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Abstract 

In a multifaceted environment, it is common to select among options with 

uncertain consequences or outcomes. Often the uncertainty can be reduced by 

sampling information, such as gathering information from options and searching for 

new options. In other words, there are at least two ways in which we can sample 

information. Existing literature has discussed the option selection and information 

sampling processes independently. However, there is a lack of a unified framework to 

illustrate the dynamics between them, while these three decision-making processes 

should be considered at the same time.  

In Chapter 1, I illustrate a daily life example and state the importance of 

investigating the neural mechanisms of information sampling in multiple-choice 

decision-making. To address the major problem in this thesis, I reviewed three 

candidate brain regions: the ventromedial prefrontal cortex (vmPFC), the anterior 

cingulate cortex (ACC), and the intraparietal sulcus (IPS). The vmPFC is related to 

both valuation and value-comparison processes, which are essential in selecting better 

options. The former process allows us to assign an internal value to an option, while 

the latter process allows us to make the comparison between options according to 

their values. The ACC is related to searching for new options from the environment, 

while the IPS is related to uncertainties and information gain.  

I then designed a multiple-choice decision-making task with three possible 

decisions (i.e., to accept a current option; to clarify a current option; to search for new 

options) to investigate both computational and neural mechanisms of information 

sampling in Chapter 2 & 3 respectively. Behavioural results are discussed in 

Chapter 2. During the designed decision-making task, while the value of existing 



5 

 

options was greater , but the outcome was largely uncertain at the same time, clarify 

decisions were more preferred. While the value of searching was greater, search 

decisions were more preferred. These results served as a fundamental framework to 

illustrate the sampling of information from existing options and the environment 

involved different mechanisms. In Chapter 3 I report a functional magnetic 

resonance imaging (fMRI) experiment to examine the neural signals of the vmPFC, 

IPS and ACC. The results show that during multiple-choice decision-making, the 

vmPFC guides the selection of the best option. Critically, the IPS and ACC were 

found to be crucial during information sampling. The IPS signals the demand for 

information and information gain, which guide clarify decisions to reduce uncertainty, 

while the ACC signals the incentive of searching, which guides search decisions. 

After the vmPFC, IPS and ACC were found to be involved in information 

sampling during multiple-choice decision-making, how these three regions formulated 

final decision was still not clear. To address this problem, in Chapter 4 I employ a 

convolutional neural network (CNN), which is a deep learning technique that is 

trained and dependent on human data, without any prior assumptions (model-free) to 

predict human decisions. The CNN involves feature extraction, integration and 

decision-making processes, which are particularly important in the decision-making 

task. By conducting a series of representational similarity analyses (RSA), which is 

multivariate analysis that allows us to compare the representational similarities 

between the multimodal representations in the CNN and the multi-voxel activation 

patterns of the human brain, which helps us better understand the computational 

processes in our brains. I demonstrate that the IPS, ACC and vmPFC are related to the 

early, intermediate, and late stage of decision formation respectively.  
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To conclude, I demonstrate that the IPS is critical during the sampling of 

information from options, the ACC is important during the sampling of information 

from the environment to discover alternatives, while the vmPFC operates as a guide to 

stop sampling information and accept existing options. The unified framework to 

illustrate the dynamics between option selection processes and information sampling 

processes was demonstrated. 
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Chapter 1: Introduction 

Imagine that you are shopping on eBay ‒ you might need some time to find 

the best product that suits your needs due to the overwhelming amount of information 

presented on the screen. This information includes the price, features, and appearance, 

among other things, which require careful consideration. During this process, there 

are three critical decisions that you might make. The first decision is to search for new 

products. Initially, you might scroll through the webpage to gather more available 

alternatives, or you risk missing out on some good products as they might be 

displayed on other pages. The second decision is to clarify the products that have been 

searched. This involves reading the product information that is unclear or limited. If 

we do not clarify the information, the products may not be suitable for your needs. 

Both the search and clarification decisions (i.e., information sampling) are essential 

for selecting better options and achieving better outcomes. After a series of 

information sampling, you might make the third decision, which is to accept among 

the current products and make a purchase. Although the process of deciding between 

these three decisions is common in our daily lives, there is a lack of a unified 

framework to illustrate their dynamics. The neural mechanism of information 

sampling in multiple-choice decision-making is still not entirely clear, and it is vital to 

study this mechanism as it provides a better understanding of how our brains operate 

during information sampling.  
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1.1 Value-based Decision-making  

It is crucial to understand how we determine that current products are not 

appealing enough, which then motivates us to sample more information. This involves 

two processes: the valuation process and the value comparison process. 

First, we need to understand the “values” of current products, which are 

constructed by factors such as price, functions, appearance. The valuation process 

allows us to assign an internal value to objects subjectively. However, the results of 

this process can vary between individuals, as we can have different preferences for the 

same product. Second, we need to compare the values of current products with our 

expectations of sampling new products. This is called the value comparison process, 

which enables us to choose a better option among multiple products. In most cases, 

we make decisions based on the expected future reward, usually selecting the option 

with the greatest expected value among multiple options (Montague et al., 1996). 

Expected value takes both the outcomes and the likelihood (or probability) into 

account to guide decision-making. For example, when choosing among two gambles, 

one that offers a 0.3 probability of winning $200 and another that offers a 0.5 

probability of winning $20, most people will choose the first gamble because its 

expected value of $60 (winning amount $200 multiplied by its probability of 0.3) is 

greater than the expected value of the second option, which is $10 (winning $20 

multiplied by its probability of 0.5). 

The valuation and value comparison processes play crucial roles in value-

based decision-making by allowing us to assign internal values to different products 
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and compare those values to choose the best option. These two processes are 

suggested to occur simultaneously (Albantakis & Deco, 2009; Wang, 2002). 

 

Figure 1. The conceptual model of the drift-diffusion model (DDM) suggests the 

stochastic nature of our decision-making process. It has been widely used to 

understand the mechanism of binary-choice decision problems, and incorporates the 

reaction times and the randomness of the choice pattern. It proposes that decisions 

are made when the evidence accumulation reaches a stopping boundary (upper or 

lower, which represents one of the available decisions or options). Evidence 

accumulation is depicted by the drift rate over time. Adapted from Vinding et al. 

(2021). 

 The concept of making decisions based solely on optimal expected value is 

not always applicable in real-life scenarios such as choosing meals among multiple 

options. To better explain how sophisticated and stochastic our decisions could be, the 

drift diffusion model (DDM) is commonly used in psychology and neuroeconomics to 

explain binary-choice decision problems. This model considers evidence 
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accumulation in both options until a stopping boundary is reached, at which point a 

decision is made. The process of evidence accumulation can be influenced by 

discrepancies between options, including their values.  For instance, it takes a short 

time for evidence accumulation when there is a significant value difference between 

two options. However, it takes a longer time for evidence accumulation when there is 

just a tiny value difference. Apart from value difference, the certainty of an option is 

also a kind of evidence, which could be the probability of gaining rewards. At the 

same time, the range of the discrepancy also implies task difficulty. A tiny 

discrepancy implies an immense task difficulty so that a longer time is needed for 

consideration. The task difficulty could be observed by the relationship between 

choice accuracy and response time, and it has been suggested that making a corrected 

response takes less time than an uncorrected response (Drugowitsch et al., 2012; 

Milosavljevic et al., 2010). While DDM offers insight into sophisticated and 

stochastic decision-making, it has limitations, including its inability to address non-

binary decision problems and its unrealistic assumptions, such as both the volatility of 

the signals and the cost of sampling are constant over time (Edwards, 1965; Ratcliff, 

1978), which is biologically unrealistic (Wang, 2002). 

Value-based theories are still powerful tools for understanding diverse 

scenarios of decision-making. They provides a foundation for investigating the 

underlying mechanisms of decision-making. For instance, this could also help to 

identify which brain regions are related during decision-making by correlating both 

the values and brain activities. Although this approach has been widely used in 

decision neuroscience over the decades, there was a lack of biological evidence about 

how the process of decision formation occurred in our brains and neurons.  
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The Biophysical model is another decision-making model that simulates 

neural activities during both the valuation process and the value comparison process 

(Wang, 2002). It demonstrates how both valuation and value comparison processes 

occur in neurons, providing more biological evidence. This model has been suggested 

to have a similar mechanism to human brain activities during decision-making, and 

has been used in decision neuroscience to identify brain regions related to decision-

making (Bonaiuto et al., 2016; Hämmerer et al., 2016).  

 

 

Figure 2. The conceptual model of the Biophysical model in 2002. This model was 

used for simulating neural activities during binary-choice decision problems. The two 

pyramidal cell groups (A and B) represented two stimuli, where the valuation process 

occurs. The interneurons provided inhibition feedback that regulated the activities of 

both pyramidal cell groups as the value comparison process. Adapted from Wang 

(2002).  
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This model comprises of two pyramidal cell groups with strong recurrent excitatory 

connections that receive the value of corresponding stimuli (Wang, 2002) (Fig. 2). 

The valuation process is simulated by a positive correlation between the value of 

stimuli and the activity of each cell group. Thus, a larger value input results in a more 

prominent activity in the cell group. Besides, the comparison process is simulated by 

inhibition feedback from interneurons, which regulates the activities of both 

pyramidal cell groups. For instance, all pyramidal cell groups can indirectly suppress 

each other by their input sent to the interneurons. As a result, the cell group with the 

largest value input will have the most prominent activity, inhibiting the other cell 

groups. Ultimately, a cell group with the prominent firing rate state would be selected 

by the model indicating the choice.  

 

Figure 3. Conceptual model architecture of the Biophysical model in 2012. This 

model was used for simulating neural activities during multiple-choice decision 



16 

 

problems. There could be N pyramidal cell groups which represent multiple stimuli. 

Adapted from Wang (2012). 

The Biophysical model demonstrates how both valuation and value-

comparison processes could biologically occur in neurons to guide decisions. It was 

later found to be capable of solving multiple-choice decision problems by adding 

extra pyramidal cell groups (Wang, 2012) (Fig. 3). However, it assumes unlimited 

working memory , which are feasible to occur in our brains. Also, the model lacks the 

ability to consider non-option value information that might influence our decisions 

such as the searching cost and the incentive to search. Overall, the Biophysical model 

suggests that neural activities are predictable and associated with the value 

information with more biological evidence. 

Indeed, both valuation and value comparison processes are essential for 

making value-based decisions, which allow us to understand the options and make a 

comparison between them to achieve better outcomes. However, in our daily life, it is 

ubiquitous to select among multiple options with uncertainties. The uncertainty might 

influence the results of the valuation process since we can only rely on limited 

information to assign values to options subjectively. Thus, the results of the value 

comparison process that guide final decision-making would also be influenced. In 

other words, our expected outcomes would be more unpredictable if the options are 

largely uncertain. However, we could reduce the uncertainty through information 

sampling.  



