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Abstract 

 

The human-induced climate change is the primary cause of a rise in heat waves and other extreme weather 

events experienced across the globe. Buildings are one of the major contributors to greenhouse gas 

emissions, the primary cause of climate change. It is anticipated that climate change will reduce the global 

demand for heating and increase the global need for cooling. Already, the demand for space cooling has 

tripled since 1990. Hence, designing and constructing sustainable buildings using less energy to maintain a 

suitable indoor temperature is an essential strategy for reducing carbon emissions from the building sector. 

Predicting the cooling energy required for a building is a complex yet vital method for creating low-energy-

demand structures. This study develops a hybrid simulation methodology that combines the strengths of 

physical simulation (EnergyPlus™) and data-driven methodologies (artificial neural network) to estimate 

the cooling energy consumption of buildings. This simulation strategy is superior to its counterparts in 

terms of simulation time, accuracy, robustness, and flexibility to forecast the cooling energy demand. The 

proposed model’s goodness of fit with energy plus simulations and peer literature data was assessed to 

ascertain its validity, and a high degree of concordance between the results verified its capacity to be an 

alternative to conventional energy estimation techniques. The impact of wall and window material 

selection, window-to-wall ratio, shading coefficient, and indoor set-point temperature on building cooling 

energy consumption is evaluated. Apartments' energy consumption could be reduced by increasing thermal 

insulation, decreasing the window-to-wall ratio, and raising the indoor set-point temperature relative to 

current standards.  

Despite the great benefits of the hybrid simulation approach, its development time is significant. Therefore, 

for its benefits to be realised, it should be applicable to a variety of structures and not just one. The 

generalisation potential of the model was evaluated in two distinct settings: a subdivided unit (SDU) and a 

general inpatient ward. Both have building parameters that exceed the simulated training range of the hybrid 

model. The model's goodness-of-fit test with energy plus simulation results indicated a good generalisation 
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capability. Using the generalised hybrid simulation model, the energy-saving measures in an SDU were 

analysed, and it was determined that apartment flow area, occupant per floor area, and indoor set-point 

temperature are crucial for energy savings.  

Design exploration using standard methods is a laborious endeavour. In addition, the outcome cannot be 

attributed to an optimal design. Consequently, a genetic algorithm (GA) is combined with the generalised 

hybrid simulation model to assist the user in iteratively analysing the various design parameters and their 

impact on cooling energy consumption. The coupled technique would rapidly identify the optimal or sub-

optimal design option from a pool of solutions, resulting in the least or highest building cooling energy 

consumption, respectively. A typical inpatient ward cubicle was chosen as a case study to highlight the 

benefits of the optimisation technique. A combination of (i) design parameters resulting in minimum 

envelope heat gain, (ii) greater recirculation ratio, and (iii) a reduction in lighting power density from 13 

W/m2 to 7.3 W/m2, would be an energy-efficient strategy for a general inpatient ward, according to this 

study. Furthermore, infection control is comparable to or greater than the energy requirement in a general 

inpatient ward unit. Thus, approaches to prevent the spread of infection within a general inpatient hospital 

cubicle are further explored. 

Infections in healthcare facilities can result in significant public health issues and financial burdens. 

Therefore, enhancing infection control in healthcare settings is crucial. Ventilation systems are critical in 

maintaining the air quality inside the building. In particular, healthcare facilities must consider infection 

control when designing ventilation functions. In hospitals, inpatient wards occupy a substantial amount of 

floor space. Yet, ventilation design guidelines for patient environments, particularly wards, remain vague. 

Computational fluid dynamics (CFD) was used to analyze the combined effects of air change rate and 

exhaust flow rate on airflow and exposure risk distributions due to droplet nuclei of size 0.167 µm (Middle 

east respiratory syndrome coronavirus) in an air-conditioned ward cubicle. The association between 

ventilation and the mechanism of infection transmission within the ward cubicle was apparent. In addition 

to the air change rate, the configuration of a ventilation system is identified to serve as a crucial factor in 
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controlling pathogen exposure. The utilization of CFD yielded significant insights into the distribution of 

airflow and bioaerosols within an inpatient ward, with a high degree of temporal and spatial precision. 

However, despite the great precision and details of flow parameters provided by CFD, it is coupled with a 

lengthy computation time and a high cost.  

Multiple factors influence the airflow and dispersion of pathogens in an inpatient unit. Developing effective 

ventilation strategies encompassing these factors through trial and error would necessitate numerous 

modifications between the initial and final designs. As a result, determining the best ventilation strategy by 

relying solely on CFD and the traditional method of optimization is seen as ineffective and time-consuming. 

Therefore, an evolutionary algorithm (GA) and an assessment mechanism (CFD) are coupled. The aim is 

to improve patient safety by limiting the spread of infections. The proposed method would execute fewer 

CFD simulations while assessing more design options iteratively. Based on the design exploration 

conducted with the GA-CFD approach, the location of an infected patient, the air change rate, the flow rate 

through a local exhaust grille, as well as the number, location, and size of supply diffusers and local exhaust 

grilles, that can significantly minimize the likelihood of an infection spreading from one patient to another 

within a ward is identified. A simple, cost-effective optimal ventilation solution that decreases infection 

transmission within a ward is proposed. The study also highlights the necessity for healthcare personnel to 

practise and implement conventional infection control guidelines, such as adequate hand cleanliness, eye 

protection, and always wearing a high-filtration face mask, regardless of ventilation technique. 

 

 

 

 

 

 

 

 



vi 
 

Publications arising from the thesis 

 

Journals 

Satheesan, M. K., Mui, K. W., & Wong, L. T. (2020). A numerical study of ventilation strategies for 

infection risk mitigation in general inpatient wards. Building Simulation, Vol. 13, No. 4, pp. 887-896, 

Tsinghua University Press. 

Mui, K. W., Wong, L. T., Satheesan, M. K., & Balachandran, A. (2021). A Hybrid Simulation Model to 

Predict the Cooling Energy Consumption for Residential Housing in Hong Kong. Energies, 14(16), 4850. 

Mui, K. W., Satheesan, M. K., & Wong, L. T. (2022). Building cooling energy consumption prediction 

with a hybrid simulation Approach: Generalization beyond the training range. Energy and Buildings, 276, 

112502. 

Satheesan, M.K., Tsang, T.W., Wong, L.T., & Mui, K.W. (2023). Optimization of ventilation strategy in 

an inpatient ward through coupled simulation. (Submitted for publication, under peer review) 

Tsang, T.W., Yuen, W.M., Mui, K.W., Wong, L.T. & Satheesan, M.K. (2023). Computational fluid 

dynamics simulation for airborne transmission of Methicillin-resistant Staphylococcus aureus (MRSA) in 

general inpatient ward environment. (Submitted for publication, under peer review) 

Satheesan, M.K., Tsang, T.W., Wong, L.T., and Mui, K.W. (2023). The air we breathe: Numerical 

investigation of ventilation strategies to mitigate airborne transmission of MERS-CoV in inpatient wards. 

(Submitted for publication, under peer review) 

Tsang, T.W., Wong, L.T., Satheesan, M.K., & Mui, K.W. (2023). Preparing for the next pandemic: 

Minimizing airborne transmission in general inpatient wards through management practices. (Submitted 

for publication, under peer review) 

 



vii 
 

Conference 

Satheesan, M. K., Wong, L. T., & Mui, K. W. (2020). Infection control and sustainability measures for a 

healthcare facility. In 16th Conference of the International Society of Indoor Air Quality and Climate: 

Creative and Smart Solutions for Better Built Environments, Indoor Air 2020 (pp. ABS-0391). International 

Society of Indoor Air Quality and Climate. 

Satheesan, M. K., Mui, K. W. & Wong, L. T. (2022). Role of occupancy and indoor temperature on energy 

efficiency of tiny housing. In 17th Conference of the International Society of Indoor Air Quality and 

Climate: Healthy People in Healthy Indoor Environments, Indoor Air 2022 (pp. ABS-1668). International 

Society of Indoor Air Quality and Climate. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



viii 
 

Acknowledgements 

 

First and foremost, I am indebted to my PhD advisors, Professor Mui Kwok-wai and Dr. Wong Ling-tim, 

for their excellent guidance, unwavering support, and extraordinary patience during my doctoral studies. 

Their passion, commitment, and extensive experience have been a source of inspiration for me throughout 

the entirety of my academic work as well as my day-to-day life. This work embodies my profound gratitude 

and appreciation for my advisors; without them, completing this work would not have been feasible. 

I am truly grateful to Dr. Tham Kwok Wai, Prof. LAI Chi Keung Alvin and Prof. Shengwei Wang for their 

time and effort in reviewing my work and providing me with constructive criticism. The valuable comments 

and suggestions helped me in improving my thesis, making it more robust and comprehensive. 

In addition, I would like to express my sincere gratitude to my friends for being a pillar of support in this 

extraordinary journey. Thank you for making this more manageable and enjoyable. 

I would like to express my heartfelt appreciation to my parents for providing me with the foundation to 

pursue this opportunity. My brother's unwavering support and encouragement have been invaluable, and I 

am grateful for my in-laws' acceptance and support during the times I needed it most. It goes without saying 

that this page is insufficient to express the admiration and affection I feel for my wife, Dr. Anjana 

Balachandran and my son, Byrav. You have been my greatest source of strength and happiness. I cannot 

thank you enough for the countless hugs, hilarious conversations, and encouraging words that have 

brightened even the darkest of days. It would have been impossible to create this work without your 

tremendous understanding, unconditional love, and encouragement over the last few years. Thank you for 

always believing in me.  

Finally, I am grateful to PolyU for providing me with endless possibilities and opportunities during my 

time here. I would also like to extend my greatest thanks to the PolyU management for their tireless 

efforts in ensuring that my university life was nothing short of the best. 



ix 
 

Table of contents 

 

Certificate of originality i 

Dedication ii 

Abstract iii 

Publications arising from the thesis vi 

Acknowledgements viii 

Table of contents ix 

List of tables xiv 

List of figures xv 

List of abbreviations xx 

List of symbols xxiv 

 

Chapter 1  Introduction 1 

1.1  Background 1 

1.2  Limitations to existing cooling energy simulation models 3 

1.3  Limitations in strategizing infection control measures 4 

1.4  Limitations to conduct optimization 5 

1.5  Objectives 6 

1.6  Research scope 7 

1.7  Organization of thesis 9 

    

Chapter 2  Literature review 13 

2.1  Introduction 13 

2.2  Factors influencing the building cooling energy consumption 14 

 2.2.1 Building envelope characteristics 15 



x 
 

 2.2.2 Weather 20 

 2.2.3 System operations 21 

 2.2.4 Internal loads 23 

2.3  Existing prediction methodologies 25 

 2.3.1 White-box models 26 

 2.3.2 Data-driven approaches (Black Box model) 30 

 2.3.3 Hybrid methods (Grey box model) 36 

2.4  Optimization 38 

2.5   Summary 43 

2.6  Nosocomial infections 45 

 2.6.1 Infection transmission routes in a healthcare setting 48 

 2.6.2 Ventilation and infection control 52 

2.7  Methods to evaluate airflow and contaminant distribution 56 

 2.7.1 Analytical models 56 

 2.7.2 Empirical models 57 

 2.7.3 Experimental methods 58 

 2.7.4 Multizone models 60 

 2.7.5 Zonal models 61 

 2.7.6 Computational Fluid Dynamics (CFD) 62 

2.8  Optimization 67 

2.9  Summary 74 

    

Chapter 3  Development of a hybrid cooling energy simulation model 77 

3.1  Introduction 77 

3.2  Selection of city, climate, building type, and parameters 78 



xi 
 

3.3  Annual cooling energy consumption estimation 81 

 3.3.1 Annual envelope heat gain estimation by physical simulation 83 

 3.3.2 Artificial neural network 86 

 3.3.3 Model validation 88 

3.4  Influence of building-related parameters on cooling energy 

consumption 

91 

3.5  Influence of indoor set-point temperature on cooling energy 

consumption 

94 

3.6  Discussion 96 

3.7  Summary 98 

    

Chapter 4  A generalized hybrid simulation model coupled with a genetic 

algorithm 

100 

4.1  Introduction 100 

4.2  Generalization beyond the training range 101 

4.3  Sub-divided units (SDU) 103 

 4.3.1 Influence of area per occupant on cooling energy consumption 105 

 4.3.2 Influence of indoor-set point temperature 108 

 4.3.3 Discussion 109 

4.4  Coupling of ANN with a genetic algorithm 110 

4.5  General inpatient ward 112 

 4.5.1 Influence of building envelope 116 

 4.5.2 Influence of recirculation ratio 117 

 4.5.3 Influence of lighting 118 

 4.5.4 Discussion 120 



xii 
 

4.6  Summary 122 

    

Chapter 5  Ventilation strategy to mitigate infection transmission in an 

inpatient ward 

124 

5.1  Introduction 124 

5.2  Ward design and ventilation scenarios 126 

5.3  Infection transmission within ward 127 

 5.3.1 Airborne exposure to pathogens 128 

 5.3.2 Pathogen deposition within a ward cubicle 129 

5.4  Numerical simulation 130 

 5.4.1 Airflow and grid modelling 131 

 5.4.2 Particle modelling 134 

5.5  Model validation 137 

5.6  Numerical simulation results 138 

 5.6.1 Airflow distribution and patterns 139 

 5.6.2 Particle distribution 142 

 5.6.3 Discussion 157 

5.7  Optimization for design evaluation 158 

5.8  Exposure to infection in a ward cubicle 159 

5.9  Coupling of CFD with genetic algorithm 160 

5.10  Ward configurations and ventilation strategies 163 

5.11  Numerical simulation results 165 

 5.11.1 Airflow distribution and patterns 165 

 5.11.2 Exposure risk for patients through cross-infection 168 

5.12  Summary 170 



xiii 
 

    

Chapter 6  Conclusions 172 

    

References   180 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xiv 
 

List of tables 

 

Table 2.1 Survival time of pathogens in the environment causing nosocomial 

infections 

47 

Table 2.2 Infection route categorization and its relationship with traditional 

route categorization are shown in bold italics: contact 

(direct/indirect), large droplet and airborne 

51 

Table 2.3 Ventilation guidelines for general and intensive care ward spaces 54 

Table 3.1 Input parameters 81 

Table 3.2 Apartment details and other parameters for model validation 90 

Table 4.1 Physical and operational parameters 102 

Table 5.1 CFD simulation parameters 136 

Table 5.2 Allocation of zones 143 

Table 5.3 Input parameter combination with the lowest pathogen deposition 170 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

List of figures 

 

Figure 1.1 Organization of thesis 11 

Figure 1.2 Theme of thesis 12 

Figure 2.1 Data flow and procedure in a simulation model 29 

Figure 2.2 Epidemiological triad 47 

Figure 2.3 Illustration of short-distance transmission routes (spray, inhalation and 

touch) and long-distance transmission (inhalation and touch). 

50 

Figure 2.4 Illustration of room air distribution (a) downward ventilation; (b) 

displacement ventilation; (c) mixing ventilation 

55 

Figure 2.5 Turbulence models in computational fluid dynamics used for indoor 

airflow predictions 

64 

Figure 3.1 Standard public housing block layouts in Hong Kong: (a) Concord; (b) 

Harmony; (c) New Cruciform; (d) Slab; (e) Trident 

80 

Figure 3.2 Workflow of the modeling and energy simulation process 84 

Figure 3.3 Illustration of a simple room model: (a) Before application of overhang 

measure; (b) After application of overhang measure. 

85 

Figure 3.4 Schematic of the proposed cooling energy consumption estimation model 85 

Figure 3.5 Comparison between artificial neural network (ANN) and EnergyPlus 

(EP) predictions of the annual envelope heat gain (KW yr-1) 

89 

Figure 3.6 Comparison of results by the proposed model and (Cheung et al., 2005) 

study (a) Annual cooling energy consumption (Ec) v/s Shading coefficient 

(Sc); (b) Annual cooling energy consumption (Ec) vs. window-to-floor 

area ratio 

91 



xvi 
 

Figure 3.7 Annual cooling energy consumption with variation in window U-value 

(W/(K·m2)) and shading coefficient Sc 

92 

Figure 3.8 Annual cooling energy consumption with variation in external wall U-

value (W/(K·m2)) 

93 

Figure 3.9 Annual cooling energy consumption with variation in window-wall ratio 94 

Figure 3.10 Annual cooling energy consumption forecast based on indoor set-point 

temperature 

95 

Figure 4.1 Annual envelope heat gain (kW yr-1) predictions by ANN and EnergyPlus 

(EP) 

103 

Figure 4.2 Example model of: (a) Residential apartment; (b) Residential apartment 

with four tiny sub-divided units (SDUs) 

104 

Figure 4.3 Annual cooling energy consumption variation with floor area for sub-

divided housing 

105 

Figure 4.4 Variation of annual cooling energy consumption with number of 

occupants (noc) in different floor areas of sub –divided unit and public 

housing 

106 

Figure 4.5 Variation of annual cooling energy consumption for floor areas (18 m2, 30 

m2, 40 m2) with variation in area per occupant 

107 

Figure 4.6 Annual cooling energy consumption based on indoor set-point 

temperature with variation in area per occupant for an apartment 

109 

Figure 4.7 Coupling of ANN with genetic algorithm in MATLAB for parameter 

optimization 

112 

Figure 4.8 Representative image of a general inpatient ward with four cubicles 114 

Figure 4.9 Evolution of generations for parameter optimization 116 



xvii 
 

Figure 4.10 Annual cooling energy consumption vs Air change per hour (ACH) for 

different recirculation ratios.  

118 

Figure 4.11 Annual cooling energy consumption vs Air change per hour (ACH) for 

different lighting power densities 

120 

Figure 5.1 In-patient ward cubicle with patients: (a) without exhaust grilles; (b) with 

local exhaust grilles 

127 

Figure 5.2 Breathing zone height and dispersion of infectious pathogens from an 

infected patient in an inpatient ward cubicle 

128 

Figure 5.3 Breathing zones within the computational domain 129 

Figure 5.4 Non-identical mesh nodes along the boundary of two cell zones 133 

Figure 5.5 Deposited and exhausted ratios of MERS-CoV in an inpatient ward 

cubicle 

137 

Figure 5.6 Exhausted ratio for an air change rate of 9 h-1 and 13 h-1 138 

Figure 5.7 Simulation results of the ward cubicle with no exhaust grilles at 6ACH: 

(a) air velocity distribution; (b) velocity vector plot 

140 

Figure 5.8 Simulation results of ward cubicle with exhaust grilles at 6ACH and 

exhaust air (EA)=50%: (a) temperature distribution; (b) velocity vector 

plot 

141 

Figure 5.9 Simulation results of ward cubicle with exhaust grilles at 9ACH and 

exhaust air (EA)=50%: (a) temperature distribution; (b) velocity vector 

plot 

142 

Figure 5.10 Particle distribution at patient zones at different air change and exhaust 

flow rates (a) ACH 3; (b) ACH 3 and exhaust flow rate 10%; (c) ACH 3 

and exhaust flow rate 50%; (d) ACH 13; (e) ACH 13 and exhaust flow 

rate 10%; (f) ACH 13 and exhaust flow rate 50%. 

145 



xviii 
 

Figure 5.11 Particle distribution at bedside zones at different air change and exhaust 

flow rates (a) ACH 3; (b) ACH 3 and exhaust flow rate 10%; (c) ACH 3 

and exhaust flow rate 50%; (d) ACH 13; (e) ACH 13 and exhaust flow 

rate 10%; (f) ACH 13 and exhaust flow rate 50%. 

148 

Figure 5.12 Particle distribution at aisle zones at different air change and exhaust flow 

rates (a) ACH 3; (b) ACH 3 and exhaust flow rate 10%; (c) ACH 3 and 

exhaust flow rate 50%; (d) ACH 13; (e) ACH 13 and exhaust flow rate 

10%; (f) ACH 13 and exhaust flow rate 50%. 

151 

Figure 5.13 Spatial and temporal distribution of particles in different zones within the 

breathing height at different air change and exhaust flow rates (a) ACH 3 

(b) ACH 3 and exhaust flow rate 10% (c) ACH 3 and exhaust flow rate 

50% (d) ACH 13 (e) ACH 13 and exhaust flow rate 10% (f) ACH 13 and 

exhaust flow rate 50% 

153 

Figure 5.14 ACH vs deposition ratio on: (a) ceiling; (b) walls; (c) floor 155 

Figure 5.15 ACH vs exposure to pathogens: (a) EA=0%; (b) EA=10%;(c) EA=50% 156 

Figure 5.16 Components of the genetic algorithm process 161 

Figure 5.17 Flow chart of genetic algorithm process 162 

Figure 5.18 Inpatient ward cubicle designs with patients 164 

Figure 5.19 Height (H) of the exhaust grille from the floor 165 

Figure 5.20 Airflow simulation results across a horizontal plane located at y = 1.35m 

at 9 ACH 

166 

Figure 5.21 Airflow simulation results across a horizontal plane located at y = 1.35m 

at 13 ACH 

167 



xix 
 

Figure 5.22 The plots of ward cubicle with three supply diffusers on the ceiling and 

four local exhaust grilles on the sidewall at 6 ACH and exhaust air = 30%: 

(a) temperature distribution (b) airflow pattern 

168 

Figure 5.23 Evolution of generation in the GA process 169 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xx 
 

List of abbreviations 

 

AC Air-conditioner 

ACH Air change per hour 

ACO Ant colony optimization 

AMY Actual meteorological year 

ANN Artificial neural network 

ARIMA Autoregressive integrated moving average model 

ASHRAE American Society for Heating, Refrigerating, and Air-Conditioning Engineers 

BCL Building component library 

BES Building energy simulation 

BPA Back propagation algorithm 

BPNN Back propagation neural network 

CDA Conditional demand analysis 

CDC Center for disease control 

CDD Cooling degree days 

CFD Computational fluid dynamics 

CHREM Canadian hybrid residential end-use energy and emission model 

CNN Convolutional neural network 

CO2 Carbon dioxide 

COP Coefficient of performance 

Covid-19 Coronavirus disease 2019 

CPSO Chaotic particle swarm optimization 

CV Coefficient of variation 

DHW District hot water 



xxi 
 

DNN Deep neural network 

DRW Discrete random walk 

ELM Extreme learning machine 

EMSD Electrical and Mechanical Services Department 

EP EnergyPlus 

EUI Energy-use intensity 

FLC Fuzzy logic controller 

FNN Fuzzy neural network 

GA Genetic algorithm 

GCI Grid convergence index 

GHG Greenhouse gas 

GIS Geographical information system 

GRNN General regression neural network 

GWO Grey wolf optimization 

HAI Healthcare-associated infection 

HCW Healthcare worker 

HDD Heating degree days 

HVAC Heating, ventilation, and air-conditioning 

IAQ Indoor air quality 

IEA International energy agency 

LES Large eddy simulation 

LMA Levenberg–Marquardt algorithm 

LSTM Long short-term modelling 

MAE Mean absolute error 

MAPE Mean absolute percentage error 



xxii 
 

MERS-CoV Middle east respiratory syndrome coronavirus 

MLR Multiple linear regression 

MOGA Multi-objective genetic algorithm 

MRA Multivariate regression analysis 

MRSA Methicillin-resistant Staphylococcus aureus 

NI Nosocomial infection 

NIOSH National Institute for Occupational Safety & Health 

OPC Overall particle concentration 

OS OpenStudio 

OTTV Overall thermal heat transfer value 

PAT Parametric analysis tool 

PCA Principal component analysis 

PCM Phase change material 

POD Proper orthogonal decomposition 

PRH Public rental housing 

PSO Particle swarm optimization 

RANS Reynolds averaged Navier-Stokes 

RBF Radial basis function 

RC Relative index of compactness 

RF Random forest 

RMSE Root mean square error 

RNG Re-Normalization Group 

RNN Recurrent neural network 

SARS Severe acute respiratory syndrome 

SDU Sub-divided Unit 



xxiii 
 

SHGC Solar heat gain coefficient 

SHR Sensible heat ratio 

SVM Support vector machine 

SVR Support vector regression 

TB Tuberculosis 

TMT Total maximum time 

TMY Typical meteorological year 

WNN Wavelet neural network 

WWR Window-to-wall ratio 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xxiv 
 

List of symbols 

 

A Area (m2) 

A* Effective area (m2) 

Afl Apartment floor area (m2) 

Awl External wall area (m2) 

Ar Area of roof (m2) 

Arf Area of roof fenestration (m2) 

Awd Window area (m2) 

a Output from each neuron in the hidden layer 

aLW Output layer weighted value 

b Bias 

Cp Specific heat (kJ kg–1oC–1) 

C Contaminant concentration 

Cinlet Contaminant concentration at air supply inlet 

CD Coefficient of drag 

db Bioaerosol diameter (µm) 

DDm Total heating or cooling degree days in a month 

Epd Equipment power density (Wm-2) 

Ec Annual cooling energy consumption (GJ yr-1) 

E Exposure to pathogens 

EA Exhaust air 

Fx Auxiliary forces 

FD Drag force 

Fs Safety factor 



xxv 
 

fpureline Linear transfer function 

ftansig Tan-sigmoid function 

ga Gravitational acceleration 

H Building transmission coefficient 

Hen Envelope heat gain (W) 

Hin Internal heat gain (W) 

Hvent Ventilation heat gain (W) 

hfg Latent heat of evaporation (KJkg-1) 

IW Input weight matrix 

k Time in hour 

KD Drag constant 

Lpd Lighting power density (Wm-2) 

Lsen Sensible load (W) 

Llat Latent load (W) 

lc Characteristic length 

LW Layer weight index 

�̇� Mass flow rate (kgs-1) 

ns Number of particles exhaled by sneezing 

nw Number of particles deposited on walls 

nc Number of particles deposited on the ceiling 

nf Number of particles deposited on floor 

ne Number of particles exhausted 

n Net input vector 

noc Number of occupants 

nout Net output value 



xxvi 
 

Nk Number of occupants at kth hour 

Nmax Maximum number of occupants  

Oa Occupant area ratio (psm-2) 

pw Vapor pressure (Kpa) 

pws Saturated vapor pressure (KPa) 

P Input element of the input layer 

PIW Weighted input value 

Q Heat transfer 

Qh Heat flux (Wm-2) 

r Refinement factor 

Rh,o Outdoor relative humidity (%) 

rw Wall deposition ratio 

rc Ceiling deposition ratio 

rf Floor deposition ratio 

re Exhausted ratio 

Re Reynolds number 

S Source 

SF Solar factor 

Sc Shading coefficient 

t Time 

th Heating time in a day 

T Temperature (oC) 

To Outdoor temperature (oC) 

Ta Air temperature (oC) 

Tbase Base temperature (oC) 



xxvii 
 

Tneu Neutral temperature (oC) 

Tin Indoor set-point temperature (oC) 

TDeqw Equivalent temperature difference of wall 

TDeqr Equivalent temperature difference of roof 

𝑇𝑒,𝑑 Mean external temperature of a day  

u Fluid velocity (ms-1) 

up Particle velocity (ms-1) 

Um Maximum velocity for wall confluent jets (ms-1) 

Uo Jet supply velocity (ms-1) 

Uwl U-Value of external wall (WK-1m-2) 

Uwd U-Value of external window (WK-1m-2) 

V Volume (m3) 

Vvent Ventilation rate 

wa Indoor moisture content (kg kg-1, dry air) 

wo Outdoor moisture content (kg kg-1, dry air) 

Z Climate index 

ϕk Hourly occupant load variation factor 

ϕ Heat source 

ρ Fluid density (kgm-3) 

β Solar altitude angle (o) 

µT Eddy viscosity 

Γ Diffusivity (m2s-1) 

ρp Particle density (kgm-3) 

σv Vertical shadow angle (o) 

σh Horizontal shadow angle (o) 



xxviii 
 

ϕAC,k Hourly air conditioner operation schedule 

T Temperature difference (oC) 

ηhs/cs Efficiency of equipment 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



1 
 

Chapter 1 

Introduction 

 

1.1 Background 

The repercussions of human-induced climate change are unevenly spread across the globe, and its net 

damage costs are increasing significantly over time. An overwhelming rise in global temperature, sea level, 

wildfires, and tropical storms are a few factors influencing our physical environment. In contrast, the 

prevalence of infectious diseases, heat-related disorders, air pollution, and respiratory diseases associated 

with climate change adversely affects our health (Melillo, 2014, Evens et al., 2017). Rapid urbanization is 

also making people more vulnerable to the impacts of climate change. Around 68% of the world’s 

population is bound to live in urban areas by 2050 (United Nations, 2018a). This estimated increase in 

urban population will necessitate more residential, commercial, and healthcare buildings to serve different 

essential purposes. 

Greenhouse gas emission is the major contributor driving climate change issues impacting our climate, 

environment, and human health. According to International Energy Agency (IEA), climate change will be 

the primary driver for growth in energy demand. The human-induced warming reached approximately 1 oC 

above pre-industrial levels in the year 2017, with the current projected rate being 1.5 oC. Furthermore, it is 

projected that Asia will use half of the world's electricity by 2025 (IEA, 2023). This rapid growth in energy 

demand has significant implications for the building and construction sector, which accounts for 38% of 

global carbon emissions (Spandagos and Ng, 2017). In 2019, the CO2 emissions from buildings were 10GT, 

which happened to be the highest ever recorded in history. Space cooling energy is the fastest-growing 

building energy end use, and its associated energy demand has tripled since the 1990s (IEA, 2022b), putting 

additional strain on energy resources and contributing to global warming. Moreover, the building energy 

demand is expected to grow by 34% in the next two decades at an average rate of 1.5% (Albadry et al., 

2017). Reducing buildings' cooling energy demand is the primary means to curb the sector’s impact on 
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climate change. However, despite the continuous effort of various stakeholders, the cooling energy demand 

associated with buildings seems to increase relentlessly. This underscores the need for a major shift in the 

way we design, construct, and operate buildings to ensure that we can meet the energy demand while 

mitigating the impact of climate change. It is necessary to chart comprehensive research studies to develop 

effective strategies to assist building engineers and energy efficiency practitioners in creating new facilities 

or renovating existing buildings that meet sustainability goals. 

Another concern that requires urgent consideration is the transmission of infections within healthcare 

facilities resulting in significant public health issues and severe economic burdens. Nosocomial infections 

(NIs) or healthcare-associated infections (HAIs) are a primary means of mortality and morbidity in hospitals 

worldwide (Anna Sikora & Farah Zahra, 2022). Measured incidence rates of 3.5% to 12.0% have been 

reported in developed countries, whereas 5.7% to 19.0% in low-income and middle-income countries are 

associated with nosocomial infections (Alemu et al., 2020). It is a public health issue that requires 

immediate attention. The severe acute respiratory syndrome (SARS) outbreak in 2003 to the outbreak of 

covid-19 in 2019 remains a constant reminder that infection control and prevention practices are essential 

and need regular updation as new knowledge surfaces. Locations within hospitals, such as general inpatient 

wards, are simultaneously utilized by patients, healthcare workers, and visitors; thus, the susceptibility to 

nosocomial infection spread is reasonably high. Hospital-acquired infections (HAIs) are a significant safety 

concern for healthcare providers and patients. Considering morbidity, mortality, increased length of stay, 

and cost, efforts should be made to make the hospitals as safe as possible by preventing such infections. In 

healthcare facilities, infections are explicitly considered in ventilation requirements. However, there is a 

paucity of research studies that address infection control mechanisms for hospital facilities such as a general 

inpatient wards (Beggs et al., 2008). Hence, a review of nosocomial infection control practices in presumed 

low-risk zones such as wards is essential. This thesis aims to highlight the significant shortcomings of 

existing building cooling energy studies and infection mitigation strategies and proposes innovative 

solutions to overcome the pitfalls with recognized limitations.    
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1.2 Limitations to existing cooling energy simulation models 

The prediction of cooling energy consumption in buildings can be made through three approaches: the 

physical simulation method, the data-driven method, and the hybrid method (Robinson et al., 2017, Ahmad 

et al., 2018). The physical simulation method utilizes whole-building energy simulation software such as 

EnergyPlus (EP), TRNSYS, etc., to solve thermodynamic equilibrium equations and heat equations to 

predict the energy consumption associated with the building accurately. Despite its high accuracy, it needs 

a sizeable computational time and has limited scope for optimization (Yezioro et al., 2008). Hence, it proves 

to be an inefficient approach where it is required to explore the influence of diverse parameters on cooling 

energy consumption in a broad range of buildings.  

On the other hand, a data-driven model is an excellent alternative for predicting the cooling energy 

consumption associated with buildings (Li et al., 2014). Data-driven methods such as artificial neural 

networks (ANN) and support vector machines (SVM) can easily model nonlinear multivariate 

interrelationships (Biswas et al., 2016). They can provide quick responses based on input parameters 

without significant time lag. However, the performance of these models relies heavily on the database 

utilized for the model development, where data inadequacy or inaccuracy could lead to massive degradation 

in its prediction ability (Paudel et al., 2014). New buildings with no historical data and old buildings lacking 

intelligent building automation systems remain an impediment to utilizing data-driven approaches. 

Moreover, the need for physical meaning is optional during model development, which some scholars have 

criticized (Ahmad et al., 2014).  

Another emerging building energy consumption prediction mechanism is implementing the hybrid method. 

It is the coupling of physics in the physical simulation method with statistics of the data-driven approach, 

thereby eliminating the shortcomings posed by each method when performed individually. This coupling 

would result in a shorter prediction time and a physical interpretation between the input-output relationships 

lacking in pure data-driven approaches (Gassar and Cha, 2020). Moreover, as it is implemented by coupling 

the physical simulation method with a data-driven approach, it also possesses the inherent ability to model 



4 
 

nonlinearities. In building energy prediction, a hybrid approach is a robust prediction methodology that 

outperforms the physical simulation and data-driven methods (Amasyali and El-Gohary, 2018). However, 

most of the hybrid simulation models developed are restricted to any one particular building type, and their 

performance in terms of generalization capability outside their training range is poor (Amasyali and El-

Gohary, 2018). Firstly, several scenarios will be simulated using the physical simulation method to create 

the database for ANN training, leading to the development of a generalized hybrid simulation model. 

Despite developing a generalized hybrid simulation model, it will still be necessary to perform all 

combinations of parameters exhaustively to identify critical parameters that would lead to minimal cooling 

energy consumption in a building, which is an inefficient approach. 

1.3 Limitations in strategizing infection control measures 

Building ventilation system plays a vital role in maintaining thermal comfort, stable microclimate, and 

indoor air quality.  However, it also has to take care of infection control in a healthcare environment (Yau 

et al., 2011). The outbreak of severe acute respiratory syndrome (SARS) in 2003 to coronavirus disease 

2019 (Covid-19) in 2019 has highlighted the importance of ventilation in infection control in indoor 

environments. Several studies have exhibited a close association between ventilation strategies and 

nosocomial infection transmission (Li et al., 2007a). Although, there need to be more proper guidelines 

regarding ventilation design in patient settings such as wards, outpatient clinics, etc (Beggs et al., 2008).  

Different flow distribution patterns can arise within the indoor environment depending on the type, size, 

and location of the air distribution device, air change rate, room geometry, heat transfer, and internal objects 

such as furniture, equipment, occupants, etc (Malkawi et al., 2005). These can, in turn, influence the 

transport, dispersion, and deposition of contaminants within the indoor environment. Thus, a thorough 

evaluation of different strategies in general inpatient wards needs to be done, and with new research 

findings, existing guidelines need to be revised and updated. Using numerical simulation models would 

greatly benefit designing an effective ventilation strategy to mitigate infection transmission in an indoor 

environment. Advancements in computing have aided in establishing Computational Fluid Dynamics 



5 
 

(CFD) as an accurate and robust tool to design, analyse, and evaluate different strategies attributed to an 

indoor environment. However, despite the accuracy of CFD, it can be computationally expensive and time 

consuming to evaluate the influence of all combinations of parameters on infection transmission 

exhaustively.  

1.4 Limitations to conduct optimization 

Optimization is the process of identifying key attributes that makes something better. Optimization 

algorithms such as genetic algorithm (GA) (Holland, 1975) are used to obtain a sub-optimal or optimal 

solution that either minimizes or maximizes an objective function within a few iterations. However, it is 

challenging in many scenarios to write an accurate function representative of the problem. For instance, 

numerous parameters influence the overall cooling energy consumption and infection transmission 

mechanism within a building. Thus, formulating an objective function with essential parameters to perform 

an optimization can be cumbersome.   

In numerical simulation modelling, the traditional optimization approach requires a systematic evaluation 

of the influence of the diverse parameters in the design space on a given problem. The conventional method 

would exhaustively simulate all the possible combinations of parameters to evaluate the best combination 

that meets the design objective. However, such an approach is deemed to be highly inefficient (Malkawi et 

al., 2005).  

The limitations inherent within each application could be minimized by integrating the evaluation 

mechanism (ANN and CFD) as the objective function within the optimization algorithm to negate the 

individual shortcomings and bolster the strengths to create a robust and efficient prediction tool. The 

availability of such state-of-the-art numerical simulation models could be one of the breakthroughs in 

developing sustainable buildings and effective infection control strategies. 
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1.5 Objectives 

Several parameters can exert an influence on cooling energy consumption and the mechanism of infection 

transmission within a facility. The evaluation of different control strategies and the identification of optimal 

parameter combinations that minimize cooling energy consumption and infection transmission represent a 

significant advancement towards attaining carbon neutrality in buildings and mitigating the occurrence of 

infection outbreaks. However, there is a need to look beyond the traditional design exploration approaches 

with traditional building simulation tools to identify optimal solutions. 

The objectives of this study are: 

1. To analyse and determine the primary variables that influences the cooling energy consumption 

and infection transmission mechanism in buildings.  

2. To review and understand the limitations of existing practices for predicting building cooling 

energy consumption and infection transmission mechanisms in buildings. 

3. To develop a generalized hybrid simulation model for predicting the cooling energy consumption 

in buildings. 

