܷܯܦ. This can be 

expressed mathematically as follows:  

DEFINITION: Let  ܷܯܦ௣ and  ܷܯܦ௤ be two inefficient ݏܷܯܦ in ܵ, then through the 

application of model ܷܯܦ  ,6ܯ௣ is dominant over  ܷܯܦ௤, if and only, if ݌ <  The .ݍ

converse also holds for both ݏܷܯܦ. 

 

Based on the above definition, the second case of this feasibility study assesses only one 

 separately to examine its potential for an increase in GDP per capita, flare gas ܷܯܦ

minimization abilities, and input increase requirements. 

 

Table 3.3: Optimal volumes of flare gas for two producers 

Increase in GDP 

per capita 

 ଵ,ଵଵߛ ଼,ଵߛ ଵ,ଵଵߚ ଼,ଵߚ

ොଵݕ
௚ = 100 100 0.0000 0.0000 0.0000 

ොଵݕ
௚ = 200 200 0.0000 0.0000 0.0000 

ොଵݕ
௚ = 300 300 0.0000 0.0000 0.0000 
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Table 3.4: Optimal volumes of flare gas for three producers 
Increase in GDP 

per capita 

 ଵ,ଵଵߛ ଼,ଵߛ ଵ,ଵߛ ଵ,ଵଵߚ ଼,ଵߚ ଵ,ଵߚ

ොଵݕ
௚ = 100 100 0.0000 0.0000 0.0000 0.0000 0.0000 

ොଵݕ     
௚ = 200 200 0.0000 0.0000 0.0000 0.0000 0.0000 

ොଵݕ     
௚ = 300 300 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Case 2: Here a separate analysis is conducted for each ܷܯܦ ∈ |ܵ| or a case where ܩ = 1. In 

this second case, every ܷܯܦ is evaluated for its potential to increase GDP per capita by 

US$100. The proposed model 6ܯ also calculates the change in inputs required by each ܷܯܦ 

to increase its GDP per capita. Tables 3.5 through 3.10 present the results obtained. Clearly, 

the results within Tables 3.5 to 3.10 indicate that each ܷܯܦ or producer can increase its GDP 

per capita by US$100/person without causing an increase in flare gas. Interestingly, Table 3.6 

revealed that Indonesia could achieve this growth in GDP per capita even without increasing 

inputs. For Indonesia, this means that all inputs are fully utilized, and to increase its GDP per 

capita, it would be necessary to improve production efficiency or reduce production losses. 

An example of a production loss can be attributed to oil spills that occur during the oil 

extraction process. In turn, this results in a loss of oil revenue, which contributes substantially 

to the GDP of the nation. 

Table 3.5: Optimal changes in inputs and flare gas volume for Algeria 

Increase in GDP 

per capita 

 ଵ,ଵߛ ହ,ଵߙ ସ,ଵߙ ଷ,ଵߙ ଶ,ଵߙ ଵ,ଵߙ

ଵ,ଵߚ = 100 25370.47 112.6204 0.0000 7.3036 143.2683 0.0000 

  

Table 3.6: Optimal changes in inputs and flare gas volume for Indonesia 

Increase in GDP 

per capita 

 ଵ,ସߛ ହ,ସߙ ସ,ସߙ ଷ,ସߙ ଶ,ସߙ ଵ,ସߙ

ଵ,ସߚ = 100 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

 

Table 3.7: Optimal changes in inputs and flare gas volume for Iraq 

Increase in GDP 

per capita 

 ଵ,ହߛ ହ,ହߙ ସ,ହߙ ଷ,ହߙ ଶ,ହߙ ଵ,ହߙ

ଵ,ହߚ     = 100 0.0000 175.8459 1107.407 0.0000 0.0000 0.0000 
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Table 3.8: Optimal changes in inputs and flare gas volume for Nigeria 

Increase in GDP 

per capita 

 ଼,ଵߛ ଼,ହߙ ଼,ସߙ ଼,ଷߙ ଼,ଶߙ ଼,ଵߙ

଼,ଵߚ = 100 0.0000 72.83294 791.4443 0.0000 0.0000 0.0000 

 

Table 3.9: Optimal changes in inputs and flare gas volume for UAE 

Increase in GDP 

per capita 

 ଵ,ଵ଴ߛ ହ,ଵ଴ߙ ସ,ଵ଴ߙ ଷ,ଵ଴ߙ ଶ,ଵ଴ߙ ଵ,ଵ଴ߙ

ଵ,ଵ଴ߚ        = 100 16329.65 134.6359 0.0000 7.130176 136.1426 0.0000 

 

Table 3.10: Optimal changes in inputs and flare gas volume for Venezuela 

Increase in GDP 

per capita 

 ଵ,ଵଵߛ ହ,ଵଵߙ ସ,ଵଵߙ ଷ,ଵଵߙ ଶ,ଵଵߙ ଵ,ଵଵߙ

ଵ,ଵଵߚ      = 100 10913.23 0.0000 0.0000 0.0000 0.0000 0.0000 

 

This feasibility study suggests that, since the proposed inverse DEA, 6ܯ, was successful in 

preventing an increase in flare gas while increasing GDP per capita for each producer, the 

further developed inverse DEA, 8ܯ, will surely reduce flare gas at current GDP per capita. 

Using the developed model 8ܯ, the next section provides a detailed analysis of the main 

findings of this chapter.  

3.8.2  Main results 

There are two scenarios in which the research findings of this chapter are discussed: one with 

eleven OPEC members and the other with thirteen OPEC members. As a starting point, the 

first scenario uses the inefficiency scores of the eleven producers presented in Table 3.2 and 

their subsets of efficient and inefficient producers. 

 

2011 Production Year (Scenario 1: Eleven OPEC members) 

Recall from Table 2, the following subsets: 

ܨ = {DMUଶ, DMUଷ, DMU଺, DMU଻, DMUଽ}, and  

ܩ = {DMUଵ, DMUସ DMUହ, DMU଼, DMUଵ଴DMUଵଵ, }.  

Based on the application of the developed model 8ܯ, each inefficient DMU in ܩ requires its 

own analysis. 
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Taking DMU଼ (Nigeria) as our main case study, 8ܯ was applied to determine the potential 

reduction in gas flaring. From the solution report, the potential reduction in gas flaring for the 

Nigerian petroleum industry is ଼ߛ = 382.9901million cubic metres from a total flare of 

14270 million cubic metres in 2011.    

This is equivalent to ଼ߛ = 382.9901 ×  ݐ݂݁݁ ܾܿ݅ݑܿ ݊݋݈݈݅݅݉ 35.3

଼ߛ                                 =   ݐ݂݁݁ ܾܿ݅ݑܿ ݊݋13519.55݈݈݉݅݅

଼ߛ                                 =     ݐ݂݁݁ ܾܿ݅ݑܿ ݀݊ܽݏݑ݋ℎݐ 13519550

       At US$3.00 per thousand ft3 of natural gas, the economic loss equals: 

଼ߛ = ݐ݂݁݁ ܾܿ݅ݑܿ ݀݊ܽݏݑ݋ℎݐ 13519550 × $3.00 = US$40,558,650 

 

3.8.3 Application of Proposed Algorithm 

Through steps 1 to 6, we obtain ଼ߛ
௠௔௫ = 13020.17 million cubic meters. This is equivalent to 

an economic loss of US$1.379 billion.  From Table 3.2, the actual volume of routinely flared 

gas by DMU଼ is ଼ݕ
௕ = 14270 million cubic meters. Now, since ଼ݕ

௕ > ଼ߛ
௠௔௫, we conclude that 

the Nigerian petroleum industry could not adopt the initiative in 2011, assuming the industry 

is relatively efficient compared to the other OPEC member nations. However, the deviation 

from this initiative (i.e., ଼ݕ
௕ − ଼ߛ

௠௔௫ =1249.83 million cubic metres) suggests that a continual 

investment in better technology and skilled labor can achieve this goal within the decade.  

3.8.4 Sensitivity Analysis 

We find from sensitivity analysis that as the inefficiency measure of DMU଼ (i.e., ଼ߠ = 0.91) 

decrease in steps of 0.1, the potential reduction, ଼ߛ increases. When ଼ߠ =  achieves a ଼ߛ ,0

maximum value ଼ߛ
௠௔௫ = 13020.17 million cubic metres from a total flare of 14270 million 

cubic metres in 2011. This implies an inverse relationship between ߠ and γ. Fig. 3.6 shows 

that the measure of inefficiency is a function of the potential reductions. The sensitivity 

analysis proved to be in accordance with our developed algorithm for the zero routine flaring 

initiative. 
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Figure 3.6: Effect of inefficiency on potential reductions in gas flaring for Nigeria 

Recall from section 3.7.5, that our proposed theorem states that the maximum potential 

reduction occurs when the inefficiency score of an inefficient unit approaches zero. This 

theorem is the underlying principle of step 6 in our algorithm. It is clear from Fig. 3.6 that as 

the inefficiency score of  ଼ܷܯܦ approaches zero, the potential reduction approaches a 

maximum value. 

 

3.8.5 Comparative Analysis 

We need to apply our extended model and algorithm to ܯܦ ଵܷ, ,ସܷܯܦ ,ହܷܯܦ ܯܦ ଵܷ଴ and 

ܯܦ ଵܷଵ, and compare their results with those of ଼ܷܯܦ. The aim is to validate our model and 

algorithm and to determine which ܷܯܦ is more committed to the zero-routine initiative.  

Table 3.11 presents the obtained results, including the computed deviations. The maximum 

reductions in gas flaring for all six inefficient producers amounts to 36.1 billion cubic metres, 

equivalent to US$3.82 billion. It is important to state here that these reductions are computed 

by our model relative to the inputs and outputs of the efficient producers. Similarly, all five 

DMUs could not adopt the initiative in 2011 and the deviations can be attributed to non-

routine flaring (i.e., safety and maintenance flaring). In terms of least deviation, it is clear 

from Table 3.11, that DMUଵ଴(UAE) is most committed to the zero-routine initiative while 
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DMU଼(Nigeria) is the least committed because it has the largest deviation. In order of least 

deviation, we rank them as follows: 

DMUଵ଴ > DMUଵଵ > DMUସ > DMUଵ > DMUହ > DMU଼ 

However, in terms of other yardsticks such as maximum potential revenue, maximum energy 

savings and maximum potential reductions, our case study, DMU଼ (Nigeria) outperformed the 

other five DMUs. This implies, to a reasonable extent, that DMU଼ stands a far better chance 

of improvement with investment in better technology that will place it on par with the other 

efficient DMUs. In this regard, the efficient DMUs of the subset ܨ serve as the ideal 

benchmarks for DMU଼. Fig. 3.7 gives a perfect illustration of the scenarios involving 

maximum savings and makes the strong case that all inefficient DMUs have ample room for 

reduction in routine gas flaring. The maximum reductions are quite high compared to the 

other yardsticks. In addition, the low deviations are indicators that the producers are on track 

to achieving the zero routine initiative provided further investments are made. Fig. 3.8 

illustrates the potential improvements with current technology. Here the potential 

improvements refer to the case where producers are not willing to invest in better technology 

due to financial constraints or the unpredictability of global oil prices. 

 

                Table 3.11: Summary of results for inefficient DMUs (Scenario 1) 

DMU Potential 

Reduction 

௞ߛ     
௠௜௡ 

 (ଷݑܿ ݉)

Flare 

Reduction 

 (%)           

Potential 

Revenue 

 (݉ $) 

Maximum 

Potential  

Reduction  

௞ߛ    
௠௔௫  

 (ଷݑܿ ݉)

 

Maximum 

Flare 

Reduction 

  (%) 

Maximum 

Potential 

Revenue 

(݉ $) 

Deviation 

௞ݕ)
௕ − ௞ߛ

௠௔௫) 

 (ଷݑܿ ݉)

1-Algeria   23.69   0.66   2.51 2995.35   83.11   317.20   608.65 

4-Indonesia   39.51   1.61   4.18 1921.25   78.35   203.46   530.75 

5-Iraq   658.56   6.85   69.74 8806.19   91.61   932.58   805.81 

8-Nigeria   382.99   2.68   40.56 13020.20   91.24   1379   1249.83 

10-UAE   16.63   1.69   1.76 547.58   55.76   57.99   434.42 

11-Venezuela   1229.85   13.25   130.24 8825.04   95.06   934.57   458.96 

  3824.8    36115.61   2351.23   ݈ܽݐ݋ܶ
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3.8.6 Optimal Sizing Computations 

In section 3.7.6, we introduced the optimal sizing expression for GTW system as: 

                                               ఊೖ
೘೔೙

గೠೖ
≤ ߮௨௞ ≤ ఊೖ

೘ೌೣ

గೠೖ
  

Our model computes ߛ௣
௠௜௡ and ߛ௣

௠௔௫ for all inefficient producers. Suppose all producers 

decide to use same model of turbine for conversion of flared gas to electricity, this implies 

the annual gas usage, ߨ௨௞, for each turbine is the same for all producers. For this study, we 

consider the ALSTOM GT13E2 gas turbine with detailed specifications provided by 

Ojijiagwo et al. (2016). Its power output is capped at 150MW. The daily gas usage 

requirement of this turbine was estimated in their study to be 0.93 million cubic metres. This 

is equivalent to 339.45 million cubic metres per year (i.e., 0.93 x 365 days). Using this value, 

we present an optimal sizing for all six producers in Table 3.12. Also, the number of turbines, 

߮௞, can only take integer values. From the results presented in Table 3.12, it is obvious that 

Iraq, Nigeria, and Venezuela show more potential for power generation via the GTW process. 

Nigeria and Venezuela are currently experiencing energy supply crises, so this study presents 

a big opportunity for both nations to solve their energy crisis.  

 

Table 3.12: GTW optimal sizing for inefficient producers (Scenario 1) 

DMU                       Units of Turbine (߮௞) 

1-Algeria 0 ≤ ߮௞ ≤ 8 

4-Indonesia 0 ≤ ߮௞ ≤ 5 

5-Iraq  1 ≤ ߮௞ ≤ 25 

8-Nigeria  1 ≤ ߮௞ ≤ 38 

10-UAE 0 ≤ ߮௞ ≤ 1 

11- Venezuela   3 ≤ ߮௞ ≤ 25 
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Figure 3.7: Deviations and Maximum Potential Improvements 

 
Figure 3.8: Potential Improvements for inefficient producers 

To further support our claim that DMU inefficiency is a function of the potential reductions, 

we extend the sensitivity analysis to the other five inefficient DMUs. The results are 

presented in Figs. 3.9 to 3.13. In each case, the inefficiency score was decreased in similar 

0

2000

4000

6000

8000

10000

12000

14000

Deviation Maximum Potential
revenue

Maximum Potential
Reduction

De
vi

at
io

ns
 a

nd
 m

ax
im

um
 p

ot
en

tia
l

Algeria Indonesia Iraq Nigeria UAE Venezuela

0

200

400

600

800

1000

1200

1400

Potential Reduction Potential Revenue

Po
te

nt
ia

l

Algeria Indonesia Iraq Nigeria UAE Venezuela



 
 
 

77 
 
 
 

steps of 0.1 and the maximum reduction occurred at zero inefficiency or when the DMU 

became efficient. 

 

 
Figure 3.9: Effect of inefficiency on potential reductions in gas flaring for Algeria 

 
Figure 3.10: Effect of inefficiency on potential reductions in gas flaring for Indonesia 
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Figure 3.11: Effect of inefficiency on potential reductions in gas flaring for Iraq 

 

 
Figure 3.12: Effect of inefficiency on potential reductions in gas flaring for UAE 
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Figure 3.13: Effect of inefficiency on potential reductions in gas flaring for Venezuela 

3.8.7 Analysis of Second Scenario 

2011 Production Year (Scenario 2: Thirteen OPEC members) 

In this section, we consider all the 13 OPEC members by adding Saudi Arabia and Iran to the 

PPS. We assume that both members had zero routine flaring for the 2011 production year. 

This makes them ideal benchmarks for the inefficient producers identified by model 5ܯ. 

Table 3.13 presents the initial results containing the inefficiency score for each producer. 

Once again, we have the same number of inefficient DMUs, like Table 3.2, but with two 

more efficient DMUs taking the number to seven. We define new subsets as follows: 

ܨ = {DMUଶ, DMUଷ, DMUହ, DMU଻, DMU଼, DMUଵ଴, DMUଵଵ}, and  

ܩ = {DMUଵ, DMUସ DMU଺, DMUଽ, DMUଵଶDMUଵଷ, }. 
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                  Table 3.13: Data and inefficiency scores for 13 OPEC member nations 

DMU     Current 

Account 

Balance 

(m US$) 

 Wells 

Completed 

Producing 

Wells 

Active 

Rigs 

Refining 

Capacity 

(1000b/cd) 

GDP per 

Capita 

(US$/pers

on) 

Routinely  

Flared  

Gas 

(M cu m) 

Ineff. 

(θ) 

1-Algeria 17770 249 2010 33 592 5453.5 3604 0.83 

2-Angola 13085 112 1476 22 65 4666.95 7183 0 

3-Ecuador -402 207 3079 39 188.4 5193.04 539 0 

4-Indonesia 1685 838 10423 80 1125 3121 2452 0.78 

5-Iran 59364 204 2026 123 1715 7511.1 0 0 

6-Iraq 26365 76 1695 59 810 5571.55 9612 0.91 

7-Kuwait 65743 523 1798 32 936 41672 217 0 

8-Libya 3173 76 609 55 380 5858 1302 0 

9-Nigeria 10757 124 2116 38 445 2451.75 14270 0.91 

10-Qatar 51906 29 517 6 283 97983.27 558 0 

11-Saudi 

Arabia 

158545 312 3245 121 2107 23594.13 0 0 

12-UAE 50948 266 1592 19 675 40819.31 982 0.55 

13-

Venezuela 

16342 1050 14915 116 1872 10283.2 9284 0.94 

 

Table 3.14 summarizes the results. Except for DMUସ (Indonesia) and DMUଵଷ (Venezuela), 

the other four DMUs had same values of reductions and savings, like those of Table 3.11. 

With the addition of two new members to the PPS, we observe slight improvements in 

reductions and savings for DMUସ and DMUଵଷ. In order of least deviation, we define a new 

ranking: 

DMUଵଷ > DMUଵଶ > DMUସ > DMUଵ > DMU଺ > DMUଽ 

DMUଽ(Nigeria) is still better than all five in terms of maximum savings and potentials. We 

also present the optimal sizing for this scenario in Table 3.15. Only Venezuela had changes in 

sizing compared to Table 3.12. This implies that by expanding the production possibility set 

(PPS) with the addition of two efficient producers (i.e., Saudi Arabia and Iran), only slight 

changes were observed in the overall optimal sizing. 
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Table 3.14: Summary of results for inefficient DMUs (Scenario 2) 

DMU Potential 

Reduction 

௞ߛ     
௠௜௡ 

 (ଷݑܿ ݉)

Flare 

Reduction 

(%) 

 

Potential 

Revenue 

 (݉ $) 

Maximum 

Potential  

Reduction  

௞ߛ     
௠௔௫  

 (ଷݑܿ ݉) 

 

Maximum 

Flare 

Reduction 

(%) 

Maximum 

Potential 

Revenue 

(݉ $) 

Deviation 

௞ݕ)
௕ − ௞ߛ

௠௔௫) 

 (ଷݑܿ ݉)

1-Algeria 23.69 0.66 2.51 2995.35 83.11 317.20 608.65 

4-Indonesia 64.26 2.62 6.81 1928.3 78.63 204.21 523.7 

6-Iraq 658.56 6.85 69.74 8806.19 91.61 932.58 805.81 

9-Nigeria 382.99 2.68 40.56 13020.20 91.24 1379 1249.83 

12-UAE 16.63 1.69 1.76 547.58 55.67 57.99 434.42 

13-Venezuela 1502.58 16.18 159.12 8869.33 95.53 939.26 414.67 

  3830.24  36166.95   2648.71 ݈ܽݐ݋ܶ

 

Table 3.15: GTW optimal sizing for inefficient producers (Scenario 2) 

DMU                       Units of Turbine (߮௞) 

1-Algeria 0 ≤ ߮௞ ≤ 8 

4-Indonesia 0 ≤ ߮௞ ≤ 5 

5-Iraq  1 ≤ ߮௞ ≤ 25 

8-Nigeria  1 ≤ ߮௞ ≤ 38 

10-UAE 0 ≤ ߮௞ ≤ 1 

11- Venezuela   4 ≤ ߮௞ ≤ 26 

 

3.8.7.1     GTW for Case Study 

In this section, we select Nigeria as our case study and carry out a separate analysis for GTW 

power generation.  

Out of 7141MW of power plants’ capacity, only 3879MW is currently available for power 

generation in Nigeria. This leaves a loss in capacity of 3262MW. We obtained the maximum 

sizing of 38 turbine units for our case study. At 150 MW power output, assuming all turbines 

are operating at full load, this will give 5700MW for power generation. This is more than 

enough to cover the loss in capacity. Thus, our analysis makes the case for an investment in 
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GTW. The economic analysis for such investment is well detailed in Ojijiagwo et al. (2016) 

and will not be discussed here. 

 3.8.8 Model Performance 

To examine the performance of our proposed model to some extent, we compare our result 

for Nigeria with previous works, within same time frame. Giwa et al. (2014) estimated the 

average annual volume of gas flared in Nigeria over a 49-year period (1965 – 2013) to be 

18.27 billion cubic metres. Using this estimate, Ojijiagwo et al. (2016) provided an economic 

analysis with 50 units of the ALSTOM GT13E2 gas turbine resulting in 92.89% flare 

reduction for Nigeria. Their calculated return on investment was 16.3%, which is greater than 

the recommended minimum of 15% for any good investment.  

 

The 49-year period highlighted in Giwa et al. (2014) is inclusive of the production year used 

for this study (i.e., 2011). For the 2011 production year, our proposed model obtained a 

91.24% flare reduction for Nigeria in both scenarios. This is a satisfactory performance 

because the average flare volume stated in Ojijiagwo et al. (2016) is a better representative of 

flare data and we relaxed some assumptions in the development of our proposed model. It is 

imperative to state here that our model is well suited for imposing gas flaring reduction on a 

group of homogenous oil producers. Gas flaring is not confined to a region or a single nation, 

it is a global problem. If we are to address climate change and global warming, we need the 

combined effort of oil producing nations to mitigate gas flaring. Our methodology also 

classifies nations into efficient and inefficient oil producers, so that the inefficient producers 

can standardize their processes with better technology used by the efficient producers. This is 

the underlying principle of its evaluation mechanism. Most importantly, our model serves as 

an important tool for making smart decisions regarding the optimal range of turbine units for 

implementing the GTW process. For both scenarios, the 2011 reductions in gas flaring for the 

Nigerian petroleum industry are equal. We conclude our analysis by saying, with the addition 

of efficient producers (i.e., Saudi Arabia and Iran) to the production possibility set, there are 

no better results for Nigeria. This implies our proposed model and algorithm yielded the best 

results for our case study.   
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3.9 Summary 

The future challenges for crude oil make waste management an integral part of corporate 

long-term planning in the petroleum industry. Routine gas flaring in the industry is an 

environmental hazard and a multi-billion-dollar waste. In this chapter, we extended the 

inverse data envelopment analysis (DEA) model for estimating potential reductions in gas 

flaring. The potential reductions served as a template for computing the optimal range of 

turbine units required for the gas-to-wire (GTW) process. 

