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Abstract
The success of machine learning methods heavily relies on the assump-

tion that the test data follows a similar distribution to the training data.

However, this assumption is frequently violated in real-world scenarios.

Detecting distribution shifts between training and inference, referred to

as out-of-distribution (OOD) detection, is crucial to prevent models from

making unreliable predictions. OOD detection is particularly significant

in ensuring the safe use of deep neural networks. Despite its importance

and the surge of research in the vision domain, this problem is often

overlooked in natural language processing (NLP).

This thesis aims to address this gap by proposing and evaluating

novel transformer-based OOD detection approaches for various NLP

classification tasks, such as dialogue intent detection, topic classification,

sentiment classification, and question classification.

First, we present an efficient end-to-end learning framework to reduce

the complexity of training textual OOD detectors. Since the distribution

of OOD samples is arbitrary and unknown in the training stage, previous

methods commonly rely on strong assumptions on data distribution such

as mixture of Gaussians to make inference, resulting in either complex

multi-step training procedures or hand-crafted rules such as confidence

threshold selection for OOD detection. To develop a simplified learning

paradigm for textual OOD detection, we propose to train a (K+1)-way

discriminative classifier by simulating the test scenario during training.

Specifically, we construct a set of pseudo OOD samples in the training

stage, by generating synthetic OOD samples using in-distribution (ID)

features via self-supervision and sampling OOD sentences from easily
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available open-domain datasets. The pseudo outliers are used to train a

discriminative classifier that can be directly applied to and generalize

well on the test task.
Second, we address the challenge of low-resource settings for textual

OOD detection, a critical problem often encountered in the development

of machine learning systems. Despite its significance, this problem has

received limited attention in the literature and remains largely unexplored.

We conduct a thorough investigation of this problem and identify key

research issues. Through our pilot study, we uncover why existing textual

OOD detection methods fall short in addressing this issue. Building on

these findings, we propose a promising solution that leverages latent

representation generation and self-supervision.

Finally, we delve into Transformer-based representation learning for

textual OOD detection. Existing methods commonly adopt the discrimi-

native training objective – maximizing the conditional likelihood ppy|xq –

which is biased and leads to suboptimal OOD detection performance. To

address this issue, we propose a generative training framework based on

variational inference, which directly optimizes the likelihood of the joint

distribution ppx, yq. Specifically, our framework takes into account the

unique characteristics of textual data and leverages the representations

of pre-trained Transformers in an efficient manner.

In summary, this thesis provides novel and effective Transformer-

based approaches to address the challenges of textual OOD detection.

Our proposed methods show significant improvements over existing

state-of-the-art methods, and our findings can have practical applications

in improving the robustness of machine learning models in NLP.
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Chapter 1

Introduction

Over the past decade, there has been significant progress in the de-

velopment of machine learning (ML) models, particularly deep neural

networks (DNNs), thanks to advances in infrastructure, such as the ac-

celerated computation speed of GPUs, and architecture, such as the

large-scale Transformers. Consequently, DNN-based applications have

become increasingly prevalent in our daily lives, including machine

conversation systems (e.g., Microsoft’s Cortana and Apple’s Siri) and

image recognition systems (e.g., systems based on facial recognition and

pedestrian detection). However, ensuring the reliability of these models

is a key concern in ML safety (Hendrycks et al., 2021b), especially for

safety-critical applications such as medical diagnosis and autonomous

driving systems. Reliability can be interpreted as the confidence of the

model in its predictions and the likelihood of failure.
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Unfortunately, it has been found that DNNs are often too confident in

their predictions when presented with anomalous or out-of-distribution

(OOD) inputs, which limits their applicability in high-stakes settings.

Their vulnerability to OOD inputs is largely due to distribution shifts

between the training and test distributions. To make a ML model feasible

for training and development, it is typically necessary to assume that the

training and test distributions are independent and identically distributed

(i.i.d.). However, this closed assumption is often not valid in realistic

scenarios, where the inherent complexity of real-world data makes it

infeasible to collect enough training data to fully capture the target

distribution and account for unknown unknowns.

In response to this challenge, OOD detection with DNNs has gar-

nered substantial attention in the past six years. This technique aims to

enhance a model’s resilience when faced with semantically unknown in-

puts that exhibit significant distribution shifts. Specifically, when applied

to a given target task, OOD detection considers the training data for that

task to be in-distribution (ID), while realistic OOD data is unbounded

and not available during training. The primary objective is to accu-

rately differentiate between ID and OOD inputs while simultaneously

addressing the ID target task.

OOD detection is intensively discussed in the context of computer

2



vision tasks with the flourish of convolutional neural networks (CNNs).

However, despite its crucial importance in numerous natural language

processing (NLP) applications, such as identifying spam and fake news,

detecting OOD intents in dialogue systems, and preventing ethical dilem-

mas, textual OOD detection has not yet received comparable attention.

Meanwhile, the rise of Transformer-based pre-trained language models

(PLMs) has driven significant advancements in a range of mainstream

NLP tasks over the past several years. Nonetheless, current research

on textual OOD detection are still limited to the direct application of

general methods or transfer methods from the visual domain to NLP

tasks, without fully accounting for the intrinsic properties of textual data

and the semantic power of Transformers. The research in this thesis

endeavors to bridge this gap by conducting a systematic and rigorous

study of textual OOD detection with PLMs.

1.1 Challenges

Challenge I: Impractical implementation procedure. Popular meth-

ods tackle the OOD detection problem by developing a specific con-

fidence score based on a model trained on in-distribution (ID) data.

Subsequently, a manually chosen threshold on the confidence score is

employed to differentiate between ID and OOD inputs. Although this
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post-threshold strategy allows for flexibility in controlling the sensitivity

and specificity of the binary OOD detector, it requires expert knowledge

and additional validation data to select a suitable threshold. Moreover,

since the deployment environment is subject to change, manual updates

to the threshold could be necessary, making the process case-specific.

Abandoning the threshold process would require a departure from the

existing learning paradigm for OOD detection, which is challenging

given the unrepresentable nature of actual OOD training data.

Challenge II: Low resource. The process of designing and col-

lecting large-scale labeled data is a demanding and resource-intensive

task. The difficulty is further amplified in textual tasks due to the sub-

jective nature of semantics, making consistently defining and labeling

textual data more difficult than vision data. Consequently, in real-world

scenarios, textual OOD detection often faces low resource challenges,

where the labeled ID dataset contains only a few examples per class.

As the parameters of DNNs increase, training or fine-tuning them on

a small labeled dataset could result in significant overfitting, which is

even more pronounced in textual OOD detection given the large number

of parameters in current pre-trained Transformers (often billions). For

instance, state-of-the-art OOD intent detectors perform worse than ran-

dom guessing in low-resource scenarios. Therefore, it is worth exploring
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low-resource textual OOD detection in more depth.

Challenge III: Biased training objective. Commonly, OOD detec-

tion models update their parameters by minimizing the ID discriminative

loss with respect to the conditional probability ppy | xq, since real OOD

data is challenging to represent. The binary ID vs. OOD classification is

performed based on a heuristic statistic derived from the model, which

can serve as an empirical indicator of the model’s confidence. However,

the ID discriminative loss is tailored to optimize the model only for the

ID task, without explicitly accounting for the detection of anomalous

unknowns. Although some empirical confidence scores have shown

effectiveness, re-designing the training stage of OOD detection methods

to directly target the task goal can be a more promising and fundamen-

tal approach than relying solely on heuristic methods. To the best of

our knowledge, no prior research has systematically investigated this

direction.

1.2 Contributions

In this research, we aims to address these aforementioned challenges of

textual OOD detection. To this end, we undertake a thorough investiga-

tion of the potential of contextualized representations from pre-trained

Transformers to reform the learning paradigm and streamline the de-
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ployment process of textual OOD detection. Our study gives rise to

innovative learning paradigms that significantly improve the efficiency

and effectiveness of textual OOD detection. Moreover, our proposed

methods primarily align with the principles of self-supervised and gen-

erative learning, thereby circumventing the requirement for additional

training data and exhibiting remarkable generalization capabilities. Our

proposed methods have been applied to a wide range of NLP tasks, in-

cluding OOD intent detection in dialogue systems, topic classification,

sentiment analysis, and question classification. The contributions of this

thesis are summarized as follows:

Contribution 1: Self-supervised OOD Detection. To tackle Chal-

lenge I, we present a novel end-to-end learning framework that simplifies

traditional OOD detection approaches by eliminating the manual thresh-

old selection requirement. Our method can yield a model that is readily

applicable to OOD detection tasks after training. Transformers have

been proved to be extremely effective in dealing with various NLP tasks

due to the high contextualization level of the resulting textual represen-

tation. Our work leverages the representation space of Transformers

to generate OOD representations by convex combinations between ID

representations. These OOD representations enable the training of a
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(K+1)-way discriminator, which models OOD data as an abstract class

and can classify an input as belonging to either one of the K ID classes

or the OOD class. We verify the effectiveness and explore the properties

of our framework in the context of OOD intent detection, a commonly

studied textual OOD detection task. Our research has been accepted in

ACL2021 (Zhan et al., 2021).

Contribution 2: Low-resource OOD Detection. For Challenge II, we

investigate textual OOD detection in low-resource settings and highlight

the insufficiency of current techniques in such scenarios. To this end,

we propose a novel approach that involves learning a latent denoising

autoencoder (DAE) in the representation space of Transformers. In our

model, a lightweight DAE is learned in a self-supervised manner and

can enhance the ID dataset by generating samples around the vicinity

of ID representations. As a classic generative model, DAE offers sam-

pling efficiency and guarantees consistency in approximating the target

distribution. We find that the DAE can be easily trained to capture the

distribution of ID representations. In addition, the proposed method

is compatible with our aforementioned (K+1)-way training framework.

We demonstrate our proposed approach could significantly improve the

performance of low-resource OOD intent detection tasks. The proposed
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work has been published in COLING2022 (Zhan et al., 2022).

Contribution 3: A Unified Probabilistic Framework. To address

Challenge III, we propose a principled learning framework to learn better

representations for textual OOD detection. Most existing OOD detection

methods directly operate on the output of the model’s last layer. However,

the upper layers of Transformers are more geared towards producing

ID task-specific representations (Ethayarajh, 2019) that are sub-optimal

for OOD discrimination. To address this, we propose optimizing the

model with respect to the joint distribution ppx, yq instead of ppy|xq.

By doing so, we aim to preserve the information in x that can benefit

OOD detection. We believe that this information can serve as useful

evidence for OOD discrimination, even though it is not relevant to ID

discrimination. We use an amortized variational Bayesian inference

(VI) learning strategy to make the objective ppx, yq tractable. We also

redesign the original VI architecture to better leverage the intermediate

representations in Transformers. We demonstrate the effectiveness of

our proposed framework on various NLP tasks and show that it can

significantly improve the performance of state-of-the-art OOD detectors

by learning better representations.
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Thesis organization. In Chapter 2, we provide an overview of the

background of this thesis, covering topics such as the importance of

OOD detection, general OOD detection methods, textual OOD detec-

tion methods, and the development of Transformer-based models. In

Chapter 3, we present our self-supervised learning framework for ad-

dressing Challenge I. Chapter 4 delves into Challenge II and proposes

a lightweight ID data augmentation method based on latent denoising

autoencoders. For Challenge III, discussed in Chapter 5, we invent a

novel probabilistic representation learning framework for textually OOD

detection. Finally, in Chapter 6, we conclude this thesis and explore

several potential directions for future research.
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Chapter 2

Background and Related

Work

This chapter begins with an introduction to out-of-distribution (OOD)

detection, along with its associated research areas, such as OOD general-

ization, anomaly detection, and more. Additionally, we provide a brief

overview of the evolution of Transformer-based models.

2.1 Foundations

Machine learning safety. The goal of machine learning (ML) safety

is to develop measures and algorithms that can steer ML systems in a

reliable and safe direction, enabling them to withstand the complexity of

real-world environments. In their efforts to provide clarity and direction

to the research community, Hendrycks et al. (2021b) have characterized
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ML safety into two categories: reliability and alignment. Reliability in-

vestigates the out-distribution properties of ML models, while alignment

is concerned with aligning ML models with human values, including

ethical considerations. Although reliability has garnered significant at-

tention from the research community, alignment is still in its infancy due

to the difficulty of defining and specifying human values in a way that

machines can understand. With recent advancements in artificial general

intelligence, such as diffusion models (Saharia et al., 2022; Rombach

et al., 2022) and ChatGPT (Ouyang et al., 2022), alignment is expected

to become an increasingly important focus. In this study, however, our

focus is on the OOD detection task within the reliability branch.

Distribution shift. Reliability in the realm of machine learning fo-

cuses on endowing models with the capability to handle unforeseen

circumstances that were not represented in the training data. It can be

segregated into two specific objectives, namely OOD generalization

and OOD detection. The key difference between these objectives lies

in the extent of distribution shift. The shift can occur in the marginal

distribution ppxq or in both ppyq and ppxq. If the shift occurs only in the

input space X , it is referred to as covariate shift; otherwise, it is called

semantic shift (Yang et al., 2021).
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OOD generalization. The objective of OOD generalization, also

known as OOD robustness, is to improve the performance of ML mod-

els in the presence of covariate shift. Covariate shift is a well-defined

concept in the field of computer vision and includes phenomena such as

adversarial examples (Goodfellow et al., 2015), domain shift (Quinonero-

Candela et al., 2008), changes in image style, blurriness, geographic

location, camera operation, and more. Recently, there has been signif-

icant progress in visual OOD generalization, owing to the availability

of more specific and diverse benchmarks. For instance, Hendrycks et al.

(2021a) introduced four datasets for visual OOD generalization, which

consider visual renditions (ImageNet-R), changes in the image capture

process (StreetView StoreFronts and DeepFashion Remixed), and natural

blurry effects (ImageNet-C). However, the subjective nature of textual

data hinders the development of textual OOD generalization research

to the same level of granularity as the visual domain. Textual OOD

generalization is still limitedly studied in the domain shift scenarios. For

instance, Hendrycks et al. (2020) suggest evaluating the performance of

textual OOD generalization using sentiment analysis datasets from vari-

ous domains, such as Amazon reviews from different product categories.
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OOD detection. The objective of OOD detection is to address the

issue of semantic shift. In scenarios where the model is exposed to

samples from unfamiliar semantic classes, OOD detection mandates the

model to identify these inputs as OOD for further human inspection or to

apply a reliable fallback approach. Conversely, when the model is faced

with samples from the in-distribution (ID) classes that were encountered

during training, it must also predict their corresponding classes with high

accuracy. OOD detection is the focus of this thesis and will be elaborated

in the next section.

Related topics. In the final part of this section, we discuss the dis-

tinctions between OOD detection and other related subjects. Anomaly

detection (Ruff et al., 2021) targets identifying anomalous samples that

deviate from the predetermined normality, which may stem from either

covariate shift or semantic shift. The main distinction between anomaly

detection and OOD detection is that OOD detection necessitates multi-

class ID discrimination, while anomaly detection does not. Novelty

detection (Markou and Singh, 2003) is comparable to anomaly detection

but considers ”abnormal” samples as ”novel” discoveries. On the other

hand, outlier detection (Aggarwal and Yu, 2001) belongs to transduc-

tive learning, whereas OOD detection is inductive. Outlier detection is
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intended to detect an outlier based on the entire set of observations.

