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Abstract 

Distributed optical fiber sensor (DOFS) techniques have attracted a lot of interest in 

both research and application areas due to their capabilities of measuring temperature, 

strain, and vibration at consecutive points over a very long distance. Among all DOFS 

techniques, Brillouin optical time domain analyzer (BOTDA) and phase-sensitive 

optical time-domain reflectometry (Φ-OTDR) are two of the most popular directions in 

recent years. Inspired by the successful application of advanced machine learning and 

image processing techniques in the field of optical fiber communication, while the 

DOFS systems are very similar to optical fiber communication systems in fact, this 

thesis focuses on the application of some neural network (NN) techniques, including 

artificial neural network (ANN), convolutional neural network (CNN), and deep neural 

networks (DNN), and also an image processing method, the video block-matching and 

3D filtering (VBM3D) in BOTDA and Φ-OTDR to improve the system performance 

and solve existing problems. 

First, the DNN-based temperature distribution extraction method for using the 

BOTDA system is demonstrated experimentally. After appropriate training of DNN 

model, temperature distribution information along the fiber under test (FUT) could be 

directly extracted from the experimentally obtained local Brillouin gain spectrums 

(BGS) using DNN without the need of calculating Brillouin frequency shift (BFS) and 

transforming it to temperature as the conventional Lorentz curve fitting (LCF) method 
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does. The results of temperature extraction using DNN show a comparable accuracy to 

that of using conventional LCF method, which proves that DNN can be used in BOTDA 

for temperature extraction. 

Second, simultaneous temperature and strain measurement by using DNN for 

BOTDA has been demonstrated with enhanced accuracy. After trained by using 

combined ideal clean and noisy BGSs, the DNN is applied to extract both the 

temperature and strain directly from the measured double-peak BGS in large-effective-

area fiber (LEAF). Both simulated and experimental data under different temperature 

and strain conditions have been used to verify the reliability of DNN based 

simultaneous temperature and strain measurement, and to demonstrate its advantages 

over BOTDA with the conventional equation-solving method. Avoiding the small 

matrix determinant induced large error, the DNN approach significantly improves the 

measurement accuracy. The enhanced accuracy and fast processing speed make the 

DNN approach a practical way of achieving simultaneous temperature and strain 

measurement by the conventional BOTDA system without adding extra system 

complexity. 

In addition, a method of robust and fast temperature extraction for BOTDA 

using the denoising autoencoder (DAE) based DNN is demonstrated. After appropriate 

training, the DAE suppresses the noise on the measured BGS, and improves the signal-

to-noise ratio (SNR) by 9.96dB in the experiment. To extract temperature, the DAE as 

a basic block is stacked to form the DNN model. Since the DNN model is based on 

DAE, both denoising and fast temperature extraction can be simultaneously finished 
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using only one DNN model. Moreover, since the temperature information can be 

extracted directly from the experimental BGS data, the speed of temperature extraction 

using the DAE based DNN is faster by 500 times than that using LCF. Combining the 

advantages of both denoising and fast processing speed, the DAE based DNN would 

be a practical way of temperature extraction for the BOTDA systems. 

Besides, the video-BM3D denoising method is proposed and experimentally 

demonstrated for the first time in a 100.8km long-distance BOTDA sensing system with 

2m spatial resolution. Both experiments under static and slowly varying temperature 

environment are carried out. A temperature uncertainty of 0.43oC has been achieved 

with denoising by VBM3D in static temperature measurement. The slowly varying 

temperature at the end of 100.8km fiber has also been accurately measured. VBM3D 

exploits both the spatial and temporal correlations of the data for denoising, thus it can 

significantly reduce the temperature fluctuations and keep the measured values close to 

the real temperature even if the temperature is temporally changing. Thus, it would be 

useful for the long-distance sensing where the measurand may have temporal evolution 

in the slowly varying environment. 

Finally, the ANN and CNN are applied in the Φ-OTDR, which is an optic fiber 

distributed acoustic sensing (DAS) system, to detect the sound and to predict the 

existence of red palm weevil (RPW). RPW is a detrimental pest, which has wiped out 

many palm tree farms worldwide. However, early detection of RPW is challenging, 

especially in large-scale farms. Here, machine learning techniques including the ANN 

and CNN are combined with the DAS as a solution for the early detection of RPW. 
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Within the laboratory environment, we reconstructed the conditions of a farm that 

includes an infested tree with ~12 day old weevil larvae and another healthy tree. 

Meanwhile, some noise sources are introduced, including wind and bird sounds around 

the trees. After training with the experimental time- and frequency-domain data 

provided by the DAS system, a fully-connected ANN and a CNN can efficiently 

recognize the healthy and infested trees with high classification accuracy values (99.9% 

by ANN with temporal data and 99.7% by CNN with spectral data, in reasonable noise 

conditions). This work paves the way for deploying the high efficiency and cost-

effective fiber optic DAS to monitor RPW in open-air and large-scale farms containing 

thousands of trees. 
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1 Introduction  

1.1 Overview of optical fiber sensing 

Optical fiber sensors can be classified as single–point, quasi–distributed, and 

distributed sensors [1]. Initially, optic sensors were developed as pointwise sensors, 

which monitor environmental parameters at one location along the fiber. Various types 

of single–point fiber–optic sensors have been introduced, including grating–based 

sensors (fiber Bragg grating (FBG), long–period grating (LPG), etc.) and 

interferometric sensors (Fabry–Perot, Mach–Zehnder, etc.) [2]. Following the 

advancement of optical multiplexing, such as wavelength–, time–, and spatial–division 

multiplexing, arrays of discrete single–point sensors can be multiplexed along the fiber 

to form a quasi–distributed fiber–optic sensor [3]. In the oil and gas industry as an 

example, the single–point and quasi–distributed fiber–optic sensors have been deployed 

in many applications, primarily requiring discrete monitoring of acoustics, temperature, 

and/or pressure along pipelines or downhole, such as managing well drawdown, in–

well pressure measurement to determine completion effectiveness, providing pressure 

build–up data, zonal production allocation, determination of productivity index, and 

monitoring during well ramp–up [4]–[6]. However, in terms of technology and cost, 

single–point and quasi–distributed fiber–optic sensors are not suitable for petroleum 

applications that require continuous spatial sensing, similar to downhole monitoring of 
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hydrocarbon flow [7], fluid injection [8], wax buildup [7], and surveillance of leak 

detection along pipelines [9]. 

In contrast, distributed fiber–optic sensors can offer wealthy information by 

monitoring environmental parameters along the entire fiber length, i.e., the fiber itself 

is the sensor [1],[10]. Besides the aforementioned advantages of optical fibers, 

distributed fiber–optic sensors have another major benefit of reducing the overall 

sensing cost by measuring sensing parameters continuously and in real–time over tens 

of kilometers. In the upstream sector of oil and gas industry, distributed fiber–optic 

sensors are used for a wide range of applications such as seismic profiling [13], 

hydraulic fracture analysis [14], flow monitoring [9], casing leak detection [15], gas lift 

optimization [11], diagnosis [10], among others. This is achieved by installing optical 

fibers downhole to deliver data about the well and reservoir. On the other hand, 

distributed fiber–optic sensors can provide detection of intrusion [16], leak [17], and 

deformation [18] along a pipeline by attaching/placing the optical fiber to/near the 

pipeline’s surface. 

The operation principles of distributed fiber–optic sensors, widely deployed in the oil 

and gas industry, are mainly based on optical scattering such as Rayleigh, Brillouin, or 

Raman scattering [19]. Generally, light scattering is a stochastic statistical process that 

occurs in all angular directions. A typical spectrum of spontaneous light scattering in a 

general medium is shown in Fig. 1.1, comprising Rayleigh, Brillouin and Raman 

scattering [1], [12]. It should be noted that, since silica is an isotropic medium, 

Rayleigh-wing scattering is not included in a typical spectrum of spontaneous light 
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scattering in an optical fiber. During the fabrication process of optical fibers, silica 

molecules move in the molten state and then randomly freeze in place, which leads to 

fluctuations in density along the optical fiber. The density fluctuations cause random 

changes in the refractive index at a scale smaller than the optical wavelength, resulting 

in Rayleigh  

Fig. 1.1: A typical spectrum of spontaneous light scattering in a general medium. 

 

scattering. Rayleigh scattering is an elastic phenomenon, i.e., incident light does not 

transfer energy to the glass and there is no frequency shift between the incident and 

scattered light. In contrast, Brillouin and Raman scattering are produced by photon–

phonon interaction, such that acoustic (optical) phonons are involved in Brillouin 

(Raman) scattering. Both Brillouin and Raman scattering are inelastic phenomena, in 

which the frequency of the scattered light is shifted from that of the incident light (Fig. 

1.1). With respect to the central Rayleigh peak, the down– and up–shifted spectral 

components of Brillouin and Raman scattering are called Stokes and Anti–Stokes 

components, respectively. A last scattering phenomenon that can be observed in Fig. 



CHAPTER 1 

4 
 

1.1 is the Rayleigh–wing scattering, produced by fluctuations in the orientation of 

anisotropic molecules of the scattering medium [9]. 

Optical scattering can be classified as spontaneous or stimulated, based on the 

change in the optical properties of the medium during scattering. Spontaneous 

scattering typically occurs at low levels of incident light intensity, which do not alter 

the medium’s optical properties. As the intensity of the incident light increases to a level 

at which the light changes the medium’s optical properties, the scattering becomes 

stimulated. In other words, the transition from spontaneous to stimulated scattering 

corresponds to a change in the behavior of the medium from a linear to a nonlinear 

optical regime [17]. Both spontaneous and stimulated optical scattering offer various 

capabilities for distributed fiber–optic sensors used in the oil and gas industry and other 

applications. 

 

1.2 Organization of the thesis 

In this thesis, we focus on the application of some advanced signal processing 

techniques, including the neural networks and image processing methods in the 

distributed optical fiber sensing (DOFS). The aim is to promote the performance and 

make the DOFS more practical for the industry application, especially the oil and gas 

industry. 

 Chapter 1 gives an overview of optical fiber sensors (OFSs) and distributed optical 

fiber sensing (DOFSs). The classification of these optical fiber sensors is given, 
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including some basic principles. Some application background in the industry, 

especially the oil and gas are mentioned to show the practical function of these sensing 

systems. 

 Chapter 2 gives the detailed introduction of the principles of three different types 

of scattering in the optical fiber. The DOFS based on these scattering (Rayleigh 

scattering, Brillouin scattering, and Raman scattering) are also introduced. 

 Chapter 3 introduces the first trial of using deep neural networks (DNN) for BOTDA 

to extract the temperature distribution. The simulation and experiment results prove the 

feasibility of this method. 

 Chapter 4 introduces the use of DNN for simultaneous temperature and strain 

measurement in BOTDA, which is very significant to make the BOTDA practical. The 

results show enhanced accuracy compared with conventional methods. 

Chapter 5 introduces a new method to use the denoising autoencoder based DNN for 

fast and robust temperature distribution extraction in BOTDA. The key point is that the 

denoising autoencoder is adopted instead of normal autoencoder to construct the DNN 

model, which is inspired by the previous experiment process. The results show that the 

speed and robustness can be enhanced with this novel technique. 

Chapter 6 introduces a very long-distance (about 100 km) BOTDA, achieved with the 

assistance of the Video-BM3D denoising method. During the previous research work, the 

denoising methods are expected to have good effects on the signals collected by the 

BOTDA system. Since the denoising effect of the DNN model has investigated previously, 

the more commonly used imaging denoising technique Video-BM3D is investigated here. 
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Both static and slowly varying environment has be taken into consideration and the results 

show excellent denoising effects of this technique.  

Chapter 7 introduces the utilization of neural networks techniques including the 

artificial neural network (ANN) and convolutional neural networks (DNN) in the 

distributed acoustic sensing (DAS) system, or also known as phase-OTDR. DAS is a 

relatively new DOFS technique and has attracted a lot of research interest during recent 

several years. The reason why DAS is chosen to apply the neural network techniques is that 

it can generate a lot of data, which is very suitable to use the machine learning techniques 

as a pattern classification task. Very comprehensive comparative experiments have been 

conducted, which show the results with very high classification accuracy. 

Chapter 8 gives the conclusion of this thesis. Besides, the challenges and future work 

direction of DOFS with novel advanced techniques are discussed for the practical use 

purpose. 
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2 Distributed optical fiber sensing based 

on three scattering  

In this chapter, the working principles are given in detail of DOFSs, which can be 

classified as three different types based on three kinds of optical scatterings in the fiber. 

These three scatterings have different physical principles, determining that they can be 

used for different measurements. Generally, the Rayleigh–based DOFS can be used for 

distributed acoustic sensing (DAS), Brillouin–based DOFS can be used for distributed 

temperature and strain sensing (DTSS), and Raman–based DOFS can be used for 

distributed temperature sensing (DTS). 

2.1 Distributed optical fiber sensing based on Rayleigh 

scattering 

The Rayleigh–based optical fiber DAS is achieved by the phase–sensitive optical time 

domain reflectometer (Φ–OTDR), which was described firstly in [1–4]. The working 

principle of this optical fiber DAS is very similar to the conventional OTDR [5]. 

Generally, the only key difference is adopting a laser source with a narrow linewidth 

and a stable frequency in Φ–OTDR. In other words, the successful operation of the 

DAS system depends on the use of a laser source with a much longer coherence length 

than the used fiber under test (FUT). Most commercial optical fiber DAS systems 

utilize the direct detection method (Fig. 2.1(a)), which makes the setups of sensing 

system relatively simple [5], [6]. In this setup, a narrow linewidth laser source generates 
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a continuous wave (CW) light. The CW light is then converted into optical pulses using 

a modulator, such as electro-optic modulator (EOM) or acousto-optic modulator 

(AOM), driven by a function generator. Then, an erbium-doped fiber amplifier (EDFA) 

amplifies the power of the modulated optical pulses, which are injected into a single–

mode fiber (SMF) via a circulator. As the optical pulses propagate along the SMF, 

Rayleigh signals are backscattered and directed through via a circulator into another 

EDFA. The EDFA’s amplified spontaneous emission (ASE) noise is then removed using 

a filter, and finally the Rayleigh signals after filtering are detected by a photodetector 

(PD) and then collected by a data acquisition device (DAQ). Strictly speaking, this Φ-

OTDR system setup can be called distributed vibration sensing (DVS), but not DAS, 

since it can not quantify the outside perturbation. However, the DAS has a wider 

understanding in the relevant application fields and are used to represent both DAS and 

DVS commonly. Thus, we will continue to use the name DAS in the following content 

while we are clear about its actual meaning. 

The operation principle of DAS can be expressed by dividing the length (L) of the 

optical fiber into cascaded N small sections, such that each section length ΔL = L/N 

(Fig. 2.1(b)) [7], [8]. In this model, it is reasonable to set ΔL equals the width of the 

optical pulse. Due to the density fluctuations along the optical fiber, it is assumed that 

each section contains M independent Rayleigh scattering centers. At the PD position, 

the interference field Ei of the returned Rayleigh light generated from the ith section can 

be expressed as: 
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  (2.1) 

where E0 is the electric field of the incident light, α is the attenuation coefficient of the 

fiber, Li is the distance between the input port of the optical fiber to the location of the 

ith section, i.e., Li = iΔL, i = 1, 2, …, N. The scattering coefficient and phase of the kth 

scattering center in the ith section are represented by 𝑟𝑘
𝑖  and 𝜑𝑘

𝑖 , respectively. Eq. (2.1) 

can show that the ith section’s Rayleigh backscattered intensity  is linked to 

the relative phases of light reflected from the individual scattering centers within the ith 

section. Since the scattering centers are spatially randomly distributed within a section 

of the fiber, the fiber optic DAS has a Rayleigh speckle–like profile of random 

intensities along its length, as shown in the representative example of Fig. 2.1(c) for a 

2–km–long standard SMF. 

When there is no intrusion along the FUT, i.e., no refractive index perturbation 

along the fiber, the recorded Rayleigh traces remain ideally identical in the time–

domain. In the case where an acoustic signal is applied at a position along the FUT, the 

relative phases of the backscattered light at that position change, resulting in temporal 

intensity fluctuations of the Rayleigh traces only at that perturbation position. The 

location of the acoustic event along the FUT can be identified by applying the 

differential method, in which consecutive temporal Rayleigh traces are subtracted from 

an initial reference one [9]. In addition, the frequency components of the acoustic event 
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can be calculated by applying the fast Fourier transform to the resulting differential 

signal at the perturbation position. 

Although the direct detection method is simple, as shown in Fig. 2.1(a), it has the 

drawback that the Rayleigh differential intensity varies nonlinearly with the strain 

induced by an acoustic event [8]. In other words, the strain along the FUT cannot be 

properly quantified. In case an application, such as wellbore seismic acquisition, strictly  

Fig. 2.1: (a) Experimental setup of the fiber–optic DAS with the direct detection method. (b) Schematic 

of modeling the operation of the fiber–optic DAS. (c) Representative example of a Rayleigh trace, 

recorded using a fiber–optic DAS. Cir., circulator. 
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requires quantifying the strain along the FUT, differential phase calculation should be 

adopted instead of the differential intensity measurement. The differential phase varies 

linearly with the strain; however, calculating the differential phase requires the use of 

more sophisticated optical systems and signal processing methods. For example, 

interferometric recovery [10], coherent detection [11], [12], dual–pulse [1], or chirped–

pulse [13] scheme can be used for calculating the differential phase. 

As a representative example, we describe the operation principle and experimental 

setup of the interferometric scheme for recovering the differential phase of a fiber–optic 

DAS (Fig. 2.2) [10]. As Fig. 2.2 shows, the system comprises a distributed feedback 

(DFB) laser that generates a CW light, which is modulated into optical pulses via an 

integrated optical chip (IOC). The optical pulses are then amplified with an EDFA, 

where its ASE noise is filtered out using a tunable Fabry–Perot filter (TFP). The 

amplified and filtered optical pulses are then launched throughout a circulator into a 

 

Fig. 2.2. Experimental setup of the fiber-optic DAS with the interferometric scheme for recovering 

the differential phase. 
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sensing fiber, whose end is optically terminated (OT) to prevent back reflections. The 

backscattered Rayleigh light is directed toward an unbalanced Mach–Zehnder 

interferometer (MZI), which mixes the backscattered light from two separate regions 

along the sensing fiber to extract the differential phase between them. The optical 

pulse–width determines the length of the scattering region (LPW), while the gauge length 

(GL) is half the interferometer optical path imbalance. To avoid phase signal fading 

[14], a 3×3 output coupler is used for the MZI such that the interferometer has a 2π/3 

relative phase difference between the output arms of the 3×3 coupler. The three output 

signals from the MZI are detected with avalanche photodiodes (APDs), sampled with a 

sample and hold amplifier (S/H), and processed for differential phase extraction along 

the fiber. 

Demodulating the differential phase Δφ(l) for any given fiber section of length l is 

well explained in [14], [15]. The light intensity at the three output arms of the MZI can 

be expressed as: 

  (2.2) 

where I0 is the intensity of the input signal, and M and N are constants. Using 

trigonometric identities and some mathematical manipulation, Δφ(l) can be extracted 

as: 
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  (2.3) 

where , is the intensity of light at the detector less its DC component. 

Once Δφ(l) is demodulated, the strain (ε) applied on the fiber section can be estimated 

using the equation below: 

  (2.4) 

where β is the propagation constant of light in the fiber. 

It is important to highlight that the operation of DAS system that measures 

differential intensity/phase relies on spontaneous Rayleigh scattering. It is 

recommended to increase the peak power of the short optical pulses used in the DAS to 

extend the sensing range when maintaining a high spatial resolution. However, the peak 

power of the pulses should not exceed a threshold beyond which nonlinear phenomena 

occur within the fiber, such as self–phase modulation (SPM) and modulation instability 

(MI) which are generally the first nonlinear effects to degrade DAS measurements [16-

18]. The threshold power of nonlinearity relies on the details of the optical pulses and 

fiber type. 

 

2.2 Distributed optical fiber sensing based on Brillouin 

scattering 
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Brillouin–based DOFSs have been rapidly developed over the past 30 years [1], after 

their first proposal in 1989 [19-21]. The optical fiber DTSS can be achieved via one of 

two systems: Brillouin optical time–domain reflectometry (BOTDR) [22] and Brillouin 

optical time–domain analyzer (BOTDA) [23]. The operation principles of BOTDR and 

BOTDA are based on spontaneous Brillouin scattering (SpBS) and SBS, respectively. 

BOTDR has the advantage of having a simple experimental setup, with only one FUT 

pumping end, making it more convenient to deploy. In contrast, the BOTDA scheme is 

relatively complex and requires two FUT pumping ends. Nevertheless, BOTDA has a 

higher SNR than BOTDR, due to the essential principle of SBS with its higher power 

compared to SpBS [24]. 

A typical BOTDR experimental setup with heterodyne detection method is shown 

schematically in Fig. 2.3(a) [25]. A narrow linewidth laser generates a CW light that is 

divided by a coupler into two paths, a pump light and a local oscillator (LO) light. The 

pump light is modulated to optical pulses via an EOM driven by a function generator. 
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The optical pulses are then amplified with an EDFA and launched into a SMF through 

a circulator. As the pump pulses propagate along the SMF, SpBS signal is backscattered.  

