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Abstract

Error correction codes play an important role in protecting the integrity and accuracy

of data transmitted in digital communication systems and data kept in storage systems.

Besides substitution errors caused by noise, insertion and deletion errors may occur.

Insertion and deletion errors are also categorized as synchronization errors because

they affect the synchronization of a communication channel. Some recent studies have

focused on coding against insertions and deletions due to some specific practical com-

munication and storage applications. Unlike error correction codes for substitution

errors, codes for insertion and deletion errors are limited. The thesis is therefore de-

voted to the study of error correction codes for channels impaired by insertion, deletion

and substitution errors.

We first propose a new class of systematic comma-free code which can recover

synchronization efficiently after insertion, deletion and substitution errors occur. The

proposed code provides more choices in designing synchronization codes, and includes

the classical F code as a special case. Then, we investigate codes that can correct inser-

tion, deletion and substitution errors. We optimize the inner code of the classic Davey

MacKay watermark code by proposing a soft-decision decoding based on a new met-

ric and by enhancing the inner sparsified codebook based on better distance property

and lowest-density property. We further propose a concatenated code composed of an

RS outer code and a marker inner code. The proposed code not only is effective in

correcting multiple insertion, deletion and substitution errors, but possesses a lower

complexity decoding algorithm.
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Finally, we propose codes for practical systems. We propose a probabilistic channel

model with correlated insertion and deletion errors, in addition to substitution errors.

The channel model captures the data dependence adapted to applications such as the

write channel in bit-patterned media recording systems. We also investigate the per-

formance of a concatenated code, consisting of an outer low-density parity-check code

and an inner marker code, over this channel. DNA-based data storage systems have

become a hot research topic recently. Here, we propose a systematic error correction

code that can combat insertion, deletion and substitution errors. By combining this

code with a proposed modulation scheme, we construct GC-balanced DNA sequences

with error correction capability.

Throughout our investigations, computer simulations are used to evaluate the per-

formance of the proposed error correction codes. Moreover, theoretical analyses are

given whenever appropriate.
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Chapter 1

Introduction

We summarize the theme and content of the thesis in this introductory chapter. Specif-

ically, we describe the importance and necessity of channel coding in a communica-

tion system in Sect. 1.1, followed by the aspect of synchronization and error types in

Sect. 1.2 and motivation in Sect. 1.3. Finally, we present the organization of the thesis

in Sect. 1.4.

1.1 Channel Coding

Artificial satellites have been transmitting data back to earth from space for decades.

How can data be transmitted reliably across millions of miles without being over-

whelmed by noise? This is achieved by transmitting data across noisy channels with

error correction codes.

We live in a data-driven modern world, with massive data being generated, trans-

mitted, stored and processed at an amazing speed. Error free communication is possi-

ble in the ideal perfect communication channels without noise. However, noise always

exists and introduces errors in practice. In a digital communication system, infor-

mation may be corrupted and received incorrectly because of noisy channel. Several

techniques are used to reduce errors and to minimize the effects of noise, such as re-

1
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Figure 1.1: Schematic of a simplified communication system.

ducing the transmission speed, increasing the signal power, adopting automatic repeat

request (ARQ). Among all techniques for protecting information, the most frequently

used one is channel coding.

The block diagram of a simplified communication system is illustrated in Fig. 1.1.

The communication channel is used to transmit information from the transmitter to the

receiver via a physical or broadcast medium. Channel coding ensures information is

transmitted efficiently and reliably to the receiver. The basic idea of channel coding is

that the receiver and transmitter agree on an error correction coding scheme, in which

extra bits (redundancy) are added to the original message. Errors that occurred during

transmission can be detected and corrected by the receiver based on the redundant bits.

In 1948, Claude Shannon defines the notion of channel capacity, an upper bound on

the rate that information can be transmitted reliably over a communication channel [2],

i.e.,

C = B log2(1 +
S
N

) (1.1)

where C denotes the channel capacity, B represents the channel bandwidth, and S/N

denotes the received signal-to-noise ratio. The significance of (1.1) is that a reliable

transmission over a noisy channel can be achieved with arbitrary small error proba-

bility if the information rate is below the channel capacity C. Good error correction

codes usually correct the maximum number of errors while maintaining the minimum
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redundancy.

Many error correction codes have been proposed since the pioneering paper by

Shannon in 1948, which established the basis of classical coding theory. In late 1940s,

Richard W. Hamming constructed the single error correction Hamming block code

in [3] and Golay introduced another block error correction code in [4]. The Reed

Muller code [5] proposed in 1954 was relatively easy to decode and was used in the

field of Mars exploration in the 1970s. Bose, Ray-Chaudhuri and Hocquenghem pro-

posed the BCH code in [6]. The convolutional code was created by Peter Eliasin in

1955 [7]. In 1960, Reed and Solomon proposed the Reed-Solomon code, which could

correct multiple errors with good error performance [8]. The RS code can also correct

burst errors and have been widely used in space communication, wireless communi-

cations and CD-ROMS. In 1966, Forney proposed the idea of serial concatenation of

codewords [9], where long codewords with improved error correction capability can

be constructed by concatenating two short codes. In 1993, turbo code was proposed

in [10] [11], which made capacity-approaching codes possible. Low-density parity-

check (LDPC) codes were first introduced by Gallager in his doctoral dissertation [12]

and were rediscovered by Mackay and Neal in [13]. It has been proved that LDPC

codes have theoretical limits approaching the channel capacity. Subsequently, LDPC

codes have been widely applied and studied in the past two decades.

1.2 Aspect of Synchronization

Many factors affect the integrity and accuracy of information transmission and recep-

tion. In addition to common substitution errors, another influencing factor is insertion

and deletion errors. At this stage, we consider three types of errors throughout this the-

sis, namely, insertion, deletion and substitution errors as shown in Fig. 1.2. We define

three types of errors as follows and assume a data sequence proceeding from left to

right.
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Figure 1.2: Three types of errors in a communication system.

• An insertion is defined as the detection of an un-transmitted bit at the receiver.

All the subsequent bits shift one position to the right in the sequence.

• A deletion is defined a transmitted bit not detected at the receiver. All the subse-

quent bits after the un-detected bit shift one position to the left in the sequence.

• A substitution is defined as the replacement of a transmitted bit with a different

one and the length of the sequence remains unchanged.

Synchronization is an important and integral part of a digital communication sys-

tem. Synchronization errors (i.e., insertion and deletion) occur when the receiver and

transmitter are not synchronized perfectly due to uncertainties in timing or time noise.

As a result, random symbols may be inserted, or transmitted symbols may be deleted in

the received sequence. In general, the length of the transmitted sequence is a constant

parameter while the length of the received sequence is a random variable. The length of

the received sequence is either lengthened or shortened depending on the predominant

insertion or deletion errors. An equal number of insertion and deletion errors result in

the received sequence having the same length as the transmitted sequence. This case

is equivalent to having a burst of substitution errors and the boundary of the codeword

is not affected.

Synchronization errors bring difficulties that other types of errors would not en-
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counter. Even a single insertion or deletion causes the loss of synchronization in the

subsequent sequence until the receiver gets resynchronized, which leads to a burst of

substitution errors. In addition, the positions of synchronization errors are unknown to

both the receiver and transmitter.

Long messages are usually divided into multiple blocks before they transmit through

the channel and each block consists of several codewords. In general, there are three

levels of synchronization. At the most basic level, the receiver should have frequency

or phase synchronization with the carrier signal. The next level is codeword synchro-

nization, where the interval of each codeword can be accurately aligned with the in-

terval in the carrier. A higher level is block synchronization and it is required by most

communication systems.

Accordingly, two main synchronization problems on channels with insertion and

deletion need to be solved.

1. The decoder cannot recover synchronization because the boundaries of a code-

word or a block cannot be determined due to potential insertion or deletion errors.

2. The original message cannot be decoded because insertion, deletion and substi-

tution errors introduced by the channel cannot be corrected.

1.3 Motivation

Modern communication and storage systems increasingly rely on the synchronization

issue. Some recent studies have focused on coding against synchronization errors due

to many recent practical applications, such as bit-patterned media recording (BPMR)

systems [14], image watermarking [15] [16], video digital watermarking [17], and de-

oxyribonucleic acid (DNA) based data storage [18–24]. Synchronization errors occur

not only in physical channels, but also in data storage systems. In the case of data

storage systems, the write operation can be regarded as a transmitter while the read

operation can be regarded as a receiver. For example, systems that store data as DNA
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nucleotides have been realized recently [18–24]. However, nucleotides used for stor-

ing data may be added, removed or substituted during the synthesis (encoding) and

sequencing (decoding) processes.

On channels with feedback, the decoder can just request the transmitter to resend

the message when synchronization is lost. However, on channels without feedback,

the system is required to regain synchronization with the use of error correction codes.

Therefore, coding for channels corrupted by insertion, deletion and substitution errors

is necessary in communication and data storage systems.

The error correction codes mentioned in Sect. 1.1 are used to correct substitution

errors, in which a transmitted symbol is received as a different one. The boundaries of

each codeword are supposed to be known by the decoder and the synchronization issue

does not need to be considered. Thus, they cannot be applied directly over channels

with synchronization errors, which result in a gain or loss of transmitted data. On the

other hand, there has been insufficient understanding of insertion and deletion error

correction codes.

Motivated by the lack of efficient synchronization error correction coding schemes

and its demand on a number of practical applications, this thesis aims to advance chan-

nel code designs for channels impaired by insertion, deletion and substitution errors.

1.4 Thesis Organization

In Chapter 2, a literature review of coding techniques to combat synchronization errors

is presented. We first review three classical channel models impaired by insertion,

deletion and substitution errors. Then, we review two categories of codes for such

channels. One category of codes aims to recover synchronization but possesses no

error correction capability while the other aims to correct synchronization errors and to

recover the transmitted messages. In each of the Chapter 3 to Chapter 7, we begin with

a brief introduction and an overview of the related works, followed by our contribution
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and results.

In Chapter 3, we start our investigations. We focus on a family of comma-free

codes, which can recover synchronization efficiently after insertion/deletion/substitution

errors occur. We propose a type of generalized systematic comma-free code for chan-

nels impaired by insertion, deletion and substitution errors. We also derive the prob-

ability of false synchronization caused by a single substitution, insertion or deletion.

In addition, we compare the theoretical and simulation results under different channel

parameters, and analyze the factors affecting false synchronization in each case.

In Chapter 4, we study the classical Davey Mackay watermark code that can correct

multiple insertion, deletion and substitution errors. We optimize the inner sparsified

codebook based on both distance property and lowest density property. We also pro-

pose a hard-decision decoding based on Hamming distance and a soft-decision decod-

ing based on a new metric for the inner symbol-level watermark decoder. Simulation

results verify that the system with the improved codebook design provides better per-

formance in terms of symbol error rate over channel with random insertion, deletion

and substitution errors.

In Chapter 5, we propose an efficient concatenated RS-marker code with designed

markers. The designed markers allow the inner decoder to maintain synchronization

effectively at codeword boundaries while the outer RS code provides the error cor-

rection capability. Simulation results show that the proposed concatenated code is

effective in correcting multiple insertion, deletion and substitution errors with the use

of a low complexity and simple decoding algorithm.

Chapters 4 and 5 focus on error correction codes for channels with random in-

sertion, deletion and substitution errors. In some practical scenarios, insertions and

deletions are correlated. In Chapter 6, we propose a probabilistic channel model with

correlated insertion and deletion (CID) errors, in addition to substitution errors. Fur-

thermore, we investigate the performance of a concatenated LDPC-marker code over

this channel. The concatenated code consists of an inner marker code used to maintain
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synchronization and an outer low-density parity-check (LDPC) code to provide error

correction capability. The forward-backward marker decoding algorithm is elaborated

based on a two-dimensional state transition diagram. Simulation results show that the

proposed concatenated code is effective in combating CID channel with substitution

errors.

Chapter 7 constructs a GC-balanced DNA sequence with error correction capability

for DNA-based storage systems. We propose a systematic single insertion/deletion/sub-

stitution error correction code and apply it to design a GC-balanced scheme for con-

structing DNA sequences. The proposed GC-balanced DNA sequence not only con-

tains exactly 50% GC content, but also can correct insertion, deletion and mutation

of nucleotide bases. Simulation results show that the proposed GC-balanced DNA

sequences can correct base errors adequately.

Finally, the thesis concludes in chapter 8, where major contributions are summa-

rized, and future work of the research is presented.



Chapter 2

Literature Review

2.1 Introduction

A good error detection and correction system requires two components: a precise defi-

nition of the communication channel with error characteristics and an analysis of prop-

erties of codes that permit error detection or correction for channels. In this chapter,

we review literature related to error correction codes for channels with insertion, dele-

tion and substitution errors to provide the necessary background for the rest of the

thesis. Specifically, we start with three classical channel models impaired by random

insertion, deletion and substitution in Sect. 2.2. Then we review literature related to

synchronization recovery codes including comma-free codes and two classical sys-

tematic comma-free codes, Gilbert code and F code in Sect. 2.3. Finally, we discuss

different types of synchronization error correction codes that are commonly used in

Sect. 2.4.

9
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2.2 Channel Models with Random Insertion, Deletion

and Substitution Errors

A reasonable communication channel model with characteristics of insertion, deletion

and substitution errors is compulsory. We review three classical channel models with

random errors in this section.

2.2.1 Gallagar Channel

In [25], Gallagar has proposed a binary channel where each transmitted bit through the

channel experiences one of the four scenarios: each bit is either received correctly with

probability pc, deleted with probability pd, replaced by two uniformly distributed bits

(insertion error) with probability pi, or substituted with probability ps. The relationship

between these parameters is given by pc = 1− pi− pd − ps. It is noted that the Gallagar

channel does not allow insertion and deletion occur together for a transmitted bit.

2.2.2 Zigangirov Channel

Zigangirov considers a channel without substitution errors and any number of bits can

be deleted or inserted during the transmission. The probability of no insertion errors is

q1 and the number of i insertions has a probability of q1 pi
1. Thus

∞∑
i=0

q1 pi
1 = q1 + q1 p1 +

q1 p2
1 + · · · = 1 because the sum of the probabilities of all possible events is equal to

one. Since
∞∑

i=0
q1 pi

1 = q1/(1 − p1) = 1, p1 = 1 − q1 represents the error probability that

at least one bit is inserted. Denoting q2 as the probability that a transmitted bit is not

deleted, then p2 = 1 − q2 represents the probability that the transmitted bit is deleted.

2.2.3 BSID Channel

The channel model with random independent insertion, deletion and substitution errors

proposed by Davey and MacKay [26] is depicted in Fig. 2.1 and the flow chart of this
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Figure 2.1: BSID channel model.

channel is shown in Fig. 2.2. For the binary case, this channel is also referred to as

binary substitution/insertion/deletion (BSID) channel [27].

The BSID channel can be mathematically described by three parameters: pd, pi

and ps, representing a deletion error rate, an insertion error rate and a substitution error

rate, respectively. It can be regarded as a binary symmetric channel (BSC) with syn-

chronization errors. At time i, a transmitted bit ti enters the channel and experiences

(a) a random bit is inserted before ti with probability pi; or (b) ti is deleted with prob-

ability pd; or (c) ti is transmitted with probability pt = 1 − pi − pd. In addition, the

transmitted bit may suffer from a substitution error with probability ps. Considering

a state i, it returns to the state i when an insertion occurs and moves to the next state

i + 1 only when the current bit is either deleted or transmitted. In this channel, each

transmitted bit produces a sequence of received bits with length varying between 0 and

I + 1; a length of 0 corresponds to the deletion of the current bit and a length of I + 1

corresponds to a maximum of I consecutive insertions followed by a transmission.

Note that the BSID channel does not restrict the maximum number of consecutive

insertions for each transmitted bit. After an insertion error has occurred, the current

bit and hence the current transmission state will be considered again. The “overall”

probability of insertion errors for a transmitted bit is p′i = pi + p2
i + p3

i + · · · =
pi

1−pi
,

and p′i ≈ pi is valid for a small value of pi. The next bit is considered only when a

deletion error or transmission occurs. The probability of the current transmitted bit

being substituted is p′s = (1 − pi − pd) × ps. Similar to p′i , p′s ≈ ps when pi and pd are
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Figure 2.2: BSID channel with insertion error probability pi, deletion error probability
pd and substitution error probability ps. r1,r2,r3,r4 are random generated numbers and
n is the total length of the transmitted sequence.

values much less than 1. The operation repeats until all bits are sent.

2.3 Coding for Recovering Synchronization after In-

sertion/Deletion/Substitution Errors Occur

Extensive research has been done in the field of insertion/deletion/substitution error

detection and correction codes and a survey is provided in [28]. In general, there are

two categories of codes. One is a set of synchronization recovery codes. The other

category consists of codes that can correct insertion/deletion/substitution errors.

We summarize codes that can recover synchronization after insertion, deletion and

substitution errors occur in this section. The significance of this category of codes is

that they can determine the codeword boundaries efficiently and recover synchroniza-

tion after insertion/deletion/substitution errors. However, they cannot correct errors or

can only correct them with limited capability by combining with other error correction

codes. Codewords corrupted by insertions, deletions or substitutions in this category

are usually discarded.
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2.3.1 Synchronization Code

Synchronization codes are constructed in such a way that the tail sequence of each

codeword forms the separation between codewords. A formal definition has been given

in [29] [30] and is shown below.

Definition 1 A finite code is called synchronizable if, and only if, there exists an integer

M such that the knowledge of the last M letters of any message suffices to determine a

separation of codewords.

In [29], a technique for constructing synchronization codes containing the maxi-

mum number of codewords is presented. The codes can detect errors after receiving

several codewords. Other codes that are designed to recover synchronization after

errors occur include prefix-synchronized codes [31], codes with bounded synchroniza-

tion delay [32], synchronization with timing codes [33], and synchronization codes

with the designed suffix construction [34]. More literatures on synchronization codes

and their applications can be found in [35–38].

2.3.2 Comma-free Code

Stricter restrictions imposed on synchronization codes result in comma-free codes

(CFC). A comparison between codes that utilize a comma and comma-free codes

is presented in [39], showing that comma-free codes are more efficient in maintain-

ing synchronization in terms of redundancy. Comma-free codes were first proposed

in [40]. They form a subset of synchronization codes and need to fulfill the additional

condition that the overlap between two consecutive codewords does not form another

codeword. Constructions of such codes have been discussed by Gilbert [41], Golomb

et al. [40] [42] [43], Jiggs [44] and Eastman [30].

Definition 2 A comma-free code (CFC) is a set of codewords of length n over an

alphabet such that given any two codewords u = u1u2 · · · un and v = v1v2 · · · vn be-
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longing to this set, the n letter concatenation w = uk · · · unv1 · · · vk−1 (k = 2, 3, . . . , n)

cannot construct a codeword.