2.2 Out-of-distribution Detection

This section provides a detailed discussion of commonly used approaches

and benchmarks for out-of-distribution (OOD) detection. While many of

these methods were originally developed for OOD detection in computer

vision, some of these methods have also been adapted for textual OOD

detection. In this section, we will also discuss these representative

methods and their applications in textual OOD detection.

2.2.1 Post-hoc Methods

Post-hoc approaches are the most widely used methods for OOD de-

tection. These methods involve deriving a statistic from a trained in-

distribution (ID) model that can serve as a measure of predictive con-

fidence. The key advantages of post-hoc methods are that they are

model-agnostic and do not require additional gradient updates, which

have contributed to their widespread adoption for OOD detection.

The pioneering work MSP (Hendrycks and Gimpel, 2017) proposes

to use the maximum softmax probability as the ID confidence score. It

is the first work for OOD detection with deep neural networks (DNNs)

and defines the evaluation protocols for OOD detection. Hendrycks and
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Gimpel (2017) also apply MSP to textual OOD detection task. MSP

has been the most famous baseline for OOD detection. Thereafter,

OOD detection has attracted increasing attention in the community. The

following work ODIN (Liang et al., 2018) proposes to use temperature

scaling and add small perturbations to inputs to obtain more separable

sfotmax outputs for in- and out-of-distribution images. Lee et al. (2018b)

propose to use the input’s minimal Mahalanobis distance (MD) with

respect to ID class centroids. MD is widely applied for visual and textual

OOD detection and among the best methods for a long time (Ren et al.,

2021). Liu et al. (2020) propose to employ energy-based OOD scores

derived from the logits of the softmax layer to discriminate ID and OOD

examples.

Besides these OOD scores derived around the softmax layer (top

and penultimate layers of DNNs), following works take deeper steps to

investigate the intermediate layers and gradients of DNNs. For example,

GRAM (Sastry and Oore, 2020) proposes to compute Gram matrices of

hidden states and identify OOD examples by comparing the range of

Gram matrix values with the respective observations over the training

data. GradNorm (Huang et al., 2021) finds out that the vector norm of

parameter gradients (backpropagated from the KL divergence between

the softmax output and a uniform probability) could be an effective
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indicator for predictive confidence. ReAct (Sun et al., 2021) points out

that the intermediate activations of DNNs exhibit differently between

ID and OOD examples and the rectified activations make ID and OOD

more separable. distribution.

2.2.2 Uncertainty Estimation Methods

In addition to these post-hoc OOD detection methods discussed above,

the second line of OOD detection methods takes an unsupervised perspec-

tive and tries to address the OOD detection problem by solving a more

general problem – density estimation. Their intuition is that learning as

much as possible knowledge about the density of the training ID distri-

bution can help us to solve any problem related to the data (Schölkopf

et al., 1999). Their learning target is the density function of the training

set – pIDpxq – such that OOD examples are assumed to yield lower

probabilities than the ID ones. However, in high dimensional spaces, this

assumption does not hold in practice and many previous works (Choi

et al., 2018) have found that OOD examples may be assigned higher

likelihoods than ID examples. Recent works (Ren et al., 2019; Nalis-

nick et al., 2019; Morningstar et al., 2021) are still trying to correct this

pathology. It is worth mentioning that according to Morningstar et al.

(2021), the likelihoods in high-dimensional spaces could be affected by
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other state configurations besides the probability, and they propose to

address the issue by conditioning OOD detection on multiple summary

statistics.

2.2.3 Data Augmentation Methods

Data augmentation methods in the vision domain have made significant

progress in recent times and have demonstrated a more promising ap-

proach for OOD detection than the classical solutions mentioned earlier.

For example, the Mixup approach, as observed by (Thulasidasan et al.,

2019), may result in models that could produce better softmax proba-

bilities that are more consistent with the true likelihood of an accurate

prediction. The Outlier Exposure (OE) method proposed by Hendrycks

et al. (2019) suggests using carefully chosen representative OOD data

to expose the model to OOD learning signals. Similarly, Meinke and

Hein (2020) adopt the same approach of utilizing additional OOD data.

Specifically, OE minimizes the KL divergence between the softmax

probability of OOD data and a uniform distribution. PixMix (Hendrycks

et al., 2022b) is the new sate-of-the-art visual OOD detection method

though comprehensive evaluations(Yang et al., 2022). PixMix has been

proposed as a solution not only for OOD detection but also for other AI

safety tasks such as OOD generalization and prediction consistency. It is
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the first approach that has demonstrated competitive performance across

all AI safety tasks. Despite its simplicity, PixMix is an effective data

augmentation technique that blends an original image with complex frac-

tal images. The authors point out that the inherent structural complexity

of fractals can substantially improve model reliability.

2.2.4 Benchmarks and Metrics

Threshold-independent evaluation metrics include AUROC, FPR@95

and AUPR are frequently used in OOD detection (Yang et al., 2022). Re-

cently, Khosla and Gangadharaiah (2022) argue that threshold-dependent

metrics, such as detection accuracy and F1-scores, may offer more in-

sight into the OOD detector’s generalization ability. The following

chapters will provide more details on these metrics.

While benchmarks for visual OOD detection have flourished, there

is currently a lack of datasets specifically designed for textual OOD

detection. MNIST (Mu and Gilmer, 2019), ImageNet (Krizhevsky et al.,

2017), CIFAR-10 and CIFAR-100 (Krizhevsky and Hinton, 2009) are

commonly used benchmark datasets for visual OOD detection. In or-

der to make visual OOD detection applicable in large-scale real-world

scenarios, a recent proposal by Hendrycks et al. (2022a) introduces the

Species dataset that comprises thousands of classes and complex scenes.
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This dataset serves as a strong basis for the further development of visual

OOD detection for practical purposes.

There has been less progress on developing benchmarks for textual

OOD detection compared to the visual domain. CLINC150 (Larson

et al., 2019) is an OOD intent detection dataset for the task of detecting

OOD utterances in dialogue systems. Hendrycks et al. (2020) evaluate

the textual OOD detection performance of Transformers by taking SST-

2 (Socher et al., 2013) as the ID dataset and five additional datasets from

various NLP tasks as OOD datasets. Zhou et al. (2021) further extend

it by including more NLP tasks such as topic classification, question

classification and natural language inference. However, creating bench-

mark datasets that are specifically designed for evaluating textual OOD

detection would be a significant step forward, similar to the impact that

the Species dataset had in the vision domain.

2.3 Textual OOD Detection

The significance of textual OOD detection in ensuring the robustness of

NLP applications, such as dialogue systems, has led to a surge in research

interest. A classical OOD detection task in the textual domain is OOD

intent detection in dialogue systems, which requires detecting utterances

with unknown intents. In the general textual OOD detection context,
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recent studies (?Podolskiy et al., 2021; Zhou et al., 2021) have explored

the application of general or visual OOD methods to textual scenarios

and investigated the OOD characteristics of Transformers. In Chapter 5,

we present a general variational framework specifically designed for

textual OOD detection. Throughout the remainder of this section, we

will be introducing exemplary works that have addressed textual OOD

detection.

The first line of works (Hendrycks et al., 2020; Shu et al., 2017; Ryu

et al., 2018, 2017) uses some statistic as the confidence score of whether

an example is OOD or not. Hendrycks and Gimpel (2017) point out that

the negative probability outputted by the softmax function can be a good

confidence metric for OOD detection. Shu et al. (2017) define a binary

classification task for every in-domain class and used the maximum

probability among all these binary classifiers as the confidence score.

Ryu et al. (2018) develop an adversarial training strategy inspired by

GAN for OOD intent detection. The discriminator in GAN was trained

to assign lower scores to OOD examples. Ryu et al. (2017) employ an

autoencoder trained on in-domain examples and used the reconstruction

score as the OOD indicator. However, all these methods require manual

effort in selecting a proper threshold for OOD discrimination.

The second line of works (Lin and Xu, 2019; Zhang et al., 2021; Yan
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et al., 2020) proposes to learn decision boundaries for OOD examples

under some assumption of data distribution, e.g., mixture of Gaussians.

OOD examples are assumed to lie in the low-density areas of utterance

distribution. Yan et al. (2020) propose to model the in-domain examples

by a mixture of Gaussian distributions and select a margin to constrain

the variance of each in-domain Gaussian component. Zhang et al. (2021)

also take the mixture of Gaussian assumption on in-domain data distri-

bution but proposed to automatically learn the variance of the Gaussian

components.

Different from previous methods, our work presented in Chapter 3

propose to directly learn a pK`1q-way classifier in an end-to-end manner.

We create OOD learning signals during training by leveraging external

data or constructing simulated OOD examples with self-supervised in-

formation.

Moreover, few-shot textual OOD detection is under-explored and

has never been investigated in a strictly low-resourced setting. The most

related work is DNNC proposed in Zhang et al. (2020), which tries

to mitigate the data-scarcity problem in the OOD intent detection task

by fine-tuning RoBERTa on external large natural language inference

datasets. In Chapter 4, however, we consider using the few-shot labeled

examples as the only training resource.
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2.4 Transformer-based Pre-trained Language

Models

Pre-trained language models have become a popular and effective ap-

proach for natural language processing (NLP) tasks in recent years (Raf-

fel et al., 2020). These models are typically trained on massive amounts

of text data to general contextualized text representations, which can then

be fine-tuned on specific downstream tasks such as sentiment analysis,

named entity recognition and natural language inference.

Learning contextualized text representation has been a fundamental

target in NLP. Early works(Mikolov et al., 2013; Pennington et al., 2014)

have made it possible to represent words in a continuous space. However,

these methods result in static word embeddings, without accounting for

the specific context of the words. Thus a key problem arises from

these methods is that all the senses of polysemous words are limited to

share a fixed representation, which is not desirable in piratical. To this

end, the pioneering work ELMo (Peters et al., 2018) proposes to use a

pre-trained bidirectional LSTM to extract contextualized embeddings,

allowing it to capture more nuanced meaning compared to traditional

word embeddings. However, the architectures of ELMo are task-specific

and need additional efforts to adapt cross various tasks.

22



Subsequently, Transformer-based pre-trained language models (Vaswani

et al., 2017) start to be prominent in contextualized representation learn-

ing. These models can be classified into three categories based on their

architecture.

The first line is encoder-based Transformers. The most representative

work in this line is BERT (Devlin et al., 2019), namely Bidirectional

Encoder Representations from Transformers. BERT proposes to pre-

train a stack of Transformer encoder layers on a large set of corpus includ-

ing BooksCorpus (Zhu et al., 2015) and English Wikipedia. Transformer-

based architecture has strong capabilities in capturing the left and right

context of word spans with the low-cost operation attention. Moreover,

BERT proposes an unsupervised pre-training objective called ”masked

language model” (MLM). This objective involves randomly masking

tokens in the input, and the goal is to predict the masked tokens at the out-

put layer. BERT has been widely utilized as the representation extractor

in almost all natural language understanding tasks, and it eliminates the

requirement for task-specific engineering. The family of BERT models

has flourished. For example, RoBERTa (Liu et al., 2019) propose to train

the model longer with bigger batches and longer sequence to achieve

better performance. ALBERT (Lan et al., 2020) reduce the parameter

scale of BERT by factorized embedding parameterization and cross-layer
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parameter sharing.

The second line is decoder-based Transformers that takes a lan-

guage generation perspective. The most representative work is the GPT

series (Brown et al., 2020; Radford et al., 2019, 2018). The GPT mod-

els train a multi-layer Transformer decoder using the autoregressive

objective, and the resulting hidden states can serve as contextualized

representations for downstream NLP tasks. In a recent development,

InstructGPT (also known as GPT-3.5) has been utilized for open-domain

conversation tasks, leading to the creation of ChatGPT, a chatbot that has

been hailed as a significant step towards artificial general intelligence.

The third class of works pertains to encoder-decoder based Trans-

formers, which employ the traditional Transformer architecture con-

sisting of an encoder and a corresponding decoder. Models such as

BART (Lewis et al., 2019) and T5 (Raffel et al., 2020) fall into this

category. BART explores a flexible random corruption function to en-

hance masked language modeling, while T5 reformulates various NLP

tasks such as machine translation, abstract summarization, and text clas-

sification as text-to-text tasks. Additionally, T5 proposes a large-scale

corpus called C4. The findings in T5 have propelled the research of

Transformer-based pre-trained language models to next level.

In this thesis, we focus on using BERT family models for our research
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on textual OOD detection, as it is a natural language understanding task.

However, it would be worthwhile to explore in-depth the models from

the other two categories in future work.
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Chapter 3

Self-supervised OOD

Detection

3.1 Introduction

Conversational system is becoming an indispensable component in a

variety of AI applications and acts as an interactive interface provided to

users to improve user experience. Language understanding is essential

for conversational systems to provide appropriate responses to users,

and intent detection is usually the first step of language understanding.

The primary goal is to identify diverse intentions behind user utterances,

which is often formalized as a classification task. However, intent classes

defined during training are inevitably inadequate to cover all possible

user intents at the test stage due to the diversity and randomness of

user utterances. Hence, out-of-scope (or unknown) intent detection is

26



essential, which aims to develop a model that can accurately identify

known (seen in training) intent classes while detecting the out-of-scope

classes that are not encountered during training.

Due to the practical importance of out-of-scope intent detection, re-

cent efforts have attempted to solve this problem by developing effective

intent classification models. In general, previous works approach this

problem by learning decision boundaries for known intents and then us-

ing some confidence measure to distinguish known and unknown intents.

For examples, LMCL (Lin and Xu, 2019) learns the decision boundaries

with a margin-based optimization objective, and SEG (Yan et al., 2020)

assumes the known intent classes follow the distribution of mixture of

Gaussians. After learning the decision boundaries, an off-the-shell out-

lier detection algorithm such as LOF (Breunig et al., 2000) is commonly

employed to derive confidence scores (Yan et al., 2020; Shu et al., 2017;

Lin and Xu, 2019; Hendrycks and Gimpel, 2017). If the confidence

score of a test sample is lower than a predefined threshold, it is identified

as an outlier.

However, it may be problematic to learn decision boundaries solely

based on the training examples of known intent classes. First, if there

are sufficient training examples, the learned decision boundaries can

be expected to generalize well on known intent classes, but not on the
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unknown. Therefore, extra steps are required in previous methods, such

as using an additional outlier detection algorithm at the test stage or

adjusting the confidence threshold by cross-validation. On the other

hand, if there are not sufficient training examples, the learned boundaries

may not generalize well on both known and unknown intents. As a

result, these methods often underperform when not enough training data

is given. Hence, it is important to provide learning signals of unknown

intents at the training stage to overcome these limitations.

In contrast to previous works, we adopt a different approach by

explicitly modeling the distribution of unknown intents. Particularly,

we construct a set of pseudo out-of-scope examples to aid the training

process. We hypothesize that in the semantic feature space, real-world

outliers can be well represented in two types: “hard” outliers that are

geometrically close to the inliers and “easy” outliers that are distant from

the inliners. For the “hard” ones, we construct them in a self-supervised

manner by forming convex combination of the features of inliers from

different classes. For the “easy” ones, the assumption is that they are very

unrelated to the known intent classes, so they can be used to simulate

the randomness and diversity of user utterances. They can be easily

constructed using public datasets. For example, in our experiments, we

randomly collect sentences from datasets of other NLP tasks such as

28



question answering and sentiment analysis as open-domain outliers.

