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Abstract 

Air pollution has become one of the top environmental issues across the globe, particularly 

bioaerosols, playing a crucial role in the interactions between ecosystems, climate, and 

public health. Airborne bacteria and potentially hazardous components therein, such as 

antibiotic resistance genes (ARGs), are part of the bioaerosols. It is imperative to identify 

their biogeographic patterns, driving mechanisms, source contributions, and potential 

impact on human health. However, a gap remains in the understanding of these key 

interactions with regard to the systematic surveillance of airborne bacterial community and 

quantified antibiotic resistance (AMR) risk at a global scale. To address this scientific 

challenge, the present PhD study used the 16S rRNA gene dataset and metagenomic dataset 

in the global atmosphere to establish the first atlas of global airborne bacteria from 

background sites and urban areas with a wide geographic and altitudinal range. 

The data obtained in this study revealed the maximum microbial richness in the 

intermediate latitudinal regions and dynamic airborne bacterial community structure by 

encompassing the bacterial community among the three largest ecosystems on the Earth’s 

surface (i.e., atmospheric, oceanic, and terrestrial systems). Among the thousands of 

bacteria detected in the global atmosphere, the core set (n=24) and key taxa (n=19) were 

identified and confirmed to impact the entire complex community network of 

interconnected bacteria. Both the uniform latitudinal bacterial diversity pattern and 

similarities in compositions and inferred functions of key taxa across various ecosystems 

suggested their potential linkages. Thereby, the Earth’s bacterial co-occurrence network 

involving 23 habitats indicated the importance of airborne bacteria to the planetary 
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microbiomes and the great contributions from surface environments to airborne bacteria 

compositions (46.25%). 

Anthropogenic activities also affected the airborne bacterial community structure and 

corresponding phenotypes via reduced environmental filtering effects and elevated human-

related source contributions. Notably, the higher abundance and diversity of airborne 

pathogens in urban areas indicated a higher exposure risk of pathogens in densely 

populated regions. In terms of driving mechanisms, although airborne bacterial 

communities assembled in more stochastic processes (72.4%), the deterministic processes, 

such as biotic interactions and environmental filtering, showed significant impacts on 

global airborne bacterial community structure. Both biotic and abiotic factors could 

influence the structure and distribution of global airborne bacterial communities; however, 

the most determinant mechanism was the environmental filtering process. Even though 

atmosphere is a highly dynamic and flowing ecosystem, its bacterial community was 

discovered to be largely affected by local environments, particularly for the source 

contributions and air pollutants from human activities, indicating that global climate 

change and impacted air quality may cause alterations of airborne bacterial abundance, 

community structure, and diversity. 

To further explore the exposure risks in urban air, the airborne AMR was investigated at a 

global scale, especially for the estimation of quantified ARG-related health risks. The 

differentia in the composition and abundance of airborne ARGs and pathogens (carrying 

ARGs) between urban and background areas illustrated the anthropogenic impacts on 

airborne AMR exposure risks: the ARGs associated with major urban sources (e.g., 

wastewater treatment plants (WWTPs), hospitals, and landfills) contributed more than 30% 
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of the urban airborne ARGs in total, which could lead to a higher risk rank of airborne 

ARGs in urban areas than background areas, while the abundance of urban indicator ARGs 

was largely affected by antibiotic consumptions, particularly aminoglycoside, tetracycline, 

and beta-lactam, raising the importance of the appropriate use of these drugs. The 

signatures of ARGs and mobile genetic elements (MGEs) co-occurrence were much more 

frequent in urban air, exhibiting the higher mobility of airborne AMRs. A genome-resolved 

“panorama” of AMR was also revealed, and humans were found to inhale more potential 

antibiotic-resistant pathogens daily (averagely 789.75 ± 586.80 cells) in cities than in 

background areas (105.6 ± 82.05 cells). Furthermore, the Staphylococcus aureus genome 

identified in the MAGs generated from the global urban air samples showed close genetic 

relatedness to those strains of Methicillin-resistant Staphylococcus aureus (MRSA) 

isolated from nosocomial infections and was shown to carry mecC, which suggested 

airborne transmission as a possible route in the prevalent community acquisition of MRSA 

and other types of resistant infections alike. The higher proportion of horizontally 

transferred ARGs in urban air also provided early warning for the rapid spread of AMR, 

and their dissemination from sources to human inhalation contributed to predicting future 

threats and improving public health management.  

To sum up, this integrated study conducted comprehensive research on the bacterial 

(pathogenic) community, ARGs profiles, and AMR risks in the global atmosphere with 

quantitative estimations of source contributions, shaping mechanisms, and related potential 

health risks. These findings will provide key reference for predicting the evolution of 

airborne bacteria (and pathogens) and ARGs in a changing climate condition and highlights 
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the urgent need to involve biological parameters, such as airborne microbiome and AMR, 

in the current and future air quality standards on public health. 
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Chapter 1 Introduction 

1.1 Background 

In recent years, air pollution has become an increasingly serious problem and the top 

environmental concern worldwide (Landrigan, 2017), particularly bioaerosols, showing 

the great importance of atmospheric pollution and critical impacts on human health 

(Fröhlich-Nowoisky et al., 2016). Bacteria, as ubiquitous biogenic aerosol particles, are 

also one of the key components of the global microbiome community and are of paramount 

importance to the ecosystem on a global scale (Burrows et al., 2009a). Ambient air plays 

a crucial role in bacteria dissemination in the environment (Burrows et al., 2009b) and is 

inhaled directly and constantly by humans and animals without any purification virtually. 

All the above facts show that airborne microbiomes are inextricably linked to ecological 

conditions and human health. 

Comprehensive and systematic studies on the global microbial community in soil (Bahram 

et al., 2018), ocean (Sunagawa et al., 2015), and wastewater treatment plants (WWTPs) 

(Wu et al., 2019) have been systematically conducted. The findings show that each 

ecological habitat harbors unique microbiomes and reveals interconnections between 

microbiomes in the atmosphere and other surface environments. Nevertheless, air has 

usually been recognized as purely a conduit for terrestrial and aquatic microbial life 

(Berendonk et al., 2015); however, it is actually also a habitat of microorganisms (Womack 

et al., 2010), with over 1×104 bacterial cells/m3 (Burrows et al., 2009a) and hundreds of 

unique taxa (Brodie et al., 2007). Globally, there has been limited documentation of 

airborne microbiomes, including their community structures, biogeography, anthropogenic 
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impacts, and interconnections with other microbiomes on the Earth. Conducting a 

comprehensive and systematic large-scale study can help to reveal the crucial role of the 

atmosphere in contributing to microbial habitats on Earth. Moreover, such a study can aid 

in predicting how ecosystems may respond to environmental changes such as climate, air 

quality, land use, and human activities (Smets et al., 2016). 

Microbes never live in isolation, irrespective of the intra-environment (atmosphere) or 

inter-environments, accompanied by multifarious ecological relationships, such as 

mutualism and competition (Faust and Raes, 2012). Theoretically, these interrelationships 

based on an ultra-large sample size could be mathematically modelled as an adjacent matrix 

in recent studies (Proulx et al., 2005; Reshef et al., 2011; Faust and Raes, 2012), such as 

network structures, for soil (Barberán et al., 2012), plant (Agler et al., 2016), and marine 

ecosystems (Gilbert et al., 2012), as well as for the human microbiome (Ma et al., 2020a). 

However, the pivotal mode of dissemination, namely the atmospheric environment, 

remains unresolved. Moreover, investigations pertaining to Earth's bacterial co-occurrence 

network still represent a significant gap in the scholarly comprehension of the function of 

aerial bacterial communities within the wider microbial domain and their interconnections 

with various microbiomes in diverse ecosystems.  

Increasing evidence suggests that human activities are affecting airborne bacterial 

communities (Burrows et al., 2009a; Fröhlich-Nowoisky et al., 2016; Li et al., 2019), but 

the specific alterations due to urbanization from a global view and the related mechanisms 

remain elusive, which is essential for determining the interaction between human activities 

and existing airborne microbiomes and for comprehending the delicate balance between 

humans and the natural world.  
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In addition to the airborne microbes and their metabolites as biological pollutants, 

antibiotic resistance genes (ARGs) have attracted global attention since they were clearly 

considered as a kind of emerging environmental contaminant in the last 2-3 decades 

(Pruden et al., 2006). The propagation of antimicrobial resistance (AMR) is an increasing 

global threat to human health (Sugden et al., 2016), which annually caused about 1.27 

million deaths worldwide in 2019 (Murray et al., 2022), and this may increase to 10 million 

deaths a year by 2050 if no action is taken to control it (May, 2021). The emergency of 

clinically relevant ARGs, antibiotic-resistant pathogens, and “superbugs” released from 

anthropogenic sources, together with the overuse and misuse of antibiotics across the globe, 

have been viewed by many as serious environmental problems (Berendonk et al., 2015). 

The ARGs are commonly considered to be contaminants (Zhang et al., 2022) and AMR 

can be developed, transmitted, and prevail extensively in natural environments (e.g., water 

(Zhu et al., 2017), soil (Bahram et al., 2018), and air (Xie et al., 2019), and engineered 

systems (e.g., wastewater systems (Hendriksen et al., 2019) and landfill sites (Wu et al., 

2017)), as well as clinical settings (Chng et al., 2020) via environmental pathways. Thereby, 

a quintessential “One Health” concept emphasizing the interdependence of human, animal, 

and environmental health, has been set up to tackle AMR (Vikesland et al., 2017; 

Hernando-Amado et al., 2019). During this process, air plays a vital role in channelling the 

transmission of ARGs, because ARGs could be released together with aerosols into the 

atmosphere from typical AMR contributors, (e.g., hospitals (Wu et al., 2022), WWTPs 

(Xie et al., 2022), and animal husbandries (McEachran et al., 2015)), and subsequently 

disseminate worldwide via atmospheric circulation (Fröhlich-Nowoisky et al., 2016). 
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Of all the environmental compartments that facilitate the persistence of ARGs, ambient air 

shows closer and more pervasive interconnections with human beings, because ambient air 

is capable of being inhaled into human body virtually without any treatment, compared 

with processed food and water resources before ingestion (Morawska et al., 2022). The 

inhaled ARGs enduringly exist and can be greatly enriched in the atmosphere 

(approximately 102-3 copies/m3 quantified on genetic levels) (Xie et al., 2019), and 

pathogenic antibiotic-resistant bacteria (ARB) increase the risks of exposure and resistant 

infections through air inhalation (Wu et al., 2022).  

The ARGs carried by these bacterial contaminants can cause self-inheritance, be 

horizontally transferred to other host bacteria through horizontal gene transfer (HGT) or 

be transmitted from environments to host bacteria with the help of mobile genetic elements 

(MGEs) (Kruse and Sørum, 1994; Layeghifard et al., 2017). However, the major ARG 

hosts in ambient air and their roles in impacting human health and driving the transmission 

of ARGs remain unknown but show great importance (Li et al., 2018). Fortunately, 

technical improvements in DNA extraction from airborne particles and the availability of 

metagenomic library preparation and shotgun sequencing analysis with low biomass 

contributed to drawing a complete picture of airborne ARG profiles (Jiang et al., 2015). 

The identification of ARG-hosting bacteria at the species level and their pathogenicity 

judgment could better estimate the real risks of dissemination and the exposure of inhalable 

ARGs from environmental reservoirs to human pathogens, particularly considering 

clinically relevant ARGs (Zhang et al., 2021) and ESKAPE nosocomial pathogens 

(Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter 
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Baumann, Pseudomonas aeruginosa, and Enterobacter spp.) exhibiting multidrug 

resistance and virulence (Mulani et al., 2019).  

Recent regional and global surveys on airborne ARGs revealed disparities in ARG profiles 

and risks across countries and regions (Xie et al., 2018; Xie et al., 2019). This study has 

revealed greater variations in the abundance of bacteria and ARGs in temperate regions 

compared to subtropical urban areas, with distinct ARG profiles observed regardless of 

land-use gradients within each region. Additionally, airborne PM2.5 exhibits a higher level 

of ARG enrichment across various environmental and human media. The findings of the 

regional and global patterns of airborne ARGs are echoing current clinical observations on 

AMR diseases. According to a report by the Hospital Authority of Hong Kong, the 

proportions of AMR in Staphylococcus aureus (S. aureus) resistant to methicillin and E. 

coli resistant to third-generation cephalosporins and fluoroquinolones are both at a high 

level in Asia, (e.g., China and Hong Kong), but at a low level in Northern Europe, (e.g., 

Norway and Sweden) (Protection, 2017). Moreover, the lowest age-standardized mortality 

rates per 100,000 population for E. coli, K. pneumoniae, and S. aureus were also observed 

in Northern Europe (Mestrovic et al., 2022). The regional disparities in AMR profile and 

health risks could be ascribed to the locally independent source contributions, antibiotic 

consumptions, land-use gradients, and others (Li et al., 2018; Xie et al., 2022). Meanwhile, 

global-scale studies assessing health risks of ARGs from aquatic, soil, engineered, and 

human-related habitats have been systematically documented (Bahram et al., 2018; 

Hendriksen et al., 2019; Cuadrat et al., 2020; Zhang et al., 2022). ARGs can disseminate, 

in the case of both the intra-environment (atmosphere) and inter-environments (across 

media); nevertheless, the interrelationships between various habitats and contributions 
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from other ecosystems remain less understood. Hence, studying the global profile of 

airborne AMR could not only reflect the regional differences in AMR burden but also 

understand the driving forces of environmental dissemination of antibiotic resistance 

towards the environmental-clinical dialogues on AMR risks. Humans have made great 

efforts to intervene in the arise and spread of AMR; however, coordinated action at national 

or international level is largely absent, due to the lack of global surveillance of AMR 

situation (Laxminarayan et al., 2013). 

Collectively, systematic surveillances of spatiotemporal variations of the airborne bacterial 

community and quantified AMR risks at a global scale would contribute to an integrated 

understanding of anthropogenic impacts on air quality from (micro)biological perspectives. 

Furthermore, determining the pathogenicity of airborne bacteria and conducting exposure 

risk assessments for AMR could yield valuable insights for health-focused pollution 

control that is tailored to local-specific conditions. This approach could help mitigate 

global threats to planetary and human health.  
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1.2 Research Objectives 

The aim of this thesis is to conduct a comprehensive and systematic investigation into the 

airborne bacterial community and AMR in the global atmosphere. The study seeks to 

establish the linkage among emission sources, the underlying driving mechanisms, and the 

resultant health risks. The global airborne bacterial dataset and the global airborne 

metagenomic dataset were established, respectively, based on both background and urban 

air samples with a wide geographic range across the globe, coupled with16S ribosomal 

ribonucleic acid (rRNA) sequencing data (n=5,000) from the Earth Microbiome Project 

(EMP) (Thompson et al., 2017) and metagenomic data (n=700) retrieved from the National 

Center for Biotechnology Information (NCBI) as a supplement, to address the 

aforementioned knowledge gaps. The objectives of the study are shown as follows (Figure 

1-1): 

a) To establish a comprehensive atlas of global airborne bacteria by deciphering their 

biogeographic patterns and structures; 

b) To further understand the role of airborne bacterial communities in the Earth’s 

microbiomes and their potential sources across the globe; 

c) To explore the mechanisms driving biogeographic patterns of global airborne bacteria 

and to quantify the importance of anthropogenic impacts and environmental filtering 

in the process; 

d) To systematically characterize ARG profiles and distributions worldwide and to 

estimate the potential sources of airborne ARGs; and 
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e) To estimate the risks to public health caused by AMR through inhalation across the 

globe, particularly in urban areas. 

 

Figure 1-1 A flowchart that outlines the objectives and structure of the study. 

 

1.3 Organizations 
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This thesis consists of seven chapters (Figure 1-1), including the “Introduction”, 

“Literature review”, “Methodology”, three chapters on the results and discussions, and the 

closing chapter of “Conclusions and Recommendations”. 

Chapter 1 “Introduction” provides a brief overview of the background information on 

bioaerosols, the threat of AMR, the research background, and knowledge gaps. It also states 

the research objectives of this study and outlines the structure of this thesis to help readers 

visualize the contents. 

Chapter 2 “Literature review” provides a brief overview of the background information on 

bioaerosols, the threat of AMR, the research background, and knowledge gaps. It also states 

the research objectives of this study and outlines the structure of this thesis to help readers 

visualize the contents. 

Chapter 3 “Methodology” outlines the data sources, sampling methods, and chemical and 

biological analysis technologies used in the study. It also describes the sequencing, data 

processing, and statistical calculations applied in this thesis. 

Chapter 4 investigates the structure and biogeographic patterns of the global airborne 

bacterial community and its interconnections with the Earth’s microbiomes, as well as the 

potential source contribution from other habitats to global airborne bacteria. 

Chapter 5 explores the underlying mechanisms shaping the structure and distribution 

patterns of the global airborne bacterial community and emphasizes the importance of 

environmental filtering and anthropogenic impacts in this process. 
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Chapter 6 reveals the distribution and dissemination of ARGs as well as their hosts detected 

in global ambient air and quantitatively surveys the potential exposure risk of AMR 

through inhalation across the globe. 

Chapter 7 “Conclusions and future suggestions” summarizes the major findings of the 

study and emphasizes its novelty and scientific significance. Additionally, the chapter 

provides suggestions for future research in this area.  
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Chapter 2 Literature Review 

Given that bioaerosols are complex mixtures with the probability of causing serious health 

concerns through inhalation, this chapter provides an overview of airborne bacteria and 

ARGs along with advancements in detection and analysis techniques. Adopting the "One 

Health" approach, this review concentrates on two key biological components, bacteria and 

ARGs, and extends further to their biogeographical patterns, driving mechanisms, source 

contributions, and exposure risk assessments, thereby increasing comprehension of the 

existing research gaps and assisting in the resolution of scientific concerns. 

 

2.1 Ambient air pollution, a global health-threatening environmental issue 

With the rapid industrialization and urbanization worldwide, air pollution problems have 

more frequently emerged in recent years, which requires rethinking assessment methods of 

health risks and regulatory measures for reducing related risks (Li et al., 2019). The global 

issue becomes more complicated under climate change, resulting in frequent episodes of 

serious air pollution driven by extreme weather events (Kan et al., 2012). For instance, 

haze and smog have occurred frequently in recent years at a global scale, particularly in 

highly developed and densely populated urban areas (Zhang and Cao, 2015). These 

pollution events are long-lasting and broadly covered with a high intensity of pollution, 

thereby causing the hazards of air quality, climate conditions, ecosystem interactions, and 

human health at regional and global scales (Fröhlich-Nowoisky et al., 2016). According to 

the World Health Organization (WHO), approximately 99% of the world’s population was 
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in regions where the air quality exceeded the WHO’s air quality guideline levels (WHO, 

2021). Moreover, it was estimated that more than 4 million people die prematurely due to 

ambient air pollution from both urban and rural areas every year by the WHO (WHO, 2021). 

Notably, the even more health-damaging particles are fine particles with a diameter of 2.5 

microns or less (PM2.5), which can penetrate the lung barrier and enter the blood system, 

enhancing the risk of developing cardiovascular and respiratory diseases, as well as lung 

cancer (Fröhlich-Nowoisky et al., 2016; Smets et al., 2016; Chen et al., 2017; Cohen et al., 

2017). 

It has been demonstrated by mounting evidence that geographical locations could cause 

differences in health risks related to air pollution (Zhang and Cao, 2015; Chen et al., 2017; 

Cohen et al., 2017). Although the concentration of PM2.5 was positively related to the death 

rate from air pollution worldwide (Figure 2-1), it was not the only driving factor to 

dominate the risk assessment of air quality (Hannah Ritchie and Roser, 2019). For instance, 

Europeans and North Americans presumably die from heart diseases or acute respiratory 

disorders more than Chinese people with exposure to similar PM2.5 concentrations (Chen 

et al., 2017). These above health issues center on the key features of particulate matters 

(PMs) as complex physicochemical and biological mixtures evolving with regional 

characteristics and temporal dynamics (West et al., 2016). As a result, it is necessary to 

make the health threats of complex PM mixtures clear and to quantify the various 

components in PMs, especially the major causative agents, from the perspective of 

effective public health interventions (Jin et al., 2016). 
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Figure 2-1 Death rate from particular matter air pollution vs. PM2.5 concentration (Hannah 

Ritchie and Roser, 2019). 

 

2.2 Bioaerosols in the Earth system 

Bioaerosols play an important role in the Earth system, showing tight junctions of 

atmosphere (Ariya and Amyot, 2004), biosphere (Pöschl and Shiraiwa, 2015), climate 

(Morris et al., 2013), and public health (Ghosh et al., 2022). Aerosols of biological origin, 

such as airborne bacteria, pollen, and fungal spores, are necessary for the spread and 

propagation of human, animal, and plant species, across different ecosystems, which can 

also cause diseases in these organisms (Fröhlich-Nowoisky et al., 2016). Moreover, 
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bioaerosols can affect the hydrological cycle and climate change by serving as nuclei for 

cloud droplets, ice crystals, and precipitation (Huffman et al., 2013). 

 

2.2.1 Characterization of bioaerosols 

Bioaerosols, a subset of atmospheric particles, are directly released from the biosphere into 

ambient air. They contain a mixture of both alive and dead microorganisms (e.g., archaea, 

bacteria, fungus, virus), dispersal units (e.g., fungal spores and plant pollen), and various 

excretions or organism fragments (e.g., plant debris and brochosomes) (Madelin, 1994; 

Matthias-Maser et al., 1995; Rogerson and Detwiler, 1999; Graham et al., 2003; Womack 

et al., 2010; Després et al., 2012; Tesson et al., 2016). The diameters of bioaerosols range 

from nanometers to about one-tenth of a millimeter. The upper limit of this range is 

determined by rapid sedimentation, as larger particles are too heavy to remain airborne for 

long periods (Pöschl, 2005). 

Research has shown that urban air contains several nanograms of DNA per cubic meter, 

indicating that a human adult may inhale up to ~0.1–1 μg of DNA per day, equal to 107-

108 bacterial genomes or 104–105 human genomes (Després et al., 2007). Additionally, 

materials of biological origin accounted for approximately 25% of atmospheric aerosol, 

and bioaerosols contributed as much as 5–10% of atmospheric PMs (Jaenicke, 2005). 

Thereby, as an important atmospheric component, biological particles may show important 

effects on atmospheric events and are influential on human health (Fröhlich-Nowoisky et 

al., 2016). 
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2.2.2 Emission and transport of bioaerosols 

Different models have been widely used to enhance the understanding of the emission and 

transport of bioaerosols in previous studies at global or regional scales (Heald and 

Spracklen, 2009; Burrows et al., 2009a; Burrows et al., 2009b; Hoose et al., 2010; Sesartic 

et al., 2012; Burrows et al., 2013; Ansari et al., 2015; Hummel et al., 2015). Nevertheless, 

the results of these modelling studies suffer from large uncertainties, originating from 

biological processes in the ecosystems, such as seasonal variation, life cycling, climate 

change, meteorological conditions, changes in microbial populations, and interspecific 

relationships, mainly because the models do not consider the biological consequences for 

the microbiomes such as survival, vitality, and metabolic activity. Consequently, the 

models estimating the bioaerosol emission and the interactions of bioaerosols with 

atmospheric transportation require further improved quantification (Elbert et al., 2007).   

Previous studies mainly focused on ground-based measurements of bioaerosols, and 

observations at 50 m above ground level are very infrequent. Concretely, there were only 

few surveillances from aircraft (Fulton, 1966; Gruber et al., 1998; Andreeva et al., 2001; 

Kourtev et al., 2011; Zweifel et al., 2012; Ziemba et al., 2016; Cáliz et al., 2018) or high-

altitude stations are available (Matthias-Maser et al., 2000b; Hallar et al., 2011; Gabey et 

al., 2013; Crawford et al., 2016; Du et al., 2017). Moreover, global and regional model 

estimations regarding potential impacts of bioaerosols on atmospheric processes also suffer 

from the uncertainties caused by altitude, which requires better constrain by observations 

with diverse altitude coverage in the atmosphere. Notably, it is vital for reliable estimations 

of the impacts of bioaerosols on the atmospheric condition to quantify bioaerosol emissions 

and understand their sources and subsequent transformation processes. 
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2.2.3 Bioaerosol ecosystem interactions 

Terrestrial ecosystems are considered major sources of bioaerosols in the atmosphere.  For 

instance, pollen and spores can be produced and released from vascular plants and fungi to 

the atmosphere during reproduction, and the debris of plants and fungi can be emitted into 

ambient air during decay processes (Matthias-Maser et al., 2000a; Jaenicke, 2005; Després 

et al., 2012). Besides, the huge coverage surface area of cryptogamic (around 8.5×107 km2), 

even larger than the summation of surface area of Africa and the Americas, leads to the 

large diversity and high abundance of microorganisms and bryophytes in various natural 

and human-impacted environments (Morris and Kinkel, 2002; Lindow and Brandl, 2003; 

Yadav et al., 2005; Hantsch et al., 2013). Moreover, the formation of bioaerosols and the 

impacts of bioaerosols on plants are affected by climate change and habitat conditions. It 

is well known that changes in land use cause severe effects on both the formation and 

dispersal of bioaerosols. In particular, the vegetation and cryptogamic covers of natural 

lands are often destroyed with conversion to human use (e.g., agriculture and construction), 

which may enhance the frequency and damage of dust storms, because biological soil 

crusts contribute to drastically stabilizing the soil surface, largely reducing the erosive 

impacts of wind (Belnap and Gillette, 1998; Eldridge and Leys, 2003). For example, the 

dust load levels increased 5 times during the settlement in the western United States in the 

19th century (Neff et al., 2008). Also, the more frequent dust storm events recently 

occurring in China are considered to be caused by converting natural lands to human use 

(Hill et al., 2014). Consequently, the bioaerosol emissions from terrestrial ecosystems may 

be significantly affected by surrounding environments and should be further explored in 
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regional and global studies of the interactions between atmosphere, biosphere, climate 

change, and anthropogenic impacts.  

In contrast to terrestrial ecosystems, more knowledge gaps concerning the contributions of 

marine ecosystems to bioaerosols still remain, even though the ocean covers more than 70% 

of the surface of our planet (Seifried et al., 2015; Xia et al., 2015; Mayol et al., 2017; Ma 

et al., 2020b). On the one hand, the sources from terrestrial ecosystems and the long-

distance transport of airborne microbes, such as plant fragments and human pathogens, can 

affect the bioaerosols over the oceans to a certain extent (Brown and Hovmøller, 2002; 

Cho and Hwang, 2011; Sharoni et al., 2015). On the other hand, emissions from oceans are 

considered the major source of aerosol particles, which contributes to low cloud formation 

over the oceanic regions (Matthias-Maser et al., 1999; Pósfai et al., 2003; Aller et al., 2005; 

Leck and Bigg, 2005; Amato et al., 2007; Després et al., 2012; DeLeon-Rodriguez et al., 

2013; Fahlgren et al., 2015; McCluskey et al., 2019).  It was estimated that the bacterial 

concentrations in aquatic environments (i.e., marine or freshwater) were around 106 

cells/mL (Cho and Hwang, 2011; O’Dowd et al., 2015), which can be emitted to ambient 

air through the burst of rising bubbles from deep layers to the sea-surface microlayer 

(Blanchard, 1975; Blanchard et al., 1981; Aller et al., 2005; Hultin et al., 2011; Veron, 

2015; Wilson et al., 2015). Compared with the emissions of microbiomes from subsurface 

water to aerosols, the bubble-erupting leads to an enrichment of microbes in the ambient 

air (Aller et al., 2005; Wilson et al., 2015). According to the bacterial concentration in the 

aquatic ecosystems and related enrichment factors, global marine was estimated to emit 

roughly 2,000-10,000 Gg/a to bioaerosols (Burrows et al., 2009a). Since most studies on 

airborne microbiomes were conducted in urban, rural, or background regions, the quite 



18 

 

small number of measurements concerning marine bioaerosols led to many uncertainties 

in this estimation. 

Because only a few seawater bacteria (around 0.001–0.1%) are culturable (Amann et al., 

1995), thus, the high-throughput sequencing method, such as 16S rRNA gene 

pyrosequencing, were applied in recent studies to further investigate the bacterial 

communities of marine bioaerosol samples and better cover the whole marine microbial 

communities (DeLeon-Rodriguez et al., 2013; Seifried et al., 2015; Uetake et al., 2020). 

Moreover, real-time quantitative polymerase chain reaction (qPCR) was also used to 

quantify selected health-relevant microorganisms, such as cyanobacteria and dinoflagellate 

species, in marine bioaerosols (Casabianca et al., 2013; Lang-Yona et al., 2014). Despite 

the crucial role of marine bioaerosols in the global atmosphere, there is still a knowledge 

gap of the interconnections of them with aquatic ecosystems and their source contributions, 

which limited our understanding of the overview of the global airborne microbial world. 

 

2.3 Microorganisms in airborne particulates  

Airborne microorganisms are widely distributed with metabolic activity in atmospheric 

environments, taking up an essential portion of airborne particles (Sattler et al., 2001; 

Jaenicke, 2005). It has been documented that plenty of pathogens and allergic fungi were 

scattered in the air, influencing human health, wildlife, and vegetation directly or indirectly 

(Cao et al., 2014; Barberán et al., 2015). Moreover, the microorganisms in airborne 

particulates enable particles to be transported over a long distance through the airflow, thus 

further exerting their impacts on the Earth’s ecosystems (Maki et al., 2011). As a result, it 
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is essential to explore the structure and distribution of airborne microorganisms and to 

investigate the dominant impacting factors, especially on a global scale. 

 

2.3.1 Particle size distribution of airborne microorganisms 

The exposure to microorganisms in airborne particulates presents negative effects on public 

health (Fernstrom and Goldblatt, 2013), which were also influenced by the size of particles 

(Miller et al., 1988; Cheng, 2003; Cho et al., 2005; Sturm, 2012). For instance, the 

penetration depth of bioaerosol particles is highly determined by their size in the respiratory 

process, and the larger biological particles would be stuck in the nose or mouth, yet only 

smaller particles can enter deeply into the alveolar region of the lung (Clauß, 2015). In 

particular, inhalable bioaerosol particles, especially PM2.5, show an appreciable impact on 

public health (Fröhlich-Nowoisky et al., 2016; Smets et al., 2016), thus, PM2.5 is gradually 

recognized as an air pollutant and hazard by the public (e.g., toxins, allergens, pathogens, 

and ARGs) (Cao et al., 2014; Li et al., 2018; Yue et al., 2018; Zhou et al., 2018). 

It has been well documented by previous research that the structures of airborne microbial 

communities varied across aerosol particle size fractions (Polymenakou et al., 2008; 

Franzetti et al., 2011; Bertolini et al., 2013; Bowers et al., 2013; Lu et al., 2018; Yan et al., 

2018; Stern et al., 2021). According to the results of high-throughput sequencing, the most 

dominant microbiological component of bioaerosols is bacteria. In spite of the significantly 

higher diversity (i.e., richness) of airborne bacteria in coarse particles than in smaller 

particles, their proportion in the total microbiomes was generally higher in PM2.5 than in 

larger particles (Bowers et al., 2013; Cao et al., 2014; Stern et al., 2021). Some researchers 
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proposed that the greater bacterial diversity in coarser fractions might be caused by the 

more abundant nutrients and more effective shelter from environmental stress (e.g., 

ultraviolet radiation, high temperature, and droughts) in larger particles (Burrows et al., 

2009a). In addition, the majority of eukaryotes, such as fungi, algae, and plant debris, 

generally adhere to particles less than 10 µm in diameter (PM10) and total suspended 

particulates (TSP).  

 

2.3.2 Concentration, community structure, and biogeography of airborne bacteria 

The concentrations of culturable bacteria in the atmosphere were first measured in 1883 

(De Varigny, 1883); since then, more and more measurements of both culturable and 

unculturable airborne bacteria were conducted in diverse areas worldwide. The results 

indicated significant spatial and temporal variations of the airborne bacteria concentrations. 

Near-ground measurements have already been reviewed by some researchers concerning 

specific problems, such as the long-range transport of bioaerosols (Bovallius et al., 1980; 

Petroselli et al., 2021), temporal (annual and diurnal) variation (Lighthart, 1997; Gusareva 

et al., 2019), the effects of dust storms or hazes on airborne bacterial abundance (Kellogg 

and Griffin, 2006; Barberán et al., 2015; Gat et al., 2017; Lu et al., 2018), emission 

mechanisms and especially the impacts of meteorological factors (Jones and Harrison, 

2004). The regional differentia can impact the concentrations of airborne bacteria by orders 

of magnitude in the near-surface measurements of ambient air, most of them ranging from 

103–106 copies/m3 of the 16S rRNA gene quantified by qPCR (Harrison et al., 2005; 

Bowers et al., 2009; Lee et al., 2010; Cho and Hwang, 2011; Bowers et al., 2012; Bertolini 
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et al., 2013; Murata and Zhang, 2014; Yamaguchi et al., 2014; Barberán et al., 2015; 

Tanaka et al., 2015; Deng et al., 2016a; Gat et al., 2017; Genitsaris et al., 2017; Gou et al., 

2017; Innocente et al., 2017; Xu et al., 2017; Zhen et al., 2017; Gao et al., 2017a; Šantl-

Temkiv et al., 2018; Xie et al., 2018; Shen et al., 2019; Tignat-Perrier et al., 2019; Xu et 

al., 2019), while a few of them ranging from 104–106 cells/m3 identified by cell-based 

methods (e.g., flow cytometry (FCM) and fluorescence microscopy) (Bowers et al., 2011b; 

Murata and Zhang, 2016). Also, the measurements above the canopy in the megacity of 

cities (Du et al., 2017) and even in the middle-to-upper troposphere (8-15 km altitude) were 

conducted to quantify the bacterial concentration in the atmosphere (DeLeon-Rodriguez et 

al., 2013). 

Although the diversity and profiles of the airborne bacterial community vary across the 

globe (Bowers et al., 2011a; Bowers et al., 2013; Gandolfi et al., 2015; Zhang and Cao, 

2015; Yee et al., 2020), there are still some similarities and affinities of airborne bacterial 

communities. For instance, it has been confirmed that Actinobacteria, Firmicutes, 

Proteobacteria, and Bacteroidetes represent the most dominant phyla in bioaerosols with 

various particle sizes (Bertolini et al., 2013; Xie et al., 2019; Liang et al., 2020a). Moreover, 

sequences assigned to the Actinobacteria (Bertolini et al., 2013; Bowers et al., 2013) and 

Actinomycetes (Cao et al., 2014; Gandolfi et al., 2015) were also prevalently detected in 

previous studies on diverse sampling sites, probably because these taxa mainly emanate 

from terrestrial ecosystems and show dominate roles in the whole planet bacterial 

community.  
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Seasonal variation and the typical diurnal cycling of airborne bacteria have generally been 

verified in certain sites (Andreeva et al., 2001; Bertolini et al., 2013; Bowers et al., 2013; 

Gusareva et al., 2019), and the airborne bacterial communities also showed differentia 

across the geographical locations (Després et al., 2007; Bowers et al., 2011a; Bowers et 

al., 2011b; Deng et al., 2016a; Tignat-Perrier et al., 2019). The spatiotemporal patterns of 

airborne bacteria should be controlled by multiple impacting factors, containing 

meteorological conditions, air quality, contribution sources, and so on. For example, 

meteorological variables, such as air temperature (AT), relative humidity (RH), wind speed 

(WS), wind direction (WD), air pressure (AP), and ultraviolet flux, have generally been 

shown to have significant impacts on shaping the bacterial community by exerting 

selection pressure (Bertolini et al., 2013; Gandolfi et al., 2015). Moreover, some studies 

show the significant correlations of airborne bacteria with environmental variables, such 

as air pollutants, as these chemical components could be considered to be either nutritional 

supplies or toxic materials to microorganisms in airborne particles (Schulze, 1989; 

Gandolfi et al., 2015). Due to the highly dynamic air ecosystem and the complex 

interactions among these potential impacting factors, it becomes fairly difficult for the 

comprehensive understanding of driving mechanisms and the quantification of the 

contributions of each factor to microbial community variations in the atmospheric 

environments, which requires more robust approaches like variation partitioning analysis 

(VPA), structure equation modelling (SEM), redundancy analysis (RDA), random forest 

analysis and so on (Zhen et al., 2017; Romano et al., 2020). As a result, a comprehensive 

understanding of the concentration and distribution patterns of airborne bacteria, as well as 
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the related mechanism, is needed on a global scale to further explore the invisible microbial 

world. 

 

2.3.3 Source tracking and transportation of bacteria in the ambient air 

It has been previously shown that variations in the abundance and profiles of airborne 

bacteria were significantly dependent on the changes in emission contributions from 

different sources (land covers), as most airborne bacteria are aerosolized from the surfaces, 

containing topsoil, aquatic surfaces, and aerial plant parts, and are removed from these 

surfaces by winds like leaf shaking or pounding surf (Jones and Harrison, 2004). For 

example, the total bacterial loadings in the air are commonly lower in the winter but 

increase in the following spring with the highest values in the summer, consistent with the 

seasonal variations in the growing status of vegetation, particularly in agricultural and 

forest areas (Bertolini et al., 2013; Bowers et al., 2013; Xie et al., 2018).  

Numerous studies have aimed to track the potential sources of airborne bacteria and further 

quantify their contributions, which revealed that topsoil, terrestrial plants, human and 

animal feces, and local or long-transport dust were the dominant terrestrial origins of 

airborne bacteria in near ground (Bowers et al., 2011a; Bowers et al., 2011b; Bowers et al., 

2013; Gat et al., 2017). As for bacteria in marine air, the aquatic ecosystems, i.e., seawater 

and freshwater, presented remarkable contributions to them (Cao et al., 2014).  In human-

impacted areas, the anthropogenic sources, such as WWTPs (Bauer et al., 2002a), hospitals 

(Gilbert et al., 2010), landfills (Breza-Boruta, 2016), and farms (Bakutis et al., 2004), were 

non-negligible to contribute to airborne bacteria. 
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To further quantify the relative contributions from different putative sources, new 

approaches have been developed on the basis of the sequencing results in recent studies.  

For example, some scientists assigned DNA sequences of the object samples with the 

counterparts of samples representing various sources based on the comparisons of 

indicative taxa identified in these samples, thus, resulting in the proportion of each putative 

source (Bowers et al., 2013; Cao et al., 2014). Moreover, an improved program, 

SourceTracker2, using a Bayesian approach to estimate the assignments of sink sequences 

to all source samples, has been recently applied in airborne microbial studies to create a 

joint distribution of those assignments (Knights et al., 2011; Yang et al., 2019; Uetake et 

al., 2020; Wu et al., 2022; Xie et al., 2022). 

Upon entering the air from various sources, bacteria can be transported upwards by airflow, 

remain in the ambient air for around a few days, and even transport over geographic barriers 

and long distances (Burrows et al., 2009b; Fröhlich-Nowoisky et al., 2016), which may 

have implications for human health, agriculture, cloud formation, and microbial 

biogeography (Burrows et al., 2009a). Models of global circulation and air mass back 

trajectories have been widely applied in exploration of the long-range dispersal of airborne 

microorganisms, such as the source region of culturable microbes (Andreeva et al., 2002) 

and biological ice nuclei (Pratt et al., 2009).  

 

2.3.4 Survival, viability, and health issues of airborne microbes 

Air has long been recognized as a harsh environment for microorganisms compared with 

terrestrial and aquatic systems, however, the higher than expected airborne bacterial 
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viability in various environments (averagely 60%) was demonstrated by using fluorescent 

microscopy coupled with fluorescent staining (can both detect culturable and non-

culturable bacterial cells without cultivations) in recent studies (Hara and Zhang, 2012; 

Murata and Zhang, 2014; Yuan et al., 2017). Also, dead bacteria and even cell fragments 

can cause environmental changes like cloud development and hydrological cycles (Roszak 

and Colwell, 1987). The fact that most bacteria are viable in natural environments but with 

only a 1% probability of culture (Christner et al., 2008) further emphasizes that the overall 

perspective of the airborne bacteria could only be excavated through genome sequencing 

and be considered as a necessary step towards mechanistic macroecology.  

Due to the lack of nutrients, extremely dry conditions, ultraviolet radiation, and various 

gaseous taxon compounds, the atmosphere is a quite severe environment for the survival 

of most microbiomes. Nevertheless, previous studies revealed the viability of some 

airborne microbes in ambient air (Fang et al., 2007; Gao et al., 2015) (Fang et al., 2007;  

Gao et al., 2015).  For example, airborne bacteria could prevent the damage of solar 

radiation to themselves by pigmentation (Imshenetsky et al., 1978). Also, microbes can 

survive in the harsh atmospheric environment by morphologically transforming into spores 

to present the high resistance to environmental stress, as there will be a large reduction in 

metabolic rates with the cessation of cell division in this process (Horneck et al., 1994; Bär 

et al., 2002). Notably, once the spores come back to suitable environments, they can restore 

their activity and live in the new conditions, which was documented in a previous study 

where microbes from Asia were detected in the free troposphere in North America and 

were still culturable after a cross-continental storm transport (Smith et al., 2012). 
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In recent studies, most of the microbes in the bioaerosols were identified with low or no 

pathogenicity to humans; however, the relative abundance of the allergens and pathogens 

has been shown to increase with more severe air pollution, like smog events (Cao et al., 

2014; Sun et al., 2020) (Cao et al., 2014; Sun et al., 2020). These discoveries further 

suggested a significant increase of the anthropogenic impacts on (opportunistic) pathogens 

in the urban atmospheric environments. 

 

2.4 Methodology for bioaerosol characterization 

Bioaerosols are airborne particles that originate from living organisms, including bacteria, 

viruses, fungi, and other microorganisms (Fröhlich-Nowoisky et al., 2016). These particles 

can have a significant impact on human health, as they can cause respiratory diseases, 

allergies, and other health problems (Brown and Hovmøller, 2002; Brodie et al., 2007). 

Therefore, it is important to develop effective methods for characterizing bioaerosols, 

which can help to identify the types of microorganisms present and their potential health 

effects. Several methods have been commonly used for characterizing bioaerosols, 

including culture-dependent techniques, DNA sequencing, and flow cytometry (Franchitti 

et al., 2020).  

Culturing is a traditional method for characterizing bioaerosols, which involves the 

collection of bioaerosols onto a growth medium, where the microorganisms can grow and 

form visible colonies that can be counted and identified (Crook et al., 1991; Mériaux et al., 

2006; Dutil et al., 2008). These methods are relatively simple and inexpensive, and they 

can provide valuable information about the types and concentrations of microorganisms 
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present in a sample, as well as their viability and growth characteristics (Jalili et al., 2021; 

Li et al., 2021b). However, culturing has several limitations, including its inability to detect 

non-viable microorganisms, the requirement for specific growth conditions for different 

types of microorganisms, and the potential for selective growth of certain types of 

microorganisms (Amann et al., 1995). Additionally, culturing can be time-consuming and 

labor-intensive, and may not provide a comprehensive picture of the microbial community 

present in a sample (Peccia and Hernandez, 2006). 

In recent years, studies using molecular methods for the detection of airborne 

microorganisms have revealed that non-culturable microorganisms are considerable 

constituents of bioaerosols (Blais-Lecours et al., 2015). DNA sequencing is a powerful tool 

for detecting a wider range of microorganisms including non-culturable or slow-growing 

microorganisms, as well as viruses and fungi, and can provide information on the genetic 

diversity and functional potential of the microorganisms present in the air, allowing for a 

more comprehensive understanding of their potential impacts. PCR amplification followed 

by Sanger sequencing (Boreson et al., 2004; Fierer et al., 2008) or high-throughput 

sequencing (Andersson et al., 2008; Hamady et al., 2008) of the amplified DNA is a 

common approach to DNA sequencing for bioaerosol characterization, allowing for 

targeted sequencing of specific genes or regions of the genome, such as the 16S rRNA gene 

for bacterial identification or the ITS region for fungal identification (Bowers et al., 2011a; 

Bowers et al., 2013; DeLeon-Rodriguez et al., 2013; Cao et al., 2014; Womack et al., 

2015). Furthermore, metagenomic sequencing is another approach that involves 

sequencing the entire DNA content of the air sample without any prior amplification or 

targeting (Fouladi et al., 2020; Drautz-Moses et al., 2022; Wu et al., 2022; Xie et al., 2022). 
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This approach allows for a more comprehensive analysis of the microorganisms present in 

the air, but it can also be more challenging due to the larger amount of data generated 

(Shamarina et al., 2017). Despite its advantages, DNA sequencing also has some 

limitations. It can be more complex and expensive than culture-based methods (Dubuis et 

al., 2017), and it may require more advanced expertise in bioinformatics and data analysis. 

Additionally, DNA sequencing can be affected by contamination, which can lead to false 

positive results (Schmieder and Edwards, 2011; Glassing et al., 2016). As such, it is 

important to carefully consider the sampling and sequencing approach in the context of the 

research question and available resources. 

Flow cytometry is a method for characterizing bioaerosols that involves analyzing the 

physical and chemical properties of individual particles (Chen and Li, 2005). Flow 

cytometry can provide information about the size, shape, and fluorescence properties of 

particles, which can be used to distinguish between different types of microorganisms 

(Davey, 2003). Flow cytometry can also provide information about the viability and 

metabolic activity of microorganisms, as well as their sensitivity to environmental stressors 

(Negron et al., 2020; Yu et al., 2021). However, flow cytometry has several limitations, 

including its inability to identify specific microorganisms and the potential for interference 

from non-biological particles (Veal et al., 2000). Additionally, flow cytometry requires 

specialized equipment and expertise, and may not be suitable for analyzing complex or 

heterogeneous samples (Vives-Rego et al., 2000). 

In addition to these methods, other techniques are also available for characterizing 

bioaerosols, including immunological methods and microscopy-based methods (Cruz and 

Buttner, 2016). Immunological methods involve detecting specific antibodies or antigens 
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to identify the types of microorganisms present (Lindsley et al., 2006). Microscopy-based 

methods involve visualizing individual particles using light or electron microscopy to 

identify their size, shape, and other physical characteristics (Gong et al., 2018). Each of 

these methods has its advantages and limitations, and the choice of method will depend on 

the specific research question and the available resources. 

 

2.5 ARGs as an emerging environmental pollutant  

Antibiotics have been regarded as one of the most effective classes of antimicrobial drugs 

for treating human and animal diseases. Nevertheless, the excessive and improper use of 

antibiotics may cause the emergence and development of ARGs and antibiotic-resistant 

bacteria (ARB), facilitating the dissemination of them in both clinical and nonclinical 

environments. Moreover, HGT and MGEs like plasmids, transposons, and integrons, are 

also conducive to accelerating the dissemination of ARGs among various environments. 

The consumption of antibiotics was used for not only human therapy but also the 

agriculture and breeding industry, leading to a widespread of ARGs and ARB in WWTPs, 

landfill, agricultural soil, farms, and hospital waste, so they are gradually treated as 

environmental pollutants, which can contaminate the natural environment.  

 

2.5.1 Origin, distribution, and development of ARGs in the environment 

ARGs can be loosely defined as genetic elements encoding resistance to antibiotics. It has 

been shown that the concentration of ARGs was much larger in modern environments than 
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that has been previously discovered (D'Costa et al., 2006; Dantas et al., 2008; Sommer et 

al., 2009). Moreover, the various homologs of recognized ARGs have been confirmed to 

broadly spread throughout the environments in recent metagenomic research, suggesting 

that there might be a richer and longer natural history of ARGs (Wright, 2007). In fact, 

antibiotic resistance inherently exists in natural environments (Chen et al., 2016) and has 

existed since geological times (Hall and Barlow, 2004; Baltz, 2005), which indicated that 

ARGs should be very ancient (D’Costa et al., 2011). For example, a large variety of ARGs 

are carried by microbes that inhabit various niches without anthropogenic impacts, such as 

deep oceans (Toth et al., 2010; Chen et al., 2013), isolated caves (Bhullar et al., 2012), and 

deep terrestrial subsurface (Brown and Balkwill, 2009). Many lines of evidence indicate 

that antibiotics could be secreted by microbes as a competitive mode between them 

(Newman and Cragg, 2016), and the microbial synthetic pathways of antibiotics have 

evolved over millions of years, which is much earlier than the use of human-made 

antibiotics in medicine (Baltz, 2008).    

Intrinsic ARGs are a characteristic feature of certain environmental microorganisms, which 

provide them with a defensive mechanism against external aggression and the ability to 

produce metabolites that inhibit the growth of other microbes in their immediate 

environment  (Martinez et al., 2009). Moreover, some soil microbes can acquire nutrients 

by breaking down surrounding antibiotics via their intrinsic ARGs (Allen et al., 2010). 

Such intrinsic ARGs are ubiquitously distributed on the Earth as functional genes in 

different ecosystems. For other microbes, their ARGs can be acquired by spontaneous HGT 

or mutation (Martinez and Baquero, 2000).  
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However, human activities can also drive the selection of genes from environmental or 

cellular sources, which can subsequently confer antibiotic resistance (Czekalski et al., 

2015). Antibiotics were used in healthcare and illness treatment to kill or inhibit the growth 

of pathogenic microorganisms, which has been recognized as the largest medical 

revolution in the 20th century (Quinn, 2013). After penicillin was first isolated and used in 

the clinic in 1929 (Fleming, 1929), increasing numbers of antibiotics were discovered 

successively and introduced as a medicine in microbial infection treatments of humans, 

animals, and agriculture (Årdal et al., 2020). The remaining antibiotics in the environment 

can drive gene selection, which can subsequently confer antibiotic resistance, thereby, 

ARBs and ARGs gradually emerge in the environment. ARGs have been detected in 

various environments, including natural (aquatic (Zhang et al., 2020b), soil (Zhu et al., 

2017), and atmospheric systems (Xie et al., 2018)), and engineered (WWTPs (Machado et 

al., 2023), landfill (Wu et al., 2017), traffic systems (Kang et al., 2018; Danko et al., 2021), 

and clinical habitats (Chng et al., 2020))).  The increasing use of antibiotics enhanced the 

development and dissemination of ARGs in various environments, which would be 

considered as a global threat to human, animal, and environmental health (Zhang et al., 

2022). 

ARGs occur as emerging environmental contaminants, because bacteria develop resistance 

against the antibiotics used in human and animal therapy, agriculture, and husbandry 

(Riesenfeld et al., 2004; Baquero et al., 2008; Zhang et al., 2009a; Allen et al., 2010; Chen 

et al., 2013). Recently, researchers have paid more attention to ARG-hosting bacteria in 

the environments, as ARGs are widely distributed in the environments (Zhang et al., 
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2009a), and most of the pathogens carrying ARGs are derived from environmental bacteria 

(Martínez, 2008). 

 

2.5.2 Crucial role of air in the dissemination of ARGs 

ARGs participate in atmospheric circulation through evaporation processes and wind 

(Tripathi and Cytryn, 2017) and could be disseminated worldwide with air pollutant 

transportation (Kellogg and Griffin, 2006; Li and Osada, 2007). After a long-term 

dissemination, ARGs could be completely mixed in the atmosphere. ARGs and ARB 

adhered to PMs in the air have been detected in hospitals or places close to animal feeding 

operations, where amounts of antibiotics were used (Gibbs et al., 2006; Gilbert et al., 2010; 

Fan et al., 2014; McEachran et al., 2015). Besides, scientists have also isolated ARB in 

PM samples collected in outdoor environments (Gandolfi et al., 2011; Ling et al., 2013). 