17 

 

1.2 Information Sampling 

Shopping on eBay is an example of how information sampling is important, 

which has been mentioned in Chapter 1. This daily life example illustrates that we can 

sample information from both options and the environment by reading the product 

information and searching for new products, respectively. Sampling from options 

allows us to reduce the uncertainties, while sampling from the environment allows us 

to discover more alternatives. However, these processes could also be sophisticated 

and stochastic (Blanchard & Gershman, 2017). For instance, it has been suggested 

that the strategies of how we sample information and what to sample are still under 

debate (Gottlieb, 2018).  

First, information sampling might include a series of accept and reject 

decisions (Freidin & Kacelnik, 2011; Pearson et al., 2014). For instance, when 

shopping on eBAy, my might switch between staying and scrolling down the screen. 

This process could continue infinitely unless we find a product reaches or 

approximately reaches our optimal expected value (Tervo et al., 2021). However, 

there is a trade-off between the time cost and non-stop searching, and the risk of 

failing to accept a good product.  

Second, the uncertainty-driven sampling strategy suggests that the drive to 

search came from the belief in some better alternatives which have not been 

discovered in the environment (i.e., searching and information bonuses (Wilson et al., 

2014), and the “uncertainty” about future outcomes (Badre et al., 2012)). Uncertainty 

arises when we have imperfect or unknown information about both the options and 

the environment (Hubbard, 2014). The extent to which the information we have varies 
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with our certainty toward the options, which can lead to lower decision confidence 

(Hebscher & Gilboa, 2016; Shapiro & Grafton, 2020). Although we can reduce the 

uncertainty of the environment by searching for more alternatives, we still lack 

certainty about the existing options. It is not sufficient to achieve better outcomes by 

just searching for alternatives since we are not “omniscient” but can only rely on the 

information that we have in order to select the better ones. To address this, we can 

also reduce the uncertainty of the options by exploiting or re-sampling them (Reitich-

Stolero et al., 2019). In other words, we can sample information from a current 

product (i.e., to clarify something), such as reading its details or searching for some 

comments about it to reduce the uncertainty. 

Third, interestingly, the random sampling strategy suggests that consideration 

of future reward and long-term planning may not be necessary (Knox et al., 2011). 

Although it seems that many information sampling strategies have been proposed and 

suggested, the specific strategy adopted by humans is still under debate (Blanchard & 

Gershman, 2017). Meanwhile, information sampling strategies have been suggested 

that might change over time. For instance, the threshold from accepting the preferred 

options rather than searching for more alternatives can be changed. However, it would 

be concurrently adopted before a new set strategy is formed (Donoso et al., 2014; 

Mooney & Cleland, 2001).  

The aforementioned strategies show how information sampling can be 

sophisticated and stochastic (Blanchard & Gershman, 2017). Besides, various factors 

have been suggested as potential influences on our preference to sample information, 

for instance, the expected value of the sampling environment (Hunt et al., 2012; Juni, 

Gureckis & Maloney, 2016); the expected value difference between the currently 
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available options and the environment (Raiffa & Schlaifer, 1961); the sampling cost, 

which could be time and money (Juni et al., 2016); and the number of alternatives that 

are available to sample (Kolling et al., 2018). At the same time, there are also factors 

that may encourage us to sample information, such as when we are new to an 

environment, which allows us to gain more information (Wilson et al., 2014; 

Zajkowski et al., 2017); when we have higher expectations of future outcomes and a 

greater chance of obtaining the maximum value (Blanchard & Gershman, 2017); or 

when we want to confirm our prior beliefs (Hunt et al., 2016).  

In the last decade, the neural mechanisms underlying information sampling 

have been explored. Various brain regions associated with information sampling have 

been identified, including the intraparietal sulcus (IPS) (Horan et al., 2019) and the 

anterior cingulate cortex (ACC) (Kolling et al., 2012, 2018). However, the IPS and 

the ACC are mainly identified during the sampling of information from options and 

the environment, respectively. These two types of information sampling may involve 

distinct neural mechanisms. Although people usually engage in  both types of 

information sampling simultaneously, previous literature have tended  to investigate 

these two processes independently rather than examining them in a single study. 

There is a lack of a unified framework to elucidate the dynamic between these two 

types of information sampling.  

In addition to the IPS and ACC, which have previously been found to be 

related to information sampling, the ventromedial prefrontal cortex (vmPFC) is also 

suggested to play a critical role in value-based decision-making through its 

involvement in both valuation and value comparison processes. As such, it is likely to 

also be involved in information sampling. In this thesis, I define the vmPFC, ACC 
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and IPS as the candidate regions to investigate their roles in information sampling 

during multiple-choice decision-making. Further details regarding these three regions 

will be discussed deeply in-depth sections 1.3, 1.4 and 1.5.  

1.3 Ventromedial Prefrontal Cortex 

 

Figure 4. The ventromedial prefrontal cortex (vmPFC). The cluster of the vmPFC 

(green) was extracted from the Automated Anatomical Labelling Atlas 3 (Rolls et al., 

2020). 

The vmPFC was the first candidate region to be investigated in this study (Fig. 

4). It is situated in the prefrontal cortex and generally encompasses Brodmann’s areas 

10, 14, 25, and 32 (Bartra et al., 2013). However, some lesion studies about the 

vmPFC might also include Brodmann’s areas 11, 12, 13. The boundaries of the 

vmPFC, therefore, are still being debated (Lopez-Persem et al., 2019).  

           The vmPFC has been widely studied in various domains such as emotion 

regulation, i.e. the ability to control and avoid negative behaviours such as drug abuse 
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arising from uncomfortable and painful emotions (Hänsel & von Känel, 2008; Pessoa, 

2008); memory consolidation, i.e. the ability to undertake cognitive tasks (Bonnici et 

al., 2012; Bontempi et al., 1999; Frankland & Bontempi, 2005); and especially 

valuation system and decision-making (Hunt et al., 2012; Lebreton et al., 2009; Levy 

& Glimcher, 2012; Strait et al., 2014). 

           The vmPFC is crucial in both valuation and comparison processes (Hunt et al., 

2012; Jocham et al., 2012; Strait et al., 2014), which involves evaluating options and 

making comparisons among them. Indeed, these processes could be subjective. For 

instance, we might hold different values toward an apple and an orange, and we can 

select differently after we make a comparison according to our valuation of both 

options. Indeed, the vmPFC has also been found to be related to modulating 

subjective value (Bartra et al., 2013; Levy & Glimcher, 2012). Meanwhile, previous 

studies have suggested that the vmPFC encodes expected value, which is one’s 

expectation of potential future reward, usually calculated by the reward magnitude 

and possibility (Blair et al., 2006; Gläscher et al., 2009; Hampton et al., 2006); and 

making value-guided decisions (Kable & Glimcher, 2009), as it could signal the value 

difference between options in both binary (Fellows, 2011; Rangel & Hare, 2010; 

Rudebeck & Murray, 2011) and multiple-choice decision-making (Boorman et al., 

2013), which also demonstrates the flexibility of the vmPFC in value-based decision-

making. 

To showcase the flexibility of the vmPFC from binary to multiple-choice 

decision-making, Boorman et al. (2013) adopted a sequential multiple-choice 

decision-making task for human participants. The participants were asked to make the 

first decision among three options. In some conditions, they made the second decision 
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among the remaining two options after the first option was selected. They found that 

the vmPFC positively encoded the value of the best option but negatively encoded the 

value of the next best option (Boorman et al., 2013). Critically, after the first selected 

option was removed, the vmPFC could then positively encode the value of the current 

best option during the second decision (which was the second-best option during the 

first decision). Since the unchosen option in both first and second decisions was 

negatively encoded by the vmPFC, the result supported that the vmPFC displayed its 

flexibility in encoding value difference signals (the value of the chosen option minus 

the unchosen option) in both binary and multiple-choice decision-making tasks. 

However, the value difference signal in the vmPFC would be influenced by the value 

of distractors, which are irrelevant options during decision-making. The value 

difference signal was found to be stronger in the vmPFC when there was a distractor 

with a greater value (Chau et al., 2014).  

To conclude, the vmPFC plays a critical role in both valuation and value 

comparison processes, such as encoding the expected value and making comparisons 

among multiple options. Its flexibility in the valuation process concerning the best 

option from binary to multiple options. To study the neural mechanisms of 

information sampling during multiple-choice decision-making, the vmPFC was one of 

the candidate regions to be focused on. 
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1.4 Anterior Cingulate Cortex 

 

Figure 5. The anterior cingulate cortex (ACC). The cluster of the ACC (green) was 

extracted from the Automated Anatomical Labelling Atlas 3 (Rolls et al., 2020).  

The ACC was the second candidate region to be investigated in this study 

(Fig. 5). It includes Brodmann’s areas 24, 25, 32, and 33 (Paholpak & Mendez, 2016; 

Palomero-Gallagher et al., 2009), which is situated in the medial part of each cerebral 

hemisphere, adjacent to the posterior cingulate cortex (PCC) (Stevens et al., 2011). It 

is also connected to both the limbic system and prefrontal cortex (Stevens et al., 

2011), which also plays a critical role in affect-regulation and cognitive tasks.  

The ACC is comprised of five sub-regions (Beckmann et al., 2009; Margulies 

et al., 2007). For instance, the dorsal anterior cingulate cortex (dACC), one of the sub-

regions of the ACC has been suggested to play a critical role in reward-based 

decision-making (Bush et al., 2002). It facilitates the future events by integrating 

information and moderates the adjustment of behaviour in response to new 
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information (Behrens et al., 2007; Quilodran et al., 2008; Wessel et al., 2012). It is 

also associated with reward-seeking behaviour (Kurniawan et al., 2013). For instance, 

adaptation from a known environment to exploring a new environment with a greater 

expected value. Studies on foraging choices have also found that the ACC encodes the 

cost and the value of searching (Kolling et al., 2012, 2018). And the cost of searching, 

to some extent but not completely, is also the cost of behaviour adaptation, which 

indicates the opportunity cost of not accepting the available options.  

In addition to adapting to a new environment, the dACC has also been 

identified as playing a critical role in retaining the history of previous rewards 

(Kennerley et al., 2006; Wittmann et al., 2016), which could guide decision making 

based on one’s previous experience. Similar to the role of the ACC, optimizes 

voluntary choice behaviour by learning the value of decisions in earlier experiences 

(Kennerley et al., 2006), as early learning theories suggest that the expected value of 

currently available options is influenced by the previous outcome of that option 

(Bayer & Glimcher, 2005).   

Interestingly, the ACC has also been found to encode the value difference 

between the value of chosen and unchosen options, similar to the role of the vmPFC 

as mentioned in section 1.3. However, the value difference pattern signalled in the 

ACC exhibits an inverse pattern to that of the vmPFC. The ACC positively encodes 

the value of the unchosen option but negatively encodes the value of the chosen 

option (Kolling et al., 2012). Despite the vmPFC is involved in the valuation process, 

the search value is not encoded by the vmPFC but by the ACC during searching, 

which indicates the specific role of the ACC (Kolling et al., 2012). Despite the inverse 

value difference pattern in the ACC being observable across multiple-choice decision-
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making tasks, the ACC displayed a default pattern in relation to the second chosen 

option from the first decision to the second decision, which should have been 

negatively encoded during the second decision. This indicates that the inverse value 

difference signal in the ACC is absent during subsequent binary-choice decision-

making and lacks the same flexibility as the vmPFC, which can switch the pattern of 

value encoding between the first and second decisions (Boorman et al., 2013). 

