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Abstract

The movement of individual organism has been recognized for a long time as a sig-

nificant factor influencing the spatio-temporal distribution of populations. Numerous

reaction-diffusion models that can track spatial and temporal changes in population

size have been created to explain how the movement of individuals affects the spatial

and temporal distribution of biological populations. Using these reaction-diffusion

systems, variety of biological processes, such as reproduction or genetics, tumor

growth, wound healing, patch production, etc., have been demonstrated. In these

reaction-diffusion models, the dispersal strategy of individuals is typically assumed

to be random diffusion; however, it cannot explain some of the more complex ecolog-

ical processes involving rational movements (e.g., directed movements of dispersing

individuals that are chemotaxis, preytaxis, etc. to increase their chances of survival)

nor accurately reflect the non-Brownian movements of individuals. If diffusion is as-

sumed to be only random, no spatially inhomogeneous patterns will be observed for

the predator-prey system, which cannot explain the spatio-temporal heterogeneity of

patterns observed in the experiment. Therefore, it is more reasonable to incorporate

rational motion into the model in certain real-world circumstances. In this thesis,

we study the celebrated predator-prey systems with preytaxis, where the taxis term

represting the rational movement is formulated as an advection term.

Numerous investigations addressing predator-prey interactions have demonstrat-

ed that in some preytaxis models, it is more plausible to assume that the predator’s
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acceleration (rather than preytactic velocity) is proportional to the prey density gra-

dient. Such acceleration-driven preytaxis models were introduced in [9, 39] to explain

the observed spatial heterogeneity of predators and prey. This thesis is dedicated

to exploring the global dynamics of a ratio-dependent preytaxis system driven by

acceleration. The existence of classical solutions with uniform-in-time bound was

established in any spatial dimension. Moreover, we prove the global stability of the

spatially homogeneous prey-only and coexistence steady states under certain con-

ditions on system parameters and show that the convergence rates are exponential

type. For the system parameters outside the stability regime, linear stability anal-

ysis is performed to find the possible patterning regimes and numerical simulations

are used to demonstrate that spatially inhomogeneous time-periodic patterns will

typically arise which can interpret the spatial-temporal heterogeneity observed in

experiments.

Key Words: Ratio-dependent; predator-prey; preytaxis; global stability; pattern

formation.
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Chapter 1

Introduction

This dissertation investigates the global dynamics of a ratio-dependent predator-

prey model with preytaxis driven by acceleration. The first result is the global

existence of a unique classical bounded solution in any spatial dimension. Second,

the global stability of the spatially homogeneous prey-only and coexistence steady

states are established under certain conditions on system parameters. Linear analysis

is performed to identify possible patterns, and numerical simulations are conducted

to demonstrate that spatially inhomogeneous time-periodic patterns will typically

emerge outside the stable parameter regimes. In this chapter, we first introduce

the biological background of predation and then present the classical mathematical

models (the predator-prey model) used to model the interaction between predators

and prey, including ODE and PDE models.

1.1 Biological interactions

A biological interaction in ecology is the influence that two creatures living in

the same community have on each other. If the interaction occurs within the same

species, it is an intraspecific interaction; if the interaction occurs between different

species, it is an interspecific interaction. There are three types of fundamental inter-

actions in ecology, including mutualism (symbiosis), competition and predation. In
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this thesis, our study focus on the classical predator-prey model describing predation

interactions.

1.2 ODE type predator-prey systems

The ODE type predator-prey system typically takes the form of
ut = αβuF (u, v)− uh1(u),

vt = h2(v)− βuF (u, v),

u(0), v(0) > 0,

(1.2.1)

where u(t) and v(t) represent the population densities of the predator and the prey

at time t > 0 respectively, βuF (u, v) represents the interspecific interaction with

the intrinsic predation rate β > 0, the constant α > 0 denotes the conversion rate

from prey to predator. F (u, v) is called functional response function accounting for

the intake rate of predators as a function of prey density, h1(u) and h2(v) are the

predator mortality rate function and the prey growth function, respectively. The

predator mortality rate function h1(u) is typically in the form of

h1(u) = θ1 + θ2u

with contants θ1 > 0 and θ2 ≥ 0 denoting the natural death rate and density-

dependent death (cf. [27]), respectively. The functional response function F (u, v)

and the prey growth function h2(v) typically take the forms of (cf. [43, 32])

F (u, v) = F (v) =


v (Lotka-Volterra type or Holling type I),

v
λ+v

(Holling type II ),

vκ

λκ+vκ
(Holling type III),

(1.2.2)

and

h2(v) = vf(v) =

{
ηv
(
1− v

K

)
(Logistic type),

ηv
(
1− v

K

) (
v
L
− 1
)

(Allee effect type),
(1.2.3)
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where the constants κ > 1, and K,λ, η > 0 stand for carrying capacity, half satura-

tion constant, maximal predator growth rate, respectively.

In the case of h1(u) ≡ θ1 = θ, F (u, v) is Holling type II and h2(v) is Logistic

type, the model (1.2.1) turns into

{
ut = αβuv

λ+v
− θu,

vt = ηv
(
1− v

K

)
− βuv

λ+v
.

(1.2.4)

Denote

(u∗, v∗) =

(
αηλ((αβ − θ)K − θλ)

K(θ − αβ)2
,

θλ

αβ − θ

)
for αβ > θ, K >

θλ

αβ − θ

by the positive constant equilibrium of (1.2.4), then the model possesses the famous

“paradox of enrichment”(or called “biological control paradox”, cf. [19] and the

references therein): u∗ increases with K, however, v∗ does not increase with K;

moreover, (u∗, v∗) is stable for small K but unstable for large K. This means that

the model (1.2.4) can not describe some biological phenomena properly.

Various laboratory experiments and observations provide evidences that function-

al response function ought to depend on the densities of both prey and predators,

especially when predators must search for food (and therefore must share or compete

for food), i.e., F (u, v) = F (v/u) (see [19, the second page] and [56, the first page])

with

F (v/u) =
v
u

m+ v
u

=
v

mu+ v
with some constant m > 0. (1.2.5)

The system (1.2.1) with h1(u) ≡ θ1 = θ and the ratio-dependent functional response

function (1.2.5) turns into


ut = αβuv

mu+v
− θu,

vt = ηv
(
1− v

K

)
− βuv

mu+v
,

u(0), v(0) > 0.

(1.2.6)
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For the ratio-dependent predator-prey model (1.2.6), “paradox of enrichment” can

not occur [25]. With the scaling

t→ ηt, v → v

K
, u→ mu

K

the model (1.2.6) can be nondimensionalized into the form of Gause-type predator-

prey system 
ut = δu

(
v

u+v
− r
)
,

vt = v (1− v)− µuv
u+v

,

u(0), v(0) > 0,

(1.2.7)

where

δ =
αβ

η
, r =

θ

αβ
, µ =

β

mη
.

[19] obtained a complete classification of the asymptotic behavior of the solution to

(1.2.7). When considering a constant harvesting effect, i.e., the second equation of

(1.2.7) becomes

vt = v (1− v)− µuv

u+ v
− h

with a constant h > 0. [56], multiple kinds of bifurcations occurring for different

parameters are proved.

1.3 PDE type predator-prey systems

To interpret the aggregation phenomenon observed in the field experiment de-

signed to study the interactions between predators and prey under the area-restricted

search strategy, Kareiva and Odell [24] proposed the following reaction-diffusion-

advection model {
ut = du∆u−∇ · (χ(u, v)∇v) +G1(u, v),

vt = dv∆v +G2(u, v),
(1.3.1)
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where u(x, t) and v(x, t) represent the population densities of the predator and the

prey at position x ∈ Ω and time t > 0, respectively. The positive constant du is

the predator diffusion coefficient and dv is the prey’s. The functions G1(u, v) and

G2(u, v) describe the population interactions between the predator and the prey,

taking the classical form of

G1(u, v) = αβuF (u, v)− uh1(u), G2(u, v) = h2(v)− βuF (u, v). (1.3.2)

The advection term −∇ · (χ(u, v)∇v) represents the preytaxis with prey-tactic coef-

ficient χ(u, v) which may depend on the predator or prey density. In model (1.3.1),

a fundamental assumption is that the preytactic velocity is proportional to the prey

density gradient. However, many observations reveal that it is more reasonable to as-

sume that the individual acceleration (rather than the velocity itself) is proportional

to the gradient of the stimulus. Typical examples of these observations exhibit that

schooling fish adjust their acceleration according to the difference between ambient

and preferred temperatures (cf. [37, 16]), the moving flea-beetles modify their accel-

eration in conformity with food patch quality (cf. [23]), the individual acceleration

of the swarm of midges is determined by the distance from the center (cf. [34, 35]),

and so on. For the purpose of mathematical analyses of phenomena of the predator

acceleration adjusting in the light of the prey density gradient observed in Kareiva

[23] and Winder et al [52], the following preytaxis model driven by acceleration was

proposed in [9, 39] 
ut = du∆u−∇ · (uw) +G1(u, v),

vt = dv∆v +G2(u, v),

wt = dw∆w + γ∇v,
(1.3.3)

where u and v still denote the population densities of the predator and the prey

respectively, and the vector-valued function w is the velocity of the predator whose

variation, denoted by wt, is proportional to the prey density gradient ∇v with the
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coefficient γ > 0 as described by the third equation in (1.3.3) where the diffusion

term dw∆w is explained as a social equilibrium effect like intraspecific interactions

(cf. [16]). The positive constants du, dv, dw are diffusion coefficients.