Consequently, atmosphere could be regarded as a gene bank of ARGs, especially close to 

key emission sources, like hospitals (Wu et al., 2022) and WWTPs (Xie et al., 2022). ARGs 

and ARB could be detected several kilometers downwind of the emission sources, 

indicating that they could be transmitted via airflows and were probably viable during the 

transport process (McEachran et al., 2015). Also, more evidence showed the important role 

of air in ARG presence and transmission. For instance, multidrug-resistant airborne 

pathogens were frequently detected in hospital-related environments (Dijkshoorn et al., 

2007), which might cause the infection of patients living in hospitals and even pose a severe 

health risk to inhabitants in the surrounding areas via air movements (Lis et al., 2009).  
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In recent years, it has been a topic of increasing interest to detect ARGs and MGE in PM 

and quantify their abundance in various human-related areas (Ling et al., 2013; Pal et al., 

2016; Hu et al., 2018), such as hospitals (Wu et al., 2022), livestock farming (McEachran 

et al., 2015; Gao et al., 2017b), WWTPs (Li et al., 2016a), and urban environments 

(Echeverria-Palencia et al., 2017; Xie et al., 2018). For example, ARGs conferring 

resistance to tetracycline, tetX, and tetW, were detected in inhabited indoor environments 

with estimated concentrations of 100–200 copies/m3 and 100–400 copies/m3, respectively 

in Colorado, USA (Ling et al., 2013). Pal et al. used known gene databases to estimate the 

diversity of ARGs across the samples, revealing the higher richness in Beijing smog (64.4 

different ARG types) than in other external environments, like pharmaceutically polluted 

environments (38.9), wastewater/sludge (19.4), animals (11.8), humans (1.0–16.6), and 

other terrestrial sources (1.6–3.3) (Pal et al., 2016). In a comprehensive investigation of 

airborne ARGs inside a typical WWTP in Beijing, sul2 and intI1 (the class 1 integrase gene) 

were detected (Li et al., 2016a). Also, airborne ARGs, such as blaSHA and sul1 were 

discovered at up to 102 copies/m3 and 103 copies/m3 in an urban park in Califonia, USA 

(Echeverria-Palencia et al., 2017). The above observations suggested that atmospheric 

transmission may play a crucial role in spread of ARGs across diverse environments. 

Because the fine PMs can be suspended in the air for a long time, the long-distance 

dispersal of ARGs and ARB attached to PMs may happen in a regional scale and even a 

global scale, which can be promoted by strong winds or storms. Shortly after being 

transported to a new destination, ARB and the local microbes that receive the newcome 

ARGs may occupy new niches, posing a threat to the balance of the local ecosystem 

(Griffin, 2007). 



34 

 

Moreover, recent studies revealed that the abundance of airborne ARGs showed obvious 

variations over time and space (Li et al., 2018; Xie et al., 2018; Liang et al., 2020a).  

However, research into the spatiotemporal differentiation of airborne ARGs, particularly 

in terms of their absolute abundance and exposure risks, remains still unknown on a global 

scale. It has been verified by regional studies that the spatial and temporal variations of 

airborne ARGs were influenced by their hosting bacteria, environmental changes, and 

human activities (Liang et al., 2020a). In particular, it has been shown that the abundance 

and richness of airborne ARGs were positively correlated with PM pollution by analyzing 

the differentia in hazy and non-hazy days in same places, highlighting the increasing 

exposure risk of AMR in pollutant air (Sun et al., 2020; Zhao et al., 2020). In summary, 

spatiotemporally dynamic variations of aerosol-associated ARB and ARGs require a 

comprehensive study on long-term human exposures via inhalation on a large scale, 

particularly for a global scope. 

 

2.5.3 Relevance between ARGs and pathogens 

Some researchers named the small but important group, i.e., Enterococcus faecium, S. 

aureus, Klebsiella pneumonia, Acinetobacter baumannii, Pseudomonas aeruginosa, and 

Enterobacter spp., as the ESKAPE bugs, because not only do they account for the majority 

of hospital-acquired infections, but they also serve as prime examples of pathogenesis, 

transmission, and resistance (Rice, 2008; Mulani et al., 2019). The emergence of antibiotic 

resistance among gram-negative pathogens, which cause diseases in humans and animals, 

has been strongly correlated with the consumption of antibiotics over the past fifty years. 



35 

 

The correlation between the β-lactam class of antibiotics and their inactivating enzymes, 

the β-lactamases, is evident, as highlighted by previous studies (Bush and Jacoby, 2010; 

Poirel et al., 2010). Pseudomonas aeruginosa,  a pathogen commonly acquired in hospitals, 

poses a significant threat to patients with cystic fibrosis (Horrevorts et al., 1990; Fajardo 

et al., 2008), with antibiotic resistance mechanisms evolving alongside the introduction of 

new antibiotic derivatives, leading to reduced effectiveness of potent treatments like β-

lactams and aminoglycosides. The most notorious superbug currently is the gram-positive 

organism S. aureus, which has a close association with humans and is carried as a nasal 

commensal in 30% of the population (Lindsay and Holden, 2004). Despite the development 

of methicillin, the first designer antibiotic for resistance in 1959, as a reliable defence 

against penicillinases, the emergence of methicillin-resistant Staphylococcus aureus 

(MRSA) within three years led to the appearance of other multi-antibiotic-resistant variants  

(Enright et al., 2002). Resistance mechanisms are widespread among commensals 

(Marshall et al., 2009) and pathogens, and they can be disseminated by various gene 

transfer mechanisms. 

Nowadays, a large body of research has demonstrated the quantity and species of common 

ARGs; however, there is still a large gap in ARB understanding. Some researchers 

predicted a recent database from available genome sequences, which lists the existence of 

more than 20,000 potential resistance genes of nearly 400 different types (Liu and Pop, 

2009; Davies and Davies, 2010); however, it is still unknown how many would have been 

found using a wider range of expression systems and hosts. So far, studies on the airborne 

dissemination of Angstroms of the ambient environment to human bodies are very limited 

(Dickson and Huffnagle, 2015), especially with a lack of understanding of whether 
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pathogenic hosts in airborne microbial communities and antibiotic resistance transfer in the 

clinical context. We have very little or even no evidence that any of the putative resistance 

genes identified in these environmental studies have been mobilized into pathogenic 

bacteria and expressed as resistance phenotypes. However, these gaps are crucial to 

controlling the antibiotic-resistant pathogens and superbugs, because ARGs take efforts 

only when they host pathogens and transcribe them into proteins. 

As an active embedded MGE, intI1 has been found in a wide variety of pathogenic and 

nonpathogenic bacteria and is closely linked to genes conferring resistance to antibiotics 

(Gillings et al., 2015), disinfectants, and heavy metals, leading to speculation that intI1 

could serve as a proxy for anthropogenic pollution including ARGs (Griffin et al., 2018). 

Nevertheless, a recent study found that the statistical correlation between ARGs and the 

MGE, intI1, weakened from rural to urban and industrial sites, indicating the heterogeneity 

of airborne dissemination of ARGs (Xie et al., 2018). Improved knowledge of clinical 

elevators and hosts (e.g., pathogens) shared between ambient air and human airways is 

critical to discern and address the key health implications (Dickson and Huffnagle, 2015). 

It has been known for some time that bacterial strains resistant to antibiotics can be isolated 

by planting environmental bacteria on antibiotic-containing media in the laboratory.  
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Chapter 3 Methodology 

This chapter provides sample collection, global dataset generation, and detailed 

descriptions of the biological and statistical analyses applied in this study. 

 

3.1 Air sample collection 

In this study, a total of 803 air subsamples in the regions covering human-impacted and 

background areas were collected for an annual cycle in Asia, and the geographic locations 

of the sampling sites are shown in Figure 3-1. 
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Figure 3-1 Geographic location of sampling sites. The yellow circles represent the human-

impacted areas, and the blue triangles represent the background areas. The satellite map 

was obtained from National Platform for Common Geospatial Information Services 

(https://www.tianditu.gov.cn/) 

 

3.1.1 Description of sampling strategy 

In this study, air sample collection was first conducted at multiple sites with different land 

use impacts in selected Chinese typical cities, Beijing, Nanjing, and Guangzhou, to 

investigate the regional differences in air pollution from biological perspectives. Hong 

Kong, one of the most densely populated cities in the world and an important transition 

between terrestrial and offshore areas, was also included in the study. Compared with the 

extensive study on the mechanisms driving chemical pollution, the mechanistic theories on 

airborne microbiomes and anthropogenic impacts on the biological fractions have been less 

explored. To address this gap, air samples in corresponding background areas (i.e., areas 

that are far less impacted by humans, such as the studied sites in remote mountains, 

offshore environments, and the polar regions) were collected simultaneously in Tibet and 

at Waliguan, Mt. Changbai, and Mt. Ailao. Considering the climate factors influencing the 

atmospheric microbe, the sampling work was conducted in temperate and subtropical zones, 

as well as tropical regions, including Phitsanulok in Thailand and Bachok in Malaysia. 

Table 3-1 shows the sampling frequency and number of samples collected at each site, 

along with detailed descriptions of the surrounding environment, geographic information, 
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and demographic, traffic, and economic characteristics of the districts in which the 

sampling sites are located.
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Table 3-1 Sampling frequency and number of air subsamples and description of sampling sites in this study. 

Location 

District 

(Abbreviated 

site name) 

Sampling 

period 

Sampling 

Frequency 

Sample 

size 
Sampling site Site description 

Beijing 

(northern 

China) 

Haidian, 

Beijing 

(PKU) 

Apr 2016 - 

May 2017 
weekly 61 

The campus of 

Peking university 

Rooftop sampling on an academic building at the main part of 

the campus, 15 m above ground level; around 200 m away 

from a major road with heavy traffic; approximately 500 m 

away from the fourth-ring road. 

Haidian, 

Beijing (IAP) 

Dec 2016 - 

Nov 2017 
weekly 44 

Institute of 

Atmospheric 

Physics, Chinese 

Academy of 

Sciences 

Rooftop sampling on a two-floor building; located between 

the 3rd and 4th ring roads of the city; surrounded by heavy 

traffic, buildings ranging from 30 to 60 m in height, and a 

public park; approximately 1 km away from a highway; 

covered with some vegetation. 

Huairou, 

Beijing (HR) 

Aug 2018- 

May 2019 
weekly 33 

Huairou campus of 

the University of 

Chinese Academy 

of Sciences 

Rooftop sampling on the first teaching building (30 m above-

ground) in a peri-urban village; located near a lake, mountains 

with vegetation, and a national road; with no apparent sources 

of industrial manufacturing pollution. 

Nanjing 

(eastern 

China) 

Pukou, 

Nanjing (PK) 

Mar 2016- 

May 2017 

Every 7-10 

days 
46 

Nanjing University 

of Information 

Science and 

Technology 

Rooftop sampling on a twelve-floor building; near chemical 

and metallurgical industries; surrounded by petrochemical 

plants, steel plants, and highways. 

Xuanwu, 

Nanjing 

(XW) 

Mar 2016 - 

May 2017 

Every 7-10 

days 
48 

Institute of Soil 

Science, Chinese 

Academy of 

Sciences 

Rooftop sampling on a five-floor building; downtown area 

surrounded by schools, parks, and residential and commercial 

buildings, with heavy traffic. 

Lishui, 

Nanjing (LS) 

Apr 2016 - 

May 2017 

Around 

every 

month 

18 A botanical garden 

Sampling site on the ground; distant from main roads and 

industrial pollution sources, with extensive vegetation cover; 

with low population density. 
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Location 

District 

(Abbreviated 

site name) 

Sampling 

period 

Sampling 

Frequency 

Sample 

size 
Sampling site Site description 

Guangzhou 

(southern 

China) 

Tianhe, 

Guangzhou 

(TH) 

Mar 2016 - 

May 2017 

Around 

every 3 

days 

122 

Guangzhou Institute 

of Geochemistry, 

Chinese Academy 

of Sciences 

Rooftop Sampling on a five-floor building; near two 

expressways; surrounded by schools and residential buildings. 

Conghua, 

Guangzhou 

(CH) 

Mar 2016 - 

May 2017 

Around 

weekly 
52 Tianhu Park 

Ground-level sampling site located on a hill; covered by 

massive vegetation; situated in a recreation area around 60 km 

away from Guangzhou downtown areas. 

Jiangmen 

(southern 

China) 

Heshan, 

Jiangmen 

(HS) 

Mar 2016 - 

May 2017 
weekly 65 

Guangdong 

Atmospheric 

Monitoring 

Supersite of China 

Rooftop sampling on a four-floor building; located on a hill 

covered by vegetation; surrounded by farmlands and country 

roads; with minimal industrial and traffic pollution from outer 

space. 

Hong Kong 

Hung Hom, 

Hong Kong 

(HK) 

Jan 2016 – 

Nov 2016 

Around 

every 

month 

16 

The campus of the 

Hong Kong 

Polytechnic 

University 

Sampling site in the hanging garden on the 11th floor of a 

twelve-story building; located in the largely urbanized and 

densely populated downtown center with heavy traffic 

pollution; surrounded by commercial and residential 

buildings. 

Hok Tsui, 

Hong Kong 

(HT) 

Jan 2016 – 

Dec 2016 

Around 

weekly 
37 

Hok Tsui 

Background Air 

Monitoring Station 

Ground-level sampling located on a hill; situated at the 

southern tip of Hong Kong; with the least human-related 

pollution and environmental impact; approximately 15 km 

away from large anthropogenic impacts and heavy traffic in 

the urban center (Victoria Harbour) 

Phitsanulok, 

Thailand 

Mueang 

Phitsanulok 

District, 

Phitsanulok 

(TL) 

Dec 2015 – 

Nov 2016 

Around 

weekly 
40 

The campus of 

IOES University 

Malaya 

 

Sampling site at the top of an atmospheric observation tower 

(18 m height); located on the coastline of the South China Sea 

within 100 m of the shore; near to the main road with traffic 

emissions.  
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Location 

District 

(Abbreviated 

site name) 

Sampling 

period 

Sampling 

Frequency 

Sample 

size 
Sampling site Site description 

Bachok, 

Malaysia 

Bachok, 

Kelantan 

(ML) 

Nov 2017 – 

Feb 2019 

Daily or 

weekly 
122 

The campus of 

Naresuan University 

Sampling site on the ground near a college campus; 

surrounded by a lush green landscape and flowing rivers; 

situated near a road and residential buildings. 

Tibet 
Mount 

Everest (ME) 

Oct 2014 – 

Jun 2015 

Around 

weekly 
22 

Qomolangma 

Station for 

Atmospheric and 

Environmental 

Observation and 

Research 

Sampling site on the Tibetan Plateau at a high altitude; far 

away from anthropogenic emission sources, industrial 

utilities, and traffic pollution.  

Waliguan  

Gonghe 

County, 

Qinghai 

(WL) 

Sep 2013 – 

Jul 2014 

Around 

weekly 
23 

the Waliguan 

Baseline 

Observatory 

Sampling site at the summit of Waliguan; located at the 

northeast edge of the Tibetan Plateau; naturally preserved and 

featured arid/semi-arid lands and grasslands; isolated from 

major industrial sources and populated centers. 

Changbai 

Mountain 

Antu County, 

Jilin (CB) 

Apr 2014 – 

May 2015 

Around 

weekly 
36 

Ailao Mountain 

National Nature 

Reserve 

Sampling site on the hilly terrain; near the boundary between 

China and North Korea; dominantly covered by temperate 

broadleaf and Korean pine mixed forests; without large 

industrial emissions nearby. 

Ailao 

Mountain 

Fengqing 

County, 

Yunnan (AL) 

Nov 2013 – 

Aug 2014 

Around 

weekly 
17 

Changbai Mountain 

National Nature 

Reserve 

Sampling site at the summit of the northern edge of Mt. Ailao; 

dominantly covered by evergreen broadleaf primary forests; 

without large anthropogenic emission sources in the 

surrounding areas. 
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3.1.2 Sampling method and instrument 

For accurate air quality measurements, a filter was placed in the air sampler at each 

sampling site but not operating during the entire sampling process, which could be served 

as a blank control. Quartz microfiber filters (8 × 10 in, PALL, United States) were pre-

baked at 500 oC for 5 h to eliminate any contamination from carbonaceous material. The 

filters were weighed before and after sampling separately, with a sensitivity of ± 0.0001 g. 

Prior to each weighing, the filters were required to equilibrate at 25 oC with 40-50% RH 

for at least 24 h. 

In urban areas, including Beijing, Nanjing, Guangzhou, and Hong Kong, the PM2.5 samples 

were collected using high-volume (1000 L/min) samplers (TH-1000C II, Wuhan Tianhong 

Instruments Co., Ltd.) for 24 h (Figure 3-2). The PM2.5 samples at Mt. Changbai, Waliguan, 

and Mt. Ailao, were collected onto preheated quartz filters using high-volume PM2.5 

samplers. The sampling durations at Waliguan and Mt. Changbai were 96 h, and 48−72 h, 

respectively, at a volumetric flow rate of 1000L/min. Besides, air samples were collected 

at Mt. Ailao for 168 h at a volumetric flow rate of 300L/min. The PM2.5 samples in Tibet 

were collected using the Ambient Air Sampling Instrument (Lao Ying 2034, LAOYING 

Institute, China) at a flow rate of 100 L/min for 23.5 h (Figure 3-2). TSP in Thailand and 

Malaysia were also collected on quartz microfiber filters using a high-volume sampler, 

with a sampling duration of 24 h and a flow rate of 300 L/min. A filter placed without 

operation was served as blank control, which contribution was removed for more precise 

quantitative analysis. Bacterial concentration in the air was calculated using a standard 
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volume. All filter subsamples were combined into 76 seasonal samples and stored at -20 °C 

before further analysis (No. 1-76 in Appendix 1). 

 

 

Figure 3-2 Air sampling instruments applied in this study. 

 

3.2 DNA extraction and sequencing 



45 

 

This section presents a comprehensive description of the molecular biological analyses 

employed in this study, containing the pretreatment of air samples, DNA extraction, 

quantification of total bacterial loads, library generation, 16S rRNA sequencing, and 

metagenomic sequencing (Figure 3-3). 

 

Figure 3-3 Flow chart of molecular biological analyses. 

 

3.2.1 DNA extraction 

In order to increase the amount of DNA obtained, field subsamples obtained from the same 

site and season were combined. Each filter sample was then cut into fragments 

approximately 8 cm × 10 cm in size and subjected to ultrasonic extraction with 1× 

phosphate-buffered saline in 50 mL centrifuge tubes. All equipment used in the extraction 
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process was sterilized, and the 1× phosphate-buffered saline was pretreated at 120 oC for 

20 min. After extraction, the resulting solution was filtered using a 0.2 μm PES membrane 

disc filter (47 mm, Pall) to concentrate the airborne microbiome, and the filter was then 

used for DNA extraction without delay.  

The standard protocol for isolating DNA using the FastDNA SPIN Kit for Soil (MP 

Biomedicals) was followed for the remaining steps, except for the column purification step. 

The latter was replaced with magnetic bead purification (Agencourt AMPure XP, Beckman, 

CA, U.S.) to enhance the yield. All procedures were carried out on a clean bench. 

Following extraction, all DNA solution samples were kept at −80 °C until needed for qPCR 

quantification, 16S rRNA gene amplicon sequencing, and metagenomic sequencing. 

 

3.2.2 Real-Time qPCR Quantification of Targeted Genes 

The total bacterial loading was approximated by the concentration of 16S rRNA gene 

copies in the air. The 16S rRNA gene was amplified on a StepOnePlus Real-Time qPCR 

System (Applied Biosystems) with the following primer sequences: 5’-

TCCTACGGGAGGCAGCAGT-3’ as the forward primer and 5’-

GGACTACCAGGGTATCTAATCCTGTT-3’ as the reverse primer. To determine the 

absolute number of 16S rRNA gene copies, a seven-point standard curve (including a blank 

standard) in a 10-fold serial dilution was run with samples. Samples, standards, and blanks 

were analyzed in triplicate with an application efficiency between 90% - 110%. The 

specificity of the amplicons was confirmed through melt curve analysis. The 20-μL qPCR 
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reaction mixture was composed of 10 µL of Power SYBRTM Green PCR Master Mix (Life 

Technologies, CA, USA), 1 µL of template DNA, 0.5 μL of each primer (100 nM), and 

RNAse-free water to complete the final 20 µL volume. The 16S rRNA gene was amplified 

according to the following protocol: an initial step at 95 °C for 10 min for enzyme 

activation, then 40 cycles of 10 s at 95°C, and 1 min at 60°C for hybridizations and 

elongations. The amplicon length was around 400-500 bp. In addition, to reduce the 

variations in the 16S rRNA gene copies caused by particle size, the mean ratios of bacterial 

loadings in PM2.5 with PM10 (1: 1.56 ± 0.74) and with TSP (1: 7.44 ± 3.86) collected at the 

same sites during the same sampling period were used to modify the data (Figure 3-4). 

 

Figure 3-4 Effect of particulate matter size on total airborne bacterial biomass. Comparison 

of airborne bacterial biomass in PM2.5, PM10, and TSP collected in the hanging garden on 

the 11th Floor of a twelve-story building at the Hong Kong Polytechnic University (22.31N, 

114.18E) in three consecutive days. 

 

3.2.3 Library generation and DNA sequencing 
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3.2.3.1 16S rRNA gene amplicon sequencing 

The 16S rRNA gene is widely used for bacterial identification and classification. 

Amplification, barcoding, pooling, and library preparation for sequencing the V3-V4 

hypervariable region of the 16S rRNA gene followed the Illumina protocol (Caporaso et 

al., 2012). KAPA HiFi HotStart ReadyMix (Kapa Biosystems) was used to amplify the 

16S rRNA gene with degenerate PCR primers, 341F (5’-

ACTCCTACGGGAGGCAGCAG-3’), and 806R (5’-GGACTACHVGGGTWTCTAAT-

3’) (Takahashi et al., 2014), both of which were tagged with an Illumina adapter, pad, and 

linker sequences. PCR enrichment was performed in a 50 μL mixture containing a 30-ng 

template, a fusion PCR primer, and a PCR master mix. Thermal cycling consisted of an 

initial denaturation at 94 °C for 3 min, followed by 30 cycles of 94 °C for 30 s, annealing 

at 56 °C for 45 s, and elongation at 72 °C for 45 s, with a final extension for 10 min at 

72 °C. The PCR products were purified with AMPure XP beads and eluted in an Elution 

buffer. Libraries were qualified by the Agilent 2100 bioanalyzer Agilent (USA). 

Sequencing was conducted on an Illumina MiSeq platform, generating 2 × 300 bp paired-

end reads. The DNA sequence data were deposited in the Sequence Read Archive (SRA) 

database of the NCBI (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA757592). 

 

3.2.3.2 Metagenomic sequencing 

The concentration of genomic DNA was quantified using a fluorescent dsDNA-binding 

dye assay (Qubit Fluorometer, Life Technologies, CA, U.S.). Low-input library generation 

was performed using limited DNA solution (~50 ng). Then the required length of DNA 
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fragments (150-bp paired-end read length) was collected by electrophoresis, and cluster 

preparation was performed by adding joints. Finally, whole-genome shotgun sequencing 

of ambient air samples was performed on an Illumina Hiseq X Ten platform. Details of the 

DNA quantity and data size were provided in Appendix 3.1, and an overview of 

metagenomic sequencing including the key steps was shown in Figure 3-5. The raw reads 

were filtered using fastp (v0.21.0 with default parameters) to remove low-quality reads 

(Chen et al., 2018). After quality control procedures, the clean data (~870 GB) of 71 

samples were uploaded to the SRA database of NCBI with the accession number 

PRJNA858396 (https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA858396). 
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Figure 3-5 Flow chart of the metagenomic sequencing. 

 

3.3 Global airborne bacterial dataset generation and analyses 

A dataset of airborne bacteria on a global scale was compiled using 76 newly collected air 

samples (a combination of 803 weekly samples listed as No. 1-76 in Appendix 1), along 

with an additional 294 samples from reliable studies conducted across 63 sites worldwide. 
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The sampling sites were diverse, ranging from ground level (1.5 - 2 m high) to rooftops (5 

- 25 m high), to high-altitude mountain peaks (5,380 m asl), and included densely populated 

urban centers and even the Arctic Circle. This broader coverage of altitudes and 

geographical regions provides greater diversity than has previously been attempted. 

Additionally, 16S rRNA gene sequencing data were gathered from EMP (Thompson et al., 

2017), involving 5,000 samples from 23 different surface environments, to explore the 

relationships between airborne bacteria and other microbiomes. The section also includes 

details on environmental data acquisition, chemical analysis, and various bioinformatic 

analyses. 

 

3.3.1 Metadata collection 

In order to broaden the scope of the study on airborne bacterial communities, only studies 

that utilized a filter-based flow sampler, total DNA extraction, high-throughput sequencing 

on an Illumina platform, and 16S rRNA gene sequence data were considered for air sample 

selection. This led to the identification of 294 air samples from literature (listed as No. 77-

370 in Appendix 1) that met the quality standards and were downloaded and uniformly 

processed. Despite variations in flow rate and sampling time, the quantifications per unit 

volume of each sample were calculated, resulting in a global airborne bacterial dataset 

consisting of 370 air samples with different particle sizes (68 PM2.5, 171 PM10, and 131 

TSP) covering 63 sites worldwide including a wide range of latitudes (65.53°S - 81.57°N), 

altitudes (0 – 5380 m asl), climates (15 climatic types following the Köppen−Geiger 

climate classification system (Peel et al., 2007) (Figure 3-6), anthropogenic impacts (e.g., 
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urban, terrestrial background, and offshore areas), and land cover types. Detailed 

information of climate types and proportion of land cover types at each sampling site was 

shown in Table 3-2, and detailed information of each sample was listed in Appendix 1. 

Additionally, the quantification of land covering type was described in section 3.3.3.2. 

Moreover, the rarefaction curve of global airborne bacterial community was constructed to 

verify that the global dataset covered the diversity in the air (Figure 3-7). 

We also obtained a global topsoil 16S rRNA gene sequence dataset (Sunagawa et al., 2015) 

(n = 65, PRJEB19856) and a global metagenomic dataset on the surface seawater layer 

(Bahram et al., 2018) (n = 62, PRJEB7988) from the NCBI to compare with the airborne 

microbial communities.  
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Figure 3-6 World map of Köppen-Geiger climate classification (Peel et al., 2007).  

The Köppen climate classification divides climates into five main climate groups, with 

each group being divided based on seasonal precipitation and temperature patterns. The 

five main groups are A (tropical), B (dry), C (temperate), D (continental), and E (polar).  

Color indicates climate types: Af, Tropical rainforest climate; Am, Tropical monsoon 

climate; Aw, Tropical savanna climate; BWh, Hot desert climate; BWk, Cold desert 

climate; BSh, Hot semiarid climate; BSk, Cold semi-arid climate; Csa, Hot-summer 

Mediterranean climate; Csb, Warm summer Mediterranean climate; Cwa, Humid 

subtropical climate; Cwb, Subtropical highland climate; Cwc, Cold subtropical highland 

climate; Cfa, Humid subtropical climate; Cfb, Temperate oceanic climate; Cfc, Subpolar 

oceanic climate; Dsa, Mediterranean-influenced hot summer humid continental climate; 

Dsb, Mediterranean-influenced warm-summer humid continental climate; Dsc, 

Mediterranean-influenced subarctic climate; Dsd, Mediterranean influenced extremely 

cold, subarctic climate; Dwa, Monsoon-influenced hot-summer humid continental climate; 

Dwb, Monsoon-influenced warm-summer humid continental climate; Dwc, Monsoon-

influenced subarctic climate; Dwd, Monsoon-influenced extremely cold subarctic climate; 

Dfa, Hot-summer humid continental climate; Dfb, Warm-summer humid continental 

climate; Dfc, Subarctic climate; Dfd, Extremely cold subarctic climate; ET, Tundra climate; 

and EF, Ice cap climate. 
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Figure 3-7 Rarefaction curve of all sequences at a global level. The sequence number of 

each sample ranged from 9,206 to 316,150, with a mean value of 74,914 reads.
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Table 3-2 The overview of climate types and land cover types of 370 air samples in 63 sampling sites. 

Sites 
Climate 

system 

Sample 

size 

Land coverage type composition (%) 

Water/Seas Forest Shrubs Grassland Cropland Built-up 

Bachok, Malaysia Af 4 0.00 0.00 3.21 10.29 84.88 1.62 

Phitsanulok, Thailand Aw 4 54.27 5.69 29.12 7.02 3.52 0.38 

Tsogt-Ovoo, Mongolia BWk 12 0.00 0.00 59.78 0.00 0.00 40.22 

Nanjing_ LS, China Cfa 5 19.08 0.09 24.14 17.68 39.00 0.00 

Nanjing_ XW, China Cfa 5 10.97 0.61 19.39 21.79 43.22 4.02 

Nanjing_ PK, China Cfa 5 3.91 0.60 19.01 29.72 46.23 0.53 

Ohio 1, USA Cfa 6 34.85 0.95 33.04 1.02 10.25 19.88 

Ohio 2, USA Cfa 6 1.45 1.77 12.02 10.71 11.70 62.34 

Ljungbyhed, Sweden Cfb 46 1.50 39.00 26.79 1.23 31.39 0.10 

Wiesbaden, Germany Cfb 43 2.12 18.37 16.49 4.29 54.26 4.48 

Cape Point, South Africa Csb 7 93.55 0.04 5.74 0.18 0.03 0.47 

Hok Tsui, China Cwa 4 89.82 0.86 6.10 2.16 0.00 1.07 

Mt. Ailao, China Cwa 4 0.00 83.19 11.61 1.15 4.05 0.00 

Guangzhou_ TH, China Cwa 5 7.44 0.02 14.11 44.69 30.63 3.11 

Guangzhou_ HS, China Cwa 5 9.37 0.00 22.47 26.89 40.86 0.41 

Guangzhou_ CH, China Cwa 5 2.03 15.09 36.29 5.96 40.62 0.00 

Hong Kong, China Cwa 4 67.01 2.31 8.08 12.81 8.59 1.19 

Chacaltaya, Bolivia Cwb 16 0.00 2.05 52.86 40.97 4.11 0.00 

STP, USA Dfa 4 0.12 0.00 39.92 10.82 1.83 47.32 

Colorado 1, USA Dfa 2 0.26 0.00 9.95 46.81 31.78 11.21 

Colorado 2, USA Dfa 1 0.00 65.36 20.40 11.39 2.52 0.33 

Colorado 3, USA Dfa 1 0.23 0.00 8.22 37.82 49.67 4.06 
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Sites 
Climate 

system 

Sample 

size 

Land coverage type composition (%) 

Water/Seas Forest Shrubs Grassland Cropland Built-up 

Colorado 4, USA Dfa 1 0.23 0.97 16.92 33.48 45.18 3.23 

Colorado 5, USA Dfa 1 0.00 0.00 49.63 29.55 16.82 4.00 

Colorado 6, USA Dfa 1 0.00 36.76 51.88 9.77 1.59 0.00 

Colorado 7, USA Dfa 1 0.00 6.74 14.76 32.33 43.99 2.18 

Colorado 8, USA Dfa 8 0.00 60.62 24.01 3.29 12.09 0.00 

Colorado 9, USA Dfa 1 1.18 6.33 16.04 43.38 31.09 1.99 

Michigan 1, USA Dfa 5 12.49 0.00 2.82 2.58 23.51 58.59 

Michigan 2, USA Dfa 3 0.73 1.13 51.31 0.78 45.53 0.52 

Pic-du-Midi, France Dfb 12 0.00 24.29 10.52 0.00 65.01 0.18 

Kiruna, Sweden Dfb 46 9.45 3.62 84.53 1.38 0.00 1.02 

Grenoble, France Dfc 10 0.67 61.40 26.86 3.08 7.48 0.51 

PuydeDôme, France Dfc 12 0.70 31.72 46.33 2.55 18.32 0.38 

Beijing_ PKU, China Dwa 5 0.25 0.14 5.80 48.67 30.80 14.33 

Beijing_ IAP, China Dwa 5 0.25 0.14 5.80 48.67 30.80 14.33 

Beijing_HR, China Dwa 4 4.16 6.09 60.54 3.85 25.36 0.00 

Mt. Changbai, China Dwb 4 0.11 36.04 55.91 0.91 6.98 0.05 

Waliguan, China Dwc 4 0.00 0.00 44.85 34.66 19.24 1.24 

Mt. Everest ET 4 0.00 0.00 46.38 2.92 0.00 50.71 

Namco, China ET 8 22.63 0.00 14.45 62.74 0.00 0.18 

Station-Nord, Greenland ET 13 100.00 0.00 0.00 0.00 0.00 0.00 

Amsterdam-Island, France Offshore 9 100.00 0.00 0.00 0.00 0.00 0.00 

South Ocean (19 sites) Offshore 19 100.00 0.00 0.00 0.00 0.00 0.00 
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3.3.2 Sequence processing 

In order to ensure consistent processing of the data, all of the global air data that was 

collected - a total of 27,719,673 V3-V4 hypervariable regions of 16S rRNA gene amplicon 

reads from 370 air samples combined - were processed using mothur (v1.42) (Schloss et 

al., 2009). To begin, the VSEARCH tool was used to remove chimeric sequences, 

employing the UCHIME algorithm for quality control (Rognes et al., 2016). Next, the 

sequences were separated into operational taxonomic units (OTUs) at a 97% similarity 

threshold using the UPARSE pipeline and taxonomically annotated using SILVA (v123) 

as the reference database, with an 80% confidence cut-off (Pruesse et al., 2007). To identify 

bacterial pathogens at the species level, raw sequences for each sample were processed 

against pathogenic sequences using the 16SPIP pipeline, with a criterion of 99% or greater 

similarity (Miao et al., 2017). This method has been tested and found to be effective in 

identifying pathogens using paired reads of the V3-V4 region of the 16S gene from Beijing 

hospital samples, identified through culture and whole-genome shotgun metagenomic 

analyses (Miao et al., 2017). Multivariate data analysis from METAGENassist was 

employed to generate phenotypic information covering various functional categories, such 

as genome size, oxygen requirements, energy sources, and preferred temperature range 

(Arndt et al., 2012). Additionally, the same procedure was used to reanalyze the global 

topsoil 16S rRNA gene sequences. 

 

3.3.3 Acquisition of abiotic factors  
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In this section, the chemical components commonly found in air, such as organic carbon 

(OC) and element carbon (EC), heavy metals, and soluble ions, were detected and analyzed. 

Besides, the meteorological condition and air quality at each sampling site during sampling 

periods were collected from various official websites and datasets. The land cover types 

were estimated using satellite data. 

 

3.3.3.1 Chemical Analysis  

Filter-based air samples (size: 5cm * 7.5cm) were cut and submerged in a mixture of HNO3 

and HClO4 with a volumetric ratio of 4:1 in test tubes. The solution was then digested in a 

heating block with a progressive temperature-raising program up to 190 oC until dried. A 

10-mL aliquot of 5% (v/v) HNO3 was added to the test tubes at a temperature of 70 oC. 

After pretreatment of the filter samples, the final solution was analyzed by inductively 

coupled plasma-optical emission spectrometry (ICP-OES) to detect the total concentrations 

of various elements. 

The concentrations of OC and EC were analyzed by the DRI Thermal/Optical Carbon 

Analyzer (Model 2001) using the thermal optical reflectance (TOR) protocol (Chow et al., 

1993). Soluble anions (NO3
- and SO4

2-) and cations (NH4
+) infiltrates were analyzed by Ion 

Chromatography. 

 

3.3.3.2 Acquisition of Environmental Data 
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In this study, all environmental variables were categorized into three major groups: 

meteorological condition, air quality, and earth surface type. The hourly meteorological 

data for each site during the sampling duration, containing AT, AP, RH, WS, and WD, 

were downloaded from the official website of the National Climatic Data Center 

(ftp://ftp.ncdc.noaa.gov/pub/data/noaa/isd-lite/) and Weather Underground 

(https://www.wunderground.com/). Since there is still no globally uniform air quality 

monitoring system like the NOAA (National Oceanic and Atmospheric Administration) 

for air pollutant records, the corresponding air quality data including Air Quality Index 

(AQI), PM10, PM2.5, SO2, NO2, O3, and CO, were retrieved from various sources, including 

the United States Environmental Protection Agency (https://www.epa.gov/), China 

National Environmental Monitoring Centre (http://www.cnemc.cn/), European 

Environmental Agency (https://www.eea.europa.eu/), the Royal Thai Pollution Control 

Department (http://aqmthai.com/aqi.php), the South Africa Air Quality Information 

System (http://saaqis.environment.gov.za/), the Malaysian Department of the Environment 

(https://www.doe.gov.my/portalv1/en/), the Government of Peru (https://www.gob.pe/), 

and Environment and Climate Change Canada (http://data.ec.gc.ca/data/). 

To quantify the types of land cover within a 50 km diameter range of sampling sites, a 

moderate-resolution imaging spectroradiometer (MODIS) land cover approach was 

utilized with a 5 ′  ×  5 ′  resolution. The International Geosphere – Biosphere 

Programme (IGBP) system (MCD12Q1-1) was performed to describe the different MODIS 

land coverages (Friedl et al., 2002). The relative contribution of each type of landscape to 

the aerial emission of bacterial cells was predicted by weighting these relative surfaces by 

https://www.wunderground.com/
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their associated bacterial cell concentration, as reported earlier (Table 3-3) (Burrows et al., 

2009b). The maps of the land cover type at each site were shown in Appendix 2. 

Table 3-3 Estimates of total mean bacterial aerosol concentration in near-surface air above 

various land cover types.  

Earth Surface Best Estimate (cells/m3) Reference 

Water/Sea  1 × 104 
(Bauer et al., 2002b; Harrison et al., 2005; 

Griffin et al., 2006) 

Forest  5.6 × 104 (Shaffer and Lighthart, 1997) 

Cropland 1.1 × 105 (Harrison et al., 2005) 

Shrubs  3.5 × 105 (Bauer et al., 2002b) 

Grassland 1.1 × 105 (Harrison et al., 2005) 

Urban 1.2 × 105 (Harrison et al., 2005) 

Tundra 1.2 × 104 (Burrows et al., 2009b) 

 

 

3.3.4 Bioinformatic and statistical analyses 

3.3.4.1 Core bacteria identification 

The determination of a global core set of airborne bacteria was based on their abundance 

and occupancy in regional and temporal variations with reference to multiple reported 

methods. First, 166 OTUs with a high mean relative abundance (> 0.01%) across 370 

samples were selected as overall abundant OTUs (Saunders et al., 2016). Then, 68 OTUs 

among the overall abundant OTUs with an occurrence frequency in all samples of more 

than 80% were filtered out as widespread OTUs (Székely and Langenheder, 2014). Finally, 
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the dominant OTUs in more than half of the samples were further filtered out and identified 

as the final core airborne bacterial community. In sum, this process involved sorting OTUs 

based on their abundance in each sample, selecting the top 80% of bacterial communities 

in each sample with an occurrence in more than half of the samples to form the final core 

bacteria.  

 

3.3.4.2 Diversity analyses and correlations with environmental factors 

To compare the structure of the bacterial community across different regions, α-diversities 

and β-diversities were computed using the “Picante” package (Kembel et al., 2010) in R 

based on the original OTU table generated by sequence processing. To minimize deviations 

in the number of bacterial taxa (i.e., richness) caused by different particle sizes, the mean 

ratio of richness in PM2.5 with PM10 (1: 1.73 ± 0.63) and TSP (1: 2.14 ± 0.84) collected in 

the same sites during the same sampling period was used to modify the richness data drawn 

from the literatures (Gou et al., 2016; Lu et al., 2018; Yan et al., 2018; Stern et al., 2021) 

(Figure 3-8). The Bray–Curtis dissimilarity matrix for the airborne bacterial community 

structure (OTU abundance-based) between pairs of samples was calculated to estimate the 

taxonomic β-diversity using the “vegdis” function in the “vegan” R package (Jari Oksanen 

et al., 2018). The geographic distance between any two sampling sites across the globe was 

calculated using the “geosphere” R package based on geographic coordinates (Robert J. 

Hijmans et al., 2015).  

For each environmental variable, a partial Mantel test with 999 permutations was 

conducted to examine the correlation (Pearson’s rank correlation) between the 
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environmental variable matrix and the composition of the bacterial community using the 

“vegan” R package (Jari Oksanen et al., 2018). Akaike information criterion (AIC) was 

used to select the best model to fit the relationship between two variables. AIC has been 

widely used for statistical inference and gradually forms the basis of a paradigm for the 

foundations of statistics (Stoica and Selen, 2004).  

 

 

Figure 3-8 Effect of particulate matter size on airborne bacterial richness. Comparison of 

airborne bacterial richness in PM2.5, PM10, and TSP collected in the same site during the 

same period(Gou et al., 2016; Yan et al., 2018; Yue et al., 2018; Stern et al., 2021). 

 

3.3.4.3 Network construction, topological property calculation, and key taxa 

identification 

To construct the co-occurrence network, OTUs with a mean relative abundance of over 

0.1% in all samples and a relative abundance of over 0.5% in any one sample were retained 
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while rare OTUs were filtered out. The network was based on the Spearman correlation 

matrix performed with the WGCNA package (Langfelder and Horvath, 2012), and only 

statistically significant relationships (p < 0.01, |R| > 0.6) were included (Junker, 2008). The 

correlation cut-off threshold for network construction was mathematically defined by a 

random matrix theory-based approach (Deng et al., 2012) with the “RMThreshold” R 

package (Menzel and Menzel, 2016). The nodes in this network represent OTUs, and the 

edges (i.e., connections) represent significant associations between OTUs.  

The topological properties of each node in the resulting network were calculated using the 

“igraph” R package (Patrick R. Amestoy et al., 2020), including degree, betweenness 

centrality, closeness centrality, and transitivity. Betweenness centrality reveals the role of 

a node as a bridge between components of a network, while degree reveals the role of a 

node with direct connections with other OTUs in the whole community. Thus, the two 

important indexes were normally selected as critical criteria for the identification of key 

taxa in the overall co-occurrence network (Banerjee et al., 2018). OTUs with high degree 

(> 72, 75% of the highest degree) and low betweenness centrality scores (< 2000, 10% of 

the highest betweenness centrality) were identified as the key taxa (Berry and Widder, 

2014). Besides, the topological properties were also calculated for the entire co-occurrence 

network to better understand the interconnected bacteria (Berry and Widder, 2014). These 

topological indexes contained the number of nodes (interconnected objects, namely 

bacteria), the number of edges (links between each pair of nodes), the average degree 

(groups of objects with tight interconnections), the average shortest path length (average 

network distance between all pairs of nodes), the average connectivity (maximum of 
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pairwise distances between every two nodes), and the average clustering coefficient (the 

degree to which nodes tend to cluster together). 

The “smallworldness” index, which represents the correlation compactness of individuals 

in a network, was computed using the “qgraph” R package based on the transitivity (any 

pairs of nodes with direct or indirect connections could be transitive) and the average 

shortest path length (the average number of steps along the shortest paths for all possible 

pairs of network nodes). A network can be recognized as "small-world" if its 

“smallworldness” is higher than one (a stricter rule is “smallworldness” ≥ 3) (Humphries 

and Gurney, 2008). Additionally, the network is inspected to ensure that its transitivity is 

substantially higher than that of comparable random networks and that its average shortest 

path length is similar to or higher (but not many times higher) than that of random networks 

(Watts and Strogatz, 1998). Edge weights, signs, and directions are not taken into account 

in the computation of the indices. 

 

3.3.4.4 Estimation of the total abundance and richness of global microbiomes 

Scaling laws describe the functional relationship between two physical quantities, i.e., the 

total abundance (NT) and the abundance of the most abundant species (Nmax), which scale 

with each other over a significant interval, underpin unifying theories of biodiversity, and 

are among the most predictively powerful relationships in biology. Scaling laws were used 

to predict global airborne bacterial richness (S) based on the lognormal species abundance 

model (Locey and Lennon, 2016). S could be predicted in terms of NT, Nmax, and the 

assumption that the rarest species is a singleton (Nmin = 1), and by using Equation 3-1: 
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𝑆 =  
√𝜋

𝑎
𝑒𝑥𝑝 {[𝑎𝑙𝑜𝑔2 (√

𝑁𝑚𝑎𝑥

𝑁𝑚𝑖𝑛
)]

2

} 

Equation 3-1 

where a could be numerically solved by Equation 3-2 and Equation 3-3: 

𝑁𝑇 =  
√𝜋𝑁𝑚𝑎𝑥𝑁𝑚𝑖𝑛

2𝑎
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Equation 3-2 
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2𝑎
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𝑁𝑚𝑎𝑥

𝑁𝑚𝑖𝑛
+

ln(2)

2𝑎
)]} 

Equation 3-3 

The total airborne bacterial abundance (NT) was estimated by using qPCR quantification 

results of 16S rRNA gene copies from this study and published data. Thus, the NT (global 

airborne bacterial abundance in the troposphere) is about 2.69 × 1025. Details of the 

calculation process are given below. In addition, the value of Nmax was inferred based on 

the proportion of the typically most abundant genus or using the dominance-abundance 

scaling law (Equation 3-4): 

𝑁𝑚𝑎𝑥 = 0.4 × 𝑁𝑇
0.93 

Equation 3-4 
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The most dominant taxonomic unit (based on a 97% 16S rRNA sequence similarity) in the 

troposphere was typically predicted to be a member of the Bacillus genus and accounted 

for around 1.2% of 16S rRNA gene reads in the whole dataset. Nmax would then be 

approximately 3.2 × 1023, which was close to the prediction by the scaling law, Nmax = 1.78 

× 1023. The same method was also applied to microbial communities in global soil, global 

freshwater, and global leaf surfaces. 

The approximate values of NT and Nmax for global Microbiomes were calculated as follows:  

(1) Troposphere. The exact upper boundary of the atmosphere (biosphere) was a Gordian 

knot for estimating the total number of airborne bacteria in the whole biosphere. The 

traditionally cited highest altitude for aerobiology is 77 km, due to the detection of 

microbes on the surface of one rocket; however, many researchers doubted that the 

microbes came from the rocket itself (in that study there was no detailed description of 

sterilized operations, or of the steps taken to prevent contamination) or from the flying soil 

caused by the rocket making landfall (Smith, 2013). Nevertheless, it is certain that the 

troposphere contains approximately 80% of the total mass of the atmosphere; also, the 

temperature was -56 oC and the humidity was nearly zero at the frontier between 

troposphere and stratosphere, where microbiomes can hardly survive (Horneck et al., 2010). 

In addition, human activities mainly proceeded in the troposphere. As a result, the study 

focused on airborne bacterial communities in the troposphere, beginning at the land surface 

and extending to between 17 km at the equator and 7 km at the poles, with a mean altitude 

of 12 km (Horneck et al., 2010). First, the earth was assumed as a sphere with a radius of 

6,371 km and overlooked the surface effects like mountains and valleys. Secondly, the 

troposphere was divided into three circles based on elevation: 0-1 km, 1-8 km, and 8-12 
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km. The mean bacterial density in the three circles was predicted: 4.8×105 cells/m3 (0-1 

km); 6.8×105 cells/m3 (1-8 km); 5.1×103 cells/m3 (8-12 km) based on the measurements in 

this study and published studies. And the locations of these air samples were shown in a 

global map (Figure 3-9). It was assumed that the air was kept in the same conditions within 

cycles, ignoring the intra-circle variations in AT and AP. The total bacterial loading in each 

circle was calculated by multiplying the total air volume and mean bacterial density in the 

corresponding circle. Finally, the values were added up to determine the total abundance 

of airborne bacteria in the troposphere. The NT (global airborne bacterial abundance in the 

troposphere) was estimated to be about 2.69×1025, and Nmax was inferred as 3.2×1023 or 

1.78×1023 respectively by the proportion of the most dominant genus and scaling law 

(Locey and Lennon, 2016). 

(2) Global soil. The most dominant genus-level candidate in global soil is Mycobacterium, 

with an estimated proportion of 0.61% in each sample on average based on a 97% 16S 

rRNA sequence similarity (Bahram et al., 2018). The total number of bacteria cells in the 

global soil was estimated using literature data, which suggests that there are about 9.4×1028 

microbial cells in the global soil ecosystems (Whitman et al., 1998). The detailed steps 

were as follows: First, the global soil was categorized into 12 classes according to their 

ecosystem types, and the total areas of each class on the Earth’s surface were calculated. 

Then, the mean bacterial densities were calculated with different depths (0-1 m and 1-8 m) 

based on as many as possible measurements globally. Next, boreal forest and tundra and 

alpine soils were assumed to be 1 m deep, but other classes of soil were 8 m deep. The soil 

volume could be calculated by multiplying surface areas and depth. Finally, the sum of the 

results of 12 classes of soils suggested that Nmax of the global soil would be approximately 
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5.7×1026, which is close to the estimated value of Nmax using the dominance scaling law of 

3.5×1026 (Locey and Lennon, 2016). 

(3) Global freshwater. the total number of microbial cells in global freshwater, including 

both rivers and lakes, was estimated to be 4.7×1025 (Whitman et al., 1998; Kallmeyer et 

al., 2012). In addition, the most abundant taxonomic unit (based on a 97% sequence 

similarity in 16S rRNA reads) in global freshwater is typically a member of the 

Pseudomonas genus, accounting for around 1.57% of the 16S rRNA gene reads in a sample 

based on the EMP database (Thompson et al., 2017); the Nmax of the global freshwater was 

estimated to be 7.4×1023 or using the scaling law (Locey and Lennon, 2016), as 3.0×1023. 

 

Figure 3-9 Map showing the geographical locations of the sampling sites for estimating 

the mean airborne bacterial density from this study and literature (Harrison et al., 2005; 

Bowers et al., 2009; Lee et al., 2010; Cho and Hwang, 2011; Bowers et al., 2012; Bertolini 

et al., 2013; DeLeon-Rodriguez et al., 2013; Murata and Zhang, 2014; Barberán et al., 
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2015; Tanaka et al., 2015; Gou et al., 2016; Deng et al., 2016a; Gat et al., 2017; Genitsaris 

et al., 2017; Innocente et al., 2017; Xu et al., 2017; Zhen et al., 2017; Gao et al., 2017a; 

Šantl-Temkiv et al., 2018; Shen et al., 2019; Tignat-Perrier et al., 2019; Xu et al., 2019; 

Maki et al., 2022).  

 

3.3.4.5 Interconnections of bacterial community composition of air with other 

bacterial habitats 

This study utilized a bacterial abundance table containing 5,000 global samples from 

multiple habitats, which was obtained from the EMP database (Thompson et al., 2017). 

The same standard workflow employed by the EMP was also followed to analyze airborne 

bacterial sequence data, using closed reference against Greengenes 13.8 in Qiime2, which 

picked 68.1% of the sequences for higher quality control. (Bolyen et al., 2019). The 

resulting OTU table was merged with the EMP OTU table, which included samples from 

soil, rhizosphere, freshwater, ocean, air, human and animal-associated habitats. To 

compare the microbial community compositions across habitats, non-metric 

multidimensional scaling (NMDS) analysis was performed based on the Bray–Curtis 

dissimilarity matrix. In addition, the derived OTU table was used as the input file to 

estimate the proportion of each airborne bacterial sample attributable to various habitats on 

the genus level by using “SourceTracker” (Knights et al., 2011). To explore the patterns of 

bacterial community interconnection and coexistence across various habitats at the global 

scale, the Earth’s metacommunity co-occurrence network was also constructed using a 

communal catalog with 5,189 samples with robust correlations (ρ > 0.7, p < 0.01). 
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3.3.4.6 Quantifying ecological stochasticity in the microbial community assembly 

process  

The normalized stochasticity ratio (NST) was used to quantitatively assess ecological 

stochasticity in microbial community assembly process, i.e., the degree of randomness or 

unpredictability in ecological systems (Ning et al., 2019). The NST was calculated by 

comparing the variance of observed species abundances to the expected variance under a 

neutral model of community assembly, which assumed that species were distributed 

randomly, based on “NST” R package (Ning and Ning, 2021). A high NST indicates that 

ecological stochasticity is playing a large role in community assembly, while a low NST 

suggests that deterministic factors such as competition or environmental filtering are more 

important (Ning et al., 2019). The NST was used to compare stochasticity across different 

communities or ecosystems. 