Fig. 2.3: Experimental setup of the BOTDR (a) and BOTDA (b). (c) Brillouin scattering in the Bragg 

diffraction regime. (d) Representative example of measured BGSs along a FUT. 
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The backscattered signal is directed via the circulator to be mixed with the LO light 

inside another coupler to generate a Brillouin beat–signal, which frequency is around 

11 GHz with the commonly used 1550 nm light source and SMF. The Brillouin beat–

signal is then detected and recorded by a PD and a DAQ, respectively. 

In contrast, the typical BOTDA system is shown in Fig. 3.2(b) [26], where the CW 

light output from a narrow linewidth laser is split into two branches by a coupler. The 

light at the upper branch is modulated by an EOM biased at the null–point to suppress 

the optical carrier and driven by a frequency controller to provide the probe light. The 

probe light is amplified with an EDFA and then injected into a SMF after passing 

through an isolator (ISO), which blocks the light in the reverse direction. At the lower 

branch, the CW light is modulated by another EOM to generate pump pulses. The pump 

pulses are also amplified with another EDFA whose ASE noise is discarded by a filter. 

Then, the pump pulses are injected into the SMF in the reverse direction to amplify the 

probe light along the SMF via the SBS effect. The amplified probe signal is then 

spectrally filtered to remove its high-frequency sideband, detected by a PD, and 

recorded with a DAQ. 

In the mechanism of SpBS, only one incident pump light enters the medium and a 

scattered Brillouin Stokes light of a lower frequency is generated. SpBS is caused 

mainly by thermally generated acoustic phonons, which has relatively weak intensity 

[24]. On the contrary, in the SBS mechanism, two lights of different frequencies enter 

the medium in the reverse direction. The energy is transferred from the pump light to 
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the lower frequency Brillouin Stokes (probe) light. SBS is caused by the electrostriction 

from the interference of these two lights, which significantly enhances the thermally 

generated sound wave [24]. 

Generally in Brillouin scattering, the pump light of frequency νP (wave vector kP), 

the scattered light of frequency νS (wave vector kS), and the acoustic wave of frequency 

νA (wave vector kA) satisfy the Bragg condition for energy and momentum fiber. As it 

can be derived from Equ. (2.4) and (2.5), the forward direction scattering vanishes while 

only the backscattered light “survives”. The acoustic wave frequency νA represents the 

frequency difference between the pump light and the scattered light, also commonly 

called the Brillouin frequency shift (BFS) νB, which can be expresses as [27]: 

  (2.5)

  (2.6) 

As shown in Fig. 2.3(c), the Brillouin scattering process can be described as a 

scattering of light in a diffraction grating moving at the velocity of sound. Generally, 

the Brillouin scattering can occur in all angular directions. However, only the forward 

and backward directions are allowed for transmission in the optical fiber. As it can be 

derived from Eqs. (2.5) and (2.6), the forward direction scattering vanishes while only 

the backscattered light “survives”. The acoustic wave frequency νA represents the 

frequency difference between the pump light and the scattered light, also commonly 

called the Brillouin frequency shift (BFS) νB, which can be expresses as [27]: 
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  (2.7) 

where n is the effective refractive index of fiber, VA is the velocity of the acoustic wave, 

and λP is the pump light wavelength in vacuum. Thus, the BFS depends on the intrinsic 

properties of the optical fiber (n and VA), which are functions of strain and temperature. 

It has been found that the BFS in optical fibers is linearly related to the strain (S) and 

temperature (T), i.e., [28]: 

  (2.8) 

where ΔνS and ΔνT denote respectively the strain and temperature change, CS (CT) is the 

BFS strain (temperature) coefficient, and νB(S0, T0) is a reference BFS measured at 

predetermined strain S0 and temperature T0. When the acoustic wave decays 

exponentially, the Brillouin gain spectrum (BGS) has a Lorentzian lineshape [28]: 

  (2.9) 

where g(ν) represents the Brillouin gain, ν is the frequency difference between the pump 

light and scattered light, gB is the Brillouin peak gain, and ΔνB is the Brillouin gain 

bandwidth. 
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The local BGSs along the whole FUT can be obtained using any of the BOTDR 

and BOTDA systems, as shown in the representative example of Fig. 3.2(d). Since the 

BFS is the central frequency of the BGS, Lorentzian curve fitting (LCF) can be used to 

estimate the BFS value [29]. Thus, using Eq. (2.8), the strain and temperature along the 

FUT can be measured. 

In practical applications, to distinguish between temperature and strain, techniques 

based on Rayleigh or Raman scattering can be combined with Brillouin–based DTSS 

systems for tem- perature and strain separation [30], [31]. In addition, a sensing fiber 

can be used with a specially designed strain–isolating jacket to obtain the temperature 

profile separately. Then, the strain information can be collected using another typical 

sensing fiber with compensation using the separately measured temperature [31]. 

Furthermore, measuring BFS together with Brillouin intensity, bandwidth, or 

birefringence can provide temperature and strain information separately [32-34]. 

Besides, some specialty optical fibers (SOF) that provide several BFSs can be utilized 

for the temperature and strain discrimination, including multi–core fiber (MCF) [35], 

photonic crystal fiber (PCF) [36], large–effective–area fiber (LEAF) [37], dispersion 

compensating fiber (DCF) [38], and few–mode fiber (FMF) [39]. 

It is worth highlighting that the forward Brillouin scattering (FBS), also known as 

the guided acoustic–wave Brillouin scattering (GAWBS) has also been investigated for 

sensing purposes recently [40-46]. The typical Brillouin–based distributed fiber–optic 

sensors are based on backward spontaneous/stimulated Brillouin scattering, which 
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involves the interaction of the injected light with the longitudinal acoustic waves in 

optical fibers. In contrast, the GAWBS relies on the acoustic waves of radial or 

torsional–radial modes, which propagate in the radial and circumferential directions 

instead of the longitudinal direction in fibers [45], [46]. The scattered spectrum of 

GAWBS contains dozens of peaks at frequencies below 1 GHz, which is also different 

from that of the backward Brillouin scattering. It is difficult for the sensors based on 

backward Brillouin scattering to detect ambient measurands that do not directly perturb 

the fiber core. For example, the BFS of the backward Brillouin scattering is not affected 

by ambient acoustic impedance. However, the surrounding medium affects the 

boundary conditions of the acoustic waves at the outer boundary of the fiber cladding, 

and thus affects the GAWBS. As a result, using a standard SMF, GAWBS can be used 

to measure the acoustic impedance of the ambient medium along with temperature and 

strain. Then the acoustic impedance can be used to analyze chemical species, e.g., the 

type and concentration of solutions [40], [41], which is a unique advantage of GAWBS. 

GAWBS–based sensors may be deployed for underground oil layer detection and other 

potential applications in the oil and gas industry in the future. However, it still needs 

some development to become reliable, due to the challenges of achieving long– distance 

distributed sensing and the requirement of having a bare fiber to provide direct contact 

with the surrounding medium. 

2.3 Distributed optical fiber sensing based on Raman 

scattering 
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The concept of DTS using Raman scattering was first introduced in 1984 [47]. 

Commercially available Raman–based DTS systems typically use Raman intensity 

variations to determine the temperature profile along an optical fiber. The low power of 

the Stokes and Anti–Stokes Raman signals (60–70 dB weaker than the input pump 

power) is considered an early obstacle to the deployment of Raman–based DTS [48]. 

However, with the development of high–power lasers, EDFAs, high–sensitivity APD,  

Fig. 2.4: (a) Experimental setup of a Raman–based fiber–optic DTS system. Representative examples of 

Anti–Stokes (b) and Stokes (c) Raman signal, recorded at room temperature. 

 

and signal processing (e.g., averaging and wavelet denoising), the signal–to–noise ratio 

(SNR) of the Raman–based DTS has been significantly improved. 

A typical experimental setup of the Raman–based optical fiber DTS is 

schematically shown in Fig. 2.4(a) [49]. A high–power laser generates a CW light that 
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is modulated into optical pulses using an AOM. The power of the optical pulses is then 

amplified with an EDFA, to improve the SNR of the DTS system. The EDFA is 

followed by a 3×1 wavelength division multiplexer/demultiplexer (MUX/DEMUX). 

One side of the wavelength division MUX/DEMUX includes three ports (Port 1–3) for 

adding/dropping signals of wavelengths matching the laser, Stokes Raman, and Anti–

Stokes Raman signal, respectively. The other side of the wavelength division 

MUX/DEMUX includes a common port (Port 4) that simultaneously supports 

propagating the laser, Stokes Raman, and Anti-Stokes Raman signal. The amplified 

optical pulses are delivered to a MMF such that the pulses are directed from Port 1 to 

Port 4 of the wavelength division MUX/DEMUX. As the optical pulses propagate along 

the MMF, Stokes and Anti–Stokes Raman signals are backscattered, as shown in Fig. 

3.3(a). In the backward direction, the two backscattered Raman signals can be well 

separated via the wavelength division MUX/DEMUX, detected using two separate 

APDs, and finally recorded with a DAQ. Fig. 2.4(b) and (c) show respectively 

representative examples of Anti–Stokes and Stokes Raman signal recorded using a 

standard 50/125 μm MMF, entirely placed at room temperature. 

At the APDs, the received Raman Stokes power PS(z) and anti–Stokes power PAS(z) 

from a position z along the fiber can be expressed as [1]: 

  (2.10) 

  (2.11) 
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where RS(z) and RAS(z) are respectively the Stokes and anti–Stokes scattering 

coefficients at the position z, the attenuation coefficients of the pump, Stokes and Anti–

Stokes light are denoted as αp, αS, and αAS, respectively, and P0 represents the laser 

power. As described by the Bose–Einstein statistics, RS(z) and RAS(z) are proportional 

to their differential cross sections as follows [50]: 

 

  (2.12) 

  (2.13) 

where λS and λAS denote respectively the wavelengths of the Stokes and anti–Stokes 

light, h is the Planck’s constant, c represents the speed of light in vacuum, KB is the 

Boltzmann constant, Δν is the Raman shift, and T is the temperature. The ratio R(z) of 

the two backscattered Raman powers is independent of the laser power or the optical 

coupling efficiency: 

  (2.14) 
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In practical applications, the stability of the DTS system’s components may change 

with the environment. Hence, one usually does not use (2.14) directly to calculate the 

temperature, but instead a known reference temperature T(z0) at a position z0 is 

introduced as follows: 

 . (2.15) 

Eq. (2.15) can be used for determining the temperature T(z) as long as the sensor 

operates in the spontaneous Raman scattering regime. Stimulated Raman scattering 

does not follow the Bose–Einstein statistics and cannot be used for distributed 

temperature sensing. Since the Raman scattering is weak and considering Eqs. (2.10) 

and (2.11), it is necessary to increase the power of the pump laser to collect a sufficient 

number of Raman photons for measurement. However, the laser power in DTS cannot 

exceed the Stimulated Raman scattering threshold, which is proportional to the 

effective core area of the fiber [51]. 

In the harsh environment such as the downhole environment of the oil and gas 

industry, the optical fiber cable may be pumped, exposed to hydrogen or water, etc. 

Thus, in Eq. (2.13), the wavelength–dependent differential attenuation coefficient, Δα 

= αAS-αS, may change over time and/or along the optical fiber cable. Using a fixed pre–

calibrated value of Δα cannot produce accurate temperatures over time. Consequently, 

for temperature measurement downhole, it is necessary to periodically calibrate Δα or 
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even calculate it before each measurement. A single–ended fiber configuration with a 

reference temperature sensor at the fiber end or a partially returned fiber configuration 

can be used to calibrate Δα, which varies over time but independent of z. Otherwise, a 

double–ended fiber configuration can calibrate Δα, even if Δα changes along the fiber 

and over time. More details on calibrating the Δα of optical fiber DTS system can be 

found in [52], [53]. 
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3 Temperature Extraction Using DNN for 

BOTDA  

In this chapter, the technique of DNN is used for the first time to extract the 

temperature distribution in the BOTDA system. The feasibility is demonstrated 

experimentally, which is the beginning and foundation of the whole work in this 

thesis. After training the DNN model, temperature distribution along the whole 

FUT can be directly obtained from the experimental BGS data via DNN. It skips 

the processes of calculating BFS and transforming it to temperature involved in 

conventional curve fitting methods. The results of the DNN-based temperature 

extraction method show comparable accuracy to that of traditional LCF. 

 

3.1 Motivation 

Since T. Horiguchi and M. Tateda proposed the BOTDA for the first time in 1989 [1], 

it has attracted much research interest as one type of distributed fiber optic sensor. In 

the past three decades, much research work investigating better system solutions and 

more advanced signal processing methods in this field have been reported, aimed at 

achieving a higher performance of BOTDA systems, including smaller spatial 

resolution, longer measurement distance, and higher temperature/strain measurement 
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accuracy [2-7]. The fundamental principle of the BOTDA sensing system is that the 

pump pulse light will transmit its power to the counter-propagating continuous wave 

known as probe light under the SBS effect if the frequency difference between them is 

around the BFS. Since the local change of BFS is proportional to the local temperature 

or strain change, the temperature or strain distribution information along the FUT could 

be calculated from the BFS distribution. In practice, the local BGSs can be obtained 

generally by sweeping frequency offset of the two interacting light waves around the 

estimated range of BFS. Then, the local BFSs are considered the central frequency of 

local BGSs, by applying the conventional curve fitting technique, e.g., LCF method on 

the collected data. 

On the other hand, the DNN, known as a machine learning/deep learning 

method, has been a very hot topic in recent years. It has been used in extensive fields, 

including conventional speech recognition [8-10] and fiber optical communication, e.g., 

the modulation format identification task [11]. Compared with the ANN, the DNN has 

a simpler structure and training process. The DNN can learn abundant features 

automatically through a supervised/unsupervised feature learning process. At the same 

time, the ANN needs a more specifically designed structure, especially when the 

relationship and interlayers between the input and the targeted output are “deep”. 

Recently, our group has demonstrated the work of an ANN-based temperature 

extraction method for BOTDA [12], showing the advantages of the ANN-based method 

over conventional curve fitting techniques. Considering that the DNN has even more 

potential benefits, here we decide to use DNN in replace of ANN for the temperature 
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extraction task in our BOTDA system. The essential of this method is that the DNN can 

learn the non-linear relation between the BGS (input) and the temperature (output) after 

adequate training. In this section, the DNN is used for temperature distribution 

extraction, and comparable accuracy to conventional LCF is achieved. 

 

3.2 Principle of DNN 

DNN is a computational model to simulate the learning process of human brains, where 

the information is transferred and processed by many parallel neurons layer by layer. 

The DNN structure, including two autoencoder hidden layers, is shown in Fig. 3.1. The 

DNN is constructed of one input layer, some hidden layers, and one output layer. Except 

for the input layer, each neuron (node) in the hidden layers or output layer has an output, 

 

 

Fig. 3.1: The structure of DNN with 2 autoencoder hidden layers. 
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which can be represented by: 

  .                              (3.1) 

Here yj is the output of the jth node. fj is a nonlinear activation function. xi is the ith input 

to the node. wij is the adjustable weight connecting the input node i and the output node 

j. θj is the threshold of the jth node, which is set as a constant typically. From this 

Equation, we can see that the output of each neuron has a linear/nonlinear relation with 

all neurons in the last layer. Hence the output of each neuron in the final output layer 

of this model has a nonlinear relation with the initial input vector. The number of 

neurons in each hidden layer usually decreases gradually, while the hidden layers 

(interlayers) extract the features. 

The implementation of DNN consists of two stages: training and testing. In the 

training stage, firstly, each hidden layer and final output layer are trained with chosen 

activation functions and initial values of weight vectors layer by layer. The hidden 

layers are trained using the autoencoder method, which tries to make each autoencoder's 

output as close to its input as possible. The original input vector is used as the input of 

the first hidden layer, and the feature vector generated by each hidden layer serves as 

the input of the next hidden layer for training. In the end, the output layer is trained in 

a supervised way using the feature vector generated by the last hidden layer as its input, 

together with the targeted output vector. After all hidden layers and the output layer are 

trained step by step individually, the whole structure of the DNN model could be formed 
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by cascading the input layer, the first half part of each autoencoder, and the backmost 

output layer. Then, prepared original input and targeted output data for training are used 

together to train the whole DNN model with the back-propagation (BP) algorithm in a 

supervised way called fine-tuning. Afterward, the DNN model is ready for testing since 

the training has been finished, while the DNN model has learned the nonlinear relation 

between the input and output. Subsequently, in the testing stage, collected experimental 

data are input into the DNN model, and the output will be generated fast by running the 

trained DNN model. 

In our case, ideal BGS and T pairs are used as input and targeted output data for 

training. The specific number of elements in each input vector is determined by the 

frequency-sweeping range and sweeping step of the BOTDA experiment system. 

Besides, the output layer only contains one neuron representing the needed temperature 

information. In testing, experimental noisy BGS data along the FUT are input to the 

DNN model, and the temperature information will be generated as the output. 

 

3.3 Experiment setup of the BOTDA system 

The adopted BOTDA experiment system is shown in Fig. 3.2. The tunable laser 

generates CW light at 1550 nm. The CW light is amplified by the EDFA1 and filtered 

by the filter1. Then it splits into two branches via an 80/20 coupler. The upper one is 

modulated by the EOM1, biased at the null point to suppress the optical carrier, and 
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driven by an RF around BFS. A VOA controls the probe light power before entering the 

FUT. And an isolator is used to block the reverse light. At the lower branch, the CW 

light is modulated by the EOM2 with a pattern generator to generate a 20ns pump pulse, 

corresponding to the 2m spatial resolution. The EDFA2 amplifies the pump pulse's peak 

power, and the Filter2 removes the amplified spontaneous emission (ASE) noise from 

EDFA2. In addition, a polarization scrambler (PS) is used to suppress the polarization-

dependent noise since the SBS effect is susceptible to polarization. The CW probe and 

pump pulse propagate in the opposite direction and interact under SBS along the FUT. 

Afterward, the CW probe signal is filtered through an FBG and detected by a 125 MHz 

photodetector. The local BGS along the FUT for final processing can be obtained by 

sweeping the frequency of probe light around the estimated BFS.  

 

 

Fig. 3.2: BOTDA experiment setup, EDFA: erbium-doped fiber amplifier, PC: polarization 

controller, EOM: electro-optic modulator, RF: radio frequency, PG: pattern generator, VOA: variable 

optical attenuator, ISO: isolator, FUT: fiber under test, PS: polarization scrambler, FBG: fiber Bragg 

grating, PD: photodetector. 
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3.4 Results and discussions 

Before the temperature extraction utilizing DNN, the linear BFS-temperature 

relationship is measured experimentally. The corresponding coefficient is found to be 

0.974968 MHz/oC, as shown in Fig. 3.3. We use this BFS-temperature relationship and 

theoretical Lorentz curve to simulate ideal BGS data for DNN training as input. In 

contrast, the corresponding temperature is used as the targeted output. In the preparation 

of training data, the temperature range is from 0 to 100oC, and the BGS under each 

temperature has a linewidth ranging from 40 to 70MHz at a 1MHz step, considering 

the practical linewidth variations. The 0.1oC temperature step is chosen, which is 

adequate for training. Therefore, we have 31031 ideal BGS-temperature pairs for DNN 

training in total. The frequency sweeping ranges from 10.760 to 11.010GHz with a 

1MHz frequency step. Thus, each input vector of our DNN model contains 251 

elements, i.e., 251 neurons (nodes) in the DNN input layer. Since there is no specific 

 

Fig. 3.3: The measured Brillouin frequency shift at different temperature and the fitting linear relation 

between them. 
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rule about how many hidden layers should be adopted and how many neurons should 

be contained in each hidden layer, the optimization process of the DNN structure is the 

processing of repeated trials and adjustments. We find that the DNN model containing 

two hidden layers can provide better performance than that of 1 hidden layer, which is 

acceptable enough. A more significant number of hidden layers will bring much longer 

training time, increasing exponentially with the number of hidden layers but no 

noticeable performance improvement. Therefore, two hidden layers are determined in 

the finalized DNN model. Besides, after repeated trials, the numbers of neurons in the 

first and second hidden layers are determined to be 50 and 10. After the training of the 

DNN model, the measured local BGS data along 38.460 km FUT with the last 607m 

heated to different temperatures are given to the DNN input layer. The temperature 
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distributions along the whole FUT with the last 607m fiber heated to 50oC extracted by 

LCF and DNN are shown in Fig. 3.4 and Fig. 3.5, respectively. 

 

Fig. 3.4: Temperature distribution along the whole 38.460 km FUT with last 607 m fiber heated to 

50 degrees centigrade extracted by LCF. 

 

Fig. 3.5: Temperature distribution along the whole 38.460 km FUT with last 607 m fiber heated to 

50 degrees centigrade extracted by DNN. 
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Moreover, we also compare the results of using DNN and LCF, when the last fiber 

section is heated to 30, 40, 50, 60, and 70oC, respectively. The extracted temperature in 

the last 2 km FUT using LCF and DNN are shown in Fig. 3.6 and Fig. 3.7, respectively. 

 

Fig. 3.7: The temperature distribution information in the last 2 kilometer fiber extracted by DNN. 

 

Fig. 3.6: The temperature distribution information in the last 2 kilometer fiber extracted by LCF. 
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We can see that the temperature distribution extracted by DNN is as good as that by the 

LCF method. To show the comparison clearly, specific error performance, including 

root-mean-square error (RMSE) and standard deviation (SD) calculated in the last 

607m heated fiber section, are shown in Table 3.1 for both LCF and DNN. Table 3.1 

shows that the error performance of temperature extraction using LCF and DNN are 

pretty similar. The noise level of the collected experimental data is relatively low after 

large averaging times. Better performance of DNN is expected compared with LCF 

when the SNR becomes worse. Besides, the processing speed of DNN is much faster 

than the LCF (over 100 times), which is a significant advantage to reduce the integral 

data processing time for BOTDA. In the future, better performance of using DNN for 

temperature extraction is expected by increasing the extent of training and optimizing 

the structure of DNN.  

