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Abstract 
 

As technology has become an indispensable part of city, human and land have been 

connected with unprecedented frequency and resolution. The connectiveness captured 

by urban flows fuels new perspectives of quantifying how people behave and how 

city work. The present thesis investigates the modelling and quantification of multi-

dimensional urban flows through numerical and multilayer network approach, and 

demonstrates the extracted knowledge can be used for enhancing comprehension of 

urban dynamics through flow-based paradigm.  

Leveraging rich data captured from mobile devices, traditional public transport, 

shared mobility services, and volunteer geographic information, the framework of 

defining, extracting, integrating, and modelling urban flows in unified model is 

demonstrated. Bridging the latest theory and methods of network science, a shared 

mobility multiplex network and a temporal multiplex network are constructed, from 

which multilayer statistical feature and community structure results constitute to the 

limited knowledge on how new transport mode influence flow patterns of the 

traditional, and how multi-flow-induced urban structure may change over transport 

modes and time.  

Along with chapters, a set of explicit metrics are developed and discussed for 

quantifying flow patterns. Some of these, such as multilayer degree and multiplex 

PageRank, the latest methods developed by network scientist to tackle the drawbacks 

of single-layer network analysis, are adopted on the urban flow models in this thesis. 

Moreover, diversity of spatial interaction (DSI) is a new metric defined and developed 

for the first time on quantifying diversity from flow data. We construct DSI by 

integrating multiple aspects of activity diversity being separately studied before. Its 

effectiveness is validated and further explored by intersecting with land characteristics 

data, offering powerful insights on revealing the positive and negative implications of 

flows for urban places. For urban vitality evaluation, latest metrics such as ridership 

variations, are integrated with the proposed flow diversity to develop a comprehensive 

framework of urban diversity, based on which the multiscale spatially varying 

relationship between diversity metrics and vitality is inferred and discussed. The use 

of spatial coefficients for profiling unique urban context is presented at the end.  

As an interdisciplinary body of work conducted by a geography reseaecher, this thesis 

puts forward evidence on importance and effectiveness of multi-flows data analytics 

for fundamental questions in geography such as human-land relationship, and for latest 

topics in urban studies such as urban vitality and dynamic structure, substantiating the 

merits of numerical and multilayer network approach to urban flows in complex city. 
 

 

Keywords: urban flows, complex city, spatial interaction, transport modes, urban 

diversity, urban vitality, dynamic structure  
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Chapter 1. Introduction 

1.1. Background and Motivation 

City refers to a collection of settlement and way of living emerged around 5000 years 

ago, that is a human creation being ever-evolving but long-lasting. If looking 

humankind as a whole, city lives where people live. City adapts all the changes and 

survived when other human creation like cultures, empires, political regimes rise and 

fall. In 21st century, a lot of people including myself, a young boy born in China, have 

witnessed the wave of urbanization and globalization, during which small villages are 

transformed to cities, and connectivity of roads, railway, and airline make people be 

able to reach anywhere within few hours. It is magnificent to see how a single species 

(humankind) can make such transformation to the globe and its way of living, that 

motivates me to quest on what is the key to success of city and vibrant urban life? 

Alongside with urbanization, the time I grow up is also the time of Information Age 

(Castells, 1999). With advancement of Information and Communication Technology 

(ICT), I found that it doesn’t even need hours to reach somewhere, but seconds and few 

clicks are enough to make me talk, see, or even feel someone/someplace. Cities and 

people have been connected more than ever, that inspires my research interest and 

scope.  

Modern science was dominated by a mechanical view ‘the worlds as a clockwork’ 

for more than 200 hundred years. Human’s great capability of creation make us have 

an imagination that everything is a product with fixed parts and rules, one typical 

example is Newton’s gravity theory. Until the emergence of Einstein’s relativity theory, 

chaos theory, and complexity science, scientists in many domains have shifted their 

‘view’ of the studied entities and mechanisms to ‘non-causality’. In machines rules are 

represented by ‘ifs’ and ‘thens’, but in reality many systems including city are 

consisting of uncountless number of ‘ifs-thens’. Instead, city is viewed, studied, and 

operationalized as a complex system in contemporary urban and geography science. 

The way how a complex system present itself relies on the interactions of its elements. 

Simple rules and interactions at the bottom can lead to sophisticated function on the top, 

evidence of which can be found in many natural and human systems (Jiang & Yin, 2014; 

Bich, 2012). The complexity science reshapes my worldview and scientific thinking 

greatly, that urge me to comprehend a core feature of complex city, flows, on how it 

can be modelled to characterize urban places and urban life. On this quest, theories and 
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methods are reviewed in Chapter 2, setting the foundations of this thesis on why flow 

is important for city, and how we can make sense of it using scientific methods. 

Recent decades have witnessed urban big data to be widely available for research 

and application, such as smart card data (i.e., records of trip orientation and destination), 

mobile phone data (i.e., proxy of location and communication), and remote sensing 

images. Big data provides unprecedented resolution and volume on observing city and 

human activities, based on which research focus gradually shift from physical form of 

city (relatively static) to human-centric urban studies (more dynamic) (Liu et al., 2015). 

Driven by big data, a comprehensive set of new methods and tools have been improved 

or invented by computer and data scientist, known as The Fourth Paradigm (Tansley & 

Tolle, 2009). Researchers from different domains are inevitably exploring and 

reflecting on how these big-data methodology can be used in, such as Geography 

(Wu et al., 2016), Transportation (Tranos & Mack, 2019), and Urban Science (Batty, 

2013a). Intersected with machine learning methods, geographers are not only able to 

extract objective from remote sensing images more efficiently (Maxwell et al., 2018), 

but also able to extract the semantics of places (Sui & Goodchild, 2011) or predicting 

travel flows (Tang et al., 2021). Such stream is summarized as GeoAI and Spatial Data 

Science (Janowicz et al., 2020). Intersected with Network Science, geographers are able 

to represent physical networks of city (Ter Wal & Boschma, 2009) as well as travel 

flows (Zhong et al., 2014). The network representations fill the methodological void of 

GIS to some extent, from which interactions and complexity can be captured, known 

as paradigm of Network Geography (Batty, 2005). These new methodological 

developments have several implications for further studies on urban flow analytics 

in this thesis. On one side, most machine learning (ML) models (except graph neural 

network) are not well suitable for representing flow data, because ML models 

emphasize more on the input (i.e., feature engineering) and output (e.g., classification 

and prediction), while complex interaction and structure captured by flow data are 

mostly aggregated in ML models. In addition, ML models are often criticized as ‘black 

box’ being lack of explainability. On another side, network analysis, although is 

suitable for urban flows, most existing work (including my early articles Paper IV, V, 

and VI) are relying on single-layer model that is insufficient for representing complex 

interaction of the real-world (Kivelä et al., 2014). Extensive research is required to 
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bridge big data and inter-disciplinary methods on enhancing comprehension of urban 

flows in complex city (See more in Chapter 2, Section 2.2).  

 

1.2. Research Questions and Objectives 

The problem to be addressed by this thesis is the gap between the increasing awareness 

of complex city due to diverse flows and the limited comprehension and methods of 

urban flows and applications. More explanation importance of flows, complex cities, 

and limitation of current methods can refer to Chapter 2. The research questions 

emerged from the problem includes: 

RQ1: How to capture and model urban flows from big data of human activities? 

RQ2: What are human-land patterns in the new context of complex urban flows? 

RQ3: How the urban dynamics can be understood using urban flows patterns 

for guiding urban evaluation and policymaking? 

The research objectives guided for the methodology design (Chapter 3) and case 

studies (Chapter 4-6) include: 

1): To develop a framework of processing, integrating, and modelling multiple 

urban flow data using numerical and multilayer network models. 

2): To develop metrics to quantify multi-facet patterns of flows in terms of 

versatility, variations, and diversity and their relationship to land characteristics.  

3): To apply the quantified flow patterns to evaluate dynamics of urban vitality 

and urban structure.  

With all objectives as a whole, this thesis contributes to contemporary mental image of 

complex urban flows for geographer (Martin, 2005) and urban planner (Batty, 2013b), 

addressing the inevitably intensified and diversified connectiveness at the moment and 

the future.  

 

1.3. Synopsis of the Dissertation  

• Chapter 2: In this chapter, we review historical and contemporary evidence on 

why flow is important for city. Complexity of flow is explained in terms of its 

high frequency and multiplicity. In geography and urban science, the shift from 
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place-based to flow-based theory is discussed. On methods, the shift from 

classic gravity model to recent multilayer network is presented. At last, research 

challenges arose from the reviewed literatures are summarized.  