 

3.3.4.7 Multivariate analysis 

Principal Coordinate Analysis (PCoA) was utilized to visualize the spatial and temporal 

differences in key taxa and core bacterial communities between samples based on the 

Euclidean index and to assess the impacts of environmental variables on these communities. 

Additionally, RDA was used to identify the relationships between key taxa or core bacterial 

genera and soluble ions or heavy metals in PM2.5 through the “vegan” R package (Jari 

Oksanen et al., 2018).  
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To quantify the relative contributions of the environmental and distance effects (separately 

or jointly) on β-diversity, a VPA was performed based on the RDA algorithm. To reduce 

the number of explanatory variables entering the analysis while keeping the variance 

explained by them to the maximum, a subset of explanatory variables from the set of all 

variables for constrained ordination was selected using forward selection (adding 

explanatory variables one by one) and backward selection (starting from the full model and 

deleting variables of which the least decreases the total explained variance). In addition, 

the initial set of explanatory groups included three explanatory groups: air quality (AQI, 

PM10, PM2.5, NO2, SO2, and CO), meteorological conditions (AT, AP, WS, WD, and RH), 

and land cover type (water/sea, forest, shrubs, grassland, cropland, and built-up areas). 

After forward selection of environmental factors, the remained variables for VPA analysis 

are: NO2, CO, PM10, PM2.5, WS, AT, water/sea, cropland, and grassland (core bacteria); 

SO2, NO2, CO, O3, PM10, PM2.5, AP, AT, RH, WS, WD, water/sea, forest, shrubs, cropland, 

grassland, and built-up areas (key taxa). 

Furthermore, to explore the direct and indirect relationships among geographic locations, 

environmental variables, and bacterial communities, SEM was built using the “lavaan” 

package (Rosseel, 2012). The prior model included all hypothesized reasonable indirect 

and direct links among the variables based on their pairwise correlations. The non-

significant relationships and variables were subsequently removed, and new links between 

other terms were also created, i.e., the post hoc model modification, until all quantitative 

indices met the overall goodness of fit. The composition of airborne key taxa and core 

bacterial communities was indicated by the first principal coordinates in PCoA (PC1). The 

SEM evaluation is based on the fit indices for the test of a non-significant chi-square test 
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(p > 0.05), the root means a square error of approximation (RMSEA) < 0.08, the 

standardized root means square residual (SRMR) < 0.05, the Tucker-Lewis index (TLI) > 

0.90, and the comparative fit index (CFI) > 0.95. 

 

3.4 Global airborne metagenomic dataset generation and analyses 

A metagenomic dataset containing 262 air samples collected by high-volume samplers was 

organized to gain insight into the global distribution and dissemination of airborne ARGs 

as well as their potential hosts. This dataset was then used to construct a comprehensive 

atlas of global airborne AMR, which evaluated the exposure risks to humans based on 

abundance, mobility, and host pathogenicity from both regional and seasonal perspectives. 

 

3.4.1 Metagenomic data collection 

To extend airborne antibiotic resistome into a global scale, the studies were included if they 

met specific standards: a) using a high-volume air sampler near the ground, b) pretreatment 

with PBS and PES membrane disc, c) total DNA extraction, d) whole-genome shotgun 

sequencing on Illumina platform, and e) sequencing size over 2 GB. In total, 191 air 

samples incorporated from the literature (No. 72-262 in Appendix 3.1) that met the 

selection criteria were included and processed with the 71 air samples collected in this 

study (No. 1-71 in Appendix 3.1) uniformly, resulting in a global metagenomic dataset (~ 

1.33 TB) of 262 air samples with different particle sizes (116 PM2.5, 53 PM10, and 93 TSP), 

covering 32 sites worldwide, including both background and urban areas, with a wide 



73 

 

geographic range of latitudes (77.52°S – 69.13°N) and altitudes (6 – 4276 m asl) (Figure 

3-10). Detailed information of each sample in the global airborne metagenomic dataset was 

shown in Appendix 3.1. The rarefaction curve of the global metagenomic dataset indicated 

that the sequencing depth was deep enough for determining the diversity of global air 

samples (Figure 3-11). 

Additionally, to better understand the airborne antibiotic resistome, the global 

metagenomic dataset from other environmental media, such as topsoil (Bahram et al., 2018) 

(n=65, PRJEB19856) and surface seawater layer (Sunagawa et al., 2015) (n=62, 

PRJEB7988), were also obtained from the NCBI and connected to the airborne dataset. 

 

Figure 3-10 Locations where air samples and environmental data were collected across the 

globe. 
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Figure 3-11 Rarefaction curve of all sequences from the metagenomic dataset at a global 

level. The sequence number of each sample ranged from1.02×106 to 1.72×107, with a mean 

value of 3.89×106 reads.
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3.4.2 Taxonomic and ARG profiling 

The filtered sequencing data were taxonomically profiled using Kraken 2 (v2.0.8-beta) 

(Wood et al., 2019) and Bracken (v2.5.0) (Lu et al., 2017) using the standard Kraken 2 

database. Human pathogens, especially the nosocomial ESKAPE pathogens and WHO-

identified priority pathogens, which urgently need new antibiotics (Table 3-4), were 

identified according to a list summarized for broad-spectrum monitoring of bacterial 

pathogens in various environmental samples in a previous study (Li et al., 2015). ARGs 

were annotated using the DeepARG pipeline with a 70% sequence similarity criteria 

(Arango-Argoty et al., 2018), and an NMDS analysis was performed based on Bray-Curtis 

dissimilarity matrix to differentiate the bacterial and ARG profiles among various air 

samples. Subsequently, linear discriminant analysis effect size (LEfSe) was used to 

determine the biomarkers of airborne ARGs in urban and background air (Segata et al., 

2011). 
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Table 3-4 List of WHO-identified priority pathogens urgently need new antibiotics. 

Level Pathogen Antimicrobial resistance type 

Critical 

Acinetobacter baumannii carbapenem-resistant (beta-lactam) 

Pseudomonas aeruginosa carbapenem-resistant (beta-lactam) 

Enterobacteriaceae 

carbapenem-resistant (beta-lactam), ESBL-

producing (Extended spectrum beta-

lactamases) 

High 

Enterococcus faecium vancomycin-resistant (glycopeptide) 

Staphylococcus aureus 

methicillin-resistant (beta-lactam), 

vancomycin-intermediate and resistant 

(glycopeptide) 

Helicobacter pylori clarithromycin-resistant (MLS) 

Campylobacter spp. fluoroquinolone-resistant 

Salmonellae fluoroquinolone-resistant 

Neisseria gonorrhoeae 
cephalosporin-resistant (beta-lactam), 

fluoroquinolone-resistant 

Medium 

Streptococcus pneumoniae penicillin-non-susceptible (beta-lactam) 

Haemophilus influenzae ampicillin-resistant (beta-lactam) 

Shigella spp. fluoroquinolone-resistant 

 

3.4.3 Potential mobility and hosts of ARGs 

The high-quality cleaned reads were de novo assembled using Megahit v1.13 with default 

parameters (Li et al., 2016b), and the assembled contigs with lengths ≥ 500bp were kept. 

On the basis of the assembled contigs with lengths more than 1000 bp, both chromosomes 

or plasmids were predicted by using PlasFlow (Krawczyk et al., 2018), and full-length 

plasmid sequences were identified by another new versatile metagenomic assembler, 

metaplasmidSPAdes (Antipov et al., 2019). These output plasmid sequences from 

PlasFlow and metaplasmidSPAdes were further clustered by using CD-HIT (v4.6) (Fu et 

al., 2012) with 90% clustering threshold. To evaluate the co-occurrence patterns of ARGs, 
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MGEs, and bacteria, contigs and plasmid sequences were aligned with existing ARG 

(v1.1.1.A.fasta; https://bench.cs.vt.edu/ftp/argminer/release/) and MGE databases 

(https://bench.cs.vt.edu/ftp/data/databases/) using DIAMOND (--id 50 --E-value 1e-7 --

query-cover 70) (Buchfink et al., 2015). ARGs colocalized with MGEs or located on the 

plasmids were considered potentially mobile. Taxonomic information was annotated using 

Centrifuge with default parameters (Kim et al., 2016), and potential for dissemination of 

ARGs into human pathogens was estimated in each sample using MetaCompare based on 

the co-occurrence patterns of ARGs, MGEs, and pathogen-like sequences on assembled 

contigs(Oh et al., 2018). Besides, the health risk ranking was evaluated based on the 

human-associated-enrichment, gene mobility, and host pathogenicity in the environments 

(Zhang et al., 2021). The risk ranking assessment of AMR from both the genetic locations 

and universal understanding of ARGs would be more accurate and comprehensive. 

 

3.4.4 Assembly of metagenomic bins and relevant resistomes analysis 

To improve taxonomic classification, a genome-resolved “panorama” of airborne antibiotic 

resistomes was generated by clustering numerous contigs belonging to an individual 

genome (Liang et al., 2020b) and producing high-quality individual metagenome-

assembled genomes (MAGs) using metaWRAP (v1.2.1) (Uritskiy et al., 2018). Firstly, the 

filtered clean metagenomic reads were co-assembled by sampling regions (urban or 

background sites) using megahit (Li et al., 2016b) in the Assembly module with default 

parameters. After binning the output contigs by MetaBAT 2 (Kang et al., 2019), MaxBin 

2.0 (Wu et al., 2016), and CONCOCT (Alneberg et al., 2014), the constructed bacterial 
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genomes were further refined to generate high-quality MAGs in the built-in refining 

module with a criterion of contamination <10% and completeness criterion of >50%. At 

last, the taxonomic classifications of acquired MAGs were annotated using Genome 

Taxonomy Database (GTDB; v1.4.0) (Chaumeil et al., 2019), and the quantification of 

MAGs (genome copies per million reads) was conducted by the Quant_bin module of 

metaWRAP (Uritskiy et al., 2018). 

The MAGs were individually processed to predict open reading frames (ORFs) by Prodigal 

(v2.6.3; -c -p meta mode) (Hyatt et al., 2010). ARGs and MGEs were identified using the 

same method applied to contigs. MAGs containing at least one queried scaffold with ARGs 

were identified as potential antibiotic-resistant bacteria (PARB). To identify human 

virulent factor (HVF) genes, MAGs were mapped against the Virulence Factor Database 

(VFDB) (Chen et al., 2005) using blastx with the E-value ≤ 1×10-7. The identified PARB 

containing HVF genes could be treated as the virulent potential antibiotic-resistant bacteria 

(HVF-PARB), helping to assess environmental risks to human health (Wu et al., 2022). A 

phylogenetic tree of these MAGs and 135 S. aureus isolate genomes in clinic infections 

(Manara et al., 2018) was built using PhyloPhlAn (v3.0.51) (Asnicar et al., 2020) and 

visualized using iTOL v6. HGTs among members of a microbial community at various 

taxonomic levels were detected using MetaCHIP v1.10.10 (Song et al., 2019). Moreover, 

horizontally transferred ARGs (HT-ARGs) were enumerated and analyzed for transfer 

directionality to facilitate environmental monitoring and targeted controls of antibiotic 

resistance (Song et al., 2019). 
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3.4.5 Bacterial cell quantification based on FCM method 

The obtained 0.2 μm filtered extracts from 1× sterile PBS impingement medium with filter 

fragments were analyzed in three-parallel experiments by using a BD Accuri C6 Flow 

Cytometer (Figure 3-12a). To detect bacterial viability, the samples were stained with the 

LIVE/DEAD BacLight Bacterial Viability Kit containing SYTO 9 and propidium iodide 

nucleic acid stains. After a 10-min incubation period in the dark at room temperature, the 

live bacteria with intact cell membranes emitted green fluorescence, while dead bacteria 

with compromised membranes emitted red fluorescence. The number of live cells and 

microspheres was counted, and the cell was quantified by the Equation 3-5: 

Cell count in samples (cells/ml) = X/Y × N/V 

Equation 3-5 

Where X represented the number of active cells detected by FCM; Y represented the number 

of microspheres detected by FCM; N represented the setting number of microspheres in 

the test system (N=50000); V represented the volume of samples. 

To account for noise and ensure the accuracy of the bacterial counts, PBS solution blanks 

were also pre-treated and analyzed in the same way as the samples. In addition, ATCC 

Strain #25922 E. Coli (Migula) Castellani and Chalmers were used as standard bacteria, 

which were cultured in LB solution for 24 h, and serial dilutions were made using the E. 

Coli suspension (Figure 3-12b). The absolute bacterial cell number in each solution was 

estimated using plate counting method. The known bacterial density of 10-fold serial 

dilutions was used as a standard to determine the absolute bacterial cell counts. The results 
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of FCM and colony counting were found to be remarkably consistent, validating the 

accuracy of the results (R2=0.963, Figure 3-12c). 

 

 

Figure 3-12 A FCM method for bacterial quantification. 

 

3.4.6 Quantification of MAGs and potential hazards 

The quantification of the constructed MAGs (genome copies per million reads) was 

conducted by the Quant_bin module of metaWRAP (Uritskiy et al., 2018) and was 

presented in genome copies per million sequencing reads. The cell density of the MAGs 

(copy/m3-air) in each sample was calculated according to Equation 3-6 (Liang et al., 

2020b): 
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𝑐𝑒𝑙𝑙 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑀𝐴𝐺𝑠 =  
𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑐𝑒𝑙𝑙 𝑐𝑜𝑢𝑛𝑡 × 𝑀𝑎𝑝. 𝑟 × 𝐴𝑏. 𝑖

∑ 𝐴𝑏. 𝑖𝑛=𝑖
1

 

Equation 3-6 

where Map.r represented the percentage of clean sequencing reads that have been mapped 

onto the MAG reference (i.e., BAM files) by using Bowtie2 (Langmead and Salzberg, 2012) 

in each sample. Ab.i indicated the relative abundance of each MAG in each sample, and i 

referred to the number of MAGs. 

The coverages of intragenomic ARGs in the host MAGs (ARG-cov/ppm) were quantified 

according to Equation 3-7: 

 𝑖𝑛𝑡𝑟𝑎𝑔𝑒𝑛𝑜𝑚𝑖𝑐 𝐴𝑅𝐺𝑠 = 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑀𝐴𝐺 × 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑅𝐺 

Equation 3-7 

where 𝐴𝑏𝑢𝑛𝑑𝑎𝑛𝑐𝑒𝑀𝐴𝐺  represented the relative abundance of the constructed MAG 

quantified by Quant_bin module. 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒𝐴𝑅𝐺 referred to the mean coverage of ARGs 

located on the scaffolds of MAGs and was calculated using the built-in pipelines of BBmap 

(version 38.96) in default. 

 

3.4.7 Source tracking of global airborne ARGs 

The database of putative sources of airborne ARGs, which contained 700 metagenomes 

representing different sample types across the globe, was retrieved from NCBI (Details 

information in Appendix 3.2). To map the profile of antibiotic resistomes with 70% identity, 

the unified standard pipeline employed by the short-read module of DeepARG was 
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followed(Arango-Argoty et al., 2018). The processed airborne ARG table was merged with 

the acquired ARG table, including samples collected from various habitats globally, 

including soil, ocean, freshwater, drinking water, plants, human-associated habitats, farms, 

WWTPs, and hospitals. The NMDS analysis was performed based on the Bray–Curtis 

dissimilarity matrix for the comparison of ARG profiles across habitats. Additionally, the 

derived ARG table was input to estimate the proportion of airborne ARGs in each sample 

attributable to various habitats by using “SourceTracker” (Knights et al., 2011). This 

program uses Bayesian methods to evaluate all assignments of sink sequences (ARG 

sequences in air samples in this case) to all source samples, including an unknown source, 

and generates a joint distribution of those assignments. 
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Chapter 4 Structure and Distribution of Bacterial Communities 

in the Global Atmosphere and Interconnection with Earth’s 

Microbiomes 

The present study presents a comprehensive overview of both airborne bacterial 

communities across the globe. To achieve this, air samples were newly collected, and data 

from reliable studies were incorporated. The sampling locations encompassed a range of 

altitudes and geographic regions, from ground level to rooftops and high mountains 

exceeding 5,000 m asl, and from highly populated urban centers to the Arctic and Antarctic 

Circles. This approach allowed for a diverse representation of airborne bacterial 

communities and ARG profiles and enabled the use of genomic analysis to describe their 

community structure, biogeographic patterns, and ARG profiles in macro ecosystems. Our 

findings indicate that the complexity and dynamics of airborne communities are 

comparable to bacterial assemblages in soil and ocean environments and are strongly 

linked to local environmental conditions. 

 

4.1 Structure of global airborne bacterial communities 

The study generated a global airborne bacterial dataset comprising 370 air samples 

covering 63 sites worldwide. and the dataset was analyzed to construct an airborne bacterial 

reference catalog that contained over 27 million nonredundant 16S rRNA gene sequences. 

This study revealed the presence of 10,897 taxa across the samples, with the most bacterial 

sequences belonging to phyla (and sub-phyla), Firmicutes (24.8), Alpha-proteobacteria 
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(19.7), Gamma-proteobacteria (18.4), Actinobacteria (18.1), and Bacteroidetes (8.6) (Fig. 

4-1). While the relative abundance of different taxa varied significantly, the average 

abundance of each taxon was consistent with its highest abundance in one sample, 

emphasizing the differential among samples was less prominent than variations of bacterial 

abundance. Thereby, this chapter primarily focused on the global airborne microbiomes 

from a macroecological perspective. 
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Figure 4-1 Phylogenetic tree of dominant airborne bacterial OTUs. The center is a 

phylogenetic tree of bacteria abundance in the global atmosphere. The middle ring 

corresponds to body sites at which the various taxa are abundant. The OTUs are color-

coded at the phyla level. The majority of airborne bacteria belonged to four phyla: 

Proteobacteria (green), Firmicutes (yellow), Actinobacteria (red), and Bacteroidetes (blue). 

In the external middle ring, the relatively abundant bacteria (mean relative abundance ≥ 1) 

are indicated by purple rectangles, and the relatively inadequate bacteria (mean relative 

abundance < 1) are indicated by yellow triangles. The heights of blue bars outside the circle 

correspond to the abundance of taxa at the body site of greatest prevalence. 

 

4.1.1 Global core airborne bacterial community 

Species abundance and distributions are two fundamental questions in ecology, and the 

two key variables are often positively correlated (Gaston et al., 2000), which has been well 

documented in various environments across a wide range of taxa (Shade and Stopnisek, 

2019; Stopnisek and Shade, 2021), however, little is known about the such pattern in the 

global airborne bacterial communities. Here, a Sigmoid curve was observed in the 

abundance-occupancy relationship (AOR) between the average abundance of a bacterial 

taxon within the global air and the number of samples it occupies. This finding represents 

a significant expansion of macroecological theory to a new environment and offers great 

potential for further research and development of mechanistic macroecological theories 

(Shade and Stopnisek, 2019). 
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The AOR concept was employed to identify the core subset of bacteria in the atmosphere, 

which consists of abundant and widely-distributed bacteria indicated by both high 

abundance and high occupancy (Stopnisek and Shade, 2021) (Figure 4-2a). A hyper-

dominant pattern was observed globally (Shade and Stopnisek, 2019), with 24 OTUs (0.22 

of the total number of OTUs) accounting for 18.5% of the total detected sequences (Figure 

4-2b, Table 4-1). These exceptionally abundant taxa could dominate and strongly influence 

the whole communities in ecology (Fauset et al., 2015). Similar to the profile of the whole 

global airborne bacterial community, most (92%) of the core community members 

belonged to Proteobacteria (n=9), Firmicutes (n=7), and Actinobacteria (n=6) (Figure 4-

2c). The most abundant OTU, accounting for 1.90 ± 0.39 of the sequence abundance in air 

samples with nearly 99% occupancy in all samples, belonged to Methylobacterium, a 

dominant genus ubiquitously distributed in the air (Weon et al., 2008). The second most 

abundant OTU with 1.79.10 ± 2.68 relative abundance and occurring in roughly 93% air 

samplers, belonged to Bacillus, which has been detected as common predominant species 

in the air by both culture-dependent and culture-independent methods (Yoo et al., 2019) 

and shows a wide range of physiologic abilities to live in every natural environment 

(Christie and Setlow, 2020). The core communities in marine and topsoil habitats based on 

the global datasets (Sunagawa et al., 2015; Bahram et al., 2018) were also identified, and 

no overlaps within the three largest ecosystems revealed a unique core community in each 

ecosystem (Table 4-2). 
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Figure 4-2 Identification of core subset in the global airborne bacterial community. (a) 

AOR: mean relative abundance (x-axis) and occupancy (y-axis) plot after combining the 

OTUs with the same annotation (n = 10,897). The mean relative abundances were 

estimated by averaging the relative abundances of each OTU in all samples; occupancy 

represents the number of samples in which the OTU was detected. The fitted model 

(sigmoid curve) was occupancy versus logarithm of abundance for each species, and the 

red solid line is the global fit to all species and samples. (b) The number proportion and 

relative abundance of the global core OTUs compared with those of the remaining bacterial 

OTUs. (c) The taxonomic composition of the global core bacteria at the phylum and class 

level. More specific taxonomic information of 24 global airborne core bacteria can be 

found in Table 4-1. 

 

 



88 

 

Table 4-1 The taxonomic composition of 24 global airborne core bacteria (phylum, class, order, family, and genus level). 

OTU 

number 

Mean 

abundance 

(0.01) 

Phylum Class Order Family Genus 

OTU4 204.75 Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Methylobacterium 

OTU28 153.25 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonas 

OTU25 150.75 Firmicutes Bacilli Bacillales Bacillaceae Bacillus 

OTU221 142.00 Bacteroidetes Bacteroidia Cytophagales Hymenobacteraceae Hymenobacter 

OTU14 114.00 Firmicutes Erysipelotrichia Erysipelotrichales Erysipelotrichaceae Turicibacter 

OTU18 107.98 Firmicutes Bacilli Bacillales Thermoactinomycetaceae Thermoactinomyces 

OTU6 96.16 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Acinetobacter 

OTU22 87.82 Actinobacteria Actinobacteria Frankiales uncultured uncultured_ge 

OTU7 77.39 Proteobacteria Gammaproteobacteria Pseudomonadales Pseudomonadaceae Pseudomonas 

OTU36 74.88 Proteobacteria Alphaproteobacteria Rhodobacterales Rhodobacteraceae Rubellimicrobium 

OTU167 63.12 Firmicutes Bacilli Bacillales Bacillaceae unclassified 

OTU12 60.82 Actinobacteria Actinobacteria Frankiales Geodermatophilaceae Geodermatophilus 

OTU41 54.44 Firmicutes Clostridia Clostridiales Peptostreptococcaceae Terrisporobacter 

OTU32 53.83 Actinobacteria Actinobacteria Micrococcales Microbacteriaceae unclassified 

OTU17 50.39 Firmicutes Bacilli Bacillales Staphylococcaceae Staphylococcus 

OTU38 48.42 Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae 1174-901-12 

OTU410 48.07 Deinococcus-Thermus Deinococci Deinococcales Deinococcaceae Deinococcus 

OTU94 47.88 Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides 

OTU115 46.71 Proteobacteria Alphaproteobacteria Acetobacterales Acetobacteraceae Craurococcus 

OTU85 45.67 Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae unclassified 

OTU60 32.34 Proteobacteria Alphaproteobacteria Acetobacterales Acetobacteraceae unclassified 

OTU189 31.95 Firmicutes Bacilli Bacillales Paenibacillaceae Paenibacillus 

OTU90 30.92 Actinobacteria Actinobacteria Corynebacteriales Corynebacteriaceae Corynebacterium_1 

OTU159 30.20 Actinobacteria Actinobacteria Pseudonocardiales Pseudonocardiaceae Pseudonocardia 
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Table 4-2 Taxonomic information and mean relative abundance (0.01%) of core communities in air, marine, and soil habitats based 

on the global datasets (Sunagawa et al., 2015; Bahram et al., 2018). 

Global air Global marine Global soil 

taxonomy abundance  taxonomy abundance  taxonomy abundance  

g_Methylobacterium 190.34 f_Surface 1 1784.32 g_Subgroup_6_ge 417.06 

g_Bacillus 179.10 f_SAR86 clade 853.58 g_Candidatus_Udaeobacter 339.68 
g_Sphingomonas 153.25 o_SAR11 clade 789.24 f_Xanthobacteraceae 215.98 

g_Hymenobacter 142.00 g_Prochlorococcus 747.39 g_Acidothermus 191.05 
g_Turicibacter 114.00 g_AEGEAN-169 331.23 f_Gemmataceae 175.25 

g_Thermoactinomyces 107.98 f_Rhodobacteraceae 318.25 f_Xanthobacteraceae 164.15 

g_Acinetobacter 96.16 f_SAR116 clade 283.27 g_RB41 156.39 
o_Frankiales 87.82 f_OCS155 marine group 269.20 g_67-14_ge 155.74 

g_Pseudomonas 77.39 f_SAR406 clade  266.45 g_uncultured_ge 137.16 
g_Rubellimicrobium 74.88 f_Marine Group II 228.16 f_Xanthobacteraceae 127.60 

f_Bacillaceae 63.12 g_Candidatus Pelagibacter 225.97 o_Acidobacteriales 118.46 

g_Geodermatophilus 60.82 f_Surface 2 212.47 g_WD2101_soil_group_ge 115.17 
g_Terrisporobacter 54.44 g_NS5 marine group 130.67 g_Acidibacter 114.52 

f_Microbacteriaceae 53.83 g_NS4 marine group 115.99 g_KD4-96_ge 111.71 
g_Staphylococcus 50.39 g_Marinicella 80.53 o_Gaiellales 110.52 

g_1174-901-12 48.42 f_Surface 4 73.32 g_Mycobacterium 100.56 
g_Deinococcus 48.07 

  
o_Gaiellales 99.99 

g_Nocardioides 47.88 
  

g_Candidatus_Solibacter 80.32 

g_Craurococcus 46.71 
  

g_Bryobacter 80.02 
f_Burkholderiaceae 45.67 

  
g_Reyranella 70.93 

f_Acetobacteraceae 32.34 
  

c_Alphaproteobacteria 68.74 
g_Paenibacillus 31.95 

  
g_Haliangium 67.63 

g_Corynebacterium_1 30.92 
  

g_Solirubrobacter 65.08 

g_Pseudonocardia 30.20 
  

g_IMCC26256_ge 61.50     
g_Chthoniobacter 61.36     
g_TK10_ge 51.65     
g_MND1 49.24 
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4.1.2 Networked global airborne bacterial community and key taxa identification 

Microorganisms do not exist in isolation but generate complex ecological interrelationship 

webs on the Earth (Faust and Raes, 2012), and thus a global airborne community co-

occurrence network was constructed to explore the interconnections (Figure 4-3). The 

network encompassed 5,038 significant correlation relationships (Spearman’s ρ > 0.6, p < 

0.01) among 482 connected OTUs (around 21 edges per node, Table 4-2). Similarly, the 

global interrelationship webs of bacterial communities were also established based on 

global topsoil and marine datasets (Figure 4-3). In general ecology, real networks, 

including biological networks, have been proven to have the “small-world” property 

(Zhang and Zhang, 2009b), which means that individuals are more connected to each other 

than in a random network. As the first attempt to construct an airborne bacterial network, 

the “smallworldness” index was also computed relying on the global transitivity of the 

network and its average shortest path length (Humphries and Gurney, 2008). The 

“smallworldness” index of the airborne bacterial community (0.51) was less than 1, which 

indicated that the global airborne bacterial community network was not a “small-world” 

network (Figure 4-4). Conversely, the other two global bacterial datasets on topsoil and 

marine ecosystems both met the properties of a “small-world” network (soil 

“smallworldness” index=5.82> 3 for a stricter rule; marine “smallworldness” index =1.21> 

1 for the general rule). The “smallworldness” index of the bacterial community network 

showed a decreased gradient from soil, marine, to air habitats, which was consistent with 

the variations in other topological properties (Table 4-3), such as the average shortest path 

length (3.03< 3.97< 5.24), diameter (9< 10<15), and clustering coefficient 

(0.48<0.58<0.67). All the findings indicated that the clustering approach in the airborne 
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bacterial community appeared to be more random, and the topological characteristics 

showed low resistance to changes, such as the loss of nodes (airborne bacteria). This could 

be interpreted as decreasing the speed of the response of the network to perturbations, 

finally leading to a less stable community network structure. Hence, the identified remote 

associations and dispersed clusters in the network indicate that the airborne bacterial 

community is prone to disruption due to environmental factors that typically result in 

significant alterations in bacterial makeup.  

Based on the co-occurrence network, node-level topological features, including degree, 

betweenness centrality, and closeness centrality (Figure 4-3) were examined to represent 

the different functions and roles of each node (bacterium) in the whole microbial 

communities. Additionally, the validated power-law degree distribution of nodes stated 

that the overall network roughly conformed to a scale-free degree distribution (Figure 4-

3). This meant that the majority of bacteria showed low-degree values, while only a small 

number of hub nodes exhibited high-degree values (Barabási and Albert, 1999). Moreover, 

19 clustering hub nodes were identified among these interlaced nodes that functioned as 

the root of a power-law degree distribution network, which was based on the acknowledged 

criteria with high degree (>100) and low betweenness centrality values (<5,000) in co-

occurrence networks  (Banerjee et al., 2018) (Figure 4-5a and Table 4-4). These hub nodes 

showed a tightly clustered distribution with a mean correlation coefficient of 0.903, and 

each of them displayed significant correlations with 15-18 of the OTUs in the entire 

network (Figure 4-5b), indicating the presence of a tightly connected community that may 

be a crucial module in the global network. The key taxa within this community exerted a 

dominant influence on the overall topological characteristics of the network. Due to their 
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significantly higher connection efficiency, these hub nodes may be considered key taxa 

that played a vital role in maintaining the structure of a microbial community relative to 

their abundance (Banerjee et al., 2018).  

The structure of the airborne bacterial community exhibited significant differentiation from 

those in other ecosystems. Consequently, a core set of 24 bacteria and 19 key taxa were 

exclusively determined in such unique and huge airborne bacterial communities (Tables 4-

1 and 4-4).  In addition, OTU22, OTU94, and OTU159 were found to be both core bacteria 

and key taxa (Figure 4-5b and Figure 4-5c), indicating their crucial roles in the whole 

community due to hyper dominance and strong connections with other members, and 

thereby recognized as the top three essential species. Importantly, all three species belong 

to the same phylum, Actinobacteria, and are gram-positive bacteria. 

Furthermore, the comparison of the community composition structures of key, core, and 

all OTUs was constructed. Firmicutes, known for their ability to produce endospores that 

withstand extreme desiccation and survive in extreme conditions (Wunderlin et al., 2016), 

are one of the most widespread phyla in airborne bacterial communities (comprising 24.8% 

of whole communities) However, none of Firmicutes were identified as key taxa due to 

their limited interconnections with communities. On the other hand, Actinobacteria, which 

did not exhibit overwhelming abundance (18.1% in whole communities and 19.6% in the 

core set), showed a close association with the whole airborne bacterial communities and 

even surpassed Proteobacteria. This was evident from the finding that Actinobacteria 

showed a great proportion (72.2%) in key taxa (Figure 4-5d and Table 4-4). In summary, 

the composition of the global airborne bacterial community was comparable to that of the 

core set, while both were markedly different from key taxa, which exhibited substantial 
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variations. 

 

Figure 4-3 Networked bacterial communities in the atmosphere, topsoil, and top marine 

layer at the global scale. Co-occurrence network: The connection (edges) stands for a 

strong (Spearman’s ρ > 0.6) and significant (p < 0.01) correlation. The nodes represent the 
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combined OTUs with a unique genus-level annotation in the datasets. The size of each 

node is proportional to the mean relative abundance across all samples. Nodes are color-

coded according to the phyla of the bacteria. Network topology: The degree and centrality 

(betweenness and closeness) of each node from the networks were measured. Degree 

represents the number of direct connections of a node with other OTUs in the whole 

community. Betweenness centrality reveals the role of a node as a bridge between 

components of a network. Closeness centrality measures the average shortest distance from 

each node to each other node. Power-law degree distribution: The node-degree distribution 

shows a power-law behavior for an airborne bacterial community co-occurrence network 

in airborne bacterial communities (R2 = 0.984, p < 0.001), marine layer bacterial 

communities (R2 = 0.897, p < 0.001), and topsoil bacterial communities (R2 = 0.937, p < 

0.001), respectively. 

 

Table 4-3 The topological properties of the co-occurrence network. 

Topological property Air Soil Marine 

number of nodes 482 490 482 

number of edges 5,038 3,323 7,629 

number of clusters 3 1 2 

average shortest path length 5.24 3.03 3.97 

diameter 15 9 10 

clustering coefficient 0.67 0.48 0.58 

Notes (the definition and/or functions of each topological property): 

1. number of nodes: interconnected objects (bacteria) 
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2. number of edges: links between each pair of nodes 

3. number of clusters: groups of objects with tight interconnections  

4. average shortest path length: average network distance between all pairs of nodes 

5. diameter: maximum of pairwise distances between every two nodes 

6. clustering coefficient: the degree to which nodes tend to cluster together. 

 

 

Figure 4-4 Identification of "small-networks" was performed using a "small-worldness" 

index and the average shortest path length of the bacterial community network in the global 

air, marine, and topsoil environments. 
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Figure 4-5 Role and composition of the core bacterial communities and key taxa in the 

atmosphere on a global scale. (a) Plot of degree and betweenness centrality for each node 

in the co-occurrence network. The nodes colored in red are viewed as key taxa. The size of 

the nodes corresponds to the relative proportions of the OTUs in the total microbiome. (b) 

The position and role of core and key bacterial communities in a community network and 

(c) AOR pattern. (d) The taxonomic composition of bacterial communities at the phylum 

level (class level for Proteobacteria) for whole communities, core bacteria, and key taxa. 
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Table 4-4 The taxonomic composition of 19 global airborne key taxa (phylum, class, order, family, and genus level). 

OTU 

number 

Mean abundance 

(0.01) 
Phylum Class Order Family Genus 

OTU94 47.88 Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Nocardioides 

OTU22 87.82 Actinobacteria Actinobacteria Frankiales uncultured uncultured_ge 

OTU40 8.27 Actinobacteria Actinobacteria Micromonosporales Micromonosporaceae unclassified 

OTU125 1.70 Actinobacteria Actinobacteria Micrococcales Micrococcaceae Citricoccus 

OTU80 3.87 Actinobacteria Actinobacteria Propionibacteriales Nocardioidaceae Marmoricola 

OTU158 2.51 Actinobacteria Actinobacteria Kineosporiales Kineosporiaceae unclassified 

OTU19 22.16 Actinobacteria Actinobacteria Frankiales Geodermatophilaceae Blastococcus 

OTU284 1.01 Actinobacteria Actinobacteria Micrococcales Bogoriellaceae Georgenia 

OTU159 30.20 Actinobacteria Actinobacteria Pseudonocardiales Pseudonocardiaceae Pseudonocardia 

OTU372 12.27 Actinobacteria Thermoleophilia Gaiellales Gaiellaceae Gaiella 

OTU721 13.63 Actinobacteria Thermoleophilia Gaiellales uncultured uncultured_ge 

OTU290 26.05 Actinobacteria Thermoleophilia Solirubrobacterales 67-14 67-14_ge 

OTU133 51.66 Bacteroidetes Bacteroidia Chitinophagales Chitinophagaceae Segetibacter 

OTU342 5.87 Bacteroidetes Bacteroidia Chitinophagales Chitinophagaceae Flavisolibacter 

OTU144 4.04 Bacteroidetes Bacteroidia Chitinophagales Chitinophagaceae unclassified 

OTU55 30.65 Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae Microvirga 

OTU63 3.71 Proteobacteria Alphaproteobacteria Rhizobiales Beijerinckiaceae uncultured 

OTU35 35.30 Proteobacteria Alphaproteobacteria Azospirillales Azospirillaceae Skermanella 

OTU250 1.15 Proteobacteria Gammaproteobacteria Betaproteobacteriales Burkholderiaceae unclassified 
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4.1.3 Key taxa in airborne bacteria associated with evolutional and ecological functions 

Moreover, this study revealed similarities among key taxa with regard to their compositions and 

inferred functions, across atmospheric, aquatic, and terrestrial ecosystems (Table 4-5). This 

suggested potential associations between airborne bacterial communities and other surface 

microbial habitats. 

According to the rich-gets-richer preferential attachment process of growth in a scale-free network 

(Barabási, 2009), the highly connected nodes, namely, the key taxa, could acquire more links, 

thereby contributing to the establishment of the entire microbial network. Therefore, the nodes of 

key taxa are recognized as initial components in networks. In evolutionary terms, this suggests that 

key taxa emerged earlier than other species, and their lineages may have a longer evolutionary 

history in microbial co-occurrence networks (Berry and Widder, 2014). This has important 

implications for exploring the origins of microbes in the atmosphere and other ecosystems. For 

example, the important key order, Frankiales (OTU19 and OTU22 in Table 4-4), was thought to 

have an adaptable ancestral bacterium that evolved to occupy a variety of ecological niches, 

including the root nodules of woody dicots, hot springs, rocky surfaces, gamma-irradiated 

substrates, activated sludge, compost, and soils (Parte et al., 2012). Thus, Frankiales could be 

assumed to be the crucial ancestor of many airborne bacteria. 

The concept of key taxa was first developed in the context of food-web ecology (Paine, 1966), 

where interspecies relationships, including mutualism, commensalism, parasitism, competition, 

and others, were mainly viewed in terms of trophic relationships. Accordingly, the functions of 

most key taxa were related to nutrition and metabolism, as was reflected in this study. For instance, 

Rhizobiales (OTU63 and OTU55 in Table 4-4) serve a unique physiological function in biological 
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nitrogen-fixation and have been recognized as the key player in global nitrogen cycling (Andreote 

et al., 2009). Similarly, Burkholderiaceae (OTU250 in Table 4-4) produce secondary metabolites 

that significantly affect microbial interconnections within the network (Nazaries et al., 2013), and 

Gaiellales (OTU372 and OTU721 in Table 4-4) utilize several organic compounds (Albuquerque 

and da Costa, 2014) and play an important role in the overall nutrition cycling process of microbial 

communities. The activities and abundance of these individual populations, key taxa, have been 

shown to profoundly affect the integrity and stability of the overall community over time (Cottee-

Jones et al., 2012). 

Moreover, for insight into the functions of key taxa, the microbial key taxa across various 

ecosystems as reported from other literature were also summarized (Table 4-5). It is noteworthy 

that Rhizobiales and Burkholderiales orders contain diverse members that have consistently been 

recognized as key taxa in a range of ecosystems and habitats, including soil, aquatic systems, and 

environments from equatorial to polar habitats (Table 4-5). Rhizobiales for example, not only 

comprise nitrogen-fixing bacteria (Rhizobium spp. and Bradyrhizobium spp.), but also 

methanotrophs (Methylobacterium) with high abundance in the phyllosphere (Andreote et al., 

2009). In addition, Burkholderiales encompasses several well-known pathogenic bacteria, 

including species of Bordetella, Ralstonia, Oxalobacter, and Burkholderia, one of the most 

versatile and widespread terrestrial microbial groups (Nazaries et al., 2013). Despite being 

recognized as playing an important role in key taxa in the natural world, not all members of 

Rhizobiales and Burkholderiales could be considered as key taxa through computational 

identification. Plenty of subordinate taxa in the two orders had no significant impacts on 

community composition or function. However, their frequent roles of key taxa across diverse 

habitats could be attributed to their large abundance and wide occupancy in natural environments. 
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Nevertheless, there is a possibility that members of Rhizobiales and Burkholderiales could be 

identified as key taxa, and it is important for future studies to evaluate their roles in microbial 

functions and interactions. 
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Table 4-5 Summary of key taxa reported in the literature on different ecosystems and habitats. 

Ecosystem or habitat Key taxa Reference 

Aquatic 

ecosystems 

shallow lake Cyanobacteria (Zhao et al., 2016) 

freshwater 

sediment 

Planctomycetes, Proteobacteria, Nitrospira, Clostridia, Actinobacteria, 

Bacilli 
(Ji et al., 2016) 

nearshore  
Verrucomicrobiaceae, Crenarchaeaceae, Candidatus OP3, 

Chloroflexi,Chloracidobacteria 
(Graham et al., 2017) 

seawater_cluture Rhodobacteraceae, Alteromonadaceae (Geng et al., 2016) 

Forests 

Brazilian forest Burkholderiales, Acidimicrobiaceae, Rhodospirillaceae (Lupatini et al., 2014) 

Chinese forest 
Rubrobacteriales, Gaiellales, Rhizobiales, Gaiellales, 

Solirubrobacteriales 
(Ma et al., 2016) 

Agricultural 

lands 

soybean soil Rhizobiales, Methylophilaceae, Acetobacteraceae (Lupatini et al., 2014) 

sugarcane soil Burkholderiales, Caulobacter, Kineosporia, Sporichthya (Lupatini et al., 2014) 

blueberry soil Frankiales, Pseudomonas, Burkholderia (Jiang et al., 2017) 

paddy soil 
Rhodobiaceae, Hydrogenophilaceae, Comamonadaceae, 

Alcaligenaceae 
(Wang et al., 2017) 

Pinus plantation Sporichthya, Burkholderiales (Lupatini et al., 2014) 

Arctic and 

Antarctic 

ecosystems 

Antarctic lake Acidobacteriaceae 
(Vick-Majors et al., 

2014) 

Arctic soil Burkholderia, Bradyrhizobium, Rhodoplanes, Pseudomonas (Hill et al., 2016) 

permafrost Burkholderiales, Actinomycetales, Rhizobiales, Puniceicoccaceae (Comte et al., 2016) 

permafrost soils Burkholderia, Bradyrhizobium, Phenylobacterium (Gokul et al., 2016) 

Arctic ice cap Actinobacteria (Gokul et al., 2016) 
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4.2 Biogeographic Distribution of Global Airborne Bacteria 

The intermediate latitudinal regions showed the highest microbial diversity (R2 = 0.25, p < 10-15, 

Figure 4-6), which was consistent with patterns observed in soil (Bahram et al., 2018) and water 

(Sunagawa et al., 2015), but differed significantly from the typical latitudinal gradient of diversity 

(LGD) pattern observed in macroscopic organisms (Lomolino and Brown, 2009). The key driving 

factors of latitudinal diversity patterns in other ecosystems are pH and temperature of soil (Fierer 

and Jackson, 2006; Bahram et al., 2018), and salinity and temperature of water (Herlemann et al., 

2011; Sunagawa et al., 2015). Because AT was directly relevant to latitude (Figure 4-7a), 

temperature could be considered as the crucial factor driving the distribution of latitudinal diversity 

(R2 = 0.064, p < 0.005, Figure 4-7b). This finding is consistent with the role of AT in determining 

diversity in a vertical stratification study of airborne microorganisms (Du et al., 2017). Thus, it 

could be hypothesized that temperature is the primary factor responsible for the uniform parabolic 

latitudinal diversity patterns observed in microbial worlds across the three largest ecosystems on 

Earth (i.e., atmosphere, ocean, and terrestrial systems). 

As a summary, the latitudinal diversity pattern of global airborne bacterial communities showed a 

clear trend of richness peaking at intermediate latitudes and declining towards the equator and the 

poles (Figure 4-6). However, there were some deviations from this pattern, especially in the mid-

latitudinal regions (35o - 45o). In order to explain these deviations, mid-latitudinal samples (n = 

64) were further studied. It was discovered that the bacterial richness was strongly correlated with 

both PM10 concentration (R2 = 0.549, p < 1 × 10-10) and PM2.5 concentration (R2 = 0.517, p < 1 × 

10-7, Figure 4-8), with richness being higher in moderately polluted air but lower in both good air 

quality and heavily polluted areas. This could be attributed to pollutants serving as a source of 

nutrients for the microbiome. In addition, populations are distributed unevenly across the globe, a 
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situation that is much more obvious in mid-latitudinal regions. In particularly developed cities and 

economic circles, populations are very dense, while deserts, polar regions, and high mountains are 

very sparsely populated.  For instance, Hong Kong has a high population density of 6,544 

individuals per square kilometer, which far exceeds that of Mt. Ailao located at a similar latitude. 

However, there was no significant difference in richness between the two sites. In conclusion, from 

a global perspective, airborne bacterial diversity follows a downward opening parabola-shaped 

latitudinal pattern and is hardly influenced by human distribution and the intensity of human 

activities.  

Another widely used relationship in spatial biodiversity studies is the distance-decay relationship 

(DDR) (Morlon et al., 2011), in which the similarity in species composition between two 

communities decreases with the increasing geographic distance separating them. Consistent with 

results in other domains (Martiny et al., 2011), local environments generated a DDR concerning 

the similarities of the airborne bacterial communities across the globe (R2 = 0.13, p < 10-9, Figure 

4-9), despite atmosphere breaks geographic barriers and facilitates transport of over long distances 

(Burrows et al., 2009b). Since the DDR reflected spatial distribution and autocorrelation of the 

global airborne bacterial community, it might be sensitive to crucial ecological processes, such as 

DL, and develop as an effective tool for testing mechanistic ecological theories during airborne 

bacterial community assembly (Condit et al., 2002). Together, the findings align with the 

pronounced biogeographic patterns of atmospheric microbiomes observed in other ecosystems 

(Bahram et al., 2018; Wu et al., 2019). 
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Figure 4-6 The distribution of airborne bacterial diversity across latitudes was analyzed using 455 

biologically independent samples. A second-order polynomial fit based on ordinary least squares 

regression was used to determine the best fit for the datasets in this study. The corrected AIC was 

used to select the best polynomial fit. The results revealed that the maximum microbial diversity 

was observed in the intermediate latitudinal regions (R2 = 0.246, p < 10-15), with the color gradient 

indicating the corresponding AT for each sample. The symbols used to denote the origin of a 

sample, i.e., Northern Hemisphere (circle) or Southern Hemisphere (square), are also displayed. 
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Figure 4-7 The role of AT in the latitudinal diversity pattern of global airborne bacterial 

community. (a) Direct relationship of AT with absolute latitude, namely distance to the equator. 

(b) Impact of AT on richness of airborne bacterial communities. 

 

 

Figure 4-8 Airborne bacterial richness (y-axis) and PM concentration (x-axis) plots of samples 

collected in the mid-latitudinal regions (35o - 45o). The richness was strongly correlated with PM10 
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concentration (R2=0.549, p < 1 × 10-10) and PM2.5 concentration (R2=0.541, p < 1 × 10-10), 

explaining the large deviation from the fitting line of Figure 4-6 in mid-latitudinal areas. 

 

Figure 4-9 The Bray-Curtis pairwise similarity of microbial communities, which is based on the 

relative abundance of OTUs, increases as the geographic distance between sampling sites increases. 

The least-squares linear regression is represented by the red line. 

 

4.3 Global Airborne Bacteria Linked with Other Habitats 

Bacterial co-occurrence networks in specific environments, such as global atmosphere, have been 

elaborated to explore these complex systems in section 4.1.2 and previous studies, but their 

interconnections across microbiomes in various habitats, as well as the role of airborne bacteria in 

the Earth’s microbial world, have yet to be explored. Furthermore, the uniform biogeographic 

pattern and shared key taxa in the three largest ecosystems, namely air, marine, and soil ecosystems, 

suggest interrelationships among bacterial communities in various habitats. 
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4.3.1 Bacterial biomass and richness in the troposphere and other typical Earth habitats 

Estimation of species numbers in different global ecosystems can provide insight into the 

commonness and rarity of taxa and the connections across scales of space, time, and abundance 

(Curtis et al., 2002; Locey and Lennon, 2016). Using the lognormal model, microbial richness was 

predicted based on the total abundance of individuals (N) and the quantity of the most dominant 

taxonomic unit (Nmax) according to all available data (Locey and Lennon, 2016). Despite the total 

abundance of global airborne bacteria (1.72×1024 cells) being 1-3 orders of magnitude lower than 

other habitats, such as soil (9.36×1028 cells), freshwater (4.70×1025 cells), and marine (4.68×1028 

cells), the estimated bacterial richness in the atmosphere (4.71×108 ~ 3.08×109) was comparable 

to that in the hydrosphere (Figure 4-10). Since the atmosphere is less favorable to microorganisms 

than surface habitats, the comparable diversity and complexity of aerial microbial communities 

suggest that they receive contributions from surrounding ecosystems, indicating interconnections 

with microbiomes in surface ecosystems. 
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Figure 4-10 The estimation of global microbial abundance and richness in various habitats. The 

global richness (S) and the total abundance (N) in the corresponding habitats show a scaling 

relationship (the dashed orange line is the 95% prediction interval). Richness was predicted using 

the lognormal model, with Nmax derived either from our sequencing data (filled circles) or from the 

dominance-scaling law (open circles). It should be noted that the estimated S and N for each habitat 

represent a global sum, which includes data from previous studies (Locey and Lennon, 2016; Wu 

et al., 2019). 

 

4.3.2 Interconnections of airborne bacteria with their counterparts in other habitats 

The bacterial co-occurrence network in the global atmospheric environment has been deeply 

explored, which revealed that microbial interconnections could affect the structure and function of 

microbial communities (Figure 4-3). First, NMDS was employed to compare the level of similarity 

among bacterial communities in 23 major habitats on the Earth, using 5,000 samples obtained from 
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the EMP (Thompson et al., 2017). Interestingly, these habitats were not entirely distinct and 

exhibited varying degrees of overlaps (connections) with each other. Moreover, terrestrial air 

exhibited a greater similarity with environments associated with humans and animals, while 

offshore air bored a closer relation to oceanic systems (Figure 4-11). Additionally, each type of 

atmosphere (urban, background, and marine surface) was found to harbor a unique microbiome 

compared to others, prompting to divide air samples into three distinct groups for more in-depth 

investigation. 

To further examine the interconnections between airborne bacteria and their counterparts in other 

environments, a bacterial co-occurrence network for Earth was constructed using the hierarchical 

agglomeration algorithm (Park and Bader, 2011). The resulting network categorized the 23 

habitats into three groups: human- and animal-associated environments (Group Ⅰ), terrestrial 

natural environments (Group Ⅱ), and aquatic environments (Group Ⅲ) (Figure 4-12). The network 

demonstrated gradual transitions and connections among the different environments, with marine 

systems linked to freshwater systems, which were in turn connected to soil and rhizosphere habitats, 

and finally to human- and animal-associated environments. Notably, the airborne bacterial 

communities appeared to have close associations with their surrounding environments, with more 

pronounced influences observed in settings with larger surface areas of contact with air (Figure 4-

12), such as seawater (ρ = 0.70, p < 0.01), animal surfaces (ρ = 0.72, p < 0.01), and human surfaces 

(nasopharyngeal: ρ = 0.71, p < 0.01; skin: ρ = 0.75, p < 0.01). 
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Figure 4-11 Bray-Curtis based NMDS plot showing that different microbial habitats harbor 

different bacterial communities on the Earth. Bray–Curtis distance was calculated to represent the 

dissimilarity in bacterial community compositions. 

 

Figure 4-12 The network diagram presented illustrates the relationships and interconnections 

among 23 major microbial habitats on Earth. The connections, represented by edges, indicate a 
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strong correlation (Spearman’s ρ > 0.7) and statistical significance (p < 0.01). The thickness of 

lines reflects the strength of the correlation. The habitats were categorized into three groups based 

on their similarities, represented by different colors. 

 

4.3.3 Analysis of the Sources of Global Airborne Bacteria 

In order to identify potential sources of airborne bacterial communities at the genus level in 

different regions, SourceTracker2 was utilized (Knights et al., 2011). This software uses Bayesian 

methods to assess all possible sources of sink sequences (16S rRNA marker gene sequences in air 

samples), including an unknown source, and produces a joint distribution of these assignments. 