Examples of comma-free codes with a codeword length of 5 are {01000, 01100,

01010, 01110, 01011, 01111} and a codeword length of 7 are {0101000, 0101100,

0101110, 0101111, 0100010, 0110010, 0111010, 0111110, 0100011, 0110011, 0111011,

0111111, 0100000, 0110000, 0111000, 0111100, 0111110, 0111111}. From a mathe-

matical point of view, the upper bound of the maximal number of codewords in a CFC

set, given a codeword length n and an alphabet size q, has been derived in [40] [44]

and is given by

Wn(q) ≤
1
n

∑
d|n

φ(d)qn/d, (2.1)

where the summation is extended over all divisors d of n, and φ(d) is the Mobius

function defined as

φ(d) =



1 if d = 1,

0 if d has any square factor,

(−1)r if d = p1, p2, · · · , pr, where

p1, p2, · · · , pr are distinct primes.

(2.2)

Following CFC, Golomb et al. first show how to construct the maximal cardinality

of CFC for codeword lengths of 3, 5, 7 and 9 in [40]. They further prove that the

construction can be extended to codeword length of 11, 13 and 15. In [30], Eastman

has provided an approach to construct a CFC with the maximum codewords for any

odd codeword length over any alphabet size. They allow the receiver to re-establish

synchronization after an insertion or deletion error with a delay of at most two blocks.

In [45], a method to construct a CFC with the maximum number of codewords and a

specific procedure to construct CFC with variable lengths have been presented. In [46],

a subclass of comma-free codes with a fixed length, called path invariant comma-free
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codes, has been constructed. Even though such codes are relatively easy to encode and

decode, they are not very efficient. The prefixed comma-free code, where a comma is

inserted within every codeword, has been proposed [31].

2.3.3 Systematic Comma-free Code

The aforementioned codes do not provide specific positions for transmitting the in-

formation bits. A systematic comma-free code is a subclass of comma-free codes in

which some fixed locations are used to maintain synchronization and the remaining lo-

cations are used to carry information. The systematic fixed-length block comma-free

codes are investigated in [47]. An effective method to construct a systematic comma-

free code is to fix the first few bits of a codeword to a sequence of bit 1 or bit 0. The

fixed sequence is usually referred to as the primer drive and it appears at the beginning

of each codeword. Two classical systematic CFCs are given in the following.

Gilbert Code

The primer drive of a Gilbert code consists of s bit zeros (“0”s) and is placed as a

prefix within each codeword. Each subsequent sequence of s bits begins with bit one

(“1”) and the last bit is also bit one (“1”). Other positions are reserved to carry infor-

mation. Gilbert code ensures that the primer drive does not appear in the body of each

codeword. For example, Gilbert code with parameters n = 16 and s = 4 encodes the in-

formation sequence “10110110” into the codeword “0000110111011101”, where the

bold bits represent the fixed bits used to maintain synchronization. Obviously, even if

the information bits are all zeros, the primer drive containing 4 zeros will never appear

in the body of a Gilbert codeword. It is required that no primer drive can appear in the

body of a Gilbert codeword and thus, the efficiency and code rate is relatively low due

to this relatively strong condition.
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F Code

A more efficient systematic comma-free code called “F code” is introduced in [47]. F

code allows the primer drive to appear in the body of the codeword, but it ensures that

no codeword is formed between the concatenated codewords.

We denote n as the codeword length and r as the smallest integer larger than or

equal to
√

2(n − 1). We also denote s as the smallest integer larger than or equal to r
2 ,

and t = r− s. An F code of length n has 0s fixed in the positions 1, 2, . . . , s and 1s fixed

in the positions n, n − s, n − 2s, . . . , n − (t − 1)s while all other positions are arbitrary

and can be used to transmit information. For example, when n = 15, the information

“101101100” is encoded into an F code “000101101111001” where the digits in bold

represent those fixed bits used to maintain synchronization.

The F code proposed by Clague is similar to the Gilbert code, but the condition for

maintaining synchronization is relatively weak. The F code is more efficient in terms

of carrying information compared with the Gilbert code because some fixed positions

of a Gilbert code become arbitrary bits in an F code of the same length. The difference

becomes more obvious as the codeword length increases. In fact, it has been proved

that the F code is the most efficient systematic CFC that uses fixed positions to maintain

synchronization [47].

2.3.4 Synchronization Code with Limited Error Correction Capa-

bility

The next logical step after developing synchronization codes and comma-free codes is

to incorporate error correction capability into these codes. A family of codes that can

correct at most a single substitution or synchronization error in every three consecutive

codewords are constructed in [48]. By combining the comma-free code with the cyclic

error correction code, a synchronization code with substitution error correction capa-

bility is constructed in [49]. Moreover, by adding a modification vector to the cyclic
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error correction code, a comma-free code with error correction capability is proposed

in [50].

2.4 Coding for Correcting Insertion/Deletion/Substitution

Errors

We briefly summarize codes that are capable of correcting insertion/deletion/substitution

errors in this section. The significance of such codes is that they can not only regain

synchronization but also correct errors in the corrupted codeword.

2.4.1 Marker Codes

An approach to detecting and correcting synchronization errors is to insert periodic

“markers” between codewords. In [51], a substring “001” is inserted into a burst error

correction code at regular intervals to detect and correct a single insertion or deletion

error. The markers are used to locate the interval where a synchronization error has

occurred. A single bit is deleted or inserted within the interval to recover the codeword

length and the resulting burst of substitution errors are corrected by the outer burst error

correction code. Moreover, more synchronization errors can be corrected by using

longer markers. Marker codes are also used to correct synchronization errors over

wireless infrared channels [52]. Other codes using markers are discussed in Sect. 2.4.3.

2.4.2 Algebraic Block Codes

In [53], Varshamov and Tenegolts construct a class of binary code called VT code,

which is capable of correcting one asymmetric substitution error, i.e., the substitution

error probability of bit zero is higher than that of bit one, or vice versa over the Z-

channel. Moreover, VT code is a class of code that can correct a single insertion,

deletion or substitution error. We assume n and a are both positive integers satisfying
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0 ≤ a ≤ n. The VT (n, a) code contains all binary codewords of length n satisfying

VT (n, a) = {(c1, c2, · · · , cn) ∈ {0, 1}n :
n∑

i=1

i · ci ≡ a mod (n + 1)}. (2.3)

Levenshtein has extended VT (n, a) to the asymptotically optimal single error cor-

rection Levenshtein code L(n, a,U) [54]. Levenshtein has shown that codes with length

n satisfying

L(n, a,U) = {(c1, c2, · · · , cn) ∈ {0, 1}n :
n∑

i=1

i · ci ≡ a mod U, U ≥ 2n}, (2.4)

can correct a single insertion, deletion or substitution error for any U ≥ 2n and 0 ≤

a ≤ U − 1. In (2.4), c = (c1, c2, · · · , cn) is a Levenshtein codeword, n is the codeword

length and a is the integer corresponding to the code partition. Levenshtein has also

shown that the number of codewords satisfying (2.3) is asymptotically 2n

n . Levenshtein

also demonstrated that the code has a minimum Hamming distance of at least 3 and is

capable of correcting a single synchronization or substitution error per codeword.

In [55], Tenengolts has proposed a family of codes that can correct a deletion or

two consecutive substitution errors given the boundaries of each codeword. He has ex-

tended his work to nonbinary codes that can correct a single insertion or deletion over a

nonbinary alphabet in [56]. In [57], Hollman has derived the relationship between Lev-

enshtein distance metric [54] and insertion/deletion error correction capability. Bours

has proposed a code that can correct one deletion or two consecutive deletions, and has

derived the bounds for codes that can correct insertions and deletions in [58].

Algebraic block codes with single error correction are surveyed in [59]. Single

error correction codes, such as VT codes and Levenshtein codes cannot be generalized

to correct multiple synchronization errors in a simple way. In [60], a code that can

correct up to five synchronization errors has been constructed by extending the VT

code. However, the code rate is extremely low and no explicit decoding algorithm is
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provided.

2.4.3 Concatenated Codes

Concatenated codes use an inner code to maintain synchronization and an outer code to

provide error correction capability. In [61], a concatenation of a Reed-Solomon code

and a designed code using a brute force approach is used to achieve exponential error

probability in a channel with random insertion and deletion errors. A sub-optimal code

concatenating an LDPC code, a marker code and a Varshamov-Tenengolts (VT) code

is designed in [62] to correct multiple deletion errors. The code achieves a bit error rate

below 10−4 for channels with random deletion errors and the code rate is 0.21. Davey-

Mackay (DM) watermark code is able to correct multiple substitutions, deletions and

insertions based on a Hidden Markov Model (HMM) [26]. Based on the DM water-

mark code, a similar concatenated LDPC code with markers is shown to outperform

the watermark code at low synchronization error rates [63]. In [64], the performance of

the DM watermark code is further improved by using a slide decoding for a modified

LDPC parity check matrix. In [65], an adaptive synchronization marker code based on

the neighborhood of codewords is proposed to improve the synchronization capability

of the original DM watermark code. In [66], an error correction method using fixed

symbols at some bit positions between the marker codes has been proposed to enhance

the synchronization and decoding performance of the watermark code.

2.4.4 Davey MacKay (DM) Watermark Code

The Davey Mackay (DM) watermark code [26] can correct multiple insertion, deletion

and substitution errors over channels with random error rates. Many error correction

codes with good performance are based on the DM construction. The structure of

DM construction is shown in Fig. 2.3. It uses an LDPC code as the outer code and

a predefined known watermark as the inner code. In this scheme, an LDPC-coded
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Figure 2.3: Structure of DM Construction.

sequence is mapped to sparse (low-density) sequences which are modulo-2 added to a

predefined known watermark sequence. The watermark decoder compares the received

sequence with the known watermark sequence to recover synchronization and returns

symbol-by-symbol log-likelihood ratios (LLRs) to initialize the outer LDPC decoder.

The outer LDPC decoder subsequently corrects the remaining errors from the inner

watermark decoder.

The information sequence m = {m0,m1, . . . ,mKL−1} of length KL q-ary symbols is

first encoded into a sequence d = {d0, d1, . . . , dNL−1} with a length of NL q-ary symbols

using an outer q-ary (NL,KL) LDPC code defined over Galois Field GF(q), where

q = 2k. Then, each q-ary symbol di of d is transformed into a sparse binary sequence

si = {sn×i, sn×i+1, . . . , sn×(i+1)−1} of length n, where i = 0, 1, . . . ,NL − 1, using a non-

linear low-weight binary code for some n > k. The mapping rule is to select q = 2k

lowest density (Hamming weight) binary vectors of length n. Thus, the sequence d

is converted to a sparse sequence s = {s0, s1, . . . , sN−1} of length N, where N = nNL.

The transmitted sequence t = {t0, t1, . . . , tN−1} of length N is then generated by adding

modulo-2 the sparse sequence s to a binary watermark sequence w with the same

length and is prepared for transmission through the channel. Besides, the watermark

sequence is known to both the encoder and decoder. The rate of the concatenated code

R is k·KL
n·NL

. The specific encoding of the concatenated code is shown in Fig. 2.4.

A distribution converter is a code that transforms sequences of one form to another
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Figure 2.4: Encoding procedure of concatenated code in DM construction. Each sym-
bol di is represented by the addition of watermark sequence and sparsified sequence.

[67]. A sparsified distribution converter (sparsifier) with parameters k and n maps every

k bits to one of the 2k sparse sequences of length n from a total of 2n sequences. The

sparse code causes minimal changes to the watermark sequence to ensure the decoder

can track synchronization. When the sparsified sequence s is added modulo 2 to the

watermark sequence, the 1s in s will flip the corresponding watermark bit. Because

the percentage of 1s in the sparse code is limited, the output of the channel is mostly

likely to be the watermark w, and the changes caused by the sparse code are treated

as substitution errors. Thus, a sparse code increases the synchronization probability of

the decoder with the watermark sequence because a large bias will exist between the

received sequence and the known watermark sequence when the inner decoder is not

synchronized.

The transmission of the modified watermark sequence through the BSID channel

can be represented as a trellis. The synchronization drift state xi at the ith position

is defined as the difference between the number of insertions and deletions that have

occurred from the start transmitted bit t1 until bit ti is ready to be transmitted. The

noisy received sequence r is decoded by operating an optimal symbol-level forward-

backward (FB) algorithm on the trellis [68]. Symbol-level decoder tracks each symbol

at a time by considering the codeword set. The FB algorithm is applied at the bound-

aries of each symbol and the aim is to output the likelihood of each possible transmit-
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ted symbol P(r|di) with knowledge of the sparse bias level, channel parameters and the

known watermark sequence based on Hidden Markov Model (HMM). Every symbol

and the corresponding boundaries are identified by comparing the received sequence

with the predefined watermark sequence. The likelihood of each possible transmitted

symbol P(r|di) is given by

P(r|di) =
∑

xn×i,xn×(i+1)

F(n× i, xn×i) ·P(rn×(i+1)+xn×(i+1)−1
n×i+xn×i

, xn×(i+1)|xn×i, di) ·B(n×(i+1), xn×(i+1)),

(2.5)

The symbol-level forward quantity F(n × i, xn×i) is the probability that the first

n × i + xn×i bits are in coordination with the received vector r when the state drift at

n × i is y, i.e., xn×i = y. It is calculated by summing over all possible previous states

and all possible transmitted symbols at the previous state and is given by

F(n × i, y) = P(rn×i+y
1 , xn×i = y) = P(r1, r2, . . . , rn×i+y, xn×i = y)

=
∑
di−1,a

F(n × (i − 1), a) · P(rn×i+y−1
n×(i−1)+a, xn×i = y|xn×(i−1) = a, di−1).

(2.6)

The backward quantity B(n×(i+1), xn×(i+1)) is the probability that (rn×(i+1)+xn×(i+1) , . . . , rρ)

is received given a drift of xn×(i+1) at position n× (i+1). Similarly, it is calculated based

on all subsequent states and possible transmitted symbols at the subsequent state and

is given by

B(n × i, y) =
∑
di,b

B(n × (i + 1), b) · P(rn×(i+1)+b−1
n×i+y , xn×(i+1) = b|xn×i = y, di). (2.7)

Even though the DM watermark code can correct multiple insertion, deletion and

substitution errors, it has extremely high computational complexity [69]. The inner

watermark decoder performs the forward-backward algorithm on a large trellis based
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on a complicated Hidden Markov Model (HMM) in order to calculate the LLRs. The

scale of the trellis is proportional to frame size and error rates from the channel. The

scale becomes larger and larger as the number of synchronization errors increases. In

fact, the complexity of the inner watermark code can be as large as O(XNI), where X

is the number of hidden states in the HMM, N is the length of hidden sequence and I

is the maximum length of a burst of insertions.

2.5 Summary

This chapter provides a literature review on coding techniques for channels impaired

by insertion, deletion and substitution errors. We first review three classical channel

models with insertion, deletion and substitution errors. Then, we provide a survey

of codes that are used to recover synchronization after insertion/deletion/substitution

errors occur. We also review some existing results on codes that can correct inser-

tion/deletion/substitution errors, including marker codes, algebraic block codes, and

concatenated codes. In particular, we discuss the encoding and decoding of the clas-

sical DM watermark code in detail. In the next chapter, we start our investigation by

focusing on a family of systematic comma-free codes.
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Chapter 3

A Type of Generalized Systematic

Comma-Free Code

Synchronization between codewords is easily lost when insertion and deletion together

with substitution errors occur. Recovering synchronization after insertion/deletion/sub-

stitution errors is of great importance to the receiver which needs to decode the sub-

sequent codewords correctly. In Sect. 2.3, we have reviewed codes that are capable

of recovering synchronization after insertion/deletion/substitution errors. Moreover,

comma-free codes are more efficient in terms of redundancy compared with codes

with comma [39].

A systematic comma-free code is a subclass of comma-free codes and it provides

specific fixed positions for transmitting data. In a systematic comma-free code, some

positions are fixed and used to maintain synchronization and the remaining positions

are used to transmit information. To construct a systematic comma-free code, the first

few bits of a comma-free code are usually fixed to a sequence of 1s or 0s. The fixed

sequence is referred to as the primer drive and it appears at the beginning of each

codeword.

In fact, F code has been proved to be the most efficient systematic CFC that uses

fixed places to maintain synchronization [47]. We denote n as the code length. By

25
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definition of F code, r is the smallest integer larger than or equal to
√

2(n − 1), s is

the smallest integer larger than or equal to r
2 and t = r − s. Recall that an F code of

length n has 0s fixed in the positions 1, 2, . . . , s and 1s fixed in the positions n, n −

s, n − 2s, . . . , n − (t − 1)s while all other positions are arbitrary and can be used to

transmit information. Further, F code allows the primer drive to appear in the body

of a codeword, but it ensures that no codeword is formed between the concatenated

codewords.

In general, the concatenation of two consecutive CFCs cannot form a valid code-

word. However, the decoder would give a false synchronization if a “valid” codeword

appears in the concatenation of two consecutive CFC codewords due to insertion, dele-

tion or substitution errors. Such a “valid” codeword is referred to as a false codeword.

In this chapter, we propose a new type of systematic comma-free code called the

generalized F(n, s, t) code which includes F code as a special case [70, 71]. The pro-

posed code can recover synchronization after insertion/deletion/substitution errors oc-

cur. We also derive the false synchronization probability caused by a single substi-

tution, insertion and deletion error. The rest of the chapter is organized as follows.

In Sect. 3.1, we show the construction of the generalized F(n, s, t) code and prove

that it is a systematic comma-free code. We also show the encoding and decoding of

the proposed generalized F(n, s, t) code. In Sect. 3.2, we derive the probability of false

synchronization caused by a single substitution, insertion or deletion error. In Sect. 3.3,

the performance of the proposed code in terms of false synchronization probability are

shown. Sect. 3.4 summarizes the chapter.
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3.1 Generalized F(n, s, t) Code

3.1.1 Proposed generalized F(n, s, t) Code

For a codeword of length n, a generalized F(n, s, t) code includes s fixed 0s and t

fixed 1s. Moreover, the fixed 0s are at positions 1, 2, . . . , s while the fixed 1s are at

positions j · s + 1 ( j = 1, 2 . . . , t), satisfying s · t ≥ n−1
2 . For example, a generalized

F(n = 16, s = 3, t = 3) code has the format 0001xx1xx1xxxxxx, where x denotes an

information bit, which can be 0 or 1.

To prove that the generalized F(n, s, t) code is a CFC, the following theorem from

[47] is applied.