To sum up, the ACC is plays a crucial role in searching by encoding the value 

and cost of searching. It also encodes an inverse value difference signal between 

chosen and unchosen options during both binary and multiple-choice decision-

making. Given that searching was one of the possible decisions in the designed 

decision-making task, the ACC was one of the candidate regions of interest in this 

study. 

1.5 Intraparietal Sulcus 

 

Figure 6. The Intraparietal Sulcus (IPS). The cluster of the IPS (green) was created 

from Mars et al. (2011). 
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The IPS was the third candidate region to be investigated in this study (Fig. 6). 

it  is defined as the most prominent sulcus located on the lateral surface of the parietal 

lobe (Koutsarnakis et al., 2017), which includes Brodmann’s areas 7, 19, 39, and 40 

(Molko et al., 2003). It divides the posterior parietal cortex (PPC) into the superior 

parietal lobule (SPL) and the inferior parietal lobule (IPL) (Cabeza et al., 2008).  

The role of the IPS have been investigated in some functional neuroimaging 

studies, and was found to be related to the risk-taking decision. For instance, it 

encodes the acceptance of risk (Huettel et al., 2006). Also, disrupting the IPS’s 

activity reduces risk-taking decisions (Coutlee et al., 2016) 

The lateral intraparietal area (LIP), one of the sub-regions of the IPS areas, has 

been widely studied in perceptual decision-making (Leathers & Olson, 2012; Platt & 

Glimcher, 1999; Shadlen & Newsome, 1996). In Shadlen and Newsome’s (1996) 

study, monkeys were trained to perform a binary direction discrimination task. They 

found that LIP neurons carried predictive signals, which occurred several seconds 

prior to an eye movement indicating the monkeys' decisions. They therefore 

suggested that the predictive signals in LIP might constitute a neural correlate of 

decision formation in the central nervous system (CNS). Indeed, LIP neurons have 

been widely studied in visuospatial attention. For instance, the stronger activity in LIP 

neurons can describe the locus of attention (Goldberg et al., 2002). Also, previous 

studies suggested that saccadic eye movements and saccadic decisions are related to 

LIP neurons (Grefkes & Fink, 2005; Hanks et al., 2006; Marois & Todd, 2004; 

Shadlen & Newsome, 2001). Leathers and Olson (2012) found that LIP neurons can 

encode saccadic value, which could also mediate value-based decisions between 

saccades.  
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During value-based perceptual decision-making, Platt and Glimcher (1999) 

found that the activity of LIP neurons correlates with the subjective value of a 

particular response. Different from Shadlen and Newsome’s (1996) study that the 

choices possess different reward amounts, the reward amounts are varied but could be 

expected from each possible eve-movement response. They showed that the activities 

of LIP neurons are modulated by the expected reward realized from the monkey’s 

eye-movement responses.  

LIP neurons have also been found to be related to information sampling and 

information gain (Foley et al., 2017; Gottlieb, 2018; Gottlieb et al., 2014; Gottlieb & 

Oudeyer, 2018; Horan et al., 2019). For instance, the accumulation of evidence about 

the environment and options is essential during value-based decision-making, and the 

extent to which the evidence is accumulated is important in that it guides us to make 

decisions (Gottlieb et al., 2014). When making decisions under uncertainty, gathering 

information is needed to reduce uncertainty. Decisions are made when the 

accumulation of evidence reaches one’s internal boundary (Gold & Shadlen, 2007), 

similar to the perceptual decision-making task that decisions are made when sensory 

evidence has accumulated enough to reach the sensory threshold (Ratcliff et al., 

2007). In Horan et al.’s (2019) study, two monkeys were trained to perform an 

information sampling task. The options were uncertain at first, where they could 

gather information before choosing between uncertain options. They showed that LIP 

neurons encode information gain and are more active in more informative trials.  

Meanwhile, decision confidence, i.e. the extent to which people believe that 

they can make the best decision during decision-making, has been suggested to be 

encoded by the IPS in perceptual decision-making (Kiani & Shadlen, 2009). In 
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general, if we just have limited information about the future rewards, our decision 

confidence will be lower. Similar to the vmPFC, the IPS also encodes decision 

confidence (Hebscher & Gilboa, 2016; Shapiro & Grafton, 2020). This suggests that 

both IPS and vmPFC might share similar roles during various types of decision-

making tasks.  

To summarize, the LIP area plays a crucial role in various tasks such as visual 

searching, visuospatial attention, saccadic eye movement, perceptual decision-

making, value-based decision-making, sensory evidence accumulation, information 

sampling, and information gain. These functional particularly relevant during 

information sampling, making the IPS an important region of interest. 

1.6 The current study and research aim 

In an uncertain environment, information sampling is required for making 

adaptive decisions. There are typically two types of information sampling: gathering 

more information about current options or searching for new options. Early literature 

have examined the neural mechanisms of deciding between selecting existing options 

and one of the two types of information sampling. However, there is a lack of a 

unified framework to describe the dynamics between considering these three 

decisions at the same time. This study aims to investigate the neural mechanisms of 

information sampling in multiple-choice decision-making.  

To address this problem, the importance of value-based theories during 

information sampling are reviewed, including the valuation and value comparison 

processes. Three candidate brain regions were identified: the vmPFC which guides 

option selection; the IPS, which signals demand for information and information gain; 
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and the ACC, which is critical for searching for new options. The study used fMRI to 

examine the roles of these regions during the designed multiple-choice decision-

making task. The details of the methods and results will be discussed in Chapters 2, 3 

and 4. 
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Chapter 2: Behavioural hallmarks of 

information sampling in multiple-choice 

decision-making 

Chapter highlights 

1. This chapter aims to determine how participants made use of the information 

provided in a multiple-choice decision-making task to formulate decisions of 

accept, clarify and search.  

2. The participants preferred to make more search than accept decisions.  

2.1 Introduction 

As mentioned in Chapter 1, there is a need for a comprehensive framework 

that incorporates the decisions involved in accepting currently available options, 

clarifying existing options, and searching for new options, particularly in the context 

of multiple-choice decision-making. A multiple-choice decision-making task was 

designed in this study. Since individuals might have different subjective preferences 

for various categories of stimuli (Bartra et al., 2013; Levy & Glimcher, 2012), to 

mitigate the impact of the stimuli categories, the stimuli used in value-based decision-

making tasks are sometimes abstract and diverse. Researchers have developed a range 

of abstract stimuli used in the laboratories to test the underlying mechanisms of value-

based decision-making. For instance, the stimuli could be bars (Hunt et al., 2013), 

rectangles (Strait et al., 2014) and pie charts (Yamada et al., 2018).  
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Figure 7. Stimuli used for studying the value-related signal in the human brain. 

People decided between two abstract stimuli which were associated with different 

reward magnitudes, with the reward probabilities displayed under the stimuli. The 

reward magnitudes were associated with the bar widths. Adapted from Hunt et al. 

(2013). 

Employing abstracted stimuli can also enhance the generalizability of the 

results regardless of the categories of stimuli. Also, stimuli are quantifiable. For 

instance, reward magnitude, which is a kind of value information can be reflected by 

simply displaying its value (Guo et al., 2017), the coloured proportion in the abstract 

stimuli (Strait et al., 2014; Yamada et al., 2018), and their sizes (Hunt et al., 2013). 

Figure 7 shows an example study that adopted abstract stimuli to investigate the 

value-related processes in the human brain, which the processes were then visualized 

by neural signals in the brain (Hunt et al., 2013). Since the main problem of this study 

concerns information sampling, the information could be related to different objects. 

The designed decision-making task in this study therefore also adopted abstract 
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stimuli to reduce the subjective preference for certain objects to increase the 

generalizability (i.e., dials, Fig. 8).  

In this chapter, I will first demonstrate how the participants valued different 

information provided in a decision-making task to formulate different decisions (i.e., 

accept, clarify and search). I also designed three decision values (i.e., the accept, 

clarify and search values) to specify how the participants decided between the three 

possible decisions in the task. These decision values were then correlated with brain 

activities to investigate the neural mechanisms, which will be discussed in Chapter 3.  

2.2 Methods 

2.2.1 Participants 

Twenty-six healthy right-handed adults with normal or corrected-to-normal 

vision and without current, or a history of, neurological and psychiatric problems 

were recruited by convenience sampling. Written informed consent was given by each 

participant before the experiment. The Human Subjects Ethics Committee of The 

Hong Kong Polytechnic University approved this study. 
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2.2.2 Decision-making task 

 

Figure 8. A multiple decision-making task. a Each option had four dials (top-left 

panel), which indicated the number of points that could be potentially obtained 

(coloured sectors). The number of points that could be actually obtained by each 

option was related to only one of its dials. Therefore, options that had more varied 

dials would be more uncertain. b There was a fixation cross at the centre of the 

screen at the beginning of each trial (3-6 s). An option would randomly appear at one 

of the nine positions (black boxes). The participants needed to make one of the three 

possible decisions (Decision Phase). The first decision (i.e., clarify) could reduce the 

uncertainty of a selected option as one of its dials would be randomly removed after 

each clarify decision. The second decision (i.e., search) could reveal a new option 

from one of the black boxes. The third decision (i.e., accept) could gain the actual 

points of the option, and the amount would be revealed and delivered to the 

participants (Outcome Phase). Each clarify or search decision cost a point. A dial at 
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the top left-hand corner of the screen recorded the cumulated cost in a single trial. 

The cost would be charged at the end of each trial. Another dial at the top right-hand 

corner of the screen signalled the average point among all (hidden and revealed) 

options in a current trial. 