4. To investigate ventilation strategies for infection risk mitigation in a healthcare environment. 

5. To integrate numerical simulation models with an optimization algorithm to obtain sub-optimal or 

optimal solutions to minimize overall cooling energy consumption and infection transmission cost-

effectively and time-efficiently. 
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1.6 Research scope 

To meet the objectives listed in section 1.5, this study is divided into the following tasks: 

Task 1: Understanding the progress and limitations of predicting cooling energy consumption and infection 

transmission in buildings 

A review of existing practices for predicting cooling energy consumption and infection transmission within 

buildings is done to understand the progress and limitations. The role of optimization in engineering 

applications and the integration of optimization algorithms with building simulation models are explored. 

While understanding the constraints of the past methods and identifying the opportunities to improve 

further, this task will highlight the need to develop a robust, accurate, and time-efficient prediction model 

to tackle the inefficiencies of its predecessors.  

Task 2: Development of a generalized hybrid simulation model 

The model development will be done by undertaking the three steps shown below: 

Step 2.1 Collection of input parameters for Artificial neural network 

The potential building parameters that would influence the envelope heat gain will be reviewed and 

identified. The range of values corresponding to each parameter will be determined through an extensive 

data collection from open literature data, design standards, housing property websites, government housing 

statistics and so forth.   

Step 2.2 Development of hybrid simulation model  

Utilizing the parameter ranges and building layout collected in Step 2.1, a series of building energy 

simulations are done through EnergyPlus software to obtain the hourly envelope heat gain Hen (W). The 

building parameters collected in Step 2.1, including outdoor temperature To (oC), day of the year, hour of 

the day, and air temperature set–point Ta (oC) and their corresponding energy output (hourly envelope heat 

gain) are extracted from simulations to form the input-output files. These input-output files are utilized as 
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the database for training and developing the multi-layer artificial neural network capable of predicting the 

envelope heat gain based on the given input. 

Step 2.3 Estimation of building cooling energy consumption 

The building cooling energy consumption is expressed as a sum of envelope heat gain, ventilation heat 

gain, and internal heat gain. The hybrid simulation model calculates the envelope heat gain, whereas 

physical expressions estimate the ventilation and internal heat gain. Along with the operation schedule and 

coefficient of performance of air-conditioners, cooling energy consumption associated with an apartment 

or building or buildings at the city scale can be estimated.  

The proposed hybrid simulation model is tested for its generalization capability by testing it against 

parameters outside its training range. The proposed hybrid simulation methodology can be utilized for 

recommending energy-saving strategies in buildings. 

Task 3: Ventilation strategies in a healthcare environment 

An existing layout of the general inpatient ward cubicle is utilized for conducting the numerical simulations 

through Computational Fluid Dynamics. The airflow and particle distribution within the computational 

domain are validated with open literature. The influence of air change rate, local exhaust grille, and exhaust 

flow rate is analysed for the risk of infection transmission to ward users. The critical parameters impacting 

infection transmission are identified, and recommendations are provided to enhance infection control 

measures within the inpatient ward. 

Task 4: Coupling ANN and CFD with genetic algorithm 

The ANN and CFD are integrated with a meta-heuristic optimization algorithm, namely, a genetic 

algorithm, to perform design exploration to identify optimal parameter combinations resulting in the least 

cooling energy consumption and infection transmission within an inpatient ward cubicle in a minimal time. 

In the optimization algorithm, ANN and CFD will enact the role of the fitness function. GA will then 
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iteratively evaluate diverse design solutions to obtain the sub-optimal or optimal solution for the 

optimization problem. 

The output of ANN is used as the fitness score to evaluate different design solutions. The best solution is 

the input parameter set resulting in the least envelope heat gain. Similarly, particle deposition on patients 

extracted from CFD simulations is used as the fitness score to evaluate diverse design solutions in inpatient 

ward cubicles. The parameter combination resulting in the least particle deposition is chosen as the optimal 

solution.   

1.7 Organization of thesis 

This chapter presented the background and motivation behind this study. The main goal is to develop a 

clear framework using the state-of-the-art simulation models to assist building engineers in identifying and 

implementing effective strategies to minimize cooling energy consumption and infection transmission 

within buildings. The objectives and research scope associated with this study are also highlighted. This 

study's overall structure and research findings are presented in this thesis's following chapters. The 

organization of the thesis is given through a flowchart shown in Figure 1.1. 

Chapter 2 will review factors influencing cooling energy consumption and infection transmission within 

buildings. It discusses the role of numerical simulation models in constructing schemes for achieving carbon 

neutrality and infection risk mitigation within facilities. Building simulation models' advantages, 

disadvantages, and limitations are reviewed and discussed. The role of optimization in engineering 

applications and their integration with numerical simulation models is addressed. The research gap is 

defined, and the necessary direction to address the shortcomings is proposed.  

Chapter 3 will present the procedures undertaken to develop the hybrid simulation model. The physical 

expressions used to estimate the annual cooling energy consumption will be detailed. The information on 

building-related parameters will be collected via open literature, design standards, housing property 

websites, and government housing statistics. It will discuss the fundamental theory behind the artificial 
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neural network (ANN) and give the various steps, including utilising a building energy simulation tool to 

create the database for training the ANN. The results of the test run against peer literature and energy 

simulation modelling results for checking the validity of the hybrid model will be shown. The influence of 

construction, building materials, and climate on cooling energy consumption will be discussed.  

Chapter 4 will evaluate the generalisation ability of the hybrid model for predicting the cooling energy 

demand for parameters beyond its training range. To do so, two distinct premises are chosen: a sub-divided 

unit and a general inpatient ward. The subdivided units are further investigated using a generalised hybrid 

simulation model to examine the numerous strategies employed to reduce the energy associated with this 

unit. Additionally, to overcome the limitations related to design exploration through a traditional approach, 

the generalised hybrid simulation model is integrated with an evolutionary algorithm to assist the user in 

iteratively evaluating the influence of various design conditions on cooling energy consumption. A standard 

inpatient ward cubicle is used as the application case to illustrate the approach and its advantages in 

predicting cooling energy usage. 

The implementation of ventilation strategies to mitigate infection transmission within a healthcare facility 

will be presented in Chapter 5. A preliminary numerical study is conducted to discuss the framework 

adopted in computational fluid dynamics to model the multiphase flow utilised to predict airflow and 

particle distribution within a six-bedded mechanically ventilated inpatient ward cubicle. To overcome the 

drawbacks associated with the traditional approach for ventilation optimisation, CFD is integrated with an 

evolutionary algorithm to evaluate various design solutions iteratively to find an optimal or sub-optimal 

solution with fewer simulations. The influential parameters in the infection transmission mechanism are 

explored, and recommendations are made to enhance infection control. 

The thesis will be concluded with Chapter 6 by emphasizing the main research findings and their 

significance. Furthermore, future research directions will be highlighted. 
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Chapter 1 

Introduction 

Chapter 2 

Literature review: 

i. Exploration of factors influencing cooling energy consumption and infection transmission 

in buildings 

ii. Existing methods for assessing and modeling cooling energy consumption and infection 

transmission 

iii. Role of optimization in engineering applications and its integration with building simulation 

tools 

iv. Understanding past successes and identifying research gaps 

 

 
Chapter 3 

Development of hybrid cooling energy simulation model: 

i. Collection of building related parameters, performing building simulation, creation of 

database, training and development of hybrid EP-ANN model 

ii. Check for validity of the hybrid model 

iii. Prediction of cooling energy consumption with construction, building materials and 

climate. 

Chapter 4 

A generalized hybrid simulation model coupled with a genetic algorithm: 

i. Evaluation of generalization capability of the hybrid model to predict for parameters beyond 

its training range. 

ii. Explore strategies to reduce energy consumption in sub-divided units with generalized 

hybrid simulation model. 

iii. Integration of an evolutionary algorithm with hybrid simulation model to overcome 

drawbacks associated with traditional optimization approach.  

iv. A standard inpatient ward cubicle is used as the application case to illustrate the coupled 

simulation approach to predict the optimal parameter combination minimizing the cooling 

energy demand. 

Chapter 5 

Ventilation strategy to mitigate infection transmission in an inpatient ward: 

i. Conduct a preliminary numerical study to establish the CFD framework for multiphase flow 

simulation in an inpatient ward cubicle. 

ii. Integration of an evolutionary algorithm with CFD to overcome the drawbacks associated 

with the traditional approach for ventilation optimization.  

iii. Explore and evaluate the design space iteratively to find optimal or sub-optimal ventilation 

strategies to minimize infection transmission in the inpatient ward cubicle. 

Chapter 6 

Conclusions 

 
Figure 1.1 Organization of thesis 
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Chapter 2 

Literature review 

 

2.1 Introduction 

The building sector forms a large carbon footprint in the world. It accounts for nearly one-third of the global 

energy and process-related carbon emissions. Climate change is driving a rise in heat waves and other 

extreme weather events. Record-breaking temperatures were reported mainly in Asia, the middle east, and 

Europe in mid-2022. It is suggested that climate change can have a dual effect: a decrease of 30% in global 

heating demand and an increase of 70% in global cooling demand (Isaac and Van Vuuren, 2009). The 

energy demand associated with space cooling has tripled since 1990 (Mui et al., 2021). The global space 

cooling energy demand rose to 6.5% in 2021 compared to the year before, with an increase close to 8-9% 

in Asia Pacific and Europe. It has been growing at an average rate of 4% per year since 2000 (IEA, 2022b). 

It is required that there should be a decline of 30% in final energy intensity for space cooling in 2030 

compared to 2022 to meet the net zero scenarios (IEA, 2022a). Despite, the rise in global temperature, it is 

quintessential that space cooling needs must be met equitably. Effective envelope design is a primary way 

to reduce the cooling energy demand associated with buildings. Hence, the Identification of influential 

parameters on cooling energy consumption as well as the adoption of effective methods to evaluate each 

design solution is paramount. 

The spread of infections within healthcare facilities, which can lead to serious public health problems and 

severe financial burdens, is another issue that needs to be addressed as soon as possible. The hidden carrier 

of infectious pathogens in hospitals can cause widespread outbreaks of diseases in the community. Thus, it 

is of utmost importance to enhance infection control measures within healthcare facilities. Inpatient wards 

occupy a significant amount of floor space in hospitals. The role of ventilation in infection transmission is 

an established fact (Li et al., 2007a). Hence, reviewing the ventilation techniques adopted in these facilities 

for infection control is essential. The design of a ventilation system, location of the patients, space geometry 
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etc., can all influence the spread of infection in an indoor environment such as wards. Hence, a clear 

understanding of the adopted physical and operational configurations is necessary to recommend a clear 

framework for improvements. Moreover, it is vital to understand the routes of infection transmission to lay 

down effective infection mitigation strategies. The adoption of state-of-the-art prediction tools to evaluate 

each design solution is considered very important as an effective method to speed up infection mitigation 

efforts. 

Thus, a systematic review is carried out in this chapter through a rigorous process that involves formulating 

research questions, identifying relevant literature, evaluating the identified works, and interpreting the 

resulting findings. The Web of Science tool was employed to facilitate the identification of noteworthy 

research endeavors in the realm of building energy and infection control. The present chapter aims to 

elaborate on the current advancements, extant obstacles, constraints, and gaps in the relevant domain of 

research. Initially, an investigation will be conducted on the correlation between building-related 

parameters and cooling energy demand. Additionally, the chapter will examine the diverse approaches 

employed to assess this correlation. Subsequently, the distinct modes of infection transmission and the 

corresponding approaches implemented for infection management within healthcare settings will be 

examined. Furthermore, this chapter will investigate the existing prediction techniques to assess the 

effective approaches for mitigating the transmission of infections. 

2.2 Factors influencing the building cooling energy consumption 

The envelope heat gain, ventilation heat gain, and internal heat gain (lighting, equipment, and occupants’ 

loads) are three major components that affect the energy demand associated with air-conditioning (Wong 

et al., 2008). The envelope heat gains through exterior walls and fenestrations significantly contribute to 

building cooling energy demand. Envelope design is a critical aspect in the development of buildings, as it 

can dramatically influence a building’s thermal needs, indoor environmental quality, and safety. The 

increase in global space cooling energy demand is partially associated with neglecting the importance of 

choosing the correct envelope structure and building materials (IEA, 2022a). Thus, progress in building 
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envelope design is of utmost importance to meet the space-cooling energy demand equitably. In addition 

to that, the utilisation of a cooling system and its effectiveness can also have a substantial impact on the 

energy performance. Thus, this section would review the various factors that could influence the cooling 

energy requirement associated with a building.  

2.2.1 Building envelope characteristics  

Building materials 

The building envelope plays a critical role as a separation between buildings indoor and outdoor 

environment. The material properties of envelope components such as wall, fenestration, roof can influence 

the rate of heat transfer across the envelope and eventually, impacting the thermal needs of the inhabitants. 

The thermal transmission through the building envelope dictates a major part of the building cooling energy 

demand. The U-value is a popular index for thermal transmission, and it accounts for the rate of heat transfer 

per unit area of wall, window or roof for every degree difference in temperature between buildings indoor 

and outdoor environment. It is expressed through a mathematical equation as shown in Equation 2.1, where 

Q is the heat transfer, A is the area, and T is temperature difference.  

𝑈 =
𝑄

𝐴∆𝑇
 

The U-values of external opaque wall Uwl and external window Uwd are often used to determine the 

insulation characteristics provided by these envelope components against heat transfer, where a low U-

value reflects good insulation. The Uwl and Uwd value would vary based on the construction materials and 

its available in open literature and international standards (ASHRAE Standard 90.1, 2013, ISO-10077-1, 

2009, Reilly et al., 1992). A review of the thermal insulation requirement in various building enclosures 

across different countries can be found in (Rodríguez-Soria et al., 2014).  

(2.1) 
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The transmission of heat into indoor space through window by solar radiation can happen while it is exposed 

to direct sunlight. Shading coefficient is an index that quantifies this thermal transmission, where it can be 

estimated through the Equation 2.2.  

𝑆𝑐 =
𝑆𝑜𝑙𝑎𝑟 ℎ𝑒𝑎𝑡 𝑔𝑎𝑖𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 (𝑆𝐻𝐺𝐶)

0.87
 

A lower value of Sc for a window glazing indicates it has good resistance to solar radiation. For instance, a 

tinted or low-emissivity glass with Sc equal to 0.7 would have better insulation characteristics compared to 

a clear glass with Sc value equal to 0.96. The Sc value of different glazing type can be accessed through 

open literature and international standards (ASHRAE Standard 90.1, 2013, Reilly et al., 1992). 

The heat gain through building envelope is a major contributor in cooling energy demand of buildings and 

thus influence of envelope material properties are often analysed through numerical simulations and 

analytical methods. Pereira and Ghisi (2011) indicated that improving the U-value of envelope would 

reduce the thermal discomfort within naturally ventilated buildings. A numerical simulation of a building 

located in a tropical region was conducted to study the influence of external wall, external window, and 

ceiling on the building energy demand. External walls were identified to have major impact on the building 

energy demand and it was suggested that by using reverse brick veneer R20 as wall material would aid in 

reducing the thermal heat gain (Sadeghifam et al., 2015). A similar conclusion was obtained by Turhan et 

al. (2014) that U-value of wall is one of the most effective parameter that influences the energy demand 

associated with a building. Addition of advanced materials such phase change materials (PCM) near to wall 

cavity have resulted in lowering the peak cooling load (Kishore et al., 2020).  

Studies have indicated a large amount of heat gain generated in indoor space is associated to the thermal 

transmission across windows. The U-value and shading coefficient of windows were two of the major 

determinants that would impact the building energy demand (Chua and Chou, 2010). According to Bojić 

and Yik (2007), installation of single low-e glass instead of clear glass would prove to be a cost effective 

strategy to reduce the heat gain. Similarly, Chua and Chou (2010) found that the shortest payback period 

(2.2) 
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with satisfactory cooling energy was achieved through the implementation of single low-E single glazing. 

However, double-layer glazing would provide large reduction in heat gain, it felt short in providing 

adequate daylighting compared to single low-E glazing (Huang et al., 2014). The largest cooling energy 

demand in residential apartments located in South Korea was reported to be caused by the use of glazing 

system with high solar heat gain coefficient, whereas a reduction in thermal transmittance value lead to 

26% energy savings (Kim and Suh, 2021).  

Impact of wall insulation thickness on building energy demand have also been subjected to study. The 

influence of wall insulation thickness was evaluated for four different exterior zones of an office building 

at four different orientations with different external wall insulation thicknesses under three different 

climates in china. It was observed that the increase in wall insulation resulted in significant energy savings 

in Beijing’s climate, whereas the insulation thickness hardly had any impact on the energy conservation 

under Guangzhou’s climate (Pan et al., 2012). Cheung et al. (2005) found that reducing the solar 

absorptance value of wall by 30% can result in 13% energy saving in residential buildings of Hong Kong. 

Window area and shading designs 

According to a study conducted by Lawrence Berkley National Laboratory, 29-34% of energy consumption 

in residential and commercial buildings were windows-related (Apte and Arasteh, 2006). Thus, it is 

estimated that about 10-40% reduction in lighting and mechanical system energy use can be achieved by 

well-designed fenestration (Ander, 2014). The contribution of windows in comparison to the external wall 

to generate heat gain can be mapped through an index named as Window-to-wall ratio (WWR), which 

represents the portion of window area to the overall gross external wall area. As per Lam et al. (2005), the 

WWR of Hong Kong housing sector ranged from 20 to 40%, where bigger flats were attributed with larger 

WWR. Reducing the WWR from 40% to 25% would result in 18% cooling energy savings according to 

Sang et al. (2014). A reduction in window area might lower the thermal heat gain, however, it may also 

lead to reduction in the natural light, in turn resulting an increase in internal heat gain through use of 

artificial lighting (Huang et al., 2014). Ghisi and Tinker (2005) conducted a study to find the optimal WWR 
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to reduce the energy consumption arising from artificial lighting in two different regions, namely Leeds in 

the United Kingdom and Florianapólis in Brazil. It was found that WWR ranging from 10.8 to 44% would 

be suitable for Leeds, whereas WWR range from 20.6-86.2% is ideal for Florianapólis. However, in this 

study, the optimal WWR was recommended based only on lighting energy use. 

Overhangs are one of the oldest and popular external shading devices used in buildings. Aldawoud (2013) 

analysed the influence of overhangs on building energy efficiency and reported that it could efficiently 

reduce the cooling load in summer season. The depth of overhang is an important parameter. A study 

conducted by Alaidroos and Krarti (2015) on residential buildings of Kingdom of Saudi Arabia suggested 

that overhangs with projections ranging from 0.1-1.0 m can aid in energy conservation. An overhang 

projection of 0.5m lead to generate an energy savings of 3.6% in Dhahran, whereas the same projection 

leads to save 5% of energy in Riyadh. In a study conducted to analyse the thermal and daylighting 

performance with shading device on an office building envelope located in a cooling dominated region, it 

was suggested that effectivity of overhang subdues if its depth is more than half of the window height 

(Huang et al., 2014). Additionally, they suggested that overhangs have better performance compared to 

interior blinds. 

Bansal et al. (1994) provided means to quantify the efficiency of shading device by relating the vertical and 

horizontal shadow angle to relationship between length of shaded area on window or wall surfaces. This is 

expressed through Equation 2.3.  

𝑡𝑎𝑛𝜎𝑣 =  
𝑡𝑎𝑛𝛽

𝑐𝑜𝑠𝜎ℎ
 

where 𝜎ℎ is the solar azimuth angle and 𝛽 is the solar altitude angle.  

Building construction characteristics 

The floor area, orientation and morphology of buildings also have significant influence on the building 

cooling energy consumption. The impact of floor area and external wall on the building energy demand 

(2.3) 
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could be explained through physical sense and heat transfer equations such as Equation 2.1. As per the 

International Energy Agency (IEA) report, there was increase of 60% in the building floor over the last two 

decades and another 20% increase is set to happen in this decade, resulting in a total floor surface area of 

45 billion m2. These increase is estimate to happen in cooling dominated regions (IEA, 2022b). The increase 

in floor surface area is one of the primary reasons associated with an increase in global space cooling energy 

demand (IEA, 2022a). Tso and Yau (2003) highlighted the significance of floor area to electricity 

consumption during the summer season in a sub-tropical region. It along with other parameters such as 

building shape and orientation are taken in to account to get more insights on building energy consumption 

or at times it is also used as input variable for a statistical tool for making building energy prediction (Wong 

et al., 2008, Chou and Bui, 2014). 

The building orientation would play significant role in the resulting energy consumption due to the sun path 

in different climatic regions. Cheung et al. (2005) conducted simulation of cooling energy consumption of 

residential buildings of Hong Kong for different orientations. The apartments facing west direction had the 

highest cooling energy demand followed by the ones facing south-west and north-west directions. Similarly, 

Qin and Pan (2020) studied the influence of orientation as a building energy saving measure. It was 

observed that it has the highest energy use intensity while the building is facing West and East, whereas the 

lowest value was reported when the building is oriented towards South and North. Abanda and Byers (2016) 

also confirmed that the building orientation plays a very important role in the energy demand generated 

within a building. They utilized the building information modelling tool Revit and energy simulation 

software green building studio to analyse the influence of different orientation on building energy 

consumption. The best orientation was towards south (+180), whereas the worst orientation was towards 

north-east (+45). 

The shape of a building would influence the building cooling energy demand, as the solar radiation received 

by it can increase the energy requirement for cooling by 25% (Mingfang, 2002). Compactness index and 

shape factor are two variables related to shape of a building that would influence its associated energy 
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demand. The compactness index is ratio of volume to external area of a building, where a very compact 

building will have least amount of surface exposed to possible heat gains or loss. The relative index of 

compactness (RC) of a building is the ratio between its compactness index and the compactness index of a 

reference building (Pacheco et al., 2012). Ourghi et al. (2007) studied the impact of building shape on 

building energy consumption. It was found that for a building with a higher RC, there was small perimeter 

wall area exposed to the outside and thus, resulted in lower cooling energy load. They further studied the 

influence of RC on two building shapes, namely rectangular and L-shaped with WWR of 25%. A similar 

trend for higher RC was observed as earlier in energy requirement. Yang et al. (2008) adopted a parameter 

named shape coefficient, which is the ratio of total building envelope area to enclosed volume to evaluate 

the energy requirement of office buildings in five different climatic zones of China. The study indicated the 

energy requirement for heating as well as cooling would increase with an increase in shape coefficient. 

2.2.2 Weather 

Weather is an important parameter that would drive a significant portion of energy transfer within a 

building. While it is difficult to predict the actual weather condition of a location at a given time, the general 

climate can be described in a meaningful way. As the weather can change from one year to another, a 

methodology to encompass the weather variation over multiple years were developed and it is commonly 

referred to as Typical Meteorological Year (TMY) (Wilcox and Marion, 2008). The TMY data represents 

a location’s annual average weather as well as the range of weather extremes. Thus, this data is generally 

considered to be more relevant compared to the Actual Meteorological Year (AMY) for prediction of future 

energy requirement (Fumo, 2014).  

The American Society for Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE) classifies 

the climate zone of a location based on its TMY data (ANSI/ASHRAE Standard 169, 2013). ASHRAE 

climates zones are labelled from 0 for extremely hot to 8 for sub-arctic. Along with these zone numbers, 

alphabetic letters are attached to form the subtype, where A refer to Moist, B for dry and C for Marine. 

These zone numbers are a function of heating degree days (HDD) and cooling degree days (CDD) obtained 
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from TMY data. The HDD is obtained by summing of difference between a base temperature and average 

hourly outdoor air temperature over a year, provided the hours that report an outdoor air temperature above 

the base temperature is discarded. The same calculation is adopted for CDD provided a different base 

temperature for cooling is used. The HDD and CDD is determined by the expression as shown in Equation 

2.4 and 2.5 (Brackney et al., 2018).  

𝐻𝐷𝐷 = ∑
𝑀𝐴𝑋(𝑇𝑏𝑎𝑠𝑒 ℎ𝑒𝑎𝑡𝑖𝑛𝑔 −  𝑇𝑖 , 0)

24

8760

𝑖=1

 

𝐶𝐷𝐷 = ∑
𝑀𝐴𝑋(𝑇𝑖 −  𝑇𝑏𝑎𝑠𝑒 𝑐𝑜𝑜𝑙𝑖𝑛𝑔, 0)

24

8760

𝑖=1

 

Other aspects such as altitude, wind speed, psychometric conditions and solar insolation are reported in 

weather data files. The subtype in climate zone is related to humidity and is a function of rainfall as well as 

outdoor temperature. The outdoor temperature is a critical factor, as its increase owing to climate change 

can deeply impact the cooling energy requirement today and the years ahead. An increase of outdoor 

temperature was predicted by Radhi (2009), where it showed that outdoor temperature would rise from 1.6-

2.9 oC in 2050, whereas rise of 2.3-5.9 oC is estimated in the 2100. Owing to the impact of climate change, 

it is being predicted that there will be a rise in cooling demand compared to heating demand. Consequently 

there will be an increase in carbon emissions associated with buildings (Yau and Hasbi, 2013). One of the 

primary mitigation strategy is create a better envelope design and increasing the set-point temperature (Mui 

et al., 2021). 

2.2.3 System operations 

Indoor set-point temperature 

The indoor set-point temperature is another critical parameter that significantly influences the building 

cooling energy consumption. Setting a higher indoor set-point temperature is considered an effective 

strategy for reducing cooling energy consumption. The indoor set-point temperature within residential 

(2.4) 

(2.5) 
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buildings can vary in wide range compared to an office building having pre-set temperatures. The Indoor 

temperature is closely associated with occupants' cognitive ability and productivity (Tham and Willem, 

2010). A temperature set–point that is neither too cold nor too warm is typically referred to as the neutral 

temperature Tneu (oC), which the occupant judges as the optimal temperature for comfort (Mui and Wong, 

2007b). It is claimed that there is a substantial correlation between Tneu and the outside air 

temperature. Rodríguez-Soria et al. (2014) conducted research comparing the operative temperature ranges 

for residential buildings proposed by various standards. According to Lam and Li (2000) research, the 

temperature ranges inside air-conditioned homes in Hong Kong range from 21 to 23.5 degrees Celsius. 

Since it is difficult for room air conditioners to control the set–point of relative humidity, it is typically not 

stated in residential buildings. Nevertheless, the dehumidification effect does have an impact on the 

effectiveness of the cooling system (Kosar, 2006). In the case of healthcare facilities, the typical design 

temperature of patient rooms and intensive care wards in the United States of America ranges from 21-24 

oC, whereas in the United Kingdom, it is 20-22 oC (Beggs et al., 2008). 

Coefficient of performance (COP) 

The coefficient of performance for cooling is defined as the ratio of rate of heat removed to the rate of 

electrical energy input to the air-conditioning system. It is often used as an indicator of system efficiency 

due to its significant influence in the prediction of building energy consumption (Neto and Fiorelli, 2008). 

While predicting the cooling energy consumption for high residential buildings, Chua and Chou (2010) 

utilized COP varying from 2.5-4.5. Its value is dependent on heat rejection efficiency of machine as well 

as other factors including outdoor temperature, moisture content and sensible heat ratio. A drop in COP 

with an increase in outdoor temperature was evaluated by the Japan refrigeration and Air-conditioning 

Association (Shimoda et al., 2007). Kosar (2006) evaluated the relationship between COP and sensible heat 

ratio and associated the drop in COP to extra dehumidification demand arising in sub-tropical regions. 

Despite the change in sensible and latent loads with respect to time in an indoor environment, a fixed COP 
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is often utilized in building energy simulation. Hence, the use of dynamic COP with respect to sensible heat 

ratio would present a more realistic estimation. 

Ventilation rate 

The ventilation rate supplied to an indoor space varies based on building type and occupants need. It is vital 

to supply adequate fresh air to ventilate an indoor space to maintain good indoor air quality by dilution of 

indoor contaminants. The ventilation rate can be expressed in terms of occupant outdoor air rate, area 

outdoor air rate and air change per hour. As per ASHRAE recommendation, an ACH of 0.35 is 

recommended for residential buildings, whereas a review done by Yoshino et al. (2004) suggested an ACH 

of 0.5. It is difficult to maintain a specific ventilation rate in residential buildings installed with a window 

type or split type air-conditioner compared to an office having a centralized air-conditioning system. A 

study done by Lin and Deng (2003) showed that ventilation rate within a residential bedroom can vary from 

1.5 Ls-1 ps-1 to 4.5 Ls-1 ps-1. It was suggested that 3.0 Ls-1 ps-1 would be optimal value. 

Infiltration rate 

In addition to supply of controlled outdoor air rate through air conditioning system, outdoor air can ingress 

into building through cracks or other openings, a phenomenon termed as Infiltration. The infiltration is 

often driven by the wind and stack effect as well as it is associated with age of a building, its construction 

as well as ventilation system (Sadineni et al., 2011). In a building thermal energy simulation, it is possible 

to model a completely airtight building, however it would not be representative of the reality. Hence, a 

small air leakage is often modelled. A study indicated that air-tightness in taller building with sophisticated 

design and construction is superior compared to shorter buildings (Persily et al., 2009). 

2.2.4 Internal loads 

The heat generated indoors by occupants, lighting, and equipment’s contribute towards the internal load. In 

practice, the lighting and equipment load is often evaluated by using an index that is normalized by the 

floor area, known as lighting and equipment power density. These power density value would change based 
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on internal load schedule, appliance and building type. On the other hand, the occupant load is related to 

occupancy and metabolic rate. The metabolic rate associated with each activity can be found in ASHRAE 

Standard 55 (2020) and the number for occupants at a given instant of time will be based on the occupancy 

schedule. 

The occupant activities and behaviour are identified to be a significant contributor in the variation of energy 

consumption among different building types. It is also a cause of large uncertainty in the prediction of 

building energy consumption (Yan et al., 2015). In building energy use prediction, a general pattern is seen 

where the occupancy data is substituted with building or equipment schedules. For instance, to mimic the 

presence of occupants in building, Kwok et al. (2011) used the power consumption of primary air handling 

units as occupancy data. The practice of equating the operation of air-conditioner to occupancy schedule 

would not be suitable for a residential building, where the AC operation is depended on occupant behaviour. 

Li et al. (2007b) found that the electricity requirement for cooling in 25 households within a large residential 

building located in Beijing varied widely despite sharing a similar building envelope. The study found out 

that the discrepancy was associated with variation of operating mode of the split-type air-conditioning 

system.  Mui and Wong (2007a) showed that there would be a variation of 1-5 % in cooling load capacity 

with the integration of a time varying occupant load profile in an office building located in Hong Kong.  

In building performance simulation tools, the occupant profile is mimicked in a static manner (Hoes et al., 

2009). However, the dynamic interaction of occupant with its indoor environment should be modelled 

stochastically or probabilistically. A study found that there is a high inter-individual variation in occupancy 

for four office buildings located in Austria (Mahdavi et al., 2008). It is also observed that time of presence 

and absence of occupants within the indoor environment is significant in the dynamic interaction of 

occupants with building. Wong and Mui (2006) conducted a survey of 720 households in Hong Kong to 

evaluate the occupant load variation. Based on the survey, they proposed that the number of occupants at a 

given time could be estimated from the multiplication of hourly occupant load variation factor and 
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maximum number of occupants as shown in Equation 2.6. This probabilistic approach could aid in 

determining the variation of hourly cooling energy consumption within a residential building.  

𝑁𝑘 = 𝑁𝑚𝑎𝑥𝜑𝑘        𝑤ℎ𝑒𝑟𝑒 𝑘 = 0,1,2,3 … … .23 ℎ𝑜𝑢𝑟 

The air-conditioner schedule should also be subjected to variation as seen in occupancy pattern as it is 

dependent on an individual’s behaviour, physical and socio-economic factors. Schweiker and Shukuya 

(2009) analysed the AC operation pattern based on occupant’s choices. The study noted preference of 

operation and demographic factors as influencing factors amongst few others. The preference is the choice 

of an individual to be in an air-conditioned space, whereas demographic factors would be the income, age, 

gender, and others related to an individual. Further, a study also showed the influence clothing on the 

cooling energy consumption. 

In building energy estimation simulation tools, the common practice to represent the AC operation is in 

terms of time or other factors such as indoor set-point temperature, occupant schedule, etc. However, it is 

often challenging to implement a schedule that would imbibe the occupant behavior. A regression approach 

considering two or three factors to determine the status of air conditioner have been used previously. One 

typical example is the model developed by Kempton et al. (1992) where an outdoor temperature and hour 

of the day was used to predict the air conditioner status. Schweiker and Shukuya (2009) also followed a 

similar approach, although used different factors such as mean value of outdoor temperature, occupants’ 

preference, and some other factors to predict the status. A promising approach was proposed by Ren et al. 

(2014) where AC usage was determined based on conditional probability analysis. Although, the approach 

is flexible with respect to simulation time, it was rendered difficult to implement for large scale simulation. 

A simpler probabilistic approach-based AC operation scheduling method is recommended. 

2.3 Existing prediction methodologies 

In the section 2.2, the impact of the relationship between influencing parameters and building cooling 

energy consumption was presented. This section discusses the method of evaluating this relationship, which 

(2.6) 
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is the most important factor in confirming that the prediction is accurate. The building attributes, equipment 

and systems, weather, and occupants are influential factors that all play a role in the complicated 

relationship between energy performance and buildings (Asadi et al., 2014). In the past 30 years, numerous 

simulation models and energy prediction tools, each using a unique approach, have been developed to 

forecast the amount of energy used in buildings. A brief discussion of these approaches will be given in this 

section. 

2.3.1 White-box models 

The white box model is an engineering-based building energy prediction method in which the inner aspects 

of building physics are apparent. It's the only method that doesn't require past energy data. The appliance 

ownership and usage patterns can be utilised to forecast end–use consumption. White box models will do 

extensive dynamic building simulations using physical relationships like heat transfer or thermodynamics. 

Although, developing these equations is hard, and manual calculation is time-consuming. Thus, Engineers 

are developing computer simulation tools to enhance simulation time and accuracy (Crawley et al. 2008, 

Coakley et al. 2014). The inability to forecast behaviour and extended model building and simulation time 

are limitations of this simulation approach. This section will briefly overview the available models, their 

applications, and their advantages and disadvantages.  

2.3.1.1 Analytical methods 

Over the years, different approaches have been adopted to perform building energy analysis, and these 

approaches can be classified into steady-state and transient models (Boodi et al., 2022). These approaches 

use physical principles to determine the thermal dynamics and energy behaviour within buildings or sub-

level components. The degree-days method is a steady-state method representing a simplified way to 

determine the building energy consumption (Al-Homoud, 2001). It is primarily based on the assumption 

that energy consumption is proportional to external and internal temperature differences. The monthly 
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energy consumption Em can be calculated as shown in Equation 2.7, assuming a global building 

transmission coefficient H (De Rosa et al., 2014).  

𝐸𝑚 =  
𝐻 ∗  𝐷𝐷𝑚 ∗ 𝑡ℎ

𝜂ℎ𝑠/𝑐𝑠
 

where th heating time in a day, 𝜂ℎ𝑠/𝑐𝑠 represents the efficiency of the equipment, and DDm is the total heating 

or cooling degree days of a month. To perform the heating and cooling calculations, the degree days can be 

estimated through Equations 2.8 and 2.9,  

𝐻𝑒𝑎𝑡𝑖𝑛𝑔: 𝐷𝐷𝑚 =  ∑(𝑇𝑏,ℎ𝑠 − 𝑇𝑒,𝑑)
+

𝐷𝑚

𝑑=1

  

𝐶𝑜𝑜𝑙𝑖𝑛𝑔: 𝐷𝐷𝑚 =  ∑(𝑇𝑒,𝑑 − 𝑇𝑏,𝑐𝑠)
+

𝐷𝑚

𝑑=1

 

where 𝑇𝑒,𝑑 stands for the mean of maximum and minimum daily external temperature of a day d, 𝑇𝑏,ℎ𝑠 

represents the base temperature for heating and 𝑇𝑏,𝑐𝑠 represents the base temperature for cooling. The + 

sign indicates that only the positive values are considered for summation. Based on the external 

temperature, different approaches can be adopted to determine the degree days (Al-Homoud, 2001). An 

application of this method can be seen in (Büyükalaca et al., 2001).  

The overall thermal heat transfer value (OTTV) used to be a popular index to determine the thermal 

performance of buildings (Chan and Chow, 1998, ASHRAE Standard 90-75, 1975). It was a suitable 

method applicable to buildings in hot climates as it accounts for average heat gain into the building through 

the envelope.  It has three major components, namely, (a) conduction through opaque walls, (b) conduction 

through window glass, and (c) solar radiation through window glass (Hui, 1997). The two equations that 

are used to estimate the OTTV value for wall OTTVwl, and roof OTTVr are expressed as shown in Equation 

2.10 and 2.11,   

(2.7) 

(2.8) 

(2.9) 
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𝑂𝑇𝑇𝑉𝑤𝑙 =
(𝐴𝑤𝑙 × 𝑈𝑤𝑙 × 𝑇𝐷𝑒𝑞𝑤) + (𝐴𝑤𝑑 × 𝑆𝑐 × 𝑆𝐹) × (𝐴𝑤𝑑 × 𝑈𝑤𝑑 × ∆𝑇)

𝐴𝑒
 

𝑂𝑇𝑇𝑉𝑟 =
(𝐴𝑟 × 𝑈𝑟 × 𝑇𝐷𝑒𝑞𝑟) + (𝐴𝑟𝑓 × 𝑆𝑐 × 434.7) × (𝐴𝑟𝑓 × 𝑈𝑟𝑓 × ∆𝑇)

𝐴𝑟 + 𝐴𝑓
 

where Awl, Awd, Ae, Ar, and Arf are the area of the opaque wall, window, external envelope, roof, and 

fenestration at the roof, Uwl and Ur are the thermal transmittances of wall and roof, TDeqw and TDeqr are the 

equivalent temperature difference of wall and roof, Sc is the shading coefficient, SF is the solar factor, ΔT 

is the difference between indoor and outdoor temperature. Yang et al. (2008) utilized the OTTV approach 

to study the effect of building envelopes based on different climate zones in China. The steady-state 

modelling techniques have found their application in determining building energy performance owing to 

their simple and fast calculation approach. One of the major limitations of this approach is that the inertia 

of the building envelope is neglected (De Rosa et al., 2014). Moreover, newer technologies such as free 

cooling (Brun et al., 2013, Rouault et al., 2013) and phase change materials (Zhou et al., 2012, Álvarez et 

al., 2013) that exploit the building inertia cannot be analyzed with a steady state approach. Furthermore, 

ASHRAE abandoned the usage of OTTV in 1989, where the reliability of using thermal transmittance to 

quantify the thermal storage effects in the envelope was criticized (Wilcox et al., 1985). Also, the emergence 

of building energy simulation software for building energy analysis has proven to have better efficiency 

and flexibility with respect to the physical index (Hui, 1997).  