In effect, by constructing pseudo outliers for the unknown class

during training, we form a consistent pK ` 1q classification task (K

known classes + 1 unknown class) for both training and test. Our model

can be trained with a cross-entropy loss and directly applied to test

data for intent classification and outlier detection without requiring any

further steps. As shown in Figure 3.1 (better view in color and enlarged),

our method can learn better utterance representations, which make each

known intent class more compact and push the outliers away from the

inliers. Our main contributions are summarized as follows.

• We propose a novel out-of-scope intent detection approach by

matching training and test tasks to bridge the gap between fitting

to training data and generalizing to test data.

• We propose to efficiently construct two types of pseudo outliers

by using a simple self-supervised method and leveraging publicly

available auxiliary datasets.

• We conduct extensive experiments on four real-world dialogue

datasets to demonstrate the effectiveness of our method and per-

form a detailed ablation study.
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Figure 3.1: t-SNE visualization of the learned embeddings
of the test samples of CLINC150. Top: Previous K-way
training; Bottom: Our proposed pK ` 1q-way training. Better
view in color and enlarged.

3.2 Methodology

Problem Statement In a dialogue system, given K predefined intent

classes Sknown “ tCiu
K
i“1, an unknown intent detection model aims at

predicting the category of an utterance u, which may be one of the

known intents or an out-of-scope intent Coos. Essentially, it is a K ` 1

classification problem at the test stage. At the training stage, a set of
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Figure 3.2: An illustration of our proposed method. We use
BERT as the utterance encoder. At training stage, we train
a (K+1)-way classifier by constructing two types of pseudo
outliers. The open-domain outliers are collected from an
auxiliary dataset disjoint from both the training and test data.
The synthetic self-supervised outliers are generated during
training by random convex combinations of features of inliers
from different known classes.

N labeled utterances Dl “ tpxi, ciq | ci P SknownquNi“1 is provided for

training. Previous methods typically train a K-way classifier for the

known intents.

Overview of Our Approach The mismatch between the training and

test tasks, i.e., K-way classification vs. pK ` 1q-way classification, leads

to the use of strong assumptions and additional complexity in previous

methods. Inspired by recent practice in meta learning to simulate test

conditions in training (Vinyals et al., 2016), we propose to match the

training and test settings. In essence, as shown in Figure 3.2, we formal-
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ize a pK ` 1q-way classification task in the training stage by constructing

out-of-scope samples via self-supervision and from open-domain data.

Our method simply trains a pK ` 1q-way classifier without making any

assumption on the data distribution. After training, the classifier can be

readily applied to the test task without any adaptation or post-processing.

In the following, we elaborate on the details of our proposed method,

including representation learning, construction of pseudo outliers, and

discriminative training.

3.2.1 Representation Learning

We employ BERT (Devlin et al., 2019) – a deep Transformer network as

text encoder. Specifically, we take the d-dimensional output vector of the

special classification token [CLS] as the representation of an utterance u,

i.e.,

h “ BERTpuq P Rd,

where d “ 768 by default. The training set Dl is then mapped to Dtr
l “

tphi, ciq | hi “ BERTpuiq, pui, ciq P Dlu
N
i“1 in the feature space.

3.2.2 Construction of Outliers

We construct two different types of pseudo outliers to be used in the

training stage: synthetic outliers that are generated by self-supervision,
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and open-domain outliers that can be easily acquired.

Synthetic Outliers by Self-Supervision To improve the generalization

ability of the unknown intent detection model, we propose to generate

“hard” outliers in the feature space, which may have similar representa-

tions to the inliers of known intent classes. We hypothesize that those

outliers may be geometrically close to the inliers in the feature space.

Based on this assumption, we propose a self-supervised method to gen-

erate the “hard” outliers using the training set Dtr
l .

Specifically, in the feature space, we generate synthetic outliers by

using convex combinations of the features of inliers from different intent

classes:

hoos “ θ ˚ hβ ` p1 ´ θq ˚ hα, (3.1)

where hβ and hα are the representations of two utterances which are

randomly sampled from different intent classes in Dtr
l , i.e., cβ ‰ cα,

and hoos is the synthetic outlier. For example, θ can be sampled from a

uniform distribution Up0, 1q. In this case, when θ is close to 0 or 1, it will

generate “harder” outliers that only contain a small proportion of mix-up

from different classes. In essence, “hard” outliers act like support vectors

in SVM (Cortes and Vapnik, 1995), and “harder” outliers could help to
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train a more discriminative classifier.

The generated outliers hoos are assigned to the class of Coos, the

pK ` 1q-th class in the feature space, forming a training set

Dtr
co “ tphoosi , ci “ Coosqu

M
i“1. (3.2)

Notice that since the outliers are generated in the feature space, it is very

efficient to construct a large outlier set Dtr
co.

Open-Domain Outliers In practical dialogue systems, user input can

be arbitrary free-form sentences. To simulate real-world outliers and

provide learning signals representing them in training, we propose to

construct a set of open-domain outliers, which can be easily obtained.

Specifically, the set of free-form outliers Dfo can be constructed by

collecting sentences from various public datasets that are disjoint from

the training and test tasks. There are many datasets available, including

the question answering dataset SQuaD 2.0 (Rajpurkar et al., 2018), the

sentiment analysis datasets Yelp (Meng et al., 2018) and IMDB (Maas

et al., 2011), and dialogue datasets from different domains.

In the feature space, Dfo is mapped to Dtr
fo “ tphoosi , ci “ Coosq |

hoosi “ BERTpuiq, ui P DfouHi“1.

Both synthetic outliers and open-domain outliers are easy to con-
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struct. As will be demonstrated in Section 3.3, both of them are useful,

but synthetic outliers are much more effective than open-domain outliers

in improving the generalization ability of the trained pK ` 1q-way intent

classifier.

3.2.3 Discriminative Training

After constructing the pseudo outliers, in the feature space, our training

set Dtr now consists of a set of inliers Dtr
l and two sets of outliers Dtr

co

and Dtr
fo, i.e., Dtr “ Dtr

l YDtr
co YDtr

fo and |Dtr| “ N `M `H. Therefore,

in the training stage, we can train a pK ` 1q-way classifier with the intent

label set S “ Sknown Y tCoosu, which can be directly applied in the test

stage to identify unknown intent and classify known ones. In particular,

we use a multilayer perceptron network, Φp¨q, as the classifier in the

feature space. The selection of the classifier is flexible, and the only

requirement is that it is differentiable. Then, we train our model using a

cross-entropy loss:

L “ ´
1

|Dtr|

ÿ

Dtr

log
exppΦphiq

ci{τq
ř

jPS exppΦphiqj{τq
,

where Φphiq
ci refers to the output logit of Φp¨q for the ground-truth class

ci, and τ P R` is an adjustable scalar temperature parameter.

35



3.3 Experiments

CLINC150 StackOverflow Banking M-CID-EN
Methods Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1 Accuracy Macro-F1

25%

MSP 66.60 51.20 33.94 45.68 48.15 48.47 52.05 43.14
DOC 64.43 44.60 60.68 60.51 37.78 46.35 49.32 46.59
SEG 72.86 65.44 47.00 52.83 51.11 55.68 44.51 50.14

LMCL 68.57 62.42 41.60 48.21 52.77 56.73 41.44 46.99
Softmax 76.50 67.74 46.17 50.78 57.88 58.32 41.95 45.46

Ours 88.44 80.73 68.74 65.64 74.11 69.93 87.08 79.67

50%

MSP 68.61 51.20 56.33 62.92 53.83 65.33 61.21 54.33
DOC 62.46 70.01 61.62 68.97 58.29 57.30 59.97 62.28
SEG 77.05 79.42 68.50 74.18 68.44 76.48 67.91 72.37

LMCL 78.63 80.42 64.34 71.80 63.59 73.99 63.42 69.04
Softmax 82.47 82.86 65.96 71.94 67.44 74.19 64.72 69.35

Ours 88.33 86.67 75.08 78.55 72.69 79.21 81.05 79.73

75%

MSP 73.41 81.81 76.73 77.63 71.92 80.77 72.89 77.34
DOC 74.63 78.63 63.98 62.07 72.02 78.04 69.79 71.18
SEG 81.92 86.57 80.83 84.78 78.87 85.66 75.73 79.97

LMCL 84.59 88.21 80.02 84.47 78.66 85.33 77.11 80.96
Softmax 86.26 89.01 77.41 82.28 78.20 84.31 76.99 80.82

Ours 88.08 89.43 81.71 85.85 81.07 86.98 80.24 82.75

Table 3.1: Overall accuracy and macro f1-score for unknown
intent detection with different proportion of seen classes. For
each setting, the best result is marked in bold.

In this section, we present the experimental results of our proposed

method on the targeted task of unknown intent detection. Given a test

set comprised of known and unknown intent classes, the primary goal

of an unknown intent detection model is to assign correct intent labels

to utterances in the test set. Notice that the unknown intent label Coos is

also included as a special class for prediction.

3.3.1 Datasets and Baselines

We evaluate our proposed method on four benchmark datasets as follows,

three of which are newly released dialogue datasets designed for intent

detection. The statistics of the datasets are summarized in Table 3.2.
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Dataset Vocab Avg. Length Samples Classes

CLINC150 8,376 8.31 23,700 150
StackOverflow 17,182 9.18 20,000 20
Banking 5028 11.9 13,083 77
M-CID-EN 1,254 6.74 1,745 16

Table 3.2: Dataset statistics.

CLINC150 StackOverflow Banking M-CID-EN
Methods Unknown Known Unknown Known Unknown Known Unknown Known

25%

MSP 73.20 50.62 22.59 50.30 49.98 48.39 56.27 37.86
DOC 71.08 43.91 66.11 59.39 31.41 47.14 53.08 44.92
SEG 79.90 65.06 46.17 54.16 53.22 55.81 42.73 51.99

LMCL 75.61 62.01 38.85 50.15 55.29 56.81 36.99 49.50
Softmax 83.04 67.34 45.52 51.83 62.52 58.10 35.39 46.22

Ours 92.35 80.43 74.86 63.80 80.12 69.39 91.15 76.80

50%

MSP 57.78 68.03 35.18 70.09 29.31 66.28 58.55 53.80
DOC 57.62 70.17 47.96 71.07 49.88 57.50 47.22 64.16
SEG 78.02 79.43 60.89 75.51 60.42 76.90 61.04 73.80

LMCL 79.89 80.42 53.12 71.80 50.30 74.62 51.11 71.29
Softmax 84.19 82.84 56.80 73.45 60.28 74.56 56.30 70.98

Ours 90.30 86.54 71.88 79.22 67.26 79.52 82.44 79.39

75%

MSP 57.83 82.02 41.73 80.03 23.86 81.75 39.56 80.50
DOC 64.62 78.76 49.50 62.91 39.47 78.72 49.41 72.99
SEG 76.12 86.67 62.30 86.28 54.43 86.20 51.51 82.34

LMCL 80.42 88.28 61.40 84.47 53.26 85.89 54.61 83.16
Softmax 83.12 89.61 54.07 84.11 56.90 84.78 58.73 82.66

Ours 86.28 89.46 65.44 87.22 60.71 87.47 69.00 83.89

Table 3.3: Macro f1-score of the known classes and f1-
score of the unknown class with different proportion of seen
classes. For each setting, the best result is marked in bold.

CLINC150 (Larson et al., 2019) is a dataset specially designed for

out-of-scope intent detection, which consists of 150 known intent classes

from 10 domains. The dataset includes 22, 500 in-scope queries and

1, 200 out-of-scope queries. For the in-scope ones, we follow the original

splitting, i.e., 15, 000, 3, 000 and 4, 500 for training, validation, and testing

respectively. For the out-of-scope ones, we group all of the 1, 200 queries

into the test set.

StackOverflow (Xu et al., 2015) consists of 20 classes with 1, 000
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(a) (b) (c)

(d) (e) (f)

Figure 3.3: Effect of the number of pseudo outliers on
CLINC150. (a), (b), and (c) display overall accuracy, f1-
score on the unknown class and overall macro f1-score with
varying number of self-supervised outliers respectively. (d),
(e), and (f) display the corresponding results with varying
number of open-domain outliers.

examples in each class. We follow the original splitting, i.e., 12, 000 for

training, 2, 000 for validation, and 6, 000 for test.

Banking (Casanueva et al., 2020) is a fine-grained intent detection

dataset in the banking domain. It consists of 9, 003, 1, 000, and 3, 080

user queries in the training, validation, and test sets respectively.

M-CID (Arora et al., 2020) is a recently released dataset related

to Covid-19. We use the English subset of this dataset referred to as

M-CID-EN in our experiments, which covers 16 intent classes. The

splitting of M-CID-EN is 1, 258 for training, 148 for validation, and 339
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for test.

We extensively compare our method with the following unknown

intent detection methods.

• Maximum Softmax Probability (MSP) (Hendrycks and Gimpel,

2017) employs the confidence score derived from the maximum

softmax probability to predict the class of a sample. The idea under

the hood is that the lower the confidence score is, the more likely

the sample is of an unknown intent class.

• DOC (Shu et al., 2017) considers to construct m 1-vs-rest sigmoid

classifiers for m seen classes respectively. It uses the maximum

probability from these classifiers as the confidence score to conduct

classification.

• SEG (Yan et al., 2020) models the intent distribution as a margin-

constrained Gaussian mixture distribution and uses an additional

outlier detector – local outlier factor (LOF) (Breunig et al., 2000)

to achieve unknown intent detection.

• LMCL (Lin and Xu, 2019) considers to learn discriminative em-

beddings with a large margin cosine loss. It also uses LOF as the

outlier detection algorithm.

• Softmax (Lin and Xu, 2019) uses a softmax loss to learn discrimi-

39



native features based on the training dataset, which also requires an

additional outlier detector such as LOF for detecting the unknown

intents.

3.3.2 Experimental Setup and Evaluation Metrics

To compare with existing methods, we follow the setting in LMCL (Lin

and Xu, 2019). Specifically, for each dataset, we randomly sample 75%,

50%, and 25% of the intent classes from the training set as the known

classes to conduct training, and we set aside the rest as the unknown

classes for test. Notice that for training and validation, we only use data

within the chosen known classes and do not expose our model to any

of test-time outliers. Unless otherwise specified, in each training batch,

we keep the ratio of inliers, open-domain outliers and self-supervised

outliers roughly as 1 : 1 : 4. This setting is empirically chosen and

affected by the memory limit of NVIDIA 2080TI GPU, which we use

for conducting the experiments. The number of pseudo outliers can be

adjusted according to different environments, and a larger number of

self-supervised outliers typically takes more time to converge.

We use Pytorch (Paszke et al., 2019) as the backend to conduct the

experiments. We use the pretrained BERT mdoel (bert-base-uncased)

provided by Wolf et al. (2019) as the encoder for utterances. We use the
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output vector of the special classification token [CLS] as the utterance

embedding and fix its dimension as 768 by default throughout all of our

experiments. To ensure a fair comparison, all baselines and our model

use the same encoder.