 

• Chapter 3: In this chapter, the methods used in empirical studies of the thesis 

are organized by three domains: Spatial Data Science, Urban Science, and 

Network Science. Definitions, calculation processes, and rationales behind are 

elaborated in the methodological framework. 

 

• Chapter 4: In this chapter, we present the study in New York city using 

multiplex network models and analysis. Six years taxi data and shared mobility 

data are integrated to investigate whether and how the emergence of shared 

mobility services influence on travel behaviour. Statistical and spatial analysis 

are performed on multiplex centralities and community detection.  

 

• Chapter 5: In this chapter, we provide a new definition on interaction diversity 

related to geographical flows. We develop and test the metric using one-month 

taxi data in Shenzhen and intersect with build environment data for validation 

and interpretation. The positive and negative implications of flow diversity are 

discussed for several applications.  

 

• Chapter 6: In this chapter, we advance the framework of urban vitality by 

including flow diversity, ridership diversity, built environment diversity, and 

night-time light remote sensing images. The spatially varying relationship 

between diversity metrics and vitality proxy are investigated using multiscale 

geographically weighted regression (MGWR). Application of model 

coefficients are further discussed on profiling distinct urban context. 

In Final Chapter we draw the conclusion for the whole thesis, summarize the main 

contributions, and reflect on the promising future research directions.  
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Chapter 2. Literature review 

2.1. Flows of City, Flows for City 

2.1.1. Historical view on urban flow 

The first great civilizations thrive next to river, as flow of water provides reliable 

resources for drinking, hygiene, and agricultural production. Dated back to 4000 BCE, 

Mesopotamia civilization emerged along Tigris and Euphrates rivers. Ancient Egypt 

grows around 3100 BCE along the Nile valley. In the east, great civilization appears 

around 1700 BCE along the Yellow River in China. All examples share the same 

indication that ‘flow’ is an intrinsic feature of city. While flow of water is neither the 

only factor that matters in human history, nor the central topic of this dissertation, but 

it is one first condition laying the foundation for other types of flows that shape society 

and city. The commonality inspires this study and motivates deeper exploration of what, 

why, and how flows are made of and for city. 

Flows are not merely a feature of city, but vital for its liveness. Even tracing back 

to the ancient times, ‘flow’ can be in various forms to play critical role all along the 

history of city. How simple flow (such as water) generates diverse types of interaction 

(flows) can be evidently identified in Neolithic revolution, providing necessary pre-

conditions for origin of city (Bairoch & Goertz, 1986). In this period, agriculture is 

conducted in scale, which makes food storage possible for the first time and leads to 

large population accumulation. Migration flows transform sparse communities into the 

larger territorial region when foragers became farmers. The magic happens when there 

is no need for everyone to search foods by themselves. Hands are free for making other 

products and trade began (i.e., flow of goods). Until present days, the abovementioned 

activities are still the most important functions of city. Dense population and 

agglomeration reduce transport costs for exchanging resources and ideas. Furthermore, 

this process (generation and benefit of flow) keeps being intensified in modern times 

(since 18th century), resulting in phenomenal urbanization in global scale. The 

evolution history of city and flow urges several features to be well considered in 

contemporary urban studies: complexity and multiplicity. This study is dedicated to this 

active and promising direction to develop new models and methods for urban flows. 
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2.1.2. Complexity of urban flows 

Due to primitive state and limited productivity before industry resolution, percentage 

of people living in cities remains low for centuries (around 10% of total population). 

While with the onset of several waves of technological revolutions, unprecedented 

growth and rapid urbanization happens in recent two hundred years (more than 50% 

population move to cities). Machinery, electricity, and internet empower modern 

manufacturing, transportation, and communications. By its nature, new technologies 

are serving as boundary-breaking medium to make individuals, organizations, and 

places more connected than ever. Unlike classical geography representations, multiple 

types of flow are not simply different attributes overlaying together, but entangled each 

other (i.e., depend or influence), and happened across scales (e.g., intra-city and inter-

city) and spaces (e.g., online and offline). Multi-flow in multi-space interact and evolve 

rapidly, diminishing classic understanding of distance, dynamics, and urban structure.  

This paragraph elaborates more on complexity of urban flows, notably, the next 

paragraph highlights another aspect being less analysed in recent research, the 

multiplicity. Before 20th century, the mechanistic world view – ‘the world as a 

clockwork’ – dominates modern sciences on understanding social and natural universe. 

The machine metaphor is adopted on city (Portugali, 2021), in which the focus is on 

knowing all ‘ifs’ and ‘thens’ to control the mechanism. However, at the beginning of 

20th century, the world view and scientific thinking are altered by Einsten’s relativity, 

quantum theory, and more recently, complexity theory. All these theories have a 

common feature that differs from ‘machine’ is non-causality. To characterize flows in 

complex system by studying the ‘connectiveness’ is a particularly interested subject in 

complex science. A complex system is characterized by ‘far from equilibrium’, 

meaning that the changes never at rest. More importantly, high-level functions and 

patterns are organically grown from the bottom-up: order emerges from disorder 

through interaction.  Fruitful evidence is reported that city suits such characterizations. 

If we look at urban morphologies (or costal line), they are messy but ordered and self-

similar across spatial scales. Applying complexity ‘thinking’ on city, it is not hard to 

tell that origin of city is similar to emergence of life that simple interaction and structure 

repeats themselves (Courtat et al., 2011; Jiang & Yin, 2014). From classical point of 

view, such urban spaces with new technologies make more flows, while in turn, flows 

are changing the old way how we develop and make use of urban spaces. For example, 
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more convenient transportation enables people to live far away from city centre and 

avoid high rents. Thereby a new paradigm has obtained growing attentions on 

complexity of city. The shift lies on that previous theorists regard city more as system 

with different components providing different functions, while recent researcher view 

that how city function as a whole is determined by the flows in the bottom. This debate 

and shift will be elaborated more in the literature review in next section.  

To study complexity and diversity of modern city, we must make clear the 

multiplicity. Although we have witnessed dramatic urbanization in both 19th and 20th 

in North America, Europe, Japan and the 21st in China, Africa, and India, the 

characteristics are quite different in terms of what these cities rely on, how they work, 

and how they develop. Measuring multiplicity of city is thereby obtaining great 

attentions from urban researcher, for example, to study multilateral relations in politics 

(Ku, 1998), multi-level planning strategy (Ye & Björner, 2018), and social relations 

and identities (Verkuyten et al., 2019). Literally and generally, the term multiplicity 

depicts the state of being multiple. However, the meaning and impact of multiplicity 

can be beyond the simple overlapping of multi-factors. Growing evidence shows that 

city, as a complex system, its sub-systems are also interacting with each other, which 

means that multiplicity is not only ‘multiple’ but depicting ‘interdependent’ behaviour 

or relations (D'Agostino & Scala, 2014). For example, transportation system depends 

on communication infrastructure depending on electricity system and so on, each of 

which might already be well design to be robust (i.e., resilient for attack), while their 

interdependence may result in widespread function failures due to the failure of even 

one system (Buldyrev et al., 2010). This cascading failure is the typical example 

showing the facts that multiplicity is essential for survival of city. 

In face of rapidly changing technologies and globalization, there are uncountable 

numbers of entities interacting and interdependent on each other. In urban and 

geography context, this study argues that the under-going influence of multiplicity on 

flows and spaces should be further investigated. The former represents the interaction 

by different infrastructures and relation in different scenarios, while the latter means 

such flows are no longer existing in physical urban space but across internet (Shaw & 

Yu, 2009) or social (Andris, 2016). Therefore, we can tell that studying multiplicity of 

urban flows are not simply overlaying data layers but considering fruitful connections 

across systems or spaces. Although fruitful works have been done on spatial or social 
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flows using recently available individual-level big data, very limited research have 

proposed a holistic framework and model flow multiplicity across physical and virtual 

spaces. In some domains, data with multi-space information are extracted for same 

group of people to address this issue. For example, in social computing, computer and 

social scientist work together to understand how social interaction relates to spatial 

behaviour, resulting in applications such as recommendation system (Li et al., 2020). 

While the scope of multiplicity is not limited in social interaction, but is challenging 

classic notation of some geography principles. For example, how to extend classic 

spatial dependence into physical-virtual spaces? How to model interdependence of 

different spatial flows? This dissertation differentiates from previous work studying on 

flows in isolated manner, and to propose holistic framework and models to account for 

interdependence of people and places. 