Theorem 3 A fixed-place code with 0s and 1s fixed in the positions ai (i = 1, . . . , s)

and b j ( j = 1, . . . , t), respectively, will be synchronous if and only if the set {±(ai − b j)}

contains a complete system of nonzero residues (mod n).

Theorem 4 The generalized F(n, s, t) is a comma-free code.

Proof. In our proposed generalized F(n, s, t) code, the positions of 0s are ai = i (i =

1, 2, . . . , s) and the positions of 1s are b j = j·s+1 ( j = 1, 2, . . . , t) where s·t ≥ 0.5(n−1).

Thus, {±(ai − b j)} (mod n) is given by the following.

b1 − a1 = s a1 − b1 = n − s

· · · · · ·

b1 − as = 1 as − b1 = n − 1

b2 − a1 = 2s a1 − b2 = n − 2s

· · · · · ·

b2 − as = s + 1 as − b2 = n − s − 1

bt − a1 = ts a1 − bt = n − ts

· · · · · ·

bt − as = (t − 1)s + 1 as − bt = n − (t − 1)s − 1
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Note that st +1 ≥ n− st because the generalized F(n, s, t) code requires st ≥ 0.5(n−1).

Thus the residues shown above cover all the values between 1 and (n−1) at least once.

Therefore, the generalized F(n, s, t) code is a systematic comma-free code.

In the classical F code having a code length n, it is required that r being the least

integer no less than
√

2(n − 1), s being the least integer no less than r
2 and t = r − s.

For our proposed code, however, we have proved that the condition st ≥ 0.5(n − 1) is

sufficient to make sure it is a synchronization code. As a result, more combinations

of (s, t) can be selected in constructing our codes. In fact, the proposed generalized

F(n, s, t) code includes F code as a special case. For example, the parameters (n =

17, s = 4, t = 2) and (n = 25, s = 4, t = 4) can be used to construct a generalized

F(n, s, t) code but not a classical F code.

3.1.2 Encoder

Encoding is implemented in two steps: the binary information sequence is first divided

into blocks of k information bits. Then length-s regular primers and t fixed bits are

inserted periodically into each block. As a result, each block of k information bits is

encoded into a generalized F(n, s, t) code of n bits, where n = k + s + t. The encoding

procedure is repeated for every block of k information bits. The content and position

of the periodical primers and fixed bits in the transmitted sequence are known to and

used by the decoder to maintain synchronization. The encoding sequence after the two

encoding steps is ready to be transmitted through the BSID channel. The encoding

procedure of a generalized F(n, s, t) code is shown in Fig. 3.1.

Moreover, the code rate is defined as the ratio between the number of information

bits and the codeword length, i.e., n−s−t
n . The number of fixed positions s + t is mini-

mized when s is equal to t under the condition that 2st ≥ n − 1, i.e, s = t =

√
n−1

2 .

Therefore, the code rate of the generalized F(n, s, t) code is limited by
n−2·
√

n−1
2

n , which

approaches 1 −
√

2
n when the codeword length n tends to infinity.
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Figure 3.1: Construction of a generalized F(n, s, t) code.

Figure 3.2: BSID channel model.

3.1.3 Channel Model

The BSID channel with random independent insertion, deletion and substitution errors

is depicted in Fig. 3.2. The channel model can be mathematically described by three

parameters: pd, pi and ps, representing a deletion error rate, an insertion error rate and

a substitution error rate, respectively. For each transmitted bit xk, three possible events

may occur: (a) xk is deleted with probability pd; (b) one more bit is transmitted before

xk with probability pi; (c) xk is transmitted with probability pt = 1− pd− pi. Moreover,

the transmitted bit may be substituted with probability ps. The operation repeats until

all bits are sent.

3.1.4 Decoder

Due to potential insertion and deletion errors from the BSID channel, the length of the

received sequence may be different from the length of the transmitted sequence. We
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Figure 3.3: Generalized F(n, s, t) decoding without a false codeword.

introduce a decoding window with size n, which is simply the codeword length in the

decoder. Given a received sequence, the decoder makes full use of the information

provided by the primer and fixed bits. The decoder can recover synchronization at

codeword boundaries with the help of primer drive and fixed positions over the BSID

channel. Furthermore, the decoder can retrieve original message based on the format

of a generalized F(n, s, t) code.

A codeword is immediately decoded whenever the decoding window detects the

format of a F(n, s, t) codeword. The decoding window then moves n positions to the

right and tries to detect the next codeword. It is possible that the n bits in the decod-

ing window cannot construct a F(n, s, t) codeword due to substitution, deletion and

insertion errors. Under this circumstance, the decoding window moves one position to

the right at a time until another F(n, s, t) is detected. The procedure repeats until the

decoding window reaches the last bit.

By definition, a sequence of bits from two consecutive CFC codes cannot form

a F(n, s, t). However, a false codeword may appear when substitution, insertion, or

deletion errors occur. Suppose an error (insertion, deletion or substitution) occurs in

the i-th codeword and no errors occur in the following two codewords, the receiver can

always resynchronize at the (i + 2)-th codeword or at the (i + 1)-th codeword. We use

two examples for illustration.

In Fig. 3.3, suppose an insertion error occurs in Codeword 2. When the decoding
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Figure 3.4: Generalized F(n, s, t) decoding with a false codeword.

window is located in the first block, the content in the decoding window is Codeword

1 and hence Codeword 1 is decoded immediately. The decoding window then moves

n positions to the right. However, the following n bits in the decoding window cannot

form a F(n, s, t) due to the insertion error and hence it moves one position to the right

until the decoding window arrives at the third block, where Codeword 3 is decoded. In

this case, the receiver resynchronizes at Codeword 3.

In Fig. 3.4, the tail of the corrupted Codeword 2 and the head of Codeword 3 form a

false codeword due to possible errors occurring in Codeword 2. The decoding window

thinks this is a “valid” codeword, so it moves n positions to the right. The content of

the decoding window becomes an overlap of two F(n, s, t) codewords and cannot be

a codeword. After that, the decoding window moves one position to the right until

it decodes Codeword 4. In this case, synchronization is re-established at Codeword

4. The presence of a false codeword excludes the decoding of the subsequent correct

codeword (Codeword 3 in Fig. 3.4). Therefore, the false codeword probability is a

performance metric of a systematic comma-free code over channels with insertion,

deletion and substitution errors.
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3.2 False Synchronization

3.2.1 Theoretical Error Rate

In this section, we calculate the theoretical error rate of a codeword with a specific

error pattern. Consider a codeword of length n transmitted through the BSID channel,

the error probability Pr(Nd,Ns) with Nd deletions and Ns substitutions, and the error

probability Pr(Ni) with Ni insertions are given by (3.1) and (3.2), respectively.

Pr(Nd,Ns) = pNd
d · (pt · ps)Ns · (pt · (1 − ps))n−Nd−Ns , (3.1)

Pr(Ni) = pNi
i , (3.2)

Insertion, deletion and substitution errors are all independent and thus the probability

of a codeword with the specific error pattern, containing Ni insertions, Nd deletions

and Ns substitutions is given by the multiplication of (3.1) and (3.2).

Pr(Ni,Nd,Ns) = Pr(Nd,Ns) ·Pr(Ni) = pNd
d · (pt · ps)Ns · (pt · (1− ps))n−Nd−Ns · pNi

i . (3.3)

Any insertion error that occurs in the boundary between two consecutive codewords

is considered as an insertion error of the second codeword for the BSID channel and

hence the number of combinations to insert Ni bits is
(

n+Ni−1
Ni

)
. In the meanwhile, we

have
(

n
Nd

)
combinations of deleting Nd bits from n bits and

(
n−Nd

Ns

)
combinations of sub-

stituting Ns bits from (n − Nd) bits. The total number of combinations with the error

pattern Ni, Nd and Ns is given by

C(Ni,Nd,Ns) =

(
n + Ni − 1

Ni

)
·

(
n

Nd

)
·

(
n − Nd

Ns

)
. (3.4)

Based on the above results, the theoretical error rate of Ni insertions, Nd deletions and

Ns substitutions is given by C(Ni,Nd,Ns) · Pr(Ni,Nd,Ns).
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3.2.2 False Codeword Probability

In this section, we derive the false codeword probability when a single substitution,

insertion or deletion error occurs in a codeword. To simplify our analysis, we further

assume that the codeword that follows the erroneous codeword does not contain errors.

We define the following symbols.

• x: An arbitrary information bit which can be either 0 or 1

• g: Generator of the proposed generalized F(n, s, t) code. It is a vector of length n,

which consists of s fixed (non-arbitrary) 0s, t fixed (non-arbitrary) 1s and n− s− t

arbitrary information bits x.

• tt: Concatenation of two transmitted F(n, s, t) codewords with a total vector

length of 2n.

• r′r: Received vector when tt is transmitted. The vector length depends on the

errors occurring.

• g(i): A decoding window which is the delay-i version of g, i.e., g with i empty

slots in front.

• d(tt, g(i)): Hamming distance only between non-arbitrary bits of tt and g(i) in-

side the decoding window. If d(tt, g(i)) = 0, the content in the decoding window

is a valid codeword.

• h(i): Number of positions where the element of g(i) is 0 or 1 AND the element

of tt is x.

Single Substitution Error

When a single substitution error occurs, synchronization is lost if and only if the error

occurs at one of the fixed bits. Then false codewords may arise. Thus when evaluating
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Figure 3.5: Complete shifting process of a decoding window for the generalized F(n =

16, s = 3, t = 3).

the probability of a false codeword occurring due to a single substitution error, we

are only interested in those i for which d(tt, g(i)) = 1. In other words, the decoding

window g(i) and the transmitted vector tt differ in only one fixed position. Suppose

a substitution error occurs at this position, a false codeword will occur when some

specific arbitrary information bits x in tt match the fixed 0 or 1 bits in g(i). The exact

matching has a probability of (1
2 )h(i).

We use the generalized F(n = 16, s = 3, t = 3) code as an example for illustration.

The complete shifting process of the decoding window is shown in Fig. 3.5. When

i = 3, three empty slots are inserted in front of the decoding window (or the decoding

window is shifted three positions to the right).

Referring to Fig. 3.6(a), the first row represents the generator; the second row rep-

resents two consecutive transmitted codewords; the third row represents the received

vector which indicates the first fixed 1 in the transmitted codeword suffers from a sub-

stitution error; the last row is the shifted decoding window with i = 3. By comparing

the second and fourth rows, we observe h(3) = 3. Therefore, a false codeword will

occur with a probability of (1
2 )3 (probability when the fifth, sixth and thirteenth trans-

mitted bits in tt happen to be 0, 0 and 1 coincidentally) if the first fixed 1 is in error.

However, a point needs to be emphasized. Suppose d(tt, g(i)) = 1 for a certain i

and the position where tt and g(i) differs is beyond n. For example, the position where
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(a)

(b)

Figure 3.6: Decoding window for the generalized F(n = 16, s = 3, t = 3) code. (a)
Decoding window with i = 3; (b) Decoding window with i = 10;

the vector tt and g(10) differs is at the first bit of the second codeword as shown in

Fig. 3.6(b). This means the first codeword is correct while the second codeword has a

substitution error. In this case, the decoding window will shift n positions to the right

after decoding the first correct codeword. The decoding window will never contain the

tail of a correct codeword and the head of the subsequent corrupted codeword. There-

fore, we only consider the case that a substitution error occurs in the first codeword

and the second codeword is correct.

Based on the above analysis, the last bit 1 of the decoding window g(i) should never

reach the second codeword. Otherwise, d(tt, g(i)) > 1 or the first codeword has been

decoded correctly. Hence we have i + st + 1 ≤ n, i.e., 1 ≤ i ≤ n − st − 1. Furthermore,

we can readily show that

h(i) =



i + t − 1 1 ≤ i ≤ s − 1

s + i
s − 1 i = s, 2s, · · · , ts

s + t − 1 otherwise

. (3.5)

In summary, the false codeword probability due to a single substitution error at a

fixed position in a generalized F(n, s, t) code is given by
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Figure 3.7: Complete shifting process of a decoding window for the generalized F(n =

19, s = 3, t = 3).

Ps = P′s ×
∑

d(tt,g(i))=1 and i≤n−st−1

(
1
2

)h(i)

, (3.6)

In (3.6), P′s = (pt · ps) × (pt · (1 − ps))s+t−1 represents the probability that a substitution

occurs at exactly a fixed position under the condition of Ns = 1,Nd = 0 and Ni = 0 in

(3.3).

Single Deletion Error

We move on to investigating the false codeword probability Pd due to a single deletion.

We define r′zr as the received vector, in which the zth bit (1 ≤ z ≤ n) of tt is deleted.

The length of r′zr is 2n − 1. Actually r′zr is the concatenation of a codeword with

one deletion error and a correct codeword. It is obvious that the Hamming distance

d(g(n − 1), r′zr) = 0 because the content of the decoding window is exactly the second

codeword which is correct. However, if d(g(i), r′zr) = 0 for some i ≤ n − 2 and z,

we detect a false codeword with probability ( 1
2 )h(i). As in the case of substitution, the

last bit 1 of the decoding window should not reach the position of the first bit 0 of the
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second codeword, i.e., i + st + 1 ≤ n−1 or i ≤ n− st−2. The complete shifting process

of the decoding window for a systematic generalized F(n = 19, s = 3, t = 3) code is

shown in Fig. 3.7. We further divide six different scenarios to derive h(i).

Case 1: A single bit among the s starting 0s is deleted

The received vector starts with (s − 1) 0s followed by a 1. However, the decoding

window starts with s 0s. Even if all information bits are 0s, it is not possible to form a

false codeword.

Case 2: The first bit 1 after the sequence of s 0s is deleted

A false codeword can be formed under the condition 0 ≤ i ≤ s − 1. Furthermore, it

can be readily shown that

h(i) =


t + i 0 ≤ i ≤ s − 2

s i = s − 1
. (3.7)

Case 3: A single bit between jth bit 1 and ( j+1)th bit 1 (1 ≤ j ≤ t−1) is deleted

In this case, a false codeword may be formed only when i = 0 and h(i) = t − j.

Case 4: The jth bit 1 (2 ≤ j ≤ t − 1) is deleted

Obviously, a false codeword is formed when i = 0 and h(i) = t − j + 1. Besides, a

false codeword may be formed when (i) the first bit 0 of the decoding window exceeds

( j − 1) bit 1, i.e., 1 + i ≥ ( j − 1)s + 1 + 1 or i ≥ ( j − 1)s + 1; AND (ii) the first bit 1 of

the decoding window does not exceed ( j + 1)th bit 1, i.e., i + s + 1 ≤ ( j + 1)s + 1 − 1

and i ≤ js − 1. Furthermore, we can prove that

h(i) =


s + t ( j − 1)s + 1 ≤ i ≤ js − 2

s + j i = js − 1
. (3.8)

Case 5: The last bit 1 is deleted

Obviously, a false codeword is formed when i = 0 and h(i) = 1. Besides, a false
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codeword may be formed when the first bit 0 of the decoding window exceeds the

fixed bit 1 preceding the deleted bit 1, i.e., 1 + i ≥ (t − 1)s + 1 + 1 or i ≥ (t − 1)s + 1.

Furthermore, we can show that

h(i) =


1 i = 0

s + t (t − 1)s + 1 ≤ i ≤ n − st − 2
. (3.9)

Case 6: A single bit after the last bit 1 is deleted

In this case, a false codeword may be formed only when i = 0 and h(i) = 0.

Based on all the above analysis, the false code probability due to a single deletion

error is given by

Pd = P′d ×
∑

d(g(i),r′zr)=0

(
1
2

)h(i)

= P′d ×
{[ s−2∑

i=0

(
1
2

)t+i + (
1
2

)s] + (s − 1) ·
t−1∑
j=1

(
1
2

)t− j +

t−1∑
j=2

(
1
2

)t− j+1 + (
1
2

) + (n − ts − 1)
}

(3.10)

In (3.10), P′d = pd · ((1− pi− pd) · (1− ps))n−1 represents the probability that a single

bit is deleted in the first codeword under the condition of Nd = 1,Ns = 0 and Ni = 0 in

(3.3).

Single Insertion Error

Finally, we investigate the false codeword probability Pi due to a single insertion error.

We denote the received vector r′qr as a vector of length 2n + 1, in which a random

bit is inserted before the qth bit of tt, 1 < q < n. Actually r′qr is a concatenation

of a codeword with one insertion error and a correct codeword. It is obvious that

d(g(i), r′qr) = 0 when i = n + 1 because the content of the decoding window is the
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Figure 3.8: Complete shifting process of a decoding window for the generalized F(n =

17, s = 4, t = 2).

second codeword. However, if d(g(i), r′qr) = 0 for some i ≤ n + 1 and q, we can detect

a false codeword with probability (1
2 )h(i). Same as the previous two cases, the last bit

1 of the decoding window cannot exceed the position of the first bit 0 of the second

codeword, i.e., i + st + 1 ≤ n + 1 or i ≤ n − st. The complete shifting process of the

decoding window for the generalized F(n = 17, s = 4, t = 2) code is shown in Fig. 3.8.

Similarly, we further divide different scenarios to derive the corresponding h(i).

Case 1: Any single bit 0/1 is inserted before any bit in the s starting zeros

Case 2: Any single bit 0/1 is inserted before the first bit 1 after the sequence of

s zeros

Case 3: Any single bit 0/1 is inserted before any bits after the last bit 1

Case 4: A single bit 1 is inserted between jth bit 1 and ( j + 1)th bit 1 including

the ( j + 1)th bit 1, 1 ≤ j ≤ t

Case 5: A single bit 0 is inserted between jth bit 1 and ( j + 1)th bit 1 including

the ( j + 1)th bit 1, 1 ≤ j ≤ t
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Based on the complete shifting process of a decoding window, it is impossible to

form a false codeword under the first four cases1. A false codeword can appear with

two conditions under Case 5, i.e., a bit 0 is inserted between jth bit 1 and ( j + 1)th bit

1 including the ( j + 1) bit 1, 1 ≤ j ≤ t. The first condition is to make sure the sequence

in the decoding window is not a codeword when i = 0 because the definition of a false

codeword is the concatenation of two codewords. Only under the first condition will

the decoding window shift one position to the right. The second condition is that the

first bit 0 of the decoding window must arrive at the next bit of the jth bit 1 of the

received codewords, i.e., 1 + i = js + 1 + 1 or i = js + 1. Furthermore, we can show

that h(i) = s + j − 1.

Most of the cases do not give rise to false codewords. Based on our analysis, the

false codeword probability due to a single insertion error is given by

Pi = P′i ×
t−1∑
j=1

s
(
1
2

)s+ j−1

, (3.11)

In (3.11), P′i = 1
2 ((1 − pi − pd)(1 − ps))n · pi represents the probability that a single bit

0 is inserted under the condition of Ni = 1,Nd = 0 and Ns = 0 in (3.3).