The source datasets were obtained from the EMP (ftp://ftp.microbio.me/emp/) (Thompson et al., 

2017). The distribution was then sampled to estimate the probability that a sequence in an air 

sample originated from a specific source (Glickman and Dyk, 2007). This analysis contradicted 

previous assumptions, which were based only on aerosol modeling in surface ecosystems, that 

airborne bacteria primarily came from grasslands, shrubs, and crops (Burrows et al., 2009b). 

Instead, it was discovered that the dominant sources of airborne bacteria were determined by the 

characteristics of the corresponding surface environments. For offshore sites, the primary sources 

were oceanic (56.3 ± 36.3), while for onshore sites, human-related sources (23.2 ± 31.5) 

contributed significantly to airborne bacteria in urban areas, overshadowing plant-related sources 

(22.6 ± 25.2), which were dominant in less populated areas (Figure 4-13). The contributions of 

human-related sources and terrestrial plants to airborne bacteria onshore varied considerably 

(Figure 4-14a), mainly due to local population density (Figure 4-14b) and vegetation coverage 

(Figure 4-14c), respectively. Notably, despite being the most abundant (~1029) and diverse (~1011) 

ftp://ftp.microbio.me/emp/
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microbiological environment on the Earth (Locey and Lennon, 2016) (Figure 4-10), soil was found 

to have a negligible contribution (<1%), possibly due to the limited contact between topsoil and 

air. The surface area of the global soil (1.21×108 km2) (Jackson et al., 1997) is smaller than that of 

the marine surface (3.62×108 km2) (Eakins and Sharman, 2010) and leaf surfaces (5.09×108 km2) 

(Vorholt, 2012), coupled with the crashing of waves (Wilson et al., 2015) and the shaking of leaves 

(Burrows et al., 2009b), resulted in greater exchanges between airborne bacteria and microbiomes 

in other bacterial habitats than with soil. Despite the lack of an advantage in surface areas with air 

interactions, humans and animals' frequent activities and constant respiration increase their 

exposure to air, resulting in human- and animal-associated habitats being the dominant source of 

airborne bacteria (Hospodsky et al., 2012), especially in urban settings, which was overlooked in 

earlier emission modeling studies (Burrows et al., 2009b). 

 

Figure 4-13 Analysis of global sources of airborne bacteria: The percentage contribution of 

potential bacterial genera from different environments to airborne bacterial communities in urban, 

terrestrial background, and offshore areas on a global scale. 
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Figure 4-14 Global airborne bacterial source contribution. (a) Potential contributions of various 

environments to airborne bacteria (at the genus level) in urban, terrestrial background, and offshore 

areas respectively at the global scale. (b) Relationship of the human-related contribution to 

airborne bacteria and population density in urban areas. (c) Relationship of the terrestrial plant 

contribution to airborne bacteria and vegetation coverage in background areas. 

 

4.4 Summary 
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This chapter established a comprehensive atlas of global airborne bacterial communities across 75 

locations from the sub-Antarctic to the Arctic and compared it with similar atlases for the other 

two largest ecosystems, namely ocean and terrestrial systems. Illumina sequencing and analysis 

of 16S rRNA genes were conducted to draw a complete understanding of the taxonomic 

compositions and structures of global airborne bacterial communities, and to further identify the 

core bacterial sets in the three largest microbial habitats. Networked communities were used to 

explore the interconnections among airborne bacteria and to recognize the key taxa dominating the 

topological characteristics of the whole network. Besides, the bacterial biogeographic patterns, 

particularly diversity patterns in macro ecosystems, were presented. Moreover, the Earth bacterial 

co-occurrence network containing 23 various environments based on the EMP was structured to 

explore the interconnections of airborne bacterial communities with other microbiomes. The major 

findings of this chapter are listed as follows. 

a) The global airborne bacterial community structure followed AOR pattern, a hyper-dominant 

pattern in which 24 OTUs (0.22% of the total OTU number) accounted for 18.54% of total 

detected sequences. These exceptionally abundant taxa could dominate and strongly influence 

the whole airborne bacterial communities in ecology. 

b) The co-occurring bacterial communities in the global atmosphere displayed more distant 

relationships among OTUs, which could impede the rapid response of airborne bacteria to 

perturbations and result in a less stable network structure than those found in soil and marine 

ecosystems. 

c) A group of highly connected and centrally clustering key taxa were identified, each of which 

displayed significant correlations with 15-18% of the OTUs in the entire network, indicating 
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a concentrated distribution (mean correlation coefficient = 0.903). Additionally, the 

similarities in composition and inferred functions among key taxa in atmospheric, aquatic, and 

terrestrial ecosystems suggested potential associations between airborne bacterial 

communities and other surface microbial habitats. 

d) The uniform parabolic latitudinal diversity patterns of microbial worlds were observed in the 

three largest ecosystems on Earth (i.e., atmosphere, ocean, and terrestrial systems), which 

differed from the typical latitudinal gradient of diversity found in macroscopic organisms. 

Temperature was identified as the crucial factor driving the distribution of diversity. 

e) The complexity and dynamics of global airborne bacterial communities were found to be 

comparable to those of bacterial assemblages in soil and ocean environments, owing to the 

similar estimated bacterial richness in the global atmosphere to that of the hydrosphere. 

Furthermore, the essential role of airborne bacteria in the Earth's microbial world was broadly 

established based on the close interrelationships with bacteria in 23 major habitats and the 

finding that almost half of the contributions of airborne bacteria came from other ecosystems.  

In summary, this chapter presented the first systematic study of global airborne bacterial 

communities, constructing a reference catalog of over 27 million nonredundant 16S rRNA gene 

sequences. The biomass, diversity, biogeographic patterns, compositions and functions of core and 

key taxa, and networked community structure of airborne bacterial communities were explored 

and compared with counterparts in the other two largest ecosystems on Earth: marine and soil. 

This chapter revealed that airborne bacterial communities were as complex and dynamic as 

bacterial assemblages in other environments, with a unique set of dominant taxa (n=24) but a 

structure that appeared to be more easily perturbed. Despite having lower total abundance, the 
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airborne bacterial richness (4.71×108 ~ 3.08×109) is comparable to that in the hydrosphere, and its 

distribution followed a similar latitudinal pattern with other ecosystems. Additionally, this chapter 

highlighted the great contribution of surface microbiomes to airborne bacteria (averaging 46.3%). 

Nevertheless, only the structure and distribution of global airborne bacterial communities were 

discussed in this chapter. To achieve a better comprehension of the underlying mechanisms, it is 

imperative to explore the impacts of environmental variables on airborne bacterial communities at 

a global scale. This will facilitate the forecasting of ecosystem responses to potential 

environmental changes in the future but has yet to be profiled. Consequently, in the upcoming 

chapter (Chapter 5), the direct and indirect impacts of biotic factors and abiotic factors on the 

composition, diversity, core bacteria, key taxa, and abundance of each OUT in the airborne 

bacterial communities worldwide will be analyzed and quantified to generate a comprehensive 

unscrambling of the driving mechanisms responsible for the biogeographic patterns observed in 

global airborne bacterial communities. The finding of enhancing human-related source 

contributions to airborne bacteria in urban areas indicated the anthropogenic impacts on airborne 

bacterial communities. However, the specific alterations due to urbanization from a global view 

and the related mechanisms remain elusive, and it is essential to pinpoint the interplay between 

human activities and the existing airborne microbiomes to comprehend the harmony between 

humans and nature. Finally, in Chapter 6, there will be a further focus on risks of airborne AMR 

to human health on a global scale, given the human imprints on airborne bacteria, particularly 

pathogens. 
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Chapter 5 Mechanisms Driving Global Patterns of Airborne 

Bacterial Communities via Anthropogenic and Environmental 

Processes 

Following up on the higher sources of airborne bacteria from human-related microbial habitats in 

urban areas, the anthropogenic impacts on global airborne bacterial communities, with a particular 

focus on structure, genotypes, and pathogenicity, were detailed discussed in this chapter. The 

biogeographic patterns indicated that environmental filtering played a significant role in global 

airborne bacterial community, and this will be further investigated by considering both direct and 

indirect factors from three perspectives: diversity and total biomass, key taxa and core bacterial 

sets, and each OTU in the whole bacterial community. Moreover, community assembly processes 

were also investigated to uncover the specific mechanisms driving the global airborne bacterial 

community structure. To better understand the underlying mechanisms shaping structure and 

biogeographic patterns of global airborne bacterial community, a comprehensive analysis was 

conducted based on a range of meteorological conditions, air qualities, and source contributions. 

 

5.1 Human Imprints on Airborne Bacterial Communities 

5.1.1 Anthropogenic impacts on global airborne bacterial community structure 

The dissimilar structures of airborne bacterial communities between urbanized and less human-

impacted sites emphasize the importance of human influence on airborne bacterial communities 

(Figure 4-11). However, within the same latitude range, there were no significant differences in 
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the bacterial community richness between urban and background areas (i.e., areas that are much 

less affected by humans, such as remote mountain sites, offshore environments, and the Arctic 

region) (Figure 5-1). This finding is consistent with the discovery in section 4.2 that human 

distribution and activities minimally affect airborne bacterial diversity. These results suggest that 

geographic location is the primary determinant of airborne bacterial richness rather than 

anthropogenic influences. Notably, the OTU richness of airborne bacterial communities did not 

significantly differ between urban and background areas, indicating that humans inhale a 

comparable number of bacterial species (Figure 5-2a). However, the evenness of bacterial 

communities was substantially lower in urban areas (Figure 5-2b), indicating a significant increase 

in the abundance of some bacterial types. For example, the relative abundance of two typical 

commensal bacteria, Burkholderia and Pseudomonas (including some pathogenic species), was 

significantly higher in urban areas (5.56% and 2.50% respectively) than in background areas (1.44% 

and 1.11%).  

In terms of community composition, both urban and background areas harbored unique bacterial 

types exclusive to their respective areas (713 and 2,835), while more than half of total bacterial 

types (4,352) were found in both areas (Figure 5-1b). Additionally, the contribution of bacterial 

mass to PM mass was much lower in urban areas than in natural areas (Figure 5-2c), indicating 

that urbanization increased the proportion of non-biological particulates, e.g., dust and soot in air 

PM.  

To discern the differences in the microbial co-occurrence patterns of the airborne bacterial 

communities in urban and background areas, two networks were generated using |ρ| > 0.6 and p < 

0.05 (Figure 5-3a and Figure 5-3b). The biotic interconnection network of urban bacterial 

communities (n=62) revealed 134 nodes with 383 connections (edges), and the average degree 
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was 2.9. In contrast, the background bacterial communities, consisting of 178 nodes, namely OTUs 

identified from 88 individual background air samples, demonstrated 1,372 strong and significant 

edges. The higher average degree (7.7) indicated that the biotic interconnections within 

background bacterial communities were more complicated. In addition, the general topological 

characteristics, such as average shortest path length and transitivity, illuminated the impact of 

human activities on the structure and stability of microbial networks. In particular, the decreased 

transitivity and heightened average shortest path length in the co-occurrence network of airborne 

bacterial communities in urban areas indicated that human influences disrupted the network 

structure (Figure 5-3c). 

 

Figure 5-1 Anthropogenic impacts on the composition of airborne bacterial communities. (a) 

Latitudinal distribution of airborne bacterial α-diversity (richness). Plotting OTU richness against 

the absolute latitude of sampling locations shows that there is no significant disparity in richness 

between urban and background areas. (b) Number of exclusive and shared airborne bacteria in 

urban, terrestrial background, and offshore areas. 
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Figure 5-2 A comparison of diversity indexes (i.e., richness (a) and evenness (b)) and bacterial 

mass contributions to PM mass (c) in urban, terrestrial background, and offshore areas. 

 

Figure 5-3 Anthropogenic impacts on the network structure of airborne bacterial communities in 

urban and background areas. Co-occurrence networks of airborne bacterial communities in urban 

(a) and background (b) areas (including terrestrial background and offshore areas), respectively. 

Different node colors indicate different phyla. (c) Comparison of network topological 

characteristics in urban areas, background areas, and the whole global dataset. 
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5.1.2 Impacts of urbanization on airborne bacterial genotypes 

The alteration of the airborne bacterial taxonomic composition due to urbanization also brought a 

corresponding change to some phenotypic characters. For instance, the structure (i.e., cell shape 

and cell management) of airborne bacterial cells changes a great deal due to urbanization as can 

be seen from the finding that the percentage of Bacilli and the bacteria existing in clusters was 

higher in urban areas than in terrestrial background and offshore areas (Figure 5-4). Bacilli are 

known for their resistance to various environmental stresses, including heat, radiation, and 

chemicals such as antibiotics, which makes them capable of surviving for long periods in 

controlled environments (Christie and Setlow, 2020). The higher proportion of Bacilli in urban air 

might increase AMR risks. Additionally, it is well known that AT is mainly driven by latitude, yet 

the relatively higher AT in urban areas than in terrestrial background and offshore areas in general 

caused there to be a correspondingly higher optimal temperature range for airborne bacteria in 

urban areas (Figure 5-5a). For instance, the relative abundance of thermophilic bacteria was higher 

in the urban areas of Guangzhou (5.25%) than in a background area with a similar latitude, Mt. 

Ailao (2.39%). Nevertheless, urbanization did not affect the subsistence state of airborne bacteria; 

there were no significant differences in the environmental tolerance caused by sporulation and the 

surviving modes (symbiotic or free-living) of bacteria between urban and background air (Figure 

5-5b and Figure 5-5c). The motility of airborne bacteria was higher in urban areas than in natural 

areas (terrestrial background and offshore areas), as reflected in the higher ratio of bacteria 

carrying flagella, a motility organelle enabling movement and chemotaxis, in urban air (Figure 5-

6). Although the flagellum has traditionally been recognized only as a motility organelle, recent 

evidence suggests that it could be a potential virulence factor due to its adhesive and invasive 
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properties (Haiko and Westerlund-Wikström, 2013), which may increase the risk of pathogens 

invasion in urban air. 

 

Figure 5-4 Structure of global airborne bacterial cells in urban, terrestrial background, and 

offshore areas. (a) Global airborne bacterial shape profile. (b) Percentage of Bacilli in airborne 

bacteria. (c) Global airborne bacterial cell arrangement profile. (d) Percentage of airborne bacteria 

existing in clusters. 
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Figure 5-5 Adaptation of global airborne bacteria to local environments in urban, terrestrial 

background, and offshore areas. (a) Optimal temperature range of airborne bacteria. (b) 

Sporulation of airborne bacteria. (c) Ratio of airborne symbiotic/free-living bacteria. 
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Figure 5-6 Motility of global airborne bacteria in urban, terrestrial background, and offshore areas. 

(a) Ratio of airborne motional bacteria to non-motional bacteria. (b) Ratio of airborne bacteria with 

flagella to bacteria without flagella. 

 

5.1.3 Anthropogenic forcing on global airborne bacterial pathogenicity 

The conventional culture methods based on phenotypes have lower sensitivity and accuracy 

making them unsuitable for comparing potential airborne pathogens in urban and background air 

(Manaka et al., 2017) Therefore, the 16SPIP (Miao et al., 2017), a comprehensive pipeline 

designed for clinical samples but also applicable to diverse environmental samples (Li et al., 2020; 

Li et al., 2021a), was used to overcome these limitations. The results showed that despite lower 

total bacterial loading (Figure 5-7a), urban air has a significantly higher relative abundance of 

potential pathogens (Figure 5-7b), particularly the ESKAPE pathogens with the highest risk of 

mortality (Mulani et al., 2019) (Figure 5-8a). Humans inhaled less abundant airborne bacteria; 

nevertheless, there is a risk that various pathogenic infections might increase in cities, with 22.4% 

of identified airborne pathogens (n = 37) occurring exclusively in urban areas (Figure 5-8b). An 



125 

 

additional metagenomic analysis confirmed the accuracy of composition and abundance of 

potential pathogens identified from 16S rRNA gene sequencing data (Figure 5-8b), although more 

accurate quantitative diagnostic methods are still required in future studies, e.g., pathogen-specific 

real-time qPCR analysis (Rinttilä et al., 2004). We hypothesized that the elevated abundance and 

diversity of airborne pathogens in urban areas might have originated from human-related sources, 

as previously suggested in section 4.3.3. In addition, no great difference was seen in the ratio of 

gram-positive to gram-negative airborne bacteria (and pathogens) in urban, terrestrial background, 

and offshore areas, further illustrating that urbanization did not alter the likelihood of human illness 

related to gram-negative and/or gram-positive pathogens (Figure 5-9). However, the higher 

mobility of airborne bacteria and higher ratio of bacteria carrying flagella, which was verified in 

section 5.1.2, could increase the spread of airborne pathogens and enhance the risk of human 

infections in urban regions (Figure 5-6). 

 

Figure 5-7 A comparison of total airborne bacterial loadings (a) and the relative abundance of 

pathogens (b) in urban, terrestrial background, and offshore areas. 
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Figure 5-8 Anthropogenic impacts on the composition of airborne pathogenic communities. (a) 

Ratio of the abundance of airborne ESKAPE pathogens in urban areas to background areas based 

on two datasets, 16S rRNA gene and metagenomic sequencing data, respectively. (b) Number of 

exclusive and shared airborne pathogens in urban, terrestrial background, and offshore areas.  

 

 

Figure 5-9 Gram types of global airborne bacteria in urban, terrestrial background, and offshore 

areas. (a) Ratio of airborne gram-positive to gram-negative bacteria. (b) Ratio of airborne gram-

positive to gram-negative pathogens. 
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5.2 Environmental impacts on global airborne bacterial communities 

Although many regional correlations between total airborne bacterial concentrations and 

environmental variables have been examined in a previous review (Burrows et al., 2009), few 

correlations were found at the global scale (Figure 5-10). This section addressed the effects of 

environmental filtering on global airborne bacterial communities, analyzing the direct and indirect 

impacts from three perspectives: diversity and total biomass, key taxa and core bacterial sets, and 

each OTU in the whole bacterial community. 

 

5.2.1 Relationships between environmental factors and airborne bacterial diversity and 

biomass 

To explore the relationships between environmental variables and airborne bacterial diversity, the 

data was displayed as bivariate plots (Figure 5-10), which exhibited several patterns. The bacterial 

richness as a function of variable environmental factors revealed considerable variation. In these 

patterns, most coefficients of correlation (i.e., R) were modest, despite the high significant 

significance due to the large sample size. Thus, there was still a large unexplained variation 

between the environmental variables and bacterial richness.  

Despite the variation, significant patterns were still evident. For example, the variations in the 

diversity of global airborne bacteria with latitude closely matched the variations in the AQI scores, 

as well as concentrations of PM10, PM2.5, SO2, and CO, and other meteorological parameters like 

AT, AP, WD, WS, and RH (Figure 5-10). In contrast to its strong correlations with latitude, 
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richness was not as well correlated with other geographic locations. A pairwise correlation analysis 

suggested that the relationships between richness and altitude (R2 = 0.019, p = 0.209) or distance 

to coast (R2 = 0.019, p = 0.209) were either weak or nonexistent. Besides, different pollutants 

showed different relationships with bacterial diversity, including parabolic fitting curve 

associations (AQI, PM2.5, PM10), positive correlations (SO2, CO), and independent relationships 

(NO2, O3). Among the various meteorological conditions, RH was the best-predicted factor of 

bacterial richness (R2 = 0.190, p < 10-7).  

Similar to bacterial diversity, the correlations between the total airborne bacteria biomass (i.e., the 

number of 16S rRNA gene copies) and environmental factors were also analyzed (Figure 5-11). 

Three factors were significantly related to bacterial biomass: NO2 concentration (R2 = 0.109, p < 

10-5), WS (R2 = 0.173, p < 10-8), and WD (R2 = 0.189, p < 10-6). The parabolic fitting curve 

relationship showed that the biomass was highest with southerly winds compared to other 

directions. At this point, it was hypothesized that warm temperatures and low latitudes might be 

hospitable to bacterial survival and diversity, because most samples were collected in the northern 

hemisphere, and southerly winds could increase the local AT to a certain extent. However, this 

hypothesis conflicted with another discovery that there were no relationships between biomass and 

either latitude or AT and was soon disavowed. As a result, there must be unknown mechanisms 

linking WD to airborne bacterial biomass, which might be related to atmospheric circulation or 

other geographic factors affecting microbial communities. 
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Figure 5-10 Relationships of the global airborne bacterial diversity index (OTU richness) with air 

quality and meteorological conditions. 
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Figure 5-11 Relationships of global airborne bacterial biomass (16S rRNA gene copy number) 

with geographic locations, air quality, and meteorological conditions. 
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5.2.2 Impacts of environmental variables on key taxa and core bacterial communities  

To investigate the variability of two crucial airborne bacterial communities (24 core OTUs and 19 

key taxa), PCoA analysis was performed, which revealed that the samples were significantly 

differentiated by their geographic locations (Figure 5-12a and Figure 5-12b). Moreover, PCoA 

visualization showed that variations in core bacterial community composition were strongly 

associated with differences in latitudinal regions, similarly, the significantly linear relationship 

between PC1 of PCoA scores and absolute latitude (R2 = 0.316, p < 10-14) confirmed the 

determinant effect of latitude on the spatial and temporal distribution of core bacteria (Figure 5-

12c). In the PCoA plot, the 370 global air samples were clearly clustered into three groups: low 

latitudinal samples were located in the first quadrant, intermediate latitudinal samples were mainly 

located in the third quadrant, and samples collected in high latitudinal regions were distributed in 

the second quadrant (Figure 5-12a). Similarly, the importance of geographic effect was also 

verified in key taxa, demonstrated by the significantly negative correlation between PC1 score in 

key taxa and altitude (R2 = 0.481, p < 10-24, Figure 5-12d). Additionally, AT and AP were directly 

driven by latitude and altitude respectively, thus, the two typical environmental factors could 

contribute to explaining these two biogeographic patterns occurring in core and key taxa. There 

were indeed linear relationships between the core and key taxa with AT and AP respectively 

(Figure 5-12e and Figure 5-12f), however, these correlations were weaker than those observed 

with geographic locations (AT with PC1_core bacterial communities: R2 = 0.085 < 0.316; AP with 

PC1_key taxa: R2 = 0.290 < 0.481). As a result, while AT and AP could partially explain the 

biogeographic pattern, there were still great unknown driving mechanisms that require further 

exploration.  
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To identify the determinant factors respectively driving biogeographic distribution of global core 

and key taxa in the atmospheric environment, multiple regression analyses were performed to 

assess their correlations with other potential environmental factors. The results showed that all the 

key taxa and most of the core bacteria were significantly (p < 0.05) correlated with at least one of 

the 11 environmental factors tested (Figure 5-13a and Figure 5-13b). Further analysis using VPA 

showed that air quality affected the key taxa most with a subset of air pollutants, including SO2, 

NO2, CO, O3, PM10, and PM2.5, together explaining a substantial amount (53.3%) of the structural 

variations, which was substantially higher than the figures for meteorological condition (26.54%) 

and landscape coverage type (18.38%) (Figure 5-14b). Land coverage type contributed far less to 

the variations in core bacteria (15.93%), compared to the other two groups (36.53% and 31.99%) 

(Figure 5-14a). Notably, all three groups had a significant impact on the whole communities, 

explaining over 70% of the variations in both the core (70.63%) and key (80.11%) taxa. 

Various forms and species of heavy metals have been well known and widely used as antimicrobial 

agents (Mittapally et al., 2018), thus, exploring the effects of heavy metals in PM on airborne 

bacteria could provide insight into mechanisms of bacterial survival and community organization. 

Despite the divergent genetic construction and response to environmental factors of key taxa, all 

key taxa were negatively affected by heavy metals, as suggested by the associations between heavy 

metals and key taxa in RDA (Figure 5-15a). The negative impacts of metals on bacteria could be 

attributed to the ability of high heavy metal concentrations to destroy cell membrane structure, 

change enzyme specificity, impair cell function, change protein structure, damage DNA stands, 

and even cause cell death (Silver and Phung le, 2005). On the other hand, heavy metals could also 

have positive impacts on bacterial growth by providing essential nutrients (such as K, Na, Ca, Mg, 

Fe, Cu, and Zn) (Gadd, 2010), and required energy for microbial metabolism in oxidation-
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reduction reactions (such as As3+/As5+, Fe2+/Fe3+, Mn2+/Mn4+, V4+/V5+, Se4+/Se6+ and U4+/U6+) 

(Lengke and Southam, 2006). For example, around half of the core OTUs were positively 

correlated with heavy metals (Figure 5-15b), perhaps because these bacteria were too abundant 

and adaptable in atmospheric environments to be damaged by metal toxicity. However, the 

remaining core bacteria showed weak or negative correlations with heavy metals, indicating the 

complex effects of metals on bacteria that depend on specific conditions. To further explore the 

link between key taxa and nutrition cycling, RDA was conducted. Water soluble ions (NH4+, NO3-) 

in PM were also a kind of nitrogen source for bacteria, and the correlations of the two ions with 

key taxa, particularly the nitrogen-fixing bacteria (Rhizobiales: OTU63 and OTU55), were 

stronger than with other OTUs (Figure 5-15c). Another key taxon (Frankiales: OTU19) with a 

close relationship with soluble ions was commonly adaptable and occupied different ecological 

niches, consistent with the ecological functions of key taxa discussed in section 4.1.3. In contrast, 

only OTU6 (Acinetobacter) and OTU25 (Bacillus) were correlated with soluble ions, possibly due 

to their ability to survive in a broad array of environments and even extreme conditions (Figure 5-

15d). Moreover, these soluble ions (NH4+, NO3-, SO2-) could be connected with gaseous pollutants 

(NO2, SO2) due to their shared elements. Additionally, the metabolic activity of airborne bacteria 

with various environmental conditions has been documented in previous studies (Sattler et al., 

2001; Meola et al., 2015; Klein et al., 2016; Stone et al., 2016).   
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Figure 5-12 Environmental factors driving global airborne core and key taxa. PCoA performed on 

global airborne core (a) and key (b) bacterial community composition dissimilarities on the basis 

of “Euclidean” index of 370 air samples. Samples are color-coded according to the corresponding 

geographic locations. Impacts of geographic locations on global airborne core (c) and key (d) 
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bacterial community structure. Environmental factors driving global airborne core (e) and key (f) 

bacterial community structure. 

 

Figure 5-13 The correlations of 24 core bacteria (a) and 19 key taxa (b) and environmental 

variables. The right color gradient indicates Spearman’s rank correlation coefficients (i.e., R), with 

dark blue indicating stronger positive correlations and dark red indicating stronger negative 

correlations. The number of asterisks indicates the significance levels (two-sided) of Spearman’s 

rank correlation coefficients (*** p < 0.001, ** p < 0.01, * p < 0.05). Each row represents the 

correlation of a specific OTU and environmental variables in 370 biologically independent air 

samples, which are clustered based on Spearman’s rank correlation coefficients.  
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Figure 5-14 VPA showing relative contributions of air quality (PM10, PM2.5, SO2, NO2, O3, and 

CO), meteorological condition (AT, AP, RH, WS, and WD), and landscape coverage type 

(water/sea, urban, grassland, cropland, forest, and shrubs) to the community variations of core 

bacteria (a) and key taxa (b). The overlap represents the joint effect explained by two or three 

factor groups together, while the percentage number below each group name represents the 

variance explained by one group alone. “Unexplained” denotes a variance that could not be 

explained by any one of these three groups. 

 

Figure 5-15 RDA identifying the relationships between core and key taxa with soluble ions and 

heavy metals in air samples. Blue arrows represent the environmental factors, with their length 

indicating the strength of the correlations between the environmental factors and the sample 

distributions. The longer the line is, the stronger the corresponding correlation will be. The 

included angle between the arrows denotes the correlation between environmental factors. An 
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acute angle means a positive correlation and an obtuse angle a negative correlation, while a smaller 

included angle corresponds to a stronger correlation. Red labels indicate the OTU number and gray 

markers indicate the distribution of the samples. 

 

5.2.3 Environmental filtering impacting each OTU in whole global airborne bacterial 

communities 

To further understand the impacts of environmental factors on whole airborne bacterial 

communities, a thorough investigation into the correlations between11 typical environmental 

variables (i.e., concentration of PM10, PM2.5, SO2, CO, NO2, and O3, AT, AP, WD, WS, and RH) 

and a total of 10,897 OTUs was conducted. The findings exhibited that more than half of the OTUs 

(57.7%) showed no discernible connections with any of the environmental variables. For the few 

OTUs displaying relationships, t the vast majority (97.4%) exhibited weak correlations (absolute 

Spearman's ρ < 0.5), indicating that the impacts of environmental filtering on the abundance of 

each specific OTU were negligible (Figure 5-16a). In addition, the total number of significant 

correlations of each OTU with air pollutants (n = 6,440) was much larger than with meteorological 

conditions (n = 2,284), particularly for CO, PM10, and PM2.5, which were respectively correlated 

with 14.4%, 12.9%, 12.5% members of whole airborne bacterial communities (Figure 5-16b). 

Moreover, most of the impacts of air pollutants on airborne bacteria (78.0% in key taxa, 72.5% in 

core bacteria, and 69.0% in all OTUs) were positive (Figure 5-16c), which indicated that it was 

easier for the structure of airborne bacterial communities to be positively influenced by moderate 

air pollution. AP and RH also contributed to shaping community structure and could directly affect 
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9.8% and 8.2% of bacteria, respectively. However, other meteorological conditions had almost no 

impacts on bacterial abundance.  

Abiotic factors, namely environmental variables, affected airborne bacterial richness in various 

regions but had less influence on the abundance of each specific OTU, with a low ratio (7.28%) of 

the number of existing significant relationships (p < 0.05) to the number of all possible connections 

between OTUs and environmental variables. Thus, there must be some unknown connections 

between the environmental variables and the overall community structure. Here, the significant 

effect frequencies of environmental factors on each core and key OTU were quantified using 

multiple regression analysis, showing the ratios of 24.62% and 44.02%, respectively (Figure 5-

16c). This revealed that the strength of the impact of environmental filtering on these two crucial 

bacterial communities largely outweighed those of other normal OTUs. Key taxa and core bacteria 

played a key role in shaping the composition of the whole community and were much more 

affected by the environmental filtering process. In addition, the abundance of each key OTU was 

more frequently related to concentration of air pollutants (26.3%) but less related to meteorological 

conditions (17.7%) (Figure 5-16a), which was consistent with the VPA results in section 5.2.2 

(Figure 5-14b). 

Although environmental factors had less of an effect on the bacterial abundance, bacterial richness 

was associated with most air pollutants and climatic conditions (Figure 5-10), which has been 

documented in section 5.2.1. The patterns of diversity of airborne bacterial communities 

worldwide were considerably influenced by environmental variables, still, some of which were 

interrelated (Figure 5-17). Latitude was highly correlated with the average AT (R = -0.560, p < 10-

14), and there were no significant relationships of latitude with other meteorological conditions, 

including AP, RH, WS, and WD. Latitude showed significant negative correlations with 
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concentrations of four types of air pollutants, i.e., SO2 (R = -0.337, p < 10-4), CO (R = -0.405, p < 

10-6), PM2.5 (R = -0.461, p < 10-8), PM10 (R = -0.437, p < 10-8), which might be caused by high 

population density and more human activities effects in low and intermediate latitudinal regions. 

In addition, the meteorological conditions showed a mutual independent relationship, while the 

correlations between PMs and gaseous pollutants are overall positive: PM2.5 with PM10 (R = 0.811, 

p < 10-37), CO with PM2.5 (R = 0.773, p < 10-31) and PM10 (R = 0.740, p < 10-27), SO2 with PM2.5 

(R = 0.382, p < 10-6) and PM10 (R = 0.416, p < 10-7), NO2 with PM2.5 (R = 0.458, p < 10-8). There 

is a great deal of research indicating that most emissions of SO2, NO2, and CO are along with the 

emission of PMs, which in turn contributed to the formation of secondary aerosols by decreasing 

particle acidity, and these secondary aerosols account for a large proportion of PM2.5 and PM10 

(Streets and Waldhoff, 2000; Berglen et al., 2004; Tie et al., 2006; Yee et al., 2020). On the other 

hand, the relationship between O3 and PMs is unrelated and different from that of other gaseous 

pollutants, perhaps because O3 not being a primary aerosol (Rypdal et al., 2009). As a result, the 

environmental filtering on global airborne bacterial communities was intricate and was dominated 

by multiple factors. 
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Figure 5-16 Correlation distribution between airborne bacterial community composition and 

environmental factors (air pollutants and meteorological conditions). (a) Histogram of the 

correlation frequency showing the distribution of Spearman’s correlation coefficients (i.e., R) 

between the whole global airborne bacterial communities (10,897 OTUs) and environmental 

factors. Only significant correlations (p < 0.05) were counted in the histogram. The percentage 

number above each pillar indicates the proportion of significant relationships that fall within that 

section. (b) Histogram of correlation frequency showing the distribution of significant correlations 

(p < 0.05) with diverse environmental factors in the whole global airborne bacterial communities 

(10,897 OTUs). The percentage number above each pillar indicates the probability of the 

occurrence of a significant correlation of that factor with OTUs. (c) Pie charts of correlation 

frequencies showing the probability of the occurrence of significant relationships (positive or 

negative, affected by air pollutants or meteorological conditions) in the whole airborne bacterial 

communities, key taxa, and core bacterial sets. The right panel highlights the ratio of the number 
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of existing significant relationships (p < 0.05) to the number of all possible connections between 

OTUs and environmental variables. The left panel classifies all of these existing significant 

correlations into four groups and gives an indication of the strength of the correlation through a 

percentage value. 

 

Figure 5-17 The correlation matrix among geographic locations, air quality, and meteorological 

conditions. The color gradient on the right indicates Spearman’s rank correlation coefficients (i.e., 

R), with more positive values (dark blue), indicating stronger positive correlations and more 

negative values (dark red) indicating stronger negative correlations. The sizes of the colored circles 

represent correlation strengths. (n = 370 biologically independent samples). 

 

5.3 Mechanisms driving global airborne bacterial communities 
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The human imprints and environmental impacts on global airborne bacterial communities have 

been verified in section 5.1 and section 5.2, respectively, and the related and comprehensive 

driving mechanisms would be explored in this section.  

 

5.3.1 The weakened importance of deterministic processes to microbial community assembly 

in high-mobility and human-impacted environments 

Understanding the ecological drivers that influence community assembly is a key issue. There are 

two mechanisms involved in community assembly: niche-based deterministic mechanisms 

(including environmental filtering (e.g., pH, temperature, moisture, and salinity) and various 

biological interactions (e.g., competition, facilitation, mutualisms, and predation)) and neutral-

based stochastic (including birth/death, speciation/extinction, and immigration) (Bahram et al., 

2016). To better quantify the relative importance of stochastic process in airborne community 

assembly, an index, NST was calculated based on a general null model-based framework (Ning et 

al., 2019). This allowed for further exploration of the mechanisms shaping microbial communities 

and biogeographic patterns. As shown in Figure 5-18, the importance of stochastic processes 

increased from topsoil (53.2%) to marine (61.3%) and air (72.4%) ecosystems.  

Bioaerosols are widespread, and large particles remain airborne for only a short time, reducing the 

contact periods of bacterial cells with environmental elements (i.e., polycyclic aromatic 

hydrocarbon, endotoxin, heavy metals, etc.) and other microbial cells in the air (Fröhlich-

Nowoisky et al., 2016). This results in fewer impacts on airborne bacteria from environmental 

factors and species interactions, leading to less significant effects from deterministic processes in 

shaping airborne bacterial communities. On the other hand, environmental gradients in the 
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atmosphere are inconspicuous due to constant airflow, reducing the selection pressure of 

environmental variables on airborne bacteria (Burrows et al., 2009b), further weakening the 

influence of deterministic processes on airborne bacterial community assembly.  

Furthermore, it was found that human-affected areas exhibited less influence from deterministic 

processes on microbial community assembly compared to natural areas. This was observed in 

atmospheric environments where urban areas had less control than offshore and terrestrial 

backgrounds, as well as in topsoil ecosystems where croplands had less control than grasslands 

and forests (Figure 5-18b). This disturbance by frequent human activities reduces the natural 

environmental gradients (Stamenković et al., 2019), thereby weakening the effects of 

environmental factors on microbes. In addition, a disrupted microbial structure network could lead 

to an increase in stochastic community assembly, regardless of atmospheric type (Figure 5-3c) or 

different habitats (Figure 4-4), as documented in previous sections. As seen in the terrestrial 

atmosphere, it could be hypothesized that coastal airborne microbiomes might also be less affected 

by environmental filtering and bacterial interactions compared to ocean areas. 
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Figure 5-18 The relative importance of stochasticity represented by NST (%) in bacterial 

community assembly processes of the global airborne (n = 370), marine (n = 62), and topsoil (n 

= 65) bacterial communities, respectively.  

 

5.3.2 Mechanisms shaping airborne bacterial communities 

Extensive analysis was conducted on the direct impacts of 20 different environmental factors on 

bacterial communities, including diversity (Figure 5-10), biomass (Figure 5-11), core bacterial set 

(Figure 5-14a), key taxa (Figure 5-14b), and even the abundance of each OTU (Figure 5-16) in 

section 5.2. This analysis revealed that the distribution of global airborne bacteria may have been 

influenced by geographic locations, meteorological parameters, and air quality conditions. 

However, these environmental factors were found to be interrelated (Figure 5-17), making the 

mechanisms shaping global airborne bacterial communities more complex.  In order to explore the 

direct and indirect relationships between environmental factors and bacterial communities, as well 

as the causalities among these variables and the overall contributions of each factor, SEM was 

applied to the global airborne bacterial dataset (Bahram et al., 2018; Wu et al., 2019). The findings 

indicated that bacterial communities are influenced by numerous factors (Figure 5-19). These 

included geographical locations, which could have direct or indirect impacts on airborne bacteria 

due to their influence on environmental factors. Furthermore, biotic interactions such as key taxa, 

core communities, and bacterial richness had significant effects on microbial communities. The 

study also calculated the overall effects of environmental filtering (β = 3.06) and bacterial 

interactions (β = 0.25) on shaping communities. T Overall, deterministic processes involving a 
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combination of biotic and abiotic factors played a crucial role in determining the structure and 

distribution of microbial communities, with environmental filtering being the primary determinant. 

The results of the study demonstrate that stochastic processes have a strong influence on global 

bacterial communities, with a relative importance of 72.4%, 61.3%, and 53.2% observed in 

atmosphere, ocean, and soil ecosystems, respectively (Figure 5-18). Additionally, it was found that 

almost half of the airborne bacteria (46.3% on average) originated from other environments 

(Figure 4-13), which further highlights the role of stochastic processes in shaping community 

assembly. To investigate the mechanisms responsible for shaping global airborne bacterial 

communities, a VPA was conducted that considered both environmental filtering (deterministic 

processes) and source contribution (stochastic processes) (Figure 5-20). The analysis revealed that 

airborne bacterial source profiles had the greatest impact on communities, accounting for 43.68% 

of the structural variations, which was substantially higher than that of air quality (29.41%) and 

meteorological conditions (25.78%). Due to the dynamic nature of the air ecosystem, certain key 

environmental variables suffered from considerable uncertainties, which increased the significance 

of neutral processes in driving airborne bacterial communities (Fröhlich-Nowoisky et al., 2016). 

The study also found that human activities had a notable impact on air quality and airborne 

bacterial source profiles, explaining around 60% of the variation in community structures. This 

finding corroborates the view that humans mainly influence airborne bacteria by reducing 

environmental filtering effects and increasing human-related source contributions. Importantly, 

the three primary factor groups significantly influenced the entire community, explaining more 

than 80% of the variations. Hence, it can be concluded that global airborne bacterial communities 

are primarily influenced by atmospheric environments and bacterial communities in the 

surrounding ecosystems. 
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Figure 5-19 SEM showing the direct and indirect relationships among geographic locations, 

environmental variables, bacterial interactions, and community composition. The diversity of 

global airborne bacteria can be explained by a combination of biotic and abiotic factors. The key 

taxa and core bacterial communities are represented by the PC1 from the Euclidean similarity 

index principal coordinate analysis. “PM” represents the collected particle mass concentration of 

each sample. The one-way arrows represent causal relationships, while the two-way arrows 

represent mutual effects. The thickness of the lines shows the strength of the association (green – 

positive; red – negative). Standardized path coefficients (β) all appear near the corresponding 

pathways. The goodness of fit was acceptable: Model χ2 = 23.008, d.f. = 16, P (chi-square test) = 

0.114, RMSEA = 0.049, SRMR = 0.028, CFI = 0.973, TLI = 0.950, n = 370 biologically 

independent samples. The right panel summarizes the total effects of environmental filtering and 

bacterial interactions on shaping communities. 
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Figure 5-20 A VPA was conducted to determine the relative contributions of air quality, 

meteorological conditions, and source contributions to the variations observed in global airborne 

bacterial communities. The overlapping areas in the VPA represent the joint effect explained by 

two or three factor groups combined, while the percentage below each group name reflects the 

variance explained by a single group. The "Unexplained" category denotes the variance that could 

not be attributed to any of these three groups. 

 

 

5.4 Summary 

This chapter presented a comprehensive understanding of the underlying mechanisms driving 

global airborne bacterial communities. It was revealed that atmospheric environments and 

bacterial communities in the surrounding areas were the main factors impacting global airborne 

bacterial communities. This expanded on the previous understanding of the biogeography of 
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airborne microbiomes, and the significant contribution of human-related sources to urban airborne 

bacteria, providing a basis for predicting changes in airborne bacterial dynamics at global or 

regional scales in response to environmental changes, air pollution conditions, and human 

activities. The major findings of this chapter can be summarized as follows: 

a) Urbanization did not impact the airborne bacterial richness but altered the community 

composition and structure. Concretely, the taxonomic composition of airborne bacteria was 

significantly impacted by urbanization, leading to changes in some phenotypic characteristics. 

Anthropogenic impacts destabilized the network structure of urban airborne bacterial 

communities by reducing transitivity and increasing the average shortest path length. In urban 

areas, humans inhaled less abundant airborne bacteria but more abundant and diverse 

pathogens, especially human-related ESKAPE pathogens that pose a high risk of mortality, 

increasing the risk of pathogenic infection through inhalation. 

b) Geographic locations impact airborne bacteria directly or indirectly through typical 

environmental factors, while biotic interactions also affect microbial communities, with key 

taxa, core communities, and bacterial richness showing significant interactions. Global 

airborne bacterial community structure and distribution were attributed to various biotic and 

abiotic factors, with the most determinant part being environmental filtering. 

c) The airborne bacterial community assembly was more driven by stochastic processes than that 

in other environments and showed a decreased gradient from urban areas to pristine areas. 

Human activities disturbed original environmental conditions, reduced environmental filtering 

impacts, and increased the human-related bacterial contribution to air, finally leading to 

enhancing importance of stochastic processes in community assembly.  
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d) The variations in air qualities, meteorological conditions, and source profiles significantly 

affect whole communities and explain over 80% of the community variations, indicating that 

global airborne bacterial communities are mainly impacted by atmospheric environments and 

bacterial communities in the surrounding ecosystems. 

In summary, this chapter extensively explored the mechanisms driving airborne bacterial 

communities at a global scale from anthropogenic and environmental perspectives. Despite the 

highly dynamic and mobile nature of air ecosystems, the structure and distribution of these 

communities are largely influenced by local environments, especially in terms of source 

contributions and air quality conditions dominated by human activities. Despite the highly 

dynamic and mobile nature of air ecosystems, the structure and distribution of these communities 

are largely influenced by local environments, especially in terms of source contributions and air 

quality conditions dominated by human activities. Anthropogenic impacts on airborne bacteria are 

reflected in fewer biomass loadings, greater pathogenic abundance, destabilized network structures, 

and phenotypic differentiation, primarily due to the reduced environmental filtering effects and 

increased human-related source contributions. The increased presence of pathogenic bacteria in 

urban air poses a potential risk of inhalation infections, although the threat of antibiotic-resistant 

pathogens remains uncertain and requires further exploration. Consequently, the next chapter 

analyzes a vast amount of metagenomic data to investigate the distribution and dissemination of 

airborne antibiotic resistance genes and their potential hosts, providing a comprehensive 

understanding of the global airborne AMR risks. 
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Chapter 6 Risks of Airborne Antimicrobial Resistance to Human 

Health at a Global Scale 

AMR happens when microbes develop the ability to defeat the drugs designed to kill them, which 

makes infections harder to treat and increases the risk of disease spread, severe illness, and death. 

Beyond the pathogens that cause infection and health risks, antibiotic-resistant pathogens and 

“superbugs” represent one of the most critical threats to public health and modern health care. 

Following up on the different profiles of airborne pathogens between urban and background areas 

and the higher infection risks of inhaled pathogens in urban areas in the last chapter, we conducted 

an airborne AMR investigation at the global scale and in association with other environmental 

compartments and explored the global standard leading to the differences in the burden of AMR 

risks across countries and regions. A global metagenomic dataset based on air samples was 

established to first attempt the global airborne AMR, especially with regard to the evaluation of 

quantified ARG-related health risks. This chapter revealed the global patterns of 747 identified 

airborne ARGs as well as their potential hosting bacteria and even pathogens. Furthermore, the 

exposure risks were estimated based on the abundance, mobility, and host pathogenicity of each 

ARG in diverse air samples from a regional perspective to construct a comprehensive atlas of 

global airborne AMR. Overall, we aim to understand the source, dissemination, and health risks 

of airborne AMR pathogens and contribute to the global burden of AMR diseases in association 

with human exposure risks. 

 

6.1 Broad‑spectrum profile of the global ambient air resistome 
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The natural and engineered environment itself contains multiple functional ARGs (Biswas et al., 

2021); bioaerosol is one of the largest resources and habitats of ARGs (Chen et al., 2022). A dataset 

of 262 metagenomic samples was organized and the metagenomic reads mapped to a total of 747 

ARGs that potentially confer resistance to 25 drug classes of antibiotics. From an overview 

perspective of the global airborne ARGs, the abundance and occupancy of each ARG in this dataset 

were calculated to further identify the core ARGs. Moreover, the global pattern of airborne ARG 

distribution was also demonstrated from regional variations. 

 

6.1.1 Identification of core ARGs at a global scale  

The abundance and occupancy of each ARG were estimated in the global airborne ARG dataset, 

and a core ARG set was determined based on this AOR pattern (Figure 6-1a), in which 39 ARGs 

(0.05% of total number of ARGs) accounted for 61.2 ± 11.8% (mean ± s.e.m.) of the sequences in 

air samples (Figure 6-1b). To further identify AMR threats, the risks of airborne ARGs were 

evaluated and ranked based on a published framework considering anthropogenic enrichment, the 

mobility of genes, and the pathogenicity of hosting bacteria (Zhang et al., 2021). Although the 

core ARGs showed an overwhelming advantage in abundance, the risk ranking of the core ARGs 

was lower than the whole airborne ARG ranking, which could be embodied in the lower proportion 

of Rank I (5%) – mobile and human-associated ARGs that are already present among pathogens 

and Rank II (0%) – mobile and anthropogenic enriched ARGs with novel resistance emerging from 

non-pathogens from all airborne ARG across the world (Rank I, 7%; Rank II, 2%) (Figure 6-1c). 

Two-thirds of global core ARGs (26/39) in the air overlapped with core ARGs in marine and 

topsoil habitats, as determined based on global datasets (Sunagawa et al., 2015; Bahram et al., 
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2018) (Table 6-1). In contrast, there were no shared core species among the global bacterial 

communities in the air, ocean, and topsoil ecosystems, suggesting the more general applicability 

to various environments and the higher transferability of ARGs than microbiomes. Also, the ARG 

profiles on drug resistance types in the global atmospheric, aquatic, and terrestrial ecosystems were 

very similar (Figure 6-2a), and more than 80% of the 747 ARGs were shared by marine and topsoil 

ecosystems (Figure 6-2b); together, these illustrated the high communicability and universality of 

ARGs in natural environments. Moreover, ARGs were more diverse in the air than in aquatic and 

terrestrial habitats at a global scale, and airborne ARGs conferring multidrug resistance showed a 

higher proportion. Here, we hypothesized that air played a role as the medium in which ARGs 

were carried from one habitat to another on the Earth’s surface and gradually enriched the diversity 

and risks of AMR during this process. To further determine the crucial role of the “One Health” 

framework, we also estimated the potential sources of global airborne ARGs in section 6.2.2. 

 

Figure 6-1 Identification of core ARGs in the global atmosphere. (a) AOR: mean relative 

abundance (y-axis) and occupancy (x-axis) plot. The mean relative abundances were estimated by 
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averaging the relative abundances of each ARG in all air samples; occupancy represents the 

proportion of samples (n=262) in which the ARG was detected. The fitted model (sigmoid curve) 

was occupancy vs. logarithm of abundance for each species, and the dark blue solid line is the 

global fit to all ARGs and samples. (b) The number proportion and relative abundance of the global 

core ARGs compared with those of the remaining ARGs. (c) Risk ranking of (core) ARGs detected 

in the global atmosphere according to an omics-based framework based on the three criteria: 

enrichment in human-associated environments, gene mobility, and host pathogenicity (Zhang et 

al., 2021). Rank I represents the highest risk and Rank IV represents the lowest risk. 
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Figure 6-2 Comparison of ARG profiles in the three largest ecosystems, namely atmospheric, 

aquatic, and terrestrial ecosystems. (a) Composition of the antibiotic resistome in the three largest 

ecosystems globally. Air, ocean, and topsoil ecosystems contained 262, 72, and 74 independent 

samples, respectively. (b) Number of exclusive and shared (core) ARGs in air, marine, and topsoil 

across the globe. 
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Table 6-1 Summary of core ARGs in the global air, marine, and topsoil ecosystems. The core ARGs in the global air shared with 

counterparts in marine or topsoil ecosystems were emphasized in bold. 