2.2. Theories And Methods of Multi-Flow Analytics 

Understanding urban flow is paramount for a wide range of applications in city, 

including transport planning, social inclusion, and designing urban spaces for economic 

development. Theorizing and developing methods to analyse flow data have been a core 

subject for researchers. In this section, we review the scientific literatures on urban 

flows analytics, particularly focusing on theories and methods in different context and 

applications. Research gaps are discussed in face of the widely available urban sensing 

data and advanced methods in network science. This section contributes to construct 

framework and methods of this dissertation towards analysing multi-flow in multi-

space for sustainable and vibrant city.  

2.2.1. From place to flow theories 

This section will not construct a new theory for urban flows but reflect on theoretical 

components in literatures to project new research directions towards evolving urban 

context. The selected literatures are particularly categorized as two streams: one is the 

location-based theories, and the other is the flow-based theories.  

Flow is not an invention in modern age but exist ever since the onset of city. Put 

it simply, most human activities are flows by large in the form of interaction and 

relations. In Geography, classical view on human activity is generally dominated by 

Environmental Determinism (Peet, 1985), describing that physical environment plays 

a crucial role in determining social and cultural development (Wu et al., 2016). 

Following this principle, we could come up with the idea that space generates flow. A 
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range of cases can be found in both ancient and modern cities. Locations near river are 

more attractive for migrant and trade flows due to the developed agriculture. In 

industrial cities, the separation and agglomeration of work and home facilities make it 

common to see prominent number of commuting flows every day (Yang et al., 2018). 

These typical examples are the supportive evidence for the location-based theory, 

setting the foundation for urban flows: Spatial heterogeneity of function, form, and 

demographics are the underlying forces to drive flows, in short, space makes flow.  

Christaller’s (1933) elaborates the ‘space makes flow’ thinking in the central place 

theory in economic geography. In its initiative, spatial patterns (e.g., size and number) 

of human settlements, towns, and cities are expected to be generalized by universal 

laws. Hereby ‘central places’, ‘hinterlands’, and their hierarchical relationship are 

introduced to describe that central place serve surrounding areas (i.e., hinterland) that 

are also serving their neighbourhoods. This theory explains spatial patterns well in 

various scenarios, for example, urban-rural structure in intra-city scale (Dutt, 1969), 

and city-town structure in regional scale (Taylor et al., 2010). However, central place 

theory is not adaptive for all, and major criticisms are on its simplified assumptions of 

how people behave and flow (e.g., homogenous spreading direction). Another problem 

lies on its key assumption on the dominant role of physical distance on the relationship 

between central place and its neighbours. In other words, nearer locations are most like 

to be the hinterlands of central place, because flow cost (e.g., travel time) is expected 

to be minimized. This is correct when the medium bearing the flow is largely 

constrained by physical distance, such as the limited mobility by foot or horse cargo. 

Spatial patterns induced by central place, therefore, often present a limit of influential 

range (scale), which might not be cases in modern cities where a location is not only 

related to its nearest neighbours (e.g., while people who live suburban can travel long 

distance to central area; A phone call can instantly travel to the other sphere of Earth). 

Fast transportation and internet communication significantly reduce or even remove the 

flow cost, in other words, space collapse (Marston et al., 2017; Tranos & Nijkamp, 

2013).  

These facts are hinting that a location theory like central place may not be 

sufficient to explain complexity of modern city where distance law and notation of 

space is being reshaped by widely used new technologies. Flow theories are introduced 

to present a new perspective: ‘flow makes space’. One may feel confused on its 
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grammatic structure as opposed to ‘space makes flow’ dominated by classical thinking 

of Environmental Determinism, while these two are indeed not contradictory but 

together describe a precise figure of contemporary city. This paragraph elaborates ‘flow 

makes space’ by the several important theories in geography and urban science.  

Researcher in sociology and psychology might be some earliest pioneers accepting 

and studying the idea of ‘flow makes space’, such as social capital theory (Huggins et 

al., 2012). This is partly because that the studied ‘space’ in these domains is not 

obviously visible (like geographical space) but constructed by human relations and 

interactions. To theorize and analyse flow in geography space, it is necessary to make 

it clearer on the scope of this dissertation. Flow theory is not denying the objectivity of 

geographical space but to, in a highly connected society like nowadays, to delineate 

how location/place/city function and position differently due to the dynamical flow. 

With human interaction and flow, some places weigh more than others in the whole 

city system, underlying which flow-driven heterogeneity serve as the forces for newly 

emerged and ever evolved structures (e.g., social segregation and city hub). Evidence 

from different recent theories is reviewed in the following parts. 

In economic geography, reflection on ‘flow makes space’ is triggered by the 

increasing need for understanding interurban processes alongside the fact that a city is 

no longer living by itself. The central flow theory proposed by Taylor et al. (2010) is 

the one typically towards such goal. Central flow distinguishes with the central place 

theory in terms of scale and role of flow: the former is depicting the town-ness process 

driving spatial organisation dependent on physical proximity from central place to 

neighbours (hinterland); central flow is linked to the city-ness process connecting 

locations/places/cities to each other (hinterworld) in where physical distance may not 

be primary constrain but how they interact (flow) matters. While in inter-city relations, 

distribution of different types of cities are less explainable through central place 

thinking, and even some places within city (e.g., wall street) are heavily weighted in 

global scale. Whereas from flow perspective, the intense, dynamic, and diverse flows 

(e.g., financial, transport, internet) seem to be more indicative on explaining regional 

and global agglomerations, and how those clusters places are serving rest of world. 

Based on such, researchers summarized the higher-level mechanism distinct between 

place and flow-based process: through central place (i.e., town-ness) process, city may 

never grow into a metropolitan, while through flows the mutual benefits among 
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interacting cities work as strong facilitator for massive growth (Taylor & Derudder, 

2015). This makes it clear on the importance of looking at the city from flow perspective. 

Furthermore, metropolitan cities like London, New York, and Hong Kong are more 

complex examples that these two processes could play simultaneously across sectors 

and spaces, considering the decent development of both physical (offline) and virtual 

(online) infrastructures.  

Defining space has long been a core objective since the onset of the geography 

research. Therefore, similar grounds on ‘flow makes space’ are also found in recent 

geography research dedicated to the notation of ‘space’ in Information Age. In these 

studies, we see the natural exploration to extend geo-space to virtual space (Shaw & 

Yu, 2009; Davies, 2004; Castells, 2020); notably some unique characterizations of new 

spaces are also reported. First, notation of both spaces contains infrastructures serving 

as the foundation of human-related processes. Geographical (physical) space and its 

physical infrastructure such as roads, buildings, ports, etc. bear material flows and 

human movement. Cyber (virtual) space and its networking infrastructure such as 

routers and servers bear information flows and communication. However, flows in 

cyber space is less environment-constrained, which means the activity is less related to 

the distribution of the infrastructure itself. Comparing to physical space, flow in cyber 

space relatively has unlimited speed spinning over any spatial scales. If without flows, 

cyber space is nothing than dead servers, which is not the case in physical space that 

contains materials far richer than human-being. Second, relationship between human 

and environment constitutes to the major research content in both spaces. Traditional 

studies (geographical space) focus on human and land relationship. A wide of factors 

are constructed to study the coordination / mismatch between people (performance, 

well-being, and culture) and land (land-use, transport, urban forms) (Eagle et al., 2010; 

Hajrasoulih et al., 2018; Wu et al., 2016). While recent studies (virtual/hybrid space) 

take advantages of new observations (e.g., telecommunication, social media, online log) 

to study human-land relationship. Because it is undeniable that virtual space (and its 

infrastructure) cannot exist and perform without the physical space. Thereby many 

scholars prefer to assume the virtual’s dependency on the physical, for example, 

mapping online perception to the urban space (Ghahramani et al., 2021). However, 

many other studies also reported the virtual structure (e.g., online communities) and 

dynamics (e.g., information transmission) that are independent from or even influence 
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the physical space (Moss & Townsend, 2000; Dugundji et al., 2008; Althoff et al., 2017). 

Based on such evidence, although this dissertation agrees that virtual space depends on 

the existence of physical space, but more importantly, argue that virtual space is 

working by the unique ways that require further investigation. Based on flow thinking, 

it will be more interesting and challenging in future studies to not only address how 

flow, interaction, and relations form and function the virtual space, but also by turn, 

interdependent on the activity and environment in physical space. 

2.2.2. From gravity model to multilayer network  

Many human-induced flows are spatial data. Based on geographic coordinates of 

starting and ending locations, geographers developed metrics and models to quantify 

spatial interaction patterns (Mikkonen & Luoma, 1999; Griffith, 2007). While flows 

are not merely spatial data, but observations on topological relationship among entities 

on which network is often used as model representation (Ye & Liu, 2019). Among 

fruitful methods on flow analytics, this review is inevitably selective. Readers can 

further refer to Dickison et al. (2016) if interested on sociology, Crainic et al. (2022) 

on transportation, and Finn et al. (2019) on animal interaction behaviour. In this section, 

we particularly highlight the flow analytics in geography context, ranging from gravity-

based interaction models, statistical models, to graph-based analysis. Furthermore, we 

introduce the advance developments in network science, ‘multilayer network’, as 

promising methodological components for multi-flows in multi-space. 