3.3 Simulation Results

The theoretical results of false synchronization for a generalized F(n, s, t) code caused

by a single substitution, deletion or insertion error have been derived in (3.6), (3.10)

and (3.11), respectively. We carry out the simulation to verify the theoretical results. A

random sequence of around 106 information bits is generated. The binary information

sequence is first divided into blocks and each block contains k (k = n−s−t) information

1One point needs to be noticed for Case 1 where any single bit is inserted before the first bit. Even
though d(g(1), r′qr) = 0 under this case, the sequence in the decoding window is the first codeword.
False codeword is actually the overlap of two consecutive codewords. Based on the definition of the
false codeword, this scenario cannot contribute to the false codeword probability caused by a single
insertion error.
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bits based on different generalized F(n, s, t) codes. Then the primer drive and fixed

bits are inserted in the k information bits to form a systematic generalized F(n, s, t)

codeword of length n. The encoding procedure is repeated for every block and the

encoded sequence is transmitted though the BSID channel with different parameters

pi, pd, and ps. For decoding, a fixed-length decoding window of length n is introduced.

The decoding window moves from the start of the received corrupted sequence until it

reaches the last bit. During the whole process, we count the number of false codewords

caused by a single substitution error, a single deletion error and a single insertion error,

respectively.

The simulation results for the false codeword probability of the generalized F(n, s, t)

codes with different values of s and t are shown in Fig. 3.9, Fig. 3.10 and Fig. 3.11, re-

spectively. The false codeword probability caused by a single substitution or insertion

error are plotted using the left black ordinate axis while the false codeword probability

caused by a single deletion error and the total false codeword probability are plotted

using the right red ordinate axis. The simulation results represented by symbols match

with those theoretical results represented by curves derived in (3.6), (3.10) and (3.11).

Simulation results also show that for a generalized F(n, s, t) code, deletion errors play

a dominant role in false synchronization, while insertion errors have the least impact.

We further simulate the false synchronization caused by a single substitution, dele-

tion and insertion error in a series of generalized F(n, s, t) codes. The simulation results

are shown in Fig. 3.12. In Fig. 3.12(a) and Fig. 3.12(b), the simulation results show

that the false synchronization caused by a single substitution or deletion error increases

as codeword length increases with the same values of s and t, e.g., comparing the re-

sults of F(20, 4, 3), F(23, 4, 3) and F(25, 4, 3) in Fig. 3.12(a) and comparing the results

of F(20, 4, 3), F(23, 4, 3) and F(25, 4, 3) in Fig. 3.12(b). We also observe that in both

cases, the false synchronization does not always increase with the codeword length.

It is closely related to the values of s and t. This can be demonstrated by the simula-

tion result, in which the curve of F(25, 4, 3) is always lower than that of F(17, 3, 3),
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F(19, 3, 3) and F(17, 4, 2) in Fig. 3.12(a), and the curve of F(27, 4, 4) is always lower

than that of F(23, 4, 3) and F(25, 4, 3) in Fig. 3.12(b). This can also be verified by the

better performance of F(27, 4, 4) than F(17, 4, 2) when the channel error rate is equal

to or greater than 9 × 10−3 in Fig. 3.12(b).

However, different from the first two cases, the false synchronization caused by

a single insertion may not always increase with codeword length even with the same

combination of {s, t}. This can be verified by the better performance of F(25, 4, 3) than

F(23, 4, 3) in Fig. 3.12(c).

3.4 Summary

In this chapter, we have proposed a new class of systematic comma-free code, namely

the generalized F(n, s, t) code. We have proved that the condition st ≥ 0.5(n − 1) is

sufficient to make sure it is a synchronization code. As a result, more combinations of

(s, t) can be selected in constructing our codes. We also derive the probability of false

synchronization caused by a single substitution, insertion or deletion error, respec-

tively. Simulation results show that the performance of a generalized F(n, s, t) code is

not only related to channel error rates but also the distribution of fixed bits and code-

word length. Among all factors affecting the error performance, deletion errors have

a larger effect compared with the other two types of errors. Even though generalized

F(n, s, t) codes with shorter length usually perform better in terms of false synchro-

nization, codes with shorter length decrease the code rate and efficiency. Therefore, a

good generalized F(n, s, t) code should be chosen based on different applications and

requirements, i.e., channel parameters, code rate and codeword length. This chapter

focuses on the code that is used to recover synchronization without correction capabil-

ity. From the next chapter, work is focused on codes that can correct insertion, deletion

and substitution errors. Specifically, we will focus on the optimization of a classical

concatenated code that can correct multiple insertion, deletion and substitution errors
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in the next chapter.
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Figure 3.9: False synchronization probability in a generalized F(n, s, t) code under dif-
ferent channel parameters. (a) F(14, 3, 3); (b)F(17, 3, 3). Channel error rates increase
from 0.001 to 0.01. Theoretical results are plotted using the solid lines and simulated
results are represented by symbols.
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Figure 3.10: False synchronization probability in a generalized F(n, s, t) code under
different channel parameters. (a) F(14, 4, 2); (b) F(17, 4, 2). Channel error rates in-
crease from 0.001 to 0.01. Theoretical results are plotted using the solid lines and
simulated results are represented by symbols.
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Figure 3.11: False synchronization probability in a generalized F(n, s, t) code under
different channel parameters. (a) F(23, 4, 3); (b) F(25, 4, 3). Channel error rates in-
crease from 0.001 to 0.01. Theoretical results are plotted using the solid lines and
simulated results are represented by symbols.
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(a) (b)

(c)

Figure 3.12: The false synchronization probability in a series of generalized F(n, s, t)
codes under different channel parameters caused by (a) a single substitution error at
fixed positions; (b) a single deletion error; (c) a single insertion error. For all three
cases, ps = pd = pi increase from 0.001 to 0.01. Theoretical results are plotted using
the solid lines and simulated results are represented by symbols.



48 CHAPTER 3. GENERALIZED SYSTEMATIC COMMA-FREE CODE



Chapter 4

Optimization of Sparsifier in

Davey-Mackay Watermark Code

4.1 Introduction

The Davey-Mackay (DM) watermark code can correct multiple insertion, deletion and

substitution errors over the BSID channel. It consists of an outer LDPC code to correct

substitution errors and an inner watermark code to maintain synchronization.

4.1.1 Encoder

The structure of the DM watermark code is shown in Fig. 4.1. In this scheme, the

information sequence m is first encoded into a sequence d using an outer q-ary LDPC

code, where q = 2k. Then, the sparsifier with parameters k and n maps each q-ary

symbol (k bits) to a sparse binary sequence of length n for some n > k. The mapping

rule is to select q = 2k lowest density (Hamming weight) binary vectors of length n.

The transmitted sequence is then generated by adding modulo-2 the sparse sequence

to the binary watermark sequence and is prepared for transmission through the BSID

channel. Besides, the watermark sequence is known to both the encoder and decoder.

49
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Figure 4.1: Structure of DM Construction.

Figure 4.2: Encoding procedure of concatenated code in DM construction. Each sym-
bol di is represented by the addition of watermark sequence and sparsified sequence.

The sparse code causes minimal changes to the watermark sequence to ensure the

decoder can track synchronization. The specific encoding of the concatenated code is

shown in Fig. 4.2.

4.1.2 Channel Model

The channel model used in this chapter is the same as the one proposed by Davey

and Mackay in [26]. The BSID channel can be mathematically described by three

parameters: pd, pi and ps, representing a deletion error rate, an insertion error rate and

a substitution error rate, respectively. At time i, a transmitted bit ti enters the channel

and experiences (a) a random bit is inserted before ti with probability pi; or (b) ti is

deleted with probability pd; or (c) ti is transmitted with probability pt = 1− pi − pd. In

addition, the transmitted bit may suffer from a substitution error with probability ps.
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Figure 4.3: BSID channel model.

4.1.3 Decoder

The inner watermark decoder compares the received sequence with the known water-

mark sequence to recover synchronization and returns symbol-by-symbol log-likelihood

ratios (LLRs) to initialize the outer LDPC decoder. The outer LDPC decoder subse-

quently corrects the remaining errors.

We have reviewed the optimal inner symbol-level forward-backward decoding al-

gorithm on the trellis [68] in Sect. 2.4.4. The forward and backward quantities are

computed for each symbol rather than each bit. The number of drift states on the

boundary of each symbol depends on the difference between the number of deletions

and insertions within this symbol. Using the symbols defined in Sect. 2.4.4, the likeli-

hood of each possible transmitted symbol P(r|di) is given by

P(r|di) =
∑

xn×i,xn×(i+1)

F(n× i, xn×i) ·P(rn×(i+1)+xn×(i+1)−1
n×i+xn×i

, xn×(i+1)|xn×i, di) ·B(n×(i+1), xn×(i+1)),

(4.1)

where

F(n × i, y) = P(rn×i+y
1 , xn×i = y) = P(r1, r2, . . . , rn×i+y, xn×i = y)

=
∑
di−1,a

F(n × (i − 1), a) · P(rn×i+y−1
n×(i−1)+a, xn×i = y|xn×(i−1) = a, di−1),

(4.2)

B(n × i, y) =
∑
di,b

B(n × (i + 1), b) · P(rn×(i+1)+b−1
n×i+y , xn×(i+1) = b|xn×i = y, di). (4.3)

In this chapter, we aim to optimize the sparsifier in the DM watermark code [72].
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We optimize the inner sparsified codebook based on distance property and lowest den-

sity property. We also propose a hard-decision decoding and a soft-decision decoding

for the inner symbol-level watermark decoder. Simulation results show that the error

performance of the inner decoder with the improved codebook is improved over the

BSID channel with random insertion, deletion and substitution errors. The rest of the

chapter is organized as follows. In Sect. 4.2, we propose two decoding methods for

the symbol-level inner watermark decoding, including a hard-decision decoding based

on Hamming distance and a soft-decision decoding based on a new metric. Sect. 4.3

shows the codebook design optimization based on both better distance property and

lowest density property. Finally in Sect. 4.4, the error performance of the inner water-

mark code with the optimized codebook is simulated over the BSID channel. Summary

is given in Sect. 4.5.

4.2 Proposed Decoding Strategies

Referring to the RHS of (4.1), the first term and the last term can be easily calculated

based on (4.2) and (4.3). For the middle term P(rn×(i+1)+xn×(i+1)−1
n×i+xn×i

, xn×(i+1)|xn×i, di), it can

be shown as equivalent to P(rn×(i+1)+xn×(i+1)−1
n×i+xn×i

, xn×(i+1)|xn×i, s
n×(i+1)−1
n×i ) because there is a

one-to-one mapping between each symbol di and the corresponding sparse sequence

(sn×i, . . . , sn×(i+1)−1) in the sparsified distribution converter. In fact, this middle term

is the probability of receiving a specific sequence r
n×(i+1)+xn×(i+1)−1
n×i+xn×i

when the sequence

(sn×i, . . . , sn×(i+1)−1) is transmitted given a symbol state boundary. The computation of

this term can be implemented using two decoding strategies [72].

4.2.1 Hard-decision Decoding Based on Hamming distance

Given fixed xn×i and xn×(i+1), the codeword boundary is uniquely determined. Recall

that in Sect. 2.4.4, the synchronization drift state xi at the ith position is defined as
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the difference between the number of insertions and deletions that have occurred from

the start transmitted bit t1 until bit ti is ready to be transmitted. Thus according to the

symbol drift states xn×i and xn×(i+1), we can prejudge whether an insertion or deletion

has occurred. If xn×(i+1) − xn×i = 1, a single insertion error should have occurred in this

symbol. Then a random bit is deleted and compared with the valid codeword set, and

the valid codeword with the minimum Hamming distance is selected as the transmitted

one. On the other hand, if xn×(i+1)−xn×i = −1, a single deletion error is assumed to occur

in this symbol. Then a random bit is inserted in this corrupted codeword and compared

with the valid codeword set, and the valid codeword with the minimum Hamming

distance is selected as the transmitted one. If more than one codeword is available, a

codeword is selected randomly. This is called hard-decision inner decoding.

4.2.2 Soft-decision Decoding Based on Accurate Transformation

Probability Metric

Since as many as I bits can be inserted before each bit, many different error patterns

may result in the same corrupted codeword. In other words, given the corrupted sym-

bol and drifts, we cannot uniquely determine the actual transmitted symbol in hard-

decision decoding. For example, the corrupted codeword 0000010 can be due to a

deletion in any 0s before the bit 1 of 00000010, or due to a deletion in any 0s after

bit 1 of 00000100. When more than one codewords exist, a random one is selected in

the case of hard-decision decoding, which makes it sub-optimal. To be more accurate,

we propose a soft-decision decoding based on a more accurate metric called accurate

transformation probability (ATP).

The middle term in (4.1) is actually equivalent to calculating the probability P(r|t)

with one symbol transmission time. The transmitted sequence t is the mod-2 addition

of (i) the watermark sequence from index n × i + xn×i to index n × (i + 1) + xn×(i+1) − 1

and (ii) the sparse mapping of di; while r is the corresponding received sequence.
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Figure 4.4: Lattice representation.

The calculation of this term can be done effectively based on the lattice structure.

Fig. 4.4 shows the lattice representation: transmitted sequence x is placed along the

left side and the corresponding received sequence y is placed along the top. Each error

pattern is illustrated by a path between coordinates (0,0) and (nx, ny) on the lattice. In

this representation, three kinds of shifts may occur: deletion, insertion or transmission

(may be substituted). They are represented by vertical lines, horizontals and diagonals,

respectively.

We define α(i, j) as the probability of arriving at the position (i, j) on the trellis.

Then α(tx, 0) = ptx
d , tx = 0, 1, . . . , nx and α(0, ty) = (0.5pi)ty , ty = 0, 1, . . . , ny are ini-

tialized. We use the forward program to calculate the middle term P(r|t) = α(nx, ny) ,

i.e.,

α(i, j) =


0.5piα(i, j − 1) + pdα(i − 1, j) + pt psα(i − 1, j − 1), if xi , x j,

0.5piα(i, j − 1) + pdα(i − 1, j) + pt(1 − ps)α(i − 1, j − 1), if xi = x j

.

(4.4)

Recall in Fig. 2.4 that s is fixed for a given di. A forward pass is performed between
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xn×i and xn×(i+1) and the result is returned to P(rn×(i+1)+xn×(i+1)−1
n×i+xn×i

xn×(i+1)|xn×i, s
n×(i+1)−1
n×i ).

This is referred to as the soft-decision decoding.

4.2.3 Comparison Between Hard-decision and Soft-decision decod-

ing

When more than one codeword has the same Hamming distance as the received cor-

rupted codeword, the two decoding strategies are completely different. A codeword is

randomly selected from the candidates in hard-decision decoding, while the codeword

with the best ATP metric is selected for the soft-decision decoding. Therefore, the

accuracy of the soft-decision decoding is much higher than that of the hard-decision

decoding since only the symbol with the highest probability is returned.

4.3 Codebook Optimization

In this section, we focus on the design and performance of the sparsified code. Each

symbol di is transformed into one of the lowest density binary vectors of length n

with the sparsified transformation converter in DM construction. For sparsified code

(15,4) in GF(16), the sparsified transformation converter maps each 16-ary symbol to

a binary sequence of length 15. The codebook in [26] has a total of 16 codewords,

including an all-zero codeword and 15 weight-1 codewords. The specific one-to-one

mapping is shown in Table 4.1. However, for sparsified code (8,4) in GF(16), the DM

construction does not describe the specific mapping between each q-ary symbol and

the corresponding sparse codeword.

We conjecture that the performance of the inner watermark code depends not only

on the sparsity, but also on the choice of the sparse representation mapping, i.e., better

mutual codeword distance. The distance between sparsified codewords should be as

large as possible. The performance will be improved when inner codes with larger
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Table 4.1: One-to-One mapping in GF(16) for sparsified code (15,4)

symbol value di correspoding codebook si

0 000000000000000
1 000000000000001
2 000000000000010
3 000000000000100
4 000000000001000
5 000000000010000
6 000000000100000
7 000000001000000
8 000000010000000
9 000000100000000

10 000001000000000
11 000010000000000
12 000100000000000
13 001000000000000
14 010000000000000
15 100000000000000

mutual distance are used. We propose a straight-forward and an improved sparsified

mapping method for the sparsified code (8,4).

We suppose each symbol in GF(16) is mapped to a sparse codeword of length 8.

The most straight-forward design is to map symbol “0” to all zero codeword, sym-

bol “1” to symbol “7” to weight-1 codewords and map all the remaining symbols

to weight-2 codewords, as shown in the first column of Table 4.2. Referring to this

straight-forward mapping design, from symbol “0” there are 8 codewords at a Ham-

ming distance of 1; from symbol “1” there are also 8 codewords at a Hamming distance

of 1; and from each of the remaining symbols there are only 2 codewords at a Hamming

distance of 1. A major disadvantage of the straight-forward design is that the inner de-

coder finds it difficult to distinguish between the sparse codewords due to their poor

distance properties, especially between symbol “0” or symbol “1” and other symbols.

Therefore, we improve the mapping design for sparsified code (8,4) and show it in the

second column of Table 4.2. We adjust the positions of ones in the sparse sequences

with weight 2 and replace the all-zero codeword with another codeword of weight 2.

After the change, from each of the symbols there are no more than 2 codewords at a
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Table 4.2: Straight-forward mapping and improved mapping design for sparsified code
(8,4)

symbol value straight-forward codebook improved codebook
0 00000000 10000001
1 00000001 00000001
2 00000010 00000010
3 00000100 00000100
4 00001000 00001000
5 00010000 00010000
6 00100000 00100000
7 01000000 01000000
8 10000000 10000000
9 00000011 00000011

10 00000101 00000110
11 00001001 00001100
12 00010001 00011000
13 00100001 00110000
14 01000001 01100000
15 10000001 11000000

Hamming distance of 1 and the distance property of sparse codewords is optimized.

4.4 Simulation Results

With watermark sequences, the decoder can maintain synchronization easily at code-

word boundaries when the error rates are low. Even though consecutive insertions may

occur in the BSID channel, the number of consecutive insertions I is limited to 2 to

reduce decoding complexity in our simulations. This assumption is reasonable espe-

cially when the error rate is low. Moreover, we focus on the symbol error rate (SER)

of the inner code because it can be used as an indirect metric to measure the error

performance of the concatenated code.