TYPE 
Global air Global marine Gloal topsoil 

ARGs and relative abundance (%) ARGs and relative abundance (%) ARGs and relative abundance (%) 

multidrug 

MULTIDRUG_ABC_TRANSPOR

TER 
0.059  MULTIDRUG_ABC_TRANSPORTER 0.022  MULTIDRUG_ABC_TRANSPORTER 2.098  

OMPR 0.031  OMPR 0.007  OMPR 0.533  

TRANSCRIPTIONAL_REGULAT

ORY_PROTEIN_CPXR_CPXR 
0.029  

TRANSCRIPTIONAL_REGULATOR

Y_PROTEIN_CPXR_CPXR 
0.009  

TRANSCRIPTIONAL_REGULATORY_

PROTEIN_CPXR_CPXR 
0.807  

ACRB 0.022  ACRB 0.002  ACRB 0.176  

MEXF 0.021  MEXF 0.003  MEXF 0.994  

MSBA 0.016  MSBA 0.019     

MEXW 0.005  MEXW 0.001     

MTRA 0.041    MTRA 0.378  

EMRB 0.011    EMRB 0.200  

MEXE 0.009    MEXE 0.307  

OLEC 0.008    OLEC 0.659  

EMRA 0.008    EMRA 0.299  

MAJOR FACILITATOR 

SUPERFAMILY TRANSPORTER 
0.007    MAJOR_FACILITATOR_SUPERFAMIL

Y_TRANSPORTER 
0.732  

MUXB 0.005    MUXB 0.162  

MEXT 0.006  MEXT 0.003  
TRUNCATED_PUTATIVE_RESPONSE

_REGULATOR_ARLR 
0.619  

ABCA 0.026  MDSB 0.002  

EMRB-

QACA_FAMILY_MAJOR_FACILITAT

OR_TRANSPORTER 

0.161  

MEXB 0.008  BAER 0.001     

MEXK 0.008  SMER 0.001     

CEOB 0.007       

BPEF 0.006       

OPRM 0.005         

rifamycin 

RPOB2 0.131  RPOB2 0.039  RPOB2 0.914  

RIFAMPIN_MONOOXYGENASE 0.010    RIFAMPIN_MONOOXYGENASE 0.399  

RPHB 0.005       

ADP-

RIBOSYLATING_TRANSFERASE_

ARR 

0.013          

bacitracin 
BACA 0.061  BACA 0.002  BACA 0.424  

        BCRA 1.108  
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TYPE 
Global air Global marine Gloal topsoil 

ARGs and relative abundance (%) ARGs and relative abundance (%) ARGs and relative abundance (%) 

polymyxin 
ROSA 0.018  ROSA 0.329      

ROSB 0.021       

ARNA 0.006          

tetracycline 
TETA(48) 0.014  TETA(48) 0.002  TETA(48) 0.756  

TETA 0.021  TETP 0.001  TETP 0.209  

        OTRC 0.197  

beta_lactam OXA 0.029      PBP-1A 0.205  

glycopeptide 

VANR 0.022  VANR 0.006  VANR 1.032  

VANS 0.006    VANS 0.158  
  VANRI 0.002  VANRI 0.261  

        VANH 0.241  

MLS 
MACB 0.018  MACB 0.014  MACB 1.753  

        VGBC 0.156  

aminoglycoside 
KDPE 0.009      KDPE 0.516  

APH(3')-I 0.007          

peptide 
UGD 0.015  UGD 0.029      

    CAMP-REGULATORY_PROTEIN 0.002      

kasugamycin 
KASUGAMYCIN_RESISTANCE_

PROTEIN_KSGA 
0.005  

KASUGAMYCIN_RESISTANCE_PR

OTEIN_KSGA 
0.002      

quinolone         PATA 0.512  

puromycin         
PUROMYCIN_RESISTANCE_PROTEI

N 
0.371  

triclosan         TRIC 0.193  

trimethoprim     DFRA3 0.001  DFRA3 0.162  

pleuromutilin     TAEA 0.003      

mupirocin     

STAPHYLOCOCCUS_MUPA_CONF

ERRING_RESISTANCE_TO_MUPIR

OCIN 

0.002      
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6.1.2 Global patterns of airborne ARG distribution 

Of the 747 ARGs detected in the air, 253 conferred multiple drug resistances, and 494 were genes 

with resistance to only one drug class (Appendix 4.1); the three most abundant ARG classes were 

the multidrug, rifamycin, and peptide classes, which accounted for 64.1% of total ARG sequences 

detected in the entire global airborne metagenomic dataset (Figure 6-2a). A heatmap was 

constructed to show the relative abundance of ARG classes (normalized to the 16S rRNA gene) in 

the air across 22 sampling areas worldwide. As shown in Figure 6-3, the genes providing resistance 

to multidrug (0.3±0.39, normalized by 16S rRNA gene, hereafter), rifamycin (0.16±0.18), and 

peptide (0.12±0.13) were the top three most abundant types of ARGs in the global atmospheric 

ecosystem, followed by MLS (0.06±0.07), beta-lactam (0.06±0.08), tetracycline (0.05±0.05), 

aminoglycoside (0.05± 0.06), glycopeptide (0.03± 0.06), fluoroquinolone (0.03± 0.04), and 

nitroimidazole (0.01±0.01). Moreover, according to the hierarchical clustering results in the 

heatmap, the variation trends in the relative abundance of ARG classes in the ambient air were 

similar across the sampling areas, showing that the ARG class profiles were relatively consistent 

in the air. 

The sampling sites involved in the global airborne metagenomic dataset were clustered into two 

groups, urban (including cities, industrial regions, and rural areas) and background areas (including 

remote mountains, offshore environments, and the Antarctica region), according to the degree of 

anthropogenic impacts. Of the 262 metagenomic sequencing datasets, urban and background air 

samples exhibited considerable variance of ARG composition based on Bray−Curtis dissimilarity 

(p < 0.05, Figure 6-4a), indicating the human imprints on AMR in global ambient air. Besides, the 

airborne ARG compositions and abundance on subtype level were significantly impacted by the 
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sampling sites and countries, with a concrete manifestation in the cluster of air samples collected 

in the same area in an NMDS analysis (Figure 6-4b). Additionally, particle size also impacted 

AMR profiles across the globe, and the ARG compositions were similar between PM2.5 and PM10, 

distinguishing them from the TSP samples (Figure 6-4c), which was in line with a previous study 

showing no significant differences in ARG number and reads between PM2.5 and PM10 samples in 

Beijing (Qin et al., 2020). In summary, human activities, geographic locations, and particle sizes 

significantly contributed to ARG distributions and profiles in the global atmosphere. 

 

Figure 6-3 Heatmap showing the relative abundance profile of ARG classes (normalized to the 

16S rRNA gene) in the air across 22 sampling areas worldwide. 
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Figure 6-4 NMDS analysis based on Bray−Curtis dissimilarity showing the disparities of ARG 

profiles between urban and background air (a), and indicating that the global ambient air with 

different sampling sites (b) and particle sizes (c) harbors various ARG composition on subtype 

level.  

 

6.2 Anthropogenic impacts on global airborne ARGs 

6.2.1 Anthropogenic impacts on variations and enrichment of global airborne ARGs 



160 

 

As shown in Figure 6-5, there were no significant differences in airborne ARG type abundance in 

urban and background areas (p = 0.103); however, the anthropogenically enriched ARGs identified 

according to a previous study (Zhang et al., 2021) showed higher abundance in urban air than 

background air at a global scale (p < 0.05). Besides, urban and background air samples exhibited 

considerable variance of ARG composition based on Bray−Curtis dissimilarity (p < 0.05, Figure 

6-4a). A series of indicator ARGs that effectively discriminated the airborne ARG profiles between 

urban and background areas were further identified based on LEfSe analysis (Figure 6-6a). The 

indicator ARGs in urban air belonged to various drug resistance types including vatE, ermC, ermF, 

ermX, erm(TR), and erm(36), conferring resistance to MLS; aph(3’)-Ⅰ, aac(3)-Ⅱ, aad(9), and 

ant(9)-Ⅰ, conferring resistance to aminoglycoside; tetZ, tetP, tetS, and tet(K), conferring resistance 

to tetracycline; emrB, qacG, and tolC, conferring resistance to multidrug; mecA and mecR1, 

conferring resistance to beta-lactam; and bleMBL, catB, fosB, and sul1, conferring resistance to 

other antibiotics (LDA score > 3.0, p < 0.05). At the same time, 9 indicator ARGs in background 

air belonged to beta-lactam, multidrug, peptide, and polymyxin resistance types. In general, the 

dominant urban airborne ARG indicators were the genes conferring resistance to pervasively used 

antibiotics, such as tetracycline, MLS, and aminoglycoside, which indicated that human activities, 

especially the use of antibiotics, contributed to the distribution and dissemination of ARGs (Figure 

6-6b).  

It was observed that air samples clustered according to their sampling sites and countries, showing 

different ARG compositions and abundance (Figure 6-4b). A report on global antibiotic use 

revealed that different countries owned different levels of antibiotic consumption and dependence 

(Klein et al., 2018) (Figure 6-7). Besides, the long-term exposure of bacteria to sub-minimum 

inhibitory concentrations (sub-MICs) of antibiotics led to a stepwise increase in their inhibitive 
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antibiotic concentrations (Marvasi et al., 2017), consistent with the finding that the relative 

abundances of airborne ARG types referred to five common antibiotic types were positively 

correlated with the global antibiotic consumption of corresponding antibiotic types in the previous 

study (Li et al., 2018). Given this perspective, the abundance of indicator ARGs in the global urban 

air should be higher in the countries with relevant antibiotic use. Concretely, we found three 

antibiotic consumptions that exhibited significantly positive impacts on the total urban abundances 

of urban indicator ARGs conferring resistance to the related antibiotics, respectively 

(aminoglycosides: R2 = 0.554, p < 0.001; tetracyclines: R2 = 0.526, p < 0.001; beta-lactam: R2 = 

0.568, p < 0.001), while the other indicator ARGs in global urban air which conferred resistance 

to multidrug, MLS, and chloramphenicol were negligibly affected by related antibiotic use but 

were driven by more complicated factors. (Figure 6-8). In particular, multidrug and MLS involve 

a variety of drugs, which cannot be directly reflected by antibiotic use. Therefore, the usage of 

aminoglycosides, tetracyclines, and beta-lactam in the clinic, agriculture, aquaculture, and other 

fields should be more prudent to reduce the exposure concentration and selective pressure of 

related indicator ARGs.  
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Figure 6-5 Comparison of airborne ARG abundance between urban and background areas across 

the globe. (a) Relative abundance of ARGs on class level across the globe. No significant 

differentiation in airborne ARG type abundance in urban and background areas (pregion = 0.103). 

(b) Relative abundance of anthropogenically enriched ARGs. 
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Figure 6-6 Indicator ARGs in urban and background air across the globe. (a) Major significantly 

discriminative ARGs and drug resistance types between urban air and background air samples as 
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revealed by an LEfSe analysis (LDA score [log10] > 3.0). (b) Heatmap showing the relative 

abundance profile of indicator ARG subtypes (normalized to the 16S rRNA gene, log10 

transformed) in urban and background air across global sampling locations. 

 

 

Figure 6-7 Geographic convergence of antibiotic use and total airborne ARG abundance by 

country at a global scale. (a) The total antibiotic use map and the relative abundance of total ARGs 

in the atmosphere. The amount of annually used antibiotics (defined daily doses/1000 people, 
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DDDs/1000 Pop) in 2015 in each country was proportional to the opacity of blue color. Each point 

indicated one country, rounded to the nearest degree, with point size reflecting the total abundances 

of airborne ARGs normalized to the 16S rRNA gene. (b) Global consumption and usage of 

antibiotics belonging to eight major classes in humans (Klein et al., 2018). 
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Figure 6-8 The linear regressions of total abundance of urban airborne indicator ARGs conferred 

resistance to various antibiotics with the corresponding antibiotic consumption by country. The 

significant correlation (Pearson, p < 0.001) is depicted using a dashed line. 

 

6.2.2 Source tracking of global airborne ARGs showing the importance of anthropogenic 

sources in urban air 

To further explore the influencing factors on airborne ARGs, the potential sources of airborne 

ARGs in various regions were predicted by SourceTracker2 (Knights et al., 2011) with the 

following assumptions: (1) there were no changes in the air dissimilation processes, and (2) there 

might not be other processes that could alter the original source profiles. Among the 16 major 

habitats, urban air exhibited more similarity to urban facilities (WWTPs and hospitals), while 

background air bore a closer relation to plant ecosystems (Figure 6-9a). Echoing the distinguished 

airborne ARG profiles between the urban and background sites (Figure 6-4a), their corresponding 

sources were also relatively different (Figure 6-9b). There appeared to be a dominant contribution 

of airborne ARGs from soil (19.1±11.3% in background and 11.4±9.2% in urban air) and plants 

(10.9±11.3% in background and 10.2±8.9% in urban air) among the identified sources. Hospitals 

(including air and sewage) and WWTPs (including air, sewage, and sludge) contributed a lot to 

urban airborne ARGs: 13.2±11.8% and 15.3±12.5%, respectively. As acknowledged ARG 

hotspots in urban areas (Wu et al., 2022; Xie et al., 2022), air particles emitted from WWTPs and 

hospitals could be major anthropogenic sources of ARGs in global human-impacted atmospheric 

environments, which may explain the higher abundance of anthropogenically-enriched ARGs in 

urban air (Figure 6-5b). In contrast to 55.72% and 68.41% of unknown sources of global airborne 
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bacteria in urban and background areas (Figure 4-13), only 11.6% and 31.9% of ARG sources 

were undetermined in global urban and background air, respectively, illustrating that source 

contributions showed the main determinant role in shaping the global distribution of airborne 

ARGs. Although human-related sources played relatively more important roles in shaping airborne 

bacterial communities (23.2%) than other potential sources, the ARG hotpots, including WWTPs, 

hospitals, and landfills, contributed an average of 38.25% to urban airborne ARGs, suggesting the 

higher importance of anthropogenic impacts on airborne ARGs. The inequality between the source 

profiles of bacteria and ARGs in the atmosphere might be caused by the different enriching abilities of 

bacteria with specific taxonomy from various sources to ARGs. 

 

Figure 6-9 Comparing ARG profiles in ambient air and with other habitats across the globe. (a) 

NMDS analysis of ARG profile at the ARG subtype level of different sample types across the 

globe used in source tracking. For comparison, we merged our ARG subtype table (n = 156 air 

samples) with the database of putative sources of airborne ARGs from various habitats such as the 

human surface (n = 29), human excretion (n = 241), drinking water (n = 7), freshwater (n = 75), 

ocean (n = 67), farm-related (n = 24), Antarctica soil (n = 6), forest soil (n= 27), grassland soil (n 
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= 3), agricultural soil (n = 10), landfill-related (n = 40), hospital-related (n = 25), plant (n = 24), 

and WWTPs-related (n = 122). Bray–Curtis distance was calculated to represent the dissimilarity 

of ARG profiles. (b) The percentage of airborne ARGs attributable to various potential sources 

determined by SourceTracker2 (Knights et al., 2011). 

 

6.3 Co-occurrence patterns of ARGs, MGEs, and potential hosts to indicate the 

environmental resistome risks 

To explore the genetic location of ARGs, 1.93 million generated contigs were de novo assembled 

from the high-quality cleaned reads in the global airborne metagenomic dataset. Moreover, the 

ARGs, MGE, and HVF were identified from the contigs, and the taxonomic information of contigs 

carrying ARGs was further annotated to recognize the potential ARG hosts. 

An analysis of 1.93 million assembled contigs across the global atmosphere showed that plasmids 

were found to be the dominant genetic locations for urban air ARG samples (Figure 6-10a). To 

sum up, the proportion of identified ARGs co-occurring with MGEs (i.e., integrons/transposons) 

on the same contig in the urban air (29.06%) was a little higher than background air (24.51%) 

(Figure 6-10b), in line with the previous study that interactions between ARGs and MGEs were 

enhanced by increasing air pollution (Zhu et al., 2021). Echoing the limited mobility of 

atmospheric ARGs, the corresponding potential mobile ARG profiles exhibited different patterns 

from all airborne ARGs detected in urban and background areas, respectively (Figure 6-11). The 

urban indicator ARGs showed higher mobility in urban air than background air, such as sul1, tet(K), 

and mecA, which co-occurred with MGEs in 67.6% of urban samples but only 18.7% of 

background samples. Besides ARGs conferring multidrug resistance playing commonly 
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preponderant roles in the two patterns, ARGs conferring resistance to rifamycin, and peptides 

dominated in the global atmospheric ARGs, while ARGs related to MLS and tetracycline 

collectively showed great importance in potential mobile ARG compositions. Moreover, among 

these potential mobile ARGs, the proportion of Rank I–II ARGs as the highest risk was much 

higher in urban air than in background air worldwide (Figure 6-12 and Appendix 4.2). For instance, 

bacA, lnuA, ErmB, and ErmC, reported to cause problems in hospitals, were frequently detected 

in potential mobile ARGs identified in urban air. These enriching ARGs with potential mobility 

and high risk to human health accelerated AMR dissemination and exacerbated the global threat. 

As shown in Figure 6-13, the taxonomic compositions of airborne bacterial community were 

significantly correlated with atmospheric AMR; nevertheless, the correlations showed different 

patterns between urban and background air. Additionally, the proportion of pathogens in the entire 

bacterial community was higher in urban air than the counterpart in background air, particularly 

the ESKAPE pathogens featuring the highest risk of mortality (Figure 5-8a), which perhaps further 

heighten AMR risks to human health in cities. To further explore the associations between airborne 

ARGs and bacteria, particularly human-related pathogens, we identified the potential ARG hosts 

based on assembled contigs. Proteobacteria, Actinobacteria, and Firmicutes were highly connected 

to airborne ARGs encountered in background sites, carrying 36.88%, 19.09%, and 16.05% of the 

total identified ARGs in the airborne bacterial community, respectively, while Firmicutes were 

observed to be the phylum that is most closely associated with airborne ARGs (44.12% of total 

identified ARGs) in human-impacted areas (Figure 6-14). At the species level, 17.3% (632/3654) 

of potential ARG hosts were identified as human pathogens, while only 5.0% (162/3232) of 

contigs located with ARGs showed potential carriage by pathogenic bacteria. Notably, those 

human pathogens that developed resistance to common antibiotic drugs, like ESKAPE and other 
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WHO priority pathogens in urgent need of new treatments, were frequently detected from these 

putative ARG carriers in urban air. For instance, S. aureus, Pseudomonas aeruginosa, and 

Acinetobacter baumannii were found to carry airborne ARGs in more than half of urban sampling 

sites, the exposure of which was of particular concern to human infection. 

To further rank resistome risks among samples, assembled contigs were processed by 

MetaCompare based on the co-occurrence of ARGs, MGEs, and putative pathogens annotated on 

the assembled contigs. Urban air (21.32±3.98) generally exhibited a higher resistome risk score 

than background air (19.35±1.17) (Figure 6-15), indicating that AMR in the urban samples was 

featured with higher abundance and the mobility of environmental resistomes and was hosted more 

by human pathogens than in background air samples. We hypothesized that the potential emission 

sources with higher anthropogenic enrichments of ARGs and pathogens could affect the 

surroundings and lead to a higher health risk. Moreover, any pathogenic bacteria harboring ARGs 

dwelling in the atmosphere could cause exposure and infection risks with inhalation, with a 

particular occurrence in urban areas; therefore, there is an urgent need to assess human health risks 

of potential environmental sources and control the leakage from the artificial sources with high 

AMR risks.  
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Figure 6-10 Mobility of ARGs across the global atmospheric environment. (a) The genetic 

locations of ARGs in bacterial genomes (unclassified fraction not shown). (b) Proportion of 

identified ARGs co-occurring with MGEs on the same contig. 
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Figure 6-11 Proportion and composition of ARGs and potential mobile ARGs (co-located with 

MGEs on one assembled contig) across the global air samples. 

 

Figure 6-12 Proportion of potential mobile ARGs with different health risk ranks in urban and 

background air. The risk ranks of each ARG were identified from a previous study (Zhang et al., 

2021). 
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Figure 6-13 The correlation of community structure between microbiome and ARGs via a 

Procrustes analysis (NMDS-based). 
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Figure 6-14 Detailed co-occurrence patterns of airborne ARGs and potentially mobile ARGs with 

their possible hosts in urban and background areas in Sankey diagrams, respectively. The left 

column shows whether the identified ARGs are co-localized with MGEs on the assembled contigs, 

and the middle and right columns are ARG classes and their potential hosts, respectively. 
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Figure 6-15 The AMR risk scores were estimated by using MetaCompare. The x, y, and z axes 

represent the portions of contigs concerning the ARGs, MGE-associated ARGs, and pathogen-

hosting ARGs to the total assembled contigs. The vertex indicates the theoretically highest AMR 

risk, and the mean relative-risk scores of urban and background samples were calculated 

respectively.  

 

6.4 Global AMR exposure hazards and risk ranking in the atmospheric environment 

To further clarify the relationship between airborne bacteria and ARGs, 156 and 72 non-redundant 

MAGs with high quality were generated from urban and background atmospheric environments 

across the globe (Figure 6-16), and the relative abundance of MAGs in global air samples varied 

from 1 to 1×105 genome copies per million reads on average and generally exhibited a higher value 

in TSP samples (Pairwise t-test, p < 0.05). This is reasonable, because the greater abundance and 
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diversity of bacteria in larger particles compared to other particle sizes has been demonstrated in 

previous studies (Lu et al., 2018; Stern et al., 2021). Accordingly, the abundance of PARB and 

HVF-PARB also decreased with the atmospheric particle size fraction. Nevertheless, lower 

abundance cannot be identified with lower hazards, because only those airborne bacteria associated 

with inhalable particles (e.g., PM2.5) can be transmitted from the air to the human respiratory 

system via inhalation and cause potential health risks.  

In urban air, there were 78 MAGs identified as PARB. Among them, Proteobacteria accounted for 

83.8% of the total abundance of all PARB metagenomic bins (44703.9 genome copies per million 

reads), and almost all Proteobacteria PARB bins were also identified as carrying HVFs, which 

aggravated the AMR risks in global urban air. The MAGs became less diverse in background air, 

and the proportion of PARB (30.5%) was lower than values in urban areas (50%). Particularly, the 

total abundance of PARB (urban=44703.9 vs. background=152.3 genome copies per million reads) 

and HVF-PARB (urban=37464.6 vs. background=98.0 genome copies per million reads) 

decreased by 2–3 orders of magnitude, emphasizing the importance of anthropogenic impacts to 

ARG enrichment and relevant risks.  

To label the importance of PARB more clearly to AMR risks for human beings, the concentrations 

of HVF-PARB detected in the global atmosphere were estimated. The mean concentration of 

HVF-PARB in the urban air (3.35 ± 3.57 genome copies/m3) was seven times higher than the 

estimation in background air (0.47 ± 0.56 genome copies/m3) (Figure 6-17a). The potential 

exposure risks of airborne pathogens were significantly higher in urban air than in background air 

(One-way ANOVA, F =6.4, p < 0.05, Figure 6-17a), which was consistent with the higher density 

of HVF-PARB in the urban air samples (52.65 ± 39.12 cells/m3) than background air samples 

(7.04 ± 5.47 cells/m3) (Figure 6-17b). The values corresponded to the total amounts of 
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789.75 ± 586.80 and 105.6 ± 82.05 cells of HVF-PARB that are transferred daily through human 

inhalation (15 m3/day) in urban and background areas, respectively. Notably, roughly 31% of the 

urban airborne bacteria were contributed by hospitals and WWTPs emerging as hotpots for ARGs 

(Rice et al., 2020) (Figure 6-9b), aggravating the potential AR hazards in cities. In summary, the 

higher daily intake rate of HVF-PARB cells in urban air was taken into consideration to conclude 

that humans were potentially infected by PARB at heightened risk in cities.  

The cell density of each HVF-PARB in the ambient air was quantified in each sampling site and 

showed regional differentiations (Figure 6-18), and each HVF-PARB showed a higher abundance 

in urban air than in background air. In particular, Ralstonia insidiosa and Acinetobacter junii were 

detected in all air samples, and their concentrations in urban air were significantly higher than in 

background air. It is noteworthy that Rothia dentocariosa, Acinetobacter johnsonii, S. aureus, 

Rickettsia felis, and Staphylococcus epidermidis only occurred in urban air, implying that various 

pathogenic infections might increase in cities. Despite the lowest mean concentration in all 

detected HVF-PARB, S. aureus could acquire resistance to most antibiotics in the clinic until now 

and was defined as a high-priority pathogen to support the research and development of new 

effective drugs by the WHO (Tacconelli et al., 2018). To construct the genotype-phenotype 

relationships and environmental-health linkage, we reconstructed a strain-level phylogenic tree 

based on MAG identified as S. aureus in this study and 182 new S. aureus isolate genomes, 

including both methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-sensitive 

Staphylococcus aureus (MSSA) from the seven most common sites of nosocomial infections 

(Manara et al., 2018) by using PhyloPhlAn 3.0 (Asnicar et al., 2020) (Figure 6-19). The MAG 

generated from ambient air samples was closely connected to 20 clinical MRSA isolates with 

distances less than 0.001 in the phylogenetic tree, which further verified the infection risks of 
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airborne S. aureus carrying ARGs. Moreover, mecC, one ARG with a surprisingly high prevalence 

in MRSA strains (García-Álvarez et al., 2011; Bengtsson et al., 2017), was detected in this MAG, 

heightening the threat of AMR inhalation risks. Also, the MAG generated from urban air showed 

closer genetic relationships with MRSA isolates retrieved from sputum samples, indicating a 

higher risk of chronic lung infections caused by airborne antibiotic-resistant S. aureus. Assuming 

that an adult inhales 15 m3/day air, the estimated inhalation amount of S. aureus varied from 0 to 

5700 cells per day (Figure 6-18). This is much lower than the infective dose of S. aureus, i.e., 

exceeds 100,000 cells/g, in food to produce an intoxication amount of enterotoxins (United States 

Food and Drug Administration) and the previous exposure doses of S. aureus, i.e., ranging from 

105 to 107 colony-forming units (CFU), to mice by intranasal instillation (Wang et al., 2016; 

Ashley et al., 2020). From a clinical point of view, however, the infective dose is also subject to 

the sensitivity of people, mode of transmission (e.g., direct contact with wounds), and virulence 

factors (e.g., enterotoxin serotypes). Nevertheless, S. aureus can also be carried both chronically 

and intermittently (Chmielowiec-Korzeniowska et al., 2020), together with continuous respiration, 

which might increase the respiratory infection risks with long-term exposure to S. aureus 

distributed in urban air. Thus, the low-dose and long-term inhalation exposures of S. aureus in 

mice in vivo are suggested in a chamber model to further identify safe concentrations of S. aureus 

in the air. 

 

 



179 

 

 



180 

 

Figure 6-16 Phylogenetic trees and distribution of the MAGs in urban (a) and background (b) 

atmosphere worldwide. Each MAG is color-coded at the phyla level. Among them, the bacterial 

taxa carrying high-risk ARGs are depicted in the shapes of red stars, and the genomes carrying 

HVF genes are marked using black stars. The darkness of the colors in the heatmaps outside the 

circle corresponds to the relative abundances of the MAGs (genome copies/per million reads) at 

the body site of greatest prevalence. 

 

Figure 6-17 (a) Comparison of HVF-PARB concentration (genome copies/m3) in urban and 

background air samples. (b) Comparison of cell densities of HVF-PARB (cells/m3) in the urban 

and background air samples in this study.  
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Figure 6-18 Regional comparisons of the concentrations (cells/m3) of identified HVF-PARB in 

the MAGs generated from global air samples. 
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Figure 6-19 Phylogenetic tree of 182 S. aureus strains from a pediatric hospital (Manara et al., 

2018) and MAG identified as S. aureus in this study reconstructed by PhyloPhlAn 3.0 (Asnicar et 

al., 2020). Each isolate is color-coded by types of resistant antibiotics, including both MRSA and 

MSSA. The label of each branch represents the seven most common sites of hospital infections for 

S. aureus, including airways (bronchial aspirates, sputum, or oropharyngeal and nasal swabs) or 

soft-tissue and skin lesions. The size of purple circles internal to the phylogeny represents the 

bootstrap of subtrees. 
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6.5 Community-level identification of HT-ARGs 

HGT between organisms is thought to show the importance of driving microbial evolution and 

adaptation, such as the development of antibiotic resistance and virulence (Ochman et al., 2000). 

In this study, we identified community-level HGT through the combination of best-match and 

phylogenetic approaches by using MetaChip within two global airborne bacterial communities 

(156 and 72 genome bins in urban and background air) (Song et al., 2019); therefore, 951 and 463 

gene flows were predicted with specific taxonomic information and transfer direction in urban and 

background air, respectively (Figure 6-20a and Figure 6-20b). Not surprisingly, the number of 

HGT detected in the two communities was proportional to the number of MAGs it contained, 

showing a similar probability of occurrence. High rates of HGT within the pathogen-associated 

orders Rhizobiales, Burkholderiales (Riera-Ruiz et al., 2014), and Sphingomonadales (Glaeser and 

Kämpfer, 2014) were described in global airborne bacterial communities. Moreover, HGT was 

likely to occur between two closely related taxa, which was generally consistent with previous 

findings (Bolotin and Hershberg, 2017). For example, a genome bin of the Burkholderiales was 

also discovered to more frequently share HGT with Rhizobiales and Pseudomonadales. 

To identify and track the directionality of HT-ARGs, we performed the annotation of AMR-related 

genes identified in the HGT analysis based on DeepARG databases (Das et al., 2022). We found 

that HGT associated with ARGs occurred more frequently within bacteria associated with human 

virulent factors, especially in urban air, accounting for 88.5% of recipient bacteria involved in each 

HGT event, which posed an elevated risk to human health (Figure 6-20c and Figure 6-20d). 

Additionally, the urban airborne bacteria estimated to be engaged in ARG transfer were found to 

be enriched with Burkholderiales, Cyanobacteriales, and Sphingomonadales, and showed a 

greater proportion in the whole community than the counterpart in background air (2.4 and 0.1 
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genome copies/m3 in urban and background areas, respectively). As expected, urban air tended to 

be detected a larger portion of HT-ARGs among MetaCHIP-predicted HGTs (5.5%) than 

background air (2.3%) (Figure 6-20e and Figure 6-20f). We further classified and quantified these 

HT-ARGs according to their risk ranking and corresponding resistant antibiotics, and the two 

datasets represented remarkably consistent profiles of HT-ARGs, with dominant classes of 

multidrug, MLS, and glycopeptides. Still, the highest-risk ARGs, such as bacA resistant to 

bacitracin, were only detected in urban airborne HT-ARGs, revealing an increasing health risk to 

humans. The comprehensive analysis of HT-ARGs and the identification of related donors and 

recipients provided substantial value in targeting environmental monitoring efforts towards 

tracking mobile ARGs and contributed to stopping the spread of antibiotic resistance directly. 
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Figure 6-20 Community-level identification and the analysis of HT-ARGs. Predicted gene flow 

within the urban (a) and background (b) bacterial communities. Bands connect donors and 

recipients, with the width of the band correlating to the number of HGTs and the color 
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corresponding to the donors. Heatmaps showing the mean relative abundance of bacterial orders 

estimated to be engaged in ARG transfer across the samples collected in urban (c) and background 

air (d). Bacterial recipients involved in HGT were counted by HBPs and NPB, respectively. The 

percentage of HT-ARGs detected among urban (c) and background (d) HGT events. The HT-

ARGs were classified and quantified based on risk ranking and resistant antibiotic types. 

 

6.6 Summary 

To the best of our knowledge, this study provides the first comprehensive atlas of global ARG 

distribution and assessment of AMR risks in atmospheric environments, which would contribute 

to public health management and improve decision-making at the intersection of clinics and 

environments. In particular, the risks to public health were evaluated based on the abundance, 

mobility, and host pathogenicity of ARGs from a regional perspective. Also, 88.4% and 68.1% of 

airborne ARGs were contributed by other ecosystems in global urban and background areas, 

respectively, illustrating that the airborne ARG distributions were mainly impacted by source 

contributions. Furthermore, a genome-resolved “panorama” of AMR was described, in which the 

bacterial density and daily inhalation of each HVF-PARB were quantified. Notably, the S. aureus 

MAG carrying mecC was detected in urban air samples and showed close genetic relationships 

with MRSA isolated from the clinic. Additionally, HGT associated with ARGs between organisms 

was further identified to benefit from targeting atmospheric monitoring efforts towards tracking 

mobile ARGs. The major results of this chapter are provided below. 
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a) In this chapter, 747 ARGs (28 drug classes of antibiotics) were detected in the global ambient 

air; most of them (n=565) conferred multiple drug resistances. A core ARG set (n=39) was 

determined based on the abundance and occupancy in the global dataset and accounted for 

61.2±11.8% of the sequences in all air samples. Moreover, the similar ARG profiles on drug 

resistance types, together with the significant overlap of (core) ARGs in the global 

atmospheric, aquatic, and terrestrial ecosystems, illustrated the high communicability and 

universality of ARGs in natural environments. 

b) The different profiles and abundance of ARGs and pathogens between urban and background 

air indicated the importance of anthropogenic effects on airborne AMR risks. The abundance 

of urban indicator ARGs was largely affected by relevant antibiotic consumptions, particularly 

aminoglycoside, tetracycline, and beta-lactam, raising the importance of the appropriate use 

of these drugs. 

c) The major contributors of ARGs in urban air were common ARG hotpots, like WWTPs 

(16.4%), hospitals (14.6%), and landfills (7.2%), which partially explained the higher risk 

rank of urban airborne ARGs than the counterparts in background air. This finding highlights 

the dissemination of ARGs and their bacterial hosts from typical ARG hotpots to the ambient 

atmosphere, which might result in potential health implications through inhalation. 

d) The bacterial density of HVF-PARB in the urban air (52.65±39.12 cells/m3) was around 7 

times higher than the counterpart in background air (7.04±5.47 cells/m3); thus, humans living 

in cities were potentially infected by PARB at heightened risk. Notably, the mecC-hosting S. 

aureus genome closely associated with strain isolates in hospital infections was frequently 

detected in urban air, providing a warning that AMR threats would be higher than expected. 



188 

 

e) The urban airborne bacteria estimated to be engaged in ARG transfer were found to be 

enriched with Burkholderiales, Cyanobacteriales, and Sphingomonadales and showed a 

greater abundance in the entire community (2.4 genome copies/m3) than the counterpart in 

background air (0.1 genome copies/m3). 

This chapter conducted a global metagenomic dataset (~1.33 TB) based on 262 air samples 

worldwide to reveal the distribution and dissemination of 747 airborne ARGs as well as their 

potential hosts. The results showed that anthropogenic impacted air was being polluted by ARGs, 

particularly those emitted from surrounding hospitals and WWTPs, which are known as AMR 

urban hotspots. Moreover, different areas were challenged with varying infected health risks 

related to airborne ARGs or PARB via inhalation, indicating the targeted control countermeasures 

to specific ARGs and pathogens from urban sources, environmental dissemination, to human 

inhalation risks. In light of the global disparities in airborne AMR risks and the associated AMR 

burden, this study highlighted the global significance of the airborne transmission of ARGs and 

the urgent need to involve biological parameters such as ARGs or ARB in current air quality 

standards on public health.  
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Chapter 7 Conclusions and Recommendations 

7.1 Overall summary and major conclusions 

As the first attempt of systematic study concerning bacterial communities, ARG profiles, and ARG 

hosting bacteria and pathogens, in the global atmosphere, this thesis specifically investigated (1) 

the biogeographic patterns of global airborne bacterial communities and their interconnections 

with Earth’s microbiomes; (2) the mechanisms driving the global patterns of airborne bacterial 

structure and distribution via environmental and anthropogenic perspectives; and (3) the 

comprehensive atlas of AMR in global ambient air and the related risks to human health. The main 

findings of the thesis are as follows: 

a) By encompassing global bacterial communities of the three largest ecosystem types (i.e., 

atmospheric, oceanic, and terrestrial systems), the uniform latitudinal bacterial diversity 

pattern was discovered to show the maximin microbial richness in the mid-latitude regions of 

the world. Besides, this study also revealed that the atmosphere harbors a unique core bacterial 

community, but a less stable structure compared to terrestrial and marine ecosystems. 

b) The global airborne bacterial communities showed as complex and dynamic structure as 

bacterial assemblages in the other two largest ecosystems, terrestrial and aquatic environments, 

and the importance of airborne bacteria in the Earth’s microbiomes was ascertained according 

to the close interrelationships of bacteria in various habitats and nearly half of airborne 

bacterial contributions from other ecosystems.  

c) Even though air is a highly flowing ecosystem enabling long transport and dynamic 

procedures over geographic barriers, the structure of airborne bacterial communities appeared 
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to be driven more by local environments, especially the potential source contribution and air 

quality dominated by human activities, which is in contrast to conventional wisdom. The 

anthropogenic impacts on airborne bacteria were mainly reflected in fewer biomass loadings, 

higher pathogenic abundance, a less stabilized network structure, and bacterial phenotype 

differentia, with the mechanisms of reduced environmental filtering effects and elevated 

human-related source contributions. 

d) This thesis conducted a systematic and targeted surveillance of quantified antibiotic resistance 

risks across the global ambient air for both spatial and seasonal patterns, revealing that urban 

air is being polluted by ARGs, particularly those emitted from surrounding hospitals and 

WWTPs, which are known as urban AMR sources. Furthermore, each area (country) 

inevitably faced challenges with varying threats related to airborne ARGs or PARB via 

inhalation, contributing to the public policy of targeted control to specific ARGs and 

pathogens frequently occurring in specific regions. 

e) This study emphasized the anthropogenic impacts on AMR and revealed the more closely 

related infection risks in urban air based on the higher mobility of ARGs and more inhaled 

HVF-PARB (averagely 53 genome copies) daily in cities. Besides, S. aureus genomes 

associated with mecC identified in urban air showed closer genetic relationships with strains 

isolated from hospital infections, further verifying the inhalation threats of AMR to public 

health. 

 

7.2 Limitations of the current study and future perspectives 
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Although the structures and distributions of the airborne bacterial community and ARG profiles 

were well documented on a global scale and extended to the ecological mechanisms shaping 

biogeographic patterns and risks of AMR to human health, which could be more integrated than 

the previous regional studies that mainly explored the dynamics of airborne bacteria and ARGs, 

the current results are restricted by certain aspects like sample amount, sampling period, models 

and experimental techniques applied, experimental settings, etc. The limitations of the current 

study and the relevant suggestions for future perspective are briefly discussed below: 

a) This study mainly focused on the ecological mechanisms shaping biogeographic patterns, 

however, the evolutionary mechanisms were not mentioned due to the short span of sampling 

time, which was around one year. Evolutionary processes also drive microbial biogeography 

and even take place on ecological scales due to changing environments. For instance, 

microbial responses are classified into two groups: non-evolutionary changes (e.g., phenotypic 

plasticity, shifting metabolic states, and microbial interactions) and evolutionary changes (i.e., 

adaptation), and adaptation can be regarded as the dynamic evolutionary process, which fits 

microbes to their living environments (Bradford et al., 2008). When climate changes or other 

external disturbances cause the departure of microbes from their beneficial conditions or 

tolerance zones, microbes may develop new characteristics in terms of cell structure, 

physiology, or behaviors to shift their survival limitation on an evolutionary timescale. The 

adaptation occurs on an evolutionary scale and emphasizes functional changes over multiple 

generations(Gunde-Cimerman et al., 2018). As a result, for bridging micro-scale mechanisms 

and macro-scale biogeographic patterns of microbial abundance, diversity, and functions, 

systematic sampling work with a longer period (around 10 years) should be conducted, which 

will benefit a comprehensive understanding of mechanisms shaping various macroecological 
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patterns and bacterial community structures in the future. 

b) The composition and abundance of potential pathogens have been analyzed and quantified 

based on two mainstream methods: 16S rRNA gene sequencing data via 16SPIP and 

metagenomic sequencing data according to the pathogen list (species level) summarized by 

previous studies, which revealed similar results. However, more accurate quantitative 

diagnostic methods are still required in future studies. Besides, it is well-known that 

conventional culture-based methods could only provide an incomplete and biased view of the 

biodiversity of the microbiomes, as the majority of the pathogenic species are not able to be 

cultivated. To overcome the above disadvantages, culture-independent molecular methods, 

such as pathogen-specific real-time PCR analysis, are recommended as a sensitive and precise 

technique for an extensive quantitative evaluation of pathogens in ambient air for a future 

perspective. 

c) This study constructed a co-occurrence network of global airborne bacterial community; 

however, it was still unclear how accurately the constructed network represented the real-

world systems. To quantitatively disentangle direct and indirect relationships, iDIRECT is 

suggested to be applied in network analysis for the effective removal of spurious links and 

overcoming of overestimated direct association strength caused by indirect influences (Xiao 

et al., 2022). Additionally, association networks are also recommended to be performed to 

assess the relative importance of biotic interactions, abiotic filtering, and dispersal in shaping 

airborne bacterial community diversity and dynamics (Yuan et al., 2021). 

d) This study only focused on the community and function prediction level and AMR-related 

risks; for future perspectives, we suggested probing the metabolically active bacterial 
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community with respect to their function in the atmosphere (e.g., ice-nucleating, pollutant 

transformation, etc.) and impacts on human health from multiple aspects (e.g., benefits arise 

from healthful bacteria communities/secondary metabolites, and/or hazardous effects such as 

allergens, etc.), while expanding the scope of airborne microbiome (e.g., fungi, viruses, etc.) 

to enrich the field of bioaerosols and atmospheric science in relation to human health as well 

as contributing to the moving frontier of Earth’s microbiome. 

e) The evaluation of ARG mobility and dissemination should also consider the extracellular 

fraction of airborne ARGs (He et al., 2021) as well as the phage-mediated process (Sun et al., 

2022). As increasing evidence suggests that phages are a potential reservoir of ARG and serve 

as vectors in diverse environments, it is necessary to assess the magnitude of their relative 

HGT contributions and further prioritize associated mitigation and risk management efforts. 

f) Although PARB has been identified based on both assembled contigs and MAGs, this is only 

a projection. As a result, culture-based methods are required to confirm the existence and 

viability of PARB identified in this study and the expression of antibiotic resistance, as well 

as to verify the existing transmission of ARGs via HGT in future studies. The results of 

culture-dependent experiments will contribute to providing solid evidence beyond inferences 

derived from metagenomic data and a better understanding of ARG linkage to specific host 

species.  

g) Based on estimations of the intake rate of AMR material, future risk assessments of AMR 

threats should consider the disparities in relation to human immunological responses to 

multiple AMR exposure pathways (respiration vs. digestion systems), particularly from the 

“One Health” perspective. Furthermore, the observation of respiratory infections needs to be 
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verified by connecting airborne AMR materials and human lung epithelial cells. 
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Appendix 1 

This section provides the basic sampling information, sequence number, and bacterial richness of air samples used to organize the 

global airborne bacterial dataset in this study. 

No. Sample ID Location Lat Lng ASL Time Temp. Primer Type Ref. Rich. Seq. 

1 CB13aut Mt. Changbai, China 42.4 128.1 741 2013_aut 5.16 341F/806R PM2.5 This study 409 163641 

2 CB13win Mt. Changbai, China 42.4 128.1 741 2013_win -12.44 341F/806R PM2.5 This study 1397 420614 

3 CB14spr Mt. Changbai, China 42.4 128.1 741 2014_spr 5.78 341F/806R PM2.5 This study 542 171567 

4 CB14sum Mt. Changbai, China 42.4 128.1 741 2014_sum 18.94 341F/806R PM2.5 This study 322 63488 

5 HT13win Hong Kong, China 22.12 114.15 50 2013_win 16.94 341F/806R PM2.5 This study 412 190718 

6 HT14spr Hong Kong, China 22.12 114.15 50 2014_spr 19.87 341F/806R PM2.5 This study 308 99493 

7 HT14sum Hong Kong, China 22.12 114.15 50 2014_sum 28.47 341F/806R PM2.5 This study 431 191164 

8 HT14aut Hong Kong, China 22.12 114.15 50 2014_aut 28.18 341F/806R PM2.5 This study 309 89063 

9 AL14sum Mt. Ailao, China 24.53 101.02 2450 2014_sum 21.8 341F/806R PM2.5 This study 492 213867 

10 AL14aut Mt. Ailao, China 24.53 101.02 2450 2014_aut 16.41 341F/806R PM2.5 This study 595 303164 

11 AL14win Mt. Ailao, China 24.53 101.02 2450 2014_win 11.43 341F/806R PM2.5 This study 683 232175 

12 AL15spr Mt. Ailao, China 24.53 101.02 2450 2015_spr 18.68 341F/806R PM2.5 This study 757 161985 

13 WL14aut Waliguan, China 36.29 100.9 3816 2014_aut 11.3 341F/806R PM2.5 This study 2242 433152 

14 WL14win Waliguan, China 36.29 100.9 3816 2014_win -4.16 341F/806R PM2.5 This study 2487 427621 

15 WL15spr Waliguan, China 36.29 100.9 3816 2015_spr 7.12 341F/806R PM2.5 This study 2513 404701 

16 WL15sum Waliguan, China 36.29 100.9 3816 2015_sum 15.41 341F/806R PM2.5 This study 2260 285751 

17 ML15win Bachok, Malaysia 6.01 102.43 10 2015_win 27.49 341F/807R TSP This study 366 41619 

18 ML16spr Bachok, Malaysia 6.01 102.43 10 2016_spr 29.21 341F/808R TSP This study 354 48699 

19 ML16sum Bachok, Malaysia 6.01 102.43 10 2016_sum 28.21 341F/809R TSP This study 226 50541 

20 ML16aut Bachok, Malaysia 6.01 102.43 10 2016_aut 27.65 341F/810R TSP This study 690 49536 

21 TL15win Phitsanulok, Thailand 16.75 100.2 47 2015_win 26.2 341F/811R TSP This study 562 44645 

22 TL16spr Phitsanulok, Thailand 16.75 100.2 47 2016_spr 32.33 341F/812R TSP This study 493 44285 

23 TL16sum Phitsanulok, Thailand 16.75 100.2 47 2016_sum 29.06 341F/813R TSP This study 521 48017 

24 TL16aut Phitsanulok, Thailand 16.75 100.2 47 2016_aut 27.88 341F/814R TSP This study 305 50152 

25 TH16spr Guangzhou, China 23.15 113.36 36 2016_spr 21.88 341F/806R PM2.5 This study 1007 17480 

26 TH16sum Guangzhou, China 23.15 113.36 36 2016_sum 22.29 341F/806R PM2.5 This study 1130 11805 
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27 TH16aut Guangzhou, China 23.15 113.36 36 2016_aut 20.26 341F/806R PM2.5 This study 1281 14151 

28 TH16win Guangzhou, China 23.15 113.36 36 2016_win 15.54 341F/806R PM2.5 This study 1370 19615 

29 TH17spr Guangzhou, China 23.15 113.36 36 2017_spr 21.6 341F/806R PM2.5 This study 1291 15310 

30 CH16spr Guangzhou, China 23.65 113.62 21 2016_spr 21.17 341F/806R PM2.5 This study 1079 17764 

31 CH16sum Guangzhou, China 23.65 113.62 21 2016_sum 27.23 341F/806R PM2.5 This study 1300 17960 

32 CH16aut Guangzhou, China 23.65 113.62 21 2016_aut 22.65 341F/806R PM2.5 This study 1005 19623 

33 CH16win Guangzhou, China 23.65 113.62 21 2016_win 15.24 341F/806R PM2.5 This study 851 20994 

34 CH17spr Guangzhou, China 23.65 113.62 21 2017_spr 20.71 341F/806R PM2.5 This study 788 24043 

35 HS16spr Guangzhou, China 22.71 112.92 33 2016_spr 22.06 341F/806R PM2.5 This study 817 22347 

36 HS16sum Guangzhou, China 22.71 112.92 33 2016_sum 28.57 341F/806R PM2.5 This study 690 6292 

37 HS16aut Guangzhou, China 22.71 112.92 33 2016_aut 24.59 341F/806R PM2.5 This study 1046 12331 

38 HS16win Guangzhou, China 22.71 112.92 33 2016_win 16.55 341F/806R PM2.5 This study 1080 22590 

39 HS17spr Guangzhou, China 22.71 112.92 33 2017_spr 21.19 341F/806R PM2.5 This study 711 16773 

40 LS16spr Nanjing, China 31.33 119.01 15 2016_spr 20.3 341F/806R PM2.5 This study 446 43618 

41 LS16sum Nanjing, China 31.33 119.01 15 2016_sum 26.92 341F/806R PM2.5 This study 1009 45075 

42 LS16aut Nanjing, China 31.33 119.01 15 2016_aut 12.16 341F/806R PM2.5 This study 1268 59441 

43 LS16win Nanjing, China 31.33 119.01 15 2016_win 7.17 341F/806R PM2.5 This study 1302 51711 

44 LS17spr Nanjing, China 31.33 119.01 15 2017_spr 21.09 341F/806R PM2.5 This study 844 44464 

45 XW16spr Nanjing, China 32.06 118.8 30 2016_spr 20.54 341F/806R PM2.5 This study 760 51098 

46 XW16sum Nanjing, China 32.06 118.8 30 2016_sum 27.36 341F/806R PM2.5 This study 787 47002 

47 XW16aut Nanjing, China 32.06 118.8 30 2016_aut 12.31 341F/806R PM2.5 This study 840 56961 

48 XW16win Nanjing, China 32.06 118.8 30 2016_win 7.61 341F/806R PM2.5 This study 875 44859 

49 XW17spr Nanjing, China 32.06 118.8 30 2017_spr 21.69 341F/806R PM2.5 This study 912 42833 

50 PK16spr Nanjing, China 32.12 118.42 51 2016_spr 16.25 341F/806R PM2.5 This study 1147 52325 

51 PK16sum Nanjing, China 32.12 118.42 51 2016_sum 27.05 341F/806R PM2.5 This study 962 69117 

52 PK16aut Nanjing, China 32.12 118.42 51 2016_aut 17.76 341F/806R PM2.5 This study 973 62165 

53 PK16win Nanjing, China 32.12 118.42 51 2016_win 6.43 341F/806R PM2.5 This study 1126 60214 

54 PK17spr Nanjing, China 32.12 118.42 51 2017_spr 16.76 341F/806R PM2.5 This study 989 40831 

55 IAP16spr Beijing, China 39.98 116.38 56 2016_spr 18.31 341F/806R PM2.5 This study 2097 28792 

56 IAP16sum Beijing, China 39.98 116.38 56 2016_sum 25.85 341F/806R PM2.5 This study 1134 40471 

57 IAP16aut Beijing, China 39.98 116.38 56 2016_aut 12.38 341F/806R PM2.5 This study 1304 40121 

58 IAP16win Beijing, China 39.98 116.38 56 2016_win 0.4 341F/806R PM2.5 This study 704 40369 

59 IAP17spr Beijing, China 39.98 116.38 56 2017_spr 7.77 341F/806R PM2.5 This study 1753 17545 
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60 PKU16win Beijing, China 39.99 116.36 56 2016_win 0.4 341F/806R PM2.5 This study 1575 38329 