 

We applied our proposed model to member nations of the organization of the petroleum 

exporting countries (OPEC). We found six nations were inefficient producers. The obtained 

results showed that the maximum potential reductions in gas flaring for Algeria, Indonesia, 

Iraq, Nigeria, UAE, and Venezuela are 83.11%, 78.35%, 91.62%, 91.24%, 55.76% and 

95.06%, respectively. Based on the obtained reductions, and for all six producers, the turbine 

units required for the GTW process are 8, 5, 25, 38, 1 and 25, respectively. Iraq, Nigeria, and 

Venezuela had the highest potential for the conversion of flared gas to electricity using the 

GTW process. In addition, our proposed model estimated the total potential reduction in 

global gas flaring across all six oil producing nations to be 36.11 billion cubic meters (BCM). 

This is equivalent to a potential revenue of US$3.8 billion. In real life scenarios, it is 

practically difficult for the industry to achieve a zero-routine flare with current technology. In 

this connection, we developed an algorithm that serves as a tool for computing deviations 

from a zero-routine flare. The deviations indicate the level of commitment of an oil 

producing nation to the zero-routine flaring initiative launched by the World Bank. The 

smaller the deviations, the cleaner the production process. We found that the UAE had the 

smallest deviation of 0.434 BCM in the first scenario, while Venezuela had the least 

deviation of 0.414 BCM in the second scenario. However, Nigeria had the largest deviation 

of 1.250 BCM in both scenarios.  

Our extended inverse DEA model provided satisfactory results for a set of homogenous oil 

producers and is the first to estimate the potential reductions in global gas flaring.  However, 

one limitation is that our model imposes gas flare reductions on inefficient producers but 

lacks the capability of applying the same technique to efficient producers. On this basis, 

further research is needed for improving the performance of the efficient producers.  
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Chapter 4 – A Lean Production Approach to Flare Gas Management                                                 
 

4.1 Introduction 

An overview of the gas flaring process, including its main causes, as well as World Bank 

policies regarding the reduction of global gas flaring was presented in the previous chapter. 

With a view toward strengthening the developed models and techniques for addressing global 

gas flaring, this chapter examines the issue more from an economic and environmental 

perspective. Simply put, there is a need to establish a balance between industry needs (i.e., oil 

production) and environmental protection. The problem is more dynamic, the kind involving 

marginal increases in oil production and less environmental waste in the form of flare gas. 

Thus, it is imperative to investigate any potential trend between oil production and flare gas. 

Further, the purpose of this chapter is to improve the overall performance of efficient oil-

producing nations, in order to overcome the limitations of the previous chapter, which 

focused only on reducing gas flaring in inefficient oil-producing nations. 

The extraction of oil from reservoirs results in the release of substantial amounts of methane. 

In oil wells around the world, approximately 140 billion cubic meters of methane is flared 

annually, creating a significant amount of greenhouse gas (i.e., CO2) (Elvidge et al., 

2009). Furthermore, gas flaring creates heat, air pollution, and noise, which constitute its 

environmental impact. Flaring of natural gas wastes non-renewable resources. Besides 

contributing significantly to CO2 emissions, gas flaring also deprives developing countries of 

an affordable energy source. Additionally, the volatility of oil prices makes it imperative for 

gas economies, both mature and developing, to diversify their revenue streams in order to 

secure a steady stream of income. The United Nations and other international organizations 

have developed policies aimed at reducing gas flaring, and such policies are crucial to 

reducing the environmental impact of gas flaring. According to Figure 4.1, gas flaring is 

correlated with oil production. The uninitiated have sometimes claimed that the volume of 

gas flared is positively correlated with the volume of oil produced. This claim is not always 

true because, based on Figure 4.1, gas flaring declined in tandem with an increase in oil 

production from 2006 to 2010, before rising in 2018.  Nevertheless, this chapter will test the 

validity of this claim. As well, experts in the petroleum industry have considered the 

feasibility of increasing oil production while reducing environmental waste (i.e., flare gas). It 

is a win-win situation for both the industry and the environment. The feasibility of such a 
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scenario, however, has not been investigated using any methodology or strategy. To find out 

whether such a scenario can be realized in the industry, this chapter develops a holistic 

framework based on lean practices. 

 

 
Figure 4.1: Historical trend of gas flaring and oil production 

(Note: Adopted from Global Gas Flaring Reduction Partnership. 

(https://www.ggfrdata.org/). Copyright 2020 by the World Bank Group) 

4.2 Environmental impact of gas flaring 

As a result of gas flaring, there are constituents that, when released into the environment, 

contribute to global warming. This includes carbon dioxide (CO2). Climate change is a 

natural phenomenon that is caused by global warming, and it is a phenomenon that is 

hazardous to humans as well as ecosystems. Due to climate change, wildlife and humans 

living in arctic environments are vulnerable to problems like melting arctic glaciers and 

desertification. Among other impacts are flooding and displacement of people and wildlife 

caused by extreme weather patterns and increased rainfall. People living along ocean 

coastlines are also threatened by rising coastal waters. The gas flaring process in Nigeria 

releases approximately 47 million tons of CO2 and methane into the atmosphere each year. 

Flooding and other adverse consequences have often resulted from this (Ojijiagwo et al., 



 
 
 

86 
 
 
 

2016). GHG emissions from gas flaring consistently destroy the ozone layer that serves as a 

protective shield from harmful ultraviolet waves (Sekyi, 2017). Moreover, the chemical 

composition of gas flaring emissions adversely affects the environment. A consequence of 

gas flaring is acid rain. Snow, fog, or small particles that settle on the ground may be 

evidence of this type of precipitation, which is primarily composed of sulphuric acid. Forests 

at higher altitudes are destroyed by acid rain. Plant yields are low, adaptations are poor, and 

plant production is inhibited by the leaching of essential nutrients (Sekyi, 2017).  

A few health complications are caused by gas flaring, such as respiratory illnesses and heat 

burns. Gas flaring leads to air pollution which produces toxic emissions such as carbon 

monoxide, hydrogen sulfide, and nitrogen oxide. In large amounts, carbon monoxide can 

cause blood poisoning and high blood pressure, hydrogen sulfide can irritate soft tissues, and 

nitrogen oxide can damage tissues. Those who consume locally produced goods, whether 

they produce it themselves or purchase it at market outlets, are at risk of exposure to harmful 

health effects associated with air pollution. Benzene, for instance, is a harmful substance that 

pollutes the air from gas flares that contain widely recognized toxins. Asthma and bronchitis 

are common respiratory problems that are being complained about by residents within the gas 

flaring regions. A variety of blood-related disorders have also been linked to benzene 

exposure in humans, according to the US Environmental Protection Agency (EPA). 

Approximately 49 premature deaths and 4960 respiratory illnesses among children are likely 

to be caused by gas flaring in Nigeria annually, according to information from the World 

Bank. Sulphur species are also formed during the flare of sour gas. It is believed that a 

number of these chemicals are potentially toxic, such as hydrogen sulfide and carbon 

disulfide. Smell-free hydrogen sulfide exposure can cause spontaneous abortion at levels 

below the odor threshold. Thyroid cancer is most caused by radioactivity. In geographical 

areas with extensive flaring operations, thyroid cancer has an elevated median rate ratio. 

There is also an association between environmental contaminants and autoimmune rheumatic 

diseases, endocrine dysfunction, and immune dysfunction. In addition to premature deaths 

and respiratory illnesses, gas flaring increases cancer risks in surrounding communities. The 

human body can only tolerate a certain amount of thermal pollution caused by gas flaring. 

Heat thresholds also apply to habitats and structures nearby.  
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Despite mitigation measures in some oil-producing nations, gas flaring continues to pose a 

significant threat to living organisms and the environment. Gas flaring activities are governed 

by a variety of policies that differ from state to state. Although the United Nations maintains 

policies such as the GGFR, it has limited capabilities when it comes to implementing them. It 

is illegal in most countries to flare gas, and such activities are governed by special policies.  

4.3 Further mitigation measures for gas flaring 

Actions and targets aimed at addressing climate change are incorporated into policies such as 

the Paris Agreement. A commitment called a Nationally Determined Contribution (NDC) is 

included in this policy. The Kyoto Protocol's Clean Development Mechanism provides 

reduction targets for gas flaring reduction policies (Elvidge et al., 2009). A variety of 

countries set regulations on flaring. In Nigeria and Equatorial Guinea, it is illegal to flare gas, 

for example. Certain exceptions can be made by governments. Despite reporting 

requirements at the state level, flaring is legal in the US. Zero Routine Flaring (ZRF) is a 

global initiative developed by the World Bank that promotes the development of gas 

infrastructure to a lesser extent. A key recommendation of the GGFR is to reform regulations 

to reduce the amount of waste or flare gas in the industry. By implementing country-specific 

flaring reduction programs, GGFR also addresses the major barriers to gas flaring reduction 

(Calel & Mahdavi, 2020).  

 

Furthermore, oil-producing countries must increase their commitments to end routine flaring 

and advance measurement and reporting on it, as well as conduct research, raise awareness, 

and share the best practices in the markets. Government policies relating to gas flaring can be 

effectively and efficiently achieved through existing regulations and policies on resource 

management (Oyewunmi & Oyewunmi, 2016). In addition to laws and regulations that 

govern hydrocarbons, there is the possibility of embedding legal powers regarding gas flaring 

in secondary legislation, which includes licenses, codes, and guidelines. Natural resource 

management and oil production conditions are constantly changing, making gas flaring 

regulations adaptable and flexible. Flaring is assessed from an environmental perspective by 

government institutions tasked with undertaking regulatory actions and managing natural 

resources. A production license is revoked if it is not in compliance with state regulations. 
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4.4 Problem statement 

All major oil-producing nations flare natural gas on a regular basis, which creates a global 

problem. The previous chapter categorized oil-producing nations into efficient and inefficient 

producers. Inverse DEA models were developed in the previous chapter to enable inefficient 

producers to deploy a cost-effective gas-to-wire (GTW) process. This leaves room for further 

research in order to improve the performance of efficient producers. Global gas flaring is 

therefore a two-sided problem, which leads to the question: How can we mitigate gas flaring 

in efficient oil producing nations? 

 

Lean production has long been considered a promising technique for reducing waste in the 

petroleum industry. In this chapter, we employ the following lean practices that constitute a 

subset of lean production: 

 Minimizing current level of waste or bad output (i.e., flare gas) 

 Minimal use of input resources. 

 Increasing productivity by setting targets for good output (i.e., crude oil). 

 Waste conversion (i.e., recycling waste for power) as value added. 

Based on these practices, this study utilizes inverse DEA as a lean tool to deal with inverse 

problems such as: 

I. For a given producer and in the absence of flare gas recovery (FGR) technology, what 

changes in inputs are needed to produce the desired level of good output with no 

increase in associated waste or bad output? 

II. With flare gas recovery (FGR) technology such as gas-to-wire (GTW) or gas-to-liquid 

(GTL), what changes in inputs are needed to produce a desired level of good output 

with a lower level of associated waste or bad output? 

III. With GTW technology, how much power can be generated from recycled waste at the 

same level of productive efficiency? 
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4.5 Methodology 

4.5.1 Nomenclature  

The following notations and indices constitute the entire nomenclature for all the models 

developed and discussed in this chapter: 

 :ݏݎ݁ݐ݁݉ܽݎܽܲ ݈ܽݎ݁݊݁ܩ

݊:       number of decision-making units (DMUs) 

݉:       number of inputs of each DMU 

 number of desirable outputs of each DMU       :ݏ

 number of undesirable outputs of each DMU       :ݍ

 :ݏݎ݁ݐ݁݉ܽݎܽܲ ܽݐܽܦ

݆ ) ௜௝:       ݅th input of DMU௝ݔ = 1, … , ݊) 

݆ ) th output of DMU௝ݎ       :௥௝ݕ = 1, … , ݊) 

௥௝ݕ
௚ ݆ ) th good output of DMU௝ݎ       : = 1, … , ݊) 

௣௝ݕ
௕ ݆ ) th bad output of DMU௝݌       : = 1, … , ݊) 

min
௥

௥௝ݕ
௚ :    minimum ݎth good output of DMU௝ ( ݆ = 1, … , ݊) 

min
௣

௣௝ݕ
௕ :    minimum ݌th bad output of DMU௝ ( ݆ = 1, … , ݊) 

 :ݏ݈ܾ݁ܽ݅ݎܸܽ ݊݋݅ݏ݅ܿ݁ܦ

݋ ) ௢:      efficiency score of DMU௢ߠ = 1, … , ݊ ) 

௝:             weight assigned to DMU௝ߣ   (݆ = 1, … , ݊)  

4.5.2 Preliminaries 
 
Charnes et al. (1978) proposed the following input-oriented CRS DEA model for evaluating 

the efficiency score of ܷܯܦ௢, ݋ ∈ {1,2, … , ݊}  

௢ߠ  ݊݅ܯ           :(1)ܯ
஼ோௌ 

.ݏ              ෍  .ݐ ௝ߣ௜௝ݔ

௡

௝ୀଵ

≤ ௢ߠ
஼ோௌݔ௜௢,       ݅ = 1,2, … , ݉ 

                     ෍ ௝ߣ௥௝ݕ

௡

௝ୀଵ

≥ ݎ         ,௥௢ݕ = 1,2, … ,  ݏ

௝ߣ                     ≥ 0,                        ݆ = 1,2, … , ݊                                                                                       
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 does not account 1ܯ ,is commonly referred to as the conventional CCR model. However 1ܯ

for bad or undesirable outputs. Toward this end, Färe and Grosskopf (2006) proposed the 

following input oriented measure of efficiency for classifying good and bad outputs of 

 :௢ܷܯܦ

௢ߠ ݊݅ܯ       :(2)ܯ
஼ோௌ 

.ݏ                       .ݐ

                  ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ௢ߠ
஼ோௌݔ௜௢,                 ݅ = 1, … , ݉ 

                 ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ ௥௢ݕ
௚ ݎ                           , = 1, … ,  ݏ

                ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= ௣௢ݕ
௕ ݌                           , = 1, … ,  ݍ

௝ߣ                ≥ 0,            ݆ = 1, … , ݊                                                                                                       

Both models can be solved under variable returns to scale (VRS) assumption by adding the 

constraint ∑ ௝ߣ = 1, and ߠ௢
஼ோௌ will be replaced with ߠ௢

௏ோௌ. 

4.5.3 Inverse DEA for pollution control 

Using (2)ܯ as a base model, Ghiyasi (2017a) analyzed a pollution generating work system 

where it is required to produce more of the good or desirable outputs with less of the bad or 

undesirable outputs. Mathematically, the inverse problem can be defined as:  

If ܷܯܦ௢ changes its output levels from ൫ݕ௥௢
௚ , ௣௢ݕ

௕  ൯ to ൫ߚ௥௢
௚ , ௣௢ߚ

௕  ൯ = ൫ݕ௥௢
௚ + ௥௢ݕ∆

௚ , ௣௢ݕ
௕ +

௥௢ݕ∆
௕  ൯, what is the required input change required to produce these desired levels of good and 

bad outputs, such that the efficiency score of  ܷܯܦ௢ remains unchanged? 

To solve this inverse problem, Ghiyasi (2017a) proposed the following multiple objective 

linear program: 

,ଵߙ) ݊݅ܯ        :(3)ܯ ,ଶߙ … , (௠ߙ = ,ଵݔ∆ଵ௢ାݔ) ଶ௢ݔ + ,ଶݔ∆ … , ௠௢ݔ +  (௠ݔ∆

.ݏ                        .ݐ

                   ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ௢ߠ
஼ோௌ(ݔ௜௢ + ݅             ,(௜ݔ∆ = 1, … , ݉ 

                   ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ ௥௢ݕ
௚ + ௥௢ݕ∆

௚ ݎ                      , = 1, … ,  ݏ
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                  ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= ௣௢ݕ
௕ + ௣௢ݕ∆

௕ ݌                     , = 1, … ,  ݍ

௝ߣ                   ≥ 0,                                                    ݆ = 1, … , ݊                                                                                                      

By using the weighted sum technique, the optimal solution to (3)ܯ can be obtained by 

changing the objective function to ∑ ௜ߙ
௠
௜ୀଵ . Similarly, (3)ܯ can be solved under variable 

returns to scale (VRS) assumption by adding the constraint ∑ ௝ߣ = 1, and ߠ௢
஼ோௌ will be 

replaced with ߠ௢
௏ோௌ. The study by Ghiyasi (2017a) considered GDP to be the desirable output 

and CO2 emissions (i.e., source of environmental pollution) to be the undesirable output, 

using a set of Iranian provinces as a basis for analysis. Labour and capital were chosen as 

inputs. Accordingly, the application of (3)ܯ resulted in optimal changes to labour and 

capital to meet GDP and CO2 emissions targets. 

While (3)ܯ was proposed for pollution control, its application focused only on determining 

the input changes required for increasing desirable and/or undesirable outputs of a production 

unit (i.e., ܷܯܦ). Moreover, there was no defined limit on how much a decision-maker could 

increase outputs. In real-life scenarios, especially in the petroleum industry, this application 

of (3)ܯ will cause serious implications for managers or policy makers in the following ways: 

 In terms of its outputs, (3)ܯ does not have a safe or maximum production capacity. 

 It is permissible to increase the undesirable outputs of (3)ܯ (i.e., ∆ݕ௣௢
௕ ), resulting in 

further pollution of the environment, which is against the core principles of lean 

production. 

 Since the application of (3)ܯ considers undesirable outputs to be parameters rather 

than variables, it does not support waste conversion or circular economies.  

 Furthermore, (3)ܯ can not be used to investigate any interrelationship between 

desirable and undesirable outputs. Due to the correlation between oil production and 

gas flaring, this is an important factor in the dynamics of the petroleum industry. 

To overcome these four major limitations of (3)ܯ, it is imperative to propose new concepts 

and make slight modifications that will transform (3)ܯ into a robust lean production tool. As 

a matter of fact, it is possible to overcome the first and most significant limitation of (3)ܯ by 

designing a production capacity for the petroleum industry that is both economically and 

environmentally viable. 
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4.5.4   The lean potential growth 

Global oil production correlates with global gas flaring, which is why an increase in oil 

production is typically associated with an increase in gas flaring. To minimize the 

environmental impact of associated gas flaring, when applying model (3)ܯ, a decision-

maker must determine the marginal increase in the desirable output (i.e., crude oil denoted by 

௥௢ݕ∆
௚ ). For this chapter, we refer to this marginal increase in crude oil production as the lean 

potential growth (LPG).  

The United States Energy Information Administration (EIA) defines an oil well as one with a 

gas to oil ratio (GOR) of 6000 cubic feet of natural gas per barrel of crude oil. Alternatively, 

it can be called barrel of oil equivalent (BOE) and is a unit used to convert volumes of natural 

gas to barrels of crude oil. This value for the BOE was also stated by Wegener and Amin 

(2019). Using this BOE, we define the mathematical expression for the lean potential growth 

as follows: 

௣௚ܮ ≤ ݉݅݊ ቐmin
௥

௥௝ݕ
௚ ,

min
௣

௣௝ݕ
௕

ܧܱܤ
, ቮmin

௥
௥௝ݕ

௚ −
min

௣
௣௝ݕ

௕

ܧܱܤ ቮ  ቑ × 10ଷ      … … … … … (4.1) 

Where min
௥

௥௝ݕ
௚ > 0  and min

௣
௣௝ݕ

௕ > 0 for a given increase in oil production. 

Based on a set of ݊ producers such that ݆ = 1, 2, … , ݊, we have that min
௥

௥௝ݕ
௚  represents the 

lowest crude oil output of producer ݆, and min
௣

௣௝ݕ
௕  represents the least positive volume of 

flare gas by producer ݆.  

As a source of reliable data for the application of equation (4.1), we refer to the 2016 Annual 

Statistical Bulletin (ASB) of the Organization of the Petroleum Exporting Countries (OPEC). 

It is open-source data that can be downloaded for free. According to the 2016 ASB, Libya 

was the member nation that produced the least amount of crude oil in 2015, estimated at 

403.9 thousand barrels per day, while Saudi Arabia was the member nation that flared the 

least volume of natural gas, estimated at 40 million cubic meters. 

Thus, we have that: 

 min
௥

௥௝ݕ
௚ = 403.9, and 

min
௣

௣௝ݕ
௕ = 40 million cubic meters = 1,412,586,668.9 cubic feet  
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Using 6000 as BOE in equation 4.5.4.1, we obtain: 

௣௚ܮ ≤ ݉݅݊{403.9, 235.4,168.5 } × 10ଷ = {168.5}  × 10ଷ = 168.5 thousand barrels 

It is worth noting here that another minimum value of ܮ௣௚ could be obtained from the 

difference between the second and third elements (i.e., 235.4 -168.5 gives 66.9), but this 

value is too small for scenario analysis. In any case, equation 4.5.4.1 is applied at the 

discretion of the decision-maker. Furthermore, this proposed concept of lean potential growth 

(LPG) can be regarded as a maximum safe capacity for the subsequent increase in oil 

production when applying model 3ܯ. Accordingly, this concept overcomes the first and 

major limitation of model 3ܯ. As far as economic advantages are concerned, LPG is such 

that the producer with the lowest crude oil output (e.g., Libya in 2015) could find it 

economically viable to increase oil production by an amount equal to the value of LPG. 

When viewed in the context of environmental protection, the obtained value of LPG will 

always be less than or equal to the least amount of waste or bad output generated by the 

producer most committed to waste reduction (i.e., Saudi Arabia in 2015). 

4.5.5   Modified models for inverse problems 

In this section, we recall the inverse problems for this chapter and describe the modified 

models for solving them.  

Problem one (P1):  

For a given producer and in the absence of flare gas recovery (FGR) technology, what 

changes in inputs are needed to produce the desired level of good output with no increase in 

associated waste or bad output? 

Problem two (P2):  

With flare gas recovery (FGR) technology such as gas-to-wire (GTW) or gas-to-liquid (GTL), 

what changes in inputs are needed to produce a desired level of good output with a lower 

level of associated waste or bad output? 

Problem three (P3):  

With GTW technology, how much power can be generated from recycled waste at the same 

level of productive efficiency? 

For P1 and P2, our models consider one good or desirable output which is crude oil, and one 

bad or undesirable output which is flare gas. As for P3, we need to derive a formula for the 

conversion of flare gas (i.e., waste) to power. Additionally, we will solve P1 and P2 under 

two different categories: CRS and VRS assumptions. The purpose is to determine which 
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category will provide the best results for smart decision making. We propose the following 

models (5)ܯ஼ோௌ and (6)ܯ஼ோௌ for solving P1 and P2, respectively, under CRS assumption. 