Table 4.3 shows the code parameters we use to evaluate the error performance. A

sequence of around N = 105 bits are randomly generated and each block of k bits

is mapped to a sparse binary sequence of length n. The transmitted sequence is then
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Table 4.3: Parameters of Inner Watermark Codes: Length of Transmitted bits N =

n × NL; Length of outer code symbols NL; bits per symbol of an q-ary symbol k;
sparsified code length n; Rate of Inner Watermark code Rw = k/n; Density of sparsified
codes f

Code N NL k n Rw density f
A 100002 16667 4 6 0.67 0.25
B 105 12500 4 8 0.50 0.172
C 105 10000 4 10 0.40 0.125
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Figure 4.5: SER in different sparsified codes with soft-decision decoding and hard-
decision decoding.

generated by adding modulo-2 the sparse sequence to the binary watermark sequence.

The received corrupted sequence through the BSID channel is decoded with the inner

symbol-level FB decoder using both hard-decision and soft-decision decoding. The

decoded sequence is compared with the original input sequence and the number of er-

roneous decoded symbols are counted. The performance of different inner codes using

hard-decision and soft-decision decoding in terms of SER are shown in Fig. 4.5. From

the simulation results, we find codes with a lower code rate perform better. In other

words, the performance improves as the sparsified codeword length n increases. This
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Figure 4.6: Symbol error rate in sparsified code (8,4) with straight-forward and im-
proved mapping under different percentage of symbols 0 and 1.

is reasonable because codes with lower code rates have relatively low density, which

have less impact on the watermark sequence. Furthermore, the error performance of

soft-decision decoding is improved compared with hard-decision decoding in terms of

SER.

Next, we compare the error performance of the sparsified code (8,4) with both

straight-forward and improved mapping strategies under different channel error rates.

In addition to generating random symbols from GF(16), we also generate a series of

symbols, where the total number of symbols 0 and 1 account for different percentages

of the total number of symbols. The simulation result for the sparsified code (8,4) with

the straight-forward and improved mapping under different percentage of symbol 0 and

1 are shown in Fig. 4.6. From the simulation results, we notice that the performance

with the improved mapping strategy is improved compared with that of the straight-

forward one. Furthermore, we notice the percentage of symbol 0 and symbol 1 made

a larger impact on the performance with the straight-forward mapping strategy. For
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the straight-forward mapping strategy, SER increases with the percentage of symbols

0 and 1 and the difference becomes more obvious as channel parameters increase.

For example, the number of error symbols for data generation mode at 40% increases

almost 38% compared with randomly generated data under pi = pd = 0.01. However,

this issue does not exist for the improved mapping strategy. The simulation result for

the improved mapping strategy is that all three curves almost coincide. The symbols

in error are distributed evenly. This is in consistent with the explanation described in

the previous section. We confirm that the performance of the inner watermark code

with the improved mapping strategy performs better, especially when certain symbols

account for a high percentage.

4.5 Summary

The symbol-level watermark decoding algorithm considers the bit sequence represent-

ing a symbol instead of each bit every time. For the symbol-level decoding algorithm,

we first propose a hard-decision decoding based on Hamming distance and then a more

accurate soft-decision decoding based on a new metric ATP. We further propose an im-

proved mapping strategy to optimize the inner sparsified codebook based on both better

distance property and lowest density property. The simulation results show that the op-

timized watermark code with the improved mapping strategy has better performance.

Even though the Davey Mackay watermark code can correct multiple insertion, dele-

tion and substitution errors, the computational complexity is extremely high. In the

next chapter, we will propose an efficient concatenated code to correct multiple errors

with reduced decoding complexity.



Chapter 5

A Concatenated RS-Marker Code for

Channels with Random Insertion,

Deletion and Substitution Errors

Even though the Davey MacKay watermark code can correct multiple insertion, dele-

tion and substitution errors, it has extremely high computational complexity [26, 69].

In this chapter, we propose a concatenated RS-marker code with designed markers for

channels impaired by random insertion, deletion and substitution errors. The inner

decoder can effectively maintain synchronization at codeword boundary with the help

of the designed markers, while the outer Reed Solomon code is used to provide er-

ror correction capability. The frame error rate of the concatenated RS-marker code is

simulated and compared with that of DM watermark code over the BSID channel with

random insertion, deletion and substitution errors.

The rest of the chapter is organized as follows. In Sect. 5.1, we present the con-

catenated code with designed markers, including the overview of the system, inner

designed marker code, decoding algorithm and complexity. In Sect. 5.2, we simulate

the error performance of the proposed concatenated RS-marker code and compare it

with DM watermark code over the BSID channel. Sect. 5.3 summarizes the chapter.
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Figure 5.1: Structure of the concatenated RS-marker code.

5.1 Proposed Concatenated Marker Code

5.1.1 System Overview

This system is constructed from an inner designed marker code to maintain synchro-

nization and an outer Reed-Solomon (RS) code to correct erasures and erroneous sym-

bols output by the inner marker decoder [73]. The outer RS (N,K, k) code with k bits

per symbol takes K information symbols m = (m1,m2, . . . ,mK) and emits N symbols

d = (d1, d2, . . . , dN). Subsequently, each symbol di of d is mapped to a binary se-

quence of length k and the designed markers are periodically inserted in the sequence

d to form a frame F. The frame F constructed from the designed markers and N en-

coded symbols is subsequently prepared for transmission over the BSID channel. In

addition, the content and position of the designed markers in the transmitted sequence

are known by the decoder and encoder. The decoder exploits the designed markers

to detect synchronization errors. The structure of the concatenated RS-marker code is

shown in Fig. 5.1.

5.1.2 Error/Erasure Correction Capability of Reed-Solomon Code

The relationship between k and the maximum N is N = 2k − 1 for a RS (N,K, k)

code. For instance, the maximum N for a RS code with k = 8 is 255. An RS code
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can correct up to t erroneous symbols, where 2t = N − K. If the locations of the

erroneous symbols are known, the erroneous symbols can be considered as erasures

and the RS code can correct up to 2t erasures. When both erasures and errors with

unknown locations exist, the corrupted received codeword can be decoded correctly

only when 2m + n ≤ 2t = N − K, where m is the number of erroneous symbols and n

is the number of erasures.

5.1.3 Inner Designed Marker Code

We consider a RS (N,K, k) code and we divide the N coded symbols into blocks of

M symbols. We also assume the number of blocks N/M is an integer. A designed

marker is inserted at the beginning of each block and it consists of two components:

a primer drive and an address index. The primer drive is used to identify the start of

the marker and is set as a sequence of k + 1 0s. The address index is to indicate the

order of the symbol blocks and consists of a minimum of dlog2 (N/M)e bits. The first

block has an address of N/M − 1, the second one N/M − 2, and so on, and the last

block has an address of 0. We also use a 1 as a delimiter to separate the primer and the

address index. The structure of the designed marker and the encoding procedure of the

concatenated RS-marker code is shown in Fig. 5.2(a) and Fig. 5.2(b), respectively. The

code rate of the concatenated code is R = K
N ·

M·k
M·k+p+a+1 , where p is the primer length

and a is the address index length.

5.1.4 Decoding Algorithm

We assume a BSID channel. The inner marker decoder is assumed to process one

received frame at a time, and each frame contains the coded symbols of one RS code-

word. The decoder reads the frame and searches for valid primers and record the

address index that follows. The recorded addresses are compared with the sequence

(N/M − 1,N/M − 2, . . . , 0) to obtain the maximum monotonic decreasing convention
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(a) Designed marker structure

(b) encoding procedure

Figure 5.2: Encoding procedure of concatenated RS-marker code

subsequence (MMDCS) set A, the size of which is denoted by |A|. For each valid ad-

dress not in the set A, the inner decoder returns M erased symbols corresponding to

the missing address.

Since a RS (N,K, k) code can correct N − K erasures, the RS decoder requires to

receive at least K correct symbols in order to correctly decode the codeword. The inner

decoder subsequently compares the value of |A| with K/M. If the number of addresses,

i.e., |A|, is smaller than K/M, this frame cannot be decoded correctly. Otherwise, if

A ≥ K/M, we send the |A|M to the RS decoder for decoding. The integrated decoding

algorithm is shown in Fig. 5.3.

5.1.5 Decoding Complexity of the Inner Marker Code

The inner decoder reads a received frame and attempts to find all valid primers and

their associated address indices. When a valid primer and its associated address index

have been identified, the decoder needs to perform a counting procedure in order to

confirm the validity of the primers. The steps are linear with N and the complexity is

O(N). The next step is to find the MMDCS between the address index sequence A and

the sequence (N/M − 1,N/M − 2, . . . , 0), and its complexity is O
(

N
M log10

N
M

)
with the
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Figure 5.3: Flow chart of decoding algorithm of the concatenated RS-marker code.

use of dynamic programming [74]. Therefore, the overall complexity is O
(

N
M log10

N
M

)
,

which is much lower than that of the watermark code illustrated in Sect. 2.4.4.

5.2 Simulation Results

We use the RS (255,223,8) code with k = 8 bits per symbol as the outer code. This

code can correct up to 16 (= (N − K)/2) erroneous symbols or 32 (= N − K) erasures

in each codeword (frame). Since the error correction capability of the outer RS code is

known, we only need to simulate the error performance of the inner marker code and

use it to derive the overall error performance of the concatenated system.

To simulate the inner code, we generate 255 8-bit symbols (total 2040 bits) ran-

domly. These symbols are divided into blocks of M symbols and then encoded into

a frame according to Sect. 5.1.3. M = 3 and M = 4 are used our study. A total of

105 frames are generated and sent through the BSID channel in the simulation. Sub-
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Figure 5.4: Frame error rate of the concatenated RS-marker code with M = 3 at rate
0.51 and the watermark code at rate 0.71 under different channel parameters. Red and
black curves represent marker code with M = 3 and watermark code, respectively.

sequently, the decoding is performed accordingly to the flow chart in Fig. 5.3. The

number of erasures and erroneous symbols are counted for each frame. The frame

can be decoded correctly if errors are within the correction capability of the RS code,

otherwise the frame is erroneous.

The error performance of the inner code with M = 3 and M = 4 concatenated with

RS (255,223,8) outer code in terms of FER is shown in Fig. 5.4 and Fig. 5.5, respec-

tively. In addition, the performance is also compared with that of the DM watermark

code at code rate 0.71. From the simulation results, we find marker code with M = 3

at rate 0.51 performs much better compared with the watermark code at rate 0.71. The

performance of the marker code with M = 4 at rate 0.58 performs as well as, even

better than the watermark code at low substitution error rates ps. However, the error

performance becomes worse than that of the watermark code as the substitution error

rate increases. We have also simulated the results for the cases M = 2 and M = 5.



5.2. SIMULATION RESULTS 67

1 2 3 4

x 10
−3

10
−4

10
−3

10
−2

10
−1

10
0

Channel Error Event Probability ( p
d
 = p

i
 )

F
ra

m
e 

E
rr

or
 R

at
e 

( 
F

E
R

 )

 

 

p
s
= 0

p
s
= 0.001

p
s
= 0.002

p
s
= 0.003

p
s
= 0

p
s
= 0.001

p
s
= 0.002

p
s
= 0.003

Figure 5.5: Frame error rate of the concatenated RS-marker code with M = 4 at rate
0.58 and the watermark code at rate 0.71 under different channel parameters. Red and
black curves represent marker code with M = 4 and watermark code, respectively.

Although the marker code with M = 2 performs much better than watermark code, its

code rate is very low. On the other hand, the error performance of the marker code

with M = 5 is very poor.

Remark: In the watermark code in [26], soft messages, i.e., log-likelihood ratios, are

passed from the inner decoder to the outer LDPC decoder, which then makes use of

iterative decoding to decode the codeword. In our proposed concatenated RS-marker

code, the inner code only needs to pass hard messages, i.e., recovered symbols, to the

outer RS decoder, which does not require iterations to perform decoding. Thus, our

outer decoder is also much simpler compared with the outer LDPC decoder in [26].
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5.3 Summary

In this chapter, we design a concatenated RS-marker code with the capability to correct

multiple random insertion, deletion and substitution errors. Simulation results show

that the performance of our code at code rate 0.51 is much better than that of the

watermark code at code rate 0.71. Even though our code rate is lower than that of the

watermark code, the complexities of both the inner decoder and the outer decoder are

much simpler. Thus, our system achieves a great reduction in decoding complexity,

but at the cost of reducing the code rate. Chapter 4 and Chapter 5 focus on error

correction codes developed for channels with random independent insertion, deletion

and substitution errors. However, correlated insertion and deletion errors exist in some

practical applications. In the next chapter, we will study error correction codes for

channels with correlated errors.



Chapter 6

A Concatenated LDPC-Marker Code

for Channels with Correlated

Insertion and Deletion Errors

In Chapter 4 and Chapter 5, we have investigated error correction codes used in chan-

nels where insertion and deletion errors occur randomly. Very few works focus on

channels with correlated synchronization errors. In fact, correlated synchronization er-

rors exist in some practical applications, such as bit-patterned media recording (BPMR)

systems. BPMR writes each data symbol into a single domain magnetic bit island [75].

Ideally, the writing head is located at the center of each bit island. Each bit island is

written successfully when at least half of the bit island period overlaps with the write

signal clock cycle. However, timing jitter, such as write clock stability, head vibration

and disk-speed variation can result in the loss of synchronization between the intended

write signal and the predefined bit island positions during the writing process [76]. As

a result, a shorter write signal clock cycle causes a deletion error while a longer one

results in an insertion error, as shown in Fig. 6.1 and Fig. 6.2, respectively.

Moreover, deletions and insertions often occur in pairs (i.e., a deletion is followed

by an insertion in a latter position, and vice-versa) in BPMR [77]. Particularly, ex-

69
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Figure 6.1: The write signal clock cycle is shorter than the bit island period. A deletion
occurs and the bit d is deleted.

Figure 6.2: The write signal clock cycle is longer than the bit island period. An inser-
tion error occurs and one more bit g is inserted.

periments are conducted to provide written-in error statistics and experimental data is

presented in [78], where synchronization is first lost due to an insertion and then resyn-

chronize following a deletion, and vice-versa. It is further noted that the subsequent

synchronization error is more likely to occur at the position closer to the preceding one

and the error probability decreases with the distance. Thus, insertions and deletions

are correlated in the writing process of BPMR. Moreover, the writing head sometimes

is not strong enough to write a bit and thus random substitution errors occur during the

writing process.

Several channel models adapted to the writing process of BPMR have been pro-

posed. More specifically, Hu et al. have proposed a mathematical channel with

written-in errors from a signal processing perspective [79]. They have emphasized

the importance of a channel model incorporating insertion, deletion and substitution

errors. However, they only consider substitution errors to reduce complexity. Depen-

dence of written-in errors is also considered in [80], but the only case studied is a bit

erroneously changed to the preceding value when binary data is written on the medium.
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In [1], a channel model with correlated insertion and deletion errors adapted to BPMR

systems is presented. However, the proposed channel is not accurate enough to mimic

the impairments of BPMR. While it forbids the occurrence of consecutive insertion

errors or consecutive deletion errors, it does not consider insertion and deletion errors

occurring in pairs.

In order to deal with the correlated paired synchronization errors and present a more

accurate channel model for the BPMR systems, we propose a probabilistic channel

model with correlated insertion and deletion errors. The channel model captures, for

example, the data dependence adapted to the write channel in BPMR more accurately.

Furthermore, we concatenate an LDPC code with a marker code to combat correlated

insertion and deletion errors, in addition to substitution errors. We also elaborate a

marker decoding algorithm based on a two-dimensional state transition diagram.

The rest of the chapter is organized as follows. Sect. 6.1 introduces the proposed

channel model with correlated errors, the proposed concatenated LDPC-marker code,

and the encoding and decoding steps. Sect. 6.2 describes the details of the decoding

algorithm based on a two-dimensional transition diagram. Sect. 6.3 shows the simu-

lated error performance of the concatenated LDPC code over the proposed channel.

Sect. 6.4 gives a summary of the chapter.

6.1 Concatenated LDPC-Marker Code

6.1.1 Proposed CID Channel with Correlated Insertion and Dele-

tion Errors

In this section, we propose a probabilistic channel with correlated insertion and dele-

tion (CID) errors, i.e., an insertion and a deletion occur in pairs while substitution

errors occur randomly within a sequence. Such a channel is referred to as a correlated

insertion/deletion (CID) channel [81].
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Given a transmitted sequence xt
1 = (x1, x2, . . . , xt) ∈ {0, 1}t, we assume synchro-

nization errors occur to xa1 , xb1 , xa2 , xb2 , xa3 , xb3 , . . . where a1 < b1 < a2 < b2 < a3 <

b3 < · · · . We also call (xan , xbn) (n = 1, 2, . . .) a synchronization error bit pair.

The characteristics of the proposed probabilistic channel model are as follows.

1. The synchronization error probability of xan is determined by the BSID channel.

2. We assume xan and xbn suffer from different synchronization errors. In other

words, if xan suffers from an insertion error, xbn will suffer from a deletion error;

and vice versa.

3. The synchronization error probability of xbn is determined by the synchroniza-

tion error type of xan and the bit separation l between xan and xbn . The synchro-

nization error probability of xbn decreases as the separation l increases.

We consider the synchronization error bit pair (xan , xbn). After a synchronization error

has occurred to xan , we denote the probability of the synchronization error occurring at

xan+l by Pr(xbn = xan+l). Since Pr(xbn = xan+l) is a decreasing function of l, we assume

that Pr(xbn = xan+l) (l = 1, 2, . . .) forms a geometric progression with a common ratio

of r < 1, i.e.,

Pr(xbn = xan+l) = Arl−1; l = 1, 2, . . . (6.1)

where A is a constant. After a synchronization error has occurred to xan , we use p′d,

p′i and p′t to represent the new deletion probability, new insertion probability and new
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transmission probability, respectively, for xan+l. Moreover, they are given by

p′d =


Arl−1 if an insertion error has occurred to xan

0 if a deletion error has occurred to xan

(6.2)

p′i =


0 if an insertion error has occurred to xan

Arl−1 if a deletion error has occurred to xan

(6.3)

p′t = 1 − p′i − p′d = 1 − Arl−1. (6.4)

The probabilities will be reset to pd, pi and pt once a synchronization error occurs

to xbn . We further assume that random substitution errors always exist with an error

probability ps. The above operation repeats until all transmitted bits are sent.