With different types of predator-prey interactions, there are plenty of results for

the classical preytaixs model (1.3.1), such as traveling waves [26], pattern formation

[27, 13, 18, 28, 49], global stability [1, 2, 11, 42, 30, 21, 55, 45, 54, 44, 22], and

so on. Compared to (1.3.1), the model (1.3.3) where the acceleration assumption

is used has much fewer works. For different types of functional response function-

s, linear stability analyses are conducted and patterns are shown with numerical

simulations, see [9] in a two dimensional parallelepiped box Ω and [39, 13] in an

interval Ω = [0, L]. Recently in [31], when the functional response function takes the

form of F (u, v) = F (v), the existence of global-in-time bounded classical solutions

in a general bounded domain in any spatial dimensions is established, where the

global stability of spatially homogeneous prey-only/coexistence steady states with

decay rates is also investigated. Moreover, by applying linear stability analysis and

performing numerical simulations, it is demonstrated in [31] that spatially inhomo-

geneous time-periodic patterns will typically arise for the certain parameters outside

the stability regime.

Corresponding to the ODE type ratio-dependent predator-prey model (1.2.6), the

PDE type ratio-dependent predator-prey model with preytaxis proposed as (cf. [11])



ut = ∆u−∇ · (χu∇v) + αuv
mu+v

− µu, x ∈ Ω, t > 0,

vt = d∆v − uv
mu+v

+ vf(v), x ∈ Ω, t > 0,

∇u · n = ∇v · n = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ Ω,

(1.3.4)

where Ω ⊂ Rn (n ∈ N+) is a bounded domain with smooth boundary, n is the

unit outward normal vector on ∂Ω, and d, χ, α, µ are positive constants. The
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results for “non-preytaxis” case (i.e., (1.3.4) with χ = 0) are plentiful including the

(local) stability of both constant and non-constant steady states (cf. [36]), the global

stability of homogeneous steady states (cf. [15]), the finite difference solution and its

asymptotic behavior (cf. [50]), pattern formation and Hopf-Turing bifurcation (cf.

[10, 40, 41, 47, 38]). For (1.3.4) with χ > 0, in any dimensional bounded domain, the

existence of global-in-time bounded solutions are established and the homogeneous

steady states are proved to be exponentially stable in certain system parameters

conditions(cf. [11]). The existence of non-constant steady state is also numerically

showed in [11], which later proved in [12] in the case of Ω is a bounded interval.

1.4 The considered problem and main results

To the best of our knowledge, there is fewer result about the ratio-dependent

preytaxis model driven by acceleration. The goal of this thesis is to explore the

global dynamics of such models. Specifically, we shall consider the following system



ut = du∆u−∇ · (uw) + αuF (v/u)− µu, x ∈ Ω, t > 0,

vt = dv∆v + vf(v)− uF (v/u), x ∈ Ω, t > 0,

wt = dw∆w + γ∇v, x ∈ Ω, t > 0,

∇u · n = ∇v · n = 0, w = 0, x ∈ ∂Ω, t > 0,

(u, v,w)(x, 0) = (u0, v0,w0)(x), x ∈ Ω,

(1.4.1)

where F (v/u) is defined by (1.2.5), Ω ⊂ Rn (n ∈ N+) is a bounded domain with

smooth boundary, n is the unit outward normal vector on ∂Ω, and du, dv, dw, α, µ,

γ are positive constants. In this thesis, we shall only consider the logistic type. The

function f(v) is supposed to satisfy the following conditions (cf. [11]):

(H) The function f : [0,∞)→ R is continuously differentiable satisfying f ′(v) ≤ −δ

for some constant δ > 0 and for all v ≥ 0, and there exists a positive constant

K such that f(0) > 0, f(K) = 0 and f(v) < 0 for all v > K.
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The first main theorem stated below asserts that the system (1.4.1) has a unique

global-in-time classical solution which is uniform-in-time bounded.

Theorem 1.4.1. Suppose that n ≥ 1, u0, v0 � 0 with u0, v0 ∈ W 1,∞(Ω), w0(x) ∈

(W 1,∞(Ω))
n

and the hypothesis (H) hold. Then the system (1.4.1) has a unique global

classical solution (u, v,w) satisfying

{
u, v ∈ C(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞)) with u ≥ 0, 0 ≤ v ≤M,

w ∈
(
C(Ω̄× [0,∞)) ∩ C2,1(Ω̄× (0,∞))

)n
,

where the positive constant M is defined by

M := max
{
‖v0‖L∞(Ω), K

}
. (1.4.2)

Moreover, we have

‖u‖L∞(Ω) + ‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖W 1,∞(Ω) ≤ C for all t > 0, (1.4.3)

where C > 0 is a constant independent of time t.

We next focus on the global stability of homogeneous steady states. Except the

extinction equilibrium (0, 0,0), the system (1.4.1) has other two possible equilibria

(us, vs,ws):

(us, vs,ws) =

{
(0, K,0) , if α ≤ µ,

(0, K,0) , (u∗, v∗,0) , if α > µ and f(0) > 1
m
,

(1.4.4)

where (0, K,0) is the prey-only steady state and (u∗, v∗,0) is the coexistence steady

state with u∗, v∗ > 0 which is determined by the following algebraic equations:

µ =
αv∗

mu∗ + v∗
and f(v∗) =

u∗
mu∗ + v∗

. (1.4.5)

The constant steady states of w is 0 since w |∂Ω= 0. Our following result is stated

about asymptotic dynamics of (1.4.1).
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Theorem 1.4.2. Suppose that the conditions in Theorem 1.4.1 holds.

(i) Assume that α ≤ µ, then the prey-only steady state (0, K,0) is globally asymp-

totically stable. Moreover, if α < µ, then (0, K,0) is exponentially stable, i.e.,

there exist positive constants C, σ1 and t1 such that

‖u‖L∞(Ω) + ‖v −K‖L∞(Ω) + ‖w‖L∞(Ω) ≤ Ce−σ1t for all t > t1.

(ii) Assume that α > µ, (u∗, v∗) is given by (1.4.5) and f−1( 1
m

) > α−µ
δα

. There

exists a number d∗w > 0 such that if dw > d∗w, then the coexistence steady state

(u∗, v∗,0) is globally exponentially stable, i.e., there exist positive constants C,

σ2 and t2 such that

‖u− u∗‖L∞(Ω) + ‖v − v∗‖L∞(Ω) + ‖w‖L∞(Ω) ≤ Ce−σ2t for all t > t2.

Remark 1.4.1. In the case of α > µ, the condition f−1( 1
m

) > α−µ
δα

along with the

hypothesis (H) implies that f(0) > f
(
α−µ
δα

)
> 1

m
, which is satisfied the conditions in

(1.4.4) for the emergence of the coexistence state.

1.5 Organization of the thesis

In this chapter, we have introduced the biological background of predation, and

the mathematical models: predator-prey models (with preytaxis) describing this eco-

logical interaction. By comparing the existing literature, we present our motivation

and the problem which deserves to study. We focus on the global dynamics of a ratio-

dependent preytaxis model driven by acceleration. Specifically, we shall investigate

the global existence, global boundedness, global stability, and pattern formation of

the model. To achieve this and present our results properly, this thesis is organized

as the following.

Chapter 2 is devoted to establishing the global existence and boundedness of

solutions to our problem. The main mathematical tools contains the well-known

9



parabolic regularities such as the Lp estimate, the Schauder estimate, and the Lp-

Lq-estimates for the Dirichlet/Neumann heat semigroup, etc. Based on Amann’s

theorem the local existence of solutions and the corresponding extension criterion

can be established. Then the key point is to derive appropriate uniform a priori

estimates of solutions, by applying the extension criterion allows us to extend the

local solutions to the global one’s.

Once the global boundedness of solutions is established, we can study the global

stability of constant equilibria in Chapter 3. To determine stable parameter regimes,

we construct appropriate Lyapunov functionals and utilize compactness arguments.

In addition, we will investigate the rate of convergence of solutions under particular

parameter values.

Outside stable parameter regimes, the large-time behavior of solutions is obscure.

In chapter 4, we conduct linear analysis to find the unstable parameter regimes

and perform numerical simulations to exhibit possible patterns. We shall see that

spatially heterogeneous time-periodic patterns will typically arise.

Finally, conclusions and future plans are discussed in chapter 5.
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Chapter 2

Global boundedness

This chapter is devoted to establishing the global existence and boundedness (in

the sense of L∞(Ω)) of solutions to (1.4.1). There are three main steps towards this

direction. First, we use the well-known parabolic regularities to establish the local

existence of solutions and the corresponding extension criterion. Second, we shall

derive the a priori estimates which are necessary to obtain the uniform boundedness

of solutions. Finally, due to the obtained a priori estimates, we shall use the parabolic

regularities (such as the Lp estimate, the Schauder estimate (cf. [29]) and the smooth

properties of the Neumann/Drichlet heat semigroup) to show the uniform-in-time

boundedness of solutions with the extension criterion can achieve our goal. First of

all, we give the following preparations.

2.1 Preliminaries

Before proceeding, we introduce some notations used throughout this thesis.

• Without confusion, we shall abbreviate
∫ t

0

∫
Ω
f(·, s)dxds and

∫
Ω
f(·, t)dx as∫ t

0

∫
Ω
f and

∫
Ω
f respectively.

• Unless specified, C and Ci (i = 1, 2, 3, · · · ) denote generic positive constants

which may vary line by line.
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• We use CP to denote the following Poincaré constant

CP := inf

{
C > 0

∣∣∣∣∫
Ω

|ϕϕϕ|2 ≤ C

∫
Ω

|∇ϕϕϕ|2 for all ϕϕϕ ∈ (W 1,2
0 (Ω))n

}
. (2.1.1)

In order to derive the a priori estimates for w, we shall need the following Lp-

Lq-estimates for the Drichlet heat semigroup.

Lemma 2.1.1 (cf. [31, Lemma 2.4]). Let
(
et∆
)
t>0

be the Drichlet heat semigroup in

Ω ⊂ Rn (n ≥ 1), λ1 > 0 denote the first nonzero eigenvalue of −∆ in Ω under the

Drichlet boundary condition. Then the following properties hold.