,ଵߙ) ݊݅ܯ   :஼ோௌ(5)ܯ ,ଶߙ … , (௠ߙ = ,ଵݔ∆ଵ௢ାݔ) ଶ௢ݔ + ,ଶݔ∆ … , ௠௢ݔ +  (௠ݔ∆

.ݏ                        .ݐ

                   ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ௢ߠ
஼ோௌ(ݔ௜௢ + ݅             ,(௜ݔ∆ = 1, … , ݉ 

                   ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ ௥௢ݕ
௚ + ௥௢ݕ∆

௚ ݎ                      , = 1, … ,  ݏ

                  ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= ௣௢ݕ
௕ ݌                                    = 1, … ,  ݍ

௝ߣ                   ≥ 0,                                                  ݆ = 1, … , ݊                 

,ଵߙ) ݊݅ܯ   :஼ோௌ(6)ܯ ,ଶߙ … , (௠ߙ = ,ଵݔ∆ଵ௢ାݔ) ଶ௢ݔ + ,ଶݔ∆ … , ௠௢ݔ +  (௠ݔ∆

.ݏ                        .ݐ

                   ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ௢ߠ
஼ோௌ(ݔ௜௢ + ݅             ,(௜ݔ∆ = 1, … , ݉ 

                   ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ ௥௢ݕ
௚ + ௥௢ݕ∆

௚ ݎ                      , = 1, … ,  ݏ

                  ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= ௣௢ݕ
௕ − ௣௢ݕ∆

௕ ݌                      = 1, … ,  ݍ

௣௢ݕ∆                 
௕ < ௣௢ݕ

௕  

௝ߣ                  ≥ 0,                                                   ݆ = 1, … , ݊         

Under VRS assumption, P1 and P2 can be solved by updating (5)ܯ஼ோௌ and (6)ܯ஼ோௌ with 

the additional constraint ∑ ௝ߣ = 1. For the P2 problem, ∆ݕ௣௢
௕  is the potential reduction of the 

bad output (i.e., flare gas), an amount to be converted for power generation or natural gas 

liquids via GTW or GTL technologies, respectively. This implies the new target levels of gas 

flaring becomes (ݕ௣௢
௕ − ௣௢ݕ∆

௕ ). Compared with the original model (3)ܯ, both (5)ܯ஼ோௌ and 

 ஼ோௌ follow the core principle of lean production (i.e., waste minimization). In other(6)ܯ

words, (5)ܯ஼ோௌ prevents the accumulation of waste or maintain its current level, while 

  .஼ோௌ reduces waste(6)ܯ
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As both models mitigate waste while increasing desirable outputs, they both overcome the 

second limitation of (3)ܯ that permits an increase in waste. It should be noted that the 

additional constraint in (6)ܯ஼ோௌ denoted as ∆ݕ௣௢
௕ < ௣௢ݕ

௕  places a limit on the reduction of 

bad output. For this constraint, a less than sign was chosen rather than a less than or equal 

sign to eliminate the possibility of infeasibility during the computation process. This 

additional constraint redefines the bad output as a decision variable, as opposed to a 

parameter in (3)ܯ. 

The final limitation of (3)ܯ, can be overcome by generating a potential trend that illustrates 

the interrelationship between oil production and gas flaring. Such a trend is useful when 

analyzing scenarios that include increased oil production combined with reduced flare gas or 

waste. It is possible to develop this trend based on the dynamics of the proposed model 

 ஼ோௌ. For every increase in desirable output, there is a corresponding decrease in(6)ܯ

undesirable output. Mathematically, the creation of a potential trend is based on the 

production targets of (6)ܯ஼ோௌ denoted as (ݕ௥௢
௚ + ௥௢ݕ∆

௚ ) and (ݕ௣௢
௕ − ௣௢ݕ∆

௕ ). By setting crude 

oil production targets, ∆ݕ௥௢
௚ , model (6)ܯ஼ோௌ seeks to determine the optimal values of ∆ݕ௣௢

௕  

while minimizing input resources. As a result, (6)ܯ஼ோௌ is a robust modification of (3)ܯ that 

can implement all the lean practices selected in this chapter. Moreover, for both models 

௥௢ݕ∆ ஼ோௌ, it is imperative to emphasize that(6)ܯ ஼ோௌ and(5)ܯ
௚ ≤  .௣௚ܮ

4.5.6   Waste to power generation 

A solution to the P2 problem also provides the volume of reduced waste (i.e., ∆ݕ௣௢
௕ ) that can 

be utilized by GTW technology. It is necessary to compute the value of ∆ݕ௣௢
௕  to solve the P3 

problem. To put it another way, the P3 problem is an extension of the P2 problem. With the 

aid of an industrial gas turbine, the computed values of ∆ݕ௣௢
௕  can be converted to power. To 

do this, we must first define the optimal number of turbine units, ߮௢, required for power 

generation. Suppose ߱ is the annual volume of gas required by a selected turbine. Then by 

applying the optimal sizing of GTW proposed in the previous chapter, we have that for any 

DMU௢, the optimal number of turbine units required for power generation can be expressed 

as: 

                                                       ߮௢ = ∆௬೛೚
್

ఠ 
  ……………...  (4.2) 
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For a typical gas turbine, its actual power output is usually the product of its thermal 

efficiency and its rated power output. Without considering thermal efficiency or by ignoring 

heat losses, the rated output is usually regarded as gross power output (Ojijiagwo et al., 

2016). 

Hence, for each DMU௢, we define the expression for actual power generated via all turbines 

as follows: 

௢ܲ = ௢ܹ߮ߟ   … … … … … … … … … … (4.3) 

Where η is the thermal efficiency of the selected turbine, ܹ is the power output of the 

turbine, and ߮௢ is an integer representing the optimal number of turbine units. 

By substitution, we can rewrite equation 4.5.6.2 as: 

௢ܲ = ܹߟ ቆ
௣௢ݕ∆

௕

߱ 
ቇ   … … … … … … … … (4.4) 

Then the gross power output can be expressed as: 

௚ܲ௥௢௦௦ = ܹ ቆ
௣௢ݕ∆

௕

߱ 
ቇ   … … … … … … . . (4.5) 

As thermal efficiency, ߟ, varies with different types of simple or combined cycle turbines 

(with a maximum value of about 64% in real life situations), we use only the expression for 

the gross power output for this study. In addition, equation (4.5) provides the solution to the 

third inverse problem, P3, referred to in section 4.5.5. 

4.5.7   A ranking system based on inverse DEA. 

DEA has often failed to distinguish efficient units into well-defined ranks despite its ability to 

evaluate unit efficiency. Several ranking techniques have been proposed, but none have been 

based on inverse DEA. As a result, using the CCR DEA (i.e., 1ܯ in section 4.5.1) as a base 

model, Soleimani-Chamkhorami et al. (2020) proposed the following inverse DEA model for 

evaluating the rank of DMU୭: 

 

݅ܯ            :(7)ܯ ݊ ௢ߙ   =  ߙ

.ݏ              ෍  .ݐ ௝ߣ෤௜௝ݔ

௡

௝ஷ௢

≤ ෤௜௢ݔ + ݅           ߙ = 1,2, … , ݉ 

                     ෍ ௝ߣ෤௥௝ݕ

௡

௝ஷ௢

≥ ෤௥௢ݕ + ݎ          ݇ = 1,2, … ,  ݏ
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෤௜௢ݔ                   + ߙ ≥ ݅                      ௜௢ݔ = 1,2, … , ݉ 

௝ߣ                   ≥ 0                                   ݆ = 1,2, … , ݉              

 assumes that the change in input is the same for all inputs, and the change in output is (7)ܯ

also same for all outputs. To avoid dimensional conflict, the changes in input, ߙ, and output, 

݇, are in percentages. Additionally, ݔ෤௜௝ and ݕ෤௥௝ are normalized inputs and outputs and can be 

derived from the actual inputs and outputs using the following normalization equations: 

෤௜௝ݔ =
௜௝ݔ

max
௜

௜௝ݔ
 , ෤௥௝ݕ =

௥௝ݕ

max
௥

௥௝ݕ
 

By applying (7)ܯ, the following definition for ranking efficient units holds: 

DEFINITION 4.1: The rank of ܯܦ ௝ܷ is better than ܷܯܦ௞ if and only if,  ߙ௝
∗ ≥ ௞ߙ

∗  

When using (7)ܯ, it is imperative to set a limit on the increase in normalized outputs based 

on our proposed concept of lean potential growth, LPG. A decision-maker should express ݇ 

as a function of LPG and a specified increase in good or desirable output, denoted by ∆ݕ௥௢
௚ , to 

relax the assumed values of ݇ in (7)ܯ. This can be done by using the expression: ݇ = ∆௬ೝ೚
೒

௅೛೒
. 

This expression for ݇ transforms (7)ܯ to a modified version as follows: 

݅ܯ           :(8)ܯ ݊ ௢ߙ   =  ߙ

.ݏ              ෍  .ݐ ௝ߣ෤௜௝ݔ

௡

௝ஷ௢

≤ ෤௜௢ݔ + ݅            ߙ = 1,2, … , ݉ 

                     ෍ ෤௥௝ݕ
௚ ௝ߣ

௡

௝ஷ௢

≥ ෤௥௢ݕ
௚ +

௥௢ݕ∆
௚

௣௚ܮ
ݎ        = 1,2, … ,  ݏ

෤௜௢ݔ                   + ߙ ≥ ݅                         ௜௢ݔ = 1,2, … , ݉ 

௝ߣ                   ≥ 0                                        ݆ = 1,2, … , ݉    

Model (8)ܯ is perfectly capable of ranking units (e.g., oil-producing nations) for a given or 

specified increase in outputs. Each unit is ranked according to its growth potential, and a 

higher growth potential indicates a higher ranking. However, it is important to note that (8)ܯ 

is only appropriate for ranking when only good or desirable outputs are available. 

Specifically, it does not consider the bad or undesirable output in this chapter, which is waste 

or flare gas. In this regard, (8)ܯ is not a robust lean tool for this chapter. According to 

experts in the petroleum industry, input and output cannot change at the same rate for all 

inputs and outputs under realistic circumstances. It is, therefore, necessary to develop a better 

method of ranking efficient oil-producing nations based on both their good and bad outputs. 
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To resolve this ranking problem, it would be ideal to conduct an energy analysis involving 

both kinds of outputs.  

4.5.8   An energy-based ranking technique 

First, let us consider each decision-making unit (DMU) or oil-producing nation as an energy 

system that permits the transfer and conversion of energy. We are dealing with two types of 

energy sources here, crude oil and flare gas. When refined and processed, crude oil remains 

the most significant source of energy. The most common products obtained from crude oil 

are gasoline, kerosine, diesel fuel, and a variety of other products. Accordingly, crude oil can 

be considered a form of utilized energy for each DMU. Flare gas, however, contributes to 

environmental degradation through the release of greenhouse gases. In addition, flare gas is 

also considered to be a significant waste of energy that can be utilized for domestic and 

industrial purposes. Thus, the dynamics of both sources of energy in this industry closely 

mimic the first law of thermodynamics, which is a version of the law of conservation of 

energy. However, there is a significant difference here since each DMU is not a closed 

system, as stated in the law. The only thing we are interested in is the net energy involved in 

the extraction of crude oil, which usually involves the burning of associated gas. Since the 

good output (i.e., crude oil) is utilized energy, it also qualifies as an energy gain, while the 

bad output (i.e., flare gas) qualifies as an energy loss. Like the first law of thermodynamics, 

flare gas can be considered as harmful work done by each DMU to the surrounding 

environment. On the other hand, crude oil is an energy input for each DMU.  

Mathematically, the first law of thermodynamics states ∆ܷ = ܳ − ܹ … … (4.6) 

Now ∆ܷ is the change in internal energy of a closed system, ܳ is energy supplied to the 

system, and ܹ is the work done by the system on its surroundings.  

 

Given that each DMU in this study is a production work system, we need to derive a similar 

expression for the energy dynamics of its outputs in accordance with equation (4.6). For this 

purpose, both outputs (i.e., crude oil and natural gas) must be expressed in the same energy 

terms. This can be accomplished easily using the gas-to-oil ratio (GOR) or barrel of oil 

(BOE) equivalent (as discussed in section 4.5.4). The energy contained in one BOE is equal 

to the energy contained in 6,000 cubic feet of natural gas, which is approximately 1.7MWh. It 

is pertinent to recall that this BOE was incorporated into the mathematical expression for lean 
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potential growth in section 4.5.4. This expression is rewritten as follows for analytical 

purposes: 

௣௚ܮ ≤ ݉݅݊ ቐmin
௥

௥௝ݕ
௚ ,

min
௣

௣௝ݕ
௕

ܧܱܤ
, ቮmin

௥
௥௝ݕ

௚ −
min

௣
௣௝ݕ

௕

ܧܱܤ ቮ  ቑ × 10ଷ 

This expression for LPG applies to a group of DMUs, but to derive the net energy transfer, 

∆ܷ௞, within each ܷܯܦ௞, we must consider only the third element of the entire set. Next, we 

rewrite this element using the actual outputs of each ܷܯܦ௞, and express them in terms of 

energy transfer as follows: 

∆ܷ௞ = 1.7 ቆݕ௥௞
௚ −

௣௞ݕ
௕

ܧܱܤ
ቇ … … … … … … … . . (4.7) 

By expansion, we have:  ∆ܷ௞ = ௥௞ݕ1.7
௚ − 1.7 ൬

௬೛ೖ
್

஻ைா
൰ … … … … … . . (4.8) 

Without considering the boundary of both systems in equations (4.6) and (4.8) (i.e., closed or 

open systems), we can conclude that the energy supplied to each ܷܯܦ௞ in the form of crude 

oil is expressed as ܳ௞ = ௥௞ݕ1.7
௚ , while the harmful work done by each ܷܯܦ௞ on its 

surroundings in the form of flare gas is expressed as ௞ܹ = 1.7 ൬
௬೛ೖ

್

஻ைா
൰. Therefore, the energy 

dynamics or net energy production within each ܷܯܦ௞ can now be expressed in a similar 

manner to equation (4.6) as follows: 

∆ܷ௞ = ܳ௞ − ௞ܹ … … … … … … … … . (4.9) 

As can be seen from equation (4.9), the lower the value of ௞ܹ, the higher the net energy, 

∆ܷ௞. The best-case scenario would be if ܳ௞ increases along with a decrease in ௞ܹ, which 

would greatly increase ∆ܷ௞. The worst-case scenario should be when ∆ܷ௞ = 0. Negative 

values of ∆ܷ௞ imply significant energy losses for any ܷܯܦ௞.  

In general, net energy production (i.e., ∆ܷ௞) is a derivative of lean potential growth, ܮ௣௚. 

Alternatively, the lean potential growth can be viewed as a function of net energy production 

for a single unit or production work system, expressed as: 

௣௚(௞)ܮ = ݂(∆ܷ௞) … … … … … … (4.10) 

Based on this brief energy analysis, a new ranking definition is developed. 

DEFINITION 4.2: The rank of ܯܦ ௝ܷ is better than ܷܯܦ௞ if and only if,  ∆ ௝ܷ > ∆ܷ௞ 

In practice, this represents an absolute ranking of efficient oil-producing nations according to 

their overall net energy production. By utilizing superior technology and effective 
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management strategies, a highly efficient producer will be able to significantly reduce gas 

flaring. Thus, such producers can produce more crude oil with less flare gas. There is no 

better example of an extremely efficient producer than Saudi Arabia, which consistently 

produces the most barrels of crude oil each year while emitting the least amount of flare gas 

among all OPEC member states. This energy-based ranking technique primarily focuses on 

increasing energy efficiency in the oil and gas industry, making it a valuable lean tool for this 

chapter. In subsequent sections, we will use this technique to rank efficient oil producers. 

4.5.9   Data collection and classification 

In the 2016 OPEC Annual Statistical Bulletin (ASB), available in open source, OPEC 

provided data of the 13 member nations selected for this chapter. The 2016 ASB publication 

contains data from a five-year period (i.e., 2011-2015). To conduct an in-depth analysis on an 

annual basis, the production years 2013 to 2015 were selected. Following is a list of inputs 

and outputs for the three inverse problems discussed in this chapter: 

Table 4.1: Classification of inputs and outputs 

Inputs Outputs 

1.Wells completed 1.Crude oil (1000b/d) 

2.Producing wells 2.Flare gas (million m3) 

3.Active rigs  

 

4.6   Application, results, and analysis 

4.6.1 Application of the base models 

Through the application of the CRS and VRS base models, the efficiency scores of all 

producers are evaluated annually and are presented in Tables 4.2 to 4.4. When comparing the 

CRS with the VRS base model, it is evident that the VRS model produces more efficient 

units. As an example, in 2013, the CRS model had seven efficient producers while the VRS 

model had nine efficient producers. In 2014, there were 8 and 10 efficient producers for the 

CRS and VRS models, respectively. Under CRS and VRS, there were 7 and 10 efficient 

producers respectively in 2015. A key objective of this chapter is to mitigate gas flaring in 

efficient OPEC member nations, thus addressing the limitation of the inverse DEA developed 

in the previous chapter.  
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Due to the different number of efficient producers under CRS and VRS, it would be more 

appropriate to conduct a comparative analysis of truly efficient producers. This chapter 

defines a truly efficient producer as one who is efficient under both CRS and VRS. This will 

allow a valid comparison between producers using the CRS and VRS versions of the 

proposed inverse DEA models. Therefore, let ܧ represent the set of efficient producers across 

the three tables for the three consecutive production years (i.e., 2013 to 2015) under both 

CRS and VRS assumptions. Thus, we have that: 

2013 production year, ܧ = ,ଶܷܯܦ} ,଺ܷܯܦ ,଻ܷܯܦ ܯܦ ଽܷ, ܯܦ ଵܷ଴, ܯܦ ଵܷଵ, ܯܦ ଵܷଶ}; 

2014 production year, ܧ = ,ଶܷܯܦ} ,ହܷܯܦ ,଺ܷܯܦ ,଼ܷܯܦ ܯܦ ଽܷ, ܯܦ ଵܷ଴, ܯܦ ଵܷଵ, ܯܦ ଵܷଶ}; 

2015 production year, ܧ = ,ଶܷܯܦ} ,ହܷܯܦ ,଺ܷܯܦ ,଼ܷܯܦ ܯܦ ଽܷ, ܯܦ ଵܷ଴, ܯܦ ଵܷଵ}. 

Based on these sets, the models proposed in this chapter, namely (5)ܯ஼ோௌ and (6)ܯ஼ோௌ, and 

their VRS versions, will be applied to provide solutions to the three inverse problems, P1 

through P3. By changing their superscripts to ܴܵܥ/ܸܴܵ, we will indicate the application of 

both models in either CRS or VRS versions for ease of analysis. The subsequent sections will 

provide an analysis and presentation of the results obtained on an annual basis.  

 

Table 4.2: Efficiency of OPEC member nations (Year 2013) 

DMU ߠ௢
஼ோௌ ߠ௢

௏ோௌ 

1-Algeria 0.4262 0.5312 

2-Angola 1.0000 1.0000 

3-Ecuador 0.1297 0.5455 

4-Indonesia 0.0886 0.0950 

5-Iran 0.5676 1.0000 

6-Iraq 1.0000 1.0000 

7-Kuwait 1.0000 1.0000 

8-Libya 0.5837 0.8966 

9-Nigeria 1.0000 1.0000 

10-Qatar 1.0000 1.0000 

11-Saudi Arabia 1.0000 1.0000 

12-UAE 1.0000 1.0000 

13-Venezuela 0.4068 1.0000 
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Table 4.3: Efficiency of OPEC member nations (Year 2014) 

DMU ߠ௢
஼ோௌ ߠ௢

௏ோௌ 

1-Algeria 0.4568 0.4819 

2-Angola 1.0000 1.0000 

3-Ecuador 0.1697 0.4510 

4-Indonesia 0.1086 0.1225 

5-Iran 1.0000 1.0000 

6-Iraq 1.0000 1.0000 

7-Kuwait 0.8951 1.0000 

8-Libya 1.0000 1.0000 

9-Nigeria 1.0000 1.0000 

10-Qatar 1.0000 1.0000 

11-Saudi Arabia 1.0000 1.0000 

12-UAE 1.0000 1.0000 

13-Venezuela 0.3032 1.0000 

 

Table 4.4: Efficiency of OPEC member nations (Year 2015) 

DMU ߠ௢
஼ோௌ ߠ௢

௏ோௌ 

1-Algeria 0.3791 0.4118 

2-Angola 1.0000 1.0000 

3-Ecuador 0.7270 1.0000 

4-Indonesia 0.0904 0.1165 

5-Iran 1.0000 1.0000 

6-Iraq 1.0000 1.0000 

7-Kuwait 0.6842 1.0000 

8-Libya 1.0000 1.0000 

9-Nigeria 1.0000 1.0000 

10-Qatar 1.0000 1.0000 

11-Saudi Arabia 1.0000 1.0000 

12-UAE 0.8380 0.9368 

13-Venezuela 0.3028 1.0000 
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4.6.2 Result presentation format for the proposed models 

In sections 4.6.3 to 4.6.5, we will present results obtained from the application of models 

 ஼ோௌ/௏ோௌ in three stages: stages 1, 2, and 3, which correspond to(6)ܯ ஼ோௌ/௏ோௌ and(5)ܯ

problems P1, P2, and P3, respectively. Additionally, all results are discussed annually (i.e., 

2013 to 2015). There will, however, be a greater focus on the 2015 production year, since it is 

the most recent year that contains flare data from OPEC nations.  

4.6.3 Results analysis for the 2013 production year 

Prior to applying the proposed models (5)ܯ஼ோௌ/௏ோௌ and (6)ܯ஼ோௌ/௏ோௌ for the 2013 

production year, equation 4.5.4.1 must first be applied to determine the value of ܮ௣௚. For both 

models, it is crucial that ∆ݕ௥௢
௚ ≤  ௣௚. Based on the production data for 2013, we determinedܮ

௣௚ܮ ≤ 526.4 thousand barrels. While there is plenty of room for setting target levels for 

௥௢ݕ∆
௚ , it is important to keep in mind that the obtained value of ܮ௣௚(i.e., 526.4) represents the 

actual amount of crude oil produced by Ecuador in 2013. Over the course of the production 

year, the nation produced the least amount of crude oil. Therefore, increasing production to 

levels close to 526.4 thousand barrels may not be feasible for the nation. We thus take into 

consideration three scenarios with smaller increments of 50 thousand barrels (i.e., ∆ݕ௥௢
௚ =

50, 100, 150) for each of the producers. Nonetheless, the decision to set target levels is left 

entirely at the discretion of the decision-maker. 

4.6.3.1  Stage one results (2013 production year) 
 
Using the specified target levels of ∆ݕ௥௢

௚ , the P1 problem was solved in this stage under both 

the CRS and VRS assumptions. By applying model (5)ܯ஼ோௌ/௏ோௌ, it is intended to determine 

if all the efficient producers can increase production without resulting in an increase in waste 

(i.e., flare gas). In this stage, we are examining a worst-case scenario of lean production in 

which producers cannot reduce waste but instead can maintain their current level while 

increasing production. In fact, it is the same as a feasibility test for waste reduction, since if a 

producer is efficient enough to avoid a further increase in waste during production, then such 

a producer may be able to reduce waste through effective waste management strategies and 

the use of superior technology.  
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In Tables 4.5 and 4.6, we present the results obtained under CRS and VRS, respectively. As 

can be seen from Table 4.5, all the efficient producers would be able to increase their 

production up to 150 thousand barrels without increasing their flare gas levels. However, it 

was observed that, under VRS as illustrated in Table 4.6, the model was not feasible for 

Saudi Arabia. A logical explanation for this phenomenon might be the fact that Saudi Arabia 

produces the highest volume of crude oil among OPEC members. Nevertheless, it is too early 

to conclude that crude oil production cannot be sustained in this manner. We must therefore 

perform further experiments not only for the P2 problem but also for the 2014 and 2015 

production years. This is crucial for validating results. 