 The multiple-choice decision-making task was adopted to test how the 

participants decided between accepting existing options and information sampling. At 

the beginning of each trial, the participants were offered an option (Fig. 8a). Each 

option in this task possessed four dials, while the proportion of the coloured area of 

each dial indicated the number of points that could be potentially obtained.  There 

were three possible decisions (i.e., accept, clarify and search) that the participants 

could make. First, accepting a current option would pseudo-randomly obtain the 

points of one of the dials (Outcome Phase, Fig. 8b & 8c). The participants were told 

that all dials in all options shared the same probability.  Second, clarifying a current 

option would remove one of the dials pseudo-randomly at the expense of one game 

point to reduce the uncertainty of the option (Fig. 8d). For any given option, the 

participants could clarify it up to three times. Third, searching for an alternative 

option at the expense of one game point, in which a new option with four dials would 

appear (Fig. 8e). Since there was a maximum of nine options, the participants could 

search for up to eight times. The average game point of all options (hidden and 

revealed) in the same trial was displayed at the top-right of the screen, such that 

participants could determine whether to search or not based on this average and the 

options that were offered. Participants were asked to obtain as many points as possible 

in 100 trials. 
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2.2.3 Statistical analysis 

 To describe how participants made use of the information to decide between 

decisions of accept, clarify and search, I defined three decision values (i.e., the accept 

value, clarify value and search value). Since the cost (i.e., the cumulative cost in the 

decision-making task) has been suggested to be essential in information sampling, it 

was accompanied by these three decision values and entered into a General Linear 

Model 1 (GLM1). This could help us to understand how each of the three decisions 

were evaluated by the participants in a multinomial logistic regression analysis as 

follows: 

 GLM1: 

𝑦 =  𝛽0 + 𝛽1 𝑉𝑎𝑙𝑢𝑒𝐴𝑐𝑐𝑒𝑝𝑡 + 𝛽2 𝑉𝑎𝑙𝑢𝑒𝐶𝑙𝑎𝑟𝑖𝑓𝑦 +  𝛽3 𝑉𝑎𝑙𝑢𝑒𝑆𝑒𝑎𝑟𝑐ℎ +  𝛽4 𝐶𝑜𝑠𝑡 

where 𝑦 is the choice to accept(0), clarify(1) or search(2), while 𝑉𝑎𝑙𝑢𝑒𝐴𝑐𝑐𝑒𝑝𝑡, 

𝑉𝑎𝑙𝑢𝑒𝐶𝑙𝑎𝑟𝑖𝑓𝑦 and 𝑉𝑎𝑙𝑢𝑒𝑆𝑒𝑎𝑟𝑐ℎ are decision values associated with decisions of accept, 

clarify and search, and 𝐶𝑜𝑠𝑡 is the cumulated cost. This multinomial logistic 

regression analysis was adopted using MATLAB (mnrfit) to predict whether the 

participants decided between decisions of accept, clarify or search. All regressors 

were normalized to ensure the commensurability of the regression coefficients. Since 

participants might have different motives to accept, clarify and search, 47 models 

adopting different operational definitions of the decision values were compared. Thus, 

the decision values with the best predictive powers could be defined.  
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Table 1. Type of the accept, clarify and search value adopted by models  

Model Accept Value Clarify Value Search Value 

1 Type1 Type1 Type1 

2 Type1 Type3 Type1 

3 Type1 Type1 Type2 

4 Type1 Type3 Type2 

5 Type2 Type1 Type2 

6 Type2 Type10 Type2 

7 Type3 Type3 Type2 

8 Type3 Type11 Type2 

9 Type1 Type10 Type2 

10 Type1 Type11 Type2 

11 Type1 Type1 Type3 

12 Type1 Type3 Type3 

13 Type1 Type10 Type3 

14 Type1 Type11 Type3 

15 Type3 Type10 Type3 

16 Type2 Type11 Type3 

17 Type1 Type4 Type2 

18 Type1 Type5 Type2 

19 Type1 Type6 Type2 

20 Type1 Type7 Type2 

21 Type1 Type7 Type4 

22 Type1 Type6 Type4 

23 Type1 Type12 Type4 

24 Type1 Type13 Type4 

25 Type1 Type14 Type4 

26 Type2 Type14 Type4 

27 Type3 Type7 Type4 

28 Type2 Type13 Type4 

29 Type1 Type7 Type4 

30 Type1 Type6 Type5 

31 Type1 Type7 Type5 

32 Type1 Type14 Type5 

33 Type1 Type12 Type5 

34 Type1 Type13 Type5 

35 Type3 Type12 Type5 

36 Type3 Type13 Type5 

37 Type1 Type2 Type2 

38 Type1 Type7 Type1 

39 Type1 Type6 Type1 

40 Type1 Type9 Type1 

41 Type1 Type8 Type1 

42 Type1 Type12 Type1 

43 Type1 Type12 Type2 

44 Type1 Type12 Type2 

45 Type1 Type13 Type1 

46 Type1 Type13 Type2 

47 Type1 Type13 Type4 



37 

 

First, I formulated three types of the accept value as follows: 

𝐴𝑐𝑐𝑒𝑝𝑡 𝑉𝑎𝑙𝑢𝑒 (1) =  𝑉𝑎𝑙𝑢𝑒 (𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛) 

𝐴𝑐𝑐𝑒𝑝𝑡 𝑉𝑎𝑙𝑢𝑒 (2) =
𝑉𝑎𝑙𝑢𝑒 (𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛)

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛)
 

𝐴𝑐𝑐𝑒𝑝𝑡 𝑉𝑎𝑙𝑢𝑒 (3) =
𝑉𝑎𝑙𝑢𝑒 (𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛)

𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛)
 

Since it could be expected that the participants would prefer to accept the 

option with the greatest average value, the first type of the accept value (Accept Value 

(1)) was formulated as the average value of that option (i.e., the best option). I also 

wanted to investigate if the uncertainty of the best option would discount the value, so 

I used the variance and standard deviation to indicate the uncertainty. The second and 

third types of the accept value were similar to the Accept Value (1) but divided by the 

variance of the best option (Accept Value (2)) and the standard deviation of the best 

option (Accept Value (3)) respectively. 

Second, I formulated 14 types of the clarify value as follows: 

Clarify Value (1) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛) 

Clarify Value (2) = 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) 

Clarify Value (3) = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) 

Clarify Value (4) = 𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 (𝑐𝑙𝑎𝑟𝑖𝑓𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) −  𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒 (𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) 

Clarify Value (5) = 𝑚𝑒𝑑𝑖𝑎𝑛𝑉𝑎𝑙𝑢𝑒 (𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) 

Clarify Value (6) = 𝑚𝑎𝑥𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛) 

Clarify Value (7) =  𝑚𝑎𝑥𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑜𝑝𝑡𝑖𝑜𝑛) 
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Clarify Value (8) = 𝑚𝑎𝑥(𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛) −  𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛)) 

Clarify Value (9) = max (medianValue) (option) 

Clarify Value (10) = 𝑉𝑎𝑙𝑢𝑒 (𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) ∗ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) 

Clarify Value (11) = 𝑉𝑎𝑙𝑢𝑒 (𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑐𝑙𝑎𝑟𝑖𝑓𝑖𝑒𝑑 𝑜𝑝𝑡𝑖𝑜𝑛) 

Clarify Value (12) = 𝑚𝑎𝑥(𝑉𝑎𝑙𝑢𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛) ∗ 𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛)) 

Clarify Value (13) = 𝑚𝑎𝑥(𝑉𝑎𝑙𝑢𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛) ∗ 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 (𝑜𝑝𝑡𝑖𝑜𝑛)) 

Clarify Value (14) = 𝑚𝑎𝑥(𝑉𝑎𝑙𝑢𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛) ∗ (𝑚𝑎𝑥𝑉𝑎𝑙𝑢𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛)− 𝑚𝑖𝑛𝑉𝑎𝑙𝑢𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛))) 

Since an option with a larger uncertainty is worthy of being clarified, I first 

focused on the best option. The first type of clarify value was defined as the variance 

of the best option (Clarify Value (1)). I then focused on the option that was selected to 

be clarified. The second and third type of the clarify value were formulated as the 

variance (Clarify Value (2)) and the standard deviation of the clarified option (Clarify 

Value (3)) respectively. Other information that indicated a larger uncertainty was the 

value difference between the dials within an option. Therefore, I formulated the fourth 

type of the clarify value based on the value range of the clarified option (Clarify 

Value (4)). Meanwhile, the best and worst results of a clarify decision were to remove 

a dial with the smallest and greatest value respectively. The fifth type of the clarify 

value was formulated as the median value of the clarified option, implying that the 

results of clarify decisions were averaged (Clarify Value (5)).  

Apart from the clarified option, I also focused on the uncertainty of all 

revealed options. The sixth, seventh, eighth and ninth types of the clarify value were 

formulated as the greatest variance (Clarify Value (6)), the greatest standard deviation 
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(Clarify Value (7)), the greatest value range (Clarify Value (8)), and the greatest median 

value (Clarify Value (9)) among all revealed options respectively. 

I also focused on both value and uncertainty. This suggested that an option 

that was worth being clarified should have a greater average value and was also 

largely uncertain. The tenth and eleventh types of the clarify value were formulated as 

the product between the value and the variance of the clarified option (Clarify Value 

(10)), and the standard deviation of the clarified option (Clarify Value (11)).  

I also focused on all revealed options. The twelfth, thirteenth and fourteenth 

types of the clarify value were formulated as the greatest product between the value 

and the variance (Clarify Value (12)), the greatest product between the value and the 

standard deviation (Clarify Value (13)), and the greatest product of the value and the 

range of the value (Clarify Value (14)) among all revealed options respectively. 

Third, I formulated five types of the search value as follows: 

Search Value (1) = 𝑉𝑎𝑙𝑢𝑒 (𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) 

Search Value (2) = 𝑉𝑎𝑙𝑢𝑒 (𝑎𝑙𝑙 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) 

Search Value (3) = 𝑉𝑎𝑙𝑢𝑒 (𝑛𝑒𝑤 𝑜𝑝𝑡𝑖𝑜𝑛) 

Search Value (4) = 𝑉𝑎𝑙𝑢𝑒 (𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) −  𝑉𝑎𝑙𝑢𝑒 (𝑎𝑙𝑙 𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) 

Search Value (5) = 𝑉𝑎𝑙𝑢𝑒 (𝑎𝑙𝑙 𝑜𝑝𝑡𝑖𝑜𝑛𝑠) −  𝑉𝑎𝑙𝑢𝑒 (𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑜𝑝𝑡𝑖𝑜𝑛) 

Since the value of the environment was one of the drives to search, the first 

type of the search value was formulated as the average value of all hidden and 

revealed options (Search Value (1)).  The second type of the search value was 
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formulated as the average value among all revealed options (Search Value (2)), as a 

smaller average value would drive the search for better alternatives. 

Meanwhile, since searching has been suggested to be an adaption behaviour 

for a new environment (Behrens et al., 2007; Quilodran et al., 2008; Wessel et al., 

2012), I also focused on searching when there was a new option. The third type of the 

search value was formulated as the value of the new option (Search Value (3)). The 

new option could be the first option that appeared at the beginning of each trial, i.e. 

the most recent searched or clarified option.  

I also investigated the value difference between existing options and the 

environment that might drive a search. The fourth and fifth types of the search value 

were formulated as the average value of all hidden and revealed options minus the 

average value of all revealed options (Search Value (4)), and the average value of all 

options minus the average value of the best option (Search Value (5)). 

To select the model with the greatest predictive power, the Bayesian 

information criterion (Schwarz, 1978) was used. Data from all trials were used to 

compute the BIC value among the participants for each model. The BIC values 

obtained from each participant were averaged and then compared between models. 

The model with the lowest average BIC indicated that the model had the best fit to the 

data compared with other models. The decision values defined in the best fit model 

would be used in the following analyses. 
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2.3 Results 

 

Figure 9. Behavioural analyses. a Task performance. The proportion of the three 

types of decisions made by the participants. b The preference of the number of clarify 

decisions across trials. c The average number of search decisions made by the 

participants. 