3.5 Summary 

We have demonstrated the temperature distribution extraction along the 38.46km FUT 

Table 3.1: Error performance comparison of DNN and LCF in last 607m heated fiber 

Performance 

 

 

Temperature 

RMSEa SDb 

LCF DNN LCF DNN 

30 0.7533 0.6998 0.5578 0.5467 

40 0.7015 0.6733 0.6172 0.6094 

50 0.6769 0.6311 0.4683 0.5314 

60 1.8465 1.9660 0.7354 0.9673 

70 0.7387 1.2976 0.7234 0.7917 

 



CHAPTER 4 

45 
 

based on the DNN for our BOTDA system. The performance results of the DNN and 

conventional LCF methods show comparable temperature accuracy. Moreover, the 

DNN method can reduce the processing time significantly. Further investigation and 

optimization of the DNN model to explore other advantages and obtain better 

temperature accuracy for BOTDA will be conducted in the following. 
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4 DNN-assisted BOTDA for 

Simultaneous Temperature and Strain 

Measurement with Enhanced 

Accuracy  

This chapter demonstrates simultaneous temperature and strain measurement with 

enhanced accuracy using DNN-assisted BOTDA. After training using combined ideal 

clean and noisy BGSs, the DNN is applied to extract the temperature and strain directly 

from the measured double-peak BGS in large-effective-area fiber (LEAF). Both 

simulated and experimental data under different temperature and strain conditions have 

been used to verify the reliability of DNN-based simultaneous temperature and strain 

measurement, demonstrating its advantages over BOTDA with the conventional 

equation-solving method. Avoiding the significant error induced by the minor matrix 

determinant, our DNN approach significantly improves the measurement accuracy. For 

24km LEAF sensing fiber with a spatial resolution of 2m, the root mean square error 

(RMSE) and standard deviation (SD) of the measured temperature/strain by using DNN 

are improved to be 4.2oC/134.2με and 2.4oC/66.2με, respectively, which are much 

lower than the RMSE of 30.1oC/710.2με and SD of 19.4oC/529.1με for the conventional 

equation-solving method. Moreover, the temperature and strain extraction by DNN 

from 600,000 BGSs along 24km LEAF only requires 1.6s, which is much shorter than 

that of 5656.3s by the conventional equation-solving method. The enhanced accuracy 
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and fast processing speed make the DNN approach a practical way of achieving 

simultaneous temperature and strain measurement based on the conventional BOTDA 

system without adding extra system complexity. 

4.1 Motivation 

Due to the remarkable capability of BOTDA for distributed temperature and strain 

measurement, it has found broad applications, especially in structural health monitoring 

(SHM) [1, 2]. In addition to the general goals of BOTDA to achieve long sensing distance, 

high spatial resolution, high measurement accuracy, and fast measurement speed [3-8], 

actual simultaneous temperature and strain measurement is also significant. It is difficult to 

realize in the conventional BOTDA due to the SBS's cross-sensitivity to temperature and 

strain. So far, some solutions have been proposed to achieve simultaneous temperature and 

strain measurement [9-22]. Hybrid sensor systems combining Brillouin scattering with 

Rayleigh scattering or Raman scattering have been reported to distinguish temperature and 

strain [9-11]. However, compared with a pure BOTDA system, hybrid systems are more 

complex and costly. One method for a single BOTDA system to distinguish the temperature 

and strain is to measure the BFS together with Brillouin peak power or bandwidth or 

birefringence in a polarization-maintaining fiber (PMF) [12-14]. However, introducing the 

particular fiber axis of PMF complicates the operation, and the power measurement is 

usually unstable. Another solution is to use multi-core fiber (MCF) [15], where several 

BFSs obtained from different fiber cores can simultaneously measure temperature and 

strain. In addition, using fibers with multi-peak BGS has been reported to be a potential 

solution, such as photonic crystal fiber (PCF) [16], large-effective-area fiber (LEAF) [17-

19], dispersion compensating fiber (DCF) [20] and few-mode fiber (FMF) [21]. However, 
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because of the slight difference in BFS-temperature/strain coefficients between Brillouin 

peaks, solving two BFS equations to calculate the temperature and strain produces 

significant errors. Hence, the obtained temperature and strain resolutions are much larger 

than a single temperature or strain measurement, e.g., 27oC/570με error in a 22km LEAF 

[18, 19]. Besides the poor accuracy, the curve fitting process to determine the BFS in the 

equation-solving method takes a long time, which makes the whole process of extracting 

temperature and strain time-consuming.  

As mentioned in the previous chapter, machine learning techniques have been 

applied to the conventional BOTDA system to extract temperature with better performance 

instead of commonly used curve-fitting methods [22-25]. Among them, ANN has shown 

higher accuracy and a larger tolerance to measurement error compared to LCF and cross-

correlation [22]. Besides, the support vector machine (SVM) has been demonstrated to have 

a processing speed of 100 times faster than LCF, with robustness to a wide range of 

experimental conditions [23, 24]. Compared with ANN, the DNN with autoencoder can be 

easily trained to achieve the global optimum for temperature extraction in BOTDA [25]. In 

order to explore further the practical value of DNN in BOTDA, we have recently reported 

for the first time the preliminary work on using DNN for simultaneous temperature and 

strain measurement [26], where a conventional BOTDA system adopting the single-mode 

LEAF is used with DNN to extract both the temperature and strain directly from the double-

peak BGS of LEAF. Unlike the conventional equation-solving method [16-21], there is no 

curve fitting to obtain the BFS of Brillouin peaks and no subsequent procedure for solving 

two BFS equations. In contrast, the temperature and strain extraction process is regarded 

as a regression task for DNN, and the DNN learns the relationship between the double-peak 

BGS and the temperature and strain by training. Therefore, compared with the conventional 

equation-solving method, the DNN method can substantially improve the measurement 

javascript:;
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accuracy of temperature and strain, and the whole process of temperature and strain 

extraction by DNN is expected to be very fast.  

In this chapter, we demonstrate the enhanced accuracy and fast processing speed 

provided by the DNN method, and statistically analyze and compare its performance with 

the conventional equation-solving method through both simulation and experiment. The 

impact of noise added in the training of DNN is analyzed, and the optimal amount of noise 

needed to improve the DNN tolerance to the noise from experimental BGSs is investigated. 

With a specially designed experimental setup to make the strain uniform along the LEAF, 

we have tested a more extensive range of temperature and strain conditions in this work to 

verify the reliability of DNN-based simultaneous temperature and strain measurement. The 

results show that the measured temperature and strain by DNN have much lower 

measurement errors, including the RMSE and SD, which means the measured values are 

close to the real ones with minor fluctuations. Compared with the conventional equation-

solving method, the DNN-based simultaneous temperature and strain measuring method 

improves the measurement accuracy by five times at least, and reduces the processing time 

by three orders of magnitude. 

 

 

 

4.2 Principle and simulation 

4.2.1 Principle of using DNN for simultaneous temperature and strain 

measurement 
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The structure of DNN is similar to ANN, except the training process includes both 

unsupervised and supervised learning for data size compression, which makes the 

training more efficient. Figure 4.1 illustrates a general structure of the DNN model 

containing an input layer, several hidden layers, and an output layer. The meaning and 

expression of symbols are similar to those illustrated in Fig. 3.1.  

 

Fig. 4.1: General structure of DNN with n autoencoder hidden layers. Wn is the weight vector for the 

nth hidden layer. 
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Figure 4.2 shows the overall working principle. The DNN model contains one input 

layer (I), two hidden layers (H1 and H2), and one output layer (O). In this case, the 

input vector X (x1, x2, …, x226) in Fig. 1, including 226 elements, represents the data 

vector for the double-peak BGS injected into the input layer of the DNN. The number 

of elements in X equals the number of scanned frequencies in the BOTDA system. The 

output vector Y (y1, y2) has two elements, corresponding to the temperature and strain. 

The utilization of DNN still contains two main stages: training and testing. Since the 

BFSs of the double-peak BGS in LEAF are linearly proportional to both the temperature 

and strain but have different responses, the DNN model can learn the relationship 

between the double-peak BGS and the temperature/strain after the appropriate training 

process. After training, the designed DNN can extract the values of temperature and 

strain directly from the inputted measured double-peak BGS, which is the so-called 

testing stage. 

We use theoretical double-peak Lorentzian BGS expressed in Eq. (4.1) to train the 

DNN, 

 , (4.1) 

where 𝑔(𝜐) represents the normalized BGS, 𝜐 is the frequency difference between 

the probe and pump light in BOTDA, 𝑔𝐵
𝑃𝑒𝑎𝑘1 and 𝑔𝐵

𝑃𝑒𝑎𝑘2 are the peak gains, 𝜐𝐵
𝑃𝑒𝑎𝑘1 

and 𝜐𝐵
𝑃𝑒𝑎𝑘2  are the BFSs, and 𝛥𝜐𝐵

𝑃𝑒𝑎𝑘1  and 𝛥𝜐𝐵
𝑃𝑒𝑎𝑘2  are the Brillouin gain 

bandwidths for Peak 1 and Peak 2, respectively. In our case, the range of 𝜐 is from 

10.550GHz to 11.000GHz with a 2MHz interval, which is the same as the frequency 
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scanning range during the acquisition of BGSs in the experiment. 𝑔𝐵
𝑃𝑒𝑎𝑘1 is set to be 1 

and 𝑔𝐵
𝑃𝑒𝑎𝑘2 varies to traverse all the values from 0.13 to 0.53 with 0.10 intervals. This 

setting is consistent with the ratio between the 1st and 2nd Brillouin peak gains of our 

LEAF sensing fiber, which is pre-calibrated under different temperature and strain 

conditions used in the experiment.  As a proof-of-concept demonstration, the 

temperature range in training is from 40oC to 62oC with a 2oC interval, and the strain 

range is from 0με to 1860με with a 60με interval, both of which can be further enlarged 

although more time for DNN training will be consumed. Note that to make the results 

more generalized, the values of the temperature and strain in the testing stage will be 

random, including those that do not appear in the training stage, e.g., 61oC and 1677.6με 

in our experiment. The two BFSs, i.e. 𝜐𝐵
𝑃𝑒𝑎𝑘1  and 𝜐𝐵

𝑃𝑒𝑎𝑘2  of the ideal double-peak 

BGS are determined using pre-calibrated BFS-temperature/strain coefficients of our 

LEAF sensing fiber. In order to accommodate BGS linewidth variations along the fiber 

[22], the range of 𝛥𝜐𝐵
𝑃𝑒𝑎𝑘1  is from 46MHz to 66MHz with a 2MHz interval and 

𝛥𝜐𝐵
𝑃𝑒𝑎𝑘2 is from 40MHz to 80MHz with a 4MHz interval. Hence, 11 pairs of 𝛥𝜐𝐵

𝑃𝑒𝑎𝑘1 

and 𝛥𝜐𝐵
𝑃𝑒𝑎𝑘2 values are formed for training. The above parameter setting to obtain the 

ideal BGSs for training is based on the pre-calibrated double-peak BGS of our LEAF 

sensing fiber and depends on the optimization process of the DNN model through 

repeated trials for optimal performance. After training, the DNN model can directly 

extract the temperature and strain values from the input BGS data. Since no procedure 

for solving two BFS equations is needed, the large error induced by a small matrix 

determinant can be avoided, and the accuracy will improve. As there is no time-
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consuming curve fitting process to obtain the BFSs of the Brillouin peaks, the whole 

process of both temperature and strain extraction by DNN will be speedy. In the next 

section, we also describe the conventional equation-solving method for comparison. 

 

4.2.2 Conventional equation-solving method for simultaneous 

temperature and strain measurement 

It is known that the BFSs of Peak 1 and Peak 2 in LEAF sensing fiber have linear 

relationships with both temperature and strain, which are shown as Eqs. (4.2) and (4.3) 

[16-18, 20], 

  (4.2) 

  (4.3) 

where 𝛥𝐵𝐹𝑆𝑃𝑒𝑎𝑘1 and 𝛥𝐵𝐹𝑆𝑃𝑒𝑎𝑘2 are the BFS change of Peak 1 and Peak 2 under 

the temperature and strain change of 𝛥𝑇 and 𝛥𝜀, respectively. 𝐶𝑇
𝑃𝑒𝑎𝑘1 and𝐶𝜀

𝑃𝑒𝑎𝑘1  

are the BFS-temperature/strain coefficients for Peak 1, while 𝐶𝑇
𝑃𝑒𝑎𝑘2 and 𝐶𝜀

𝑃𝑒𝑎𝑘2 are 

the coefficients for Peak 2, respectively. In the conventional equation-solving method 

[16-21], 𝛥𝐵𝐹𝑆𝑃𝑒𝑎𝑘1 and 𝛥𝐵𝐹𝑆𝑃𝑒𝑎𝑘2 are obtained by LCF based on Eq. (4.1), and 

then the temperature and strain are obtained by solving Eqs. (4.2) and (4.3) as follows 

[16-18, 20],  

 , (4.4) 

 . (4.5) 
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This is generally the procedure of the equation-solving method to simultaneously 

measure the temperature and strain based on two BFSs of multi-peak BGS. However, 

as mentioned in [18, 19], since the matrix determinant 𝐶𝑇
𝑃𝑒𝑎𝑘1 ⋅ 𝐶𝜀

𝑃𝑒𝑎𝑘2 − 𝐶𝑇
𝑃𝑒𝑎𝑘2 ⋅

𝐶𝜀
𝑃𝑒𝑎𝑘1 is usually very small, a larger error will be produced when solving Eqs. (4.4) 

and (4.5) to obtain the temperature and strain, compared with the case of single 

temperature or strain measurement. Thus, except for the time-consuming curve fitting 

procedure, the equation-solving method imposes a stringent requirement on the 

resolution of BFS measurement, and it is difficult to obtain the temperature and strain 

with high accuracy, especially when the FUT is long (e.g., several tens of kilometers) 

and the BFS resolution becomes worse. 

4.2.3 Simulation results 

Based on the parameter setting in Section 4.2.1, there are 12 temperature conditions, 32 

strain conditions, 11 BGS linewidth conditions, and 5 peak gain conditions of Peak 2. 

Thus, we have 12×32×11×5=21120 ideal double-peak Lorentzian BGSs and 

12×32=384 target temperature and strain values in total for the DNN training. The DNN 

is trained using the error back-propagation (BP) algorithm. After repeated trials with a 

different number of hidden layers and neurons for optimal performance, the DNN 

model is eventually designed to have two hidden layers with 40 and 8 neurons, 

respectively. Two hidden layers are found to be enough for acceptable results, while 

more hidden layers will take a much longer time for training but without noticeable 
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performance improvement. The following simulation and experiment results are all 

obtained using this DNN structure (226-40-8-2). 

In this section, we first conduct a simulation using simulated double-peak BGSs in 

the testing stage to evaluate the performance of DNN for simultaneous temperature and 

strain measurement. In the simulation, noisy BGSs are simulated by adding Gaussian 

white noise to the profile based on Eq. (4.1), and the signal-to-noise ratio (SNR) of the 

simulated BGSs is controlled by the amount of noise added. Note that the SNR of the 

simulated BGS is calculated by using the ratio between the amplitude of the BGS peak 

and the standard deviation of its spectral points [27]. To improve the noise tolerance of 

the DNN model, we train the DNN by using combined clean and noisy BGSs. The 

number of clean BGSs for training is 21120. The noisy BGSs with an SNR of 10.5dB 

for training are obtained by adding Gaussian white noise to the clean ones. Thus, the 

total number of BGSs used for training is 42240. 10.5dB SNR is chosen since it just 

covers the lowest SNR level in our experiment, and the DNN trained with noisy BGSs 

of 10.5dB SNR is found to be enough to achieve the optimal performance for 

temperature and strain extraction in the experiment. After training, the DNN model is 

applied to extract both the temperature and strain from 1000 simulated testing BGSs of 

20dB SNR, i.e., the case for low noise level. We have randomly selected five groups of 

target temperature and strain for the demonstration (40oC/50με; 45oC/200με; 

52oC/1400με; 55oC/1600με; 60oC/1800με). As an example, we show the results for 
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three groups of target temperature and strain in Fig. 4.3, which plots the extracted 

temperature and strain distribution by DNN. Fluctuations of the extracted temperature 

and strain are small, and the extracted values are close to the target ones for all three 

cases. The detailed error performance of DNN is analyzed by calculating the SD and 

RMSE of the extracted temperature and strain, which is given in Table 4.1 for all five 

groups of target temperature and strain conditions. SD means the uncertainty or 

fluctuation of the extracted values. And RMSE indicates how close the extracted 

temperature and strain values are to the target ones, which is calculated by comparing 

the target values and extracted ones by DNN. The maximum SD and RMSE of the 

extracted temperature are only 0.5oC and 1.2oC, respectively; while those of the 

extracted strain are 13.5με and 43.7με, respectively. The results show that the DNN 
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Fig. 4.3: Temperature and strain distribution extracted by DNN from 1000 simulated testing BGSs 

of 20dB SNR. 
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model trained using combined clean and noisy BGSs performs well when extracting 

the temperature and strain from noisy testing BGSs with low noise levels.  

Next, we further increase the noise level in the testing BGSs, and investigate the 

DNN performance. The DNN model is the same as that used in Fig. 4.3. Figure 4.4 

shows the extracted temperature and strain distribution from 1000 simulated testing 

BGSs of 10.58dB SNR, which is the lowest SNR level observed in our experiment. Due 

to more considerable noise in the testing BGSs, the extracted temperature and strain 

fluctuations become slightly larger than those in Fig. 4.3, but the extracted values are 

still close to the target ones. For comparison, we also use the conventional equation-

solving method described in Section 4.2.2 to extract the temperature and strain from 

the same testing BGSs, and Fig. 4.5 gives the results. Note that we adopt the Levenberg-

Marquardt algorithm (LMA) for LCF to extract BFS [23], where it starts with an initial 

guess for the gain parameter, central frequency parameter, and linewidth parameter, and 

then all of them are iteratively updated until the squared error converges. Besides large 

fluctuations, the extracted temperature and strain in Fig. 4.5 are far away from the target 

Table 4.1: Corresponding error performance of DNN for results in Fig. 4.3 

Temperature (oC) Strain (με) 
Temperature (oC) Strain (με) 

SD RMSE SD RMSE 

40.0 50.0 0.2 1.2 4.9 11.7 

45.0 200.0 0.4 1.1 9.2 43.7 

52.0 1400.0 0.5 0.9 13.5 25.9 

55.0 1600.0 0.3 0.8 8.9 14.3 

60.0 1800.0 0.2 0.8 4.5 33.8 
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ones, and some extracted values are even out of the scales in Fig. 4.5, showing poor 

accuracy of the equation-solving method when the noise is relatively high. As 

mentioned in Section 4.2.2, the low accuracy originates from the slight difference in 

BFS coefficients between the two peaks, leading to significant error when solving the 

two BFS Eqs. (4.2) and (4.3). The detailed error performance for the results in Fig. 

4.4 and Fig. 4.5 are compared in Table 4.2, which also includes the results for the other 

two groups of target temperature and strain. Take the target temperature and strain of 

(52.0oC, 1400.0με) as an example. The RMSE of the extracted temperature/strain by 

using DNN are 3.4oC/95.4με, while those by using the equations solving method are 

found to be 27.4oC/746.2με, respectively, which indicates that the errors of extracted 

temperature and strain by the equation-solving method are about 8 times larger than 

those obtained by DNN. In all the five groups of target temperature and strain, the 

maximum SD of the extracted temperature/strain by DNN is 3.3oC/93.5με, and the 

maximum RMSE is 3.4oC/95.4με, respectively. While for the equation-solving method, 
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Fig. 4.4: Temperature and strain distribution extracted by DNN from 1000 simulated testing BGSs 

of 10.58dB SNR. 
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the maximum SD is 31.2oC/849.8με, and the maximum RMSE is 31.2oC/852.0με, 

respectively. Although the error performance of DNN degrades a little due to more 

extensive noise in input testing BGSs, it still has significant improvement compared to 

the equation-solving method.  
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Fig. 4.5: Temperature and strain distribution extracted by the equations solving method from 1000 

simulated testing BGSs of 10.58dB SNR. 