(i) If 1 ≤ q ≤ p ≤ ∞, then for any z ∈ Lq(Ω), it holds that

‖et∆z‖Lp(Ω) ≤ C(1 + t−
n
2

( 1
q
− 1
p

))e−λ1t‖z‖Lq(Ω) for all t > 0

and

‖∇et∆z‖Lp(Ω) ≤ C
(

1 + t−
1
2
−n

2
( 1
q
− 1
p

)
)
e−λ1t‖z‖Lq(Ω) for all t > 0.

(ii) If 2 ≤ p <∞, then for any z ∈ W 1,p(Ω), it holds that

‖∇et∆z‖Lp(Ω) ≤ Ce−λ1t‖∇z‖Lp(Ω) for all t > 0.

(iii) If 1 < q ≤ p ≤ ∞, then for z ∈ (Lq(Ω))n, one has

‖et∆∇ · z‖Lp(Ω) ≤ C(1 + t−
1
2
−n

2
( 1
q
− 1
p

))e−λ1t‖z‖Lq(Ω) for all t > 0.

Noting that u and v satisfy homogeneous Neumann boundary condition, we also

need the following smooth properties Neumann heat semigroup.

Lemma 2.1.2 (cf. [53, Lemma 1.3]). Let
(
et∆
)
t>0

be the Neumann heat semigroup

in Ω, and let λ2 > 0 denote the first nonzero eigenvalue of −∆ in Ω under Neumann

boundary conditions. Then the following properties hold.
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(i) If 1 6 q 6 p 6∞ then for all z ∈ Lq(Ω) satisfying
∫

Ω
z = 0, it holds that

∥∥et∆z∥∥
Lp(Ω)

6 C
(

1 + t−
n
2 ( 1

q
− 1
p)
)
e−λ2t‖z‖Lq(Ω) for all t > 0.

(ii) If 1 6 q 6 p 6∞ then for all z ∈ Lq(Ω), it holds that

∥∥∇et∆z∥∥
Lp(Ω)

6 C
(

1 + t−
1
2
−n

2 ( 1
q
− 1
p)
)
e−λ2t‖z‖Lq(Ω) for all > 0.

(iii) If 2 6 p <∞ then for all z ∈ W 1,p(Ω), it holds that∥∥∇et∆z∥∥
Lp(Ω)

6 Ce−λ2t‖∇z‖Lp(Ω) for all t > 0.

(iv) Let 1 < q 6 p <∞. Then for all z ∈ (Lq(Ω))n, it holds that

∥∥et∆∇ · z∥∥
Lp(Ω)

6 C
(

1 + t−
1
2
−n

2 ( 1
q
− 1
p)
)
e−λ2t‖z‖Lq(Ω) for all t > 0.

2.2 Local existence

For the first step, we shall establish the existence of local-in-time classical solu-

tions.

Lemma 2.2.1. Suppose that the conditions in Theorem 1.4.1 hold. Then there ex-

ists Tmax ∈ (0,∞] such that (1.4.1) admits a unique classical solution (u, v,w) on

[0, Tmax) satisfying{
u, v ∈ C(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax)),

w ∈
[
C(Ω̄× [0, Tmax)) ∩ C2,1(Ω̄× (0, Tmax))

]n
,

and

u > 0, 0 < v ≤M in Ω× (0, Tmax), (2.2.1)

where M is given by (1.4.2). Moreover,{
either Tmax =∞, or

limt→Tmax sup
(
‖u(·, t)‖L∞(Ω) + ‖v(·, t)‖L∞(Ω) + ‖w(·, t)‖L∞(Ω)

)
=∞.

(2.2.2)
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Proof. The local existence of classical solutions to (1.4.1) and the extension criterion

(2.2.2) can be established according to the standard arguments (cf. [51] for instance)

based on the Amann’s theorem of parabolic systems in [5, 6]. (2.2.1) can be proved

by applying the strong maximum principle and the comparison principle. (cf. [11,

Lemma 2.2]). For readers’ convenience, we give a detailed proof here.

Let

ψ = (ψ1, ψ2, · · · , ψn+2)T = (u, v,w)T = (u, v, w1, w2, · · · , wn)T

be a (n+ 2)-dimensional vector-valued function, where KT denotes the transpose of

a matrix K. Denote 0p×q be a p-by-q zero matrix with two positive integers p and

q. Let

ξi = (−ψi+2,01×i,−ψ1,01×(n−i)), i = 1, 2, · · · , n,

be a (n+ 2)-dimensional vector-valued function, and

Di =

(
ξi

P(n+1)×(n+2)

)
, i = 1, · · · , n,

be a square matrix of order (n + 2), where all elements of the matrix P(n+1)×(n+2)

are 0 except (i+ 1)-by-2 element is γ. Then the system (1.4.1) can be rewritten as


ψt = A ·∆ψ +

∑n
i=1 Di · ∂iψ + F, x ∈ Ω, t > 0,

Bψ = 0, x ∈ ∂Ω, t > 0,

ψ(·, 0) = (u0, v0,w0) , x ∈ Ω,

(2.2.3)

where

A =


du 0 0

0 dv 0

0 0 dwEn


is a constant square matrix of order (n + 2) with En being the identity matrix of
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order n, and F is a (n+ 2)-dimensional vector-valued function given by

F =


αψ1ψ2

mψ1+ψ2
− µψ1

ψ2f(ψ2)− ψ1ψ2

mψ1+ψ2

0n×1

 .

Moreover, the boundary operator B is given by

B =

 ∂n
∂n

En

 ,

where ∂n is the partial derivative with respect to n.

Obviously, all eigenvalues of A are positive, and hence the system (2.2.3) is

uniform-in-timely parabolic. The local existence and unique classical solutions follow

from Amann’s theorem [5, Theorem 7.3 and Corollary 9.3] and the blow-up criteria

(2.2.2) follows from [6, Theorem 15.5].

The positivity of u follows from the strong maximum principle. To be precise,

we rewrite the first equation of system (1.4.1) as follows


ut − du∆u+ w · ∇u+ q(x, t)u = 0, x ∈ Ω, t ∈ (0, Tmax),

∂u
∂n

= 0, x ∈ ∂Ω, t ∈ (0, Tmax),

u(x, 0) = u0 ≥ 0( 6≡ 0), x ∈ Ω,

where q(x, t) = ∇ ·w − αv
mu+v

+ µ. By the maximum principle, we know that u ≥ 0

in Ω × (0, Tmax). Similarly, one can show that v ≥ 0 in Ω × (0, Tmax). Finally, it

remains to prove v ≤ M . Using the fact that u, v and F (v/u) are non-negative, we

have 
vt − dv∆v = f(v)− uF (v/u) ≤ f(v), x ∈ Ω, t ∈ (0, Tmax),

∂v
∂n

= 0, x ∈ ∂Ω, t ∈ (0, Tmax),

v(x, 0) = v0, x ∈ Ω.

(2.2.4)
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Let v∗(t) be a solution of the following ODE problem

{
dv∗(t)

dt
= v∗(t)f (v∗(t)) , t > 0,

v∗(0) = ‖v0‖L∞(Ω) .
(2.2.5)

Then the hypothesis (H) gives v∗(t) ≤M = max
{
‖v0‖L∞(Ω) , K

}
. Furthermore v∗(t)

is an upper solution of the following PDE problem


Vt − d∆V = V f(V ), x ∈ Ω, t > 0,

∂nV = 0, x ∈ ∂Ω, t > 0,

V (x, 0) = v0(x), x ∈ Ω.

(2.2.6)

Therefore we have

0 < V (x, t) ≤ v∗(t), for all (x, t) ∈ Ω̄× (0,∞). (2.2.7)

From (2.2.4)-(2.2.7), By the comparison principle, we have

0 < v(x, t) ≤ V (x, t) ≤ v∗(t) ≤M, for all (x, t) ∈ Ω̄× (0, Tmax).

Therefore, (2.2.1) is proved, and the proof is completed.

2.3 Uniform-in-time a priori estimates

With the local existence obtained above, we are now in the position to derive the

uniform-in-time a priori estimates for the local-in-time solutions. Suppose that the

conditions in Theorem 1.4.1 hold and (u, v,w) is the local-in-time classical solution to

(1.4.1) with the maximum existing time Tmax ∈ (0,∞]. First, we have the following

uniform-in-time L1-estimate for u.

Lemma 2.3.1. There exists a constant C > 0 independent of t such that

‖u(·, t)‖L1(Ω) ≤ C for all t ∈ (0, Tmax).

16



Proof. Integrating the first equation in (1.4.1) over Ω with the boundary conditions

in (1.4.1), and then using (1.2.5) and (2.2.1), we have

d

dt

∫
Ω

u+ µ

∫
Ω

u =
αuv

mu+ v
≤ αM

m
for all t ∈ (0, Tmax),

the proof is concluded by integrating the aforementioned ordinary differential equa-

tion with respect to t.

We now derive the L∞-estimate for w, which is a direct consequence of the Lp-

Lq-estimates for the Drichlet heat semigroup stated in Lemma 2.1.1.

Lemma 2.3.2. For all t ∈ (0, Tmax), there exists a constant C > 0 independent of

t > 0 such that

‖w(·, t)‖L∞(Ω) ≤ C. (2.3.1)

Proof. By Duhamel’s principle, one has

w(t) = edwt∆w0 + γ

∫ t

0

edw(t−s)∆∇v(·, s)ds,

= edwt∆w0 + γ

∫ t

0

∇edw(t−s)∆v(·, s)ds for all t ∈ (0, Tmax). (2.3.2)

By Lemma 2.1.1, we have

‖w(·, t)‖L∞(Ω) ≤ C‖w0‖L∞(Ω) + C

∫ t

0

(1 + (t− s)−
1
2 )e−λ1(t−s)‖v(·, s)‖L∞(Ω)ds

≤ C‖w0‖L∞(Ω) + C

∫ t

0

(1 + (t− s)−
1
2 )e−λ1(t−s)ds

≤ C for all t ∈ (0, Tmax). (2.3.3)

The proof is completed.