Gravity model and its variation are typically popular to study flows across 

geographic space. Its basic form is largely determined by the Isaac Newton’s theory of 

universal gravitation, that is 𝐹𝑖𝑗 = 𝑘𝑚𝑖𝑚𝑗(𝑑𝑖𝑗)−2 where the gravitational force (𝐹𝑖𝑗) 

between entity i and entity j is positively related to the mass of two entities (𝑚𝑖, 𝑚𝑗) 

and inversely proportional to the distance between the two entities (𝑑𝑖𝑗). Such form has 

natural analogues in urban context where number of human movements from place to 

place are inversely related to the travel distance and positively related to the population 

of each place (Ravenstein, 1885). In early 20th century, application of gravity model is 

further applied in regional science by Stewart (1941) and Huff (1963), investigating the 

gravitational parameter calibration and distance effect. Until 21st century, gravity model 

is still as feasible method to in delineating intensity and potential of flows in migration 

(Simini et al., 2012), trade (Silva & Nelson, 2012) and tourism (Morley et al., 2014). If 

the model is well fitted, the calibrated model can be used for either prediction of the 
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flow volume, or depicting the relationship between flow and place characteristics. 

However, several limitations of gravity model should be noted when applying on 

spatial interaction (flow) data. First, gravity model performs better on aggregated 

data, both spatially and temporally. In other words, gravity model is more likely to be 

well fitted for zonal (or continental) and monthly (or yearly) flow patterns (Mikkonen 

& Luoma, 1999; Van Bergeijk & Brakman, 2010; Sen & Smith, 2012). On fine-grained 

spatial and temporal data, gravity model could be worse than simple statistical features 

to describe spatial interactions (Hilton et al., 2020; Hsu et al, 2021). Second, gravity 

model by nature is constrained in depicting the discrete choice of bilateral pairs. When 

constructing the interaction model, the ‘discrete’ means that there is no consideration 

on potential dependency and influence between flows, thereby each flow is treated as 

independent data entries in the gravity model. Another problem might lie on that the 

‘pairs’ is always required in the model, such as pairs of cities. While in a general sense, 

spatial interaction patterns can be characterized in more diverse manners (will be 

discussed in the paragraphs) beyond pairs relationship. Third, gravity model is a 

deterministic physical model which is relatively static in dealing with changing 

scenarios in reality. In simple words, number of flows could be related to more than 

three factors, for example, it’s common to see a decent list of environmental and 

behavioural factors influencing the traffic flows (Medina-Salgado et al., 2022). 

Flexibility of gravity model is not as good as linear regression model. But still, we 

conclude that gravity-form model is an important and useful alternative for flow 

analytics with awareness of its limitations. 

Abovementioned spatial interaction models focus more on collective level flow 

patterns, while human mobility research in recent years greatly contribute to 

induvial level flow analytics.  Comparing to spatial interaction models, mobility 

methods enrich how we characterize movements, in other words, a more complete view 

on the physics of individual flows. For example, GPS data in hour/minute/seconds 

reveal that power-law of the jump length (i.e., travel distance in a given period) widely 

exists in different travel modes such as walks, public transport, and taxi (Han et al., 

2011). Furthermore, some use physical equations of particle motion to explain human 

movements, such as Brownian motion (Jiang et al., 2009), Lévy flight (Rhee et al., 

2011). Commonality in human movements are also quantified in terms of spatial 

coverage (using Radius of gyration), frequently visited locations, and returning patterns 
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(i.e., motifs) (Xu et al., 2018; Schneider et al., 2013). The general pattern of human 

movements help build applications on traffic forecasting and epidemic spreading 

models (Medina-Salgado et al., 2022). More importantly, developing metrics and 

universal models not only expand our knowledge on human movements, but also 

applicable for analyzing other urban flows, interactions, and relations (Barbosa et al., 

2018). From several ways these developments are distinct from spatial interaction 

(gravity) model. First, what’s observable is no longer limited in the OD pairs, but 

contains more dynamic and detailed flow patterns. Dimension and meaning of flow are 

richer. Second, gravity model focusses more on ‘space’ while new metrics and physical 

models are more on ‘human’. The way that gravity model depicts the spatial flows 

heavily depend on the law of distance decay, as distance is a key component in the 

equation. Thereby gravity model explains more how space influence the flows (i.e., 

human behaviour). While in abovementioned human mobility metrics, most are 

depicting the characteristics of the flow itself, that enables research questions related to 

human and society. For example, how urban flows are related to the urban environment 

and demographic (e.g., poverty and race). Third, flow metrics have more opportunities 

to intersect with other methods and analysis, while gravity model has less. Specifically, 

flow metrics can serve as location-based factors that are easily intersected with other 

socio-environmental factors using spatial operations. Flow factors can be either 

integrated with other factors for urban evaluation (e.g., measuring urban vitality) 

(Zhang et al., 2021b), or fed into regression framework to support planning policies 

(Liu et al., 2021). However, metrics and physical models are aggregative to some 

degree. While graph (or network) is regarded as a natural way to represent the whole 

system’s interaction/flow, from which useful diagnosis can also be conducted.  

Graphs have paramount role in flow analytics, contributing to methodological 

development in many domains such as biology, economics, climatology, and sociology 

(Lewis, 2011; Barabási, 2013). The key is that graph represent interaction effectively. 

Whether it is human body, ecosystem, or a society as a whole, one cannot function 

without interaction between two cells in the body, two animals in the ecosystem, or two 

people in the society. Graphs represent all flows as a whole network by vertices (nodes) 

and edges (links), upon which a comprehensive set of tools can be used. Put it simply, 

first, classic graph methods evaluate topological, statistical, and dynamic features of 

node, edge, and network blocks. For example, node versatility metrics can indicate 
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traffic conditions of road segments (Senousi et al., 2022), and community detection is 

for revealing agglomeration and urban hubs (Zhong et al., 2014). Second, in the latest 

development, graph and its analysis have been extended to multi-layered context and 

graph-based machine learning models. The former is dedicated to more realistic 

representation such as inter-connected social relations (Kivelä et al., 2014), and the 

latter is improving prediction and classification performance on flow-related context 

such as traffic prediction considering multi-modal flows (Wang et al., 2020).  

However, a fundamental question with regard to graph-based urban studies 

concern how to transform real-world complex flow into an abstract graph. Since even 

same set of graph analysis could result in rather different knowledge of city, it is crucial 

to distinguish, in urban flow context, what entities are nodes, edges, and how to deal 

with time. Therefore, this part particularly summarizes the related literatures into 

two categories: space as nodes and human as nodes. First, the ‘space as nodes’ 

frameworks treat location or area at graph nodes among which interactions and relations 

donate the edges (Barthélemy, 2011). Types edges between locations are diverse, such 

as mobile communication (Eagle et al., 2010), trade (De Benedictis & Tajoli, 2011), 

individual movement (Liu et al., 2014) and transport transit (Ding et al., 2019). There 

are clear advantages in such construction that real-world urban networks can be 

projected in the graph model realistically, on which diagnosis results can be mapped in 

the geographic space in the direct manner. It enables easy visualization and computation 

of flow-induced features, which are normally used for validating cohesive and friendly 

urban design for transport, planning, and well-being policies (Batty, 2013b). Second, 

the ‘human as nodes’ frameworks treat induvial or group as graph nodes among which 

edges are donated by people’s spatial behaviour, social relations, or similarities defined 

by additional information. Related methods are largely benefited from increasingly 

feasible human-generated data that contains both geographic locations and fruitful 

semantic information (Watts & Strogatz, 1998; Grabowicz et al., 2014; Kwan et al., 

2015). In this sense, graphs are used to represent social network, interests’ similarity, 

and information transmission. Unlike sociology studies, geography researchers overlay 

diagnosis of human nodes with spatial context exposed (Wang et al., 2011; Andris, 

2016; Barbosa et al., 2018; Ye & Liu, 2019; Dang et al., 2019), for understanding social 

segregation (Xu et al., 2019), work-life balance (Renne et al., 2016), and urban diversity 

(Zhang et al., 2021a).  
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Although both space- and human- graph have shown its effectiveness of modelling 

urban flows, most studies focus on single type of graph or treat multiple flows 

separately. While increasing evidence have suggested that methods without 

considering multiple flows and their relationship may fail to explain complex 

urban interactions. For example, dependency between spatial mobility and social 

interaction is arbitrary in different context (Baldassare, 1978; Stehlé et al., 2013; Ai et 

al., 2019). On one side, ICT-powered social interaction (e.g., phone call) technically 

can flow across the globe, but frequent contacts are geographically close to some what 

(Eagle et al., 2010). On another side, distance effect on social interaction could be weak 

for migration worker who outside the resident country and still contact family members 

lived very far. In this case critical nodes in social graph is dominating behaviour in 

spatial graph. A similar case exists in research collaborations that are more driven by 

social connections, furthermore, even determine where a researcher is travelling to give 

a seminar (Kivelä et al., 2014). Towards modelling different flow in a more integrative 

manner, hereby we review recent development of multilayer graphs to shed light on the 

urban flow analytics.  