 

Table 4.2: Corresponding error performance of DNN and the equations solving method for 

results in Figs. 4.4 and 4.5 

Temperature 

(oC) 

Strain 

(με) 

Temperature (oC) Strain (με) 

DNN Equations solving 

method 

DNN Equations solving 

method 

SD RMSE SD RMSE SD RMSE SD RMSE 

40.0 50.0 1.7 1.9 26.2  26.2  42.3 45.3 714.7  714.7  

45.0 200.0 2.4 2.8 25.5  25.5  63.2 74.0 693.9  694.0  

52.0 1400.0 3.3 3.4 27.4  27.4  93.5 95.4 745.9  746.2  

55.0 1600.0 2.4 2.6 26.9  26.9  66.1 68.6 733.5  733.8  

60.0 1800.0 1.6 1.7 31.2  31.2  35.7 46.6 849.8  852.0  
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4.3 Experiment and results 

In this section, experimental BGSs under different actual temperature and strain values 

are collected using the BOTDA setup shown in Fig. 4.6. The same DNN model as used 

in Fig. 4.3 and Fig. 4.4 is applied to extract both the temperature and strain distribution 

from experimental BGSs along the sensing fiber. The BOTDA setup is similar to that 

used in Chapter 3. The main difference is that a new specially designed device is used 

to apply uniform strain changes on the FUT under different temperatures. The peak 

power of the pump pulse is 20dBm, and the probe power is -8dBm, respectively. The 

FUT is a 24km long LEAF (Corning LEAF Optical Fiber ITU-T G.655.C), with its last 

7m section heated (i.e., FUT inside the oven in Fig. 4.6) and the remaining section kept 

under room temperature and zero strain (i.e., FUT outside the oven in Fig. 4.6). And the 

7m long FUT inside the oven is coiled on two micro-positioners, with one fixed and the 

other movable for applying different levels of uniform strain. Thus, different 

temperature and strain conditions are applied to the 7m long FUT inside the oven. In 

  

 

Fig. 4.6: BOTDA system setup. 
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order to have sufficient data points collected along the last 7m long FUT for the purpose 

of statistical analysis of the error performance, a relatively high sampling rate of 

2.5GSample/s is adopted. 

Figure 4.7(a) shows the measured BGS distribution along LEAF sensing fiber, and 

Fig. 4.7(b) gives the measured double-peak BGS at one location of the last 7m section 

when the temperature is 23.5oC and the strain is 0με. The BFS-temperature and BFS-

strain relations for BGS Peak 1 and Peak 2 are shown in Fig. 4.7(c) and 4.7(d), 

respectively. The BFS-temperature coefficients of Peak 1 and Peak 2 are measured to 

be 1.0546MHz/oC and 0.9380MHz/oC, respectively. At the same time, BFS-strain 

coefficients of the two peaks are measured to be 0.0385MHz/με and 0.0384MHz/με, 

  

Fig. 4.7: (a) Measured BGS distribution along LEAF sensing fiber; (b) measured double-peak BGS 

of LEAF under room temperature of 23.5oC and strain of 0με; (c) measured BFS-temperature 

relations for Peak 1 and Peak 2; (d) measured BFS-strain relations for Peak 1 and Peak 2. 
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respectively. As mentioned in Section 4.2.1, the coefficients and relations of BFS with 

temperature and strain are used to obtain ideal BGSs based on Eq. (4.1) for DNN 

training. 

In the experiment, we apply different values of temperature and strain to the last 7m 

FUT and collect the corresponding experimental BGSs, which serve as the input testing 

BGSs to the DNN model for temperature and strain measurement. Eight groups of 

actual temperature and strain conditions are randomly selected for the demonstration, 

which includes values that do not appear in the training stage, e.g. (61oC, 1861.7με). 

As an example, we show the results for four groups of actual temperature and strain 

conditions in Fig. 4.8. The blue curves in Fig. 4.8 show the temperature and strain 

distribution along the central part (4.7m section with relatively constant strain) of the 

last 7m FUT extracted by using DNN. For comparison, the equation-solving method 

results are also given, shown as the orange curves in Fig. 4.8. It is obvious that the 

fluctuations of measured temperature and strain using DNN are small, indicating small 

uncertainty of the measured temperature and strain. In contrast, the equation-solving 

method fluctuations are much more significant. In addition, the measured values by 

using DNN are close to the actual temperature and strain values, while those by using 

the equation-solving method considerably deviate from the actual values, e.g., the group 
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of (56.0oC, 1660.8με) in Fig. 4.8. This means that the equations solving method has 

worse error performance, which agrees well with that in [18]. 

A detailed comparison between the error performance using DNN and that using the 

equation-solving method has been given in Table 4.3 for all eight groups of actual 

temperature and strain conditions. Similar to the simulation, we also evaluate the error 

performance of the experimental results, including the SD and RMSE. The SD indicates 

 

T
e
m

p
e
ra

tu
re

 (
o
C

)
S

tr
a
in

 (
μ
ε
)

T
e
m

p
e
ra

tu
re

 (
o
C

)
S

tr
a
in

 (
μ
ε
)

T
e
m

p
e
ra

tu
re

 (
o
C

)
S

tr
a
in

 (
μ
ε
)

T
e
m

p
e
ra

tu
re

 (
o
C

)
S

tr
a
in

 (
μ
ε
)

(46.0
o
C,1166.9με) (51.0

o
C,1459.9με) (56.0

o
C,1660.8με) (61.0

o
C,1861.7με)

Distance (km) Distance (km) Distance (km)Distance (km)

Distance (km) Distance (km) Distance (km)Distance (km)

By DNN

By equations solving method

 

Fig. 4.8: Temperature and strain distribution along the central part of the last 7m FUT extracted by 

DNN (blue curve) and the equations solving method (orange curve), respectively. 

 Table 4.3: Corresponding error performance of DNN and the equations solving method for 

results in Fig. 4.8 

Temperature 

(oC) 

Strain 

(με) 

Temperature (oC) Strain (με) 

 DNN Equations solving 

method 

DNN Equations solving 

method 

SD RMSE SD RMSE SD RMSE SD RMSE 

46.0 1166.9 2.4  2.6  8.8  20.6  63.7  76.1  237.1  517.3  

46.0 1351.0 2.4  2.4  11.9  24.4  66.2  96.5  320.9  616.2  

51.0 1459.9 2.3  2.3  13.9  13.9  63.3  134.2  378.0  394.3  

51.0 1551.9 2.0  3.4  11.8  15.1  59.5  90.2  322.9  356.9  

56.0 1660.8 1.4  4.2  14.3  24.9  36.0  36.0  385.9  603.4  

56.0 1752.9 1.3  3.1  14.3  30.1  26.8  65.7  383.2  710.2  

61.0 1677.6 1.3  4.2  19.4  19.6  35.6  38.9  529.1  527.1  

61.0 1861.7 1.0  2.3  14.1  14.1  18.8  26.2  383.2  381.6  
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the fluctuation of the measured temperature and strain, while the RMSE reflects how 

close the measured values are to the real ones. The actual temperature values are read 

from a reference thermometer, and the actual strain values are obtained from the reading 

of the micro-positioner during the experiment. Since the strain along the central 4.7m 

section of the last 7m FUT is relatively uniform, the SD and RMSE are calculated using 

the data points along this section (117 data points in total under a sampling rate of 

2.5GSample/s). From Table 4.3, we can see that in each group of temperature and strain, 

both the RMSE and SD using DNN are much lower than those using the equation-

solving method. Taking the group of (51.0oC, 1551.9.0με) as an example, the RMSE 

and SD of the measured temperature/strain by DNN are 3.4oC/90.2με and 2.0oC/59.5με, 

respectively; while the RMSE and SD by the equations solving method are found to be 

15.1oC/356.9με and 11.8oC/322.9με, respectively. The measured temperature and strain 

errors by the equation-solving method are more than four times larger than those by 

DNN. For DNN, the worst RMSE of the measured temperature/strain in Table 3 is 

4.2oC/134.2με, and the worst SD is 2.4oC/66.2με, respectively. While for the equation-

solving method, the worst RMSE is 30.1oC/710.2με, and the worst SD is 

19.4oC/529.1με, respectively. As shown in Fig. 4.8, much lower RMSE by DNN 

represents that the measured temperature and strain values are closer to the actual values, 

and lower SD by DNN implies that the fluctuations of the measured values are much 

more minor. Thus, DNN for simultaneous temperature and strain measurement has 

significantly improved the accuracy compared with the equation-solving method. 

Moreover, since there are 600,000 BGSs along 24km LEAF at a 2.5GSample/s 
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sampling rate, the equation-solving method with a time-consuming LCF process takes 

5656.3s to extract both the temperature and strain distribution from such a large number 

of sensing points (computer platform: i7-6700K CPU and 16G RAM). While the DNN 

only consumes 1.6s for the same purpose, showing breakneck processing speed for 

simultaneous temperature and strain measurement.  

Besides the above situations with constant temperature and strain along the FUT 

inside the oven, we also implement the experiment with abrupt environment changes 

along the FUT. The experiment setup is the same as that in Fig. 4.6, except the FUT 

inside the oven now has a length of 45m and is divided into three sections (i.e., Section 

1 of 19m, Section 2 of 7m, Section 3 of 19m), with the strain only applied to the middle 

Section 2. For example, for the demonstration, we set the oven's temperature to 46.0oC 

and the applied strain to 1166.9με. We compare the performance of the same DNN 

model and the equation-solving method used before, shown in Fig. 4.9 and Table 4.4. 

Similarly, we can see that the fluctuations of measured temperature and strain using 

DNN are small, while those using the equation-solving method are much larger. 

Moreover, both the RMSE and SD using DNN are much lower than those using the 

equation-solving method, as given in Table 4.4 for each section of FUT, implying better 

error performance of DNN when compared with the equation-solving method.  
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In our experiment, the total length of the FUT is 24km, and our spatial resolution is 

2m. The worst uncertainty of measured temperature and strain by the equation-solving 

method is 19.4oC/529.1με, and they are improved to be 2.4oC/66.2με by using DNN. 

Note that Ref. [18] reports temperature and strain errors of 27oC/570με by the equation-

solving method for 22km LEAF length. Other works by the equation-solving method 

demonstrate better error performance but within much shorter sensing distances, e.g., 

3.9oC/83με in 2m PCF with a spatial resolution of 15cm [16], 5oC/60με in 3.7km LEAF 

with a spatial resolution of 2m [17], 1.8oC/37με in 377m LEAF with a spatial resolution 

  

Fig. 4.9: Temperature and strain distribution along the FUT inside the oven extracted by DNN (blue 

curve) and the equations solving method (orange curve), respectively. 

 

 Table 4.4: Corresponding error performance of DNN and the equations solving method for 

results in Fig. 4.9 

Fiber 

section 

Temperature (oC) Strain (με) 

 DNN Equations 

solving method 

DNN Equations 

solving method 

SD RMSE SD RMSE SD RMSE SD RMSE 

1 0.9 3.5 10.8 12.6 23.6 97.0 292.0 339.5 

2 2.4 2.6 8.7 20.6 63.7 76.1 237.1 517.3 

3 0.9 3.4 10.0 11.5 22.4 99.8 272.3 315.7 
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of 4m [19], 2.6oC/64.6με in 1km DCF with a spatial resolution of 2m [20], and 

1.2oC/21.9με in 3km few-mode fiber with a spatial resolution of 2.5m [21]. Furthermore, 

in [28], ANN has been used to classify the effect of temperature and strain in a standard 

single-mode fiber (SSMF), without the capability of measuring exact temperature/strain 

values and the analysis of measured temperature/strain errors. Therefore, compared to 

the results in literature with similar sensing distance, our DNN approach shows much 

better accuracy than the equation-solving method.  

It is worth mentioning that in this work, DNN extracts both the temperature and 

strain mainly from the two BFSs of double-peak BGS in LEAF, but it can also be 

applied to replace all the equations solving methods where any two of the parameters 

(e.g., BFS, Brillouin peak power, bandwidth, birefringence, etc.) are measured to build 

up the equations [12-21]. The significant error induced by the minor matrix determinant 

during the equation-solving can be avoided, and the accuracy improves as a result. 

Moreover, multiple measured parameters can be potentially combined as the input to 

the DNN model to improve the accuracy of simultaneous temperature and strain 

measurement further. 

 

 

4.4 Summary 

The simultaneous temperature and strain measurement has been achieved using the 

DNN-based method in BOTDA along 24km LEAF with 2m spatial resolution. DNN is 

trained by using combined ideal clean and noisy BGSs, and then the temperature and 
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strain are extracted directly from the measured double-peak BGS with high accuracy. 

Both simulation and experiment under different temperature and strain conditions have 

been conducted to evaluate this DNN-based method, compared with the conventional 

equation-solving method in measurement accuracy and processing time. The DNN 

scheme avoids the significant error induced by the minor matrix determinant of solving 

two BFS equations. Thus, it significantly improves measurement accuracy. The worst 

temperature/strain RMSE using DNN is 4.2oC/134.2με, which is much smaller than 

that of 30.1oC/710.2με from the equation-solving method. Moreover, the worst 

temperature/strain uncertainty using DNN is 2.4oC/66.2με, which is much lower than 

that of 19.4oC/529.1με from the equation-solving method, respectively. In addition, 

without the curve fitting process, the temperature and strain extraction process using 

DNN is speedy. DNN needs only 1.6s to extract both the temperature and strain from 

600,000 BGSs along 24km LEAF, which is much shorter than that of 5656.3s by the 

conventional equation-solving method. We believe that the enhanced accuracy and fast 

processing speed promote the practicability of using DNN to achieve simultaneous 

temperature and stain measurement in a single BOTDA system. 
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5 Robust and Fast Temperature 

Extraction for BOTDA Using 

Denoising Autoencoder based DNN  

In this chapter, a method of robust and fast temperature extraction for BOTDA uwsing 

the denoising autoencoder (DAE) based DNN is proposed and investigated. It is 

explored and improved based on the method used in previous work in Chapter 3 and 

Chapter 4. After sufficient training, the DAE can suppress the noise in the measured 

BGS, and improves the signal-to-noise ratio (SNR) by 9.96dB in our experiment. The 

DAE is stacked as the basic block for the temperature extraction task to construct the 

DNN model. Since the DNN model is based on DAE, it possesses both the advantages 

of DAE and the advantages of DNN itself mentioned in previous work. It means that 

denoising and fast temperature extraction can be achieved simultaneously using only a 

single DNN model. As a result, this method is more robust and faster than the 

conventional LCF method, especially when the SNR of input data is very low. In the 

case of 4.6dB SNR, the SD of the measured temperature at the end of 40km FUT 

decreases from 2.4oC to 1.2oC using DAE-based DNN compared with LCF, and the 

corresponding RMSE decreases from 2.4oC to 1.3oC. In addition, the DAE-based DNN 

method promotes the temperature extraction speed by 500 times faster than that of LCF. 

The combination of denoising and fast processing advantages makes the DAE-based 

DNN more practical for temperature extraction in BOTDA. 
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5.1 Motivation 

During the development and application process of BOTDA over the past three decades 

[1-6], the SNR is one of the critical parameters which limits the performance in respect 

of available sensing range, spatial resolution, and measurement accuracy in BOTDA 

systems [7]. Typically, higher SNR requires higher probe light power or pump light 

power injected. However, the highest light power is limited by the non-local effects [8] 

and nonlinear effects [9,10]. Recently, some new signal processing methods have been 

introduced to improve the BOTDA system performance limited by the SNR of collected 

data. Among them, some image denoising techniques, including non-local means 

(NLM), wavelet denoising (WD), and block-matching and 3D filtering (BM3D), have 

been used in BOTDA and have shown the effects of improving the SNR of collected 

data [11,12]. Besides, a machine learning method called denoising convolutional neural 

networks (DnCNNs) has also been used for data denoising in BOTDA [13]. However, 

after the data denoising using these methods, one additional procedure involving the 

conventional curve fitting methods, such as the LCF, is still needed to obtain the needed 

temperature/strain information, which makes the whole data processing even more 

time-consuming.  

On the other side, some ML methods, including the ANN, the support-vector machine 

(SVM), and the DNN, have also been utilized in BOTDA for direct temperature/strain 

extraction, with obvious advantages over conventional curve fitting methods [14-16]. 

Based on our preliminary work about using the DAE for noise suppression of collected 

BGS data and DAE-based DNN for direct temperature extraction in BOTDA recently 
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[16], in this Chapter, we investigate further the denoising effect of DAE and compare 

the detailed temperature extraction performance of the DAE-based DNN and the 

conventional LCF. Since the DAEs rather than ordinary autoencoders are used to 

compose the DNN model, the DNN can not only suppress the noise but also quickly 

extract the temperature directly from the BGS data in one single step. Utilization of the 

DAE-based DNN for temperature extraction combines the advantages of both the image 

denoising and ML methods. 

 

5.2 Principle of DAE-based DNN for temperature extraction 

in BOTDA 

Similar to the ordinary autoencoder, the typical structure of DAE contains one input 

layer, one interlayer, and one output layer [17-19], as shown in Fig. 5.1. In this structure, 

all W and W’ represent the weight vectors while X(x1, x2, ..., xN) is the input vector and 

X’(x1’, x2’, …, xN’) represents the target or output vector. The numbers of neurons in 

the input and output layers are the same, corresponding to the actual application's data 

dimensions. Moreover, the interlayer neuron numbers are set and adjusted after 

optimization. They are generally less than the neuron numbers in the input and output 

layers, since the DAE interlayer extract features and compress the dimension of input 

data. For the DAE training, the simulated corrupted data (or noisy data) and 

corresponding clean data are provided in pairs as the input and target output, 

respectively. The DAE structure can be divided into two parts: the encoder part (green 
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box in Fig. 5.1) and the decoder part (yellow box in Fig. 5.1). The encoder part extracts 

the features of noisy input data. Then, the decoder part recovers the clean data. 

For the DAE denoising, the simulated BGS with 201 frequency sampling points of 

the Lorentzian lineshape is used in the training process. Although adding the additive 

white Gaussian noise (AWGN) into the simulated clean BGS seems to conform to the 

nature of noise in BOTDA and can provide enough simulated noisy BGS for the training 

process [14-16], we have also tried the way of data corruption which was adopted in 

the previous work of DAE [17]. After repeated trials of these two different ways of 

generating simulated training data, involving adjustments of the noise level in the 

AWGN method and the corruption ratio in corruption methods, we find that the 

corruption method can provide better performance of the model. Thus, the corrupted 

BGS is chosen instead of the normal noisy BGS with AWGN for training in our 

experiment finally. For an example of corruption, when there are 200 sampling points 

in the BGS and a 20% corruption ratio is chosen, the values of 40 random points in the 
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x2
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Encoder 
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Fig. 5.1: The structure of a DAE used for denoising and feature extraction of the collected BGS in 

BOTDA. 
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BGS are set to 0. Repeated trials and optimization determine the final corruption ratio. 

After the training process of DAE, the experimentally collected BGS can be used as the 

input of the trained DAE. Then, the valuable features of input BGS will be extracted by 

the encoder part, which is used for the following temperature extraction task directly. 

On the other hand, the extracted information/features can be used to recover the clean 

BGS employing the decoder part. In this way, the whole DAE implements the BGS 

denoising. In this work, the recovered BGS by the DAE will be observed to show the 

capability of extracting useful features and suppressing the noise in input data when the 

DAEs are stacked to construct the DNN model for robust temperature extraction. 

Figure 5.2 shows the DAE-based DNN model structure for temperature extraction in 

the BOTDA system, which contains one input layer, three hidden layers, and one output 

layer. In this structure, the hidden layers are formed by stacking the encoder parts of 

three DAEs after individual training of these DAEs. W1, W2, and W3 represent the 

weight vectors in these three hidden layers, and Wo represents the weight vector of the 

output layer. Y is the output vector which contains only one element y1, corresponding 

to the generated temperature. In this case, the input vector X represents the BGS data, 

and the N elements in X represents the frequency sampling points on BGS in BOTDA. 

After training all DAE hidden layers and the output layer, the DNN is trained as a whole 

model using the simulated clean BGS data as input and the corresponding temperature 

value as target output based on the classical error back-propagation (BP) algorithm. 

Then, the temperature can be directly generated in the testing process. Actually, we 

have optimized the number of hidden layers by repeated adjustments and trials. When 
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the number of hidden layers increases from 1 to 3, the performance is improved. 

However, when it continues to increase, there is no noticeable performance 

improvement but the longer processing time induced. Thus, three hidden layers are 

determined finally. 

The clean BGS data of Lorentzian lineshape are simulated based on Eq. (2.9). In our 

case, the range of  is from 10.750GHz to 10.950GHz with a 1MHz interval, which 

is the same as the frequency scanning range during the acquisition of BGS data in the 

experiment. 𝑔𝐵 is set to be 1 since the BGS is normalized. The BFS 𝜈𝐵 of the ideal 

BGS is determined by the temperature and pre-calibrated BFS-temperature coefficient 

of the FUT used in the BOTDA system. To generalize the model for different 

temperature conditions, 61 temperatures (20 to 80oC with 1oC interval) are used in 

training processes. Moreover, in order to accommodate BGS linewidth variations along 

the fiber, the range of ∆𝜈𝐵  varies from 20MHz to 120MHz with 4MHz interval, 
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Fig. 5.2: Structure of the DNN model based on three DAE hidden layers used for direct temperature 

extraction from the noisy BGS for the BOTDA system. 
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resulting in 26 ∆𝜈𝐵 cases of training data. Although the Brillouin linewidth is larger 

than 30MHz in most cases, the range of BGS linewidth in training data is set from 

20MHz to ensure that the linewidths of all empirical data will arise in this range. In 

total, there are 1586 simulated ideal BGSs for training. The above setting of parameters 

to obtain the simulated ideal BGSs for training is based on the experimentally obtained 

BGS of the FUT. Furthermore, the choice of these parameters also depends on the 

optimization process of the DNN model through repeated trials for optimal performance. 

After appropriate training, the temperature of experimental BGS data can be obtained 

as the output of the DNN model directly as long as the temperature and bandwidth of 

the tested data are within the ranges used in the training data, no matter whether the 

data case takes place precisely in the training process. It is because the DNN model can 

learn the relation between the BGS and temperature instead of simply memorizing the 

appeared BGS-T pairs in training. 

In addition, to strengthen further the robustness of the DNN model, a novel way of 

using the training data is investigated. Several identical simulated BGSs instead of one 

single BGS are combined to generate one new input vector in the training dataset while 

the corresponding target remains the same, which means the dimension of the input 

vector expands while the total quantity of input vectors for training remains the same. 