61 PKU17spr Beijing, China 39.99 116.36 56 2017_spr 3.23 341F/806R PM2.5 This study 2160 34987 

62 PKU17sum Beijing, China 39.99 116.36 56 2017_sum 23 341F/806R PM2.5 This study 1502 39208 

63 PKU17aut Beijing, China 39.99 116.36 56 2017_aut 25.74 341F/806R PM2.5 This study 1128 40123 

64 PKU17win Beijing, China 39.99 116.36 56 2017_win 0.45 341F/806R PM2.5 This study 2541 39560 

65 HK17win Hong Kong, China 22.31 114.18 87 2017_win 18.55 341F/806R PM2.5 This study 522 276284 

66 HK18spr Hong Kong, China 22.31 114.18 87 2018_spr 23.67 341F/806R PM2.5 This study 420 297849 

67 HK18sum Hong Kong, China 22.31 114.18 87 2018_sum 29.6 341F/806R PM2.5 This study 423 204011 

68 HK18aut Hong Kong, China 22.31 114.18 87 2018_aut 26.76 341F/806R PM2.5 This study 191 77145 

69 ME17win Mt. Everest, China 28.21 86.56 4276 2017_win -2.42 341F/806R PM2.5 This study 1880 378773 

70 ME18spr Mt. Everest, China 28.21 86.56 4276 2018_spr 5.1 341F/806R PM2.5 This study 1001 310189 

71 ME18sum Mt. Everest, China 28.21 86.56 4276 2018_sum 10.78 341F/806R PM2.5 This study 259 204085 

72 ME18aut Mt. Everest, China 28.21 86.56 4276 2018_aut 7.13 341F/806R PM2.5 This study 612 408329 

73 HR18sum Beijing, China 40.4 116.69 90 2018_sum 25.67 341F/806R PM2.5 This study 492 414332 

74 HR18aut Beijing, China 40.4 116.69 90 2018_aut 9.54 341F/806R PM2.5 This study 1383 444116 

75 HR18win Beijing, China 40.4 116.69 90 2018_win -2.3 341F/806R PM2.5 This study 2082 458648 

76 HR19spr Beijing, China 40.4 116.69 90 2019_spr 11.67 341F/806R PM2.5 This study 404 418055 

77 AMS S1 Amsterdam-Island, France -37.81 77.55 59 10/9/2016 20.33 338F/518R PM10 Romie et al. 2019 628 35253 

78 AMS S2 Amsterdam-Island, France -37.81 77.55 59 17/9/2016 21.9 338F/518R PM10 Romie et al. 2019 876 28328 

79 AMS S3 Amsterdam-Island, France -37.81 77.55 59 24/9/2016 20.46 338F/518R PM10 Romie et al. 2019 917 47777 

80 AMS S4 Amsterdam-Island, France -37.81 77.55 59 1/10/2016 17 338F/518R PM10 Romie et al. 2019 703 23164 

81 AMS S5 Amsterdam-Island, France -37.81 77.55 59 8/10/2016 15.49 338F/518R PM10 Romie et al. 2019 660 46143 

82 AMS S6 Amsterdam-Island, France -37.81 77.55 59 14/10/2016 13.81 338F/518R PM10 Romie et al. 2019 697 31435 

83 AMS S7 Amsterdam-Island, France -37.81 77.55 59 21/10/2016 9.09 338F/518R PM10 Romie et al. 2019 280 48994 

84 AMS S8 Amsterdam-Island, France -37.81 77.55 59 28/10/2016 6.92 338F/518R PM10 Romie et al. 2019 676 43961 

85 AMS S9 Amsterdam-Island, France -37.81 77.55 59 4/11/2016 6.11 338F/518R PM10 Romie et al. 2019 591 15877 

86 CAP S1 Cape Point, South Africa -34.36 18.5 230 14/10/2016 14.6 338F/518R PM10 Romie et al. 2019 258 18629 

87 CAP S2 Cape Point, South Africa -34.36 18.5 230 21/10/2016 14.25 338F/518R PM10 Romie et al. 2019 596 72367 

88 CAP S3 Cape Point, South Africa -34.36 18.5 230 28/10/2016 16.56 338F/518R PM10 Romie et al. 2019 577 69838 

89 CAP S4 Cape Point, South Africa -34.36 18.5 230 4/11/2016 15.61 338F/518R PM10 Romie et al. 2019 647 85746 

90 CAP S5 Cape Point, South Africa -34.36 18.5 230 11/11/2016 18.64 338F/518R PM10 Romie et al. 2019 598 63292 

91 CAP S6 Cape Point, South Africa -34.36 18.5 230 18/11/2016 16.61 338F/518R PM10 Romie et al. 2019 575 64081 

92 CAP S7 Cape Point, South Africa -34.36 18.5 230 25/11/2016 18.99 338F/518R PM10 Romie et al. 2019 695 71044 
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93 CHC S1 Chacaltaya, Bolivia -16.35 -68.13 5380 1/7/2016 9.56 338F/518R PM10 Romie et al. 2019 754 53454 

94 CHC S10 Chacaltaya, Bolivia -16.35 -68.13 5380 9/9/2017 11.96 338F/518R PM10 Romie et al. 2019 811 112160 

95 CHC S11 Chacaltaya, Bolivia -16.35 -68.13 5380 16/9/2016 12.6 338F/518R PM10 Romie et al. 2019 781 4567 

96 CHC S12 Chacaltaya, Bolivia -16.35 -68.13 5380 23/9/2016 15.09 338F/518R PM10 Romie et al. 2019 519 11374 

97 CHC S13 Chacaltaya, Bolivia -16.35 -68.13 5380 30/9/2016 15.2 338F/518R PM10 Romie et al. 2019 870 112541 

98 CHC S14 Chacaltaya, Bolivia -16.35 -68.13 5380 14/10/2016 14.6 338F/518R PM10 Romie et al. 2019 400 21405 

99 CHC S15 Chacaltaya, Bolivia -16.35 -68.13 5380 21/10/2016 14.25 338F/518R PM10 Romie et al. 2019 702 52131 

100 CHC S16 Chacaltaya, Bolivia -16.35 -68.13 5380 28/10/2016 16.56 338F/518R PM10 Romie et al. 2019 834 8336 

101 CHC S2 Chacaltaya, Bolivia -16.35 -68.13 5380 8/7/2016 19.82 338F/518R PM10 Romie et al. 2019 883 109139 

102 CHC S3 Chacaltaya, Bolivia -16.35 -68.13 5380 15/7/2016 12.51 338F/518R PM10 Romie et al. 2019 774 53274 

103 CHC S4 Chacaltaya, Bolivia -16.35 -68.13 5380 29/7/2016 12.67 338F/518R PM10 Romie et al. 2019 546 14004 

104 CHC S5 Chacaltaya, Bolivia -16.35 -68.13 5380 5/8/2016 12.35 338F/518R PM10 Romie et al. 2019 698 51261 

105 CHC S6 Chacaltaya, Bolivia -16.35 -68.13 5380 12/8/2016 11.29 338F/518R PM10 Romie et al. 2019 681 95248 

106 CHC S7 Chacaltaya, Bolivia -16.35 -68.13 5380 19/8/2016 12.65 338F/518R PM10 Romie et al. 2019 677 53277 

107 CHC S8 Chacaltaya, Bolivia -16.35 -68.13 5380 26/08/2016 9.14 338F/518R PM10 Romie et al. 2019 905 68796 

108 CHC S9 Chacaltaya, Bolivia -16.35 -68.13 5380 2/9/2016 12.9 338F/518R PM10 Romie et al. 2019 754 28162 

109 GRE S16 Grenoble, France 45.19 5.76 210 3/7/2017 23.32 338F/518R PM10 Romie et al. 2019 452 16179 

110 GRE S17 Grenoble, France 45.19 5.76 210 10/7/2017 22.45 338F/518R PM10 Romie et al. 2019 377 21143 

111 GRE S18 Grenoble, France 45.19 5.76 210 17/7/2017 21.56 338F/518R PM10 Romie et al. 2019 563 19996 

112 GRE S19 Grenoble, France 45.19 5.76 210 24/7/2017 20.23 338F/518R PM10 Romie et al. 2019 803 11923 

113 GRE S20 Grenoble, France 45.19 5.76 210 31/07/2017 24.73 338F/518R PM10 Romie et al. 2019 839 23281 

114 GRE S21 Grenoble, France 45.19 5.76 210 7/8/2017 17.91 338F/518R PM10 Romie et al. 2019 725 13277 

115 GRE S22 Grenoble, France 45.19 5.76 210 14/8/2017 21.56 338F/518R PM10 Romie et al. 2019 644 25325 

116 GRE S23 Grenoble, France 45.19 5.76 210 21/8/2017 21.72 338F/518R PM10 Romie et al. 2019 770 15392 

117 GRE S24 Grenoble, France 45.19 5.76 210 28/8/2017 19.32 338F/518R PM10 Romie et al. 2019 839 22239 

118 GRE S25 Grenoble, France 45.19 5.76 210 4/9/2017 17.09 338F/518R PM10 Romie et al. 2019 662 12470 

119 NAM S1 Namco, China 30.78 91 4730 17/5/2017 5.28 338F/518R PM10 Romie et al. 2019 547 14153 

120 NAM S2 Namco, China 30.78 91 4730 25/5/2017 5.74 338F/518R PM10 Romie et al. 2019 638 15715 

121 NAM S3 Namco, China 30.78 91 4730 2/6/2017 7.49 338F/518R PM10 Romie et al. 2019 506 15944 

122 NAM S4 Namco, China 30.78 91 4730 13/6/2017 9.65 338F/518R PM10 Romie et al. 2019 555 14988 

123 NAM S5 Namco, China 30.78 91 4730 20/6/2017 8.72 338F/518R PM10 Romie et al. 2019 515 7830 

124 NAM S7 Namco, China 30.78 91 4730 7/7/2017 10.01 338F/518R PM10 Romie et al. 2019 681 14015 

125 NAM S8 Namco, China 30.78 91 4730 14/7/2017 11.53 338F/518R PM10 Romie et al. 2019 833 21432 
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126 NAM S9 Namco, China 30.78 91 4730 21/7/2017 11.01 338F/518R PM10 Romie et al. 2019 622 16796 

127 PDD S1 PuydeDôme, France 45.77 2.97 1465 29/6/2016 20.09 338F/518R PM10 Romie et al. 2019 444 28056 

128 PDD S10 PuydeDôme, France 45.77 2.97 1465 1/9/2016 21.89 338F/518R PM10 Romie et al. 2019 369 17925 

129 PDD S11 PuydeDôme, France 45.77 2.97 1465 7/9/2016 22.28 338F/518R PM10 Romie et al. 2019 434 14885 

130 PDD S12 PuydeDôme, France 45.77 2.97 1465 14/9/2016 15.2 338F/518R PM10 Romie et al. 2019 387 26865 

131 PDD S13 PuydeDôme, France 45.77 2.97 1465 21/9/2016 15.3 338F/518R PM10 Romie et al. 2019 327 17547 

132 PDD S2 PuydeDôme, France 45.77 2.97 1465 6/7/2016 21.55 338F/518R PM10 Romie et al. 2019 293 24593 

133 PDD S3 PuydeDôme, France 45.77 2.97 1465 13/7/2016 19.53 338F/518R PM10 Romie et al. 2019 291 20552 

134 PDD S4 PuydeDôme, France 45.77 2.97 1465 20/7/2016 21.5 338F/518R PM10 Romie et al. 2019 268 45354 

135 PDD S6 PuydeDôme, France 45.77 2.97 1465 3/8/2016 19.17 338F/518R PM10 Romie et al. 2019 452 18791 

136 PDD S7 PuydeDôme, France 45.77 2.97 1465 10/8/2016 21.13 338F/518R PM10 Romie et al. 2019 393 20903 

137 PDD S8 PuydeDôme, France 45.77 2.97 1465 17/8/2016 20.48 338F/518R PM10 Romie et al. 2019 490 16592 

138 PDD S9 PuydeDôme, France 45.77 2.97 1465 24/8/2016 24.67 338F/518R PM10 Romie et al. 2019 575 27527 

139 PDM S1 Pic-du-Midi, France 43.94 0.14 2876 20/6/2016 20.01 338F/518R PM10 Romie et al. 2019 1143 2558 

140 PDM S10 Pic-du-Midi, France 43.94 0.14 2876 23/8/2016 22.63 338F/518R PM10 Romie et al. 2019 737 18493 

141 PDM S11 Pic-du-Midi, France 43.94 0.14 2876 13/9/2016 15.72 338F/518R PM10 Romie et al. 2019 755 31115 

142 PDM S12 Pic-du-Midi, France 43.94 0.14 2876 20/9/2016 16.94 338F/518R PM10 Romie et al. 2019 570 9206 

143 PDM S13 Pic-du-Midi, France 43.94 0.14 2876 6/9/2016 21.47 338F/518R PM10 Romie et al. 2019 703 22909 

144 PDM S14 Pic-du-Midi, France 43.94 0.14 2876 27/9/2641 17.05 338F/518R PM10 Romie et al. 2019 851 11037 

145 PDM S2 Pic-du-Midi, France 43.94 0.14 2876 29/6/2016 18.36 338F/518R PM10 Romie et al. 2019 333 9510 

146 PDM S4 Pic-du-Midi, France 43.94 0.14 2876 12/7/2016 18.28 338F/518R PM10 Romie et al. 2019 672 33527 

147 PDM S5 Pic-du-Midi, France 43.94 0.14 2876 19/7/2016 20.97 338F/518R PM10 Romie et al. 2019 919 17819 

148 PDM S6 Pic-du-Midi, France 43.94 0.14 2876 26/7/2016 19.97 338F/518R PM10 Romie et al. 2019 799 15674 

149 PDM S7 Pic-du-Midi, France 43.94 0.14 2876 2/8/2016 20.1 338F/518R PM10 Romie et al. 2019 902 22386 

150 PDM S9 Pic-du-Midi, France 43.94 0.14 2876 16/8/2016 20.12 338F/518R PM10 Romie et al. 2019 613 27042 

151 STN S1 Station-Nord, Greenland 81.57 16.64 37 27/3/2017 -22.61 338F/518R PM10 Romie et al. 2019 91 5384 

152 STN S10 Station-Nord, Greenland 81.57 16.64 37 29/5/2017 -3.48 338F/518R PM10 Romie et al. 2019 26 155 

153 STN S11 Station-Nord, Greenland 81.57 16.64 37 5/6/2017 -2.78 338F/518R PM10 Romie et al. 2019 165 10926 

154 STN S12 Station-Nord, Greenland 81.57 16.64 37 12/6/2017 -4.13 338F/518R PM10 Romie et al. 2019 236 15440 

155 STN S13 Station-Nord, Greenland 81.57 16.64 37 19/6/2017 -6.18 338F/518R PM10 Romie et al. 2019 290 28385 

156 STN S2 Station-Nord, Greenland 81.57 16.64 37 3/4/2017 -16.56 338F/518R PM10 Romie et al. 2019 128 970 

157 STN S3 Station-Nord, Greenland 81.57 16.64 37 10/4/2017 -23.59 338F/518R PM10 Romie et al. 2019 266 8738 

158 STN S4 Station-Nord, Greenland 81.57 16.64 37 17/4/2017 -20.35 338F/518R PM10 Romie et al. 2019 145 1315 
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159 STN S5 Station-Nord, Greenland 81.57 16.64 37 24/4/2017 -20.9 338F/518R PM10 Romie et al. 2019 472 5856 

160 STN S6 Station-Nord, Greenland 81.57 16.64 37 1/5/2016 -14.42 338F/518R PM10 Romie et al. 2019 251 2343 

161 STN S7 Station-Nord, Greenland 81.57 16.64 37 8/5/2017 -9.08 338F/518R PM10 Romie et al. 2019 218 1744 

162 STN S8 Station-Nord, Greenland 81.57 16.64 37 15/5/2017 -7.96 338F/518R PM10 Romie et al. 2019 502 47026 

163 STN S9 Station-Nord, Greenland 81.57 16.64 37 22/5/2017 -1.72 338F/518R PM10 Romie et al. 2019 206 1951 

164 STP S1 Colorado, USA 40.46 106.74 3220 14/7/2017 24.68 338F/518R PM10 Romie et al. 2019 763 38363 

165 STP S2 Colorado, USA 40.46 106.74 3220 21/7/2017 23.75 338F/518R PM10 Romie et al. 2019 696 36037 

166 STP S3 Colorado, USA 40.46 106.74 3220 28/7/2017 21.97 338F/518R PM10 Romie et al. 2019 789 43072 

167 STP S7 Colorado, USA 40.46 106.74 3220 25/8/2017 22.59 338F/518R PM10 Romie et al. 2019 790 27320 

168 L_06_W1 Ljungbyhed, Sweden 56.08 13.22 43 2/1/2006 -1.1 515F/806R TSP Karlsson et al. 2020 152 13575 

169 L_06_W3 Ljungbyhed, Sweden 56.08 13.22 43 16/1/2006 -5.4 515F/806R TSP Karlsson et al. 2020 153 14475 

170 L_06_W5 Ljungbyhed, Sweden 56.08 13.22 43 30/1/2006 -3.5 515F/806R TSP Karlsson et al. 2020 154 16504 

171 L_06_W9 Ljungbyhed, Sweden 56.08 13.22 43 27/2/2006 -1.7 515F/806R TSP Karlsson et al. 2020 380 135245 

172 L_06_W15 Ljungbyhed, Sweden 56.08 13.22 43 10/4/2006 4.8 515F/806R TSP Karlsson et al. 2020 721 80022 

173 L_06_W17 Ljungbyhed, Sweden 56.08 13.22 43 24/4/2006 8.1 515F/806R TSP Karlsson et al. 2020 685 80319 

174 L_06_W19 Ljungbyhed, Sweden 56.08 13.22 43 8/5/2006 14.5 515F/806R TSP Karlsson et al. 2020 870 23318 

175 L_06_W21 Ljungbyhed, Sweden 56.08 13.22 43 22/5/2006 10.3 515F/806R TSP Karlsson et al. 2020 1657 62957 

176 L_06_W23 Ljungbyhed, Sweden 56.08 13.22 43 5/6/2006 12.1 515F/806R TSP Karlsson et al. 2020 1412 15768 

177 L_06_W25 Ljungbyhed, Sweden 56.08 13.22 43 19/6/2006 16.7 515F/806R TSP Karlsson et al. 2020 1334 64601 

178 L_06_W27 Ljungbyhed, Sweden 56.08 13.22 43 3/7/2006 20.1 515F/806R TSP Karlsson et al. 2020 974 59396 

179 L_06_W29 Ljungbyhed, Sweden 56.08 13.22 43 17/7/2006 20 515F/806R TSP Karlsson et al. 2020 1010 101982 

180 L_06_W31 Ljungbyhed, Sweden 56.08 13.22 43 31/7/2006 17.9 515F/806R TSP Karlsson et al. 2020 1185 52203 

181 L_06_W33 Ljungbyhed, Sweden 56.08 13.22 43 14/8/2006 16.1 515F/806R TSP Karlsson et al. 2020 1140 30067 

182 L_06_W35 Ljungbyhed, Sweden 56.08 13.22 43 21/8/2006 15.2 515F/806R TSP Karlsson et al. 2020 1188 4137 

183 L_06_W37 Ljungbyhed, Sweden 56.08 13.22 43 4/9/2006 14.9 515F/806R TSP Karlsson et al. 2020 992 54173 

184 L_06_W39 Ljungbyhed, Sweden 56.08 13.22 43 18/9/2006 14.9 515F/806R TSP Karlsson et al. 2020 987 69492 

185 L_06_W41 Ljungbyhed, Sweden 56.08 13.22 43 2/10/2006 11.8 515F/806R TSP Karlsson et al. 2020 589 65199 

186 L_06_W43 Ljungbyhed, Sweden 56.08 13.22 43 16/10/2006 6 515F/806R TSP Karlsson et al. 2020 458 40972 

187 L_06_W45 Ljungbyhed, Sweden 56.08 13.22 43 30/10/2006 7.4 515F/806R TSP Karlsson et al. 2020 782 121054 

188 L_06_W47 Ljungbyhed, Sweden 56.08 13.22 43 13/11/2006 6.3 515F/806R TSP Karlsson et al. 2020 528 150335 

189 L_06_W49 Ljungbyhed, Sweden 56.08 13.22 43 27/11/2006 6.6 515F/806R TSP Karlsson et al. 2020 555 92478 

190 L_06_W51 Ljungbyhed, Sweden 56.08 13.22 43 11/12/2006 4.1 515F/806R TSP Karlsson et al. 2020 484 79238 

191 L_07_W1 Ljungbyhed, Sweden 56.08 13.22 43 1/1/2007 4.5 515F/806R TSP Karlsson et al. 2020 380 55779 

192 L_07_W3 Ljungbyhed, Sweden 56.08 13.22 43 15/1/2007 3.8 515F/806R TSP Karlsson et al. 2020 267 145172 

193 L_07_W5 Ljungbyhed, Sweden 56.08 13.22 43 29/1/2007 2.9 515F/806R TSP Karlsson et al. 2020 379 153957 

194 L_07_W7 Ljungbyhed, Sweden 56.08 13.22 43 12/2/2007 0.2 515F/806R TSP Karlsson et al. 2020 703 44513 

195 L_07_W9 Ljungbyhed, Sweden 56.08 13.22 43 26/2/2007 1.4 515F/806R TSP Karlsson et al. 2020 895 168463 
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196 L_07_W11 Ljungbyhed, Sweden 56.08 13.22 43 12/3/2007 6.3 515F/806R TSP Karlsson et al. 2020 1727 114836 

197 L_07_W13 Ljungbyhed, Sweden 56.08 13.22 43 26/3/2007 6.9 515F/806R TSP Karlsson et al. 2020 1211 104429 

198 L_07_W15 Ljungbyhed, Sweden 56.08 13.22 43 9/4/2007 8.7 515F/806R TSP Karlsson et al. 2020 1079 71782 

199 L_07_W17 Ljungbyhed, Sweden 56.08 13.22 43 23/4/2007 10.8 515F/806R TSP Karlsson et al. 2020 1001 56465 

200 L_07_W19 Ljungbyhed, Sweden 56.08 13.22 43 7/5/2007 10.3 515F/806R TSP Karlsson et al. 2020 1017 9729 

201 L_07_W21 Ljungbyhed, Sweden 56.08 13.22 43 21/5/2007 13.1 515F/806R TSP Karlsson et al. 2020 1885 1420 

202 L_07_W27 Ljungbyhed, Sweden 56.08 13.22 43 2/7/2007 15.2 515F/806R TSP Karlsson et al. 2020 1456 171726 

203 L_07_W29 Ljungbyhed, Sweden 56.08 13.22 43 16/7/2007 16.1 515F/806R TSP Karlsson et al. 2020 1406 19383 

204 L_07_W31 Ljungbyhed, Sweden 56.08 13.22 43 30/7/2007 17.3 515F/806R TSP Karlsson et al. 2020 660 88278 

205 L_07_W33 Ljungbyhed, Sweden 56.08 13.22 43 13/8/2007 16.4 515F/806R TSP Karlsson et al. 2020 843 16296 

206 L_07_W35 Ljungbyhed, Sweden 56.08 13.22 43 27/8/2007 12.1 515F/806R TSP Karlsson et al. 2020 765 344154 

207 L_07_W37 Ljungbyhed, Sweden 56.08 13.22 43 10/9/2007 11.8 515F/806R TSP Karlsson et al. 2020 895 78139 

208 L_07_W39 Ljungbyhed, Sweden 56.08 13.22 43 24/9/2007 10 515F/806R TSP Karlsson et al. 2020 1001 132941 

209 L_07_W41 Ljungbyhed, Sweden 56.08 13.22 43 8/10/2007 6.6 515F/806R TSP Karlsson et al. 2020 1062 40041 

210 L_07_W43 Ljungbyhed, Sweden 56.08 13.22 43 22/10/2007 6.2 515F/806R TSP Karlsson et al. 2020 703 89564 

211 L_07_W45 Ljungbyhed, Sweden 56.08 13.22 43 5/11/2007 2.6 515F/806R TSP Karlsson et al. 2020 258 148393 

212 L_07_W47 Ljungbyhed, Sweden 56.08 13.22 43 19/11/2007 3.9 515F/806R TSP Karlsson et al. 2020 257 106251 

213 L_07_W49 Ljungbyhed, Sweden 56.08 13.22 43 3/12/2007 1.4 515F/806R TSP Karlsson et al. 2020 791 110585 

214 K_06_W1 Kiruna, Sweden 67.84 20.42 393 2/1/2006 -10.2 515F/806R TSP Karlsson et al. 2020 135 11755 

215 K_06_W3 Kiruna, Sweden 67.84 20.42 393 16/1/2006 -14.2 515F/806R TSP Karlsson et al. 2020 231 30518 

216 K_06_W5 Kiruna, Sweden 67.84 20.42 393 30/1/2006 -12.1 515F/806R TSP Karlsson et al. 2020 170 23807 

217 K_06_W11 Kiruna, Sweden 67.84 20.42 393 13/3/2006 -2.6 515F/806R TSP Karlsson et al. 2020 528 136288 

218 K_06_W13 Kiruna, Sweden 67.84 20.42 393 27/3/2006 -10.9 515F/806R TSP Karlsson et al. 2020 214 12729 

219 K_06_W15 Kiruna, Sweden 67.84 20.42 393 10/4/2006 -4.1 515F/806R TSP Karlsson et al. 2020 257 82917 

220 K_06_W17 Kiruna, Sweden 67.84 20.42 393 24/4/2006 2 515F/806R TSP Karlsson et al. 2020 415 47724 

221 K_06_W19 Kiruna, Sweden 67.84 20.42 393 8/5/2006 6.1 515F/806R TSP Karlsson et al. 2020 249 18576 

222 K_06_W25 Kiruna, Sweden 67.84 20.42 393 19/6/2006 14.5 515F/806R TSP Karlsson et al. 2020 354 331 

223 K_06_W27 Kiruna, Sweden 67.84 20.42 393 3/7/2006 13.3 515F/806R TSP Karlsson et al. 2020 782 8973 

224 K_06_W29 Kiruna, Sweden 67.84 20.42 393 17/7/2006 11.2 515F/806R TSP Karlsson et al. 2020 940 19911 

225 K_06_W31 Kiruna, Sweden 67.84 20.42 393 31/7/2006 14.3 515F/806R TSP Karlsson et al. 2020 795 71493 

226 K_06_W33 Kiruna, Sweden 67.84 20.42 393 14/8/2006 13.4 515F/806R TSP Karlsson et al. 2020 1097 55849 

227 K_06_W35 Kiruna, Sweden 67.84 20.42 393 21/8/2006 11.8 515F/806R TSP Karlsson et al. 2020 362 10919 

228 K_06_W37 Kiruna, Sweden 67.84 20.42 393 4/9/2006 7.2 515F/806R TSP Karlsson et al. 2020 214 20445 

229 K_06_W39 Kiruna, Sweden 67.84 20.42 393 18/9/2006 1.1 515F/806R TSP Karlsson et al. 2020 222 23707 

230 K_06_W41 Kiruna, Sweden 67.84 20.42 393 2/10/2006 2 515F/806R TSP Karlsson et al. 2020 494 23020 

231 K_06_W43 Kiruna, Sweden 67.84 20.42 393 16/10/2006 -5.9 515F/806R TSP Karlsson et al. 2020 537 84649 

232 K_06_W45 Kiruna, Sweden 67.84 20.42 393 30/10/2006 -7.2 515F/806R TSP Karlsson et al. 2020 344 106306 

233 K_06_W47 Kiruna, Sweden 67.84 20.42 393 13/11/2006 -4.7 515F/806R TSP Karlsson et al. 2020 362 83662 
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234 K_06_W49 Kiruna, Sweden 67.84 20.42 393 27/11/2006 -5.4 515F/806R TSP Karlsson et al. 2020 240 136655 

235 K_06_W51 Kiruna, Sweden 67.84 20.42 393 11/12/2006 -5.9 515F/806R TSP Karlsson et al. 2020 188 80180 

236 K_07_W1 Kiruna, Sweden 67.84 20.42 393 1/1/2007 -7.8 515F/806R TSP Karlsson et al. 2020 354 9460 

237 K_07_W3 Kiruna, Sweden 67.84 20.42 393 15/1/2007 -12.7 515F/806R TSP Karlsson et al. 2020 266 18418 

238 K_07_W5 Kiruna, Sweden 67.84 20.42 393 29/1/2007 -15.7 515F/806R TSP Karlsson et al. 2020 170 112631 

239 K_07_W7 Kiruna, Sweden 67.84 20.42 393 12/2/2007 -17.9 515F/806R TSP Karlsson et al. 2020 214 6420 

240 K_07_W9 Kiruna, Sweden 67.84 20.42 393 26/2/2007 -12.4 515F/806R TSP Karlsson et al. 2020 249 14854 

241 K_07_W11 Kiruna, Sweden 67.84 20.42 393 12/3/2007 -3.2 515F/806R TSP Karlsson et al. 2020 310 47980 

242 K_07_W13 Kiruna, Sweden 67.84 20.42 393 26/3/2007 1.9 515F/806R TSP Karlsson et al. 2020 433 77292 

243 K_07_W15 Kiruna, Sweden 67.84 20.42 393 9/4/2007 -0.5 515F/806R TSP Karlsson et al. 2020 450 28788 

244 K_07_W17 Kiruna, Sweden 67.84 20.42 393 23/4/2007 1.8 515F/806R TSP Karlsson et al. 2020 310 57908 

245 K_07_W19 Kiruna, Sweden 67.84 20.42 393 7/5/2007 1.7 515F/806R TSP Karlsson et al. 2020 292 36187 

246 K_07_W21 Kiruna, Sweden 67.84 20.42 393 21/5/2007 7.5 515F/806R TSP Karlsson et al. 2020 318 41729 

247 K_07_W23 Kiruna, Sweden 67.84 20.42 393 4/6/2007 12.5 515F/806R TSP Karlsson et al. 2020 887 16880 

248 K_07_W29 Kiruna, Sweden 67.84 20.42 393 2/7/2007 12.9 515F/806R TSP Karlsson et al. 2020 956 68997 

249 K_07_W31 Kiruna, Sweden 67.84 20.42 393 16/7/2007 13.9 515F/806R TSP Karlsson et al. 2020 703 36535 

250 K_07_W33 Kiruna, Sweden 67.84 20.42 393 30/7/2007 13.1 515F/806R TSP Karlsson et al. 2020 581 26335 

251 K_07_W35 Kiruna, Sweden 67.84 20.42 393 13/8/2007 4.4 515F/806R TSP Karlsson et al. 2020 1491 9628 

252 K_07_W37 Kiruna, Sweden 67.84 20.42 393 27/8/2007 5.8 515F/806R TSP Karlsson et al. 2020 800 11683 

253 K_07_W39 Kiruna, Sweden 67.84 20.42 393 10/9/2007 5.7 515F/806R TSP Karlsson et al. 2020 721 96393 

254 K_07_W41 Kiruna, Sweden 67.84 20.42 393 24/9/2007 0.5 515F/806R TSP Karlsson et al. 2020 616 57206 

255 K_07_W43 Kiruna, Sweden 67.84 20.42 393 8/10/2007 1.4 515F/806R TSP Karlsson et al. 2020 502 66301 

256 K_07_W45 Kiruna, Sweden 67.84 20.42 393 22/10/2007 -4.7 515F/806R TSP Karlsson et al. 2020 484 129464 

257 K_07_W47 Kiruna, Sweden 67.84 20.42 393 5/11/2007 -4.4 515F/806R TSP Karlsson et al. 2020 467 153631 

258 K_07_W49 Kiruna, Sweden 67.84 20.42 393 19/11/2007 -5.3 515F/806R TSP Karlsson et al. 2020 573 38664 

259 K_07_W51 Kiruna, Sweden 67.84 20.42 393 3/12/2007 -5.9 515F/806R TSP Karlsson et al. 2020 773 131477 

260 SA1 South Ocean -44.96 146.31 23 12/1/2018 17.8 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 389 17243 

261 SA10 South Ocean -65.04 139.85 23 30/1/2018 -0.4 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 26 9244 

262 SA11 South Ocean -65.53 147.47 23 2/2/2018 -3.7 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 14 6361 

263 SA12 South Ocean -64.4 150 23 4/2/2018 -3.3 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 9 5356 

264 SA13 South Ocean -62.8 149.07 23 5/2/2018 -4.1 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 56 6041 

265 SA14 South Ocean -62.82 144.24 23 7/2/2018 1.6 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 100 9491 

266 SA15 South Ocean -62.21 138.56 23 8/2/2018 1.7 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 168 10353 
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267 SA16 South Ocean -62.31 133.31 23 10/2/2018 0.9 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 47 5328 

268 SA18 South Ocean -60.96 132.06 23 13/2/2018 1.9 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 109 15869 

269 SA19 South Ocean -58.27 132.19 23 14/2/2018 2.7 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 68 11328 

270 SA2 South Ocean -47.34 144.92 23 16/1/2018 10.3 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 186 20463 

271 SA20 South Ocean -56.7 138.1 23 16/2/2018 3.7 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 226 24527 

272 SA21 South Ocean -56.55 141.49 23 18/2/2018 2.9 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 123 25198 

273 SA22 South Ocean -53.64 142.97 23 19/2/2018 4.3 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 37 8096 

274 SA23 South Ocean -48.44 144.48 23 19/2/2018 5.1 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 186 4145 

275 SA3 South Ocean -49.14 144.16 23 16/1/2018 11.3 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 186 25981 

276 SA4 South Ocean -50.54 143.48 23 18/1/2018 9.9 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 310 19694 

277 SA7 South Ocean -55.12 140.94 23 22/1/2018 5.6 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 31 11394 

278 SA9 South Ocean -61.72 139.85 23 27/1/2018 1.6 27F/519R & 

515F/926R 

TSP Uetake et al. 2020 38 17461 

279 14To_1 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 16/3/2014 0.9 515F/806R TSP Maki et al. 2017 510 109202 

280 14To_2 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 16/3/2014 0.9 515F/806R TSP Maki et al. 2017 909 17436 

281 14To_3 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 17/3/2014 1.01 515F/806R TSP Maki et al. 2017 1332 216602 

282 14To_4 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 18/3/2014 -16.85 515F/806R TSP Maki et al. 2017 603 36723 

283 15To_1 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 7/3/2015 -8.28 515F/806R TSP Maki et al. 2017 174 35657 

284 15To_2 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 7/3/2015 -8.28 515F/806R TSP Maki et al. 2017 379 12433 

285 15To_3 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 9/3/2015 -10.4 515F/806R TSP Maki et al. 2017 72 10251 

286 15To_4 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 9/3/2015 -10.4 515F/806R TSP Maki et al. 2017 155 27620 

287 15To_5 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 10/3/2015 -7.73 515F/806R TSP Maki et al. 2017 93 23554 

288 15To_6 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 10/3/2015 -7.73 515F/806R TSP Maki et al. 2017 1097 192268 

289 15To_8 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 26/4/2015 16.46 515F/806R TSP Maki et al. 2017 987 171156 

290 15To_9 Tsogt-Ovoo, Mongolia 44.23 105.17 1256 27/4/2015 9.65 515F/806R TSP Maki et al. 2017 387 121260 

291 C1 Colorado, USA 40 -105.05 1624 
 

27.7 515F/806R PM10 EMP 160 20924 

292 AG1 Colorado, USA 40 -105.25 1624 
 

16.4 515F/806R PM10 EMP 241 95919 

293 F1 Colorado, USA 40.05 -105.52 1522 
 

15.7 515F/806R PM10 EMP 95 73550 

294 C2 Colorado, USA 40.15 -105.03 1519 
 

22.5 515F/806R PM10 EMP 250 85366 
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295 AG2 Colorado, USA 40.16 -105.1 1519 
 

29.3 515F/806R PM10 EMP 122 143824 

296 F2 Colorado, USA 40.18 -105.31 1522 
 

0 515F/806R PM10 EMP 95 455573 

297 F3 Colorado, USA 40.3 -105.52 1783 
 

22.6 515F/806R PM10 EMP 84 54234 

298 AG3 Colorado, USA 40.42 -105.07 1519 
 

23.7 515F/806R PM10 EMP 155 81007 

299 SPL_Wint9 Colorado, USA 40.45 -106.74 2553 
 

0 515F/806R PM10 EMP 269 19978 

300 SPL_Sp29 Colorado, USA 40.45 -106.74 2553 
 

0 515F/806R PM10 EMP 169 43823 

301 SPL_Sp25 Colorado, USA 40.45 -106.74 2553 
 

0 515F/806R PM10 EMP 174 49460 

302 SPL_Sum5 Colorado, USA 40.45 -106.74 2553 
 

0 515F/806R PM10 EMP 389 42694 

303 SPL_Sum9 Colorado, USA 40.45 -106.74 2553 
 

0 515F/806R PM10 EMP 274 23823 

304 SPL_Fall1 Colorado, USA 40.45 -106.74 2553 
 

0 515F/806R PM10 EMP 305 23064 

305 SPL_Sp21 Colorado, USA 40.45 -106.74 2553 
 

0 515F/806R PM10 EMP 109 13277 

306 SPL_Sum1 Colorado, USA 40.45 -106.74 2553 
 

0 515F/806R PM10 EMP 159 40426 

307 C3 Colorado, USA 40.59 -105.08 1525 
 

0 515F/806R PM10 EMP 225 29267 

308 Cle_W3 Ohio, USA 41.42 -81.87 199 
 

0 515F/806R PM10 EMP 1426 65904 

309 Cle_W2 Ohio, USA 41.42 -81.87 199 
 

0 515F/806R PM10 EMP 1430 101161 

310 Cle_W1 Ohio, USA 41.42 -81.87 199 
 

0 515F/806R PM10 EMP 1763 96018 

311 Cle_4 Ohio, USA 41.42 -81.87 199 
 

0 515F/806R PM10 EMP 248 24643 

312 Cle_3 Ohio, USA 41.42 -81.87 199 
 

0 515F/806R PM10 EMP 166 11543 

313 Cle_1 Ohio, USA 41.42 -81.87 199 
 

0 515F/806R PM10 EMP 149 44446 

314 Chi_W1 Ohio, USA 41.78 -87.75 181 
 

0 515F/806R PM10 EMP 572 133870 

315 Chi_4 Ohio, USA 41.78 -87.75 181 
 

0 515F/806R PM10 EMP 333 54774 

316 Chi_W2 Ohio, USA 41.78 -87.75 181 
 

0 515F/806R PM10 EMP 869 133150 

317 Chi_W3 Ohio, USA 41.78 -87.75 181 
 

0 515F/806R PM10 EMP 461 40371 

318 Chi_2 Ohio, USA 41.78 -87.75 181 
 

0 515F/806R PM10 EMP 305 21464 

319 Chi_1 Ohio, USA 41.78 -87.75 181 
 

0 515F/806R PM10 EMP 389 13324 

320 Det_2 Michigan, USA 42.42 -83.02 183 
 

0 515F/806R PM10 EMP 457 174943 

321 Det_W6 Michigan, USA 42.42 -83.02 183 
 

0 515F/806R PM10 EMP 335 18241 

322 Det_4 Michigan, USA 42.42 -83.02 183 
 

0 515F/806R PM10 EMP 232 114385 

323 Det_1 Michigan, USA 42.42 -83.02 183 
 

0 515F/806R PM10 EMP 213 46459 

324 Det_W7 Michigan, USA 42.42 -83.02 183 
 

0 515F/806R PM10 EMP 343 16239 

325 Mayv_W5 Michigan, USA 43.49 -88.55 283 
 

0 515F/806R PM10 EMP 741 62164 

326 Mayv_2 Michigan, USA 43.49 -88.55 283 
 

0 515F/806R PM10 EMP 334 59895 

327 Mayv_W2 Michigan, USA 43.49 -88.55 283 
 

0 515F/806R PM10 EMP 526 93134 
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328 MZ_22a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 1279 192266 

329 MZ_103b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 385 38025 

330 MZ_15a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 1038 208582 

331 MZ_41a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 419 160058 

332 MZ_41b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 787 172427 

333 MZ_50b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 362 132845 

334 MZ_62b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 584 203976 

335 MZ_59b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 321 192637 

336 MZ_90a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 426 49718 

337 MZ_88b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 280 80481 

338 MZ_82b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 349 91901 

339 MZ_82a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 1138 97248 

340 MZ_52b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 269 136590 

341 MZ_90b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 279 108073 

342 MZ_50a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 466 99998 

343 MZ_67a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 654 188900 

344 MZ_31a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 545 170726 

345 MZ_47a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 569 250299 

346 MZ_26a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 983 141743 

347 MZ_93a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 901 256244 

348 MZ_62a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 736 222441 

349 MZ_103a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 676 125351 

350 MZ_93b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 304 117535 

351 MZ_54a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 469 216768 

352 MZ_81b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 222 134733 

353 MZ_23a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 277 86496 

354 MZ_15b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 383 165908 

355 MZ_22b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 230 92854 

356 MZ_101b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 260 52731 

357 MZ_47b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 654 20496 

358 MZ_81a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 309 109200 

359 MZ_54b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 219 69811 

360 MZ_74a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 473 147015 
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361 MZ_101a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 320 114214 

362 MZ_11b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 432 22328 

363 MZ_88a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 359 143909 

364 MZ_26b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 347 108270 

365 MZ_23b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 158 43745 

366 MZ_59a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 518 235048 

367 MZ_31b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 280 34135 

368 MZ_67b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 224 84427 

369 MZ_74b Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 246 62122 

370 MZ_52a Wiesbaden, Germany 50.01 8.23 95 
 

0 515F/806R PM10 EMP 242 197428 

371 GL_A1 low-Arctic Greenland 64.12 -54.37 500 26/7/2013 3.13 908F/1075R PM10 Temkiv et al. 2018 47   

372 GL_R2 low-Arctic Greenland 64.12 -54.37 500 26/7/2013 7.89 908F/1075R PM10 Temkiv et al. 2018 156   

373 GL_R3 low-Arctic Greenland 64.12 -54.37 500 27/7/2013 8.44 908F/1075R PM10 Temkiv et al. 2018 139   

374 GL_R1 low-Arctic Greenland 64.12 -54.37 500 25/7/2013 8.5 908F/1075R PM10 Temkiv et al. 2018 212   

375 GL_A2 low-Arctic Greenland 64.12 -54.37 500 27/7/2013 8.82 908F/1075R PM10 Temkiv et al. 2018 279   

376 GL_A3 low-Arctic Greenland 64.12 -54.37 500 27/7/2013 8.82 908F/1075R PM10 Temkiv et al. 2018 295   

377 GL_A4 low-Arctic Greenland 64.12 -54.37 500 28/7/2013 9.53 908F/1075R PM10 Temkiv et al. 2018 193   

378 GL_A16 low-Arctic Greenland 64.12 -54.37 500 1/8/2013 9.53 908F/1075R PM10 Temkiv et al. 2018 148   

379 GL_A17 low-Arctic Greenland 64.12 -54.37 500 1/8/2013 10.97 908F/1075R PM10 Temkiv et al. 2018 282   

380 GL_A15 low-Arctic Greenland 64.12 -54.37 500 31/7/2013 11.57 908F/1075R PM10 Temkiv et al. 2018 334   

381 GL_A14 low-Arctic Greenland 64.12 -54.37 500 31/7/2013 11.73 908F/1075R PM10 Temkiv et al. 2018 129   

382 GL_A12 low-Arctic Greenland 64.12 -54.37 500 31/7/2013 12.07 908F/1075R PM10 Temkiv et al. 2018 448   

383 GL_A6 low-Arctic Greenland 64.12 -54.37 500 28/7/2013 12.15 908F/1075R PM10 Temkiv et al. 2018 147   

384 GL_A13 low-Arctic Greenland 64.12 -54.37 500 31/7/2013 12.7 908F/1075R PM10 Temkiv et al. 2018 338   

385 GL_A5 low-Arctic Greenland 64.12 -54.37 500 28/7/2013 13.14 908F/1075R PM10 Temkiv et al. 2018 246   

386 GL_A9 low-Arctic Greenland 64.12 -54.37 500 30/7/2013 14.15 908F/1075R PM10 Temkiv et al. 2018 241   

387 GL_A7 low-Arctic Greenland 64.12 -54.37 500 29/7/2013 14.91 908F/1075R PM10 Temkiv et al. 2018 172   

388 GL_A8 low-Arctic Greenland 64.12 -54.37 500 29/7/2013 14.92 908F/1075R PM10 Temkiv et al. 2018 277   

389 GL_A10 low-Arctic Greenland 64.12 -54.37 500 30/7/2013 15.87 908F/1075R PM10 Temkiv et al. 2018 289   

390 GL_A11 low-Arctic Greenland 64.12 -54.37 500 30/7/2013 15.87 908F/1075R PM10 Temkiv et al. 2018 226   

391 UR_J10 Urumqi, China 43.83 87.62 835 2014_win -0.8 319F/806R PM10 Gou et al. 2016 2393 27400 

392 UR_M10 Urumqi, China 43.83 87.62 835 2014_win -10.25 319F/806R PM10 Gou et al. 2016 1333 22155 

393 UR_SM10 Urumqi, China 43.83 87.62 835 2014_win -7.64 319F/806R PM10 Gou et al. 2016 1624 28112 
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394 UR_T10 Urumqi, China 43.83 87.62 835 2014_win -15.1 319F/806R PM10 Gou et al. 2016 2124 36715 

395 UR_TS10 Urumqi, China 43.83 87.62 835 2014_win -11.17 319F/806R PM10 Gou et al. 2016 1211 28156 

396 UR_X10 Urumqi, China 43.83 87.62 835 2014_win 1.06 319F/806R PM10 Gou et al. 2016 1752 38516 

397 Tai Mt. Tai, China 36.25 117.1 1534 7/2014-

8/2015 

15.5 515F/926R PM2.5 Xu et al. 2019 1282 7044 

398 XX_spr Central China 35.3 113.92 71 2017_spr 19.63 515F/806R PM2.5 Li et al. 2019 2243   

399 XX_sum Central China 35.3 113.92 71 2017_sum 25 515F/806R PM2.5 Li et al. 2019 1608   

400 XX_aut Central China 35.3 113.92 71 2017_sut 3.67 515F/806R PM2.5 Li et al. 2019 1312   

401 XX_win Central China 35.3 113.92 71 2017_win 1.8 515F/806R PM2.5 Li et al. 2019 1993   

402 P_win Madrid, Spain 40.44 -3.69 657 2/3/2015 10.3 341F/806R PM10 Nunez et al. 2019 1050 187059 

403 P_spr Madrid, Spain 40.44 -3.69 657 21/4/2015 14.3 341F/806R PM10 Nunez et al. 2019 800 246262 

404 P_sum Madrid, Spain 40.44 -3.69 657 20/7/2015 29.2 341F/806R PM10 Nunez et al. 2019 1520 200235 

405 P_aut Madrid, Spain 40.44 -3.69 657 23/11/2015 9.1 341F/806R PM10 Nunez et al. 2019 1680 132682 

406 GD Beijing, China 39.97 116.37 64 15/10/2014 11.98 338F/806R PM2.5 Du et al. 2018 1762 11245 

407 GN Beijing, China 39.97 116.37 64 15/10/2014 11.98 338F/806R PM2.5 Du et al. 2018 2034 13521 

408 MD Beijing, China 39.97 116.37 64 17/10/2014 11.83 338F/806R PM2.5 Du et al. 2018 2028 15300 

409 MN Beijing, China 39.97 116.37 64 17/10/2014 11.83 338F/806R PM2.5 Du et al. 2018 1894 15823 

410 HD Beijing, China 39.97 116.37 64 18/10/2014 14.53 338F/806R PM2.5 Du et al. 2018 945 11790 

411 HN Beijing, China 39.97 116.37 64 18/10/2014 14.53 338F/806R PM2.5 Du et al. 2018 1705 12620 

412 AD Beijing, China 39.97 116.37 64 5/11/2017 7.96 338F/806R PM2.5 Du et al. 2018 2212 15268 

413 AN Beijing, China 39.97 116.37 64 5/11/2014 7.96 338F/806R PM2.5 Du et al. 2018 2457 14764 

414 DVE2_1 Singapore 1.35 103.68 30 May-16 29.1 341F/806R TSP Gusareva et al. 2019 168   

415 DVE2_2 Singapore 1.35 103.68 30 May-16 31.2 341F/806R TSP Gusareva et al. 2019 144   

416 DVE2_3 Singapore 1.35 103.68 30 May-16 30.9 341F/806R TSP Gusareva et al. 2019 148   

417 DVE2_4 Singapore 1.35 103.68 30 May-16 29.5 341F/806R TSP Gusareva et al. 2019 132   

418 DVE2_5 Singapore 1.35 103.68 30 May-16 30.7 341F/806R TSP Gusareva et al. 2019 139   

419 DVE3_1 Singapore 1.35 103.68 30 Aug-16 29.5 341F/806R TSP Gusareva et al. 2019 233   

420 DVE3_2 Singapore 1.35 103.68 30 Aug-16 30.8 341F/806R TSP Gusareva et al. 2019 306   

421 DVE3_3 Singapore 1.35 103.68 30 Aug-16 28.5 341F/806R TSP Gusareva et al. 2019 126   

422 DVE3_4 Singapore 1.35 103.68 30 Aug-16 29.1 341F/806R TSP Gusareva et al. 2019 158   

423 DVE3_5 Singapore 1.35 103.68 30 Aug-16 29.7 341F/806R TSP Gusareva et al. 2019 126   

424 DVE4_1 Singapore 1.35 103.68 30 Dec-16 29.1 341F/806R TSP Gusareva et al. 2019 151   

425 DVE4_2 Singapore 1.35 103.68 30 Dec-16 29.5 341F/806R TSP Gusareva et al. 2019 202   

426 DVE4_3 Singapore 1.35 103.68 30 Dec-16 33.1 341F/806R TSP Gusareva et al. 2019 206   

427 DVE4_4 Singapore 1.35 103.68 30 Dec-16 32 341F/806R TSP Gusareva et al. 2019 189   

428 DVE4_5 Singapore 1.35 103.68 30 Dec-16 31.5 341F/806R TSP Gusareva et al. 2019 182   
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429 DVE5_1 Singapore 1.35 103.68 30 Feb-17 28.1 341F/806R TSP Gusareva et al. 2019 175   

430 DVE5_2 Singapore 1.35 103.68 30 Feb-17 27.9 341F/806R TSP Gusareva et al. 2019 191   

431 DVE5_3 Singapore 1.35 103.68 30 Feb-17 28.6 341F/806R TSP Gusareva et al. 2019 138   

432 DVE5_4 Singapore 1.35 103.68 30 Feb-17 29.3 341F/806R TSP Gusareva et al. 2019 194   

433 DVE5_5 Singapore 1.35 103.68 30 Feb-17 28.5 341F/806R TSP Gusareva et al. 2019 144   

434 Ev12Euk Be’er Sheva, Israel 31.25 34.8 300 20/12/2012 13.7 8F/907R TSP Katra et al. 2014 409   

435 Ev13Euk Be’er Sheva, Israel 31.25 34.8 300 20/12/2012 11.2 8F/907R TSP Katra et al. 2014 251   

436 Ev12Bac Be’er Sheva, Israel 31.25 34.8 300 7/1/2013 13.7 8F/907R TSP Katra et al. 2014 1214   

437 Ev13Bac Be’er Sheva, Israel 31.25 34.8 300 7/1/2013 11.2 8F/907R TSP Katra et al. 2014 869   

438 BC2009 Beijing, China 39.98 116.32 61 28/8/2009 24.3 27F/357R PM10 An et al. 2015 2353 10895 

439 BC2010 Beijing, China 39.98 116.32 61 27/2/2010 -3.3 27F/357R PM10 An et al. 2015 603 3386 

440 BC2011 Beijing, China 39.98 116.32 61 7/2/2011 -3.7 27F/357R PM10 An et al. 2015 3419 31959 

441 BS2010 Beijing, China 39.98 116.32 61 27/2/2010 26.7 27F/357R PM10 An et al. 2015 649 6462 

442 BS2011a Beijing, China 39.98 116.32 61 18/3/2011 11 27F/357R PM10 An et al. 2015 3025 22323 

443 BS2011b Beijing, China 39.98 116.32 61 1/5/2011 21.8 27F/357R PM10 An et al. 2015 2676 17960 

444 GC2009 Gwangju, Korea 35.16 126.95 208 21/8/2009 26.1 27F/357R PM10 An et al. 2015 791 4545 

445 GC2010 Gwangju, Korea 35.16 126.95 208 8/3/2010 26.7 27F/357R PM10 An et al. 2015 321 3505 

446 GC2011 Gwangju, Korea 35.16 126.95 208 17/5/2011 19.4 27F/357R PM10 An et al. 2015 1915 27054 

447 GS2010 Gwangju, Korea 35.16 126.95 208 19/3/2010 9.6 27F/357R PM10 An et al. 2015 1227 3837 

448 GS2011 Gwangju, Korea 35.16 126.95 208 13/5/2011 17.8 27F/357R PM10 An et al. 2015 1012 22893 

449 IC2011 Incheon, Korea 37.46 126.71 24 17/5/2011 17.3 27F/357R PM10 An et al. 2015 506 23466 

450 IS2011a Incheon, Korea 37.46 126.71 24 1/5/2011 15.3 27F/357R PM10 An et al. 2015 2666 22047 

451 IS2011b Incheon, Korea 37.46 126.71 24 3/5/2011 15.7 27F/357R PM10 An et al. 2015 2637 47026 

452 SC2009 Seoul, Korea 37.57 126.32 0 18/8/2009 27.8 27F/357R PM10 An et al. 2015 1315 8383 

453 TC2011 Taiyuan, China 37.83 112.54 783 7/2/2011 2.7 27F/357R PM10 An et al. 2015 3244 21603 

454 TS2011a Taiyuan, China 37.83 112.54 783 18/3/2011 7.7 27F/357R PM10 An et al. 2015 4026 49755 

455 TS2011b Taiyuan, China 37.83 112.54 783 1/5/2011 16.2 27F/357R PM10 An et al. 2015 2092 20139 
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Appendix 2 

This section provides the maps of land cover type in a diameter range (50 km) of the sampling 

sites (n=74) performed with MODIS land cover approach (5′ × 5′ resolution). 
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Appendix 3 

This section provides information of metagenomic data to generate the global airborne dataset and track the source contribution to 

airborne ARGs. 