We can proceed to derive a priori L∞-estimate of u.
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Lemma 2.3.3. There exists a constant C > 0 independent of t > 0 such that

‖u(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax). (2.3.4)

Proof. Multiplying the first equation of (1.4.1) by pup−1 with p > 1, integrating by

parts, using (2.2.1) and v
mu+v

≤ 1, one has

d

dt

∫
Ω

up + pµ

∫
Ω

up + du(p− 1)
4

p

∫
Ω

|∇u
p
2 |2

= p(p− 1)

∫
Ω

up−1w · ∇u+ αp

∫
Ω

upv

mu+ v

≤ 2(p− 1)

∫
Ω

u
p
2w · ∇u

p
2 + αp

∫
Ω

up for all t ∈ (0, Tmax), (2.3.5)

By Lemma 2.3.2 and Young’s inequality, we have

2(p− 1)

∫
Ω

u
p
2w · ∇u

p
2 ≤ du(p− 1)

2

p

∫
Ω

|∇u
p
2 |2 + 2C1

p(p− 1)

du

∫
Ω

up (2.3.6)

for all t ∈ (0, Tmax), which substituted into (2.3.5) yields

d

dt

∫
Ω

up + pµ

∫
Ω

up +
2du(p− 1)

p

∫
Ω

|∇u
p
2 |2 ≤

(
2C1

p(p− 1)

du
+ αp

)∫
Ω

up (2.3.7)

for all t ∈ (0, Tmax). By Lemma 2.3.1 and the Gagliardo-Nirenberg inequality we

know that∫
Ω

up = ‖u
p
2‖2

L2(Ω) ≤ C

(
‖∇u

p
2‖2θ

L2(Ω)‖u
p
2‖2(1−θ)

L
2
p (Ω)

+ ‖u
p
2‖2

L
2
p (Ω)

)
≤ C‖∇u

p
2‖2θ

L2(Ω) + C for all t ∈ (0, Tmax), (2.3.8)

where

θ =
p
2
− 1

2
1
n

+ p
2
− 1

2

∈ (0, 1).

Since θ ∈ (0, 1), it follows from Young’s inequality that(
2C1

p(p− 1)

du
+ αp

)∫
Ω

up ≤ du(p− 1)

p

∫
Ω

|∇u
p
2 |2 + C(p) (2.3.9)
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for all t ∈ (0, Tmax). Substituting this inequality into (2.3.7) gives

d

dt

∫
Ω

up + pµ

∫
Ω

up +
du(p− 1)

p

∫
Ω

|∇u
p
2 |2 ≤ C(p) for all t ∈ (0, Tmax). (2.3.10)

Solving the above ordinary differential inequality, we get

‖u(·, t)‖Lp(Ω) ≤ C(p) for all t ∈ (0, Tmax).

Taking p = 2n, we have

‖u(·, t)‖L2n(Ω) ≤ C for all t ∈ (0, Tmax).

By Duhamel’s principle, one has

u(·, t) = edut∆u0−
∫ t

0

edu(t−s)∆∇·(uw)ds+

∫ t

0

edu(t−s)∆ϕ(u, v)ds for all t ∈ (0, Tmax),

where ϕ(u, v) = f(v)− αuF (v/u). By Lemma 2.1.2, we have

‖u(·, t)‖L∞(Ω) ≤ C‖u0‖L∞(Ω) + C

∫ t

0

(1 + (t− s)−
1
2
−n

2
· 1
2n )e−λ2(t−s)‖u‖L2n(Ω)‖w‖L∞(Ω)ds

+ C

∫ t

0

(1 + (t− s)−
n
2
· 1
2n )e−λ2(t−s)‖ϕ(u, v)‖L2n(Ω)ds

≤ C‖u0‖L∞(Ω) + C

∫ t

0

(1 + (t− s)−
3
4 )e−λ2(t−s)ds

+ C

∫ t

0

(1 + (t− s)−
1
4 )e−λ2(t−s)ds

≤ C for all t ∈ (0, Tmax). (2.3.11)

The proof is completed.

We now derive a priori L∞-estimate involving the gradient of v and w.

Lemma 2.3.4. There exists a constant C > 0 independent of t > 0 such that

‖v(·, t)‖W 1,∞(Ω) + ‖w(·, t)‖W 1,∞(Ω) ≤ C for all t ∈ (0, Tmax). (2.3.12)
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Proof. In view of Lemma 2.3.2 and Lemma 2.3.3, we only need to prove

‖∇v(·, t)‖L∞(Ω) + ‖∇w(·, t)‖L∞(Ω) ≤ C for all t ∈ (0, Tmax). (2.3.13)

Using the variation of constants representation of v we have

v(·, t) = edvt∆v0 +

∫ t

0

edv(t−s)∆ϕ(u(·, s), v(·, s))ds for all t ∈ (0, Tmax),

where ϕ(u, v) = f(v) − uF (v/u). It follows from the hypothesis (H), Lemma 2.3.3

and F (v/u) ≤ 1 that

‖ϕ(u(·, t), v(·, t))‖L∞(Ω) ≤ max
v∈[0,m]

f(v) + ‖uF (v/u)‖L∞(Ω)

≤ max
v∈[0,m]

f(v) + ‖u‖L∞(Ω)

≤ C for all t ∈ (0, Tmax),

which together with the Lp-Lq-estimates for the Neumann heat semigroup given in

Lemma 2.1.2 shows that

‖∇v(·, t)‖L∞(Ω) ≤ C‖v0‖W 1,∞(Ω) + C

∫ t

0

(1 + (t− s)−
1
2 )e−λ2(t−s)‖ϕ‖L∞(Ω)ds

≤ C‖v0‖W 1,∞(Ω) + C

∫ t

0

(1 + (t− s)−
1
2 )e−λ2(t−s)ds

≤ C for all t ∈ (0, Tmax). (2.3.14)

Similarly, via the variation of constants formula of wi (i = 1, 2, · · · , n), we have

∇wi(t) = ∇edwt∆wi(·, 0) + γ

∫ t

0

∇edw(t−s)∆∂xiv(·, s)ds (2.3.15)

for all t ∈ (0, Tmax). By Lemma 2.1.1, for i = 1, 2, · · · , n, we have

‖∇wi(·, t)‖L∞(Ω) ≤ C‖wi(·, 0)‖W 1,∞(Ω) + C

∫ t

0

(1 + (t− s)−
1
2 )e−λ1(t−s)‖∇v(·, s)‖L∞(Ω)ds

≤ C‖wi(·, 0)‖W 1,∞(Ω) + C

∫ t

0

(1 + (t− s)−
1
2 )e−λ1(t−s)ds

≤ C for all t ∈ (0, Tmax). (2.3.16)

This along with (2.3.14) proves (2.3.13).
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2.4 Global boundedness

With the above uniform-in-time a priori estimates, we can prove Theorem 1.4.1.

Proof of Theorem 1.4.1. In view of the extension criterion (2.2.2), Lemma 2.3.3

and Lemma 2.3.4 first imply Tmax =∞, and then gives (1.4.2) and (1.4.3). �
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Chapter 3

Global stability

In this chapter, we investigate the large time behavior of solutions to the system

(1.4.1) by constructing appropriate Lyapunov functionals and using compactness

arguments. Specificly, we shall focus on the global stability of the prey-only steady

state (0, K,0) and the coexistence steady state (u∗, v∗,0) (noting that it is easy to

show the trivial steady state (0, 0,0) is linearly unstable). Throughout this chapter,

we suppose that the conditions in Theorem 1.4.1 hold and (u, v,w) is the global

classical solution of (1.4.1) obtained in Theorem 1.4.1. To begin with, we give the

following preparations.

3.1 Preliminaries

Based on a bootstrap argument, we can obtain the following higher-order esti-

mates of solutions for all t ∈ [1,∞).

Lemma 3.1.1. Let (u, v,w) be the unique global classical solution of (1.4.1), which

is given by Theorem 1.4.1. Then for any fixed 0 < θ < 1, there exists C(θ) > 0 such

that

‖u, v,w‖
C2+θ,1+ θ2 (Ω̄×[1,∞))

≤ C(θ). (3.1.1)

Proof. This proof is based on a standard argument based on the regularities for

parabolic equations (see [46, Theorem 2.1] for instance). For readers’ convenience,
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we sketch the proof below. The system (1.4.1) can be rewritten as



ut − du∆u+ w · ∇u = H1(u, v,w), x ∈ Ω, t > 0,

vt = dv∆v +H2(u, v), x ∈ Ω, t > 0,

wt = dw∆w + γ∇v, x ∈ Ω, t > 0,

∇u · n = ∇v · n = 0, w = 0, x ∈ ∂Ω, t > 0,

u(x, 0) = u0(x), v(x, 0) = v0(x) w(x, 0) = w0(x), x ∈ Ω,

(3.1.2)

where H1(u, v,w) = −u∇ ·w + αuF (v/u)− µu,

H2(u, v) = vf(v)− uF (v/u).

It follows from (1.4.3) that

‖∇v‖L∞(Ω×(0,∞)) + ‖H1(u, v,w)‖L∞(Ω×(0,∞)) + ‖H2(u, v)‖L∞(Ω×(0,∞)) ≤ C.

Now let p ≥ 1 be a constant, we apply the interior Lp estimate [29, Theorems 7.30

and 7.35] to (3.1.2) to obtain

‖u‖W 2,1
p (Ω×[ 1

2
,∞)) + ‖v‖W 2,1

p (Ω×[ 1
2
,∞)) + ‖w‖W 2,1

p (Ω×[ 1
2
,∞)) ≤ C.