2.3.1.2 Simulation programs for building energy analysis 

The whole building energy simulation software, such as EnergyPlus, TRNSYS, Dymola, etc., solves the 

thermodynamic equilibrium and heat transfer equations to model the dynamic thermal behaviour of 

buildings. These are developed on a multizone or nodal approach, where the whole building or one room is 

divided into segments, with each segment represented through a node (Pedersen, 2007, Clarke, 2007). This 

approach assumes that the building zone is a homogenous volume zone with uniform state variables. The 

energy conservation equations are applied on each node, and the whole nodal network is solved 

(2.10) 

(2.11) 
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simultaneously. The nodal approach can model the behaviour of multiple zone building over a considerable 

time. Also, it is a well-suited approach to determine the energy consumption and time evolution of space-

averaged temperature in a room (Foucquier et al., 2013). These building energy simulation tools are also 

known as the white box method, as the inner aspects of building physics adopted for building energy 

modelling are evident (Mui et al., 2021). 

Over a hundred simulation software can be utilised to model the building energy, as summarised by the US 

Department of Energy (DOE, 2021a). Crawley et al. (2008) discussed the performance of the commonly 

used building energy simulation tools and confirmed their capability to do a detailed energy analysis. Li 

and Wen (2014) explained these programs' simulation and data flow procedures, as shown in Figure 2.1. 

The input parameters of building characteristics (geometry, material, and zones), system description 

(HVAC, operation schedules, ventilation rate, and set-point), and component description for the internal 

load can be estimated from existing or pre-construction phase buildings. The weather data can be extracted 

from the regional weather observatory. The simulation engine comprises various mathematical equations 

to simulate the building operation and estimate the energy consumption. The output from the engine can be 

extracted based on specific needs such as hourly envelope heat gain, the peak load of a zone or zones, etc. 

 

Figure 2.1 Data flow and procedure in a simulation model (Li and Wen, 2014) 
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A review by Nguyen et al. (2014) revealed that EnergyPlus is the most famous building energy simulation 

tool for building optimisation, followed by TRNSYS and DOE-2. EnergyPlus is an open-source program 

developed by the United State Department of Energy based on the nodal approach (DOE, 2021b). Owing 

to its fast simulation speed and precise energy consumption estimations, it is widely used to calculate and 

analyse the energy consumption of buildings and systems (Trčka and Hensen, 2010). A case study done by 

Westphal and Lamberts (2005) revealed the prediction capability of EnergyPlus by showing that the annual 

electricity consumption was only 1% lower than the actual value. Fumo et al. (2009) showcased the ability 

of EnergyPlus to analyse the combination of cooling, heating, and power systems. The EnergyPlus program 

is considered superior in terms of variable time steps and user-configurable modular system compared to 

its predecessor models, BLAST and DOE-2 (Crawley et al., 2001). Since these programs are based on 

physical principles, the input-output relationship is explainable. It can also be used in various buildings and 

even on an urban scale. Hence it has universality. Moreover, these simulation program doesn’t necessitate 

the collection of historical data for energy consumption prediction. A virtual building can be simulated by 

collecting the required information, such as building construction and material properties (Yu et al., 2022). 

However, these programs are also attributed with a few drawbacks. These tools would prove inefficient in 

conducting energy estimation for many buildings, as it would be challenging to collect the data of all the 

facilities that need to be analysed (Yu et al., 2022). Further, the model construction for energy estimation 

would be complex, and it would restrict the usage to only personnel with high expertise (Mui et al., 2022). 

2.3.2 Data-driven approaches (Black Box model) 

The data-driven approaches are based purely on data or statistical methods for prediction. Regression, 

support vector machines (SVM), and artificial neural networks (ANN) are commonly used models. These 

approaches have been widely used in building energy consumption prediction, and they can do so without 

any knowledge of the building physics involved. Thus, these approaches are also known as black box 

models. A basic overview of the application of each method in building energy prediction is given in this 

section. 
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2.3.2.1 Statistical regression 

The statistical regression models are primarily used to correlate energy consumption with influencing 

variables. The utilisation of these empirical models necessitates the generation or collection of historical 

data. A review done by Zhao and Magoulès (2012) classified the use of statistical models into three main 

areas: (a) Identification of essential parameters in energy consumption, (b) energy prediction with few 

simplified variables, and (c) prediction of performance with energy index. 

The linear regression was introduced by Sir Francis Galton (Galton, 1886) in 1886, and its first application 

to predict energy consumption in buildings was seen in (Parti and Parti, 1980). Parti and Parti (1980) 

developed a new method with linear regression, conditional demand analysis (CDA), a linear multivariate 

regression technique used for building energy forecasting. Lafrance and Perron (1994) used the CDA 

method as a signal-processing tool to determine the evolution of residential electricity demand at a regional 

level. In contrast, Aydinalp-Koksal and Ugursal (2008) used it to estimate the end-use energy consumption 

at the national level. Mastrucci et al. (2014) developed a geographical information system (GIS)-based 

multiple regression model to evaluate the energy-saving potential of retrofit options such as window 

replacement, envelope insulation, and HVAC upgrade for building stocks at the city scale. The method was 

simple and could provide quick energy consumption prediction. 

The technique has been used to evaluate the relationship between one or two variables, such as climatic 

conditions and building characteristics, with the building energy demand. Wong et al. (2008) utilised a 

multivariate regression model to predict the building fabric load in office buildings located in Hong Kong. 

A study by Amiri et al. (2015) using the multiple regression analysis concluded that out of the 17 building-

related parameters, occupancy schedule and exterior wall construction strongly influence building energy 

consumption. Ciulla and D'Amico (2019) used a multiple linear regression (MLR) method to forecast 

building energy performance. An energy database was created by running 1560 simulations, and important 

parameters influencing the thermal balance during heating and cooling were identified based on the Pearson 

coefficient. Utilising the MLR method, a linear relationship between a few model input parameters and 
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response variable was established through the fitting procedure. Simple correlations were obtained from a 

few well-known parameters to determine the heating and cooling energy demand.  

The regression model has found its applicability in evaluating the building energy consumption based on 

the energy index. A multiple regression model benchmarked energy efficiency by developing a relationship 

between the energy-use intensities (EUIs) index and explanatory factors such as operating hours (Chung et 

al., 2006). A Principal component analysis (PCA) on the weather condition of a sub-tropical region was 

conducted in (Lam et al., 2010), and a climatic index Z based on dry bulb temperature, wet bulb temperature, 

and solar radiation was developed. The correlation between building energy use and simulated cooling load 

with climatic index Z was done using the regression model. Wu et al. (2020) utilised a linear regression 

model to predict the energy consumption index of multifunctional areas. The energy index from different 

functional sectors would evaluate the overall energy consumption within buildings. 

However, the multiple regression models are associated with a few limitations, such as the inability to 

model non-linear problems, lack of flexibility, and difficulty managing multicollinearity within prediction 

results (Foucquier et al., 2013).  

2.3.2.2 Support vector machines 

Vapnik and his co-workers (Boser et al., 1992) developed a supervised algorithm for classification in 1992, 

which evolved into the Support Vector Machines (SVM) that we know today (Cristianini and Shawe-

Taylor, 2000). It also finds extensive application in forecasting and regression problems besides 

classification. They are considered to be highly effective in modelling non-linear problems with relatively 

lesser training data (Zhao and Magoulès, 2012). In this approach, by utilising a kernel function, the input 

space containing input data is mapped into high dimensional feature space through a non-linear mapping 

method to perform linear regression (Li et al., 2009). One of the limitations of SVM is selecting the 

appropriate kernel functions, as it is mainly accomplished based on the data characteristics and user 

experience. The SVM method has broad applicability in building energy forecasting. Dong et al. (2005) 
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were the first to utilise an SVM approach for building energy consumption prediction by training the SVM 

model with three years of monthly electricity bills. The model exhibited good prediction performance too. 

Shao et al. (2020) utilised an SVM approach to predict the energy consumption of hotel buildings. Weather 

conditions and HVAC system operation parameters were used as the model’s input variables. They 

provided insight into the actual energy usage and suggested potential improvements in building operations 

to reduce energy consumption. A comparative study was done between SVM and autoregressive integrated 

moving average model (ARIMA) in the estimation of the cooling load of the HVAC system. It was reported 

that SVM had better prediction performance than ARIMA (Hou and Lian, 2009).  

2.3.2.3 Artificial neural network 

An artificial neural network was conceived from generalising biological neural connections in the human 

brain to mathematical models. An ANN often comprises one or more hidden layers sandwiched between 

the input and output layers. The layers are connected through several neurons that receive signals or 

information from the preceding neuron and propagate this signal with a weighting factor. The weighted 

sum received at the hidden layer from its preceding layer would be summed as a net value to transform it 

into an output value using appropriate activation functions (Mui et al., 2022). There are several learning 

algorithms linked to a neural network, such as a back propagation neural network (BPNN), general 

regression neural network (GRNN), recurrent neural network (RNN), and fuzzy neural network (FNN). 

However, backpropagation is the most widely used learning algorithm in building energy prediction 

(Ekonomou, 2010). 

The technology advancements in the last two decades have aided neural networks in finding applications 

in various fields such as aerospace, manufacturing, energy, buildings, etc. ANN is widely used in the 

building sector during different stages: conception, control optimisation, prediction of energy consumption, 

retrofitting, and performance evaluation (Ahmad et al., 2018). Numerous variables can influence the energy 

consumption associated with buildings, and these variables would have complex non-linear multivariate 

interrelationships among them. With its inherent ability to model non-linearities without any time lag, ANN 
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is beneficial in forecasting building energy consumption. Moreover, ANN is a very robust, noise-immune 

system (Runge and Zmeureanu, 2019). ANN is also superior in simulation speed compared to its physical 

simulation counterparts for prediction (Liu et al., 2019). 

ANN can predict building energy consumption for short-term or long-term loads. At the same time, it can 

indicate the energy consumption for an individual apartment or entire building or block of buildings or at a 

city scale. A study by Mena et al. (2014) for predicting short-term electricity demand suggested that outdoor 

temperature and solar radiation were the most important variables influencing building energy 

consumption. Similarly, a short-term building energy demand model was developed by Chae et al. (2016). 

Mihalakakou et al. (2002) developed a neural network to predict the hourly energy consumption of a 

dwelling in Greece. However, as dates were not used as an input variable in the study, it limited its 

applicability to predict annual energy demand change. Utilizing the short-term energy data, an ANN model 

predicted the yearly heating demand of buildings with high prediction accuracy (Olofsson and Andersson, 

2001). Aydinalp et al. (2002) used the ANN model trained on data from 1993 household energy use and 

weather database to predict the residential cooling energy consumption at the national level. Ekonomou 

(2010) conducted a long-term energy consumption prediction of Greece utilizing the artificial neural 

network. The model was termed effective in implementing energy policies in Greece.  

Based on a study conducted by Chou and Bui (2014) to predict the heating and cooling demand using data-

driven approaches, it was shown that ANN and support vector regression (SVR) would have better 

prediction accuracy compared to other statistical techniques. Ahmad et al. (2017) employed the ANN and 

random forest (RF) technique to predict the hourly electricity consumption of the HVAC system. In the 

study, ANN provided superior performance compared to random forest. A study by Farzana et al. (2014) 

used six prediction models for the energy forecast of residential buildings. It was concluded that ANN had 

higher precision than the other five prediction models: first-order differential grey model, second-order 

derivative grey model, regression model, polynomial model and polynomial regression model. Aydinalp-

Koksal and Ugursal (2008) utilized ANN, conditional demand analysis (CDA) and an engineering model 
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to predict the national-level residential end-use energy consumption, in which ANN produced better 

prediction results than the other two. In a study by Neto and Fiorelli (2008) to predict building energy 

consumption under different climatic conditions, ANN and EnergyPlus exhibited similar prediction 

accuracy.  

Despite the several advantages attached to ANN for providing an accurate prediction accuracy for building 

energy consumption, it also has a few limitations. The data-driven approaches such as ANN for energy 

consumption prediction rely heavily on data. The new buildings with no historical data and old buildings 

with no advanced building automation system remain challenging in the growth and development of data-

driven approaches due to the insufficiency of quality data (Li et al., 2021). ANN is also associated with 

poor generalization capability for unseen data beyond its training range, thus limiting the trained neural 

network models to a specific range (Foucquier et al., 2013, Amasyali and El-Gohary, 2018). The prediction 

performance of neural networks is also greatly influenced by the database used for training the neural 

network, where data inadequacy or insufficiency can significantly degrade its implementation (Paudel et 

al., 2014). Moreover, one of the significant limitations of neural networks is that underlying physics is often 

opaque and hence the interpretability of input-output is difficult (Mui et al., 2022).  

2.3.2.4 Summary of black box models 

The statistical tools discussed in this section exhibit significant advantages regarding simulation time, 

accuracy, robustness, and flexibility for building energy consumption forecasting. Considering the various 

statistical tools listed in the above sections, the easiest statistical tool for prediction is the linear regression 

model. It can provide good prediction performance and doesn’t require high expertise for its 

implementation. However, it is limited by its inability to model non-linear problems. However, this 

shortcoming can be overcome by utilizing a support vector machine or artificial neural network. The 

support vector machine can work efficiently with non-linear problems and provides good prediction 

capability with relatively fewer data. However, the choice of the kernel function in the model is purely 

based on the data characteristics and user experience. A wrong choice of kernel function can significantly 
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impact the learning and generalization ability of the model. Additionally, SVMs are associated with a high 

computational burden compared to ANN. On the other hand, ANN can easily handle non-linear multivariate 

problems and can provide prediction without a significant time lag. It can also work with noisy data, as it 

is noise immune. ANN has been used more widely for building energy prediction than other statistical tools. 

ANN models don’t need any starting hypothesis. However, the model lacks interpretability in the input-

output relationship as it functions as a black box. Further, it relies primarily on the completeness of data, 

where any inadequacy or insufficiency can lead to massive degradation of its performance. ANN is also 

associated with a lack of generalization capability for parameters falling outside its training range, 

restricting its use as a design exploration tool. In short, each tool has its advantages, disadvantages and 

limitations and the choice of tool to be used is purely at the user’s discretion and the targeted outcome to 

be achieved. 

2.3.3 Hybrid methods (Grey box model) 

As discussed in earlier sections, physical simulation and statistical tools used for building energy prediction 

have inherent advantages and drawbacks. The hybridisation of these tools would result in the development 

of an improved tool for energy prediction that would embrace the strength and expel individual 

shortcomings. The hybrid approach follows a two-step development process wherein a physical model is 

utilised to represent buildings' physical and operational characteristics and its associated system with energy 

consumption. After that, by identifying and quantifying the key parameters through statistical analysis, the 

model will be enabled to provide good energy consumption estimation. 

Hygh et al. (2012) utilized Monte Carlo simulation to conduct a building design space exploration and 

estimated the annual energy consumption of each design instance using EnergyPlus (EP). The resulting 

dataset from Monte Carlo simulation is utilized to develop a multivariate linear regression model. They 

suggested this regression model would be an effective tool compared to the usage of a detailed energy 

simulation model during early design stage to predict the influence of key parameters on building energy 

consumption. A similar study was done by Asadi et al. (2014) to predict the energy consumption of 
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commercial buildings. The DOE-2 building energy simulation software was utilized within the Monte Carlo 

framework to predict the energy consumption for each design instance. Building materials, building shape, 

orientation and occupant schedule was utilized as input parameters. The building energy dataset created 

through the Monte Carlo simulation was utilized to conduct the multi-linear regression analysis. The 

regression model will act as a pre-diagnostic tool to predict the energy performance within office buildings. 

Thus, hybrid approach provides a fast design space exploration strategy to identify the key variables 

combinations in a cost-effective manner.  

Valovcin et al. (2014) developed a hybrid model by modelling the energy consumption from 1250 building 

through building energy simulation (BES). The output from BES was utilized as an input for the multiple 

linear regression model to post process the results of building physics based tool. Brøgger et al. (2019) 

noted that assessment of energy saving potential necessitate accurate estimations, usually obtained through 

building physics-based approaches. However, due to lack of data compels users to take normative 

assumptions leading to biased estimations. In order to overcome the limitations within traditional buildings 

physics-based approaches, a regression-based hybrid modelling approach was developed to predict the 

energy saving potential of Danish building stock. The statistical part of the hybrid model was based on 

multiple linear regression model. These are good examples of physics-based data-driven models. Another 

version of hybrid method includes data-driven based physical methods. One of the typical example of this 

approach is the Canadian hybrid residential end-use energy and emission model (CHREM) developed by 

Swan et al. (2013). It is a hybrid model that models the district hot water (DHW), appliance and lighting 

end-uses in a statistical tool and uses this an input for the building physics-based model. Although such a 

model would automatically model the usage profile, few parameters such as indoor temperature and air 

change rates remained uncertain.  

The combination of statistical approaches is another hybridizing technique to forecast the building energy 

consumption. Zhang et al. (2020a) utilised a hybrid method composing of long short-term modelling 

(LSTM) and artificial neural network to predict the short-term building energy load. The operation data of 
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a public building in Shenzhen, China and outdoor meteorological data were obtained to develop the hybrid 

model. Fourier transform is used to identify the intrinsic periodicity of cooling loads and based on the 

analysis; the maximum time lag is set as 24 hours in the study. The time lag measurements with time lags 

shorter than the intrinsic period is fed into the LSTM network to extract new features. These new features 

are then utilized to train an ANN for making the building cooling energy prediction. The results of study 

indicated that for one-hour-ahead cooling prediction, the hybrid model has better prediction accuracy 

compared to the conventional prediction methods.  

With the similar intentions to improve the prediction capability, a hybrid method was developed by Yan et 

al. (2018), combining LSTM and convolutional neural network (CNN) to forecast the energy consumption 

within a single household. The CNN is added as pre-processing stage in the hybrid method to extract useful 

features from the original data and convert the univariate data into multidimensional convolution. These 

are then utilized to train the LSTM network in the hybrid method to forecast the energy consumption. The 

results of RMSE, MAE and MAPE indicated that the hybrid method deep learning model outperformed the 

standalone prediction models such as ARIMA, SVR, and LSTM. 

Amasyali and El-Gohary (2022) developed a hybrid machine learning model that learns from simulated 

data as well as real data. It basically consisted of three machine learning models: a machine learning model 

to predict the hourly values of occupant-behaviour factor, another machine learning model to predict the 

hourly values of weather factor and lastly, an ensemble model that would predict the hourly cooling energy 

consumption by utilizing the prediction from other two machine learning models. The good results of root 

mean square error (RMSE) and coefficient of variation (CV) showed that is a promising approach for 

building energy prediction. 

2.4 Optimization 

Optimisation methods have profound use in building energy-related applications. The methodology can be 

utilised to conduct design exploration by evaluating different design solutions iteratively by performing 

fewer simulations with respect to traditional parametric studies. This would result in a significant reduction 
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in computational time and cost compared to the conventional approach. This section will discuss the 

application of optimisation strategies in building energy prediction. 

The simplex and non-random complex methods were applied by Bouchlaghem and Letherman (1990) to 

reduce the discomfort level by variation of fabric properties. Al‐Homoud (1997) utilized simplex and non-

linear programming methods to optimise energy consumption. The design variables to be optimised were 

fabric properties, shape, and orientation of buildings. In a later study, Al-Homoud (2005) utilised the 

Nelder-Mead method to minimise energy consumption through variations in fabric properties. Based on a 

dynamic thermal model in the Passive House Planning Package, Leskovar and Premrov (2011) used a brute 

force search method to vary the glazing area to minimise energy consumption. Despite the capability to 

model dynamic effects, the simulation program was limited to domestic buildings. Moreover, the brute 

force method is computationally expensive, which would limit the number and resolution of variables. A 

similar conclusion was made by Bambrook et al. (2011) while using the brute force method to determine 

the optimal house model based on the life cycle cost analysis.  

Such issues can be addressed by the utilisation of meta-heuristic algorithms. Nguyen et al. (2014) analysed 

200 papers on building energy optimization and identified the optimizer engines utilised in each. Genetic 

algorithm and particle swarm optimization were recognised as the most used optimization algorithm, 

indicating their efficiency and reliability. Similarly, Evins (2013) reviewed the computational optimization 

methods used in building design to find that genetic algorithm was the most used optimization algorithm. 

Further, it was indicated in the review that most studies were focussed on minimizing the energy use by 

optimizing the building envelope. A genetic algorithm was implemented by Coley and Schukat (2002) to 

minimise energy use. The novelty of the study was attributed to the combination of GA with human 

judgement. The optimal or sub-optimal solutions could be accessed visually, enabling one to make a choice 

based on an individual’s preference. A study was done by Tuhus-Dubrow and Krarti (2009) to compare the 

performance of GA, particle swarm optimisation (PSO) and sequential search in the design of residential 

building envelope. GA was identified as the best choice when there were more than 10 parameters to be 
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optimised. Further, they utilised GA to optimise nine construction and two shape parameters to reduce the 

life cycle cost (Tuhus-Dubrow and Krarti, 2010). Similarly, Sahu et al. (2012) utilised GA and the 

admittance method to minimise the energy consumption associated with an air-conditioned building located 

in a tropical climate by variation in the selection of construction.  

A single-objective optimisation study was conducted for a residential building to determine its life cycle 

cost by varying the envelope and HVAC system. A comparison was made between GA, PSO, and sequential 

search for their robustness and effectiveness. The sequential search was identified to be performing poorly 

with regard to computational effort. Also, while taking a holistic approach to optimising the envelope and 

system separately, the former proved more effective (Bichiou and Krarti, 2011). The influence of variation 

of shading and geometry (for a constant floor area) to minimise energy use was investigated with a GA for 

a degree-hour calculation by Znouda et al. (2007). A simple simulation method was employed with only 

one climatic condition. A similar study was conducted with a multi-objective genetic algorithm (MOGA-

II) to minimise energy use by optimising the depth and angle of shading for diverse glazing options. In this 

study, the energy simulations were done by utilising the building simulation software ESP-r and Radiance 

with a Mediterranean climatic condition (Manzan, 2014). Ferrara et al. (2015) studied a classroom to reduce 

heating, cooling, and lighting energy use with TRNSYS. The energy demand was then optimized by using 

a genetic algorithm integrated with the TRNSYS software. 

Holst (2003) adopted the weighted sum approach to minimise the multi-objectives (energy use and 

percentage of people dissatisfied) using the Hooke-Jeeves method. The window area, type and thermal 

properties were used as design variables, whereas the annual hourly simulation was conducted in 

EnergyPlus. To analyse the trade-off between energy consumption and the life cycle cost of a typical single-

family house located in the United States, Fesanghary et al. (2012) combined the harmony search method 

with a building simulation tool (EnergyPlus) to find the optimal building envelope design that minimises 

the objectives. With the identification of the Pareto optimal solutions, a better understanding of the trade-

off relationship between economic and environmental performance becomes possible. In a recent study, 
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Delgarm et al. (2016) attempted to integrate EnergyPlus with the multi-objective particle swarm 

optimization method. Building-related parameters such as orientation, shading, window size, glazing, and 

wall material qualities were chosen as effective and variable parameters. It was demonstrated that by 

adopting a reliable and robust simulation tool, significant reduction in cooling, heating, lighting, and total 

energy use can be achieved. Possibly the first multi-objective optimisation study addressing the issue of 

glare was conducted by Gagne and Andersen (2012). The MOGA approach was utilised in their study to 

maximise illuminance and minimise glare. 

To investigate the potentials of parametric design optimization in sustainability of residential buildings, a 

closed-loop framework was developed by Toutou et al. (2018) to optimize building parameters such as 

WWR, construction material, glass material, and shading device. The optimization framework involves a 

model, simulation, and the optimization evaluation that is performed automatically in a single canvas. In 

this framework, many software and simulation engines were involved. The parametric modelling is done 

in Grasshopper, whereas the ladybug and honeybee served as a platform for building performance 

simulation. Energy simulations is conducted in Energy plus and OpenStudio, while the daylighting 

simulation is performed via Radiance and DaySim. After parametric modelling and simulation, genetic 

algorithm can optimize solutions using via Octopus plug-in that supports multi-objective optimization. 

Finally, the optimum solution that provides best daylighting and energy performance is identified through 

the proposed framework. 

ANNs in building energy prediction encounter three basic issues. First, ANNs initialise randomly, resulting 

in a local optima and unstable performance during training. Hence, the weights and biases must be adjusted 

more reasonably. Second, it's hard to choose ANN inputs, such as the amount of energy-related variables 

and the length of historical energy values. Third, setting hyper parameters is a time-consuming operation 

in deep learning. The number of layers, neurons, epochs, optimizers, and activation functions affect 

prediction performance. To solve these difficulties, ANNs must optimise weights and biases, input 

characteristics, and hyper parameters (Lu et al., 2021).  
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BPNN was used by Yokoyama et al. (2009) to estimate the cooling demand of a building, and they utilized 

a global optimization method termed the "Modal Trimming Method." This method helped them to identify 

the model parameters and enhance the prediction performance. Moazzami et al. (2013) developed a GA-

ANN model for daily peak load forecasting in Iran in 2013. The wavelet decomposition method was used 

to extract the low and high frequency components from the database. In contrast to single data-driven 

models, this study utilized two separate data driven models to which the low and high frequency data were 

separately fed. The two ANN were then trained upon these data by utilizing an evolutionary algorithm 

namely, GA. After testing the trained ANN, each ANN would predict the low and high frequency peak 

loads. The wavelet reconstruction of low and high frequency would generate the final forecasted peak load. 

The outcomes of the study demonstrated the efficiency and benefits of the hybrid technique. 

A study by Gu et al. (2018) pointed out that it is essential to take into account the influence of indoor 

temperature and thermal inertia of a building along with the outdoor temperature in the prediction of heat 

load. The prediction of heat load is carried out by utilizing four models, namely, wavelet neural network 

(WNN), extreme learning machine (ELM), support vector machine (SVM) and back propagation neural 

network optimized by a genetic algorithm (GA-BP). The study indicated that GA-BP model performed 

better compared to the WNN higher prediction accuracies. The weight and biases associated with the back-

propagation algorithm was optimized by the GA. 

Luo et al. (2020) developed an integrated artificial intelligence-based approach comprising of feature 

extraction, evolutionary optimization, and an adaptive DNN model to predict the week ahead energy 

consumption in buildings. A deep neural network (DNN) with several hidden layers is used to show the 

intricate relationship between multiple influencing elements and building energy usage. Patterns of daily 

weather data is extracted through clustering and yearly profile was grouped into multiple clusters. 

Consequently, each cluster's datasets with their own characteristics was utilised to train a DNN submodel. 

Utilizing a genetic algorithm (GA), the ideal architecture of DNN sub-models for each collection of datasets 

is determined by choosing the optimal number of hidden layers, number of neurons in each hidden layer, 

https://www.sciencedirect.com/topics/engineering/extreme-learning-machine
https://www.sciencedirect.com/topics/engineering/support-vector-machine
https://www.sciencedirect.com/topics/engineering/backpropagation
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activation function, and training strategy. Therefore, the architecture of the predictive model was made 

inherently adaptive. 

A research study developed an expert ANN trained using a backpropagation algorithm to predict the heating 

energy consumption of a shelter in a cold area of Iran. Honeybee, Ladybug, and Galapagos add-ons for the 

Rhino/Grasshopper software were used to analyse the energy use of the models. The ANN-BP was then 

simulated using a total of nine input shelter parameters (wall thickness, wall U-value, Wall R-value, 

Window U-value, Window R-value, Number of occupants, Area, Equipment load, infiltration rate). In 

addition, particle swarm optimization (PSO) and grey wolf optimization (GWO) techniques increased the 

training performance of the ANN-BP models. Furthermore, various sensitivity tests were conducted on the 

best ANN model using the garson algorithm. Finally, the Galapagos (based on genetic algorithms) and 

Silvereye (based on particle swarm optimization) plug-ins were used to optimise the energy usage of the 

proposed models (Keshtkarbanaeemoghadam et al., 2018). 

ShangDong and Xiang (2006) created a novel ANN algorithm that incorporates Chaotic PSO (CPSO). The 

primary purpose of this combination is to increase load forecasting performance. In comparison to PSO-

ANN and GA-ANN, the CPSO method demonstrated better searching efficiency and quality. It also proved 

to be superior in short term load forecasting compared to PSO-ANN and GA-ANN. Niu et al. (2010) utilized 

the ant colony optimization (ACO) with neural networks to forecast power load. In the study, an RBF neural 

network was integrated with the ACO, and it was compared with GM (1, 1), GM (1, 1, 0), and ARIMA 

using absolute average error. The ANN–ACO exhibited the lowest absolute average error of 1.139%, 

compared to GM (1,1) (2.339%), GM (1,1,0) (1.257%), and ARIMA (2.04%). 

2.5 Summary 

Thermal energy demand contributes significantly to building energy costs. This chapter discusses building 

thermal energy evaluation factors and methods, focusing on building cooling energy use. Materials, 

construction, climate, cooling systems, interior loads, and occupant behaviour are influential factors that 

affect building thermal energy use. Since building envelope heat gain is the main heat source, building 
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materials and construction designs have a large energy impact. Outdoor climatic variables affect building 

cooling energy use by altering heat transfer to internal spaces. Raising the indoor temperature set–point is 

regarded as the most effective strategy for minimising future cooling energy usage. 

The building cooling system may affect space heat rejection relative to cooling needs. Indoor temperature 

set–points, system COP, and infiltration and ventilation rate are essential. Adjusting the temperature set–

point can affect cooling energy usage, although the desired neutral temperature varies by living 

environment. A set COP for a residential air conditioner may not accurately reflect system performance. A 

dynamic approach with COP dependent on a sensible heat ratio can override this shortcoming. Equipment, 

lighting, and people contribute to a building's internal heat load. The first two are expressed as power 

density normalised by floor area, while the third is based on occupant activity level and the design internal 

load schedule. Energy performance evaluation emphasises tenant behaviour, especially in residential 

buildings. Occupancy and air–conditioning in occupied spaces is directly connected. In building energy 

simulations, a fixed schedule altered by time or preferred condition (i.e., set–points) does not accurately 

depict occupants' AC usage.  Hence, probabilistic occupancy and AC schedules are advised to mimic actual 

building and occupant variation. 

Thermal energy prediction helps with system sizing and energy conservation. The three widely used 

prediction methods are physical, data-driven, and hybrid simulation. The physical method accurately 

predicts thermal energy within the building by solving thermal equilibrium and heat transfer equations. 

Despite its high accuracy, it is associated with the need for high computational cost and limited scope of 

optimisation. Moreover, high expertise is deemed necessary to perform dynamic building energy analysis. 

On the other hand, statistical analysis tools such as regression models, support vector machines and artificial 

neural networks can quickly respond to given inputs and easily handle non-linearities. However, these 

models necessitate large databases for training and development. Any inadequacy or inaccuracy would 

significantly reduce its prediction performance. Additionally, there is a lack of physical interpretability in 

the prediction output.  
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The hybrid method is the hybridisation of the physics in the pure physical method with statistics in the data-

driven approach. This method not only requires less time to simulate when compared to the physical 

simulation tool, but it also makes up for the fact that the pure statistical approach does not provide a physical 

explanation of the connection between the input and output data. The application of this hybrid model is 

promising, and, recently, a trend toward employing this strategy more frequently in the simulation of 

building energy use is evident. It has the potential to improve the adaptability of thermal energy modelling 

performance. However, the development of these tools is also associated with a highly time-consuming and 

complex process. Thus, the development of single-building prediction models is often useless. Generating 

hybrid simulation models for a set of buildings would maximise its capacity, bringing huge benefits. 

Moreover, many case studies would justify the development expenses of hybrid simulation models. 

However, a generalised hybrid simulation model is lacking that could predict energy demand associated 

with buildings with diverse types of parametric characteristics outside its training range. 

Optimisation methodology has been widely used to determine optimal solutions for building energy-related 

applications. Genetic algorithm has been the most popular meta-heuristic method that has been employed 

in building energy prediction. The use of optimisation in traditional BPS tools would enhance its 

applicability to explore more design solutions. However, it would still require performing computationally 

expensive building performance simulations for each design selection. Optimisation has also been 

integrated with statistical tools to improve prediction performance by identifying optimal model parameters 

such as the number of neurons, number of hidden layers, activation function, and training strategy. 

However, its application to hybrid simulation models needs to be better developed. Moreover, its 

applicability to conduct design exploration to identify key parameter combinations from the design space 

to minimise the building energy demand is unfounded. 

2.6 Nosocomial infections 

Healthcare-associated infections (HAIs) or Nosocomial infections (NI) are acquired by an individual while 

visiting or staying at a healthcare facility. It is considered one of the primary events that would affect the 
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patient's safety. It is associated with significant mortality, morbidity and financial burden for patients and 

the healthcare system. HAI affects about 3.2% of hospitalised patients in the United States of America and 

6.5% in the European Union, and the worldwide prevalence is estimated to be higher (Magill et al., 2018). 

It accounts for 4-56 % of death rates in neonates, with an incidence rate of 75% in southeast Asia and sub-

Saharan Africa (Khan et al., 2017). HAI costs the US healthcare system a whopping $28-$45 billion 

annually, whereas, in the European Union, it is estimated to be € 7 billion (Vincent et al., 1995). At this 

stage, it is vital to recall Florence Nightingale's assertion that a healthcare facility's first obligation is not to 

harm the sick (Nightingale, 1883). These infections can occur at various healthcare facilities such as 

hospitals, long-term care facilities, ambulatory settings etc. A recent study has revealed an increase in the 

prevalence of healthcare-associated infections during the ongoing covid-19 pandemic (Lastinger et al., 

2022). 

Based on the epidemiologic triad, a combination of three factors: host, agent, and environment leads to the 

cause of disease in an individual, as shown in Figure 2.2 (CDC). The host factor for HAI relates to the 

patient's intrinsic characteristics, such as age, comorbidities, etc., that aggravate their risk of developing an 

infection. The agent factor is associated with the features of the pathogen, such as infectivity, viability to 

cause infection etc. The common pathogens causing nosocomial infections are bacteria, fungi and viruses. 

Finally, the environmental factor is the extrinsic characteristics that provide the opportunity for exposure, 

such as the healthcare environment, contaminated invasive procedures, inadequate infection control 

practices etc. Infectious pathogens such as methicillin-resistant Staphylococcus aureus (MRSA), 

Clostridium difficile, and norovirus can survive in hospital environments for hours to days and even months, 

facilitating the risk of healthcare-associated infections. Table 2.1. shows the survival period of some 

pathogens causing nosocomial infections. A detailed list of other pathogens and their survival time can be 

found in (Kramer et al., 2006). 
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Figure 2.2 Epidemiological triad 

Table 2.1. Survival time of pathogens in the environment causing nosocomial infections 

Microorganisms Environmental survival time 

Gram-negative bacteria 

Escherichia coli 

Pseudomonas aeruginosa 

Klebsiella spp. 

Acinetobacter spp. 

 

From 1.5 hours to 16 months 

From 6 hours to 16 months 

From 2 hours to 30 months 

From 3 days to 5 months 

Gram-positive bacteria 

MRSA 

vancomycin-resistant enterococci 

Clostridium difficile 

 

From 7 days to 7 months 

From 5 days to 4 months 

> 5 months 

Fungi 

Candida albicans 

 

From 1 to 120 days 

Viruses 

Norovirus 

 

From 8 hours to 7 days 

 

According to the CDC, HAI is classified into four types: central line-associated bloodstream infections, 

catheter-associated urinary tract infections, surgical site infections, and ventilator-associated infections. A 

survey conducted in the United States showed that Pneumonia was the most prevalent healthcare-associated 

infection in an acute hospital setting (Magill et al., 2018). Pneumonia is often associated with coughing, 

nausea, diarrhoea, and other symptoms that can be identical to conditions arising from coronavirus 

infections, such as SARS-CoV-2, MERS, etc. Thus, the risk of infection to other patients from an 

undiagnosed infected individual who is later confirmed with an infectious disease would lead to causing an 
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outbreak within a facility. Thus, understanding the infection transmission mechanism and laying down an 

effective infection control strategy is necessary.  

2.6.1 Infection transmission routes in a healthcare setting 

The respiratory activities of an infected individual, such as breathing, talking, singing, coughing, or 

sneezing, can expel many infectious pathogens that could transmit the infection to a susceptible. The three 

major routes of infection transmission can be classified as contact, droplet, and airborne. According to Shiu 

et al. (2019): 

Contact transmission refers to the transfer of infectious pathogens from an infected patient to a susceptible 

either through direct contact (physical) or indirect contact (surfaces or objects).  

Large droplet or droplet transmission refers to the transfer of infectious pathogens expelled by an infected 

individual, which gets deposited onto a susceptible person's mucosal surfaces (eyes, nose, mouth). 

Airborne or aerosol transmission relates to the transfer of fine respiratory droplets generated by exhalation 

by an infected individual or through medical aerosol-generating procedure that gets inhaled by a susceptible 

individual. 