1. Detailed information of air samples in the global airborne metagenomic dataset in this study. 

No. Name Site season Lat Lng ALS Temp. Type Size (GB) Run name 

1 AL1 Mt. Ailao, China spring 24.53 101.02 2450 18.68 PM2.5 6.51  

2 AL2 Mt. Ailao, China summer 24.53 101.02 2450 21.8 PM2.5 6.03  

3 AL3 Mt. Ailao, China autumn 24.53 101.02 2450 16.41 PM2.5 5.72  

4 AL4 Mt. Ailao, China winter 24.53 101.02 2450 11.43 PM2.5 6.54  

5 CB1 Mt. Changbai, China spring 42.40 128.10 741 5.78 PM2.5 6.47  

6 CB2 Mt. Changbai, China summer 42.40 128.10 741 18.94 PM2.5 5.81  

7 CB3 Mt. Changbai, China autumn 42.40 128.10 741 5.16 PM2.5 5.78  

8 CB4 Mt. Changbai, China winter 42.40 128.10 741 -12.44 PM2.5 6.48  

9 CH1 Guangzhou, China spring 23.65 113.62 21 21.17 PM2.5 6.55  

10 CH2 Guangzhou, China summer 23.65 113.62 21 27.23 PM2.5 5.64  

11 CH3 Guangzhou, China autumn 23.65 113.62 21 22.65 PM2.5 6.59  

12 CH4 Guangzhou, China winter 23.65 113.62 21 15.24 PM2.5 6.26  

13 CH5 Guangzhou, China spring 23.65 113.62 21 20.71 PM2.5 6.57  

14 HK1 Hong Kong spring 22.31 114.18 87 23.67 PM2.5 6.43  

15 HK2 Hong Kong summer 22.31 114.18 87 29.6 PM2.5 6.52  

16 HK3 Hong Kong autumn 22.31 114.18 87 26.76 PM2.5 6.56  

17 HK4 Hong Kong winter 22.31 114.18 87 18.55 PM2.5 6.33  

18 HR1 Beijing, China spring 40.40 116.69 90 11.67 PM2.5 6.38  

19 HR2 Beijing, China summer 40.40 116.69 90 25.67 PM2.5 5.75  

20 HR3 Beijing, China autumn 40.40 116.69 90 9.54 PM2.5 5.78  

21 HR4 Beijing, China winter 40.40 116.69 90 -2.3 PM2.5 6.35  

22 HS1 Guangzhou, China spring 22.71 112.92 33 22.06 PM2.5 6.46  

23 HS2 Guangzhou, China summer 22.71 112.92 33 28.57 PM2.5 5.75  

24 HS3 Guangzhou, China autumn 22.71 112.92 33 24.59 PM2.5 5.78  

25 HS4 Guangzhou, China winter 22.71 112.92 33 16.55 PM2.5 6.35  

26 HS5 Guangzhou, China spring 22.71 112.92 33 21.19 PM2.5 6.41  

27 HT1 Hong Kong spring 22.12 114.15 50 19.87 PM2.5 5.65  
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28 HT2 Hong Kong summer 22.12 114.15 50 28.47 PM2.5 6.49  

29 HT3 Hong Kong autumn 22.12 114.15 50 28.18 PM2.5 6.08  

30 HT4 Hong Kong winter 22.12 114.15 50 16.94 PM2.5 6.44  

31 LS1 Nanjing, China spring 31.33 119.01 15 20.3 PM2.5 6.44  

32 LS2 Nanjing, China summer 31.33 119.01 15 26.92 PM2.5 5.56  

33 LS3 Nanjing, China autumn 31.33 119.01 15 12.16 PM2.5 6.18  

34 LS4 Nanjing, China winter 31.33 119.01 15 7.17 PM2.5 6.56  

35 LS5 Nanjing, China spring 31.33 119.01 15 21.09 PM2.5 6.63  

36 M1 Bachok, Malaysia spring 6.01 102.43 10 29.21 TSP 4.42  

37 M2 Bachok, Malaysia summer 6.01 102.43 10 28.21 TSP 6.39  

38 M3 Bachok, Malaysia autumn 6.01 102.43 10 27.65 TSP 6.48  

39 M4 Bachok, Malaysia winter 6.01 102.43 10 27.49 TSP 6.55  

40 PK1 Nanjing, China spring 32.12 118.42 51 16.25 PM2.5 6.45  

41 PK2 Nanjing, China summer 32.12 118.42 51 27.05 PM2.5 7.2  

42 PK3 Nanjing, China autumn 32.12 118.42 51 17.76 PM2.5 6.86  

43 PK4 Nanjing, China winter 32.12 118.42 51 6.43 PM2.5 6.41  

44 PK5 Nanjing, China spring 32.12 118.42 51 16.76 PM2.5 6.43  

45 PKU1 Beijing, China spring 39.99 116.36 56 3.23 PM2.5 6.21  

46 PKU2 Beijing, China summer 39.99 116.36 56 23 PM2.5 6.06  

47 PKU3 Beijing, China autumn 39.99 116.36 56 25.74 PM2.5 6.57  

48 PKU4 Beijing, China winter 39.99 116.36 56 0.45 PM2.5 6.43  

49 PKU5 Beijing, China spring 39.99 116.36 56 0.4 PM2.5 6.59  

50 T1 Phitsanulok, Thailand spring 16.75 100.20 47 32.33 TSP 5.82  

51 T2 Phitsanulok, Thailand summer 16.75 100.20 47 29.06 TSP 5.41  

52 T3 Phitsanulok, Thailand autumn 16.75 100.20 47 27.88 TSP 6.42  

53 T4 Phitsanulok, Thailand winter 16.75 100.20 47 26.2 TSP 6.47  

54 TH1 Guangzhou, China spring 23.15 113.36 36 21.88 PM2.5 6.43  

55 TH2 Guangzhou, China summer 23.15 113.36 36 22.29 PM2.5 5.41  

56 TH3 Guangzhou, China autumn 23.15 113.36 36 20.26 PM2.5 6.42  

57 TH4 Guangzhou, China winter 23.15 113.36 36 15.54 PM2.5 6.47  

58 TH5 Guangzhou, China spring 23.15 113.36 36 21.6 PM2.5 6.22  

59 WL1 Waliguan, China spring 36.29 100.90 3816 7.12 PM2.5 8.48  

60 WL2 Waliguan, China summer 36.29 100.90 3816 15.41 PM2.5 6.92  

61 WL3 Waliguan, China autumn 36.29 100.90 3816 11.3 PM2.5 6.86  

62 WL4 Waliguan, China winter 36.29 100.90 3816 -4.16 PM2.5 6.88  

63 XW1 Nanjing, China spring 32.06 118.80 30 20.54 PM2.5 6.37  

64 XW2 Nanjing, China summer 32.06 118.80 30 27.36 PM2.5 6.92  

65 XW3 Nanjing, China autumn 32.06 118.80 30 12.31 PM2.5 6.86  

66 XW4 Nanjing, China winter 32.06 118.80 30 7.61 PM2.5 6.88  

67 XW5 Nanjing, China spring 32.06 118.80 30 21.69 PM2.5 5.61  

68 ZF1 Mount Everest, China spring 28.21 86.56 4276 5.1 PM2.5 6.24  

69 ZF2 Mount Everest, China summer 28.21 86.56 4276 10.78 PM2.5 4.87  

70 ZF3 Mount Everest, China autumn 28.21 86.56 4276 7.13 PM2.5 6.93  
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71 ZF4 Mount Everest, China winter 28.21 86.56 4276 -2.42 PM2.5 5.61  

72 Antarctica1B Antarctica  -77.49 161.81 134  TSP 8.26 SRR13553597 

73 Antarctica2A Antarctica  -77.52 161.82 882  TSP 6.39 SRR13553599 

74 Antarctica3A Antarctica  -77.52 161.82 882  TSP 5.26 SRR13553600 

75 Antarctica4A Antarctica  -77.52 161.82 882  TSP 6.74 SRR13553601 

76 Canada1 Cambridge Bay, Canada  69.13 -105.06 6  TSP 1.31 SRR13553518 

77 Canada2 Cambridge Bay, Canada  69.13 -105.06 6  TSP 2.44 SRR13553519 

78 Canada3 Cambridge Bay, Canada  69.13 -105.06 6  TSP 1.35 SRR13553520 

79 Canada4 Cambridge Bay, Canada  69.13 -105.06 6  TSP 3.50 SRR13553521 

80 Canada5 Cambridge Bay, Canada  69.13 -105.06 6  TSP 2.69 SRR13553522 

81 Canada6 Cambridge Bay, Canada  69.13 -105.06 6  TSP 3.25 SRR13553523 

82 Canada7 Cambridge Bay, Canada  69.13 -105.06 6  TSP 4.07 SRR13553524 

83 Chile1A Antofagasta, Chile  -24.10 -70.02 1063  TSP 8.61 SRR13553551 

84 Chile1B Copiapo, Chile  -27.29 -70.25 1053  TSP 8.05 SRR13553549 

85 Chile2A Antofagasta, Chile  -24.10 -70.02 1063  TSP 4.36 SRR13553552 

86 Chile3A Antofagasta, Chile  -24.10 -70.02 1063  TSP 5.09 SRR13553553 

87 Chile4A Antofagasta, Chile  -24.10 -70.02 1063  TSP 3.63 SRR13553554 

88 Chile5A Antofagasta, Chile  -24.10 -70.02 1063  TSP 5.81 SRR13553555 

89 Chile6A Antofagasta, Chile  -24.10 -70.02 1063  TSP 2.22 SRR13553556 

90 Chile7A Antofagasta, Chile  -24.10 -70.02 1063  TSP 8.72 SRR13553588 

91 Chile8A Antofagasta, Chile  -24.10 -70.02 1063  TSP 5.98 SRR13553589 

92 Mongolia2 Zagiin us, Mongolia  44.57 105.65 1238  TSP 1.41 SRR13553489 

93 Mongolia3 Zagiin us, Mongolia  44.57 105.65 1238  TSP 5.27 SRR13553490 

94 Mongolia4 Zagiin us, Mongolia  44.57 105.65 1238  TSP 1.01 SRR13553491 

95 Mongolia5 Zagiin us, Mongolia  44.57 105.65 1238  TSP 4.84 SRR13553492 

96 Mongolia6 Zagiin us, Mongolia  44.57 105.65 1238  TSP 1.95 SRR13553493 

97 Mongolia7 Zagiin us, Mongolia  44.57 105.65 1238  TSP 3.68 SRR13553494 

98 Mongolia8 Zagiin us, Mongolia  44.57 105.65 1238  TSP 7.37 SRR13553496 

99 Mongolia9 Zagiin us, Mongolia  44.57 105.65 1238  TSP 5.19 SRR13553497 

100 Namibia1 desert, Namibia  -23.60 15.04 455  TSP 8.79 SRR13553567 

101 Namibia10 desert, Namibia  -23.60 15.04 455  TSP 3.22 SRR13553577 

102 Namibia2 desert, Namibia  -23.60 15.04 455  TSP 9.01 SRR13553568 

103 Namibia3 desert, Namibia  -23.60 15.04 455  TSP 6.52 SRR13553569 

104 Namibia4 desert, Namibia  -23.60 15.04 455  TSP 6.16 SRR13553570 

105 Namibia5 desert, Namibia  -23.60 15.04 455  TSP 1.67 SRR13553571 

106 Namibia6 desert, Namibia  -23.60 15.04 455  TSP 3.76 SRR13553573 

107 Namibia7 desert, Namibia  -23.60 15.04 455  TSP 6.04 SRR13553574 

108 Namibia8 desert, Namibia  -23.60 15.04 455  TSP 5.01 SRR13553575 

109 Namibia9 desert, Namibia  -23.60 15.04 455  TSP 3.03 SRR13553576 

110 Spain1A Madrid, Spain  40.82 -3.96 1814  TSP 1.75 SRR13553508 

111 Spain1B Toledo, Spain  39.62 -4.13 816  TSP 10.05 SRR13553510 

112 Spain2A Madrid, Spain  40.82 -3.96 1814  TSP 2.16 SRR13553509 

113 Spain3A Madrid, Spain  40.82 -3.96 1814  TSP 7.46 SRR13553511 
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114 Spain4A Madrid, Spain  40.82 -3.96 1814  TSP 4.73 SRR13553512 

115 Spain5A Madrid, Spain  40.82 -3.96 1814  TSP 4.23 SRR13553513 

116 Spain6A Madrid, Spain  40.82 -3.96 1814  TSP 6.79 SRR13553514 

117 Spain7A Madrid, Spain  40.82 -3.96 1814  TSP 6.46 SRR13553515 

118 Spain8A Madrid, Spain  40.82 -3.96 1814  TSP 5.93 SRR13553516 

119 USA1A California, USA  35.14 -116.10 284  TSP 5.00 SRR13553525 

120 USA1B Nevada, USA  36.26 -115.51 1672  TSP 4.26 SRR13553529 

121 USA2A California, USA  35.14 -116.10 284  TSP 7.45 SRR13553526 

122 USA3A California, USA  35.14 -116.10 284  TSP 7.85 SRR13553527 

123 USA4A California, USA  35.14 -116.10 284  TSP 3.25 SRR13553530 

124 USA5A California, USA  35.14 -116.10 284  TSP 4.55 SRR13553531 

125 USA6A California, USA  35.14 -116.10 284  TSP 2.67 SRR13553532 

126 USA7A California, USA  35.14 -116.10 284  TSP 5.61 SRR13553533 

127 USA8A California, USA  35.14 -116.10 284  TSP 7.66 SRR13553534 

128 Japan1 Ishikawa, Japan  37.31 137.23 6  TSP 6.11 SRR13553486 

129 Japan2 Ishikawa, Japan  37.31 137.23 6  TSP 7.51 SRR13553487 

130 Kuwait10 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 5.10 SRR13553585 

131 Kuwait11 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 5.34 SRR13553586 

132 Kuwait12 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 4.46 SRR13553587 

133 Kuwait4 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 4.23 SRR13553501 

134 Kuwait5 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 2.49 SRR13553502 

135 Kuwait6 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 3.50 SRR13553503 

136 Kuwait7 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 3.34 SRR13553504 

137 Kuwait8 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 3.17 SRR13553505 

138 Kuwait9 
Shalayhat Mina Abdullah, 

Kuwait 
 28.95 48.19 9  TSP 1.79 SRR13553507 

139 Singapore1 Singapore  1.31 103.77 18  TSP 6.34 SRR13553485 

140 Singapore2 Singapore  1.31 103.77 18  TSP 6.24 SRR13553603 

141 Singapore3 Singapore  1.31 103.77 18  TSP 7.36 SRR13553604 

142 Uruguay10 Colonia, Uruguay  -34.35 -57.24 30  TSP 4.10 SRR13553581 

143 Uruguay11 Colonia, Uruguay  -34.35 -57.24 30  TSP 6.54 SRR13553582 

144 Uruguay12 Colonia, Uruguay  -34.35 -57.24 30  TSP 7.20 SRR13553584 

145 Uruguay4 Colonia, Uruguay  -34.35 -57.24 30  TSP 7.75 SRR13553560 

146 Uruguay5 Colonia, Uruguay  -34.35 -57.24 30  TSP 9.29 SRR13553562 

147 Uruguay6 Colonia, Uruguay  -34.35 -57.24 30  TSP 8.68 SRR13553563 
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148 Uruguay7 Colonia, Uruguay  -34.35 -57.24 30  TSP 5.11 SRR13553564 

149 Uruguay8 Colonia, Uruguay  -34.35 -57.24 30  TSP 9.98 SRR13553565 

150 Uruguay9 Colonia, Uruguay  -34.35 -57.24 30  TSP 5.67 SRR13553566 

151 Africa1 Pretoria, South Africa  -25.73 28.26 1317  TSP 7.72 SRR13553495 

152 Africa2 Pretoria, South Africa  -25.73 28.26 1317  TSP 5.59 SRR13553578 

153 Africa3 Pretoria, South Africa  -25.73 28.26 1317  TSP 4.21 SRR13553579 

154 Africa4 Pretoria, South Africa  -25.73 28.26 1317  TSP 3.40 SRR13553583 

155 Africa5 Pretoria, South Africa  -25.73 28.26 1317  TSP 5.40 SRR13553594 

156 Africa6 Pretoria, South Africa  -25.73 28.26 1317  TSP 4.38 SRR13553605 

157 BJ001 Beijing, China  40.00 116.32 60 18 PM10 3.43 SRR10613586 

158 BJ002 Beijing, China  40.00 116.32 60 18 PM2.5 2.50 SRR10613585 

159 BJ003 Beijing, China  40.00 116.32 60 17 PM10 5.62 SRR10613568 

160 BJ004 Beijing, China  40.00 116.32 60 17 PM2.5 2.88 SRR10613557 

161 BJ005 Beijing, China  40.00 116.32 60 16 PM10 6.37 SRR10613508 

162 BJ006 Beijing, China  40.00 116.32 60 16 PM2.5 6.13 SRR10613497 

163 BJ007 Beijing, China  40.00 116.32 60 9 PM10 3.33 SRR10613486 

164 BJ008 Beijing, China  40.00 116.32 60 9 PM2.5 2.76 SRR10613545 

165 BJ009 Beijing, China  40.00 116.32 60 12 PM10 5.48 SRR10613534 

166 BJ010 Beijing, China  40.00 116.32 60 12 PM2.5 5.12 SRR10613523 

167 BJ011 Beijing, China  40.00 116.32 60 9 PM10 2.90 SRR10613584 

168 BJ012 Beijing, China  40.00 116.32 60 9 PM2.5 3.38 SRR10613577 

169 BJ013 Beijing, China  40.00 116.32 60 8 PM10 3.13 SRR10613576 

170 BJ014 Beijing, China  40.00 116.32 60 8 PM2.5 2.90 SRR10613575 

171 BJ015 Beijing, China  40.00 116.32 60 6 PM10 6.05 SRR10613574 

172 BJ016 Beijing, China  40.00 116.32 60 6 PM2.5 2.54 SRR10613573 

173 BJ017 Beijing, China  40.00 116.32 60 7 PM10 3.22 SRR10613572 

174 BJ018 Beijing, China  40.00 116.32 60 7 PM2.5 3.29 SRR10613571 

175 BJ019 Beijing, China  40.00 116.32 60 6 PM10 2.97 SRR10613570 

176 BJ020 Beijing, China  40.00 116.32 60 6 PM2.5 3.15 SRR10613569 

177 BJ021 Beijing, China  40.00 116.32 60 4 PM10 3.18 SRR10613567 

178 BJ022 Beijing, China  40.00 116.32 60 4 PM2.5 5.36 SRR10613566 

179 BJ023 Beijing, China  40.00 116.32 60 4 PM10 13.85 SRR10613565 

180 BJ024 Beijing, China  40.00 116.32 60 4 PM2.5 3.52 SRR10613564 

181 BJ025 Beijing, China  40.00 116.32 60 5 PM10 3.42 SRR10613563 

182 BJ026 Beijing, China  40.00 116.32 60 5 PM2.5 3.16 SRR10613562 

183 BJ027 Beijing, China  40.00 116.32 60 3 PM10 2.73 SRR10613561 

184 BJ028 Beijing, China  40.00 116.32 60 3 PM2.5 5.17 SRR10613560 

185 BJ029 Beijing, China  40.00 116.32 60 2 PM10 6.54 SRR10613559 

186 BJ030 Beijing, China  40.00 116.32 60 2 PM2.5 2.00 SRR10613558 

187 BJ031 Beijing, China  40.00 116.32 60 -7 PM10 4.31 SRR10613556 

188 BJ032 Beijing, China  40.00 116.32 60 -7 PM2.5 3.19 SRR10613555 

189 BJ033 Beijing, China  40.00 116.32 60 -6 PM10 2.79 SRR10613554 

190 BJ034 Beijing, China  40.00 116.32 60 -6 PM2.5 2.79 SRR10613553 
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191 BJ035 Beijing, China  40.00 116.32 60 -1 PM10 4.93 SRR10613552 

192 BJ036 Beijing, China  40.00 116.32 60 -1 PM2.5 3.85 SRR10613551 

193 BJ037 Beijing, China  40.00 116.32 60 -1 PM10 3.26 SRR10613512 

194 BJ038 Beijing, China  40.00 116.32 60 -1 PM2.5 3.34 SRR10613511 

195 BJ039 Beijing, China  40.00 116.32 60 -3 PM10 2.61 SRR10613510 

196 BJ040 Beijing, China  40.00 116.32 60 -3 PM2.5 5.57 SRR10613509 

197 BJ041 Beijing, China  40.00 116.32 60 -4 PM10 3.45 SRR10613507 

198 BJ042 Beijing, China  40.00 116.32 60 -4 PM2.5 3.03 SRR10613506 

199 BJ043 Beijing, China  40.00 116.32 60 -11 PM10 3.36 SRR10613505 

200 BJ044 Beijing, China  40.00 116.32 60 -11 PM2.5 6.22 SRR10613504 

201 BJ045 Beijing, China  40.00 116.32 60 -7 PM10 2.62 SRR10613503 

202 BJ046 Beijing, China  40.00 116.32 60 -7 PM2.5 3.24 SRR10613502 

203 BJ047 Beijing, China  40.00 116.32 60 -10 PM10 2.72 SRR10613501 

204 BJ048 Beijing, China  40.00 116.32 60 -10 PM2.5 4.33 SRR10613500 

205 BJ049 Beijing, China  40.00 116.32 60 -7 PM10 3.03 SRR10613499 

206 BJ050 Beijing, China  40.00 116.32 60 -7 PM2.5 7.04 SRR10613498 

207 BJ051 Beijing, China  40.00 116.32 60 -7 PM10 5.13 SRR10613496 

208 BJ052 Beijing, China  40.00 116.32 60 -7 PM2.5 3.06 SRR10613495 

209 BJ053 Beijing, China  40.00 116.32 60 -7 PM10 3.18 SRR10613494 

210 BJ054 Beijing, China  40.00 116.32 60 -7 PM2.5 2.65 SRR10613493 

211 BJ055 Beijing, China  40.00 116.32 60 -7 PM10 3.32 SRR10613492 

212 BJ056 Beijing, China  40.00 116.32 60 -7 PM2.5 9.01 SRR10613491 

213 BJ057 Beijing, China  40.00 116.32 60 -9 PM10 5.43 SRR10613490 

214 BJ058 Beijing, China  40.00 116.32 60 -9 PM2.5 5.67 SRR10613489 

215 BJ059 Beijing, China  40.00 116.32 60 -4 PM10 3.21 SRR10613488 

216 BJ060 Beijing, China  40.00 116.32 60 -4 PM2.5 5.67 SRR10613487 

217 BJ061 Beijing, China  40.00 116.32 60 -7 PM10 5.08 SRR10613485 

218 BJ062 Beijing, China  40.00 116.32 60 -7 PM2.5 5.71 SRR10613484 

219 BJ063 Beijing, China  40.00 116.32 60 -4 PM10 3.84 SRR10613483 

220 BJ064 Beijing, China  40.00 116.32 60 -4 PM2.5 3.45 SRR10613482 

221 BJ065 Beijing, China  40.00 116.32 60 -6 PM10 4.38 SRR10613481 

222 BJ066 Beijing, China  40.00 116.32 60 -6 PM2.5 3.38 SRR10613550 

223 BJ067 Beijing, China  40.00 116.32 60 -4 PM10 3.29 SRR10613549 

224 BJ068 Beijing, China  40.00 116.32 60 -4 PM2.5 2.96 SRR10613548 

225 BJ069 Beijing, China  40.00 116.32 60 -3 PM10 9.21 SRR10613547 

226 BJ070 Beijing, China  40.00 116.32 60 -3 PM2.5 4.76 SRR10613546 

227 BJ071 Beijing, China  40.00 116.32 60 -6 PM10 6.88 SRR10613544 

228 BJ072 Beijing, China  40.00 116.32 60 -6 PM2.5 7.02 SRR10613543 

229 BJ073 Beijing, China  40.00 116.32 60 -5 PM10 2.77 SRR10613542 

230 BJ074 Beijing, China  40.00 116.32 60 -5 PM2.5 3.30 SRR10613541 

231 BJ075 Beijing, China  40.00 116.32 60 -1 PM10 3.34 SRR10613540 

232 BJ076 Beijing, China  40.00 116.32 60 -1 PM2.5 3.18 SRR10613539 

233 BJ077 Beijing, China  40.00 116.32 60 -5 PM10 3.54 SRR10613538 
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234 BJ078 Beijing, China  40.00 116.32 60 -5 PM2.5 5.00 SRR10613537 

235 BJ079 Beijing, China  40.00 116.32 60 -1 PM10 2.88 SRR10613536 

236 BJ080 Beijing, China  40.00 116.32 60 -1 PM2.5 3.16 SRR10613535 

237 BJ081 Beijing, China  40.00 116.32 60 -2 PM10 2.88 SRR10613533 

238 BJ082 Beijing, China  40.00 116.32 60 -2 PM2.5 2.84 SRR10613532 

239 BJ083 Beijing, China  40.00 116.32 60 -4 PM10 5.52 SRR10613531 

240 BJ084 Beijing, China  40.00 116.32 60 -4 PM2.5 2.77 SRR10613530 

241 BJ085 Beijing, China  40.00 116.32 60 -6 PM10 3.00 SRR10613529 

242 BJ086 Beijing, China  40.00 116.32 60 -6 PM2.5 3.92 SRR10613528 

243 BJ087 Beijing, China  40.00 116.32 60 -1 PM10 11.55 SRR10613527 

244 BJ088 Beijing, China  40.00 116.32 60 -1 PM2.5 10.63 SRR10613526 

245 BJ089 Beijing, China  40.00 116.32 60 -4 PM10 7.16 SRR10613525 

246 BJ090 Beijing, China  40.00 116.32 60 -4 PM2.5 6.33 SRR10613524 

247 BJ091 Beijing, China  40.00 116.32 60 0 PM10 2.60 SRR10613522 

248 BJ092 Beijing, China  40.00 116.32 60 0 PM2.5 2.75 SRR10613521 

249 BJ093 Beijing, China  40.00 116.32 60 1 PM10 3.34 SRR10613520 

250 BJ094 Beijing, China  40.00 116.32 60 1 PM2.5 3.11 SRR10613519 

251 BJ095 Beijing, China  40.00 116.32 60 7 PM10 4.96 SRR10613518 

252 BJ096 Beijing, China  40.00 116.32 60 7 PM2.5 5.98 SRR10613517 

253 BJ097 Beijing, China  40.00 116.32 60 4 PM10 1.33 SRR10613516 

254 BJ098 Beijing, China  40.00 116.32 60 4 PM2.5 3.74 SRR10613515 

255 BJ099 Beijing, China  40.00 116.32 60 8 PM10 3.43 SRR10613514 

256 BJ100 Beijing, China  40.00 116.32 60 8 PM2.5 3.26 SRR10613513 

257 BJ101 Beijing, China  40.00 116.32 60 6 PM10 3.43 SRR10613583 

258 BJ102 Beijing, China  40.00 116.32 60 6 PM2.5 3.37 SRR10613582 

259 BJ103 Beijing, China  40.00 116.32 60 7 PM10 2.57 SRR10613581 

260 BJ104 Beijing, China  40.00 116.32 60 7 PM2.5 2.90 SRR10613580 

261 BJ105 Beijing, China  40.00 116.32 60 6 PM10 2.58 SRR10613579 

262 BJ106 Beijing, China  40.00 116.32 60 6 PM2.5 3.20 SRR10613578 
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2. Database of putative sources of airborne ARGs. 

type Run name 

drinking 

water (n=7) 
SRR6797136, SRR6797141, SRR6797149, SRR6797150, SRR6797151, SRR6986810, SRR6986811 

farm-

related 

(n=24) 

ERR1135410, ERR1135409, ERR1135406, ERR1135408, ERR1135417, ERR1135419, ERR1135443, ERR1135472, ERR2027889, ERR2027890, ERR2530127, 

ERR2530126, ERR1135281, ERR1135282, ERR1135178, ERR1135180, ERR1135179, ERR1193301, ERR1193332, ERR1193300, ERR1193331, ERR1193299, 

ERR1193298, ERR1193297 

freshwater 

(n=75) 

ERR1193292, ERR1193293, ERR1193294, ERR1725854, ERR1726436, ERR1726985, ERR1726987, ERR1726993, SRR5431081, SRR5431137, SRR5431138, 

SRR5431152, SRR5433937, SRR5468423, SRR5468427, SRR5468431, SRR5468433, SRR5468437, SRR5535881, SRR5535882, SRR5747948, SRR6481338, 

SRR6481359, SRR6481365, SRR6481371, SRR6481372, SRR7760390, SRR7760391, SRR7760393, SRR7760396, SRR1047946, SRR1047948, SRR1047951, 

SRR1047952, SRR1047954, SRR3321505, SRR3321803, SRR3322106, SRR3322355, SRR14576896, SRR14576897, SRR14576898, SRR14576899, 

SRR14576900, SRR14576901, SRR14576902, SRR14576903, SRR14576904, SRR14576905, SRR14576906, SRR14576907, SRR14576908, SRR14576909, 

SRR14576910, SRR14576911, SRR14576912, SRR14576913, SRR14576914, SRR14576915, SRR14576916, SRR14576917, SRR14576918, SRR14576919, 

SRR14576920, SRR14576921, SRR14576922, SRR14576923, SRR14576924, SRR14576925, SRR14576926, SRR14576927, SRR14576928, SRR14576929, 

SRR14576930, SRR14576931 

forest soil 

(n=27) 

ERR1877665, ERR1877670, ERR1877678, ERR1877680, ERR1877684, ERR1877686, ERR1877689, ERR1877694, ERR1877701, ERR1877702, ERR1877704, 

ERR1877718, ERR1877723, ERR1877735, ERR1877758, ERR1877770, ERR1877785, ERR1877849, ERR1877852, ERR1877877, ERR1877880, ERR1877882, 

ERR1877884, ERR1877887, ERR1877890, ERR1877906, ERR1877911 

agricultural 

soil (n=10) 
SRR1190306, SRR1190308, SRR1190311, SRR1190316, SRR1190334, SRR1190336, SRR1190349, SRR1190350, SRR1190383, SRR1190384 

Antarctica 

soil (n=6) 
ERR5891570, ERR5891571, ERR5891572, ERR5891573, ERR5891574, ERR5891575 

grassland 

soil (n=3) 
ERR1877796, ERR1877921, ERR1877926 

hospital-

related 

(n=25) 

ERR1191817, ERR1191818, ERR1191819, ERR1191820, ERR1191821, SRR14413839, SRR14413840, SRR14413841, SRR14413842, SRR14413843, 

SRR14413844, SRR14413845, SRR14413846, SRR14413847, SRR14413848, SRR14413849, SRR14413850, SRR14413851, SRR14413852, SRR14413853, 

SRR14413854, SRR14413855, SRR14413856, SRR14413857, ERR1191822 

human 

surface 

(n=29) 

SRR11242339, SRR11242340, SRR11242342, SRR11242343, SRR11242344, SRR11242345, SRR11242346, SRR11242347, SRR11242348, SRR11242349, 

SRR11242350, SRR11242351, SRR11242353, SRR11242354, SRR11242355, SRR11242356, SRR11300707, SRR11300708, SRR11300709, SRR11300710, 

SRR11300711, SRR11300712, SRR11300713, SRR11300714, SRR11300715, SRR11300716, SRR11300717, SRR11300718, SRR11304755 
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type Run name 

human 

excretion 

(n=241) 

SRR059365, SRR060439, SRR061513, SRR061293, SRR059475, SRR061373, SRR061392, SRR513156, SRR061387, SRR513145, SRR059411, SRR063524, 

SRR346706, SRR059913, SRR061525, SRR512078, SRR513150, SRR063466, SRR513146, SRR059877, SRR346676, SRR061914, SRR513181, SRR513794, 

SRR059996, SRR513764, SRR060429, SRR059859, SRR061592, SRR514266, SRR059401, SRR346690, SRR063490, SRR063492, SRR061530, SRR353629, 

SRR061348, SRR062358, SRR353628, SRR059377, SRR062444, SRR061370, SRR514232, SRR061480, SRR062536, SRR062289, SRR061365, SRR062332, 

SRR062101, SRR059957, SRR061979, SRR059493, SRR059994, SRR059814, SRR061968, SRR063507, SRR061916, SRR062042, SRR062056, SRR063528, 

SRR059428, SRR061335, SRR062014, SRR062300, SRR059490, SRR059446, SRR061302, SRR059371, SRR059484, SRR059340, SRR059899, SRR062347, 

SRR061354, SRR059414, SRR059363, SRR062527, SRR059865, SRR061377, SRR061520, SRR061159, SRR061585, SRR059328, SRR061590, SRR062410, 

SRR062505, SRR059403, SRR062391, SRR059433, SRR059510, SRR061566, SRR062377, SRR062432, SRR061276, SRR060081, SRR062452, SRR061239, 

SRR061953, SRR061997, SRR060121, SRR062068, SRR063928, SRR063675, SRR061311, SRR061210, SRR061178, SRR061400, SRR059893, SRR061259, 

SRR061319, SRR059437, SRR061244, SRR062325, SRR060378, SRR061389, SRR059919, SRR060033, SRR060361, SRR061289, SRR063496, SRR059374, 

SRR059928, SRR062468, SRR061141, SRR062491, SRR060421, SRR060440, SRR060142, SRR062311, SRR060387, SRR060405, SRR061511, SRR059839, 

SRR062281, SRR063746, SRR061945, SRR059358, SRR061550, SRR061252, SRR061441, SRR061451, SRR062034, SRR061225, SRR060367, SRR062093, 

SRR063519, SRR064436, SRR18491211, ERR527046, ERR527053, ERR527063, SRR18490939, SRR18490983, SRR18490984, SRR18490986, SRR18490988, 

SRR18490991, SRR18490996, SRR18490997, SRR18490998, SRR18490999, SRR18491000, SRR18491001, SRR18491003, SRR18491004, SRR18491008, 

SRR18491028, SRR18491037, SRR18491039, SRR18491042, SRR18491043, SRR18491045, SRR18491046, SRR18491048, SRR18491051, SRR18491052, 

SRR18491059, SRR18491061, SRR18491067, SRR18491078, SRR18491093, SRR18491095, SRR18491100, SRR18491105, SRR18491109, SRR18491110, 

SRR18491112, SRR18491116, SRR18491118, SRR18491120, SRR18491121, SRR18491123, SRR18491125, SRR18491136, SRR18491157, SRR18491168, 

SRR18491177, SRR18491213, SRR18491217, SRR18491218, SRR18491219, SRR18491220, SRR18491221, SRR18491222, SRR18491224, SRR18491226, 

SRR18491231, SRR18491232, SRR18491236, SRR18491240, SRR18491241, SRR18491243, SRR18491244, SRR18491246, SRR18491250, SRR18491251, 

SRR18491253, SRR18491255, SRR18491259, SRR18491260, SRR18491261, SRR18491263, SRR18491272, SRR18491274, SRR18491277, SRR18491278, 

SRR18491286, SRR18491287, SRR18491288, SRR18491290, SRR18491292, SRR18491293, SRR18491294, SRR18491295, SRR18491306, SRR18491328, 

ERR527048, ERR527047, ERR526291, ERR527065, ERR527050, ERR527064 

landfill-

related 

(n=34) 

SRR14102348, SRR14102349, SRR14102350, SRR14102351, SRR14102352, SRR14102353, SRR6301222, SRR6301223, SRR6301224, SRR11702754, 

SRR11702755, SRR11702756, SRR11702757, SRR11702758, SRR11702759, SRR11702760, SRR11702761, SRR11702762, SRR11702763, SRR11702764, 

SRR11702765, SRR11702766, SRR11702767, SRR11702768, SRR11702769, SRR11702770, SRR11702771, SRR10498317, SRR10498318, SRR10498319, 

SRR10498320, SRR10498321, SRR10498322, SRR10498323 

ocean 

(n=67) 

ERR598943, ERR598954, ERR598966, ERR598967, ERR598970, ERR598978, ERR598979, ERR598989, ERR598992, ERR598997, ERR599011, ERR599012, 

ERR599019, ERR599024, ERR599029, ERR599030, ERR599036, ERR599038, ERR599039, ERR599045, ERR599050, ERR599052, ERR599054, ERR599057, 

ERR599058, ERR599063, ERR599064, ERR599066, ERR599069, ERR599074, ERR599075, ERR599077, ERR599080, ERR599088, ERR599091, ERR599093, 

ERR599098, ERR599102, ERR599114, ERR599118, ERR599119, ERR599120, ERR599138, ERR599139, ERR599141, ERR599142, ERR599143, ERR599146, 

ERR599150, ERR599151, ERR599158, ERR599160, ERR599162, ERR599163, ERR599169, SRR2134631, SRR2134632, SRR2134633, SRR2134634, 

SRR2134636, SRR2134637, SRR2134639, SRR2134640, SRR2134641, SRR2134642, SRR2134643, SRR2134644 

plant 

(n=24) 

SRR10585495, SRR10585497, SRR10585498, SRR10585499, SRR10585507, SRR10585513, SRR10585514, SRR10585515, SRR10585516, SRR10585518, 

SRR10585527, SRR10585528, SRR10585529, SRR10585530, SRR10585531, SRR10585540, SRR10585541, SRR10585542, SRR10585543, SRR10585544, 

SRR10585558, SRR10585559, SRR10585560, SRR10585561 
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type Run name 

WWTPs-

related 

(n=122) 

ERR1414209, ERR1414277, ERR1414276, ERR1414278, ERR1414273, ERR1414275, ERR1414272, ERR1414271, ERR1414270, ERR1414211, ERR1414210, 

ERR1414225, ERR1414269, ERR1414267, ERR1414237, ERR1414224, ERR1414223, ERR1414268, ERR1414248, ERR1414247, ERR1414242, ERR1414253, 

ERR1414243, ERR1414238, ERR1414241, ERR1414251, ERR1414254, ERR1414252, ERR1414249, ERR1414221, ERR1414218, ERR1414244, ERR1414245, 

ERR1414222, ERR1414255, ERR1414240, ERR1414219, ERR1414239, ERR1414220, ERR1414256, ERR1414217, ERR1414250, ERR1414216, ERR1414274, 

ERR1414236, ERR1414232, ERR1414229, ERR1414234, ERR1414235, ERR1414215, ERR1414233, SRR14932484, ERR1414230, ERR1414226, ERR1414231, 

ERR1414214, ERR1414213, ERR1414228, ERR1414227, ERR1414212, ERR1414262, SRR14932479, ERR1414265, ERR1414257, SRR14932480, 

ERR1414261, ERR1414264, ERR1414263, ERR1414266, ERR1414260, ERR1414258, SRR14932686, SRR14932504, SRR14932506, SRR14932505, 

ERR1414259, SRR14932668, SRR14932684, SRR14932685, SRR14932478, SRR14932557, SRR14932565, SRR14932509, SRR14932503, SRR14932677, 

SRR14932702, SRR14932527, SRR14932477, SRR14932562, SRR14932508, SRR14932558, SRR14932563, SRR14932526, SRR14932493, SRR14932564, 

SRR14932510, SRR14932669, SRR14932683, SRR14932567, SRR14932561, SRR14932687, SRR14932507, SRR14932487, SRR14932566, SRR14932689, 

SRR14932482, SRR14932485, SRR14932559, SRR14932568, SRR14932486, SRR14932488, SRR14932483, SRR5997552, SRR5997541, SRR5997540, 

SRR5997551, SRR5423071, SRR5423072, SRR5422913, SRR5422949, SRR5422860, SRR1047949 
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3. Database of potential sources of airborne ARGs in Hong Kong for case study. 

Type Run name 

WWTPs (n=7) SRR13503351, SRR13503352, SRR13503358, SRR13503359, SRR13503360, SRR13503361, SRR13503362 

transportation-related (n= 21) 

SRR5312474, SRR5312475, SRR5312476, SRR6145059, SRR6145060, SRR6145062, SRR6145063, 

SRR6145071, SRR6145072, SRR6145074, SRR6145075, SRR6145077, SRR6145080, SRR6145081, 

SRR6145082, SRR6145083, SRR6145084, SRR6145088, SRR6145091, SRR6145096, SRR6145101 

hospital-related (n=12) 
SRR5312478, SRR5312479, SRR5312480, SRR5312481, SRR5312482, SRR5312483, SRR5312484, 

SRR5312485, SRR5312486, SRR5312487, SRR5312488, SRR5312489 

farm-related (n=2) SRR1022348, SRR1022349 

marine (n=13) 
SRR1022373, SRR1022377, SRR2134631, SRR2134632, SRR2134633, SRR2134634, SRR2134636, 

SRR2134637, SRR2134639, SRR2134640, SRR2134641, SRR2134642, SRR2134643 

Freshwater (n=7) SRR1022353, SRR1022378, SRR1047946, SRR1047948, SRR1047951, SRR1047952, SRR1047954 

tap water (n=1) SRR2134644 

human excretion (n=8) SRR062300, SRR062311, SRR062325, SRR062332, SRR062347, SRR062377, SRR062391, SRR062432 

 



226 

 

Appendix 4 

This section provides the initial results of bioinformatic analyses in the thesis. 

1. Annotation and relative abundance (%) calculation of global airborne ARGs. 

ARG ARG class abundance  ARG ARG class abundance 

AAC(2')-I aminoglycoside antibiotic 4.86E-04  ACC-5 beta-lactams 5.19E-06 

AAC(2')-IE aminoglycoside antibiotic 9.88E-06  ACI-1 beta-lactams 1.01E-04 

AAC(2')-IIB aminoglycoside antibiotic 1.01E-05  ACRA multidrug 1.80E-03 

AAC(3)-I aminoglycoside antibiotic 3.38E-03  ACRB multidrug 1.97E-02 

AAC(3)-IB aminoglycoside antibiotic 3.15E-04  ACRD aminoglycoside antibiotic 5.34E-04 

AAC(3)-II aminoglycoside antibiotic 1.68E-04  ACRE multidrug 1.63E-06 

AAC(3)-IIIA aminoglycoside antibiotic 1.05E-03  ACRF multidrug 5.75E-04 

AAC(3)-IV aminoglycoside antibiotic 1.18E-03  ACRS multidrug 1.07E-04 

AAC(3)-IX aminoglycoside antibiotic 5.22E-06  ACT beta-lactams 5.83E-05 

AAC(3)-VI aminoglycoside antibiotic 1.34E-05  ADC-12 beta-lactams 5.21E-06 

AAC(3)-VII aminoglycoside antibiotic 2.54E-05  ADC-13 beta-lactams 8.25E-07 

AAC(3)-VIII aminoglycoside antibiotic 2.71E-05  ADC-14 beta-lactams 4.67E-07 

AAC(3)-X aminoglycoside antibiotic 2.25E-05  ADC-15 beta-lactams 1.44E-05 

AAC(6')-31 aminoglycoside antibiotic 1.89E-04  ADC-16 beta-lactams 1.38E-05 

AAC(6')-34 aminoglycoside antibiotic 4.53E-05  ADC-18 beta-lactams 3.65E-06 

AAC(6')-I aminoglycoside antibiotic 1.84E-03  ADC-19 beta-lactams 1.40E-06 

AAC(6')-IAA aminoglycoside antibiotic 7.95E-06  ADC-21 beta-lactams 5.11E-06 

AAC(6')-IAK aminoglycoside antibiotic 2.22E-05  ADC-22 beta-lactams 8.74E-06 

AAC(6')-IB' aminoglycoside antibiotic 1.78E-06  ADC-23 beta-lactams 1.60E-05 

AAC(6')-IB7 aminoglycoside antibiotic 2.97E-05  ADC-39 beta-lactams 1.78E-06 

AAC(6')-IB8 aminoglycoside antibiotic 1.98E-04  ADC-41 beta-lactams 5.48E-06 

AAC(6')-IE aminoglycoside antibiotic 3.42E-05  ADC-43 beta-lactams 6.30E-06 

AAC(6')-II aminoglycoside antibiotic 3.80E-04  ADC-44 beta-lactams 1.73E-05 

AAD(9) aminoglycoside antibiotic 6.42E-04  ADC-6 beta-lactams 6.12E-06 

AADA aminoglycoside antibiotic 3.49E-03  ADC-7 beta-lactams 5.91E-07 

AADA13 aminoglycoside antibiotic 3.04E-05  ADC-78 beta-lactams 2.45E-06 

AADA25 aminoglycoside antibiotic 7.49E-05  ADC-79 beta-lactams 2.61E-06 

AADA9 aminoglycoside antibiotic 1.76E-04  ADC-8 beta-lactams 2.84E-04 

AADB aminoglycoside antibiotic 5.66E-06  ADC-80 beta-lactams 2.69E-05 

AADD aminoglycoside antibiotic 1.75E-03  ADC-81 beta-lactams 8.98E-06 

AADE aminoglycoside antibiotic 3.48E-03  ADEA tetracycline antibiotic 3.65E-04 

AADK aminoglycoside antibiotic 2.00E-04  ADEB tetracycline antibiotic 2.48E-03 

ABCA multidrug 9.45E-03  ADEC tetracycline antibiotic 8.11E-04 

ABEM multidrug 1.14E-04  ADEF multidrug 3.20E-03 

ABES multidrug 6.33E-04  ADEH multidrug 5.33E-04 
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ARG ARG class abundance  ARG ARG class abundance 

ADEI multidrug 1.30E-03  APH(9)-IA aminoglycoside antibiotic 6.14E-05 

ADEJ multidrug 2.52E-03  APMA aminoglycoside antibiotic 1.36E-04 

ADEK multidrug 7.07E-04  ARLS multidrug 5.44E-04 

ADEL multidrug 6.27E-04  ARNA peptide antibiotic 4.10E-03 

ADEN multidrug 4.65E-04  ARR-4 rifamycin antibiotic 9.76E-04 

ADER tetracycline antibiotic 4.16E-04  ARR-5 rifamycin antibiotic 3.47E-04 

ADES tetracycline antibiotic 1.40E-04  ARR-7 rifamycin antibiotic 2.72E-05 

ADP-

RIBOSYLATI

NG_TRANSFE

RASE_ARR 

rifamycin antibiotic 1.15E-02 

 ARR-8 rifamycin antibiotic 1.21E-04 

 AXYX multidrug 4.19E-05 

 AXYY multidrug 1.38E-03 

AER-1 beta-lactams 4.51E-04  BACA peptide antibiotic 5.64E-02 

AIM-1 beta-lactams 1.07E-04  BACILLUS_C
LUSTER_A_IN
TRINSIC_MPH macrolide antibiotic 1.36E-04 AMPC multidrug 1.09E-04  

AMRB aminoglycoside antibiotic 3.02E-03  BACILLUS_C
LUSTER_A_IN
TRINSIC_MPH macrolide antibiotic 1.36E-04 ANT(2'')-I aminoglycoside antibiotic 2.59E-04  

ANT(3'')-IH aminoglycoside antibiotic 9.56E-05  BACILLUS_S
UBTILIS_MPR
F macrolide antibiotic 5.72E-05 ANT(3'')-IIA aminoglycoside antibiotic 5.00E-04  

ANT(3'')-IIB aminoglycoside antibiotic 1.12E-05  BAER multidrug 2.80E-03 

ANT(3'')-IIC aminoglycoside antibiotic 2.09E-04  BAES multidrug 1.52E-03 

ANT(4')-IA aminoglycoside antibiotic 6.96E-06  BAHA peptide antibiotic 1.12E-04 

ANT(4')-IIA aminoglycoside antibiotic 6.11E-05  BASS peptide antibiotic 1.39E-05 

ANT(9)-I aminoglycoside antibiotic 1.30E-03  BCR-1 bicyclomycin 1.81E-05 

ANTIBIOTIC_

RESISTANCE_

RRNA_ADENI

NE_METHYLT

RANSFERASE aminoglycoside antibiotic 4.92E-04 

 BCRA peptide antibiotic 4.22E-03 

 BCRB peptide antibiotic 5.37E-05 

 BCRC peptide antibiotic 1.80E-05 

 BEL beta-lactams 9.65E-06 

APH(2'')-IE aminoglycoside antibiotic 1.68E-05  
bifunctional_A

AC/APH aminoglycoside antibiotic 1.45E-03 APH(2'')-IF aminoglycoside antibiotic 2.08E-04  

APH(2'')-II aminoglycoside antibiotic 6.18E-05  BJP-1 beta-lactams 2.20E-03 

APH(2'')-III aminoglycoside antibiotic 1.94E-05  BLAI beta-lactams 2.32E-05 

APH(3')-I aminoglycoside antibiotic 5.60E-03  BLAR1 beta-lactams 8.33E-06 

APH(3'')-I aminoglycoside antibiotic 1.55E-03  BLAZ beta-lactams 2.84E-04 

APH(3')-IIA aminoglycoside antibiotic 2.07E-03  BLEO glycopeptide antibiotic 1.32E-04 

APH(3')-IIB aminoglycoside antibiotic 5.76E-04  BLEOMYCIN_
RESISTANCE_
PROTEIN glycopeptide antibiotic 9.83E-04 APH(3''')-III aminoglycoside antibiotic 1.57E-03  

APH(3'')-IV aminoglycoside antibiotic 3.91E-06  BLT multidrug 2.44E-04 

APH(3')-IX aminoglycoside antibiotic 1.11E-06  BMR multidrug 3.87E-04 

APH(3')-V aminoglycoside antibiotic 1.05E-05  BPEF multidrug 6.58E-03 

APH(3')-VI aminoglycoside antibiotic 9.01E-05  BRP(MBL) glycopeptide antibiotic 8.00E-04 

APH(3')-VII aminoglycoside antibiotic 3.12E-05  
BRUCELLA_S

UIS_MPRF peptide antibiotic 5.77E-05 APH(4)-I aminoglycoside antibiotic 5.41E-04  

APH(4)-IB aminoglycoside antibiotic 1.26E-06  BURKHOLDE
RIA_PSEUDO
MALLEI_OMP
38 multidrug 4.05E-04 APH(6)-I aminoglycoside antibiotic 2.28E-03 
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ARG ARG class abundance  ARG ARG class abundance 

BUT-1 beta-lactams 5.43E-06  CLBB multidrug 5.44E-05 

CAMP-
REGULATOR
Y_PROTEIN beta-lactams 4.64E-03 

 CLBC multidrug 3.23E-05 

 CLOSTRIDIU
M_PERFRING
ENS_MPRF 

peptide antibiotic 

 

1.10E-05 

 CARA multidrug 8.75E-05  

CARB beta-lactams 4.81E-04  CMEA multidrug 6.72E-07 

CARO beta-lactams 5.60E-04  CMEB multidrug 9.50E-04 

CAT_CHLORA

MPHENICOL_

ACETYLTRA

NSFERASE phenicol antibiotic 2.06E-03 

 CMEC multidrug 1.02E-06 

 CMLA phenicol antibiotic 1.91E-04 

 CMRA phenicol antibiotic 3.19E-05 

CATA phenicol antibiotic 1.58E-04  CMX phenicol antibiotic 7.59E-05 

CATB phenicol antibiotic 1.04E-03  CPAA aminoglycoside antibiotic 3.77E-06 

CATB10 phenicol antibiotic 1.21E-04  CPS-1 beta-lactams 9.77E-05 

CATD phenicol antibiotic 6.18E-05  COB(I)ALAMI

N_ADENOLS

YLTRANSFER

ASE multidrug 8.52E-04 

CATP phenicol antibiotic 3.38E-05  

CATQ phenicol antibiotic 5.49E-05  

CATS phenicol antibiotic 2.33E-05  CPXA multidrug 9.23E-04 

CATU phenicol antibiotic 6.90E-06  CRP multidrug 8.51E-07 

CATV phenicol antibiotic 5.61E-06  CRPP fluoroquinolone antibiotic 5.89E-05 

CAZ beta-lactams 1.41E-04  CTX-M beta-lactams 2.34E-04 

CEOB multidrug 6.74E-03  CYSTATHION
INE_beta-
LYASE_PATB fluoroquinolone antibiotic 1.61E-06 CFRC phenicol antibiotic 9.51E-05  