For appropriate large p, the Sobolev embedding theorem indicates that there is a

positive constant θ ∈ (0, 1) such that

‖u‖
C1+θ, 1+θ2 (Ω̄×[ 1

2
,∞))

+ ‖v‖
C1+θ, 1+θ2 (Ω̄×[ 1

2
,∞))

+ ‖w‖
C1+θ, 1+θ2 (Ω̄×[ 1

2
,∞))
≤ C,

which gives

‖∇v‖
Cθ,

θ
2 (Ω̄×[ 1

2
,∞))

+ ‖H1(u, v,w)‖
Cθ,

θ
2 (Ω̄×[ 1

2
,∞))

+ ‖H2(u, v)‖
Cθ,

θ
2 (Ω̄×[ 1

2
,∞))
≤ C.

This along with an application of the interior Schauder estimate (cf. [29]) to (3.1.2)

proves (3.1.1)
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To proceed, we recall the following two basic results which plays a key role in

deriving the global stability. Along with the constructed Lyapunov functionals can

first show that (u− us, v− vs,w−ws) convergence (0, 0,0) in the L2(Ω) norm, then

obtain the global stability by a compactness argument.

Lemma 3.1.2. (cf. [48, Lemma 1.1]) Let τ ≥ 0, c > 0 be constants, ψ(t) ≥ 0,
∫∞
τ
ρ(t)dt <

∞. Assume that ϕ ∈ C1([τ,∞)), ϕ is bounded from below and satisfies

ϕ′(t) ≤ −cψ(t) + ρ(t) in [τ,∞).

If either ψ ∈ C1([τ,∞)) and ψ′(t) ≤ k in [τ,∞) for some k > 0, or ψ ∈ Cθ([τ,∞))

and ‖ψ‖Cθ([τ,∞)) ≤ k for some constants 0 < θ < 1 and k > 0 ,then

lim
t→∞

ψ(t) = 0.

Lemma 3.1.3 (cf. [21, Lemma 4.1]). For constant ω > 0, we define

ζ(v) = v − ω − ω ln
v

ω
,

which is a convex function such that ζ(v) ≥ 0. If v → ω as t→∞, then there exists

a constant T > 0 such that

1

4ω
(v − ω)2 ≤ ζ(v) = v − w − w ln

v

ω
≤ 1

ω
(v − ω)2 for all t ≥ T.

We also recall the following lower bound for v.

Lemma 3.1.4 (cf. [11, Lemma 3.2]). If f(0) > 1
m

and the hypothesis (H) hold, then

there are positive constants ρ0 > 0 and T > 0 such that the solution (u, v,w) of

(1.4.1) satisfies

v(x, t) ≥ ρ0 for all (x, t) ∈ Ω̄× (T,∞) (3.1.3)

and

lim
t→∞

v(x, t) ≥ ṽ := f−1

(
1

m

)
for all x ∈ Ω̄. (3.1.4)
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Proof. The model studied in [11] is (1.3.4), which is different from the model (1.4.1).

However, the parabolic equations satisfied by v of these two models are same. Hence,

the comparison principle used in the proof of [11, Lemma 3.2] is also applicable here.

For the sake of the integrity of this thesis, we shall cite the proof here.

Clearly, F (s)/s = 1
(m+s)

≤ 1
m

for all s ≥ 0. An application of the maximum

principle to the second equation of (1.4.1) implies that there is a 0 < t0 < ∞ such

that min
x∈Ω̄

v (x, t0) = v̄ > 0 for all x ∈ Ω. Considering the problem
vt − d∆v = v

(
f(v)− F (v/u)

v/u

)
≥ v

(
f(v)− 1

m

)
, x ∈ Ω, t > t0,

∂νv = 0, x ∈ ∂Ω, t > t0,

v (x, t0) = v̄, x ∈ Ω.

(3.1.5)

We denote v∗(t) by the solution of the ODE problem
dv∗(t)

dt
= v∗(t)

(
f (v∗(t))− 1

m

)
, t > t0,

v∗ (t0) = v̄ > 0.
(3.1.6)

Then the hypothesis (H) yields that v∗(t) ≥ min{v̄, ṽ} =: % for all t ≥ t0. It is

obvious that v∗(t) is a lower solution of the following PDE problem
V 0
t − d∆V 0 = V 0

(
f (V 0)− 1

m

)
, x ∈ Ω, t > t0,

∂νV
0 = 0, x ∈ ∂Ω, t > t0,

V 0 (x, t0) = v (x, t0) , x ∈ Ω.

(3.1.7)

Then we have

v∗(t) ≤ V 0(x, t) for all (x, t) ∈ Ω̄× (t0,∞) . (3.1.8)

Combining (3.1.5), (3.1.7) and (3.1.8), and using the comparison principle, we have

% ≤ v∗(t) ≤ V 0(x, t) ≤ v(x, t) for all (x, t) ∈ Ω̄× (t0,∞) , (3.1.9)

which gives (3.1.3). By Lemma 3.1, we note that v(f(v)−1/m) > 0 for all 0 < v < ṽ.

Therefore from (3.1.6), we have

lim inf
t→∞

v∗(t) ≥ ṽ,
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which along with (3.1.9) gives (3.1.4).

3.2 Global stability of the prey-only steady state

After the above preparations, we can now constructing suitable the Lyapunov

functional for the prey-only steady state (0, K,0). To begin with, we define two

positive constants as the following

Γ1 :=
γ2M2CP
dwdvK

and Γ2 :=
Γ1

µmδρ0

, (3.2.1)

where M , CP , δ and ρ0 are given by (1.4.2), (2.1.1), the hypothesis (H) and Lemma

3.1.4, respectively.

Lemma 3.2.1. Assume that α ≤ µ, the conditions in Theorem 1.4.1 hold, and the

positive constants Γ1 and Γ2 are given by (3.2.1). Then the energy functional

E1(t) := Γ1

∫
Ω

(
v −K −K ln

v

K

)
+ (1 + Γ2)

∫
Ω

u+

∫
Ω

|w|2 for all t > 0 (3.2.2)

satisfies

d

dt
E1(t) ≤ −ε1

∫
Ω

(
(v −K)2 + |w|2

)
− (µ− α)

∫
Ω

u for all t > T1, (3.2.3)

where ε1 and T1 are two positive constants.

Proof. Using α ≤ µ, F (v/u) = v
mu+v

≤ 1, (2.2.1) and integrating the first equation

of (1.4.1) over Ω along with the boundary condition ∇u · n |∂Ω= w |∂Ω= 0, we have

(1 + Γ2)
d

dt

∫
Ω

u =

∫
Ω

(αF (v/u)− µ)u+ Γ2

∫
Ω

(αv − µ(mu+ v))
u

mu+ v

≤ (α− µ)

∫
Ω

u− µmΓ2

∫
Ω

u2

mu+ v
for all t > 0. (3.2.4)
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By the hypothesis (H) we have f ′(v) ≤ −δ for all v ≥ 0, which along with (2.2.1),

f(K) = 0, Young’s inequality and the mean value theorem implies that

d

dt

∫
Ω

(
v −K −K ln

v

K

)
ds

= −dvK
∫

Ω

|∇v|2

v2
+

∫
Ω

(v −K)(f(v)− f(K))−
∫

Ω

(v −K)
u

mu+ v

≤ −dvK
M2

∫
Ω

|∇v|2 + f ′(ξ)

∫
Ω

(v −K)2 −
∫

Ω

(v −K)
u

mu+ v

≤ −dvK
M2

∫
Ω

|∇v|2 − δ
∫

Ω

(v −K)2 −
∫

Ω

(v −K)
u

mu+ v

≤ −dvK
M2

∫
Ω

|∇v|2 − δ

2

∫
Ω

(v −K)2 +
1

2δ

∫
Ω

u2

(mu+ v)2
(3.2.5)

for all t > 0, where ξ between v and K is a positive constant. Multiplying the third

equation of (1.4.1) by w, integrating the resulting equation over Ω alongside the

boundary condition w |∂Ω= 0, and using (2.1.1), we arrive at

d

dt

∫
Ω

|w|2 = −2dw

∫
Ω

|∇w|2 + 2γ

∫
Ω

w · ∇v

≤ −2dw
CP

∫
Ω

|w|2 + 2γ

∫
Ω

w · ∇v for all t > 0. (3.2.6)

The combination of (3.2.2) and (3.2.4)-(3.2.6) implies that

d

dt
E1(t) ≤ (α− µ)

∫
Ω

u− δΓ1

2

∫
Ω

(v −K)2 − dvKΓ1

M2

∫
Ω

|∇v|2

− 2dw
CP

∫
Ω

|w|2 + 2γ

∫
Ω

w · ∇v

−µmΓ2

∫
Ω

u2

mu+ v
+

Γ1

2δ

∫
Ω

u2

(mu+ v)2︸ ︷︷ ︸
=:I1

for all t > 0. (3.2.7)
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By (2.2.1), (3.2.1) and Lemma 3.1.4 we can find some T1 > 0 such that

I1 = −Γ1

∫
Ω

u2

(mu+ v)2

(
mu+ v

δρ0

− 1

2δ

)

≤ −Γ1

∫
Ω

u2

(mu+ v)2

(
1

δ
− 1

2δ

)
≤ 0 for all t > T1.

Hence (3.2.7) implies that

d

dt
E1(t) ≤ −(µ− α)

∫
Ω

u− δΓ1

2

∫
Ω

(v −K)2 −
∫

Ω

Y1X1Y
T
1 for all t > T1, (3.2.8)

where Y1 := (∇v,w) and X1 is the matrix denoted by

X1 :=

(
dvKΓ1

M2 −γ

−γ 2dw
CP

)
.

It is obvious that dvKΓ1

M2 > 0 and

|X1| :=

∣∣∣∣∣
dvKΓ1

M2 −γ

−γ 2dw
CP

∣∣∣∣∣ =
2dwdvKΓ1

M2CP
− γ2 = γ2 > 0

due to (3.2.1). Based on the Sylvester’s criterion, the matrix X1 is positive definite.