There are confusion and debates associated with the conventional terms related to these traditional infection 

transmission routes (Tellier et al., 2019). The most confusing is contact transmission. The term contact can 

be associated with direct physical contact between the infected and susceptible individual, and it can refer 

to indirect contact via an intermediate surface or object. The latter form of transmission is also known as 

the fomite route of infection transmission. Further, the term intermediate refers to a surface or objects that 

is in between an infected and susceptible that gets contaminated by an infected person before a susceptible 

person touches it. Although, a surface can also get contaminated by a healthy person through surface touch 

network (Lei et al., 2017). Moreover, in physical sense, an aerosol transmission and a large droplet 

transmission can be associated with indirect contact transmission. The term droplet transmission would 

imply that all droplets are large that would deposit on the mucosal surfaces. Lastly, short range aerosol 
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transmission is not considered, as traditionally aerosol transmission is associated only with long-range 

transmission. According to Li (2021), the criteria used for categorizing the traditional routes of infection 

transmission mechanism is unclear. Thus, a new categorization based on transfer process and media as a 

criterion was proposed: 

Spray transmission involves transfer through spray of virus-laden drops that gets deposited on the mucosal 

surface of a susceptible person. Here, the transmission media is drop.  

Inhalation transmission involves the transfer of virus-laden droplet from an infected person to a susceptible 

person through inhalation. Here, the transmission media is aerosol. The aerosol inhalation can happen 

within short-range and long-range. 

Touch transmission refers to the transfer of virus laden drops or droplets deposited on an animate or 

inanimate surface to the hand of a susceptible person, and subsequent transfer to his/her mucosa by his/her 

contaminated hand. Here, the transmission media is surface. 

It was also proposed that further classification through distance is possible. There are two transmission 

types based on distance: close-contact (distance within 1-2 m of an infected person) and distant (greater 

than 1-2 m distance from an infected individual) (Li, 2021). An illustration of transmission routes is 

depicted in Figure 2.3. 
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Figure 2.3 Illustration of short-distance transmission routes (spray, inhalation and touch) and long-distance 

transmission (inhalation and touch). The range of expired jet is shown in light green, the infected person 

shown in red and susceptible person in blue. The drop is represented as large black circles and aerosols as 

small black circles (Li, 2021). 

 

Similarly, a transmission media with distance based approach was taken by Zhang et al. (2020b) to clarify 

the existing categorization of infection transmission. Three sub-routes were proposed under the close 

contact transmission: large-droplet, short range airborne (fine droplet) and immediate body-surface. Large-

droplet sub-route refers to the deposition of large droplets generated as a consequence of exhalation of an 

infected person that gets deposited on the mucosal surfaces of a susceptible person located within a distance 

of 1-2 m. These droplets could also get deposited on the face of the same susceptible person, and subsequent 

transfer of these infectious pathogens to the mucosa of the susceptible person through his/her hand would 

lead to the second sub-route termed as immediate body-surface. The third sub-route termed as short-range 

airborne refers to the transfer of fine droplets or droplet nuclei, which is dried out residual of a droplet due 

to evaporation, to the same susceptible person through inhalation. The fine droplet could also go beyond 

the close contact range to be inhaled by a susceptible person through the distant airborne route. The 

inanimate surfaces within the space can also get contaminated by the deposition of these large droplets or 



51 
 

airborne droplet nuclei to cause infection transmission by self-inoculation through the mechanism of distant 

fomite route. The categorization of infection routes suggested by Zhang et al. (2020b) and its relationship 

with traditional routes in shown in Table 2.2.  

Table 2.2 Infection route categorization and its relationship with traditional route categorization are shown 

in bold italics: contact (direct/indirect), large droplet and airborne (Zhang et al., 2020b). 

 Distance 

Transmission media Body contact (0 m) Close contact (≤1.5 m) Distant contact(>1.5 m) 

Body fluid Direct transfer, including 

direct transfer of body 

fluid and infectious 

microbes (e.g., kissing) 

(Direct contact) 

Not applicable Not applicable 

Fomites (both large 

droplets and 

fine droplet nuclei) and 

skin 

Indirect transfer via 

skin/clothing-to-skin/ 

clothing contact, such as 

handshaking, face 

kissing followed by hand 

touching of the face 

(Direct contact) 

Immediate body surface/ 

clothing 

(Direct contact) 

Distant fomite 

(may even extend beyond 

the enclosed space) 

(Indirect contact 

Air (with fine droplets 

and droplets 

nuclei) 

Not applicable Short-range airborne 

(face-to-face only) 

(Airborne) 

Distant airborne (mostly 

within the enclosed 

space) 

(Airborne) 

Large droplets Not applicable Large droplets (face-to-

face 

only) 

(Droplet) 

Not applicable 

 

Apart from three principal routes of infection transmission, there two other routes: vehicle and vector borne 

(CDC, 2007). Infection transmission from sources other than individuals are those associated with 

environment or vehicle. The vehicle can be referred to as transmission of infection through sources such as 

food, water, medicines, or equipment’s that serve to transmit infection to multiple people. This could be 

avoided by maintenance of standards in preparation of consumables such as food, water. The transmission 

of malaria is a typical example of vector borne diseases, where infection is spread human through vectors 

such as insects or parasites. However, such vector borne diseases are quite uncommon in developed nations. 
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2.6.2 Ventilation and infection control 

Ventilation is the act of introducing fresh outside air into a building with an aim to provide healthy air for 

breathing by the dilution and removal of indoor contaminants. The three basic elements of building 

ventilation are:  

Ventilation rate refers to the quantity and quality of outside air provided to a space. 

Airflow direction refers to the overall direction of airflow in a building, which in an ideal scenario should 

be from a clean zone to dirty zone. 

Airflow distribution or airflow pattern involves the strategies through which the outside air is delivered to 

a room to maintain adequate indoor air quality and acceptable thermal comfort.  

The ventilation of a building can be done through three principal methods: natural, mechanical and hybrid 

ventilation. 

Natural ventilation involves the flow of outside air into a building happening through a temperature gradient 

(buoyancy or stack driven methods) or through natural forces (wind driven methods). This primarily 

depends on the climate, building design and human behaviour. 

Mechanical ventilation involves the use of fans to supply air into, and exhausting air out of a room. Based 

on the climate, there will be a variation in the type of mechanical ventilation used. For instance, in a warm, 

humid climatic region, a positive pressure mechanical ventilation system will be used. The room will be 

positively pressurized, and room air will leak through envelope leakages. In contrast, a negative pressure 

mechanical ventilation system will be used in cold climatic regions, where the room will be negatively 

pressurized, and room air will be compensated through sucking in outside air. 

Hybrid ventilation refers to the coupling of natural ventilation and mechanical ventilation. The natural 

forces will be used to drive the design flow rate and when the natural ventilation alone cannot provide this 

flow rate, the mechanical ventilation would be used.  
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Menzies et al. (2000) studied the influence of ventilation rate and spread of TB among healthcare workers 

(HCW) working in a hospital. A high TB infection risk for HCWs working in non-isolation rooms with a 

ventilation rate less than 2 air changes per hour was indicated. A study was conducted by Jiang et al. (2003) 

to estimate the risk of infection for HCW working in different wards within two hospitals. It was found that 

the ward with window providing higher ventilation had lower infection risk. A study in patient rooms 

indicated that 4 ACH with supplemental heating and cooling would be good in terms of thermal comfort, 

and ventilation effectiveness. Further, it was also suggested that 6 ACH would be optimum. Another study 

in a four bed patient room suggested that there is a reduction in infection transmission through hand 

colonization while the ventilation rate changes from four to six ACH (King et al., 2015). There is a plethora 

of studies indicating that lower ventilation rates would result in an increase in infection transmission risk, 

however relying solely on increasing the ACH wouldn’t result in mitigation of infection risk. A study 

conducted in a two bed hospital room indicated that an increase in ACH would cause an increase the risk 

of cross-infection transmission (Bolashikov et al., 2012). A similar conclusion was attainted by a study 

conducted in an environmental chamber (Pantelic and Tham, 2013). Based on an extensive review of 

literature, it was found that there is no conclusive evidence to suggest the minimum and maximum 

ventilation requirement in hospitals for effective infection control. English (2016) identified that the 

influence of ventilation requirement on infection rates is largely unclear in healthcare facilities except for 

operation rooms and airborne isolation rooms. Memarzadeh and Xu (2012) found that in a mechanically 

ventilated room, an increase in ventilation rate is not the potential factor that would lower the infection risk, 

whereas ventilation system design and location of susceptible from the infection source is more important. 

Similarly, a review done by Shajahan et al. (2019) suggested that along with ACH, it important to consider 

the location of susceptible from infection source, supply and return air grille as well as the air distribution 

pattern. 
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Table 2.3 Ventilation guidelines for general and intensive care ward spaces (Beggs et al., 2008) 

Code Country Pressure Minimum 

outdoor air 

change rate 

(ACH) 

Minimum 

total air 

change rate 

(ACH) 

Design air 

temperature 

(oC) 

Design 

relative 

humidity (%) 

Patient 

rooms/general 

wards 

      

AIA United States Neutral 2 6 21-24 - 

ASHRAE United States Neutral 2 6 21-24 30-60 

HTM 2025 United 

Kingdom 

Neutral Not Specified Not 

specified+ 

20-22 40-60 

Intensive care 

wards 

      

AIA United States Neutral 2 6 21-24 30-60 

ASHRAE United States Neutral 2 6 21-24 30-60 

HTM 2025 United 

Kingdom 

Neutral Not 

Specified* 

Not 

specified+ 

20-22 40-60 

* Minimum outdoor air rate of 8 l/s per person 

+ 100% outdoor air encouraged 

Different ventilation strategies and air distribution mechanism are adopted to control the transmission of 

infectious diseases in healthcare facilities as shown in Figure 2.4. Mixing ventilation is most commonly 

adopted ventilation scheme (Qian and Zheng, 2018). Mixing ventilation is based on the principle that it 

dilutes the contaminated indoor air by mixing the indoor air with fresh supplied air to lower the contaminant 

concentration. Generally, an air jet at high velocity (typically > 2.0 m/s) is supplied at the upper parts of the 

room to provide jet circulation along the peripherals of the room. The main principle associated with 

displacement ventilation is to displace the contaminated indoor air with fresh outside air. In this method, 

normally a cold supply air at a low velocity (typically < 0.5 m/s) is delivered at or near the floor to develop 

an upward movement caused by warming of the air by the heat sources present in the room. Thus, its leads 

to generate a vertical gradient of temperature, velocity and contaminant concentration. In downward 

ventilation, the cooler air, which is heavier, is dispersed from the ceiling diffuser at a low velocity and the 

unidirectional airflow is likely to remove the indoor contaminants through an opening provided at the lower 

part of the wall. A review conducted by Cao et al. (2014) provides additional information regarding the 

state-of-the-art ventilation and air distribution systems used in buildings. 
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Figure 2.4 Illustration of room air distribution (a) downward ventilation; (b) displacement ventilation; (c) 

mixing ventilation 

 

There exists a strong correlation between the air distribution pattern and infection transmission with in a 

room (Beggs et al., 2008). A study done in patient rooms with displacement ventilation was indicative that 

large bioaerosols would remain suspended in air for longer duration, whereas smaller particles would leave 

the room (Zhao et al., 2004). A study by Qian et al. (2006) in a multi bed patient room reported that the 

spacing of bed should be farther apart in displacement ventilation compared to the scenario under mixing 

ventilation. It was also reported under displacement ventilation the exhaled droplet nuclei took longer time 

to dissipate in comparison to mixing ventilation. Another study done in a hospital ward indicated that 

displacement ventilation system would result in higher contaminant concentration compared to mixing 

ventilation where the secondary exhaust is placed at the lower part of the wall. Although, in the same study, 

when the exhaust location was changed to the upper part of the wall, the displacement ventilation at 4 ACH 

had lower contaminant concentration compared to the mixing ventilation at 6 ACH (Yin et al., 2009). In a 

study conducted by Olmedo et al. (2012), the cross infection risk increased by 12 times in displacement 

ventilation compared to mixing ventilation. A study done in a hospital ward with ceiling mixing type 

ventilation system found that the dispersion of contaminants is strongly affected by the location of exhaust 

vent (Wan et al., 2007). It was also found that with a complete mixing ventilation system the contaminant 

concentration decay rate is exponential. In a study where the ventilation air flow was driven from ceiling 

to floor level, the infection control was deemed to be poor (Kao and Yang, 2006). However, in another 

study, where the air was supplied and extracted through the ceiling resulted in being an effective infection 

(a) (b) (c) 
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control strategy (Beggs et al., 2008). It could be seen from above discussion that along with ACH, the 

location of supply diffusers and exhaust grilles have great importance while laying down ventilation 

strategy for mitigation infection risk. 

2.7 Methods to evaluate airflow and contaminant distribution 

In buildings, ventilation creates a thermally comfortable environment with appropriate indoor air quality 

by managing indoor air parameters such as air temperature, relative humidity, air speed, and chemical 

species concentrations. Thus, it is necessary to possess appropriate prediction methodologies to anticipate 

ventilation effectiveness in buildings if one wishes to regulate indoor air characteristics successfully. 

Prediction tools offer information concerning the indoor air parameters in a room or building even before 

the structure is built. This section will provide a brief overview of the various approaches used to predict 

the airflow and contaminant transport within a space. These include analytical methods, empirical models, 

experimental models, multizone models, zonal models, and Computational Fluid Dynamics (CFD) models 

(Chen, 2009). 

2.7.1 Analytical models 

Fundamental equations of fluid dynamics and heat transfer, such as mass, momentum, energy, and 

chemical-species conservation equations, are used to build analytical models. The analytical models 

simplify geometry and thermo-fluid boundary conditions to obtain a solution. As a result, the final equations 

obtained for one case may not be used without modification for another. However, the methodology and 

approximations for different cases may be similar. Fitzgerald and Woods (2008) developed an analytical 

model that studied the influence of stacks on flow patterns and stratification associated with natural 

ventilation with two openings. With a distributed heat flux Qh, the analytical model calculates the 

temperature elevation in the room T by,  

∆𝑇 = (
𝑄ℎ

2

∝ 𝜌2𝐶𝑝
2 𝐴∗2

𝑔(𝐻 − ℎ𝑏)
)1/3 (2.12) 
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And the flow rate V by,  

𝑉 = (
∝ 𝑄ℎ 𝐴∗2

𝑔(𝐻 − ℎ𝑏)

𝜌𝐶𝑝
)1/3 

 

Where A* denotes the effective area, H is the termination height of a vertical stack, hb is the height of a vent 

from floor, α is the coefficient, ρ is the density, g is gravity and Cp is the specific heat.  

Mazumdar and Chen (2009) developed another analytical model using the principle of superposition and 

the method of variable separation. They obtained an analytical solution of contaminant concentration C as 

a function of position x in an airline cabin for a contaminant source located at L1 as,  

𝐶 =  𝐶𝑖𝑛𝑙𝑒𝑡 + 𝐴𝐿1
𝑒𝑚1(𝐿1−𝑥) + 𝐵𝐿1

𝑒𝑚2(𝐿1−𝑥) + 𝑎0𝑒−𝛽0
2𝑡 + 2 ∑ 𝑎𝑛 cos[𝛼𝑛(𝐿1 − 𝑥)]

𝛼

𝑛=1

𝑒−𝛽𝑛
2𝑡 

where Cinlet denotes the contaminant concentration at the air supply inlet, t is the time, and the coefficients 

(A, B, a, α, β) can be determined using mathematical equations with several approximations. 

Analytical models are probably the oldest method that is still widely used today due to their simplicity, 

richness in physical meaning, and low computing resource requirements, though they may not be accurate 

for complex scenarios and the results may be misleading. 

2.7.2 Empirical models 

The empirical models, like the analytical models, are derived from mass, energy, and chemical species 

conservation equations. In many cases, experimental measurement data or advanced computer simulations 

are also used to develop empirical models to obtain some coefficients that allow empirical models to work 

in a specific range. The analytical and empirical models differ little in theory. However, the empirical 

models are thought to use more approximations than the analytical models. Cho et al. (2008) developed a 

set of equations to determine jet behaviour in terms of velocity profiles, the spreading rate of jets on the 

(2.13) 

(2.14) 
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surface, and jet decay using CFD and experimental results of wall confluent jets in a room. They calculated 

the maximum velocity, Um, for wall confluent jets as,  

(
𝑈𝑚

𝑈𝑜
) = 2.96𝑙𝑐

−0.79 

where Uo is the jet's supply velocity and lc is its characteristic length. It should be noted that the throw 

constant (2.96) was determined empirically. Most design handbooks and design guides contain empirical 

formulae of this format. It represents maturity in engineering practice. Cornick and Kumaran (2008) 

compared four popular empirical models for predicting interior relative humidity to measured data. NIOSH 

developed an empirical model describing the relationship between flow rate, pressure differential, and 

leakage area using data from 67 airborne infection isolation rooms (Hayden et al., 2007). The model was 

capable of accurately estimating the actual leakage area in these rooms. These empirical model applications 

show that the models are cost-effective tools for engineers and designers to predict ventilation performance 

in buildings. The empirical models' performance is comparable to that of the analytical models. However, 

they are also highly case sensitive. 

2.7.3 Experimental methods 

The experiment methods for evaluating the transport of airflow and contaminant concentration can be 

classified into small-scale and full-scale. 

2.7.3.1 Small scale experimental models 

Small-scale experimental models use measuring techniques to predict or evaluate airflow and contaminant 

distribution on a smaller scale of buildings or rooms. A small-scale experimental model is far more cost-

effective than a full-scale building or room. If the flow in the model is similar to reality, one can obtain a 

realistic prediction by directly measuring thermo-fluid conditions in a small-scale model. However, 

important dimensionless flow parameters in a small-scale experimental model, such as Reynolds number, 

Grashof number, Prandtl number, etc., must remain the same as those in the actual building or room to 

(2.15) 
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achieve flow similarity. Yu et al. (2007) used a 1:3 scale model to investigate airflow in a ceiling slot-

ventilated enclosure. They measured airflow patterns, velocity and temperature decay at the centreline, 

velocity and temperature profiles, airflow, and thermal boundary layers, etc. The information was used to 

create empirical models. Morsing et al. (2008) investigated the effects of internal airflow and floor design 

on gaseous emissions from animal houses using several 1:10 scale models. Small-scale experimental 

models are very useful and cost-effective. However, in addition to scaling issues associated with 

dimensionless thermo-fluid parameters, scaling complex flow geometry can be difficult. Small-scale 

experimental models were used primarily to validate analytical, empirical, or numerical models. The 

validated analytical, empirical, or numerical models were then scaled up to investigate the ventilation 

performance of real-world buildings. 

2.7.3.2 Full-scale experiments models 

The full-scale experimental models were comparable to the small-scale experimental model. Full-scale 

experimental models are further divided into two types: laboratory experiments and in-situ measurements. 

An environmental chamber is frequently used in laboratory experiments to simulate a room or a single-

story building with several small rooms. If outdoor wind conditions must be considered, the chamber should 

be housed in a wind tunnel, which would be a very expensive facility. Zhang et al. (2009) simulated a 

section of a twin-aisle airliner cabin using an environmental chamber. Even a full-scale experimental model 

frequently approximates thermo-fluid boundary conditions and flow geometry. Zhang et al. (2009) 

measured the distributions of air velocity, temperature, and contaminants simulated by tracer-gas and mono-

size particles using ultrasonic anemometers. The contaminants were thought to be viruses released by a 

passenger suffering from an infectious disease. Larsen and Heiselberg (2008) developed a new expression 

for calculating the airflow rate in single-sided natural ventilation using data from a full-scale wind tunnel 

experimental facility. Hummelgaard et al. (2007) used temperature and CO2 concentration measurements 

in five mechanically, and four naturally ventilated office buildings to correlate occupant symptoms and 

negative perceptions with ventilation. Recent applications show that full-scale models based on laboratory 
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experiments or in-situ measurements provided the most realistic prediction of airflow and contaminant 

distribution. However, they were generally costly and time-consuming. Furthermore, the experimental 

measurements were not error-free. The current trend is to use full-scale experimental models of laboratory 

experiments and in-situ measurements to obtain data for validating computer models, such as CFD models 

and then use the validated computer models to predict ventilation performance or design ventilation 

systems. In-situ measurements were more commonly used to assess the performance of existing buildings. 

2.7.4 Multizone models 

Multizone network models are primarily used to predict air exchange rates and airflow distributions in 

buildings that have or do not have mechanical ventilation systems. Axley (2007) provides a thorough 

background and theory of multizone models. The multizone models solve conservation equations for mass, 

energy, and chemical species. The models, however, assume quiescently or still air in a zone, allowing the 

momentum effect to be ignored. In addition, the models assume uniform air temperature and chemical-

species concentration in a zone. Wang and Chen (2008) discovered that these assumptions can lead to 

significant errors in some cases. Hu et al. (2007) used CONTAM to calculate particle resuspension in a 

three-zone building's indoor environment. It was found that CONTAM provided fast convergence speed 

and good agreement of results with an analytical model. They also attempted to fine-tune the model by 

varying the airflows, flow resistances, and other parameters. COMIS is another well-known multizone 

program. For example, it was used to predict airflow, pressure, and contaminant distribution in a building 

(Khoukhi et al., 2007), to calculate the effect of wind speed velocity on stack pressure in a building 

(Maatouk, 2007), and to determine airflows between zones due to temperature differences (Sohn et al., 

2007). It provided a similar performance compared to CONTAM. Two national laboratories in the United 

States of America developed both tools. However, both had a poor user-friendly interface and graphical 

presentation schemes limiting its use. 
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2.7.5 Zonal models 

The multizone models' well-mixing assumption is invalid for large indoor spaces or rooms with stratified 

ventilation systems, such as displacement ventilation. Therefore, zonal models have been employed to solve 

the challenge of predicting air temperature distributions. The number of cells in a zonal model for a three-

dimensional region is normally fewer than one thousand. Each cell's air temperature is calculated to 

determine the space's non-uniform distribution. Megri and Haghighat (2007) discussed the evolution of 

zonal models. Based on measured airflow patterns or mass and energy balance equations, zonal models 

were created. Those dependent on measured airflow patterns determined air temperature distributions based 

on the patterns. The availability of airflow patterns restricted their applications. Models employing mass 

and energy balance equations were prevalent. The mass balance and energy equation can be written as,  

∑ �̇�𝑖→𝑗 = 0

𝑗

 

∑ �̇�𝑖→𝑗 + ∅𝑠𝑜𝑢𝑟𝑐𝑒 = 𝜌𝑖𝑉𝑖𝐶𝑝

𝜕𝑇𝑖

𝜕𝑡
𝑗

 

where i refers to current cell, j refers to neighbouring cell,  �̇� is the mass flow rate, ∅ is the heat source 

from i, ρ is the density, V is volume, Cp is specific heat, and T is the temperature. In equation, the right-

hand side represents the energy accumulated in cell i.  

Integrating the zonal model with a dynamic model for heat and moisture transfer as well as airborne 

pollutants were developed by Song et al. (2008). They used the model in a room with displacement 

ventilation to determine the dynamic air temperature, relative humidity, and pollutant concentrations. A 

good comparison in results were obtained between zonal model and Computational Fluid Dynamics. 

However, in applications with strong flow momentum, the zonal model simulations would be considerably 

less accurate. This is due to fact that in order to reduce computational costs, zonal models based on mass 

and energy balance equations do not solve momentum equations. In regions strongly affected by thermal 

(2.16) 

(2.17) 
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flume, necessitates special treatment that would increase the complicity of the model. These complicities 

would eventually increase the computational cost as well as greatly affect the stability of the zonal model 

equation system. Using a zonal model is more complex than one might believe, especially when dealing 

with special cells. Compared to simulations of fluid dynamics with a very coarse grid, zonal models do not 

significantly reduce computing time. In many instances, the time required to prepare input data for a zonal 

model can be longer than that required for a CFD simulation. As a result, CFD models would replace the 

zonal models as computers become even faster and the CFD interface becomes more user-friendly. 

2.7.6 Computational Fluid Dynamics (CFD) 

A set of partial differential equations for the conservation of mass, momentum (Navier–Stokes equations), 

energy, chemical-species concentrations, and turbulence is numerically computed by the CFD approach. 

The solution provides indoor and outdoor field distributions of air pressure, air velocity, temperature, 

relative humidity, contaminants, and turbulence parameters. CFD models have become more prevalent in 

predicting ventilation performance owing to the rapid increase in computer capacity and the development 

of user-friendly CFD programme interfaces. The models have broad applicability in studying indoor air 

quality (IAQ), thermal comfort, fire safety, HVAC performance, etc., associated with diverse types of 

buildings (healthcare, residential, commercial, institutional, and industrial), transportation services, 

underground facilities, among others. Most CFD models consist of Large Eddy Simulation (LES) and 

Reynolds Averaged Navier–Stokes (RANS) modelling. The LES model is superior to RANS models 

because it has only one or no empirical coefficient. However, it will solve transient flow, even if the flow 

is steady and extreme flows details are unnecessary. Moreover, LES necessitates extremely fine grid as its 

accuracy is depended on the grid resolution. Hence, for steady-state flows, LES always demands more 

computing time (at least two orders of magnitude longer) than RANS modelling.  

A set of transport conservation equations for continuity, momentum, energy, and chemical-species 

concentrations are solved by the RANS model. For an incompressible, two-dimensional equations of 

continuity, momentum and energy written as, the time averaged governing equations can be written as, 
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𝜕𝑦
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where u, v, p, T are mean values of flow parameters; and 𝑢′, 𝑣′, 𝑝′, 𝑇′ are the turbulent fluctuations in the 

flow. The turbulence Reynolds stresses that appear in the form 𝑎′𝑏′̅̅ ̅̅ ̅ is solved through the Reynolds stress 

modelling, which links the Reynold stresses to Boussinesq eddy-viscosity approximation as shown in 

Equation 2.22,  

−𝜌𝑢′𝑢′̅̅ ̅̅ ̅̅ = 2𝜇𝑇

𝜕�̅�

𝜕𝑥
−

2

3
𝜌𝑘; −𝜌𝑣′𝑣′̅̅ ̅̅ ̅̅ = 2𝜇𝑇

𝜕�̅�

𝜕𝑦
−

2

3
𝜌𝑘; −𝜌𝑢′𝑣′̅̅ ̅̅ ̅̅ =  𝜇𝑇 (

𝜕�̅�

𝜕𝑥
+

𝜕�̅�

𝜕𝑦
) 

where 𝜇𝑇 is the eddy viscosity that need to be calculated through the eddy-viscosity modelling. Based on 

the number of transport equations used to determine the eddy-viscosity, the models can be classified as 

zero-, one-, two-, three- and four-equation models as shown in Figure 2.5.  

(2.18) 

(2.22) 

(2.21) 

(2.19) 

(2.20) 
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Figure 2.5 Turbulence models in computational fluid dynamics used for indoor airflow predictions 

Zhai et al. (2007) conducted a study to evaluate different turbulence models used for predicting airflow and 

turbulence in enclosed environments. As a result, they highlighted the importance of mean air parameters 

over instantaneous turbulent flow parameters in the study of air distribution in enclosed environment. This 

was indicative of the increased interest in RANS simulations, which provide quick predictions, as opposed 

to LES simulations, which are more detailed but also more time-consuming. Indeed, LES was viewed as a 

research tool rather than a design tool. Zhang et al. (2007) validated around eight turbulence models for 

different convection cases within ventilated spaces. Among RANS models, they found that v2f-dav and the 

Re-Normalization Group (RNG) k-ε model had the best overall performance. 
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In addition to turbulence modelling within an indoor airflow, CFD approach is also widely used to 

investigate the transport, dispersion, and deposition of microorganisms. The two methods commonly 

applied for this purpose: Passive scalar transport and Lagrangian particle tracking. 

2.7.6.1 Passive scalar transport 

A passive scalar field, which can be thought of as a massless dye, is the most fundamental method of 

monitoring pollutant spread. In this approach, only advection and diffusion govern the movement of 

contaminants; particle dynamics are disregarded. The scalar transport equation can be written as, 

𝜕𝜌∅

𝜕𝑡
+ ∇. (𝜌𝑈∅) = ∇. (Γ∇∅) + 𝑆∅ 

where ∅ is the pathogen concentration, U is the velocity vector (u, v, w) of the air,  Γ is the diffusivity and 

S is the source term. The lack of body force interaction on the scalar field may be appropriate for respiratory 

particles that are expelled through coughing and rapidly evaporate to a size below 1 µm (Hathway et al., 

2011). As a result, the model is ideal to demonstrate the ventilation efficacy (Loomans and Lemaire, 2002), 

modelled in a steady-state. However, for large size distribution such as Skin squamae, it would be difficult 

to model it well. Despite its limitations, numerous studies have been conducted, demonstrating its ability 

to estimate exposure to airborne pathogenic particles (Hathway et al., 2011, Li et al., 2005). This method 

has the advantage of treating airborne bioaerosols smaller than 1 µm (Loomans and Lemaire, 2002, 

Loomans et al., 2008) as a massless dye. Consequently, this method is widely used to model the dispersion 

of contaminants in indoor air. However, this method has disadvantages when both buoyancy and the effects 

of gravity must be considered, implying that the particles would behave differently based on its diameters 

(Fuks, 1989), thereby invalidating the initial assumption that body forces have no effect on particles. 

In the middle of the first decade of the 21st century, researchers such as Karthikeyan and Samuel (2008) 

and Zhang and Chen (2007c) used species transport to predict infection transmission within airliner cabins. 

Nielsen (2009) compared NO2 and smoke tracers to multiphase CFD simulations in hospital double-patient 

(2.23) 
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rooms. So, it was concluded that the comparison was of high quality. However, tracer gases fail to represent 

particle sizes, evaporation rates, or deposition rates. 

2.7.6.2 Lagrangian particle tracking 

The Lagrangian method tracks particles individually when a secondary phase within the fluid domain has 

a negligible volume regardless of mass, such as particles released through expiratory activities. This method 

permits the discrete phase, in which mass and size play a significant role in the transport dynamics, to 

possess a variable space and time coordinate. It considers the particle's inertia, gravity, and drag forces 

while determining the trajectory of a particle. Consequently, the position and velocity of the particles form 

a coupled ordinary differential equation as shown in Equation 2.24. However, the lagrangian approach may 

prove to be a computationally expensive method for tracking n number of particles. A fifth order Runge-

Kutta method is used to calculate the particle trajectories by considering the change in particle velocity up 

due to drag force FD, inertia (u-up), gravity gx, and other necessary forces. Only x-direction is considered in 

Equation 2.24, where ρp and ρ refers to the particle and fluid density.  

𝜕𝑢𝑝

𝜕𝑡
= 𝐹𝐷(𝑢 − 𝑢𝑝) +

𝑔𝑥(𝜌𝑝 − 𝜌)

𝜌𝑝
+ 𝐹𝑥 

Numerous studies of indoor particle dispersion employ RANS-Lagrangian particle modelling compared to 

the LES-Lagrangian particle modelling (Liu and Novoselac, 2014). Lai and Chen (2006) conducted the first 

comparison between small scale experimental model and numerical simulation for transport of biological 

organism in an environmental chamber. They predicted the deposition of 0.01 µm to 10 µm particles, with 

strong evidence that larger particles drop close to the source. Since that time, (Qian et al., 2008) have 

demonstrated that Lagrangian particle tracking accurately characterises respiratory droplets. Using this 

validated techniques, the effect of healthcare facilities layout on airborne particle distribution was compared 

(Ren et al., 2021, Satheesan et al., 2020).  

 

(2.24) 
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2.8 Optimization 

Thermal and ventilation evaluations within conditioned spaces are significantly influenced by air 

distribution, which is controlled by the supply flow rate, but the resulting airflow distribution is difficult to 

predict. This is because air distribution depends on many factors, including the type, size, and location of 

the air distribution device, space geometry, heat transfer across space boundaries, and internal objects. With 

the advent of CFD, it became possible to evaluate flows in spaces with high levels of precision, something 

that is impractical to do through experimentation and impossible with lower-level simulations. Parametric 

analyses are often used to evaluate and possibly optimize the thermal environment of a building. In 

parametric studies, the problem is solved multiple times with different sets of parameter variables in order 

to locate solutions. It is possible to examine and assess the influence of the parameter variables on the 

design problem. By varying key design parameters and comparing the resulting design solutions, a tradeoff 

can be sought.  

Cross-infection can be caused by a virus carrier's sneezing, as demonstrated by Wang et al. (2021). This 

study provided two evaluation parameters: Total Maximum Time (TMT) and Overall Particle 

Concentration (OPC), which can be used to reflect particle motion and the likelihood of cross-infection. 

Ten air distribution systems were evaluated in the study through CFD simulations. Through numerical 

analysis, the authors proposed a method of bottom-in and top-out ventilation as an optimised air distribution 

system that effectively reduces the risk of cross-infection. Méndez et al. (2008) conducted a CFD-based 

numerical study to assess the ventilation efficiency of a two-bed hospital room in terms of air age and 

velocity fields. The analysis of the initial configuration revealed inadequate ventilation at the patient's 

location. Thus, three alternative configurations were evaluated, and the optimal configuration in terms of 

patient comfort and cost of execution was identified. In practice, the above studies simply mean that, 

beginning with an unsatisfactory configuration, they tried two or three alternatives before selecting the best 

one. Undoubtedly, this relates to optimization, albeit in a minimal sense. 
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One of the major drawbacks of parametric studies involving CFD simulations is that they are tedious and 

time-consuming. Every change in the value of a parameter necessitates the CFD user to remodel, remesh, 

and then recalculate the airflow, which is a laborious process. In addition, it is frequently difficult to track 

the complexity of relationships between a set of design parameters and the resulting design objective. 

Moreover, the trade-off between various design modifications remains obscure. Therefore, it is difficult to 

explore the design space systematically, and solutions may be overlooked. Thus, the resulting enclosing 

environment may not fulfil the design's intent. Thus, the optimal strategy for designing an HVAC system 

for a desirable enclosed environment is, to begin with, the design objective (e.g., the desired thermal 

comfort and indoor air quality level). Using a single series of evaluations to determine the required HVAC 

system, the inverse design method can achieve the desired interior environment (Liu et al., 2015). 

The inverse design method can be categorised as either a backward or forward method (Chen et al., 2017). 

To identify contaminant sources in an enclosed environment, backward methods such as the quasi-

reversibility method, pseudo-reversibility method, and regularised inverse matrix method can be utilised. 

In qausi-reversibility method, the irreversible governing equations are solved by a stabilization technique. 

This approach was utilized to find the location of the contaminant source in an aircraft cabin by performing 

an inverse simulation by utilizing contaminant concentration distribution provided by a forward CFD 

simulation as initial condition (Zhang and Chen, 2007a). However, this approach is deemed inapplicable, 

if the design of an enclosed environment also necessitates the inverse prediction of the flow field.  

On the other hand, the pseudo-reversibility approach solves the inverse contaminant transport with reverse 

flow, instead of time reversing as used in quasi-reversibility. However, similar to quasi-reversibility, this 

approach also necessitates prior knowledge of the flow field. This method has found its application in 

groundwater contaminant transport as well as in inverse identification of contaminant source in an aircraft 

cabin (Wilson and Liu, 1994, Zhang and Chen, 2007b). The regularised inverse matrix method inverts the 

cause-effect governing matrix A and enhances the stability of the inverse operation through regularisation. 

Based on limited sensor data, Zhang et al. (2013) utilised this technique in an office to inversely predict the 
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temporal rate profile of a gaseous pollutant source. A good agreement was obtained between the actual and 

predicted rate. In short, Backward methods solve reversed scalar transport equations and identify 

contaminant sources inversely. The major drawback is that they provide only an approximation of the 

solution and require prior knowledge of known flow field. Moreover, these methods cannot be used to 

design an indoor environment in reverse, as backward methods are incapable to inversely predict the flow 

field (Liu et al., 2015). 

In the inverse design of airflow and heat transfer in an enclosed environment, forward methods such as the 

CFD-based adjoint method, CFD-based genetic algorithm method, CFD-based artificial neural network 

method, and proper orthogonal decomposition method show promise. The first three involves the 

integration of CFD with an optimization algorithm. Extensive applications are found for forward methods 

in comparison to backward methods. These methods convert the inverse problem to a control problem by 

formulating an objective function. For instance, if objective is to achieve good thermal comfort, the 

objective function can be constructed using predicted mean vote, which is a function of three primary 

parameters: air velocity, air temperature and relative humidity.  

In adjoint method, derivative of an objective function over a design variable is computed to find the 

direction to minimize the objective function. In the case of Navier-Stokes equations, the derivative cannot 

be computed directly due to the strong non-linearity associated with the equations. Hence, a lagrange 

multiplier is introduced by the adjoint method. This can transform the unconstrained problem to constrained 

control problem. Since its introduction by Lions (1971), it has been widely applied in heat transfer 

problems, design optimization and identification of pollution source. 

To determine the optimal design of indoor airflow, Liu and Chen (2015) developed a CFD-based adjoint 

method. The thermo-fluid boundary conditions were used as design variables, whereas flow and/or 

temperature fields were defined as the design objectives. Different initial inlet air conditions led to distinct 

optimal inlet air conditions, indicating the existence of multiple solutions. Additionally, the location of the 

air supply and size was included as design variables by Liu et al. (2016). The adjoint method based on CFD 
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is precise and capable to manage large number of design parameters without causing significant increase in 

computing costs. However, it may find a locally optimal design that meets the design objective with 

constraints (Liu et al., 2015).  

Holland (1975) introduced the genetic algorithm (GA) in the 1970s. In search of optimal solutions, GA is 

a gradient-free optimization method that simulates natural evolution. Based on the number of objective 

function, GA is classified into single-objective genetic algorithm or a multi-objective genetic algorithm. 

Malkawi et al. (2003) is identified to be first to couple CFD with GA in the design of an indoor environment. 

Malkawi et al. (2005) proposed a decision-support design evolution model using the genetic algorithm and 

computational fluid dynamics. In this approach, an iterative design evaluation is done using CFD analysis 

to maximize the thermal and ventilation criteria. Design changes are made, remeshed, and displayed based 

on evolutionary algorithms. The process continues until the designer can visualize the evolution of the final 

set of design alternatives and allows the user to experience the design's transformation based on its 

performance. A similar approach was undertaken by Kato and Lee (2004) to optimize a hybrid air-

conditioning system.  