Figure 9 provides an overview of the decisions made by the participants 

throughout the multiple-choice decision-making task. First, the participants’ decisions 

were 29.99% accept decisions, 30.19% clarify decisions and 39.82% search decisions 

(Fig. 9a). Second, I further analyzed how frequently the participants made clarify 

decisions. I found that there was an average 23 option that was clarified once, 19 

option that was clarified twice, and 22 option that was clarified three times in 100 

trials (Fig. 9b). Third, I also analyzed how frequently the participants made search 

decisions. I found that the participants searched for a new option at least once in 

59.92% of all trials (i.e. made 0 search decisions in 40.08% of trials) (Fig. 9b). 

Interestingly, within the trials that the participants made at least one search decision, 

even though it would cost a point each time, the participants preferred to search for 

three times as the most (19.17%), but not once (17.29%) or twice (12.67%; Fig. 9c).  
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Figure 10. Model comparison based on the Bayesian Information Criterion (Schwarz, 

1978). The average BIC value was computed among the participants for each model 

and was compared between 47 models. The yellow bar indicates the best model with 

the lowest BIC value. Error bars represent means±s.e.m. 

Next, I aimed to identify the parameters that best described the participants’ 

decisions. To achieve this, I fitted the participants’ choice data using variants of 

GLM1, with each variant involving different definitions of the values of the accept, 

clarify and search decisions. The details of the method for defining the decision 

values were described in section 2.2.3. Model comparison between each average BIC 

value from each model was conducted (Fig. 10). For the model with the lowest 

average BIC value (the yellow bar, the average BIC value=360.05, Fig. 10), the 

accept value was defined as the average value of the best option, which possessed the 

largest value among all revealed options; the clarify value was defined as the greater 

product between the option’s average value and its standard deviation, which could 

ensure that an option with a large value but a small standard deviation, or with a large 

standard deviation but a small value was not worth being clarified; the search value 
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was defined as the average value among all hidden and revealed options, which was 

the same as the value displayed at the top-right of the screen.  

 

Figure 11. A multinomial logistic regression. a The effects of accept, clarify and 

search values on the proportion between clarify and accept decisions, b search and 

accept decisions as well. n.s. denotes  p > .05. * denotes p < .05. Error bars represent 

means±s.e.m. 

The results of the multinomial logistic regression analysis for the best model are 

displayed in Figure 11, which helps us understand how the participants made use of the 

information provided in the decision-making task to decide between different decisions. 

The choice ratio between clarify and accept decisions was positively associated with 

the clarify value (β=2.558, t(23)=12.920, P<0.001, Fig. 11a), negatively associated 

with the accept value (β=-3.540, t(23)=-13.115., P<0.001, Fig. 11a), and negatively 

associated with the cumulated cost (β=-0.819, t(23)=-6.597, P<0.001, Fig. 11a). 
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Surprisingly, the choice ratio between clarify and accept decisions was positively 

associated with the seemingly irrelevant search value (β=0.784, t(23)=5.282, P<0.001, 

Fig. 11a), which was supposedly not relevant to that choice context, which the search 

value was not supposed to be related to clarify decisions. On the other hand, the choice 

ratio between search and accept decisions was positively associated with the search 

value (β=2.125, t(23)=9.092, P<0.001, Fig. 11b), negatively associated with the accept 

value (β=-5.193, t(23)=-15.150, P<0.001, Fig. 11b), and negatively associated with the 

cumulated cost (β=-1.222, t(23)=-7.832, P<0.001, Fig. 11b). Similar to the results of 

the irrelevant search value on the choice ratio between clarify and accept decisions, a 

surprising result was also found that the choice ratio between search and accept choice 

was positively associated with the clarify value (β=0.450, t(23)=2.088, P=0.0481, Fig. 

11b), because the clarify value was supposedly not relevant to that choice context. 

Critically, the results suggest that the participants were also more inclined to search or 

clarify when they were dissatisfied with the current offers.  

2.4 Conclusion 

In this chapter, I presented the designed multiple-choice decision-making task 

and provided an overview of the behavioural results. I adopted a multinomial logistic 

regression analysis to understand how the participants made use of the information to 

make decisions, which help to define the most predictive decision values for each 

decision through model comparisons. The results identified that the accept, clarify, and 

search values had the most predictive power for decisions of accept, clarify, and search, 

respectively. These well-defined decision values also then correlated with brain 

activities to investigate the neural mechanisms underlying different decisions through 

a series of whole-brain analyses, ROI time-course analyses with specific regions-of-
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interest (ROIs), and artificial neural networks, which will be discussed in the following 

chapters. 
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Chapter 3: Neural mechanisms underlying 

information sampling during multiple-choice 

decision-making  

Chapter highlights 

1. This chapter aims to test the neural mechanisms underlying accept, clarify and 

search decisions.  

2. The vmPFC, IPS and ACC were found to play a critical role in decisions of 

accept, clarify and search, respectively.  

3. Value difference signal was also found in the vmPFC in the multiple-choice 

decision-making task. 

4. The IPS signalled both the demand for information and gain in information. 

5. The ACC signalled the competition between search and accept decisions first, 

followed by search and clarify decisions.  

3.1 Introduction 

In the last chapter, I illustrated how the participants made use of the information 

to decide between decisions of accept, clarify and search. In this chapter, the analyses 

mainly focus on neural mechanisms of accept, clarify and search decisions. The well-

defined decision values would be adopted to be correlated with the fMRI data to 

examine the roles of specific brain regions during these decisions in multiple-choice 

decision-making. This chapter presents the methods and results of the fMRI data. 
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3.2 Methods 

3.2.1 Participants 

 The participants were the same as mentioned in section 2.2.1. Particularly in 

this chapter, those participants who passed the safety screening of fMRI scanning 

were invited to participate in the experimental task under fMRI scanning. Two of 

them were excluded from the data analyses due to exaggerated movement during 

fMRI scanning. 

3.2.2 Decision-making task 

The decision-making task was the same as mentioned in section 3.2.2. 

3.2.3 Neuroimaging data acquisition and preprocessing 

Neuroimaging data were acquired on a Siemens MAGNETOM Prisma 3-T 

MRI scanner. FMRI data were acquired with 2 × 2 × 2 mm3 voxel resolution, 

TR=2000 ms, TE=30 ms, flip angle=75°, slice angle=15°, and multi-band acceleration 

factor=3. Field maps were acquired with echo sequence: 2 × 2 × 2 mm3 voxel 

resolution, TR=753 ms, TE1=5.16 ms, and TE2=7.62 ms. T1-weighted structural 

images were acquired with 1 × 1 × 1 mm3 voxel resolution, 256 × 256 × 208 grid, 

TR=1900 ms, TE=3.37 ms, TI=900 ms, iPAT acceleration factor PE=2, and iPAT 

acceleration factor 3D=1. 

FMRIB’s Software Library (FSL) was used for preprocessing of fMRI data 

(Smith et al., 2004). The procedures for image preprocessing included motion 

correction (Jenkinson et al., 2002), brain extraction (Smith, 2002), field map 

correction for distorted signals (Jenkinson, 2003), and Gaussian spatial smoothing 

using high-pass temporal filtering (3 dB cut-off of 100s) with full width at half 
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maximum (FWHM) sizes of 5 mm. FMRI data were then registered to the high-

resolution structural images for each participant and normalized into the standard 

Montreal Neurological Institute (MNI) space (Jenkinson & Smith, 2001). 

3.2.4 Statistical Analysis 

To examine the neural mechanisms underlying accept, clarify and search 

decisions, the accept value, clarify value, search value and cumulative cost were entered 

as regressors into the whole-brain analysis to see if they could be identified in the 

specific brain region. A univariate GLM approach for the statistical analysis of the 

whole-brain analyses was conducted using FEAT (Beckmann et al., 2003; Woolrich et 

al., 2004). The main effect images were all cluster-corrected results with the voxel 

inclusion threshold of z=3.1 and the threshold of cluster significance=0.05 (p-value). 

After specific brain regions were identified, the time-courses from the identified brain 

regions were extracted according to the defined regions of interest (ROIs) in existing 

literature for ROI time-course analyses. The activities of the ROIs were then correlated 

with the decision values to visualize the signals. This analysis contrasted the regression 

weights of the decision values to brain activity changes over time and identified the 

peak signal during decision-making. A leave-one-subject-out procedure was used to 

find the peak time (within a window of 0 to 15 s/20 s) for all subjects excluding the left-

out one. This was repeated 23 times to ensure that each participant was left out once, 

and the results were averaged. Peak window selection used full width at half maximum, 

in which the window was defined by the two-time points that were equal to half of their 

maximum value (i.e., the regression weight). The identified peak was adopted for 

individual analyses, to identify the correlation between the beta peak BOLD signals and 

the proportion of decisions. All ROI time-course analyses were done in MATLAB. 
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3.3 Results 

3.3.1 VmPFC and accept decision 

 

Figure 12. Analyses of the accept decision. a Whole-brain analysis. The vmPFC 

activity was identified to be associated with the accept value (red region within the 

green box). I extracted the identified region as ROI for the ROI time-course analyses. 

b A ROI time-course analysis. The three decision values and the cumulative cost 

estimated by the vmPFC activity throughout the whole decision-making task across 

time. The vertical line in the ROI time-course analysis signalled the stimuli onset at 5 

s, and leave-one-out peak selection was adopted for the ROI time-course analysis. 

I first focused on the neural mechanisms underlying the accept decision. The 

results of the whole-brain analysis found that several regions were positively related 

to the accept value (i.e., the average value of the best option) (P < 0.05, cluster-level 

corrected [z > 3.1]; Fig. 12a), such as the vmPFC (all significant regions that were 

identified to be related to the accept value in the whole-brain analysis are shown in 

Table 2).  
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Table 2. Identified regions from whole brain analyses for regressors-of-interest  

Accept Value 

Brodmann’s 

areas 

Common names MNI 

coordinates 

Max Z-

score 

P-

value 

# 

voxels 

10 Ventral medial 

prefrontal cortex 

-Left 

-Right 

(-36 46 -2) 

(40 48 -10) 

4.84 

3.74 

1.6e-05 

0.0439 

387 

113 

9 Superior frontal 

cortex 

-Right (52 38 26) 4.09 0.0189 137 

46 Medial prefrontal 

cortex 

-Right (42 34 12) 4.34 0.0296 124 

32 Pregenual 

anterior cingulate 

cortex 

-Left (-4 44 20) 4.20 0.0051 177 

39 Angular gyrus 

-Left (-52 -62 38) 5.42 

2.25e-

05 373 

23 Posterior 

cingulate cortex 

-Right 

Caudate 

-Right 

(0 -36 30) 

 

(12 14 -4) 

4.18 

 

4.68 

0.0003 

 

0.0144 

268 

 

145 

21 Medial temporal 

gyrus 

-Left (-60 -26 -14) 4.31 0.011 153 

8 Frontal eye field 

-Left (-38 26 44) 4.60 0.0276 126 

18 Secondary visual 

cortex 

-Left 

-Right 

-Left 

(20 -98 -2) 

(24 -86 0) 

(-6 -78 36) 

5.66 

5.29 

4.25 

2.33e-

09 

7.58e-

05 

0.0249 

800 

325 

129 
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Previous studies have commonly suggested that the vmPFC is related to the 

value of the chosen option, while it is usually the best option (Chau et al., 2014; Hunt 

et al., 2012; Strait et al., 2014). I therefore extracted the BOLD time course of the 

identified vmPFC to run a ROI time-course analysis as an alternative approach to 

visualize the accept signal in the vmPFC. The accept value, clarify value, search value 

and cumulative cost were entered as regressors into the ROI time-course analysis to 

examine the association with the vmPFC BOLD activity across time. A positive accept 

signal was found (green), and the peak vmPFC BOLD β weights were 10.9 to 19.8 s 

(leave-one-out peak selection, t(23) =6.345, P<0.001, Fig. 12b). In other words, the 

vmPFC activity was stronger while the accept value was greater.  

