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A B S T R A C T 

Nowadays, consumers are empowered, trendy, and they are always looking for newness 

and excitement. To address this need, the demand for new products is growing at 

accelerated speed, and this can be applied to all types of consumer products, including 

fashion. Graphics and patterns play an essential role in fashion design and product 

development. Hundreds of decorative patterns are required to be produced within days 

while the tedious, manual and laborious creation process is not catching up well with 

the demand. Very few research has been done on elevating the decorative pattern design 

process and the existing Computer-Aid Design (CAD) systems are rarely used to create 

patterns in digital format. In the digital era, computers are now being used to generate 

designs, but the designs or artworks generated neither meet the aesthetic criteria nor are 

in the correct format for production or further editing. 

 

Following the development pathway of artificial intelligence, the way we can build an 

intelligent pattern design system is by enabling computers to learn from design samples, 

of which useful pattern knowledge can be analyzed, extracted and processed to create 

new designs. By thoroughly reviewing the existing practices of design creation in the 

fashion industry, a new framework is proposed. Three intelligent systems are developed 

and experimentally verified in this study. They include the efficient repeated pattern 

detection system (R-system), the automatic design element extraction and vectorization 
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system (E-system), and the vector-based digital pattern generation system (G-system). 

Each system serves a specific purpose. They can work either interpedently as 

standalone system or seamlessly work together as a whole for digital pattern creations. 

 

The R-system is responsible for efficient detection of repeated patterns from input 

images. A repeated pattern is the smallest unit that can tile the overall image and 

represents the primary information of the image in a compact form. Repeated patterns 

appear in many kinds of visuals: from natural scenes, building and architectures, to 

designs such as textiles, product/graphic designs for packing or wallpapers. Detection 

of such repeated patterns also supports many downstream applications such as image 

retrieval and image synthesis. After reviewing different approaches, a hybrid method is 

proposed to keep a good balance among content diversity, topology regularity and the 

trade-off between robustness and speed. In particular, this study firstly leverages 

activations of a pre-trained Convolutional Neural Network (CNN) to predict coarse 

repeated pattern size options of the input image. Accurate repeated patterns of the input 

images are then obtained by template matching optimization. Experiments are 

conducted on a proposed dataset to demonstrate the superiority of our methods. The 

accuracy of our method is 0.673 which is 20% higher than the baseline method and the 

time cost is only its 11%. 

 

The proposed R-system analyzes input images to detect repeated patterns generating 
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unit region of image with repeated patterns or entire image of unrepeated image as 

outputs. Such outputs from the R-system can be inputted to the E-system for further 

design analysis. The E-system focuses on automatically identifying and extracting core 

design elements from input images. A design image can be considered as an 

arrangement of design elements filled with specific colors according to certain layout 

rules. This study vectorizes the extracted design elements and keeps outcomes compact. 

In particular, unsupervised segmentation is applied during core design element 

extraction to solve the problem of the lack of dataset for labeled designs. Next, a novel 

design element deconstruction method is proposed for vectorization based on color 

quantization. Extensive experiments on design images demonstrated the effectiveness 

of the proposed method. Our method extracts and vectorizes the core design elements 

of an image in around 13 seconds. The output vectorized design elements are more 

compact than common business software and are easier to reuse for new design 

generations. Furthermore, a vector-based design element dataset is built to support 

design generation. 

 

The proposed R-system and E-system can analyze large volume of digital pattern 

samples, and extract useful design elements and rules such as colors and topology 

structures. With the learnt design rules, the G-system is proposed to support the creation 

of new vector-based patterns, meeting humans' need on aesthetics and are ready for 

production. The proposed G-system is for generation of new digital patterns that can be 
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applied in textiles and other decorative graphic designs. To achieve this, this study 

generally classifies textile patterns into three main groups: stripe, check, and motif. 

New designs can be regarded as combinations of different geometric and color 

parameters. Hence parametric models are formulated by flexible combination of 

geometric and color parameters learnt from reference images. Implementation 

experiments prove the design outputs meet basic human aesthetic, and our system can 

support design work. 

 

To summarize, a new REG framework is proposed in this study by integrating three 

intelligent systems for analyzing and supporting pattern design making. It promotes the 

use of artificial intelligence for design generation that meets the needs of human 

aesthetic requirements and caters to the speedy fashion product development cycles. 

 

Keywords: Fashion Computer-aid Design; Digital Pattern Analysis; Design Generation; 

Vectorization; Intelligent Systems; Human Aesthetics 
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CHAPTER 1. Introduction 

1.1 Background 

The global fashion industry is essential to our day-to-day life and indispensable to the 

world’s economy. Although the world’s economy have suffered from nearly two years 

of disruption, the fashion industry still accounts for 2% of the global economy 

(FashionUnited, 2022). Consumers are provided with homogeneous products at low 

prices in sufficient quantity through mass production led by technological advancement. 

Meanwhile, the technology revolution has also been shaping empowered consumers 

who are closely connected to the internet, keep sharing fashion information, and are 

more complex, trendy, and hard to satisfy (Blázquez, 2014; Xu, 2015). The expectations 

of consumers today are far higher than they used to be. They frequently choose fashion 

products with added features to better express their personalities and distinguish 

themselves from the crowd (Teunissen et al., 2015). To meet consumers’ demands, 

fashion companies have segmented the market to manufacture consumer-focused 

products and look for active methods to appeal to consumers to their brands (Camargo 

et al., 2020; Ko et al., 2007; Quinn et al., 2007). Moreover, due to the seasonal 

characteristic of fashion products, the development of consumer-focused fashion 

products becomes a dynamic process with high seasonal demand and a tight 

development cycle. 
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Examining the process of fashion product development is crucial for creating 

consumer-focused products. Although product development for new products is a 

comprehensive process, the generic development process begins with designing. 

Followed by modeling and prototyping, which aims to create the sample products to be 

displayed at fashion fairs, detail engineering and material sourcing come next, while 

the final process is manufacturing and distribution (Bandinelli et al., 2013; Spahiu et 

al., 2014).  

 

In order to efficiently respond to the changing demand for fashion products, digital 

technology is applied to almost every section along the fashion value chain. For 

example, Enterprise Resource Planning (ERP) systems are applied to manage daily 

business activities, for instance, accounting, procurement, project management, and 

risk management and compliance (Westrup et al., 2000). Supply Chain Management 

(SCM) systems focus on managing the flow of goods, data and finances, from acquiring 

raw materials to delivering the product to its final destination (Oracle, 2022). Customer 

Relationship (CRM) systems gather, link, and analyze all collected customer data, 

including contact details and communications with business partners (ApparelMagic, 

2022). Computer-aided design (CAD) systems support different design operations, 

including garment patternmaking, fashion technical drawing, 3D garment simulation, 

and decorative pattern creation in digital formats (Tabraz, 2017; Xu et al., 2016). 
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As discussed early, design is the first step of the product journey, one of the most 

important process in the product development cycle. The process of design covers many 

types of design. Apart from the shape or silhouette, fashion design also covers 

decorative elements like decorative patterns (Albert et al., 2004; Seivewright, 2012). 

Decorative patterns are essential components for numerous fashion products because 

of they can improve uniqueness of the product by incorporating expressive means of 

visual design (Fogg, 2006; Seo et al., 2007). Decorative pattern design is frequently 

linked to textile design. However, it also can be applied directly to fashion products 

using a range of techniques such as placement printing or patch embroidery. 

 

Early decorative patterns were designed by manual sketching, making them difficult to 

edit and preventing them from being used for mass production (Studd, 2002). To 

overcome these limitations, decorative patterns in digital editable formats emerge. This 

kind of digital patterns are usually in vector format, also named as Scalable Vector 

Graphics (SVG). They are made up of geometrical primitives and thus provide a 

number of benefits, including minimal file size, and ease to edit or scale to any size 

without a loss in quality or details (Dominici et al., 2020; Lu et al., 2014; Selinger, 

2003). 

 

Although digital patterns are essential components of garments, the development of 

digital patterns is often separated from fashion garment development (Lu et al., 2017). 
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To better assist digital pattern development, it is necessary to get a thorough 

understanding of its development process. Studd (2002) divided the process into five 

generic phases based on a study with digital pattern designers involving different 

fashion companies; see Figure 1-1 for an illustration of the 5-phase development 

process of digital pattern. In the first phase, design project planning should be 

conducted, considering the trends of the specific product category, to decide the number 

of designs, colorways, due time, etc. Next, in the phase of research and analysis, the 

information about the products and markets are collected and analyzed. The third phase 

is design synthesis, including concept development, design creation, design solutions, 

and colorway development. Following which is design selection, consisting of design 

presentation, selection, sampling, and final selection. This phase of processes requires 

repeated communication between all participants. The last phase is production. 

Comparing to design synthesis, the phases for research and repeated communication 

are more time-consuming in the digital pattern design process. Thus, scholars have been 

researching on how to extract useful design information from existing designs and re-

use them to support new design generation. Computer aided design (CAD) plays an 

important role is this area. 
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Figure 1-1 The generic process for digital pattern design (Studd, 2002) 

 

CAD is now essential for creating digital patterns in the fashion industry (Bandinelli et 

al., 2013). The existing CAD software, such as Adobe Illustrator and CorelDraw, 

streamline design work to a certain extent; they provide a convenient and efficient way 

to constantly improve design efficiency. In the current CAD interfaces, designers can 

create or modify editable design elements to form various digital patterns conveniently 

in different colorways. They also can tile small-size patterns (also known as repeated 

patterns) to construct large-size patterns that satisfy production needs. However, these 

CAD interfaces do not essentially optimize the entire design process, and computers 

are only used to replace the traditional pen and paper in the process of pattern design. 

In a word, common CAD software are just digital creation facilities replacing freehand 

tools. Designers still need to spend a lot of time capturing customer preferences and 
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collecting inspiration for creation. Due to increasing stress/demand on fashion product 

development, designers long for better CAD systems that can provide professional 

support or suggestions basing on industry needs or fashion product development 

knowledge.  

 

Other than commercial software, some researchers also proposed new methods or 

systems to support design creation. For example, some researchers have utilized the 

close connection between mathematics and art to create particular digital patterns in 

vector formats, such as marbling and fractal art design (Liu et al., 2008; Lu et al., 2014; 

Wang et al., 2019); some output examples are presented in Figure 1-2. Since these 

patterns exist in vector format, they can be easily to modified to meet production 

requirements. However, each method is only for creating a particular type of digital 

pattern and hence limits its application prospects. Artificial intelligence (AI), deep 

learning in particular, has recently been making significant advancements in solving 

image understanding and computer vision problems. For example, image classification 

(Liu et al., 2015), image segmentation (Kaur et al., 2014), and object detection (Zou et 

al., 2019). There are some novel methods leveraging deep learning technology to 

generate new designs and artworks in raster image formats. However, these methods 

can neither guarantee the outputs can be considered aesthetically pleasing to people nor 

can they be further edited to meet design or production requirements (more information 

is described in section 2.4). 
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Figure 1-2 Examples of the generation results from Liu et al. (2008), Lu et al. (2014) and 

Wang et al. (2019), respectively 

 

1.2 Research Problems and Objectives 

As mentioned previously, the demand for digital patterns is increasing, adding more 

pressure on designers. Little work has been devoted to improve the decorative pattern 

design process and the existing CAD systems are rarely used to create patterns in digital 

format. Moreover, the generated designs or artworks by some research works can 

neither meet human aesthetic requirements nor are in the correct format for production 

or further editing. To overcome these limitations and provide valuable assistance, the 

outputs of the proposed system should preferably be editable. Furthermore, the output 

patterns should satisfy human aesthetics as much as possible so that designers can get 

useful results and their workload can be reduced. 

 

It is known that majority of new designs are generated from editing the existing ones. 

This implies that the existing designs contain much useful information, including 
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design elements, color combination rules, elements layout rules and so forth. In order 

to build intelligent design support systems, this study follows the development pathway 

of artificial intelligence to mimic how human designers utilize their creativity. 

Computers should learn from design samples first and then attempt to automatically 

generate design outputs that are pleasing to human aesthetics. To achieve such a goal, 

this study should tackle the following problems: 

 

a) How could useful design information be analyzed and extracted from existing 

ones? 

b) How could new designs that are pleasing to human aesthetics be generated by 

leveraging the obtained design information? 

c) How could outputs be made easily editable to meet industry requirements? 

 

By thoroughly reviewing the existing practices of design creation in the fashion industry, 

many digital patterns are found to be created by tiling smaller units called repeated 

patterns; and repeated patterns are composed of repetitive design elements in several 

colors. Repeated patterns can be found everywhere, for example, natural scenery, 

buildings and architectures, and design-related works, especially textiles. The repeated 

patterns represent the primary information of an image in a compact form. Therefore, 

detecting repeated patterns is beneficial for design understanding and analysis, 

especially the layout of design elements. 
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Considering digital patterns with several design elements, this study plans to go one 

step further to analyze the design at the design element level. This study proposes to 

identify and extract design elements inside existing designs. Simultaneously, in order 

to ensure the extracted design elements can be easily used for further design generation, 

it is plan to vectorize them and keep the outcomes compact. 

 

Through analyzing the existing designs, a wealth of useful design information is 

obtained, including editable design elements and design rules such as colors and 

topology structures to support further design generation. Advanced artificial 

intelligence technology has brought new inspiration to solve computer vision problems 

and accelerated the development of CAD packages for digital pattern design. Therefore, 

this study seeks to employ artificial intelligence techniques to solve the stated problems 

and to fulfill the following research objectives: 

 

i. To establish a systematic understanding on digital pattern design, especially 

layout rules and color combination rules; 

ii. To comprehensively analyze pattern designers’ workflow in the fashion industry 

and establish the structure of this study; 

iii. To construct a digital pattern image dataset and classify them according to the 

layout, aiming to provide enough design resources for the study; 
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iv. To propose an efficient repeated pattern detection method for digital pattern 

analysis in repeated pattern level; 

v. To propose a novel method for design elements extraction and vectorization from 

unknown digital pattern images for design analysis in design element level; 

vi. To build a vector-based design element dataset for subsequent design generation; 

vii. To extract color palettes from the given reference images according to 

requirements; 

viii. To build a design-knowledge based digital pattern generation system covering 

general pattern types and ensure the outputs are editable as well as aligned with 

human aesthetics. 

 

1.3 Framework Overview and Thesis Organization 

Before establishing the overall framework and conducting experiments, this study 

should have a systematic understanding of digital pattern design, including its main 

components, common CAD software, and industry workflow. This is mainly explained 

in CHAPTER 1 and CHAPTER 2, and fulfilling objectives (i) and (ii). 

 

According to the defined research objectives, this study proposes a REG framework 

composed of three intelligent systems: (1) efficient repeated pattern detection system 

(R-system), (2) design elements extraction and vectorization system (E-system), and (3) 

vector-based digital pattern generation system (G-system). The overview of the 
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proposed framework is described in CHAPTER 3.  

 

The R-system, realizing research objectives (iii) and (iv), is reported in CHAPTER 4. 

To achieve a good balance among content diversity, topology regularity and the trade-

off between robustness and speed, the R-system firstly leverages activations of a pre-

trained Convolutional Neural Network (CNN) to predict coarse repeated pattern size 

options of the input image. Accurate repeated patterns of the input images are then 

obtained by an optimization method based on template matching. Extensive 

experiments are conducted on the proposed dataset to demonstrate the superiority of 

the proposed R-system in repeated pattern detection. In addition, the outputs from the 

R-system can be input for the subsequent E-system for further design analysis. 

 

The E-system, realizing research objectives (v) and (vi), is reported in CHAPTER 5. 

Vectorization is a process of converting raster graphics into vector graphics, which is 

common in design work and helpful for design editing and creation. Digital patterns are 

always composed of an arbitrary number of repetitive design elements. Those design 

elements with distinctly colored regions and sharp boundaries are particularly well 

suited for vectorization. Thus, the design elements should be extracted beforehand. 

Since the lack of datasets with labeled design elements, unsupervised segmentation is 

applied during core design element extraction. Next, a novel design element 

deconstruction method is proposed for vectorization based on color quantization to keep 
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outcomes compact. Extensive experiments on collected design images demonstrate the 

effectiveness of the proposed E-system. Furthermore, a vector-based design element 

dataset is built using the proposed E-system from design images downloadable from 

internet, and these vector-based design elements can support new design generation in 

next phase. 

 

The G-system, realizing research objectives (vii) and (viii), is reported in CHAPTER 6. 

In this study, digital patterns are classified into stripe, check, and motif patterns. As 

known, majority of new designs originate from modification of existing design samples. 

The previous two systems help us obtain useful design information from a large volume 

of digital pattern samples at different levels, including vector-based design elements 

and design rules such as colors and topology structures. The G-system designs a 

parametric model for each type of pattern from geometric and color perspectives, and 

flexible combinations of the obtained/generated vector-based design elements and color 

information are allowed. Implementation results show that the outcomes meet basic 

human aesthetics, and hence our method is able to support the design work. 

 

In CHAPTER 7, the research work of the whole study is concluded, highlighting the 

contributions and key findings. Recommendations for future work are given. An 

illustration of thesis organization is shown in Figure 1-3. 
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Figure 1-3 Thesis organization 

 

1.4 Significance of the Study 

This study is significant to both academia and the fashion industry. With digital pattern 

analysis and design support, this study proposes a novel REG framework consisting of 

three intelligent systems to resolve specific research problems. For academia, this study 

indicates three innovative solutions to tackle the stated problems. For the fashion 

industry, the results from this thesis are applicable to assist and improve the processes 
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for creating digital patterns, which will improve the development of fashion products. 

 

1.4.1 Significance to academia 

This study proposed a novel hybrid method to effectively predict accurate repeated 

pattern sizes of unknown images. Instead of solely relying on local image features or 

CNN activations, the study first leverages selected CNN activations to predict the 

coarse repeated pattern size of every unknown image and then optimizes the size by the 

autocorrelation-based template matching method. The results of image boundary 

detection are used to screen CNN activations. Experiments on the proposed dataset with 

841 images demonstrate our approach achieves the best trade-off between detection 

accuracy and efficiency than related works. In particular, the accuracy of our method is 

0.673 which is 20% higher than the baseline method and the time cost is only its 11%. 

At the same time, the robustness of the proposed method is proved by experimenting 

with fronto-planar real-world images. Moreover, the ability to extract feature 

information using pre-trained CNNs is discussed and analysed in detail. 

 

The study proposed a novel framework to extract and vectorize design elements inside 

unknown design images for the first time. The framework marks the first effort to 

concentrate on extracting design elements using unsupervised segmentation. 

Particularly, this method uses the feature extraction ability of CNN and joint learning 

to continuously optimize the final extraction results, overcoming the limitation of 
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lacking of labeled design datasets. Extensive experiments demonstrate that the 

proposed method outperforms the traditional image segmentation and object detection 

methods. Additionally, a novel design element deconstruction method is proposed for 

vectorization based on color quantization: when combined with the classic 

vectorization approach for black-on-white images which huge number of meaningless 

vector paths are eliminated, the framework can produce compact vectorization results 

for color images. Experiments have shown that our method can effectively process one 

image in 13 seconds, and the output vectorized design elements are compact and good 

for further editing. Moreover, a vector-based design element dataset is built to support 

design generation. 

 

This study proposed the first vector-based digital pattern generation system, covering 

stripe, check, and motif patterns. Compared with pixel-based image generation systems, 

the outputs of the proposed G-system have many advantages, including scalability, 

compatibility, simplicity of editing, and minimal file size. Moreover, the variety of 

patterns generated in the fashion domain is by far the richest. Apart from that, the 

generated results are controllable and ensured of compliance with design knowledge. 

Thus, the outputs can be further edited, supporting design process which is iterative 

nature. Extensive experiments demonstrate the outputs align with basic human 

aesthetics and further prove the approach is capable of assisting fashion design work. 
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What’s more, the proposed REG framework promotes the use of artificial intelligence 

for design generation and eases the designers’ or developers’ burden in fashion product 

developments. 

 

1.4.2 Significance to the industry 

The demand and stress on product development keep rising day by day. Designers and 

even the whole industry are yearning for better CAD technologies to assist them in 

reducing design workload and providing more inspiration. The proposed framework is 

able to assist design work in providing different levels of results and producing vector-

based digital patterns that align with basic human aesthetics from analysing design 

samples. In particular, the outputs of the R-system and E-system consist of repeated 

pattern level and design element level results. These results are beneficial for 

understanding a design and simplifying the design process. Moreover, the G-system is 

designed to quickly create new patterns that meet higher aesthetic requirements by 

simply tweaking and modifying vector-based digital elements. Furthermore, these 

systems can provide customers, who are mostly inexperienced with design (non-

professional users), a tool for expressing their ideas for design. It encourages user 

involvement in the design process, adding value to the fashion products and improving 

sales. 

 

The rest of this thesis is organized as follows: In CHAPTER 2, related works are 
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reviewed, including previous works on computer-aided fashion design, brief review of 

computer vision, brief account of convolutional neural network, and generative tasks 

vs design generation. In CHAPTER 4, the efficient repeated pattern detection system is 

described. In CHAPTER 5, a system of design elements extraction and vectorization 

will be explained. In CHAPTER 6, a vector-based digital pattern generation system 

covering multiple pattern types and following general design rules will be explained. 

The experimental results will be presented in corresponding chapters. Finally, 

CHAPTER 7 concludes the research work of this study and discusses future work. 

  



18 

CHAPTER 2. Literature Review 

This study aims to propose and develop intelligent systems for digital pattern analysis 

and design support, improving digital pattern design efficiency and enabling non-

professional users to take part in the design process. Based on the research objectives 

defined in CHAPTER 1, this chapter reviews the related work as follows. First, the 

development of computer-aided design systems, supporting different functions of the 

fashion product development process, are reviewed at the beginning. The field of study 

on how computer understand the contents of an image is called computer vision. Since 

all design samples to be analyzed are in form of raster images, the basic concepts and 

approaches of key tasks of computer vision are also reviewed, forming the foundation 

of research work proposed in this study. Apart from reviewing traditional image features 

and typical computer vision tasks, advanced methods in computer vision are all based 

on deep neural networks, therefore the standard operations and typical architecture of 

CNN are introduced. Subsequently, the state-of-the-art generative adversarial network 

(GAN) methods are reviewed and the gaps for design generation research are discussed. 

The related research status on digital patterns and the current limitations are 

summarized in the end. 

 

2.1 Computer-aided Fashion Design 

CAD systems have been widely applied in fashion product design because they largely 
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improve the efficiency to meet the pressing demands on consumer-focused product 

development (Bertolotti et al., 2004; Sayem et al., 2010). CAD systems are used to 

support the following typical functions or tasks in the design process: digital pattern 

design, garment style design, and garment pattern making. 

 

2.1.1 Digital pattern design 

In digital pattern design, CAD systems include two-dimensional (2D) graphics software, 

such as Adobe Illustrator (Adobe, 2022) and CorelDRAW (Bouton, 2017), or software 

that have been customized for the fashion industry like Kaledo Style (Kaledo, n.d.) and 

TexDesign (Koppermann, n.d.). These software are known for their guaranteed speed 

and accuracy. The digital formats (mainly in vector formats) of design outputs from 

these software have a number of advantages, including the designs are scalable, 

reusable, and can be easily adjusted to fit any size requirements for production. 

Unfortunately, these software only work as a substitute for pencil and paper rather than 

creating/generating new designs to reduce the workload of designers. 

 

Some research studies have been reported enabling computers to generate editable new 

designs by incorporating existing design rules. For example, by investigating uniform 

stochastic web and repeated patterns, Liu et al. (2008) formulated a number of 

mathematical models for textile pattern generation. They applied the principle of 

repeated pattern evolution to textile pattern design and transformed previously abstract 



20 

mathematical information into visual textile patterns. Lu et al. (2014) proposed the first 

and the only evolutionary marbling textile design system using mathematical marbling 

functions. It applied productive, deductive, and inductive philosophical models of 

design reasoning to depict the design process in forms of artificial evolution. The output 

marble patterns fulfill the textile industry requirements, in vector format, with various 

repeat arrangement and in different colorways. Wang et al. (2019) analyzed the basic 

principle of fractal artwork generation and the requirements of graphics. On this basis, 

they generated flower and geometric art graphics and then applied them to digital 

fashion pattern design. These methods encourage creativity in digital pattern design and 

accelerate fashion product development (examples are shown in Figure 2-1). However, 

the above methods can only produce patterns of a particular style, and the results are 

not always aligned with human aesthetics. 

 

 

Figure 2-1 Examples of the outputs from the mentioned research works. (a) from Wang 

et al. (2019), (b) from Lu et al. (2014), and (c) from Liu et al. (2008) 
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2.1.2 Garment style design 

 

Figure 2-2 Fashion process sheet, fashion sketch and garment pattern (Liu et al., 2019) 

 

Garment style design is usually expressed utilizing fashion sketches (see Figure 2-2(b)) 

in garment development process. However, not much work has been done on automatic 

creation of fashion sketches. Commercial CAD software being available for sketch 

drawing is similar to that for digital patterns, i.e. mainly Adobe Illustrator and 

CorelDRAW are used. Fashion sketches are highly technical, and it still relies on 

tedious and manual process to develop every new style. Regardless drawing manually 

with pencil and paper or using design software, the design process of garment styles is 

skill-based and it takes years or months of training to manage the skills of style design. 
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In recent years, empowered customers have a stronger desire to take part in the creation 

process of fashion products. To this end, a few interactive CAD systems were proposed 

and developed, following similar approach of first identifying components or 

constituent parts of fashion products and then combining different parts together to 

form new designs. For instance, Ogata et al. (2007) proposed a jacket design support 

system: through deconstructing the jacket into parts i.e., a body, a collar, a sleeve, 

pockets, material and color of a jacket and then applying the Interactive Genetic 

Algorithms (IGA), users' preferences are allowed to be reflected in garment design. 