Early conceptualization of multilayer networks is led by sociology researchers, as 

complex types of links are widely existing in social network studies (Vasilyeva et al., 

2021). For same set of people (i.e., nodes), one can interact with another as colleagues 

and friends at the same time. Similar complex interactions are also reported in animal 

migration (Albery et al., 2021) and disease transmission (Finn et al., 2019). In urban 

context, multi-flows analytics is familiar to transportation researchers who studies 

multi-modal travel behaviour (e.g., bus, vehicle, bike) across same set of places (Aleta 

et al., 2017). Although network analysis has long been adopted in these areas, methods 

on multiple flows are not mature in early studies. For example, multilayer problems are 

investigated by using modified representations based on classic network, such as 

attaching different strengths for edges (Barret et al., 2004), constructing bipartite 

networks (Breiger, 1974), and constructing networks across time (Holme & Saramäki, 

2012). Only until recently (Kivelä et al., 2014; D’Agostino & Scala, 2014), multilayer 

network is formally defined to provide clear mathematical notions, diagnosis metrics, 

generative models, and analysis tools on dynamics and structure. Multilayer networks 

extend monoplex (i.e., single-layer) graph G = (V, E) to M = (VM, EM, V, L) which 

containing nodes and edges across different layers (L). Such extension enables flexible 
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representation on multiple flows, and a growing number of extended analysis methods, 

such as multiplex node centralities (Kivelä et al., 2014; Domenico et al., 2015b), edge 

versatility (Solé-Ribalta et al., 2016), community extraction across layers (Jeub et al., 

2017), and multilayer visualization (McGee et al., 2019). Few studies have applied 

multilayer networks in urban context, and existing ones primarily focus on 

transport systems or social networks. Buldyrev et al. (2010) for the first time 

empirically uncover the potential cascading failure using multi-modal transport 

network, on which the hidden interdependence is the main risk contributor. Comparting 

the single-layer transport network, further analysis showed that multi-modal transport 

network is more correlated to population density in term of degree distribution (Gu & 

Wang, 2022). Similarly, mobility behaviours quantified in multilayer networks are 

reported as significant features for simulating and predicting travel demands (Ma et al., 

2016; Strano et al., 2015; Aleta et al., 2017). Considering time in layers, multilayer 

diagnosis can provide valuable insights on the dynamics of urban flows (Ducruet, 2017). 

Relying on community detection in multilayer network, one can investigate the specific 

structure of how grain disasters impact on provincial economy (Qu et al., 2022), and 

how shared mobility services impact on travellers choices regarding to traditional taxi 

(Zhang et al., 2021b). Based on a spatial-social network, Hristova et al. (2016) 

developed novel metrics measure how urban places can attract different types of people. 

2.2.3. Contributions from GIS 

Geographical Information Science (GIS) also plays key roles in understanding complex 

urban flows mainly from two aspects. First, the emergence of dynamic urban big data 

provides unpredented resolution for integrating space and time (Kwan & Neutens, 2014; 

Chen et al., 2014). Decades ago, spatial data such as travel surveys and land parcels 

was relatively sparse in the time dimension, limiting the temporal analysis in a 

screenshots manner. While time is indispensable component in GIS analysis to 

understand the underlying processes of city (Claramunt & Thériault, 1995). Several 

achievements have been made for representing human activities more closely, for 

example, the space-time prism (Miller 1992; Neutens et al., 2008), and space-time 

trajectories (Forghani et al., 2020). Another major achievement in the context of urban 

big data is addressing the importance of volunteered geographic information 

(Goodchild, 2007). Citizens with mobile devices are seamlessly collecting surrounding 

information, namely citizens as sensors. The perspective provides the legitimacy of 
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aggregating human activities features to understand the whole city (the bottom-up 

approaches). This stream of studies affects the approaches throughout the whole thesis 

to drive urban knowledge from individuals.  

Second, GIS researchers included ‘semantics’ as a key component in the analysis 

of space and human activities. In early years, semantics mainly focus on the spatial 

aspect, theorizing the spatial relations of geographical objects as well as the processes 

within (Claramunt & Theriault, 1996 June). Typical approaches for representing spatial 

relations include topological spatial analysis (Jiang & Claramunt, 2004) and space 

syntax (Hillier et al., 1976; Jiang et al. 2000). The graph-based representation captures 

all connections in the same model, enabling the analysis of semantics and spatial 

features to be conducted in an integrative way. The semantics in GIS analysis has 

become ever richer nowadays, including the human semantics derived from geo-located 

social networking data (Andris, 2016), and the urban semantics derived from point-of-

interests and human activities data (Gao et al., 2017). These new semantics impose the 

opportunities to enrich the GIS analysis to understand, beyond the geographical surface, 

how people interact and perceive places, and how urban places are actually functioned.  

Third, the importance of geographical meaning has been raised in recent analysis 

of human activities and spatial flows, as the graph representation itself focus more on 

the topological features. Geographical meanings of human activities and flows are 

indispensable, such as direction of movement, distance, and spatial heterogeneity of 

places. Two studies in GIS domain are identified to address this issue (Wang et al., 

2021; Wang et al., 2023), and they are relevant to the case study conducted in the 

Chapter 5 of the thesis to derive locational indicator from urban flows. Locational 

indicators are useful in quantitative geographical analysis to enhance location-based 

policymaking. Many studies have adopted network analysis to induce locational 

indicators for urban and transport planning, such as number of flows (Cats et al., 2015; 

Sun et al., 2016), entropy-weighted flows (Xia et al., 2019), flow ratio (Xu et al., 2017), 

and centrality-based index (Senousi et al., 2020; Liu et al., 2021). However, network 

metrics are more representative for the characteristics in topological space, which may 

ignore or lose fruitful geographical meanings. New location-based metrics addressing 

this fundamental issue has appeared in recent literatures, for example I-index (Wang et 

al., 2021) and X-index (Wang et al., 2023). I-index depicts the irreplaceability of 

location (destination) as a function of travel distance and flow volume from the 
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orientations. A place is irreplaceable when there are many OD flows with both large 

flow volume and long distance. The X-index measures centrality of location 

(destination) as a function of flow volume and flow directions. The value of X-index is 

determined when the xth angle (ranked by rose diagram) exceeds at least a number of 

in-flows. The flow analytics that the thesis is trying to explore is inspired by both 

abovementioned three major contributions from the GIS domain: namely the use of 

high frequency space-time individual data to understand the city from the bottom-up, 

the use of topological analysis to capture of spatial semantics, and the thorough 

consideration of geographical meanings embedded in human activities and urban flows. 

2.3. Summary of Research Challenges 

In this review we discussed how flow theory and analytics are obtaining more attention 

in urban studies, at the intersection of high-frequency urban sensing data and 

perspective of complex science. On theoretical side we cover the conceptual 

frameworks delineate the relationship between space and flow: place theory weighs 

more on spatial dependence and distance effect across geographical space, while flow 

theory argue that it is the flow itself shaping the space we live. One methodological 

side, we have witnessed significant contributions from geographer in early years, and 

from inter-disciplinary researchers in recent years such as physicist, sociologist, and 

complex scientist. In this context, a growing number of date representation, metrics, 

and models are developed to allow the comprehensive study of the topic.  

Whilst increasing evidence have suggested that we live a highly connected city 

with abundant new infrastructure diminishing the interaction friction across 

geographical space. It is urgent to reflect the research challenges from geography and 

urban perspective, on how complex flows, relations, and interactions can contribute to 

better understanding of city. One can find more details in the bellow: 

 

2.3.1. On GIS  

- Interaction and relations are challenging representations in Geography 

Information System that are originally designed for geometrics, in other words, 

GIS is for location not for flows. The challenges lie in several aspects:  

1) interaction and relations are not a local property of location or the 

location per se, but a flow (or connection) between pairs of locations. How to 

represent flows and extract metrics to reflect characteristics of location requires 
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extensive work; 2) interaction and relations are intrinsically dynamic, while 

traditional GIS method is not adaptive to capture evolvement of flow in 

temporal dimension. 