Thus, we can find a constant β1 > 0 such that

Y1X1Y
T
1 ≥ β1 |Y1|2 . (3.2.9)

Therefore, a combination of (3.2.8)-(3.2.9) shows that

d

dt
E1(t) ≤ −(µ− α)

∫
Ω

u− δΓ1

2

∫
Ω

(v −K)2 − β1

∫
Ω

(
|∇v|2 + |w|2

)
for all t > T1,

which proves (3.2.3) by letting ε1 := min
{
β1,

δΓ1

2

}
.

We are now in the position to prove the following convergence property.

Lemma 3.2.2. Suppose that the conditions in Lemma 3.2.1 hold, then for any 0 <

θ < 1 we have

‖u‖C2+θ(Ω̄) + ‖v −K‖C2+θ(Ω̄) + ‖w‖C2+θ(Ω̄) → 0 as t→∞. (3.2.10)
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Proof. With Lemma 3.1.1 and Lemma 3.2.1, the proof of (3.2.10) can be followed

from similar arguments as in [46, Lemma 3.4]. For the convenience of readers, we

shall outline the proof here. Let E1(t) be given by Lemma 3.2.1 and define

F1(t) :=

∫
Ω

(
(v −K)2 + |w|2

)
for all t > 0.

Let θ ∈ (0, 1) be fixed, by (3.1.1) we have E1(t) ∈ C1([1,∞)), F1(t) ≥ 0, F1(t) ∈

Cθ([1,∞)) and ‖F1‖Cθ([1,∞)) ≤ C1 for some C1 > 0. Next we prove that E1(t) is

bounded from below in (0,∞). Indeed, denoting

ψ(s) := s−K −K ln
s

K
for s > 0,

then we have ψ(K) = ψ′(K) = 0 and ψ′′(s) = K
s2
> 0 for s > 0. Moreover, by

Taylor’s expansion, for any s > 0, we can find a number Cs between s and K such

that

ψ(s) = ψ(K) + ψ′(K)(s−K) + ψ′′(Cs)(s−K)2 =
K(s−K)2

C2
s

≥ 0,

which along with (3.2.2) implies that E1(t) ≥ 0 for all t ∈ (0,∞). Then we are in a

position to apply Lemma 3.1.2 to (3.2.3) to obtain

lim
t→∞

(
F1(t) + (µ− α)‖u1‖L1(Ω)

)
= 0.

Therefore,

lim
t→∞

(
‖w‖L2(Ω) + ‖v −K‖L2(Ω) + (µ− α)‖u‖L1(Ω)

)
= 0.

Taking θ′ ∈ (0, 1) such that 0 < θ < θ′ < 1, then Lemma 3.1.1 indicates that

‖u, v,w‖
C2+θ′,1+ θ′2 (Ω̄×[1,∞))

≤ C(θ′),
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which alongside the compact arguments and the uniqueness of limits (cf. [46, (3.12)],

see also [20, Remark 6.2]) shows that

lim
t→∞

(
‖w‖C2+θ(Ω̄) + ‖v −K‖C2+θ(Ω̄) + (µ− α)‖u‖C2+θ(Ω̄)

)
= 0. (3.2.11)

If α < µ, then (3.2.10) is a direct consequence of (3.2.11). If α = µ, in view of

(3.2.11), it remains to prove that

‖u‖C2+θ(Ω̄) → 0 as t→∞. (3.2.12)

By the second equation of (1.4.1), (1.4.5) and f(K) = 0, we obtain

d

dt

(
1

|Ω|

∫
Ω

vdx

)
= v̄′(t) =

1

|Ω|

∫
Ω

[vf(v)− αuF (v/u)]dx

=
1

|Ω|

∫
Ω

v (f(v)− f (K)) dx− α

|Ω|

∫
Ω

uF (v/u)dx

=: J1(t) + J2(t) for all t > 0, (3.2.13)

where ϕ̄ := 1
|Ω|

∫
Ω
ϕ dx for ϕ ∈ L1(Ω). It follows from the mean value theorem, the

hypothesis (H), (3.2.11) and Hölder’s inequality that J1(t)→ 0 as t→∞ since

0 ≤ |J1(t)| ≤ C‖v(·, t)‖L∞(Ω)

∫
Ω

|f ′(ξ)| · |v −K| ≤ C‖v −K‖L2(Ω) max
s∈[0,K]

|f ′(s)| → 0

as t→∞, where ξ is a constant between v and K. By (3.1.1) we know that

‖v̄′‖Cθ/2([1,∞)) ≤ C2(θ) ∀ 0 < θ < 1,

which together with (3.2.11) shows that v̄′(t)→ 0 as t→∞. Therefore, we can infer

from (3.2.13) and J1(t)→ 0 as t→∞ that J2(t)→ 0 as t→∞. Using (1.4.3) and

Lemma 3.1.4, we can find some T1 > 0 such that

1

F (v/u)
=
mu+ v

v
≤ 1 +

m‖u‖L∞(Ω)

ρ0

=: C2 for all t > T1,
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which implies that

0 ≤
∫

Ω

u =

∫
Ω

u
F (v/u)

F (v/u)
dx ≤ C2

∫
Ω

uF (v/u) =
|Ω|
α
C2|J2| → 0 as t→∞.

Therefore, in the case of α = µ, we have proved that

‖u‖L1(Ω) → 0 as t→∞. (3.2.14)

With (3.2.14), by the compact arguments and the uniqueness of limits again, we can

prove (3.2.12) and complete the proof.

In the case of α < µ, we can prove that the prey-only steady state is exponentially

stable.

Lemma 3.2.3. Suppose that the conditions in Lemma 3.2.1 hold. Then there exist

positive constants C, σ1 and t1 such that

‖u‖L∞(Ω) + ‖v −K‖L∞(Ω) + ‖w‖L∞(Ω) ≤ Ce−σ1t for all t > t1.

Proof. Using Lemma 3.1.3 and (3.2.10), we can find t1 > 1 such that

1

4K

∫
Ω

(v −K)2 ≤
∫

Ω

(
v −K −K ln

v

K

)
ds

≤ 1

K

∫
Ω

(v −K)2 for all t > t1. (3.2.15)

By α < µ, (3.2.3) and (3.2.15), we can find two positive constants C1 and C2 such

that

E ′1(t) ≤ −C1

∫
Ω

(
u+ (v −K)2 + |w|2

)
≤ −C2E1(t) for all t > t1,

which implies that

E1(t) ≤ E1(0)e−C2t for all t > t1.

This together with the definition of E1(t) and (3.2.15) shows that

‖u‖L1(Ω) + ‖w‖2
L2(Ω) + ‖v −K‖2

L2(Ω) ≤ C3e
−C2t for all t > t1. (3.2.16)
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We shall extend this result to the estimates of L∞-norm. Indeed, (3.1.1) with t1 > 1

implies that

‖u, v,w‖W 1,∞(Ω) ≤ C for all t ≥ t1,

which along with (3.2.16) and the Gagliardo-Nirenberg inequality
‖ψ‖L∞(Ω) ≤ C‖ψ‖

n
n+1

W 1,∞(Ω)‖ψ‖
1

n+1

L1(Ω),

‖ψ‖L∞(Ω) ≤ C‖ψ‖
n
n+2

W 1,∞(Ω)‖ψ‖
2

n+2

L2(Ω),

∀ ψ ∈ W 1,∞(Ω) (3.2.17)

completes the proof by letting σ1 := − C2

n+2
.

Proof of Theorem 1.4.2 (i). Clearly, Theorem 1.4.2 (i) is a direct consequence of

Lemma 3.2.2 and Lemma 3.2.3. �

3.3 Global stability of the coexistence steady state

We next consider the stability of the coexistence steady state (u∗, v∗,0) in the

case of α > µ. Define two positive constants

Γ3 := α
u∗
v∗

=
α(α− µ)

µm
and d∗w :=

1

8dudvαu∗

(
αdvCPu

2
∗ + 4γ2CPM

2du
)
, (3.3.1)

where M , (u∗, v∗) and CP are given by (1.4.2), (1.4.5) and (2.1.1), respectively.

Lemma 3.3.1. Assume that α > µ, the conditions in Theorem 1.4.1 hold, and the

positive constants Γ3 and d∗w are defined by (3.3.1). If

dw > d∗w and ṽ := f−1(1/m) >
α− µ
δα

, (3.3.2)

then for all t > 0, the energy functional

E2(t) =

∫
Ω

(
u− u∗ − u∗ ln

u

u∗

)
+ Γ3

∫
Ω

(
v − v∗ − v∗ ln

v

v∗

)
+

∫
Ω

|w|2

satisfies

d

dt
E2(t) ≤ −ε2

∫
Ω

(
(u− u∗)2 + (v − v∗)2 + |w|2

)
for all t > T2, (3.3.3)

where (u∗, v∗) is given by (1.4.5) and ε2, T2 are two positive constants..
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Proof. Using the first equality in (1.4.5), for all t > 0, we have

d

dt

∫
Ω

(
u− u∗ − u∗ ln

u

u∗

)

= −duu∗
∫

Ω

|∇u|2

u2
+ u∗

∫
Ω

w · ∇u
u

+

∫
Ω

(αF (v/u)− µ) (u− u∗)

= −duu∗
∫

Ω

|∇u|2

u2
+ u∗

∫
Ω

w · ∇u
u

+ α

∫
Ω

(F (v/u)− F (v∗/u∗)) (u− u∗). (3.3.4)

Similarly as in deriving (3.2.5), it follows from the second equality in (1.4.5) and

(2.2.1) that

d

dt

∫
Ω

(
v − v∗ − v∗ ln

v

v∗

)

= −dvv∗
∫

Ω

|∇v|2

v2
+

∫
Ω

(v − v∗)
(
f(v)− u

mu+ v

)