6.1.2 Encoder

The presented scheme consists of an outer LPDC code and an inner marker code, as

shown in Fig. 6.3. The outer code is used to correct errors while the role of the inner

marker code is to maintain synchronization. Encoding is implemented in two steps: the

message is first encoded into an outer LDPC code and then regular markers [51] with

length Nm are inserted periodically every Nc LDPC code bits. For an LDPC code with

length N, the regularly inserted markers divide the LDPC code into N/Nc segments

(assuming N/Nc is an integer). Each of the segment consists of Nc + Nm bits where

the first Nc bits are the LDPC code bits and the last Nm bits are the marker bits. The

content and position of the periodical markers in the transmitted sequence are known

to and used by the receiver to maintain synchronization. The encoded sequence after

the two encoding steps is ready to be transmitted through the channel. The code rate

of the concatenated code is R = RC · RM, where RC and RM = Nc
Nc+Nm

are the code rates

of the LDPC code and the marker code, respectively.
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Figure 6.3: Flow chart of the encoding and decoding of the concatenated LDPC-marker
code.

6.1.3 Decoder

Inner Marker Decoding

We denote xt
1 = (x1, x2, · · · , xt), xi ∈ {0, 1} for i = 1, 2, . . . , t and yr

1 = (y1, y2, . . . , yr),

yi ∈ {0, 1} for i = 1, 2, . . . , r as the transmitted and the received sequences, respectively.

At the receiver, the corrupted sequence yr
1 is first passed into the inner marker decoder.

Given the received vector yr
1, the inner marker decoder makes full use of the informa-

tion provided by the markers to compute the likelihood p(yr
1|xk) for xk ∈ {0, 1} and

k = 1, 2, . . . , t. To derive the likelihood p(yr
1|xk), the forward-backward algorithm [82]

is used, as will be explained in Sect. 6.2.

The log-likelihood ratio (LLR) value L(xk | y
r
1) is computed by the ratio between

the conditional probabilities Pr(xk = 0 | yr
1) and Pr(xk = 1 | yr

1), i.e.,

L(xk | y
r
1) = ln

Pr(xk = 0 | yr
1)

Pr(xk = 1 | yr
1)
. (6.5)

Applying Bayes’ rule to (6.5), we obtain

L(xk | y
r
1) = ln

p(yr
1 | xk = 0) · Pr(xk = 0)/p(yr

1)
p(yr

1 | xk = 1) · Pr(xk = 1)/p(yr
1)

= ln
p(yr

1 | xk = 0)
p(yr

1 | xk = 1)
+ ln

Pr(xk = 0)
Pr(xk = 1)

(6.6)
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where ln Pr(xk=0)
Pr(xk=1) denotes the a priori LLRs and p(yr

1) denotes the probability density

function of the received vector. Note that the a priori LLRs (i.e., ln Pr(xk=0)
Pr(xk=1) ) equal zero

for LDPC code bits because 0 and 1 in LDPC codewords occur with equal probabili-

ties. Let L be the set of positions where the outer LDPC code bits are located in the

transmitted sequence. Substituting ln Pr(xk=0)
Pr(xk=1) = 0 into (6.6), the LLR L(xk | y

r
1) at bit

position k ∈ L can be computed using

L(xk | y
r
1) = ln

p(yr
1 | xk = 0)

p(yr
1 | xk = 1)

k ∈ L (6.7)

which are then sent to the outer LDPC decoder for further decoding.

Outer LPDC Decoding

We apply the sum-product decoding algorithm (also called belief propagation algo-

rithm) [83] to decode the original information by iteratively passing updated LLR

messages between variable nodes and check nodes of the LDPC code. At the end

of each iteration, the updated a posteriori LLR for each transmitted bit is calculated

and an estimated codeword is obtained by making hard decisions based on the LLRs.

The LDPC decoder subsequently checks whether the estimated codeword satisfies all

check equations. The codeword is successfully decoded if all the check equations are

satisfied; otherwise the iteration continues. If the maximum number of iterations is

reached and not all check equations are satisfied, the decoding fails.
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Figure 6.4: State transition paths for insertion, deletion and transmission when xi+1 is
transmitted on a two-dimensional grid. (1) An insertion error corresponds to a state
transition path across two cells from S i, j to S i+1, j+2; (2) A deletion error corresponds
to a state transition path from S i, j to S i+1, j; (3) A transmission corresponds to a state
transition path from S i, j to S i+1, j+1. Notice that substitution errors are reflected in the
figure. i increases downwards and j increases rightwards.

6.2 Forward-Backward Algorithm Based on the State

Transition Diagram

6.2.1 State Transition Diagram

We define S 0,0 as the initial state when the transmission begins; and S t,r as the end state

when t bits have been sent and r bits have been received. We also define an interme-

diate state S i, j when i bits (i = 1, 2, . . . , t) have been sent and j bits ( j = 0, 1, . . . , r)

have been received. State S i, j may transit to S i+1, j, S i+1, j+1 and S i+1, j+2 if there is a

deletion error, no deletion/insertion error, and an insertion error, respectively, for the

transmitted bit xi+1. The transitions are illustrated in Fig. 6.4. When the state transition

paths corresponding to individual transmitted bits are connected together, a complete

transmission path like the one shown in Fig. 6.5 is formed. For our CID channel, the

complete state transmission path is bounded between the lower boundary (i − j = 1)

and the upper boundary ( j − i = 1).
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Figure 6.5: A complete transmission path over the channel representing a one-to-one
mapping between the received and transmitted sequence on a two-dimensional grid
diagram. The horizontal axis and vertical axis represent the received sequence and the
transmitted sequence, respectively. The three thin lines represent the lower boundary,
diagonal and upper boundary, respectively. The diagonal represents the transmission
path under ideal condition without insertions or deletions while the bold line is the
actual transmission path. The actual transmission path over CID channel must be be-
tween the lower and upper boundaries.

6.2.2 Forward-backward Decoding

In this section, we describe the decoding algorithm that the inner (marker) decoder

used to compute the LLR for each transmitted bit over the CID channel. A transmitted

bit xi is either an LDPC code bit or a marker bit. For an LDPC code bit xi, Pr(xi = 0) =

Pr(xi = 1) = 0.5 because no information about an LDPC code bit xi is provided to the

decoder and the receiver does not know the value of xi. However, when xi is a bit from

the marker, Pr(xi) is a determined value, i.e., (a) Pr(xi = 0) = 0 and Pr(xi = 1) = 1; or

(b) Pr(xi = 0) = 1 and Pr(xi = 1) = 0. The reason is that the exact value and position

of a marker bit xi are accurately known to the receiver.
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Figure 6.6: Possible state transitions when xk is transmitted on condition that S i, j oc-
curs. (a) S i, j is located on the lower boundary (i − j = 1); (b) S i, j is located on the
diagonal (i − j = 0); (c) S i, j is located on the upper boundary ( j − i = 1).

We define T (xi, y j) as the transmission probability that xi is transmitted (with/without

insertion) and the corresponding received bit is y j, i.e.,

T (xi, y j) = Pr(xi) ·C(xi, y j), (6.8)

where C(xi, y j) denotes the probability that the transmitted bit xi and the corresponding

received bit y j have or do not have the same value. If xi = y j, xi has been transmitted

without any substitution error and thus C(xi, y j) = 1 − ps; otherwise, xi is substituted

and C(xi, y j) = ps. Thus, we have

C(xi, y j) =


1 − ps if xi = y j

ps if xi , y j

. (6.9)

Forward Algorithm

The forward quantity αi, j is the joint probability that i bits are transmitted and the j bits

y j
1 = (y1, y2, . . . , y j) are received. In other words, it is the probability that y j

1 has been
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received when the transmission state transits from S 0,0 to S i, j. The forward quantity

αi, j is given by

αi, j = Pr(y j
1, S i, j). (6.10)

Suppose xi is transmitted over the CID channel. According to the relationship between

i and j and the location of the previous state, three scenarios are to be considered in

order to calculate αi, j.

Case 1: S i, j is located on the lower boundary when i − j = 1 and it can be reached

from S i−1, j−1 and S i−1, j, as shown in Fig. 6.6(a).

xi either suffers from a deletion error or is transmitted without any synchronization

errors. (a) S i−1, j is located on the diagonal. Hence either no synchronization errors have

occurred or synchronization errors have occurred in pairs before xi is transmitted. The

transition probability (deletion error) from S i−1, j to S i, j is thus pd. (b) S i−1, j−1 is located

on the lower boundary and a deletion has already occurred before xi is transmitted. The

transition probability (transmission without synchronization errors) from S i−1, j−1 to S i, j

is thus p′t .

Thus, when i − j = 1, αi, j is given by

αi, j = pdαi−1, j + p′tαi−1, j−1T (xi, y j). (6.11)

Case 2: S i, j is located on the diagonal when i − j = 0 and it can be reached from

S i−1, j−2, S i−1, j−1 and S i−1, j, as shown in Fig. 6.6(b).

xi may transmit without synchronization errors or may suffer from a deletion or an

insertion error. (a) The transition probability (deletion error) from S i−1, j to S i, j is p′d

since S i−1, j is located on the upper boundary and an insertion error has occurred before

xi is transmitted. (b) The transition probability (transmission without synchronization

errors) from S i−1, j−1 to S i, j is pt since S i−1, j−1 is located on the diagonal. (c) The tran-

sition probability (insertion error) from S i−1, j−2 to S i, j is 0.5p′i since S i−1, j−2 is located
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on the lower boundary and a deletion error has occurred before xi is transmitted. An

additional factor of 0.5 is necessary because the inserted bit y j−1 can be 0 or 1 with

equal probability.

Thus, when i − j = 0, αi, j is given by

αi, j = p′dαi−1, j + ptαi−1, j−1T (xi, y j) + p′iαi−1, j−2T (xi, y j) Pr(inserted bit = y j−1)

= p′dαi−1, j + ptαi−1, j−1T (xi, y j) +
p′i
2
αi−1, j−2T (xi, y j).

(6.12)

Case 3: S i, j is located on the upper boundary when j− i = 1 and it can be reached

from either S i−1, j−2 or S i−1, j−1, as shown in Fig. 6.6(c).

xi either suffers from an insertion error or transmits without synchronization er-

rors. (a) The transition probability (transmission without synchronization errors) from

S i−1, j−1 to S i, j is p′t since S i−1, j−1 is located on the upper boundary and an insertion

error has occurred. (b) The transition probability (insertion error) from S i−1, j−2 to S i, j

is 0.5pi since S i−1, j−2 is located on the diagonal and the inserted bit y j−1 can be 0 or 1

with equal probability.

Thus, when j − i = 1, αi, j is given by

αi, j = p′tαi−1, j−1T (xi, y j) + piαi−1, j−2T (xi, y j) Pr(inserted bit = y j−1)

= p′tαi−1, j−1T (xi, y j) +
pi

2
αi−1, j−2T (xi, y j).

(6.13)

In summary, given the initial conditions α0,0 = 1 and α0,1 = 0, all other values of

αi, j within the boundaries in Fig. 6.5 can be calculated iteratively.

Backward Algorithm

Similarly, the backward quantity βi, j denotes the probability that the remaining r − j

received bits are yr
j+1 = (y j+1, . . . , yr) given the transmission state S i, j has occurred.
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Figure 6.7: Possible state transitions when xi+1 is transmitted on condition that S i, j has
occurred. (a) S i, j is located on the lower boundary (i − j = 1); (b) S i, j is located on the
diagonal ( j − i = 0); (c) S i, j is located on the upper boundary ( j − i = 1).

The backward quantity βi, j is therefore denoted by

βi, j = Pr(yr
j+1|S i, j). (6.14)

Suppose xi+1 is transmitted through CID channel. According to the relationship be-

tween i and j, three scenarios are to be considered in order to calculate βi, j. Moreover,

the channel error types and accompanying synchronization error probabilities of each

transition over the CID channel depends on the location of S i, j.

Case 1: S i, j is located on the lower boundary when i − j = 1 and it can transit to

S i+1, j+1 or S i+1, j+2, as shown in Fig. 6.7(a).

A deletion has already occurred when S i, j is located on the lower boundary (i− j =

1). From this state, only transmission without synchronization errors and insertion

error are possible. (a) The transition probability (transmission without synchronization

errors) from S i, j to S i+1, j+1 is p′t . (b) The transition probability (insertion error) from

S i, j to S i+1, j+2 is 0.5p′i because the inserted bit y j+1 can be 0 or 1 with equal probability.
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Thus, when i − j = 1, βi, j is given by

βi, j = p′tβi+1, j+1T (xi+1, y j+1) + p′iβi+1, j+2T (xi+1, y j+2) Pr(inserted bit = y j+1)

= p′tβi+1, j+1T (xi+1, y j+1) +
p′i
2
βi+1, j+2T (xi+1, y j+2).

(6.15)

Case 2: S i, j is located on the diagonal when i − j = 0 and it can transit to S i+1, j,

S i+1, j+1 or S i+1, j+2, as shown in Fig. 6.7(b).

Either no synchronization errors have occurred or synchronization errors have oc-

curred in pairs when S i, j is located on the diagonal ( j − i = 0). From this state,

transmission, insertion and deletion may occur and the error probability is determined

by pd, pi, pt from the channel. (a) The transition probability (insertion error) from S i, j

to S i+1, j+2 is 0.5pi since the inserted bit y j+1 can be 0 or 1 with equal probability. (b)

The transition probability (deletion error) from S i, j to S i+1, j is pd. (c) The transition

probability (transmission without synchronization errors) from S i, j to S i+1, j+1 is pt.

Thus, when i − j = 0, βi, j is given by

βi, j = pdβi+1, j + ptβi+1, j+1T (xi+1, y j+1) + piβi+1, j+2T (xi+1, y j+2) Pr(inserted bit = y j+1)

= pdβi+1, j + ptβi+1, j+1T (xi+1, y j+1) +
pi

2
βi+1, j+2T (xi+1, y j+2).

(6.16)

Case 3: S i, j is located on the upper boundary when j − i = 1 and it can transit to

S i+1, j or S i+1, j+1, as shown in Fig. 6.7(c).

An insertion has already occurred when S i, j is located on the upper boundary ( j−i =

1). From this state, only transmission without synchronization errors and deletion error

can occur. The transition probability (transmission without synchronization errors)

from S i, j to S i+1, j+1 and the transition probability (deletion error) from S i, j to S i+1, j are

p′t and p′d, respectively. Hence when j − i = 1, βi, j is given by

βi, j = p′dβi+1, j + p′tβi+1, j+1T (xi+1, y j+1). (6.17)
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In summary, given the initial conditions βt,r = 1 and βt,r−1 = 0, all other values of

βi, j within the boundaries in Fig. 6.5 can be calculated iteratively.

Likelihood

The likelihood expressions for p(yr
1|xi) are first derived in terms of αi, j and βi, j under

three cases, i.e., xi is deleted; xi is transmitted without deletion or insertion error; and

xi suffers from an insertion error. They are derived as follows.

Case 1: Only two scenarios are possible when xi is deleted.

p(yr
1|xi is deleted) = pdαi−1, jβi, j| j=i−1 + p′dαi−1, jβi, j| j=i. (6.18)

Case 2: Three scenarios are possible when xi is transmitted without synchroniza-

tion errors.

p(yr
1|xi is transmitted)

= p′tαi−1, j−1βi, j ·C(xi, y j)| j=i−1

+ ptαi−1, j−1βi, jC(xi, y j)| j=i

+ p′tαi−1, j−1βi, jC(xi, y j)| j=i+1.

(6.19)

Case 3: Only two scenarios are possible when xi is transmitted with an insertion

error.

p(yr
1|xi is inserted) =

p′i
2
αi−1, j−2βi, jC(xi, y j)| j=i +

pi

2
αi−1, j−2βi, jC(xi, y j)| j=i+1. (6.20)

Because all the cases are independent, the overall p(yr
1|xi) is the sum of (6.18),

(6.19) and (6.20), where xi ∈ {0, 1}. The LLRs are subsequently computed using (6.7)

and are used as soft inputs to the LDPC decoder.
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6.3 Simulation Results

In this section, simulations are conducted to investigate the error performance of the

concatenated LDPC-marker code over the CID channel. First, messages are encoded

by the LDPC code and then by the marker code. Then the encoded sequence is trans-

mitted through the CID channel. Finally, the received corrupted sequence is decoded

with the decoding algorithm mentioned in Sect. 6.2. Both the bit error rate (BER) and

block error rate (BLER) are used as metrics to evaluate the performance of the con-

catenated code. For all simulations, we consider pi = pd and set A = r = 0.5 in (6.1).

The (4521, 3552) LDPC code [84] with rate RC = 0.79 is used as the outer code.

In the first set of simulations, regular markers ‘10’ of length Nm = 2 are inserted

at the beginning of each LDPC codeword, and also periodically every Nc = 18 LDPC

code bits. In other words, each marker is followed by 18 LDPC code bits, except the

last marker which is followed only by 3 code bits. Therefore, the total length N of

the transmitted sequence is 5023 bits per codeword and the overall code rate of the

concatenated LPDC-marker code is R = 3552/5023 = 0.71. The BLER and BER

performance of the concatenated code are shown in Fig. 6.8 and Fig. 6.9, respectively,

under different channel insertion, deletion and substitution error rates. For example,

when pi = pd = 3 × 10−3 and ps = 0.01, BLER and BER equals to 8 × 10−3 and

1.7 × 10−4, respectively. As expected, both BLER and BER increase as pi and/or pd

and/or ps increases.

Next, we investigate the effect of the marker length Nm on the concatenated code.

We fix Nc = 18 and use Nm = 2, 3, 4. The markers used are ‘10’, ‘101’ and ‘1010’ while

the corresponding overall code rates are 0.71, 0.67 and 0.64, respectively. Fig. 6.10

plots the BLER curves for concatenated codes with different marker length Nm under

different insertion, deletion and substitution error rates. The simulation result indicates

that the error performance of the concatenated code can be improved as the marker

length Nm increases.
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Figure 6.8: BLER of the concatenated LDPC-marker code over the CID channel. Nc =

18 and Nm = 2.
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Figure 6.9: BER of the concatenated LDPC-marker code over the CID channel. Nc =

18 and Nm = 2.

We also study the effect of marker interval Nc on the error performance of the con-

catenated code. We fix Nm = 2 and use Nc = 18, 24, 30. The corresponding overall

code rates are 0.71, 0.73 and 0.74, respectively. Fig. 6.11 plots BLER curves. It can
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Figure 6.10: BLER of the concatenated LDPC-marker code over the CID channel.
Nc = 18 and Nm = 2, 3, 4.

be observed that the error performance improves as the marker interval Nc decreases.

In other words, inserting more markers enhances the error performance of the con-

catenated LDPC-marker code. The above results indicate that a lower marker code

rate (increases Nm and/or reduces Nc) leads to a better synchronization capability and

hence error performance. It is reasonable because more marker bits can provide more

information for the receiver to locate the inserted and deleted bits more precisely.

Finally, we compare the error performance of the proposed concatenated LDPC-

marker code with the result in [1]. The channel model used in [1] is fully described

by a finite-state machine, i.e., the current event (insertion, deletion or transmission) is

totally dependent on the previous event. The detailed channel model in [1] is described

as follows.