The coupling of CFD and an evolutionary algorithm is also used in monitoring indoor air quality. The initial 

cost of a sensor is one of the most important factors in sensor selection. To reduce the number of sensors, 

sensor system designers must adopt techniques for optimizing sensor placement. Mousavi et al. (2018) 

utilized the integration of CFD and genetic algorithm to determine the optimal number of sensors and their 

location to effectively monitor the indoor air quality within a parking lot of a residential complex. Upon 

optimization, the number of sensors with their location that provide maximum coverage in a cost-effective 

manner would be determined.   

Using CFD, Arjmandi et al. (2022) evaluated the effectiveness of five ventilation systems in controlling the 

spread of airborne particles within a classroom. The ventilation system with air inlets on the floor and air 

outlets on the ceiling resulted in the lowest exposure risk for infection transmission in a classroom with 

thirty students and a teacher. After a parametric study determined the best ventilation system for infection 
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control, it was further utilised to conduct an optimisation to improve thermal comfort metrics. The process 

of optimisation utilised the design of experiments, response surface method and multi-objective genetic 

algorithm to study the influence of inlet channel width, air change per hour and inlet air temperature on 

thermal comfort and indoor air quality parameters (predicted mean vote, predicted percentage dissatisfied, 

air change effectiveness). 

A global optimal design satisfying the design objective without constraints can be achieved by 

implementation of CFD-based genetic algorithm method compared to CFD-based adjoint method. 

However, the CFD-based genetic algorithm method necessitates numerous CFD simulations during 

population evolution and the number of design parameters can dramatically increase the computational 

cost.  

The CFD-based artificial neural network method can be used as a surrogate model to reduce computational 

costs but the design results can be compromised. The Artificial neural network (ANN) is a highly 

sophisticated paradigm that utilises characteristics of human and animal brains to recognise patterns in data. 

It builds a memory capable of associating many input patterns with outputs or effects to solve problems. 

By training and adapting itself to diverse input–output pairs, ANN can map the relationship between input 

and output, making it possible to solve problems that are difficult for humans or even conventional 

computers (Yi and Malkawi, 2011). It can also effectively model the nonlinear relationship between the 

input and output. The ANN is widely used in fields such as finance, medicine and environmental science, 

among others.  

ANN was used by Qin et al. (2012) to describe the annual dynamic process with detailed parameter data 

with a reasonable calculation time. It can predict dynamic energy consumption and thermal environment 

parameters with reasonable accuracy. Ayata et al. (2007) investigated the possible application of ANN in 

natural ventilation. The results indicated that the ANN method would be an effective tool for predicting the 

distributions of indoor air velocity. Zhang and You (2014) employed ANN to determine the indoor 

boundary conditions based on velocity and temperature measurements at observation points. To train ANN, 
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the Bayesian Regularization training algorithm was used.  Four sensors were configured to measure the 

velocity and temperature and four unique boundary conditions were investigated. A comparison between 

the actual boundary conditions and the ANN-obtained boundary conditions indicated that accurate 

predictions were made.  

Zhang et al. (2020c) proposed the integration of a genetic algorithm, an artificial neural network, 

multivariate regression analysis, and a fuzzy logic controller to optimize the indoor environment and energy 

consumption based on CFD simulation. Thermal comfort (mean predicted vote) was established as the 

limiting design objective, whereas indoor air quality (air age) and energy consumption were designated as 

the optimal design objectives. Ventilation rate, inlet temperature, and angle were the design variables. GA 

would find the optimal solution (individual), whereas ANN and CFD determine the objective values for 

each individual. MRA would reduce the variable space, while FLC was employed to control the CFD 

process's execution routine. Compared to the other two design variables, the ventilation rate had a lesser 

effect on the design outcome. Integration of MRA and FLC in the design process resulted in a reduction of 

50% and 35% in variable space and computational cost, respectively. 

Another approach is to use the proper orthogonal decomposition method, a reduced-order method to 

significantly decrease the computing costs but at the expense of accuracy. Forward mapping of a thermo-

fluid distribution from different boundary setting conditions can be rapidly characterised using the POD 

method. POD lays the groundwork for the modal decomposition of an ensemble of data, such as thermo-

flow fields. The thermo-flow field derived from CFD simulations or measurements can be expressed as a 

combination of orthogonal spatial modes and their amplitudes or coefficients (Liu et al., 2015). This 

approach was first proposed by Lumley (1967) to analyse structure of inhomogeneous turbulent flows. In 

enclosed environments, POD is primarily utilised for the rapid prediction of indoor thermo-flow and 

pollutant concentration, optimization of air-supply parameters, and development of controllers for dynamic 

ventilation control.  
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Elhadidi and Khalifa (2005) used POD analysis to accurately predict the velocity and temperature 

distributions inside a vacant office. Sempey et al. (2009) utilized POD to predict the distribution of 

temperature in air-conditioned rooms. Allery et al. (2005) tracked the movement of particles in a two-

dimensional ventilated cavity where a POD construction provided the airflow. Wang et al. (2018) proposed 

an inverse design method based on the POD of thermo-flow data from CFD simulations. Initially, the 

orthogonal spatial modes and coefficients of the thermo-flow fields was extracted. After that, the thermo-

flow field was subsequently expressed as a linear combination of the spatial modes and their coefficients. 

Each spatial mode's coefficients are functions of air-supply parameters that can be interpolated. The optimal 

air-supply parameters were determined from design targets using a quick map of the cause–effect 

relationship between air-supply parameters and thermo-flow fields. The proposed method inversely 

determined air-supply parameters in two aircraft cabins using the percentage of dissatisfied passengers and 

the predicted mean vote. A full CFD simulation took 8 hours to solve a single case with snapshot fields, 

while the POD took less than 2 seconds. In this study, 2871 POD interpolations were constructed by 

employing 40 CFD simulations.  The majority of the total computing time (321 hours) was spent on CFD 

simulations. On the other hand, Full CFD simulations would have required 23,000 hours of computing time 

for 2,871 simulations. Hence, the POD method proved to be very efficient.  

There is reason to be optimistic about the use of forward approaches in the inverse design of enclosed 

spaces. The CFD-based adjoint technique may only identify the local optima of the design objective; 

however, the amount of computing work required is unaffected by the number of design variables. The 

evolutionary algorithm approach based on CFD is capable of finding the global optimal solution for the 

design objective; however, the amount of computational work required is quite substantial. The ANN and 

POD approaches have the potential to lower the amount of processing effort required, but the accuracy may 

suffer as a result.  
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2.9 Summary 

Healthcare-associated infections (HAIs), also known as Nosocomial infections (NIs), cause significant 

death, morbidity, and financial impact on patients and the healthcare system. It is shown that healthcare-

associated infections (HCAIs) may be related, at least to some extent, to the design and layout of the built 

environment. Nevertheless, it is still not entirely clear how these infections are spread, and there is much 

debate about the most effective way to treat them. At the very least, on a logical level, it is known that the 

transmission of infections requires at least three components. These components are namely, source of 

infecting pathogenic microorganisms, a susceptible host and a mode of transmission. It is of the utmost 

importance to understand the modes of infection transmission; however, these modes are still not well 

defined and even less well understood. Transmission might be influenced by the microorganism involved 

and made more difficult by a process involving multiple transfer routes.  

It is evident that there is a close association between ventilation and infection spread mechanism in an 

indoor environment. Thus, assessing the danger of exposure to infectious pathogens requires knowledge of 

the impact of ventilation strategies and the indoor environment on the dispersion and deposition of 

infectious bioaerosols. The ventilation rate within isolation and operations rooms is well established, but 

ventilation requirements for other spaces such as wards, outpatient clinics etc., remain unclear. It is 

observed that there is great uncertainty about specifying the minimum and maximum ventilation rate within 

wards to mitigate infection transmission. Moreover, it is found that the ventilation rate alone cannot reduce 

the risk of infection transmission. The design of the ventilation system and the location of susceptible 

patients from an infected individual are potential factors that need to be considered while laying infection 

control strategies.  

A variety of prediction methods that can be used to assess the airflow and contaminant distribution inside 

an indoor environment was explored. These included analytical approaches, empirical models, 

experimental models, multizone models, zonal models, and Computational Fluid Dynamics (CFD) models. 

Analytical approaches were proven to be unsatisfactory for complex problems, despite the fact that they 
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were easy to use, included a wealth of physical meaning, and required few computational resources. The 

empirical models have a similar outcome connected with them. The experimental method is utilised most 

frequently in modern times with the primary purpose of validating analytical, empirical, or numerical 

models. It is generally agreed that an in-situ experimental method can provide a more accurate prediction 

of airflow and the dispersion of contaminants. However, in comparison to numerical methods, experimental 

methods might be known to be significantly more time-consuming and costly. The multizone, zonal, and 

CFD numerical approaches are the most prevalent ones utilised when attempting to forecast the airflow and 

contaminant distribution. 

The multizone models don't take momentum effects into account, and they also assume that the air 

temperature and chemical species are uniform throughout each zone. These assumptions would be very 

different from what occurred, which would lead to severe inaccuracies in some circumstances. Zonal 

models that are based on airflow patterns have some limitations due to the lack of known airflow patterns. 

On the other hand, models based on mass and energy do not solve momentum equations, leading to 

inaccurate findings for flows with significant momentum. On the other hand, CFD has developed into a 

viable tool frequently used to study various aspects of buildings, including indoor air quality (IAQ), thermal 

comfort, fire safety, HVAC performance, and so on. The growth of computing power and the creation of 

more intuitive user interfaces have contributed to its growing prevalence. RANS, one of the several 

turbulent models that are accessible in CFD, has been proven to be suitable for predicting indoor airflow 

and pollutant dispersion. This model offers a good balance between the amount of computing effort required 

and the level of accuracy achieved. The passive scalar approach has its limitations when it comes to 

determining the distribution of contaminants because there is no body force interaction involved. On the 

other hand, the Lagrangian approach is widely used for tracking individual particle dispersion and 

deposition in studies concerned with indoor environments. 

The conventional method of designing a heating, ventilation, and air conditioning (HVAC) system for an 

enclosed space entails much trial and error to achieve a particular design objective. Between the preliminary 
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and the final design, this process could require a great deal of back-and-forth editing depending on the skills 

and domain knowledge of the designer. In addition, the process of design could be lengthened by several 

days or even weeks if an advanced simulation technology like CFD were utilised. Moreover, it is possible 

that the enclosing environment that is produced will not fulfil the requirements of the design objective. 

Therefore, the most effective strategy would be to combine a cutting-edge simulation tool, such as CFD, 

with a few different optimization methods. The CFD-based adjoint approach, the CFD-based genetic 

algorithm, the CFD-based artificial neural network, and the proper orthogonal decomposition method all 

have potential in this area. These techniques have been utilised in designing environments to achieve design 

goals such as a comfortable thermal environment. On the other hand, the use of these approaches to optimise 

ventilation strategies to mitigate infection transmission within an enclosed space has not been investigated 

to a great extent. 
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Chapter 3 

Development of a hybrid cooling energy simulation model 

 

3.1 Introduction 

The building sector accounts for a significant portion of the world's total carbon footprint. With the increase 

in global temperature, population, urbanisation, and improved living standards, it is expected that the air-

conditioning units and its usage in buildings is set to increase. The cooling energy demand associated with 

the building sector is a major contributor to greenhouse gas (GHG) emission. GHG emission drives climate 

change and its associated impacts on our environment are evident. Thus, it is necessary to cut down carbon 

emission associated with building sector by introducing effective strategies to design and operate buildings, 

with focus on sustainability. 

The strength and limitations of different approaches utilized for prediction of energy in buildings were 

reviewed in Chapter 2. Despite the highly accurate building energy prediction capability of physical 

simulation approach, its application is limited by the computational expense and need for high domain 

knowledge. Moreover, it would prove highly inefficient, if it is needed to thoroughly exploit the influence 

of numerous variable combinations on building energy requirement. In contrast, the data-driven approach 

driven by statistics is superior for building energy prediction with its low computational time and inherent 

ability to model non-linear multivariate interrelationships. However, this approach demands a large 

database for model development, and results are not physically interpretable. On the other hand, the hybrid 

approach that couples the physics in physical simulation method with statistics in data-driven approach is 

a more promising approach for building energy prediction.  

Cooling energy prediction in residential buildings is often complex and influenced by factors such as 

construction and building materials, climatic conditions, and occupant behaviors. These factors can have 

non-linear multivariate interrelationships with the overall cooling energy demand of a building. Thus, a 
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hybrid simulation model to predict the cooling energy consumption that is efficient in handling non-

linearities is developed in this chapter that offers an interpretable result with physical meaning. The hybrid 

model could evaluate the influence of building construction, materials, and indoor-outdoor temperature on 

the cooling energy demand. Thus, this approach would enable a user to identify key relationships between 

building physical characteristics and operational strategies to reduce the cooling energy demand at a 

minimal time compared to traditional building energy estimation methods. The proposed hybrid model 

would be an indispensable tool for building energy efficiency practitioners in the development of 

sustainable buildings.   

3.2 Selection of city, climate, building type and parameters 

The geographical coordinates of Hong Kong are situated at a latitude of 22° 18' N and a longitude of 114° 

10' E. The climate of this region is categorized as sub-tropical. During the winter season spanning from 

November to February, the average temperature ranges from 15 to 18 degrees Celsius. As per the Hong 

Kong Observatory, it is a frequent occurrence for temperatures to descend below 10 oC in metropolitan 

regions, and the Observatory has documented the minimum temperature of 0 oC. However, sub-zero 

temperatures and frost are occasionally observed in elevated terrains and the new territories. The spring 

season is short with high levels of humidity, and occasional instances of dense fog. The temperature exhibits 

significant fluctuations daily. During the period spanning from May to September, the prevailing climatic 

conditions are tropical in nature, characterized by high temperatures and humidity levels, interspersed with 

sporadic episodes of precipitation in the form of showers or thunderstorms. During the period of June to 

September, it is common for the afternoon temperatures to surpass 32 oC, while the average temperature 

ranges from 27-29 oC. The autumn season is short, commencing in the middle of September and concluding 

in early November. The average yearly precipitation amounts to approximately 2225 mm, with the majority, 

or 80%, occurring during the months of May through September. The extended period of high temperatures 

and humidity in the summer results in a significant need for air-conditioning to provide comfort cooling 

(Cheung et al., 2005). 
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Hong Kong is one of the world's most densely inhabited cities, with 7.5 million inhabitants (CENSTATD, 

2020). Currently, half the world's population lives in urban areas, and another 2.5 billion will by 2050 

(United Nations, 2018b). Population growth necessitates the development of affordable and 

environmentally responsible housing to satisfy the population's future requirements. Hong Kong has made 

significant investments in the development of high-rise residential structures to meet the housing demands 

and make the high-density environment more livable for society. Currently, 53% of Hong Kong citizens' 

housing needs are provided by private housing, 31% by public housing, and 15% by housing authority 

subsidized sale units (LCS, 2016). Between 2003 and 2013, the number of private housing apartments 

climbed from 1,258,000 to 1,458,000, whereas the number of public housing apartments increased from 

679,00 to 766,00 (Hong Kong Housing Authority, 2013).  

In Hong Kong, buildings consume 90 percent of the electricity generated and are responsible for almost 

sixty percent of the city's carbon emissions (EB, 2017). According to Hong Kong's 2018 energy end-use 

data (EMSD, 2020), electricity was the primary source of energy consumption, accounting for 55% of total 

consumption of 159,493 TJ, with the residential sector accounting for 26% of this total electricity 

consumption. In addition, Hong Kong's residential sector consumes more electricity than the transportation 

and industrial sectors. During the period from 2008 to 2018, the residential sector's electricity consumption 

increased by 13.1%, with an average annual growth rate of 1.2% during the same time frame (EMSD, 

2020). Along with the growth in electricity consumption, an increase in population and household size was 

also observed, and if immediate energy conservation measures are not implemented, it is anticipated that 

electricity consumption would continue to climb in the future. In 2018, residential buildings in Hong Kong 

consumed a total of 60,793 TJ of energy, of which 69% was consumed as electricity, of which 52% was 

consumed by private housing and 26% by public housing (EMSD, 2020). This indicates that private and 

public housing are the two largest contributors to GHG emissions from Hong Kong's residential sectors. In 

addition, as Hong Kong is a cooling-dominant location, it is important to highlight that 38% of the 

electricity usage was utilized for air conditioning the buildings. During the period between 2008 and 2018, 
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the residential sector's electricity consumption for air conditioning increased by 34% (EMSD, 2020). 

Consequently, decarbonizing the building sector and increasing the cooling energy efficiency of both 

existing structures and new constructions are essential initiatives for Hong Kong to achieve its sustainable 

development objectives.  

 

   
(a) (b) (c) 

 

 
(d) (e) 

Figure 3.1 Standard public housing block layouts in Hong Kong: (a) Concord; (b) Harmony; (c) 
New Cruciform; (d) Slab; (e) Trident. 

 

As was said earlier, the private and public housings sectors are also the two primary constituents of GHG 

emission within the residential building segment. As a result, both the public and private housing stock of 

Hong Kong was analyzed. This allowed us to investigate various permutations of building physical 

characteristics and operational strategies that have the potential to lower the amount of carbon emission 

associated with buildings. As can be seen in Figure 3.1, the public housing sector in Hong Kong adheres to 

one of five conventional block plans. These layouts are known as Concord, Harmony, New cruciform, Slab, 

and Trident (Hong Kong Housing Authority, 2021). The housing layouts in the private sector likewise 
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closely reflect the designs chosen by the public housing sector; however, there is more unpredictability to 

be found in terms of the building design layout. In addition, as compared to public housing, the design of 

buildings in the private housing sector in Hong Kong is sometimes attributed to provisions for having larger 

apartment floor areas and a higher window-to-wall ratio. 

To minimize the heat gained from the outdoor environment, an effective envelope design is necessary for 

residential buildings. Envelope heat gain and fenestration are the two main contributors to the cooling 

energy demand in buildings. The range of input parameters listed in Table 3.1 was extracted from design 

standards, Hong Kong residential property websites, and open literature data (Feng, 2004, Lam, 2000, 

ASHRAE Standard 90.1, 2010, Bojic et al., 2002, Wan and Yik, 2004). 

Table 3.1 Input parameters 

Input parameters Ranges 

Outdoor temperature, To (°C) 
Weather data of Hong Kong 

1989 

Day of a year [1–365] 

Hour of a day [1–24] 

Air temperature, Ta (°C) [20–30] 

Window area, Awd (m2) [2.32–58.179] 

External wall area, Aen (m2) [5.659–133.631] 

Apartment floor area, Afl (m2) [12.624–150.049] 

Orientation (°) [0–360] 

Window U-value, Uwd (W/(K·m2)) [4.2–6.9] 

Wall U-value, Uwl (W/(K·m2)) [0.4–2.9] 

Shading coefficient, Sc [0.4–0.97] 

Vertical shadow angle, σv (°) [0.0–89.9] 

 

3.3 Annual cooling energy consumption estimation 

The three primary contributors towards the cooling energy requirement of a building are: Envelope heat 

gain, ventilation heat gain and internal heat gain (lighting, equipment, occupants). Equation 3.1 can be 

utilized to estimate the annual cooling energy consumption in a building (Mui et al., 2021, Mui et al., 2022).  

𝐸𝑐 = ∑
∅𝐴𝐶,𝑘(𝐻𝑒𝑛 + 𝐻𝑖𝑛 + 𝐻𝑣𝑒𝑛𝑡)𝑘

𝐶𝑂𝑃𝑘

k

 (3.1) 

https://www.mdpi.com/1996-1073/14/16/4850#table_body_display_energies-14-04850-t001
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where ∅𝐴𝐶,𝑘 is the hourly air conditioner operation schedule in a year for k = 1, 2,…, 8760 hours, Hen is the 

hourly envelope heat gain, Hin is the internal heat gain and Hvent is the ventilation heat gain (Wong et al., 

2008).  

Hin is the internal heat gained from lighting and electric equipment, it can be expressed by Equation 3.2 in 

terms of floor area Afl and the sum of equipment power density Epd and lighting power density Lpd (Cheung 

et al., 2005).  

𝐻𝑖𝑛 =  (𝐸𝑝𝑑 + 𝐿𝑝𝑑) × 𝐴𝑓𝑙 

The ventilation heat gain Hvent can be expressed as the sum of sensible load Lsen and latent load Llat,  

𝐻𝑣𝑒𝑛𝑡 = 𝐿𝑠𝑒𝑛 + 𝐿𝑙𝑎𝑡 ;  {
𝐿𝑠𝑒𝑛 = 𝑁𝑘𝜌𝑉𝑣𝑒𝑛𝑡𝐶𝑝𝑎(𝑇𝑎 − 𝑇𝑜)

𝐿𝑙𝑎𝑡 = 𝑁𝑘𝜌𝑉𝑣𝑒𝑛𝑡ℎ𝑓𝑔(𝑤𝑎 − 𝑤𝑜)
 

where Nk is the number of occupants at hour k, air density ρ = 1.2 kg m–3, latent heat of evaporation hfg = 

2,436 kJ kg–1, heat capacity of air Cpa = 1.01 kJ kg–1oC–1, Ta (oC) is indoor temperature, To (oC) is outdoor 

temperature, and average ventilation rate Vvent = 3 Ls–1ps–1 (Lin and Deng, 2003). The indoor moisture 

content wa (kg kg–1, dry air) can be estimated based on the psychrometric chart while the outdoor moisture 

content wo (kg kg–1, dry air) can be estimated using Equation 3.4, where pw is the vapor pressure (kPa), pws 

is the saturated vapor pressure (kPa) and Rh,o is the outdoor relative humidity (%), 

𝑤𝑜 =
𝑝𝑤

101.325 − 𝑝𝑤
× 0.622 ; 𝑝𝑤 =

𝑅ℎ,𝑜

100
× 𝑝𝑤𝑠 

Existing air conditioners are reported to have a maximum coefficient of performance (COP) of 2.9; their 

cooling efficiency, which will drop (Kosar, 2006), can be calculated by Equation 3.5.   

𝐶𝑂𝑃𝑘 =
(𝑆𝐻𝑅𝑘 + 0.45)4.9

1.1
+ 0.75 

The hourly occupant load Nk is estimated by Equation 3.6, where ψk is the hourly occupant load variation, 

Nmax is the maximum number of occupants in an apartment, Oa (ps m–2) is the occupant area ratio and Afl 

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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(m2) is the apartment floor area (Wong and Mui, 2006). For a realistic prediction of cooling energy 

consumption, occupant behavior should be taken as an essential factor. Hence, a stochastic occupant 

behavior is considered (Richardson et al., 2008).  

𝑁𝑘 = 𝑁𝑚𝑎𝑥𝜓𝑘;  𝑁𝑚𝑎𝑥 = 𝑂𝑎𝐴𝑓𝑙 

3.3.1 Annual envelope heat gain estimation by physical simulation 

The apartment models were created using SketchUp 2019, and the building energy simulation was carried 

out using the OpenStudio® (OS) cross-platform tool that supports EnergyPlus™ (EP). EnergyPlus™ is a 

whole building energy simulation programme that is superior to its predecessor programmes, BLAST and 

DOE-2, in terms of user-configurable modular system and variable time step simulation. OpenStudio® is 

an EnergyPlus/Radiance framework that allows users to easily extend the base capability of EnergyPlus™ 

for a variety of purposes. Additionally, the abstractions of EP that OpenStudio® provides make it easier to 

understand new energy models and automate a wide variety of energy analyses (Hale et al., 2012, Long et 

al., 2013). Utilizing advanced building energy modelling, more specifically EnergyPlus™, is a strategic 

component of the United States Department of Energy's mission to enhance the design and operation of 

buildings. The OpenStudio®-created base energy model can subsequently be put to use in the parametric 

analysis tool (PAT), which is part of the OpenStudio® software package and allows for the generation of 

alternative design configurations (Long et al., 2013). Figure 3.2 provides an illustration of the workflow for 

the modelling and energy simulation process that was utilized in this investigation. 

(3.6) 
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Figure 3.2 Workflow of the modeling and energy simulation process 

The parametric analysis tool gives users the ability and flexibility to manually compare many design 

alternatives that are generated from a variety of measures and scripts within the tool. The measure is a script 

programme that was written in the programming language ruby. It offers the functionality to change the 

insulation properties of walls, modify window to wall ratios, operational settings, occupancy schedules, 

generate detailed reports of input–output of energy models, and so on. As an illustration, a window 

overhang can be easily generated on a prototype room model by utilizing a measure that is titled Add 

Remove Or Replace Window Overhangs. This is demonstrated in Figure 3.3. The script file is too long to 

be listed here, but it is easily accessible from the user community's building component library (BCL), 

which is a digital archive that stores building components and measures (Fleming et al., 2012). As a result, 

the PAT tool, with all its various functionalities, was utilized to carry out EP simulations for a variety of 

different apartment layouts, operational conditions, and material properties. 
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(a) (b) 

Figure 3.3 Illustration of a simple room model: (a) Before application of overhang measure; (b) 
After application of overhang measure. 

The physical and operational parameters, also known as the input parameters in Table 3.1, were configured 

in a total of 620,000 different random ways. For the purposes of the EP simulations, the data regarding the 

weather in Hong Kong in 1989 was obtained from the Hong Kong Observatory (Mui and Wong, 2007a). 

To train the ANN model, we used a database that contained the ranges of the input parameters and the 

hourly envelope heat gains that corresponded to those ranges that were generated by the simulations. This 

is illustrated in Figure 3.4. 

 

Figure 3.4 Schematic of the proposed cooling energy consumption estimation model 
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3.3.2 Artificial neural network 

The development of an artificial neural network can be traced back to the process of generalizing the neural 

connections found in the human brain and translating them into a mathematical model. The development 

of new technologies over the course of the past 20 years has paved the way for ANN to find applications in 

an almost infinite number of fields. Some examples of these fields include aerospace, energy, and medical 

science. The building industry is not immune to the adoption of artificial neural networks, and it is applied 

to various stages of a building project, such as conception, control optimization, energy consumption 

prediction, retrofitting, and performance evaluation (Ahmad et al., 2018, Guyot et al., 2019). The 

exponential growth of computing capacity and processing speeds has greatly increased the applicability and 

reliability of ANN to predict building-related energy performance (Kumar et al., 2013). In addition, the 

ability of ANN to process non-linear input–output relationships with high precision have made it a popular 

choice for building energy efficiency practitioners over conventional theoretical and empirical methods.  

When developing an ANN model for accurate predictions, the architecture of the neural network that is 

used and the inherent hierarchical characteristics of that architecture should be given careful consideration. 

The backpropagation algorithm (also known as BPA) serves as the foundation for this model. The input–

output data from the EP simulations were used as the dataset to train the BPA-based neural network. The 

database comprising 620,000 datapoints were partitioned to 70% for training and 30% for testing the 

artificial neural network. An ordinary feedforward network with three layers is used. This network has an 

input layer that contains 12 neurons, a hidden layer that contains 13 neurons, and an output layer that 

contains one neuron. Training the input vectors and the target vectors that correspond to them is 

accomplished with the help of the Levenberg–Marquardt algorithm (LMA). As was demonstrated in earlier 

research studies, LMA performs better than other models such as gradient descent and conjugate gradient 

methods (Torrecilla et al., 2007, Hagan and Menhaj, 1994). LMA was developed to approach second-order 

training speed without directly computing the Hessian matrix. The Hessian matrix is a matrix of second-

order partial derivatives of the error function with respect to the weights and biases of the network. The 
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convergence rate of second-order methods is comparatively higher than that of first-order methods, such as 

gradient descent, due to their utilization of additional information concerning the curvature of the error 

surface. This phenomenon can lead to a reduction in the number of iterations required to attain the error 

function's minimum and expedite the convergence process. However, it is computationally expensive to 

directly compute the hessian matrix, especially for large neural networks. The LMA overcomes this 

limitation by approximating the hessian matrix by using a combination of the gradient information and 

damping parameter, allowing them to attain second-order training speed. The Hessian matrix, abbreviated 

as Hm, can be approximated as,  

𝐻𝑚 = 𝐽𝑇𝐽 

𝛽 =  𝐽𝑇𝑒 

where J represents the Jacobian matrix, β represents the gradient, and e represents the vector of network 

errors. An update method that is similar to that of Newton allows for the approximation of the Hessian 

matrix to be obtained.  

𝑥𝑛+1 = 𝑥𝑛 − [𝐽𝑇𝐽 + 𝜇𝐼]−1𝐽𝑇𝑒 

where µ is a scalar variable that is referred to as the Marquardt adjustment parameter. Equation 3.9 operates 

similarly to Newton's method when µ equals 0 and uses the approximate Hessian matrix; however, when µ 

is large, the equation transforms into a gradient descent algorithm with a small step size.  

A collection of test data can be applied to the trained network to validate the generalizability of the 

predictions made by the neural network. It is recommended to use the trainbr function, which is an LMA-

based Bayesian regularization technique available in MATLAB R2020b (Demuth, 2010). This will help to 

improve the trained neural network's capacity for generalization. The objective function incorporates the 

conventional error function as well as the weight decay components, and Bayes' rule is applied to optimize 

the regularization parameters contained within the objective function. A Gaussian distribution with random 

variables has been applied to both the weights and the biases. The tan-sigmoid activation function, as shown 

(3.8) 

(3.9) 

(3.7) 
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in Equation 3.10, is applied to the hidden layer, while the output layer makes use of the linear transfer 

function fpureline, as shown in Equation 3.12.  

𝑎𝑗 = 𝑓𝑡𝑎𝑛𝑠𝑖𝑔(𝑛𝑗) =
2

1 + exp (−2𝑛𝑗)
− 1; 

𝑛𝑗 = ∑ ∑ 𝑃𝑖𝐼𝑊𝑗,𝑖 + 𝑏𝑗

12

𝑖=1

13

𝑗=1

 

where i and j represent the number of elements in the input vector and the hidden layer, respectively; aj is 

the output from each neuron in the hidden layer; nj is the net input vector; Pi is the input element of the 

input layer; i can range from 1 to 12; IW is the input weight matrix; PiIWj,i represents the weighted input 

value; and bj represents the bias.  

𝐻𝑒𝑛 = 𝑓𝑝𝑢𝑟𝑒𝑙𝑖𝑛𝑒(𝑛𝑜𝑢𝑡) = 𝑛𝑜𝑢𝑡;  𝑛𝑜𝑢𝑡 = ∑ 𝑎𝑗𝐿𝑊𝑗 + 𝑏𝑜𝑢𝑡

13

𝑗=1

 

where Hen is the hourly envelope heat gain in watts, ajLWj is the output layer weighted value, fpureline is the 

linear transfer function, nout is the net output value, and LWj is the layer weight index. 

3.3.3 Model validation 

To validate the hybrid model that was developed, it was tested using a variety of various operational and 

design combinations. During training, the ANN was given one hidden layer, and the number of neurons in 

that layer ranged from 12 to 14. For the purposes of training and testing the neural network, the dataset was 

divided into 70:30 proportions. Because the LMA-based Bayesian regularisation technique does not 

fundamentally require a validation set, it allows for the utilisation of a greater quantity of data in the training 

process of the network. This is a significant benefit of the technique. However, validation is done with a 

wide range of values as indicated in Table 3.2, that were within the lower and upper range of values that 

were utilized for training the ANN as shown in Table 3.1. In addition, to test the generalization capability 

of the hybrid model, it was again tested with values of parameters that were beyond the range of values that 

(3.12) 

(3.10) 

(3.11) 
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were used for training the ANN, as indicated in Table 4.1 of Chapter 4. Figure 3.5 illustrates the degree to 

which the results of the EP and the ANN are a good match for the various setups detailed in Table 3.2. It 

was found that with 13 hidden neurons, the ANN gave a better correlation (R2 = 0.947) and a Root Mean 

Squared Error (RMSE) of 0.0389, indicating a well-trained and well-equipped neural network for predicting 

envelope heat gains. The selection of a number of hidden neurons was carried out on a trial-and-error basis 

(Kumar et al., 2013). 

 

Figure 3.5 Comparison between artificial neural network (ANN) and EnergyPlus (EP) predictions of the 

annual envelope heat gain (KW yr-1) 
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Table 3.2 Apartment details and other parameters for model validation 

Case Floor 

Area 

(m2) 

External 

Wall 

Area 

(m2) 

Window 

Area 

(m2) 

Indoor Set-

point 

Temperature 

(oC) 

Wall U-

value 

(W/(K·m2)) 

Window U-

value 

(W/(K·m2)) 

Shading 

Coefficient  

Orientation 

(o) 

Vertical 

Shadow 

Angle 

(o) 

 

1 30 22.8 12.3 22 0.5 5 0.9 180 0  

2 35.8 31.9 7.6 24 2.9 6.9 0.97 45 75.3  

3 65 36.1 15.5 26 1.5 5 0.9 -90 40  

4 30 22.8 12.3 24 1.5 5.8 0.7 90 70  

5 110 63.8 36.9 22 1.5 4.2 0.9 0 70  

6 30.4 30.4 4.2 24 2.9 6.9 0.97 45 75.3  

7 145 75.2 40.5 24 1.5 5 0.7 0 70  

8 23.9 32.8 5.1 27 2 4.2 0.7 -45 40  

9 35.9 40 9.2 24 2.9 6.9 0.97 45 75.3  

10 15.1 21.1 4.6 24 2.9 6.9 0.97 45 75.3  

11 120 70 35.1 28 0.5 4.2 0.5 180 0  

12 135 48.3 63.2 26 0.5 5.8 0.7 0 70  

13 52.1 46.4 11.5 26 0.5 5.8 0.5 -90 75.3  

14 19.7 17.6 3.7 24 2.9 6.9 0.97 45 75.3  

 

The validity of the hybrid simulation strategy was tested against a previous study that was performed by 

Cheung et al. (2005). They studied the influence of the passive design strategies on cooling energy 

consumption of a public housing apartment. The researchers used TRNSYS to do energy simulations for 

eight apartments situated in the middle floor of a concord type housing block. The energy simulations 

utilized the weather data of Hong Kong in 1989. In their study, it was considered that the apartment 

remained unoccupied from 07:00 in the morning until 19:00 in the late evening and occupied by 3-4 people 

during the remaining hours. Cheung et al. (2005) had utilized this standard occupancy pattern that was 

directly related to the AC operation schedule, while a stochastic occupancy pattern was utilized in the 

proposed hybrid simulation model of this study for cooling energy prediction (Richardson et al., 2008). The 

apartment of the prior study all maintained an indoor set-point temperature of 24 oC. The present study, 

akin to its predecessor, neglected the impact of self-shading and inter-block shading on cooling energy 

consumption. Moreover, an averaged lighting power density (Lpd) of 18 W/m2, and an equipment power 

density (Epd) of 26 W/m2 from the previous study was used in this current investigation.  
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The material properties of the building envelope along with required physical dimensions and operational 

conditions from the previous study were then utilized to run the hybrid simulation model to estimate the 

cooling energy consumption. Figure 3.6 clearly demonstrates that there is an increase in cooling energy 

consumption with increase in shading coefficient and window area. The trends seen in the predicted results 

of annual cooling energy consumption provided by the hybrid simulation approach and by the study carried 

out by Cheung et al. (2005) are very similar. It's possible that the change in COP was the cause of the former 

results having a larger percentage (about 8.5%). In the study done by Cheung et al. (2005), a constant COP 

of 2.5 was employed. In contrast, a consistent and lower hourly COPk (as low as 1.5; notably during humid 

summer nights with a low sensible heat ratio (SHRk)) is utilized in the hybrid simulation approach. 

Importantly, the results indicate that it has a physical significance, as these variations in cooling energy 

consumption are anticipated when we consider the fundamental laws of heat transfer. The model is therefore 

physically plausible. 

  
(a) (b) 

Figure 3.6 Comparison of results by the proposed model and (Cheung et al., 2005) study (a) Annual cooling 

energy consumption (Ec) v/s Shading coefficient (Sc); (b) Annual cooling energy consumption (Ec) vs. 

window-to-floor area ratio. 

 

3.4 Influence of building-related parameters on cooling energy consumption 

The insulating qualities of walls and windows were determined for the purpose of this research by referring 

to a variety of design standards and open access databases. An apartment with a floor area of 60 m2 and a 
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range of window U-values varying from 4.2 to 6.5 W/(K·m2) and a range of shading coefficients varying 

from 0.4 to 0.8 is used to show the influence of window insulation on the annual cooling energy 

consumption in Figure 3.7. It has been noticed that the amount of energy required for cooling an apartment 

increase with the U-value of the windows. For example, if the shading coefficient is 0.6, then the yearly 

cooling energy consumption values are 8.8 GJ and 9.19 GJ for windows with U-values of 4.2 W/(K·m2) 

and 5.5 W/(K·m2), respectively. This results in an increase of 3.4% in the annual cooling energy load. A 

similar pattern can be seen with the cooling energy requirement exhibiting an upward trend when the 

shading coefficient is increased while the U-value of the window remains the same. In addition, Figure 3.7 

demonstrates that an annual cooling energy consumption estimate of 8.85 GJ is the lowest possible value 

for a U value of 4.2 W/(K·m2) with a shading coefficient of 0.4, while an annual cooling energy 

consumption estimate of 9.58 GJ is the highest possible value for a U value of 6.5 W/(K·m2) with a shading 

coefficient of 0.8. Windows with a low U-value (e.g., 4.2 W/(K·m2)) and a low shading coefficient (e.g., 

0.4) reduce annual cooling energy use by 8.19%. 

 

Figure 3.7 Annual cooling energy consumption with variation in window U-value (W/(K·m2)) and 

shading coefficient Sc 
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The effect that external wall insulation has on the amount of cooling energy used annually in an apartment 

was another factor that was taken into consideration. Figure 3.8 depicts the amount of energy required for 

apartment cooling when the U-values of the external walls ranged from 0.4 to 2.5 W/(K·m2) and the floor 

areas were 30, 60, and 90 m2 respectively. The consumption of yearly cooling energy in the apartment that 

is 30 square meters in size and has a U-value of 2.5 is shown in the figure to be 4.28 gigajoules, while the 

consumption of annual cooling energy in the apartment that is 90 m2 in size is 14.42 gigajoules. According 

to Figure 3.8, when the U-value is changed from 2.5 W/(K·m2) to 0.4 W/(K·m2), an average reduction of 

7.56% may be achieved in the annual cooling energy consumption of all flats. This can be accomplished 

by lowering the U-value. 