In testing, several adjacent collected BGS data around each local fiber position are 

combined as one input vector, and the corresponding temperature of the local point will 

be output by the DNN. Finally, after repeated trials and optimization processes, the 

DNN model using 5 BGSs as input at one time is chosen, and the optimal structure of 
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the DNN model used for temperature extraction is decided to be 1005-120-25-5-1. The 

corruption ratio used in training is set to be 20%. 

5.3 Experiment and results  

Figure 5.3 shows the BOTDA experimental setup, which is almost the same as those 

used in previous chapters. The 20ns pump pulse light is used again (corresponding to 

2m spatial resolution). The peak power of the pump power injected is 20dBm, and its 

extinction ratio (ER) is beyond 40dB in the experiment, which is high enough to avoid 

possible detrimental effects of poor ER. In addition, a polarization switch (PSW) is used 

to suppress the polarization-dependent noise instead of the polarization scrambler (PS). 

A 40.170km SMF serves as the FUT. The last 203m loose fiber section and a 6m loose 

fiber section are put into an oven. The other parts of FUT are put in the environment of 

room temperature as illustrated in Fig. 5.3. Experimental BGSs under different 

temperature conditions and different averaging times (16, 50, 150, 300, 500 for each 

polarization direction) are collected with 500MSample/s sampling rate. Then, the 

 

Fig. 5.3: BOTDA system setup.  
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optimized DNN model is used to extract the temperature from collected BGSs along 

the FUT after training. 

To demonstrate the denoising effect of DAE on input collected data, both the 

collected BGS raw data along the 40.170km FUT and the corresponding BGS 

distribution after denoising by one single trained DAE are shown in Fig. 5.4. It is 

noticed that the BGS distribution becomes more evident and the noise level of BGS 

data decreases after the DAE processing. Besides, Figure 5.5 shows the measured BGS 

and recovered BGS after the DAE processing at the 2km and 40km distance, 

respectively. It is seen that the noise level has decreased significantly in the frequency-

 

Fig. 5.4: (a) Measured BGS distribution along the 40.170km FUT with 16 averaging times; (b) 

reconstructed BGS distribution along the 40.170km FUT after processing by the trained DAE. 

Insets: BGS distribution along the last 400m FUT. 
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domain after using DAE, which demonstrates the denoising effect of DAE to extract 

useful features with suppression of noise from the BGS data. The SNR distribution of 

the raw data with 16 averaging times and the one denoised by the DAE method along 

the whole FUT are both shown in Fig. 5.6. The SNR is calculated by the ratio between 

the mean amplitude along that one trace at the BFS in room temperature and its standard 

deviation. In Fig. 5.6, the value of each SNR point is calculated using the mean 

amplitude of 200 adjacent spatial sampling points. After processing by the DAE, the 

averaging SNR has been improved by 9.96dB, compared to that of raw data, calculated 

by subtracting two SNR values at each spatial position and then averaging the 

 

Fig. 5.5: (a) Measured BGS and reconstructed BGS by DAE at the 2km FUT position; (b) 

Measured BGS and reconstructed BGS by DAE at the 40km FUT position. 
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differences at all positions. 

After the individual training processes of three DAEs, the encoder parts of them are 

stacked together with a linear layer as the output layer to form the DNN model, which 

is used to extract the temperature information directly from the experimental BGS data 

after appropriate training. The following results are all obtained using the optimized 5-

BGS DNN model with the optimal structure of 1005-120-25-5-1. The temperature 

distribution obtained by using the conventional LCF method and that obtained by using 

the DNN model are shown in Fig. 5.7, respectively. The temperature information of the 

whole FUT, including the temperature changing at some different positions, can be 

extracted accurately by the DNN method, and the uncertainty of temperature measured 

by the DNN is much less than that obtained by the LCF method. 

 

Fig. 5.6: The SNR distribution of raw data with 16 times of averaging and the corresponding one 

denoised by using DAE along the FUT.  
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Furthermore, to prove the actual robustness of the DNN model in terms of different 

SNR levels of the input BGS data, the error performance of temperature extracted by 

using the DNN method in the last 203m FUT is explored and compared with that 

obtained by using the conventional LCF method. Figure 5.8 shows the error 

performance parameters, including the SD and the RMSE calculated from 1015 data 

points along the last 203m FUT. The BGS data of different levels of SNR are collected 

with different averaging times, i.e., 16, 50, 150, 300, and 500, which correspond to the 

SNR levels of 4.6dB, 7.0dB, 8.9dB, 9.8dB, and 11.0dB in the last 203m FUT (obtained 

using the ratio between the mean amplitude along the last 203m FUT trace at the BFS 

in the heating temperature 55oC and its standard deviation), respectively. Figure 5.8 

shows that when the SNR of input data decreases from 9.8dB to 4.6dB, both the SD 

 

Fig. 5.7: The temperature distribution obtained by the conventional LCF method and by the DNN 

method along the whole 40.170km FUT when the temperature of the oven is set to be 55oC. 16 

times of averaging are used for BGS collection. Inset: the temperature distribution along the last 

370m FUT. 
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and RMSE of temperature obtained by the LCF increase obviously, while those 

obtained by the DNN only increase slightly, which shows the robustness of the DNN 

for temperature extraction. In particular, when the SNR is 4.6dB, corresponding to 

relatively low averaging times of 16, the measured temperature SD by the DNN is 

reduced from 2.4oC to 1.2oC, and the RMSE is reduced from 2.4oC to 1.3oC, compared 

to the corresponding results using the LCF. Thus, the proposed method based on DNN 

can be used in the data collection with low averaging times to reduce the data 

acquisition and processing time with only a slight sacrifice of the measurement 

accuracy. Note that the whole temperature distribution in Fig. 5.7 is obtained based on 

the assumption that the strain along the whole FUT on the fiber spool is zero. However, 

the strain on the fiber spool is not zero actually, contributing to the fluctuation and 

overall changing trend in the temperature distribution. In this case, it is difficult to 

determine the actual value of the strain or temperature in the fiber spool section. 

Moreover, this fact may have also contributed to the observed deviation between the 

extracted temperature using the DNN and LCF. Thus, evaluating the actual 

performance of the adopted methods is more credible based on the obtained temperature 

in the last heated FUT section with constant strain. Certainly, the evaluation of 

temperature fluctuation and deviation in the last heated FUT section is represented as 

the SD and RMSE in Fig. 5.8. The results show that not only the fluctuation but also 

the deviation from actual temperature (55oC) have been reduced by using the DNN 

method. And note that the temperature accuracy in the FUT end represented by the 

RMSE/SD in the case of 16 averaging times is improved by a factor close to 2 (3dB), 



 

87 
 

while the average SNR of the whole trace is improved by 9.96dB. This inconsistency 

between the temperature accuracy and SNR improvement can be explained by the fact 

that the proportional relation between the temperature accuracy and the SNR is based 

on the supposed statistical independence of each point within the BGS. However, the 

use of DAE, which functions like a filter, will correlate all spectral points within the 

BGS and hence break the proportional relationship. Thus, the actual improvement of 

the temperature accuracy is not as significant as that of the SNR. This phenomenon has 

also been mentioned in Ref. [20]. 

 

 

Fig. 5.8: (a) The SD of temperature along the last 203m FUT in different SNR conditions by the 

LCF method and by the DNN method, respectively; (b) the RMSE of temperature along the last 

203m FUT in different SNR conditions by the LCF method and the DNN method, respectively. 
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Besides, to demonstrate the actual spatial resolution using the proposed DNN 

method in our experiment, we add one group of measurements where the heated 

section is set to 2m which is equal to the ideal theoretical spatial resolution of 2m 

(20ns pump pulse in the experiment). The temperature distribution obtained by the 

LCF and DNN around the 2m heated FUT section is shown in Fig. 5.9, where the 

experimental spatial resolution is calculated to be 2.2m using the full width at half 

maximum (FWHM) of the section with transient temperature. Thus, the proposed 

DNN method only introduces a minimal degradation of the spatial resolution and can 

be effective in practical applications. 

In order to compare the processing speed of the proposed DNN method with the 

LCF method, the processing time of data with five different averaging times is 

recorded and shown in Table 5.1. The processing of 200,000 BGSs along 40.170km 

SMF by the DNN method for temperature extraction requires only 4s, which is about 

500 times shorter than the processing time needed by the LCF method. It is proved 

 

Fig. 5.9: The temperature distribution around a 2m heated FUT section obtained by the LCF and 

DNN method. 
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that the proposed DAE-based DNN method can improve the processing speed and 

enhance the accuracy of extracted temperature in different SNR conditions. Since this 

method using the DAE-based DNN is proposed as a fast and robust temperature 

extraction method for BOTDA, we also compare its performance with that of the 

SVM method, which has been proved to be an ultrafast temperature extraction 

method in Ref. [15]. In [15], the SNR of raw data with trace averaging times of 16, 

50, 200, and 400 is measured to be 4.3 dB, 6.1 dB, 8.6 dB, and 9.9dB, respectively, 

which are very similar to the conditions in our experiment. However, the 

improvement of SD/RMSE provided by the SVM is less than 1dB in these cases. In 

addition, the SVM method's processing speed is 125 times faster than that of the LCF 

method. Thus, the speed of the proposed DNN method in this work is 4 times faster 

than the SVM with greater tolerance of low SNR as well. 

 

Table 5.1: The processing time (unit: s) needed for temperature extraction of BGS along 

the whole 40.170km FUT using LCF and DNN methods 

Averaging Times LCF DNN 

16 2164.80s 4.22s 

50 2132.76s 4.28s 

150 2130.84s 4.32s 

300 2144.30s 4.48s 

500 2126.51s 4.20s 
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5.4 Summary 

In conclusion, this chapter demonstrates a new method of using DAE-based DNN for 

temperature extraction in the BOTDA sensing system. The DAE serves as the primary 

block of the DNN and is trained individually to denoise the experimental noisy BGS 

data, which shows that the noise level could be reduced in the reconstructed BGS, and 

the SNR can be improved by 9.96dB in our experiment. The useful features of input 

BGS have been successfully extracted by the encoder part of DAE, with the noise 

primarily suppressed in the meanwhile. Our experimental results using the proposed 

DNN method have proved the robustness of the DAE-based DNN for direct 

temperature extraction under different SNR levels for the experimental data compared 

with those using the conventional LCF method. In the case of 4.6dB SNR of 

experimental data, the SD/RMSE of measured temperature at the end of the 40.170km 

FUT are reduced from 2.4oC/2.4oC to 1.2oC/1.3oC by using the DNN when compared 

with those using LCF. In addition, about 500 times processing time reduction due to 

the use of the proposed DNN method has been demonstrated. Our DAE-based DNN for 

temperature extraction combines the advantages of both denoising and fast processing 

speed, which makes it a promising method for robust and fast temperature extraction in 

BOTDA systems. In addition, this DAE-based DNN method also has the potential on 

other similar sensing systems based on Brillouin scattering for robust and fast extraction 

of measurand information. Moreover, we believe that this work using the DAE-based 

DNN can be helpful for the further detailed comparison between different neural 

network methods applied in BOTDA systems in the future. 
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6 Long-distance BOTDA sensing systems 

using Video-BM3D denoising for both 

static and slowly varying environment 

 

In this chapter, we propose and demonstrate the video block-matching and 3D filtering 

(VBM3D) denoising experimentally for the first time in a 100.8km long-distance 

BOTDA sensing system with 2m spatial resolution. We have performed both 

experiments under static and slowly varying temperature environments. In static 

temperature measurement, a temperature uncertainty of 0.43oC has been achieved with 

denoising by VBM3D. As far as we know, this is one of the best temperature 

uncertainties reported for BOTDA with a sensing distance beyond 100km. On the other 

hand, the temperature at the end of 100.8km fiber has also been accurately measured in 

slowly varying temperature measurements. VBM3D exploits both the spatial and 

temporal correlations of the data for denoising. As a result, it can significantly reduce 

temperature fluctuations and keep the measured values close to the actual temperature 

even if the temperature is temporarily changing. We believe it would be helpful for 

long-distance sensing where the measurand may have temporal evolution in the slowly 

varying environment. 

 

6.1 Motivation 
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As discussed in previous chapters, temperature-strain cross-sensitivity is one of the 

significant issues in BOTDA systems, which makes it challenging to achieve 

simultaneous temperature and strain measurement [1]. Besides the temperature-strain 

cross-sensitivity, achieving a long sensing distance beyond 100km is also challenging. 

The signal-to-noise ratio (SNR) is a crucial parameter that directly limits the 

measurement accuracy and the sensing distance. Due to the fiber attenuation, the SNR 

worsens, and the measurement accuracy degrades for longer sensing distances, limiting 

the sensing distance. Although increasing injected powers of the pump and probe light 

can enhance the SNR in principle, the highest pump and probe powers are limited by 

the non-local effect [2] and fiber nonlinearities [3], respectively. Therefore, to extend 

the sensing range beyond 100km with acceptable spatial resolution and measurement 

accuracy, some techniques have been proposed, including optical pulse coding [4-10], 

time/frequency-division multiplexing [11-13], Raman amplification [7,8,13-17], 

random fiber laser amplification [14,18], novel probe modulation and scanning [19-21], 

Brillouin loss configuration [21], and optical chirp chain BOTDA [22]. The works 

mentioned above with sensing distances beyond 100km are summarized in Table 6.1. 

However, most of the above methods require modifications of the conventional 

BOTDA setup, making the system more complicated.  

On the other hand, image denoising techniques have been used to improve the SNR 

without the need to modify the conventional setup, such as non-local means (NLM) and 

wavelet denoising (WD) [23]. The NLM reduces the noise by using the non-local 

principle based on the high degree of similarity and redundancy contained in the sensing 
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data, while the WD filters the noise by using wavelet transform and wavelet shrinkage. 

A 50km sensing distance with 0.19MHz BFS uncertainty using the 2D WD has been 

demonstrated [23]. Moreover, NLM denoising in a conventional BOTDA setup has 

helped to achieve a 100km sensing distance with 0.77MHz BFS uncertainty and 2m 

spatial resolution [24], as summarized in Table 6.1. Recently we have proposed a novel 

block-matching and 3D filtering (BM3D) image denoising method to enhance the SNR 

[25]. Since BM3D combines the advantages of NLM and WD, it achieves better 

measurement accuracy with less spatial resolution degradation compared to NLM and 

WD for denoising [25]. However, all these image denoising methods only exploit the 

data correlation in the space domain for denoising, while ingnoring the temporal data 

correlation usually. Thus, the 2D image denoising techniques are only suitable for the 

static environment where the measurand remains unchanged without temporal 

evolution. In fact, the temporal data correlation can also be used together with the 

spatial data correlation for better denoising performance, especially when the 

measurand varies slowly with time. Utilizing both the temporal and spatial correlation 

of the data for denoising, 3D video denoising can easily deal with the situations for both 

the static and slowly varying environment, which denoise the video sequence formed 

by consecutive measurements of 2D BGS distribution along the FUT. The video 

sequence is similar to that in a BOTDA of 50km sensing distance using the NLM video 

denoising [23].  
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 Table 6.1: Summary of previous works in BOTDA with sensing distance beyond 100km 

Techniques Fiber Length Resolution BFS Uncertainty 

Bipolar pulse coding [4] 100km 2m 0.8MHz 

Simplex coding [5] 120km 3m 3.1MHz 

Frequency coding [6] 100km 3m 1.5MHz 

RZ pulse coding and second-order Raman 

amplification [7] 
100/120km 3/5m 1.5/1.9MHz 

Distributed Raman amplification (DRA) 

and simplex coding [8] 
142.2km 5m 1.5MHz 

Cyclic coding [9] 164km 1m 3MHz 

Bipolar coding [10] 100km 2m 0.9MHz 

Time-division multiplexing (TDM) [11] 100km 2m 2MHz 

Frequency-division multiplexing (FDM) 

[12] 
150km 2m 1.5MHz 

Distributed Raman and Brillouin 

amplifications, FDM, TDM [13] 
150.62km 9m 0.82MHz 

Random fiber laser (RFL) based hybrid 

distributed Raman amplification (H-DRA) 

[14] 

154.4km 5m 1.4MHz 

First-order Raman amplification [15] 100km 2m 1.2MHz 

Second-order Raman amplification [16] 100km 2m 3MHz 

First-order bi-directional Raman 

amplification [17] 
120km 2m 2.1MHz 

High-order random fiber laser 

amplification (RFLA) [18] 
175km 8m 2.06MHz 

Orthogonally-polarized four-tone probe 

[19] 
104km 2m 5MHz 

Novel probe scanning with fixed frequency 

difference [20] 
100km 2m 2.4MHz 

Brillouin loss configuration and probe 

frequency modulation [21] 
100km 1m 1MHz 

Optical chirp chain (OCC) and pattern 

recognition [22] 
100km 4m 1.3MHz 

Non-local means (NLM) image denoising 

[24] 
100km 2m 0.77MHz 
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In this chapter, we extend the BM3D image denoising to video denoising, i.e., 

VBM3D, to involve one more temporal dimension and take the dynamical property of 

the environment into account. The following content is organized in this way: Section 

6.2 describes the principle and algorithm of VBM3D. Section 6.3 analyzes and 

optimizes the primary parameters in the VBM3D algorithm. This section also includes 

the experiment results performed for both the static and slowly varying temperature 

environments using VBM3D. For the static temperature measurement, a BFS 

uncertainty of 0.44MHz (0.43oC temperature uncertainty) with 100.8km sensing 

distance and 2m spatial resolution has been achieved. Furthermore, the slowly varying 

temperature at the end of 100.8km FUT has also been measured successfully after 

VBM3D denoising. Finally, Section 6.4 gives the summary.  

 

6.2 Working principle of VBM3D denoising 

VBM3D is one of the state-of-the-art video denoising methods developed in 2007 for 

the first time [26]. It reduces the noise by exploiting the signal's spatial and temporal 

correlation. When using the VBM3D for BOTDA signal denoising, each 2D (position-

frequency) measurement (i.e., one BGS distribution sample along the FUT collected by 

the BOTDA) constitutes one frame of a video sequence (e.g., Frame 1, 2, 3 in Fig. 6.1). 

And successive measurements can obtain more video frames to form the 3D video 

sequence, which will be denoised by VBM3D then. Figure 6.1 illustrates the flowchart 

of the proposed VBM3D denoising for BOTDA. Similar to 2D BM3D denoising [27], 

javascript:;
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VBM3D denoising also consists of two repetitive phases (Phase 1 and Phase 2), and 

each phase includes three similar steps: grouping, hard-thresholding (in Phase 

1)/collaborative Wiener filtering (in Phase 2), and aggregation. Only the second step is 

different between Phase 1 and Phase 2. The brief procedures of these three steps in each 

phase are expressed as follows:  

1) Grouping. In this step, matched blocks noted as “M”, which are similar to the 

reference block noted as “R”, are searched using the block-matching method and 

then stacked together to form a 3D array for each reference block in the video, as 

shown in Fig. 6.1. A straightforward approach to extend BM3D to VBM3D is to 

use a fixed-size 3D video search neighborhood. However, using a large size will 

lead to high computation complexity, while using a small size will give rise to 

unsatisfactory grouping and poor denoising results. Thus, the predictive-search 

block-matching method is utilized in VBM3D instead of the typical block-

matching method used in BM3D for grouping. The predictive-search block-

matching method includes two parts: an exhaustive-search block-matching and a 

predictive search [26]. It should be noted that the search range of block-matching 

in VBM3D is 3D video sequences rather than 2D images as in BM3D.  

2) Hard-thresholding/collaborative Wiener filtering. The hard-thresholding and 

collaborative Wiener filtering are two different approaches to achieving 3D 

transform-domain shrinkage. First, following step 1 of Phase 1, we apply a 3D 

transform on the 3D array from step 1. Second, we use the hard-thresholding (in 

Phase 1) to reduce the noise and invert the 3D transform to generate estimates of 
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all grouped blocks. Then we return all basic estimated blocks to their original 

positions. After finishing an entire loop of Phase 1 (including steps 1-3), we repeat 

steps 1-3 in Phase 2 again, using the collaborative Wiener filtering in step 2 instead, 

to boost the denoising performance further and obtain the final estimates.   

3) Aggregation. After step 2, we can obtain a basic (in Phase 1)/final (in Phase 2) 

estimate of the genuine video frames by aggregating all of the local estimates 

produced from step 2 with a weighted average. 