1. When the previous event is transmission, the probability of insertion and deletion

for the current event is pi and pd, respectively. The probability of a consecutive

transmission event is thus pt = 1 − pi − pd.

2. When the previous event is insertion, the probability of insertion and deletion for
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Figure 6.11: BLER of the concatenated LDPC-marker code over the CID channel.
Nm = 2 and Nc = 18, 24, 30.

the current event is 0 and pid, respectively. The probability of transmission event

is pt = 1 − pid. The occurrence of consecutive insertion event is forbidden.

3. When the previous event is deletion, the probability of insertion and deletion

for the current event is pdi and 0, respectively. The probability of transmission

event is pt = 1 − pdi. Again, the occurrence of consecutive deletion event is also

forbidden.

Although the occurrence of consecutive insertion/deletion errors is forbidden in the

channel model described in [1], the insertion event and the deletion event are not guar-

anteed to appear in pairs. For example, the event: insertion→transmission→insertion

is valid in that channel model. Moreover, the synchronization error probabilities are

fixed to pid = pdi = 0.5, which is not consistent with the fact that the subsequent

synchronization error is more likely to occur at a closer position of the preceding one.

In order to make a fair comparison with [1], we set A = 0.5 and r = 1 in (6.1).

Thus, p′d = p′i = 0.5 are consistent with pid = pdi = 0.5 in [1] for subsequent bits after

a synchronization error. Furthermore, the inner marker code with Nm = 2 and Nc = 18
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Figure 6.12: Comparision performance under different channel parameters. pd = pi

increase from 2 × 10−3 to 5 × 10−3 and ps increases from 0 to 0.02. The blue curves
represent the error performance of the proposed code with different substitution error
rates and the black curve represents the error performance of the best code in [1] when
the substitution error rate is 0.01.

is adopted so that both codes have the same code rate 0.71 for a fair comparison.

The BLER curves of the proposed concatenated code over the CID channel and the

BLER curve with the best performance in [1] under the same channel parameters are

compared. The simulation result in Fig. 6.12 shows that the proposed code can perform

much better than the best code in [1].

We also compare the error performance of the proposed concatenated code in

Fig. 6.9 (r = 0.5) and Fig. 6.12 (r = 1). It can be observed that the error perfor-

mance of the concatenated code is improved when r is increased from 0.5 to 1. The

explanation is as follows. We consider the synchronization error bit pair (xan , xbn).
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When r is set to 1, (6.2) to (6.4) become

p′d =


A if an insertion error has occurred to xan

0 if a deletion error has occurred to xan

(6.21)

p′i =


0 if an insertion error has occurred to xan

A if a deletion error has occurred to xan

(6.22)

p′t = 1 − p′i − p′d = 1 − A. (6.23)

The probability that xbn occurs is no longer decreasing with its distance with xan . Thus

xbn is more likely to occur compared with the case r = 0.5. Once xbn has occurred, the

received sequence is re-synchronized and the subsequent LLRs sent to the LDPC code

becomes more accurate.

6.4 Summary

In this chapter, we have proposed a probabilistic channel with correlated synchroniza-

tion errors. We have further concatenated an outer LDPC code with an inner marker

code for such a channel. Explicit decoding algorithm is described in detail based on

the transition path on a two-dimensional transition diagram. Simulation results have

shown that the decoding algorithm is effective in correcting substitution and corre-

lated synchronization errors. Moreover, the error performance is improved when more

markers are inserted in the transmitted sequence. In the next chapter, we will propose

an error correction scheme for another type of data storage system — DNA-based

data storage systems. Specifically, we will present a technique for constructing GC-

balanced DNA sequences with error correction capability.
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Chapter 7

GC-balanced DNA Sequences with

Error Correction Capability for DNA

Storage Systems

7.1 Introduction

Data explosion due to extensive use of social networking and cloud mass storage pro-

duces an immense amount of data. However, a significant amount of data is in the

form of storage. Therefore, it has imposed new challenges to strive for new medium

to store the infrequently used data. Even though magnetic tapes, optical disks, hard

drives, cloud data storages and other data storage systems have made great progresses

in increasing the storage capacity, they are subject to many restrictions. They are prone

to decay and need to be maintained regularly. In addition, they are not friendly to the

environment because they consume energy and release a large amount of heat.

The possibility of storing messages in synthetic deoxyribonucleic acid (DNA) has

been first demonstrated in [18]. It has been proposed that DNA could be a good storage

medium for storing digital data for a long period due to its ultra-high density and

outstanding durability [85]. DNA is a molecule that uses four nucleotide bases to store

91
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Figure 7.1: Digital data is encoded and modulated to DNA sequence. The correspond-
ing DNA sequence is synthesized and stored in the DNA library. Original data is
retrieved by the sequencing, demodulation and decoding processes.

genetic information, i.e., A (Adenine), C (Cytosine), G (Guanine), and T (Thymine).

The potential benefits of DNA storage systems are as follows: (a) the storage density

of DNA can be as high as 1018 bytes/mm3, which is several orders of magnitude higher

than traditional storage medium; and (b) DNA is stable, highly resistant to damage and

can be stored for thousands of years.

The block diagram of a typical DNA-based data storage architecture is depicted

in Fig. 7.1. Media such as text, images, music or videos are firstly converted into bi-

nary sequences with some standard algorithms. Modulation, defined as the mapping

of a binary sequence to a DNA sequence, is then performed. Each binary sequence is

therefore modulated to a DNA sequence consisting of nucleotide bases over an alpha-

bet set {A, C, G, T}. One simple modulation strategy is to map 0 randomly to A or C

and to map 1 randomly to G or T. This type of modulation has been adopted by Church

et al. [20]. The DNA sequence is subsequently synthesized and stored in a DNA stor-

age library. The original digital data can be retrieved by the sequencing, demodulation

and decoding processes

However, synthesizing and sequencing DNA sequences are far from perfect [86].

Modern DNA synthesizers can generate DNA sequences of length up to 250 nucleotides

with an acceptable error rate and the error rate increases significantly as the DNA
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Figure 7.2: Three types of errors in synthesis and sequencing of DNA sequence. In-
sertion and deletion errors are collectively referred to as synchronization errors.

length becomes longer [87] [88]. Besides, DNA sequencing is not perfect and it intro-

duces an average error rate of about 1% per nucleotide [89]. Most errors occurring in

DNA synthesis and sequencing processes are categorized into insertion, deletion and

mutation1 as shown in Fig. 7.2. Moreover, insertion errors and deletion errors are col-

lectively referred to as synchronization errors. One of the main challenges in realizing

DNA storage systems is to design appropriate mechanisms to combat errors.

Several DNA data storage systems have been experimented over the past years.

In [20], Church et al. have adopted a one-bit-to-one-base modulation strategy and

have encoded messages in a way to avoid sequences that are difficult to write or read,

such as repeats, extreme G/C content, or secondary structure. Multiple copies of each

DNA sequence are then synthesized and stored in the DNA library. Since errors rarely

happen in the same place during the sequencing process, errors in a DNA sequence

can potentially be corrected by comparing multiple copies of the same DNA sequence.

Yet, the strategy suffers from a relatively high error rate because it has not deployed

any mechanism to protect the integrity of the DNA sequences. In [21], Goldman et

al. have further implemented a single parity-check code and have overlapped DNA

block contents for a four-fold redundancy. The method is not efficient because the

1Mutation errors occurring in DNA data storage systems are equivalent to substitution errors in
conventional data storage and digital communication systems. In this chapter, mutation errors and
substitution errors may be used interchangeably.
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same data are repeatedly stored in four DNA fragments. Neither of the above two

architectures has implemented error correction scheme beyond a single parity check

code. Furthermore, the two systems do not directly deal with insertion or deletion of

nucleotide bases. Due to the relatively low accuracy of DNA synthesis and sequencing,

the lack of error correction scheme has become a crucial issue.

Recent research works are focusing on the error correction codes adapted to DNA-

based storage systems. In [90], the construction of the constraint code for DNA stor-

age systems is described, taking into account the maximum repetition length and the

balance between AT and GC pairs. An improved algorithm is proposed in [91] to

store information more efficiently considering Hamming distance and run-length con-

straints. The architecture in [92] has implemented an efficient coding technique to

limit the length of repeated occurrences of the same base that are difficult to sequence.

Information is encoded by two independent Reed-Solomon codes in a cascade manner

in [23]. The work in [24] has applied a hybrid coding error protection scheme to ensure

the integrity of the stored data during DNA sequencing.

DNA sequences capable of correcting both synchronization and mutation errors

can store date efficiently and enhance the reliability of a DNA storage system. In

addition, DNA sequences with 50% GC content are less susceptible to errors and more

stable than those with higher or lower GC content. Extreme high or low GC content

may result in more errors during DNA sequencing and synthesis [93]. The effect of GC

constraint on the DNA sequence has been considered in [94], where a GC constraint is

imposed on part of the DNA sequence. The design achieves a GC content close to but

not exactly 50%. As far as we know, no effective DNA sequences with GC constraint

and capable of correcting mutation, deletion or insertion errors have been proposed for

DNA storage systems. For the above reasons, we focus on the construction of GC-

balanced DNA sequence capable of correcting all three types of errors and with a GC

content occupying exactly 50%.

This chapter presents the construction of a GC-balanced DNA sequence with error
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correction capability. Specifically, we first propose a systematic single error correc-

tion code. The proposed code and the designed GC-balanced modulation scheme are

combined to produce GC-balanced DNA sequences with the capability of correcting

insertion, deletion and mutation errors. The rest of the chapter is organized as follows.

Sect. 7.2 starts with the encoding and decoding of the proposed systematic single er-

ror correction code. Sect. 7.3 shows the modulation, construction and decoding of the

designed GC-balanced DNA sequence with a single base error correction. Simulation

results of the proposed code and the designed DNA sequence are shown in Sect. 7.4.

Summary remarks are given in Sect. 7.5.

7.2 Proposed Systematic Error Correction Code

We propose a systematic error correction code based on the Levenshtein code. Being

a subset of the Levenshtein code, the proposed code is not only a systematic code, but

also possesses the capability of correcting a single insertion, deletion or substitution

error [95].

7.2.1 Proposed Systematic Code

The proposed systematic code, denoted by X(n, a,U), has a length of n and is capa-

ble of correcting a single insertion, deletion or substitution error. The message bits

m1,m2, . . . ,mk of length k is encoded to the proposed codeword x1, x2, . . . , xn of length

n by adding r parity check bits p1, p2, . . . , pr, where r = n−k. The parity check bits are

located at the 2i-th positions (i = 0, 1, . . .) as well as the last position of the codeword

while the message bits are located at the remaining positions. The locations of the

parity bits and message bits in the proposed systematic code is illustrated in Fig. 7.3.

Note that we require the last code bit to be a parity bit and the second last code bit to
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Figure 7.3: The locations of the parity bits and message bits in the proposed systematic
code. The proposed codeword x1, x2, . . . , xn is constructed from the message sequence
m1,m2, . . . ,mk and the parity check bits p1, p2, . . . , pr.

be a message bit. For a given k, the code length n can be computed by

n = min ñ s.t. k = ñ − dlog2 ñe − 1 (7.1)

where dñe represents the minimum integer equal to or greater than ñ. For example,

when k = 4, we have ñ = 8, 9 and hence n = 8. When k = 5, we have ñ = 10 and

hence n = 10.

Referring to Fig. 7.3, the code bits can be expressed in terms of the message bits

and parity check bits according to

xi =



p1+log2 i i = 20, 21, . . . , 2r−2,

pr i = n,

mi−dlog2 ie i , 20, 21, . . . , 2r−2 and i , n.

(7.2)

Moreover, we require the code satisfying

X(n, a,U) = {(x1, x2, · · · , xn) ∈ {0, 1}n :
n∑

i=1

i · xi ≡ a mod U, 2n ≤ U ≤ n + 2n−k−1}

(7.3)

where 0 ≤ a ≤ U − 1. The equation governing the code bits can be further re-written
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as

n−1∑
i=1

i,20,21,...,2r−2

i·mi−dlog2 ie+

r−2∑
j=0

2 j ·p j+1+n·pr ≡ a (mod U),

2n ≤ U ≤ n + 2n−k−1.

(7.4)

Theorem 5 There exists at least one U that satisfies 2n ≤ U ≤ n + 2n−k−1.

Proof. Since all n, k and U are positive integers, we only need to prove 2n ≤ n + 2n−k−1.

2n ≤ n + 2n−k−1

⇔ n + 2n−k−1 − 2n ≥ 0

⇔ 2n−k−1 − n ≥ 0

⇔ 2dlog2 ne − n ≥ 0

⇔ dlog2 ne − log2 n ≥ 0⇔ true (7.5)

Theorem 6 For a given specific message of length k and a fixed value U with 2n ≤

U ≤ n+2n−k−1, there exists at least one set of parity-check bits {p1, p2, . . . , pr} satisfying

(7.4).

Proof. Let

α =

n−1∑
i=1

i,20,21,...,2r−2

i·mi−dlog2 ie , (7.6)

β =

r−2∑
j=0

2 j ·p j+1 , (7.7)

γ = n·pr . (7.8)
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Since the parity bits p1, p2, . . . , pr are either 0 or 1, it can be readily proved that

β ∈ {0, 1, . . . , 2r−1 − 1} = {0, 1, . . . , 2n−k−1 − 1} (7.9)

γ ∈ {0, n}. (7.10)

In Theorem 5, it has been proved that 2n−k−1 − n ≥ 0. Therefore, we have

β + γ ∈ {0, 1, . . . , 2n−k−1 − 1} ∪ {n, n + 1, . . . , n + 2n−k−1 − 1}

⇒ β + γ ∈ {0, 1, . . . , 2n−k−1 − 1, 2n−k−1, 2n−k−1 + 1, . . . , 2n−k−1 + n − 1}. (7.11)

In other words, there always exists at least one set of {p1, p2, . . . , pr} such that β+γ = a′

where 0 ≤ a′ ≤ 2n−k−1 + n− 1. There also exists at least one set of {p1, p2, . . . , pr} such

that β + γ = a′ mod U where U ≤ 2n−k−1 + n.

For any given α, we define b ≡ α mod U where 0 ≤ b ≤ U − 1. Moreover, for a

fixed a where 0 ≤ a ≤ U − 1, we can select a set of {p1, p2, . . . , pr} such that

β + γ = a′ =


a − b if a ≥ b

U − (b − a) if a < b
(7.12)

with U ≤ 2n−k−1 + n. Hence we can guarantee

α + β + γ ≡ a mod U. (7.13)

Combining the above results with Theorem 5 completes the proof.

Comparing (7.3) and (2.4) clearly shows that our proposed systematic code is a

subset of the Levenshtein code. The size of a Levenshtein codebook is maximized

when a = 0 [96] and hence, the case a = 0 will be considered in the following. Note

that our proposed code is also applicable to the cases where a , 0.
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7.2.2 Encoding of the Systematic Code

Supposing a = 0, we can rewrite (7.12) as

β + γ = a′ =


0 if b = 0

U − b if b , 0.
(7.14)

For each value of b ∈ {0, 1, . . . ,U − 1}, we pre-evaluate the set of parity check bits

{p1, p2, . . . , pr} such that (7.14) is satisfied. Then, given a message (m1,m2, . . . ,mk),

we can compute α based on (7.6) and hence b ≡ α mod U. Finally, the corresponding

parity check bits can be chosen.

Example: To illustrate the encoding procedures, we consider the message 0010100

1101001 of length k = 14 bits, with the leftmost bit m1 = 0 and the rightmost bit

m14 = 1. Solving (7.1) shows a codeword length of n = 20 bits. We also arbitrarily

choose U = 40 among all values satisfying 2n = 40 ≤ U ≤ 52 = 2n−k−1 + n. Using

(7.6), we have α = 74 and b = 34. From the pre-evaluated parity check sets, we

conclude p1 = p4 = p5 = p6 = 0 and p2 = p3 = 1, i.e., the set of parity check bits

satisfies (7.4). Since the parity check bits are located at the 1st, 2nd, 4th, 8th, 16th

and the last (i.e., 20th) positions while the messages bits are located at the remaining

positions, the codeword is 01010100100110100010, in which the bits in bold are the

parity check bits.

7.2.3 Decoding of the Systematic Code

Since our proposed systematic code is a subset of the Levenshtein code, the decoding

algorithm of our code is the same as that of the Levenshtein code. Below we briefly

review the algorithm, which is depicted in Fig. 7.4.

Let t = (x1, x2, · · · , xn), xi ∈ {0, 1} for i = 1, 2, . . . , n and y = (x′1, x
′
2, · · · , x

′
l), x

′
i ∈

{0, 1} for i = 1, 2, . . . , l be the transmitted and received sequences, respectively. The



100 CHAPTER 7. GC-BALANCED DNA SEQUENCES

Figure 7.4: Flow chart for the decoding of the proposed systematic code.

length of the transmitted sequence n is a constant parameter while the length of the

received sequence l is a random variable. We denote H as the Hamming weight of

the received sequence. Moreover, the syndrome of the received sequence is computed

using

S =

l∑
i=1

x′i · i (mod U). (7.15)

Assuming there is at most one single error within one received codeword, the decoding

algorithms for different error types are divided into three cases, i.e., l = n, l = n+1 and

l = n − 1. If l does not belong to either of these values, the errors cannot be corrected.

Case 1: l = n

1. If S = 0, there is no error in the received codeword.

2. If both 0 < S ≤ n and x′S = 1 are satisfied, the S -th bit was substituted and we

flip the value of bit x′S to 0.

3. If both S ≥ U − n and x′U−S = 0 are satisfied, the (U − S )-th bit was substituted

and we flip the value of bit x′U−S to 1.
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4. Otherwise, the error types cannot be corrected. For example, there is more than

one substitution error within the codeword.

Case 2: l = n+ 1

A single insertion error is assumed to occur within the codeword. The value and

position of the inserted bit can be determined as follows. The bit value u that has been

inserted is determined by comparing S and H, i.e.,

u =



0 if S < H

1 if S > H

x′1 if S = H.

(7.16)

Moreover, the position (denoted by p) that the insertion error occurs can be determined

by solving

S = p · u + W l
p+1 (7.17)

where W l
p+1 is the Hamming weight of sequence (x′p+1, x

′
p+2, · · · , x

′
l).

If a specific p is found, the corrupted codeword with an insertion error can be

corrected by deleting the p-th bit with value u. Otherwise, the corrupted codeword

can be detected but not corrected. For example, the codeword may suffer from two

insertions and one deletion even though the received codeword length is n + 1.