 

Figure 3.8 Annual cooling energy consumption with variation in external wall U-value (W/(K·m2)) 

The window-to-wall ratio, commonly known as the WWR, is an essential building arrangement that not 

only produces a pleasing visual aesthetic but also has significant influence on the amount of heat gained 

through the envelope of an apartment. The estimation of the annual cooling energy consumption for a 60 
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m2 apartment is shown in Figure 3.9. The WWRs range from 20% to 80%, and there is a step of 20% 

between each value. The values for cooling energy consumption that are 7.85 GJ when WWR is equal to 

20% and 9.96 GJ when WWR is equal to 80%, respectively, are the lowest and maximum possible values. 

According to the findings, elevating the WWR from 20% to 80% resulted in an increase in the annual 

quantity of energy required for cooling. On the other hand, lowering the WWR from 80% to 40% can bring 

about a savings of 18% in annual cooling energy usage. This can be accomplished without compromising 

the needs for proper ventilation and visual aesthetics. 

 

Figure 3.9 Annual cooling energy consumption with variation in window-wall ratio 

3.5 Influence of indoor set-point temperature on cooling energy consumption 

Figure 3.10 depicts the forecast of annual cooling energy usage for a 60 m2 flat using the fluctuation in 

outdoor temperature To based on Hong Kong's meteorological data in 1989 and a range of indoor set-point 

temperatures Tin between 23 °C and 26 °C. The effect that global warming has on the natural temperature 

range was another factor that was considered. At indoor set-point temperatures of 23 °C and 26 °C, 
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respectively, one can see the highest annual cooling energy consumption (10.35 GJ) and the lowest annual 

cooling energy consumption (7.63 GJ). This is because the higher temperature requires more cooling 

energy. If the indoor set-point temperatures are raised from 23 °C to 26 °C or 24 °C to 26 °C, annual cooling 

energy consumption can be reduced by 26% and 13.65% respectively. On the other hand, annual cooling 

energy consumption can be reduced by 21% and 13.03% if the indoor set-point temperatures are raised 

from 23 °C to 24.5 °C or 24 °C to 25.5 °C. If the indoor temperature is above 25 °C, then every increase of 

Tin by 0.5 °C will yield a reduction of 2.5% in annual cooling energy consumption. In the temperature range 

of 23–25 °C, a reduction in annual cooling energy consumption of 7.66% can be achieved by increasing Tin 

by 0.5 °C. When the outdoor temperature rises by 1 °C, it is estimated that the annual cooling energy load 

will rise by 4% from the existing level to keep the indoor set-point temperature at 24 °C. On the other hand, 

it is estimated that the annual cooling energy load will rise by 6% from the existing level to keep the indoor 

set-point temperature at 23 °C. This helps put global warming into perspective. 

 

Figure 3.10 Annual cooling energy consumption forecast based on indoor set-point temperature 
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3.6 Discussion 

The heat transfer that occurs via the building envelope is the primary factor that can have an impact on the 

amount of electricity required for the process of cooling an apartment so that its occupants can continue to 

enjoy a satisfactory level of thermal comfort. Based on the findings of this research, selecting construction 

materials with an appropriate U-value is essential since this factor can influence the amount of energy 

required for apartment cooling. When looking at the different floor areas that were taken into consideration 

for this study, it was found that the amount of energy needed to cool the building grew proportionally with 

the U-value of the external wall. It goes without saying that there is a linear relationship that exists between 

the amount of energy required for cooling and the U-value of the building material. As a result of the 

apartment's floor area being doubled while the apartment's walls maintained the same U-value, the 

apartment's cooling energy usage nearly doubled. Taking this scenario into consideration, it is vital to note 

that the cooling energy consumption of flats with large floor areas might be very high if ideal thermal 

insulations are not supplied on the building envelope. Buildings that rely on natural ventilation can 

minimize thermal discomfort by upgrading the U-value of their building envelopes. This is because U-value 

can be a critical element in limiting the amount of heat that is transported to the interior environment. 

An index of thermal insulation related with glazing is referred to as the shading coefficient Sc. The higher 

the Sc, the lower the resistance to heat transfer through solar radiation; conversely, the lower the Sc, the 

higher the resistance to heat transfer through solar radiation. According to the findings of this study, both 

the window's U-value and its Sc play a significant part in the rise or fall in the amount of cooling energy 

that is consumed. It is important to note that the selection of tinted or low-emissivity glass with lower Sc 

values compared to standard clear glass is always preferable for buildings located in the sub-tropical 

climatic region. This is because tinted or low-emissivity glass helps reduce the amount of heat that is 

transferred into the building. Altering the shading coefficient of a window that has a constant U-value can 

help cut down on the amount of cooling energy that is needed to keep the room at a comfortable temperature. 

To get to the heart of the matter, it is vital to interpret from this study that a mix and match of U-value and 
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Sc can be obtained depending on the demand. For instance, if passive solar heating energy is sought, a 

window combined with a high Sc and a low U-value can be specified. It is recommended that buildings 

situated in subtropical climate zones make use of windows that have a lower U-value and a lower Sc value, 

as this can significantly minimize the amount of energy required for cooling the structure. 

In order to place even more focus on the role that the building envelope plays in determining the amount of 

energy required for cooling, the influence of window-to-wall ratio (WWR) was also investigated. When 

calculating the amount of energy needed for cooling, one extremely important factor to consider is the total 

area of a window that is exposed to direct sunlight. When there is a greater amount of window surface area 

that is exposed to an environment that has a low level of thermal insulation, the amount of energy required 

to cool the building will increase. The findings of this investigation made it abundantly clear that there is a 

linear connection between WWR, and the amount of energy required for cooling. In Hong Kong, huge 

luxury flats typically come with larger window-to-wall ratio (WWR) than public housing buildings. Large 

windows may be aesthetically pleasing to the eye, but they are also a significant factor in the introduction 

of additional heat into an interior space. The provision for having large WWRs must be provided with 

suitable thermal insulations to decrease the amount of heat that is gained within the building. In the same 

vein, the findings of this study suggest that decreasing the WWR may be an effective method for cutting 

down on the amount of energy required for cooling. As a result, it is essential to create a balance between 

the required amount of energy consumption for cooling and the visual aesthetics of the space. 

It was said before that during the past hundred years in Hong Kong, there has been a rise in the number of 

days and nights that are extremely hot, while there has been a fall in the number of days that are cold. This 

tendency is essentially same in other parts of the world, where there has been recorded a significant shift in 

the average daily temperature. The need for cooling energy in indoor areas is being driven by the rise in 

average temperature that is occurring as a direct effect of climate change. It is necessary to lower the indoor 

set-point temperature to bring down the amount of energy that is consumed by the cooling system. 

According to the findings of this study, there is great potential to cut energy consumption by adjusting the 



98 
 

temperature set-points already in place inside buildings. As a result, it is strongly recommended that people 

all over the world immediately begin the practise of raising the indoor temperature set-point above the 

current levels to cut the amount of carbon emissions linked with the energy that is used for building cooling. 

Building energy efficiency practitioners can use the confluence of solutions revealed in this study as a good 

reference point to improve upon existing knowledge and mitigate the carbon emission related with the 

residential sector by using the information presented in this study. 

3.7 Summary 

In this chapter, it was identified that a significant contributor to greenhouse gas emissions is the utilization 

of electrical power for the purpose of air conditioning in residential buildings situated in climate zones 

classified as subtropical, such as Hong Kong. Between the years of 2008 and 2018, there was a rise of 

13.1% in the total amount of power that was consumed in the residential sector. If suitable measures are 

not implemented to reduce the amount of energy needed for cooling, it is anticipated that Hong Kong's 

residential energy consumption will increase along with the city's population as well as the average size of 

households. Benefits that extend far and wide might result from implementing energy efficiency measures 

to reduce carbon emissions in the construction industry. 

Thus, a hybrid simulation strategy was proposed. This strategy is a testament to the potential of integrating 

artificial intelligence techniques with a building energy simulation tool (EnergyPlus™) to predict the annual 

cooling energy consumption for buildings in Hong Kong. Its purpose will be to identify key relationships 

between building physical characteristics and operational strategies to reduce the cooling energy demand 

in a minimal amount of time in comparison to traditional methods of energy estimation. To check its 

validity, it was tested for goodness of fit with energy plus simulations and for an open literature data. A 

satisfactory energy prediction performance was achieved as result of the validation assessment, indicating 

its suitability to replace traditional building energy prediction methods. The generalization ability of the 

proposed hybrid simulation model for parameters beyond its training range will be evaluated in Chapter 4. 
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The hybrid simulation model can analyze building materials, construction solutions, and indoor–outdoor 

temperature variations on apartment cooling energy. The effect of passive design strategies on cooling 

energy consumption has been explored in detail, while ignoring the effect of inter-block shading and self-

shading on the cooling energy demand. Therefore, all simulations in this chapter considered a scenario that 

generates maximum solar heat gain condition to a space. It was identified that by using low thermal 

conductivity building materials for windows and external walls can reduce annual cooling energy 

consumption by 8.19%, and decreasing the window-to-wall ratio from 80% to 40% can save 18%. Changing 

the indoor set-point temperature from 24 °C to 26 °C can save 13.65% in cooling energy annually. Taking 

global warming into perspective, when the outdoor temperature rises by 1 °C, annual cooling energy load 

increases by 4% and 2.5% for maintaining 24 °C and 25.5 °C indoor set-point temperatures, respectively. 

The expected alterations in the energy consumption for cooling, as observed in this study, can be attributed 

to the underlying principles of heat transfer. Therefore, it can be inferred that the outcomes anticipated by 

the hybrid simulation model hold significant physical significance. Consequently, the hybrid simulation 

model that was formulated can be deemed as being physically plausible. 
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Chapter 4 

A generalized hybrid simulation model coupled with a genetic algorithm  

 

4.1 Introduction 

In Chapter 3, a robust hybrid simulation model was developed to predict the cooling energy consumption 

in residential buildings. The amount of energy used on cooling an indoor area is highly dependent on the 

construction of the building as well as the materials used. The simulation model proved to be an efficient 

prediction tool that could determine the influence of building-related parameters within its training range 

on the cooling energy demand. However, the ability of the model to predict the energy demand for 

parameters outside its training range was untested.  

The construction of a hybrid simulation model to evaluate the energy performance of a building is a time-

consuming and important procedure that requires multiple simulations to be carried out with dependable 

BPS tools. Because of this, models that are only valid for a single building are often worthless. Generating 

hybrid simulation models for a set of buildings would allow one to fully use its capacity, generating 

enormous benefits. In fact, the computational costs of creating hybrid simulation models would be justified 

by their application in many case studies. They would be a powerful energy-prediction tool. Hence, in this 

chapter, the generalization ability of the hybrid simulation model for parameters beyond its training range 

is evaluated.  

To ensure that the model would continue to perform well outside of the training data range, two distinct 

types of premises were selected: 1) sub-divided units (SDUs), which are residential spaces with specific 

building characteristics that fall below the lower limit of the training data range; and 2) healthcare facilities, 

which are non-residential spaces that have specific building parameters that fall beyond the upper limit of 

the training data range. Further, they were selected as application cases to serve as examples of the various 

ways for cutting down on energy use in these facilities. 
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Design space exploration done through parametric study is laborious if done through the conventional 

approach. Moreover, the results so obtained cannot be attributed to an optimal solution to the problem. 

Hence, the hybrid simulation model is coupled with an evolutionary algorithm to support the user to 

iteratively evaluate the various design conditions and their corresponding impact on the cooling energy 

demand. The integration of GA with hybrid simulation model would enable the user to find the optimal or 

sub-optimal solution for certain building settings from a pool of solutions in a time efficient manner. 

4.2 Generalization beyond the training range 

Early stopping and Bayesian regularization are two well-known strategies for enhancing the predictive 

power of an ANN beyond the scope of its training data. Bayesian regularization has been effectively utilized 

for the training of neural networks by academics from a variety of disciplines and fields of study. Bayesian 

regularization was found to have superior generalizability when compared to early stopping, according to 

research conducted by Doan and Liong (2004). The seminal work that was done by Foresee and Hagan 

(1997) confirmed that the integration of Bayesian regularization with the Levenberg-Marquardt algorithm 

for training a feed-forward neural network would reduce the computational overhead as well as provide 

excellent generalization capabilities. The Bayesian regularization technique was applied in a study 

conducted by Mahapatra and Sood (2012) to increase the generalization capability of the neural network 

and avoid the possibility of overfitting. The Levenberg-Marquardt algorithm was improved by Suliman and 

Omaro (2018), who additionally included Bayesian regularization. The method demonstrated cost-

effectiveness computationally while offering good classification with high sensitivity. In addition, a 

Bayesian regularization-based Levenberg–Marquardt neural model developed by Kayri (2016) not only 

possessed a superior capacity for prediction but also possessed the potential to uncover intricate 

connections. These studies confirm the use of Bayesian regularization in the hybrid simulation model built 

in Chapter 3 was significant to enhance the generalization ability of the model. 

To evaluate the generalization capabilities and performance of the model, two different kinds of premises 

were selected: 1) sub-divided units (SDUs), which are residential spaces with specific building 
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characteristics that fall below the lower limit of the training data range; and 2) healthcare facilities, which 

are non-residential spaces with specific building parameters that fall beyond the upper limit of the training 

data range.  In Hong Kong, the area for household in an SDU can be less than 7 m2 (Wong, 2018). This is 

below the range of floor area values that were used for training the ANN. On the other hand, inpatient wards 

were noted to have floor areas beyond the range of values used for training the ANN. Furthermore, it was 

noted in the literature that this facility may also possess material characteristics, such as the U-value of the 

exterior wall and window, that fall outside the range of values used to train the ANN. The ANN was put 

through its pace under a variety of operational and physical conditions, which are outlined in Table 4.1. 

The table contains parameters that are associated with buildings such as public housing flats, private 

apartments, SDUs, and hospitals. The goodness-of-fit test, which is depicted in Figure 4.1, shows that the 

ANN can generalize well (R2 = 0.95). Thus, it confirms that the hybrid model is capable of efficiently 

predicting the annual envelope heat gains of different physical and operational configurations. 

Table 4.1 Physical and operational parameters 

Case  

Floor 

Area 

(m2) 

External 

Wall 

Area (m2) 

Window 

Area (m2) 

Indoor Set-

point 

Temperature 

(oC) 

Wall U-

value 

(W/(K·m2)) 

Window U-

value 

(W/(K·m2)) 

Shading 

Coefficient 

Orientation 

(o) 

Vertical 

Shadow 

Angle (o) 

1 10 3.2 4.9 24 0.5 5 0.6 180 0 

2 30 22.8 12.3 22 0.5 5 0.9 180 0 

3 35.8 31.9 7.6 24 2.9 6.9 0.97 45 75.3 

4 65 36.1 15.5 26 1.5 5 0.9 -90 40 

5 30 22.8 12.3 24 1.5 5.8 0.7 90 70 

6 110 63.8 36.9 22 1.5 4.2 0.9 0 70 

7 30.4 30.4 4.2 24 2.9 6.9 0.97 45 75.3 

8 145 75.2 40.5 24 1.5 5 0.7 0 70 

9 7 4.9 3.2 24 0.5 4.2 0.5 180 0 

10 23.9 32.8 5.1 27 2 4.2 0.7 -45 40 

11 35.9 40 9.2 24 2.9 6.9 0.97 45 75.3 

12 120 70 35.1 28 0.5 4.2 0.5 180 0 

13 135 48.3 63.2 26 0.5 5.8 0.7 0 70 

14 52.1 46.4 11.5 26 0.5 5.8 0.5 -90 75.3 

15 19.7 17.6 3.7 24 2.9 6.9 0.97 45 75.3 

16 270 24.3 16.2 24 0.5 4.2 0.5 180 0 

17 270 8.1 32.4 22 0.5 3.8 0.5 180 0 
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Figure 4.1 Annual envelope heat gain (kW yr-1) predictions by ANN and EnergyPlus (EP) 

In section 4.3, the sub-divided units are further explored with the aid of a generalized hybrid simulation 

model to analyze the various approaches that can be taken to reduce the amount of energy associated with 

this unit. Furthermore, in section 4.4, the integration of an evolutionary algorithm with the hybrid simulation 

model to conduct an optimization is discussed. To demonstrate the procedure and its consequent advantages 

in prediction of cooling energy consumption, a general inpatient ward cubicle is chosen as an application 

case. The impact of passive design strategies on cooling energy usage has been investigated, with little 

attention given to the influence of inter-block shading and self-shading on cooling energy requirements. 

Thus, the simulations conducted in this chapter incorporated a scenario wherein space experiences the 

highest possible solar heat gain. 

4.3 Sub-divided units (SDU) 

The housing market in Hong Kong is consistently ranked as one of the most unaffordable in the world. The 

high cost of private housing, the extremely long wait times for allotment of public housing (an average of 
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5.8 years), and the ongoing lack of available housing have contributed to the development of housing 

alternatives such as subdivided units (SDU). The floor plan of a residential apartment is shown in Figure 

4.2 (a), and the apartment subdivided into two or more separate units, which are referred to as sub-divided 

units is illustrated in Figure 4.2 (b). The sub-divided units are designed to accommodate more people so 

that they can be rented out. The average per capita floor area in a SDU in Hong Kong in 2013 was reported 

to be 6.2 m2 (Wong, 2018). However, according to latest report from the Hong Kong government, the 

average per capita floor area has plummeted to 5.3 m2 (LCS, 2018). The number of SDUs in Hong Kong 

has increased steadily over the past few years, going from 66,900 in 2013 to 92,656 in 2016 (Wong, 2018, 

LCS, 2018). 

 

Figure 4.2 Example model of: (a) Residential apartment; (b) Residential apartment with four tiny sub-

divided units (SDUs). 
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4.3.1 Influence of area per occupant on cooling energy consumption 

It is estimated that the average area per occupant in a subdivided unit (SDU) is relatively less compared to 

public housing (13.4 m2/person). Due to this fact the maximum number of occupants that reside within a 

SDU is relatively high when compared to an apartment in public housing. The annual cooling energy 

consumption in a sub-divided unit is plotted against floor area as shown in Figure 4.3, and it is observed 

that annual cooling energy consumption tends to increase with floor area. The average floor space per 

person in an SDU is used to calculate the number of residents. It is a widely acknowledged fact that the 

mere presence of individuals within a given space can result in an increase in heat gain attributable to the 

occupants. Thus, the increase in occupants could lead to variations in cooling energy consumption. Even 

slight fluctuations in the amount of energy used for cooling can alter the amount of electricity used, 

changing the amount of carbon dioxide emitted. 

 

Figure 4.3 Annual cooling energy consumption variation with floor area for sub-divided housing 

Figure 4.4 illustrates how the variation in annual cooling energy consumption can occur within an apartment 

with the same total floor area but a different number of residents. It should come as no surprise that the 
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amount of energy used will rise proportionately to the number of occupants present within a particular floor 

space. For instance, when the number of occupants increases from two to five, there is a corresponding 

increase of twenty percent in the annual cooling energy consumption for a floor area of 30 m2. The annual 

cooling energy consumption tends to be relatively high as the floor area increases; this trend can have a 

negative effect on the city's efforts to achieve its sustainability goals. 

 

Figure 4.4 Variation of annual cooling energy consumption with number of occupants (noc) in different 

floor areas of sub –divided unit and public housing. 

 

As mentioned earlier regarding the impact of the number of occupants and the apartment floor area, it has 

been observed that the number of occupants within a household, particularly one that consists of SDUs, can 

be quite energy intensive when compared to public housing that shares the same floor area. In light of this 

observation, the variation in annual cooling energy consumption with change in area per occupant for 

different floor areas in a sub-divided unit is studied, and the results are shown in Figure 4.5. It has been 
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observed that there is a significant opportunity to cut carbon emissions by regulating the typical amount of 

space occupied by each person. For instance, in an apartment with a floor area of 18 m2, increasing the area 

per occupant from 6.2 m2 to 8 m2 can result in a savings of 11.5% of the apartment's total energy 

consumption, whereas increasing the area per occupant from 6.2 m2 to 12 m2 can result in a savings of 

24.6% of the apartment's total energy consumption. The area per occupant as well as the apartment floor 

area are both potential parameters that can influence the amount of cooling energy that is consumed within 

a sub-divided unit. There needs to be control measures and policy regulations in place to regulate the amount 

of space that is set aside as a subdivided unit for households of varying sizes. 

 

Figure 4.5 Variation of annual cooling energy consumption for floor areas (18m2, 30m2, 40m2) with 

variation in area per occupant. 
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4.3.2 Influence of indoor-set point temperature 

When we work toward lowering the carbon emissions that are associated with apartments, the temperature 

that we decide to maintain inside the unit at all times can be an important determining factor. Figure 4.6 

depicts the effect of indoor set-point temperature on annual cooling energy usage for subdivided units with 

varying space per occupant. In order to evaluate the influence of indoor set-point temperature on cooling 

energy consumption for a space with a floor area of 18 m2, the indoor set-point temperature is varied from 

23 oC to 26 oC. At the same time, the influence of variation of the average area per person on cooling energy 

requirement is analyzed. Thus, three average area per occupant scenarios are considered, namely, 6.2 m2, 8 

m2, and 12 m2, resulting in a maximum of 3, 2, and 1 inhabitant per unit with a floor space of 18 m2, 

respectively. With regards to an average area per occupant of 6.2 m2 in an SDU, the maximum yearly 

cooling energy consumption is 3.6 GJ when the indoor set-point temperature is 23 oC, and the lowest is 

2.69 GJ when the indoor set-point temperature is 26 oC. It has been observed that a reduction in energy 

consumption of 26.42% can be attained by raising the indoor set-point temperature from 23 oC to 26 oC, 

whereas a reduction of 14.16% can be attained by raising the indoor set-point temperature from 24 oC to 26 

oC. Similarly, as the average area per occupant increases from 6.2 m2 to 8 m2, the cooling energy 

consumption decreases by 11% while the indoor set-point temperature is maintained at 24 oC. Furthermore, 

as the indoor set-point temperature is increased from 24 oC to 26 oC for an average occupant area of 8 m2, 

the annual cooling energy consumption decreases by up to 16.14%. Changing the average area per occupant 

for SDU from 6.2 m2 to 12 m2 results in a 24.6% reduction in annual cooling energy consumption when the 

indoor set-point temperature is maintained at 24 oC. Changing the indoor set-point temperature from 24 oC 

to 26 oC for an average occupant area of 12 m2 results in an additional 18.94% reduction in annual cooling 

energy consumption. 
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.  

Figure 4.6 Annual cooling energy consumption based on indoor set-point temperature with variation in 

area per occupant for an apartment. 

 

4.3.3 Discussion 

It is generally believed that the reduced space associated with tiny houses will ease the load on the 

environment and make housing more affordable. However, in certain situations, such as when there is a 

lack of buildable land, affordable housing, and minimum standards of living space per person in cities like 

Hong Kong, many people are frequently crammed into spaces, which results in increased levels of 

discomfort and increased levels of energy consumption. By utilizing the generalized hybrid simulation 

model, the influence of apartment floor size, occupant per floor area, and indoor set-point temperature on 

annual cooling energy usage was evaluated. It was revealed that a living space with the same square footage 

in public housing and a subdivided unit, the latter utilized more energy. It was also observed that when 

apartment floor space increased, so did the energy usage of subdivided apartments. The average square 

footage per occupant in SDUs was a major factor in the rising demand for energy. It was observed that 

raising the average area per occupant in an 18 m2 flat from 6.2 m2 to 8 m2 reduced cooling energy 
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consumption by 11.5%, whilst increasing the average area per occupant from 6.2 m2 to 12 m2 reduced 

cooling energy consumption by 24.6%. In addition to the area per person, the indoor set-point temperature 

has been identified as a significant factor in reducing energy use. Changing the indoor set-point temperature 

from 24 oC to 26 oC for an apartment unit with an average occupant area of 8 m2 and 12 m2 results in a 

16.14% and 18.94% reduction in annual cooling energy usage, respectively. While environmental factors 

are considered, subdivided units in Hong Kong frequently experience problems with thermal discomfort 

and inadequate ventilation. In such units, it is thus essential to strike a balance between the occupants' 

comfort and health while examining the possibility of adjusting the indoor set-point temperature for energy 

savings. Therefore, an investigation that strikes a balance between energy consumption and thermal comfort 

for occupants in tiny housing units is recommended. 

4.4 Coupling of ANN with a genetic algorithm 

The selection of the physical parameters of the building and the operational conditions plays a significant 

impact in either minimizing or maximizing the required amount of energy. A hybrid simulation model 

developed in Chapter 3 was combined with a genetic algorithm to pick diverse operational and physical 

configurations that would either minimize or maximize the envelope's potential heat gain. One of the 

population-based meta-heuristic algorithms that is frequently utilized for gradient-free optimization is the 

genetic algorithm (Holland, 1975). It is a class of evolutionary algorithms that were inspired by Charles 

Darwin's idea of natural selection. These algorithms develop solutions to optimize a given problem through 

the processes of selection, mutation, and crossover to get optimal results. The evolutionary algorithm is 

well-suited for the resolution of nonlinearity problems, which are typically challenging to resolve using 

more traditional approaches. Additionally, rather than converge to the local minima, it has a tendency to 

converge to the global minima (Reynolds et al., 2017). The genetic algorithm (GA) generates a population 

of probable solutions by utilizing a fitness function that is based on a generalized pre-trained neural 

network. Each solution in this population is represented as a chromosome, and each chromosome has a 

string of values that are referred to as genes. Here, the genes serve as the input parameters to the neural 
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network, and the two chromosomes that were determined to have the highest overall fitness values using 

the roulette wheel selection method are the parents.  

Elitist, crossover, and mutation are the three primary forms of genetic operators that are utilised in the 

process of reproduction. Using the elitist selection strategy ensures that only the chromosome that possesses 

the highest level of fitness will be passed on to the following generation. Through a process known as 

crossover, the genes on one chromosome are swapped with the corresponding genes on another 

chromosome to produce children with improved fitness values in comparison to their parents. This is 

accomplished by performing random mating in the mating pool. The process of mutation involves a change 

to the genes that are included within the chromosome, which assists in the process of escaping from local 

minima. New generations will be produced until a particular stopping criterion, such as the maximum 

number of generations, is fulfilled. Until then, new generations will be produced. When the stopping 

requirement is satisfied, the GA delivers the optimal chromosome or solution with either the smallest or 

largest envelope heat gain. The optimal set of input parameters will be fed back into the ANN to produce 

the annual envelope heat gain. The global optimization toolbox found in MATLAB R2022a was utilized 

for optimization process (MATLAB, 2022). Figure 4.7 depicts the coupling of the artificial neural network 

(ANN) with the genetic algorithm (GA) in MATLAB to optimize the input parameters. 
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Figure 4.7 Coupling of ANN with genetic algorithm in MATLAB for parameter optimization 

4.5 General inpatient ward 

It is of the utmost importance to take into consideration building spaces falling under the healthcare 

category. There are not many studies that have been done on healthcare buildings and the demand for 

energy. It is possible that reducing costs and lowering carbon emissions in healthcare facilities will be 

impossible without significant improvements in energy efficiency. An air change rate in a ward can range 

anywhere from four to six with a design temperature of 24 oC, as outlined in the guidelines. According to 

the findings of a number of studies, there is a significant relationship between the ventilation strategy and 

the distribution of contaminants in indoor environments (Li et al., 2007a). According to research carried 

out by Yu et al. (2017) in a general hospital ward, an air change rate of 9 h-1 was found to effectively cut 
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down on the amount of time that particles spent floating around and depositing in the ward. Considering 

this development, it is critical to revise and update the existing guidelines in a timely manner based on new 

evidence in order to reduce the likelihood of an infection outbreak in the future. Nevertheless, hospitals 

continue to face a significant challenge when attempting to reduce their energy consumption without 

compromising infection control.  

The amount of overall floor space that is taken up by inpatient wards is typically quite significant in 

hospitals (Morgenstern et al., 2016). The image depicted in Figure 4.8 serves as a representative example 

of the standard configuration of a general ward in Hong Kong (Li et al., 2005). The ward featured a nursing 

station, a storeroom, and four individual patient cubicles. The ward had centralized air conditioning, and 

each of the four semi-enclosed cubicles was separated from the others by a corridor. The fan coil unit 

brought in fresh air from outside the building and combined it with the air that had been previously 

circulated inside the building. The resulting supply air was then distributed to the ward via a four-way air 

supply diffuser that was installed in the false ceiling. The exhaust grille directed the air back into the fan 

coil unit so that it could be reused. It is a typical operational configuration of general inpatient ward in Hong 

Kong. 
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Figure 4.8 Representative image of a general inpatient ward with four cubicles 

An energy consumption analysis was performed using a semi-enclosed mechanically ventilated general 

inpatient ward cubicle that measured 7.5 m x 6.0 m x 2.7 m (Yu et al., 2017, Satheesan et al., 2020). The 

same six-bed ward cubicle will be utilized in Chapter 5 to perform a computational fluid dynamics (CFD) 

analysis to determine the risk of infection in a semi-enclosed space under a variety of ventilation strategies. 

In the current investigation, it was presumed that the cubicle was completely occupied, and the pressure in 

its corridor was kept at a positive level to reduce the risk of cross-contamination. The supply air (with air 

change rates of 3 h-1, 6 h-1, 9 h-1, and 13 h-1, respectively) was distributed throughout the ward cubicle by 

means of four diffusers that were mounted on the ceiling. It was determined that the ventilation system, the 
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lighting, and the plug loads were operating properly and effectively 24x7x365 (that is, 24 hours per day, 7 

days per week, and 365 days per year). This research made use of the envelope parameters that are outlined 

in Table 3.1 in Chapter 3. The material properties of the design parameters of the building envelope 

associated with hospitals, such as the external wall and the external window, which are essential for carrying 

out the energy consumption analysis, were taken from the open literature and design standards (Ascione et 

al., 2013, Buonomano et al., 2014, Papantoniou et al., 2015, Ruggiero et al., 2022, Radwan et al., 2016). 

The values of these material properties were all considered to fall within the range that was presented in 

Table 3.1. It should also be noted that a value of 3.2 W/m2K was reported for the U-value of an external 

window, and 4.1 W/m2K was reported for the U-value of an external wall in the literature (Ascione et al., 

2013, Buonomano et al., 2014). These values fell outside of the training range of the prediction model. 

While carrying out the process of optimization depicted in Figure 4.7, these two values were taken into 

consideration for the lower and upper bounds of their respective parameters. In addition, the window-to-

wall ratio of the cubicles used in this study ranged anywhere from 20 to 80 percent. In each of the cases 

that were scrutinized, the optimal parameter combination that resulted in the lowest or highest envelope 

heat gain was selected. 

As mentioned earlier, the hybrid simulation model is combined with the GA to find the combination of 

operational and physical characteristics that would either result in the smallest or largest amount of envelope 

heat gain. In this regard, the maximum annual temperature acquired from the Hong Kong Weather Data 

1989 was held constant, along with the indoor temperature (24 oC), floor size (45 m2), vertical shadow angle 

(0o), and orientation (180o). However, the shading coefficient, the external wall and window areas, and the 

U-values of the external wall and window were all assigned lower and upper bound values for optimization 

purposes. As a result, a genetic algorithm (GA) that used an artificial neural network (ANN) as its fitness 

function was given a chromosome that contained 12 input parameters as genes. The size of the population 

was chosen to be 200, and the maximum number of generations was limited to 100. The likelihood of a 
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crossover was 0.85 while the probability of a mutation was only 0.1. Figure 4.9 is a graph that depicts the 

progression of generations. 

 

Figure 4.9 Evolution of generations for parameter optimization 

4.5.1 Influence of building envelope 

The amount of a building's energy consumption can have a substantial association to the building envelope 

design parameters that were used. These factors include the external wall U-value, the external window U-

value, the shading coefficient, and the window to wall ratio. Therefore, determining the impact of design 

parameter combinations on the heat gain of building envelopes is of the utmost importance, and that is 

achieved with the assistance of a hybrid simulation model linked with a genetic algorithm. The coupled 

methodology, which is explained in section 4.4, has the potential to determine the critical parameter 

combination that would either limit or enhance the envelope's heat gain.  

It is noted that by adopting an external window area of 20 % along with selection of low U-value for external 

window (U-value = 3.2 W/m2K) as well as external wall (U-value = 0.4 W/m2K) and low value of shading 

coefficient (Sc = 0.4) can lead to a reduction of 69.4 % in annual envelope heat gain when compared to the 
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case with an external window area of 80 % with a high U-value of external window (U-value = 6.9 W/m2K) 

as well as external wall (U-value = 4.1 W/ m2K) and high value of shading coefficient (Sc = 0.9). 

This finding provides more evidence that the choice of envelope parameters has a significant impact on the 

amount of heat gained by the envelope, which in turn has a bearing on the amount of energy used by the 

building. In the next section, annual cooling energy consumption will be calculated by employing either 

the minimum or maximum building envelope heat gain condition in conjunction with various recirculation 

ratios and lighting power densities. In addition, we will explore the physical settings, as well as the 

operational parameters, that have the potential to either lower or increase the amount of energy required for 

cooling. 

4.5.2 Influence of recirculation ratio 

The design of a ventilation system for a healthcare facility is often complex and must meet several standard-

specific operating characteristics to reduce nosocomial infections and provide acceptable thermal comfort. 

Numerous studies suggest that a high ventilation rate will help dilute pathogenic microorganisms, but a low 

ventilation rate will increase the risk of infection (Atkinson, 2009, Qian and Zheng, 2018). However, lower 

ventilation rates are frequently maintained in hospital emergency wards and clinical settings (Morawska et 

al., 2020). Therefore, ventilation strategies must be able to strike a balance between infection risk and 

energy usage. In the early days, hospitals were thought to require 100% exhaust or 100% outdoor air. 

Although Chaddock (1983) foundational work determined that recirculation of the majority of hospital air 

is acceptable, there are exceptions. A study by Satheesan et al. (2020) that investigated the effects of 

positioning an exhaust grille adjacent to a patient in a general inpatient ward revealed that a high exhaust 

flow rate (50%) can significantly prevent the spread of infection among ward residents. In addition, the 

path between the contamination source (the patient) and the exhaust can be a determining factor in effective 

infection management. Without recirculation, cooling energy use is significantly higher, as seen in Figure 

4.10. As depicted in Figure 4.10, increasing the recirculation ratio will result in a decrease in cooling energy 

usage. In the case of minimum envelope heat gain and a recirculation ratio of 50%, for instance, energy 
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savings of 30.5%, 37.9%, 41.23%, and 43.58% can be achieved at 3 h-1, 6 h-1, 9 h-1, and 13 h-1, respectively, 

when compared to the scenario with no recirculation. Using the highest envelope heat gain condition and a 

recirculation ratio of 50%, energy savings of 25.67%, 33.92%, 37.99%, and 41.02% can be achieved at 3 

h-1, 6 h-1, 9 h-1, and 13 h-1, respectively. Clearly, one can obtain more energy savings by selecting a method 

that results in a lower envelope heat gain and a larger recirculation ratio. 

 

Figure 4.10 Annual cooling energy consumption vs Air change per hour (ACH) for different recirculation 

ratios. Color band depicts:        use of minimum envelope heat gain condition,       use of maximum 

envelope heat gain condition 

4.5.3 Influence of lighting  

Lighting is another significant contributor to hospital energy use. The variance in energy consumption for 

two lighting power densities provided for the inpatient scenario is depicted in Figure 4.11. According to the 

Electrical and Mechanical Services Department (EMSD) (EMSD, 2021) in Hong Kong, the lighting power 
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density (LPD) specified for a patient room is 13 W/m2, although the ANSI/ASHRAE/IES Standard 90.1 

(2020) standard specifies a lower lighting power density of 7.3 W/m2 for patient rooms. The diagram depicts 

various air change rates with a recirculation ratio of 50%. In section 4.5.2, it was deduced that the 

combination of the strategy that results in a decreased envelope heat gain and a recirculation ratio of 50% 

is an energy-efficient strategy for the ward. Adopting this method and reducing the lighting power density 

from 13 W/m2 to 7.3 W/m2 can result in energy savings of up to 9 percent at an air change rate of 3 h-1, and 

roughly 5 percent at an air change rate of 9 h-1. As a reduction in lighting power density can aid in reducing 

a space's internal heat buildup and, consequently, its cooling energy consumption, it is advised that hospitals 

utilize more energy-efficient lighting systems. 

In addition, the effect of envelope heat gain conditions with selected recirculation ratio (50%) and lighting 

power density (7.3 W/m2) on cooling energy consumption is compared. It is noted that the highest envelope 

heat gain condition with the chosen recirculation ratio and lighting power density compared to the minimum 

envelope heat gain condition reveals an increase in cooling energy consumption of 27.22 % and 14.4 % 

with an air change rate of 3 h-1 and 9 h-1 respectively. The combination of a lower envelope heat gain 

condition, a recirculation ratio of 50%, and a lighting power density of 7.3 W/m2 would therefore be an 

energy-efficient strategy for the ward. 
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Figure 4.11 Annual cooling energy consumption vs Air change per hour (ACH) for different lighting 

power densities. Color band depicts:        use of minimum envelope heat gain condition,      use of 

maximum envelope heat gain condition. 

 

4.5.4 Discussion 

In the field of building energy simulation, hybrid simulation modelling is a sophisticated prediction 

methodology that, in comparison to other traditional methodologies, can estimate the amount of cooling 

energy consumption associated with a building in a shorter amount of time. Despite this, most of the hybrid 

simulation models that have been developed are limited to the simulation of a single type of building. A 

generalized hybrid simulation model that is based on Bayesian Regularization has been developed. This 

model would provide the user with the ability to estimate the energy consumption that relates to a variety 

of building types. Building engineers would be able to quickly identify optimal physical and operational 

characteristics that could minimize the envelope heat gain by integrating a genetic algorithm with a hybrid 

simulation model. This would eliminate the need for the engineers to manually search the design space in 
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an exhaustive manner. In addition, a general inpatient ward was selected as an application example to 

highlight the tactics for lowering energy use. The wards encompass a significant portion of the hospital's 

floor space. Therefore, implementing energy-saving measures within the wards could potentially have a 

substantial impact on the facility's overall energy consumption and subsequent carbon emissions.  