 

Figure 13. Individual analysis of the association between the peak of the vmPFC 

signal and the proportion of accept decisions across subjects (N=24) 
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The peak of the vmPFC signal from each participant was then extracted to run 

a between-subject analysis. The results showed that the size of the participants’ peak 

signal was positively correlated with the proportion of accept decisions made by the 

participants in the task (r=.519, P=0.009. Fig. 13). In other words, relatively more 

accept decisions and less clarify or search decisions were made by the participants when 

they had greater accept signals in their vmPFC. I further looked at the role of the vmPFC 

during the decision-making task.  

 

Figure 14. a Value difference signal was found in the vmPFC. b An uncertainty 

aversion pattern was found in the vmPFC(blue).  The vertical lines in all ROI time-

course analyses signalled the stimuli onset at 5 s, and leave-one-out peak selection 

was adopted for all ROI time-course analyses. 

Since previous findings have suggested that the vmPFC encodes the value 

difference signal between chosen and unchosen options (Jocham et al., 2012; Strait et 

al., 2014), the average value of the best option and second best option were entered into 

the ROI time-course analysis as regressors to see if the value difference signal also 

occurred in this study. The results showed a positive best value signal (green) at the 

peak vmPFC BOLD β weights during 10.3 to 16.1 s (t(23) =5.018, P<0.001, Fig. 14a) 
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and a negative second-best value signal (blue) at the peak vmPFC BOLD β weights 

during 10.4 to 14.1 s (t(23) =-2.702, P=0.013, Fig. 14a), indicating that a prominent 

value difference (the average value of the best option minus second-best option) signal 

occurred in the vmPFC. Surprisingly, the analysis also found a negative clarify signal 

(red) in the ROI time-course analysis at the peak vmPFC BOLD β weights during 7 to 

17.3 s (t(23) =-4.755, P<0.001, Fig. 12b). Since the clarify value was defined by the 

product between the value and the standard deviation (i.e., uncertainty) of the option, 

the value information of the clarify value might share similarity with the accept value 

(r=.916, P<.001). I further analyzed if this negative clarify signal might be contributed 

by the second component of the clarify value (i.e., the standard deviation or the 

uncertainty of the option) and negatively associated with the vmPFC BOLD activity. I 

therefore ran a subsequent analysis for the vmPFC. A negative uncertainty signal was 

found in the vmPFC (blue) at the peak vmPFC BOLD β weights during 5.8 to 16.2 s 

(t(23) =-5.094, P<0.001, Fig. 14b). The result might be suggested by previous findings 

that people discount the value of an option based on its uncertainty due to the risk 

aversion nature of humans. Also, the vmPFC has been suggested to be related to 

decision confidence (Hebscher & Gilboa, 2016; Shapiro & Grafton, 2020), so the 

participants would have less confidence when deciding to accept an option when it is 

largely uncertain as the outcome is more unpredictable as well.  
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3.3.2 IPS and clarify decision 

 

Figure 15. Analyses of the clarify decision. a Whole-brain analysis. The IPS activity 

was identified to be positively correlated with the clarify value (red). The region 

(green) was defined as the ROI for the time-course analyses with coordinates taken 

from Mars et al. (2011). b A ROI time-course analysis. The three decision values and 

the cumulative cost were estimated by the IPS activity throughout the whole decision-

making task across time. The vertical lines in the ROI time-course analysis signalled 

the stimuli onset at 5 s, and leave-one-out peak selection was adopted for the ROI 

time-course analysis. 

Next, I focused on the neural mechanisms underlying the clarify decision. The 

clarify value was found to be positively related to several regions which were identified 

from the results of the whole-brain analysis (p < .05, cluster-level corrected [z > 3.1]; 

Fig. 15a), including the IPS (all significant regions that were identified to be related to 

the clarify value in the whole-brain analysis are shown in Table 3). 
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Table 3. Identified regions from whole-brain analyses for regressors-of-

interest  

Clarify Value      

Brodmann’s 

areas 

Common names MNI 

coordinates 

Max Z-

score 

P-

value 

# 

voxels 

40 Intra-parietal 

sulcus 

-Left 

-Right 

(-46 -36 44) 

(48 -32 48) 

8.60 

2.11 

2.50e-

09 

0.0076 

802 

165 

7 Superior parietal 

gyrus 

-Right (6 -64 48) 1.77 0.017 141 

4,6 Superior frontal 

gyrus (-24 20 56) 2.52 0.0030 195 

45 Inferior frontal 

gyrus 

-Left (-28 30 2) 3.57 0.0002 279 

10 Ventral medial 

prefrontal cortex 

-Left (-30 58 10) 1.47 0.0338 121 

11 Orbital frontal 

cortex (28 30 0) 2.22 0.0059 173 

6 Supplementary 

motor area 

-Right (22 14 56) 8.16 

6.94e-

09 749 

8 Frontal eye field 

-Right (8 38 32) 3.43 0.0003 267 

 Cerebellum (-34 -66 -26) 3.53 0.0002 276 

      

 

Since the IPS has been suggested to be related to information gain and it guides the 

active information search behaviour (Foley et al., 2017; Horan et al., 2019), I also 

extracted the time course from the IPS with the coordinates shown in green (Fig. 15a) 

to run a ROI time-course analysis as an alternative approach to visualize the clarify 

signal in the IPS (Mars et al., 2011). The accept value, clarify value, search value and 

cumulative cost were entered as regressors into the ROI time-course analysis to 

examine the association with the IPS BOLD activity across time. Similar to the results 

of the vmPFC time-course analysis that a positive accept signal (green) was also 

found at the peak IPS BOLD β weights during 6.8 to 14.4 s (t(23) =3.671, P<0.001, 
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Fig. 15b), these results were consistent with previous findings suggesting that the IPS 

would engage in the valuation process during perceptual decision-making tasks (Platt 

& Glimcher, 1999; Shadlen & Newsome, 1996, 2001). 

 

Figure 16. Subsequent ROI time-course analysis. The IPS could only signal the value 

of the best option but not the value difference between the chosen and unchosen 

options. The vertical lines in the ROI time-course analysis signalled the stimuli onset 

at 5 s, and leave-one-out peak selection was adopted for the ROI time-course 

analysis. 

I then further analyzed if a value difference signal could also be found in the 

IPS. However, the result only found the best value signal (t(23)=4.773, P<0.001, Fig. 

16) but the second-best value signal was absent (n.s.), indicating that the value 

difference signal was not found in the IPS. Critically, the results of the ROI time-

course analysis also found a positive clarify signal (red) at the peak IPS BOLD β 

weights during 12.3 to 20.0 s (t(23) =-5.908, P<0.001, Fig. 15b).  
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Figure 17. Individual analysis of the association between the peak of the IPS signal 

and the proportion of clarify decisions across subjects (N=24)  

I also extracted the peak of the IPS signal from each participant to run an individual 

analysis and found that the size of the participants’ peak signal was positively 

correlated with the proportion of clarify decisions made by the participants in the task 

(r=.535, P=0.007. Fig. 17), indicating that relatively more clarify decisions and less 

accept or search decisions were made by the participants when they had stronger 

clarify signals in their IPS. 
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Figure 18. Critically, the IPS could signal the uncertainty of the best option. The 

vertical lines in the ROI time-course analysis signalled the stimuli onset at 5 s, and 

leave-one-out peak selection was adopted for the ROI time-course analysis. 

The same as the previous vmPFC time-course analysis of the clarify value, I 

also further analyzed the second component of the clarify value (i.e., the uncertainty). 

The results showed a positive uncertainty signal in the IPS at the peak IPS BOLD β 

weights during 8.3 to 15.1 s (t(23)=4.308, P<0.001, Fig. 18). This uncertainty signal 

that occurred in the IPS could be suggested by the demand for information. In short, 

while an option involved greater uncertainty, the IPS activity became stronger which 

indicated that more information about the option was needed.  
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Figure 19. Subsequent ROI time-course analysis. The red clarify signal was extracted 

throughout the whole decision-making task, the same as the clarify signal from Fig. 

15b. The grey, blue and green clarify signals were extracted while all clarify, search 

and accept decisions were made by the participants respectively. The vertical lines in 

the ROI time-course analysis signalled the stimuli onset at 5 s, and leave-one-out 

peak selection was adopted for the ROI time-course analysis. 

To further specify the role of the IPS during clarify decisions, I conducted 

subsequent ROI time-course analyses for the IPS. First, I split the clarify signal (red) 

identified in Fig. 15b into whether the participants were making clarify decisions 

(grey), search decisions (blue) or accept decisions (green). The results showed that the 

grey clarify signal was the greatest compared with other situations which were at the 

peak IPS BOLD β weights during 5.6 to 11.9 s (t(23)=3.393, P=0.003, Fig. 19). This 
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also suggested that the IPS could help guide the participants to make more clarify 

decisions than accept or search decisions while the clarify value was greater. 

 

Figure 20. Subsequent ROI time-course analysis. a IPS signals when the participants 

were about to make clarify decisions: a positive uncertainty signal was found in the 

IPS. b IPS signals after clarify decisions: an information gain signal was found in the 

IPS(blue). The vertical lines in all ROI time-course analyses signalled the stimuli onset 

at 5 s, and leave-one-out peak selection was adopted for all ROI time-course analyses. 

 I also focused on the option that had been clarified. The results showed a 

positive uncertainty signal (blue) in the IPS at the peak IPS BOLD β weights during 

6.2 to 12 s (t(23)=3.575, P=0.002, Fig. 20a), but the value signal was absent (not 

significant). This indicated that despite the fact that the IPS could encode the average 

value of the option in all situations, it preferred the uncertainty during the clarify 

decision-making. Apart from the previous results suggesting that the IPS is related to 

the demand for information, I also found that the IPS could encode information gain 

which was indicated by a negative signal about the change of the uncertainty of the 

clarified option (blue) at the peak IPS BOLD β weights during 4.1 to 10.1 s 
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(t(23)=4.474, P<0.001, Fig. 20b). While the clarified option became less uncertain 

after clarify decisions, the IPS activity became stronger. The option became more 

certain and indicated information gain about the possible outcome.   