Case 3: l = n− 1

A single deletion error is assumed to occur in the codeword. The bit value v and

position p of the deleted bit can be determined, respectively, by

v =


1 if H < (U − S ) mod U

0 if H ≥ (U − S ) mod U
(7.18)

and

(U − S ) mod U = p · v + W l
p (7.19)
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In (7.19), W l
p is the Hamming weight of sequence (x′p, x

′
p+1, · · · , x

′
l). If a specific p

is found, the corrupted codeword with a deletion error can be corrected by inserting

a bit with value v exactly right before x′p. Otherwise, the corrupted codeword can be

detected but not corrected. For example, two deletions and one insertion may occur

simultaneously in the codeword while the codeword length remains n − 1.

In summary, the proposed systematic code can correct a single insertion, deletion

or substitution error and can detect multiple errors.

7.3 GC-balanced DNA Sequences with Error Correc-

tion Capability

In this section, we design a DNA sequence with GC content occupying exactly 50%

and the proposed GC-balanced DNA sequence can correct a base mutation, insertion

and deletion error [95]. We introduce our strategy in three aspects: modulation, con-

struction and decoding.

7.3.1 Modulation Scheme for GC-balanced DNA

The proposed modulation maps a binary sequence x = (x1, x2, · · · , x2n) to a DNA se-

quenceN with GC content occupying exactly 50%. We define xodd = (x1, x3, · · · , x2n−1)

and xeven = (x2, x4, · · · , x2n), which consist of all the elements at, respectively, odd po-

sitions and even positions of x. With four different nucleotide bases {A, C, T, G}, DNA

can maximally encode two bits per base, which gives four different possibilities. We

adopt the modulation strategy shown in Table 7.1, where the bit pairs 10, 00, 11, 01

are modulated to the bases A, C, T, G, respectively.

Theorem 7 Assume n is an even number. If the Hamming weight of xodd = (x1, x3, · · · , x2n−1)

is exactly n/2 and the modulation shown in Table 7.1 is adopted, a binary sequence
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Table 7.1: Modulation of two consecutive bits x2i−1x2i to DNA nucleotide bases. Bit
pairs 10, 00, 11, 01 are modulated to the bases A, C, T, G, respectively.

nucleotide base A C T G
x2q−1x2q (q = 1, 2, . . .) 10 00 11 01

x of length 2n bits will be modulated to a unique DNA sequence N of length n bases

with GC content occupying exactly 50%.

Proof. If the Hamming weight of xodd is exactly n/2, n/2 of the nucleotide bases will

be C or G (for bit value x2q−1 = 0) and n/2 of the nucleotide bases will be A or T

(for bit value x2q−1 = 1). Hence the resultant DNA sequence will contain exactly 50%

content either C or G.

Note the following:

• A single base insertion or deletion occurring in N results in both xodd and xeven

having a single insertion or deletion error at the same position.

• A single base mutation occurring in N results in three possible scenarios: (a)

both xodd and xeven have a single substitution error at the same position; or (b)

xodd is correct but xeven has a single substitution error; or (c) xodd has a single

substitution error but xeven is correct.

7.3.2 Construction of GC-balanced DNA

A GC-balanced DNA sequence capable of correcting base synchronization or mutation

errors is constructed by combining the proposed systematic code and the aforemen-

tioned modulation scheme. The structure of the resultant DNA sequence is shown in

Fig. 7.5.

A binary sequence to be stored in DNA is first divided into several blocks with

equal length. We require the length of each block be represented by Nlength = 2n −



104 CHAPTER 7. GC-BALANCED DNA SEQUENCES

Figure 7.5: Construction of a DNA sequence from a block of data.

3dlog2 ne−2 for some even number n. The block is further divided into two sub-blocks

xa = (xa1 , xa2 , · · · , xan) with length n and xb with length n − 3dlog2 ne − 2. Starting

from the last bit, we flip the bits in xa one-by-one. Assuming that after flipping the

last z bits, the resultant sub-block x̂a = (xa1 , xa2 , · · · , xan−z , x̄an−z+1 , · · · , x̄an−1 , x̄an) has a

Hamming weight of exactly n/2. Here, x̄ denotes the complement of x. We further

denote x̂a as Xodd.

The syndrome S (x̂a) of x̂a is calculated using

S (x̂a) =

i=n∑
i=1

x̂ai · i (mod 2n). (7.20)

We denote S2(x̂a), with length dlog2 ne+1, as the binary representation of the syndrome

S (x̂a); and z2, with length dlog2 ne, as the binary representation of the flipping number

z. The sequence (z2 S2(x̂a) xb), with length k = n − dlog2 ne − 1, is subsequently

encoded by the proposed code in Sect. 7.2.2 to form a codeword of length n. We

further denote this code as Xeven.

By pairing the bits in Xodd and Xeven and using the modulation scheme in Table 7.1,

we can construct the corresponding DNA sequence N . Since the Hamming weight

of Xodd is exactly n/2, the modulated sequence N is a GC-balanced DNA with GC
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content occupying exactly 50% (see Theorem 7).

In summary, the proposed construction method can encode the sub-blocks xa and

xb with a total length of 2n − 3dlog2 ne − 2 to a GC-balanced DNA sequence with n

bases. Thus, the coding efficiency is given by 2n−3dlog2 ne−2
n .

7.3.3 Decoding of GC-balanced DNA

The constructed DNA sequence may suffer from insertion, deletion or mutation er-

rors during synthesis, storage and sequencing. We first demodulate the potentially

erroneous DNA sequence Ñ to a binary sequence X̃ based on Table 7.1. Two sub-

sequences, denoted by X̃odd and X̃even, are extracted from X̃ using the bits in the

odd-numbered locations and even-numbered locations, respectively.

We assume that only one base error has occurred. Since our proposed systematic

code can correct one synchronization or mutation error, Xeven can be recovered cor-

rectly from X̃even with the error location determined. In other words, the location in

X̃odd where an error occurs is also known. Moreover, our systematic code allows us

to easily separate z2, S2(x̂a) and xb from Xeven. If an insertion error has occurred

in X̃even, the corresponding bit can be removed from X̃odd and Xodd is recovered. If

a deletion or mutation error has occurred in X̃even, the corresponding bit can be re-

inserted or corrected in X̃odd based on (7.20) and the recovered S2(x̂a). After Xodd has

been correctly recovered, the last z bits will be flipped to recover the original xa.

7.3.4 Example

Encoding

We use an example to illustrate the proposed encoding and decoding algorithms of the

GC-balanced DNA sequence. Suppose the length of xa is n = 20 and hence, the length

of xb is determined as n − 3 · dlogn
2e − 2 = 3. Assume the data block, consisting of

the 23 bits, to be stored as a DNA sequence is 01011011001110101111001. Therefore,
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xa = 01011011001110101111 and xb = 001. For the sub-block xa, we can flip the last

z = 5 bits and results in a corresponding sequence x̂a = 01011011001110110000 ≡

Xodd with Hamming weight exactly n/2 = 10.

The syndrome of x̂a, computed using (7.20), is given by S (x̂a) = 2 + 4 + 5 + 7 +

8 + 11 + 12 + 13 + 15 + 16 = 13 (mod 40). Hence S2(x̂a) = 001101, z2 = 00101 and

xb = 001. The sequence (z2 S2(x̂a) xb) = (00101001101001) of length n − dlog2 ne −

1 = 14 is constructed. It is subsequently encoded by the proposed systematic code

to form Xeven ≡ (01010100100110100010) of length n = 20. The parity check bits

011000 are located at the 1st, 2nd, 4th, 8th, 16th and 20th position and all the re-

maining locations are reserved for (z2 S2(x̂a) xb). Xodd = 01011011001110110000

and Xeven = 01010100100110100010 are interleaved to construct the new sequence

X = 0011001110011010010010111100111000000100. Finally, according to Ta-

ble 7.1, the binary sequence X is modulated to a GC-balanced DNA sequence N =

CTCTAGAAGCATTCTACCGC with GC bases occupying exactly 50%. N will be

synthesized and stored in the DNA storage library.

Decoding

Assume the 8th nucleotide base is somehow missing (deleted) during DNA sequenc-

ing. The extracted DNA sequence Ñ = CTCTAGAAGCATTCTACCGC, in which the

underlined base A is deleted. The demodulated binary sequence X̃ = 00110011100110

010010111100111000000100 is subsequently deinterleaved to form X̃odd = 01011010

01110110000 and X̃even = 0101010100110100010. Both X̃odd and X̃even are one bit

shorter than Xodd and Xeven.

X̃even is first decoded according to the decoding algorithm shown in Fig. 7.4. The

deleted bit value v is 0 since U − S = 40 − (2 + 4 + 6 + 8 + 11 + 12 + 14 + 18) =

−35 (mod 40) = 5 < H = 8 according to (7.18). The position p = 8 of the deleted

bit can be determined by (7.19). Therefore, we insert bit 0 before the 8th bit in the
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erroneous X̃even to recover Xeven.

We subsequently remove the parity bits to obtain the sequence (z2 S2(x̂a) xb).

xb can be readily extracted. Realizing that a bit should be re-inserted before the 8th

bit in the erroneous X̃odd and using S2(x̂a) and (7.20), the value of the 8th bit can

be computed (= 1) and X̃odd with a single deletion error can be decoded correctly.

Converting z2 to z and flipping the last z bits of Xodd recovers xa. Finally, we suc-

cessfully extract the original information stored in the DNA, i.e., the concatenation of

xa = 01011011001110101111 and xb = 001.

7.4 Simulation Results

7.4.1 Performance of the Proposed Systematic Code

Simulations are conducted to evaluate the error performance of the proposed system-

atic code under different values of U satisfying (7.4). A random sequence of k × 105

message bits is first generated and divided into N = 105 blocks, each of which contains

k message bits. Then each block of k message bits is encoded into a codeword of n bits

by our proposed systematic code in Sect. 7.2. The encoding procedure is repeated for

every block. Each encoded block is separately transmitted through a “channel” with

bit insertion error probability pi, deletion error probability pd and substitution error

probability ps.

We perform the decoding procedure based on the flow chart in Fig. 7.4 and count

the total number of decoded blocks in error. The block error rate (BLER) is used as

a metric to assess the performance of the proposed code. The values of U satisfying

(7.4) are randomly chosen and the performance for different sets of (n, k, U) in terms

of BLER is shown in Fig. 7.6 and Fig. 7.7.

In Fig. 7.6, only one type of error, namely substitution error, is assumed in the

channel. The results show that for the same k and n, the BLERs are the same for
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Figure 7.6: Performance of the proposed code with different parameters (n, k,U). ps

increases from 10−3 to 10−2 while pd = pi = 0.
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Figure 7.7: Performance of the proposed code with different parameters (n, k,U). ps =

pd = pi increase from 10−3 to 10−2.
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different values of U. In other words, the performance of the proposed systematic code

is not affected by the value of U, as long as U satisfies (7.4). We also notice that the

BLER increases as the codeword length n increases. It is because each code bit suffers

from the same error probability. The longer the codelength, the probability of more

than one bit errors occurring in the codeword increases. Since the systematic code

can correct only one error, the BLER increases with the codelength. Note that even

though codes with shorter lengths perform better in terms of BLER, the information

transmission efficiency (i.e., k/n) is lower. We have further simulated the situations

where only insertions or only deletions exist in the channel. The BLERs are exactly

the same as the curves shown in Fig. 7.6, i.e., when only substitution errors occur.

In other words, when only one type of error occurs, the BLER performance is the

same regardless of the error type (substitution, insertion or deletion). It is reasonable

because the proposed systematic code can correct substitution, insertion or deletion

errors equally well.

In Fig. 7.7, we plot the BLER curves of the proposed code when all three types of

errors occur at the same time and ps = pd = pi. Compared with Fig. 7.6, the BLERs in

Fig. 7.7 are higher for the same set of (n, k, U) simply because errors are occurring with

a higher chance. As in Fig. 7.6, Fig. 7.7 also indicates that (a) the BLER performance

for the same set of (n, k) is independent of U, and (b) the BLER increases with the

codelength.

7.4.2 Performance of the Proposed GC-balanced DNA Sequences

Each block of 23 message bits is encoded into a DNA sequence of 20 bases, as il-

lustrated in the example shown in Sect. 7.3.4. Simulations are conducted to evaluate

the the error performance of the proposed DNA sequence design. A total of 105 DNA

blocks are generated for the simulation. We consider the base error rate instead of bit

error rate during the sequencing of DNA blocks. Assume each base has an error rate of
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Figure 7.8: Performance of encoded and uncoded DNA sequences. Black curve rep-
resents the performance of the encoded DNA sequences and the blue curve represents
the performance of random uncoded DNA sequences. Mutation error probability Ps

increases from 10−3 to 10−2 while Pd = Pi = 0.

Ps, Pd, and Pi, representing base mutation error rate, base deletion error rate and base

insertion error rate, respectively. The demodulated DNA sequences are decoded with

our proposed method.

We first assume only mutations exist within the DNA sequences. The block error

rates of the sequences under different mutation error rates are shown in Fig. 7.8. The

results show that the performance of the encoded DNA sequences in terms of BLER

improves a lot compared with the uncoded DNA. For example, the BLER improves

from 2 × 10−2 to 2 × 10−4 when Ps = 10−3. Simulations are further carried out sep-

arately when there are only insertions or only deletions in the DNA sequences. The

simulation results are found to be identical to those when only mutations occur (i.e.,

Fig. 7.8). Hence the designed DNA sequences can combat mutation, insertion and

deletion equally well.

In Fig. 7.9, we show the simulation results when all three types of errors exist in
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Figure 7.9: Performance of encoded and uncoded DNA sequences. Black curve rep-
resents the performance of the encoded DNA sequences and the blue curve represents
the performance of random uncoded DNA sequences. Ps = Pd = Pi increase from
10−3 to 10−2.

the DNA sequences. Again, the encoded DNA sequences outperform the uncoded ones

substantially. Thus the proposed DNA sequences can correct base errors adequately

and can be readily used in practice.

7.5 Summary

In this chapter, we have proposed a systematic code which is able to correct a single

insertion/deletion/substitution and to detect multiple errors. Combining the proposed

code and the designed modulation scheme, GC-balanced DNA sequences with a sin-

gle base-error-correction capability are constructed. On one hand, GC-balanced DNA

sequence have the maximum endurance to errors during its sequencing and synthesis.

On the other hand, it can correct both insertion/deletion and mutation of the nucleotide

bases. Adopting the coding and modulation strategies can avoid producing redundant
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repetition copies and making more economical use of DNA sequences for data stor-

age. The decoding procedure for the sequences is described and can readily be used in

practice. Simulation results show that the proposed GC-balanced DNA sequences can

correct base errors adequately.



Chapter 8

Conclusions and Suggestions for

Future Work

In this chapter, we summarize the main contributions of the thesis and discuss some

potential directions for future research.

8.1 Main Contributions of the Thesis

In the past two decades, we have experienced an exponential growth of data being gen-

erated, transmitted, processed and stored. Error correction codes play an important role

in ensuring that data is transmitted to the destination reliably and efficiently through

the channel; and that data is stored and retrieved accurately. Besides substitution er-

rors, insertion and deletion errors exist in many practical applications and represent an

important aspect of channel impairments in communication systems and data storage

systems. This thesis investigates and contributes towards error correction codes for

channels impaired by insertion, deletion and substitution errors.

In Chapter 3, we construct a new class of systematic comma-free code to recover

synchronization after insertion, deletion and substitution errors occur. The proposed

code includes the classical F code as a special case and it gives more choices com-

113



114 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

pared with the F code. We also derive the false synchronization probability caused by

different types of errors and analyze the factors affecting false synchronizations.

In Chapter 4, the inner code of the classical concatenated Davey MacKay water-

mark code is optimized. For the symbol-level decoding algorithm, we first propose

a hard-decision decoding based on Hamming distance and then a more accurate soft-

decision decoding based on a new metric called ATP. We further propose an improved

mapping strategy to optimize the inner sparsified codebook based on both better dis-

tance property and lowest density property. The simulation results show that the opti-

mized watermark code with the improved mapping strategy improves the error perfor-

mance compared with the watermark code.

In Chapter 5, we design a concatenated RS-marker code with the capability of

correcting insertion, deletion and substitution errors. With the designed markers, the

inner marker decoder can recover synchronization at codeword boundaries. Simulation

results show that the performance of our code is better than that of the watermark code

at low error rates. Even though our code rate is lower than that of the watermark code,

the decoding complexity is much simpler, which saves a large number of computations

and reduces decoding time.

In Chapter 6, we propose a probabilistic channel model with correlated insertion

and deletion (CID) errors, in addition to substitution errors. The correlated inser-

tion/deletion channel model captures the data dependence adapted to applications such

as the write channel in bit-patterned media recording (BPMR) systems. Furthermore,

we investigate the performance of a concatenated code over this channel. The con-

catenated code consists of an inner marker code used to maintain synchronization

and an outer low-density parity-check (LDPC) code to provide error correction ca-

pability. The forward-backward marker decoding algorithm is elaborated based on a

two-dimensional state transition diagram. Simulation results show that the proposed

concatenated code is effective in combating CID channel with substitution errors.

Finally in Chapter 7, we construct a GC-balanced DNA sequence with error correc-
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tion capability for a DNA-based data storage system. We propose a systematic single

insertion/deletion/substitution error correction code and combine it with the proposed

modulation scheme to construct GC-balanced DNA sequences. On one hand, such

DNA sequences have the maximum endurance to errors during its practical sequenc-

ing and synthesis. On the other hand, it can correct a single insertion/deletion/mutation

base error. The proposed coding scheme can readily be used in practice. It avoids pro-

ducing redundant repetition copies of the data and improves the efficiency of DNA data

storage systems.

8.2 Suggestions for Future Work

Many problems remain open after our investigations. In the following, we propose

some possible future research directions.

In Chapter 5, the performance of the proposed concatenated code is jointly deter-

mined by both the outer RS code and the proposed inner marker code. The factors

affecting the overall performance are the outer code length N, information length K,

length of the primer p, coded symbol group size M, and channel parameters. For the

outer RS (N,K, k) code, K can be any value smaller than 2k − 1. However, the value of

K affects both the error correction capability and the code rate. For the inner marker

code, M affects the block size, and hence the number of blocks in a frame and the

code rate. The performance tradeoff among these different parameters can be further

investigated in the future.

In Chapter 6, we have assumed binary data transmission over the CID channel

with correlated insertion and deletion errors. One potential research direction is to

extend the investigation to M-ary symbols. In Chapter 7, we construct a GC-balanced

DNA sequence with a single base error correction capability by combining a single

insertion/deletion/substitution error correction code with a new modulation scheme.

Future study may include designing GC-balanced DNA sequences with multiple base
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error correction capabilities.
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