The experimental noise results from all equipment and components of the 

experimental system, especially the laser, EDFA and PD. And the total experimental 

noise in the BOTDA system is usually considered a Gaussian noise, denoted as 𝜂(∙

)~𝒩(0, 𝜎2). The collected noisy video is regarded as 𝑧(𝑥) = 𝑦(𝑥) + 𝜂(𝑥), where y is 

the actual video signal and 𝜂  represents the noise. Here, 𝑥 = (𝑥1, 𝑥2, 𝑡)  are 

coordinates in the 3D spatio-temporal domain. The first two components (𝑥1, 𝑥2) are 

the spatial coordinates, and the third one 𝑡 is the time (frame) index (coordinate). The 

noise variance σ2 is assumed a priori known, and the standard deviation (SD) σ of 

noise is set to an estimated value before using the VBM3D algorithm. To specify the 

Fig. 6.1: Flowchart of the proposed VBM3D denoising mothed for BOTDA. “R” and “M” represent 

the reference blocks and the matched ones. 
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VBM3D denoising method containing two phases (each phase containing three steps) 

more clearly, we introduce the VBM3D algorithm in detail as follows [26]:  

1) Phase 1. Obtaining a basic estimate by grouping within the noisy video and the 

collaborative hard-thresholding method. 

a) For each coordinate 𝑥 , we perform: 𝑆𝑥 = 𝑃𝑆-𝐵𝑀(𝑍𝑥) , where 𝑍𝑥 

represents a block in the noisy video 𝑧 at the position 𝑥;  

b) 𝑌̂𝑆𝑥 = 𝑇3𝐷
−1(𝐻𝐴𝑅𝐷-𝑇𝐻𝑅(𝑇3𝐷(𝑍𝑆𝑥), 𝜆3𝐷𝜎)) , where 𝑌̂𝑆𝑥  is a group of the 

blockwise estimates 𝑌̂𝑥′
𝑥, ∀𝑥′ ∈ 𝑆𝑥; 

c) We produce the basic estimate of the entire video 𝑦̂𝑏𝑎𝑠𝑖𝑐 by aggregation of 

the blockwise estimates 𝑌̂𝑥′
𝑥  at each position 𝑥 , using weighted averaging 

while 𝑤𝑒𝑖𝑔ℎ𝑡(𝑌̂𝑥′
𝑥) =

1

𝜎2𝑁ℎ𝑎𝑟(𝑥)
𝑊2𝐷; 

2) Phase 2. Obtaining the final estimate by grouping within the noisy video and the 

collaborative Wiener filtering method that uses the spectra of the corresponding 

groups from the basic estimate. 

a) For each coordinate 𝑥, we perform: 𝑆𝑥 = 𝑃𝑆-𝐵𝑀(𝑌̂𝑥
𝑏𝑎𝑠𝑖𝑐);  

b) 𝑌̂𝑆𝑥 = 𝑇3𝐷
−1 (𝑇3𝐷(𝑍𝑆𝑥)

[𝑇3𝐷(𝑌̂𝑆𝑥
𝑏𝑎𝑠𝑖𝑐)]

2

[𝑇3𝐷(𝑌̂𝑆𝑥
𝑏𝑎𝑠𝑖𝑐)]

2
+𝜎2

), where 𝑇3𝐷 and 𝑇3𝐷
−1 denotes the 3D 

transform and inverse 3D transform. 

c) We produce the final estimate of the entire video 𝑦̂𝑓𝑖𝑛𝑎𝑙 by aggregation of 

𝑌̂𝑥′
𝑥 , using weighted averaging while 𝑤𝑒𝑖𝑔ℎ𝑡(𝑌̂𝑥′

𝑥) =

𝜎−2 ‖
[𝑇3𝐷(𝑌̂𝑆𝑥

𝑏𝑎𝑠𝑖𝑐)]2

[𝑇3𝐷(𝑌̂𝑆𝑥
𝑏𝑎𝑠𝑖𝑐)]2+𝜎2

‖
2

−2

𝑊2𝐷, where ‖∙‖2 denotes ℓ2-𝑛𝑜𝑟𝑚.  

Notation:  
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⚫ 𝑍𝑥 denotes a block of size 𝑁1 × 𝑁1 in 𝑧 , whose upper-left corner is position 𝑥. 

𝑌̂𝑥′
𝑥  and 𝑌̂𝑥

𝑏𝑎𝑠𝑖𝑐  use similar notations. The former is an estimate for the block 

located at position 𝑥′, obtained while processing the reference block 𝑍𝑥. And the 

latter is a block located at position 𝑥 extracted from the basic estimate 𝑦̂𝑏𝑎𝑠𝑖𝑐. 

⚫ 𝑆𝑥 = 𝑃𝑆-𝐵𝑀(𝑍𝑥)  performs predictive-search block-matching using 𝑍𝑥  as a 

reference block, where the set 𝑆𝑥 are the results, containing the coordinates of the 

matched blocks. For Phase 2, we perform the search process inside the basic 

estimate instead of inside the noisy video. 

⚫ 𝑍𝑆𝑥 represents a group (i.e., a 3D array) formed by stacking together the blocks 

𝑍𝑥∈𝑆𝑥. The same notation is used for 𝑌̂𝑆𝑥 and 𝑌̂𝑆𝑥
𝑏𝑎𝑠𝑖𝑐. The size of these groups is 

𝑁1 × 𝑁1 × |𝑆𝑥|. 

⚫ 𝐻𝐴𝑅𝐷-𝑇𝐻𝑅(𝑇3𝐷(𝑍𝑆𝑥), 𝜆3𝐷𝜎)) applies the hard-thresholding on the coefficients 

in the 3D transform domain using threshold 𝜆3𝐷𝜎 , where 𝜆3𝐷  is a constant 

threshold parameter. In detail, the hard-thresholding makes two conditional 

operations on the transform coefficients: when the values of the coefficients are 

less than the threshold, we set them to zero; and when the values of the coefficients 

are larger than or equal to the threshold, we reserve them. 

⚫ 𝑁ℎ𝑎𝑟(𝑥) is the number of nonzero coefficients retained after hard-thresholding 

𝑇3𝐷(𝑍𝑆𝑥). Since the DC is always reserved, 𝑁ℎ𝑎𝑟(𝑥) > 0. 

⚫ 𝑊2𝐷 is a 2D Kaiser window of size 𝑁1 × 𝑁1. 

6.3 Experiment and results 
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6.3.1 BOTDA setup  

Figure 6.2 shows the BOTDA experiment setup used to measure BGS distribution along 

the FUT for VBM3D denoising. This system is similar to those used in previous 

chapters. The sweepomg frequency of the RF source is from 10.751GHz to 10.950GHz 

with 1MHz interval. Again, we use 20ns pump pulse, corresponding to 2m spatial 

resolution. The pump peak power and probe power injected into the FUT are 20dBm 

and -3dBm, respectively, which are below the upper limits to avoid the non-local effect 

[2] and fiber nonlinearities [3]. The extinction ratio of the pump pulse in our experiment 

is 40dB. In addition, a polarization scrambler (PS) is used to suppress the polarization 

dependent noise. After passing through the FUT, the probe signal is amplified by 

EDFA3 and filtered to remove the higher frequency sideband. Finally, it is detected by 

a 125 MHz photodetector and collected on an oscilloscope. The sampling rate of 

500MSample/s is adopted for data collection on an oscilloscope, which means 0.2m 

spatial distance between two adjacent data points. A 100.8km long SMF is used as the 

FUT, and its last 196m fiber section is put in the oven to evaluate the measurement 

accuracy at the far end of the FUT. Another 2.3m loose fiber section is also put inside 

the oven to verify the experimental spatial resolution. In the experiment for static 

temperature measurement, we adopt 2000 times averaging. For experiments with 

slowly varying temperature , we choose 200 times averaging instead to not only 
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accelerate the total data collection speed but also maintain good signal quality for each 

group of data.  

 

6.3.2 Optimization of VBM3D parameters   

At first, we monitor and analyze the effect of the VBM3D parameters on the denoising 

performance by experiment. The parameters of VBM3D include the estimated SD of 

the experimental noise σ, the fixed block size, the maximum number of similar blocks, 

the search-window sliding step, the search neighborhood range, the threshold for the 

block distance, and the threshold for the hard-thresholding λ3D. Among them, σ and 

λ3D, two primary parameters, are found to impact the denoising performance 

significantly. Thus, we focus on these two parameters and optimize them using 

experimental data obtained under the static temperature environment (the oven 

temperature maintains 60oC). In our experiment, we take 20 consecutive measurements 

of BGS distribution along the last 300m FUT to form a video sequence, corresponding 

 

Fig. 6.2: BOTDA experiment setup. 
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to a maximum frame number of 20. Then the video is denoised by VBM3D. Using LCF 

and the BFS-temperature coefficient (1.034MHz/oC) of the FUT, we can obtain the 

temperature distribution, from which we calculate the temperature uncertainty at the 

FUT end to evaluate the denoising performance. Moreover, we randomly select one 

frame (the 15th frame in our case) from these 20 frames for the following performance 

comparisons. In our tentative trials, we find that by increasing the value of λ3D better 

temperature uncertainty is observed, but no more improvement is seen when its value 

is larger than 6. Thus, we set the value of λ3D to be 6 at first and then gradually change 

the value of σ from 0.004 to 0.78. The obtained temperature uncertainty at the end of 

FUT in the 15th frame after denoising by VBM3D (the frame number is set to be 20) is 

shown in Fig. 6.3(a). The uncertainty decreases significantly from 8.86oC to 0.43oC 

while σ increases from 0.004 to 0.20. Then the uncertainty keeps almost unchanged 

even if σ still increases. Therefore, to avoid over-denoising and maintain excellent 

denoising performance, the value of σ is chosen to be 0.20. On the other hand, we keep 

the value of σ to be 0.20 and gradually increase the value of λ3D from 0.1 to 20 (the 

frame number is set to be 20). The result is shown in Fig. 6.3(b), where we can see that 

the uncertainty decreases significantly and then keeps at the level of 0.43oC when λ3D 

is larger than 3. We also find that when the frame number is smaller than the maximum 

value of 20, larger λ3D is needed for the temperature uncertainty to reach a minimum 

value. To guarantee optimal performance for different frame numbers, we use a little 

larger value for λ3D, i.e., 6 in our case. Finally, considering the effect of other parameters, 
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the values of σ and λ3D are determined to be 0.2 and 6 for the following experiment 

under both static and slowly varying temperature environments, respectively.  

 

6.3.3 VBM3D denoising under a static temperature environment 

As mentioned above, under a static temperature environment, 20 consecutive 

measurements of BGS distribution along the last 300m FUT have been taken to form a 

video sequence, meaning the maximum frame number can be set to be 20. Here we set 

 

Fig. 6.4: One of the 20 measured BGS distributions along the last 300m FUT (a) before denoising; 

(b) after denoising by using VBM3D with a frame number of 20. 

 

Fig. 6.3: Temperature uncertainty as a function of (a) estimated SD of noise σ; (b) threshold λ3D. 
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the frame number to be the maximum value of 20 for denoising at first. Fig. 6.4(a) 

shows one of the 20 measured BGS distributions along the last 300m FUT without the 

denoising by VBM3D, where the two heated FUT sections in the oven can not be 

observed due to very low SNR at the FUT end. As a contrast, Fig. 6.4(b) gives the 

corresponding BGS distribution after denoising by using VBM3D with a frame number 

of 20, where an SNR improvement of 13.2dB (improved from -2.4dB to 10.8dB) has 

been achieved, and the two heated sections are clearly observed at the FUT end. Note 

that the SNR is calculated using a 20m fiber section (101 data points) at the FUT end. 

And the 15th frame from these 20 frames is randomly selected for analysis, and other 

frames all exhibit similar performance. From Fig. 6.4, we plot two BGSs at the locations 

of 100.53km (at room temperature) and 100.74km (heated at 60oC) before and after 

denoising, as shown in Fig. 6.5, implying that clear BGSs can be reconstructed from 

the raw data after denoising by VBM3D.  

 

Fig. 6.5: Two BGSs at the locations of (a) 100.53km and (b) 100.74km with/without VBM3D 

denoising. 



 

108 
 

Then, the corresponding temperature distribution is obtained using LCF and the 

BFS-temperature coefficient (1.034MHz/oC), as shown in Fig. 6.6(a). It is clear that the 

temperature fluctuations are reduced significantly after denoising by VBM3D. Hence 

the temperatures of the two heated sections at the FUT end are precisely observed. The 

temperature uncertainty at the far end of FUT is improved from 9.0oC of raw data to 

0.43oC (0.44MHz BFS uncertainty) after denoising by VBM3D. Fig. 6.6(b) shows the 

temperature distribution around the 2.3m heated section, and indicates an experimental 

spatial resolution of 2.5m (calculated using the full width at half maximum (FWHM) 

of the temperature transition section [28]), which has a minimal degradation of the 

spatial resolution after denoising. This result agrees well with our previous work of 

using 2D BM3D denoising for BOTDA [25], showing the advantage of BM3D 

denoising again. It is worth mentioning that in Fig. 6.4 and Fig. 6.6, we only present 

the data along the last 300m FUT because our oscilloscope does not have enough 

memory to collect the data along the whole 100.8km FUT at the sampling rate of 

500MSample/s. Since the temperature only changes at the end of FUT and other 

 

Fig. 6.6: Temperature distribution before and after denoising by VBM3D (a) along the last 300m 

FUT; (b) around the 2.3m heated section. 
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sections of FUT remain at room temperature, the data along the last 300m FUT is good 

for demonstrating temperature measurement at the worst SNR. 

It is worth mentioning that the frame number is also a key parameter in VBM3D, 

which determines the search range during the block-matching process. Hence the frame 

number will also affect the denoising performance. In the results of Fig. 6.4 to Fig. 6.6, 

we use the maximum frame number of 20 in VBM3D denoising, which means that the 

block search range is the whole 20 measurements of the BGS distribution. In order to 

analyze the denoising performance using VBM3D with different frame numbers, we 

change the frame number in the VBM3D algorithm. Fig. 6.7 shows the temperature 

uncertainty at the far end of FUT as a function of the frame number, where the best 

temperature uncertainty among all frames after denoising is adopted. When the frame 

number is 1, there is only one measurement of BGS distribution, and VBM3D works 

the same way as 2D BM3D. Note that for static temperature environment, we adopt 

2000 times averaging for each measurement. The temperature uncertainty obtained 

using VBM3D with the frame numbers 1, 2, 5, 10, 15, and 20 are 2.13, 1.93, 1.38, 1.12, 

0.52, and 0.43oC, respectively. We can see that the temperature uncertainty becomes 

better with the increase of the frame number, which indicates the superiority of the 

VBM3D over the 2D BM3D that VBM3D can use not only the spatial correlation 

within each frame but also the temporal correlation among different frames for 

denoising. The temporal correlation used in denoising is significant in the slowly 

varying temperature measurement, which will be verified in the next section. Moreover, 

as a comparison, the temperature uncertainty obtained by using linear averaging of 
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multiple measurements is also given in Fig. 6.7. The temperature uncertainty obtained 

using linear averaging of 1, 2, 5, 10, 15, and 20 measurements are 9.0, 6.2, 4.1, 3.1, 2.8 

and 2.5oC, respectively. The temperature uncertainty obtained by VBM3D is much 

smaller than that by linear averaging, showing the capability of VBM3D to achieve 

accurate data denoising rather than just averaging redundant data.  

 

6.3.4 VBM3D denoising under a slowly varying temperature 

environment  

In this section, we perform the experiment under a slowly varying temperature 

environment, where the temperature inside the oven changes slowly. In the beginning, 

the temperature in the oven is kept at 40oC and stabilized for about 40mins. Then, it 

increases linearly from 40oC to 60oC, which lasts about 140mins. At last, it remains at 

 

Fig. 6.7: Temperature uncertainty obtained by using VBM3D and linear averaging as a function of 

frame number (for VBM3D) or measurement number (for linear averaging).  
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60oC for about 45mins. Therefore, the whole temperature change process occupies a 

time of 225mins, controlled by a computer program connected to the oven. Thus the 

temperature in the oven changes by 20oC within 140mins, corresponding to a 

temperature change speed of 0.14oC/minute. For each measurement of BGS distribution 

along the FUT, 200 times averaging is adopted to make the data acquisition speed fast 

enough to sense the temperature change and maintain good signal quality for such a 

long FUT. The acquisition time of each measurement along FUT costs 3mins, within 

which the temperature changes by 0.42oC, corresponding to a BFS change of 0.43MHz 

(BFS-temperature coefficient of 1.034MHz/oC). Since 0.43MHz is even less than one-

half of the frequency-sweeping interval of 1MHz, the temperature can be regarded as 

constant within the data acquisition process of each measurement. The measurement 

starts almost at the same time when the temperature change process begins, and hence 

the total measurement time is approximately equal to that of the temperature change 

process, i.e., 225mins, during which 76 consecutive measurements of BGS distribution 

along FUT have been finished. After data collection, they are combined to form a video, 

which is then denoised by VBM3D with a specific frame number. For example, 

supposing the frame number is 10, the block search range will be adjacent ten 

measurements, and the denoising process will be finished using this block range for all 

76 measurements, as depicted in Fig. 6.1. Figure 6.8 shows the temperature as a 

function of time obtained from a thermometer inside the oven (black curve, denoted as 

actual temperature), raw data (red curve) and corresponding data after VBM3D 

denoising with different frame numbers (1, 2, 5, 10, 15 and 20). Note that for the raw 
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data and those after denoising by VBM3D, the measured temperature is the average 

temperature along the last 196m FUT in the oven. From Fig. 6.8, we can see that the 

temperature obtained from the raw data has large fluctuations without denoising, and 

the values deviate from those measured by the thermometer (i.e., actual temperature). 

While with the denoising by VBM3D, both the temperature fluctuations and deviations 

decrease when the frame number increases from 1 (pink curve) to 15 (blue curve), 

which clearly indicates that VBM3D can effectively make use of the temporal 

correlation between each frame to denoise the data under slowly varying temperature 

environment. However, when the frame number increases to 20, we find that the 

temperature after denoising starts to deviate from the actual temperature, which may 

originate from the loss of some valuable details of the data due to excessive denoising 

when using a large frame number. The impact of the frame number on the measurement 

accuracy under a slowly varying environment is analyzed quantitatively by calculating 

the root-mean-square error (RMSE) and uncertainty of the measured temperature 

values in Fig. 6.8. The RMSE is calculated by comparing temperatures obtained from 

76 measurements (i.e., 76 measured temperature values) with those from the 

thermometer, which represents how close the measured values are to the actual 

temperature reading from the thermometer. The expression of RMSE is given in Eq. 

(6.1), where Tmeasured is the temperature values in Fig. 6.8 obtained from raw data or 

those after denoising by VBM3D, and Tture is the values read from the thermometer.  

𝑅𝑀𝑆𝐸 = √∑ (𝑇𝑘
𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑−𝑇𝑘

𝑡𝑟𝑢𝑒)276
𝑘=1

𝑁
                      (6.1) 
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While the uncertainty is calculated using the standard deviation (SD) of the temperature 

values obtained at the FUT end for a randomly selected actual temperature, e.g., 53.0oC 

at the time of 111mins (i.e., the 38th data frame in our case). The RMSE represents the 

deviations of the measured temperature values from the real ones, while the SD depicts 

the fluctuations of the measured temperature values. The results of RMSE and SD are 

given in Fig. 6.9. Note that a frame number equal to zero means the result is obtained 

from the raw data. From Fig. 6.9(a), we can see that the RMSE decreases from 12.86oC 

to 3.35oC as the frame number increases from 0 to 15. Then it starts to increase when 

the frame number becomes larger than 15, which agrees well with those in Fig. 6.8. 

Since the image/video denoising is achieved at the expense of sacrificing some details 

in the data [36], more details of the measured data will be lost due to excessive 

denoising when using larger frame number, resulting in the deviation of the measured 

temperature from the actual temperature and hence the increase of RMSE under larger 

frame number. On the other hand, the uncertainty has been significantly improved from 

21.26oC of raw data to a minimum value of 2.90oC when the frame number is 15, as 

shown in Fig. 6.9(b). Similar results of the temperature uncertainty can be obtained for 

other cases. Taking the case of (58.8oC, 150mins) for example, the temperature 

uncertainty obtained with frame numbers of 0, 1, 2, 5, 10, 15, and 20 are 18.48, 8.03, 

5.72, 5.41, 3.86, 3.39, and 3.75oC, respectively. We also obtain the minimum value 

with the frame number of 15. 
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We also compare the performance of VBM3D and linear averaging under a slowly 

varying temperature environment. Here a frame number of 15 is used for the denoising 

by VBM3D, while linear averaging of 15 adjacent measurements is adopted for a fair 

 

Fig. 6.8: Temperature as a function of time obtained from a thermometer inside the oven, raw data 

and data after denoising by VBM3D with different frame numbers (1, 2, 5, 10, 15 and 20) . Real T 

denotes the temperature obtained from the thermometer.  

 

Fig. 6.9: (a) RMSE and (b) uncertainty of the measured temperatures in Fig. 6.8 as a function of the 

frame number. 



 

115 
 

comparison. The results are plotted in Fig. 6.10, where the actual temperature (black 

curve), the measured temperatures by the raw data (red curve) and by the data denoised 

using VBM3D with a frame number of 15 (blue curve) are the same as those in Fig. 6.8. 

The green curve gives the temperature as a function of time obtained from the linear 

averaging. It can be seen that the temperature from the raw data has large fluctuations 

due to poor SNR at the end of 100.8km FUT. The linear averaging reduces the 

fluctuations, but it makes the deviation of the measured temperature from the actual 

temperature even larger, as depicted by the green curve in Fig. 6.10. It is because the 

linear averaging damages the temporal correlation among the data of adjacent 

measurements and hence cannot take the slowly varying temperature changing into 

account. On the other hand, the measured temperature after VBM3D denoising provides 

small fluctuations and little deviation from the actual temperature. As calculated above, 

the RMSE of the measured temperature using VBM3D with a frame number of 15 is 

3.35oC, compared with the RMSE of 12.86oC for raw data and 15.17oC for the data 

after linear averaging. This significant improvement of measurement accuracy under 

slowly varying environments proves the advantage of VBM3D, which exploits both 

temporal and spatial correlation for denoising with only little sacrifice of data details 

even when the environment temperature is slowly changing.  
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6.4 Summary 

We have proposed and experimentally demonstrated using VBM3D for denoising in a 

BOTDA system with 100km long-distance with 2m spatial resolution under static and 

slowly varying temperature environments. The consecutive measurements of 2D BGS 

distribution along the FUT form the video sequence. Then it is denoised by VBM3D in 

both time and space domains. Under a static temperature environment, we achieve the 

temperature uncertainty of 0.43oC (0.44MHz BFS uncertainty) at the far end of FUT. 