3.3.3 ACC and search decision 

 

 

Figure 21. Analyses of the search decision. a I defined the region (green) as the ROI 

for the ROI time course analyses with coordinates taken from Kolling et al. (2012). b 

A ROI time-course analysis. The three decision values and the cumulative cost 

estimated by the ACC activity throughout the whole decision-making task across time. 

A positive search signal was first found in the ACC. The vertical lines in all ROI time-

course analyses signalled the stimuli onset at 5 s, and leave-one-out peak selection 

was adopted for all ROI time-course analyses. 

Lastly, I focused on the neural mechanisms underlying the search decision. 

Surprisingly, the results of the whole-brain analysis did not identify any region that 

was related to the search value. Since the ACC has been suggested to be related to 

search value by previous studies about the neural mechanisms of search behaviour 
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(Kolling et al., 2012, 2018), I also extracted the time course from the ACC with the 

coordinates shown in green (Fig. 21a) to run an ROI time-course analysis as an 

alternative approach to see if the clarify signal could be identified in the ACC. The 

accept value, clarify value, search value and cumulative cost were entered as 

regressors into the ROI time-course analysis to examine the association with the ACC 

BOLD activity across time. The results were consistent with previous findings that a 

positive search signal (blue) was found at the peak ACC BOLD β weights during 3.6 

to 7.2 s (t(23)=2.254, P=0.034, Fig. 21b), which was absent in both vmPFC and IPS 

(Fig. 12b & 15b). However, a positive accept signal (green) at the peak ACC BOLD β 

weights during 7.9 to 14.8 s (t(23)=2.803, P=0.001, Fig. 21b) was also found. 

Previous findings suggest that this reflected the opportunity cost of not choosing the 

current option (Fouragnan et al., 2019). In this study, the accept value was the average 

value of the best option. It could be the opportunity cost of the search decision when 

the participants did not choose the best option. At the same time, a negative clarify 

signal (red) was found at the peak ACC BOLD β weights during 9.8 to 13.7 s (t(23)=-

3.16, P=0.004, Fig. 21b). I therefore investigated the relationship between the ACC 

for search and clarify decisions, as well as search and accept decisions.  
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Figure 22. Subsequent ROI time-course analysis. Two value difference signals were 

found in the ACC, and the competition between the search and accept value first 

appeared, followed by the competition between the search and clarify value. The 

vertical lines in the ROI time-course analysis signalled the stimuli onset at 5 s, and 

leave-one-out peak selection was adopted for the ROI time-course analysis. 

I entered two regressors into the ROI time-course analysis: search and clarify 

value difference (green, Fig. 22), and search and accept value difference (red, Fig. 

22). Interestingly, the results showed two positive signals in the ACC (Fig. 22). First, 

a positive search and accept value difference signal (green) was found at the peak 

ACC BOLD β weights during 5.2 to 7.6 s (t(23)=2.252, P=0.034, Fig. 22), followed 

by the second peak (red), search and clarify value difference signal at the peak ACC 

BOLD β weights during 11.7 to 14.0 s (t(23)=2.367, P=0.025, Fig. 22). This suggests 

that when the participants made a search decision, the ACC first signalled the 

competition between search and accept decisions, and the competition between search 

and clarify decisions was signalled later.  
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3.4 Conclusion 

In this chapter, I examined the roles of the vmPFC, IPS and ACC during  accept, 

clarify and search decisions, respectively in multiple-choice decision-making. I found 

that the vmPFC encoded the value of the best option, the value difference between the 

best and the second-best option, and decision confidence; the IPS encoded the 

uncertainty of options and signalled information gain; the ACC encoded the value of 

searching. In short, the vmPFC, ACC and IPS all played a crucial role in accept, search 

and clarify decisions, respectively. However, how these three regions modulated 

decision formation needed to be further investigated. To address this problem, I discuss 

the use of a deep learning technique called Convolutional Neural Network (CNN) and 

Representational Similarity Analysis (RSA) in the next chapter. 
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Chapter 4: Convolutional Neural Network and 

Representational Similarity Analysis 

Chapter highlights 

1. This chapter aims to adopt CNN and RSA to further analyze the underlying 

mechanisms of information sampling in multiple-choice decision-making. 

2. The trained CNN could predict 19 human decisions with an accuracy of above 

87%. 

3. The IPS, ACC and vmPFC showed similar computational processes to the 

early, intermediate and late part of the CNN during decision formation.   

4.1 Introduction 

In Chapter 3, I demonstrated the neural mechanisms underlying decisions of 

accept, clarify and search, for instance, how the defined decision values were 

associated with the vmPFC, IPS and ACC BOLD activities. However, it was still not 

clear how these three regions influenced final decision-making process. In this 

chapter, I will illustrate how the Convolutional Neural Network (CNN) and 

Representational Similarity Analysis (RSA) can be used to identify this process can 

be identified. CNN is a type of artificial neural network commonly used in image 

recognition and classification. Recently, CNN has been used in human behaviour 

classification (Shahverdy et al., 2020). Since the decision-making task involves 

integrating complex information such as option values, the environment, and costs, 

CNN can help visualize how this information is processed to make decisions. 

Additionally, RSA can compare different types of data, such as representations of the 
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CNN and human brain (Kriegeskorte et al., 2008), to investigate how regions of 

interest (ROIs) modulate decision-making. By comparing the representations in the 

human brain and CNN, the similarities between the two in regard to valuation and 

comparison processes during decision-making can be tested (Lindsay, 2020; 

Shahverdy et al., 2020).  

4.2 Methods 

4.2.1 Participants 

The participants were the same as mentioned in section 2.2.1. 

4.2.2 Decision-making task 

The decision-making task was the same as mentioned in section 2.2.2. 

4.2.3 Model architecture 

The trained CNN consists of four layers. The first layer is the input layer 

which stores the value information of all options extracted from the decision-making 

task by value coding during training. The second layer is the convolutional layer with 

ten filters that  capture low-level features and reduce the spatial size of the input 

without losing critical information. The outputs of this layer are called feature maps 

with concrete and integrated the representations. Ten convolutional filters are 

adopted. The third layer is the fully-connected layer. The neurons inside the fully-

connected layer have full connections to all previous outputs. Three fully-connected 

layers are adopted. Given the lack of standardized guidelines for determining the 

optional number of nodes in each fully-connected layer to achieve the best model fit, 

it was necessary to conduct a systematic and thorough testing process. I therefore 

trained 11 CNNs with varying numbers of nodes in each fully-connected layer (the 
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power of 2, such as 32, 64, 128, 256, 512, 1024, 2048 nodes) for model comparisons. 

More details of the model comparisons will be discussed in Section 4.3. The last layer 

is the output layer, which is responsible for decision classification, using the SoftMax 

function to generate the choice probability of each predicted decision. The CNN 

predicts a total of 19 human responses, which include nine accept positions, nine 

clarify positions and one search decision. 

4.2.4 Statistical Analysis 

To find the optimal CNN architecture, 11 CNNs with varying numbers of 

nodes in the fully-connected layer were trained using 20-fold cross-validation to 

prevent overfitting. In each model, 95% of data would be used for training and 5% of 

data would be tested. Each data would be tested once. This resulted in 20 choice 

accuracies for each CNN, which were averaged and compared. The whole dataset 

would then be trained by using the optimal CNN architecture and that CNN was 

adopted for Representational Similarity Analysis (RSA) to test the similarity in the 

computational processes with neural data. 

Prior to conducting RSA, the representational dissimilarity matrices (RDMs) 

were built from different types of data of each participant by pairwise comparisons of 

representations (the multivariate patterns) across time or the trial, and the correlations 

between them were then tested, such as examining the relationship between the CNN 

multi-nodal representations and the multi-voxel activation pattern of the ROIs.  

In this study, the ROIs used in the RSA were qualified by previous univariate 

tests, and were extracted from the same coordinates used in previous time-course 

analyses. The representational dissimilarity matrices (RDMs) were built for the multi-

voxel activation patterns from these ROIs (i.e., the vmPFC, ACC and IPS, left panel, 
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Fig. 24a). The RDMs for the CNN outputs (i.e., activations) from different layers 

(right panel, Fig. 24a) were also built. The RDMs of the fMRI patterns of 

cerebrospinal fluid (CSF), the primary visual cortex (V1) and the third visual cortex 

(V3) were also built as the control regions. All RSA results were indicated by the 

Spearman correlation coefficient and tested by Wilcoxon Signed-rank tests. 

4.3 Results 
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Figure 23. Convolutional Neural Network (CNN). A multi-nodal model was adopted 

for investigating the neural mechanisms of decision formation in the decision-making 

task. a Model architecture. There are four types of layers in the CNN.  The first type 

of layer is the input layer. All information about the option (the value of each hidden 

and revealed dial (i.e., value), the existence of each option, whether the option was 

revealed (i.e., seen), and the existence of each dial as a dial would be removed after a 

clarify decision (i.e., uncertainty) in the decision-making task is converged as the 

image input and entered into the CNN by spatial coding. The image size is 6x6 which 

is combined by 3x3 options and 2x2 dials for each option. The second type of layer is 

the convolutional layer (Conv. Layer) which captures the features of the image input. 

The outputs (or activations) of the Conv. Layer are then converged and entered into 

the third type of layer called fully-connected layer. Each fully-connected layer has full 

connections to all previous outputs. This process could learn the weights of each node 

in each fully-connected layer. Three fully-connected layers are adopted. Besides, all 

information about the environment (the cost incurred by each search or clarify 

decision (i.e., cost), and the average value of all hidden and revealed options (i.e., 

search value) in the decision-making task is concatenated with the outputs of the first 

fully-connected layer and entered into the second fully-connected layer, third fully-

connected layer and to the fourth type of layer, the late layer (i.e., output or dense 

layer) together. b Model comparison, the comparisons on the average choice 

accuracy across models, a 20-fold cross-validation was adopted for deciding the best 

model with the greatest choice accuracy for the use of subsequent analyses. Standard 

deviation bars represent means±SD. c Model performance of the best model, a total of 

19 choices were predicted (i.e., one search decision, nine accept positions and nine 

clarify positions (max. nine revealed options within a trial). 
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 The result showed that the optimal architecture of CNN involved 512, 1024, 

and 1024 nodes in the first, second and third fully-connected layer, respectively, 

which possessed the greatest average choice accuracy among subsets (mean=81.88, 

SD=3.1499. Fig. 23b), and 87.95% choice accuracy for the complete dataset (Fig. 

23c). This model was then adopted to correlate with the neural data by RSA.  