For model optimization, we use AdamW provided by Wolf et al.

(2019) to fine-tune BERT and Adam proposed by Kingma and Ba (2015)

to train the MLP clasisfier Φp¨q. We set the learning rate for BERT as 1e´5

as suggested by Devlin et al. (2019). For the MLP clasisfier, the learning

rate is fixed as 1e´4. Notice that the fine-tuning of BERT is conducted

simultaneously with the training of the classifier Φp¨q with the same cross-

entropy loss. The MLP classifier Φp¨q has a two-layer architecture with

[1024, 1024] as hidden units. The temperature parameter τ is selected by

cross-validation and set as 0.1 in all experiments.

Following LMCL (Lin and Xu, 2019), we use overall accuracy and

macro f1-score as evaluation metrics. All results reported in this section

are the average of 10 runs with different random seeds, and each run is

stopped until reaching a plateau on the validation set. For baselines, we

follow their original training settings except using the aforementioned

BERT as text encoder.
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Figure 3.4: Effect of the number of self-supervised outliers
on overall intent detection accuracy under the 75% setting of
Banking.

3.3.3 Result Analysis

We present our main results in Table 3.1 and Table 3.3. Specifically,

Table 3.1 gives results in overall accuracy and macro f1-score for all

classes including the outlier class, while Table 3.3 shows results in

macro f1-score for the known classes and f1-score for the outlier class

respectively. It can be seen that, on all benchmarks and in almost every

setting, our model significantly outperforms the baselines. As shown in

Table 3.3, our method achieves favorable performance on both unknown

and known intent classes simultaneously.

It is worth mentioning that the large improvements of our method

in scenarios with small labeled training sets (25% and 50% settings)
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indicate its great potential in real-life applications, since a practical

dialogue system often needs to deal with a larger proportion of outliers

than inliers due to different user demographic, ignorance/unfamiliarity

of/with the platform, and limited intent classes recognized by the system

(especially at the early development stage).

More importantly, referring to Table 3.3, as the proportion of known

intents increases, it can be seen that the performance gains of the base-

lines mainly lie in the known classes. In contrast, our method can strike a

better balance between the known and unknown classes without relying

on additional outlier detector, margin tuning, and threshold selection,

demonstrating its high effectiveness and generality. Take the Softmax

baseline for example, in the 75% case of CLINC150, it achieves a slightly

higher result than our model on the known classes but a substantially

lower result on the unknown ones.

3.3.4 Effect of Pseudo Outliers

We conduct an ablation study on the effectiveness of the two kinds of

pseudo outliers and summarize the results in Table 3.4. The first row of

the three settings (25%, 50%, and 75%) stands for training solely with

the labeled examples of CLINC150 without using any pseudo outliers.

In general, self-supervised synthetic outliers and open-domain outliers
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both lead to positive effects on classification performance. For each

setting, comparing the second row with the third, we can observe that

the synthetic outliers produced by convex combinations lead to a much

larger performance gain than that of pre-collected open-domain outliers.

Finally, combining them for training leads to the best results, as shown

in the fourth row of each setting.

Next, we conduct experiments to study the impact of varying the

number of the two kinds of pseudo outliers separately, as shown in

Figure 3.3. We first fix the number of open-domain outliers as zero and

then increase the number of self-supervised outliers. The results are

displayed in Figure 3.3 (a), (b) and (c). In particular, as the number of

self-supervised outliers grows, the performance first increases quickly

and then grows slowly. On the other hand, we fix the number of self-

supervised outliers as zero and then increases the number of open-domain

outliers. The results are shown in Figure 3.3 (d), (e) and (f), where it can

be seen that dozens of open-domain outliers already can bring significant

improvements, though the gain is much smaller compared to that of the

self-supervised outliers.

Finally, we investigate the impact of the number of self-supervised

outliers on overall intent detection accuracy with both the number of

inliers and the number of open-domain outliers fixed as 100 per training
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batch. As shown in Figure 3.4, we increase the number of self-supervised

outliers from 0 to 5000. Note that 400 is the default setting used in

Table 3.1 and Table 3.3. We can see that comparable results can be

obtained for a wide range of numbers. However, when the number grows

to 5000, the performance exhibits a significant drop. We hypothesize that

as the number increases, the generated synthetic outliers may be less

accurate, because some convex combinations may fall within the scope

of known classes.

To summarize, self-supervised outliers play a much more impor-

tant role than open-domain outliers for unknown intent classification.

Self-supervised outliers not only provide better learning signals for the

unknown intents, but also impose an important positive effect on the

known ones. For the open-domain outliers, if used alone, they can only

provide limited benefit. But in combination with the self-supervised

ones, they can further enhance the performance.

3.3.5 Selection of Open-Domain Outliers

To demonstrate the flexibility of our method in selecting open-domain

outliers as described in Section 3.2.2, we train our model on CLINC150

using open-domain outliers from different sources. The results are

summarized in Table 3.5. Specifically, Open-bank and Open-stack stand

45



Dtr
co Dtr

fo Acc Macro-F1 F1 Unknown

25%

19.79 41.05 -
✓ 81.96 71.15 87.8

✓ 37.55 45.14 36.91
✓ ✓ 88.44 80.73 92.35

50%

38.78 60.35 -
✓ 83.12 82.62 85.03

✓ 48.62 63.19 28.82
✓ ✓ 88.33 86.67 90.30

75%

57.43 73.6 -
✓ 84.16 86.9 80.36

✓ 69.61 79.42 48.29
✓ ✓ 88.08 89.43 86.28

Table 3.4: An ablation study on the effectiveness of pseudo
outliers.

Dtr
fo Acc Macro-F1

25%
Open-bank 89.36 81.22
Open-stack 88.38 80.42
Open-big 88.44 80.73

50%
Open-bank 87.35 86.41
Open-stack 88.23 86.37
Open-big 88.33 86.67

75%
Open-bank 87.19 89.33
Open-stack 87.52 89.17
Open-big 88.08 89.43

Table 3.5: Results on CLINC150 with different sets of open-
domain outliers.

for using the training set of Banking and StackOverflow as the source

of open-domain outliers respectively. Open-big stands for the source of

open-domain outliers used in other experiments, which consists of „ 0.5

million sentences randomly selected from SQuaD 2.0 (Rajpurkar et al.,

2018), Yelp (Meng et al., 2018), and IMDB (Maas et al., 2011). It can
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Figure 3.5: Comparison of training time (per epoch) and test
time with baselines.

be seen that the performance of our model is insensitive to the selection

of open-domain outliers.

3.3.6 Efficiency

We provide a quantitative comparison on the training and test efficiency

for our method and the baselines, by calculating the average time (in

seconds) for training per epoch and the total time for testing under the

75% setting. Here, we only compare with the strongest baselines. As

shown in Figure 3.5, even with the pseudo outliers, the training time of

our method is comparable to that of the baselines. Importantly, in the

test stage, our method demonstrates significant advantages in efficiency,

which needs much less time to predict intent classes for all samples in

the test set.
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3.4 Chapter Review

In this chapter, we have proposed a simple, effective, and efficient ap-

proach for out-of-scope intent detection by overcoming the limitation of

previous methods via matching train-test conditions. Particularly, at the

training stage, we construct self-supervised and open-domain outliers to

improve model generalization and simulate real outliers in the test stage.

Extensive experiments on four dialogue datasets show that our approach

significantly outperforms state-of-the-art methods. In the future, we plan

to investigate the theoretical underpinnings of our approach and apply it

to more applications.
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Chapter 4

Low-resource OOD

Detection

4.1 Introduction

Intent detection is an important component of task-oriented dialogue

system, which aims at accurately identifying the intent behind user ut-

terances. Out-of-distribution (OOD) intent detection aims to solve a

pK ` 1q-way classification problem with K in-distribution (ID) intent

classes and an additional OOD class representing malformed or unsup-

ported queries. In practice, OOD intent detection is often performed in

data-scarcity scenarios, e.g., at the early development stage of a dialogue

system when labeled data is not sufficient, or for dialogue systems de-

veloped for minority language users where it is difficult to find suitable

annotators.
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Figure 4.1: The challenge of few-shot out-of-distribution in-
tent detection. OOD stands for out-of-distribution examples
and ID stands for in-distribution examples.

Despite its practical importance, few-shot OOD intent detection is

a highly challenging problem, which is seldom studied in the literature

and has not been investigated in a systematic way. Recent advances

in OOD intent detection (Zhang et al., 2021; Zhan et al., 2021; Lin

and Xu, 2019) commonly assume that there are adequate ID examples

available for training, without considering the few-shot scenario. To our

best knowledge, the only work on this topic is by Zhang et al. (2020),

who try to tackle few-shot OOD intent detection via transfer learning by

fine-tuning RoBERTa (Liu et al., 2019) on large-scale natural language

inference datasets.

In this work, we take a closer look at few-shot OOD intent detection

and consider a strict setting, where only few-shot in-distribution labeled

50



examples are available during training and no external resources can

be exploited, since the requirement of additional resources hinders the

applicability of the model. Under this simplified yet more challenging

setting, state-of-the-art OOD intent detection algorithms fail to achieve

acceptable performance. In Figure 4.1, we illustrate the key challenge for

few-shot OOD detection. As shown in Figure 4.1, since ID classes are

under-represented by few-shot ID examples, a model based on density

estimation (Zhang et al., 2021) or pK ` 1q-way discriminative train-

ing (Zhan et al., 2021) tends to learn a conservative decision boundary

and hence there are large margins between the real and learned decision

boundaries. Real ID examples situate in the margins will be inaccurately

assigned to the OOD class, leading to poor performance.

Therefore, the key for few-shot OOD intent detection is to improve

the model performance on ID examples. To address this issue, we

propose to enrich the training set to improve the representativeness of

ID intent classes and provide more useful learning signals. We explore

the feasibility of generating synthetic ID examples in a self-supervised

manner. In particular, we train a denoising autoencoder (DAE) (Vincent

et al., 2008) in the latent representation space only using the few labeled

ID examples. The trained decoder of DAE is then used to efficiently

sample synthetic ID examples. With the enlarged training set, we train
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a pK ` 1q-way classifier proposed in Chapter 3 by simulating OOD

examples. Our contributions are summarized as follows:

• We pioneer in studying a practical but more challenging few-shot

OOD intent detection problem and identifying the key challenge

for this problem.

• We propose a promising approach for solving few-shot OOD intent

detection based on latent representation generation and pK ` 1q-

way discriminative training, which requires no additional resources

for training and validation.

• We conduct comprehensive experiments on three realistic intent

detection datasets to verify the effectiveness and robustness of our

method in diverse few-shot OOD intent detection scenarios.

4.2 Pilot Study

Out-of-distribution (OOD) intent detection aims at improving the

robustness of a dialogue system with respect to utterances with unknown

(or unsupported) intents. The key challenge of OOD detection is that

real OOD samples are inaccessible during training and validation. Given

an in-distribution (ID) set of K known classes, yi P tykuKk“1, the OOD

detection task considers another special OOD class yOOD to represent
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any malformed or unsupported utterances. Hence, given the input space

X ˆ Y, the goal of OOD intent detection is to learn a pK ` 1q-way

classifier fϕp¨q : X Ñ Y to minimize the expected risk:

Rpfq “ Ep1rfϕpxiq ‰ yiqsq, (4.1)

where yi P ty1, ¨ ¨ ¨ , yK , yOODu and the expectation is taken over the joint

distribution of ppx, yq. 1 is an indicator function.

Few-shot OOD intent detection is a more challenging setting with

the assumption that there are only a few labeled in-distribution (ID)

examples available during training. In this paper, we consider a strict

but practical setting by assuming that there are no additional resources

(e.g., labeled or unlabeled auxiliary datasets) available to aid the training

of the classifier fϕp¨q or during fine-tuning pre-trained language models.

Typically, for each ID class in tykuKk“1, there are only „ 5 or „ 10 labeled

examples per class.

Pilot study. To illustrate the challenges of few-shot OOD intent

detection, we conduct a pilot study on a commonly used OOD intent

detection dataset CLINC150 (Larson et al., 2019) using two recent

state-of-the-art approaches (Zhang et al., 2021; Zhan et al., 2021) for

few-shot OOD intent detection. To simulate the few-shot scenario, in

the experiment, only 5 labeled examples in each ID class are used for
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Methods Acc. Macro-F1 ID-F1 OOD-F1

25% ADB 77.91 53.09 52.22 86.29
DCL 86.53 48.78 47.63 92.22

50% ADB 69.36 56.91 56.64 77.17
DCL 74.60 50.58 50.15 82.45

75% ADB 70.43 67.17 67.12 73.09
DCL 65.50 54.25 54.11 70.22

Table 4.1: A pilot study on few-shot OOD intent detec-
tion. DCL (Zhan et al., 2021) and ADB (Zhang et al.,
2021) are two recent state-of-the-art approaches for OOD
intent detection. ID-F1 indicates macro f1-score on the in-
distribution classes. OOD-F1 stands for f1-score on the
out-of-distribution class.

training. The results are summarized in Table 4.1. For OOD detection,

we randomly select 25%, 50% and 75% intent classes as in-domain classes

and assign the remaining classes to the OOD category. Experimental

details are elaborated in Section 3.3.

We can observe that both of the two methods yield unsatisfactory

performance. Specifically, the performance on the ID classes is poor

and way lower than that on the OOD class. When there are only 25% ID

classes („ 38), the gap between the ID and OOD classes in f1-score is

the largest (up to 44`). Although moderate overall accuracy is achieved,

such OOD intent detection model can only provide services to users

worse than random choices, since the majority of user utterances are re-

jected as OOD inputs. It also indicates that the overall accuracy may not

be a good performance measure for this task. These observations show
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Figure 4.2: An overview of our proposed framework.

that in the few-shot scenario, existing OOD intent detection algorithms

can be easily biased towards the OOD class, due to inadequate repre-

sentations of the ID classes. Hence, directly applying them to few-shot

OOD intent detection will lead to sub par performance.

The primary challenge identified from this pilot experiment for few-

shot OOD intent detection is then how to improve the performance

on in-distribution classes and achieve a good balance in performance

between ID and OOD classes.
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4.3 Methodology

4.3.1 Utterance Representation

Let D “ tpxi, yiquNi“1 be the training set, where xi denotes an input token

sequence with size m, i.e., rx0i , ¨ ¨ ¨ , xm´1
i s. For each input xi, we use

BERT as the encoder to map xi into a sequence of hidden states hi, i.e.,

BERT:X Ñ H and hi P Rpm`1q˚768. Note that for every sentence, BERT

adds a spacial token [CLS] at the beginning of the sequence. Following

common practice, we use the average pooling of the hidden sequence hi

as the representation of an utterance:

zi “ Avg.PoolprhCLS
i , h0i , ¨ ¨ ¨ , hm´1

i sq.

Then, we obtain a mapped training set Dtr “ tpzi, yiquNi“1. We instantiate

few-shot OOD detector fϕp¨q by replacing the pre-trained heads of BERT

with a simple linear mapping layer.