Users can review different jacket design options created by the system and select their 

preferred ones. The system then provides genetic algorithm (GA) operations of 

selection, crossover and mutations, to generate new jacket designs based on user 

judgment (see Figure 2-3(a)). Satisfactory jacket designs are obtained by repeating the 

above steps. Mok et al. (2013) developed a customized fashion skirt and dress design 

system for customers to create design sketches in a user-friendly interface (see Figure 

2-3(b)). In particular, they describe a skirt from three levels: silhouette, key style 

elements and design details. Each level has a number of options. The system allows 

options from different levels to be freely combined to generate new skirt or dress 

designs. In addition, Liu et al. (2019) developed a system (Figure 2-3(c)) to assist the 

creation of jean designs, outputting fashion sketches with corresponding sewing 

patterns based on six parametric inputs that reflect the shape of human body and design 

requirements of users. The above-mentioned systems are able to help non-professional 
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users to create or customize their fashion designs/sketches of specified categories in a 

user-friendly way. Their idea of breaking down fashion sketches into constituent parts 

and reorganizing them into new designs inspired the research about digital pattern 

design in this study. 

 

 

Figure 2-3 Examples of garment style CAD systems. (a) User interface of Ogata et al. 

(2007), (b) user interface of Mok et al. (2013), and (c) user interface of Liu et al. (2019) 
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2.1.3 Garment pattern making 

Garment patternmaking is also called garment construction design (see Figure 2-2(c)). 

Traditionally, according to a fashion sketch, pattern makers create and draw on paper 

garment patterns, which are the blueprint on the basis of which fabric is cut (Aldrich, 

2013; Liu et al., 2018), and these pattern pieces are sewn together to form a finished 

3D garment, which has the exact styles/design of the fashion sketch. The work of 

patternmaking is therefore vitally important, linking from fashion design to garment 

making. A range of commercial tools are developed, such as Optitex PDS (Optitex, n.d.), 

CLO (CLO, 2022), and Gerber AccuMark (Lectra, n.d.) to support garment pattern 

design process.  

 

A great deal of CAD software and research work have been focused specifically on 

virtually sewing 2D clothing patterns on 3D mannequins to assess the appearance and 

fit of the finished 3D garments (an example is shown in Figure 2-4), aiming at 

shortening the sample making and fitting cycles. This is known as 3D clothing 

simulation (Li et al., 2017; Liu et al., 2019; Meng et al., 2012). These works of garment 

pattern design follow a 2D-to-3D approach. Another area of garment patternmaking 

CAD studies focus on designing clothing directly in 3D space and then flattening 3D 

garments to 2D patterns (Bang et al., 2021; Liu et al., 2018). This approach mimics the 

3D modeling and draping in fashion design to obtain 2D patterns, following a 3D-to-

2D approach. Nevertheless, flattening complex-shaped 3D clothes is technically 
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difficult to be realized in computer simulation, due to the folds and gathers produced 

are non-developable surfaces (Huang et al., 2012). Regardless 2D and 3D-based CAD 

systems, they are designed for experienced users, such as pattern makers or computer 

professionals who have a thorough understanding of 3D modeling. The outputs of these 

systems are editable clothing patterns often in dxf formats. 

 

 

Figure 2-4 Example of 2D-to-3D virtual try-on. (a) 2D clothing patterns of a top garment; 

(b) Patterns are sewn on a 3D virtual model (Mosleh et al., 2021) 

 

Usually, garment pattern making and digital patterns/fabric design are two separate 

processes. When using existing digital patterns/fabric for garment production, 

professionals need to pay extra attention to the placement of the garment pattern when 

cutting the fabric to ensure that the digital pattern is matched at the seams of the garment 

(Vilumsone-Nemes et al., 2020). Lu et al. (2017) proposed a novel system that 

combines the design processes of digital patterns/fabric design and garment designs. In 

this system, fashion designs are completed first to obtain a distortion-free 3D garment 

model, on top designers can paint their digital patterns, and the 2D clothing pattern 



26 

pieces are obtained with matched textures that are ready for digital printing and garment 

production. An example is illustrated in Figure 2-5, the textures of the garment model, 

a close-fit top, are designed by 3D painting. The outcomes of this method are ensured 

of textural continuity in pattern and garment pieces, and fabric utilization is high saving 

the cost for matching fabric textures and arrangement for production. Additionally, this 

work demonstrates the potential of direct application of digital pattern design in 

garment production. 

 

 

Figure 2-5 Finished 3D painting of a blouse model. (a–c) Front, side, and back views of 

the blouse, and (d) the final sewing pattern pieces (Lu et al., 2017) 

 

2.2 Brief Review of Computer Vision 

For presentation and communication purposes, most CAD systems output designs in 

digital format of raster images. On the other hand, there are thousands of existing 

fashion images shared over the internet and social media. Nowadays, people enjoy 

recording interesting scenes or designs using input devices like cameras, mobiles or 

scanners, and all these visuals are recorded as digital images. Therefore, digital images 
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are the most common means to record designs. The research objective of current study 

is to develop intelligent systems that are able to generate new designs by learning from 

previous examples (design images). This objective indeed aligns with that of computer 

vision domain, which also aims to enable computers to understand and deduce meaning 

from input images. The techniques and methods of computer vision will be investigated 

and utilized to develop intelligent design systems, and therefore field of computer 

vision study is briefly reviewed here. 

 

2.2.1 Images features 

In computer vision, a feature is a piece of information that is important for completing 

the required computations for a specific application. The feature notion is quite generic, 

the choice of features in a particular computer vision system may be significantly 

influenced by the particular application (Nixon et al., 2019). Features may be shapes 

defined in terms of curves or boundaries between different image regions, properties of 

such a region, or patterns of an object in an image that help to identify it. Therefore, 

extracting good visual feature is important for representing an image compactly. The 

three primitive visual features are color, texture, and shape (Hiremath et al., 2007; 

Srivastava et al., 2015). 

 

2.2.1.1 Color features 

Color can convey emotional symbols in graphic design and have a significant impact 
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on people's psychological activities. Therefore, the use of colors is important in design 

work, such as packaging design and website design (Hembree, 2006; Hurley et al., 2017; 

Shan, 2018). In fashion product development, color helps enhance the attractiveness of 

the design without adjusting the shape or silhouette (Khajeh et al., 2016). For example, 

relatively dark colors or those in harmony with the environment can be used to cover 

physical defects. 

 

The nature of an image on a digital screen is pixel values representing different colors. 

Color feature is one of the most vital, reliable, and widely used image features in 

computer vision (Wang et al., 2005). Color features are utilized to support computer 

vision tasks of image retrieval, segmentation, and classification (Chai et al., 2000). 

Color, as an identifiable feature, is computed in terms of different color spaces, and 

color feature is independent of view and resolution (Swain et al., 1991). Common color 

spaces include RGB, CIE, L*a*b*, and HSV (Chen et al., 2008). In RGB color space, 

each pixel in an image comprises three color channels known as RGB components 

(Dutta et al., 2009). Each of these components has a value ranging from 0 to 255. 

Although RGB is widely used standard, it is not close to human perceptions. The HSV 

(Hue, saturation, value) color space is proved to have better results in computer vision 

tasks, such as image segmentation, than RGB color space. It is capable of emphasizing 

human visual perception in hues and can be easily inverted or transformed from RGB 

(Chen et al., 2008).  
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Based on the chosen color space, color features like color moments (CM) and color 

histogram, can be extracted. CM is color feature in the simplest form, and this feature 

describes colors by color mean (𝑢𝑘), standard deviation (𝜎𝑘) and skewness (𝛾𝑘), which 

are calculated as follows: 
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𝑁

𝑗=1

) 

(2-2) 

 

𝛾𝑘 = √(
1

𝑁
∑(𝑓𝑘(𝑥, 𝑦) − 𝑢𝑘)3
𝑁

𝑗=1

)
3

 

(2-3) 

where 𝑁 is the total number of pixels in an image and 𝑓𝑘(𝑥, 𝑦) is the value of the 𝑘-th 

color channel of the image pixel located at the (𝑥, 𝑦) coordinate. 

 

Color histogram is a way to represent the distribution of colors within an image, and 

each histogram represents a color by grouping pixel of similar values into a ‘bin’ along 

a color space (Hafner et al., 1995). They count similar pixels and store them: the Y-axis 

represents the number of pixels, and the X-axis represents a fixed color range 

(Mohamad et al., 2010; Stricker et al., 1995). The formulas are shown below: 

 ℎ[𝑙] = 𝑛𝑙 (2-4) 
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𝑁 =∑ℎ[𝑙]

𝐿

𝑙=1

 
(2-5) 

where 𝑛𝑙  represents a color in a discrete color space, ℎ[𝑙]  represents the number of 

pixels of color 𝑛𝑙 and 𝑁 is the total number of pixels in an image. When an image is 

represented by a color histogram 𝐻(𝑁) , this color feature is abstracted into a long 

vector for easy calculation. 

 

The above two color features are often used for different computer visions tasks. For 

example, color histograms are frequently utilized for image retrieval and similarity 

comparison, since they are invariant to translation and alter only slightly under various 

viewing angles, scales, and even in the presence of occlusions (Hafner et al., 1995; 

Stricker et al., 1995). For comparison of similarity between images, the common 

methods include histogram intersection and counting the distance between CMs 

(Mohamad et al., 2010). The histogram intersection algorithm was proposed as “Color 

Indexing” (Swain et al., 1991). The similarity between two images is represented by 

the histogram intersection distance (Meskaldji et al., 2009; Mohamad et al., 2010; 

Srivastava et al., 2015). Given the histogram 𝐻 of the input image and the histogram 

𝐻′ of the image for comparison, each histogram containing 𝐿 bins, the intersection is 

defined as: 

 
∑𝑚𝑖𝑛(𝐻𝑙, 𝐻𝑙

′)

𝐿

𝑙=1

 
(2-6) 

In equation (2-6), the 𝑚𝑖𝑛  function takes two histograms as inputs and returns the 
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smallest one. The result of the intersection is the number of pixels from the compared 

image that have corresponding pixels of the same colors in the input image. The result 

obtained by equation (2-6) is often normalized by dividing the number of pixels in the 

model histogram as follows: 

 
𝐻𝑛𝑜𝑟𝑚(𝐻,𝐻

′) =
∑ min(𝐻𝑙, 𝐻𝑙

′)𝐿
𝑙=1

∑ 𝐻𝑙
′𝐿

𝑙=1

 
(2-7) 

 

Although the color feature is ubiquitous and effective in computer vision, the image 

colors appear enormous and chaotic in the color space, which causes trouble during 

accurate extraction. To address this problem, researchers proposed color reduction 

scheme by clustering color features/pixels within an image. Srivastava et al. (2015) 

used K-mean clustering algorithm to reduce the number of colors. In their work, the 

image contains 𝑘  cluster centers and each pixel in the image whose value will be 

replaced with the closest cluster center. Similarly, Nikolaou et al. (2009) clustered 

pixels in an image into a number of colors by the Mean-Shift algorithm. Unfortunately, 

the speed of this method is very slow. Papamarkos et al. (2002) developed a color 

reduction scheme using a tree clustering procedure. These color reduction methods are 

often used as a pre-processing step to improve the performance of the models (Dong et 

al., 2005). 

 

2.2.1.2 Texture features 

Texture is a feature that separates images into areas of interest as well as classifying 
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those separated areas. Texture features are being used in a vast number of applications 

and computer vision tasks, for example, image classification (Humeau-Heurtier, 2019), 

image segmentation (du Buf et al., 1990), image synthesis, or pattern recognition (Tan 

et al., 2010).  

 

In addition to providing information on the spatial arrangement of colors or intensities 

of an image, texture also characterizes the spatial distribution of the intensity levels of 

an image (Wirth, 2004). Most texture features are not influenced by translation, rotation, 

affine and perspective transforms, and they can distinguish certain information that the 

color features would have them ignored. To vividly explain the texture features, Figure 

2-6 shows an example of three different images with the same intensity distribution but 

with different textures. 

 

There are many ways to extract texture features. Humeau-Heurtier (2019) has 

categorized texture feature extraction methods into seven classes. Among them, the 

representative methods include the Gabor filtering approach, the Grey Level Co-

occurrence Matrix (GLCM) statistical approach, and Local Binary Pattern (LBP) 

structural approach. 
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Figure 2-6 Examples of different textures: Each image above has a 50%-50% 

distribution of black and white pixels but of different textures (Wirth, 2004) 

 

2.2.1.3 Shape features 

Shape descriptor is a set of numbers, representing a given shape feature and quantifying 

the shape in a way that make sense to people (or task-specific requirements). It can then 

be applied to classify, recognize, align and retrieve images. Efficient shape descriptors 

should represent the complete content of the shape as much as possible, be compactly 

stored and easy for comparison. Usually, shape descriptors are stored as vectors. 

Previously, they are broadly classified as the contour-based methods using the shape 

boundary points and region-based methods using shape interior points (Zhang et al., 

2004). Yang et al. (2008) gave a good summary of many new techniques being proposed 

in recent years, as shown in Figure 2-7. 
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Figure 2-7 An overview of shape description techniques (Yang et al., 2008) 

 

Wavelet transform, Fourier shape description, and invariant moments are commonly 
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used in many computer vision tasks. Invariant moments, also known as geometric 

moment invariants, will be used in CHAPTER 5 for design element extraction. 

Invariant moments are particular forms of moments. A moment function 𝑚𝑝𝑞  of an 

image intensity function 𝑓(𝑥, 𝑦) can be defined as follows: 

 𝑚𝑝𝑞 =∑∑𝑥𝑝𝑦𝑞𝑓(𝑥, 𝑦)

𝑦𝑥

 (2-8) 

where 𝑥𝑝𝑦𝑞  is known as the moment weighting kernel or the basis set, and 𝑝, 𝑞 =

0,1,2⋯. 

 

Geometric central moments are invariant to translation, they are defined as: 

 𝜂𝑝𝑞 =∑∑(𝑥 − �̅�)𝑝(𝑦 − �̅�)𝑞𝑓(𝑥, 𝑦)

𝑦𝑥

𝑝, 𝑞 = 0,1,2⋯ (2-9) 

where �̅� = 𝑚10/𝑚00 and �̅� = 𝑚01/𝑚00, and 𝑝, 𝑞 = 0,1,2⋯. 

 

With this standard function representations, Hu (1962) proposed seven invariant 

moments based on geometric central moments, which are invariant to rotation, scaling, 

and translation, and Table 2-1 shows the detail function definitions. Although invariant 

moments are computationally simple, they are sensitive to noise, especially for higher-

order moments; and are unstable to have a good shape representation when the image 

size is large (Celebi et al., 2005; Yang et al., 2008).  

 

  



36 

Table 2-1 Formulas of invariant moments 

1.  𝜙1 = 𝜂20 + 𝜂02 

2.  𝜙2 = (𝜂20 − 𝜂02)
2 + 4𝜂11

2 

3.  𝜙3 = (𝜂30 − 3𝜂12)
2 + (3𝜂21 − 𝜂03)

2 

4.  𝜙4 = (𝜂30 + 𝜂12)
2 + (𝜂21 + 𝜂03)

2 

5.  𝜙5 = (𝜂30 − 3𝜂12)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)
2 − 3(𝜂21 + 𝜂03)

2]

+ (3𝜂21 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2] 

6.  𝜙6 = (𝜂20 − 𝜂02)[(𝜂30 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2]

+ 4𝜂11
2(𝜂30 + 𝜂12)(𝜂21 + 𝜂03) 

7.  𝜙7 = (3𝜂21 − 𝜂03)(𝜂30 + 𝜂12)[(𝜂30 + 𝜂12)
2 − 3(𝜂21 + 𝜂03)

2]

+ (3𝜂12 − 𝜂03)(𝜂21 + 𝜂03)[3(𝜂30 + 𝜂12)
2 − (𝜂21 + 𝜂03)

2] 

 

2.2.1.4 Feature descriptors 

Image features cover both global and local features. Global features consider the image 

as a whole, whereas local features describe the image patches (a small group of pixels) 

(Kabbai et al., 2019). Local feature descriptors are widely employed in computer vision 

tasks, such as image retrieval and image alignment since they have low computation 

costs and are robust (Dewan et al., 2020; Karami et al., 2017; Ke et al., 2004). Famous 

local feature descriptors include Scale Invariant Feature Transform (SIFT), Speeded Up 

Robust Features (SURF) (Bay et al., 2006), Features from Accelerated Segment Test 

(FAST) (Rosten et al., 2006), Histogram of Oriented Gradients (HoG) (Dalal et al., 

2005), Binary Robust Independent Elementary Features (BRIEF) (Calonder et al., 

2010), and Oriented FAST and Rotated BRIEF (ORB) (Rublee et al., 2011). 
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The powerful SIFT descriptor was first presented by Ng et al. (2003) for local interest 

points extraction and is well-known for its robustness to object rotation and scale 

variations. It combined the difference-of-Gaussian (DoG) detector and histogram of 

gradient (HoG) descriptors. The SIFT algorithm consists of four main steps. Firstly, it 

uses DoG to build an image pyramid space and then detects potential interest points 

under the scale space. Secondly, candidate interest points are localized to sub-pixel 

accuracy and eliminated if found to be unstable. Thirdly, it assigns an orientation by the 

peak of gradient distribution of neighbour pixels to each interest point, making it 

rotation invariant. The assigned orientations, scale, and location for each interest point 

enable SIFT to create a canonical view of the interest points that is resistant to similarity 

transforms. Finally, a local image descriptor for each interest point is built based on its 

local neighbourhood’s image gradient. For evaluation of similarity between two images 

using SIFT features, this is done by matching their corresponding interest points. 

 

Traditional image features are well-established, transparent, and very general, and they 

can be applied to any image. In addition to general features, hand-designed feature 

extractors are often developed for specific computer visions tasks, and the design of 

such hand-crafted features require a considerable amount of engineering skills and 

domain expertise. 
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2.2.2 Image classification 

Image classification is a major computer vision task, and it assigns one or multiple 

labels to an image based on the image content (Akata et al., 2013). The labels are 

usually numerical values that indicate the category of the image content, such as “bottle” 

or “cup”; an example is shown in Figure 2-8(a). Image classification is important as it 

also supports other computer vision tasks, such as recognizing objects, detecting objects 

and tracking objects in real-time (Bolon-Canedo et al., 2020). Given an image can be 

described as a set of image features, images of the same class have similar content and 

feature properties. In the early image recognition systems, researchers used handcrafted 

features for classification, such as the aforementioned scale-invariant feature transform 

(SIFT) (Ng et al., 2003) and histogram of oriented gradients (HoG) (Dalal et al., 2005). 

For processing images efficiently, feature extraction is common technique. They are 

usually focused on the extraction of relevant image properties which may include shape, 

color, texture, spatial information, etc. (Bolon-Canedo et al., 2020). The extracted 

features significantly affect the performance of the classification systems in specific 

applications. Therefore, definition of effective image features is the focus of the 

research efforts, and researchers carefully consider the characteristics of images in a 

specific class to design better image features, thereby improving system performance 

(Al-Saffar et al., 2017). 

 



39 

 

Figure 2-8 Different computer vision tasks for understanding image content (Lin et al., 

2014) 

 

In the past decade, deep neural networks have received much research attentions 

because they are good at extracting features as well as establishing relationships 

between the extracted features. Deep neural networks combine feature extraction and 

model optimization in one system, and the development of these deep neural network 

is also called deep learning because they enable computers to learn from data to 

discover the relationships/rules for specific task. Deep learning can be classified as 

supervised learning, unsupervised learning and reinforcement learning. In the case of 

image classification, if the network models are trained to learn from image data with 

known class labels, this is called supervised learning. Supervised image classification 

is one of the earliest computer vision applications of deep learning, and it was most 

influential because supervised image classification has astounding performance 
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suppressing traditional methods with very large margins or even humans. For 

supervised image classification models, convolution neural networks (CNN) were 

commonly used, which will be described in Section 2.3. 

 

2.2.3 Image segmentation 

Image segmentation is the process of dividing an image into different regions that are 

coherent according to certain criteria (Cheng et al., 2001; Egmont-Petersen et al., 2002). 

Initially, researchers never attempted to make it understand what the segmented regions 

represent; numerous image segmentation methods leveraging low-level image features 

have been developed. These methods are classical methods and could be further 

classified into thresholding (Bhargavi et al., 2014), edge-based (Narkhede, 2013), 

region-based, clustering-based (Dong et al., 2005; Naik et al., 2014; Naz et al., 2010), 

and watershed-based (Bleau et al., 2000). The other approach is the learning-based 

methods. The hybrid techniques refer to those when classical methods are combined 

with other specific tools. Figure 2-9 shows the classification of image segmentation 

methods. 
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Figure 2-9 Classification of image segmentation methods (Yuheng et al., 2017) 

 

Felzenszwalb et al. (2004) proposed an efficient graph-based segmentation method, 

which is the state-of-the-art method following traditional approach. Their method is 

often applied to various computing tasks today as well as in this study. It will be used 

in the E-system (described in CHAPTER 5) for unsupervised segmentation. Their 

method first defines a predicate, 𝐷, for evaluating whether or not there is evidence for 

a boundary between two regions. The predicate is based on comparing the dissimilarity 

between adjacent elements within each of the two components, to the dissimilarity 

between elements along the boundary. Then, the internal difference of a component 

𝐶 ⊆ 𝑉 is defined as: 

 𝐼𝑛𝑡(𝐶) = 𝑤(𝑒)𝑒∈𝑀𝑆𝑇(𝐶,𝐸)
𝑚𝑎𝑥  (2-10) 

representing the largest weight in the minimum spanning tree of the component, 



42 

𝑀𝑆𝑇(𝐶, 𝐸). The difference between the two components 𝐶1, 𝐶2 ⊆ 𝑉 to be the minimum 

weight edge connecting the two components: 

 𝐷𝑖𝑓(𝐶1, 𝐶2) = 𝑤 ((𝑣𝑖 , 𝑣𝑗))𝑣𝑖∈𝐶1,𝑣𝑗∈𝐶2,𝑣𝑖,𝑣𝑗∈𝐸
𝑚𝑖𝑛  (2-11) 

 

The segmentation region is predicted only when there is evidence for a boundary 

between a pair of components. It is found by determining if the difference between the 

components, 𝐷𝑖𝑓(𝐶1, 𝐶2), is large relative to the internal difference within at least one 

of the components, 𝐼𝑛𝑡(𝐶1) and 𝐼𝑛𝑡(𝐶2). To apply this method, a threshold function is 

defined, 

 𝜏(𝐶) = 𝑘/|𝐶| (2-12) 

where |𝐶| is the size of 𝐶 and 𝑘 is a constant parameter used to control the degree of 

the difference between components. The final predicate method is, 

 
𝐷(𝐶1, 𝐶2) = {

𝑡𝑟𝑢𝑒𝑖𝑓𝐷𝑖𝑓(𝐶1, 𝐶2) > 𝑀𝐼𝑛𝑡(𝐶1, 𝐶2)

𝑓𝑎𝑙𝑠𝑒𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (2-13) 

where the minimum internal difference 𝑀𝐼𝑛𝑡 , is defined as, 𝑀𝐼𝑛𝑡(𝐶1, 𝐶2) =

𝑚𝑖𝑛(𝐼𝑛𝑡(𝐶1) + 𝜏(𝐶1), 𝐼𝑛𝑡(𝐶2) + 𝜏(𝐶2)). 

 

Deep learning has consistently outperformed conventional methods in computer vision 

field, and it is now the norm for tasks like semantic segmentation. Semantic 

segmentation is the process of assigning each pixel to a particular label (see Figure 

2-8(c)). Typical jobs are Fully Convolutional Network (FCN) proposed by Long et al. 

(2015) and U-Net proposed by Ronneberger et al. (2015). However, semantic 
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segmentation cannot differentiate different instances of the same object. For example, 

there are many sheep in the image, as seen in Figure 2-8(c), and semantic segmentation 

would assign the same label to every pixel of these sheep. Instance segmentation differs 

from semantic segmentation and it assigns a unique label to every instance of a 

particular object in the image. Seen in Figure 2-8(d), sheep are assigned with different 

labels. 

 

2.2.4 Object detection 

The process of finding instances of specific classes of visual objects (such as people, 

animals, or cars) in digital images is known as object detection and is an important 

computer vision task (Zhao et al., 2019; Zou et al., 2019) (see Figure 2-8(b)). Early 

works are built on handcrafted features and could not identify objects with subtle 

semantic labels. The recent explosive surge in the usage of deep learning techniques 

has given object identification new life, resulting in amazing advancements and 

drawing unheard-of attention to it, making it a research hotspot. Object detection has 

now been widely applied in many real-world applications, such as robot vision, 

autonomous driving, and video surveillance (Zou et al., 2019). Best-performing object 

detection techniques are supervised learning-based and typically learned from real-

world images, like YOOLOv4 (Bochkovskiy et al., 2020), Mask r-cnn (He et al., 2017). 

In contrast, few works have focused on the extraction of meaningful objects in digital 

pattern images. 
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2.3 Brief account of convolutional neural network 

Deep learning develops computational models with numerous processing layers to learn 

data representations at various levels of abstraction (LeCun et al., 2015). In recent years, 

computer vision has achieved remarkable improvements based on deep learning 

technologies, especially on convolutional neural network (CNN). Convolution neural 

network is a multi-layer artificial neural network specially designed to handle images, 

that are mathematically represented as two-dimensional input data. Each layer in the 

network is composed of multiple two-dimensional planes, and each plane consists of 

multiple independent convolution filters (also named as kernels). For instance, a color 

image is made up of three 2D arrays, containing the pixel intensities for the three color 

channels. See Figure 2-10 for an example of pixel intensities array.  

 

Inspired by the biological neural network, CNNs use a weight-sharing network 

structure, which can be adjusted by changing the depth and breadth of the network (Pak 

et al., 2017). 

 

The first deep CNN architecture is called LeNet, proposed by (LeCun et al., 1998), 

including all CNN essentials of convolutional layers, subsampling layers, and fully 

connected layers (Ding, 2021). When it was first proposed, it did not gain much 

attention due to the lack of powerful hardware and labeled data (Wang et al., 2019). As 
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computer hardware advanced and the amount of data available grew in the subsequent 

years, AlexNet (Krizhevsky et al., 2012) was proposed and won the ILSVRC-2012 

image classification competition with astounding results in 2012. Thanks to its success, 

researchers showed growing interests in CNNs thereafter. Many CNNs such as Alexnet 

(Krizhevsky et al., 2012), VGG (Simonyan et al., 2014), GoogleNet (Szegedy et al., 

2015), and ResNet (He et al., 2016) have been developed and used as building blocks 

for solving various practical problems. 