 
Table 4.5: Solution to P1 under CRS (Year 2013) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

 ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
2.Angola 0.000 0.000 2.773 0.000 0.000 5.545 0.000 0.000 8.318 
6.Iraq 2.226 17.495 0.768 4.452 34.990 1.536 6.677 52.485 2.304 
7. Kuwait 0.000 0.000 1.073 0.000 0.000 2.146 0.000 0.000 3.219 
9.Nigeria 5.916 0.000 0.879 11.832 0.000 1.758 17.748 0.000 2.637 
10.Qatar 0.000 0.000 1.442 0.000 0.000 2.883 0.000 0.000 4.325 
11.Saudi 
Arabia 

2.226 17.495 0.768 4.452 34.990 1.536 6.677 52.485 2.304 

12. UAE 0.000 0.000 0.956 0.000 0.000 1.912 0.000 0.000 2.867 
 
 
Table 4.6: Solution to P1 under VRS (Year 2013) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

 ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
2.Angola 2.333 0.000 2.733 4.665 0.000 5.467 6.998 0.000 8.200 
6.Iraq 11.356            1318.589            10.928            22.712            2637.179            21.855            34.068 3955.768 32.783 
7.Kuwait 0.000 8.999 0.916 0.000 17.997 1.832 0.000 26.996 2.748 
9.Nigeria 7.228 0.000 0.919 14.457 0.000 1.837 21.685 0.000 2.756 
10.Qatar 1.961 16.224 0.817 3.923 32.449 1.634 5.884 48.673 2.450 
11.Saudi 
Arabia 

   -    -                    -    -    -    -    -     -    - 

12. UAE 0.000 0.000 1.101 0.000 0.000 2.202 0.000 0.000 3.302 
 
 
4.6.3.2  Stage two results (2013 production year) 

Using the same production targets as in stage one, a reduction in gas flaring was imposed on 

efficient producers to achieve the needed solutions to the P2 problem. A summary of the 

results can be found in Tables 4.7 and 4.8. In both tables, the results confirm that each 

efficient producer can increase production with a reduced level of flare gas designated by 
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௣௢ݕ∆
௕ . Note that, as stated in the P2 problem, the reductions can be achieved by employing 

flare gas recovery (FGR) technology such as GTW. Saudi Arabia is excluded from this set of 

results since the producer reported a zero flare for the 2013 production year. 

Upon closer examination of both tables, it becomes clear that none of the scenarios 

envisioned for Kuwait resulted in any reductions under CRS or VRS. Technically, though, 

Kuwait is not considered extremely efficient simply because it had zero reductions in flare 

gas. There are two reasons for this. Firstly, UAE had zero reductions throughout all scenarios, 

but only in the case of CRS. Under the CRS, it becomes more difficult to identify a more 

efficient producer between the two. Secondly, Saudi Arabia is also an efficient producer and 

flared no gas (i.e., reported a zero flare) for the 2013 production year. Regardless of the 

degree of efficiency, a zero flare is better than a zero reduction in flare gas from a standpoint 

of environmental protection. In this regard, Kuwait, the UAE, and Saudi Arabia present a 

conundrum in the context of efficiency ranking. Therefore, it is more appropriate to make a 

valid conclusion regarding extreme efficiency using the proposed energy-based ranking 

technique rather than flare gas reductions.  If Kuwait dominates the net energy rankings 

ahead of the other efficient producers at this stage, Kuwait's zero reductions may justify any 

assumption that the decision-maker may have regarding the country's extreme efficiency. 

 
Table 4.7: Solution to P2 under CRS (Year 2013) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 

௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 
௕  

2.Angola 0.000 0.000 0.000 1090.49 0.000 0.000 0.000 2180.979 0.000 0.000 0.000 3271.469 
6.Iraq 0.000 0.000 0.000 314.103 0.000 0.000 0.000 628.205 0.000 0.000 0.000 942.308 
7.Kuwait 0.000 0.000 1.073 0.000 0.000 0.000 2.146 0.000 0.000 0.000 3.219 0.000 
9.Nigeria 0.000 0.000 0.000 750.265 0.000 0.000 0.000 1500.531 0.000 0.000 0.000 2250.796 
10.Qatar 0.000 0.000 1.183 50.278 0.000 0.000 2.366 100.555 0.000 0.000 3.549 150.832 
12. UAE 0.000 0.000 0.956 0.000 0.000 0.000 1.912 0.000 0.000 0.000 2.867 0.000 

 
                            
Table 4.8: Solution to P2 under VRS (Year 2013) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 

௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 
௕  

2.Angola 2.142 0.000 0.641 143.716 4.283 0.000 1.282 287.433 6.425 0.000 1.923 431.149 
6.Iraq 0.000 0.000 0.000 385.485 0.000 0.000 0.000 770.970 0.000 0.000 0.000 1156.455 
7.Kuwait 0.000 8.999 0.916 0.000 0.000 17.997 1.832 0.000 0.000 26.996 2.748 0.000 
9.Nigeria 2.070 0.000 0.000 197.556 4.140 0.000 0.000 395.111 6.210 0.000 0.000 592.667 
10.Qatar 1.913 16.049 0.802 4.155 3.826 32.099 1.604 8.309 5.739 48.148 2.407 12.464 
12. UAE 0.000 0.000 1.042 21.024 0.000 0.000 2.085 42.049 0.000 0.000 3.127 63.073 
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4.6.3.3  Stage three results (2013 production year) 

This stage involves the P3 problem related to the recycling of waste for the generation of 

electricity. As an extension of the P2 problem, it involves the conversion of the estimated 

reductions in flare gas into electricity using a gas turbine. As the reductions increase with an 

increase in oil production, we select only the third scenario for analysis. For this conversion 

process, we use the turbine specifications from the previous chapter. Further, we employ the 

equation proposed in section 4.5.6 for gas-to-power (GTP) generation: 

௚ܲ௥௢௦௦ = ܹ ቆ
௣௢ݕ∆

௕

߱ 
ቇ 

Table 4.9 presents the results. We estimate the reductions in million cubic metres and power 

in megawatts. It should be noted that a value of ∆ݕ௣௢
௕  less than the required gas consumption 

of a single turbine (i.e., ߱) is insufficient to power the turbine. We assign a zero value of 

power generation to such a producer. In Table 4.9, under CRS, Angola gains the most from 

the conversion process with 1350MW, closely followed by Nigeria with 900MW. VRS 

benefits Iraq most with 450MW, while Angola and Nigeria each have 150MW. In general, 

the CRS model produces more power due to larger reductions as opposed to the VRS model. 

Hence, we recommend GTW technology with CRS properties as a means of achieving 

cleaner gas production and greater electricity generation for the nations. 

 
      Table 4.9: Gas to power generation (Year 2013) 

DMU୭                                  Scenario 3  (∆ݕ௥௢
௚ = 150) 

                         CRS                          VRS 
Flare reductions 
(million m3)        
௣௢ݕ∆)     

௕ ) 

Power (MW) 
        (ܲ) 

Flare reductions 
(million m3)        
௣௢ݕ∆)    

௕ ) 

  Power (MW) 
        (ܲ) 

2.Angola 3271.469       1350 431.149       150 
6.Iraq 942.308       300 1156.455       450 
7.Kuwait 0.000       0  0.000       0 
9.Nigeria 2250.796       900 592.667       150 
10. Qatar 150.832       0 12.464       0 
12. UAE 0.000       0  63.073       0 

                            
Finally, to deal with the ranking problem of all efficient producers, including Saudi Arabia, 

we must apply the energy-based ranking technique discussed in section 4.5.8. The following 

equation is required to implement this technique: 

∆ܷ௞ = 1.7 ቆݕ௥௞
௚ −

௣௞ݕ
௕

ܧܱܤ
ቇ 
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For ܯܦ ௝ܷ to be superior to ܷܯܦ௞, ∆ ௝ܷ > ∆ܷ௞, which is the sufficient condition. A 

comparison of the ranking results based on the net energy of each producer is presented in 

Table 4.10. The ranking conundrum presented by Kuwait, UAE, and Saudi Arabia at the 

previous stage has been satisfactorily resolved by our proposed ranking technique, as shown 

in Table 4.10. The most efficient producer with the highest net energy (i.e., energy gain) is 

Saudi Arabia, closely followed by Kuwait, which also recorded a net energy gain. However, 

UAE is ranked third with a net energy loss. The largest net energy loss is attributed to Iraq, 

which is the least efficient producer. By employing this technique, a decision-maker will be 

able to draw intelligent and valid conclusions regarding efficiency ranking, particularly when 

there are multiple efficient producers with zero reductions in flare gas, or another case where 

two or more efficient producers flared no gas during a particular period. 

 

     Table 4.10: Energy-based ranking of efficient OPEC members (Year 2013) 

DMU௞ Net energy 
(MWh) 
  (∆ܷ௞) 

Gain/Loss Rank 

2.Angola  -67159.86 Loss 5 
6.Iraq  -119325.06 Loss 7 
7.Kuwait   2790.72 Gain 2 
9.Nigeria  -118209.23 Loss 6 
10.Qatar  -6179.68 Loss 4 
11.Saudi Arabia   16382.90 Gain 1 
12. UAE  -5461.89 Loss 3 

 

4.6.4 Results analysis for the 2014 production year 

We begin our analysis for the 2014 production year by computing the lean potential growth, 

as we did for the previous production year. Based on production data for 2014, we calculated 

௣௚ܮ ≤ 58.9 thousand barrels. The low value of ܮ௣௚ is a direct result of the fact that the least 

positive value of flare gas for the current year (i.e., min
௣

௣௝ݕ
௕ ) is much lower than what was 

observed for 2013. Therefore, we propose three scenarios with much smaller increments for 

this production year, i.e., ∆ݕ௥௝
௚ = 10, 20, 30 thousand barrels. 
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4.6.4.1 Stage one results (2014 production year)  

Under CRS, the solutions to the P1 problem are like those of the previous year, in the sense 

that all efficient producers were able to increase production to 30 thousand barrels without a 

corresponding increase in flare gas. This category's results are presented in Table 4.11. 

However, under VRS, as illustrated in Table 4.12, Iran and Saudi Arabia are the two OPEC 

members who cannot increase their oil production. This may indicate that both nations 

produced an excessive amount of crude oil in comparison with other members during the 

production year. Recall that only Saudi Arabia experienced this type of embargo on 

increasing its oil production in 2013 for this VRS category. Considering this phenomenon 

repeating over two consecutive years, there is an increasing likelihood that the VRS model 

could help curtail the excess oil production of OPEC members. Should this phenomenon 

repeat itself during the analysis of results for the next production year (i.e., 2015), we will 

draw a conclusion on it. 

 

Table 4.11: Solution to P1 under CRS (Year 2014) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૚૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૛૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૜૙ 

 ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
2.Angola 1.044 0.000 0.149 2.088 0.000 0.298 3.133 0.000 0.447 
5.Iran 0.982 7.318 0.433 1.963 14.635 0.866 2.945 21.953 1.299 
6. Iraq 0.554 3.506 0.149 1.108 7.012 0.299 1.661 10.518 0.448 
8. Libya 0.000 0.862 0.000 0.000 1.725 0.000 0.000 2.587 0.000 
9.Nigeria 0.503 0.000 0.147 1.006 0.000 0.294 1.509 0.000 0.442 
10.Qatar 0.000 0.000 0.250 0.000 0.000 0.500 0.000 0.000 0.749 
11.Saudi 
Arabia 

0.982 7.318 0.433 1.963 14.635 0.866 2.945 21.953 1.299 

12. UAE 0.000 0.000 0.204 0.000 0.000 0.408 0.000 0.000 0.612 
 
 

Table 4.12: Solution to P1 under VRS (Year 2014) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૚૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૛૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૜૙ 

 ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
2.Angola 1.347 0.000 0.127 2.693 0.000 0.255 4.040 0.000 0.382 
5.Iran   -    -    -    -    -    -    -    -    - 
6. Iraq 5.273 157.164 2.009 10.547 314.328 4.018 15.820 471.492 6.027 
8. Libya 0.000 3.301 0.000 0.000 6.603 0.000 0.000 9.904 0.000 
9.Nigeria 0.792 0.000 0.148 1.585 0.000 0.296 2.377 0.000 0.444 
10.Qatar 0.492 3.271 0.156 0.983 6.542 0.312 1.475 9.813 0.468 
11.Saudi 
Arabia 

   -    -    -    -    -    -    -    -    - 

12. UAE 0.000 0.000 0.212 0.000 0.000 0.424 0.000 0.000 0.636 
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4.6.4.2 Stage two results (2014 production year)  

Tables 4.13 and 4.14 present the solutions to the P2 problem of this stage. Since Iran reported 

zero flares during this period, it was excluded from the sets of solutions. We see a similar 

situation in Table 4.14, in which Saudi Arabia is unable to increase oil production under 

VRS. We obtained much lower reductions across both tables, which will lead to low 

estimates of converted power for the P3 problem. To achieve the greatest possible reductions, 

we set the increase in oil production to equal the lean potential growth. Table 4.15 presents 

the additional reductions, which are later converted to gross power in Table 4.16. Except for 

Saudi Arabia, the CRS and VRS models have an overall equal performance, imposing greater 

reductions on three producers each in Table 4.15. 

 

Table 4.13: Solution to P2 under CRS (Year 2014) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૚૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૛૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૜૙ 

௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 

௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 
௕  

2.Angola 0.610 0.000 0.000 84.771 1.219 0.000 0.000 169.541 1.829 0.000 0.000 254.312 
6. Iraq 0.000 0.000 0.000 75.409 0.000 0.000 0.000 150.818 0.000 0.000 0.000 226.227 
8. Libya 0.000 0.000 0.000 341.573 0.000 0.000 0.000 341.573 0.000 0.000 0.000 341.573 
9.Nigeria 0.000 0.000 0.000 83.902 0.000 0.000 0.000 167.803 0.000 0.000 0.000 251.705 
10.Qatar 0.000 0.000 0.213 9.877 0.000 0.000 0.427 19.755 0.000 0.000 0.640 29.632 

11.Saudi 
Arabia 

0.982 7.318 0.433 0.000 1.963 14.635 0.866 0.000 2.945 21.953 1.299 0.000 

12. UAE 0.000 0.000 0.200 2.499 0.000 0.000 0.399 4.998 0.000 0.000 0.599 7.497 

  
                         
Table 4.14: Solution to P2 under VRS (Year 2014) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૚૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૛૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૜૙ 

௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 

௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 
௕  

2.Angola 0.754 0.000 0.079 29.919 1.507 0.000 0.158 59.838 2.261 0.000 0.237 89.757 
6. Iraq 0.000 0.000 0.000 75.436 0.000 0.000 0.000 150.871 0.000 0.000 0.000 226.307 
8. Libya 0.000 0.000 0.000 60.072 0.000 0.000 0.000 120.144 0.000 0.000 0.000 180.216 
9.Nigeria 0.000 0.000 0.000 78.080 0.000 0.000 0.000 156.160 0.000 0.000 0.000 234.240 
10.Qatar 0.488 3.228 0.154 0.777 0.975 6.455 0.309 1.553 1.463 9.683 0.463 2.330 

11.Saudi 
Arabia 

   -    -    -    -    -    -    -    -    -    -    -    - 

12. UAE 0.000 0.000 0.201 3.474 0.000 0.000 0.403 6.949 0.000 0.000 0.604 10.423 
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Table 4.15: Reductions at LPG (Year 2014) 

DMU୭          ∆ݕ௥௢
௚ =  ܩܲܮ

       CRS       VRS 
௣௢ݕ∆

௕ ௣௢ݕ∆ 
௕  

2.Angola    499.299 176.223 
6. Iraq    444.159            444.316            
8. Libya    341.573           353.825            
9.Nigeria    494.180           459.892            
10.Qatar    58.178            4.575            

11. Saudi 
Arabia 

   0.000     - 

12. UAE    14.719          20.465           

                            
4.6.4.3 Stage three results (2014 production year)  

For the P3 problem of this stage, the estimated reductions obtained in Table 4.15 are 

converted to gross power in a similar manner to the previous year. In Table 4.16, the 

estimates are presented. The non-zero power estimates in Table 4.16 all have the same value 

of 150MW. The reason for this is that the flare gas reductions are only sufficient to run a 

single turbine unit with a rated power output of 150 MW. Moreover, the low LPG value for 

this production year is the primary contributing factor. As a final point, it is easy to determine 

which producers are the most and least efficient for this production year by evaluating their 

net energy production.  

 

The proposed energy-based technique allowed for the segregation of the eight efficient 

producers, including Iran, into well-defined ranks as shown in Table 4.17. In similar fashion 

to the previous ranking result (i.e., Table 4.10), only two producers in Table 4.17 had a net 

energy gain, namely Saudi Arabia and Iran. While Saudi Arabia topped the rankings with the 

greatest energy gain, Iraq recorded the least net energy production, as was the case in the 

previous ranking results. Based on these findings, Saudi Arabia has maintained its position as 

the most efficient oil producer among OPEC member nations for two years in a row. 
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     Table 4.16: Gas to power generation (Year 2014) 

DMU୭                                   (∆ݕ௥௢
௚ = ܩܲܮ = 58.9) 

                         CRS                          VRS 
Flare reductions 
(million m3)        
௣௢ݕ∆)     

௕ ) 

Power (MW) 
        (ܲ) 

Flare reductions 
(million m3)        
௣௢ݕ∆)    

௕ ) 

  Power (MW) 
        (ܲ) 

2.Angola    499.299      150 176.223      0 
6. Iraq    444.159                  150 444.316                  150 
8. Libya    341.573                 150 353.825                  150 
9.Nigeria    494.180                 150 459.892                  150 
10.Qatar    58.178                   0 4.575                   0 
11. Saudi 
Arabia 

   0.000        0    -       - 

12. UAE    14.719                 0 20.465                   0 
 
 
     Table 4.17: Energy-based ranking of efficient OPEC members (Year 2014) 

DMU௞ Net energy 
(MWh) 
  (∆ܷ௞) 

Gain/Loss Rank 

2.Angola -67166.43 Loss 6 
5.Iran  5299.07 Gain 2 
6. Iraq -123501.09  Loss 8 
8. Libya -44066.28   Loss 5 
9.Nigeria -104358.61  Loss 7 
10.Qatar -5891.49  Loss 4 
11. Saudi Arabia  16411.53 Gain 1 
12. UAE -5428.12  Loss 3 

 

4.6.5 Results analysis for the 2015 production year 

This production year is of the utmost importance since it is the most recent year in which 

OPEC published data regarding the annual volumes of gas flared by each member nation. 

Other sources of flare data are inconsistent with those provided by OPEC. Moreover, there is 

a need to validate the performance of our proposed models, especially the capability of the 

VRS versions to regulate oil production. Considering that Saudi Arabia, Iraq, and Iran 

produced excess crude oil this year, this is extremely important. As well, it is important to 

consider this production year as an appropriate reference when investigating the relationship 

between oil production and gas flaring. As a starting point, we computed ܮ௣௚ ≤ 168.5 

thousand barrels. Thus, we specify three scenarios for the subsequent analysis, which are 50, 

100, and 150 thousand barrels. 
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4.6.5.1 Stage one results (2015 production year)  

The obtained solution to the P1 problem in Tables 4.18 and 4.19 are in similar manner to the 

previous years. We observed, however, that the model was infeasible for Iran, Iraq, and Saudi 

Arabia under the VRS case (see Table 4.19). In other words, all three producers could not 

increase their current levels of crude output. Under VRS, this is the third consecutive 

experiment in which a producer (especially Saudi Arabia) has been unable to increase oil 

production for the P1 problem. The only difference is that the number of producers increased 

to three during this period. Before drawing any conclusions, it is important to briefly discuss 

the production levels of these three producers, as 2015 was a significant year for all three. 

 

In 2015, Saudi Arabia produced and exported more crude oil than any other OPEC member 

country (i.e., over 10 million barrels of crude oil produced and over 7 million barrels 

exported), according to the 2016 ASB published by OPEC. After Saudi Arabia, Iraq was the 

second largest producer and exporter of oil within OPEC in 2015. Furthermore, according to 

Crystol Energy, Iraq was the second largest contributor to global oil supply increases in 2015, 

with production reaching almost 4 million barrels per day. The Iran Nuclear Deal signed in 

2015 resulted in an increase of 500,000 barrels per day in Iranian oil production (Alipour et 

al., 2017). Based on these facts, it is evident that the VRS model is producing infeasible 

solutions to curb the relatively excessive crude oil production in all three member countries. 

 

Table 4.18: Solution to P1 under CRS (Year 2015) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

 ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
2.Angola 0.000 0.000 1.274 0.000 0.000 2.547 0.000 0.000 3.821 
5.Iran 4.569 37.108 2.062 9.138 74.216 4.125 13.707 111.324 6.187 
6.Iraq 3.023 17.423 0.711 6.045 34.858 1.422 9.068 52.271 2.133 
8.Libya 0.893 13.440 0.000 1.787 26.880 0.000 2.680 40.321 0.000 
9.Nigeria 0.000 0.000 1.030 0.000 0.000 2.059 0.000 0.000 3.089 
10.Qatar 0.000 0.000 1.100 0.000 0.000 2.200 0.000 0.000 3.300 
11.Saudi 
Arabia 

4.569 37.108 2.062 9.138 74.216 4.125 13.707 111.324 6.187 
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Table 4.19: Solution to P1 under VRS (Year 2015) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

 ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
2.Angola 3.302 0.000 0.737 6.603 0.000 1.475 9.905 0.000 2.212 
5.Iran - - - - - - - - - 
6.Iraq - - - - - - - - - 
8.Libya 2.841 17.085 0.578 5.683 34.169 1.156 8.524 51.254 1.735 
9.Nigeria 0.000 0.000 1.039 0.000 0.000 2.078 0.000 0.000 3.117 
10.Qatar 2.799 16.339 0.756 5.599 32.677 1.513 8.398 49.016 2.269 
11.Saudi 
Arabia 

- - - - - - - - - 

 

4.6.5.2 Stage two results (2015 production year)  

Tables 4.20 and 4.21 present solutions to the P2 problem at this stage. The VRS model was 

infeasible for only Saudi Arabia, confirming our earlier claim of excess oil production. In this 

stage, Iran reported zero flares, resulting in its exclusion. 