To our knowledge, this is one of the best BFS uncertainty reported for a sensing 

distance beyond 100km. On the other hand, we have also successfully measured the 

 

Fig. 6.10: Comparison of the real temperature by the thermometer (black curve), the measured 

temperatures by the raw data (red curve), by the data after averaging 15 adjacent measurements 

(green curve), and by the data denoised using VBM3D with a frame number of 15 (blue curve). 
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slowly varying temperature with a temperature RMSE/uncertainty of 3.35oC/2.90oC.  

The processing of 1501 (number of sensing points along the last 300m FUT) ×200 

(number of scanned frequencies) and ×20 (number of consecutive measurements) data 

points on our PC with Intel i7-6700k CPU and 16G memory takes 111s. If GPU instead 

of CPU is used to implement the algorithm, we can reduce the time to 15s [29], and the 

VBM3D method would be helpful in quasi-real-time monitoring scenarios. The reliable 

denoising performance of the proposed VBM3D method makes it a practical way of 

improving the measurement accuracy and sensing distance, especially when there is 

temporal evolution of the measurand under a slowly varying environment.  
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7 Towards Detecting Red Palm Weevil 

Using Machine Learning and Fiber 

Optic Distributed Acoustic Sensing  

RPW is a detrimental pest that has wiped out many palm tree farms worldwide. Early 

detection of RPW is challenging, especially in large-scale farms. Here, we introduce 

the combination of machine learning and fiber optic DAS techniques as a solution for 

the early detection of RPW in vast farms. Within the laboratory environment, we 

reconstructed the conditions of a farm that includes an infested tree with about 12-day-

old weevil larvae and another healthy tree. Meanwhile, some noise sources are 

introduced, including wind and bird sounds around the trees. After training with the 

experimental time- and frequency-domain data provided by the fiber optic DAS system, 

a fully-connected ANN and a convolutional neural network (CNN) can efficiently 

recognize the healthy and infested trees with high classification accuracy values (99.9% 

by ANN with temporal data and 99.7% by CNN with spectral data, in reasonable noise 

conditions). This work paves the way for deploying the high-efficiency and cost-

effective fiber optic DAS to monitor RPW in open-air and large-scale farms containing 

thousands of trees. 

 

7.1 Motivation 
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The date palm is a high-value fruit crop that provides healthy nutrition security to 

millions worldwide [1]. It is further regarded as an essential source of export revenue 

for rural smallholders worldwide. Unfortunately, the date production and trade are in 

danger because of the RPW, also named Rhynchophorus ferrugineus [2,3]. RPW is a 

Coleopteran snout pest, considered the single most destructive pest of palm trees. 

Young and soft trees aged less than 20 years, representing about 50% of the total 

cultivated date palm trees, are vulnerable since RPW typically targets them [4]. Besides 

date palms, RPW attacks coconut, oil, and ornamental palms [4,5]. RPW has been found 

in more than 60 countries in the past few decades, including the Mediterranean region, 

Central America, the Middle East, and North Africa [4,6]. This plague has globally 

destroyed many palm farms causing severe economic losses in the form of lost 

production or pest-control costs. As representative examples, Figure 7.1 shows the 

RPW's impact on two date palm trees, after treating the trees with scraping to remove 

the RPW entirely. 

Fig 7.1: Two representative examples of treated trees by scraping to remove red palm weevil (RPW). 

 

In the early stage of infestation, chemical treatments can heal palm trees [7]. 

However, a palm tree only shows visual distress signs in a well-advanced stage of 
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infestation, where it is difficult to save the tree. Many techniques have been reported in 

the literature for the early detection of RPW [8-10]. Some detection methods, such as 

x-ray-based tomography [9] and trained dogs [10], are accurate; however, they lack 

feasibility in large-scale farms because of their slow scanning processes. The most 

promising early detection methods base on sensing the larvae's sound while chewing 

the core of a palm trunk. The larvae start to produce eating sounds in an early infestation 

stage, where the larvae are less than two weeks old [11]. Existing acoustic detection 

technologies rely on inserting acoustic probes within the individual tree trunks and 

building a wireless network to communicate with the sensors [8]. Unfortunately, 

assigning a sensor per tree is cost-ineffective, especially for vast farms containing 

thousands of trees. Additionally, this method is invasive and may harm the trees or 

create nests for insects. 

We recently reported a solution of using a fiber optic DAS for the early detection 

of RPW, such that a single optical fiber is noninvasively wound around the palm trees 

to possibly scan a large-scale farm within a short time [11,12]. As reported in [11], 

distinguishing the healthy and infested trees was achieved through a straightforward 

signal processing algorithm since the experiment was conducted in a controlled 

environment. Identifying infested trees in open-air farms, where the optical fiber might 

be subjected to harsh environmental noises, would require a more advanced signal 

processing technique to classify the larvae sound and other noise sources.  

 To pave the way for utilizing the fiber optic DAS to monitor real farms, here, we 

introduce neural network-based machine learning algorithms to classify healthy and 



 

125 
 

infested trees, based on the data collected by a fiber optic DAS. Within a laboratory 

environment, we mimic a farm's environmental conditions, including the 

healthy/infested palm tree and other noise sources. In particular, the sound of about 12-

day-old weevil larvae is played inside a tree trunk. And meanwhile, the tree is subjected 

to external wind and bird sounds as noise sources. We use a fully-connected ANN [13] 

and a CNN [14] to recognize the infested and healthy trees in the noisy environment. 

We further investigate the impact of different optical fiber jackets on mitigating the 

external noise around the trees. This work would be highly beneficial for the future 

deployment of the fiber optic DAS for the early detection of RPW in vast real farms. 

 

7.2 Experimental design 

Figure 7.2(a) shows the entire scheme of our experiment. We integrate the optical and 

electronic components of the DAS system inside a sensing unit. We inject the output 

light from the sensing unit into an SMF and wind a section of the fiber around a tree 

trunk. Inside the trunk, we implant a loudspeaker (SRS-XB21, Sony, 20Hz-20000Hz 

frequency transmission range), continuously playing an eating sound of about 12-day-

old weevil larvae. At around 1m distance from the tree, a fan blows air, with a speed of 

about 3m/s, toward the optical fiber and tree. Also, at around 1m distance from the tree, 

we locate another loudspeaker (AudioCube, Allococac, 40Hz-20000Hz frequency 

transmission range) continuously producing bird sounds. At the outer surface of the tree, 

we place a sound level meter that can record the various sound intensity levels used in 
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the experiment. The measured sound intensity level of the background noise within the 

laboratory is around 51dB, caused by the instruments working in the laboratory, which 

rises to about 71dB when only playing the bird sounds. The intensity level of the bird 

sounds is roughly equal to that we hear on farms. According to the literature [8] and our 

experience, humans can hear the larvae sound under acceptable environmental noise. 

As measured by the meter, when only the loudspeaker within the tree turns on, we set 

the intensity levels of the larvae sound to be within the range [51dB to 75dB]. The low-

level cannot be distinguished from the background noise by the meter, while the other 

high-threshold is obvious. The selected larvae sound intensity levels within this range 

should represent all possible degrees of infestation (weak, medium, and strong 

 

Fig 7.2: (a) Overall scheme of using the DAS system to detect the RPW sound. (b) Experimental 

setup of the DAS interrogation unit. 
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infestation). 

The sensing unit contains the interrogation part of the DAS except for the sensing 

fiber (Fig. 7.2(b)), which has the same principle as the phase-sensitive optical time-

domain reflectometry (Φ-OTDR) [15]. A very narrow linewidth laser generates a CW 

light of a 100Hz linewidth and a 40mW optical power. Then, an acousto-optic 

modulator (AOM) converts the light into optical pulses with a 50ns pulse width and a 

5kHz repetition rate, corresponding to a 5m spatial resolution. The power of the optical 

pulses is amplified using an EDFA, while its output light is injected through a circulator 

into a standard SMF of about 2km long. At around 1km distance from the beginning 

position of the SMF, we wind a 5m fiber section around the tree trunk. The 

backscattered signal from the SMF is amplified with another EDFA. And then an FBG 

removes its ASE noise. The filtered Rayleigh signal is detected by a PD and sampled 

by a digitizer of a 200MHz sampling rate. Finally, we record the Rayleigh signals as 1s 

periods (5000 traces per period). This experiment includes the utilization of two 

different standard SMFs, protected with different jackets of a 900μm diameter 

(Thorlabs, SMF-28-J9, denoted as “JKT1”) and a 5mm diameter (YOFC, YOFC-

SCTX3Y-2B1-5.0-BL, denoted as “JKT2”), respectively. 

Figure 7.3 shows an example of a Rayleigh trace read by the DAS system. The 

high-power signal located at the start of the SMF is typical and corresponds to the 

Fresnel reflection from the front facet of the SMF. In the ideal scenario, when there is 

no refractive index perturbation along the SMF, the shape of the Rayleigh trace remains 

stationary in the time-domain for all the spatial points along the entire fiber [15,16]. 
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Consequently, the differences between the temporal subsequent Rayleigh traces and an 

initial reference one would be ideally zeros. In contrast, a larvae sound within the tree 

trunk can modulate the fiber's refractive index at the tree position, which changes the 

corresponding temporal Rayleigh signal only at the tree location. The location of an 

infested tree and the larvae sound frequencies can be identified by applying the 

normalized differential method [17] and fast Fourier transform (FFT) to the temporal 

Rayleigh traces. 

 

7.3 Investigating the impact of the noise sources on the DAS 

system 

In this section, we explore the possible ways of mitigating environmental noises, such 

as wind and bird sounds, which may degrade the performance of the fiber optic DAS 

system when detecting the RPW. The suggested techniques for reducing the noise 

include applying a spectral band-pass filter to alleviate the noise level within the 

 

Fig 7.3: A representative example of a Rayleigh trace recorded by the fiber optic DAS. 
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recorded signals and further trying various optical fiber jackets that the wind might 

shake. This investigation is necessary to improve the performance of the machine 

learning algorithms while classifying the healthy and infested trees and also to make 

the DAS system more feasible for accurate RPW detection.  

 Firstly, we explore the spectral components of the actual larvae sound. In particular, 

a commercial voice recorder (ICD-UX570, Sony, 50Hz-20000Hz frequency response) 

is implanted inside an indeed infested tree trunk and next to about 12-day-old larvae, 

shown in Fig 7.4(a), such that the voice recorder stores the larva's sound using the 

uncompressed linear pulse-code modulation (LPCM) format to have a pristine quality 

audio file all the time [18]. We select this specific RPW life stage to examine if our 

sensor can detect the larvae's sound at an early stage. Thus, the palm tree can still be 

saved and cured. During the recording time, the larvae eat and move naturally within 

the trunk without restriction. Consequently, the quality of the simulated sound in the 

laboratory should be comparable to the real one. The age of the larvae can be well 

controlled via an artificial infestation process [11], which is carried out in a secured 

research facility to avoid spreading the RPW to other healthy trees. Interestingly, we 

observe that the larvae almost continuously produce the sound while they are chewing 

the tree trunk. Figure 7.4(b) shows two different representative examples of the larvae 

sound's power spectra, each corresponding to a 0.5s recording interval. The results of 

Fig. 7.4(b) indicate that most larvae sound's optical power is around 400Hz. 
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In contrast, the used bird sounds have a broad spectrum (Fig 7.4(c), blue line), 

which interferes with that of the larvae. Regarding the wind as a noise source, the 

orange line in Fig 7.4(c) represents an example of the vibration’s power spectrum 

caused by wind when shaking the “JKT2” fiber. The tree swinging dominates the 

vibration caused by wind, which has low-frequency components. However, wind may 

also directly shake the optical fiber to produce other vibrations of high frequencies, 

which may overlap with the larvae sound. Because the vibration strength caused by the 

wind is larger than that of the larvae sound, the wind's high-frequency vibration must 

be considered a noise source. Given the results of Figs 7.4(b), 7.4 (c), for the entire 

following temporal vibration data that we collect using the fiber optic DAS, we will 

apply a [200Hz-800Hz] band-pass filter to enhance the SNR of our system. It is because 

the spectral filter can remove the low vibration frequency components, less than 200Hz, 

 

Fig 7.4: (a) ~12 days old weevil larvae. (b) Two representative examples of the larvae sound's spectra, 

marked as Ex. 1 and Ex. 2, produced using the data of the voice recorder. (c) Examples of the power 

spectra produced by bird sounds and wind. 
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to avoid the inevitable mechanical vibration in the laboratory and the tree swinging 

caused by wind. Meanwhile, it filters out the high-frequency (larger than 800Hz) 

components, produced by the electronic/optical components in the system, without 

impacting the larvae sound's dominant frequencies (around 400Hz). 

 Focusing on the experimental design of Fig. 7.2(a), we initially switched off the 

fan and the outside noise loudspeaker, while we only played the larvae sound using the 

loudspeaker implanted inside the tree trunk. Figures 7.5(a-d) show two representative 

examples of the normalized differential time-domain signals recorded using the DAS 

system [17], followed by applying the [200Hz-800Hz] band-pass filter, when using the 

SMF of JKT1/JKT2. Obviously, the two fibers accurately locate the position of the 

infested tree at about 1km distance from the input ports of the fibers. The other noisy 

signals, which sometimes appear at the start of the SMFs, result from the fiber front 

Fig. 7.5: Representative examples of the infested tree’s position information when using the SMF of 

JKT1 (a), (b) and JKT2 (c), (d). 
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facet's reflection. 

 Next, we turn off the two loudspeakers and only turn on the fan to inspect the 

impact of the wind on the two SMFs. The wind would be regarded as the primary noise 

source in open-air farms, mainly because our detection technique is noninvasive, and 

the fiber would typically be affected by vibrations caused by wind. Even with applying 

the [200Hz-800Hz] band-pass filter, the SMF of JKT1 is affected by the wind to 

produce temporal vibrations, as shown in Fig. 7.6(a,b). The low-frequency vibrations, 

produced by tree swinging caused by the wind, can be easily removed while filtering 

out frequencies below 200Hz [19]. However, signal frequencies, due to fiber shaking 

from blowing the wind directly to the optical fiber, rely on the thickness and material 

of the fiber’s jacket. As shown in Fig.7.6(a,b), the SMF of JKT1 with a relatively small 

diameter (900μm) generates vibration signals caused by the wind, which may be similar 

 

Fig. 7.6: Representative examples of the temporal vibrations caused by the wind when using the SMF 

of JKT1 (a), (b) and JKT2 (c), (d). 
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to those of the larvae sound. This phenomenon may confuse machine learning 

algorithms when recognizing healthy and infested trees. 

Similarly, while switching off the two loudspeakers and turning only the fan on, 

we use the DAS system when winding the SMF of JKT2 around the tree trunk. Since 

the JKT2 is relatively thick (5mm diameter), the fiber rarely generates shaking 

frequencies within the [200Hz-800Hz] range because of the wind, shown in Fig 7.6(c,d). 

Such a comparison between the two fiber jackets in terms of mitigating the noise 

produced by wind is crucial for determining the proper optical fiber cable we can utilize 

in real farms in the future. Besides, compared with JKT1, JKT2 has an additional 

advantage: it is durable enough to sustain the harsh environmental conditions of farms, 

and the SMF inside JKT2 cannot be easily broken by, for example, stepping on the fiber 

by farmers.    

 We further investigate the impact of the noise produced by the bird that may 

surround the optical fiber in farms. In particular, we switch off the larvae sound's 

loudspeaker and the fan, while playing only the outside loudspeaker. Fortunately, the 

two SMFs of JKT1 and JKT2 cannot “hear” the bird sounds, as shown in Fig. 7.7(a,b), 

respectively. It is because the air between the loudspeaker and the optical fiber jackets 

significantly attenuates the vibration energy of the bird sounds. Typically, we can use a 

fiber optic DAS system to detect sound propagating through the air, with a thin metallic 

sheet attached to the fiber to amplify the attenuated vibration energy by air [20]. 

However, our experiment does not use a metallic sheet to avoid recording the acoustic 

noise signals generated around the tree. 
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 It is also worth discussing the impact of using the JKT1 and JKT2 on the overall 

noise floor. The noise floor depends on many factors, such as temporal pulse intensity 

fluctuation, laser phase noise and frequency drift, the low extinction ratio of the 

launched pulses, photodetector thermal, and shot noise [15,21], which are all common 

when using the JKT1 or JKT2. However, another major factor contributing to the noise 

floor is the overall isolation of the optical fiber from externally induced vibrations. 

Consequently, the thicker jacket, i.e., JKT2, typically provides a lower noise floor. 

 

7.4 Classifying infested and healthy trees using machine 

learning methods 

Machine learning methods trained through supervised learning can effectively identify 

infested and healthy trees. Machine learning can reveal patterns associated with the 

larvae sound and simultaneously deal with the large amount of data produced by the 

DAS system. In this work, we compare the efficiencies of classifying the healthy and 

infested trees when using the time- and frequency-domain data as separate inputs to 

 

Fig. 7.7: Representative examples of the temporal vibrations caused by the bird sounds when using 

the SMF of JKT1 (a) and JKT2 (b). 
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neural networks designed using the fully-connected ANN and CNN architectures. 

Given the advantages mentioned above of the SMF of JKT2, we decided to use it in the 

subsequent analyses of classifying the healthy and infested trees using machine learning 

methods. 

 We initially focus on organizing and labeling the time- and frequency-domain data 

for the ANN. As mentioned above, we wind a 5m fiber section around the tree, with a 

200MHz data sampling rate of the digitizer. Consequently, given the time-of-flight 

within the OTDR sensing system, the optical fiber section around the tree is represented 

by 10 spatial points (i.e., the digitizer's sampling resolution is about 0.5m). For each 

point, the digitizer reading takes a 1s period, i.e., 5000 readings in the time-domain per 

one reading period because the pulse repetition rate is 5kHz. Since the digital band-pass 

filter typically distorts a short-interval at the beginning of the time-domain signal, we 

discard the first 250 time-domain readings for each spatial point. Thus, we organize 

each trial's temporal data as a vector of 47500 length (concatenating 4750 time-domain 

readings ⅹ10 spatial points). In contrast, by applying the FFT to the time-domain data 

of each spatial point, we get 2375 frequency components. Subsequently, we organize 

the spectral data of each trial as a vector of 23750 length (concatenating 2375 frequency 

components ⅹ10 spatial points).  

 We label the data as “infested” or “healthy” tree, based on the SNR value of the 

acoustic signal at the tree position. We define the SNR as the ratio between the root-

mean-square (RMS) value of the time-domain signal at the tree position and that at 

another calm reference fiber section of a 5m length. We evaluate the ability of the 
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machine learning algorithms to classify the infested and healthy trees in two cases, 

without and with the presence of wind. Considering the first case, when ignoring the 

wind, we play the loudspeaker within the tree trunk and stop the fan to mark the signals 

of the infested tree. If the SNR>2dB, the minimum acceptable SNR of a DAS system 

[17], we record and label the signal as “infested”. We collect 2000 examples of the 

infested signals, when setting the sound of the larvae loudspeaker at various intensity 

levels within the range [51dB-75dB] mentioned above. In contrast, when we turn off 

the larvae loudspeaker and fan, we record other 2000 samples for the “healthy” signals. 

We record the “healthy” signal examples despite the SNR value being higher or lower 

than the 2 dB threshold. 

 Focusing on labeling the data when considering the presence of the wind, we 

simultaneously turn on the larvae loudspeaker and the fan to record the examples of the 

“infested” signals. Similarly, we recorded 2000 different examples of SNR values 

exceeding the 2 dB threshold. Next, we switch off the larvae speaker while keeping the 

fan on to record the other 2000 examples, regardless of the SNR values, for the healthy 

tree. 

 The ANN models used to handle the time- and frequency-domain data have a 

similar architecture, shown in Fig. 7.8. This structure consists of one input layer, two 

hidden layers, and one output layer. The number of nodes in the input layer matches the 

number of elements in the data vectors, i.e., 47500 and 23750 for the time- and 

frequency-domain data, respectively. Besides, the first and second hidden layers 

comprise 500 and 50 nodes, depending on repeated and sufficient trials towards 
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maximum classification accuracy. At the end of the fully-connected ANN, there is an 

output layer of one node for the binary classification (infested or healthy). Regarding 

the activation functions, we use the rectified linear unit (ReLU) for the hidden layers 

and the sigmoid function for the output layer. 

When the wind is ignored (the fan is turned off), we split the collected 

temporal/spectral data as 60% (2400 examples) training, 20% (800 examples) 

validation, and 20% (800 examples) testing datasets. In this case, Figure 7.9(a,c) shows 

the evolution of the training/validation accuracy and loss with the epoch, when using 

the temporal [spectral] data. At the end of the training cycles, validation accuracy values 

of 82.0% and 99.8% are produced for the time- and frequency-domain data, accordingly. 

When using the temporal data, shown in Fig. 7.9(a), the final validation accuracy is 

clearly lower than that of the training process, which presents the lack of generalization 

capability of the model. In contrast, as shown in Fig. 7.9(c) of the spectral data, the 

validation accuracy perfectly matches the training one, confirming that the ANN model 

learns the features well instead of just remembering the input data. 