 

Over the years, a trend is observed that the networks are getting deeper and deeper and 

with more complex structures. Nevertheless, the basic components of these CNNs are 

similar, mainly include convolutional layer, activation function, pooling layer, and fully 

connected layer (Liu et al., 2015; Simonyan et al., 2014; Xu et al., 2019). The 

architecture of a typical CNN is shown in Figure 2-12. 

 

The convolutional layer contains a set of filters, and each filter is associated with a set 

of weights. Their function is to perform a convolution operation between these filters 

and the input arrays; specifically, an element-wise product between each element of the 

filter and the input array is calculated at each location of the array and summed to obtain 

the output value in the corresponding position of the output array to create feature maps. 

An illustration is shown in Figure 2-10. A typical size for filters is 3 × 3, sometimes 

5 × 5 or 7 × 7. In the described convolution operation, a filter would pass more times 
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in the middle part of the image than along the edges. The resulting features will have 

more knowledge about the middle part of the image than the edges, and some important 

features at the edges may be lost. To address this issue, researchers proposed padding. 

Typically zero padding will be used, where rows and columns of zeros are added to 

each side of the input array, keeping the same in-plane dimension in the convolution 

operation. The distance between two successive convolution operations is called a 

stride, the common choice of a stride is 1. In modern CNN architectures, padding and 

stride are used to control or retain the in-plane dimensions of input array and output 

feature (see Figure 2-10). The output feature maps of convolution operations will pass 

through a non-linearity function, also named activation function (Mechelli et al., 2019), 

and typical activation function is Rectified Linear Unit (ReLU). 

 

 

Figure 2-10 A convolution operation with zero padding to keep the in-plane dimensions. 

It should be noted that the output feature map maintains the input dimension 
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of 𝟓 × 𝟓. The kernel size and stride in this illustration are set to 𝟑 × 𝟑 and 1, 

respectively 

 

A pooling layer reduces the in-plane dimension of the feature maps in order to introduce 

a translation invariance to small shifts and distortions, and decrease the number of 

subsequent learnable parameters (Yamashita et al., 2018). Therefore, pooling layers are 

viewed as downsampling operation. Max pooling and average pooling are typical 

operations of pooling layers (Mechelli et al., 2019). Max pooling is a mathematical 

operation that takes the largest value from a portion of the array of a specific size, 

whereas average pooling is a mathematical operation that takes the average value of a 

portion of the array of a specific size. Figure 2-11 shows an example of max pooling 

operation and average pooling with a 2 × 2 filter from 4 × 4 array input. An alternative 

technique to perform downsampling is setting a stride of convolution operation larger 

than 1. It is noteworthy that there is no learnable parameter in any of the pooling layers, 

whereas filter size, stride, and padding are hyperparameters.  

 

 

Figure 2-11 Illustration of Max Pooling and Average Pooling 
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Fully connected layers, also known as dense layers, can flatten the input feature maps 

of convolution or pooling layer into a one-dimensional (1D) array of numbers (or vector) 

through a linear transformation by a set of learnable weights (Yamashita et al., 2018). 

In image classification, the final fully connected layer typically has the number of 

output nodes the same as the number of classes, and each node value representing the 

predicted probability (score) of each class. The final predicted class is that with the 

highest score value. 

 

 

Figure 2-12 A typical CNN structure applied to a classification task. The input image is 

split into three arrays, representing RGB pixel intensities. Each rectangular 

image is a feature map corresponding to a specific convolution filter. Input 

image is processed bottom up, where feature information from the lower 

layers is the input of the upper layers. Finally, a score is computed for each 

image class (LeCun et al., 2015) 

 

In CNNs, the output of the lower layer becomes the input for the higher layer, and thus 

higher layers capture more semantic information. Because of this hierarchical structure 
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of CNN, a trained CNN can be viewed as a hierarchical feature extractor (Long et al., 

2014; Yang et al., 2015). CNN is used to extract the deep features of the images for 

repeated pattern detection in the development of R-system (this will be given in 

CHAPTER 4). 

 

2.4 Generative Tasks vs Design Generation 

Similar to typical art and design work like graphic design, digital pattern design have 

the same main components, namely visual elements, layout, color palette, and text 

(Wilson, 2001; Zhao, 2020). The key difference between digital pattern design and 

graphic design is that digital pattern design must take into consideration different rules 

and constraints in the design process, including material properties, production 

equipment and the cost budget. For instance, screen printing has a limit on the number 

of colors, and the cost of printing rises as the number of colors increases.  

 

With the popularity of deep learning, there are increasing interests in generating 

artworks or design images (Liu et al., 2016; Zhao et al., 2018), most notably using 

generative adversarial network (GAN). GANs, firstly introduced by Goodfellow (2020), 

are deep learning-based methods designed to perform generative tasks. GANs are 

characterized by two networks -- Generator network generates pixels images and 

Discriminator network determine whether the image comes from the generator or real 

data distribution. GANs have produced some astonishing results in generative tasks like 
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style transfer, makeup transfer or face synthesis or aging, yet there are also known 

limitations of existing GANs for design generation. First, most GAN work are devoted 

to exploring graphic layouts (Guo et al., 2021; Li et al., 2019). Second, the results from 

these GANs are neither stable or predictable. Third, the outputs from such systems are 

raster images, which are difficult to further edited and cannot meet the production 

requirements (some examples are shown in Figure 2-13). 

 

 

Figure 2-13 Examples of artwork generated by GAN (Cetinic et al., 2022) 

 

When comparing with generative tasks, the existing GAN research may not align well 

with the philosophy or be in compliance with the requirements for design. Design 

creation is the process of looking for specific characteristics in a design proposal to 

deliver the intended service based on prior information and certain broad 

presuppositions (Lu et al., 2014). Design process is typically iterative. In this study, 
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other than GANs, a new approach of design generation is proposed that aims to produce 

new editable designs from existing design images, aligning with the human aesthetics 

and follow standard design rules. 

 

2.5 Chapter Summary 

This chapter reviews the related research work of this study, including computer-aided 

fashion design, how computers understand an image, CNN’s formulation and 

architectures, and deep learning-based design generation techniques. 

 

Digital pattern generation receives very little attention in the current computer-aided 

design systems. Existing technologies are not able to generate new designs 

simultaneously meeting two requirements of aesthetically pleasing to humans on one 

hand and in an editable format on the other hand. As reviewed, pattern designs mainly 

are composed of design elements, layout, text, and color. It is possible to extract design 

elements and color composition from existing design images, reuse them according to 

the standard design rules to create new, aesthetically pleasing digital patterns that are 

in vector formats. This is not only the research direction of this study but also in line 

with the expectations and needs of the fashion and textile industry. 

 

Deep learning is very effective in solving problems with large number of training data 

sets. Due to its success in identifying complex structures in high-dimensional data, it 
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can be used in various fields of science, business, and engineering. However, features 

learnt from a deep neural network are specific to the training dataset. For example, 

images/data from the same training data set tend to have the same feature space and the 

same data distribution. When the test data has a different data distribution than that of 

the training data, the prediction model will have a degraded performance. It is believed 

that deep learning models are very much data driven, will not have a comparable 

performance for cross domain applications. Moreover, in addition to the mandatory 

requirements for high-performance equipment, deep learning methods have other 

limitations, e.g. low interpretability of results. In contrast, traditional computer vision 

methods offer advantages of full transparency and universality.  

 

It is obvious that digital pattern images and real-world images have very different 

characteristics. Directly applying deep learning methods trained in real-world images 

will not achieve the expected results. In this study, new methods will be proposed 

integrating traditional computer vision methods and deep learning methods, taking 

advantage of both approaches. 
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CHAPTER 3. Framework Overview 

As discussed in both Chapters 1 and 2, analyzing existing designs and extracting the 

design information builds a foundation for computers to generate new designs that align 

with basic human aesthetics and meet with production requirements. In this study, a 

new framework, denoted as REG framework, is proposed, on which a total of three 

intelligent systems are developed to analyze existing digital patterns images and to 

support new design generation.  

 

As shown in Figure 3-1, on the REG framework, both R-system and E-system are used 

for design images analysis, aiming to mining useful information from existing design 

images, namely repeated patterns detection and design elements extraction. The G-

system is used to support the design generation, in which methods are also developed 

to extract color information and layout rules from reference images, applying them 

flexibly to generate editable new designs. The three intelligent systems are related yet 

can operate independently This chapter first outlines this entire framework and each 

system, as well as the relationship between these three intelligent systems. The detailed 

method and the rationale of each system, the experimental verification as well as how 

it compares with other existing methods in computer vision are given in later Chapters 

4-6. 
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Figure 3-1 Framework overview of this study
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3.1 R-System for Repeated Pattern Detection 

Based on the discussion in CHAPTER 1 and CHAPTER 2, designers create digital 

patterns by designing elements in vector formats which can be easily edited into 

different shapes and colors. By applying these small design elements using layout rules, 

more complex and interesting pattern designs are generated. This procedure aligns with 

human aesthetic pursuit, considering color harmony, symmetric shape, layout regularity, 

etc. By mimicking the creative operation of human designers, the proposed system 

should be able to assist the analysis of existing design, e.g. detecting repeats and layout 

rules.  

 

A repeated pattern is the smallest unit that can be used to form a large digital pattern. It 

contains the core information of the complete pattern. Therefore, when exiting digital 

pattern images are input to the framework, such repeated patterns, if present, must be 

retrieved for design understanding and information extraction. Other benefits of 

detecting repeated patterns include to use representative content of the design images 

for further process, such as image retrieval and classification.  

 

Repeated patterns are common found in design images and natural scenery. The 

detection of repeated pattern is yet a challenging topic in computer vision, as there are 

many different types of images and their repeated patterns vary in terms of content 
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diversity and topology regularity. By reviewing the literature on repeated pattern 

detection, a new system called R-system is proposed to balance robustness and 

efficiency of the system in detecting repeated patterns focusing on digital pattern 

images.  

 

Repeated patterns on digital pattern images can be abstracted as a set of repetitive image 

features that are consistent in location. Repeated pattern detection is equivalent to 

finding the repetition rules through modeling the respective image features. CNN-based 

methods are proposed to ensure the R-system is robust and manage diversified content 

taking advantage of the strength of CNN of being able to learn from a large volume of 

examples. As reviewed in Section 2.3, a CNN's main components are convolutional 

layers, activation functions, and pooling layers. Particularly, at various levels of scale, 

the filters of various convolutional layers acquire various semantic properties. Higher 

layer learning contains more semantic information than lower layer learning. On the 

basis of that, a pre-trained CNN can be viewed as a multi-layer image feature extractor 

that takes into account shallow image features and high-semantic image features. The 

extracted CNN features will be used to detect repeated patterns. Since large number of 

features are extracted and training of prediction model based on the extracted features 

is thus time-consuming and computationally expensive.  

 

Comparatively, traditional autocorrelation-based method is efficient to train given a set 
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of training data. The autocorrelation-based methods use a given template patch and 

autocorrelation among repeated patterns to construct a model to predict the size of the 

repeated pattern. The drawback is they are sensitive to image noise and the initially 

defined template patch, resulting in unstable results.  

 

Based on the above discussion, the proposed R-system consists of two main modules 

that use CNN features and template matching to better balance detection accuracy and 

efficiency in repeated pattern detection from unknown images. Specifically, the first 

module uses CNN features to predict a coarse repeated pattern size. When an image is 

fed into a CNN, the filters inside each convolutional layer will produce feature maps 

that react to different semantic and scale levels. The activation peaks on the selected 

feature maps reflect the location information of the repeated patterns. Therefore, the 

size and locations of the repeated patterns can be then predicted by fusing and 

examining the distribution of the collected activation peaks from different feature maps. 

The running speed of a CNN feature-based method is therefore proportional to the 

number of selected filters. To speed up the processing, this study selects filters from a 

pre-trained CNN network by leveraging the boundary detection results of the input 

images. To efficiently optimize the predicted repeated pattern size, an optimization 

module based on template matching with a self-adaption similarity threshold is 

proposed in the second module. The output varies for different inputs. If the input 

images are with repeated patterns, the R-system will output single unit of repeat, 
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otherwise, it will output the entire image of unrepeating image for next phase of image 

analysis. The output from R-system can be further processed in next phase for design 

analysis or supporting design. 

 

3.2 E-System for Design Element Extraction and Vectorization 

Raster image and vector image are two common file formats for any visual design, 

especially in digital patterns, which serve different purposes of design (Lu et al., 2014). 

Raster image, made of pixels, is a format mainly used for design presentation in digital 

means, for instance, on websites. It is difficult to edit and the quality of the image is 

determined by the amount of pixels used to represent the content within a standard 

size/area of image (resolution). Vector images are often known as scalable vector 

graphics (SVG), which are resolution independent, are easy to edit or scale to any size 

without loss in quality or details. Design is not a one-off service, designs must be 

iteratively fine-tuned and adjusted, so most design systems will output vector formats 

of design to fit for production needs (Dominici et al., 2020). Vectorization is a process 

of converting a raster image to a vector one, which is useful for design information 

extraction from existing designs and making sure they are editable for further use. 

Moreover, since digital patterns consist of multiple distinctly colored regions, they are 

inherently suitable for vectorization. Therefore, the vectorized output is a must for the 

proposed system, even for the overall framework for design analysis and support. 
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Common digital patterns used in the fashion industry, also the target subject of this 

study, are often composed of multiple repetitive or non-repetitive design-related objects, 

also known as design elements. According to the analysis in the Introduction, 

reorganizing design resources by combining design rules allows computers to mimic 

human designers to create digital patterns. Therefore, the proposed system should also 

analyze and deconstruct design images into reusable design elements, and record which 

as design resources for future use.  

 

In order to achieve fully automatic processing from extraction to vectorization of the 

core design elements from an unknown image, a novel E-system is proposed, consisting 

of two main modules for the extraction and vectorization of design elements, 

respectively. It’s worth noting that the E-system could work independently to process 

any digital pattern images, while if the input image contains repeated patterns, the R-

system can be a preprocessing step to trim down the input to a patch of only 2 × 2 

repeated pattern in order to reduce computation cost.  

 

There are great differences between design images and real-world images in terms of 

content and style, leading to some popular image processing techniques cannot be 

directly applied, such as supervised object detection and image segmentation. These 

techniques or systems are data-driven and even data-hungry, need to be trained on a 

large dataset of labeled images. Nevertheless, there is no publicly accessible dataset 
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with images of labeled design elements. Different from the other domains, digital 

pattern images in the fashion domain could be more diverse and difficult to label. 

Considering the uniqueness of this task and the cost of labeling a large dataset, this 

study proposes the use of unsupervised segmentation for design element extraction, 

solving the problem of without a labeled dataset. 

 

Upon the foreground and background content of an image are isolated by unsupervised 

segmentation, the resulting background mask is utilized to help locate its foreground 

design elements. In the first module, an unsupervised segmentation method is used to 

separate the foreground and background contents. Particularly, a Fully Convolutional 

Network (FCN) with three convolutional components is proposed. Over-segmentation 

algorithm (Felzenszwalb et al., 2004) (discussed in Section 2.2.3) is used to produce 

initial labels and initialize the network parameters by Xavier initialization (Glorot et al., 

2010). The network is trained by iteratively comparing predicted labels of over-

segmentation algorithm and that from the network. After comparing the area of the 

minimum bounding rectangle of each segmentation mask, the background mask is 

obtained. Next, the selected background mask is used to extract all the design elements. 

Since there may be duplicate elements among these extracted design elements, the 

duplicate design elements are removed by comparing their pHash values (Zauner, 2010). 

Moreover, the proposed method for repeated pattern detection trims images without 

losing their main information, simplifying the extracted design elements. 
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Image vectorization requires deconstructing the image into a number of intermediate 

representations, then converting each intermediate representation into a corresponding 

vector path with an enclosed region/area. Due to the lack of research on image 

deconstruction, image segmentation is the go-to solution for image vectorization. Each 

vector path represents a specific color region and is composed of geometry and color 

parameters. In this study, a novel image deconstruction method is proposed leveraging 

color information of the input image. In the second module, a design element is 

deconstructed into several intermediate representations and the corresponding color 

information is obtained simultaneously. In particular, in the design element 

deconstruction method, firstly color quantization is leveraged to get the number of 

colors and then the k-means clustering algorithm is used for color reduction and path 

simplification. Next, the Potrace (Selinger, 2003) algorithm is applied to generate the 

vector paths for the intermediate representations. Furthermore, if too many tiny vector 

paths are used to represent the final vectorization results, making the result hard to 

further edit or reuse, a simplification mechanism is proposed that the vector paths with 

very small enclosed area are eliminated or regrouped before vectorization process. By 

doing this, we can ensure that the vectorization results are compact and easier to use. 

 

3.3 G-System for Vector-based Digital Pattern Generation 

Computer aided design systems were developed to generate specific type/style of 
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patterns, such as fractal art and marbling patterns (introduced in Section 2.1), but they 

are not for typical pattern designs. In general, digital patterns can be roughly 

categorized into stripe, check, and motif patterns in the industry. For better design 

support and to fulfill industry requirements, the proposed G-system aims to generate 

vector-based digital patterns covering the above types of patterns. To generate digital 

patterns satisfy basic human aesthetics, the G-system mimics human creative process 

and utilizes the design resources extracted from the R and E systems. Specifically, the 

inputs to the G-system are reference images for color and topology layout reference as 

well as vector-based design elements. The system utilizes industrial design principles 

and flexibly applies design elements to generate new patterns by formulating parametric 

models of different digital patterns. 

 

The proposed G-system consists of three parametric models to generate particular types 

of patterns. As vector images contain geometric and color parameters, the proposed 

method accomplishes design generation from these two aspects. The first parametric 

model is used to generate stripe patterns. A stripe pattern can be considered as a set of 

parallel bars with varied width, and each bar is filled with a different color. A parametric 

model for stripe pattern of known square area will define both geometric and color 

parameters, namely the width of the parallel bars and the color of each bar. The color 

parameter of a stripe pattern is extracted from a given reference image in the proposed 

G-system.  
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The second parametric model is developed for check pattern generation. A check 

pattern is defined as a combination of two orthogonal stripe patterns; therefore, the 

system generates check patterns by combining two stripe patterns whose color 

combinations follow the same reference image. Relationship between the number of 

colors and the cost in textile production are considered in this operation.  

 

The third parametric model aims for motif pattern generation. Motif patterns for textile 

use usually consist of several repetitive design elements that are arranged in a unit area 

and then compose for more complex design by applying different design layout rules. 

In order to generate motif patterns that satisfy basic human aesthetics, parametric model 

incorporating golden ratio is developed to automatically layout design elements in 

various scale, orientation and location to form representative design unit -- motif pattern, 

which are further tiled to form various repeats based on industrial design rules, 

generating vector-based digital motif pattern designs ready for production. 

 

3.4 Chapter Summary 

This chapter presents digital pattern analysis and design support framework composed 

of three independent and interrelated intelligent systems. The methods for the three 

systems apply both deep learning and traditional computer vision techniques to address 

the specific research task. Specifically, the R-system and E-system are proposed for 
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analyzing digital pattern images at the repeated pattern level and design element level. 

The G-system is proposed to generate vector-based digital patterns that meet basic 

human aesthetics for design support.  
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CHAPTER 4. Efficient Repeated Pattern Detection 

4.1 Background Introduction 

As discussed in the Introduction, fashion products are important to help wearers express 

their personalities and attitudes towards life. Incorporating appropriate digital patterns 

in fashion products can add values to the products and thus increase sales. Digital 

patterns can be divided into repeated and non-repeated patterns according to their 

contents (as shown in Figure 4-1). In terms of fashion product development, the 

repeated patterns are often applied in most fabric designs while non-repeated patterns 

are placed and applied to certain areas of the clothing, e.g. in center front of the clothing 

or logo designs. Specifically, repeated patterns can be defined as an image's minimum 

representative unit (or tile) and can replicate its original appearance when tiled (Lin et 

al., 2006; Rodriguez-Pardo et al., 2019). They represent the primary information of the 

image in a compact form and thus can provide important geometric or semantic cues 

for many algorithms (Lettry et al., 2017; Li et al., 2020; Park et al., 2009). 

 

 

Figure 4-1 Classification of digital patterns. Digital patterns can be classified into 

repeated patterns and non-repeated patterns; examples are shown above, and 

the repeated patterns are zoomed in orange boxes 
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Detecting repeated patterns in a single image contributes to analyzing digital patterns 

by distilling their primary information. Moreover, it benefits other fashion industry 

tasks, such as textile image classification and retrieval (Lettry et al., 2017; Li et al., 

2020; Park et al., 2009), low-cost textile information storage (Kuo et al., 2017), and 

textile image synthesis (Rodriguez-Pardo et al., 2019). Other than fashion applications, 

detection of repeated pattern is very important in computer vision and they can support 

various applications in other domains, such as place recognition (Torii et al., 2013), city 

image retrieval (Doubek et al., 2010), and photo-realistic 3D reconstruction (Liu et al., 

2019) See Figure 4-2 for various repeated patterns in various domains of image. 

 

Although it is almost human instinct to detect repeated patterns, it is challenging for 

computers because of the diversity of image types and complex variations caused by 

perspective, lighting, occlusion, projection, deformation, and other factors. Different 

repeated patterns can be characterized in terms of content diversity and topology 

regularity, to which new algorithms or methods must address for the effective 

detections. As shown in Figure 4-2, the horizontal and vertical axes represent topology 

regularity and content diversity, and these two-dimensional varieties form a matrix or 

coordination system for different types of repeated patterns. Images located at different 

positions within the coordinate system represent repeated patterns with different levels 

of variety in terms of content and topology structure.  
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Figure 4-2 Variation of repeated patterns in terms of content diversity and topology 

regularity 

 

Many methods have been proposed to handle different types of repeated patterns. 

Certain methods may output the size of repeated pattern on the image, while other 

methods find the key points of the repeated pattern as output, which will be further used 

in image retrieval, identification and classification. Any method for repeated patterns 

detection should include (1) feature extraction and processing and (2) model 

development and optimization. In particular, to handle the detection of repeated patterns 

that are exactly the same in content, some methods use the autocorrelation functions to 

construct prediction models to accurately estimate/optimize the repeated pattern size 

(Tao et al., 2017; Zhang et al., 2015). Although these methods are efficient, they are 
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only applicable to regular and noise-free repeated patterns. On the other hand, other 

studies have been devoted to detect repeated patterns with significant variations caused 

by occlusion, projection, and distortion. These methods have demonstrated that after 

abstracting an image into a set of local features, the repeated patterns in the image can 

be detected by recognising the repetition rule of features (Liu et al., 2004; Schindler et 

al., 2008). Nevertheless, these methods may suffer the common drawbacks of 

traditional features, which are ‘handcrafted’ with low content adaptability. Recently, 

Convolutional Neural Networks (CNNs) have shown great performance in many 

computer vision tasks, such as image classification (Simonyan et al., 2014), object 

detection (Zhang et al., 2021), and semantic segmentation (Vitale et al., 2016). As 

discussed in CHAPTER 2, CNNs are good at obtain hierarchical feature information of 

images, which means not only the low-level information like corners and lines, but also 

high-level information with semantic meaning can be extracted (Long et al., 2014; 

Malik et al., 2021). Thus, many research works view trained CNNs as feature extractors 

to substitute local feature descriptors, including repeated pattern detection (Lettry et al., 

2017; Rodriguez-Pardo et al., 2019). These methods predict the repeated patterns' 

position and/or size by processing deep image features. Although these methods 

improve the robustness, being able to handle more diverse content, they are 

computational expensive, with low efficiency, especially for large image size and high-

resolution images. 
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As discussed, repeated patterns are present in many domains of image, including 

architecture, natural scenery, and other real-world images. Design images like digital 

pattern designs obviously have very different characteristics than real-world images. 

The types of repeated patterns in digital pattern design images are also different, 

although digital patterns have very diverse and complex content, but they tend to have 

relatively regular topology. According to the special characteristics of pattern design 

images, this study proposes a novel R-system that combines the use of CNN features 

and an autocorrelation function named template matching (Brunelli, 2009) for repeated 

pattern detection from digital pattern sample images. The R-system firstly leverages 

CNN features to predict a coarse repeated pattern size option of the input image. 

Specifically, a CNN filter selection method combined with boundary prediction is 

proposed to select the filters with meaningful information, which is beneficial in 

reducing computational time. Then, a specially designed optimization method based on 

template matching is proposed for efficient identification of repeat pattern sizes, 

considering the input image characteristics. To verify the effectiveness of the proposed 

R-system, a dataset of digital patterns design images with manually defined repeated 

pattern ground truth is developed. Extensive experiments have been conducted on this 

proposed dataset to show the effectiveness of each component of our proposed system 

and our proposed system has also shown competitive advantages on both accuracy and 

efficiency, in comparison to other state-of-the-art methods 

 



70 

The rest of the chapter is organized as follows. Section 4.2 introduces related works on 

detecting repeated patterns and explains the inspiration for our system. Section 4.3 

describes our system in detail. Section 4.4 presents the evaluation results of our system, 

showing better performance on both accuracy and efficiency over related works. 

Section 4.5 discusses the results on manufactured environmental images and the impact 

of various CNN models and boundary detection methods. And in section 4.6, we 

conclude. 

 

4.2 Related Work 

Existing repeated pattern detection methods vary in terms of either (1) prediction model 

development and optimization or (2) feature extraction and processing approach. These 

works are reviewed as follows. 

 

4.2.1 Model development and optimization 

When an image consists of repeated patterns with a regular layout and very similar 

content, the relationship between repeated patterns (namely the regularity of the layout) 

can be analysed and predicted by autocorrelation. Since the representations from 

autocorrelation analysis show the topology regularity/pattern of the input image, by 

matching the analysis results of a target images and a template patch, the size of the 

repeated pattern can be predicted. Many works use autocorrelation functions in regular 
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repeated pattern detection (Doubek et al., 2010; Lin et al., 1997; Neupane et al., 2019; 

Tao et al., 2017). Tao et al. (2017) used Fourier transform to build a similarity space to 

identify repeated patterns in textile images. Some researchers leveraged template 

matching (Brunelli, 2009) for repeated pattern detection. For example, Qayum et al. 