 

- Dependence in GIS is largely replying on proximity in Euclidean space. It is 

useful to explain many spatial patterns such as density of population or human 

settlements. While growing evidence are challenging traditional notion of 

spatial dependence due to intensifying flows generated by new technologies. 

For example, multi-modal transportation systems are making distant places 

more accessible, resulting in that ‘time’ is a more representative metric for 

spatial dependence rather than distance. Furthermore, communication systems 

have dramatically shift physical flows to virtual flows. In such manner, how 

people are connected is not limited by physical distance. For example, people 

in Covid-19 can easily work from home and join meetings with different groups 

via online tools. The multi-flow context will also challenge how we define the 

segregation of people (i.e., some are more physically active while others are 

virtually).  

 

- Multiplicity in contemporary GIS should not limited in data layers. GIS has 

great initiatives and advantages in representing different aspects of entities of 

real world into digital manner. While it is not sufficient to represent and handle 

increasing complex activities and relations in city nowadays. As mentioned in 

previous section, this dissertation aims to include inter-dependence between 

different systems as well to enhance GIS embrace the multiplicity. Data of 

different systems (e.g., multi-modal transportation) will be integrated in the 

model construction phase, instead of analysing each and then aggregate or 

overlay the results.  

 

2.3.2. On Urban Science  

- Co-evolution describes places and flows are not separately produced, but as 

organizations that are intrinsically co-developed: In the bottom-up process, 

different levels of stakeholders interact with each other and lead to emergence 

of city. In the top-down process, places (e.g., function and configuration) bears 
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the way and potential of interaction. The challenge lies on that these two 

processes are evolving simultaneously, modelling such process requires 

research framework adopting multi-flows perspective and data to integrate 

place and flows more closely.  

 

- Urban Structure has rather rich meaning in urban studies when studying 

spatial arrangement in socio-economic context, such as economic 

agglomeration, transport-oriented development zone, and social segregation. In 

this sense, it is widely agreed that there is no definite and conclusive 

determination of boundaries in urban structure. Although different data can be 

involved for deriving boundaries of interest, it is challenging to compare or 

integrate different structures when multiple variables are involved. Thereby 

further research is required to find inter-relationship of different data and 

develop integrative data model at the original places, then the derived urban 

structure can represent multiple aspects of urban activities. The multi-flow 

study is the promising research direction toward such purpose and provide 

better solution than traditional methods that overlay aggregative demographic 

attributes to spatial entities. 

 

- Urban diversity, vitality, and sustainability are the key initiatives in recent 

urban studies and practices. Developing quantitative measurement towards 

these concepts obtain great attentions in recent studies to sustain benefits and 

success of city. Although fruitful urban big data has been used to quantify the 

key element, diversity, there is no study measuring urban diversity from the 

interaction (i.e., flow) perspective. The benefit and challenge of flow-based 

diversity rely on that multi-flow provide observations on diversity spinning over 

scales and entities type, breaking the boundary where diversity of a place is 

often measured by its surrounding composition. On the basis of new diversity 

measurement based on flow, we need to further investigate how diversity is 

linking to vitality, which is key concept relating to prosperity and sustainability 

of city. These research challenges are not the first time proposed here, but this 

dissertation crafts the research methods from flow data, addressing the future 

trend of understanding places and individual in a more connected manner.  
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Chapter 3. Methodology  

This chapter develops the methodology of this thesis for modelling space of flows, 

combining knowledge and methods from three domains: Urban Science (Section 3.1), 

Spatial Data Science (Section 3.2), and Network Science (Section 3.3). We explain why 

these domains are important for urban flow analytics at the beginning of each section 

(Figure 1). Specific methods and tasks related to the appended papers are demonstrated 

in Figure 2, from which we can see Urban Science mainly contributes to the domain 

knowledge on urban issues, Spatial Data Science contributes to Flow Pattern Analysis, 

and Network Science contributes to Data Models and Feature Extraction.  

 

Figure 1. Domain knowledge of this thesis.  

Same colors are used in the following figure with detailed methodological components. 

The empirical studies of this thesis are surrounding a keyword, flow analytics, in 

the context of urban and transport geography. The theories and methods reviewed in 

Chapter 2 explained why urban flows is important in the past and weight more in the 

current, and how inter-disciplinary research contributes to methodological development 

on flow analytics. The rest of empirical studies (Chapter 4-6) are the latest works done 

towards this direction, integrating classic data (e.g., public transport) with newly 

emerged data (e.g., shared mobility), and combing classic analysis methods (e.g., 

statistical and spatial regression) with advance network analytics (e.g., multilayer 

network). All empirical studies can fall into the framework shown in Figure 1, being 

conducted by three main stages. First, spatial-temporal mobility data need to be 

processed as OD matrix (a typical data format of pairwise flow, interaction, or relations), 



23 

 

from which we need to define the unit of interest in particular study for further 

determining the conceptual linkages between flow data and network models. Second, 

based on the processed flow data models, various types of technics are used for 

extracting quantitative measurements to characterize flows, statistically, spatially, 

temporally, and topologically. Third, the extracted patterns (e.g., metrics, model 

coefficients, visualization) will be overlayed with other urban data for further analysis 

and discussion, such as socio-economic data and landuse. In this stage deeper insights 

can be obtained for urban-social applications. 

 

 
Figure 2. Methodology framework on space of flows analytics.  

 

Although this thesis proposes that urban flows research is at the intersection of 

three domains, it should be noted that case studies presented in Chapter 4-6 have their 

own preferences in the method design. Chapter 4 focuses more network and urban 

science, constructing a multilayer mobility network to investigate the potential shift of 

travel patterns and flow-induced urban structure during the period of emergence of 

shared mobility services. Chapter 5 focuses more spatial data and urban science, 
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developing a new metric to measure interaction diversity from taxi flow data. Chapter 

6 extends research context to urban vitality, investigating how interaction diversity 

together with built environment diversity and ridership diversity are associated with the 

intensity of night-time vitality.  

The computational complexity of the metrics introduced and especially the 

proposed flow diversity metric (DSI) has been tested using the hardware: CPU –i7 

12700H, RAM – 16gb, DRIVE – SSD, ENV – python 3. Given a study area with 5000 

grids, the calculation time of all urban science metrics are within 0.1 seconds and 

present a linear pattern between the data size and time. In the same area, given 7 days 

of hourly time series data, the calculation of ridership diversity is within 37 seconds 

and present a linear pattern as well. Given a network with 2 thousand nodes and 100 

thousand edges, the calculation time of DSI is within 15 seconds, presenting a bilinear 

pattern between the number of nodes and time. 

3.1. Urban Science  

Research of urban science is often interdisciplinary, such as combining knowledge from 

sociology, transportation, environmental, and GIS to solve urban issues. Contemporary 

urban science is largly data- and computational-driven, exploiting potential of big earth 

data and massive human-generated contents to validate, delineate, and improve urban 

theories and practices (Batty, 2013a; Engin et al., 2020). Computational paradigm also 

motivates the methodological development of this thesis at large. In the following parts 

we introduce the methods used in case study chapters, with a focus on quantitative 

measurements for the topics of urban environment, dynamics, and urban structure.  

3.1.1. Urban Environment  

Recent developments on quantifying urban environment have largely benefited from 

fruitful types of urban sensing data (Liu et al., 2015; Kharrazi et al., 2016). In empirical 

studies of this thesis (Paper I, Paper II, and Paper VI), POI data is selected as major 

source to quantify urban environments for several reasons. First, spatial resolution and 

coverage of POI data is satisfactory in most big cities (e.g., as in Shenzhen city, China), 

which is continuously maintained by internet and map companies and widely used in 

other research (Jiang et al., 2015; Liu et al., 2016; Yue et al., 2017; Huang et al., 2019). 

Second, POI benefit from its ‘Point’ geometry type, thereby its attributes (e.g., usage 

type) can be easily aggregated into flexible spatial scales and units of interest (Niu et 

al., 2017). Third, increasing evidence showed that POI-derived metrics are related to 
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human activity-related metrics (Maat et al., 2005; Sardari Sayyar & Marcus, 2011; 

Mouratidis, 2019), therefore is useful in the context of investigating how physical 

environment of urban places may influence urban flows (Paper II). 