CFXA2 beta-lactams 3.02E-04  DFRA1 diaminopyrimidine  3.29E-04 

CFXA3 beta-lactams 4.76E-05  DFRA10 diaminopyrimidine  1.91E-06 

CFXA6 beta-lactams 1.97E-04  DFRA12 diaminopyrimidine  7.93E-05 

CGB-1 beta-lactams 1.26E-06  DFRA13 diaminopyrimidine  1.08E-06 

CHLORAMPH
ENICOL_AND
_FLORFENIC
OL_EXPORTE
R multidrug 5.06E-04 

 DFRA14 diaminopyrimidine  7.38E-05 

 DFRA15 diaminopyrimidine  5.93E-05 

 DFRA16 diaminopyrimidine  1.97E-05 

CHLORAMPH
ENICOL_AND
_FLORFENIC
OL_RESISTAN
CE 

multidrug 

 

1.01E-04 

 

 DFRA17 diaminopyrimidine  3.68E-04 

 DFRA19 diaminopyrimidine  9.17E-06 

 DFRA20 diaminopyrimidine  8.26E-05 

CHLORAMPH

ENICOL_EXP

ORTER 

multidrug 2.14E-03 

 DFRA22 diaminopyrimidine  3.04E-05 

 
DFRA25 diaminopyrimidine  4.73E-06 

CHRB MLS 1.89E-06  DFRA2D diaminopyrimidine  1.62E-05 

CHRYSEOBA

CTERIUM_ME

NINGOSEPTIC

UM_BLAB multidrug 5.51E-06 

 DFRA3 diaminopyrimidine  2.22E-03 

 DFRA5 diaminopyrimidine  1.17E-05 

 DFRA8 diaminopyrimidine  3.31E-05 

CIPA multidrug 1.76E-05  DFRB1 diaminopyrimidine  8.08E-06 

CLASS_A beta-lactams 2.48E-03  DFRB2 diaminopyrimidine  8.37E-05 

CLASS_B beta-lactams 1.77E-05  DFRB3 diaminopyrimidine  2.23E-05 

CLASS_C beta-lactams 1.39E-03  DFRB6 diaminopyrimidine  5.67E-05 

CLASS_D beta-lactams 9.42E-07  DFRC diaminopyrimidine  1.12E-03 

CLBA multidrug 1.40E-04  DFRD diaminopyrimidine  1.77E-04 
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ARG ARG class abundance  ARG ARG class abundance 

DFRE diaminopyrimidine  2.43E-05  ERM(41) MLS 1.33E-04 

DFRF diaminopyrimidine  9.31E-05  ERM(42) MLS 1.25E-05 

DFRG diaminopyrimidine  5.28E-04  ERM(43) MLS 2.58E-05 

DFRK diaminopyrimidine  1.23E-04  ERM(44) MLS 2.12E-06 

DHA beta-lactams 1.16E-05  ERM(47) MLS 5.25E-05 

DIM-1 beta-lactams 9.69E-07  ERM(TR) MLS 3.58E-04 
DNA-
BINDING_PR
OTEIN_H-NS 

multidrug 

 

7.34E-04 

 

 ERMA MLS 7.28E-04 

ERMB MLS 2.76E-03 
DNA-
BINDING_PR
OTEIN_H-NS 

multidrug 

 

7.34E-04 

 

 ERMC MLS 5.19E-03 

ERME MLS 3.19E-05 

DNA-

BINDING_TR

ANSCRIPTION

AL_REGULAT

OR_GADX 

multidrug 4.64E-05 

 ERMF MLS 7.79E-04 

ERMG MLS 4.94E-04 

ERMH MLS 8.89E-07 

ERMO MLS 7.88E-05 

DNA-

BINDING_TR

ANSCRIPTION

AL_REGULAT

OR_GADX 

multidrug 

 

4.64E-05 

 

 ERMS MLS 3.02E-05 

 ERMT MLS 1.53E-03 

 ERMU MLS 9.57E-07 

 ERMX MLS 1.15E-03 

EDEQ multidrug 5.79E-06  ESCHERICHI
A_COLI_LAM
B multidrug 7.39E-04 EFMA multidrug 2.20E-05  

EFPA multidrug 3.81E-04  ESCHERICHI
A_COLI_MDF
A multidrug 2.36E-06 EFRA multidrug 1.23E-03  

EFRB multidrug 3.50E-03 
 ESCHERICHI

A_COLI_MIPA multidrug 3.36E-04 

EMRA fluoroquinolone antibiotic 6.07E-03  ESP-1 beta-lactams 1.83E-04 

EMRB fluoroquinolone antibiotic 7.98E-03  EVGS multidrug 8.47E-05 

EMRB-

QACA_FAMIL

Y_MAJOR_FA

CILITATOR_T

RANSPORTER fluoroquinolone antibiotic 2.53E-03 

 FEZ-1 beta-lactams 6.58E-04 

 

FARA 

antibacterial free fatty 

acids 9.78E-04 

FARB 

antibacterial free fatty 

acids 1.74E-04 

EMRD phenicol antibiotic 5.44E-04  FLOR phenicol antibiotic 6.97E-04 

EMRE multidrug 1.05E-03  FMTC tetracycline antibiotic 5.51E-04 

EMRK tetracycline antibiotic 9.50E-04  FOMB fosfomycin 8.02E-06 

EMRR fluoroquinolone antibiotic 1.00E-03  FONA-6 beta-lactams 1.40E-05 

EMRY tetracycline antibiotic 8.99E-05  FOSA fosfomycin 4.14E-04 

EPTA peptide antibiotic 4.57E-04  FOSA3 fosfomycin 3.27E-05 

EREA MLS 2.81E-05  FOSA4 fosfomycin 6.98E-06 

EREB MLS 4.25E-06  FOSA5 fosfomycin 4.84E-05 

ERM(31) MLS 6.89E-05  FOSA6 fosfomycin 5.80E-05 

ERM(33) MLS 2.91E-05  FOSA7 fosfomycin 6.98E-05 

ERM(35) MLS 4.07E-05  FOSB fosfomycin 2.63E-03 

ERM(36) MLS 2.81E-04  FOSC2 fosfomycin 1.13E-04 

ERM(37) MLS 1.08E-04  FOSK fosfomycin 2.72E-05 

ERM(38) MLS 1.55E-04  FOSX fosfomycin 7.03E-04 

ERM(39) MLS 1.76E-04  FOX beta-lactams 1.13E-05 
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ARG ARG class abundance  ARG ARG class abundance 

FUSB fusidic acid 8.45E-05  LMRA lincosamide antibiotic 1.79E-05 

FUSC fusidic acid 3.83E-05  LMRB MLS 6.94E-04 

FUSD fusidic acid 6.79E-05  LMRC multidrug 2.29E-04 

FUSH fusidic acid 3.45E-06  LMRD MLS 3.38E-04 

GADW multidrug 8.14E-05  LMRP multidrug 2.55E-05 

GES beta-lactams 2.84E-05  LNUA MLS 3.31E-03 

GOB-1 beta-lactams 1.85E-04  LNUB MLS 3.11E-04 

GOB-18 beta-lactams 2.69E-05  LNUC MLS 9.52E-04 

GOLS multidrug 2.16E-03  LNUD MLS 3.40E-04 

HERA-1 beta-lactams 1.14E-05  LNUE MLS 1.78E-04 

HMB-1 beta-lactams 1.83E-06  LNUF MLS 3.16E-05 

HMRM multidrug 2.31E-05  LNUG MLS 2.08E-04 

HP1181 multidrug 1.61E-06  LPEA MLS 6.85E-07 

ICR-MC peptide antibiotic 7.07E-05  LPEB MLS 1.51E-04 

IMI beta-lactams 1.12E-06  LRA beta-lactams 2.31E-03 

IMP beta-lactams 2.88E-05  LRFA fluoroquinolone antibiotic 6.83E-04 

IND beta-lactams 4.87E-06  LSA multidrug 7.35E-04 

JOHN-1 beta-lactams 6.80E-05  LSAC multidrug 8.86E-05 

KAMB aminoglycoside antibiotic 6.67E-06  LSAE multidrug 5.22E-04 

KASUGAMYC
IN_RESISTAN
CE_PROTEIN_
KSGA aminoglycoside antibiotic 3.46E-03 

 LUXR multidrug 1.12E-04 

MACA MLS 2.58E-03 

MACB MLS 1.95E-02 

KDPE aminoglycoside antibiotic 6.95E-03 
 MAJOR_FACI

LITATOR_SU
PERFAMILY_
TRANSPORTE
R multidrug 6.23E-03 

KHM-1 beta-lactams 1.36E-06  

KLEBSIELLA_
PNEUMONIAE
_OMPK35 multidrug 3.45E-06 

 

MARA multidrug 4.19E-04 
KLEBSIELLA_
PNEUMONIAE
_OMPK36 multidrug 9.66E-05 

 MARR multidrug 3.36E-03 

MCR-1 peptide antibiotic 3.91E-05 
KLEBSIELLA_
PNEUMONIAE
_OMPK37 multidrug 2.50E-04 

 MCR-2 peptide antibiotic 8.95E-05 

MCR-3 peptide antibiotic 6.29E-05 

KLUG-1 cephalosporin 1.12E-05  MCR-4 peptide antibiotic 1.48E-04 

KPC beta-lactams 3.72E-04  MCR-5 peptide antibiotic 5.22E-04 

LARIBACTER
_HONGKONG
ENSIS_AMPC_
beta-
LACTAMASE multidrug 2.30E-06 

 
MDFA tetracycline antibiotic 1.71E-03 

MDSA multidrug 9.21E-05 

MDSB multidrug 1.60E-03 

LCR-1 beta-lactams 4.88E-05  MDSC multidrug 7.36E-05 

LEN beta-lactams 2.51E-04  MDTA aminocoumarin antibiotic 3.20E-04 

LING MLS 4.30E-05  MDTB aminocoumarin antibiotic 1.99E-03 
LISTERIA_MO
NOCYTOGEN
ES_MPRF peptide antibiotic 5.99E-06 

 MDTC aminocoumarin antibiotic 2.63E-03 

MDTD aminocoumarin antibiotic 6.65E-04 

LLMA_23S_RI
BOSOMAL_R
NA_METHYL
TRANSFERAS
E lincosamide antibiotic 8.22E-04 

 
MDTE multidrug 4.61E-04 

MDTF multidrug 1.17E-03 

MDTG fosfomycin 8.35E-04 
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ARG ARG class abundance  ARG ARG class abundance 

MDTH fluoroquinolone antibiotic 4.48E-04  MEXZ multidrug 4.17E-04 

MDTK fluoroquinolone antibiotic 2.82E-03  MFPA fluoroquinolone antibiotic 2.84E-04 

MDTL multidrug 3.63E-04  MGRB multidrug 7.83E-05 

MDTM multidrug 1.35E-04  MGTA MLS 2.29E-04 

MDTN multidrug 1.72E-04  MIR beta-lactams 2.80E-05 

MDTO multidrug 1.78E-04  MORAXELLA

_CATARRHA

LIS_M35 multidrug 1.38E-04 MDTP multidrug 1.14E-04 
 

MECA beta-lactams 3.03E-04  MOX beta-lactams 8.76E-05 

MECB beta-lactams 1.58E-05  MPHA MLS 9.71E-05 

MECD beta-lactams 1.25E-06  MPHB MLS 2.27E-04 

MECI beta-lactams 2.73E-04  MPHC MLS 4.76E-04 

MECR1 beta-lactams 4.30E-04  MPHD MLS 6.45E-04 

MEF(B) MLS 2.26E-05  MPHE MLS 1.13E-04 

MEFA MLS 8.06E-04  MPHG MLS 1.25E-04 

MEFC MLS 1.21E-04  MPHI MLS 4.74E-06 

MEFE MLS 7.16E-05  MRX multidrug 6.87E-05 

MEL multidrug 4.97E-04  MSBA nitroimidazole antibiotic 1.33E-02 

MEPA tetracycline antibiotic 1.14E-03  MSI-1 beta-lactams 1.18E-04 

MEPR tetracycline antibiotic 4.18E-04  MSRA multidrug 6.46E-04 
METALLO-
beta-
LACTAMASE beta-lactams 8.46E-04 

 MSRC multidrug 4.24E-05 

MSRE multidrug 6.55E-04 

MEXA multidrug 2.28E-03  MTRA multidrug 2.79E-02 

MEXB multidrug 9.12E-03  MTRC multidrug 5.83E-05 

MEXC multidrug 3.45E-03  MTRD multidrug 1.29E-03 

MEXD multidrug 4.38E-03  MTRE multidrug 1.51E-04 

MEXE multidrug 7.66E-03  MTRR multidrug 1.67E-04 

MEXF multidrug 2.60E-02  multidrug_ABC
_TRANSPORT
ER multidrug 5.25E-02 MEXG multidrug 1.40E-04  

MEXH multidrug 2.64E-05  MUXA multidrug 8.43E-04 

MEXI multidrug 3.32E-03  MUXB multidrug 5.55E-03 

MEXJ multidrug 8.76E-04  MUXC multidrug 1.72E-03 

MEXK multidrug 7.81E-03  MVAT multidrug 2.20E-03 

MEXL multidrug 9.67E-04  MYCINAMICI
N-
RESISTANCE_
PROTEIN_MY
RB MLS 3.55E-05 

MEXM phenicol antibiotic 2.56E-05  

MEXN phenicol antibiotic 1.81E-03 
 

MEXP multidrug 5.38E-05  MYRA MLS 2.41E-04 

MEXQ multidrug 1.91E-03  NDM multidrug 1.39E-05 

MEXS multidrug 4.77E-04  NMCR beta-lactams 4.66E-04 

MEXT multidrug 5.90E-03  NORA multidrug 1.05E-03 

MEXV multidrug 1.52E-04  NORB fluoroquinolone antibiotic 8.27E-04 

MEXW multidrug 5.33E-03  NPS-1 beta-lactams 2.02E-04 

MEXX multidrug 2.60E-03  OCH beta-lactams 5.09E-05 

MEXY multidrug 2.15E-03  OKP-A beta-lactams 5.04E-05 
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OKP-B beta-lactams 2.82E-04  POXTA multidrug 3.02E-04 

OKP-B-12 beta-lactams 2.26E-05  PSE-1 multidrug 7.00E-06 

OLEB multidrug 7.22E-05  PSEUDOMON

AS_AERUGIN

OSA_EMRE multidrug 4.51E-04 OLEC MLS 6.74E-03 
 

OLED MLS 1.40E-04  PUROMYCIN_

RESISTANCE_

PROTEIN nucleoside antibiotic 3.62E-03 OLEI MLS 6.65E-06 
 

OMP36 multidrug 1.71E-04  PVRR multidrug 4.85E-05 

OMPF multidrug 1.44E-03  QACA fluoroquinolone antibiotic 7.96E-05 

OMPR multidrug 2.43E-02  QACB fluoroquinolone antibiotic 3.18E-04 

OPCM multidrug 9.66E-04  QACG fluoroquinolone antibiotic 9.06E-04 

OPMB multidrug 6.39E-04  QACH fluoroquinolone antibiotic 3.30E-03 

OPMD multidrug 3.47E-06  QEPA fluoroquinolone antibiotic 2.50E-03 

OPME multidrug 1.02E-05  QEPA1 fluoroquinolone antibiotic 3.03E-06 

OPMH triclosan 2.38E-03  QEPA2 fluoroquinolone antibiotic 5.18E-05 

OPRA multidrug 1.74E-04  QNRA fluoroquinolone antibiotic 2.46E-06 

OPRC multidrug 6.74E-04  QNRB fluoroquinolone antibiotic 4.36E-05 

OPRJ multidrug 7.41E-04  QNRB15 fluoroquinolone antibiotic 5.26E-06 

OPRM multidrug 4.77E-03  QNRB27 fluoroquinolone antibiotic 2.46E-06 

OPRN multidrug 1.63E-03  QNRB33 fluoroquinolone antibiotic 7.56E-07 

OPRZ multidrug 7.62E-05  QNRB40 fluoroquinolone antibiotic 9.75E-07 

OPTRA multidrug 8.46E-04  QNRB62 fluoroquinolone antibiotic 1.15E-06 

OQXA multidrug 6.47E-04  QNRB66 fluoroquinolone antibiotic 6.50E-06 

OQXB multidrug 3.44E-03  QNRB71 fluoroquinolone antibiotic 5.85E-06 

OTR(B) tetracycline antibiotic 8.16E-04  QNRB72 fluoroquinolone antibiotic 1.01E-06 

OTRA tetracycline antibiotic 1.31E-03  QNRC fluoroquinolone antibiotic 4.42E-06 

OTRC tetracycline antibiotic 9.09E-04  QNRD1 fluoroquinolone antibiotic 1.52E-05 

OXA beta-lactams 1.98E-02  QNRD2 fluoroquinolone antibiotic 5.37E-05 

OXY beta-lactams 3.81E-05  QNRS fluoroquinolone antibiotic 6.06E-04 

PATA fluoroquinolone antibiotic 9.79E-04  QNRS3 fluoroquinolone antibiotic 7.41E-06 

PATB fluoroquinolone antibiotic 3.95E-04  QNRS5 fluoroquinolone antibiotic 3.30E-06 

PBP-1A multidrug 8.72E-04  QNRS6 fluoroquinolone antibiotic 8.70E-04 

PBP-1B multidrug 7.02E-04  QNRS8 fluoroquinolone antibiotic 2.46E-05 

PBP-2X multidrug 3.19E-04  QNRS9 fluoroquinolone antibiotic 8.94E-06 

PDC beta-lactams 6.00E-05  QNRVC1 fluoroquinolone antibiotic 1.39E-04 

PEDO-1 beta-lactams 2.01E-04  QNRVC3 fluoroquinolone antibiotic 8.21E-06 

PEDO-2 beta-lactams 5.86E-05  QNRVC4 fluoroquinolone antibiotic 6.47E-05 

PEDO-3 beta-lactams 8.93E-06  QNRVC5 fluoroquinolone antibiotic 1.19E-04 

PENA beta-lactams 1.18E-03  QNRVC6 fluoroquinolone antibiotic 1.74E-04 

PER beta-lactams 2.67E-04  QNRVC7 fluoroquinolone antibiotic 2.46E-06 

PGPB peptide antibiotic 9.19E-07  R39 beta-lactams 1.19E-05 

PMRA fluoroquinolone antibiotic 7.83E-06  RAMA multidrug 3.10E-04 

PMRF peptide antibiotic 1.79E-03  RBPA rifamycin antibiotic 2.74E-03 

PORIN_OMPC multidrug 1.07E-04  RGT1438 rifamycin antibiotic 2.61E-04 
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RHODOBACT
ER_SPHAERO
IDES_AMPC_b
eta-
LACTAMASE multidrug 5.83E-05 

 
SRT-1 beta-lactams 1.28E-05 

SRT-2 beta-lactams 2.06E-05 

STAPHYLOC
OCCUS_MUP
A_CONFERRI
NG_RESISTA
NCE_TO_MUP
IROCIN multidrug 1.54E-03 

RIFAMPIN_M
ONOOXYGEN
ASE rifamycin antibiotic 9.05E-03 

 

RLMA(II) MLS 4.20E-04  

RM3 beta-lactams 6.17E-04  STREPTOCOC
CUS_AGALA
CTIAE_MPRF peptide antibiotic 2.43E-06 RMTD aminoglycoside antibiotic 5.24E-06  

ROB-1 beta-lactams 1.17E-05  STREPTOMY

CIN_RESISTA

NCE_PROTEI

N aminoglycoside antibiotic 1.05E-03 

ROSA peptide antibiotic 1.84E-02  

ROSB peptide antibiotic 1.86E-02  

RPHA rifamycin antibiotic 3.81E-03  STREPTOTHR

ICIN_ACETYL

TRANSFERAS

E 

nucleoside antibiotic 4.25E-05 RPHB rifamycin antibiotic 5.98E-03  

RPOB2 rifamycin antibiotic 1.23E-01  

RPSD_(RAMA
_OR_SUD2) multidrug 7.23E-04 

 
SUL1 sulfonamide antibiotic 2.44E-03 

RSA-1 beta-lactams 2.84E-06  SUL2 sulfonamide antibiotic 7.40E-04 

RSA-2 beta-lactams 1.86E-06  TAEA Diterpenoids 2.95E-03 

RTG-4 multidrug 8.03E-05  TAP tetracycline antibiotic 2.74E-04 

RTG-5 multidrug 5.50E-06  TCMA tetracenomycin antibiotic 2.52E-04 

SALA multidrug 6.39E-05  TCR3 tetracycline antibiotic 2.01E-04 

SAT-2 nucleoside antibiotic 3.43E-05  TEM beta-lactams 1.06E-02 

SAT-3 nucleoside antibiotic 3.15E-05  TET(33) tetracycline antibiotic 4.27E-04 

SAT-4 nucleoside antibiotic 6.36E-04  TET(38) tetracycline antibiotic 8.60E-05 

SDEY multidrug 4.33E-05  TET(40) tetracycline antibiotic 1.72E-05 

SDIA multidrug 3.85E-04  TET(42) tetracycline antibiotic 2.38E-04 
SERRATIA_M
ARCESCENS_
OMP1 multidrug 3.23E-04 

 TET(45) tetracycline antibiotic 3.61E-05 

TET(59) tetracycline antibiotic 2.44E-05 

SFH-1 beta-lactams 1.35E-06  TET(K) tetracycline antibiotic 8.91E-04 

SGM aminoglycoside antibiotic 7.65E-06  TET(W/N/W) tetracycline antibiotic 8.44E-06 

SHV beta-lactams 5.11E-04  TET31 tetracycline antibiotic 2.23E-06 

SIM-1 beta-lactams 1.22E-05  TET32 tetracycline antibiotic 3.00E-04 

SMB-1 beta-lactams 7.27E-06  TET34 tetracycline antibiotic 7.40E-04 

SME-3 beta-lactams 2.55E-06  TET35 tetracycline antibiotic 6.53E-04 

SMEB multidrug 4.74E-04  TET36 tetracycline antibiotic 6.57E-05 

SMEC multidrug 1.49E-04  TET37 tetracycline antibiotic 1.81E-04 

SMED multidrug 6.31E-04  TET39 tetracycline antibiotic 4.26E-04 

SMEE multidrug 1.35E-03  TET40 tetracycline antibiotic 3.93E-04 

SMEF multidrug 2.80E-04  TET41 tetracycline antibiotic 1.13E-03 

SMER multidrug 4.18E-03  TET43 tetracycline antibiotic 6.72E-04 

SMES multidrug 3.43E-04  TET44 tetracycline antibiotic 5.40E-04 

SPCN aminoglycoside antibiotic 1.04E-05  TETA tetracycline antibiotic 2.67E-03 

SPG-1 beta-lactams 2.53E-04  TETA(46) tetracycline antibiotic 1.10E-04 

SRMB multidrug 3.70E-05  TETA(48) tetracycline antibiotic 1.30E-02 
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TETA(60) tetracycline antibiotic 1.18E-04  TRU-1 beta-lactams 2.48E-06 

TETB tetracycline antibiotic 3.34E-04  TRUNCATED_
PUTATIVE_R
ESPONSE_RE
GULATOR_A
RLR multidrug 4.34E-03 

TETB(46) tetracycline antibiotic 9.38E-04  

TETB(48) tetracycline antibiotic 2.36E-03  

TETB(60) tetracycline antibiotic 6.68E-04  TWO-
COMPONENT
_SYSTEM_RE
SPONSE_REG
ULATOR_EV
GA multidrug 7.94E-06 

TETC tetracycline antibiotic 3.60E-05  

TETD tetracycline antibiotic 1.15E-05  

TETE tetracycline antibiotic 2.42E-05  

TETG tetracycline antibiotic 1.55E-04 
 TYPE_A_NFX

B multidrug 6.21E-04 

TETH tetracycline antibiotic 9.38E-05  UGD peptide antibiotic 1.15E-02 

TETJ tetracycline antibiotic 1.21E-06  VANA glycopeptide antibiotic 1.21E-03 

TETL tetracycline antibiotic 2.68E-03  VANB glycopeptide antibiotic 4.48E-05 

TETM tetracycline antibiotic 2.41E-03  VANC glycopeptide antibiotic 6.24E-04 

TETO tetracycline antibiotic 2.98E-04  VAND glycopeptide antibiotic 1.05E-04 

TETP tetracycline antibiotic 1.16E-03  VANE glycopeptide antibiotic 1.42E-04 

TETQ tetracycline antibiotic 9.69E-04  VANG glycopeptide antibiotic 1.78E-04 

TETR tetracycline antibiotic 1.49E-03  VANH glycopeptide antibiotic 1.20E-03 

TETS tetracycline antibiotic 1.54E-04  VANI glycopeptide antibiotic 3.67E-04 

TETT tetracycline antibiotic 9.23E-05  VANJ glycopeptide antibiotic 1.81E-04 

TETV tetracycline antibiotic 1.03E-03  VANKI glycopeptide antibiotic 1.99E-06 

TETW tetracycline antibiotic 2.08E-03  VANL glycopeptide antibiotic 2.44E-05 

TETX tetracycline antibiotic 6.72E-04  VANM glycopeptide antibiotic 2.07E-05 

TETY tetracycline antibiotic 5.48E-05  VANN glycopeptide antibiotic 1.07E-05 

TETZ tetracycline antibiotic 6.75E-04  VANR glycopeptide antibiotic 1.82E-02 

THIN-B beta-lactams 1.09E-03  VANRI glycopeptide antibiotic 1.16E-03 

THIOSTREPT

ON_RESISTA

NCE_METHY

LASE_TSNR peptide antibiotic 1.98E-05 

 VANS glycopeptide antibiotic 6.42E-03 

 VANSD glycopeptide antibiotic 9.05E-06 

 VANT glycopeptide antibiotic 1.37E-06 

TLA-1 multidrug 5.63E-05  VANTG glycopeptide antibiotic 4.46E-06 

TLA-2 multidrug 4.28E-05  VANU glycopeptide antibiotic 2.27E-05 

TLA-3 multidrug 1.15E-04  VANVB glycopeptide antibiotic 1.85E-05 

TLCC multidrug 4.25E-05  VANW glycopeptide antibiotic 1.45E-05 

TLRB_CONFE

RRING_TYLO

SIN_RESISTA

NCE multidrug 1.19E-05 

 VANX glycopeptide antibiotic 1.59E-03 

 VANXI glycopeptide antibiotic 3.36E-05 

 VANY glycopeptide antibiotic 2.96E-04 

TMRB nucleoside antibiotic 1.33E-06  VANYG1 glycopeptide antibiotic 2.95E-05 

TOLC multidrug 1.82E-03  VANZ glycopeptide antibiotic 6.86E-05 

TRANSCRIPTI
ONAL_REGUL
ATORY_PROT
EIN_CPXR_CP
XR multidrug 2.65E-02 

 
VATA MLS 1.01E-04 

VATB MLS 8.07E-04 

VATC MLS 1.85E-04 

TRIA triclosan 2.12E-04  VATD MLS 1.51E-04 

TRIB triclosan 1.18E-04  VATE MLS 5.07E-04 

TRIC triclosan 2.71E-03  VATF MLS 2.47E-03 
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2. Annotation of potential mobile ARGs, associated risk rank, and calculation of read numbers in 

the urban and background atmosphere globally. 

subclass risk rank ARG Class resistance mechanism 
read number 

urban background 

bacA I peptide antibiotic antibiotic target alteration 100 5 

lnuA I MLS antibiotic inactivation 90 2 

ErmB I MLS antibiotic target alteration 44 4 

ErmC I MLS antibiotic target alteration 46 1 

tetM I tetracycline antibiotic antibiotic target protection 43 2 

norA I multidrug antibiotic efflux 42 3 

mdtE I multidrug antibiotic efflux 35 0 

mecR1 I Beta-lactams antibiotic target replacement 30 2 

tolC I multidrug antibiotic efflux 27 5 

ErmT I MLS antibiotic target alteration 24 0 

floR I phenicol antibiotic antibiotic efflux 21 4 

dfrA12 I diaminopyrimidine antibiotic antibiotic target replacement 27 0 

mecA I Beta-lactams antibiotic target replacement 16 0 

tetL I tetracycline antibiotic antibiotic target protection 17 0 

dfrA17 I diaminopyrimidine antibiotic antibiotic target replacement 11 1 

lnuB I MLS antibiotic inactivation 9 0 

msrA I multidrug antibiotic target protection 7 0 

fosB I fosfomycin antibiotic inactivation 5 0 

blaZ I Beta-lactams antibiotic inactivation 3 0 

VEB-3 I Beta-lactams antibiotic inactivation 6 1 

mdtL I multidrug antibiotic efflux 4 1 

mepA I tetracycline antibiotic antibiotic efflux 2 4 

vanY I glycopeptide antibiotic antibiotic target alteration 0 1 

mphA I MLS antibiotic inactivation 0 1 

tetO II tetracycline antibiotic antibiotic target protection 91 8 

tetW II tetracycline antibiotic antibiotic target protection 81 2 

penA II Beta-lactams antibiotic inactivation 80 6 

mdtG II fosfomycin antibiotic efflux 72 3 

mdtM II multidrug antibiotic efflux 43 1 

vatE II MLS antibiotic inactivation 25 0 

aadA II aminoglycoside antibiotic antibiotic inactivation 34 2 

emrD II phenicol antibiotic antibiotic efflux 2 1 

mdfA II tetracycline antibiotic antibiotic efflux 1 0 

macB III MLS antibiotic efflux 862 369 

emrB III fluoroquinolone antibiotic antibiotic efflux 178 41 

macA III MLS antibiotic efflux 67 22 

acrB III multidrug antibiotic efflux 52 19 

arnA III peptide antibiotic antibiotic target alteration 50 15 

sdiA III multidrug antibiotic efflux 42 18 

ampC III multidrug antibiotic inactivation 21 10 

vanS III glycopeptide antibiotic antibiotic target alteration 20 8 

MdtN III multidrug antibiotic efflux 20 6 

AcrA III multidrug antibiotic efflux 15 4 

mdtP III multidrug antibiotic efflux 14 5 

MdtO III multidrug antibiotic efflux 13 1 

ykkD III multidrug antibiotic efflux 9 0 

mecI III Beta-lactams antibiotic target replacement 8 2 

emrE III multidrug antibiotic efflux 8 1 

tet44 III tetracycline antibiotic antibiotic target protection 7 0 

tet32 III tetracycline antibiotic antibiotic target protection 7 2 

VatB III MLS antibiotic inactivation 6 4 

mdtK III fluoroquinolone antibiotic antibiotic efflux 5 2 
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subclass risk rank ARG Class resistance mechanism 
read number 

urban background 

ErmA III MLS antibiotic target alteration 5 0 

ErmX III MLS antibiotic target alteration 5 1 

tetA III tetracycline antibiotic antibiotic efflux 3 1 

mefA III MLS antibiotic efflux 2 1 

tetQ III tetracycline antibiotic antibiotic target protection 2 2 

mdtF III multidrug antibiotic efflux 2 2 

tetB III tetracycline antibiotic antibiotic efflux 2 0 

vanG III glycopeptide antibiotic antibiotic target alteration 1 1 

ErmF III MLS antibiotic target alteration 1 1 

ErmG III MLS antibiotic target alteration 1 0 

CfxA2 III Beta-lactams antibiotic inactivation 0 1 

PBP-2X III multidrug antibiotic target replacement 0 1 

bcrA IV peptide antibiotic antibiotic efflux 37 73 

MexT IV multidrug antibiotic efflux 51 31 

MexF IV multidrug antibiotic efflux 20 16 

mdtC IV aminocoumarin antibiotic antibiotic efflux 13 19 

mexW IV multidrug antibiotic efflux 94 23 

MexD IV multidrug antibiotic efflux 87 19 

emrA IV fluoroquinolone antibiotic antibiotic efflux 81 18 

OprN IV multidrug antibiotic efflux 67 17 

mdtB IV aminocoumarin antibiotic antibiotic efflux 64 22 

tetR IV tetracycline antibiotic antibiotic target protection 52 10 

ceoB IV multidrug antibiotic efflux 50 9 

AmrB IV aminoglycoside antibiotic antibiotic efflux 50 4 

tetC IV tetracycline antibiotic antibiotic target protection 48 14 

OpcM IV multidrug antibiotic efflux 46 2 

sul1 IV sulfonamide antibiotic antibiotic target replacement 45 5 

oprA IV multidrug antibiotic efflux 38 9 

mdtA IV aminocoumarin antibiotic antibiotic efflux 30 9 

rosA IV peptide antibiotic antibiotic efflux 28 8 

mexY IV multidrug antibiotic efflux 25 16 

MexB IV multidrug antibiotic efflux 24 7 

tetX IV tetracycline antibiotic antibiotic inactivation 22 5 

RosB IV peptide antibiotic antibiotic efflux 21 8 

mdtD IV aminocoumarin antibiotic antibiotic efflux 21 6 

adeB IV tetracycline antibiotic antibiotic efflux 19 4 

mexH IV multidrug antibiotic efflux 16 2 

smeF IV multidrug antibiotic efflux 16 6 

OprJ IV multidrug antibiotic efflux 15 3 

lmrB IV MLS antibiotic efflux 13 6 

tetT IV tetracycline antibiotic antibiotic target protection 13 5 

MexE IV multidrug antibiotic efflux 13 6 

adeA IV tetracycline antibiotic antibiotic efflux 12 0 

aadK IV aminoglycoside antibiotic antibiotic inactivation 12 0 

cmeB IV multidrug antibiotic efflux 10 4 

vgaE IV multidrug antibiotic target protection 9 6 

carA IV multidrug antibiotic target protection 9 3 

mexI IV multidrug antibiotic efflux 8 0 

MexC IV multidrug antibiotic efflux 8 5 

LmrA IV lincosamide antibiotic antibiotic target alteration 8 1 

vanD IV glycopeptide antibiotic antibiotic target alteration 7 0 

tcr3 IV tetracycline antibiotic antibiotic efflux 7 0 

mtrR IV multidrug antibiotic efflux 7 0 

PmrA IV fluoroquinolone antibiotic antibiotic efflux 7 0 

opmD IV multidrug antibiotic efflux 7 1 

srmB IV multidrug antibiotic target protection 6 2 

adeJ IV multidrug antibiotic efflux 6 1 
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read number 

urban background 

tetY IV tetracycline antibiotic antibiotic inactivation 6 1 

vanE IV glycopeptide antibiotic antibiotic target alteration 5 0 

smeE IV multidrug antibiotic efflux 5 0 

smeC IV multidrug antibiotic efflux 5 1 

sul2 IV sulfonamide antibiotic antibiotic target replacement 4 2 

otrA IV tetracycline antibiotic antibiotic target protection 4 1 

PBP-1B IV multidrug antibiotic target replacement 4 0 

bleO IV glycopeptide antibiotic antibiotic inactivation 4 0 

qepA IV fluoroquinolone antibiotic antibiotic efflux 4 0 

oprM IV multidrug antibiotic efflux 4 3 

emrK IV tetracycline antibiotic antibiotic efflux 4 1 

smeB IV multidrug antibiotic efflux 4 1 

vgaA IV multidrug antibiotic target protection 3 0 

qacG IV fluoroquinolone antibiotic antibiotic efflux 3 0 

tet34 IV tetracycline antibiotic antibiotic target protection 3 0 

tet39 IV tetracycline antibiotic antibiotic target protection 3 0 

adeK IV multidrug antibiotic efflux 3 0 

abeS IV multidrug antibiotic efflux 3 1 

qacA IV fluoroquinolone antibiotic antibiotic efflux 3 0 

mtrE IV multidrug antibiotic efflux 2 0 

tetH IV tetracycline antibiotic antibiotic target protection 2 1 

FosX IV fosfomycin antibiotic inactivation 2 0 

PBP-1A IV multidrug antibiotic target replacement 2 1 

SRT-2 IV Beta-lactams antibiotic inactivation 2 3 

marR IV multidrug antibiotic efflux; reduced 

permeability to antibiotic 

2 0 

smeD IV multidrug antibiotic efflux 2 0 

tet36 IV tetracycline antibiotic antibiotic target protection 2 0 

tetD IV tetracycline antibiotic antibiotic target protection 1 0 

adeC IV tetracycline antibiotic antibiotic efflux 1 0 

tet35 IV tetracycline antibiotic antibiotic target protection 1 2 

lmrP IV multidrug antibiotic efflux 1 0 

vanA IV glycopeptide antibiotic antibiotic target alteration 1 1 

msrC IV multidrug antibiotic target protection 1 0 

bcrC IV peptide antibiotic antibiotic target alteration 1 1 

tet31 IV tetracycline antibiotic antibiotic target protection 1 1 

tetZ IV tetracycline antibiotic antibiotic inactivation 1 0 

tetV IV tetracycline antibiotic antibiotic efflux 1 0 

Erm(39) IV MLS antibiotic target alteration 1 0 

MexA IV multidrug antibiotic efflux 1 2 

vanC IV glycopeptide antibiotic antibiotic target alteration 1 0 

acrF IV multidrug antibiotic efflux 1 1 

tet41 IV tetracycline antibiotic antibiotic target protection 0 1 

fusH IV fusidic acid antibiotic inactivation 0 1 

oleB Unassessed multidrug antibiotic target protection 34 5 

dfrA20 Unassessed diaminopyrimidine antibiotic antibiotic target replacement 6 1 

cmrA Unassessed phenicol antibiotic antibiotic efflux 3 1 

vgaD Unassessed multidrug antibiotic target protection 3 0 

tet37 Unassessed tetracycline antibiotic antibiotic inactivation 2 1 

vgaB Unassessed multidrug antibiotic target protection 2 0 

vanM Unassessed glycopeptide antibiotic antibiotic target alteration 2 0 

tet43 Unassessed tetracycline antibiotic antibiotic target protection 1 0 

blaI Unassessed Beta-lactams antibiotic inactivation 1 0 

mexG Unassessed multidrug antibiotic efflux 0 1 

msbA Unassessed nitroimidazole antibiotic antibiotic efflux 292 91 

adeL Unassessed multidrug antibiotic efflux 286 71 

evgS Unassessed multidrug antibiotic efflux 254 96 
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PvrR Unassessed multidrug resistance by absence 249 58 

mtrA Unassessed multidrug antibiotic efflux 194 36 

patA Unassessed fluoroquinolone antibiotic antibiotic efflux 188 48 

abcA Unassessed multidrug antibiotic efflux 186 111 

tetA(48) Unassessed tetracycline antibiotic antibiotic efflux 181 46 

golS Unassessed multidrug antibiotic efflux 168 35 

cpxA Unassessed multidrug antibiotic efflux 165 47 

NmcR Unassessed Beta-lactams antibiotic inactivation 155 45 

olec Unassessed MLS antibiotic efflux 140 43 

smeS Unassessed multidrug antibiotic efflux 128 28 

baeS Unassessed multidrug antibiotic efflux 86 26 

MuxB Unassessed multidrug antibiotic efflux 75 20 

kdpE Unassessed aminoglycoside antibiotic antibiotic efflux 71 17 

adeR Unassessed tetracycline antibiotic antibiotic efflux 66 9 

smeR Unassessed multidrug antibiotic efflux 61 15 

mexK Unassessed multidrug antibiotic efflux 61 15 

TaeA Unassessed Diterpenoids antibiotic efflux 57 13 

baeR Unassessed multidrug antibiotic efflux 57 19 

arlS Unassessed multidrug antibiotic efflux 55 22 

mexS Unassessed multidrug antibiotic efflux 55 20 

ChrB Unassessed MLS antibiotic target alteration 47 8 

dfrE Unassessed diaminopyrimidine antibiotic antibiotic target replacement 46 9 

optrA Unassessed multidrug antibiotic target protection 43 21 

tetA(46) Unassessed tetracycline antibiotic antibiotic efflux 42 10 

tetA(60) Unassessed tetracycline antibiotic antibiotic efflux 40 9 

bcr-1 Unassessed bicyclomycin antibiotic efflux 40 13 

MuxC Unassessed multidrug antibiotic efflux 38 6 

lmrC Unassessed multidrug antibiotic target protection 35 11 

otr(B) Unassessed tetracycline antibiotic antibiotic efflux 34 14 

patB Unassessed fluoroquinolone antibiotic antibiotic efflux 30 10 

mexN Unassessed phenicol antibiotic antibiotic efflux 29 7 

OpmH Unassessed triclosan antibiotic efflux 29 8 

mexJ Unassessed multidrug antibiotic efflux 29 8 

qacH Unassessed fluoroquinolone antibiotic antibiotic efflux 28 10 

lrfA Unassessed fluoroquinolone antibiotic antibiotic efflux 27 6 

efrB Unassessed multidrug antibiotic efflux 25 8 

lmrD Unassessed MLS antibiotic efflux 23 6 

rphB Unassessed rifamycin antibiotic antibiotic inactivation 23 6 

cmx Unassessed phenicol antibiotic antibiotic efflux 23 0 

vanRI Unassessed glycopeptide antibiotic antibiotic target alteration 23 7 

adeF Unassessed multidrug antibiotic efflux 22 1 

cob(I) Unassessed multidrug antibiotic efflux 22 1 

efpA Unassessed multidrug antibiotic efflux 21 5 

tetB(46) Unassessed tetracycline antibiotic antibiotic efflux 21 4 

RlmA(II) Unassessed MLS antibiotic target alteration 19 2 

vantg Unassessed glycopeptide antibiotic antibiotic target alteration 19 9 

mexV Unassessed multidrug antibiotic efflux 19 1 

adeH Unassessed multidrug antibiotic efflux 18 4 

efrA Unassessed multidrug antibiotic efflux 17 3 

TriA Unassessed triclosan antibiotic efflux 17 3 

dfrA3 Unassessed diaminopyrimidine antibiotic antibiotic target replacement 17 4 

mexZ Unassessed multidrug antibiotic efflux 16 2 

adeS Unassessed tetracycline antibiotic antibiotic efflux 14 6 

AxyY Unassessed multidrug antibiotic efflux 13 5 

major_facilitator_s

uperfamily_transpo

rter 

Unassessed multidrug antibiotic efflux 16 5 
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tetB(60) Unassessed tetracycline antibiotic antibiotic efflux 13 8 

tcmA Unassessed tetracenomycin antibiotic antibiotic efflux 13 2 

ermB Unassessed fluoroquinolone antibiotic antibiotic efflux 12 8 

hp1181 Unassessed multidrug antibiotic efflux 12 4 

opmE Unassessed multidrug antibiotic efflux 12 2 

rphA Unassessed rifamycin antibiotic antibiotic inactivation 12 1 

YojI Unassessed peptide antibiotic antibiotic efflux 12 3 

MCR-5 Unassessed peptide antibiotic antibiotic target alteration 12 0 

two-

component_system

_response_regulato

r_EvgA 

Unassessed multidrug antibiotic efflux 10 1 

AAC(6')-IE Unassessed aminoglycoside antibiotic antibiotic inactivation 9 0 

OpmB Unassessed multidrug antibiotic efflux 9 3 

rpsD_(ramA_or_su

d2) 

Unassessed multidrug antibiotic target alteration 8 3 

vanSD Unassessed glycopeptide antibiotic antibiotic target alteration 8 4 

bcrB Unassessed peptide antibiotic antibiotic efflux 8 0 

mdsb Unassessed multidrug antibiotic efflux 8 2 

hmrM Unassessed multidrug antibiotic efflux 7 4 

LpeB Unassessed MLS antibiotic efflux 7 2 

poxtA Unassessed multidrug antibiotic target protection 7 4 

msrE Unassessed multidrug antibiotic target protection 7 1 

mdsC Unassessed multidrug antibiotic efflux 7 1 

MCR-3 Unassessed peptide antibiotic antibiotic target alteration 7 4 

salA Unassessed multidrug antibiotic target protection 6 2 

farA Unassessed antibacterial free fatty acids antibiotic efflux 6 2 

dfrG Unassessed diaminopyrimidine antibiotic antibiotic target replacement 6 0 

cfrC Unassessed phenicol antibiotic antibiotic target alteration 6 1 

EdeQ Unassessed multidrug antibiotic inactivation 6 0 

otrC Unassessed tetracycline antibiotic antibiotic efflux 5 0 

MuxA Unassessed multidrug antibiotic efflux 5 3 

MCR-2 Unassessed peptide antibiotic antibiotic target alteration 5 0 

tet(K) Unassessed tetracycline antibiotic antibiotic efflux 5 0 

myrA Unassessed MLS antibiotic target alteration 5 1 

TriC Unassessed triclosan antibiotic efflux 5 2 

farB Unassessed antibacterial free fatty acids antibiotic efflux 4 1 

Bmr Unassessed multidrug antibiotic efflux 4 0 

LsaE Unassessed multidrug antibiotic target protection 4 0 

apmA Unassessed aminoglycoside antibiotic antibiotic inactivation 4 1 

oqxB Unassessed multidrug antibiotic efflux 4 2 

ramA Unassessed multidrug antibiotic efflux; reduced 

permeability to antibiotic 

4 0 

acrD Unassessed aminoglycoside antibiotic antibiotic efflux 4 1 

oqxA Unassessed multidrug antibiotic efflux 4 2 

BJP-1 Unassessed Beta-lactams antibiotic inactivation 3 0 

cpaA Unassessed aminoglycoside antibiotic antibiotic inactivation 3 0 

lnuD Unassessed MLS antibiotic inactivation 3 0 

MvaT Unassessed multidrug antibiotic efflux 3 2 

vanI Unassessed glycopeptide antibiotic antibiotic target alteration 3 0 

TLA-1 Unassessed multidrug antibiotic inactivation 3 1 

mphD Unassessed MLS antibiotic inactivation 3 1 

tet(33) Unassessed tetracycline antibiotic antibiotic efflux 3 0 

vgaC Unassessed multidrug antibiotic target protection 3 2 

efmA Unassessed multidrug antibiotic efflux 3 0 

AIM-1 Unassessed Beta-lactams antibiotic inactivation 3 0 

oleI Unassessed MLS antibiotic inactivation 3 0 
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subclass risk rank ARG Class resistance mechanism 
read number 

urban background 

acrE Unassessed multidrug antibiotic efflux 2 1 

AAC(6')-Ib' Unassessed aminoglycoside antibiotic antibiotic inactivation 2 0 

dfrK Unassessed diaminopyrimidine antibiotic antibiotic target replacement 2 0 

vanL Unassessed glycopeptide antibiotic antibiotic target alteration 2 1 

pmrF Unassessed peptide antibiotic antibiotic target alteration 2 0 

tet(42) Unassessed tetracycline antibiotic antibiotic efflux 2 0 

kasugamycin_resist

ance_protein_ksgA 

Unassessed aminoglycoside antibiotic antibiotic inactivation 2 1 

RbpA Unassessed rifamycin antibiotic antibiotic target protection 2 0 

marA Unassessed multidrug antibiotic efflux 2 1 

rgt1438 Unassessed rifamycin antibiotic antibiotic inactivation 2 0 

mexL Unassessed multidrug antibiotic efflux 2 1 

MSI-1 Unassessed Beta-lactams antibiotic inactivation 2 0 

abeM Unassessed multidrug antibiotic efflux 2 1 

SPG-1 Unassessed Beta-lactams antibiotic inactivation 2 0 

APH(9)-Ia Unassessed aminoglycoside antibiotic antibiotic inactivation 2 0 

vanKI Unassessed glycopeptide antibiotic antibiotic target alteration 2 0 

TriB Unassessed triclosan antibiotic efflux 1 0 

tap Unassessed tetracycline antibiotic antibiotic efflux 1 0 

mexQ Unassessed multidrug antibiotic efflux 1 0 

VatI Unassessed MLS antibiotic inactivation 1 0 

blt Unassessed multidrug antibiotic efflux 1 1 

FosC2 Unassessed fosfomycin antibiotic inactivation 1 0 

clbC Unassessed multidrug antibiotic target alteration 1 0 

catB10 Unassessed phenicol antibiotic antibiotic inactivation 1 0 

MCR-4 Unassessed peptide antibiotic antibiotic target alteration 1 0 

mel Unassessed multidrug antibiotic target protection 1 0 

lnuE Unassessed MLS antibiotic inactivation 1 0 

mphI Unassessed MLS antibiotic inactivation 1 0 

lnuG Unassessed MLS antibiotic inactivation 1 0 

SAT-4 Unassessed nucleoside antibiotic antibiotic inactivation 1 1 

mepR Unassessed tetracycline antibiotic antibiotic efflux 1 0 

mtrD Unassessed multidrug antibiotic efflux 1 0 

mdsA Unassessed multidrug antibiotic efflux 1 0 

GOB-18 Unassessed Beta-lactams antibiotic inactivation 1 0 

CRP Unassessed multidrug antibiotic efflux 1 5 

QepA2 Unassessed fluoroquinolone antibiotic antibiotic efflux 1 0 

tet(W/N/W) Unassessed tetracycline antibiotic antibiotic target protection 1 0 

adeI Unassessed multidrug antibiotic efflux 1 3 

CfxA6 Unassessed Beta-lactams antibiotic inactivation 1 0 

tet(40) Unassessed tetracycline antibiotic antibiotic efflux 1 0 

BUT-1 Unassessed Beta-lactams antibiotic inactivation 1 0 

APH(3')-IIa Unassessed aminoglycoside antibiotic antibiotic inactivation 1 1 

Erm(38) Unassessed MLS antibiotic target alteration 1 0 

lsaC Unassessed multidrug antibiotic target protection 1 0 

FosA3 Unassessed fosfomycin antibiotic inactivation 1 0 

Mrx Unassessed multidrug antibiotic efflux 0 2 

vatF Unassessed MLS antibiotic inactivation 0 1 

dfrF Unassessed diaminopyrimidine antibiotic antibiotic target replacement 0 1 

acrS Unassessed multidrug antibiotic efflux 0 2 

CarO Unassessed Beta-lactams antibiotic inactivation 0 1 

LCR-1 Unassessed Beta-lactams antibiotic inactivation 0 2 

nps-1 Unassessed Beta-lactams antibiotic inactivation 0 1 

emrY Unassessed tetracycline antibiotic antibiotic efflux 0 1 

gadW Unassessed multidrug antibiotic efflux 0 2 

lnuC Unassessed MLS antibiotic inactivation 0 1 

ANT(3'')-IIc Unassessed aminoglycoside antibiotic antibiotic inactivation 0 2 
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subclass risk rank ARG Class resistance mechanism 
read number 

urban background 

QnrVC5 Unassessed fluoroquinolone antibiotic antibiotic target protection 0 2 

mphG Unassessed MLS antibiotic inactivation 0 1 

QnrS5 Unassessed fluoroquinolone antibiotic antibiotic target protection 0 2 

QnrVC1 Unassessed fluoroquinolone antibiotic antibiotic target protection 0 2 

mecB Unassessed Beta-lactams antibiotic target replacement 0 1 

ANT(3'')-IIa Unassessed aminoglycoside antibiotic antibiotic inactivation 0 1 

dfrD Unassessed diaminopyrimidine antibiotic antibiotic target replacement 0 1 

ADC-43 Unassessed Beta-lactams antibiotic inactivation 0 1 

tetB(48) Unassessed tetracycline antibiotic antibiotic efflux 0 1 
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