(2017) selected the initial 10 or 100 columns of pixels from the query image as the 

template patch. Their method considered that the size of the repeated pattern was equal 

to the distance between the starting point on the condition that the repeating unit should 

be precisely the same. Similar approaches were also presented in the work of Neupane 

et al. (2019) and Lin et al. (1997). Although these methods work very efficiently for 

images of any intensity with strong or weak features, they need a given template patch 

in advance (Cai et al., 2011; Kuo et al., 2008). The size deviation between the given 

template patch and the repeated pattern will affect the accuracy of the final results. In 

addition, their methods are poor in robustness which means they have a low tolerance 

for noise and thus cannot achieve good detection results on repeated patterns with 

variations, e.g. by occlusion or other forms of deformation. 

 

4.2.2 Feature extraction and processing 

4.2.2.1 Local feature-based 

Since image descriptors represent image information such as textures and shapes, the 

repeated patterns in an image can be viewed as a set of sparse repeated features whose 

location information is consistent with each other. The repetition structure is extracted 
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by hypothesizing links between the repeated feature points (Cai et al., 2011; Conners 

et al., 1980; Pinho et al., 2011; Tuytelaars et al., 2003). Some algorithms use SIFT 

(Lindeberg, 2012) as feature descriptors (Liu et al., 2013; Liu et al., 2004; Pritts et al., 

2014). However, these methods are only applicable for images with distinct corner/edge 

features and similar degrees of variation. Furthermore, some feature descriptors are 

hand-crafted and designed based on professional knowledge of images in specific fields 

(Guo et al., 2019). Therefore, despite the fact that local feature-based approaches are 

widely used in 2D images, they are complex in feature descriptors design and hard to 

extend to other domains of images. Additionally, many algorithms require image 

rectification as a pre-processing step to ensure accuracy and better applicability (Liu et 

al., 2018). 

 

4.2.2.2 CNN feature-based 

As discussed in Section 2.3, a trained CNN contains a set of convolutional layers with 

fixed weights that can capture hierarchical information of the image. A convolutional 

filter in the convolutional layer generates different activations of the input image/pre-

layer output and encodes the spatial information of discriminative regions into a feature 

map (Ahmad et al., 2018; Zhou et al., 2016). A feature map may alternatively be 

thought of as detection scores acquired after applying a filter over particular spatial 

places in a 2D image; the activation value at the 𝑖-th location quantifies the significance 

of the pixel there (Malik et al., 2021). An example was given in Figure 2-10 on page 
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46 that feature values after convolution operations can be viewed as activation scores. 

In CNNs, lower convolutional layer feature maps contain local information such as 

edge, line, and corner, while filters in deeper layers take the outputs of lower layers as 

input and generate feature maps that contain more semantic information (Long et al., 

2014; Yang et al., 2015). Therefore, in many tasks, a trained CNN can be treated as a 

more robust feature descriptor and replace local image feature descriptors, such as SIFT 

or HoG. For example, El Amin et al. (2016) used CNN features for change detection in 

satellite images; Xiang et al. (2019) leveraged CNN features to help retrieve similar 

fabric image. 

 

The potential of a CNN-feature-based approach in repeated pattern detection was 

presented by Lettry et al. (2017). The authors demonstrated that repeated patterns’ key 

points in 2d images have spatial consistency with certain activations within feature 

maps; hence, extracting activations can assist in repeated pattern detection. Moreover, 

the authors proved that CNN features can perform better than local feature-based 

techniques. Nevertheless, their method took most of the activations in each feature map 

into consideration for the final model optimization, which is computational expensive 

and result in poor efficiency. In a related study, Rodriguez-Pardo et al. (2019) reduced 

the amount of computation by selecting filters that are active more than others and thus 

reducing the number of feature maps processed as well as activations. A similar idea of 

data reduction was used in landscape image analysis: Malik et al. (2021) used principal 
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component analysis (PCA) to reduce the CNN feature maps to a compact representation 

that best encodes patterns in a given landscape for landscape similarity analysis. 

 

To achieve a good trade-off between accuracy and efficiency for repeated pattern 

detection in an unknown digital pattern image, the R-system is established by 

combining CNN features processing and autocorrelation-based optimization. 
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Figure 4-3 Illustration of the R-system for efficient repeated pattern detection 
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4.3 Method 

The overall pipeline of the R-system consists of five parts and is illustrated in Figure 

4-3. CNN has shown a great capability for representation learning and feature extraction, 

and the kernels (i.e. filters) of different convolutional layers capture spatial information 

of discriminative regions at varying scales and encode them in feature maps. When the 

image contains repeated patterns passed over a pre-trained CNN, activations of the 

feature maps are in line with the repetition structure. In order to efficiently use CNN 

features to predict the coarse repeated pattern size, a filter selection method leveraging 

boundary detection results is proposed in section 4.3.1, as first step/part of the R-system. 

Then, an activation peaks extraction method is described in section 4.3.2 as the second 

step. Following which, a consistent displacement vector selection method is used to 

fuse the extracted activation peaks for repeated pattern size prediction, which is 

described in section 4.3.3. After that, an optimization algorithm is presented in section 

4.3.4, which optimizes the repeated pattern size in the 𝑥 and 𝑦 directions, respectively. 

Lastly, in section 4.3.5, a repeated pattern grid extraction method using the selected 

filters is explained. As shown, the inputs to the R-system are any unknown digital 

pattern design images, and the outputs from the system are the corresponding pattern 

grid of the repeat, if present. The detail steps of the proposed R-system are described in 

the following subsections. 
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4.3.1 Filter selection 

In every image representation scheme, selecting the appropriate features is essential. 

By removing irrelevant features, it enables feature dimension reduction and increases 

the effectiveness of feature extraction (Li et al., 2019; Xie et al., 2018). The feature 

maps generated by CNN filters reflect repeated patterns’ location information in CNN 

feature space. In a pre-trained CNN, feature maps from a deep convolutional layer are 

capable of representing a huge variety of information, based on the type of data it is 

trained on (e.g. ImageNet) (Ahmad et al., 2018). For example, the classic AlexNet has 

five convolutional layers, which correspondingly have 96, 256, 384, 384, and 256 

number of filters within the layers (Krizhevsky et al., 2012); when an image passes, it 

will generate 1376 (=96+256+384+384+256) feature maps. When all these 1376 

feature maps are analyzed in the model optimization for detection of repeated patterns, 

the analysis is computationally expensive, but yet may not be necessary because not all 

features maps carry equally important information for the said task of repeated pattern 

detection. Feature selection techniques are therefore used to determine an appropriate 

subset of feature maps to adequately represent digital pattern images. This appropriate 

subset of feature maps needs to be both concise and take into account hierarchical 

information.  

 

In this study, boundary information is proposed to use for filter selection. This is 

inspired by the fact that boundary detection extracts object boundaries and visually 
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salient edges that are persevering the gist of the image and ignore weakly related 

information (He et al., 2019). Moreover, the output from a boundary detection result is 

binary, in form of a two-dimensional [0,1]  matrix, which is easy for feature 

computation. In the first step of filter selection of the R-system, image boundary 

detection results are leveraged to select feature maps and their corresponding filters in 

this study.  

 

Given a pre-trained classification CNN, the convolutional filters in the CNN is denoted 

as 𝐹 = {𝐹𝑛|𝑛 ∈ 𝑁}, 𝑓𝑛 ∈ 𝐹𝑛, where 𝑁 is a set of convolutional layers, 𝐹𝑛 is the set of 

convolutional filters in the 𝑛-thlayer,𝑓𝑛is the resulting feature map of the 𝑛-thlayer. 

Taking AlexNet as an example, which has 5 convolutional layers, thus 𝑁=5 and 𝐹1 is 

the set 96 kernels (filters) in the first layer, 𝐹2 is the set of 256 filters in the second layer, 

and so forth. 

 

When an input image 𝐼 with size 𝑤 × ℎ is passed through the CNN, the convolutional 

filters would generate activated feature maps. If the input image 𝐼 has repeated patterns, 

the activations should separate at regular distances showing the topology layout of 

repeated patterns. Each convolutional layer of a deep CNN has many filters, and there 

is a filter response the highest among all of them since it captures the most significant 

features following the repetition structure. The detected boundary result of the input 

image is denoted as 𝐵 and is resized to be the same size as the feature maps 𝑓𝑛 of the 
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corresponding convolutional layer as 𝐵𝑛 . The resized 𝐵𝑛  is then multiplied with the 

feature map 𝑓𝑛(𝐼) from the 𝑛-thlayer and sum over the activated values of all pixels as 

follows: 

 𝑓𝑛
𝐵 =∑𝐵𝑛 ⋅ 𝑓𝑛

𝑖,𝑗

(𝐼) (4-1) 

where (𝑖, 𝑗) represent the pixel. The highest response convolutional filter with regular 

activated feature map 𝑓𝑛∗ of the 𝑛-th layer can be obtained by: 

 𝑓𝑛
∗ = argmax

𝑛∈𝑁
(𝑓𝑛

𝐵) (4-2) 

 

The classic Canny edge detector is used in the proposed pipeline (Canny, 1986) for its 

efficient speed. An example of feature maps of the selected filters is shown in (a) of 

Figure 4-3. A comparative study of different boundary/edge detectors for generating the 

filter 𝐵 will be given later experimental Section 4.5.3. 

 

4.3.2 Activation peaks extraction 

Activation peaks represent the locations of key points within a feature map, which is in 

line with the input image. With the selected filters from every convolutional layer 

{𝑓𝑛
∗|𝑛 = 1,2, … , 𝑁} , the set of activation peaks 𝑃𝑓𝑛  is found by extracting the local 

maxima from each feature map 𝑓𝑛∗(𝐼). An algorithm is proposed for the extraction of 

activation peaks, which is outlined in Algorithm 4-1. Assume a given distance threshold 

is 𝑑𝑖𝑠𝑡 pixels, 𝑃𝑓𝑛 can be computed within the region of 2 × 𝑑𝑖𝑠𝑡 + 1. Considering the 
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different resolutions of the selected feature maps, 𝑑𝑖𝑠𝑡  is determined based on the 

required number of activation peaks so as to guarantee the extraction of sufficient peaks 

from each feature map. Let 𝑘 be the required number of activation peaks, one of the 

inputs of the algorithm. If the number of generated peaks is less than 𝑘, then 𝑑𝑖𝑠𝑡 =

𝑑𝑖𝑠𝑡 − 1, and a loop is recursively executed until the number of generated peaks is 

more than 𝑘.  Moreover, the coordinates of the extracted activation peaks would be 

mapped from feature space to the input image by proportion. An example is shown in 

Figure 4-3(b). 

 

Algorithm 4-1 Activation peaks selection 

Input: the filter 𝑓𝑛∗ 

  the feature map 𝑓𝑛∗(𝐼) 

  the required number of activation peaks 𝑘 

  the distance threshold is 𝑑𝑖𝑠𝑡 

Output: extracted activation peaks 𝑃𝑓𝑛 

1. 𝑃𝑓𝑛 = 𝑝𝑒𝑎𝑘𝑙𝑜𝑐𝑎𝑙𝑚𝑎𝑥(𝑓𝑛
∗(𝐼), 𝑘) 

2. if length(𝑃𝑓𝑛) < 𝑘 then 

3.   𝑘 = 𝑘 − 1 

4.   if 𝑘 > 0 then 

5.    𝑃𝑓𝑛 = 𝑝𝑒𝑎𝑘𝑙𝑜𝑐𝑎𝑙𝑚𝑎𝑥(𝑓𝑛
∗(𝐼), 𝑑𝑖𝑠𝑡) 

6.   else 

7.    𝑃𝑓𝑛 = [] 

8.    return 𝑃𝑓𝑛 

9. else 

10.   return 𝑃𝑓𝑛 
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4.3.3 Consistent displacement vector selection 

The most frequent distance between activation peaks in both image and feature space 

is the most probable size of the repeated pattern. For each activated feature map 𝑓𝑛∗, a 

set of displacement vectors 𝐷𝑓𝑛  is obtained by computing the distance between each 

pair of peaks  

 𝐷𝑓𝑛 = {𝑑𝑓𝑛
𝑖,𝑗
= |𝑝𝑖 − 𝑝𝑗|, ∀𝑝𝑖, 𝑝𝑗 ∈ 𝑃𝑓𝑛 , 𝑖 ≠ 𝑗} , (4-3) 

where |.| denotes the element-wise absolute difference, displacement of the two element. 

Since each displacement vector 𝑑𝑓𝑛
𝑖,𝑗
∈ 𝐷𝑓𝑛 represents a candidate size of the repeated 

pattern, all the displacement vectors are used to estimate the initial repeated pattern size 

by voting in a Hough-like voting space 𝑉:ℝ𝑛 → ℝ2. 

 

To obtain the continuous distribution V of displacement, each sub-distribution 𝑉𝑛,𝑖,𝑗 of 

displacement vector is modelled using a 2-dimensional Gaussian distribution with mean 

𝑑𝑓𝑛
𝑖,𝑗  and standard deviation 𝛿𝑛  and fuse the activation peaks across multiple layers. 

Particularly, 𝛿𝑛  is related to the width of each feature map 𝑤𝑓𝑛
∗(𝐼) . Moreover, to 

normalize the energy of each vector in each convolutional filter 𝑓𝑛∗, the vote is weighted 

by the number of displacement vectors |𝐷𝑓𝑛| across all layers and filters as follows: 

 
𝑉 =∑∑

1

|𝐷𝑓𝑛|𝑛∈𝑁

∑ 𝑉𝑛,𝑖,𝑗

𝑑𝑓𝑛
𝑖,𝑗

∈𝐷𝑓𝑛

 (4-4a) 

where 
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𝑉𝑛,𝑖,𝑗 =

1

2𝜋√|∆|
exp (−

1

2
(𝑥 − 𝑑𝑖,𝑗)

𝑇
∆−1(𝑥 − 𝑑𝑖,𝑗)) 

(4-4b) 

 
∆= (

𝛿𝑛
2 0

0 𝛿𝑛
2) 

(4-4c) 

 𝛿𝑛 =
𝑤

2 ∙ 𝑤𝑓𝑛
∗(𝐼)

 (4-4d) 

 

When the input images are digital pattern design images, these images tend to have high 

topology regularity, the resulting size of the repeated patterns can be represented as the 

most consistent displacement vector 𝑑∗, which is defined as the maxima on the voting 

space along both the x- and y-axes: 

 
𝑑∗ = (𝑎𝑟𝑔𝑚𝑎𝑥

𝑥
𝑉𝑥,0 , 𝑎𝑟𝑔𝑚𝑎𝑥

𝑦
𝑉0,𝑦) 

(4-5) 

Figure 4-4 shows some examples of the voting space 𝑉, where the highlighted spots 

show the most consistent displacement vectors. 
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Figure 4-4 Illustration of voting for consistent displacement vector. Top: Images with 

repeated patterns. Bottom: Corresponding displacement vector maps. The 

light spots correspond to a higher frequency of displacement vectors 

 

4.3.4 Repeated pattern size optimization 

Template matching is a method for searching and finding the location of a given 

template patch in a larger image (Brunelli, 2009). As reviewed in Section 4.2.1, there 

are studies using autocorrelation function for repeated pattern detection in textile 

images. In view of the digital pattern design images characteristic, which have relative 

regular or near-regular topology but very diverse content, an algorithm integrating 

autocorrection together with template matching is also developed for optimizing 

repeated pattern size in this study.  

 

After obtaining the initial repeated pattern size 𝑑∗, the region from the left-upper point 

𝑜 = (0,0)  is cropped with size 𝑑∗  as the template patch 𝑇 . The matching process 



84 

overlays 𝑇 onto every possible area within the image of size (𝑤 ∗ ℎ), and computes a 

pairwise correlation 𝑐𝑜𝑟(𝑥,𝑦)  that indicates the similarity degree between template 𝑇 

and that particular area, denoted as 𝑆(𝑥,𝑦). The correlation is calculated by: 

 
𝑐𝑜𝑟(𝑥,𝑦) =

∑ (𝑇(𝑥,𝑦) ∙ 𝑆(𝑥,𝑦))𝑥,𝑦

√∑ 𝑇(𝑥,𝑦)
2𝑥,𝑦 ∙ ∑ 𝑆(𝑥,𝑦)

2
𝑥,𝑦

 
(4-6) 

Area 𝑆(𝑥,𝑦). is searching within a region defined as 𝑥𝜖[1, 𝑤 − 𝑑𝑥
∗ ], 𝑦𝜖[1, ℎ − 𝑑𝑦

∗ ]. 

 

A larger value of 𝑐𝑜𝑟(𝑥,𝑦) in Eq (4-6) represents a higher level of similarity between the 

template patch and the overlapped area on point (𝑥, 𝑦) . Since the image can be 

understood as being continuously duplicated by one repeated pattern, the repetition 

structures in the image can be obtained by finding all areas identical to the template 

patch. It should be noted that for efficient calculation, the search is not applied to the 

whole image but to cropped image 𝐼𝑜𝑥 ← 𝐼 [
1

3
𝑑𝑥
∗ : 𝑤, 0: 𝑑𝑦

∗ ] 𝐼𝑜𝑦 ← 𝐼 [0: 𝑑𝑥
∗ ,

1

3
𝑑𝑦
∗ : ℎ]. 

 

In order to refine 𝑑𝑥∗ , 𝑇 is moved over the cropped image 𝐼𝑜𝑥 pixel by pixel to search 

for matched areas along the 𝑥 direction, and the correlation values in 𝑐𝑜𝑟𝑥 calculated 

by Eq (4-6) are recorded. Considering that input digital pattern design images may have 

diverse content, it is evaluated whether the area 𝑆𝑥,0  is matched with 𝑇  by setting a 

dynamic threshold  

 𝑠𝑖𝑚𝑥 = 휀 ∗ 𝑚𝑎𝑥(𝑐𝑜𝑟𝑥) (4-7) 

When the first matched area is found at the 𝑥∗-th pixel on 𝑥 direction, i.e., 𝑐𝑜𝑟𝑥∗ >
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𝑠𝑖𝑚𝑥, the repeated pattern size in 𝑥 direction is refined as 

 
𝑑𝑥
∗∗ = 𝑥∗ +

1

3
𝑑𝑥
∗  (4-8) 

 

An illustration is shown in Figure 4-5(a). The drawn repeated pattern grids before and 

after using the optimization algorithm are presented in Figure 4-5(b) and (c). It can be 

seen that the detected accuracy is significantly improved after using the optimization 

algorithm. Moreover, to avoid too small repeat sizes being detected, the adjacent areas 

both with high 𝑐𝑜𝑟𝑥  but less than 2-pixel distance are prohibited. If the distance 

∆𝑑between the adjacent area 𝑆𝑤,0 and 𝑆𝑤+∆𝑑,0 is smaller than two, then 𝑑𝑥∗∗ = 𝑑𝑥
∗∗ +

∆𝑑, this operation is repeated until the distance ∆𝑑 ≥ 2. The pixel value of 2 can be 

determined based on the smallest size of design element. The optimization process on 

the 𝑦 direction is the same with the operation in 𝑥 direction.  
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Figure 4-5 (a) Illustration of how the optimization algorithm work in 𝒙 direction, the 

correlation value changes with the movement of the template patch and meets 

our requirements at the point 𝒅𝒙∗∗ ; (b) Repeated pattern grid before 

optimization; and (c) Repeated pattern grid after optimization 

 

4.3.5 Repeated pattern grid extraction 

The output from the proposed R-system is grid showing the location and size of the 

repeated pattern presented on the input images. The refined pattern sizes 𝑑∗∗ obtained 

from the previous optimisation step are used to decide the final grid, an a comparative 

study with the state-of-the-art method (Lettry et al., 2017) will later be given in Section 

4.4. 

 

For comparison later, final output of repeated pattern detection by Lettry et al. (2017) 

is listed here. Displacement vectors 𝑑𝑓𝑛
𝑖,𝑗
∈ 𝐷𝑓𝑛  from the selected filters are used to 
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decide the centroids of the repeated pattern by voting. To do so, the displacement 

vectors are gathered to fit in a module space: 

 𝑀:𝑅2 → [0, 𝑑𝑥
∗∗] ∗ [0, 𝑑𝑦

∗∗] (4-9) 

 𝑀(𝑣) → (𝑣𝑥𝑚𝑜𝑑𝑑𝑥
∗∗, 𝑣𝑦𝑚𝑜𝑑𝑑𝑦

∗∗) (4-10) 

where 𝑣𝑥 and 𝑣𝑦 are the length of Hough-like voting space 𝑉 in the 𝑥 and 𝑦 directions. 

 

Different from Lettry et al. (2017), a weighted method is used to decide the final grid 

using displacement vectors 𝑑𝑓𝑛
𝑖,𝑗 and refined pattern sizes 𝑑∗∗. In other words, to avoid 

𝑑𝑖,𝑗  that is very different from 𝑑∗∗ , the given 𝑑𝑖,𝑗  is further screened by 𝐷𝑓𝑛
∗ =

{𝑑𝑓𝑛
𝑖,𝑗
∈ 𝐷𝑓𝑛 : ||𝑑𝑓𝑛

𝑖,𝑗
− 𝑑∗∗|| < 5𝜎}. 

 

After that, for the reserved 𝑑𝑓𝑛
𝑖,𝑗
∈ 𝐷𝑓𝑛

∗  , each 𝑑𝑓𝑛
𝑖,𝑗 is exponentially weighed according to 

how consistent they are with the repeated pattern size 𝑑∗∗ . The weights are then 

normalized using the number of vectors in each filter |𝐷𝑓𝑛
∗ | as follows: 

 

𝑊𝑖,𝑗,𝑓𝑛
∗ =

1

|𝐷𝑓𝑛
∗ | + 𝛿

∙ 𝑒𝑥𝑝(−
||𝑑𝑓𝑛

𝑖,𝑗
− 𝑑∗∗||

2

2𝜎2
) 

(4-11) 

where the parameter 𝛿 is set to reduce the impact caused by the number imbalance of 

𝐷𝑓𝑛
∗  in each filter and 𝛿=0.8 in the experiment, same setting for comparative study with 

previous work (Lettry et al., 2017; Rodriguez-Pardo et al., 2019).  

 

Since only one filter is selected from each convolutional layer, to avoid biasing certain 
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layers over the others, the 𝜎 is set to 1 to treat each layer equally. Then the centroid 

𝑐∗ = (𝑐𝑥, 𝑐𝑦) is chosen to minimize the weighted average distance of the displacement 

vectors by the below formula: 

 𝑐∗ = argmin
𝑐

∑ 𝑊𝑖,𝑗,𝑓𝑛
∗

𝑛𝜖𝑁
𝑓𝑛
∗ ∈𝐹𝑛

𝑑
𝑓𝑛

𝑖,𝑗
𝜖𝐷𝑓𝑛

∗

∙ ||𝑀(𝑑𝑓𝑛
𝑖,𝑗
− 𝑐) − 𝑑∗∗/2|| (4-12) 

 

Finally, an elastic repeated pattern grid is formed based on the identified centroid and 

optimized repeated sizes 𝑑∗∗; a few example results are shown in Figure 4-6. 

 

 

Figure 4-6 Examples of centroids and elastic repeated pattern grids. Top: Images with 

Centroids. Bottom: Images with elastic repeated pattern grids 
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4.4 Experiments 

4.4.1 Dataset and evaluation metric 

There is no publicly available dataset of digital pattern design images that can be used 

for quantitative analysis. To support the relevant study and evaluate our approach, a 

repeated pattern detection (RPD) dataset was constructed in this study; and the dataset 

has 841 images, including 774 scanned fabric images as well as 67 computer-generated 

design images. These images have rich texture of diverse styles, with regular or and 

near-regular topology, and the repeated pattern sizes of scanned fabric images were 

manually labeled as ground truth. Each image has more than two repeated patterns in 

its repeat direction. Although the RPD is not huge comparing to other deep learning 

based model, it was not used for training but for testing. The detection of repeated 

patterns by R-system is evaluated on every single image, similar to unsupervised 

learning or self-supervised learning that the optimization is done online based on every 

single image. Dataset in such size is sufficient for testing in terms of accuracy, 

robustness and efficiency. 

 



90 

 

Figure 4-7 Example of ground truth image annotation. 𝒈𝒙 and 𝒈𝒚 is the ground truth in 

𝒙 and 𝒚 directions, reapectively. Repeated pattern grid can be found from 

any point in the same image 

 

Since the output of the current method is represented in form of pattern grid, the 

repeated pattern size of the grid, instead of location to a specific pixel position, can be 

used to evaluate the accuracy of repeat pattern detection. This is because a repeated 

pattern may be found at any place in one image (as shown in Figure 4-7). Thus, repeated 

pattern grids were drawn from point 𝑜 = (0,0) for the qualitative evaluation. 

 

To evaluate the accuracy of each approach, all repeated patterns were assumed to start 

from the same point and the intersection over union (IoU) is calculated to measure 

quantitively the accuracy of the detected repeated pattern. The IoU (Rezatofighi et al., 

2019) is computed as follows: 
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𝐼𝑜𝑈 =

𝑚𝑖𝑛(𝑑𝑥
∗∗, 𝑔𝑥) ∙ 𝑚𝑖𝑛(𝑑𝑦

∗∗, 𝑔𝑦)

𝑑𝑥∗∗ ∙ 𝑑𝑦∗∗ + 𝑔𝑥 ∙ 𝑔𝑦 −𝑚𝑖𝑛(𝑑𝑥∗ , 𝑔𝑥) ∙ 𝑚𝑖𝑛(𝑑𝑦∗ , 𝑔𝑦)
 

(4-13) 

where 𝑑𝑥∗∗  and 𝑑𝑦∗∗  are the sizes of the predicted repeated pattern in the 𝑥  and 𝑦 

directions, respectively, and 𝑔𝑥 and 𝑔𝑦 are the ground truths for the minimal size of the 

repeated pattern. 