 

Table 4.20: Solution to P2 under CRS (Year 2015) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 

௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 
௕  

2.Angola 0.000 0.000 0.523 2489.227 0.000 0.000 2.026 1725.767 0.000 0.000 3.530 962.306 
6.Iraq 3.907 0.000 0.479 223.267 7.813 0.000 0.959 446.533 11.720 0.000 1.438 669.800 
8.Libya 0.000 0.000 0.000 1121.018 0.000 0.000 0.000 1121.018 0.000 0.000 0.000 1121.018 
9.Nigeria 0.000 0.000 0.000 3615.890 0.000 0.000 0.000 3248.607 0.000 0.000 0.000 5320.829 
10.Qatar 0.000 0.000 0.981 57.647 0.000 0.000 1.962 115.294 0.000 0.000 2.943 172.940 
11.Saudi 
Arabia 

4.569 37.108 2.062 0.000 9.138 74.216 4.125 0.000 13.707 111.324 6.187 0.000 

                            
 
Table 4.21: Solution to P2 under VRS (Year 2015) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆
௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 

௕ ௣௢ݕ∆ ଷ௢ݔ∆ ଶ௢ݔ∆ ଵ௢ݔ∆ 
௕  

2.Angola 3.302 0.000 0.737 0.000 6.603 0.000 1.475 0.000 9.905 0.000 2.212 0.000 
6.Iraq 4.225 0.000 0.437 238.323 8.450 0.000 0.875 476.646 12.675 0.000 1.312 714.969 
8.Libya 5.732 0.000 0.000 391.495 11.463 0.000 0.000 782.989 17.195 0.000 0.000 1174.483 
9.Nigeria 0.000 0.000 0.000 3876.401 0.000 0.000 0.000 4473.628 0.000 0.000 0.202 4906.535 
10.Qatar 2.826 16.190 0.729 3.553 5.652 32.381 1.458 7.105 8.478 48.571 2.186 10.658 
11.Saudi 
Arabia 

- - - - - - - - - - - - 

      
Table 4.22 presents the estimated reductions for the efficient producers under CRS and VRS 

cases. In all three scenarios, Libya's constant CRS reductions can be explained by the fact 

that Libya produced the least amount of crude oil during the production year.  
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Both CRS and VRS models were unable to impose a reduction in flare gas for Saudi Arabia 

because the nation flared a relatively low volume of gas despite producing the largest amount 

of crude oil, and this implies a case of extreme efficiency. We recommend the CRS model for 

cleaner production based on the overall results of scenario 3 since it imposes larger 

reductions on more producers. With respect to Angola, the CRS model clearly outperforms 

the VRS model. 

 

Table 4.22: Comparisons of estimated reductions in undesirable output (Year 2015) 

࢕࢘࢟∆   :Scenario 1 ܗ܃ۻ۲
ࢍ = ૞૙ Scenario 2:   ∆࢕࢘࢟

ࢍ = ૚૙૙  Scenario 3:   ∆࢕࢘࢟
ࢍ = ૚૞૙ 

஼ோௌݕ∆
௕ ௏ோௌݕ∆ 

௕ ஼ோௌݕ∆ 
௕ ௏ோௌݕ∆ 

௕ ஼ோௌݕ∆ 
௕ ௏ோௌݕ∆ 

௕  
2.Angola 2489.23 0.00 1725.77 0.00 962.31 0.00 
6.Iraq 223.27 238.32 446.53 476.65 669.80 714.97 
8.Libya 1121.02 391.50 1121.02 782.99 1121.02 1174.48 
9.Nigeria 3615.89 3876.40 3248.61 4473.63 5320.83 4906.54 
10.Qatar 57.65 3.55 115.29 7.11 172.94 10.66 
11.Saudi 
Arabia 

0.00 -  0.00 - 0.00 - 

    

4.6.5.3 Stage three results (2015 production year)  

In contrast to the 2013 and 2014 production years, we present the 2015 gross power 

generated for the P3 problem as a chart, as shown in Figure 4.2. The estimates are based on 

the reductions calculated for scenario 3 in Table 4.22. According to Figure 4.2, Nigeria is the 

producer with the greatest potential for power generation, with 2250MW under CRS. 

However, Qatar has the least potential due to its low flare gas reductions. As for Libya, 

450MW of electricity is generated equally under CRS and VRS. Angola and Iraq have the 

potential to generate 300MW of power under the CRS and VRS, respectively. In general, the 

results obtained are of great benefit to the Nigerian petroleum industry, given the country's 

current energy supply crisis. 
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Figure 4.2: Potential power generation by efficient producers (Scenario 3) 

To conclude this stage, we present the net energy rankings of all efficient producers in Table 

4.23. The results are similar with Saudi Arabia ranked first for the third consecutive year, 

demonstrating the case for super efficiency. As such, Saudi Arabia serves as the ideal 

benchmark not only for efficient producers but also for inefficient producers. It stands to 

reason that Saudi Arabia is the most committed OPEC member to gas flaring reduction. It is 

therefore possible for other members of OPEC to adopt and implement Saudi Arabia's 

management strategies for cleaner oil and gas production. The overall ranking results for each 

producer have been provided in Table 4.24 for an in-depth comparison across the three 

production years analyzed for this chapter. It is important to note that in Table 4.24, only 

producers who are efficient under both CRS and VRS are ranked in terms of their net energy, 

as we have demonstrated throughout this chapter for the solved problems P1 through P3. As 

an example, Iran was efficient under CRS but inefficient under VRS for the 2013 production 

year. Therefore, Iran is not included in the ranking results for 2013, as shown in Table 4.24. 

The same applies to other producers who did not receive a ranking for any of the three years. 

As can be seen from Table 4.24, there were 7, 8, and 7 ranked producers in 2013, 2014, and 

2015, respectively. Saudi Arabia dominates the overall rankings as the most efficient 

producer, while Iraq is ranked lowest across the rankings, making it the least efficient 

producer. Qatar and the UAE have maintained their rankings for the first two years, with 
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Qatar improving slightly in 2015. There is a similar ranking pattern observed between Angola 

and Nigeria in which the ranking of each nation declined by one step when the number of 

efficient producers increased. While Iran was excluded from the 2013 rankings, it maintained 

a decent ranking behind Saudi Arabia in 2014 and 2015. 

 

Table 4.23: Energy-based ranking of efficient OPEC members (Year 2015) 

DMU௞ Net energy 
(MWh) 
  (∆ܷ௞) 

Gain/Loss Rank 

2.Angola -67006.67 Loss 5 
5.Iran  5357.72  Gain 2 
6.Iraq -140194.07  Loss 7 
8.Libya -43746.22  Loss 4 
9.Nigeria -93957.46  Loss 6 
10.Qatar -6064.98  Loss 3 
11.Saudi Arabia  16927.19 Gain 1 

 

Table 4.24: Comparison of overall energy rankings 

Efficient     
Producers 
(CRS & VRS) 

2013 
Ranking 

2014 
Ranking 

2015 
Ranking 

Angola 5 6 5 
Iran - 2 2 
Iraq 7 8 7 

Kuwait 2 - - 
Libya - 5 4 

Nigeria 6 7 6 
Qatar 4 4 3 

Saudi Arabia 1 1 1 
UAE 3 3 - 

 

4.6.5.4 Sensitivity analysis 

To investigate the interrelationship between oil production and gas flaring in both the short 

and long term for stage two producers, we generated more scenarios with successive 

increases in oil production of 20 thousand barrels. To achieve this, we indicate the new target 

levels in stage two as follows: 

Oil production target: (ݕ௥௢
௚ + ௥௢ݕ∆

௚ ),     Gas flaring target: (ݕ௣௢
௕ − ௣௢ݕ∆

௕ ) 

 

For a desired increase in oil production, ∆ݕ௥௢
௚ , the applied models compute the value of ∆ݕ௣௢

௕  

while minimizing the input resources. It is obvious that a successive increase in the computed 
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value of ∆ݕ௣௢
௕  for any producer will result in a decrease in its gas flaring target. Under CRS, 

we find from Table 4.19, that Iraq and Qatar both have increasing values of ∆ݕ௣௢
௕  across all 

three scenarios. Therefore, the relationship between gas flaring and oil production targets will 

be similar for both producers. As examples, Fig. 4.3 to 4.5 illustrate the relationship between 

both targets under CRS. This sensitivity analysis was conducted for environmental protection 

with the aim of decreasing gas flaring levels while increasing oil production. 

 

We observe in Fig. 4.3 that an increase in oil production only has a short-term benefit for 

Angola due to the initial decrease in gas flaring. However, in the fourth scenario (i.e., at a 

production target of 1827.1 thousand barrels of crude oil) there is a noticeable increase in gas 

flaring and continues to rise in tandem with a subsequent increase in oil production. From 

Fig. 4.4, it is evident that an increase in oil production is perfectly correlated with a linear 

decrease in gas flaring for Iraq. It is a set of potential win-win scenarios for the Iraqi 

petroleum industry as well as the environment. The same trend can also be seen in Fig. 4.1, 

where global gas flaring declined in tandem with an increase in oil production during the 3-

year span (2006-2008). Nigeria may initially show potential for a decrease in gas flaring in 

Fig. 4.5, but in the long run the nation would benefit more from an increase in oil production.  

The last four scenarios in Fig. 4.5 show a linear decrease in gas flaring for Nigeria, so the 

long run wins here. We conclude the sensitivity analysis by stating that Fig. 4.3 to 4.5 are 

clearly integral parts of Fig. 4.1, and our proposed inverse DEA models have made it possible 

to investigate this salient relationship between oil production and gas flaring. 
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Figure 4.3: Potential trend of gas flaring and oil production for Angola 

 

 
Figure 4.4: Potential trend of gas flaring and oil production for Iraq 
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Figure 4.5: Potential trend of gas flaring and oil production for Nigeria 

4.6.5.5  Managerial implications 

Since the focus of this chapter was the development of a sustainable lean production 

framework (SLPF) for the petroleum industry, some insights for oil and gas production 

managers are crucial. The significance of this chapter lies also in the fact that it represents a 

pioneering study in the literature focused on the implementation of lean production for flare 

gas management. This further explains why three consecutive production years were 

considered in this chapter for validation of the results. Therefore, we highlight some general 

points that must be considered when implementing the proposed models. 

 

Crude oil is more than just a resource. In many ways, it is a global currency because its 

production and uses have preserved industrial civilization for decades. Most importantly, it 

contributes significantly to economic development in oil-producing nations. Thus, it is not 

surprising to see significant increases in oil production in such nations, and, sometimes, 

OPEC members do not comply with production quotas or cuts leading to oil price wars. The 

two main consequences or implications of increased global oil production are oil price 

crashes and increased gas flaring. Environmental degradation continues to be a problem 

caused by gas flaring. Additionally, since crude oil is a valuable output in the petroleum 

industry, the application of the inverse DEA can also propose an increase in oil production. In 
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real-life scenarios, such an application poses a serious concern to decision-makers, since they 

cannot calculate an increase in oil production that would result in relatively low levels of gas 

flaring. In this chapter, we introduced the concept of lean potential growth for the first time in 

literature to address these implications. For a set of oil-producing nations, the lean potential 

growth is the marginal increase in oil production that can result in a minimal volume of flare 

gas within each nation. With this information, inverse DEA models can be used not only to 

optimize oil production, but also to improve oil inventory management. 

 

Secondly, we find that it is possible to set new targets for oil production and gas flaring while 

minimizing input resources. Essentially, our proposed methodology would allow managers to 

set higher and lower target levels for oil production and gas flaring, respectively, to improve 

operational sustainability within the petroleum industry. Using sensitivity analysis, this was 

demonstrated in this chapter as part of the solution to the second inverse problem. The 

sensitivity analysis helps a decision-maker identify the possible scenarios of increased oil 

production and a lower level of gas flaring. This is a crucial step towards increasing oil 

revenue and minimizing the environmental impact of gas flaring. For oil-exporting countries 

experiencing energy shortages, such as Nigeria, our methodology reveals a reliable 

comparative analysis of the potential power that may be generated using technologies with 

CRS and VRS properties. As a result, gas turbine power generation can be handled in a 

smarter manner.  

 

Furthermore, the conventional ranking system in the petroleum industry has always been 

based on crude oil output. This method does not give detailed information on the ranks of 

major oil producers because some factors are ignored. To rank efficient producers based on 

only desirable or good outputs, we proposed a modified model incorporating lean potential 

growth. It is important to note, however, that this approach does not fit into the context of 

lean production, as it does not account for waste or undesirable outputs, such as flare gas. 

Toward this end, we proposed a new and robust ranking technique based on net energy 

production of each efficient producer. The new ranking technique is purely scientific and 

absolute because it is based on the principle of energy conservation. 
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4.6.5.6  Summary  

This chapter proposes inverse DEA models and new concepts to facilitate the implementation 

of lean practices in the petroleum industry. With lean practices, gas flaring can be reduced, 

and productivity increased with minimal input resources. Our proposed models were applied 

to efficient oil-producing nations. Based on our reference year of 2015, we summarize the 

most significant results across the stages. A first-stage study showed that efficient producers 

were able to increase oil production up to specified levels in both CRS and VRS cases 

without increasing flare gas emissions. According to the results of the second stage, the 

reductions in gas flaring for Angola, Iraq, Libya, and Nigeria were 13.75%, 4.59%, 25.24%, 

and 54.93 %, respectively, for the same production targets in stage one. Using the GT13E2 

turbine, the computed reductions were converted into gross power outputs for all four 

producers of 300MW, 150MW, 450MW, and 2250MW, respectively. Considering Nigeria's 

ongoing energy shortage, this is of great benefit to the country. Additionally, a sensitivity 

analysis revealed that an increase in oil production would benefit Angola in the short term, 

but Nigeria in the long term. A key finding of the sensitivity analysis was that, for any given 

scenario, an increase in oil production is accompanied by a reduction in gas flaring in Iraq 

and Qatar. Therefore, both nations have a high potential for lean production. The solution to 

the third inverse problem involved developing a new energy-based ranking technique. The 

most efficient producer was found to be Saudi Arabia, while the least efficient producer was 

Iraq. 

There is no doubt that our proposed models performed reasonably well. This chapter is an 

insightful and pioneering examination of how lean production can be applied to the 

management of flare gas. However, the proposed models are limited to only positive data. 

Considering the possibility of dealing with negative data when using DEA models as 

demonstrated in chapter three, it is imperative to examine the impact of negative data on the 

estimated power outputs calculated in this chapter. It is also important to point out that the 

estimated power outputs are only associated with an increase in oil production. There is a 

need for further research to maximize the gross power estimates. 
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Chapter 5 – An Optimal Energy Mix based on Flare Gas Power Generation                                            

5.1 Introduction 

Throughout the previous chapters, a solid foundation has been laid for justifying the use of 

flare gas for power generation. A cost-effective gas-to-wire (GTW) process was developed in 

chapter three for inefficient producers, whereas a robust lean production framework was 

developed for efficient producers in chapter four. Both chapters addressed the issue of global 

gas flaring. Nevertheless, there are some research gaps in both chapters that are addressed in 

this chapter to provide an overall solution to the global problem. Specifically, this chapter 

examines the extent to which flare gas can be recycled for alleviating energy poverty in 

selected countries. Recent literature has seen the use of both positive and negative data when 

applying DEA models to real-world problems. Thus, an in-depth investigation will be 

conducted in this chapter to investigate how data type affects estimates of the maximum 

power that can be generated from flare gas.  

5.1.1 A paradoxical view of gas flaring 

Energy is recognized as a fundamental resource for advancement, wellbeing, and 

sustainability in modern society. As such, significant efforts are devoted to harnessing 

existing energy resources (Pietrosemoli & Rodríguez-Monroy, 2019). Each country is unique 

when it comes to its energy performance which is based on a combination of resources, 

policies, and structures. Some are successful in optimizing their energy resources, but others 

are not (Pietrosemoli & Rodríguez-Monroy, 2019). Nigeria and Venezuela, for instance, are 

two oil-producing nations with vast reserves of natural gas, which is an affordable and 

reliable source of energy. There is currently an energy crisis in both nations, which manifests 

itself in frequent and extended blackouts and service disruptions that affect the entire 

population. Yet for the ninth year in a row, both countries rank among the top seven gas 

flaring countries, creating an undesirable paradox in their energy economy. Power outages in 

Nigeria date back over two decades. In fact, some experts may argue that this has been an 

ongoing problem since crude oil was discovered in the country. These outages in Nigeria 

have more serious consequences than those in Venezuela. As an example, multinational 

companies in Nigeria rely on alternative sources of electricity, such as generating plants. The 

reason for this is the erratic power supply provided by the national grid. Consequently, such 

companies factor in the costs involved in operating alternate sources of energy in the final 



 
 
 

123 
 
 
 

price of their products. In turn, this leads to unwanted inflation, decreasing the purchasing 

power of consumers in a country regarded as Africa's largest oil producer. Furthermore, 

power outages in Nigeria on a larger scale have a detrimental effect on the living conditions 

of rural residents. It is difficult for such people to engage in economic or business activities 

that sustain their livelihoods. While there have been many plans to increase the installed 

power capacity of the nation, there is always that tendency to ignore the fact that Nigeria has 

the largest gas reserves on the African continent and the ninth largest in the world. As most 

developed nations, such as the United States, rely on natural gas for power generation as their 

primary energy source, it is surprising that a developing nation like Nigeria, with vast natural 

gas reserves, would prefer to flare excess gas during oil extraction rather than use it to 

generate power. In these circumstances, gas flaring in developing nations such as Nigeria and 

Venezuela might be construed as more than just an energy paradox. It is a shocking and 

colossal waste of energy. Considering that sustainability refers to the strategic production and 

use of resources needed for all levels of human life, whether residential, industrial, 

transportation, commercial or recreational, it is desirable to utilize energy resources in the 

best possible way.  

5.1.2 Energy poverty and statistics 

According to the World Economic Forum, energy poverty is defined as the inaccessibility of 

sustainable energy products and services. The lack of sufficient, affordable, and reliable 

energy services also contributes to energy poverty. Energy is the engine of civilization, but 

today access to adequate and affordable sources of energy is not equally distributed around 

the globe. Often, a lack of energy can impede economic growth in terms of manufacturing 

and other economic indicators. Energy poverty is delineated as a condition when 

consumption falls below a certain threshold, which researchers have repeatedly attempted to 

define in the past. In spite of this, providing universally valid statistics has been unachievable 

since national needs vary, based on developmental stages and structural characteristics. 

 

Around the world, almost 3.5 billion people lack access to electricity; less than ten percent of 

their household energy needs are met. The 2018 IEA World Energy Outlook estimates that 

currently 1 billion people worldwide - 13% of the total population -- lack access to electricity, 

primarily in Africa and South Asia. There are approximately 600 million people without 

electricity in Sub-Saharan Africa - 57% of the population. In developing Asia, there are 350 
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million people without electricity - 9% of the population. Global energy access by 2030 is 

one of the Goals of the United Nations Agenda for Sustainable Development. The expansion 

of electricity networks has made a significant difference in the energy accessibility of regions 

such as East Asia and Latin America since the early 2000s. A great deal of progress has been 

achieved in many other developing countries as well. Almost 95% of Indonesia's citizens 

have electricity, up from just 50% in 2000; 80% of people in Bangladesh have electricity, up 

from just 20% in 2000; 73% of people in Kenya now have electricity, while in Ethiopia, 

almost half have it compared to 5% in 2000. New programs designed to improve energy 

efficiency in eastern and central European neighbourhoods have been rolled out by Habitat 

for Humanity to support such families. It is pertinent to state here that most of the progress 

made is still far from being environmentally friendly. According to estimates, nearly 2.7 

billion people still use solid biomass, coal, or kerosene for cooking, the most polluting of all 

available energy sources. There is still a need to accelerate efforts to meet the sustainable 

development goals of the United Nations. 

5.1.3 The sustainable energy for all (SE4ALL) initiative  

The United Nations General Assembly declared 2012 as the International Year of Sustainable 

Energy for All (SE4ALL). In a resolution, three global goals were set to be achieved by 2030: 

ensuring universal access to modern energy services (including electricity and clean, modern 

cooking solutions), doubling progress in energy efficiency globally, and doubling the share of 

renewable energy in the global energy mix. The Sustainable Energy for All (SE4ALL) 

initiative has been formally embraced by 70 countries, while tens of billions of dollars have 

been pledged to achieve its goals. A decade of sustainable energy for all was later declared by 

the UN general assembly at the end of 2012, running from 2014-2024. For the SE4ALL 

objectives to remain on track, global progress will need to be tracked over the years leading 

up to 2030. Together with 13 other agencies, the World Bank, and the Energy Sector 

Management Assistance Program (ESMAP) and the International Energy Agency (IEA) have 

coordinated the process of building the framework. More than 100 stakeholder groups have 

participated in the public consultation process. In a similar vein, the United Nations 

collaborated with the World Bank in 2015 by launching the ‘Zero Routine Flaring (ZRF) by 

2030’ initiative, which aims to set an industry benchmark for sustainable production of oil 

and gas. Through the ZRF initiative, oil-producing nations and companies aim to eliminate 

routine gas flaring by 2030 as a means of combating climate change globally. As 
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demonstrated in the previous chapters, utilizing natural gas to the fullest extent for power 

generation is an effective means of implementing the ZRF initiative. Thus, we need to 

examine further the potential of flare gas as a reliable and affordable energy source. 

5.1.4 The role of natural gas in power generation 

With global warming upon us, natural gas has been deemed a bridge fuel (Hausfather, 2015; 

Zhang et al., 2016). Due to its versatility for use in industry and the home, natural gas will 

likely outlast coal and oil. Yet, in regard to the petroleum industry, natural gas is largely 

present in its true form as associated petroleum gas (APG), since most of it is dissolved in 

crude oil. We must therefore take APG into account from a dual perspective. APG is 

technically called field gas when converted into an energy source. In contrast, when excess 

APG is burned off in the field, it is called flare gas, which contributes to global warming due 

to the release of greenhouse gases (GHGs). However, it is still necessary to briefly discuss 

the breakdown of natural gas production in the petroleum industry. According to the OPEC 

Annual Statistical Bulletin (ASB), gross production of natural gas consists of marketed 

production, flaring, reinjection, and shrinkage. This is expressed in the following definition: 

Gross Production = Marketed production + Flaring + Reinjection + Shrinkage 

Marketed production refers to the volume of gas sold to domestic and foreign markets and is 

a source of revenue. Flaring refers to the total volume of natural gas burned annually in each 

OPEC member nation. Reinjected gas into underground reservoirs is needed for increasing 

the yield of crude oil. During the extraction and purification processes, some volume of 

natural gas is lost due to shrinkage. 

Considering the power outages in oil-producing countries with consistently high volumes of 

flare gas, one may conclude that flare gas represents a tremendous loss in the energy potential 

of such countries. The potential of natural gas for power generation should thus be 

highlighted through the relevant literature. Yao et al. (2018) used a multi-objective 

optimization approach to model a power plant powered by natural gas, yielding a net profit of 

US$ 3.97 million and a payback period of two years. Man et al. (2018) conducted life cycle 

assessments for both coal-fired power generation (CPG) and synthetic natural gas (SNG) 

generation. According to the results, the CPG route had relatively high-water consumption, 

making the SNG route suitable for water-scarce regions.     
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A study has been conducted on the environmental and economic impacts of using natural gas 

for Kuwait's electricity generation. The results showed reductions of 36%, 98%, and 9% in 

nitrogen oxides, SO2, and total energy cost, respectively (Alhajeri et al., 2019). Jirutitijaroen 

et al. (2013) proposed a stochastic programming model to help a power company optimize its 

natural gas consumption and electricity generation schedule. Two uncertainties were 

considered in their stochastic model: electricity price and natural gas price. Based on the 

findings, the power company's expected profits could increase by 25% under price volatility. 