Building envelope is one of the primary components that can influence cooling energy consumption. An 

investigation was conducted, and the critical building envelope design parameter combination that either 

minimizes or maximizes the amount of heat gained by the envelope was found. It was found that a reduction 

of 69.4% in annual heat envelope heat gain can be achieved by adopting envelope design parameters 

(external window area of 20%, external window U-value = 3.2 W/m2K, external wall U-value = 0.4 W/m2K 

and shading coefficient Sc = 0.4). These parameters result in minimum envelope heat gain when compared 

to envelope design parameters (external window area of 80%, external window U-value = 6.9 W/m2K, 

external wall U-value = 4.1 W/m2K and shading coefficient Sc = 0.9) resulting in maximum envelope heat 

gain. Healthcare facilities typically maintain continuous operation of their ventilation and lighting systems 

throughout the year. Moreover, to control nosocomial infections, a higher amount of outdoor air is 

recommended. However, it is linked to a substantial level of energy consumption and cost. The results of 

this study suggest that adopting a combination of three factors—namely, (i) envelope design parameters 

that result in minimum envelope heat gain, (ii) recirculation ratio of 50%, and (iii) lowering lighting power 

density from 13 W/m2 to 7.3 W/m2—would prove to be an energy efficient strategy in an inpatient ward. 

The study demonstrated that a considerable quantity of energy can be conserved through the recirculation 

of air. It is imperative to prioritize air recirculation by investing in technologies that can effectively purify 

air. In addition, enhancing the energy efficiency of lighting systems can serve as a significant factor in 

reducing energy consumption within hospital settings. The present study suggests that stakeholders in the 

healthcare sector should prioritize the implementation of energy-efficient measures through the 

refurbishment of existing hospital facilities and the adoption of appropriate strategies in the development 

of new hospitals. The generalized hybrid simulation tool that is being proposed will be of assistance in the 
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implementation of methods that would result in energy savings, which may, in turn, contribute to an 

effective reduction in carbon emissions linked with the construction sector. 

4.6 Summary 

The hybrid simulation model developed in Chapter 3 has a good generalisation capability, which is 

confirmed by the results of the goodness-of-fit test run for the envelope heat gain prediction for several 

different cases. In light of this development, it has been demonstrated that it is a powerful prediction tool 

that can be used to accurately predict the amount of cooling energy required by various kinds of buildings. 

In spite of the significant amount of computational work that was required for its development, the 

enormous benefits that the simulation model has to offer outweigh the costs associated with its 

development. 

Tiny dwellings are thought to lessen environmental impact and make housing more accessible. In cities like 

Hong Kong, where there is a scarcity of buildable land, affordable housing, and no standards on minimum 

living space per person, many people are squeezed into small areas, resulting in discomfort and higher 

energy usage. The influence of apartment floor size, occupant per floor area, and indoor set-point 

temperature on annual cooling energy demand was analysed using a generalised hybrid simulation model. 

The area per occupant and indoor set-point temperatures are identified to be potential parameters that can 

be regulated within the tiny residential units to cut down the cooling energy demand.   

The integration of an evolutionary algorithm with hybrid simulation model enables a user to quickly identify 

optimal combination of building related parameters that would reduce the cooling energy demand. Thus, 

eliminating the need for building engineers to manually search the design space exhaustively. In order to 

demonstrate the optimization procedure and its advantages, a general inpatient ward cubicle was chosen as 

an application case. The key drivers (envelope parameters, recirculation ratio, lighting power density) that 

could have a potential impact on lowering the cooling energy demand associated with the facility were 

analyzed and effective measures were advised. Moreover, in a general in-patient ward, infection control is 
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significant if not less compared to energy demand. Thus, the strategies to mitigate the spread of infection 

in a general in-patient ward cubicle are explored in Chapter 5. 
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Chapter 5 

Ventilation strategy to mitigate infection transmission in an inpatient ward  

 

5.1 Introduction 

Ventilation systems in buildings play an important part in preserving the quality of the air inside the building 

(IAQ). Its major purpose is to bring in cool air from the outdoors and remove the heat that is produced 

inside the building. However, at a hospital or other healthcare facility, the system should also contribute to 

the treatment and prevention of diseases for patients. Only in buildings that fall under the healthcare 

category does ventilation need to take infection control into consideration when formulating its functions 

(Yau et al., 2011). However, there is a lack of suitable guidelines in terms of ventilation design when it 

comes to patient environments such as wards, outpatient facilities, and other similar places (Beggs et al., 

2008).  

Hospitals would accommodate several patients with various disease severity. As patients, healthcare staff, 

and visitors use inpatient care facilities, their susceptibility to hospital acquired infections (HAIs) or 

nosocomial infections is substantial. The largest nosocomial outbreak of SARS in Hong Kong, China and 

the outbreak of MERS in South Korean hospitals caused significant morbidity and mortality. There are 

three primary modes of infection transmission. First, the impact of "sprayborne" droplets on the eyes, nose, 

or mouth of an infected person, which would otherwise descend to the ground nearby. The second mode of 

infection transmission is by touch:  self-inoculation through the mucous membranes of the eyes, nose, and 

mouth after contacting a contaminated surface (a "fomite") or an infected person. Finally, "airborne 

transmission" refers to the spread of an infectious disease through breathing in an aerosol that has been 

floating in the air for many minutes or more. MERS coronavirus (MERS-CoV) is typically thought to be 

transmitted by close contact (Zumla et al., 2015), but airborne and fomite transmission are also considered 

to be feasible (Van Doremalen et al., 2013, Kim et al., 2016).  
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The severe respiratory bouts of sneezing and coughing can discharge large quantities of infectious viruses 

from an infected patient, which is crucial in spreading infectious respiratory infections in indoor settings, 

especially in hospital (Bourouiba et al., 2014). These ejected droplets could reach up to 8 meters and remain 

suspended in the air for many minutes due to the entrainment effect of sneeze-induced turbulence 

(Scharfman et al., 2016, Bourouiba, 2020). Hence, these exhalation actions from a patient admitted to a 

healthcare facility who is sick with an infectious disease such as COVID-19, or MERS-CoV can spread the 

disease. The fate of airborne infectious pathogens in indoor environment is controversial and a subject of 

extensive research. As per the traditional infection theory, bioaerosol particles with a diameter below 5 µm 

(e.g., droplet nuclei) remain airborne and are controlled by ventilation, while bigger particles (e.g., larger 

droplets from a sneeze, skin squama, etc.) deposit out of the air within a 2 m radius of the source. On the 

other hand, the reality is not quite so straightforward. Even if smaller particles stay in the air longer, there 

is still a chance that they will settle out onto surfaces, which creates a potential contact transmission risk 

(King et al., 2013).  

Although indirect contact transmission pathway is not considered the most dominant mechanism for 

infection transmission by the majority of research, it does play a substantial role in the triggering the spread 

of respiratory infection (Atkinson and Wein, 2008, Reed, 1975, Mubareka et al., 2009). According to the 

findings of a study that Nicas and Jones (2009) conducted, approximately 31% of infection is spread when 

a person's hand comes into contact with the face membranes. Indirect contact transmission can also result 

in a longer period of exposure to the virus than the other mechanisms of transmission (Walther and Ewald, 

2004). It is predicted that infectious pathogens in indoor air can live anywhere from a few seconds to hours, 

whereas pathogens that have deposited themselves on surfaces can live anywhere from a few hours to 

several weeks.  

Ventilation influences particles that continue to float through the air, but it is unknown how much of an 

effect it has on droplet transmission or deposited particles, or on the subsequent exposure of vulnerable 
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individuals to infectious pathogens through touch. So, it's important to evaluate, understand, and update 

ventilation design strategy to contain future virus epidemics.  

Accurate airflow prediction is needed to estimate pathogen transport, dispersion, and deposition in 

mechanically ventilated spaces. With improvement in computing capacity, CFD has been increasingly used 

to simulate indoor environments. CFD numerical modelling techniques provide insights into airflow and 

bioaerosol distribution with high temporal as well as spatial resolution in an indoor environment. As there 

are few studies on design of ventilation systems for general inpatient wards with respect to air change rate 

and exhaust airflow rate, an investigation is done to evaluate the combined impacts of these two parameters 

on airflow and exposure risk distributions due to a droplet nuclei of size 0.167 µm (MERS-CoV) within an 

air-conditioned ward cubicle. A simple, cost-effective ventilation system design that can reduce infection 

transmission in a hospital ward is sort. 

5.2 Ward design and ventilation scenarios 

The inpatient facilities would vary by hospital type and patient need. Nonetheless, the most popular variants 

include the open ward, semi-private room, private room, isolation rooms, and intensive care unit. This study 

will focus on developing an effective ventilation strategy for the open ward design. In an open ward, many 

beds are arranged in a large space without partitions. This design is utilized frequently at Hong Kong's 

public hospitals and is intended to accommodate many patients cost-effectively (Hirst et al., 1964). Patients 

have access to shared restrooms and showers, and nurses are typically stationed nearby to administer 

treatment and monitor patients' status. Although open wards are less private than other inpatient facilities, 

they offer some benefits. They can provide patients with a sense of camaraderie and support by allowing 

them to interact with others in similar circumstances. Open wards also make it easier for nursing personnel 

to observe patients and address any difficulties that develop. There are, however, significant disadvantages 

to the open ward concept. Patients may be exposed to increased noise and disturbances from other patients 

and may have less privacy. In addition, there may be a more considerable risk of infection transmission in 

an open ward because patients are closer (Li et al., 2005). 
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A standard semi-enclosed general inpatient ward cubicle with six beds spaced one meter apart was utilized 

to conduct CFD simulations. The three-dimensional geometry of the cubicle with a length of 7 m, width of 

6 m and height of 2.7 m is illustrated in Figure 5.1. The cubicle had mechanical ventilation (with a positive 

pressure towards the corridor), and it accommodated six patients who were lying supine. The supply air 

estimated based on the room volume and the air change rates (3 h-1–13 h-1), was brought into the cubicle by 

means of four diffusers that were positioned on the ceiling. The assumption was made that the room is 

supplied with 100% outdoor air. The supply air and the ward air that was expelled to the corridor were set 

equal for all the different air change rates in the base scenario, which is depicted in Figure 5.1 (a). Figure 

5.1 (b) depicts the installation of six local exhaust grilles (grille size: 0.5 m x 0.2 m) for exhausting 10% 

and 50% of supply air (i.e., EA = 10% and EA = 50%). After extraction through local exhaust grilles, the 

remaining cubicle air was discharged into the corridor (Satheesan et al., 2020). 

 

Figure 5.1 In-patient ward cubicle with patients: (a) without exhaust grilles; (b) with local exhaust grilles  

5.3 Infection transmission within ward 

In certain instances, a patient with an infectious disease could be nursed in an open ward cubicle before 

receiving a diagnosis, which could lead to an outbreak of the disease (Roy and Milton, 2004, Wong et al., 

2019). Exhalation activities, such as sneezing of the source patient in the ward cubicle, would release 

several infectious pathogens into the ward air. Based on the bioaerosol transport, dispersion, and deposition 

mechanism, the possibilities for infection transmission in a general inpatient ward environment is classified 
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into two categories in this study, namely, (i) by pathogens suspended in the air (airborne) and (ii) their 

subsequent deposition on to surfaces or patients (touch).  

5.3.1 Airborne exposure to pathogens 

The exposure of healthcare personnel, visitors, and patients to pathogens suspended in the air due to the 

exhalation (sneezing) of a source patient is investigated. The expelled pathogens will remain suspended in 

the air for a certain period, after which it most likely has three possible fates: inhalation by an individual, 

deposition on surfaces, and removal through the HVAC system. This section of the study considers the risk 

of exposure to ward users’ due to pathogens suspended in the air, followed by its inhalation. Equation 5.1 

accounts for an event where an individual gets exposed to infectious pathogens at their breathing height. 

𝑁𝑝(𝑡) = ∫ 𝑛(𝑡)𝑑𝑡
𝑡

0

 

Np(t) is the total number of particles at time t, and n(t) is the rate of change of particles with respect to time. 

The integral is taken over the interval between when the particle is expelled and when a particle resides in 

the breathing zone. In this study, the breathing zone is taken as a height that varies between 1.1 m to 1.7 m 

as depicted in Figure 5.2.  

 

Figure 5.2 Breathing zone height and dispersion of infectious pathogens from an infected patient in an 

inpatient ward cubicle 

(5.1) 
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The ward cubicle is segregated into several zones, as illustrated in Figure 5.3, to factor in the ward users' 

exposure to airborne pathogens due to exhalation activity of source patient (patient 5). This approach aims 

to estimate the spatial and temporal spread of the MERS-CoV droplet nuclei in the breathing zone of the 

ward users. 

 

Figure 5.3 Breathing zones within the computational domain 

5.3.2 Pathogen deposition within a ward cubicle 

The deposition of particles on patients because of the exhalation of pathogens by other patients in the same 

ward can result in cross-infection. The intensity of cross-infection between patients is dependent on each 

patient's position and the overall airflow distribution pattern within the ward environment. Exposure to 

infection due to deposition of particles released through sneezing by other patients (Infectors) can be  
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determined for patient i (Receptor Exposure):  

𝐸𝑖 = ∑ 𝑒𝑗; 𝑗 ≠ 𝑖

𝑛

𝑗=1

 

where Ei is the fractional exposure count for patient i, the fractional emission from patient j is denoted by 

ej, and the total number of patients is denoted by n. Based on this expression, it is possible to estimate the 

location within the same ward cubicle that pose the highest and lowest risks of transmitting an infection to 

patients. 

Hospital inpatient wards are advised to have relative humidity between 30 and 60 percent (ASHRAE, 

2013a). It has been observed that MERS-CoV can survive for up to 72 hours on plastic or steel surfaces at 

20 °C and 40% humidity (Oh et al., 2018). As a portion of exhaled particles will settle on surfaces such as 

the ceiling, floor, and walls in the ward, the investigation also accounted for infection by surface 

contamination. Based on the three deposition ratios expressed in Equation 5.3, namely wall deposition ratio 

rw, ceiling deposition ratio rc, and floor deposition ratio rf, it is possible to estimate the infection transmission 

through surface contamination under all ventilation scenarios considered in this study.  

𝑟𝑤 =

∑ 𝑛𝑤𝑖

𝑛

𝑖=1

𝑛 ∗ 𝑛𝑠
;  𝑟𝑐 =

∑ 𝑛𝑐𝑖

𝑛

𝑖=1

𝑛 ∗ 𝑛𝑠
;  𝑟𝑓 =

∑ 𝑛𝑓𝑖

𝑛

𝑖=1

𝑛 ∗ 𝑛𝑠
 

where ns represents the number of particles evacuated by a patient by sneezing and nw, nc, and nf represent 

the number of particles deposited on the walls, ceiling, and floor, respectively. 

5.4 Numerical simulation 

In recent years, numerical simulation conducted through CFD has become increasingly popular amongst 

building and ventilation designers. It has been specifically implemented in several studies to evaluate room 

airflow and contaminant dispersal with great success. CFD simulations, the primary instrument that is 

utilised in this investigation, provides an understanding of the probable airflow patterns and the behaviors 

(5.2) 

(5.3) 
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of pollutants (droplet nuclei of MERS-CoV) in the simulated computational domain (hospital ward cubicle) 

under various ventilation strategies adopted. In this section, a brief overview of grid generation, airflow 

(continuous phase) and particle (discrete phase) modelling is detailed.  

5.4.1 Airflow and grid modelling 

A finite volume based CFD code (Ansys Fluent 13.0) was utilized to evaluate the airflow distribution and 

transport mechanisms of bioaerosols in the ward cubicle. The numerical simulation model has a continuous 

phase (air) and a discrete phase (droplet nuclei). In this investigation, the Eulerian framework was utilized 

for the formulation of the governing equations of continuity, momentum, and energy for the continuum 

phase, whereas the Lagrangian framework was utilized for the modelling of the discrete phase. The 

movement of ward users in the cubicle is a transient phenomenon that may cause disturbances to airflow 

and bioaerosol distribution. However, few studies indicate that its influence is temporary and considerably 

less significant than ventilation (Shih et al., 2007, Hang et al., 2014). Hence, this study has modelled the 

three-dimensional airflow as an incompressible steady-state turbulent flow, with no consideration for 

unsteady phenomena. 

Although CFD possesses a diverse number of turbulence models, it is quite tough to single out one 

turbulence model as being superior to the others for every category of problems. Hence, the choice of 

turbulence model is a matter of striking a balance between competing considerations, including the physics 

of the flow being modelled, the standard method for making predictions about a given class of problems, 

the amount of computational power available, the accuracy required, and the amount of time required for 

the simulation (Gao and Niu, 2005). Reynolds-averaged Navier Stokes (RANS) simulations have been used 

in a great number of the studies that have been conducted on turbulent indoor airflow, although for some 

case studies, large eddy scale (LES) simulations have been utilized to accurately estimate flow field 

variables. However, LES has significantly greater grid needs in addition to longer computation times 

compared to RANS, making RANS the more popular method (Blocken, 2018). The Reynolds-averaged 

Navier Stokes (RANS) equation simplifies the simulation of turbulent flows considerably. The equations 
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have variables for the flow field that are averaged across time, which would eliminate the turbulent 

fluctuations. However, this simplification results in the introduction of unknown Reynolds stress tensors 

into the equation, leading to closure difficulties. The closure to equations can be achieved by adopting the 

Eddy viscosity modeling, and the renormalization group (RNG) k-ε model is the most recommended eddy 

viscosity turbulence model to mimic the indoor airflow distribution. Thus, the RNG k-ε model was chosen 

to model air turbulence because it provides more accuracy, stability, and computing efficiency for low 

Reynolds number and near wall flows.  

The diffuser inlets were defined as velocity-inlets, whilst the corridor and exhaust grilles were specified as 

outflow boundary conditions. In addition to treating outflow boundaries as having zero diffusion flux for 

all flow variables, Ansys Fluent implements a global mass balance correction. In addition, the outflow with 

flow rate weighting option gives the user the ability to have numerous outflow boundaries, each of which 

has a fractional flow rate (Ansys, 2010). To discretize the governing equations, a second-order upwind 

approach was used, and the SIMPLE algorithm was used for the pressure-velocity coupling in the 

continuum phase. It was estimated that a patient who was reclining would have a metabolic rate of 0.8 MET 

(ASHRAE, 2013b), and it was also assumed that convection would be responsible for the transmission of 

half of the heat (23.3 W/m2) produced by each patient. A constant heat flux was imposed on the whole 

surface of the supine patients. Every other wall was presumed to be adiabatic, except for those that 

contained heat sources (the patients). The walls are specified with smooth non-slip conditions. The 

Boussinesq approximation was used to reduce modelling complexity resulting from density changes due to 

temperature gradients (Zeytounian, 2003). 

The computational domain of the inpatient ward was partitioned into a several fluid zones. To construct 

hexahedral mesh for these distinct computational cell zones, ICEM-CFD 13.0 was used. The separate mesh 

files are combined into one utilizing the functionality of the tmerge filter. In tmerge, the necessary scaling 

factor, translation distance, and rotation information of the meshes must be given before the separate meshes 

can be combined into a single mesh file. The existence of mesh node locations that are not similar, as 
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illustrated in Figure 5.4, along the boundaries of the individual cell zones of the computational domain 

results in the establishment of non-conformal interfaces between the individual cell zones. The transport of 

fluxes from one mesh to another is achieved by these interfaces that connect each cell zone (Ansys, 2010).  

 

 

Non-Conformal Interface 

Figure 5.4 Non-identical mesh nodes along the boundary of two cell zones 

A grid spacing of 1.2 is kept throughout the entirety of the domain, and the first cell height is always kept 

at a distance of 0.001 meters from the wall. The near-wall mesh was refined to a degree that allowed it to 

resolve the viscous sublayer (y+ less than 5), and the modelling of the near-wall region was carried out 

using the enhanced wall treatment method. For the grid convergence study, three grid systems were 

developed: 1002k (System 1), 3202k (System 2), and 5110k (System 3). Airflow simulations were carried 

out on each grid. The grid convergence index (GCI) concept was used to analyze the convergence of the 

three grid systems (Roache, 1998). The GCIs for the grid systems were determined using the root mean 

square of the relative error (erms) for the fluid flow mean velocities (u) detected at 100 sites along a vertical 

line in the center of the ward cubicle.  

Cell Zone 1 Cell Zone 2 
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𝐺 𝐶 𝐼(𝑢) = 𝐹𝑠

𝑒𝑟𝑚𝑠

𝑟𝑝 − 1
 

where the grid refinement factor r is defined as the ratio of the control volumes of fine and coarse grid 

systems in the aforementioned equation; p is the order of the discretization technique; Fs is the safety factor; 

and erms is obtained by:  

𝑒𝑟𝑚𝑠 = √𝛴𝑚=1
100 |(𝑢𝑚,𝑐𝑜𝑎𝑟𝑠𝑒 − 𝑢𝑚,𝑓𝑖𝑛𝑒)/𝑢𝑚,𝑓𝑖𝑛𝑒|

2

100
 

𝑟 = (
𝑁𝑓𝑖𝑛𝑒

𝑁𝑐𝑜𝑎𝑟𝑠𝑒
)

1/3

 

System 1 was used as a point of comparison, the GCIs for Systems 2 and 3 came out to be 3.11% and 

3.40%, respectively. Because System 2 was sufficient for analyzing the flow characteristics of the fluid, it 

was chosen for further simulations after considering the amount of processing time as well as the correctness 

of the result. 

5.4.2 Particle modelling 

Individual particle trajectories were modelled using the Lagrangian framework, using the following 

modelling assumptions (Zhao et al., 2004, Tian et al., 2009): 

• The transfer of heat and mass between air-particle as well as particle-particle were neglected. 

• When a particle collides with a surface such as a wall, ceiling, or floor, it would not rebound. 

• The deposition procedure did not account for particle coagulation. 

• All particles were modelled as being spherical. 

In a short time (0.1 second), the expelled droplets from exhalation actions such as sneezing will evaporate 

and reduce in size (Xie et al., 2007). Their dehydrated remnants, the droplet nuclei, could harbour infections 

(Wells, 1955). In this investigation, a small proportion (<10%) of the total virus-laden droplets from a 

strong sneeze were assumed. It has been demonstrated that virus particles will not cluster at such a low 

(5.4) 

(5.5) 

(5.6) 
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concentration. Further, droplet nuclei will be referred to as particles in this study for the sake of clarity. The 

Lagrangian particle tracking solves the following particle motion equation to calculate the discrete 

trajectories of individual particles in the fluid flow.  

𝑑𝑢𝑏

𝑑𝑡
=

18𝜇

𝜌𝑏𝑑𝑏
2  

𝐶𝐷𝑅𝑒

24
(𝑢𝑎 − 𝑢𝑏) +

𝑔𝑎(𝜌𝑏 − 𝜌𝑎)

𝜌𝑏
+ 𝐹𝑥       

where ua is the velocity of the fluid (ms-1), ub is the velocity of the particles (ms-1), µ is the molecular 

viscosity of air (kgm-1s-1), ρa is the density of air (kgm-3), ρb is the particle density (kgm-3), and db is the 

particle diameter (m), Re is the Reynolds number of the particles, CD is the coefficient of drag, ga is the 

gravitational acceleration, and Fx represents the auxiliary forces acting on the particles. The Reynolds 

number of a particle is defined by,  

𝑅𝑒 =
(𝑢𝑎 − 𝑢𝑏)𝑑𝑏𝜌𝑎

µ
          

The coefficient of drag CD for bioaerosol particles is described by,  

𝐶𝐷 =
𝐾𝐷

𝑅𝑒𝑏
;  𝑅𝑒𝑏 < 1          

The constant of drag KD for bioaerosol particles as defined by Equation 5.9 is given by,  

𝐾𝐷 =
𝑑𝑏

2

2
             

In CFD simulations, the aforementioned equations were solved to determine the transport processes of 

bioaerosol particles in a Lagrangian scheme. The validity of Equations 5.9 and 5.10 was established for a 

range of particles with comparable bioaerosol diameters (db) ranging from 0.69 µm to 6.9 µm and further 

explored for particles with db as small as 0.054 µm (Wong et al., 2015). 

In addition to the drag force, the basset force, magnus force, virtual mass force, Brownian force, and 

Saffman lift force can influence the velocity of particles. Despite the fact that the magnitudes of these forces 

are significantly affected by fluid flow conditions and particle properties, a few of these forces are tiny 

(5.7) 

(5.8) 

(5.9) 

(5.10) 



136 
 

enough to be disregarded in some assessments (Zhao et al., 2004). Due to the particle size and non-

isothermal flow circumstances in this investigation, Brownian, thermophoretic, and Saffman lift forces were 

accounted for determining the particle motion trajectories. Using stochastic tracking methods, the 

dispersion of particles caused by turbulence in the flow field can be tracked. This study utilized the discrete 

random walk (DRW) model, a prominent method that accounts for velocity fluctuations (Lai et al., 2012). 

Table 5.1 provides a summary of condition adopted for CFD simulations. 

Table 5.1 CFD simulation parameters 

Computational 

domain 

7.5m(L) × 6m(W) × 2.7m(H), RNG k-ε turbulence model with enhanced wall treatment  

Total supply airflow 

rate 
0.1240kgs-1 for ach=3, 0.2480kgs-1 for ach=6, 0.3720kgs-1 for ach=9, 0.5374kgs-1 for 

ach=13, 285K (air temperature) 
 

Inlet (0.6m×0.6m) 

airflow rate 
0.031kgs-1 for ach=3, 0.0620kgs-1 for ach=6, 0.093kgs-1 for ach=9, 0.1343kgs-1 for 

ach=13, 285K (air temperature) 
 

Diffuser  

(0.6m×0.6m) 

Four supply diffusers, 4-way spread pattern, air supplied at an angle of 15° from the ceiling, 

adiabatic 
 

Corridor  

(6m×2.7m) 

Outflow with flow rate weighting, 295K (backflow temperature), adiabatic, escape 

boundary condition 
 

Exhaust grille 

(0.5m×0.2m) 

Outflow with flow rate weighting, 295K (backflow temperature), adiabatic, escape 

boundary condition, exhaust air=0%/10%/50% of total supply air 
 

Walls, ceiling, floor 

and beds 

No-slip wall boundary, adiabatic, trap boundary condition  

Patient  Six patients, no-slip wall boundary, 23.3Wm-2 for each patient, trap boundary condition  

Mouth of a patient 

(0.05m×0.05m) 

Single-shot release with an upward velocity vb=50ms-1 (Yu et al., 2017, Fontes et al., 2020), 

ns=10,000 virus particles, bioaerosol density ρb=1,100kgm-3 
 

Species (aerodynamic 

diameters) 

     MERS-CoV (0.167±0.012µm)  

 

To obtain the history of particles traversed through the breathing zones within the computational domain 

with respect to time, a region with prescribed coordinates is created in Ansys Fluent, and the discrete phase 

modelling (DPM) summary for the region is sorted for every second. After that, with the aid of a python 

programming code, the number of particles and residence time of each particle in each breathing zone is 

determined from the DPM summary for every simulation scenario considered in this study. 
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5.5 Model validation 

A study conducted by Yu et al. (2017) was chosen for performing the model validation. Yu et al. (2017) 

estimated the influence of air change rates on the dispersion and deposition mechanism for bioaerosols, 

specifically, MER-CoV expelled by an infected patient in a mechanically ventilated inpatient ward cubicle. 

The particle exhausted ratio, as illustrated in Figure 5.5, is taken as a parameter to validate the CFD 

simulation. The exhausted ratio (re) is the amount of particle that is exhausted to corridor (ne) divided by 

the total number of particles expelled by the infected patient (ns) as shown in Equation 5.11. 

𝑟𝑒 =
𝑛𝑒

𝑛𝑠
 

 

Figure 5.5 Deposited and exhausted ratios of MERS-CoV in an inpatient ward cubicle (Yu et al., 2017) 

Exhausted ratio for patient 1 

Exhausted ratio for patient 2 

Exhausted ratio for patient 3 

Exhausted ratio for patient 5 

(5.11) 
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The exhausted ratio accounts for the possibilities of infection transmission from a ward cubicle to the 

corridor due to the spread of expelled particles from an infected patient to the corridor. According to Chen 

et al. (2011), these particles could also move to neighboring spaces connected to the corridor. The CFD 

simulation for validation was conducted for the base case scenario of the ward cubicle without any local 

exhaust grille. As shown in Figure 5.5, the exhausted ratio of four source patients, namely, patient 1, patient 

2, patient 3 and patient 5 under an air change rate of 9 h-1 and 13 h-1 were taken for validation. As illustrated 

in the Figure 5.6, the exhausted ratio reported for different air change rates and different infected patients 

from this study matches well with simulation results of Yu et al. (2017). This reflects the accuracy and 

reliability of the CFD simulation of this study to conduct further exploration.  

 

Figure 5.6 Exhausted ratio for an air change rate of 9 h-1 and 13 h-1 

5.6 Numerical simulation results 

A brief discussion on the airflow patterns and particle distribution within the inpatient ward cubicle obtained 

by CFD simulations for various ventilation strategies are discussed in this section.  
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5.6.1 Airflow distribution and patterns 

In a hospital ward, the overall airflow distribution pattern based on ventilation strategies can have a 

significant impact on the particle dispersion within the room. Figure 5.7 displays the air velocity distribution 

and velocity vector plot in a horizontal plane at y = 1.0 m for the base case, which is a standard ward cubicle 

without exhaust grilles. Air having a velocity of less than 0.05 ms-1 is observed near wall 2 in Figure 5.7 

(a), and the overall airflow pattern in the cubicle is oriented towards the ward corridor in Figure 5.7 (b). 

These results parallel those given in a case study done by Yu et al. (2017). Several eddies can be noticed 

within the ward cubicle due to the presence of impediments such as patients and beds. Figures 5.8 and 5.9 

depict the temperature distribution and velocity vector plot on a vertical plane at z = 1.625 m for air change 

rates of 6 h-1 and 9 h-1 with EA = 50%, respectively. As thermal manikins generate thermal plumes, the 

vertical airflow distribution reveals the effect of thermal plumes on the lateral airflow pattern. An upward 

airflow (towards the ward ceiling) returns to the floor level along the walls. When the cold supply air from 

the diffusers mixes with the upward airflow created by the thermal plumes, formation of recirculation zones 

is observed. In addition, the suction provided by the local exhaust grilles tends to change the airflow pattern 

around a patient, so assisting in the removal of airborne contaminants in the immediate proximity of the 

patient. 
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Figure 5.7 Simulation results of the ward cubicle with no exhaust grilles at 6ACH: (a) air 

velocity distribution; (b) velocity vector plot 

a) 

 
b) 
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a) 

 
b) 

 
  

: General overall airflow pattern in the ward cubicle 

 

Figure 5.8 Simulation results of ward cubicle with exhaust grilles at 6ACH and exhaust air 

(EA)=50%: (a) temperature distribution; (b) velocity vector plot. 

 

EA EA 
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a) 

 
b) 

 
 

: General overall airflow pattern in the ward cubicle 

 

Figure 5.9 Simulation results of ward cubicle with exhaust grilles at 9ACH and exhaust air 

(EA)=50%: (a) temperature distribution; (b) velocity vector plot. 

 

5.6.2 Particle distribution 

This section is divided into two sub-sections to illustrate the possibilities of infection transmission through 

the pathogens dispersed in the ward air and their subsequent deposition on to surfaces/patients within the 

EA EA 
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ward cubicle. In section 5.6.2.1, the exposure of ward users to airborne pathogens that are suspended in the 

air will be evaluated. The subsequent deposition of pathogens on to surfaces/patients creating the 

possibilities of infection transmission through touch will be investigated in section 5.6.2.2. 

5.6.2.1 Spatial and temporal distribution of particles 

The distribution of particles in different zones with regards to time is discussed. To improve the clarity of 

results and their associated insights, the results are presented by bringing the segregated zones in the ward 

under three main zones as shown in Table 5.2.  

Table 5.2 Allocation of Zones 

Patient Zones Bedside Zones Aisle zones 

4,6,10,12,16,18 1,3,7,9,13,15,19,21 2,5,8,11,14,17,20 

   

 

5.6.2.1.1 Patient Zones 

At an air change rate of 3 h-1, the maximum concentration of particles remaining suspended in air is 

observed primarily in the zone (zone 16) directly above the source patient, as indicated in Figure 5.10 (a). 

The particles reach this zone as soon as the source patient sneezes. Within 10 seconds, over half of all 

particles released during sneezing reach this region. After 10 seconds, there is a progressive decrease in the 

accumulation of particles in Zone 16. After 30 seconds, there is an increase in particle accumulation in the 

zone directly above the adjacent patient. This trend could arise from the movement of particles under the 
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influence of airflow from Zone 16 to other locations within the ward. Over time, the patient zone adjacent 

to the source patient will likely be the most hazardous. The corridor-directed airflow distribution pattern 

plays a crucial role in the passage of particles from the contaminated source patient zone to the adjacent 

patient zone. The decrease in particle accumulation in zones 10 and 16 marks the beginning of the presence 

of particles across other patient zones. With the increased air change rate of 13 h-1, the number of particles 

reaching the breathing zone directly above the source patient is drastically reduced, as indicated in Figure 

5.10 (d). This could be attributed to the momentum of airflow guided by ceiling-mounted diffusers. This 

reduction in the number of particles would reduce the number of particles carried to different patient zones 

in the ward. This is significant compared to the results achieved with a lesser flow rate at 3 h-1.  

A significant reduction in particle concentration is evident with installing local exhaust grilles near the 

source patient, notably in Zone 16, as shown in Figures 5.10 (b) and (c). Installing the exhaust grille is 

beneficial, as seen by the decrease in suspended particles in the patient zones. After peaking at Zone 16, 

the number of particles declines within 30 seconds. Immediately after its decline, particle increase is seen 

in its adjacent zones. However, the most significant reduction in the number of particles remaining airborne 

is achieved with the increase in exhaust flow rate from 10% to 50% at a higher ACH (13 h-1), as indicated 

in Figures 5.10 (e) and (f). Consequently, this particle decrease results in less particle migration to other 

zones. A local reduction in the number of particles reduces the availability of infectious pathogens to cause 

an infection. 
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Figure 5.10 Particle distribution at patient zones at different air change and exhaust flow rates (a) ACH 3; 

(b) ACH 3 and exhaust flow rate 10%; (c) ACH 3 and exhaust flow rate 50%; (d) ACH 13; (e) ACH 13 and 

exhaust flow rate 10%; (f) ACH 13 and exhaust flow rate 50%. 
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5.6.2.1.2 Bedside Zones 

As previously stated, the source patient's exhale triggers the discharge of infectious particles. The particles 

in the ward are transported and dispersed due to the airflow distribution established in the room. As 

indicated in Figure 5.11 (a), at an air change rate of 3 h-1, particles in the bedside zone are first noticed in 

Zone 13, near the source patient. The particles reach this zone as soon as the source patient sneezes. Within 

11 seconds, this zone occupies the highest number of particles; after that point, the number of particles 

staying suspended in Zone 13 decreases gradually. The accumulation of many particles in Zone 13 shortly 

after its emission can be linked to the airflow direction and the source patient's proximity. As particles in 

this zone decrease, particles migrate to other zones. Within 60 seconds after particle emission, particles are 

detected in zones 7, 15, and 21 that are located farther from the source patient. There is a gradual shift in 

the distribution of particles within the ward over time. Nonetheless, the particles reaching these zones are 

significantly lower than in the zone around the source patient. This is an important insight to consider in 

the spread of infection. The transfer of infectious pathogens via the air from their source to other sites may 

result in the transmission of infectious diseases to other ward users, including healthcare professionals, 

visitors, and patients.  

The effectiveness of an exhaust grille positioned near the source patient is analysed. An increase in the 

number of particles is observed in the area immediately adjacent to the source patient, a situation analogous 

to the absence of a local exhaust grille. In Zone 13, the maximum accumulation of particles is observed 45 

seconds following the emission of particles from the source patient. However, with a local exhaust grille 

and an exhaust flow rate of 10%, the number of particles suspended in air is dramatically reduced compared 

to the scenario without an exhaust grille, as indicated in Figure 5.11 (b). A reduction in Zone 13 signifies 

the beginning of the movement of particles to other zones within the ward. The accumulation of particles 

in Zones 9 and 15 is higher than in other zones after 100 seconds of the particle release. Although, after 

500 seconds, the number of particles in most zones reduces to less than 10.  
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After the number of particles in the air peaks at 40 seconds, there is a progressive decrease in the 

accumulation of suspended particles. A gradual increase in particle accumulation is seen in Zone 7. Yet, 

when the particle accumulation in Zone 7 peaks at 117 seconds, the particles decrease gradually. Under an 

exhaust flow rate of 50%, the profile of particle build-up in Zone 13 is nearly identical to the case with an 

exhaust flow rate of 10%. However, at an exhaust flow rate of 50%, the transport of particles to other areas 

of the ward is severely constrained, as seen in Figure 5.11 (c).  

One of the main advantages of adopting an air change rate of 13 h-1 is that there are fewer particles in the 

breathing zone than with an air change rate of 3 h-1, as observed In Figure 5.11 (d). The number of particles 

accumulating in the breathing zone within seconds of discharge is cut in half compared to the scenario with 

an air change rate of 3 h-1. After 300 seconds, the quantity of particles remaining in the bedside breathing 

zones is dramatically reduced. A modest particle increase is observed in Zones 7 and 19 shortly after a drop 

in suspended particles in Zone 13. 