 

4.4.2 Experimental setting 

The proposed repeated pattern detection method was developed on Pytorch framework, 

and Alexnet (Krizhevsky et al., 2012) trained on ImageNet 2012 was selected as the 

pre-trained CNN. The number of activation peaks of Algorithm 4-1 on page 80 was set 

as 𝑘 = 20 ; and the parameter 휀  from the dynamic threshold Equation (4-7) in the 

repeated pattern size optimization method was set to 0.9. 

 

4.4.3 Baseline and related work 

To objectively evaluate the effectiveness of the proposed method, it was compared with 

four related methods. Lettry's (2017) method was the first one using activations in a 

pre-trained classification CNN to detect repeated patterns, and it is the baseline method 

of this study. They considered using almost all the CNN filters of the Alexnet. 

 

Rodriguez-Pardo’s (2019) scheme proposed to select CNN filters of the AlexNet by 
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abandoning CNN filters whose activation values were less than 0.65 of the maximum 

activation value among all the filters in the same convolutional layer. Moreover, their 

method regularized input images in advance as a pre-processing step, which is time 

consuming. An example of their pre-processing is shown in Figure 4-8. The left is their 

input image, with uneven yarns and non-uniform color variations, and the right is the 

regularized image (Rodriguez-Pardo et al., 2019). In the proposed method, pre-

processing was necessary and therefore not included. Furthermore, their method returns 

multiple repeated pattern sizes, instead of an optimised pattern size for each image, the 

size that is closest to the ground truth is chosen as the final result. 

 

 

Figure 4-8 Example of pre-processing for image regularization (Rodriguez-Pardo et al., 

2019) 

 

Apart from comparing with deep learning based methods, the proposed method was 

compared with traditional methods, including SIFT (Lindeberg, 2012) for feature 

extraction. SIFT descriptor is a classic local feature descriptor. To detect the repeated 

pattern sizes using SIFT extracted, the same voting method (described in Section 4.3.3 
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and Eq (4-5)) was used. 

 

Another traditional method chosen to compare was Neupane et al. (2019), an 

autocorrelation-based algorithm that did not require definition of template patches in 

advance. This method copied the input image and cyclic-rotated it by one pixel each 

time; meanwhile, the cyclic-rotated direction of the repeated pattern was obtained by 

comparing and minimising bitwise XOR differences between the input image and the 

cyclic-rotated one. By performing these operations along the x and y directions of the 

image, the repeated pattern size was eventually determined. 

 

4.4.4 Experiments results 

The proposed R-system is tested on the RPD dataset, and both accuracy, efficiency and 

robustness are evaluated in comparison to both state-of-the-art (SOTA) traditional and 

deep learning-based methods. For accuracy evaluation, both qualitative and 

quantitative analyses were conducted.  

 

4.4.4.1 Qualitative evaluation 

For qualitative evaluation, the repeated pattern grids generated by the proposed R-

system and other SOTA methods are presented in Figure 4-9 and Figure 4-10, 

respectively, for real fabric scanned images and computer generated design images. 

Fabric images are typical digital pattern images with repeated patterns; most of them 
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have rich texture information (see Figure 4-9). With the proposed method, repeated 

patterns were perfectly detected on these images, especially fabric images with dense 

patterns (columns 2 and 3 in Figure 4-9). The proposed R-system also performs well 

on fabric images with multiple design elements (columns 5 and 6 in Figure 4-9). 

Moreover, the image in column 7 was with many small wrinkles and shadows, and an 

accurate detection result was obtained without pre-processing. It demonstrated the 

robustness of our work. 

 

Lettry et al. (2017) (row (c) in Figure 4-9) leveraged almost all CNN filters’ information, 

and acceptable results were achieved on most of the images. Although their detection 

results are not exactly the minimal repeated patterns (see columns 2, 3, 6, and 7 in 

Figure 4-9), they are indeed repetitive patterns that can be tiled to recover the input 

images. And their detection results are more accurate than those of Rodriguez-Pardo et 

al. (2019) (row (b) in Figure 4-9) and the approach leveraging SIFT (row (d) in Figure 

4-9). The main difference between Rodriguez-Pardo’s and Lettry’s work is that 

Rodriguez-Pardo introduced filter selection while Lettry had used all filter results. In 

result, about 1/3 less filters were used in Rodriguez-Pardo’s model than that in Lettry’s, 

and comparatively less accurate detection results. SIFT is a local image feature 

descriptor that does not consider global or heretical image information, and the results 

are less satisfactory in most of the example images. On the other hand, Neupane et al. 

(2019) had the worst result among all. Neupane et al. (2019) was not suitable for 
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repeated pattern detection on real fabric images, as this approach was successfully 

demonstrated on computer-generated images only. It also demonstrates the superiority 

of CNN-based methods in repeated pattern detection. 

 

Computer-generated design images are almost noise-free images. Although some have 

complex design content, most methods performed better and real-fabric scanned images 

(see Figure 4-10). Comparatively, the performance of Lettry’s, Rodriguez-Pardo’s, and 

SIFT-based methods degraded for images with large number of small and similar design 

elements, namely motif patterns (see columns 2 to 4 in Figure 4-10), but reasonably 

good for check designs (columns 5-7). The detection results of Neupane’s method in 

Figure 4-10 again are unsatisfactory, because their method can detecte relatively simple 

patterns and the output repeat sizes are the smallest. For computer generated design 

images, the proposed R-system again outperformed all other methods. 
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Figure 4-9 Qualitative comparison for processing real fabric images (along different 

columns) from results of (a) Neupane’s, (b) Rodriguez-Pardo’s, (c) Lettry’s, 

(d) SIFT’s, (e) the ground truth, and (f) the present method of R-system, 

respectively 
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Figure 4-10 Qualitative comparison on computer-generated images (along different 

columns) from results of (a) Neupane’s, (b) Rodriguez-Pardo’s, (c) Lettry’s, 

(d) SIFT’s, (e) the ground truth, and (f) the present method of R-system, 

respectively 

 

4.4.4.2 Quantitative evaluation 

A quantitative evaluation using the RPD dataset and computed time cost and resulting 

detection accuracies of various methods are compared in Table 4-1. Again, in the table, 

quantitative analysis was separated into two subsets of data: computer-generated 

images and real fabric scanned images.  
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Table 4-1 Summary of quantitative results. Accuracy and time cost over the different 

subsets of our dataset 

Image 
type 

Neupane et al. 
(2019) 

SIFT-based 
approach 

Rodriguez-Pardo 
et al. (2019) Lettry et al. (2017) The current work 

Accuracy Time 
(s) Accuracy Time 

(s) Accuracy Time 
(s) Accuracy Time 

(s) Accuracy Time 
(s) 

Computer-
generated 0.291 0.3 0.308 65.4 0.379 55.0 0.713 731.3 0.844 46.3 

Fabric 0.116 0.2 0.335 61.0 0.409 49.0 0.543 335.8 0.658 39.4 

All images 0.130 0.2 0.333 61.3 0.407 49.4 0.557 366.7 0.673 40.0 

Computer config: CPU Intel i7-6700k, GPU GeForce GTX TITAN X, Memory 16GB. 

 

The overall accuracy of the R-system is the highest (0.673 on average) among all 

methods, and so is the subsets’ performance: the average accuracy of real fabric scanned 

images is 0.658, and 0.844 for computer-generated images. Lettry’s average accuracy 

of fabric and computer-generated images are 0.543 and 0.713, respectively, which are 

both higher than the corresponding results of Rodriguez-Pardo. Especially in the 

computer-generated category, Lettry's result is nearly twice better than Rodriguez-

Pardo's. These demonstrate the influence of the amount of selected filters on the 

accuracy of the method; the fewer filter used, the lower the accuracy; and it also 

explains the reason for adding an optimization process. Moreover, Neupane and SIFT-

based methods perform poorly quantitatively on both fabric and computer-generated 

images. Neupane’s work has the worst performance among all methods. The 

experimental results have proved the outstanding design of the R-system, which 

performs best on both fabric and computer-generated images. 

 

The time cost of R-system is 40s on average per image of the same input size, which is 
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1/9 of Lettry’s time cost, about 10s less than Rodriguez-Pardo’s, and about 20s less 

than the SIFT-based approach. Although Neupane’s work takes the shortest time, its 

accuracy is the lowest. Therefore, the experiments have proven that the R-system 

achieves a good balance between accuracy and efficiency. 

 

Table 4-2 Summary of quantitative results of our work with (w/) or without (w/o) 

applying optimization algorithm and other feature-based approaches 

Image 
type 

SIFT-based 
approach 

The current work 
w/ filter selection 

and w/ 
optimization 

The current work w/ 
filter selection but 
w/o optimization 

Rodriguez-Pardo 
et al. (2019) Lettry et al. (2017) 

Accuracy Time 
(s) Accuracy Time 

(s) Accuracy Time 
(s) Accuracy Time 

(s) Accuracy Time 
(s) 

Computer-
generated 0.308 65.4 0.844 46.3 0.322 46.2 0.379 55.0 0.713 731.3 

Fabric 0.335 61.0 0.658 39.4 0.337 39.2 0.409 49.0 0.543 335.8 
All 

images 0.333 61.3 0.673 40.0 0.336 40.0 0.407 49.4 0.557 366.7 

Computer config: CPU Intel i7-6700k, GPU GeForce GTX TITAN X, Memory 16GB. 

 

To examine the effectiveness of the module for filter selection (described in Section 

4.3.1) to optimization algorithm (Section 4.3.4) of the R-system, an ablation study was 

conducted and reported in Table 4-2, in terms of accuracy and time cost with and 

without adopting the corresponding module/algorithm. As shown in Table 4-2, the 

accuracy of the SIFT-based approach is lower than any CNN-based one, including the 

result of the R-system before optimization. It proves that the selected filters still have 

the ability to extract useful features comparable to local feature descriptors. In other 

words, only a small number of selected filters from different convolutional layers can 

effectively extract features for the task of repeated pattern detection. 
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Moreover, the accuracy of the R-system without optimization module is similar to that 

of Rodriguez-Pardo but slight less time cost. It means that the proposed filter selection 

method in Section 4.3.1 using boundary results can substantially lower the 

computational cost but maintain reasonable features for repeat detection. As shown in 

Table 4-2, the time cost before and after optimization is almost the same (both are 40 

seconds), and it demonstrates that the proposed optimization algorithm dramatically 

improves detection accuracy is without increasing the time consumption. 

 

Table 4-3 Summary of each step's time cost (s) over all the CNN-based methods 

Method Filter Selection Activation peaks 
extraction 

Consistent 
displacement 

vector selection 

Repeated pattern 
size optimization Total 

Rodriguez-Pardo et al. 0.1 0.0 51.4 NaN 51.6 
Lettry et al. 0.1 36.1 327.1 NaN 363.2 

The current work 5.9 0.0 33.9 0.0 40.0 

Computer config: CPU Intel i7-6700k, GPU GeForce GTX TITAN X, Memory 16GB. 

 

For further analysis of the efficiency of various modules of the R-system, the per-step 

time costs of the R-system and other CNN-based methods are summarized in Table 4-3. 

Consistent displacement vector selection is the most time-consuming step of all the 

above CNN filter-based methods. The consistent displacement vector selection uses a 

2-dimensional Gaussian distribution to fuse the activation peaks across different layers. 

Displacement vector number and running time are positively correlated (explained in 

section 4.3.3). In other words, the more filters used in the method, the more 

displacement vectors will be created and thus the more time it takes for the voting 
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process. As a result, the number of filters is negatively correlate to the final runtime. 

Consequently, by applying a filter selection algorithm, Rodriguez-Pardo’s work and the 

current R-system have more efficiency results than that of Lettry’s. Table 4-3 has 

proved that the accuracy before or after the applied optimization algorithm would not 

change obviously as long as the approach selects the same number of filters for the 

whole pipeline. 

 

4.5 Discussion 

4.5.1 Experiments on other type of images (non-pattern design ones) 

 

Figure 4-11 Detection results of environmental images. Top: the detection results from 

Lettry et al. (2017). Bottom: the results from our approach 

 

Lettry et al. (2017) was the first proposal of using pre-trained CNN to assist repeated 

pattern detection on images, and they applied and tested their method on various real 

world images including images other than design images, e.g. environmental image that 

are fronto-planar. With this as the baseline method, the proposed R-system with various 

modules to better address our target image type -- for digital pattern design images. As 
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illustrated in Figure 4-2, repeated pattern images are different in terms of content 

diversity and topological regularity. It is interesting to explore the proposed R-system 

can also work on images other than digital pattern design ones. The system was tested 

on some manufactured environmental images, some images of the testing dataset of 

Lettry et al. (2017). Figure 4-11 shows some results from Lettry and our work. It 

demonstrates that although the proposed R-system uses fewer filters, similar detection 

results as theirs are achieved for non-pattern design images. Surprisingly, the R-system 

performs better on the 5𝑡ℎ  image that has a very strong illumination difference. It 

certifies that our method could achieve satisfactory results on fronto-planar 

manufactured environmental images with significant varied content. As a future work, 

it will explore different system configuration for serve other types of image, which may 

vary in the dimension of content and topology regularity. 

 

4.5.2 Impact of using different CNN models 

AlexNet was used in the current proposal as CNN baseline for feature extraction. 

Experiments were also conducted on the RPD dataset, replacing the pre-trained Alexnet 

network with two other CNN models commonly used for feature extraction: the VGG16 

network (Simonyan et al., 2014) and the Resnet50 network (He et al., 2016). The 

VGG16 network has five convolutional blocks, each containing several convolutional 

layers. The filter from the last convolutional layer of each convolutional block was 

selected. Five filters were selected for subsequent use. The Resent50 has five 
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convolutional stages, and each contains one or several convolutional layers. Similarly, 

when the Resnet50 network was used, one filter from the last layer of each 

convolutional stage was selected. Overall, our work selected five filters from each pre-

trained CNN covering various scales of information, and the left parts of the whole 

pipeline remain unchanged. The quantitative results are compared in Table 4-4. 

 

Table 4-4 Summary of quantitative results of using different pre-trained CNNs 

Image 
type 

Alexnet VGG16 Resnet50 

Accuracy Time (s) Accuracy Time (s) Accuracy Time (s) 

Computer-
generated 0.844 46.3 0.880 455.4 0.860 232.2 

Fabric 0.658 39.4 0.653 96.3 0.655 72.1 

All images 0.673 40.0 0.664 113.5 0.675 85.7 

Computer config: CPU Intel i7-6700k, GPU GeForce GTX TITAN X, Memory 16GB. 

 

Table 4-4 shows that it will increase time cost if more complex models are used. 

Although the deeper CNN models perform better at feature extraction in the 

conventional sense, considering the balance of accuracy and computation cost, pre-

trained AlexNet can provide a rich enough features for repeated pattern detection. It can 

be future work to explore best way of feature extraction in different CNNs for repeated 

pattern detection. 

 

4.5.3 Impact of different boundary detection methods 

In the proposed R-system, Canny edge detector was used to provide binary boundary 
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results for filter selection. Experiments were conducted to compare the effectiveness of 

other boundary/edge detector, namely a learning-based method named BDCN (He et 

al., 2020) for filter selection and feature extraction. BDCN showed better performance 

on edge detection than Canny on the BSDS500 dataset (He et al., 2020). From Table 

4-5 the overall accuracy of using Canny and BDCN are the same. However, the method 

using Canny takes an average of 5 seconds less than the one using BDCN. Therefore, 

the Canny edge detection is chosen in the proposed filter selection algorithm. 

 

Table 4-5 Summary of quantitative results of using different boundary detection 

methods 

Image type 
Alexnet + Canny Alexnet + BDCN 

Accuracy Overall time (s) Accuracy  Overall time (s) 

Computer-generated 0.844 46.3 0.876 86.8 
Fabric 0.658 39.4 0.656 41.0 

All images 0.673 40.0 0.673 44.7 

Computer config: CPU Intel i7-6700k, GPU GeForce GTX TITAN X, Memory 16GB. 

 

4.6 Chapter Summary 

In this chapter, a novel approach for repeated pattern detection on unknown images 

with digital patterns (R-system) has been proposed. Unlike previous methods only 

focus on image feature extraction or prediction model optimization, the proposed R-

system combines CNN filters and template matching to achieve the best balance in 

accuracy and efficiency. The R-system have introduced a CNN filter selection method 
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leveraging boundary detection results and an optimization approach based on template 

matching. A dataset (RPD) containing real fabric scanned images and computer-

generated images was built. The experimental results based on the RPD dataset have 

demonstrated that the R-system achieves a good balance between accuracy and 

efficiency. Moreover, the R-system works not only on digital pattern design images but 

also gets promising results on fronto-planar manufactured environmental images. 

 

In addition, experiments were conducted to assess the effectiveness of each 

module/component in the proposed R-system. Specifically, the impacts of using 

different CNN models and boundary detection methods have been discussed. By 

replacing the existing AlexNet with two deeper CNN models, VGG16 and ResNet50, 

it has been found that the final accuracy will not be significantly affected when the 

number of filters selected is fixed. However, the deeper CNN will take a longer running 

time. Therefore, to achieve satisfactory accuracy but lower time costs, the AlexNet is 

chosen for the task. Furthermore, by replacing the existing boundary detection method, 

the Canny edge detector, with a deep learning-based boundary detector, little 

improvement on overall accuracy is resulted but higher time cost. Therefore, the Canny 

edge detector is recommended for boundary detection.  
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CHAPTER 5. Automatic Design Elements Extraction and 

Vectorization 

5.1 Background Introduction 

Digital pattern design is an important visual communication tool in the modern world, 

encompassing everything from printed fabrics to book covers to website design, and is 

especially important for fashion product development (Ambrose et al., 2019; Li et al., 

2019). Digital pattern designs composed of various design elements presented on either 

two-dimensional surfaces or three-dimensional forms (Demir et al., 2021; Guerrero et 

al., 2016). Design principles are used in the composition of pattern designs, and these 

design principles mainly include the geometric arrangement of design elements, also 

named layout, satisfying human aesthetics (Zhang et al., 2020). Before arranging 

different layouts of design contents as digital patterns, artists should first prepare 

sufficient contents, namely different design elements. Design elements can be lines, 

bands, points, regular geometry as well as abstract shapes created by artists. Common 

digital pattern designs for textiles are classified into stripe, check, and motif patterns in 

this study, and a detailed explanation will be given in later CHAPTER 6 on the 

classification. This chapter is focused on research design element extraction from 

digital motif patterns. An example of a typical motif digital pattern consisting of 

multiple repeating or non-repeating design elements regularly layout over a background 

layer is shown in Figure 5-1(a). 
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Figure 5-1 (a) A typical digital pattern image that often appears around us, it contains 

several colorful design elements and a light blue background layer; (b) 

examples of design elements within (a) 

 

Since digital pattern is powerful means for communication, creating digital patterns is 

indeed the desire for both professional designers and non-professional users (Shen et 

al., 2021). However, creating a novel design from scratch is time-consuming and 

tedious (Kovacs et al., 2018; O'Donovan et al., 2015). An alternative and efficient way 

is to synthesize new designs from existing ones. Many works focus on exploring the 

layout of digital pattern design (Guerrero et al., 2016; Li et al., 2019; O'Donovan et al., 

2015), while research on extracting design elements has been given little attention. It 

would be useful to extract core design elements automatically and efficiently from 

existing design images and reuse them in new designs, and this indeed align with the 

common practice in the design professional. 
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Raster images and vector images are two standard image formats serving different 

purposes for digital pattern design. Raster images use rectangular grids of colored pixels 

to represent content, which is a format mainly for display on the screen (Inglis et al., 

2012). However, they cannot be edited for further reuse, and the content inside will be 

distorted after scaling. In contrast, vector images consist of several vector paths. Each 

vector path is mathematically defined by its control points and filled with specific colors, 

representing a certain region when the vector image is visualized (Favreau et al., 2017). 

Vector images thus have several advantages, such as better geometric editability, 

resolution independence, and smaller memory volume (Bergen et al., 2012; Dominici 

et al., 2020; Hoshyari et al., 2018). Image vectorization, also known as image tracing, 

is the process of converting raster images into vector images (Inglis et al., 2012). Due 

to artist-drawn design elements containing distinct colored regions separated by sharp 

boundaries, they are perfect for vectorization. 

 

Previous works proposed for vectorizing digital pattern images mainly contain a single 

design element. Many of them focus on how to generate vector paths whose shapes 

correspond to human shape perception (Dominici et al., 2020; Hoshyari et al., 2018). 

However, these methods act on the pre-processed intermediate representations rather 

than directly on the input image itself. What it means by pre-processed intermediate 

representation refers to separated single-color regions, also named geometric primitives, 

an example is shown in later Figure 5-3(b). Other methods and commercial software, 
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for example, Adobe (2022) and VectorMagic (2021), that directly act on input images, 

generally create vector images containing a large number of short paths that faithfully 

represent the images in great details, but the number of paths is too large to edit further 

and the paths are not meaningfully connected like those manually drew by designers 

using design software. These meaningless paths usually have a very small area and must 

be removed manually before subsequent use (see Figure 5-3(c)). Digital pattern image 

vectorization is not purely for generating vector paths that can reappear the target image 

precisely. Rather, a vector image in the design is used as a visual inspiration for a new, 

geometric approximation of that image. Therefore, compact vector images that retain 

the main content are more in line with design needs. 

 

In CHAPTER 4, an efficient repeated pattern detection method has been proposed. 

Since the existing fashion decorative patterns or graphic design images that can be used 

as design resources are often composed of repeated patterns, the repeated pattern 

detection method can reduce computational cost of the subsequent operations by 

keeping the small units and core content. Therefore, for images with repeated patterns, 

twice of the repeated pattern, as shown in Figure 5-2(b), are input to the current image 

analysis step. 
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Figure 5-2 (a) A typical image of digital patterns with repeated patterns; (b) The image 

is cropped to twice the size of its repeated pattern; (c) Repeated pattern of 

digital pattern in (a). Comparing (b) with (c), the design element in (c) is 

separated into four independent parts, while (b) contains at least one 

complete design element 

 

In this chapter, the focus is on automatically extracting core design elements from an 

unknown image and compactly vectorizing them for further processing. An intelligent 

system, denoted as E-system, is proposed and developed for this task. The input images 

to the E-system are assumed to have the following characteristics: (1) The image 

contains one or several repeating or non-repeating design elements, and such elements 

are composed of multiple closed regions in different colors. (2) There is separation 

between design elements in the image. In other words, design elements do not overlap 

with each other on the image. (3) The image has clear background and foreground 

content, and design elements are regarded as foreground content and the color of the 

background is uniform. 
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Design elements can be considered as objects in the foreground of the design image, so 

the task of extracting design elements from the design image is more like an object 

detection task in which detecting each design element and marking it in a bounding box 

or a supervised segmentation task which separates each design element with a 

corresponding mask. The best-performing methods for each of these two tasks of object 

detection and segmentation are deep learning based. However, to the best of our 

knowledge, there is no publicly available dataset on design images with labeled design 

elements, while building a labeled dataset on design elements can be very costly. 

Considering that unsupervised segmentation, being one of the segmentation tasks, can 

effectively separate an image's foreground contents from its background, an 

unsupervised segmentation method is thus leveraged to extract foreground design 

elements from graphic design images. After separation of foreground and background, 

a color quantization method was proposed to deconstruct each design element into 

different colored components or regions. Lastly, the design elements are vectorized one 

by one. Before the detail discussion on the method for design element extraction and 

vectorization, the related work in the literature is first discussed. 

 

5.2 Related Work 

The proposed E-system is capable of performing end-to-end automatic extraction and 

vectorization of core design elements in single images, and there is no reported work in 
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the literature working on the same task. Although there is no exact single system similar 

to the proposed E-system, it is closely related to several domains of study in computer 

vision and graphics, including object detection, image segmentation, region and image 

vectorization. 

 

5.2.1 Design elements detection 

Digital pattern design images in the present study are composed of several foreground 

design elements on a uniform-colored background layer. Very few reported works focus 

on a similar task as the current proposed E-system, namely detecting design elements 

from a single image. The most similar work found in the literature was by Cheng et al. 

(2010), who used boundary information to detect and extract repeated objects in an 

interactive manner that users were required to help localize possible object regions with 

scribbles. Different from Cheng et al. (2010), the goal of this study is to extract design 

elements automatically. Design elements can be thought of as regularly laid foreground 

objects on a uniform color image background. Design elements extraction should 

consider the content and locations that can be linked to object detection or image 

segmentation problems. 

 

As discussed in Sections 2.2.3 and 2.2.4 of CHAPTER 2, both object detection and 

image segmentation are image processing tasks. Object detection is a task to localize 

instances of particular object classes in an image (Inoue et al., 2018; Zou et al., 2019), 
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while image segmentation aims to partition an image into multiple segments and 

regions of interest, representing different objects (Vitale et al., 2016). The state-of-the-

art methods for both object detection and image segmentation are based on supervised 

learning; and a typical example includes segmenting natural scene images, which pixels 

are with labels of known categories, like road, mountain, sky, and sea. Nevertheless, the 

supervised semantic segmentation approach may not be applicable in the current task 

of extracting design elements from single images for twofold reasons. Firstly, there is 

no dataset of labeled design images. Design images seldom have pixel-level semantic 

labels and their contents are very different from real-world images like natural scenes 

and object images. Secondly, the diversity of design images makes it difficult, if not 

impossible, to define semantics for all design elements and build a labeled dataset large 

enough for training purposes. 

 

Alternatively, other image segmentation approaches have utilized traditional image 

features to separate foreground contents from the image background, based on graph 

theory (Felzenszwalb et al., 2004) or multivariate image analysis (Comaniciu et al., 

2002). These methods have a known drawback of over-segmentation (Zhang et al., 

2009), namely generating a large number of regions and meaningless shapes, which 

have to be further processed and regrouped, such as by clustering techniques. 

Nevertheless, clustering itself is a challenging research topic in image processing, and 

its effectiveness are largely dependent on the content of the target images. 
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In the family of deep learning, unsupervised segmentation has received a great deal of 

attention in recent years, since it has taken advantage of the powerful CNNs to classify 

pixels with similar features to the same label and continuously optimize the 

segmentation results and CNN parameters through backpropagation (Kanezaki, 2018; 

Kim et al., 2020). Such methods are especially good at separating the foreground and 

background of the image. Moreover, they do not require large labeled datasets. In other 

words, unsupervised segmentation is effective to segment the contents of unknown 

images into the foreground and the background. Therefore, unsupervised segmentation 

is adopted to assist foreground design element extraction in the proposed E-system. 