Xiao et al. (2016) employed system dynamics modelling to examine the development pattern 

and constraints associated with the development of natural gas power generation in China. 

The research results indicated that natural gas power generation in China will grow at an 

average annual rate of 10%, with the natural gas installed capacity expected to reach 

235.7GW by 2030. In the context of integrating the planning of electricity and natural gas 

distribution in the face of uncertain power demand, a probabilistic approach was proposed. 

This approach revealed a cheaper and more efficient hybrid system than the existing 

sequential approach (Odetayo et al., 2017).  

 

5.1.4.1  Natural gas as an affordable energy source for Venezuela 

In light of the ongoing power outages in Venezuela since late 2009, one cannot help but 

wonder whether the problem is becoming a conundrum. Although Rosales and Sánchez 

(2021) have emphasized the political dimensions of the problem, if you take a broader view 

of the situation, you find out that, according to the World Bank archives, Venezuela owns 

some of the world's largest gas reserves, but ranks as one of the top seven countries for gas 

flaring. As the world advocates switching to renewable energy sources, some experts do not 

realize that oil-exporting nations like Nigeria and Venezuela need time to join the energy 

transition bandwagon. With an increasing level of economic hardship and the continual 

devaluation of some national currencies, it will be increasingly difficult for some third-world 

countries to transition successfully to renewable energy technologies. The cost of certain 

renewable energy technologies has decreased over time, but if the same cost is converted into 

devalued currencies, it may remain expensive for some third-world countries. This harsh 

reality has not been addressed in prior studies, and a gradual approach that makes use of 

energy sources like natural gas to help alleviate energy poverty in Venezuela is needed. 
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Pietrosemoli and Rodríguez-Monroy (2019) have provided an in-depth analysis of 

Venezuela's energy situation, thus highlighting the nation's vast energy resources including 

natural gas which amounts to approximately 3.1% of the world's proven natural gas reserves. 

There is therefore an urgent need to explore how flare gas can be used in Venezuela for 

generating power. Additionally, by reducing its annual gas flaring through power generation, 

Venezuela will be better equipped to adhere to the Global Gas Flaring Reduction (GGFR) 

partnership, the Clean Development Mechanism (CDM) of the United Nations, and the ZRF 

Initiative for 2030. In this context, we first address the gas flaring problem in oil-producing 

nations, and then narrow it down to Venezuela as our case study. It is also necessary to 

analyse the installed capacity of power plants in Venezuela, their available capacity, and the 

total energy demand. In this regard, Table 5.1 presents the breakdown of energy statistics for 

the nation in 2015.  

 

Table 5.1 shows that out of 34100MW installed capacity (including thermal and 

hydropower), only 16500MW is available, leaving a deficit of 17600MW. Thermal and 

hydropower capacity losses total 11100MW and 6500MW, respectively. We must determine 

how much of this total deficit can be recovered by power generation from flare gas. In order 

to do this, we need to consider the volume of flare gas within the country in 2015. There is no 

doubt that this is crucial for addressing the ongoing power outages in the nation. 

Additionally, this strategy is critical in combating air pollution, or the environmental 

degradation associated with routine gas flaring within the nation. 

 
Table 5.1: The 2015 Venezuelan energy statistics 

Power plant type Installed 

capacity (MW) 

Available 

capacity (MW) 

Unavailable capacity 

(MW) 

Thermal 17,600 6,500 11,100 

Hydropower 16,500 10,000 6,500 

Total MW 34,100 16,500 17,600 

Source: Adapted from Pietrosemoli and Rodríguez-Monroy (2019) 
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5.1.5 Problem statement 

Studies addressing the issue of gas flaring have yet to develop a robust mathematical 

framework for determining the maximum amount of electricity that can be produced from 

flare gas. Such information is vitally important for decision-makers in nations trying to 

alleviate energy poverty. Essentially, there is a significant gap that necessitates the recycling 

of flared natural gas for maximum power generation. For this purpose, we will apply the 

directional distance DEA model. As a second concern, when modelling real-life problems 

with DEA, negative data may be encountered. Therefore, we will investigate whether 

negative data has a significant effect on the capability of directional distance DEA to estimate 

power generation from flare gas.  

With regard to both of the above problems, it is pertinent to point out that Chapter 3 of this 

study only determined the optimal sizing of the gas-to-wire (GTW) process using the inverse 

DEA, and briefly explained how it can be used for energy analysis. While Chapter 4 took it 

further to calculate the amount of energy (or gross power) that can be generated from flare 

gas; the estimates of power are neither maximum nor minimum. The calculations are limited 

to power generation associated with lean production or a marginal increase in oil production. 

Generally, neither chapter examined the combined effects of thermal efficiency and negative 

data on maximum power generation. There is a need for decision makers to pay close 

attention to this issue, since negative data may also affect the optimality of DEA models, 

giving rise to the possibility of exploring the concept of optimal power sizing. 

Chapter 3 of this study is the first in literature to develop an energy transition curve for the 

petroleum industry, but no investigation is provided to determine whether negative data 

impacts the curve. Hence, another gap in the research literature arises: Can the absence or 

presence of negative data create perturbations in the energy transition curve of oil-producing 

nations? 
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To alleviate energy poverty as much as possible in selected oil-producing nations, we propose 

a novel strategy based on recycling flare gas to generate maximum power. Specifically, this 

chapter aims to answer the following research questions:  

 To what extent can flare gas be recycled for power generation to address energy 

shortages in an oil-producing nation? Due to the fact that our case study, Venezuela, 

ranks among the top seven nations in the world when it comes to gas flaring, the issue 

is of utmost importance. Additionally, the nation has one of the largest gas reserves in 

the world.  

 In the context of the directional distance DEA methodology, what effect does the 

inclusion of negative data have on the estimates of power generated? Since the 

conversion process (i.e., gas-to-wire) is relatively costly, the answer to this question 

can assist a decision-maker or policymaker in avoiding the error of overestimation.       

 In light of the current push towards the transition from fossil fuels to renewable 

energy sources, what is the optimal energy mix for an oil-producing nation that 

combines gas power generation with renewable energy sources? Identifying an 

optimal energy mix will involve computing the maximum power that can be 

generated from flare gas, while considering the nation's unavailable power generation 

capacity. Should the estimated maximum power not cover the nation's unavailable 

power generation capacity, the remainder will be allocated to renewable energy 

generation. 

Moreover, this chapter completes a trilogy on novel strategies for gas flaring reduction in the 

petroleum industry by filling in the research gaps of Chapters 3 and 4. Lastly, in order to 

assess overall performance, it is necessary to benchmark our proposed methodology against 

the inverse DEA developed in Chapter 3. 
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5.2 Methodology 

5.2.1 Nomenclature  

The nomenclature for this chapter is based on some sets from Chapter 3 of this study with 

minor additions: 

 :ݏݎ݁ݐ݁݉ܽݎܽܲ ݈ܽݎ݁݊݁ܩ

݊: number of decision-making units (DMUs) 

݉: number of inputs of each DMU 

 number of good outputs of each DMU :ݏ

 number of bad outputs of each DMU :ݍ

 :ݏݎ݁ݐ݁݉ܽݎܽܲ ܽݐܽܦ

݆ ) ௜௝: ݅th input of DMU௝ݔ = 1, … , ݊) 

௥௝ݕ
௚ th good output of DMU௝ݎ :   ( ݆ = 1, … , ݊ )  

௣௝ݕ
௕ th bad output of  DMU௝݌ :  ( ݆ = 1, … , ݊ ) 

 :ݏ݈ܾ݁ܽ݅ݎܸܽ ݊݋݅ݏ݅ܿ݁ܦ

݇ ) ௞: inefficiency score of DMU௞ߠ = 1, … , ݊ ) 

௝:        weight assigned to DMU௝ߣ   (݆ = 1, … , ݊)  

5.2.2 Preliminaries  

As the proposed methodology for this chapter is based on modified versions of the directional 

distance DEA, we will reintroduce the following DEA proposed by Chung et al. (1997) to 

reduce bad outputs: 

௞ߠ   :1ܯ
∗ = max  ߠ

.ݏ           .ݐ

         ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ௜௞ݔ                                ݅ = 1, … , ݉ 

        ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ (1 + ௥௞ݕ(ߠ
௚ ݎ                 = 1, … ,  ݏ

       ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= (1 − ௣௞ݕ(ߠ
௕ ݌                = 1, … ,  ݍ
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       ෍ ௝ߣ = 1
௡

௝ୀଵ

 

௝ߣ        ≥ 0                                               ݆ = 1, … , ݊                                                                                                      

Where ߠ௞
∗ is the inefficiency score of ܷܯܦ௞, such that ܷܯܦ௞ is regarded as an efficient unit 

if ߠ௞
∗ = 0. For every input ݅ that is positive for some ܷܯܦs and negative for others, 1ܯ can 

be modified to give model 2ܯ as follows: 

∗ߠ  :2ܯ = max  ߠ

.ݏ          .ݐ

         ෍ ௝ߣ
௝ୀଵ

௜௝ݔ
ା ≤ ௜௞ݔ

ା                                    ݅ = 1, … , ݉  

        ෍ ௝ߣ
௝ୀଵ

௜௝ݔ
ି ≤ ௜௞ݔ

ି                                     ݅ = 1, … , ݉  

         ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ (1 + ௥௞ݕ(ߠ
௚ ݎ                      = 1, … ,  ݏ

       ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= (1 − ௣௞ݕ(ߠ
௕ ݌                       = 1, … ,  ݍ

       ෍ ௝ߣ = 1
௡

௝ୀଵ

 

௝ߣ        ≥ 0                                              ݆ = 1, … , ݊                      

To simplify the model, 2ܯ was transformed into its SORM version (i.e., 5ܯ in Chapter 3) as 

follows: 

∗ߠ  :3ܯ = max  ߠ

.ݏ          .ݐ

         ෍ ௜௝ݔ௝ߣ

௡

௝ୀଵ

≤ ௜௞ݔ                                   ݅ = 1, … ,   ଵܫ ߳ ݅        ݉

         ෍ ௝ߣ
௝ୀଵ

௜௝ݔ
ା ≤ ௜௞ݔ

ା                                  ݅ = 1, … ,   ଶܫ ߳ ݅        ݉

         ෍ ௝ߣ
௝ୀଵ

௜௝ݔ
ି ≤ ௜௞ݔ

ି                                  ݅ = 1, … ,   ଶܫ ߳ ݅        ݉

         ෍ ௥௝ݕ௝ߣ
௚

௡

௝ୀଵ

≥ (1 + ௥௞ݕ(ߠ
௚ ݎ                    = 1, … ,  ݏ
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       ෍ ௣௝ݕ௝ߣ
௕

௡

௝ୀଵ

= (1 − ௣௞ݕ(ߠ
௕ ݌                     = 1, … ,  ݍ

       ෍ ௝ߣ = 1
௡

௝ୀଵ

 

௝ߣ        ≥ 0                                              ݆ = 1, … , ݊                      

As a result, 3ܯ is an applied version of 2ܯ based on the data type. Models 1ܯ and 3ܯ 

constitute the primary methodology of this chapter since each model is designed to 

accommodate a specific type of input data. Using both models, we will address the energy 

supply crisis in our chosen case study. In this regard, we recall the following research 

questions of this chapter as outlined in section 5.1.5: 

 To what extent can flare gas be recycled for power generation to address energy 

shortages in an oil-producing nation?  

 In the context of the directional distance DEA methodology, what effect does the 

inclusion of negative data have on the estimates of power generated?  

 In light of the current push towards the transition from fossil fuels to renewable 

energy sources, what is the optimal energy mix for an oil-producing nation that 

combines gas power generation with renewable energy sources? 

To answer the first research question, a decision-maker must calculate the maximum amount 

of power that can be recycled from flare gas. Due to the inevitable occurrence of safety and 

maintenance flaring, the estimate of maximum power is directly proportional to the 

maximum reduction of flare gas that can be achieved. 
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5.2.3 Derivation of maximum power generation from flare gas  

Using simple cycle gas turbines, flare gas can be converted into electricity by using the 

estimated reduction of flare gas, which in this case is the undesirable output in 1ܯ and 3ܯ. 

Specifically, both models emphasize the reduction of the undesirable output ݌. To convert 

such estimated reduction into power, we rewrite the constraint of the undesirable output(s) as 

follows: 

(1 − ௣௞ݕ(ߠ
௕ = ௣௞ݕ

௕ − ௣௞ݕߠ)
௕ )     

From the above constraint, it is apparent that as ߠ increases, the reduction of the undesirable 

output (i.e., ݕߠ௣௞
௕ ) will also increase. Let us denote the estimated reduction as ∆ݕ = ௣௞ݕߠ

௕ . 

Since the objective is to maximize ߠ, the maximum reduction of ݌th undesirable output of 

 :௞ can be expressed asܷܯܦ

௠௔௫ݕ∆ = ௣௞ݕ∗ߠ
௕  … … … … … … … … … … … (5.1) 

where ߠ∗ is the optimal solution of model 1ܯ or 3ܯ. 

As we are dealing with two similar models (i.e., 1ܯ and 3ܯ)  but with different structures, it 

is appropriate to express equation (5.1) separately for each model. In order to accomplish 

this, we must first recognize that this chapter is concerned only with one undesirable output, 

namely waste or flare gas. So, at all times, ݌ = 1. As a means of distinguishing ߠ∗across both 

models, let ߠଵ
∗ and ߠଷ

∗ be the optimal solutions of models 1ܯ and 3ܯ, respectively. In a 

similar manner, let ∆ݕଵ
௠௔௫ and ∆ݕଷ

௠௔௫denote the maximum reductions with respect to both 

models. For ease of analysis, we state the maximum reductions estimated by each model as 

follows: 

ଵݕ∆
௠௔௫ = ଵߠ

௞ݕ∗
௕  … … … … … … … … … … … (5.2) 

ଷݕ∆
௠௔௫ = ଷߠ

௞ݕ∗
௕  … … … … … … … … … … … (5.3) 

Previously, we demonstrated that when converting gas to electricity, the optimal number of 

turbine units can be determined based on a turbine's annual gas consumption and gas flaring 

reductions. Suppose ߪ is the annual gas consumption of a simple gas turbine, then it follows 

that the optimal number of turbine units needed is expressed as: 

߬ =
௠௔௫ݕ∆

 ߪ
 … … … … … … … … … … … … … (5.4) 
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Note that ߬ can only take integer values. As in Chapter 4, let ܹ and ߮ represent the work 

output and thermal efficiency of a particular gas turbine. Then power output of the turbine is 

defined as the product of its thermal efficiency and work output. In mathematical terms, for a 

single turbine, ܲݎ݁ݓ݋ = ߮ ܹ. Thus for ߬ turbines, we have: 

 

ܲ ݎ݁ݓ݋݌ ݈ܽݐ݋ܶ                        = ߮ ܹ߬ … … … … … … … … … … . . (5.5) 

 

Thus, we substitute equation (5.4) into equation (5.5) to obtain actual power generation via 

all turbines as follows:  

ܲ = ߮ ܹ ൬
௠௔௫ݕ∆

൰ ߪ … … … … … … … . . (5.6) 

In the same manner as explained in Chapter 4, a turbine's rated output is usually considered 

its gross power output if we ignore heat losses or thermal efficiency. Hence, we have that: 

,ݎ݁ݓ݋݌ ݉ݑ݉݅ݔܽ݉ ݏݏ݋ݎܩ             ܲ௠௔௫ = ܹ ൬
௠௔௫ݕ∆

൰ ߪ … … … . (5.7) 

Accordingly, this derived expression for gross maximum power provides the answer to the 

first research question. In contrast to Chapter 4, where the gross power calculated is neither 

maximum nor minimum, the gross power in equation (5.7) is a maximum. Clearly, this is 

evident from the fact that this maximum power is directly proportional to the maximum gas 

flaring reduction (i.e., ∆ݕ௠௔௫) as indicated on the right-hand side of equation (5.7). In this 

way, a decision maker will be able to design an energy mix that combines gas and renewable 

energy sources. A subsequent section will demonstrate this. We can now express the gross 

maximum power estimated by both models 1ܯ and 3ܯ as follows: 

ଵܲ
௠௔௫ =  ܹ ቆ

ଵݕ∆
௠௔௫

 ߪ
ቇ … … … … … … … . . (5.8) 

ଷܲ
௠௔௫ = ܹ ቆ

ଷݕ∆
௠௔௫

 ߪ
ቇ … … … … … … … … (5.9) 

Despite the similarities in both expressions, one cannot ignore the influence of negative data 

when applying the expression for ଷܲ
௠௔௫ due to the fact that it is derived for the model 3ܯ, 

which accommodates negative input data.  
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To investigate which model estimates a greater power given the absence or presence of 

negative data, we propose the following theorem: 

Theorem 1 (Theorem of optimal power sizing) 

The maximum power estimated by 1ܯ is greater than or equal to that estimated by 3ܯ i.e., 

ଵܲ
௠௔௫ ≥ ଷܲ

௠௔௫  

Proof 

For any given ܷܯܦ௞, recall that the optimal solutions of 1ܯ and 3ܯ are ߠଵ
∗ and ߠଷ

∗, 

respectively. These optimal solutions will generate maximum reductions of ∆ݕଵ
௠௔௫ and 

ଷݕ∆
௠௔௫, respectively. From equation 3.1.7, the gross maximum power ܲ௠௔௫ varies directly as 

the maximum reduction ∆ݕ௠௔௫. Since 1ܯ is a relaxation of 3ܯ, by omitting both ܫଶ sets’ 

constraints, the optimal solution of 3ܯ will always be a feasible solution to 1ܯ. Therefore, 

according to the objective functions of 1ܯ and 3ܯ, we have ߠଵ
∗ ≥ ଷߠ 

∗. Then it follows that 

ଵݕ∆
௠௔௫ ≥ ଷݕ∆ 

௠௔௫ and ଵܲ
௠௔௫ ≥ ଷܲ

௠௔௫. This completes the proof.  

Consequently, this theorem answers the second research question, and we can deduce three 

corollaries. 

Corollary 1: ଵܲ
௠௔௫ > ଷܲ

௠௔௫ indicates that negative data reduces the value of maximum power 

estimated by 3ܯ. Hence, the optimal power sizing is as follows:  

ଷܲ
௠௔௫ ≤ ܲ௠௔௫ ≤ ଵܲ

௠௔௫ 

 

In terms of gas flaring reductions, this optimal power sizing can also be expressed as: 

 ܹ ቆ
ଷݕ∆

௠௔௫

 ߪ
ቇ ≤ ܲ௠௔௫ ≤ ܹ ቆ

ଵݕ∆
௠௔௫

 ߪ
ቇ 

Corollary 2: If ଵܲ
௠௔௫ = ଷܲ

௠௔௫, then negative data has no impact on 3ܯ 

Corollary 3: There is a mathematical possibility that some ܷܯܦ௞ determined to be efficient 

by 3ܯ can also be determined to be inefficient by 1ܯ, since its inefficiency score ߠ∗ may 

increase in the absence of negative data. 

Corollaries 1 and 2 cannot hold simultaneously for each producer. If the first corollary is 

satisfied from the obtained results, then we refer to Theorem 1 as the theorem of optimal 

power sizing. Although we are exploring the effect of negative data on both models, we must 

take note that 3ܯ provides a realistic/practical estimate, whereas 1ܯ provides an 

optimistic/theoretical estimate (i.e., an upper bound).  
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As a result of modelling real-world problems with DEA, researchers have discovered that 

negative data cannot simply be ignored, hence relaxing the prior assumption that all data are 

positive in the application of DEA models. 

5.2.4 Design of an optimal energy mix 

A major goal of the Sustainable Energy for All (SE4ALL) initiative is to improve energy 

efficiency through an energy mix. This goal aims to increase the share of renewable energy in 

the global energy mix to gradually transition to 100% renewable energy. To aid oil-producing 

nations in improving energy efficiency, it is imperative that we design an optimal energy mix 

that includes gas-powered and renewable energy sources. Flare gas is a huge waste of 

affordable and reliable energy, and to combat its associated environmental degradation, an 

optimal energy mix must be based on the maximum amount of power that can be recovered 

from flare gas in conjunction with renewable sources. Additionally, a nation's power 

generation capacity must also be considered when formulating an optimal energy mix. To 

begin with, let ߱ denote the unavailable power generation capacity of a nation. Furthermore, 

let ߟ௚ and ߟ௥ represent the proportions (i.e., in percentages) of gas and renewable energy 

sources that make up the proposed energy mix. Consequently, it follows that: 

௚ߟ + ௥ߟ = 1 … … … … … … … . (5.10) 

Recall from section 5.2.3, that gross maximum power is expressed as: 

                                      ܲ௠௔௫ = ܹ ൬
௠௔௫ݕ∆

 ൰ ߪ

Hence, from equation (5.10) it can be inferred that the proportions of gas-powered and 

renewable energy generation are as follows: 

௚ߟ = ቀܲ௠௔௫
߱ൗ ቁ, and  ߟ௥ = 1 − ቀܲ௠௔௫

߱ൗ ቁ, provided that ܲ௠௔௫ < ߱.  

Considering models 1ܯ and 3ܯ, the optimal energy mix for each is as follows: 

For ߟ :1ܯ௚ = ቀ ଵܲ
௠௔௫

߱ൗ ቁ, and  ߟ௥ = 1 − ቀ ଵܲ
௠௔௫

߱ൗ ቁ , provided that ଵܲ
௠௔௫ < ߱ 

For ߟ :3ܯ௚ = ቀ ଷܲ
௠௔௫

߱ൗ ቁ, and  ߟ௥ = 1 − ቀ ଷܲ
௠௔௫

߱ൗ ቁ , provided that ଷܲ
௠௔௫ < ߱ 
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In the special case where ܲ௠௔௫ ≥ ߱, gas-powered generation is only recommended, and 

renewable energy sources may not be required in the short-term, but rather a long-term 

investment. This means that an energy mix is not necessary if ܲ௠௔௫ ≥ ߱. However, if an 

energy mix is still desired for this special case, the proportion of renewable sources should be 

determined at the discretion of the decision maker. Even so, the most likely scenario in the 

case of persistent energy shortages is one in which ܲ௠௔௫ < ߱. In general, this section 

addresses the third research question. 

5.2.5 Summary of main research methodology 

In this section, we summarize the primary methodology of this study. The process flow 

diagram (PFD) shown in Fig. 5.1 illustrates how this is accomplished. It begins with the 

classification of the data for our proposed models 1ܯ and 3ܯ. The two models have the 

same types of two outputs (one desirable output and one undesirable output). In this case, the 

undesirable output is waste gas or flare gas that must be recycled for power generation. Input 

classification is the primary difference between the two models. The model 1ܯ considers 

four positive inputs for all DMUs (i.e., oil-producing nations). Alternatively, model 3ܯ 

incorporates another input to make a total of five inputs to examine how negative data affect 

estimates of power generation. The additional input is positive for some DMUs and negative 

for others. As previously explained in Chapter 3, a classic example of input with such duality 

is the current account balance of each oil-producing nation. Current account surpluses are 

modelled as positive input data, whereas current account deficits are modelled as negative 

input data.  