= −dvv∗
∫

Ω

|∇v|2

v2
+

∫
Ω

(v − v∗) (f(v)− f(v∗)) +

∫
Ω

(
u∗

mu∗ + v∗
− u

mu+ v

)
(v − v∗)

≤ −dvv∗
M2

∫
Ω

|∇v|2 − δ
∫

Ω

(v − v∗)2 +

∫
Ω

(
u∗

mu∗ + v∗
− u

mu+ v

)
(v − v∗) (3.3.5)

for all t > 0, where we have used the mean value theorem along with the hypothesis

(H) in the last inequality. Then the combination on (3.2.6), (3.3.4) and (3.3.5) shows

that

d

dt
E2(t) ≤ −δΓ3

∫
Ω

(v − v∗)2 −
∫

Ω

Y2X2Y
T
2 + I2 for all t > 0, (3.3.6)

where for all t > 0, Y2 :=
(∇u
u
,∇v,w

)
, X2 is the matrix denoted by

X2 :=


duu∗ 0 −u∗

2

0 dvv∗Γ3

M2 −γ

−u∗
2

−γ 2dw
CP

 ,

and

I2 := α

∫
Ω

(F (v/u)− F (v∗/u∗)) (u− u∗) + Γ3

∫
Ω

(
u∗

mu∗ + v∗
− u

mu+ v

)
(v − v∗).
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It is obvious that duu∗ > 0, 1
M2dudvu∗v∗Γ3 > 0 and

|X2| :=

∣∣∣∣∣∣∣∣
duu∗ 0 −u∗

2

0 dvv∗Γ3

M2 −γ

−u∗
2

−γ 2dw
CP

∣∣∣∣∣∣∣∣
=

u∗
4CPM2

(
8dudvdwαu∗ − αdvCPu2

∗ − 4γ2CPM
2du
)
> 0

due to (3.3.2). Based on the Sylvester’s criterion, the matrix X2 is positive definite

and we can find a constant β2 > 0 such that

Y2X2Y
T
2 ≥ β2 |Y2|2 . (3.3.7)

For I2, direct calculations along with (αu∗ − Γ3v∗) = 0 show that

I2 =
m

(mu∗ + v∗)

∫
Ω

vu∗ − uv∗
mu+ v

(α(u− u∗) + Γ3(v − v∗))

=
m

(mu∗ + v∗)

∫
Ω

1

mu+ v

(
−αv∗(u− u∗)2 + u∗Γ3(v − v∗)2

)
for all t > 0,

which alongside (1.4.3), (3.3.6) and (3.3.7) implies that

d

dt
E2(t) ≤ −δΓ3

∫
Ω

(v − v∗)2 − β2

∫
Ω

|w|2 − C1

∫
Ω

(u− u∗)2 +
mu∗Γ3

(mu∗ + v∗)

∫
Ω

(v − v∗)2

mu+ v

≤ −β2

∫
Ω

|w|2 − C1

∫
Ω

(u− u∗)2 − Γ3

∫
Ω

ψ(v)(v − v∗)2 (3.3.8)

for all t > 0, where ψ(v) := δ − mu∗
v(mu∗+v∗)

. We next prove that ψ(v) has a positive

lower bound for sufficient large t. Indeed, it follows from the second inequality in

(3.3.2) that ε0 := ṽ − α−µ
δα

> 0, which along with (3.1.4) implies that there exists

T2 > 0 such that

v(x, t) ≥ ṽ − ε0

2
=

1

2

(
ṽ +

α− µ
δα

)
> 0 for all t > T2.

Therefore, denoting β3 := 2mu∗
(ṽ+α−µ

δα
)(mu∗+v∗)

, using 1 + v∗
mu∗

= α
α−µ (due to (1.4.5)) and

the second inequality in (3.3.2), we have

ψ(v) ≥ δ − β3 =
β3

2

(
αδṽ

α− µ
− 1

)
=: β4 > 0 for all t > T2. (3.3.9)
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Letting ε2 := min {C1, β2, β4Γ3} and making use of (3.3.8) and (3.3.9), we get (3.3.3)

and complete the proof.

With the same arguments for Lemma 3.2.2 and Lemma 3.2.3, we arrive at the

following conclusion and omit the proof for brevity.

Lemma 3.3.2. Suppose that the conditions in Lemma 3.3.1 hold, then for any 0 <

θ < 1 we have

‖u− u∗‖C2+θ(Ω̄) + ‖v − v∗‖C2+θ(Ω̄) + ‖w‖C2+θ(Ω̄) → 0 as t→∞.

Lemma 3.3.3. Suppose that the conditions in Lemma 3.3.1 hold, Then there exist

positive constants C, σ2 and t2 such that

‖u− u∗‖L∞(Ω) + ‖v − v∗‖L∞(Ω) + ‖w‖L∞(Ω) ≤ Ce−σ2t for all t > t2.

Proof of Theorem 1.4.2 (ii). Theorem 1.4.2 (ii) is a direct consequence of Lemma

3.3.1 and Lemma 3.3.3. �
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Chapter 4

Spatially heterogeneous

time-periodic patterns

We have obtained the global stability of the prey-only steady state (0, K,0) and

the coexistence steady state (u∗, v∗,0) under certain parameter conditions (see (3.3.1)

for instance). Outside stable parameter regimes, the dynamic of solutions is obscure.

In this chapter, we shall first conduct linear analysis to find the parameter regimes

such that the constant steady states are unstable, and then perform numerical simu-

lations in these parameter regimes to exhibit possible patterns. Indeed, we observed

spatially heterogeneous time-periodic patterns which are consistent with the experi-

mental observations as in [23, 24, 52]. Moreover, our result is significantly different

from that of [11] which asserts that the ratio-dependent preytaxis model (1.3.4) ad-

mits the existence of non-constant steady state without the acceleration assumption.

4.1 Linear instability analysis

In this section, we shall conduct the linear instability analysis to identify the

possible parameter regimes of pattern formation. For the sake of brevity, we shall

consider the case of

f(v) = 2(1− v/K) and F (v/u) =
v

u+ v
(i.e., m = 1 in (1.2.5)). (4.1.1)
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We start with the corresponding ODE system (noting that w ≡ 0 due to the homo-

geneous Drichlet boundary condition of w)

{
ut = αuF (v/u)− µu,

vt = vf(v)− uF (v/u).
(4.1.2)

There are three possible equilibria (us, vs) of (4.1.2): (0, 0), (0, K) and (u∗, v∗), where

(u∗, v∗) =

(
K(α− µ)

α
,
Kµ

α

)

is given by (1.4.5). Denote J and Ji (i = 1, 2, 3, 4) by

J =

(
J1 J2

J3 J4

)
=

 αv2s
(us+vs)

2 − µ αu2s
(us+vs)

2

− v2s
(us+vs)

2 2− 4vs
K
− u2s

(us+vs)
2

 .

Then the eigenvalue of J, denoted by ρ, satisfies

ρ2 − (J1 + J4)ρ+ J1J4 − J2J3 = 0. (4.1.3)

Based on the Routh-Hurwitz criterion (cf. [33, Appendix B]), (us, vs) is linearly

stable if and only if

−(J1 + J4) > 0 and J1J4 − J2J3 > 0.

Obviously, the equilibrium (0, 0) is linearly unstable since the roots of (4.1.3) are

ρ1 = −µ and ρ2 = 2 > 0. Moreover, it follows from

J|(0,K) =

(
α− µ 0
−1 −2

)
and J|(u∗,v∗) =

(
µ(µ−α)

α
(α−µ)2

α
−µ2
α2 −1− µ2

α2

)

that the steady state (0, K) is linearly unstable (resp. stable) if α > µ (resp. α < µ)

and the homogeneous coexistence steady state (u∗, v∗) is linearly stable when α > µ

since

−(J1 + J4) = 1 +
µ (α(α− µ) + µ)

α2
> 0 and J1J4 − J2J3 = 1− µ2

α2
> 0.
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Next we consider the global stability of prey-only and coexistence steady states

of the system (1.4.1). For brevity, we take Ω = (0, l) with l > 0, and linearize the

system (1.4.1) at the equilibrium (us, vs, 0) to get the linearized system


ut = duuxx − uswx + J1u+ J2v, x ∈ (0, l), t > 0,

vt = dvvxx + J3u+ J4v, x ∈ (0, l), t > 0,

wt = dwwxx + γvx, x ∈ (0, l), t > 0,

ux = vx = 0, w = 0, x = 0, l, t > 0,

(4.1.4)

which has solutions in the form of (cf. [39, Appendix])


u(x, t) =

∑
k≥0 Uke

λt cos kx,

v(x, t) =
∑

k≥0 Vke
λt cos kx,

w(x, t) =
∑

k≥0Wke
λt sin kx,

(4.1.5)

where the constants Uk, Vk and Wk are determined by Fourier expansions of the

initial data, λ = λ(k) (depending on k) is the temporal growth rate and k = Nπ
l

is

the wave number with the mode N = 0, 1, 2, · · · . Substituting (4.1.5) into (4.1.4)

and noting that

{1, cos (πx/l) , sin (πx/l) , cos (2πx/l) , sin (2πx/l) , · · · }

forms a orthonormal basis for L2(0, l), we obtain


λUk + duk

2Uk + kusWk − J1Uk − J2Vk = 0, N = 0, 1, 2, 3, · · · ,

λVk + dvk
2Vk − J3Uk − J4Vk = 0, N = 0, 1, 2, 3, · · · ,

λWk + dwk
2Wk + γkVk = 0, N = 1, 2, 3, · · · .

(4.1.6)

The case of k = 0 (i.e., N = 0) is corresponding to the ODE system (4.1.2). By

the previous analysis, we know that N = 0 is a stable mode for the prey-only (resp.

coexistence) steady state if α < µ (resp. α > µ). When k 6= 0 (i.e., N = 1, 2, · · · ),
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(4.1.6) implies that λ is the eigenvalue of matrix A and satisfies

λ

 Uk
Vk
Wk

 = A

 Uk
Vk
Wk

 with A =

 −duk2 + J1 J2 −kus
J3 −dvk2 + J4 0
0 −kγ −dwk2

 .