 

5.2.2 Design elements similarity 

A complex digital pattern design can be created by manipulating a few design elements 

with simple transformations, such as translation, rotation and scaling (Ambrose et al., 

2019). Taking reference to the above design principle, the second step of design image 

understanding is by identifying and isolating all core design elements present in a 

design image, and such design elements vary in size, shape and orientation because of 

the aforementioned transformation used in the design creation process. Once identified, 

these design elements can be reused by modification and transformation to come up 

with new digital pattern designs. Nevertheless, identification and localization of design 

elements present in a single design image can be, to some extent, comparable to object 
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detection, one of the typical tasks of computer vision. 

 

Determining the similarity between instances (design elements) present on a single 

image is itself a challenging task in computer vision, and the traditional approaches are 

again based on image features. Nevertheless, there is no single feature can work well 

in all scenarios, neither for powerful image descriptors like scale-invariant feature 

transforms (SIFT) (Ng et al., 2003), because design elements have distinct image 

features, such as corner, edge, and contour. Some researchers use CNNs’ powerful 

feature extraction ability to compare the similarity between images (Appalaraju et al., 

2017; Shimoda et al., 2017). A CNN can be viewed as a function ℱ that transforms each 

input image 𝐼 into a set of vectors 𝑥, based on a set of parameters 𝜗, 𝑥 = ℱ(𝐼, 𝜗). The 

parameters 𝜗 contains all the fixed weights and biases for the convolutional and inner 

product layers. However, in such approach, CNNs are used for compare similarity 

between entire images and standard input image size is set to 224 × 224px. In current 

task of identifying similar regions (design elements) within single input images, direct 

application of CNNs based method is suggested, the extracted design elements are small 

in sizes, not meeting the CNN’s input requirements, and it is too costly to train CNNs 

can cover so diverse design elements. 

 

In this study, perceptual hashing (pHash) is used for comparing design element 

similarity. The pHash is a fingerprinting algorithm encoding the result of the discrete 
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cosine transformation that produces a fingerprint of the image at a fast speed (Monga 

et al., 2006). For example, Hua et al. (2019) proposed using the pHash method to create 

a similarity index of cultural artifacts; Kumar et al. (2021) used pHash to compare the 

content similarity to protect copyright of multimedia; and Zannettou et al. (2018) used 

pHash to extract representative feature vectors from meme images. The method works 

for images of any intensity and resolution, not just ones with strong features. When the 

pHash values of two images are “close” to one another, it means that the image contents 

are similar. Hence, by comparing pHash values of two design elements, the similarity 

between the two can be efficiently assessed. 

 

5.2.3 Design elements vectorization 

Image vectorization, also known as image tracing, is the process of converting a raster 

image into a vector image. It is important to note that there is no single ‘ground truth’ 

result for vectorization because the same raster image can be described by many 

possible vector paths as long as all the traced paths truly represent the input raster image. 

In other words, the same region of pixels can be represented by hundreds of low-

resolution closed paths or a single path clustering all pixels with the same visual content 

(RGB value).  

 

Learning-based image vectorization methods are still restricted to fonts and simple icon 

domains (Lopes et al., 2019; Reddy et al., 2021), where the outputs are well-defined. 
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Most classic methods use closed Bezier curves (vector paths) to describe intermediate 

representations generated by boundary detection or image segmentation. For instance, 

many related works rely on mean-shift clustering (Comaniciu et al., 2002). Since raster 

images are composed of matrix of pixels, they naturally have jagged edges (see Figure 

5-3(a)) and thus easily generate far too large number of small paths due to over-

segmentation. Consequently, the output vector paths are sometimes redundant and large 

in number due to inaccurate segmentation or lack of curve priors (Adobe, 2022; 

Inkscape, 2020; Kerautret et al., 2019; Yang et al., 2015; Zhang et al., 2009). Even with 

some algorithms devoted to addressing these problems, there is still no single good 

solution. Recently, Dominici et al. (2020) and Hoshyari et al. (2018) proposed 

approaches to generate vector images consistent with human expectations. However, 

their methods assume the input image is pre-processed (deconstructed) into multiple 

color intermediate representations. In addition, these methods are computationally 

expensive with long processing time.  

 

The goal of this study is to directly vectorize design elements extracted from unknown 

images without human intervention. High fidelity, efficiency and compactness are key 

factors to consider, it is proposed to obtain compact vectorized results by optimizing 

outputs from the classic Potrace (Selinger, 2003).  
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Figure 5-3 (a) The input raster image; (b) intermediate representations of (a), each 

intermediate representation will be described by a path in the following 

vectorization algorithm; (c) Adobe (2022) vector result of (a), which contains 

some tiny and meaningless paths that must be removed before reuse 

(highlighted in zoomed-in insets) 

 

Moreover, to get a compact vectorized output, the number of intermediate 

representations should be made as small as possible. Towards simultaneously obtaining 

the corresponding color information of each intermediate representation, the color 

information is used to deconstruct the image. Traditional works rely on mean-shift 

clustering (Comaniciu et al., 2002), which is slow to process and prone to over-

segmentation errors. The simplest way to computationally describe the color 

information of a design element is by means of its color palette, which contains the 

representative colors within an image, just like a painter's palette. The color palette can 

easily be obtained from a color histogram (Bradski, 2000 ), as well as the number of 

colors (Delon et al., 2005; Srivastava et al., 2015). K-means clustering (Likas et al., 

2003) can efficiently deconstruct an image into 𝑘 regions, however, the region number 
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𝑘  should be provided in the algorithm. An adaptive design element deconstruction 

method is therefore proposed based on k-means and setting 𝑘 to the number of colors. 

 

5.3 Method 

The E-system, as illustrated in Figure 5-4, is proposed to vectorize the core design 

elements within an unknown digital pattern design image, which covers two main stages 

of image processing. Each stage of processing includes a sequence of steps, for instance, 

for core design element extraction in stage one, a CNN is developed and trained for 

unsupervised segmentation to extract the image foreground from its background; then 

core design elements are selected through similarity comparison based on the 

perceptual hashing algorithm (pHash). Next, in the second phase of core design element 

vectorization, each identified core design element in stage one is deconstructed into 

several intermediate representations by color quantization and the k-means algorithm 

(Section 5.3.2.1). After that, each intermediate representation is vectorized by Potrace 

(Selinger, 2003) and removes the meaningless vector paths. Finally, several compact 

vectorized design elements will be obtained after synthesizing the vector paths ordered 

by area (Section 5.3.2.2). The two-stage process with detailed operations are explained 

in the following subsections. 
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Figure 5-4 Illustration of the E-system for core design elements extraction and compact vectorization
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5.3.1 Core design elements extraction 

5.3.1.1 Foreground design element extraction 

In order to separate an image into an arbitrary number of foreground design elements 

and a background layer, it leverages an unsupervised segmentation approach in current 

study. Unsupervised segmentation (Kanezaki, 2018; Kim et al., 2020) can be 

considered as assigning pixels of an unknown image to cluster labels based on pixels’ 

feature representations similarity (for instance, color and texture) and pixels’ spatial 

distance. Considering the excellent feature extraction ability of CNN, a CNN is adopted 

to extract pixel-level feature representations and classify pixels with similar features 

into the same cluster labels. Subsequently, the cluster results are iteratively refined by 

a joint-learning back propagation approach. Finally, the pixels are assigned to an 

arbitrary number of cluster labels {𝑐𝑛}𝑛=1
𝑞′ , pixels with the same cluster label compose 

a segmentation mask which means the image is labeled by 𝑞′ segmentation masks. A 

large number of cluster labels indicate over-segmentation, whereas a small number of 

cluster labels indicate under-segmentation. Since over-segmentation is unavoidable, the 

independent closed areas (also named connected regions) in the background mask are 

utilized to extract the design elements of the foreground in the proposed E-system. 



122 

 

Figure 5-5 Illustration of training the unsupervised segmentation algorithm 

 

CNN architecture and forward propagation 

Given an input RGB image 𝐼 = {𝑣𝑛 ∈ ℝ3}𝑛=1
𝑁 , where 𝑁 denotes the number of pixels, 

and each pixel value 𝑣𝑛  is normalized to [0, 1] . A CNN with two convolutional 

components is constructed (see Figure 5-5). Each convolutional component comprises 

a convolutional layer that has 𝑝  convolutional kernels of region size 3 × 3 , a ReLU 

activation function, and a batch normalization function (BatchNorm). The parameters 

{𝑊𝑎} of convolutional components are initialized with Xavier initialization (Glorot et 

al., 2010). The output is a 𝑝-dimensional feature map {𝑥𝑛} from {𝑣𝑛}. 

 

Next, a response map {𝑦𝑛 = 𝑊𝑐𝑥𝑛}𝑛=1
𝑁   is obtained after a linear classifier, a 

convolutional layer with 𝑞  convolutional kernels of region size 1 × 1 , where 𝑊𝑐 ∈

ℝ𝑞×𝑝. The response map is normalized to {𝑦𝑛′ }𝑛=1𝑁  of zero mean and unit variance. The 

motivation behind the normalization function is to give each 𝑦𝑛′  nearly even chance in 
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the following operations aiming to avoid an under-segmentation failure (𝑞′ = 1 ). 

Subsequently, the {𝑦𝑛′ }  are assigned into 𝑞  clusters. The 𝑖 th cluster of the final 

responses can be represented as: 

 𝐶𝑖 = {𝑦𝑛
′ ∈ ℝ𝑞|𝑦𝑛,𝑖

′ ≥ 𝑦𝑛,𝑗
′ , ∀𝑗} (5-1) 

where 𝑦𝑛,𝑖′   denotes the 𝑖 th element of 𝑦𝑛′  . It is equivalent to assigning pixels to the 

nearest point among 𝑞 representative points, which are placed at an infinite distance on 

the respective axis in 𝑞 -dimensional space. Note that 𝐶𝑖  can be ∅ , and therefore the 

number of final unique cluster labels 𝑞′ is arbitrary from 1 to 𝑞. The above process is 

the forward propagation for self-training the network. See Figure 5-5 for an illustration.  

 

Learning network by joint-learning back propagation approach 

There is no clue of how many segmentation masks will be generated for an image in 

unsupervised segmentation. The segmentation results depend on the image content. 

However, in image segmentation, it is reasonable for the clusters of pixels to be spatially 

continuous. To consider the pixel's location, a pre-segmentation algorithm is added. 

Different from Superpixel used in Kanezaki (2018), a Graph-based Segmentation (GS) 

(Felzenszwalb et al., 2004) (Section 2.2.3 for more details) is chosen for faster 

convergence and robustness. Therefore, when the image 𝐼 = {𝑣𝑛 ∈ ℝ3}𝑛=1
𝑁  is input, 𝑇 

segments are simultaneously extracted from GS, defined as {𝐺𝑆𝑡}𝑡=1𝑇 , and all of pixels 

in 𝐺𝑆𝑡 are forced to be assigned the same cluster label. 𝑇 is always bigger than 𝑞, which 

means pixels in different segments will be aggregated into a new cluster label in the 
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learning process. More specifically, Let |𝑐𝑛|𝑛∈𝐺𝑆𝑡  be the number of pixels in 𝐺𝑆𝑡 that 

belong to the 𝑐𝑛th cluster, the cluster label with the maximum number of pixels, 𝑐𝑚𝑎𝑥, 

is selected, where |𝑐𝑚𝑎𝑥|𝑛∈𝐺𝑆𝑡 ≥ |𝑐𝑛|𝑛∈𝐺𝑆𝑡  for all 𝑐𝑛 ∈ {1,… , 𝑞}. The cluster labels are 

then replaced by 𝑐𝑚𝑎𝑥  for 𝑣𝑛 ∈ 𝐺𝑆𝑡 . This process is the graph-based segmentation 

optimization (see Figure 5-5), and the output will be used in the next iteration. 

  

The essence of unsupervised segmentation is equivalent to interactively solving the 

following two sub-problems: the first one is using the network with fixed parameters to 

predict the cluster labels, while the second one is updating network parameters using a 

backward gradient descent process. In this study, stochastic gradient descent with 

momentum is leveraged, and specifically, the cross-entropy loss between the network 

responses {𝑦𝑛
′
}
𝑛=1

𝑁

  is calculated and the refined cluster labels {𝑐𝑛
′
}  is leveraged to 

update the parameters of convolutional components {𝑊𝑎} as well as the classifier {𝑊𝑐}. 

Through iteratively implementing this forward-backward process 𝑀  times, the final 

prediction of cluster labels {𝑐𝑛}𝑛=1
𝑞′  and a group of image pixels in each cluster/segment 

𝑆 = {𝑠𝑛}𝑛=1
𝑞′   are obtained. The segmentation result 𝐼′  with 𝑞′  segments (each 

represented as a segment mask) is the final output of the process. Figure 5-5 gives an 

example of how the unsupervised segmentation algorithm works. 

 

Although the proposed unsupervised segmentation method endeavors to prevent under-

segmentation failure, the segmentation result is unavoidably over-segmented, meaning 
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a complete design element will be assigned with multiple cluster labels (see an example 

as highlighted in the zoomed-in inset of Figure 5-5). The next task of core design 

element extraction is to integrate design element fragments with different cluster labels 

into a complete one, and this task is itself computationally challenging. To do so, the 

background mask is first selected, which can provide location clues for the 

identification of foreground design elements (see Figure 5-6). 

 

 

Figure 5-6 Examples of selecting background mask. Top: the input design images. 

Bottom: their corresponding background masks 

 

The input image is separated into several segment masks by the unsupervised 

segmentation algorithm, which each mask has no clear semantic label. In order to 

identify the background mask, the minimum Bounding Rectangle (minBoundingRect) 

of each segment mask in 𝑆 is computed. When design elements do not overlap each 

other within the image, the mask with the largest bounding rectangle area can be 

identified as the background mask 𝑠𝑏𝑘 as follows: 
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 𝑠𝑏𝑘 = 𝑚𝑎𝑥(𝑚𝑖𝑛𝐵𝑜𝑢𝑛𝑑𝑖𝑛𝑔𝑅𝑒𝑐𝑡(𝑆)) (5-2) 

 

The foreground, namely the design elements, are the connected regions of the inverse 

of the background mask. By discarding some small connected and incomplete regions, 

foreground design elements along each connected region are cropped out from the input 

image one by one, according to the segment mask. To avoid losing information, an area 

slightly larger than the minimum area defined on the connected region of inverse mask 

is cropped out (Figure 5-7(c)). Consequently, a set of design elements are obtained 𝐸 =

{𝑒1,⋯ , 𝑒𝑛} . Simultaneously, the background color is also obtained by counting the 

average RGB value of pixels on the background region. 

 

 

Figure 5-7 (a) The input design image; (b) the background mask; (c) illustration of 

foreground design elements extraction, red lines in (c) show the outline of 

connected regions, and the regions circled in blue are the actual cropping 

areas; (d-e) extracted design elements, grey boxes outline regions in (d) and 

(e) are examples of the extracted design elements 

 

5.3.1.2 Core design elements selection 

A design image consists of multiple repeated design elements, only the core distinctive 
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design elements are selected. The core elements are selected among set 𝐸, based on the 

inter-element similarity assessment. The pHash algorithm (Monga et al., 2006) is 

selected for the feature similarity assessment since it encodes the global content of a 

design element and is not sensitive to image size. pHash generates a feature vector of 

64 elements that describe an image, computed from the Discrete Cosine Transform 

among the different frequency domains of the image. Therefore, similar design 

elements are filtered by comparing their pHash values.  

 

Given the design elements 𝐸 = {𝑒1,⋯ , 𝑒𝑛}, firstly, their corresponding pHash value is 

calculated 𝑃 = {𝑝1,⋯ , 𝑝𝑛}. Then the design element with the largest area is selected, 

removed from 𝐸 and added to the final design element list 𝐸′ (Initially 𝐸′ is empty). 

Then this design element is compared with all the elements by calculating the pHash 

values distances (𝑑𝑖𝑠𝑃) of this design element with the rest design elements in the set 

E. If the distance is closer than the threshold 𝜏, those elements from 𝐸 are removed. 

Next, the design element with the largest area is taken from the remaining in 𝐸  , 

removed from 𝐸 and added to 𝐸′. Once again, the pHash value distance with all the 

design elements in 𝐸 is calculated and the design elements with a closer distance than 

the threshold is eliminated. This process is repeated until there are no more design 

elements left in 𝐸. Finally, the core design elements set 𝐸′ is obtained. The pseudo-

code is shown in Algorithm 5-1. 
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Algorithm 5-1 The pseudo-code of the algorithm for core design element selection 

Input: The design elements: 𝐸 = {𝑒1, ⋯ , 𝑒𝑛}, 

  The corresponding pHash value: 𝑃 = {𝑝1,⋯ , 𝑝𝑛}, 

  The pHash value distance threshold: 𝜏 

begin 

 𝐸′ ← {} 

 while 𝐸 ≠ 𝑒𝑚𝑝𝑡𝑦 do 

  𝑚 ← 𝑎𝑟𝑔𝑚𝑎𝑥(𝑎𝑟𝑒𝑎(𝐸)) 

  𝐸′ ← 𝐸′ ∪ 𝑒𝑚; 𝐸 ← 𝐸 − 𝑒𝑚 

  for 𝑒𝑖 in 𝐸 do 

   if 𝑑𝑖𝑠𝑃(𝑝𝑚, 𝑝𝑖) ≤ 𝜏 then 

    𝐸 ← 𝐸 − 𝑒𝑖; 𝑃 ← 𝑃 − 𝑝𝑖 

   end 

  end 

 end 

 return 𝐸′ 

end 

 

5.3.2 Core design element vectorization 

With the method proposed in section 5.3.1, it is possible to get multiple raster design 

elements from existing design images. Since vectorization is important for reuse of 

design resources in design process, many methods have been proposed aiming to 
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faithfully restore all the details in the original image. Nevertheless, existing 

vectorization methods are not satisfactory because they inevitably generate too many 

meaningless vector paths. This study is endeavor to produce vector-based design 

elements in compact structures, and this is done by combining multiple vector paths. 

Each vector path is a mathematical representation of an intermediate representation. In 

previous works, the intermediate representations of an image generated by traditional 

segmentation techniques were easily over-segmented. To achieve compact 

vectorization results, a novel design element deconstruction method is proposed. 

 

5.3.2.1 Design element deconstruction 

To deconstruct design element to a compact set of intermediate representations, the 

color information is utilized. Firstly, the colored design element is converted into 

grayscale, {𝑒𝑖}  to {𝑒𝑖′} , and then its color histogram 𝐻  is calculated. The number of 

histogram bars is set to 𝑎  and the number of bars whose values are larger than a 

threshold 𝜖 are used as 𝑘. Thereafter, k-means is leveraged to deconstruct the design 

element into 𝑘 intermediate representations {𝑟𝑖}𝑖=1𝑘 , as well as predict their color values. 

An illustration of this method is shown in Figure 5-8. 
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Figure 5-8 An example of color separation. (a) The input design element image; (b) the 

color histogram, and in this image 𝒌  equals 6; (c) intermediate 

representations with their corresponding color value 

 

5.3.2.2 Compact vectorization of design elements 

Each color region in a color vector graphic involves geometric and color parameters. 

The geometric parameters of each intermediate representation is obtained by the 

Potrace algorithm (Selinger, 2003). After combining the color information of each path, 

multiple independent vector paths can be obtained (see Figure 5-9). A vector graphic is 

a multi-layer composition of many vector paths. When the path set is obtained, firstly 

all the paths are ordered by area to avoid occlusion between paths during visualization. 

Since the area of vector paths cannot be calculated directly, each is converted to a raster 

image for calculation. Meanwhile, the vector path whose area is smaller than 3 of the 

image is defined as a meaningless path and will be removed. Ultimately, the reserve 

paths are synthesized in order of area from small to large and a background layer is 

added at the bottom that is a rectangular filling with the background color. Examples 

are shown in Figure 5-9. 
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Figure 5-9 Examples of vector graphic synthesis. The vectorized result of design element 

(a) contains five vector paths, the black path is its background layer; and the 

vectorized design element (b) contains nine vector paths. Although our 

vectorized results lose some detail, our results remain the main content and 

contain a minimal number of vectorized paths 

 

5.4 Experiment and Discussion 

This section introduces the conducted experiments on design images to evaluate the 

effectiveness of the proposed E-system. All the experiments are conducted on the 

equipment with CPU Intel i7-6700k, Memory of 16GB, and GPU GeForce GTX 

TITAN X. 
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5.4.1 Experiments of core design elements extraction 

5.4.1.1 Dataset and evaluate metric 

To evaluate the effect of core design elements extraction from design images, the 

proposed method is tested on a dataset of 114 design images across a wide range of 

sizes, from 75 × 75 to 1024 × 1024 pixels (see Figure 5-10(a)). Each image has one 

or more design elements random layout on the image (examples are shown in Figure 

5-10(b)). 

 

 

Figure 5-10 (a) Image size distribution of the test dataset; (b) examples of test images 

 

It is worth emphasizing that the purpose of the proposed E-system is to extract the core 

design elements contained in the existing design images, not to extract all the design 

elements in the image. Therefore, images that do not extract at least one design element 

are defined as failure cases. The success detection rate 𝑟 is calculated as follows: 

 
𝑟 =

|𝑡𝑒𝑠𝑡| − |𝑓𝑎𝑖𝑙𝑢𝑟𝑒|

|𝑡𝑒𝑠𝑡|
× 100% 

(5-3) 
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where |𝑡𝑒𝑠𝑡|  represents the number of all the test images, |𝑓𝑎𝑖𝑙𝑢𝑟𝑒|  represents the 

number of failure cases. 

 

5.4.1.2 Parameter setting 

It is set that 𝑝 = 𝑞 = 100  for CNN architecture in foreground design elements 

extraction, and the detailed CNN configurations are outlined in Table 5-1. The 

algorithm can be equivalent to iteratively optimizing the CNN parameters and the 

segmentation results. The goal is to find a complete background mask efficiently. To 

balance the segmentation results and the time required, the best result from 𝑀 =

1,2,3, . . . ,50 is chosen for iteration on the whole test dataset. Finally, setting 𝑀 = 11 

is found for each image to achieve the best balance. Figure 5-11 reflects the relationship 

between the number of iterations and the success detection rate. In addition, in the case 

of GS, parameters are set to 𝜎 = 0.5 , 𝑘′ = 32 , and the threshold of core design 

elements selection is set to 𝜏 = 0.85. 

 

Table 5-1 CNN configurations. The rows in turn represent the convolution components 

 Kernel size Dim Stride Padding Activation 

1st 3 × 3 100 1 1 ReLU & BatchNorm 

2nd 3 × 3 100 1 1 ReLU & BatchNorm 

classifier 1 × 1 100 1 1 BatchNorm 
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Figure 5-11 The curve of the success detection rate and the number of iterations 

 

5.4.1.3 Performance  

The proposed E-system successfully extracted 684 design elements from 109 images, 

and the total time cost is 1107 seconds, with an average time of 10 seconds per image. 

Figure 5-12 shows parts of the result of the proposed method to prove that our proposed 

method is able to extract core design elements from an unknown image. 
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Figure 5-12 Examples of the output of the core design elements extraction, with the image 

size information 

 

To further demonstrate the effectiveness of each module of the E-system, a set of 

comparative experiments was conducted. First, mean-shift clustering (Comaniciu et al., 

2002), another unsupervised segmentation method, was chosen to compare with the 

proposed CNN-based unsupervised segmentation method. Secondly, with reference to 

the work of Kanezaki (2018), the GS method was replaced with the superpixel method 

(Achanta et al., 2012) as a comparison. For the Superpixel method, the number of 

Superpixel/segments 𝑛𝑢𝑚_𝑠 was set as 10000, 1000, and 100, respectively. 
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Table 5-2 Comparison of the computation time and success detection rate for design 

elements extraction among related works 

 

Mean-Shift 
The proposed 

E-system 

Method w/ Superpixel 

𝑛𝑢𝑚_𝑠: 10000 𝑛𝑢𝑚_𝑠: 1000 𝑛𝑢𝑚_𝑠: 100 

𝑟 85% 96% 90% 87% 73% 

time cost/s 62 10 17 10 8 

Computer config: CPU Intel i7-6700k, GPU GeForce GTX TITAN X, Memory 16GB 

 

Table 5-2 shows comparative results of the computation time and success detection rate 

for design elements extraction. From the table, the proposed E-system outperforms all 

other methods with the highest success detection rate of 96%; the element extraction 

time is 10s on average. The success detection rate of the methods with Superpixel is 

below 90%, which means some images that can be processed by the present method but 

failed when using Superpixel, demonstrating the advantage of the E-system. 

Specifically, setting a fixed number of segments for all test images of different sizes 

and uncertain content would result in some images being under-segmented and thus not 

available for extracting design elements. Accordingly, it is found that the number of 

segments influences the success detection rate of Superpixel method. The larger the 

number of segments, the higher the success detection rate. However, it takes a longer 

time for the network to converge and iterate the larger number of segments, therefore 

the time cost also increases accordingly. Furthermore, the success detection rate of 

mean-shift is about 10% less than the proposed one, while the time cost is about six 
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times of the proposed one. It also proves the advantage of the proposed method on 

design image deconstruction. 

 

5.4.2 Experiments of design elements vectorization 

For design element deconstruction, the number of color histogram bars 𝑎 is set to 25, 

the threshold 𝜖 = 0.04  for the whole experiment. Extensive experiments were 

conducted on the output of the previous core design elements extraction. It took around 

1924 seconds to vectorize 684 design elements, with an average time cost of each 

design element less than 3 seconds which is impossible to do manually with such 

efficiency. 
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Figure 5-13 Comparison of our method across inputs of various sizes, (a) input raster 

design elements with their size information, (b) results of the proposed E-

system, (c) results of Adobe (2022), (d) results of VectorMagic (2021), (e) 

results of Kerautret et al. (2019) 

 

To demonstrate the effectiveness of the proposed approach in terms of compactness, 

comparative experiments were conducted. Figure 5-13 shows some results of design 

element vectorization with the number of vector paths from related works. The results 

were compared with Kerautret et al. (2019), who proposed a combinatorial variational 

model that merges geometry theory into a classical total variation model. As seen in 
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Figure 5-13(e), although the fidelity of their results was high, the files had too many 

vectorized paths to be simply editable. In addition, the proposed work also compared 

with Adobe (2022) and VectorMagic (2021), Figure 5-13(c) and (d) show the respective 

results. VectorMagic is a commercial software specialized for image vectorization, and 

Adobe Illustrator is a more generic vector-based design software. It can be seen that the 

results of VectorMagic (Figure 5-13(d)) are better than those of Adobe (Figure 5-13(c)) 

in terms of fidelity. But their results were less concise compared to the proposed method. 