 

Following the classification of inputs in Fig. 5.1, the next step is to evaluate the efficiency of 

each DMU using both models. An efficient DMU has ߠ∗ = 0, whereas an inefficient DMU 

has ߠ∗ > 0. Next, we calculate the maximum reduction in undesirable output (i.e., ∆ݕ௠௔௫) 

for each inefficient DMU across both models. Using turbines, the maximum reductions 

obtained from both models will be converted into maximum power generation (i.e., ܲ௠௔௫). 

In the following step, the estimates of maximum power are compared using our proposed 

theorem of optimal power sizing. For each DMU, the theorem holds if both power estimates 

are unequal. The theorem does not hold, however, if the power estimates are equal. 

Afterward, the decision-maker must compare each power estimate with the unavailable 
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power generation capacity in the case study. An energy mix must be designed if either of the 

power estimates is less than the unavailable power generation capacity. In the event that the 

power estimate(s) exceed or equal the unavailable power generation capacity, only gas-

powered generation should be considered for the case study, and no mix of energy sources is 

necessary. This concludes the main methodology for this study. 

Since this is a pioneering study on the design of an energy mix based on maximizing power 

generation from flare gas, it is imperative that our methodology be compared to that of 

previous research. Furthermore, in this regard, we would like to point out that the proposed 

methodology of Chapter 3 can also determine the maximum reduction of undesirable outputs, 

which we have incorporated into our research framework. In order to assess the performance 

of our proposed models, we will compare the estimated maximum reductions in this chapter 

with those reported in Chapter 3 for the same set of DMUs or producers. For this purpose, we 

should examine the inverse DEA model which incorporates all five inputs (including current 

account balances) developed in Chapter 3 and formulate a corresponding version with only 

four positive inputs that are perfectly matched to the structure of model 1ܯ (i.e., with four 

positive inputs). The next section will cover the required analysis and related theorems. 
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Figure 5.1: Framework of research methodology 
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5.2.6 A special case of maximum gas flaring reductions 

Suppose we are interested in using 2ܯ as a base model and need to estimate the minimum 

and maximum gas flaring reductions for an inefficient ܷܯܦ௞. The following inverse DEA 

model is suitable for this application: 

max     :4ܯ ∗ߛ =   ௣௞ߛ
.ݏ             .ݐ
            ෍ ௝ߣ

௞ݔ௜௝
ା

௝ఢி

≤ ௜௞ݔ
ା                                                         ݅ = 1, … , ݉  

            ෍ ௝ߣ
௞

௝ఢி

௜௝ݔ
ି ≥ ௜௞ݔ

ି                                                        ݅ = 1, … , ݉  

            ෍ ௝ߣ
௞ݕ௥௝

௚

௝ఢி

− ൫1 + ෠௞൯ߠ × ௥௞ݕ
௚ ≥ ݎ                         0 = 1, … ,  ݏ

           ෍ ௝ߣ
௞ݕ௣௝

௕

௝ఢி

− ൫1 − ෠௞൯ߠ × ൫ݕ௣௞
௕ − ௣௞൯ߛ = ݌         0 = 1, … ,  ݍ

            ෍ ௝ߣ
௞

௝ఢி

= 1                                                                    

௣௞ߛ             ≤ ௣௞ݕ
௕  

௣௞ߛ            ≥ 0  ∀݇ ∈ ,ܩ  ݅ = 1, … , ݎ   ݉ = 1, … , ݌  ݏ = 1, … ,  ݍ
௝ߣ           

௞ ≥ 0,  ∀݇ ∈ ,ܩ   ∀݆ ∈                                                                                       ܨ

To preserve the efficiency score of ܷܯܦ௞, and to keep 4ܯ feasible at all times due to 

negative data, one must set ߠ෠௞ <  As an example, but under the full discretion of the .∗ߠ

decision-maker, one can define ߠ෠௞ as 1% less than ߠ∗ . Where ߠ∗  is the optimal solution of 

 may also require the SORM technique depending on the type of 4ܯ  The application of .2ܯ

input data. Here, we transform 4ܯ into an applied version, 5ܯ (i.e., same model 8ܯ in 

Chapter 3), as follows: 

 

max     :5ܯ ∗ߛ =   ௣௞ߛ
.ݏ             .ݐ
            ෍ ௝ߣ

௞ݔ௜௝
௝ఢி

 ≤ ݅                                                      ௜௞ݔ  = 1,2, … ,  ଵܫ ߳ ݅       ݉

            ෍ ௝ߣ
௞ݔ௜௝

ା

௝ఢி

≤ ௜௞ݔ
ା                                                         ݅ = 1,2, … ,  ଶܫ ߳ ݅      ݉

            ෍ ௝ߣ
௞

௝ఢி

௜௝ݔ
ି ≥ ௜௞ݔ

ି                                                        ݅ = 1,2, … ,   ଶܫ ߳ ݅     ݉

            ෍ ௝ߣ
௞ݕ௥௝

௚

௝ఢி

− ൫1 + ෠௞൯ߠ × ௥௞ݕ
௚ ≥ ݎ                         0 = 1, … ,  ݏ
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           ෍ ௝ߣ
௞ݕ௣௝

௕

௝ఢி

− ൫1 − ෠௞൯ߠ × ൫ݕ௣௞
௕ − ௣௞൯ߛ = ݌        0 = 1, … ,  ݍ

            ෍ ௝ߣ
௞

௝ఢி

= 1                                                                    

௣௞ߛ             ≤ ௣௞ݕ
௕  

௣௞ߛ            ≥ 0  ∀݇ ∈ ,ܩ  ݅ = 1, … , ݎ   ݉ = 1, … , ݌  ݏ = 1, … ,  ݍ
௝ߣ           

௞ ≥ 0,  ∀݇ ∈ ,ܩ   ∀݆ ∈                                                    ܨ

It should be noted that 3ܯ is the proper base model for 5ܯ, and both are based on the SORM 

technique. In the case of a decision-maker wishing to use 1ܯ as a base model (i.e., the 

absence of negative input data), 5ܯ must be transformed into 6ܯ as follows: 

max   :6ܯ ∗ߛ =   ௣௞ߛ
.ݏ             .ݐ
           ෍ ௝ߣ

௞ݔ௜௝
௝ఢி

 ≤ ݅                                                        ௜௞ݔ  = 1, … , ݉  

            ෍ ௝ߣ
௞ݕ௥௝

௚

௝ఢி

− ൫1 + ෠௞൯ߠ × ௥௞ݕ
௚ ≥ ݎ                          0 = 1, … ,  ݏ

           ෍ ௝ߣ
௞ݕ௣௝

௕

௝ఢி

− ൫1 − ෠௞൯ߠ × ൫ݕ௣௞
௕ − ௣௞൯ߛ = ݌         0 = 1, … ,  ݍ

            ෍ ௝ߣ
௞

௝ఢி

= 1                                                                    

௣௞ߛ             ≤ ௣௞ݕ
௕  

௣௞ߛ            ≥ 0  ∀݇ ∈ ,ܩ  ݅ = 1, … , ݎ   ݉ = 1, … , ݌      ݏ = 1, … ,  ݍ
௝ߣ           

௞ ≥ 0,  ∀݇ ∈ ,ܩ   ∀݆ ∈                                ܨ

For this case, where there is no negative data, to preserve the efficiency score of ܷܯܦ௞ and 

to keep 6ܯ feasible at all times, one must set ߠ෠௞ ≤  is the optimal solution of  ∗ߠ Where . ∗ߠ

 is 6ܯ ,which were designed to handle negative input(s) ,4ܯ and 2ܯ When compared to .1ܯ

the exact inverse of base model 1ܯ and can only be applied to positive data. Moreover, every 

mathematical relationship that exists between model pair 2ܯ and 4ܯ, will also hold for 

model pair 1ܯ and 6ܯ. Most importantly, the models 4ܯ,  all have the benefit 6ܯ and ,5ܯ

of a maximum gas flaring reduction when ߠ෠௞ = 0.  

Toward exploring possible relationships between our proposed models, we pose the 

following additional questions: 

 Are both the models 5ܯ and 6ܯ capable of estimating equal power? 

 Can the base and inverse DEA estimate equal gas flaring reductions? 

 Does negative data impact on the energy transition curves of 5ܯ and 6ܯ? 
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Answers to the additional questions in this section may be found in these theorems and the 

energy transition curve. 

 

Theorem 2 

The maximum power estimated by 6ܯ is greater than or equal to that estimated by 5ܯ 

Proof 

This proof is similar to that of Theorem 1 

 

Theorem 3 (Theorem of equivalence) 

The maximum gas flaring reductions estimated by 2ܯ and 4ܯ (as well as by their SORM 

versions i.e., 3ܯ and 5ܯ, respectively) are perfectly equal, if and only if, ߠ∗ = 1 in 2ܯ and 

෠௞ߠ and , 3ܯ = 0 in 4ܯ and 5ܯ. However, in all other cases, the maximum gas flaring 

reduction estimated by both models will be approximately equal. (In the presence of only 

positive input data, this also holds for 1ܯ and 6ܯ). 

Proof 

Consider the case where an inefficient ܷܯܦ௞ has its undesirable output reduced by 2ܯ. To 

obtain an optimal solution to 2ܯ, one must rewrite the RHS of the equation representing the 

undesirable output as follows: 

௣௞ݕ  
௕ − ൫ݕ∗ߠ௣௞

௕ ൯ = ௣௞ݕ
௕ − ௠௔௫ݕ∆  … … … … … . (5.11)     

In an ideal or perfect scenario, all waste would be eliminated, or the total undesirable output 

(i.e., ݕ௣௞
௕ ) would be reduced to zero if and only if, ߠ∗ = 1 in equation (5.11)  

Therefore, when ߠ∗ = ௣௞ݕ   ,1
௕ − ൫ߠ௞

௣௞ݕ∗
௕ ൯ = ௣௞ݕ

௕ − ௠௔௫ݕ∆ = 0 

௣௞ݕ
௕ = ௠௔௫ݕ∆ … … … … … … … … … … … … … … … . . (5.12) 

If the same inefficient ܷܯܦ௞ is subjected to a reduction in its undesirable output by 4ܯ, we 

have already proven in Chapter 3 that the maximum reduction (i.e., ߛ௣௞
௠௔௫) occurs when ߠ෠௞ =

0. Mathematically, this can be expressed as follows: 

At zero inefficiency (i.e., ߠ෠௞ = ௣௞ݕ  ,(0
௕ = ௣௞ߛ

௠௔௫ … … … … … … … … . . (5.13) 

Combining (5.12) and (5.13) for the same ܷܯܦ௞, we have: 

௣௞ߛ
௠௔௫ = ௠௔௫ݕ∆ = ௣௞ݕ∗ߠ

௕  
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Therefore, for any value of ߠ∗, we conclude: ߛ௣௞
௠௔௫ = ௣௞ݕ∗ߠ

௕  (QED). Since power correlates 

positively with gas flaring reductions, the maximum power estimated by both models will be 

the same. This theorem will also be demonstrated in the remaining sections. 

5.2.7 The energy transition curve 

In Chapter 3, we developed, for the first time in literature, an energy transition curve for the 

petroleum industry using model 8ܯ (i.e., renamed 5ܯ in this chapter). This was done 

through sensitivity analysis. The energy transition curve illustrates our proposed theorem of 

maximum gas flaring reduction occurring at zero inefficiency, i.e., when an inefficient 

producer becomes fully efficient. Thus, the curve represents the gradual transition from an 

inefficient state to an efficient state while reducing gas flaring. The gradual transition is 

achievable through investment in flare gas recovery technology and better management 

strategies. 

 

To simplify explanation, we will use models 3ܯ and 5ܯ for this section in accordance with 

the model notations of this chapter. Here, we examine the impact of negative data on the 

projected reductions in gas flaring estimated by 5ܯ. The original energy transition curve is 

shown as ܤܣ in Fig. 5.2. In contrast to the model 3ܯ, this curve can locate two extremes, 

which are the minimum and maximum reductions in gas flaring for an inefficient oil-

producing country. The curve ܤܣ was designed primarily for optimal sizing of gas-to-wire 

(GTW) processes. As shown at point ܣ, the producer is significantly inefficient, while at 

point ܤ (i.e., with zero inefficiency), after completing its potential transition, it becomes fully 

efficient, thus reducing gas flaring to its lowest levels possible.  

 

Based on Theorem 2, if the maximum power estimated by 6ܯ is greater than that estimated 

by 5ܯ for a given producer, the gas flaring reductions estimated by 6ܯ will also be greater 

than those estimated by 5ܯ . Fig. 5.2 shows the resultant effect of an absence of negative 

data as lines ܦܥ and ܨܧ. A rightward perturbation of the energy transition curve ܤܣ leads to 

an increase in both the minimum and maximum reductions estimated by 6ܯ in this case, 

creating a new transition curve ܤ|ܣ|. In this regard, it is imperative to note that the increase in 

both estimated reductions can only be achieved if we have the same number of producers for 

both curves. If, for example, the number of producers should increase due to the exclusion of 
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negative data (i.e., special case of the third corollary of Theorem 1), then only the maximum 

reductions would increase. The concept of optimal power sizing is therefore more applicable 

to maximum reductions. 

We must emphasize that the maximum reductions at points ܤ and ܤ| in Fig. 5.2 can also be 

determined by models 3ܯ and 1ܯ, but with a shorter computation time than their inverse 

counterparts 5ܯ and  6ܯ, respectively. 5ܯ and 6ܯ, however, have an advantage over 3ܯ 

and 1ܯ, respectively, in determining the minimum reductions at points ܣ and ܣ| while 

developing curves ܤܣ and ܤ|ܣ|. In terms of gas flaring reductions, this is the fundamental 

difference between the directional distance DEA and the inverse DEA. In summary, recall 

that  ∆ݕଷ
௠௔௫ and ∆ݕଵ

௠௔௫denote the maximum reductions estimated by 3ܯ and 1ܯ, 

respectively. Hence, we can state here that: 

For curve ߛ  ,ܤܣ஺஻
௠௔௫ = ଷݕ∆

௠௔௫ at point ܤ through the application of 5ܯ or 3ܯ (i.e., 5ܯ ≡

|஺|஻ߛ ,|ܤ|ܣ For curve .( 3ܯ
௠௔௫ = ଵݕ∆

௠௔௫ at point ܤ| through the application of 6ܯ or 1ܯ(i.e., 

6ܯ ≡  .(1ܯ

 
Figure 5.2: Effect of negative data on the energy transition curve 
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5.3   Application, results, and analysis 

5.3.1 Application of the proposed models 

We describe the application of our proposed models 1ܯ and 3ܯ in this section by following 

the detailed steps in the process flow diagram of Fig. 5.1. Our first step towards 

benchmarking our proposed models will be to use the oil production data provided in Chapter 

3, which is an extract from the ASB database. The data is composed of five inputs: the 

current account balance (surplus and deficit balances as positive and negative inputs, 

respectively), wells completed, producing wells, active rigs, and refining capacity; and two 

outputs: GDP per capita and routinely flared gas. Negative input data comes from deficit 

current account balances, whereas routinely flared gas is undesirable output or waste that has 

to be recycled for power generation. By not including the source of negative data (i.e., current 

account balances), we apply 1ܯ, which requires using only four inputs while 3ܯ requires the 

use of all inputs. Based on the sated nomenclature, ߠଵ
∗ and ߠଷ

∗ are the optimal solutions of 

models 1ܯ and 3ܯ .  

Further, it is important to reiterate and justify the rationale for this chapter in terms of 

maximum gas flaring reductions, which are determined by the optimal solutions of models 

 The Zero Routine Flaring (ZRF) initiative is a joint initiative of the World Bank .3ܯ and 1ܯ

and the United Nations developed with the aim of achieving the greatest possible reduction in 

gas flaring. This is the underlying principle of our proposed methodology, which is to impose 

the maximum reduction in gas flaring among OPEC nations. 

In Table 5.2, we compare both models' optimal solutions and gas flaring reductions for the 

six producers discussed in Chapter 3. From Table 5.2, it is clear that, ߠଵ
∗ > ଷߠ

∗ for all six 

producers. In other words, the optimal solutions, and the flare reductions under 1ܯ are 

greater than those under 3ܯ. Thus, the first corollary of Theorem 1 is satisfied, leading to the 

concept of optimal power sizing for the producers. We will need to calculate optimal power 

sizing for each producer based on the estimated reductions in gas flaring. 
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Table 5.2: Maximum gas flaring reductions of six OPEC members 

          ௞      Optimal valuesܷܯܦ
 ∗ߠ                

Maximum gas flaring 
reductions  
   ݔܽ݉ݕ∆                    
 (ଷݑܿ ݉)                 

ଵߠ
ଷߠ   ∗

ଵݕ∆  ∗
௠௔௫ ∆ݕଷ

௠௔௫ 
Algeria 0.8873 0.8311 3197.83 2995.28 
Indonesia 0.9115 0.7835 2235.00 1921.14 
Iraq 0.9453 0.9162 9086.22 8806.51 
Nigeria 0.9655 0.9124 13777.69 13019.95 
UAE 0.5984 0.5576 587.63 547.56 
Venezuela 0.9766 0.9479 9066.75 8800.30 
 

5.3.2  Comparative analysis 

While the overall aim of our proposed methodology is to design an energy mix, it is 

necessary to compare our obtained results (i.e., the maximum reductions) with those of a 

prior study. This is intended to provide a means for validating the models. For the same set of 

producers, this sub-section compares the estimated reductions under 3ܯ (i.e., the SORM or 

applied version of 2ܯ) in Table 2 with those estimated in Chapter 3. As a point of 

clarification, we make this initial comparison because only model 3ܯ can accommodate 

negative input data, as with the inverse DEA developed in Chapter 3. A comparative analysis 

of the estimated reductions is presented in Table 5.3. The reductions under 3ܯ are denoted 

by ∆ݕଷ
௠௔௫, while those obtained in Chapter 3 are denoted by ߛହ

௠௔௫. 

 

Table 5.3 demonstrates that, except for Venezuela showing a deviation of 0.28% in computed 

maximum reductions, all other producers have about equal estimates across both models. The 

reason why there is not a perfect match between the maximum reductions for all the 

producers in Table 5.3 is because ߠ∗ < 1 for all the producers in Table 5.2. Therefore, it is 

difficult to eliminate production waste in real-world situations. Likewise, Chapter 3 found 

that the estimated maximum flare reductions of the same six producers were less than the 

flare gas volumes they produced. We see an example here where neither of the conditions of 

Theorem 3 are satisfied due to real-world application of the two models. It is therefore 

expected that the maximum reductions will be approximately equal. In addition, since the 

optimal number of turbines, ߬, can only take integer values, both models will estimate the 

same maximum power. The same applies to the models 1ܯ and 6ܯ as well. 
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Table 5.3: Comparison of gas flaring reductions in the presence of negative data 

Producers Algeria Indonesia Iraq Nigeria UAE Venezuela 

Maximum Reduction 

ଷݕ∆
௠௔௫ (݉ ܿݑଷ) 

 

2995.28 

 

1921.14 

 

8806.51 

 

13019.95 

 

547.56 

 

8800.30 

Maximum Reduction 

ହߛ
௠௔௫(݉ ܿ3ݑ) 

 

2995.35 

 

1921.25 

 

8806.19 

 

13020.20 

 

547.58 

 

8825.04 

 

Although we did not apply the models 1ܯ and 6ܯ in Chapter 3, we must compare the 

reductions under both models in order to further demonstrate our theorem of equivalence. 

Table 5.4 shows the reductions under 1ܯ and 6ܯ, and here we see a better match of the 

flaring reductions for all the producers, especially for Venezuela. Hence, we have fully 

demonstrated our theorem of equivalence, and our proposed models 1ܯ and 3ܯ demonstrate 

satisfactory performance. 

 

Table 5.4: Comparison of gas flaring reductions in the absence of negative data 

Producers Algeria Indonesia Iraq Nigeria UAE Venezuela 

Maximum Reduction 

ଵݕ∆
௠௔௫ (݉ ܿݑଷ) 

 

3197.83 

 

2235.00 

 

9086.22 

 

13777.69 

 

587.63 

 

9066.75 

Maximum Reduction 

଺ߛ
௠௔௫(݉ ܿ3ݑ) 

 

3197.86 

 

2235.00 

 

9086.44 

 

13777.58 

 

587.60 

 

9067.00 

 

The most noteworthy observation we can make from Tables 5.3 and 5.4 is that for all 

producers the reductions under 6ܯ (i.e., ߛ଺
௠௔௫) are significantly higher than the reductions 

under 5ܯ (i.e., ߛହ
௠௔௫). As a result, the energy transition curve for each producer exhibits a 

rightward perturbation. 
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5.3.3  Optimal power sizing computations 

In section 5.2.3, we introduced the expression for the optimal power sizing as: 

ଷܲ
௠௔௫ ≤ ܲ௠௔௫ ≤ ଵܲ

௠௔௫ 

In terms of gas flaring reductions, this expression becomes: 

 ܹ ቆ
ଷݕ∆

௠௔௫

 ߪ
ቇ ≤ ܲ௠௔௫ ≤ ܹ ቆ

ଵݕ∆
௠௔௫

 ߪ
ቇ 

As shown in Table 5.2, we have already determined the maximum reductions from each 

model. Like the analysis in Chapter 3, if all producers use the same type of turbine to convert 

flare gas into electricity, then the annual gas consumption (i.e., ߪ) and power output (i.e., ܹ) 

are constant for each turbine. For computation, we refer to the specifications of the GT13E2 

gas turbine highlighted in Chapter 3. For this turbine, ܹ = 150MW and ߪ = 339.45 million 

cubic metres per year. Based on these values, Table 5.5 presents an optimal power sizing for 

all six producers. It is also important to note that the number of turbines (i.e.,  ߬ = ௠௔௫ݕ∆
ൗߪ ), 

can only take integer values. 

 

Limits and bounds in Table 5.5 refer to the two different estimates of maximum power 

computed by our proposed models. The lower bound (i.e., ଷܲ
௠௔௫) is derived from modelling 

both positive and negative data, whereas the upper bound (i.e., ଵܲ
௠௔௫) is derived from 

modelling only positive data. This is done to analyze the impact of negative data in real-

world applications of DEA models. It should be noted that the source of negative data in this 

study is the current account balance of OPEC member nations. The ASB publication released 

by OPEC records a surplus current account balance as positive data and a deficit account 

balance as negative data. As can be seen from Table 5.5, except for UAE, the maximum 

power generated from flare gas varies by input data type across models 1ܯ and 3ܯ. Model 

 3ܯ only considers positive data to establish the upper bound for power generation while 1ܯ

considers positive and negative data to establish the lower bound. Both upper and lower 

bounds are equal for UAE because flare reductions calculated by both models are almost 

equal for UAE, as shown in Table 5.2. Accordingly, negative data does not have a significant 

impact on power generation for UAE, thus satisfying the second corollary of Theorem 1.  
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Table 5.5: Optimal power sizing for the producers 

 ௞ Maximum Power (ܲ௠௔௫)ܷܯܦ
            (MW) 

Algeria  1200 ≤ ܲ௠௔௫ ≤ 1350 
Indonesia   750 ≤ ܲ௠௔௫ ≤ 900 
Iraq 3750 ≤ ܲ௠௔௫ ≤ 3900 
Nigeria 5700 ≤ ܲ௠௔௫ ≤ 6000 
UAE   150 ≤ ܲ௠௔௫ ≤ 150 
Venezuela 3750 ≤ ܲ௠௔௫ ≤ 3900 
 

Although sections 5.3.1 to 5.3.3 have utilized the production data contained in Chapter 3, to 

test the validity of our proposed models, the design of an energy mix for our case study 

requires more recent data. In particular, we will need to use the 2015 oil production data 

which corresponds to the 2015 energy statistics provided by Pietrosemoli and Rodríguez-

Monroy (2019). Therefore, in the subsequent sections, we will use the 2015 production data 

to develop an energy mix. 