Including an exhaust grille reduces the presence of infectious particles remaining suspended in the bedside 

breathing zone. A decline in the accumulation of particles is noted for different bedside breathing zones 

within the ward, with an exhaust flow rate of 10% and 50%. After 200 seconds, fewer than 10 particles are 

observed to be suspended in the air, as indicated in Figures 5.11 (e) and (f). The maximum particle 

accumulation in the breathing zone is observed in Zone 13 after particle emission. This behaviour is 

identical in all the circumstances presented in this study, with the primary variable being the number of 

accessible particles that can promote airborne transmission. The most significant presence of particles in 

the breathing zones is observed without any local exhaust grille. Hence, the upgradation of the ward with 

the installation of a local exhaust grille would be a cost-effective solution. Within 200 seconds, an exhaust 

grille with an air change rate of 13 h-1 tends to make the breathing zones within the bedside less 

contaminated. This is exceptional compared to the other ventilation techniques considered in this study. 
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Figure 5.11 Particle distribution at bedside zones at different air change and exhaust flow rates (a) ACH 3; 

(b) ACH 3 and exhaust flow rate 10%; (c) ACH 3 and exhaust flow rate 50%; (d) ACH 13; (e) ACH 13 and 

exhaust flow rate 10%; (f) ACH 13 and exhaust flow rate 50%. 

 

 

 

(a) 

(b) 

(c) 

(e) 

(f) 

N
u
m

b
er

 o
f 

p
ar

ti
cl

es
, 
N

p
 

time, t (s) 

(d) 



149 
 

5.6.2.1.3 Aisle zones 

At an air change rate of 3 h-1, as indicated in Figure 5.12 (a), an increase in particle accumulation is 

experienced in Zone 11, followed by Zone 14 after 30 seconds of particle release. The highest accumulation 

is observed in Zone 11, which peaks at 80 seconds before gradually decreasing. The reduction in particle 

accumulation in these two zones marks the rise in particles across other zones. The proximity of Zones 11 

and 14 to the source patient may be one of the primary causes of the increase in particle counts.  

Analyses are conducted to determine the efficacy of a 10% exhaust flow rate on particle distribution. The 

concentration of particles is higher in Zones 11 and 14, as seen in the case with no local exhaust grille. 

However, a reduction in the number of particles remaining suspended in individual breathing zones is 

noticed with time, as shown in Figure 5.12 (b). With an increase in exhaust flow rate at an air change rate 

of 3 h-1, the number of particles staying in the breathing zone decreases even further, as indicated in Figure 

5.12 (c). With time, the presence of particles is discernible in all zones of the aisle. An increase in exhaust 

flow rate to 50% minimizes the particle build-up in the breathing zones of the aisle, and a considerable 

decrease is observed in Zone 14.  

Under an air change rate of 13 h-1, Zones 14 and 17 have the highest particle build-up within the aisle, as 

shown in Figure 5.12 (d). The maximum accumulation tends to occur within 20 seconds of particle emission 

from the source patient. However, after peaking, it reduces substantially within 50 seconds. The reduction 

in these zones marks the growth in other zones across the aisle, with zones 11 and 8 experiencing a 

considerable increase. Nonetheless, the build-up diminishes dramatically within 100 seconds in these zones. 

The aisle zones are clear of any infectious particles within 300 seconds after its discharge, as indicated in 

Figure 5.12 (d). 

With the installation of a local exhaust grille, the accumulation of suspended particles in the aisle is 

significantly reduced. A notable decrease in particle accumulation is evident in zones 11, 14 and 17. Earlier, 

these zones accumulated particles in settings with no local exhaust grille. The presence of suspended 
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particles reduces significantly with exhaust flow rates of 10% and 50%, as indicated in Figures 5.12 (e) and 

(f). Zone 14 appears to be the site with the most significant exposure to infectious particles in all scenarios 

represented under the air change rate of 3 and 13 per hour. The other zones are also exposed to particles 

expelled from Zone 16, although the number of particles is relatively low. Installing a local exhaust grille 

provides the benefit of dramatically reducing the availability of particles causing airborne disease 

transmission. In addition, it is essential to note that combining a high exhaust flow rate with a high ACH is 

preferable to a low ACH, as the former combination would decontaminate the space more quickly than the 

latter. 
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Figure 5.12 Particle distribution at aisle zones at different air change and exhaust flow rates (a) ACH 3; (b) 

ACH 3 and exhaust flow rate 10%; (c) ACH 3 and exhaust flow rate 50%; (d) ACH 13; (e) ACH 13 and 

exhaust flow rate 10%; (f) ACH 13 and exhaust flow rate 50%. 
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different air changes and exhaust flow rates addressed in this study. One minute after its release, it could 

be seen from the plot that the spread of particles is initially restricted to zones near the source patient. 

However, as time passes, the particles start to move away from its source towards other locations within 

the ward. The plot provides us an insight that under the effect of airflow, the particles could migrate several 

meters away from their point of origin, resulting in the transfer of infectious diseases within the ward. 

However, due to the effectiveness of the local exhaust grille, the number of particles available to flow across 

zones and induce infection transmission is significantly reduced. An increased ventilation rate 

complimented with an exhaust flow rate of 50% through a local exhaust grille is shown to provide a better 

performance in providing a localized control to restrict infection transmission. Our work has devised a cost-

effective ventilation strategy that provides enhanced protection to ward users against airborne transmission 

of infectious pathogens without the need for massive revamp of the entire inpatient ward facility. 
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Figure 5.13 Spatial and temporal distribution of particles in different zones within the breathing height at different air change and exhaust flow rates 

(a) ACH 3 (b) ACH 3 and exhaust flow rate 10% (c) ACH 3 and exhaust flow rate 50% (d) ACH 13 (e) ACH 13 and exhaust flow rate 10% (f) ACH 

13 and exhaust flow rate 50%
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5.6.2.2 Pathogen deposition in a ward cubicle 

In the base case scenario, nearly half of the virus particles exhaled by a patient land on the patient's body 

and bed. Figure 5.14 reveals that there were significant amounts of virus particles present on a variety of 

surfaces within the cubicle, including the walls, floor, and ceiling. A maximum rc (≈ 0.26) can be seen at 

an air change rate of 3h-1 in Figure 5.14 (a), because of supine patients and their exhaled air velocity. As 

the air change rate increases, it is also possible to see in the figure that rc will decrease. For example, rc will 

reduce to 0.11 at 13 h-1 (a 57% decrease) and rc will decrease to 0.17 at 6 h-1 (a 34% decrease). In fact, the 

air that is provided through the diffusers possesses a greater momentum as the air change rate increases, 

and as a result, it can direct the particles away from the ceiling and into other areas of the cubicle. In the 

base case, rw and rf were, respectively, more than 0.07 and 0.03 for all air change rates, as shown in Figures 

5.14 (b) and (c).  

As illustrated in Figure 5.15 (a), patients in beds located 1.625 meters away from the corridor (i.e., Patients 

1 and 2) were the most susceptible to the spread of infection (with exposure risk (E) greater than 0.05), 

whereas patients in beds located 5.875 meters away (i.e., Patients 5 and 6) were the least susceptible (with 

E less than 0.025). Patients who were further away from the corridor experienced a marked decrease in 

their likelihood of contracting an infection as a result of an increase in air change rate. This is explicable 

by the general airflow patterns depicted in Figure 5.7. Patients 5 and 6 had a risk of exposure to infection 

that was on average about half of patients 1 and 2, across all the air change rates considered. 
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Figure 5.14 ACH vs deposition ratio on: (a) ceiling; (b) walls; (c) floor 
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x-axis: Air change rate (ACH) 
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Figure 5.15 ACH vs exposure to pathogens: (a) EA=0%; (b) EA=10%;(c) EA=50% 
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Figures 5.8 and 5.9 show that the local exhaust grilles not only made it easier to remove a portion of the 

exhaled virus particles, but they also tended to increase the particle deposition in the body of the source 

patient, which led to a reduction in the amount of residual viral load that was present in the air. As shown 

in Figure 5.14 (a), the recorded values of rc at 3 h-1 were around 0.12 and 0.10 for EA = 10% and EA = 

50%, respectively. This represents a drop of 53% and 61% when compared to the base condition. In the 

same manner as the other cases presented in Figure 5.14 (a), rc fell whenever the air change rate was raised. 

According to Figure. 5.14 (b) and 5.14 (c), the ratios of deposition on the wall and floor were greatly 

reduced when EA was set to 10% and 50% (rw < 0.05 and rf < 0.03). 

However, it was found that all the scenarios resulted in the deposition of particles. Because the deposition 

is unpredictable by its very nature and frequently occurs regardless of the design of the ventilation system, 

this underscores the significance of maintaining regular and adequate ward cleanliness. Additionally, the 

randomness that is associated with particle deposition rates (rw, rc, and rf) under various air change rate 

situations can be related to the asymmetric airflow distribution patterns that are present as well as the 

locations of the patients that are infected. 

According to Figures 5.15 (b) and (c), the placement of exhaust grilles in close proximity to each patient 

can effectively mitigate particle migration from an infected patient to other areas within the ward. This 

measure also results in a noteworthy reduction in individual patient exposures, with a recorded value of E 

< 0.05. The findings indicate that the spatial positioning of a patient who has contracted an infection, the 

rate of exhaust airflow, and the frequency of air changes within the enclosed space all collaborate to impact 

the infection transmission mechanism. 

5.6.3 Discussion 

Within the confines of an air-conditioned general inpatient ward cubicle, the airborne route of infection 

transmission of MERS-CoV and the patterns of its subsequent deposition were analyzed. It was shown that 

both the air change and the exhaust airflow rates have substantial impacts, not only on the indoor airflow 
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but also on the distribution of particles within a room that is mechanically ventilated. Furthermore, the 

location of a source patient within the ward cubicle is very important in evaluating the extent of the risk of 

infection to other ward users. The findings imply that the breathing zone directly above the source patient 

has the highest level of pathogen exposure, followed by the breathing zones at the bedside and adjacent 

patients close to the source patient. The dispersion of pathogens throughout the ward over time is also 

apparent. This provides us with an insight that under the effect of airflow, the particles could migrate several 

meters away from their point of origin, resulting in the transfer of infectious diseases within the ward. 

However, a key difference while adopting a lower ACH (3 h-1) and a higher ACH (13 h-1) in this study was 

that the latter had significantly lowered the number of pathogens available to cause infection transmission 

than the former. In addition, combining a higher air change rate (13 h-1) with a high exhaust flow rate (50% 

of supply air) through a local exhaust grille dramatically reduced the number of available pathogens, further 

mitigating the risk of pathogen exposure for ward users. As a result, it is recommended that exhaust grilles 

be provided near a patient, preferably over each patient's bed. It is also recommended to have a high exhaust 

airflow rate to achieve infection prevention and control. Regardless of the ventilation configuration, each 

patient and surface inside the award cubicle needs to be cleaned and disinfected on a regular basis to 

eradicate any microbiological contamination. It is advised that UVGI lights be installed in the ward to 

further increase risk mitigation efforts. The results of this investigation can serve as a reference for 

developing more effective ventilation design solutions to reduce the likelihood of infections occurring in 

their facilities. 

5.7 Optimization for design evaluation 

With rapid advances in computing, CFD has become an indispensable tool for designing, analysing, and 

evaluating indoor environments' physical and operational configurations. CFD models can give a high-level 

spatial and temporal resolution of flow patterns, temperature, and pollutant dispersion within the 

computational domain of interest. In the prior section, a numerical study was carried out to lay out effective 

ventilation strategies to mitigate infection transmission in a general inpatient ward. Air change rate, location 
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of exhaust grille, exhaust flow rate, and location of an infected patient is identified to have substantial 

impacts on the airflow and particle distribution within the facility. However, other factors, such as the type, 

size, and location of the air distribution device, space geometry, etc., could also be influential. The 

traditional trial and error approach to implementing strategies encompassing all these factors would undergo 

numerous revisions between the initial and final design. Each modification to the design would necessitate 

re-modelling, re-mesh, and re-execution of the numerical simulations. Thus, relying solely on sophisticated 

simulation tools, such as CFD, to systematically evaluate the designs may take many hours or days to attain 

a solution that may or may not meet the design objective. Thus, a coupled simulation strategy that integrates 

an evolutionary algorithm (genetic algorithm) with an evaluation mechanism (CFD) is developed. 

5.8 Exposure to infection in a ward cubicle 

 Exposure to pathogens would increase the likelihood of an individual getting infected. There is a greater 

likelihood for an individual to be exposed in a healthcare facility such as an inpatient ward cubicle compared 

to other indoor environments. As previously noted, the distribution of pathogens within the facility may be 

influenced by various factors, including the location of an infected individual and their exhalation activity. 

By depositing pathogens on a patient who is susceptible to infection, an infected patient i contributes to the 

spread of infection inside the ward cubicle, and this contribution can be quantified as, 

𝐷𝑖 = ∑ 𝑑𝑗; 𝑗 ≠ 𝑖 

𝑛

𝑗=1

 

where Di is the number of pathogens that have been deposited on other patients because of the exhalation 

activity of infected patient i, dj is the particle that has been deposited to patient j, and n is the total number 

of patients in the ward cubicle. Contrary to section 5.3.1, in this investigation, only the number of pathogens 

deposited in patients is taken into consideration.  

 

 

(5.12) 
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5.9 Coupling of CFD with genetic algorithm 

Chapter 4 demonstrated the integration of genetic algorithm with an artificial neural network, in which the 

neural network was utilized as the fitness function. This chapter employs computational fluid dynamics 

(CFD) as a fitness function to determine the optimal parameter combinations that would effectively 

minimize the deposition of pathogens within the ward cubicle. Figures 5.16 and 5.17 show the GA process's 

components and overall outline adopted in this study. 

In a general inpatient ward, the potential for infection can be linked to a variety of operational and physical 

aspects of the indoor environment. It's possible that several factors, such as the air change rate, the number, 

location, and size of air supply diffusers and exhaust grilles, the location of the infected patient, the type of 

exhalation activity, its direction, and its velocity, and other factors, could all play an important part in the 

transport, dispersion, and deposition of infectious pathogens. The initial population and parameters to be 

optimized through the GA process is formed from the insights gained from the numerical simulation results 

detailed in section 5.6. 

In this investigation, the initial population consisted of 133 different chromosomes, each of which 

underwent a separate computational fluid dynamics (CFD) simulation. The CFD simulation would yield 

the deposition count in the ward cubicle, and Equation 5.12 in section 5.8 earmarks particle deposition 

count. In this single-objective optimisation, CFD simulations serve as the fitness function, and the count of 

deposited particles serves as the fitness score. A crossover rate of 0.5 and a mutation rate of 0.1 were utilised 

to conduct the GA process. In this investigation, the maximum number of generations is set as the stopping 

criteria for the GA process. Python was used as the programming language for the GA implementation, and 

the phases that make up the GA process are outlined as follows: 

1. Using the input parameters, generate n random chromosomes to form the first population. 

2. Determine the particle deposition count (fitness score) in the ward based on the CFD simulation 

(fitness function) for every chromosome in the population. 
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3. Based on the fitness score, chromosomes will be evaluated and selected. 

4. The parents will undergo crossover and mutation. 

5. Based on the crossover rate and mutation rate, new chromosomes will be created, resulting in the 

formation of a new population. 

6. The fitness score of the new chromosomes will be determined using CFD simulation. 

7. This concludes one iteration or generation of a genetic algorithm. 

8. Repeat steps 3-6 until a predetermined stopping point is reached. 

This investigation utilized the same numerical simulation procedure for airflow and particle modelling as 

adopted earlier in this thesis. Hence, more details regarding the same can be referred in section 5.4.  

 

Figure 5.16 Components of the genetic algorithm process 
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Figure 5.17 Flow chart of genetic algorithm process 
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5.10 Ward configurations and ventilation strategies 

In this investigation, the existing ward configuration termed as base case in section 5.2 is used and its 

different variations with respect to design and operation is developed to form the initial population in the 

GA process. As can be seen in Figure 5.18 (a), the existing ward design, featured four supply diffusers 

measuring 0.6 m x 0.6 m each, each of which was situated on the ceiling of the ward. Positive pressure was 

maintained toward the corridor using mechanical ventilation in the six-bed ward cubicle. This investigation 

used four different air change rates: 3 h-1, 6 h-1, 9 h-1, and 13 h-1. Based on these air change rates; supply air 

was distributed throughout the cubicle using ceiling-mounted diffusers. For each air change rate condition, 

an exhaust flow of 10%, 30%, and 50% of the supply air was regulated through the exhaust grilles. Local 

exhaust grilles were put at different locations near the patient bed. To investigate how modifications to the 

design of ward cubicles affect the flow of air and the distribution of particles, the number, size, and location 

of supply diffusers and exhaust grilles were varied. A few configurations from the initial population are 

depicted in Figure 5.18 (a)–(f) and Figure 5.19 (a)–(b), respectively, to illustrate the existing ward, its 

modifications, and related terminologies.  
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Figure 5.18 Inpatient ward cubicle designs with patients: (a) Existing cubicle with four supply diffusers 

and no local exhaust grilles (base case); (b) cubicle with four supply diffusers and six local exhaust 

grilles; (c) cubicle with three supply diffuser and four local exhaust grilles; (d) cubicle with three supply 

diffusers and six local exhaust grilles; (e) cubicle with six supply diffusers and four local exhaust grilles; 

(f) cubicle with six supply diffusers and six local exhaust grilles.  

 

(a) (b) 

(c) (d) 

(e) (f) 
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Figure 5.19 Height (H) of the exhaust grille from the floor 
 

5.11 Numerical simulation results 

This section provides a brief explanation of the airflow patterns and particle deposition within the inpatient 

ward cubicle as determined by CFD simulations coupled with GA. 

5.11.1 Airflow distribution and patterns 

A quantitative depiction of the distribution of velocity and temperature across the ward can be obtained 

using numerical simulations carried out using CFD. Both the patterns of airflow and the temperature 

distribution can play an important part in the mechanism by which infectious pathogens are transported, 

dispersed, and deposited. Figure 5.20 and 5.21 illustrates the velocity distribution and airflow pattern in the 

ward over the XZ plane at two distinct ACHs (9 h-1, 13 h-1). The location of this plane is at y = 1.35 m from 

the floor. It is clear from looking at Figure 5.20 (a) that the air velocity near patients 1 and 2 was much 

lower at 9 h-1 compared to the air velocity near the other patients who were being treated in the ward. In 

addition, as can be seen in Figure 5.20 (b), the predominant direction of airflow in the ward is toward the 

corridor. Therefore, as a result of these two circumstances, the patients positioned near the corridor will 

play a less significant part in the process of causing cross-infection among the other patients in the ward.  

(b) (a) 



166 
 

 

 

Figure 5.20 Airflow simulation results across a horizontal plane located at y = 1.35m at 9 ACH. 

 

The existence of a blockage in the form of the patient and bed causes the production of multiple eddies. 

The recirculation zones have the potential to produce a dangerous environment because they have the 

capacity to hold infectious pathogens for an extended period, which in turn raises the likelihood of infection. 

As illustrated in Figures 5.21 (a) and (b), the observed improvement in the velocity distribution as well as 

the airflow pattern occurs in conjunction with an increase in ACH. Temperature distribution and airflow 

(a) 

 

(b) 

 

Patient 1 

Patient 2 

Patient 3 

Patient 4 

Patient 5 

Patient 6 
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pattern on the XY plane placed at a distance of z = 1.6 m in the ward cubicle with a local exhaust grille 

installed on the bed sidewall are depicted in Figures 5.22 (a) and (b), respectively. Thermal plume is 

produced by thermal manikins, which have the potential to have a significant impact on the vertical airflow 

pattern within the ward cubicle. It is clear to observe in Figures 5.22 (a) and (b) that the cold supply air and 

the thermal plume are being mixed. 

 

  

 

Figure 5.21 Airflow simulation results across a horizontal plane located at y = 1.35m at 13 ACH. 

(a) 

 

(b) 

 

Patient 1 

Patient 2 

Patient 3 

Patient 4 

Patient 5 

Patient 6 



168 
 

 

 
 

Figure 5.22 The plots of ward cubicle with three supply diffusers on the ceiling and four local exhaust 

grilles on the sidewall at 6 ACH and exhaust air = 30%: (a) temperature distribution (b) airflow pattern 

 

5.11.2 Exposure risk for patients through cross-infection 

Figure 5.23 is a plot depicting the progression of generations through the GA process, along with the fitness 

value for the optimal chromosome. Table 5.3 lists the best input parameter combinations that results in least 

deposition of pathogen after completing 10 generations. The fitness score (Di) indicates the number of 

particles that were deposited on other patients because of an infected person exhaling in the ward cubicle. 

(a) 

 

(b) 

 

XY plane 
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It is clear from Table 5.3 that the patient 2 who is located closest to the corridor contribute the least to the 

spread of infection throughout the ward cubicle. It's possible that putting a new patient in a location close 

to the corridor for the first few days of their stay in the hospital would be the best way to prevent any 

infections from rapidly spreading throughout a ward cubicle. It is also clear from Table 5.3 that the design 

of the ventilation system would play a significant role in determining how effectively the ward can prevent 

the spread of infection from patient to patient.  

 

Figure 5.23 Evolution of generation in the GA process 

In a ward cubicle that is kept at an air change rate of 6 h-1, installing three supply diffusers of size 0.36 m2 

on the ceiling and exhaust flow (30% of supply air) through four exhaust grilles of size 0.04 m2 that is 

located nearby patient beds has shown to be the optimal arrangement that results in the lowest possible risk 

of cross-infection. In addition, it is essential to emphasise that the installation of a local exhaust grille in 
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close proximity to the patient could provide localised control to restrict the spread of infectious pathogens 

from an infected patient to other locations within the ward cubicle. In addition, regardless of the ventilation 

strategy that is utilised, it is of the utmost significance for medical personnel who are providing care to 

patients to adhere scrupulously to general recommendations concerning the prevention of infections. These 

recommendations include practising proper hand hygiene, protecting their eyes, and wearing face masks 

with high filtration efficiency. 

Table 5.3 Input parameter combination with the lowest pathogen deposition 

Parameters  

i ii iii iv v vi vii viii Di 

2 6 3 0.36 4 0.04 30 0.8 3 

* Refer to Figure 5.16 for the denotation of roman numbers 

5.12 Summary 

Ventilation plays a significant role in maintaining indoor air quality and thermal comfort in indoor 

environments. Although, in a healthcare facility, it must additionally consider infection prevention in its 

control strategies. However, it is noted that there is a lack of proper guidelines for designing ventilation 

system for patient environment such as in-patient wards. Thus, a numerical study was conducted utilizing 

CFD to evaluate the influence of different ventilation strategies on the mitigation of infection transmission 

in a mechanically ventilated in-patient ward cubicle.  

The conventional method of optimising ventilation strategy for an indoor environment requires exhaustive 

simulation of all possible combinations of design space parameters, followed by methodical evaluation of 

each scenario to propose the optimal solution. This strategy, on the other hand, would be extremely 

inefficient in terms of both time and cost. Hence, a coupled simulation approach by combining an 

evolutionary algorithm (Genetic algorithm) with an evaluation mechanism (Computational Fluid 

Dynamics) was developed to determine an optimal ventilation strategy to mitigate the spread of infection 

in an inpatient ward cubicle. This research aimed to improve patient safety by reducing the likelihood that 

an infection will be passed from one patient to the next. Compared to the conventional method, the proposed 
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methodology would perform fewer CFD simulations while simultaneously evaluating a wider variety of 

design solutions in an iterative manner.  

According to the findings of a design exploration conducted with GA-CFD, the combination of certain 

design parameters, such as the location of an infected patient; the air change rate; the flow rate through a 

local exhaust grille; the number, location, and size of supply diffusers and local exhaust grilles; and the 

flow rate through a local exhaust grille, can be crucial in reducing the likelihood of an infection spreading 

from one patient to another within a ward. In addition, the research highlights the necessity for healthcare 

workers to prudently practise and implement standard guidelines of infection control, such as practising 

proper hand hygiene, protecting their eyes, and always wearing a face mask that has a high filtration 

efficiency, regardless of the ventilation strategy that is being used. 

 

 

 

 

 

 

 

 

 

 

 

 



172 
 

Chapter 6 

Conclusions 

Energy conservation in buildings is a perennial topic compared to numerous research fields. The building 

sector is recognized as one of the significant contributors to global greenhouse gas (GHG) emissions. GHG 

is the leading cause of climate change, and climate change is driving an increase in heat waves and other 

extreme weather events. It is suggested that it could cause a dual effect: a decrease of 30% in global heating 

demand and an increase of 70% in global cooling demand. Thus, an effective way to cut down building 

cooling energy consumption and reduce the carbon footprint associated with buildings is to strategize a 

methodology that could aid in designing and developing sustainable buildings. One approach to do this is 

by developing a state-of-the-art simulation tool that could predict the cooling energy consumption of 

diverse types of buildings with sensitive changes in building characteristics in a minimal time. The literature 

review revealed a necessity for the creation of said models and significant advantages linked to their 

establishment. Moreover, the utilization of optimization algorithms is concentrated on improving the 

prediction performance of the simulation model. In contrast, there should be greater use of optimization 

methodology to identify critical parameter combinations that generate optimal solutions to minimize 

cooling energy demand without adhering to traditional methods' exhaustive and time-consuming approach. 

The prediction tools currently available for forecasting building energy prediction can be classified into 

physical (white box), data-driven (black box) and hybrid methods. By solving thermal equilibrium and heat 

transfer equations, the physical method accurately forecasts thermal energy within a building. Despite its 

excellent accuracy, it is coupled with high processing costs and limited optimisation potential. In addition, 

dynamic building energy analysis necessitates high expertise. On the other hand, statistical analysis 

techniques such as support vector machines and artificial neural networks can respond rapidly to inputs and 

handle nonlinearities with ease. For training and development, these models, however, require extensive 

databases. Any deficiency or inaccuracy would significantly diminish its predictive ability. Additionally, 

the outcome of the forecast lacks physical interpretability. These drawbacks in physical and data-driven 
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approaches can be overcome by implementing a hybrid method. The hybrid method combines the physics 

of the pure physical method and the statistics of the data-driven process. Not only does this method need 

less time to simulate than the physical simulation tool, but it also compensates for the issue that the purely 

statistical approach needs to provide a physical explanation of the relationship between the input and output 

data. Moreover, the hybrid method proves to be superior to its counterparts. This hybrid model's 

applicability is promising, and there is a current trend toward utilising this technique more frequently in 

modelling building energy use. 

Thus, a hybrid simulation model for predicting the building energy demand is developed in this study. This 

concept demonstrates the potential of merging artificial intelligence techniques with a building energy 

simulation tool (EnergyPlus™) to anticipate buildings' annual cooling energy consumption. A building 

energy simulation tool, EnergyPlus (EP), simulates a series of hourly envelope heat gains based on the 

building's features. To construct the input/output database, the input parameters and their corresponding 

output values were retrieved from these simulated cases. This database is then utilised for training an 

artificial neural network (ANN). The envelope heat gain (by ANN), ventilation and internal heat gain (by 

physical expressions and literature results) are all added, considering the occupant AC operation schedule 

and system coefficient of performance to determine the total cooling energy requirement. This hybrid 

method will find crucial linkages between building physical attributes and operational measures to reduce 

cooling energy demand in a fraction of the time required by conventional energy estimation techniques. 

The significant reduction in the energy simulation process would reduce the project turnaround time and 

development cost. 

The model's goodness of fit with energy plus simulations and peer literature data was evaluated to determine 

its validity. The validation examination revealed a satisfactory energy forecast performance, showing its 

applicability to be an efficient alternative to the conventional energy estimation methods used by building 

engineers. The hybrid simulation model can analyse the influence of building materials, construction 

solutions, and indoor–outdoor temperature fluctuations on cooling energy of a space. Thus, it would allow 
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the user to conduct an energy audit by identifying areas that lead to energy wastage, thus aiding in early 

intervention and predictive maintenance. It has been determined that employing windows and external walls 

constructed from materials with low thermal conductivity can lower annual cooling energy usage by 8.19%. 

Bringing the windows-to-walls ratio down from 80% to 40% can save 18%. Additionally, changing the 

indoor set-point temperature from 24 °C to 26 °C can reduce annual cooling energy consumption by 

13.65%. Taking global warming into perspective, when the external temperature rises by 1 °C, the yearly 

cooling energy demand for maintaining 24 °C and 25.5 °C indoor set-point temperatures increase by 4% 

and 2.5%, respectively. The observed changes in cooling energy consumption, as documented in this study, 

can be attributed to the fundamental principles of heat transfer. Thus, it can be deduced that the results 

predicted by the hybrid simulation model carry substantial physical significance. Thus, the hybrid 

simulation model that was developed can be considered to be physically plausible. 

Developing these tools is a highly time-consuming and complex process. Thus, the development of single-

building prediction models is often useless. Generating hybrid simulation models for a set of buildings 

would maximize its capacity, bringing huge benefits. Moreover, many case studies would justify the 

development expenses of hybrid simulation models. Hence, the generalization capability of the hybrid 

model was tested for parameters outside its training range. In this aspect, two diverse premises were chosen: 

(a) sub-divided units, which are residential spaces with specific building characteristics that fall below the 

lower limit of the training data range, and 2) healthcare facilities, which are non-residential spaces that have 

building parameters that fall beyond the upper limit of the training data range. The hybrid simulation 

model’s goodness-of-fit test with energy plus simulations revealed that it could generalize well. Thus, 

additional research is conducted on the subdivided units using the generalized hybrid simulation model to 

analyze the different ways to lower the energy associated with this unit. The general perception is that tiny 

homes reduce environmental impact and increase housing accessibility. However, in high-density living 

environments like Hong Kong, where buildable land is scarce, unaffordable housing exists, and there are 

no minimum living space standards, many people live in cramped spaces such as SDUs, causing discomfort 
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and higher energy use. A generalised hybrid simulation model analysed the influence of apartment floor 

size, occupant per floor area, and interior set-point temperature on annual cooling energy demand. It was 

identified that there is a urgent need to regulate the space per person in tiny residential units.  

Exploration of design space via parametric analysis is arduous if performed using the traditional approach. 

In addition, the outcomes cannot be attributed to the optimal solution to the problem. Hence, this study's 

generalized hybrid simulation model is combined with an evolutionary algorithm to aid the user in 

iteratively evaluating the various design factors and their effect on cooling energy consumption. Combining 

a genetic algorithm (GA) with a hybrid simulation model would enable the user to quickly identify the 

optimal or sub-optimal solution for a given architectural setting from a pool of solutions. A general inpatient 

ward cubicle was selected as a case study to illustrate the optimization technique and its benefits. The 

primary drivers (envelope parameters, recirculation ratio, and lighting power density) that could impact the 

facility's cooling energy demand were analyzed. In this study, a genetic algorithm would improve the model 

parameters to achieve either the minimal or maximal envelope heat gain. This study suggests adopting a 

combination, namely (i) design parameters resulting in minimum envelope heat gain, (ii) higher 

recirculation ratio, and (iii) lowering lighting power density from 13 W/m2 to 7.3 W/m2, would be an 

energy-efficient strategy for a general inpatient ward. Furthermore, infection control is comparable to or 

greater than the energy requirement in a general inpatient ward unit. Thus, techniques to reduce the spread 

of infection within a general inpatient ward cubicle are investigated further. 

Infections in healthcare facilities can cause substantial public health problems and cost obligations. It's 

unclear how these infections spread, and the best approach to treat them is debated. Understanding infection 

transmission modes is crucial, yet they are not well characterized or understood. Multiple transfer routes 

may also complicate the transmission of infection. Infection transmission through hidden infectious 

pathogen carriers in hospitals can create massive disease outbreaks in the community. Therefore, improving 

infection control in healthcare facilities is of the utmost importance.  
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The evaluation of the risk associated with exposure to infectious pathogens necessitates an understanding 

of the influence of ventilation strategies and the indoor environment. The ventilation rate within isolation 

and operations rooms is well established. However, the ventilation needs for other areas, such as wards and 

outpatient clinics, lack clarity. There exists a significant level of ambiguity regarding the determination of 

the optimal range of ventilation rates for the purpose of reducing the transmission of infections within 

hospital wards. 

This study delved into several prediction techniques that are applicable in evaluating the airflow and 

dispersion of contaminants within an enclosed space. Despite their ease of use, inclusion of physical 

meaning, and minimal computational requirements, analytical methods have been found to be inadequate 

for addressing complex problems. The empirical models exhibit a comparable outcome that is associated 

with them. The experimental approach is useful. However, compared to numerical techniques, experimental 

approaches are costly and time-consuming. The predominant numerical methodologies employed for 

predicting airflow and contaminant distribution are the multizone, zonal, and computational fluid dynamics 

(CFD) approaches. CFD is acknowledged as the most effective and widely used numerical technique in 

comparison to the other two methods.  

This study evaluated the impact of ventilation strategies on airflow distribution and the potential for 

infection transmission through droplet nuclei of size 0.167 µm (MERS-CoV) in an air-conditioned ward 

cubicle. The possibilities of infection transmission to ward users through pathogens that are dispersed into 

the ward air due to the exhalation activity of a source patient and their subsequent deposition are analyzed 

with CFD for different ventilation scenarios. The spatiotemporal dispersion of pathogens within the ward 

cubicle suggests that they are capable of traversing distances of several meters from their point of origin, 

facilitated by the influence of airflow, thereby contributing to the transmission of infectious diseases. One 

notable distinction observed in this study between the implementation of a lower air change rate of 3 h-1 

and a higher air change rate of 13 h-1 was the significant reduction in the number of pathogens available for 

potential transmission of infection in the latter. Moreover, the combination of an increased air change rate 
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of 13 h-1 and a substantial exhaust flow rate of 50% relative to the supply air via a localized exhaust grille 

resulted in a significant reduction in the number of available pathogens, thereby providing an additional 

layer of protection against potential pathogenic exposure for ward occupants. In addition, it is recommended 

to install exhaust grilles near a patient. The association between ventilation and the mechanism of infection 

transmission within the ward cubicle were apparent. The positioning of a source patient within the ward 

cubicle holds significant importance in assessing the magnitude of infection risk posed to other ward 

occupants. Thus, these results indicate that while devising infection control strategies, it is important to 

consider the design of the ventilation strategies as well as the location of vulnerable patients in relation to 

an infected individual. These factors have the potential to impact the effectiveness of infection control 

measures. 

Several factors could influence airflow and pathogen distribution in an inpatient ward. The insights gained 

from numerical simulations conducted to evaluate the transport, dispersion, and deposition of MERS-CoV 

droplet nuclei formed the foundation for identifying crucial factors that were subsequently employed in an 

optimization investigation. The conventional approach of trial-and-error is required to devise efficient 

ventilation strategies that consider these factors, which would entail numerous modifications between the 

initial and final design. Computational fluid dynamics (CFD) offers highly precise and detailed flow 

parameters, but it is associated with significant computational time and cost. Thus, relying solely on 

sophisticated simulation methods, such as computational fluid dynamics (CFD), for the systematic 

evaluation of designs can result in a time-consuming process that may yield a solution that does not 

necessarily meet the design objective. The present study employed a coupled simulation technique that 

integrates an evolutionary algorithm, specifically a genetic algorithm, with an evaluation mechanism 

(CFD). The suggested approach aims to reduce the number of CFD simulations while simultaneously 

enabling the iterative assessment of a wider range of design alternatives. The objective of this study was to 

enhance patient safety by reducing the probability of infection transmission among patients. Thus, through 

the utilization of the GA-CFD approach, a design exploration was conducted to determine the optimal 
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parameters for minimizing the spread of infection within a ward. The location of an infected patient; the air 

change rate; the flow rate through a local exhaust grille; the number, location, and size of supply diffusers 

and local exhaust grilles; and the flow rate through a local exhaust grille that would minimize the likelihood 

of an infection spreading from one patient to another within a ward was identified. This thesis proposes a 

ventilation system design that is both simple and cost-effective, with the aim of mitigating the risk of 

infection in hospital wards. 

Perspective on future research direction: 

This thesis gave insight into the domains of conventional energy simulation, computational fluid dynamics, 

artificial intelligence (AI) - particularly Artificial Neural Networks (ANNs) - and evolutionary algorithms, 

specifically Genetic Algorithm (GA). The study focused on the integration of these domains to develop 

targeted applications for energy consumption and infection mitigation. In this section, perspectives on 

potential directions for future research are discussed together with strategies for enhancing current work.  

The generalized hybrid simulation model integrated with an optimization algorithm proved to be a powerful 

prediction tool for estimating the cooling energy consumption of buildings. The method proved significant 

in terms of simulation time, accuracy and flexibility compared to the conventional energy estimation 

methods. Nonetheless, there exists a potential for enhancement. The effect of interactions between 

buildings, such as shadowing from an adjacent building, on the cooling load has yet to be explored, but the 

maximum solar heat gain scenario has been examined in this work. In densely populated cooling-dominant 

places such as Hong Kong, it has been shown that shading reduces cooling energy demand further, which 

would be an extra benefit in terms of energy savings rather than a negative effect. Nevertheless, 

incorporating this component could increase the efficacy of the suggested model when applied to structures 

in various climatic zones. Future research about the development of the proposed technique of this study to 

include different scales of buildings in varied climatic conditions would increase the possibility of this 

approach to construct carbon-neutral structures. In addition, the incorporation of this research with a life 
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cycle cost analysis would yield a comprehensive depiction of the ecological ramifications and cost benefits 

associated with low-energy facility design. 

The utilization of CFD and an evolutionary algorithm in this thesis to evaluate the different ventilation 

strategies to mitigate infection transmission in an inpatient ward cubicle was more effective than the 

traditional approach. The effectiveness of optimal ventilation solution determined through GA-CFD 

application to mitigate airborne transmission needs to be addressed. Moreover, in this study, 100% outside 

air was assumed in every simulation. Therefore, it is necessary to consider the effectiveness of the suggested 

ventilation strategies while also taking air recirculation into account. Lastly, the impact of the movement 

of staff, patients and visitors should have been addressed. Nevertheless, this factor can cause disturbances 

in airflow and particle distribution. Few studies, however, indicate that its effect is temporary and 

considerably less significant than ventilation. 
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