The results obtained by the present method (Figure 5-13(b)) contain a minimum of 

vectorized paths while retaining the main content of each design element. Although 

their results lose some details, they can be easily edited to generate new graphs, which 

will be discussed in Section 5.4.4. 

 

5.4.3 Limitation and discussion 

Since the goal of the E-system is to extract and vectorize core and distinctive design 

elements from raster graphic design images, the images without extracted design 

elements are defined as failure cases. Across all the images, the proposed method failed 

in only five image inputs, and these images are classified into two categories. Examples 

of the first category are shown in Figure 5-14(a) and (b). The background mask of each 

image is separated into several non-adjacent parts. Therefore, the proposed method fails 

to find the corresponding background mask and locate the foreground design elements. 

In particular, in Figure 5-14(a), when white flowers and dark green leaves are 
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considered as the foreground design elements, it is found that its background mask (in 

light green) is separated into several parts. It cannot be identified and used to locate the 

foreground design elements. The second category is shown in Figure 5-14(c). Although 

the design information is successfully segmented, the design elements are next to each 

other, and the proposed method cannot identify the background mask and the 

corresponding design elements. Nevertheless, it can be seen from Figure 5-14 that the 

proposed method can separate the inside design element without clear semantic 

information. In the future, it will research on directly transforming segmentation masks 

into vector regions without generating intermediate representations. 

 

Furthermore, since the proposed method seeks to generate the most compact vectorized 

representations for design elements, paths with very small area would be defined as 

meaningless and be removed (described in Section 5.3.2.2). It causes the outputs to lose 

some image detail, such as the ‘eye’ of the yellow dragon in the 8th column of Figure 

5-13. It is also one of the limitations of current method, and this will be improved in 

future work. 
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Figure 5-14 Failure cases. The top row is the input images, and the bottom row is the 

obtained segmentation masks 

 

5.4.4 Application of the generated graphic images 

In order to simulate the design element creation process, the obtained vectorized design 

elements were processed by replacing the fill colors with random colors and slightly 

changing the elements' shape. Repeat is one of the layout rules in graphic design 

(Ambrose et al., 2019). Design elements can be tiled into larger patterns that can be 

applied in different scenes. Therefore, new designs are generated by repeating the 

generated design elements. The generated graphic design images are applied to some 

3D models, see example of a silk scarf and a cup in Figure 5-15. Design generation, 

which could take hours to do manually, can now be performed on computers 

automatically within seconds. The experimental results illustrate that if combined with 
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standard design rules, it is possible to generate new designs that conform to the human 

aesthetics using the proposed method and thus prove that the proposed method has the 

potential to assist design generation. 

 

 

Figure 5-15 Computer-generated graphic design images used in a silk scarf and a cup. 

The 3D objects were processed in Adobe Photoshop 

 

5.5 Chapter Summary 

In this chapter, a novel method to extract and vectorize core design elements from an 

unknown raster input design image is proposed. To extract its design elements, 

unsupervised segmentation is leveraged to separate the foreground design elements 

with the background. Then, core design elements are selected by comparing the 

similarity among foreground design elements based on pHash values. After obtaining 

the core design elements, they are deconstructed into several colored intermediate 

representations. Subsequently, intermediate representations are vectorized to vector 
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paths. After removing the vector paths with very small areas, the remaining vector paths 

are integrated into a new compact vector path by ascending order of area from small to 

large. The experimental results have demonstrated that the proposed system can 

efficiently extract core design elements and vectorize them into compact vector curves. 

Moreover, to demonstrate that the proposed system can assist design generation for 

professionals and non-professional users, the obtained vector-based design elements are 

used to generate new graphic designs and applied to 3D models. 

 

A vector element dataset with 684 design elements is developed using the proposed E-

system. The application proves that the proposed system is suitable for design reuse and 

re-creation. The next chapter will introduce how to generate human aesthetics aligned 

digital patterns, leveraging the vector-based design element dataset and standard design 

rules.  
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CHAPTER 6. Vector-based Digital Pattern Generation 

6.1 Background Introduction 

As described in the Introduction of CHAPTER 1, the digital pattern is an essential part 

of fashion design, and the pressure for its development is increasing both in terms of 

speed and quantity, so designers are eager for intelligent systems that may assist them 

to design rapidly and effectively (Wang et al., 2019). Digital patterns can be understood 

as a combination of multiple colorful design elements (fonts and icons can be treated 

as particular design elements) on a two-dimensional plane. Because design process is 

typically iterative, the output designs must allow sequential design 

modifications/improvements to fulfill the specific design requirements in terms of 

pattern types and color preferences during the design process until confirmation 

(Briggs-Goode et al., 2011; Studd, 2002). For instance, in the fashion industry, digital 

patterns should always be scaled and tiled to fit the requirements of the machinery and 

recolored to develop numerous colorways for a category of products and modified to 

new patterns. Therefore, digital patterns recorded in vector formats are popular in the 

industry since they are simple to modify or scale to any size without losing quality or 

details (more information on vector images was presented in CHAPTER 5). In addition, 

because new designs are usually based on a secondary development of existing ones, 

by editing or adjusting semi-finished patterns that conforms to human aesthetics. 

Therefore, a digital pattern design support system in line with the industry expectations 

should fulfill the below two requirements: (1) the outputs conform to basic human 
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aesthetics, (2) the outputs are vector-based. However, to the best of our knowledge, no 

such system currently exists. The mainstream works on design generation techniques 

are at pixel level, and a few focus on content-specific vector-based pattern generation, 

such as marble patterns (details are described in CHAPTER 2). To properly assist digital 

pattern design generation and fill the research gap, this study proposes a G-system 

aiming to generate vector-based digital patterns that conform to the basic human 

aesthetics. 

 

 

Figure 6-1 Classification of repeated decorative digital patterns with illustrations 

 

Digital patterns are always made up of multiple repeated patterns and come in a wide 

range of shapes and styles, such as geometric patterns (Lu et al., 2014); traditional 

patterns (Yin et al., 2020); pixel-art patterns (Kopf et al., 2011); fractal graphics (Field 

et al., 2009; Wang et al., 2019) and so on. To cover common pattern classes, in this 

study, the decorative-use repeated digital patterns are classified into two-dimension 

(also known as stripe), and quadrilateral repeated patterns by layout, and then the 

quadrilateral repeated patterns can be further roughly divided into the motif and check 
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class according to the pattern content, as illustrated in Figure 6-1. It is known that digital 

patterns are combinations of various colorful design elements that follow specific 

layout rules. On the other hand, vector-based digital patterns compose of several vector 

paths representing closed color regions. Each vector path contains geometry and color 

parameters, as shown in Figure 6-2. The geometric parameters represent a series of 

numbers describing the location and shape of a region enclosed by a vector path, and 

the color parameter represents the filled color of the region. In order to generate patterns 

meeting human aesthetic requirements and covering the most of common patterns, the 

proposed G-system will work on generating three main classes of patterns in vector 

formats, including stripe, check, and motif, from both vector-based geometric design 

generation and design colorization perspectives. 

 

 

Figure 6-2 Illustration of a vector-based design element. The design element contains 

two vector paths, each path has geometric and color parameters 

 

The G-system proposes three parametric models for stripe, check, and motif pattern 

generation. Each parametric model first generates vector-based geometric design 

information without considering the color; subsequently, it will colorize the generated 
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patterns according to the reference image. Specifically, stripe and check patterns are 

essentially combinations of colorful slender rectangles (denoted as bands in this 

chapter). A stripe pattern is made up of continuous, uninterrupted color bands that run 

in one direction, while a check pattern consists of two orthogonal stripe patterns. As a 

result, the system splits a square into multiple parallel bands and convert these bands 

into vector paths to generate geometric information for stripe patterns. Likewise, the 

system orthogonalizes two stripe patterns to create a vector-based check pattern. 

Subsequently, these patterns will be repeated into larger ones to meet size requirements. 

The motif patterns contain several distinctive design elements, and the arrangement of 

design elements is varied. Design elements can be extracted and created using the 

method described in CHAPTER 5. Using the proposed R-system and E-system in 

CHAPTER 4 and CHAPTER 5, useful information can be analyzed from existing 

design images, from which a vector-based design element dataset was developed. In 

this chapter, a G-system is proposed to generate various geometric designs.  

 

Color plays an important role in digital pattern design and is one of the most important 

visual cues in human perception (Sartori et al., 2015; Shan, 2018). A good color 

combination helps improve the attractiveness of the created designs. Existing research 

has put efforts into exploring related topics such as color harmony and complex color 

combination rules. It is believed that extracting color combination rules from approved 

images is a easy and reasonable way to create design pleasing to users. Hence, once the 
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geometric information of a pattern is obtained, the G-system will colorize it with colors 

according to the color palettes extracted from a reference image shared by user. 

Moreover, Pantone standard color codes are widely applied in the fashion industry to 

facilitate color communication, and designers often need to match desired colors with 

Pantone codes for production purpose (Kuo et al., 2008; Zhou et al., 2019). To better 

support design, the proposed G-system will simultaneously provide the recommended 

Pantone codes of the generated digital pattern. The implementation results and 

discussion of the proposed system demonstrate that the G-system can be applied in 

diverse applications and is able to support both professional designers and non-

professional users in creating aesthetic pleasing digital patterns. 

 

The rest of the chapter is structured as follows. Section 6.2 introduces related works on 

design layout generation and color palette extraction; section 6.3 explains the three 

parametric models separately; and section 6.4 presents the implementation results and 

discussion. Finally, conclusion is given in section 6.6. 

 

6.2 Relate Work 

The proposed system generates digital patterns taking reference to layout design and 

color combination. Therefore, this section presents the related work for generating 

various designs based on layout rules and extraction of colour information from input 

images. 
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6.2.1 Design layout generation 

Researchers have worked on automating design generation by applying various layout 

rules, mostly in graphic design (Guo et al., 2021; O'Donovan et al., 2015). However, 

there is little work focusing on automatic digital pattern layouts. Majority of the existing 

studies of digital patterns pay attention to using the theoretical foundation of symmetry 

groups which is a mature mathematical theory for analyzing periodic patterns (Liu et 

al., 2004). The symmetry group parameterizes the operation of rotation, reflection, 

translation, and scaling of the design elements and arranges the design elements’ to 

different positions on the pattern. One of the early work was a system developed by 

Alexander in 1975 generating 17 symmetry patterns on 2D flat surfaces (Albert et al., 

2004). Valor et al. (2003) collated the 2D symmetry groups’ rules in detail and 

generated some textile patterns (see Figure 6-3). Due to the position of design elements 

in the symmetry groups being close and the generated pattern style tend to being unitary, 

it is more suitable for using simple polygons to generate new patterns. Instead, the 

inputs of the proposed G-system are design elements with arbitrary styles and sizes.  
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Figure 6-3 Illustrating tile design images using 2D symmetry groups by Valor et al. (2003) 

 

6.2.2 Color palette extraction 

 

Figure 6-4 (a) Color harmony schemes on the hue wheel. A collection of colors that fall 

into the gray areas is considered to be harmonic (Cohen-Or et al., 2006); (b) 

an example of an output color palette from ColorThief (Dhakar, 2020) 

 

Color conveys emotional or aesthetic information to impact people's psychological 

activities (Bylinskii et al., 2017; Hurley et al., 2017) and influences fashion product 

sales (Jing et al., 2022; Palmer et al., 2010). For the sake of design analysis, a number 
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of methods are devoted to exploring how colors work together, especially color 

harmony. Color harmonies can be defined as two or more colors brought together to 

produce a satisfying affective response (Cohen-Or et al., 2006). Itten et al. (1961) 

introduced a kind of color wheel in which they described the color harmony theory 

based on the relative positions of the hues on the color wheel. On the ground of their 

theories, Matsuda (1995) and Cohen-Or et al. (2006) proposed more complex color 

schemes, defined by combining several types of hue and tone distributions (see Figure 

6-4(a)). These schemes were used in a wide range of works, such as webpage design 

(Nazar et al., 2017) and packaging design (Hurley et al., 2017). The design of digital 

patterns covers a wide range of content, and more complex color schemes are needed. 

However, a new color scheme can be costly to develop and hard to guarantee its 

effectiveness. Therefore, some researchers turn to research on extracting corresponding 

color palettes from existing images or approved designs, using which to guide 

colorizing new designs (Cao et al., 2017; Jalal et al., 2015). 

 

The color palette, like a painter’s palette, defines the representative colors within an 

image. In essence, it is the statistical and quantitative processing of pixel values in the 

image. Some studies used the color histogram to extract color palettes defined in 

various color spaces, with HSV and L*a*b* being the most widely used ones (Delon et 

al., 2005; Meskaldji et al., 2009). Moreover, some works leverage the median cut 

algorithm to extract the corresponding color palette (Chen, 2008). In addition, other 
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researchers treat color palette extraction as a disguised clustering problem (Gijsenij et 

al., 2022; Lai et al., 2020; Lertrusdachakul et al., 2019), in which K-means is the most 

commonly used clustering algorithm (Jing et al., 2022). Each pixel is assigned a cluster 

based on which cluster centroid is closest to the pixel in a k-dimensional space. At the 

same time, k-means clustering aims to find the set of 𝑘 centroids so that the difference 

between individual pixel values within a cluster is minimized. For example, a 

commonly used tool called ColorThief (Dhakar, 2020) based on a clustering algorithm 

extracts the domain colors from the input image (see Figure 6-4(b)). Although 

clustering methods need to specify the number of colors in advance, the output is 

promising. 

 

6.3 Method 

A vector-based fashion digital pattern generation system (G-system) is proposed in this 

study. The proposed system simulates industrial workflow in order to generate vector-

based digital patterns that align with the basic human aesthetics. The proposed G-

system consists of two main modules: 1) vector-based geometric design generation, 

including parameterized layout rules and parametric models for each class of patterns, 

and 2) design colorization, including color palette extraction and digital pattern 

colorization, as illustrated in Figure 6-5.
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Figure 6-5 Illustration of the proposed vector-based digital pattern generation system (G-system) 



154 

 

 

6.3.1 Vector-based geometric design generation 

The geometric information of the vector-based digital patterns includes the 

morphological and positional parameters of the design elements, where the positional 

parameters are calculated according to the given layout rules. In addition to generating 

design elements' information for stripe and check patterns, to ensure that the patterns 

conform to basic human aesthetics, the system parameterizes the classical repeat 

structures commonly used in textile design and proposes a novel layout rule for motif 

patterns based on the golden ratio. 

 

6.3.1.1 Repeat structures 

In the fashion industry, a digital pattern covering large continued area can be generated 

by repeating several small-sized patterns, also called repeated patterns (a more detailed 

analysis of repeated patterns was given in CHAPTER 4). Repeat structures are the most 

common layout rules. Basic repeat structures are summarized into four types: straight 

repeat, half drop, tile (or brick) repeat, and repeat mirrored vertically and horizontally 

(Phillips et al., 1993; Wilson, 2001). An illustration of them is shown in Figure 6-6. 
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Figure 6-6 Illustrations of repeat structures 

 

In particular, the straight repeat structure is the pattern repeating directly above and 

below in straight lines (see Figure 6-6(a)). The half drop repeat structure is based on 

the straight repeat structure; the odd/even pattern verticals slide halfway down in the 

vertical direction (see Figure 6-6(b)). Similarly, the tile repeat structure (see Figure 

6-6(c)) is the odd/even pattern columns slide halfway right in the horizontal direction. 

The pattern columns/verticals can also slide across other amounts. For repeat mirrored 

vertically and horizontally structure, the first repeated pattern is mirrored horizontally; 

after that, the repeated pattern and the mirrored one are then mirrored vertically to form 

a compound repeated pattern that is then repeated in straight lines (see Figure 6-6(d)). 
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6.3.1.2 Motif pattern generation 

 

Figure 6-7 Examples of typical fashion digital patterns. The images are downloaded 

online 

 

Motif pattern generation is the core part of the proposed system. A motif pattern 

contains one or several design elements, such as animal, human, leaf, flower, fruit, or 

geometric shapes (Tsetimtheo, 2020). Creating new design elements is crucial for motif 

pattern design, and this can be routine work for designers. In practice, most vector-

based design elements are created by tracing existing raster design elements into vector 

formats and adjusting them manually (Yang et al., 2015). For automatically generating 

motif patterns, the G-system uses design elements from a vector-based design element 

dataset built by the E-system (in CHAPTER 5). 

 

Variable of motif pattern generation is the positional layout of design elements, which 

are subjectively arranged by designers based on their experience and design knowledge. 

To ensure that the generated patterns are aesthetically pleasing, the G-system adopts the 

classic repeat rules that are explained in section 6.3.1.1 to guide the positions of design 
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elements. Moreover, it is found that arranging single elements according to some 

aesthetic rules is able to create patterns that appear complex (see Figure 6-7). Art and 

mathematics are found to have a profound connection (Wang et al., 2019), in which the 

application of golden ratio is often identified in the layout of many artworks 

(Avramović et al., 2013). The golden ratio is capable of creating aesthetically pleasing 

forms, and the golden ratio is defined as: 

 
𝜗 =

𝑤

ℎ
=
1 + √5

2
≈ 1.618 

(6-1) 

where 𝑤 and ℎ represent the lengths of two line segments, respectively. 

 

In this study, the golden ratio is used to create layout rules, golden squares, for design 

elements in order to enrich the generated motif patterns. As shown in Figure 6-8(a), the 

blue points illustrate the positions of design elements. The pink-golden square (zoomed 

in Figure 6-8(b)) is the smallest unit within the golden squares. The shortest line of the 

pink-golden square is defined as 𝑎 , which is used to define the size of the design 

element, calculated as: 

 
𝑎 =

𝑚𝑎𝑥(𝑤𝑒, ℎ𝑒)

1.6182
 

(6-2) 

where 𝑤𝑒  and ℎ𝑒  are the width and height of the design element, respectively. The 

yellow golden square is 1.618 times of the pink golden square, and the green square is 

1.6182 times of the pink golden square, and so do the internal parts inside the square, 

a deconstruction illustration is shown in Figure 6-8(c). Consequently, a relationship is 
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established between different sizes of the design element and their arrangement within 

the golden square. 

 

 

Figure 6-8 The proposed golden squares; (a) and (b) explain the proposed golden 

squares layout rule; (c) gives an example of design elements’ positions based 

on the golden squares structure; (d) shows the generated motif pattern and 

its repeated pattern 

 

The size and position of each design element are adjusted to ensure the generated 

repeated patterns to be in line with human aesthetics. As illustrated in Figure 6-8(c), the 

design element in position (i), whose width is 𝑤𝑒, height is ℎ𝑒 and the rotation angle is 
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0°; both design elements in positions (ii) and (iii) are ( 𝑤𝑒

1.618
×

ℎ𝑒

1.618
) in size, and the 

rotation angles are 330° and 0°, respectively; and the design element in (iv), whose size 

is (1.618 ∙ 𝑤𝑒 × 1.618 ∙ ℎ𝑒) and the rotation angle is 30°. The generated motif pattern 

is tiled following the straight repeat structure (Figure 6-8(a)) to generate a larger one. 

An example of the generated motif pattern is shown in Figure 6-8(d), where its repeated 

pattern is in zoomed-in insets. Figure 6-9 shows the motif patterns generated by the G-

system using the same design element combined with different layout rules. More 

examples will be presented in section 6.4. 

 

 

Figure 6-9 Examples of the generated motif patterns using the same design elements 

under different repeat structures 
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6.3.1.3 Stripe pattern generation 

Stripe pattern is one of the oldest patterns used in textile materials or fabrics, which has 

been used since ancient times (Hampshire et al., 2006). A stripe pattern is made up of 

continuous, uninterrupted lines or bands that run either horizontally, vertically, or 

diagonally (usually at 45°) (Wilson, 2001). Figure 6-10 shows an illustration of 

different stripe patterns. Hence, the width of the stripes, their distribution, scale, color, 

and color combinations, as well as how stripes are organized and arranged, can 

determine the form and appearance of striped patterns.  

 

 

Figure 6-10 Illustration of different stripe patterns, (a) a horizontal stripe pattern, (b) a 

vertical stripe pattern, and (c) a diagonal stripe pattern at a 45° 

 

Since the stripe pattern repeats only in one direction, only the length of the pattern in 

the repeat direction needs to be taken into account. Assume that the size of a 

horizontally repeated stripe pattern is 𝑆 × 𝑆, the number of bands is 𝑁𝑠 and the width 
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of each band is 𝑠𝑖, so that 

 
𝑆 =∑𝑠𝑖

𝑁𝑠

𝑖=0

 
(6-3) 

 

The band width 𝑠𝑖  is generated by a uniform distributed function, 𝑟𝑎𝑛𝑑𝑜𝑚(𝑙𝑏, 𝑢𝑏) 

between a lower bound, lb, and an upper bound, ub, of the band width. Notably, the 

width of each band is not unlimited. The first band width can be calculated as follows: 

 
𝑠0 = 𝑟𝑎𝑛𝑑𝑜𝑚 (𝑏,

𝑆

𝑁𝑠
) (6-4) 

where 𝑏 is the minimum band width. The rest bands 𝑠𝑖, where 𝑖 ≥ 1, are obtained by: 

 
𝑠𝑖 = 𝑟𝑎𝑛𝑑𝑜𝑚(𝑏, 𝑆 −∑𝑠𝑘

𝑖−1

𝑘=0

) 
(6-5) 

 

The generated stripe pattern is able to tile into a larger one by the straight repeat layout 

rule (Figure 6-10(a)). Moreover, vertical and diagonal stripe patterns can be obtained 

by rotating a given horizontal stripe pattern, 𝛤, by an angle of 90° and 45°, respectively. 

The formulation is defined as follows: 

 
𝛤′ = 𝛤 ∙ [

𝑐𝑜𝑠(𝛼) −𝑠𝑖𝑛(𝛼) 0
𝑠𝑖𝑛(𝛼) 𝑐𝑜𝑠(𝛼) 0
0 0 1

] 
(6-6) 

where 𝛼  represents the rotation angle, when 𝛼 = 90 , the resulting pattern 𝛤′  is a 

vertical stripe pattern; and when 𝛼 = 45, 𝛤′ is a diagonal stripe pattern.  
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6.3.1.4 Check pattern generation 

 

Figure 6-11 Illustration of check pattern generation 

 

Another class of patterns is check pattern, which could be described as vertical and 

horizontal stripes crossing over one another (Hann, 2019). Therefore, a check pattern 

can be generated by stacking two orthogonal stripe patterns (see Figure 6-11). A 

horizontal stripe pattern 𝛤𝑥 of size 𝑆 × 𝑆 can be obtained by the above parametric model, 

and the number of bands is 𝑁𝑥
𝑐, which are often represented in different colors. Similarly, 

a vertical stripe pattern 𝛤𝑦 of size 𝑆 × 𝑆 can be obtained with 𝑁𝑦
𝑐 colors. A check pattern 

𝐶 can be generated by: 

 𝐶 = 𝛤𝑥⨁𝛤𝑦 (6-7) 

where ⨁ represents the stack operation. To create a visual effect of a check pattern, the 

color opacity of the upper stripe pattern, 𝛤𝑥, has been adjusted to 50%. Similarly, the 

generated check pattern is able to tile into a larger one by the straight repeat layout rule 

(Figure 6-6(a)). 
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6.3.2 Design colorization 

6.3.2.1 Color palette creation 

As explained in section 6.1, each vector-based pattern involves geometric and color 

parameters. The method described in section 6.3.1 provides the geometric information 

of each vector-based digital pattern. Subsequently, the G-system colorizes the generated 

patterns according to a given reference image. Therefore, the system first needs to 

analyze the number of colors required for the pattern. For check and stripe patterns, the 

number of vector paths in their repeated patterns equals the number of colors required, 

i.e. the number of colors in a stripe pattern 𝑁𝑠, the number of colors in the horizontal 

direction of a check pattern 𝑁𝑐
𝑤 and the number of colors in vertical direction 𝑁𝑐

ℎ. For 

motif patterns, the number of colors of the entire pattern is the same as the number of 

colors of the design element is defined as 𝑁𝑚. 

 

To simulate the designer's operation for coloring patterns with color palettes, the system 

extracts the corresponding color palette from reference images to guide the colorizing 

operation. As discussed in section 6.2.2, k-means clustering is one of the common 

methods for color palette creation. The G-system leverages the k-means and sets the 𝑘 

to be the number of colors of the pattern. A color palette is extracted from a given 

reference image by k-means in L*a*b*color space. Specifically, the color palette with 

colors sorted by the color proportion (the ratio of the area of a color to the whole image) 
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from large to small is recorded as a set 𝛩′ = {(𝑐𝑘
′ , 𝑐𝑟𝑘

′)|𝑘 ∈ [1, 𝑁𝑚]}, where 𝑐𝑘′  is the 

color value and 𝑐𝑟𝑘′  is its color proportion.  

 

Moreover, the system collected a total of 1275 Pantone codes covering most colors used 

in the fashion industry to provide Pantone codes for the generated patterns. Cosine 

similarity is leveraged to measure the similarity between the desired color and the 

collected Pantone values. The similarity score 𝑠𝑖𝑚 is calculated using: 

 
𝑠𝑖𝑚 =

∑ 𝑀𝑖
𝑛
𝑖=1 × 𝑃𝑖

√∑ 𝑀𝑖
2𝑛

𝑖=1
× √∑ 𝑁𝑖

2𝑛

𝑖=1

 
(6-8) 

where 𝑀𝑖 is the RGB value of the desired color and 𝑃𝑖 is the RGB value of the Pantone 

code. The system will provide the Pantone codes with higher similarity values to the 

desired color for user reference. Examples of extracted color palettes are shown in 

Figure 6-12. 
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Figure 6-12 Examples of created color palettes with recommended Pantone codes 

 

6.3.2.2 Digital pattern colorization 

The G-system colorizes the generated patterns according to the extracted color palettes. 