4.3.2 Our Proposed Model

As shown in Figure 4.2, we propose a two-stage model for few-shot OOD

intent detection. In the first stage, we learn a stochastic reconstruction

function to generate synthetic ID samples in the representation space to

enrich the in-distribution training set. In the second stage, we adopt a
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pK ` 1q-way discriminative training procedure for OOD detection by

simulating OOD examples based on the enlarged in-distribution training

set. Notice that throughout the two stages, we only use the few labeled in-

distribution data without exploiting external labeled intent detection data

or fine-tuning corpus. Our algorithm is summarized in Algorithm (4.1).

Stage I: Generating Synthetic In-distribution Data

To improve the performance of in-distribution (ID) classes, our solution

is to learn a latent denoising autoencoder (DAE) (Vincent et al., 2008)

in the latent representation space Z of BERT, to enrich the in-domain

training set by generating synthetic examples with the reconstructor of

the DAE.

Our key idea is to learn an approximator for the distribution of the

latent representation of ID utterances (ppzq), from which we can sample

synthetic ID examples. We aim to learn a generator with sampling effi-

ciency and guaranteed consistency in approximating the true distribution

as the training size N Ñ 8. We can thereby enrich the ID training

examples directly in the representation space Z and save the effort of

conducting data augmentation in the input space X .

To this end, we employ a principled distribution estimation method –

denoising autoencoder (DAE) – to build an efficient stochastic process for
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sampling ID examples with a consistency guaranteed estimator for ppzq.

The latent DAE consists of two components: the corruption distribution

Cpz̃ | zq and the reconstruction distribution qθpz | z̃q. The DAE can be

learned by:

θ˚
“ argmax

θ
Eplogpqθpz | z̃qq,

where the likelihood is computed by a mean square loss between the

original embedding vector z and the reconstructed vector ẑ as shown in

Figure 4.2.

After obtaining the reconstruction distribution qθ˚pz | z̃q, we can

sample synthetic ID examples as follows:

ẑ „ qθ˚pz | z̃q,

z̃ „ Cpz̃ | zq.

(4.2)

The corruption distribution C can be instantiated by simple stochastic

operations like Dropout Srivastava et al. (2014). By repeatedly applying

the process in Equation (4.2), we can obtain a synthetic labeled ID set

Drec “ tpẑi, yiquLi“1, where the reconstructed representation ẑi shares the

same label yi with the original uncorrupted zi. Finally, by combining the

original training set Dtr and the synthetic set Drec, we get an enlarged

labeled training set DEnlarged “ Dtr Y Drec.
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Figure 4.3: Illustration of the noise neutralizing effect under
the pk ` 1q-way training paradigm.

Stage II: pK ` 1q-way Discriminative Training

As shown in the Figure 4.2, the second stage of our proposed method

aims at learning a pK ` 1q-way classifier in an end-to-end manner. Since

only few-shot samples are used to train the reconstruction distribution

qθpz | z̃q, the resulting qθ˚p¨q may not be a perfect estimator for the

true distribution, and the enlarged in-distribution set DEnlarged may be

noisy. Hence, it may not be the best choice to directly apply density

estimation-based methods for OOD intent detection, due to the risk of

overfitting. To better utilize the enlarged in-distribution set DEnlarged, we

adopt the pK ` 1q-way discriminative training strategy proposed in Zhan

et al. (2021) and follow their idea to construct OOD learning signals

via random convex combination between representations from different
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Algorithm 4.1 Our proposed algorithm
Stage I: DAE training: Denoising autoencoder qθ, few-shot training set
Dtr “ tpzi, yiquNi“1, Dropout rate β, learning rate λDAE .

for all zi P Dtr do
Corruption and reconstruction:
• z̃i „ Cpz̃i | zi; βq

• ẑi „ qθpzi | z̃iq

Update θ˚ “ θ ´ λDAE∇θ
řN

i“1∥zi ´ ẑi∥22.
qθ˚ .
Stage II: pk ` 1q-way training
Classifier fϕ, inlier sampling number NID, DAE qθ˚ , outlier sampling
number NOOD

Sample NID times via the Equation (4.2) Ñ Drec

DEnlarged “ Dtr Y Drec.
NOOD Simulated OOD example construction:
• pzi, yiq, pzj , yjq „ DEnlarged, yi ‰ yj .
• α „ Up0, 1q.
• zOOD

i “ α ˚ zi ` p1 ´ αq ˚ zj .
• zOOD

i Ñ DOOD.

Minimize the empirical classification risk on DEnlarged Y DOOD via the
Equation (4.1).
fϕ˚ .

in-distribution classes in the enlarged in-distribution set. By doing so,

the impact of noisy synthetic in-distribution examples can be mitigated.

We demonstrate this phenomenon in Figure 4.3. The linear interpolation

between off-manifold noisy synthetic in-distribution examples tends

to represent the OOD examples, since the word embeddings of BERT

has been found concentrating near a low-dimensional manifold of the

representation space (Ethayarajh, 2019).

Specifically, given the enlarged training set DEnlarged, we construct
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an OOD set DOOD by:

zOOD
i “ α ˚ zi ` p1 ´ αq ˚ zj , (4.3)

where yi ‰ yj , α P r0, 1s is randomly sampled from Up0, 1q and zi, zj P

DEnlarged.

Finally, our pK ` 1q-way classifier can be learned by minmizing the

loss in Equation (4.1) on the union set DOOD Y DEnlarged.

Dataset # Vocab Avg. Length # Training # Class Avg. Sample per Class
(proportion) (5%) (10%)

CLINC150 5864 8.34 15000 150 5 10
Banking 4327 11.99 9003 77 6 12

StackOverflow 16519 8.35 12000 20 30 60

Table 4.2: Dataset statistics.

4.4 Experiments

To evaluate our proposed method for few-shot out-of-distribution (OOD)

intent detection, we conduct extensive experiments on three real-world

benchmark datasets. By comparing with state-of-the-art OOD intent de-

tection methods, we find that our method can outperform these baselines

by a large margin, especially in extreme few-shot scenarios. Moreover,

our approach yields a more consistent performance at different few-shot

OOD settings, demonstrating the robustness of our algorithm.

61



dataset CLINC150 Banking StackOverflow
p=5% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 40.13 55.17 54.76 17.74 29.31 31.99 52.30 42.92 78.92
DOC 11.05 8.62 44.37 15.79 25.61 20.98 65.54 44.4 58.54
SEG 36.09 51.90 62.64 39.53 52.27 58.80 60.76 75.93 83.22

LMCL 34.30 52.45 60.71 39.10 48.90 54.60 56.00 69.68 83.17
Softmax 33.98 52.48 62.11 32.77 43.74 52.84 54.21 71.27 81.55

ADB 53.09 56.91 65.65 37.74 45.91 55.26 60.31 77.92 81.14
DCL 48.78 50.58 54.25 33.92 39.10 45.59 78.98 82.37 83.01
Ours 62.19 64.79 68.30 48.23 58.92 63.14 80.48 84.04 84.25

dataset CLINC150 Banking StackOverflow
p=10% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 54.34 71.56 77.31 43.50 48.62 68.34 41.66 59.73 75.95
DOC 15.15 23.28 54.69 13.99 21.50 25.13 44.77 61.22 61.19
SEG 68.29 77.59 80.32 56.75 58.70 71.32 58.77 78.64 83.85

LMCL 66.87 76.48 79.04 54.38 63.71 67.66 55.42 77.01 85.06
Softmax 65.07 77.08 79.68 53.27 60.20 68.94 57.86 77.30 83.47

ADB 68.05 74.96 77.75 51.12 66.16 70.50 69.55 81.30 83.83
DCL 68.65 72.74 70.81 55.74 61.10 65.77 78.61 82.46 83.80
Ours 72.43 78.15 82.17 60.99 67.89 73.79 81.07 83.99 85.11

Table 4.3: Overall macro f1-score including the OOD class
for few-shot OOD intent detection with different proportion
(0.25, 0.5 and 0.75) of in-distribution classes. p indicates the
ratio of selected few-shot in-distribution examples. For each
setting, the best result is marked in bold.

4.4.1 Datasets and Baselines

We evaluate our method on three commonly used OOD intent detection

datasets, which are introduced as follows.

• CLINC150 (Larson et al., 2019) is specifically designed for OOD

intent detection. It consists of 150 in-distribution classes with

15,000 samples for training, 3,000 for validation, and 4,500 for

testing. Besides, it also contains 1,200 annotated OOD instances,

and we put all the OOD examples into the test set.

62



• Banking (Casanueva et al., 2020) contains data from the banking

domain, with 13,083 samples of 77 intents. We split the dataset

into 9,003 for training, 1,000 for validation, and 3,080 for testing.

• StackOverflow (Xu et al., 2015) contains data in 20 classes, each

of which contains 1,000 samples. We use 12,000 samples for

training, 2,000 for validation, and 6,000 for testing.

The dataset statistics are summarised in Table 4.2.

To evaluate the effectiveness of our proposed method, we compare it

with the following baselines.

• MSP (Hendrycks and Gimpel, 2017): It leverages the probabilities

outputted by the softmax function for out-of-domain detection. As

correct samples tend to have higher probability scores, samples

below a threshold are classified as outliers. We set the threshold as

0.5 in our experiment.

• DOC (Shu et al., 2017): It shares a similar idea with MSP in assum-

ing that in-distribution examples tend to have higher probability

scores. It uses the maximum probability from m 1-vs-rest sigmoid

classifiers for m ID classes respectively as the confidence score.

• LMCL (Lin and Xu, 2019): It leverages local outlier factor(LOF)

to identity samples which are far away from the clusters in the

63



embedding space as outliers. The model learns discriminative

features by largin margin cosine loss.

• Softmax (Lin and Xu, 2019): It is a variant of LMCL where the

large margin cosine loss is replaced by the softmax loss to learn

discriminative features.

• SEG (Yan et al., 2020): It uses a Gaussian mixture model to enforce

ID embeddings to form ball-like dense clusters in the feature space.

Moreover, it injects semantic information into the Gaussian mixture

model by assigning the embeddings of class labels or descriptions

to be the means of the Gaussians.

• ADB (Zhang et al., 2021): It proposes to learn a decision bound-

ary for each in-domain class for OOD intent detection. Samples

reside outside of the boundaries are identified as outliers, while

in-distribution examples are classified based on their distance to

centroids of each class.

• DCL (Zhan et al., 2021): It treats outliers as an additional class

and proposes a K ` 1 training paradigm for OOD intent detection.

Samples in the outlier class are obtained from external datasets

and synthesized through convex combinations of in-distribution

features.
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dataset CLINC150 Banking StackOverflow
p=5% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 38.85 54.85 54.63 14.38 28.32 31.79 55.15 40.97 80.44
DOC 8.99 7.72 44.18 12.35 24.48 20.62 62.89 42.89 58.92
SEG 36.88 52.50 63.18 39.30 52.83 58.80 60.65 76.11 84.06

LMCL 35.20 53.14 61.24 37.15 49.41 55.02 55.15 71.51 84.17
Softmax 34.68 53.10 62.61 33.56 44.22 53.26 54.25 72.36 82.65

ADB 52.22 56.64 65.58 35.14 45.54 55.36 77.51 77.92 81.97
DCL 47.63 50.15 54.11 31.1 38.22 45.55 76.31 81.92 83.79
Ours 61.43 64.54 68.25 48.82 58.51 63.32 78.05 83.74 84.99

dataset CLINC150 Banking StackOverflow
p=10% 0.25 0.5 0.75 0.25 0.5 0.75 0.25 0.5 0.75

MSP 53.77 71.50 77.39 41.97 48.21 68.69 45.89 61.02 78.29
DOC 13.21 22.57 54.57 10.39 20.33 24.84 43.69 60.43 61.60
SEG 68.29 77.52 80.34 56.75 58.69 71.61 59.24 78.64 83.85

LMCL 66.40 76.47 79.05 53.77 63.91 68.07 55.40 77.26 85.84
Softmax 64.59 77.01 79.72 52.70 60.42 69.31 57.24 77.48 84.43

ADB 67.49 74.82 77.76 50.04 66.01 70.75 67.41 81.08 84.62
DCL 67.99 72.55 70.76 54.02 61.27 65.98 75.99 82.09 84.52
Ours 71.93 78.06 82.19 59.76 67.73 74.09 78.91 83.82 85.93

Table 4.4: Macro f1-score excluding the OOD class for few-
shot OOD intent detection with different proportion (0.25, 0.5
and 0.75) of in-distribution classes. p indicates the ratio of
selected few-shot in-distribution examples. For each setting,
the best result is marked in bold.

4.4.2 Experimental Setup

To achieve a fair comparison, all the baselines and our method use the

same pre-trained BERT model (bert-base-uncased (Wolf et al., 2019)) to

encode input sentences.

To construct few-shot OOD intent detection tasks from the three

datasets, we randomly sample 5% and 10% labeled examples per class

as the training set from each of the three datasets. Then, we randomly

select 25%, 50%, 75% of the classes in each dataset as in-distribution
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(ID) classes and set aside the respective remaining classes to the OOD

class for the test stage. Concrete numbers of ID examples per class for

each dataset can be found in Table 4.2. In particular, during training and

validation, only the labeled few-shot examples of ID classes are seen by

the model.

At training stage I, we use a two-layer MLP as qθ and optimize

the parameters of qθ by Adam (Kingma and Ba, 2015) with a learning

rate of 1e´4. The dropout rate for the corruption function is set to be

0.3 for all experiments. At training stage II, we instantiate our (k+1)-

way OOD intent classifier fϕ by removing the pre-trained heads of

BERT and appending a single layer MLP. For optimizing fϕ, we adopt

AdamW (Wolf et al., 2019) as optimizer and set the learning rate as 2e´5

following common practice (Devlin et al., 2019).

For the synthetic ID examples, we sample 15 reconstructed examples

per real ID example. For the simulated OOD samples, we construct 100

OOD examples per batch during training. These values are selected with

respect to the performance on validation sets. The reported results are

the mean of 5 runs with different random seeds.

Following previous works (Yan et al., 2020; Zhang et al., 2021; Zhan

et al., 2021) in OOD intent detection, we use macro f1-score as the

primary evaluation metric.
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Figure 4.4: t-SNE visualization of BERT embeddings. Top:
BERT embeddings without the synthetic in-distribution ex-
amples; Bottom: BERT embeddings with the synthetic in-
distribution examples. Better view in color and enlarged.

4.4.3 Correctness of the Synthetic In-distribution Ex-

amples

In Figure 4.4, we provide a qualitative evaluation of the generated syn-

thetic in-distribution (ID) examples using t-SNE visualization (Van der

Maaten and Hinton, 2008). We use the BERT embeddings of 5% la-

beled examples of 8 ID classes and all out-of-distribution examples from
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CLINC150 and plot them on the top of the figure. By generating 10 syn-

thetic ID examples for each real ID example, we have the bottom figure

where we can observe that these synthetic ID examples closely situate

in the vicinity of each real ID example. Since BERT embeddings have

been proved to be rich in contextualized semantics (Devlin et al., 2019),

the distance between different embeddings can reflect the semantic gap

between them. In this regard, at a high level, our generated ID examples

can capture the expressiveness of ID classes.