Diversity of the built environment has prominent role in urban vitality evaluation 

(Montgomery, 1998; Sung et al., 2013; Zeng et al., 2018). Places with diverse urban 

context attract travellers with a wider range of purposes (Yue et al., 2017). In the urban 

vitality study, this research includes three built environment metrics: entropy-based 

landuse mixture (LUM) (Frank et al., 2010), ratio of residential–non-residential (RNR), 

and density of catering (DOC). LUM metric is calculated as equation 1: 

 

LUM = −1 (
𝛴𝑖=1

𝑛 𝑝ⅈ ∗ ln(𝑝ⅈ)

ln(𝑛)
)                                     (1) 

 

where 𝑝ⅈ is the proportion of the POI of category I in the spatial unit, and n refers 

to the total amount of all POI categories (totally 9 in our dataset). The higher the LUM, 

the higher degree of land use mixture it indicates.  

RNR is also calculated from amount of POI categories but only limited to 

residential and others: 

 

RNR = 1 − |
𝑅𝑖 − 𝑁𝑜𝑛𝑅𝑖

𝑅𝑖 + 𝑁𝑜𝑛𝑅𝑖
|                                         (2) 

 

where 𝑅𝑖 is the proportion of residential category, and 𝑁𝑜𝑛𝑅𝑖 is the proportion of 

non-residential category. The integrated value, RNR, reflect relative amount between 

these two category: High RNR indicates residentials and others have similar amounts 

in the spatial unit.  

Growing literatures have linked catering density to urban vitality (Long & Huang, 

2017; Ye et al., 2018). The rationale behind is that catering are often built prior to other 

businesses as a basic need, thereby indicating there are people and economic activities 

contracted in the area. DOC metric is simply obtained as equation 3: 

 

𝐷𝑂𝐶𝑖 =  𝑁(𝐶𝑎𝑡𝑒𝑟ⅈ𝑛𝑔 𝑃𝑂𝐼)𝑖                                    (3) 
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where DOC in grid i is the number of catering POIs. ⅈ ∈ {1, 2, … ,9009}. 

3.1.2. Urban Dynamics  

City and citizens are changing so rapidly, thereby it is urgent to adopt new data, 

methods, and perspective to provide a holistic view of dynamics of city (Senousi et al., 

2021). In past decades urban dynamics research focus on depicting landscape changes 

(Solon, 2009) and human mobility intensities (Yue et al., 2017). However, night-time 

activities and human mobility variations are less reported due to lack of feasible data 

and metrics. Furthermore, dynamics perspective has also been adapted in urban 

structures, definitions of which is no longer limited in the fixed boundaries led by 

administrative or natural powers but actual division of space is largely being influenced 

by human interaction. The methods introduced in this section link to these three 

directions. 

To proxy night vitality, this study utilized gap-filled NTL radiance extracted from 

Daily Lunar BRDF-Adjusted Nighttime Lights dataset (Black Marble - VNP46A2). 

The 3 x 3–pixel grid was used to process the NTL radiance over days to reduce the 

value error caused by geographic mismatch of NTL imageries over days (Román et al., 

2018). Although Black Marble products have been corrected using state-of-art strategy, 

errors are still reported due to lower accuracy in nighttime cloud detection (Wang et al., 

2021). Therefore, this study further extract the maximum value of each week as vitality 

proxy for each pixel. The final vitality proxy based on the processed NTL value 

represents the best observed magnitude of night vitality across city locations.  

To depict human mobility variations, two indices are developed with referring to 

(Zhong et al., 2016; Sulis et al., 2018). Mobility variations are useful metrics for further 

applications, such as constituting urban vitality indicator. In more specific context such 

as urban transport, places with non-regular ridership variations are more capable of 

attracting travellers with diverse travel purposes, which collectively make the place 

more vibrant. In this thesis, mobility variations are measured by Variability (V) and 

Consistency (C), where V is the day-to-day temporal variation of ridership volume and 

C is the within-day nonregularities.  

For each spatial unit and time window, we calculate the variability of public 

transport and taxi transit as: 
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V =
𝛴𝑖

𝑛𝛴𝑗
𝑛(1 − 𝐶𝑜𝑟𝑟(𝑇𝑆𝑖, 𝑇𝑆𝑗))

(𝑛 ∗ (𝑛 − 1)/2)
                               (4) 

  

where variability index V is calculated based on time-series of travel flow volumes 

(𝑇𝑆𝑖,); numerator is the summation of dissimilarity (1 − Corr) in pairs of time series 

volumes (𝑇𝑆𝑖, 𝑇𝑆𝑗), that is then standardized by the total number of pairs; n is the 

number of TS to be compared, in our weekly model, equal to 7 (days). Pearson 

correlation is used as our Corr() function. A higher V means more non-regular temporal 

changes from day to day. 

Consistency is another metric of ridership diversity, being donated by extreme 

irregular within-day flow volume. High consistency value, practically, means more 

hourly peaks hinting the diverse use of lands. This metric is calculated by median 

absolute deviation (MAD) as equation 5: 

    C = ∑ (
∑ |

𝑂𝑢𝑡𝐷𝑖
𝑀𝐴𝐷 |𝑛

𝑖=1

𝑛
)

𝑗

𝑁

𝑗=1

                                     (5) 

where C is the consistency metrics obtained by a N days time-series (7 days is set 

in this thesis). For day j, n is the number of outliers determined by MAD, and 𝑂𝑢𝑡𝐷𝑖 is 

the volume deviation from the ith outlier to the median volume. High C value at the end 

indicates big difference between the peak flows and the normal flows.  

Urban structure, in traditions, is the spatial arrangement of units attributed to 

socio-economic or environmental features (Rodrigue, 2020). While recently, the view 

of urban structure has been extended by enormous observations on individuals’ 

mobility. Spatial structure inferred from urban flows may mismatch or agree on the pre-

designed urban boundaries, for example, using graph analysis on the mobility network 

(Sarkar et al., 2017; Zhang et al., 2018).  
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Figure 3. Spatial flow patterns in the Beijing–Tianjin–Hebei region  

(Source: Paper IV). 

These types of new data and methods bring new insights, because the inferred 

structure are produced by a bottom-up process, in other words, human flows-induced 

spatial structure are self-organized. In reality, the choices of frequency and direction of 

travel flows, are linked to the heterogeneity of many aspects of urban configuration. 

For example, resident and work buildings are concentrated in certain areas (static aspect 

of configuration), at the same time, nature of work (e.g., factory workers, IT staffs) also 

influence the distance of travel (dynamic aspect of configuration). The rationale behind 

the methodology inferring urban structure from urban flows is that such complexity of 

spatial-social configuration can be reflected by just looking deeper on the ways of flows 

are generated. One can see the power of flow-based method for urban structure study 

from just simply visualizing the travel flows. Different clusters and flow intensity 

emerge on Figure 3. Beyond visualization, other methods are elaborated in following 

sections.   

3.2. Spatial Data Science 

Big data imposes new challenges on urban flows analytics, specifically the complexity 

comes from three aspects. First, the large scale and huge volume of spatial big data 

require methods of summarizing main trend of data, that referring to statistical models. 

Second, the second-order nature of big flow data (e.g., OD matrix) should be well 

considered in the method design, rather than pre-processing in an aggregation manner 

(e.g., merge to time series). This part refers to our new development of diversity metric 

for urban flow data. Third, the ‘spatial’ nature of big flow data is also an indispensable 

aspect, as the patterns extracted from flows are intrinsically related to the spatial 
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location (and its configuration). This part refers to methods for investigating spatially 

varying relationship. With all three parts as a whole, methods introduced below aims to 

contribute to the domain knowledge of spatial data mining, especially for urban flows. 

3.2.1. Statistical models 

In order to understand flow patterns, some studies have focused on the statistical 

characterization of flow-induced networks. For example, in human mobility network, 

statistical models have revealed important findings such as power-law (Gonzalez et al., 

2008), and small-world properties (Watts & Strogatz, 1998). This thesis includes 

statistical models with two considerations. First, in high level, statistical models work 

as an indispensable lens to summarize collective behavior no matter from small data or 

big data (Chen et al., 2016). A rich body of scientific literatures across domains provide 

solid background for interpreting statistical results. Second, although the power-law 

paradigm has been a popular way to explain and quantify some urban flows, many 

studies have argued such law (or statistical distribution) is not always true and could 

still depend on transport mode (Han et al., 2011) and geographical scale (Alessandretti 

et al., 2020).  

 

Table 1. Common statistical distribution for fitting human mobility patterns. 