For stripe patterns, the system fills each vector path with a color chosen from the palette, 

and it tends to use more color options defined in the palette. Considering a check pattern 

is composed of two stripe patterns, the system colorizes the two orthogonal stripe 

patterns based on the same color palette. This constraint can effectively limit the 

number of colors in a check pattern to match the corporate restrictions on color. 

Moreover, the system takes into account the color proportion of the applied design 
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element when colorizing the motif pattern to ensure visual aesthetics. Specifically, the 

system first sorts the colors of the design element according to the color proportion 

from large to small and records them into a set 𝛰 = {(𝑐𝑗
′, 𝑐𝑟𝑗

′)|𝑗 ∈ [1, 𝑁𝑚]}, where 𝑐𝑗′ is 

the color value, 𝑐𝑟𝑗′ is its color proportion and 𝑁𝑚 is the number of colors. This set 𝛰 

represents the color information of the entire pattern, too. By setting the number of 

colors in the motif pattern the same as the number of colors in the extracted color palette 

𝛩′ = {(𝑐𝑘
′ , 𝑐𝑟𝑘

′)|𝑘 ∈ [1, 𝑁𝑚]} , the system replaces the color of the target image by 

colors in the palette one by one, which means replace 𝑐𝑗′ to 𝑐𝑘′ , to obtain a recolored 

motif pattern. 

 

6.4 Implementation Results and Discussion 

After inputting the color reference images and defining the required pattern category in 

the G-system, the outputs are vector-based digital patterns, including stripe, check, and 

motif patterns. Table 6-1 reports the overall performance of vector-based digital pattern 

generation. A motif pattern with an average size of 1714 × 1713𝑝𝑖𝑥 can be generated 

in around 0.7 seconds, and a stripe and a check pattern with 400 × 400𝑝𝑖𝑥  in size 

require about 8 and 6.5 seconds, respectively. Notably, the design generation was done 

on a standard PC with an Intel i7-6700k CPU with 16GB of memory without a GPU. It 

is believed that it will go faster with better hardware configuration. 
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Table 6-1 The average pattern size and computation time cost of the patterns generated 

by category 

 Stripe Check Motif 

Pattern size /pix 400×400 400×400 1714×1713 

Time cost /s 8.0 6.5 0.7 

Computer config: CPU Intel i7-6700k, Memory 16GB  

 

For design colorization, 12 images were collected from the Internet as references. 

Meanwhile, recommended Pantone codes are provided for design support. The 

proposed system adopts cosine similarity to recommend Pantone code for each desired 

color. However, finding the exact matching Pantone code of the desired color is still a 

difficult problem for computers and is often operated by humans in practice. Therefore, 

the proposed method provides three recommended Pantone codes for recommendation. 

Two examples of created color palettes and their recommended Pantone codes are 

presented in Figure 6-12. Next, the generation effect of each type of pattern will be 

discussed separately. 

 

Stripe pattern: Fashion digital pattern design rules are highly related to extensive 

knowledge of material properties and fabrication methods. Due to the limitations of 

production equipment and cost, prints and jacquards should not use too many colors 

(Wilson, 2001). Therefore, the number of stripe bands’ colors is defined as 𝑁𝑠 ∈ [2,10] 

and the output size is 400 × 400𝑝𝑖𝑥  for the subsequent experiments. Figure 6-13 
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shows some generated stripe patterns that follow different color reference images as 

well as different color numbers (in rows (a) and (b), whose color reference images are 

on the left). At the same time, the algorithm used can generate different colorways for 

patterns with the same geometric information (see Figure 6-13(c)). 

 

 

Figure 6-13 Stripe patterns generated by the proposed system. (a-b) Stripe patterns 

colorized following the same reference image, (c) stripe pattern in several 

colorways 

 

Check pattern: In this study, the check pattern is considered to be composed of two 

orthogonal stripes. Figure 6-14 presents parts of the generated outcomes, all with a size 

of 400 × 400𝑝𝑖𝑥 , the color palette of the two orthogonal stripes forming a check 

pattern is set to be derived from the same color reference image. In this way, 

uncoordinated color matching and even excessive color numbers can be avoided in the 
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check pattern. Examples are displayed in Figure 6-14. Row (a) and (b) show check 

patterns following two different color reference images, respectively, and row (c) 

presents several colorways of a check pattern with the same geometric information. 

 

 

Figure 6-14 Check patterns generated by the proposed system. (a-b) Check patterns 

colorized following the same reference image, (c) check pattern in different 

colorways 

 

Motif pattern: Through the previous chapters, a dataset with 684 vector-based design 

elements is built. New motif patterns are created by arranging the elements from the 

dataset following the parameterized layout rules, particularly straight repeat, repeat 

mirrored vertically and horizontally, a half-drop or tile repeat, and customized golden 

squares. Figure 6-15 presents some generated motif patterns by the proposed G-system. 
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Each column in (a) represents a set of motif patterns colorized following the same 

reference image, and (b) shows a generated motif pattern with several colorways. 

 

 

Figure 6-15 Motif patterns generated by the proposed system. (a) Motif patterns colorized 

following the same reference image, (b) generated motif patterns in several 

colorways 

 

To further demonstrated that the system can assist fashion digital patterns design, the 
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generated patterns are applied on some 3D models (see Figure 6-16). 

 

 

Figure 6-16 Generated digital patterns used in fashion products, including a T-shirt, an 

apron, a scarf, a hand cream packaging, and a pair of high-heel shoes 

 

6.5 System Evaluation by Questionnaire Survey 

6.5.1 Experimental evaluation and questionnaire design 

The proposed G-system is aimed for digital pattern design support. As outlined in the 

background introduction (section 6.1) that a digital pattern design support system in 
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line with the industry expectations should generate designs (i.e. the system outputs) 

conforming to basic human aesthetics and the outputs should be vector-based, easily to 

be re-used and re-edited and ready for production. To evaluate the proposed G-system, 

a questionnaire survey was conducted, in which targeted users with certain work/study 

experience in fashion industry were invited to evaluate the system, in terms of system 

output quality and system performance. Each subject participated in the evaluation 

individually. In the questionnaire survey, each subject was shown a short video 

explaining how the system operates. Next, subjects were shown sequentially system 

outputs − three groups of generated digital patterns including 13 stripe patterns, 10 

check patterns, and 28 motif patterns. Subjects were then asked to complete a survey to 

evaluate the system, and the questionnaire used for the survey study is given in 

Appendix 1. 

 

This questionnaire consists of two sections: section A evaluates the system outputs and 

performance and section B collects demographics of the participants.  In section A, 

subjects were asked to give subjective assessment on their agreements or disagreements 

on 11 statements, in which the first nine statements are used to evaluate whether the 

outcome stripe, check and motif patterns conform to basic human aesthetics and 

whether the outcomes have desired quality in design-related works and be ready for 

production and their degree of novelty. The remaining two statements are used to give 
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overall assessment regarding the system’s efficiency and convenience, and usefulness 

of supporting digital pattern design. All these 11 statements are evaluated in Likert scale 

of 1-5, “1= Strongly disagree” and “5= Strong agree". In addition, an open question is 

used to solicit participants’ suggestion(s) on the proposed system. Section B includes 5 

questions on demographics information of the participants, including gender, age, work 

experience, and locations and product categories of their companies.  

 

6.5.2 Survey results 

A total of 44 participants working/studying in the fashion-related industry were 

recruited by convenient sampling method, and the questionnaires were distributed 

electronically by email. At the end, 30 qualified questionnaires were collected, 

representing a response rate of 68.2%.  

 

Two out of the 30 participants are males and the remaining 28 are females. Among these 

participants, 83.3% of them have more than three years of working experience (see 

Figure 6-17(a)), and 80.0% of them are aged between 25-30 years old, and 10% each 

were in 30-35 years old group and 35-40 years old group (see Figure 6-17(b)). In 

addition, their companies are all based in Asia, and most of them work is in 

womenswear sectors, and some work in materials and textiles sectors of the fashion and 

textile supply chain. This implies that these results of the study represent the view of 
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the fashion and textile industry, because all participants have related work experience 

and specialized knowledge.  

 

 

Figure 6-17 (a) Distribution of work experience of participants; (b) distribution of age 

groups of participants 

 

Table 6-2 summarises the survey results in average score, standard deviation, and 

percentages in agreement, neural and disagreement. The results of the survey are very 

exciting. In terms of aesthetic values of the generated patterns, the average score is 4.5 

with a standard deviation of 0.7, indicating that the system can generate digital patterns, 

meeting aesthetic requestments of humans. Comparatively, the class of generated check 

patterns has the highest mean score and the largest percentage of agreement (96.7%), 

but there was one participant (representing 3.3%) disagreed that the generated check 

patterns are aesthetic pleasing. This is absent in the cases of stripe and motif patterns; 

even thought the average score of these two classes are lower than that of check patterns. 

Another aspect to assessment the quality of system outputs is that whether or not 
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generated patterns meet the general requirements for production, i.e. comparable and 

compatible with most commercial software. The average score is 4.4 with a standard 

deviation of 0.7, demonstrating that the outcomes meet the general requirements for 

production. Specifically, 90.0% of participants agreed or strongly agreed that the stripe, 

check, and motif patterns are in line with industry requirements, which are much larger 

than those who disagreed and had neutral opinion. Again, there is no disagreement on 

the system’s output readiness for production except one participant (3.3%) viewed the 

generated check patterns were not ready for production or incomparable to commercial 

software. An intelligent system should have the ability to create new and innovative 

designs. Therefore, the subjects were asked to rate their agreement or disagreement on 

the generated patterns are novel and compliance with industrial regulations on design 

creation. The average score for design novelty is lowest among the three assessment 

areas, namely 4.2 with a standard deviation of 1.0. Although the score is slightly lower 

compared with the above two aspects, majority of the participants still agreed that the 

generated patterns are novel, with 83.3% of participants agreed with the novelty of 

stripe and motif patterns, and 76.7% agreed with check patterns. 
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Table 6-2 Assessments of the G-system (5 means = ‘strongly agree’ whereas 1 means = ‘strongly disagree)  

 1 2 3 4 5 Average 
score 

Standard 
deviation 

Disagree 
(1-2) (%) 

Neutral   
(3) (%) 

Agree  
(4-5) (%) 

Generated Stripe patterns are in general with 
aesthetic values 0 0 4 11 15 4.4 0.7 0.0 13.3 86.7 

Generated Check patterns are in general with 
aesthetic values 0 1 0 11 18 4.5 0.7 3.3 0.0 96.7 

Generated Motif patterns are in general with 
aesthetic values 0 0 3 8 19 4.5 0.7 0.0 10.0 90.0 

Average across classes of aesthetic values 4.5 0.7    
Generated Stripe patterns meet the general 
requirements for production 0 0 3 10 17 4.5 0.7 0.0 10.0 90.0 

Generated Check patterns meet the general 
requirements for production 0 1 2 10 17 4.4 0.8 3.3 6.7 90.0 

Generated Motif patterns meet the general 
requirements for production 0 0 3 11 16 4.4 0.7 0.0 10.0 90.0 

Average across classes on meeting general requirements for production 4.4 0.7    
Generated Stripe patterns are novel 0 3 4 10 13 4.1 1.0 10.0 13.3 76.7 
Generated Check patterns are novel 0 1 4 9 16 4.3 0.8 3.3 13.3 83.3 
Generated Motif patterns are novel 2 1 2 11 14 4.1 1.1 10.0 6.7 83.3 
Average across classes in terms of design novelty  4.2 1.0    
The system is efficient and convenient to use. 0 0 2 13 15 4.4 0.6 0.0 6.7 93.3 
The system is useful to support digital pattern 
design. 0 1 0 9 20 4.6 0.7 3.3 0.0 96.7 
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Apart from the effectiveness and quality of the generated design outputs, the survey 

study also covered other system performance of the proposed G-system, including 

efficiency and user-friendiness as well as usefulness in supporting designs.  The results 

demonstrate the G-system is efficient and convenient to use, with an average score of 

4.4 and a standard deviation of 0.6. This is indeed a very high score, and 93.3% of the 

participants gave positive feedback.  In terms of the proposed system being useful for 

design support, the average score is 4.6, with a standard deviation of 0.7. It is especially 

promising that 97% of the participants highly agreed on this. These results offer 

compelling proof that the G-system can assist in the creation of digital pattern and has 

a wide variety of potential applications.  

 

A few qualitative feedbacks were received among the 30 participants. For example, 

some suggestions on interactively adding or removing design elements or manually 

swap the sequence of colorways, and improving the color consistency between the 

outcomes and the reference images. 

 

6.6 Chapter Summary 

In this chapter, a vector-based digital pattern generation intelligent system (G-system) 

has been developed for design support. The G-system can automatically handle stripe, 

check, and motif pattern generation. By adopting the standard design guidelines and the 
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learned design resources from CHAPTER 4 and CHAPTER 5, the generated digital 

patterns align with human aesthetics. Other than inputting design requirements and 

reference images, the proposed system does not require any additional action from the 

user. Particularly, the G-system first generates vector-based geometric information for 

each class of patterns. This phase includes four sub-phases: 1) parameterizing the 

classic repeat structures, 2) proposing a novel layout rule based on the golden ratio for 

motif patterns, 3) combing the vector-based design elements with the parameterized 

layout rules, and 4) generating geometric information for stripe and check patterns and 

repeating them according to sizes requirement. On the ground of the generated vector-

based geometric information of digital patterns, the G-system extracts color palettes 

from reference images and then colorizes the patterns following the extracted color 

palettes. Furthermore, the Pantone codes of the desired colors are recommended for 

production purpose. The outcomes of the proposed G-system are vector-based, which 

is different from the previous works and more in line with the fashion industry 

requirements. To visualize the application effect, this study simulated the generated 

digital patterns on some 3D models. A survey study with fashion practitioners shows 

that the generated results satisfy basic human aesthetics, assist design creation that are 

ready for production. 

 

This study is an extension and exploration of computer-aided design techniques for 



179 

 

vector-based digital pattern generation. Despite its exploratory nature, several questions 

still remain to be answered. First, the speed of generating stripe and check patterns still 

need to be accelerated. Secondly, the motif patterns currently generated can only use 

one design element, which causes the generated patterns are still not rich enough. These 

questions will be addressed in future work. 
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CHAPTER 7. Conclusions and Suggestions for Future 

Research 

This thesis works on establishing a REG framework consisting of three intelligent 

systems for digital pattern analysis and design support: R-system, E-system, and G-

system, a brief structure review of the REG framework is shown in Figure 7-1. It 

focuses on three research tasks: repeated pattern detection, design elements extraction 

and vectorization, and vector-based digital pattern generation. Particularly, the R-

system focuses on repeated pattern detection and E-system focuses on design element 

extraction and vectorization. These two systems are mainly used to analyze existing 

designs and from which to extract their useful design information. Moreover, the G-

system is proposed for supporting design work by automatically generating vector-

based digital patterns. To provide appropriate design support that conforms to the basic 

human aesthetic and meets the industry's requirements, the G-system leverages the 

design information extracted from the R-system and E-system. Specific conclusions, 

the limitation of this thesis, and the potential future directions are given in this chapter. 
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Figure 7-1 Brief structure review of the REG framework 

 

7.1 Conclusions 

The study aims to develop methods and systems to automatically analyze digital pattern 

images, and from which to support the creation of new digital patterns, conforming to 

human aesthetic and production requirements. A new framework consists of three 

intelligent systems have been proposed and developed in this study, according to eight 

defined research objectives. The key findings of this study can be concluded as follows: 

 

(1) For the sake of analyzing existing design examples and supporting design, this 

study has first analyzed the industrial practice and the state of the art methods 

for computer-aided digital pattern generation in CHAPTER 1. Next in 

CHAPTER 2, the related topics have been reviewed, including computer-aided 

digital pattern design in fashion industry, image processing and understanding 

techniques, an overview of convolutional neural network, as well as design 
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generation methods/systems. The findings from these review have addressed 

the defined research objectives (i) and (ii) accordingly. 

 

(2) R-system leverages CNN activations and repeated patterns' autocorrelation 

properties for efficient repeated pattern detection fulfilling objectives (iii) and 

(iv) is proposed in CHAPTER 4. Repeated pattern detection is a classic 

computer vision task that supports many downstream applications. Based on 

CNN activations reflecting the corresponding location information of repeated 

patterns within an unknown image, coarse repeated pattern size is predicted. 

Particularly, to process the image efficiently, the R-system leverages the 

boundary detection result to assist CNN activations selection. Next, the coarse 

size is optimized by a method leveraging template matching with a dynamic 

threshold. As a result, an image with a repeated pattern grid and a patch of the 

repeated pattern are obtained. To evaluate the proposed method, a dataset (RPD) 

has been built in this study with 841 design images, covering regular repeated 

pattern images and near-regular repeated pattern images. The proposed R-

system has been evaluated and compared to other state-of-the-art systems on 

this dataset and other public dataset. The experimental results have 

demonstrated that our work achieves a good balance between accuracy and 

efficiency on both regular and near-regular images. Specifically, the accuracy 
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of our method is 0.673, which is 20% higher than the baseline method and the 

time cost is only 1/9 of the baseline method. Our work also gets promising 

results on manufactured environmental images. Detail ablation study and 

comparative experiments have been conducted to demonstrate the effectiveness 

of each submodule in the proposed R-system. It has shown that the R-system is 

effective for image understanding and it simplifies subsequent tasks of image 

understanding, namely design element extraction. 

 

(3) E-system has been proposed in CHAPTER 5 to automatically extract and 

vectorize design elements from an unknown design image, fulfilling the defined 

research objectives (v) and (vi). In particular, an unsupervised segmentation 

method has been developed to extract design elements from digital pattern 

images. Unsupervised segmentation separates the foreground design elements 

and the image background by iteratively optimizing the parameters of the 

network and segmentation results in comparison to that from Graph-based 

Segmentation (GS). Moreover, a novel design element deconstruction method 

based on color quantization has been proposed for design element vectorization. 

Since vector-based design elements contain geometric and color parameters, by 

doing design element deconstruction based on color quantization, both the 

geometric and color information can be obtained simultaneously. After that, 
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meaningless vector paths will be removed. As a result, the vector-based core 

design elements in compact structures from an unknown image will be obtained. 

Comprehensive experiments were conducted to evaluate the proposed E-system. 

In terms of extraction of core design elements from design images, an 

experiment on a dataset of 114 digital design images, the average processing 

time cost is about 10 seconds, and its efficiency even outperforms humans. The 

success detection rate is 96%, which is higher than other state of the art systems. 

In terms of experiments for design element vectorization, the proposed method 

is proven efficient (with a processing time of 3 seconds on average), and the 

outputs are compact. The proposed system has outstanding application 

prospects. Furthermore, the proposed E-system has been applied to develop a 

design element dataset with 684 vector-based design elements. 

 

(4) G-system has been developed in CHAPTER 6 for generation of stripe, check, 

and motif vector-based digital patterns, fulfilling the defined research objectives 

(vii) and (viii). The proposed G-system takes advantage of the learned design 

information from the R-system and E-system, especially the vector-based 

design elements, color combinations, and layouts, and builds corresponding 

parametric models for the generation of the three classes of digital pattern, 

namely stripe, check, and motif patterns. An innovative coloring method has 
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been developed that representative colors are analyzed and extracted to create a 

‘color palette’ from a reference image and colors are reapply in various 

combinations to create different colorways/schemes of the new designs. 

Pantone standard color swatches are widely applied in the fashion industry for 

color communication. Instead of manually matching Pantone codes, the G-

system has designed an algorithm to automatically recommend best matched 

Pantone codes to support and ease the design process. To do so, a total of 1275 

Pantone colors with their RGB values are collected and recorded. By calculating 

the Euclidean distance between standard Pantone color and the color extracted 

from a reference images, three Pantone codes that are most similar to the 

extracted colors, namely the Pantones with the highest Cosine Similarity, are 

selected and recommended. The proposed G-system can automatically and 

efficiently generate vector-based stripe, check and motif patterns, as well as 

provide Pantone color information. Furthermore, the generated patterns have 

been applied on some 3D fashion products for demonstrative purpose. It shows 

that the proposed G-system can be applied in diverse applications, and is able 

to support both professional designers and general users without professional 

design training for create aesthetic pleasing digital patterns. A survey study has 

been conducted among a sample of 30 fashion experts to evaluate the aesthetic 

level of the generated results and the effectiveness of the design support system 
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(G-system), and the survey received show very positive results and feedback 

towards the proposed G-system. The G-system promotes the use of artificial 

intelligence for design generation that meets human aesthetics and eases the 

fashion product development. 

 

In summary, the three proposed intelligent systems formulate a new REG framework, 

which is effective and useful to understanding and mining useful knowledge from 

existing digital pattern images and reuses such information for automatic new digital 

pattern creation. The generated digital patterns are aesthetic pleasing, following the 

design rules adopted in the fashion industry, and ready for real production with diverse 

applications. This new framework makes contributions to both the academia and 

fashion industry in digitization and design support. 

 

7.2 Recommendations for Future Work 

Despite the achievements of this thesis, there are still certain limitations, and a number 

of areas for improvement are identified as follows. 

 

(1) In the R-system reported in CHAPTER 4, the principle of leveraging pre-trained 

CNN models to extract multi-level features and CNN activations of images to 

predict the repeated pattern sizes are explained. It is found that the amount of 
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selected CNN activations positively relates to the computation cost and the 

detection accuracy. In order to efficiently detect the repeated patterns from 

unknown images, the R-system only selects a few representative CNN 

activations based on the assumptions of input image characteristics (e.g. near 

regular repeat, no rotation or perspective effects). For other types of images, it 

is necessary to propose another voting algorithm to consider more CNN 

activations and improve the robustness and accuracy of repeated pattern 

detection. Another area that is worthy to further research is investigating the 

difference in feature extraction ability among different CNNs. With a better 

CNN activation voting method, more CNN filters could be extracted from 

deeper CNNs, it is attractive research on how to better balance detection 

accuracy and time consumption. 

 

(2)  The proposed design element extraction method in the E-system leverages an 

unsupervised segmentation method and several traditional computer vision 

techniques, which are still inadequate in treating complex patterns (see 

examples in Figure 5-14). Further improvement should be made by adding 

knowledge-based constraints in the CNN model to handle more complex images. 

In addition, Potrace (Selinger, 2003) has been used as our vectorization 

approach. Although Potrace is efficient, the level of detail should be further 
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improved. It is worth investigating new vectorization methods in the future, for 

example, vectorization by directly processing the segmentation masks. 

 

(3) In terms of the G-system, different mathematic or parametric models have been 

developed for different types of digital patterns. Particularly, the layout of 

design elements can be described mathematically and used to generate various 

digital patterns quickly. However, G-system is still limited in variations of the 

generated patterns. For example, only one design element was considered for 

motif pattern generation in the current system, and their repeat structures are not 

rich enough to cover the actual design requirements. Therefore, the system will 

be further researched to cover the generation of motif patterns with multiple 

design elements and/or more complex layout arrangements, such as polygon 

repeat structure. Moreover, a user-friendly interface will be designed to allow 

general users without professional design training to take part in the design 

process. 
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APPENDIX 1: Questionnaire Survey on Vector-based Digital 

Pattern Generation System (G-system) 

 

Confidentiality Statement 

Participation in this survey is voluntary. All data collected through this survey is kept 

strictly confidential. Respondent identities will not be revealed in any report or 

presentation of survey results. 

 

Section A: System evaluation 

Please rate your agreement to following statements in 5-point scale. 

(5 means = ‘strongly agree’ whereas 1 means = ‘strongly disagree’). 

1. I assessed the digital designs of stripe patterns in general with aesthetic values 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

2. The digital design of strip patterns can meet the general requirements for 
production. 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

3. I am pleased/satisfied with the digital designs of stripe patterns, which are 
comparable to the designs created by professional designers, in terms of 
novelty of output designs and compliance of industrial regulations on design 
creation. 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

4. I assessed the digital designs of check patterns in general with aesthetic values 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 
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5. The digital design of check patterns can meet the general requirements for 
production. 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

6. I am pleased/satisfied with the digital designs of check patterns, which are 
comparable to the designs created by professional designers, in terms of 
novelty of output designs and compliance of industrial regulations on design 
creation. 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

7. I assessed the digital designs of motif patterns in general with aesthetic values 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

8. The digital design of motif patterns can meet the general requirements for 
production. 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

9. I am pleased/satisfied with the digital designs of motif patterns, which are 
comparable to the designs created by professional designers, in terms of 
novelty of output designs and compliance of industrial regulations on design 
creation. 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

10. The system is efficient and convenient to use. 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

11. The system is useful to support digital pattern design. 

1 Strongly disagree 2 Disagree 3 Neutral 4 Agree 5 Strongly agree 

12. What are your suggestion(s) to improve the system? 
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Section B: Participants Information 

13. Please select what best describes your experience in the fashion industry. 

A. I am a college student of fashion and related program 

B. I have less than 3 years of experience in fashion and related industry 

C. I have more than 3 years of experience in fashion and related industry 

 

14. What gender do you identify as? 

A. Male 

B. Female 

C. Prefer not to say 

 

15. What is your age? 

A. 20 - 25 years old 

B. 25 - 30 years old 

C. 35 - 40 years old 

D. 40+ 

E. Prefer not to say 

 

16. Where is your company located? 

A. North America/Central America 

B. South America 
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C. Europe 

D. Africa 

E. Asia 

F. Australia 

G. Caribbean Islands 

H. Pacific Islands 

I. Other: ______ 

J. Prefer not to say 

 

17. What are the product categories of your company?  (select all applicable answers) 

A. Accessories 

B. Active 

C. Colour  

D. Denim  

E. Footwear  

F. Intimates 

G. Jewellery  

H. Kidswear  

I. Knitwear 

J. Materials & Textiles 

K. Menswear 

L. Prints & Graphics 

M. Swimwear 

N. Womenswear and Youth 

O. Other: ______ 

P. Prefer not to say  
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