4.4.4 Main Results

We present the results for the aforementioned three datasets in Table 4.3

and Table 4.4. As shown in the two tables, our proposed method consis-

tently outperforms all baselines by a large margin in all settings.

Table 4.3 presents the results in overall macro f1-score on pK `

1q classes including the OOD class. The results in this table can be

interpreted as the overall performance of the model. We first inspect the

challenging case, where only 5% labeled examples per class are sampled

for training as shown in the top of Table 4.3. We can observe that our

method leads to large improvements on all three datasets. In the most

challenging case (only 25% of classes in each dataset are selected as

in-distribution classes), the improvement is more than 9% on CLINC150
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and 8% on Banking than the second best results. Moreover, in the 50%

and 75% cases, the improvements are also significant. For example, in

the 50% case of Banking, the gap between our method and the second

best one is around 6.6%. These results verify the effectiveness and

consistency of our model in extreme data-scarcity scenarios. As the ratio

of labeled examples per class increased to p “ 10%, it can be seen that

the baselines are improved by a large margin compared with the case of

p “ 5%. However, our method can still achieve consistent improvement.

This validates the robustness of our method under various data-scarcity

scenarios.

In Table 4.4, we summarize the results in macro f1-score of in-

distribution classes to demonstrate the effectiveness of synthetic ID ex-

amples in our method. It can be seen that in all settings, the performance

gains are consistent with the results in Table 4.3, which indicates that the

synthetic ID examples sampled from the DAE can help to improve the

classification performance on ID classes.

4.4.5 Effectiveness of the Synthetic In-distribution Ex-

amples

First, we study the impact of the number of synthetic in-distribution

(ID) examples. We conduct experiments on the 5% labeled ratio case.
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Figure 4.5: Effect of the number of synthetic in-distribution
examples.

CLINC150, p=5%

Method ID-F1 Overall-F1

25% SEG 36.88 36.09
SEG + Ours 63.65 64.25

50% SEG 52.50 51.90
SEG + Ours 71.97 72.13

75% SEG 63.18 62.64
SEG + Ours 70.67 70.72

Table 4.5: Results of SEG (Yan et al., 2020) and SEG with
our synthetic ID examples (SEG + Ours). ID-F1 stands for
in-distribution f1-score, and overall-F1 indicates the macro
f1-score for all classes including the OOD class. Better
results are marked in bold.

As shown in Figure 4.5, we vary the number of synthetic ID examples

per class from 0 to 500. In the range of [0,100], the classification per-

formance increases gradually for all cases (0.25, 0.5 and 0.75). It shows

the expressiveness of the synthetic ID examples. However, in the range

of [100,500], we observe a slow performance drop in all cases. This is

probably because the ID generator is learned from few-shot data and
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may generate inaccurate ID examples.

To further verify the effectiveness of our synthetic generator, we in-

corporate the synthetic ID examples to a strong baseline SEG (Yan et al.,

2020) and present the results under the p “ 5% setting of CLINC150 in

Table 4.5. With our enlarged ID training set, the performance of SEG

can also be improved significantly.

4.4.6 Robustness of the pK `1q-way Training Paradigm

In this subsection, we conduct experiments to evaluate the robustness of

the pK ` 1q-way training paradigm with synthetic in-distribution (ID)

examples.

As shown in Figure 4.6, we vary the corruption rate (from 0% to

100%) of the learned latent denoising autoencoder (DAE) (trained by 30%

corruption rate). Notice that 100% corruption rate indicates that no useful

reconstruction information is passed to the DAE. We can observe that in

the 0.5 (orange line) and 0.75 (green line) cases, the learned pK ` 1q-way

classifier can maintain a surprisingly consistent performance compared

with the 0.25 (purple line). Especially, with 90% corruption rate, the

synthetic in-distribution (ID) examples are much less accurate than those

with 30% or 40% corruption rate, but the performance does not drop to

an unacceptable level. This verifies the noise neutralization effect of the
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Figure 4.6: Effect of the rate of corruption on the learned
denoising autoencoder. The experiment is conducted on
CLINC150 under the p “ 5% setting.

pK ` 1q-way training manner discussed in Section 4.3.

4.5 Chapter Review

In this chapter, we have investigated few-shot OOD intent detection

under a more challenging setting. We have conducted a pilot study

to identify the key challenge for this problem, which is in improving

the in-distribution (ID) expressiveness during training. To this end, we

have proposed a promising approach to enrich the ID training set by

sampling from a denoising autoencoder trained with only a few examples.

The enlarged training set enables to train a well-performing pK ` 1q-

way classifier. Our proposed approach has been validated by extensive

experiments on real-world benchmarks.
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Chapter 5

A Unified Probabilistic

Framework

5.1 Introduction

Large-scale deep neural networks (DNNs) like CNN and Transformers

have revolutionized many challenging real-world machine learning ap-

plications. However, DNNs still have a significant limitation of making

overconfident decisions, making them unreliable for safety-critical appli-

cations such as medical diagnosis (Ulmer et al., 2020) and self-driving

cars (Filos et al., 2020). It has been pointed out that DNNs tend to assign

high confidence scores to unknown inputs, which may result in incorrect

predictions on the anomalous out-of-distribution (OOD) data (Nguyen

et al., 2015). To tackle this problem, OOD detection has been actively

investigated in the past few years (Hendrycks et al., 2022a; Yang et al.,
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2022).

OOD detection aims at solving a K-class in-distribution (ID) classifi-

cation task and a binary ID vs. OOD discrimination task at the same time.

A commonly assumed practical setting is OOD examples are unavailable

during training, which presents the major challenge for OOD detection.

Most of recent research focuses on detecting visual OOD data, and only

a few works (Hendrycks et al., 2020; Podolskiy et al., 2021; Zhou et al.,

2021) study textual OOD detection. To our knowledge, current textual

OOD detection methods typically apply a general OOD detection algo-

rithm on representations yielded by Transformers (Vaswani et al., 2017)

and are not tailored for textual data.

The main stream OOD detection methods commonly follow a post-

hoc scheme (Hendrycks and Gimpel, 2017), which derives a OOD scor-

ing function at the inference stage. The post-hoc scheme first discrimi-

natively trains an ID K-class classifier by maximizing the conditional

likelihood of ppy|xq, and then derives some statistics from the trained

model to predictive OOD confidence scores. However, since the binary

ID vs. OOD discrimination task is not considered in the training process,

the learned representations by K-class training may be biased to the ID

classes. While a few attempts (Hendrycks et al., 2019; Lee et al., 2018a)

try to address this issue by introducing a surrogate OOD dataset during
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the training stage, it is difficult to select proper surrogate datasets to

represent the unknown large space of OOD data. Further, while the hier-

archical contextual representation of pre-trained Transformers has been

proven to be highly effective in various NLP tasks (Sun et al., 2019; Ma

et al., 2019; Mohebbi et al., 2021; Devlin et al., 2019; Liu et al., 2019),

its potential has yet to be well exploited for textual OOD detection.

To address the aforementioned problems, we propose a Transformer-

based variational inference framework. Instead of only maximizing

the conditional distribution ppy|xq of ID data, we optimize the joint

distribution ppx, yq, which is to maximize ppy|xq and ppxq simultaneously.

The key idea is to model the distribution of the given ID data so as

to leverage information that may not be useful for ID classification

but crucial for outlier detection. To make the joint distribution ppx, yq

tractable, we resort to optimizing the evidence lower bound of ppx, yq

derived via amortized variational inference (AVI) (Kingma and Welling,

2014). In particular, based on the characteristics of textual data, we recast

the posterior approximation distribution in AVI to condition on a dynamic

combination of intermediate layer-wise hidden states of Transformers.

The Transformer backbone acts like a shared encoder for both the ID

classification head and the generator in AVI, as illustrated in Fig. 5.1.

We summarize the superiority of our method as follows.

75



• Our proposed variational inference framework for OOD detection

(VI-OOD) provides a novel and principled perspective, which is

orthogonal to previous textual OOD detection methods (Hendrycks

et al., 2020; Podolskiy et al., 2021; Zhou et al., 2021).

• Our instantiation of VI-OOD exploits the rich contextual repre-

sentation of pre-trained Transformers, which is tailored for textual

OOD detection. It can learn better latent representations for text

inputs, which can be readily applied to numerous existing post-hoc

OOD detection algorithms and consistently improve their perfor-

mance.

5.2 Problem Statement and Motivation

Out-of-distribution (OOD) detection aims to accurately separate all class-

dependent in-distribution (ID) examples as well as out-of-distribution

(or anomalous) examples. Given the input space X ˆ Y and an ID class

label set YID “ tyju
K
j“1 Ă Y, an ID training set DID “ tpxi, yiquNi“1 is

sampled from the distribution ppx, yq of ID data where yi P YID. With

DID, an ID classifier fID : X Ñ YID is trained. During test time, since

there may be a distribution shift between the training and test data in

practical application scenarios (Szegedy et al., 2014; Morningstar et al.,

2021), the ID classifier fID may encounter OOD samples (yi R YID).
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Hence, an OOD confidence scoring function fOOD : X Ñ R is needed to

perform ID vs. OOD binary classification. In this regard, OOD detection

aims to solve both the K-class ID classification task and the binary

outlier detection task. The ID classifier fID is commonly trained with a

discriminative loss by maximizing the conditional log-likelihood of the

training set:

θ̂ “ argmax
θ

1

N

ÿ

pxi,yiqPDID

log ppyi | xi; fID, θq, (5.1)

where θ stands for all trainable parameters of fID.

The fundamental challenge of OOD detection is that at the training

stage, real OOD examples are unavailable and thus cannot be effectively

represented to provide necessary learning signals for the binary ID vs.

OOD task. To address this issue, a few attempts have been made to

introduce surrogate OOD datasets during training by using some datasets

irrelevant to the ID data (Hendrycks et al., 2019; Lee et al., 2018a).

However, it is difficult to select suitable “OOD” datasets to represent the

huge space of real OOD data.

The majority of existing OOD detection methods (Hendrycks and

Gimpel, 2017; Hendrycks et al., 2019; Lee et al., 2018b; Liu et al.,

2020; Hendrycks et al., 2022a; Sun et al., 2021, 2022) follow a post-hoc

paradigm and address the binary ID vs. OOD task in the inference stage.
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These methods propose different OOD confidence scoring functions with

the trained ID classifier fID. Specifically, the parameters of the trained

fID are frozen, and some statistics of specific layers of fID (usually the

penultimate layer or the softmax layer) are often used as OOD confidence

scores.

While post-hoc methods have shown promise, it is pointed out that

the performance of fID on ID data is not a good indicator of its per-

formance on OOD data (Hendrycks et al., 2020; Lee et al., 2018a).

Specifically, the discriminative training of fID is often conducted with

ppy|zq, where z is the latent representation obtained by passing an in-

put x to an DNN encoder. Maximizing the conditional log-likelihood

log ppy|zq is essentially maximizing the mutual information between the

latent variable Z and the label variable Y , i.e., IpZ, Y q (Boudiaf et al.,

2020). Naturally, the learned representation Z will be biased towards

the ID classification task. In fact, Kamoi and Kobayashi (2020) show

that for the popular Mahalanobis distance based OOD detection method,

the least important principal components of ID data is not useful for the

ID classification task, but contain crucial information for the binary ID

vs. OOD task, which may be discarded during the training of fID with

ppy|xq.

To address this issue, we propose to learn better latent representation
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Z for post-hoc methods by considering the distribution of ID data, i.e.,

maximizing the likelihoods ppy|xq and ppxq simultaneously1, which is

equivalent to modeling ppx, yq – the joint distribution of ID data. To this

end, we design a novel principled variational framework that will be

elaborated in the next section.

5.3 Proposed Method

5.3.1 A Unified Variational Framework

Our goal is to directly maximize the likelihood of the joint distribution

ppx, yq rather than ppy|xq. We first define the learning problem from a

probability perspective. We assume that a latent variable Z is a stochastic

encoding of the input sequence X. The joint distribution ppx, y, zq can

be factored as:

ppx, y, zq “ ppy|z, xqppx|zqppzq

“ ppy|zqppx|zqppzq,

(5.2)

where we assume the Markov chain X Ø Z Ø Y, i.e., ppy|z, xq “ ppy|zq.

It is still intractable to compute ppx, yq with Eq. (5.2). We employ

amortized variational inference Kingma and Welling (2014) to solve the

1Note that ppy|xq “
ş

z ppy|z, xqppz|xq and ppxq “
ş

z ppx|zqppzq.
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problem. The log-likelihood of ppx, yq can then be calculated by:

log ppx, yq “ log

ż

z
ppx, y, zq,

“ log

ż

z
ppy|zqppx|zqppzq

qpz|xq

qpz|xq
, (5.3)

“ logEz„qpz|xq

„

ppy|zqppx|zqppzq

qpz|xq

ȷ

, (5.4)

ě Ez„qpz|xq

„

log
ppy|zqppx|zqppzq

qpz|xq

ȷ

, (5.5)

where qpz|xq in Eq. (5.3) is the amortized variational approximator of

the true posterior ppz|xq. From Eq. (5.4) to Eq. (5.5), Jensen’s inequality

is applied. Eq. (5.5) can be rewritten as:

LELBO “Ez rlog ppy|zqs ` Ez rlog ppx|zqs ´

DKLpqpz|xq||ppzqq. (5.6)

At this point, the evidence lower bound of ppx, yq has been derived, de-

noted by LELBO, where the first term corresponds to the ID supervised

training target, and the second and third terms correspond to the unsu-

pervised learning target for amortized variational Bayesian autoencoder.

5.3.2 Instantiation

Next, we instantiate the proposed variational framework for textual

OOD detection, which consists of a discriminator ppy|zq, a decoder (or
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Figure 5.1: The architecture of our proposed framework.
Our method employs an encoder-based Transformer model
as the backbone textual encoder. Hidden states of the [CLS]
token are chosen to be textual representations. z is a latent
variable conditioned on the textual representations. The
in-distribution (ID) classification head ppy|zq and decoder
ppx ˆtarget|zq both take z as the input. s is the hidden states
combination factor and the merge representation xtarget works
as the target of the decoder.

reconstructor) ppx|zq, and a posterior approximator (or encoder) qpz|xq.

For image data, the decoder target is commonly defined as the original

input x, which is natural since it is most informative. However, for textual

data, the input token sequences are merely the embedding vectors from a

chosen dictionary, while the intermediate hidden states of Transformers

may contain ample contextual semantics. Hence, it is nontrivial to define

the reconstruction target of ppx|zq and the latent variable z for textual

data.
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Textual representation Contextual representations of a sentence or a

paragraph are usually extracted by encoder-based Transformers. In this

paper, we use BERT family models Devlin et al. (2019). Let the original

x be a sequence of tokens, i.e., rx0, ¨ ¨ ¨ , xs´1s with length s. BERT

adds the special token [CLS] at the beginning of the input sequence for

classification tasks, i.e., rCLS, x0, ¨ ¨ ¨ , xs´1s. Unless otherwise specified,

we use the hidden states of the [CLS] token as the text representation.

The input sequence is passed through each layer of BERT, outputting

a series of intermediate hidden states corresponding to [CLS] position,

denoted as hCLS “ rh0CLS, ¨ ¨ ¨ , hL´1
CLS s, where L is the total number of

layers.