5.3.4  Discussion of further findings 

We have already justified using the directional distance DEA model for power generation in 

previous sections. In this section and for further analysis/validation, we apply both directional 

distance DEA models to recent production data from the OPEC annual statistical bulletin 

(ASB). The production data for this section is based on the 2016 ASB publication available 

as an open source. In the 2016 ASB, production data is provided for all OPEC nations for the 

period 2011 to 2015. The primary reason for choosing the 2016 ASB for this study is the lack 

of recent flaring data from OPEC. As previously explained in Chapter 3, the OPEC ASB 

stopped publishing flaring data for all member nations in 2015, and other sources of flaring 

data are inconsistent with OPEC's. As such, the 2015 production year includes the most 

recent flare data among OPEC members. Additionally, it contains production data which can 

be used together with 2015 energy statistics for our case study (i.e., Venezuela). The 2015 

production year data is summarized in Table 5.6. Using the summarized data and models 1ܯ 

and 3ܯ, we calculated the maximum flare reductions, required turbine units, and power 

estimates for 13 OPEC nations in 2015. Table 5.7 presents the results.  
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Table 5.6: Data summary for oil and gas 

Variable Variable name Mean Min Max 

Input Current account 

balance (US$M) 

-7659.62 134 41307 

Input Well completed 301 35 635 

Input Producing wells 3593 540 14685 

Input Active rigs 68 6 182 

Input Refining capacity  

(1000b/cd) 

975.25 65 2907 

Desirable output GDP per capita 

(US$/person) 

15470.16 2645.78 68766.63 

Undesirable 

output 

Flare gas (million 

cu m) 

4641.32 0 16539.9 

Referring to Table 5.7, let ܨ be the set of producers under model 1ܯ that can recycle flare 

gas for power generation (i.e., producers with ߠଵ
∗ > 0). Furthermore, let ܩ be the set of 

producers under 3ܯ that are capable of generating power from flare gas. Therefore, 

producers in this category have values of ߠଷ
∗ > 0. Accordingly, in the context of directional 

distance DEA, producers with either ߠଵ
∗ = 0 or ߠଷ

∗ = 0 are already efficient and are unable to 

reduce their flare gas volumes. According to Table 5.7, we present both sets as follows: 

ܨ = {Algeria, Indonesia, Iraq, Nigeria, UAE, Venezuela} 

ܩ = { Indonesia, Iraq, Nigeria, UAE, Venezuela} 

There is a significant difference between the two sets in terms of Algeria's inclusion or 

exclusion. The reason for this can be simply traced to the type of data used across both 

models. Set ܨ, which is based on model 1ܯ, does not include any negative data. Due to 1ܯ 

producing a non-zero optimal solution (i.e., ߠଵ
∗ > 0) for Algeria, within this set ܨ, Algeria 

can actually reduce its current flare gas levels. In set ܩ, however, which is derived from 

model 3ܯ, we observe ߠଷ
∗ > 0 for Algeria, which is the result of the inclusion of negative 

data. This results in Algeria's exclusion from set ܩ.This corresponds to the third corollary of 

our first theorem, where negative data can flip the efficiency scale for a DMU.  
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Hence, Algeria is an outlier, since our analysis is based only on the five producers common to 

both sets ܨ and ܩ.For each producer with ߠ∗ > 0, the respective reductions are computed 

under both models and converted to optimal power outputs as shown in Table 5.7 and Fig. 

5.3. With the exception of Algeria and the UAE, a closer look at Table 5.7 reveals significant 

increases in the power estimates across models 3ܯ and 1ܯ for Indonesia, Iraq, Nigeria, and 

Venezuela. Clearly, ଵܲ
௠௔௫ > ଷܲ

௠௔௫ for all four producers. Additionally, this applies to their 

maximum reductions, which will inevitably perturb the energy transition curves of all four 

producers. Similarly, the required turbine units under both models have also been computed, 

with  ߬ଵ
௠௔௫ > ߬ଷ

௠௔௫ in most cases. However, for UAE,  ߬ଵ
௠௔௫ = ߬ଷ

௠௔௫. 

In Fig. 5.3, it can be seen that Venezuela stands to gain the most from flare gas power 

generation, followed closely by Iraq and Nigeria. The UAE generated the least amount of 

power from flare gas, suggesting a near-efficient state for the producer in comparison to 

others. Furthermore, unlike Indonesia, Iraq, and Nigeria, our estimation of Venezuela's 

maximum power is not affected significantly by negative data. Hence, Fig. 5.3 strongly 

advocates the conversion of flare gas into electricity in Venezuela as a reliable and affordable 

energy source. Having said that, we must reiterate here that the maximum reduction and 

power estimated by 3ܯ is more realistic due to the existence of negative data in real-world 

scenarios. Nevertheless, we will design an energy mix for Venezuela based on both power 

estimates. 
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Table 5.7: Flare gas power generation for OPEC members 

          ௞  Optimal valuesܷܯܦ
 ∗ߠ            

Maximum gas flaring                               
reductions  
   ௠௔௫ݕ∆             
 (ଷݑܿ ݉)             

Required 
Turbine units, 
       ߬௠௔௫ 

 Maximum Power   
           ܲ௠௔௫ 
                      
            (MW) 
 

Change in Max Power 
∆ܲ௠௔௫ 

 
                (%) 
 

ଵߠ  
ଷߠ ∗

ଵݕ∆ ∗
௠௔௫ ∆ݕଷ

௠௔௫ ߬ଵ
௠௔௫ ߬ଷ

௠௔௫ ଵܲ
௠௔௫ ଷܲ

௠௔௫ ∆ܲ௠௔௫ = ଵܲ
௠௔௫ − ଷܲ

௠௔௫ 
 

Algeria 0.8630 0.0000 3032.75 - 8 - 1200 - NA 
Angola 0.0000 0.0000 - - - - - - - 
Ecuador 0.0000 0.0000 - - - - - - - 
Indonesia 0.9075 0.6004 1690.67 1118.55 4 3 600 450 33.33 
Iran 0.0000 0.0000 - - - - - - - 
Iraq 0.9688 0.7917 14150.87 11564.05 41 34 6150 5100 20.58 
Kuwait 0.0000 0.0000 - - - - - - - 
Libya 0.0000 0.0000 - - - - - - - 
Nigeria 0.9350 0.6555 9057.63 6350.03 26 18 3900 2700 44.44 
Qatar 0.0000 0.0000 - - - - - - - 
Saudi 
Arabia 

0.0000 0.0000 - - - - - - - 

UAE 0.4728 0.4728 492.61 492.61 1 1 150 150 0 
Venezuela 0.9959 0.9757 16472.09 16137.98 48 47 7200 7050 2.13 
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Figure 5.3: Maximum power generation by producers 

5.3.5 Proposed energy mix for Venezuela 

To determine the optimal energy mix for our case study, we need to restate the energy statistics 

provided by a previous study and apply our derived formulas. 

The total installed capacity of the Venezuelan power plants in 2015 was 34,100MW, leaving a 

loss in capacity of 17,600MW. In addition to the loss of capacity, the electricity demand shortage 

in Venezuela for 2016 was 1800MW (Pietrosemoli & Rodríguez-Monroy, 2019). 

Recall the following expressions for our proposed energy mix in section 3.2: 

For ߟ :1ܯ௚ = ቀ ଵܲ
௠௔௫

ൗ߱ ቁ, and  ߟ௥ = 1 − ቀ ଵܲ
௠௔௫

ൗ߱ ቁ , provided that ଵܲ
௠௔௫ < ߱ 

For ߟ :3ܯ௚ = ቀ ଷܲ
௠௔௫

ൗ߱ ቁ, and  ߟ௥ = 1 − ቀ ଷܲ
௠௔௫

ൗ߱ ቁ , provided that ଷܲ
௠௔௫ < ߱ 

In light of the findings in Table 5.7 and the energy statistics for Venezuela, we have that: 

ଵܲ
௠௔௫ = 7200MW, ଷܲ

௠௔௫ = 7050MW, and ߱ = 17600MW.  
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The necessary conditions for the design of an energy mix for Venezuela have now been met 

since ଵܲ
௠௔௫ < ߱ and ଷܲ

௠௔௫ < ߱. 

The resulting energy mix across both models will be as follows:  

For ߟ :1ܯ௚ = 41%, and  ߟ௥ = 59% 

For ߟ :3ܯ௚ = 40%, and  ߟ௥ = 60% 

Although the energy mix from both models is close in proportions, we recommend the 3ܯ 

energy mix for Venezuela due to the presence of negative data in real-world applications of 

DEA. Thus, flare gas power generation will cover 40% of Venezuela's loss in power capacity, 

while the country will meet more than three times its 2016 energy deficit. In spite of the fact that 

it is not a complete solution to Venezuela's energy crisis, our analysis supports the use of natural 

gas as a bridge fuel. It is possible for the gradual transition to renewable energy sources to 

compensate for the 60 percent additional loss in power capacity for the nation. Hence, our 

analysis recommends an energy mix of 40% gas power generation and 60% renewable energy 

sources for Venezuela in the short term. 

5.3.6  Sensitivity analysis 

This section conducts a sensitivity analysis using model 5ܯ to visualize Venezuela's energy 

transition curve. As indicated in section 5.3.5, this transition curve represents 40% of the 

recommended energy mix for Venezuela's gas-powered generation.  

Considering 3ܯ to be the base model for 5ܯ, we will investigate the inverse relationship 

between ߠଷ
∗ and ߛହ

௠௔௫ in our sensitivity analysis. Specifically, we follow the approach discussed 

in Chapter 3 by reducing ߠଷ
∗ to zero to obtain ߛହ

௠௔௫. As shown in Table 5.7, for Venezuela, ߠଷ
∗ =

0.9757. The resulting curve in Fig. 5.4 shows that when ߠଷ
∗ = ହߛ ,0

௠௔௫ = 16265.30 million 

cubic metres. The estimate is close to that presented in Table 5.7 for Venezuela (i.e., ∆ݕଷ
௠௔௫ =

16137.98 million cubic metres). The difference between the two estimates (i.e., 127.32 million 

cubic metres) is less than the annual gas consumption of the GT13E2 turbine (i.e., 339.45 million 

cubic metres), so both estimates will generate equal amounts of power. 
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Figure 5.4: Proposed energy transition curve of Venezuela 

5.4  Managerial implications 

Amidst the increasing push for fossil fuels to be replaced with renewable energy, it is incumbent 

upon OPEC member nations to consider adopting and implementing energy mixes as a means to 

improve global energy efficiency. Furthermore, in light of the fact that flare gas contributes 

significantly to climate change, an adopted energy mix must always incorporate the generation of 

power from flare gas along with the use of renewable resources. There is no doubt that the DEA 

methodology, along with its many advanced modifications, is a powerful management tool, not 

only in business and economics, but also in engineering. In this chapter, from a technical and 

engineering standpoint, we present an innovative application of DEA to the design of an optimal 

energy mix for the petroleum industry. However, some implications for oil and gas managers 

should be highlighted when applying our methodology.  

As a starting point, conventional DEA models assume that all inputs and outputs are positive. As 

can be seen in the current study, this is not always the case when we have an input that contains 

both positive and negative data for OPEC member nations. We utilized two versions of our 

proposed model in order to address this issue. In the first version, only positive data was handled, 
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while in the second, both positive and negative data were handled. Based on preliminary results, 

both models showed significant differences in flare gas reductions. When using either of the 

proposed models, the reductions computed from both models will help a decision-maker avoid 

overestimation or underestimation due to data type. Additionally, we found that we can set 

limits/bounds on the maximum power generated from flare gas based on data type. An upper 

bound is created by modelling only positive data, while a lower bound is created by modelling 

both positive and negative data. Generally, the lower bound represents a realistic or practical 

estimate, while the upper bound represents an optimistic estimate. Using the lower bound 

estimate of maximum power, a decision-maker can save on costs pertaining to the installation 

and maintenance of additional turbine(s) to convert flare gas to electricity. 

As a final point, the formulation of an energy mix is highly dependent upon the estimate of 

maximum power obtained by our proposed models. Our study demonstrated that using the lower 

estimate of maximum power increases the proportion of renewable energy in the energy mix. In 

accordance with the SE4ALL Initiative, this is of vital importance for the gradual transition to 

100% renewable energy in the near future. To this end, it is imperative that decision-makers 

relax the assumption that all data are positive when using DEA methodology and include 

relevant negative data whenever available. 

5.5  Summary 

Climate change is aggravating, and gas flaring is a major contributor. Furthermore, the gas 

flaring process has paradoxical consequences for the energy economies of some oil-producing 

nations. There is no doubt that the current shift toward renewable energy sources to fight climate 

change is a positive development. Yet it is important to note that some developing nations will 

need more time to jump aboard the energy transition bandwagon than developed nations. 

Specifically, oil-producing nations experiencing power supply shortages will require a gradual 

transition based on reliable energy sources in the short term. To help such nations transition 

gradually to 100 percent renewable energy, this chapter advocates the use of flare gas as a bridge 

fuel. Therefore, we propose, for the first time in the literature, directional distance DEA models 

for maximizing flare gas power generation in oil-producing nations. 
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The application of our proposed models brings useful insights to energy analysts. Our initial 

findings confirm the impact of negative data on the maximum power estimated by our models. In 

the absence of negative data, we found that a significant increase in maximum power estimates 

resulted in a new concept of optimal power sizing. The increases in maximum power outputs for 

Indonesia, Iraq, Nigeria, and Venezuela were estimated to be 25%, 20.59%, 44.44%, 2.13%, 

respectively. For all four producers, this will lead to rightward perturbations in their energy 

transition curves. Another interesting finding of this chapter involves our proposed theorem of 

equivalence. The theorem found that for every inefficient oil producer, its maximum gas flaring 

reductions calculated by the directional distance DEA and inverse DEA are approximately equal. 

This also applies to the equivalent maximum power estimated by both models.  

 

As a final step, we chose Venezuela as our case study. The maximum gas flaring reduction for 

the nation was estimated to be 97.57% based on our model. With the aid of gas turbines, this 

reduction was converted into a power output of 7050MW, covering a 40% loss in the installed 

power plants’ capacity of the nation and more than three times the nation’s energy shortage in 

2016. Based on our findings, an optimal energy mix for Venezuela should be 40% gas power 

generation and 60% renewable energy. With this, the country would gradually transition to 100% 

renewable energy. In general, our obtained result for Venezuela confirms that natural gas plays 

an integral role in the energy economy of the nation.  
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Chapter 6 – Conclusions and Future Directions                                                

6.1 Introduction 

Throughout this chapter, the background to the current research, its objectives, and work done in 

in previous chapters are briefly summarized. In addition, the findings of the research and its 

contribution are highlighted. There is also an analysis of the limitations and drawbacks. Finally, 

it is proposed that future research might address the limitations in order to extend the broader 

field of gas engineering. 

6.2 Conclusions 

Gas flaring contributes significantly to climate change due to the release of greenhouse gases. 

Additionally, it denies oil-producing nations access to affordable energy sources. As concern 

over climate change grows, experts have repeatedly recommended strategies and/or technologies 

to address gas flaring in the petroleum industry. Gas compression, gas-to-liquids (GTL), and gas-

to-wire (GTW) are the three main technologies recommended. The use of gas compression 

technology allows gas that would otherwise be flared to be compressed and transported to other 

locations for use. By using GTL technology, which includes Fischer Tropsch reactors, natural 

gas is converted into liquid fuels such as methanol, diesel fuel, and zero sulfur diesel. GTW 

refers to the conversion of natural gas into electricity using a simple or combined cycle gas 

turbine. This research focuses on the use of GTW technology as a solution to both the problem of 

gas flaring as well as the ongoing energy crisis in some oil-producing countries.  

Previous research indicates that there is no quantitative approach to address the gas flaring issue, 

since most common methodologies are qualitative or descriptive. Toward this end, the current 

research develops five models for the first time in the literature to accurately depict real-world 

scenarios related to gas flaring. Chapter 3 of the current study provides a detailed discussion of 

the first and second models. The first model is a directional distance DEA integrated with 

negative data for classifying oil-producing nations into efficient and inefficient producers. For 

estimating potential reductions in gas flaring, an inverse DEA was developed, which is a robust 

extension of the first model.  
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Based on a proposed theorem and sensitivity analysis, it was fully demonstrated that the 

maximum potential reduction in gas flaring will always occur at zero inefficiency. This led to the 

development of an energy transition curve for an inefficient producer. Thus, both models form a 

closed-loop optimization technique, since the first model estimates the inefficiency score of a 

producer, while the second model reduces it to zero via the energy transition curve. As GTW 

technology is quite expensive, particularly for developing nations, the inverse DEA played a 

crucial role in designing a cost-effective GTW process. To achieve this, a formula was developed 

to determine the optimal range of turbine units for the GTW process. Using this formula, a 

decision-maker can estimate the maximum number of turbine units required for a GTW process, 

thereby eliminating excess costs. Any investment that exceeds the maximum number of turbine 

units will likely result in a financial loss. The inverse DEA developed can therefore be seen as a 

managerial tool for securing investments in GTW technology and ensuring cleaner production. 

In Chapter 4, two inverse DEA models were proposed for implementing lean production 

practices in efficient oil-producing nations. There were several lean practices implemented, 

including increasing productivity, minimizing/reducing waste (i.e., flare gas), and recycling 

waste to generate power. In general, the gross power estimates obtained are of great value to the 

Nigerian petroleum industry, given the current power outages in the country. Using estimated 

production targets, a sensitivity analysis was then performed to determine which producers will 

benefit from both short- and long-term increases in oil production. Short-term benefits accrue to 

Angola, while long-term benefits accrue to Nigeria. In addition, Iraq and Qatar will benefit both 

in the short and long term. This chapter also developed an energy-based technique for ranking 

the efficient oil producers according to their net energy production. Based on three consecutive 

production years, Saudi Arabia was found to be the most efficient producer, while Iraq was the 

least efficient. 

As the final phase of this research, Chapter 5 examines the maximum amount of power that can 

be generated from flare gas, thus filling a critical research gap, as estimates of power in chapter 

four were neither maximum nor minimum. To accomplish this, a directional DEA approach was 

employed, resulting in the expression of the maximum power that can be produced from waste or 

flare gas. Estimates of maximum power are required to determine the optimal mix of gas-
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powered generation and renewable energy sources. There were two different scenarios presented, 

the first using only positive data, the second including both positive and negative data. 

According to several computations across multiple experiments, the first scenario generated 

higher estimates of maximum power than the second scenario. Based on an assessment of the 

ongoing energy crisis in Venezuela as a case study for this chapter, the maximum power that can 

be generated from flare gas has been estimated at 7050MW for the country in 2015. This 

estimate covers approximately 40% of the nation's unavailable power generation capacity. 

Therefore, in the short term, Venezuela's energy mix was optimized with 40% gas power 

generation and 60% renewable energy. 

6.3 Limitations of the Research 

As a result of this research, the following limitations have been identified: 

 The focus of this research project is primarily on gas-to-wire (GTW) technology, which 

offers both the reduction of gas flaring and the generation of electricity. However, there is 

still a need to explore the other two technologies as well, namely, Gas-to-liquids (GTL) 

and gas compression, especially in oil producing nations that are not experiencing any 

energy shortages. It would provide an alternative means or solutions for addressing 

global gas flaring from an economic perspective, given that experts believe GTL and gas 

compression techniques are quite expensive. 

 In Chapter 3, the models developed are primarily targeted at inefficient producers, 

causing maximum reduction of their undesirable output (e.g., flare gas). Furthermore, the 

same pair of models assume that it is not possible to reduce gas flaring for efficient 

producers. This leaves a gap that has been filled by the proposed models in Chapter 4. 

Despite this, it is essential to point out that the models in Chapter 4 only imposed 

reductions in gas flaring on efficient producers due to an increase in oil production. In 

contrast to chapter three, the computed reductions are not maximum. The global problem 

can still be further addressed by imposing maximum reductions in gas flaring for efficient 

producers.  
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 Chapter 5 has similar limitations to Chapter 3. The maximum power estimates in Chapter 

5 were calculated for inefficient producers, but no estimates were possible for efficient 

producers. It is also due to the underlying assumption of the directional distance DEA 

which only enables computation of maximum power estimates for inefficient producers. 

If energy shortages or the need to convert flare gas into other forms of energy arise in 

efficient oil-producing nations, it is necessary to determine their maximum power 

generation. 

 The ranking method using the inverse DEA remains subject to a final limitation. An 

inverse DEA was extended in Chapter 4 by incorporating the lean potential growth for 

ranking oil producers based on their good outputs alone. The current research, however, 

focuses on both good and bad outputs. As a result, a new energy-based ranking 

methodology was developed for ranking producers considering both types of outputs. 

Considering that this energy-based technique only applies to oil and gas production, it 

would be interesting to develop a ranking technique within the context of inverse DEA to 

rank oil producers according to good and bad outputs. 

6.4 Future Directions 

With respect to the identified limitations of this research project, the following suggestions may 

provide a foundation for future work: 

 This research is the first quantitative study on global gas flaring utilizing GTW 

technology. Therefore, it would be beneficial to develop quantitative approaches or 

optimization models for Gas-to-Liquids (GTL) and gas compression technologies while 

considering their economic feasibility. It is also recommended to determine an optimal 

energy mix consisting of GTL and renewable energy or gas compression and renewable 

energy, given the push for a transition to renewable energy. For energy analysts, a 

comparative analysis of both pairs of the energy mix will surely provide valuable 

information. 

 Research in inverse DEA is evolving and is currently attracting the attention of a number 

of researchers. As the inverse DEA is the primary optimization model in this study, it is 

essential to develop more robust versions that can impose maximum reductions in the 
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undesirable outputs of efficient decision-making units (DMUs). This will be highly 

relevant to other efficient work systems that require waste management techniques. 

 A number of techniques are available in the DEA literature for ranking efficient units, 

however, only the study by Soleimani-Chamkhorami et al. (2020) has developed a 

ranking method based on inverse DEA. In view of the fact that this technique can only 

rank units with good outputs when the constant return to scale assumption is applied, it is 

recommended to develop an inverse DEA that can rank units with both good and bad 

outputs. Furthermore, it would be interesting to extend such a model to include negative 

data and to assume variable returns to scale (VRS). As VRS models are well suited to 

handling negative data, this would be a promising future direction. 

 The energy-based ranking technique developed in Chapter 4 considered only crude oil 

and flare gas as energy sources. The scope of this technique can be extended by 

considering other sources of energy in the industry, such as LNG and the marketed 

production of gas, as additional sources of utilized energy. It is also recommended that 

this technique be applied to other types of decision-making units that use or transfer 

energy resources. 
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