 

Fig. 7.8: The ANN structure for detecting the RPW infestation using the temporal/spectral data. 
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Following the training and validation processes, we use the testing datasets to 

estimate the performance of the two models. Figures 7.9(b,d) show the confusion 

matrices using the time- and frequency-domain data, respectively. In general, a 

confusion matrix comprises four leading indices denoted as true negatives (TN), false 

negatives (FN), false positives (FP), and true positives (TP), which compare the actual 

target values with those predicted by the machine learning model [22]. Besides, some 

other essential performance metrics (accuracy, precision, recall, and false alarms) are 

also included in the confusion matrix and defined as [22]: 

Accuracy  =  (TP+TN)/(TP+FP+TN+FN), 

Precision = TP/(TP+FP), 

Recall  = TP/(TP+FN), 

 

Fig. 7.9: Training and validation history (a)/(c) and confusion matrix (b)/( d) when ignoring the wind 

and using the temporal/spectral dataset with the ANN. Train_acc: training accuracy; Val_acc: 

validation accuracy; Train_loss: training loss; Val_loss: validation loss. 
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False Alarm = FP/(TP+FP). 

As shown in the confusion matrices of Fig. 7.9(b,d), the temporal data provides a 

total classification accuracy of 83.6%, while that of the spectral data is 99.3%. The 

entire ANN's performance parameters are summarized in Table 7.1, first and second 

rows, when neglecting the wind and using the temporal and spectral data. As a result, it 

is recommended to use the ANN with the spectral data of the larvae sound to get a high 

distinguishing accuracy between the infested and healthy trees. It is because the larvae 

chewing sound can be shifted within the 1 s recording frame, making it difficult for the 

ANN model to learn using a limited dataset. However, the shifted temporal acoustic 

signals produce similar spectra, which facilitate the classification process using the 

frequency-domain data. Given this conclusion, we decide to rely on the spectral 

components with the ANN to analyze the following more complex conditions in 

consideration of the wind’s impact. 

We split again the spectral data, collected when we turn on the fan, as 60% (2400 

examples) training, 20% (800 examples) validation, and 20% (800 examples) testing 

datasets. After the training and validation processes, we use the spectral testing dataset 

to examine the performance of the trained model. For this case, the third row of Table 

7.1 shows a summary of the ANN’s performance results. The ANN model provides a 

total classification accuracy of 99.6%, slightly higher than that produced in the case of 

neglecting the wind. The precision, recall, and false alarm rates also show minor 

improvements. These results indicate that the ANN model can perfectly learn the larvae 

sound’s spectral pattern in the two scenarios, without and with wind, while the tiny 
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perturbations caused by the wind slightly increases the robustness and generalization 

ability of the model. 

A more realistic case to consider is combining the two spectral datasets, with and 

without the wind as a noise source. It is reasonable since the air blows intermittently in 

real farms. Thus, we merge the two datasets to have 8000 examples totally for the 

infested and healthy trees. Again, we split the entire data into 60% (4800 examples) 

training, 20% (1600 examples) validation, and 20% (1600 examples) testing datasets. 

When using the combined data, the classification accuracy, precision, recall, and false 

alarm rates are improved (shown in the fourth row of Table 7.1), compared to the two 

former separate cases. These results indicate that the performance of the ANN model is 

enhanced given the larger quantity and greater variety of training data. Thus, we can 

conclude that the ANN model performs well when using the combined spectral data of 

the more realistic condition in farms; however, the ANN model has relatively poor 

Table 7.1: Summary of the ANN’s performance for the various environmental conditions 

Data Accuracy Precision Recall False Alarm 

Temporal data, without wind 83.6% 94.4% 68.6% 5.6% 

Spectral data, without wind 99.3% 99.5% 99.0% 0.5% 

Spectral data, with wind 99.6% 99.7% 99.5% 0.3% 

Spectral data, combined 99.9% 99.9% 99.9% 0.1% 
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performance with the temporal input data. 

 CNN is one distinguished category of the deep neural network [14], which is not 

sensitive to the position of the features and would be effective in handling the temporal 

larvae sound shifting in the time-domain. In addition, compared with the fully-

connected ANN, CNN has relatively fewer parameters to train, which makes CNN 

easier and more efficient to train with the same dataset size [14,23]. Since CNN has 

proven high efficiency in classifying images, we arrange the temporal and spectral data 

in two-dimensional matrix forms. In particular, we arrange the time- and frequency-

domain examples as 10 (spatial points) 4750 (temporal readings) and 10 (spatial points) 

2375 (spectral components), respectively. As representative examples, Figure 7.10(a-

d) show the CNN model's input images of the (a) temporal and “infested”, (b) temporal 

and “healthy”, (c) spectral and “infested”, and (d) spectral and “healthy” data, 

respectively. 

Figure 7.11 shows the architecture of the CNN model used to handle the temporal 

and spectral input data separately. The architecture comprises an input layer, two pairs 

of convolutional and max pooling layers, a flatten layer, a fully-connected layer, and an 

output layer. The first (second) convolutional layer has the ReLU activation function 

 

Fig. 7.10: CNN model’s input images of the (a) temporal and “infested”, (b) temporal and “healthy”, 

(c) spectral and “infested”, and (d) spectral and “healthy” data. 
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and includes 32 (64) filters of a 350 (35) size and 125 (15) stride. The two max 

pooling layers have the same 22 pool size and 22 stride. After the flatten layer, the 

fully-connected layer has the ReLU activation function and consists of 50 nodes. 

Similar to the ANN, the output layer of the CNN also has one node with a sigmoid 

activation function for binary classification (healthy or infested).       

Regarding the data labeling and splitting for the CNN model, we adopt the same 

techniques and data quantity as those used with the fully-connected ANN. Considering 

the ideal scenario when the wind is ignored (the fan is turned off), Fig. 7.12(a,c) show 

the evolution of the training/validation accuracy and loss with the epoch for the 

temporal and spectral data, respectively. After finishing the training cycles, we obtain 

the validation accuracy values of 100% and 99.5% accordingly using the time- and 

frequency-domain data. Besides, the two confusion matrices when using the temporal 

and spectral testing datasets are shown in Fig. 7.12(b,d), respectively. The results of the 

confusion matrices show that the performance of the CNN with the temporal data is 

excellent, with 100.0% accuracy, while that of the spectral data is slightly lower 

(99.3%). Obviously, compared with the results of Fig. 7.9, the CNN significantly 

 

Fig. 7.11: The CNN structure for detecting the RPW infestation using the temporal/spectral data. 

Conv: convolutional; FC: fully-connected. 
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improves the classification efficiency in the time-domain. It proves the two main 

advantages mentioned above of the CNN model over the fully-connected ANN model, 

i.e., the CNN’s spatial invariance and fewer parameters to train. These results are 

essential since using CNN would offer real-time detection of RPW without applying 

the intensive FFT to the time-domain data. 

Table 7.2 summarizes the CNN’s performance when using the temporal and 

spectral data, in case of ignoring or considering the wind, or mixing the two scenarios. 

As can be observed, the CNN model has a superior performance in the various 

situations with a minimum classification accuracy of 98.3%. Considering that the time-

domain data is easier to process, compared with the spectral data that require additional 

 

Fig. 7.12: Training and validation history (a)/(c) and confusion matrix (b)/(d) when ignoring the wind 

and using the temporal/spectral dataset with the CNN. Train_acc: training accuracy; Val_acc: 

validation accuracy; Train_loss: training loss; Val_loss: validation loss. 
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FFT steps, we recommend using the CNN and time-domain data for the feasible 

detection of RPW. Given this conclusion and considering the more convincing case of 

the combined data, the CNN with the temporal data provides 99.7% accuracy, 99.5% 

precision, 99.9% recall, and 0.5% false alarm [third row, Table 7.2]. The high precision 

and low false alarm values confirm the reliability of the CNN model in classifying 

healthy and infested trees. On the other side, the high recall value represents the great 

ability and sensitivity of the CNN model to locate the “infested” signals from a mixed 

“healthy” and “infested” set. In general, the 99.9% and 99.7% can be used to represent 

the accuracy results of ANN and CNN, respectively. It is because that spectral data and 

Table 7.2: Summary of CNN’s performance under various environmental conditions 

Data Accuracy Precision Recall False Alarm 

Temporal data, without wind 100.0% 100.0% 100.0% 0.0% 

Temporal data, with wind 99.9% 99.7% 100.0% 0.3% 

Temporal data, combined 99.7% 99.5% 99.9% 0.5% 

Spectral data, without wind 99.3% 100.0% 98.5% 0.0% 

Spectral data, with wind 98.3% 99.5% 97.0% 0.5% 

Spectral data, combined 99.1% 99.7% 98.3% 0.3% 
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temporal data have been found most appropriate for ANN and CNN, respectively. And 

these accuracies are obtained under the combined conditions (data with wind and data 

without wind), which best represents the actual environment. A more direct reason why 

spectral and temporal data are more appropriate for ANN and CNN respectively is that 

the temporal data includes a lot of noise which may affect the decision of the model, 

while the CNN has the capability of performing convolutions on the data, which 

principle is similar as that of Fourier transform and can separate signals and noises. 

 

7.5 Discussion 

We have examined the possibility of using machine learning and fiber optic DAS to 

distinguish healthy and infested trees, in the laboratory environment. However, in actual 

farm conditions, much more financial and technical issues must be considered during 

the practical implementation. As reported in the literature [24], the sensing range of the 

fiber optic DAS can be typically extended to about 10km with a spatial resolution down 

to 1m. Assuming the separation between two consecutive trees is about 10m and we 

wind around 1m fiber section around each tree, a DAS sensing unit can simultaneously 

monitor about 1000 trees. Our entire DAS system costs about 37000USD, including the 

sensing unit and the optical fiber cable. Thus, the monitoring cost per tree is about 

37USD. A recommended deployment plan comprises permanent installation of the 

optical fiber cables in farms, because fiber optics are relatively cheap and easy to be 

plugged in/out of the DAS unit, while sharing a portable DAS sensing unit between the 
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farms. Such a plan can significantly reduce the monitoring cost per tree, as the 5m fiber 

section, wound around a tree in our experiment, costs only about 2 USD. Alternatively, 

if the farms are close to each other, TDM [25] could be adopted by connecting the farms’ 

optical fibers with a single sensing unit via an optical switch, to scan the individual 

farms in different time frames. 

 Besides, in a real palm tree farm, the optical fiber cable might be broken because 

of the farming activities around the trees. Fortunately, the SMF (YOFC, YOFC-

SCTX3Y-2B1-5.0-BL) is well protected with metallic rods to make the fiber 

shockproof. Furthermore, the outer jacket layer of the fiber optic cable can sustain 

temperatures as high as 60℃, which helps the fiber to “survive” in the farms’ harsh 

environments. We recommend burying the optical fiber in the soil between the trees for 

more protection. In the worst-case scenario, if the fiber is getting broken for any reason, 

the OTDR system can accurately locate the fault point with the spatial resolution of the 

system [26]. We can use a portable fusion splicer to quickly fix the optical fiber on-site. 

 In the case of adopting the spiral winding of the optical fiber around trees in a farm, 

we will need annual maintenance of the sensing system because the trees’ girth grow. 

Advanced planning for redundant fiber lengths between trees will help readjust the fiber 

wraps around the trees later as they grow. Alternative to the spiral winding plan, 

longitudinal zigzag attachment of the fiber to the tree trunk is a backup strategy; 

however, a heavy-duty and stretchable plastic wrap would be used as an outer layer to 

provide sufficient contact between the optical fiber and tree trunk. The latter strategy is 

part of our plans for future work on this topic. 
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 It is also worth discussing the contact conditions between the fiber optic cable and 

the tree trunk. The spatial resolution of our fiber optic DAS system is 5m, which 

indicates the system cannot distinguish the spatial separations between vibration events 

that occur within the 5m distance. In the case of winding a fiber length shorter than 5m 

around the tree, vibration events occurring close to the tree may not be distinguished 

from those at the tree, resulting in false alarms. Thus, the minimum fiber length needed 

in this experiment is 5m. Besides, in our experiment, we wind a 5m fiber optic section 

around the tree with moderate tightness. We observed that some points along the fiber 

section are not directly touching the tree trunk, because the trunk is sharp at some 

positions. However, the DAS system still efficiently detects the larvae sound. In other 

words, having all the points along the 5m fiber optic section in direct and firm contact 

with the trunk is not necessary to make the system work. Generally, the more tightly 

we wind the fiber optic around the tree, the higher the SNR. However, it is not easy to 

quantify by experiments accurately the relationship between the SNR and the tightness 

of winding the optical fiber. In addition, winding a fiber section longer than 5m will 

improve the performance of the DAS system. However, our 5m spatial resolution 

already provides excellent classification accuracy. Besides, for practical applications in 

palm tree farms, about 10m loose fiber cable is reserved between each two adjacent 

trees. In this case, 50ns pulse width (5m spatial resolution) is enough to distinguish the 

larvae generated sounds between two adjacent trees.ss 

 This discussion shows that the main advantage of our sensor, compared with those 

reported in the literature, is that the fiber optic DAS provides distributed detection of 
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RPW. We can scan an entire farm quickly, saving time and effort compared with the 

other detection methods [8-10] that inspect the trees individually. However, a drawback 

of our reported system is that the initial installation of the optical fiber requires time 

and effort, especially in vast farms. Fortunately, the fiber installation only needs to be 

carried out once per farm, and then the fiber can remain in the farm permanently. 

 

7.6 Summary 

Fully-connected ANN and CNN are used to classify an infested tree with RPW and a 

healthy tree, using the data provided by a fiber optic DAS. To mimic the farm 

environment within the laboratory, we play the weevil larvae sound inside a tree trunk, 

while we use wind and bird sounds as noise sources around the tree. Considering the 

typical conditions when the wind blows discretely, the ANN performs flawlessly with 

the frequency-domain data to offer a 99.9% classification accuracy. In contrast, CNN 

produces 99.7% and 99.1% classification accuracy for the same wind conditions when 

using temporal and spectral data, respectively. Although the CNN's performance is 

excellent with both kinds of data, we recommend using the CNN with the temporal data 

to avoid the intensive FFT calculations required to get the spectral components. The 

results of this work will help following fiber optic DAS deployment for the RPW early 

detection in real farms. 
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8 Conclusion 

In this Chapter, the conclusion of this thesis about the application of some machine 

learning and image processing method in DOFS is given. Moreover, some challenges 

and future works in this field of DOFS are also discussed. 

8.1 Conclusion 

In the whole work of this thesis, we have investigated the application of some advanced 

neural network techniques, including ANN, DNN, CNN, and an image processing 

method, VBM3D, in some DOFS systems. The BOTDA has been demonstrated with 

those temperature and strain measurement techniques. In addition, the DAS based on 

Φ-OTDR has been exhibited for the RPW detection task, which is based on the 

capability of sensing acoustic signals (i.e., vibration/sounds) of the DAS. The 

advantages of those advanced signal processing methods have been discussed in detail, 

mainly including higher measurement accuracy, longer sensing distance, and faster 

detection speed. However, there are still some points we need to explore and optimize 

further to utilize these techniques in the field of DOFS practically. The skills for better 

and faster data preprocessing, model training, and parameter optimization are worth 

further investigation. In addition, the interpretation work to help us understand the 

principles of NNs is also very essential. The most significant contribution of this work 

is to provide some typical cases and the corresponding performance results to 
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researchers in this field as valuable references. These experience are useful not only for 

those techniques mentioned in this work, but also for similar techniques in the whole 

field of DOFS. 

 

8.2 Challenges of the application of DOFS 

There are some significant obstacles hindering growth in the deployment of distributed 

fiber–optic sensors. The high–cost of fiber–optic sensors poses a significant challenge 

to the development of this market. Depending on the applications, operating conditions, 

and the type of fiber–optic cable used, the cost of a distributed fiber–optic sensing 

system can be very high and still not affordable by every company that requires real-

time monitoring and sensing. In addition, the installation and maintenance of these 

systems are also costly, making their implementation difficult. However, as distributed 

fiber–optic sensing adoption becomes more rapid, improvements in manufacturing and 

volume pricing will result in lower costs. Additionally, lifetime continuous monitoring 

with fiber–optic sensors can offset the high initial cost. 

Other technical challenges include the fiber darkening down-hole, where hydrogen 

penetrates the metal tube around the fiber and fiber jackets to enter the fiber material 

causing a significant optical attenuation. However, many efforts have been reported to 

tackle hydrogen darkening by using hermetic coating, tailoring the glass properties, and 

selecting proper operation wavelengths. Such optical fiber cables with special coating 

and properties are now readily available for long–term downhole monitoring. 
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Another hurdle relates to data size, as distributed fiber-optic sensors can 

continuously monitor the downhole environment and pipelines, producing massive data. 

Although continuous monitoring offers many advantages, it also comes with its own 

challenges in data management, storage, visualization, and security. Cloud–based data 

management has recently been introduced to the oil and gas industry as an efficient 

means to store, transmit, and visualize data produced by distributed fiber–optic sensors. 

On the other hand, the existing challenges in the industry will make the data–driven 

analyses even more critical. For example, the increasing difficulty of oil recovery and 

public concerns about the natural environment and resources will require more efficient 

oil recovery processes and fewer pipeline leakage events, where data from 

corresponding sensing systems are necessary. The trend of integrated sensing systems 

and data–driven analyses will complement each other in the oil and gas industry. While 

the amount of data obtained and required becomes huge, relying only on experts in this 

field to provide complete and detailed analyses and make decisions along with the 

whole process is unrealistic. Thus, advanced artificial intelligence (AI) and machine 

learning methods should be beneficial. They can help reduce the data size, extract 

valuable data on events, and even make decisions on behalf of the experts. In addition, 

taking into consideration the present and future employments of many different sensing 

and measuring systems in the oil and gas industry, the adoption of a cloud–based 

platform would be a promising solution to solve the problems of secure and reliable 

data transport, management, storage, analysis, visualization, and download. 
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8.3 Future works 

Distributed fiber–optic sensing has been used across many application fields. The oil 

and gas industry is one of the most essential applications. This application area has and 

will have the largest market share now and for the following time. Among three types 

of DOFS (DTS, DSS, and DAS), the fiber–optic DAS can detect vibrations and their 

frequencies downhole and along pipelines. Thus, fiber–optic DAS can be used for VSP, 

hydraulic fracturing monitoring, downhole flow monitoring, well integrity, and pipeline 

intrusion detection. Raman–based DTS is another distributed sensing technique that 

measures temperature along an optical fiber cable. DTS has been deployed in many 

petroleum applications, including downhole flow and injection monitoring, SAGD, and 

pipeline leak detection. We will continue to develop a prototype for a hybrid sensing 

system that simultaneously measures vibration and temperature along an SMF/MMF. 

Various vibration events can be detected along the well. 

We also highlighted that Brillouin–based fiber–optic DTSS can be used to monitor well 

integrity, and detect pipeline deformation. The growth of the fiber–optic DAS, DTS, 

and DSS market is mainly hampered by their high–cost, which would be mitigated by 

the rapid adoption of distributed fiber–optic sensing technologies. Finally, we pointed 

out that improving the overall performance of the sensing systems,multi–parameter 

sensing, including AI and machine learning, and offering a cloud–based data 

management are the future research directions of distributed fiber–optic sensing. 

The research community for distributed optical fiber sensing (DOFS) continues to 

develop new technologies in this field, which should provide further application 
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opportunities in all related industries. One of the main goals of the current research 

work is to improve the overall performance of distributed fiber–optic sensing. For 

example, introducing new modulation schemes, novel coding formats, and advanced 

signal processing methods may help reduce spatial resolution limitations, sensing range, 

and measuring accuracy of distributed fiber–optic sensors. Another research direction 

is to explore the capabilities of optic fiber sensors, including the distributed ones, to 

measure more parameters with high reliability in the harsh environment of the industry. 

In laboratory environments, optical fiber sensors have demonstrated the ability to 

measure various physical and chemical parameters, such as temperature, strain, 

vibration, pressure, curvature, rotation, electric/magnetic field, flow, liquid level, and 

liquid concentration. However, few of these technologies have been reliably adopted in 

the markets. Thus, it is highly desirable to market more optical fiber sensors, especially 

DOFS. The development of practical applications will in turn, drive the development 

of novel technologies. 

Besides, for industrial applications, stability and durability are just as important as 

the sensitivity of the sensors. Generally, the installation schemes of optical fibers 

directly affect the performance and ruggedness of the sensing systems. Thus, the 

installation schemes will continue to be investigated and improved in the various 

application scenes. Furthermore, the system's reliability under different environments 

in the industry should also be researched, especially in harsh environments with high 

temperatures and high pressure. It should be noted that novel design and/or doping 

methods of speciality optical fibers adopted in sensing systems may help reduce 
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transmission loss, increase scattered light, and also increase the system's tolerance for 

harsh environments. This would emerge new applications of DOFSs in the various 

sectors of relevant industries. 

Another development trend of DOFS in the industry is to integrate different sensing 

techniques, including DAS, DTS, and DSS, to provide a distributed multiplexed 

sensing (DXS) system. Since the present DOFS share some identical optoelectronic 

components and can be employed through one single optical fiber or several optical 

fibers inside a single tube, it should be feasible to integrate these different techniques 

into a DXS system based on the need, which provides multi–parameter measurements. 

One advantage of the integrated DXS system is that its cost is less than the sum of 

individual sensing systems, while it can provide more helpful information rather than 

simply adding up the results of several systems. This is because a comprehensive 

multidimensional data analysis at the exact location would prsovide more profound 

information on the hotspot. 

 

 