Training As shown in Fig. 5.1, we instantiate the encoder qpz|xq and

the prior ppzq as diagonal Gaussian distributions, i.e., N pz|µ,Σq and

N p0, Iq respectively, where µ and Σ are obtained by mapping the last

hidden state hL´1
CLS with a single-layer MLP. Besides, we introduce a

weight vector s P RL to dynamically integrate the intermediate hidden

states of the Transformer. Then, we derive the reconstruction target

xtarget “ hCLS b s (b denotes element-wise multiplication), which con-

tains rich contextual semantic information. Referring to Fig. 5.1, the

reconstructor ppx|zq takes a sample z from N pz|µ,Σq as input and out-
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puts a reconstructed version of xtarget to maximize ppxtarget|zq. The ID

classifier fID is a single-layer MLP which takes the latent representation

z as input.

Inference At the inference stage, we only need the trained posterior

approximator (encoder) qpz|xq and the ID classifier fID. Note that both

the ID classification task and the binary outlier detection task are per-

formed w.r.t. the latent variable z. For each x, we only sample one z

during training and inference respectively.

5.4 Experiments

In this section, we present a comprehensive analysis for textual out-of-

distribution (OOD) detection with various transformers and pervasive

OOD detection methods. Besides, we demonstrate the effectiveness of

our proposed OOD detection method on challenging natural language

understanding benchmarks. We start this section by describing our

evaluation methodology and then present our experimental results in the

following.

5.4.1 Evaluation Methodology

Datasets OOD detection in the natural language processing(NLP)

domain is generally under-explored and only discuss in limited scenar-
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ios such as out-of-scope intent detection in dialogue machines (Zhan

et al., 2021; Zhang et al., 2021; Yan et al., 2020). As such, evaluat-

ing OOD performance in the NLP domain dose not have a consensus.

To scale the evaluation process as general as possible, we follow the

evaluation in (Hendrycks et al., 2020; Zhou et al., 2021) to present our

main analysis. Hendrycks et al. (2020) firstly propose to use the senti-

ment analysis benchmark SST-2 as the in-distribution dataset and select

five other datasets as out-distribution evaluation sets, which includes

20 Newsgroups, WMT16 and Multi30K, RTE and SNLI. Zhou et al.

(2021) further extend this benchmark by adding more natural language

understanding tasks includes topic classification, question classification.

In-distribution Tasks We use the bellowing four benchmark datasets

as in-distribution (ID) tasks. When setting each of them as in-distribution,

other ones are recognized as out-distribution.

• 20 Newsgroups (20NG) (Lang, 1995) is a commonly used bench-

mark for the topic (or newsgroup) classification. In this dataset,

these are 20 labeled topic classes and 15, 056, 1, 876 and 1, 896

examples for the train, validation and test respectively.

• IMDB (Maas et al., 2011) contains 25, 000 movie reviews from

IMDB which is collected for the task of binary sentiment analysis.
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10% examples are randomly selected as the validation set.

• SST-2 (Socher et al., 2013) is also a binary sentiment analysis

task derived from the Stanford Sentiment Treebank. It consists of

67, 349, 872 and 1, 821 examples for training, validation and test sets

respectively. Note that since both IMDB and SST-2 are sentiment

analysis datasets, they are not considered as OOD counterparts in

our experiments.

• TREC-10 (Li and Roth, 2002) is a dataset for question classifica-

tion, which is a preliminary task for question answering. We also

use the 6-class version as Zhou et al. (2021) did. The splitting is

4, 907 for training, 545 for validation and 545 for test.

Besides the above ID four tasks, we also use another four unrelated

datasests as OOD test sets (not for training) for all of the four ID tasks.

We refer them as the out-distribution datasets: the English source side

of English-German WMT16 (Bojar et al., 2016) and English-German

Multi30K (Elliott et al., 2016), and concatenations of the premise and

hypothesis of RTE (Dagan et al., 2006) and MNL (Williams et al., 2018).

WMT16 and Multi30K are for machine translation while RTE and MNLI

are for natural language inference. We use the respective test sets of each

out-distribution dataset to measure OOD performance.
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Figure 5.2: A study on the OOD performance of the inter-
mediate hidden sates. AUROC results across 24 layers of
RoBERTaLARGE are reported (higher represents better). The
model is fine-tuned on SST-2 and evaluates OOD perfor-
mance on 20NG. Intermediate layers 9 to 15 could bring
more benefits to four popular OOD detectors (marked by
green, blue, light yellow and orange) than the last hidden
states (layer 24). Hence, exploiting the intermediate hidden
states in a more efficient way will provide significant im-
provement for textual OOD detection.

Baselines To demonstrate the challenges and characteristics of OOD

detection with Transformers, we present baseline results for the following

four state-of-the-art OOD detection methods:

• Maximum Softmax Probability (MSP) (Hendrycks and Gimpel,

2017): The MSP confidence score leverages the maximum softmax

probability outputted by the softmax function for out-of-domain

detection. As correct samples tend to have higher probability

scores, samples below a threshold are more likely to be outliers.

Specifically, the Confidence score is Cpxq “ maxy ppy|xq.
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• Mahalanobis Distance (Maha) (Lee et al., 2018b): The Maha-

lanobis Distance (MD) method fits K-class conditional Gaussian

distributions tN pµi,ΣquKi“1 for the K in-distribution classes upon

the output of the penultimate layer in the model. The Mahalanobis

Distance and the MD confidence score are computed by:

MDkpzq “ pz ´ µkq
TΣ´1

pz ´ µkq,

Cpxq “ ´min
k

tMDkpzqu.

(5.7)

• Energy score (Energy) (Liu et al., 2020): The energy score

confidence score is inspired by the energy-based models LeCun

et al. (2006). It defines an energy of an input px, yq as Epx, yq “

wT
y ¨ z, where wy is the weight of the softmax layer for the yth

in-distribution class. The energy score confidence score is defined

as:

Cpxq “ log
K
ÿ

i

ew
T
i ¨z. (5.8)

• Cosine distance (Cosine) (Zhou et al., 2021): The cosine distance

OOD confidence sore defines as the maximum cosine similarity

of a test input representation with representations in the validation

set, i.e., Cpxq “ ´maxVi“1 cospz, zvali q.
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SST-2 IMDB

Methods AUROC Ò FAR@95 Ó AUPR Ò AUROC Ò FAR@95 Ó AUPR Ò

MSP 89.85 66.20 86.40 94.30 41.90 98.80
MSPVI 92.85 (+3.00) 51.58 (+14.62) 89.72 (+3.32) 95.95 (+1.65) 28.03 (+13.87) 99.12 (+0.32)

Maha 97.98 11.50 97.30 99.67 0.70 99.95
MahaVI 99.33 (+1.35) 3.62 (+7.88) 98.52 (+1.22) 99.90 (+0.23) 0.21 (+0.49) 99.97 (+0.02)

Cosine 95.65 22.65 94.68 99.50 1.53 99.88
CosineVI 98.87 (+3.22) 6.62 (+16.03) 98.06 (+3.38) 99.57 (+0.07) 1.43 (+0.10) 99.88 ( 0.00)

Energy 89.80 67.00 86.53 93.30 56.70 98.63
EnergyVI 92.79 (+2.99) 51.25 (+15.75) 89.26 (+2.73) 96.05 (+2.75) 27.97 (+28.73) 99.12 (+0.49)

TREC-10 20NG

Methods AUROC Ò FAR@95 Ó AUPR Ò AUROC Ò FAR@95 Ó AUPR Ò

MSP 97.94 8.43 89.26 93.89 30.49 87.39
MSPVI 98.91 (+0.97) 2.77 (+5.66) 90.39 (+1.13) 93.29 (-0.60) 25.61 (+4.88) 80.09 (-7.3)

Maha 98.99 4.87 95.11 98.39 7.77 95.91
MahaVI 99.46 (+0.47) 0.79 (+4.08) 97.67 (+2.56) 99.80 (+1.41) 0.61 (+7.16) 98.93 (+3.02)

Cosine 98.89 3.96 94.54 97.73 10.84 88.71
CosineVI 99.36 (+0.47) 1.19 (+2.77) 96.09 (+1.55) 99.39 (+1.66) 2.92 (+7.92) 97.19 (+8.48)

Energy 97.19 10.07 82.16 95.76 17.93 88.71
EnergyVI 99.21 (+2.02) 2.84 (+7.23) 90.84 (+8.68) 94.34 (-1.42) 17.04 (+0.89) 79.67 (-9.04)

Average AUROC Ò FAR@95 Ó AUPR Ò

avg. (MSP / Maha / Cosine / Energy) 94.00 / 98.78 / 97.94 / 94.01 36.76 / 6.21 / 9.75 / 37.93 90.46 / 97.07 / 94.45 / 89.01
avg.VI (MSP / Maha / Cosine / Energy) 95.25 / 99.62 / 99.30 / 95.60 27.00 / 1.31 / 3.04 / 24.78 89.83 / 98.77 / 97.81 / 89.72

Table 5.1: Main results of our proposed variational infer-
ence (VI) framework. MSP, Maha, Energy and Cosine are
baseline methods trained with the discriminative loss while
each corresponding method with the VI subscript denotes
the model trained with our VI framework. The best result
is marked in bold. Models are fine-tuned on the training
set of each in-distribution (ID) datasets, i.e., SST-2, IMDB,
TREC-10 and 20NG. At the bottom row, averaged results
across four ID datasets are included. Results for each met-
rics are averaged across 8 OOD test datasets. All results are
percentages.

Metrics We employ three commonly used metrics for OOD detection

and introduce them as follows:

• AUROC: Area Under the Receiver Operating Characteristic curve

(AUROC) reveals the relationship between True Positive Rate

(TPR) (i.e., Recall) and False Positive Rate (FPR). It represents the

probability of assigning a higher score to a positive example than a

negative examples. The pioneering work Hendrycks and Gimpel
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(2017) firstly proposed to use this metric for OOD detection. A

higher AUROC score indicates a better classifier, and An AUROC

score of 50% means random guessing.

• FAR@95: False Alarm Rate at 95% Recall (FAR@95) is the prob-

ability that a negative example is misclassified as positive when

Recall or TPR is 95%. In this paper, we take the OOD class as

negative.

• AUPR: Area Under the Precision-Recall curve (AUPR) is another

commonly used metric based on the Precision-Recall Curve. It is a

better indicator in the case of imbalanced in- and out-rate Manning

and Schutze (1999). A perfect classifier has an AUPR of 100%.

Experimental Setup We employ the RoBERTaLARGE (Liu et al., 2019)

model from the HuggingFace library (Wolf et al., 2019) as our main back-

bone to conduct experiments. We use the optimizer AdamW (Loshchilov

and Hutter, 2019) with a linear-scheduled learning rate 1e´5 to fine-tune

the model for 20 epochs. For the variational terms in Eq. 5.6, we apply

a linear annealing strategy which is a common practice in variational

methods (Fu et al., 2019). All reported results are obtained in 5 runs with

different random seeds.
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5.4.2 A Closer Look at OOD Detection with Transform-

ers

In Fig. 5.2, we conduct in-depth experiments to investigate the impacts

of the intermediate hidden states of RoBERTaLARGE to OOD detection.

Following Hendrycks et al. (2020), we take the model trained on SST-2

as a case study. Here, the model is trained solely with the discriminative

loss. We perform OOD detection on each of the 24 hidden states of the

trained model and summarize the AUROC results in Fig. 5.2. As shown

in Fig. 5.2, we report the aforementioned four baselines for each hidden

layer. As the layer number increases from 1 to 24, the corresponding

hidden layer is closer to the head of the model, i.e., layer 24 outputs the

last hidden states.

Intermediate hidden states could help OOD detection. As shown in

Fig. 5.2, it is obvious that for all the four OOD detection score functions,

the intermediate hidden states could achieve better OOD performance

than the last hidden states. In particular, we can observe that the patterns

of the OOD performance for all the OOD test datasets are very similar.

All the four OOD score functions achieve best OOD performance around

the middle layers ( layer 9 to 13) and the performance is consistent among

these adjacent layers. In addition, we surprisingly find that the most
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straightforward OOD score function – Cosine – starts to work at layer 2,

which is faster than the other three functions. These observations validate

our key assumption that information unrelated to ID classification could

help with OOD detection.

Gaps between different OOD detection score functions could be filled.

Performance on layer 24 or 23 which are the top layers of the model

is very similar with respect to the four baselines. Specifically, Maha

OOD score function achieves the best performance across all the OOD

datasets. The Cosine OOD score function could achieve close results to

Maha but is still a bit inferior. MSP and Energy perform similarly but far

behind Maha and Cosine. However, when looking at intermediate layers,

the performance gaps among different OOD score functions became

tiny. For example, MSP could achieve the near-best results around layer

13 for the two OOD datasets. These observations suggest that properly

exploiting the power of hidden states of Transformers could reduce the

difficulty of the OOD detection problem.

5.4.3 Main Results

We demonstrate the versatility of our proposed VI-OOD detection frame-

work by considering four in-distribution (ID) datasets in addition to the

other four out-distribution datasets, i.e., the model trained on each ID
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dataset will be evaluated on seven OOD test sets (except SST-2 and

IMDB). Averaged Results are summarized in Table 5.1 and detailed

results are presented in Table 5.3 and Table 5.4 in the appendix.

VI-OOD benefits a diverse collection of tasks and OOD score func-

tions. According to Table 5.1, A salient observation is that for all

the compared OOD score functions, our proposed approach can consis-

tently achieve better performance. For example, for the best performing

baseline – the Maha method, our method reduces the average FAR@95

from 6.21% to 1.31%, which leads to a 78.9% relative increase. For the

second best baseline–Cosine score function, the improvement of our

method is also significant, i.e., reducing average FAR@95 from 9.75%

to 3.04%. Besides the improvements on FAR@95, performance gains

on AUROC are also significant. For example, the average AUROC sore

of the Cosine method increases from 97.94% to 99.3%. Considering that

out method requires no real OOD examples involved, these results are

very encouraging.

Looking into each of the four ID datasets, it can be seen that detecting

OOD test examples on the model trained on TREC-10 is much easier

than other datasets, i.e., all OOD score functions achieve the AUROC

score above 97%. Improvements upon these competitive results can be
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Figure 5.3: Heatmap of the hidden state combination factor
s. The horizontal axis stands for four ID task and the vertical
axis represents layer number.

challenging. Nevertheless, our method also achieves better performance

for all four score functions. In particular, The AUROC score of Energy is

improved from 97.19% to 99.21% and the corresponding FAR@95 score

is reduced from 10.07% to 2.84%. For the Maha method on TREC-10,

our method reduces the FAR@95 score to 0.79% which is near perfect.

5.4.4 ID classification Performance

In this subsection, we investigate the ID classification performance.