One can immediately check that the prey-only steady state (0, K, 0) is linearly stable

under the condition α < µ, since

A =

 −duk
2 + α− µ 0 0

−1 −dvk2 − 2 0
0 −γk −dwk2


only has negative eigenvalues for k 6= 0 (N = 1, 2, · · · ). Therefore, the pattern can

only arise possibly from the coexistence steady state. In the following, we assume

α > µ and consider the case of the coexistence steady state. Then by tedious

discussions of the sign of eigenvalues of the matrix A (cf. [31, Sec.4] for instance and

we omit the details here for brevity), we obtain that the coexistence steady state(
K(α−µ)

α
, Kµ
α
, 0
)

of system (1.4.1) is
linearly stable, γ < γ̃,

marginally stable, γ = γ̃,

linearly unstable, γ > γ̃,

(4.1.7)

where

γ̃ = inf
k=Nπ

l
6=0
γ∗(k

2), γ∗(k
2) := b3k

4 + b2k
2 + b1 +

b0

k2
(4.1.8)
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and

b3 = α3(du + dv)(du + dw)(dv + dw),

b2 = α3dv
2µ(α− µ) + α2d2

u

(
α2 + µ2

)
+ α2

[
αµ(α− µ) + α2 + µ2

]
[2du(dv + dw) + dw(2dv + dw)] ,

b1 = du
[
α3µ(α− µ) + αµ(α3 − µ3)) + α4 + 2α2µ2 + µ4

]
+ dvαµ(α− µ)

(
αµ(α− µ) + 2α2 + αµ+ µ2

)
+ dw

(
αµ(α− µ) + α2 + µ2

)2
,

b0 = µ(α− µ)(α + µ)
(
αµ(α− µ) + α2 + µ2

)
,

are all positive constants.

Remark 4.1.1. In (4.1.7), “linearly stable” means that all eigenvalues of A have

negative real parts for all mode N ∈ {1, 2, · · · }; “linearly unstable” denotes that at

least one eigenvalue of A has a positive real part for some mode N0 ∈ {1, 2, · · · };

and “marginally stable” is the case other than the former two cases.

4.2 Spatio-temporal patterns

In this subsection, we shall use numerical simulations to illustrate that the model

(1.4.1) can generate spatially heterogeneous time-period patterns which is an ex-

pectable mechanism boosting the persistence of predator-prey interactions (cf. [17]).

Besides (4.1.1) (which means that m = 1), we shall take the value of parameters in

all simulations as follows:

α = 3, µ = K = 1 and du = dv = dw = 0.1. (4.2.1)

The initial data (u0, v0, w0) are taken as a small random perturbation of the coexis-

tence steady state (u∗, v∗, 0) with 1% deviation :

(u0, v0, w0) = (u∗ + 0.01 ·R, v∗ + 0.01 ·R, 0.01 ·R), (4.2.2)
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Figure 4.1: Numerical simulation of spatio-temporal patterns generated by (1.4.1)
with γ = 15 in the interval [0, 10], where the initial value (u0, v0, w0) is given by
(4.2.2) and other parameter values are chosen as in (4.2.1).

where R is a random variable taking values in (−1, 1) generated by the Matlab and

(u∗, v∗, 0) = (4
3
, 2

3
, 0) according to (1.4.5). Recalling the assumption (H), it follows

from (4.1.1) that δ = 2 and f−1( 1
m

) = f−1 (1) = 1
2
> α−µ

δα
= 1

3
, which satisfies the

condition in Theorem 1.4.2 (ii).
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Figure 4.2: Numerical simulation of spatio-temporal patterns generated by (1.4.1)
with γ = 30 in the interval [0, 10], where the initial value (u0, v0, w0) is given by
(4.2.2) and other parameter values are chosen as in (4.2.1).

By (4.1.8) we have

γ∗(k
2)
∣∣
k=Nπ

10

=

(
27k4

500
+

24k2

25
+

32

3k2
+

82

15

)∣∣∣∣
k=Nπ

10

=
27π4N4

5000000
+

6π2N2

625
+

3200

3π2N2
+

82

15

for N = 1, 2, 3, · · · . Moreover, one can check that γ∗(k
2) attains its minimum at

k = 5π
10

(i.e., N + 5) and hence γ̃ = γ∗(k
2)|k= 5π

10
≈ 12.4872.

42



Figure 4.3: Numerical simulation of spatio-temporal patterns generated by (1.4.1)
with γ = 12.4872 in the interval [0, 10], where the initial value (u0, v0, w0) is given
by (4.2.2) and other parameter values are chosen as in (4.2.1).

It follows from (4.1.7) that the equilibrium (4
3
, 2

3
, 0) is linearly stable in the sub-

critical case γ < γ̃ and can generate patterns in the supercritical case γ > γ̃. As

for the critical case (γ = γ̃), since the stability of the equilibrium (4
3
, 2

3
, 0) of (1.4.1)

is unclear and depends on the specific perturbation, it is interesting to see whether

patterns can appear in this case with numerical simulations. Specifically, spatially in-

homogeneous time-periodic patterns can generate from the equilibrium (4
3
, 2

3
, 0) with

a small perturbation in the supercritical case, such as Fig.4.1 for γ = 15 and Fig.4.2
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for γ = 30. The two numerical simulations for γ = 15 and γ = 30 have three similar-

ities, the first is the similar patterns (see Fig. 4.1-(a) and Fig.4.2-(a)); Second, the

predators and prey are segregated heterogeneously in space at a fixed time to achieve

coexistence (see Fig.4.1-(b) and Fig.4.2-(b)); the last is that the finally time-periodic

of the densities of the predator and the prey at fixed position (see Fig.4.1-(c) for the

limit cycle of (u(2, t), v(2, t)) and Fig.4.2-(b) for the direct time-periodic profiles of

u(2, t) and v(2, t)). The difference between these two numerical simulations is that

the amplitudes and periodicities of periodic patterns are different. The larger is γ,

the larger is the amplitude (compare Fig.4.1-(b) and Fig.4.2-(b)), which indicates

that the aggregation effect is stronger with the increase of γ. For the marginally

stable case, the similar spatially inhomogeneous time-periodic pattern in the long

time is shown in Fig.4.3-(a). However, compare to the former two cases (γ = 15 and

γ = 30), the obvious difference is that the amplitude of the pattern is eventually

very small (see Fig.4.3-(b) and (c)) and retains time-periodic small changes near the

equilibrium (4
3
, 2

3
, 0).

It has been shown in [11, Fig.1] that for the conventional ratio-dependent prey-

taxis model (1.3.4), non-constant steady states exist in some parameter regimes and

no spatially inhomogeneous time-periodic patterns (as the patterns in Fig. 4.1 and

Fig. 4.2) arise from the coexistence steady state. From the above analysis for the

ratio-dependent preytaxis model (1.4.1) driven by acceleration, we can see that the

acceleration assumption brings a significant difference, i.e., spatially inhomogeneous

time-periodic patterns arose from the coexistence steady state are observed, which is

more suitable to interpret the experimental observations as in [23, 24, 52]. All in all,

the ratio-dependent preytaxis model with the acceleration assumption such as (1.4.1)

is able to capture different kinds of heterogeneity which are supposed to enhance the

persistence of predator-prey interactions with “perfect sharing” (cf. (1.2.5) and [17]).

Moreover, our analyses on the model (1.4.1) possibly provide the biological control

44



some theoretical guidance to inhibit the pest (viewed as the prey in some situations)

densities below some economic level as discussed in [39].
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Chapter 5

Conclusions and future plans

5.1 Conclusions

This thesis deals with a predator-prey model with a ratio-dependent functional

response function and a rational movement assumption – acceleration assumption.

The corresponding biological background and motivation are introduced in chapter

1. We have established the global existence and boundedness of classical solutions

in chapter 2. Moreover, in chapter 3, the global stability (and also the convergence

rates) of the prey-only steady state and the constant coexistence equilibrium are

obtained for certain parameter regimes. Outside stable parameter regimes, linear

analysis is used to find the unstable parameter regimes and numerical simulations

are performed to exhibit that spatially heterogeneous time-periodic patterns will

typically arise.

Compared to the conventional ratio-dependent preytaxis model, non-constant

steady states exist in some parameter regimes and no spatially inhomogeneous time-

periodic patterns arise from the coexistence steady state. However, for our problem,

which also takes the acceleration assumption into account, spatially inhomogeneous

time-periodic patterns can arise from the coexistence steady state. All in all, the

ratio-dependent preytaxis model with the acceleration assumption is able to capture

spatial heterogeneity which is supposed to enhance the persistence of predator-prey
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interactions. Our results possibly provide biological control with some theoretical

guidance to inhibit the pest densities (viewed as the prey in certain situations) below

some economic level.

5.2 Future plans

This thesis studied the global dynamic of a one predator one prey preytaxis model.

However, in the real world, there are various species and the interactions between

them are very complex. Such as a food web system. Therefore, research in this

direction is meaningful. From a mathematical point of view, the challenge increases

rapidly with the number of species. For instance, even for a three species preytaixs

model, there may be three constant coexistence steady states, and the semi-trivial

constant coexistence steady states are more than two. Therefore, it can be expected

that the dynamic behavior will become extremely complex.

To take a small step in this direction, we may consider one predator and two prey

preytaxis model with a ratio-dependent functional response function and the acceler-

ation assumption. Moreover, for the interactions between two prey, we consider the

Lotka-Volterra competition. There will be four equations in the considered system.

To avoid the model being too complex, we shall only specify the system parameter

to certain cases such that there is at most one constant coexistence steady state. In

this concrete parameter setting, we study the global dynamics of the model.
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