 

Figure 24. Representational similarity analysis (RSA): the RSA approach was 

adapted from Kriegeskorte et al. (2008) for investigating how human neural 

representations were transformed through the CNN model. a The vmPFC, ACC, IPS 

activity and the activations of each layer of the CNN were used to construct their own 
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representational dissimilarity matrix (RDM) by computing pairwise comparisons for 

each participant across trials. This process could examine the representational 

similarity between the human brain and deep learning model during decision 

formation. Examples of the RDM for vmPFC activity and the RDM for activations of 

the late layer are shown at the bottom.  b A p-value table for all Wilcoxon signed-rank 

tests for the RSA results. Each RSA was conducted for the RDM from different brains 

and different parts of the CNN in a subject-by-subject manner. All correlation 

coefficients were tested by Wilcoxon Signed-rank tests, c A Spearman correlation 

coefficient table for each RSA. The CNN was divided into three parts (i.e., the early, 

intermediate, and late layers) that corresponded to the number of ROIs. The layers 

that processed both image and feature inputs were defined as the early layer 

(combined the activations of fully-connected layers 1 and 2), and the layer that 

integrated image and feature outputs was defined as the intermediate layer. The layer 

that was used for decision classifications was defined as the late layer. In addition, an 

extra layer called “All” combined all activations from the early, intermediate and 

late layers. 

Interestingly, no significant correlation was found between the representations 

in the “All” layer and each ROI (Fig. 24b). Since different layers in the CNN are 

responsible for different functions, I divided the representations in the CNN of 

different layers and correlated with the representations of ROIs. 

Critically, the results showed that the representations in the IPS (r=.019, 

P=0.0051) and ACC (r=.011, P=0.0072) were both positively correlated to the 

representations in the early layer of the CNN (Fig. 24b & 24c). The result of IPS 

could be suggested by the spatial coding of image input and the spatial nature of the 
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IPS (Leathers & Olson, 2012; Platt & Glimcher, 1999; Shadlen & Newsome, 1996) 

that spatial features are particularly important to be processed during the early stage 

of decision formation. Besides, the result of the ACC could be supported by its role in 

value comparison process (Boorman et al., 2013; Bush et al., 2002; Kolling et al., 

2012, 2018) which was also required to integrate value information during the early 

stage of decision formation. Also, the representations in the ACC (r=.017, P=0.037) 

were also found to be positively correlated with the representations in the intermediate 

layer of the CNN (Fig. 24b & 24c). The results might suggest that the ACC modulates 

both early and late stages of decision formation, which could be suggested by the 

pattern of fixed connectivity of increasing value signalling began from IPS to ACC, 

and ACC to vmPFC (Hare et al., 2011), consisted with my results that the 

representations in the vmPFC (r=.012, P=0.024) and ACC (r=.017, P=0.01) were 

positively correlated with the representations in the late layer of the CNN (Fig. 24b & 

24c).  

For control analyses, the results showed that there was no significant 

relationship between the representations in the CSF and each part of the CNN. 

However, there were significant relationships between the representations in both V1, 

V3 and all parts of the CNN (p-value < .01 for all Wilcoxon Signed-rank tests, Fig. 

24b), which could be suggested by the design settings of the decision-making task that 

the ability of perceptual processing is required. Overall, the RSA helped to visualize 

the representational relationship between the human brain and CNN during decision 

formation, suggesting their similarity in regard to valuation and comparison 

processing.  
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4.4 Conclusion 

In this chapter, I illustrated how the CNN and RSA were used to understand 

the decision-making processes in the human brain. Through model comparisons, the 

optimal architecture of the CNN was defined, and the data of that CNN was tested 

with human brain data by RSA. The results of the RSA found that both IPS-like and 

ACC-like representations occurred in the early stage of the CNN during decision 

formation, indicating the primary processing of spatial and value information. The 

ACC-like representations that occurred in the intermediate stage of the CNN helped 

modulate both primary information processing and final decision formation. Last, 

both vmPFC-like and ACC-like representations occurred in the late stage of the CNN 

during final decision formation. 
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Chapter 5: General Discussion 

 We make numerous decisions among multiple options in our daily lives, and 

typically choose the option with the greatest value. Although this seems simple in 

words, the decision-making process is actually more complex and involves various 

brain processes. The vmPFC is known to be involved in valuation and value 

comparison processes, but sometimes we struggle to make decisions because we are 

unsure of the available options or wonder if there is a better option out there. For 

instance, we may not be certain about the outcomes, or may wonder if there is 

something better that has not been discovered in the environment (Badre et al., 2012). 

I suggest two types of information sampling processes to address this problem, which 

are sampling information from options and environments. The former process aims to 

clarify the options to reduce the uncertainties, in which no new options would be 

discovered, while the latter process aims to search for alternatives from the 

environment, in which new options would be discovered. Previous evidence suggests 

that the IPS and ACC are crucial with these processes, respectively. 

Although previous literature provides neural evidence about information 

sampling, the central problem of this thesis is that there are three types of decisions 

that we need to consider at the same time, which are selecting better options and two 

types of information sampling, while the dynamics of these decisions have not been 

investigated.  

As mentioned in Chapter 1, the motives of information sampling could be 

sophisticated and stochastic (Blanchard & Gershman, 2017). The neural mechanisms 

are still being investigated. Recent evidence suggests that the IPS is related to the 
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demand for information and information gain (Foley et al., 2017; Gottlieb, 2018; 

Gottlieb et al., 2014; Gottlieb & Oudeyer, 2018; Horan et al., 2019), while the ACC is 

related to the value of sampling and sampling cost (Kolling et al., 2012, 2018). 

Interestingly, both the IPS and ACC are seldom discussed together in researches on 

information sampling, as most of them might largely focused while animal subjects 

sampled information from options or environments independently. For instance, the 

IPS is discussed more when the experimental task is about sampling information from 

options to reduce the uncertainties, while the ACC is discussed more when it comes to 

sampling information from the environment to discover more alternatives. However, 

real-life examples suggest that we usually decide between sampling options and 

environments at the same time. Moreover, most of the relevant studies focused more 

on binary-choice decision-making, while real-life examples suggest that usually there 

are multiple options to be compared. It is important to study the neural mechanisms of 

information sampling in multiple-choice decision-making as they remain unclear. In 

this thesis, I review and define three candidate regions (i.e., the vmPFC, IPS and 

ACC) and tested their roles during information sampling in multiple-choice decision-

making. 

To address the problem of investigating the neural mechanisms of information 

sampling in multiple-choice decision-making, I designed a multiple-choice decision-

making task which was adopted in Chapters 2-4. During the designed decision-

making task, people were required to decide between three possible decisions (i.e., 

accept, to obtain the value of a selected option; clarify, to sample information from an 

option to reduce uncertainty; search, to sample information from the environment, so 

a new option would be discovered).  In Chapter 3, I reported an fMRI experiment 

and showed the roles of the vmPFC, IPS and ACC during decisions of accept, clarify 
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and search, respectively. I showed that the vmPFC signals the average value of the 

best option. Critically, it also signals the value difference between the average value 

of the best option and the second-best option, which helps signal the better option and 

guides the accept decision during the decision-making task. The results were 

consistent with previous studies that the vmPFC encodes value differences between 

chosen and unchosen options (the best option is usually the chosen option while the 

second-best option is the unchosen option) (Boorman et al., 2013). However, the same 

analysis of the IPS showed the opposite result. The IPS could only signal the average 

value of the best option but not the second-best option. The results might suggest that 

the IPS is only involved in the valuation process but not the value comparison 

process. This could be supported by early literature in that the IPS was found to be 

able to encode the subjective value in perceptual decision-making tasks (Leathers & 

Olson, 2012; Platt & Glimcher, 1999). 

While the IPS was found to be crucial during the sampling of information 

from options, I showed that the IPS positively signals the uncertainty of both the best 

option and the options that are selected to be clarified, while the same analyses in the 

vmPFC showed opposite results. The results might suggest that the greater uncertainty 

of options decreases our decision confidence to accept them as the outcomes of their 

options are more unpredictable (Hebscher & Gilboa, 2016; Shapiro & Grafton, 2020). 

Critically, I also showed that the positive clarify signal in the IPS is the strongest 

when making a clarify decision. Since the clarify signal is composed of the average 

value and the uncertainty of an option, I further showed that the IPS activities are 

mainly associated with the uncertainty but not the average value of the clarified 

options, indicating that the IPS guides clarify decisions based on the uncertainty more. 

As a greater uncertainty indicates that more information is needed, the results were 
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consistent with previous studies that the IPS signals the demand for information. I 

also showed that the IPS can signal information gain (Foley et al., 2017; Gottlieb, 

2018; Gottlieb et al., 2014; Gottlieb & Oudeyer, 2018; Horan et al., 2019). While the 

uncertainty of options becomes smaller after clarify decisions are made, the IPS 

activities become stronger.  

I then also showed that the ACC plays a critical role in the sampling of 

information from the environment. The ACC is the only candidate region that can 

positively encode the search value (Hunt et al., 2012; Juni, Gureckis & Maloney, 

2016). Critically, I also showed that the ACC encodes two value comparison signals, 

in which the comparison between search and accept decisions is first processed, 

followed by the comparison between search and clarify decisions. The results might 

suggest that the ACC guides search decisions while the values of both accept and 

clarify decisions need to be relatively unappealing compared with the search value. 

Interestingly, the ACC prioritizes the comparison of accept decisions over clarify 

decisions. This could be suggested by the role of the ACC that it also encodes an 

inverse value difference between chosen and unchosen options (Kolling et al., 2012). 

The value of the best option and the search value could be defined as the values of 

chosen and unchosen options, respectively. If the search value is smaller than the 

value of the best option, a search decision is not preferred and would be signalled in 

the early stage of decision formation.  

To investigate how the vmPFC, IPS and ACC formulated the final decision 

between three possible decisions in the designed decision-making task, I also 

employed the CNN and conducted a series of RSA to visualize the functional pathway 

of these three regions in Chapter 4. The approach of employing both the CNN and 
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RSA has been recently used as computational theories of the human brain (Cross et 

al., 2021; Flesch et al., 2022). I extracted the multi-nodal representations from the 

CNN with the highest accuracy (87.95% for predicting 19 responses) for comparison 

with the multi-voxel activation patterns of the vmPFC, IPS and ACC. Critically, while 

previous studies largely focused on the comparison between the entire CNN with only 

a single brain region (Cross et al., 2021; Flesch et al., 2022), my study showed that 

the vmPFC, ACC and IPS only have similar representations in early, intermediate and 

late parts of the CNN but not the entire CNN, which are responsible for feature 

extraction, integration and decision making, respectively. The results might suggest 

the feasibility of conducting a series of RSA on the subparts of other deep learning 

models including more brain regions to investigate the neuro-computational 

mechanisms of decision-making.  

5.1 General Conclusions 

This thesis sheds light on the neural mechanisms underlying information 

sampling in multiple-choice decision-making, which the vmPFC, IPS and ACC are 

identified as key regions with distinct roles. The vmPFC is critical in selecting the 

best options, by encoding the difference between the values of the options. 

Meanwhile, the IPS and ACC are both critical in the process of information sampling. 

The IPS guides the sampling of information from existing options by encoding their 

level of uncertainty, while the ACC guides the sampling of information from the 

environment by encoding the value of searching. Besides, utilizing both CNN and 

RSA helps to visualize the functional pathway of the vmPFC, IPS and ACC during 

information sampling in multiple-choice decision-making. The IPS, ACC and vmPFC 

are more related to the early, intermediate and late stages of decision formation 
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respectively. This thesis reveals the unified framework to illustrate the dynamics 

between option selection process and information sampling processes.  
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