Besides the binary ID VS OOD task, OOD detection also concerns the ID

classification task. We summarize the test accuracy of the corresponding

ID test sets for the four ID datasets in Table 5.2. It can be seen that

for 20NG, SST-2 and TREC-10, IMDB, ID test performances are very
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Test Accuracy SST-2 IMDB TREC-10 20NG
ppy|xq 96.21 95.33 97.8 93.99
ppx, yq 96.38 94.54 97.0 93.35

Table 5.2: Performance comparison of the ID K-class classi-
fier for different training objectives. ppy|xq is the commonly
used discriminative objective and ppx, yq is our proposed ob-
jective.

similar and all the gaps are lower than 1%. Therefore, models trained

with our proposed ppx, yq target do not bring significant detrimental

impacts to ID classification. However, although we consider these gaps

can be ignored in practical applications, it also indicates that our method

can be further improved in further works.

5.4.5 The Combination Factor s

At last, we analyze the proposed combination factor s. We plot the

heatmap of the learned s for in-distribution (ID) tasks in Fig. 5.3. It can

be seen that for different ID tasks, the hidden state combination patterns

are very different. It verifies the flexibility of our proposed framework in

utilizing the powerful hidden states of pre-trained models.

5.4.6 Detailed Experimental Results

In the following, we summarize detailed experimental results for base-

lines in Table 5.3 and for our proposed framework in Table 5.4.
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AUROC SST-2 IMDB TREC-10 20NG
MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy

SST-2 - - - - - - - - 96.1 97.2 97.5 92 97.9 99.6 99.4 99.1
IMDB - - - - - - - - 99 99.4 99.2 98.8 96.9 99.1 98.8 98.1

TREC-10 92.7 95.1 88.1 93.1 95.7 99.7 99.8 94.2 - - - - 91.9 98.8 97.8 94.6
20NG 92.6 96.6 93.3 92.6 96.2 99.7 99.5 96.6 98.5 99.4 99.4 99.1 - - - -

Multi30k 90.5 99.2 97.9 91.2 96 99.7 99.6 94.7 98.9 99.6 99.5 98.9 95.8 98.9 98.5 97.4
RTE 89.9 99.8 99.7 88.7 92.9 99.7 99.6 91.6 97.6 99.3 99 97 88.7 96.2 95 90.8

WMT16 86.7 98.7 97.5 86.2 92.6 99.7 99.4 91.2 98.2 99.3 99.1 97.7 91.7 97.7 96.8 94.1
MNLI 86.7 98.5 97.4 87 92.4 99.5 99.1 91.5 97.3 98.7 98.5 96.8 94.3 98.4 97.8 96.2

AVG. 89.85 97.98 95.65 89.8 94.3 99.67 99.5 93.3 97.94 98.99 98.89 97.19 93.89 98.39 97.73 95.76

FAR@95 SST-2 IMDB TREC-10 20NG
MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy

SST-2 - - - - - - - - 19.2 18.4 10.3 28.6 11.5 1.3 2.5 4.8
IMDB - - - - - - - - 2.5 1.4 1.6 3 16.5 3.4 4.8 8

TREC-10 54.8 26.2 59.4 52.4 34.6 0 0 58.8 - - - - 47.2 5.8 12.2 26.6
20NG 61.2 23.7 44.9 59.3 25.2 0.89 1.2 29.3 5.2 2.2 2.6 4 - - - -

Multi30k 63.1 4.3 8.7 56.8 26.8 0.1 0.8 48.3 2.9 1.2 1.2 3.9 19.1 5.4 6.6 9.6
RTE 72.4 0.4 0.67 82.8 57.8 0.8 1.3 71.9 12.1 2.8 3.6 12.8 46.7 17.2 20.9 31.4

WMT16 74.7 6.9 10.4 79.3 53.8 1.1 2 68.3 6.8 2.3 2.8 7.3 41.6 13.1 18 27.3
MNLI 71 7.5 11.8 71.4 53.2 1.3 3.8 63.6 10.3 5.8 5.6 10.9 30.8 8.2 10.9 17.8

AVG. 66.2 11.5 22.65 67 41.9 0.7 1.527 56.7 8.43 4.87 3.96 10.07 30.49 7.77 10.84 17.93

AUPR SST-2 IMDB TREC-10 20NG
MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy

SST-2 - - - - - - - - 90.6 94.5 95.3 75.7 98.2 99.7 99.5 99.1
IMDB - - - - - - - - 91.8 95.1 94.3 88.6 76.5 90.8 89.6 77.7

TREC-10 98.1 98.6 96.6 98.2 100 100 100 99.9 - - - - 97.6 99.7 99.4 98.3
20NG 94.9 97.3 94.7 94.7 99.7 100 100 99.7 96.2 98.6 98.5 97.1 - - - -

Multi30k 89.7 99 97.1 89.8 99.6 100 100 99.5 96.9 98.8 98.4 94.3 94.5 98.6 98.1 96.1
RTE 90.2 99.7 99.6 89.6 99.2 100 99.9 99 93.5 97.9 96.8 86.3 81.4 94.4 92.6 82.3

WMT16 85 97.9 95.7 84.9 99.1 100 100 98.9 93.3 97.7 97 86.7 89.3 96.9 95.8 91.2
MNLI 60.5 91.3 84.4 62 95.2 99.7 99.4 94.8 62.5 83.2 81.5 46.4 74.2 91.3 88.7 76.3

AVG. 86.4 97.3 94.68 86.53 98.8 99.95 99.88 98.63 89.26 95.11 94.54 82.16 87.39 95.91 94.81 88.71

Table 5.3: The OOD performance of baseline models trained
by the discriminative loss. Models are fine-tuned on the train-
ing set of each in-distribution datasets, i.e., SST-2, IMDB,
TREC-10 and 20NG. The OOD metrics are calculated by
treating each dataset in the first column as the OOD dataset.

5.5 Chapter Review

In this chapter, we have investigated OOD detection with Transform-

ers for NLP classification tasks. We propose a variational Bayesian

framework, namely VI-OOD, to optimize the joint distribution ppx, yq

for model training. We provide both experimental evidence and theoreti-

cal insights for our proposed approach. Comprehensive experiments on

large-scale NLP tasks have validated the effectiveness and superiority

of our novel OOD framework. In addition, we provide analysis on the

hidden states of Transformers, which may shed new light on textual
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AUROC SST-2 IMDB TREC-10 20NG
MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy

SST-2 - - - - - - - - 99.1 98.5 98.7 99.3 97.9 100 100 98.7
IMDB - - - - - - - - 99.6 99.6 99.7 99.8 96.6 99 98.8 97.4

TREC-10 95.43 98.9 97.94 94.93 98.1 100 100 97.9 - - - - 93.8 100 100 95.5
20NG 95.74 99.88 99.4 95.53 96.3 99.9 99.5 96.7 99.2 99.4 99.2 99.5 - - - -

Multi30k 94 99.3 98.4 94.37 97.1 100 99.8 97.3 99.6 99.8 99.8 99.7 96.7 100 100 97.6
RTE 93.06 100 99.9 93.27 95 99.9 99.5 95.1 99.3 99.8 99.7 99.5 85.2 99.7 98.6 85.7

WMT16 89.56 99.05 98.51 89.4 94.9 99.8 99.5 95 98.4 99.6 99.4 98.5 90.1 100 99.2 91.5
MNLI 89.31 98.83 99.08 89.23 94.3 99.8 99.1 94.3 97.2 99.5 99 98.2 92.7 99.9 99.1 94

AVG. 92.85 99.33 98.87 92.79 95.95 99.9 99.57 96.05 98.91 99.46 99.36 99.21 93.29 99.8 99.39 94.34

FAR@95 SST-2 IMDB TREC-10 20NG
MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy

SST-2 - - - - - - - - 2.3 2.7 1.9 2.6 9.1 0 0.16 4.6
IMDB - - - - - - - - 0.5 0.1 0.3 0.6 14.8 2.6 4.7 7.9

TREC-10 39 6.6 13.2 42.6 7.4 0 0 9.2 - - - - 24.4 0 0.4 13.2
20NG 37.39 0.11 3.1 39.08 25 0.42 1.05 23.8 1.6 0.05 1.4 1.7 - - - -

Multi30k 44.35 3.32 10.7 40.88 13.2 0 0.63 12.6 1.1 0.07 0.1 1.2 12.9 0 0.07 6.5
RTE 57.87 0 0 55.53 41.2 0.26 1 40.6 1.7 0.1 0.3 1.9 48.4 1.2 6.8 37.5

WMT16 65.66 5.26 7.84 64.99 39.2 0.2 2.2 39.1 4.4 0.9 1.6 5.1 38.7 0.17 3.8 28.6
MNLI 65.22 6.42 4.88 64.4 42.2 0.39 3.7 42.5 7.8 1.6 2.7 6.8 31 0.32 4.5 21

AVG. 51.58 3.62 6.62 51.25 28.03 0.21 1.43 27.97 2.77 0.79 1.19 2.84 25.61 0.61 2.92 17.04

AUPR SST-2 IMDB TREC-10 20NG
MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy MSP Maha Cosine Energy

SST-2 - - - - - - - - 96.8 97.7 97.6 97.1 97.2 100 99.9 97.5
IMDB - - - - - - - - 93.4 98.1 97.1 93.2 64.8 93.7 90.7 63.8

TREC-10 98.84 99.71 99.43 98.74 100 100 100 100 - - - - 97.7 100 100 98.1
20NG 96.92 99.89 99.44 96.78 99.7 100 100 99.7 98.3 99.1 98.5 98.5 - - - -

Multi30k 93.9 99.13 98.02 94.1 99.7 100 100 99.7 98.6 99.4 99.4 98.2 94 100 100 94.5
RTE 92.85 100 99.9 92.82 99.4 100 99.9 99.4 96.4 99.5 99.1 96.5 71.5 99.6 97.9 70

WMT16 87.81 98.61 98.12 87.1 99.4 100 100 99.4 88 98.7 97.9 86.5 81.9 100 98.6 82.7
MNLI 68.01 93.78 93.46 65.99 96.5 99.8 99.4 96.5 61.2 91.2 83 65.9 53.5 99.2 93.2 51.1

AVG. 89.72 98.52 98.06 89.26 99.12 99.97 99.88 99.12 90.39 97.67 96.09 90.84 80.09 98.93 97.19 79.67

Table 5.4: The OOD performance of our proposed vari-
ational framework trained by generative loss. Models are
fine-tuned on the training set of each in-distribution datasets,
i.e., SST-2, IMDB, TREC-10 and 20NG. The OOD metrics
are calculated by treating each dataset in the first column as
the OOD dataset.

OOD detection.

This research focuses on improving AI safety and model robustness.

Therefore, our work can benefit a variety of AI applications, and there is

no direct risk of abuse. Besides, our proposed method only uses open-

sourced benchmarks as training data. It does not introduce additional

datasets for training the OOD detector, thus having no ethical issues

in collecting datasets. However, since this study takes the pre-trained

language model RoBERTaLARGE as the backbone encoder, the obtained

results may be affected by the various biases of the pre-trained language
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model.
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Chapter 6

Conclusion and Future

Works

Conclusion. In this thesis, we have developed novel learning frame-

works and algorithms for textual out-of-distribution (OOD) detection

by leveraging the pre-trained Transformers’ representation capabilities.

Our discoveries have introduced new and promising prospects for textual

OOD detection. Importantly, all of our proposed methods aim to en-

hance OOD detection performance in a self-supervised or unsupervised

manner, thereby avoiding the need for additional datasets. Consequently,

our approaches are more applicable to real-world scenarios.

We first identify the major weakness of previous methods is that

the traditional learning paradigm requires manually selecting a proper
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threshold for OOD discrimination. Our self-supervised learning frame-

work, as described in Chapter 3, demonstrates the feasibility of directly

training a self-supervised (K+1)-way classifier for end-to-end textual

OOD detection without requiring human intervention. This approach

showcases that OOD data can be effectively represented in Transformer’s

representation space by linear interpolation between in-distribution (ID)

samples.

Further, in Chapter 4, we investigate low-resource scenarios and

find that the representation space of Transformers exhibits smoothness

with regards to semantics. This means that representations in the prox-

imity of an actual in-distribution (ID) example are highly similar and

interconnected in terms of their semantics. Therefore, we demonstrate

that a lightweight denoising autoencoder (DAE) can be trained in the

representation space of Transformers to capture the local structure of ID

examples. The DAE can effectively produce ID representatives that assist

the (K+1)-way classifier in establishing appropriate decision boundaries

for ID classification.

Finally, our thesis delves deeper into the training objective of previ-

ous out-of-distribution (OOD) detection methods and identified that ID

discriminative training is biased towards the ID task, ignoring the ID vs.

OOD task. Our in-depth analysis of the OOD characteristics of interme-
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diate layers in Transformers reveal that these layers can be utilized to

improve OOD detection. In order to design an unbiased objective and

better leverage the hierarchical representations in Transformers, we de-

veloped a principled variational learning framework specifically tailored

for textual OOD detection. Our key idea was to maximize the likelihood

of the joint distribution ppx, yq. To achieve this, we reformulated the

architecture of a classic amortized variational autoencoder, taking the

entire Transformer as the encoder and using a dynamic combination of

the hierarchical representations as the reconstruction target. Through

extensive experiments, we demonstrated that our approach can learn bet-

ter representations for textual OOD detection and consistently improve

popular post-hoc OOD detectors.

The significance of this thesis is two-fold:

• The thesis undertakes a comprehensive and methodical investiga-

tion of textual OOD detection, an area that has received relatively

little attention despite its significant importance to machine learn-

ing safety.

• The thesis leverages the contextualized representations of Trans-

formers to develop effective self-supervised and unsupervised

learning frameworks for textual OOD detection. These frame-

works not only contribute to improving textual OOD detection but
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also offer novel insights into general OOD detection.

Future Works. The subsequent matters are left for future investigation.

1. Exploring textual augmentation. As discussed in Chapter 2, recent

developments in visual OOD detection have demonstrated that data

augmentation methods, such as mixing images with fractal images,

can significantly enhance the reliability of deep neural networks.

Fractal images, with their inherent complexity, can compel the

model to learn more robust features rather than shortcut features,

which can benefit a range of machine learning safety goals, includ-

ing OOD detection. While this approach is promising, defining

the notion of “complexity” for textual sequences is ambiguous.

In other words, it is difficult to find sentences that are evidently

complex since textual data is subjective, and it is nearly impossible

to define and annotate complex texts manually. However, in the fu-

ture, a promising solution could be to utilize large-scale pre-trained

language models (PLMs) like ChatGPT to generate complex texts

that can be combined with original texts. These PLMs, specifically

designed for natural language generation purposes, have shown

to be highly effective in interpreting, generating language, and

open-domain dialogue.
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2. Applications to general OOD detection. The potential of Transformer-

based models in computer vision has been demonstrated in recent

advancements (Liu et al., 2021; Khan et al., 2022; Liang et al.,

2021; Bao et al., 2021). These models have been successfully ap-

plied to various vision tasks, achieving new state-of-the-art perfor-

mance by reformulating the tasks to fit Transformer-based models.

Our proposed self-supervised learning and probabilistic representa-

tion learning frameworks can potentially improve the performance

of visual OOD detection using vision Transformers. Furthermore,

the proposed lightweight ID data augmentation method can also be

applied to other types of data, such as audio and images, to gener-

ate synthetic data and improve the performance of OOD detection

models. Additionally, with the growing interest in vision-language

transformers, our approaches can also be evaluated on multi-modal

OOD detection tasks.
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