Statistical Model Equation Parameters 

Weibull 
𝑘

𝜆
(

𝑘

𝜆
)

𝑘−1

𝑒−(𝑑/𝜆)𝑘
 𝑘 𝑎𝑛𝑑 𝜆 

Gamma 
𝛽𝛼𝑑𝛼−1𝑒−𝛽𝑑

𝛤(𝛼)
 𝛼 𝑎𝑛𝑑 𝛽 

Exponential 𝜆𝑒−𝜆𝑑
 𝜆 

Power Law (𝑑 + 𝑑0)−𝛽 𝑑0 𝑎𝑛𝑑 𝛽  

Lognormal 
1

𝑑
∙

1

𝜎√2𝜋
𝑒𝑥𝑝 (−

(𝑙𝑛𝑑 − 𝜇)2

2𝜎2 ) 𝜇 𝑎𝑛𝑑 𝜎 

 

For example, researchers found other statistical models such as using Weibull, 

Gamma, and Lognormal functions (Table 1), also have decent goodness of fit for 

various types of movements (Plötz et al., 2017; Kou & Cai, 2019). Experiments in Paper 

III of this thesis extend this open initiative to multi-flows context, inferring the best 

fitted distribution for the centrality diagnosis in multiplex mobility network. The results 
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contribute to knowledge on urban flow patterns and the commuting behavior in the era 

of mixed shared mobility and traditional transportation (Chapter 4).  

3.2.2. Composite indicator 

In mathematics, composite indicator refers to the form of combining (or aggregating) a 

set of indicators, often being used to summarize complex and multi-dimensional 

problems. Constructing composite indicator is a popular methodology in urban and 

geography research, such as living planet index in environmental study (Loh et al., 

2005), wellbeing index (Cummins et al., 2003) in social study, and accessibility index 

based on urban morphology data (Sevtsuk et al., 2016). First, popularity of composite 

indicator benefits from its explainability at large. Factors of composite indicator often 

have clear physical meaning (e.g., building height, block density, income), and 

selection of which often is guided by a theoretical and policy-driven framework such 

as transit-oriented development (TOD). Second, from GIS perspective, overlaying 

spatial data according to location or neighborhood is an essential initiative in the origin 

of GIS theories and tools, thereby many spatial data available nowadays make the 

process of constructing composite indicator easier.  

This thesis is dedicated to urban flow analysis for advancing understanding of 

urban dynamics. One large contribution of this work is developing a metric to project 

the dynamic nature of urban flows in understanding an essential concept of urban 

evaluation: diversity. Awareness of importance of urban diversity has ever growing in 

contemporary research and society, as its association with innovation (Vormann, 2015), 

inclusion (Thompson, 2020), resilience (Loh et al., 2005), and vitality (Jacobs, 1961; 

Kang et al., 2021) of city. However, existing urban diversity metrics are mostly relying 

on static data, such as POI-induced landuse mixture. An essential feature of complex 

city, urban flows, is rarely linked to urban diversity.  



31 

 

 

Figure 4. Semantic Framework of Diversity  

(Adapted from: Leydesdorff et al., 2019).  

More explicitly, for the first time we develop a metric to quantify interaction 

diversity as indicating how a location can attract flows in a diverse manner (See more 

results in Chapter 5). This diversity of spatial interaction (DSI) is inspired by insightful 

discussion on diversity in scientometrics and informatics fields studying on evaluation 

of scientific literatures. A latest framework (Figure 4) on measuring journal citation 

diversity is modified in the spatial context to combine three essential aspects of 

diversity (Rao, 1982; Rafols & Meyer, 2010; Leydesdorff et al., 2019). Variety means 

the richness of different classes in the population, Balance means whether there is 

equity in the number of each classes, and Disparity means how classes differ from each 

other considering their intrinsic attribute. Three aspects complement to each other to 

reduce the blindness of one-side diversity evaluation. In geographical context, the 

detailed metric development, evaluation, and empirical analysis are demonstrated in 

Chapter 5. 

  𝐷𝐼𝑉 = 𝑉𝑎𝑟ⅈ𝑡𝑦 ∗ 𝐵𝑎𝑙𝑎𝑛𝑐𝑒 ∗ 𝐷ⅈ𝑠𝑝𝑎𝑟ⅈ𝑡𝑦    (6) 

3.2.3. Multiscale geographically weighted regression 

Geographically Weighted Regression (GWR) is a typical method for revealing spatially 

varying relationship. This thesis adopted an improved GWR, multiscale geographically 

weighted regression (MGWR) in the case study, as MGWR outperforms global 

regression model by inferring a local relationship that varies from location to location 
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for more implications. MGWR is similar to GWR in terms of both capabilities to infer  

spatially varying relationship. While the new feature as opposed to GWR is the 

flexibility allowing different scales to be used for different explanatory variables to fit 

significant coefficients, in other words, not only the relationship vary from location to 

location, but for each location and variable, the spatial range of borrowing data into  

model fitting and explanation vary as well (Fotheringham et al., 2017). One can refers 

to Chapter 6 for more discussions on the results. According to several research, such 

flexible scales enable MGWR to handle the collinearity issues better, from which the 

overall model performance can be improved (Murakami et al., 2018; Fotheringham et 

al., 2019), outperforming the fixed scale used in GWR. In the results section, the 

comparison between MGWR and other models is provided, showing its effectiveness 

for the purpose of urban vitality evaluation as well.  

The general form of MGWR model is presented as equation 7: 

 

𝑦𝑖 =  ∑ 𝛽𝑏𝑤𝑗(𝑢𝑖𝑣𝑖)𝑥𝑖𝑗 + 𝜀𝑖 

𝑚

𝑗=0

                                       (7) 

 

where 𝑥𝑖𝑗  is the jth explanatory variable of observation i at location (𝑢𝑖𝑣𝑖) ,  

𝛽𝑏𝑤𝑗(𝑢𝑖𝑣𝑖) is the coefficient of jth variable inferred by using the bwj bandwidth, 𝜀𝑖 is 

the error term, and 𝑦𝑖 is the response variable. 

In GWR-series models, the bandwidth (or scale) is the size of the moving kernel 

for including data points for estimating model parameters. To infer flexible scales in 

MGWR, the whole model is regarded as a generalized additive model (GAM) (Rigby 

& Stasinopoulos, 2005) for the calibration process, upon which the back-fitting 

algorithm is adopted.  

Therefore, the 𝛽𝑏𝑤𝑗𝑥𝑖 of MGWR is the jth additive term 𝑓𝑖 of a GAM : 

 

    𝑦 =  ∑ 𝑓𝑖 + ε 

𝑚

𝑗=0

 
                                 

                                             (8) 

 

At the beginning of calibration process, initial values of model parameters are 

provided by fitting a traditional GWR model as approximate estimation. Then an 

iteration process is required to refine the model parameters under different bandwidth. 
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This process is conducted on the form of GAM, where 𝑓𝑖, is treated like the varying 

variable and other terms are treated like constants. In the core, the coefficient 𝛽𝑗 and 

the optimal bandwidth bwj are indeed estimated by GWR model. The iteration process 

will end when all term 𝑓𝑖 have been inferred for their coefficients and bandwidths. It 

should be noted that in higher level there is another iteration process resulting in 

multiple GAM models to produce what we see multiple bandwidths at the end. In order 

to stop the whole iteration, a smooth function (SOC-f) is used to compare the multiple 

GWR models generated during the process, and the SOC-f is suggested to be smaller 

than 10−5.  

3.3. Network Science  

Network science is a field of mathematician and physicists, studying on mathematical 

notion and diagnosis of graph (i.e., an abstraction of relations by nodes and edges). This 

field has provided a wide range of useful methods to urban and geography studies. In 

decades ago, graphs have shown it effectiveness in modelling static city networks 

(Batty, 2005). In contemporary research, graphs are constructed in a more dynamic 

context, being donated by human interaction and urban flow across spaces and time 

(Paper III, Paper V). Network science is associated with the view of complexity, 

under which a system’s function is beyond the simple addition of parts. In this thesis, 

graphs are regarded as promising methodological components responding to the 

challenges raised in complex cities (Batty & Cheshire, 2011; Aleta et al., 2017; 

Portugali, 2021). This part introduces the graph models, metrics, and analysis used for 

the discussion on urban dynamics and structure. 

3.3.1. Constructing multilayer metwork 

Prior to understanding multilayer network models, it is reasonable to explore a simple 

graph. The general form of a monoplex (single-layer) network is G = (V, E), where V 

is the set of nodes and E ⊆ V × V is the set of edges connecting each pair of nodes. In 

a preliminary study (Paper V), we extract spatial trajectory from mobile phone data to 

construct the flow matrix between orientation and destination zones in the BTH region 

(Figure 5). The spatial interaction network is then donated by the flow matrix, in which 

zones are represented as nodes (N), and travel volumes adjust the weights (w) of edges 

(E), resulting in G = (N, E, w). It is disgustable from static network that mobility 

network is dynamic in terms of its nodes (e.g., some places may opt out traffic flows in 
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certain period) and edges (e.g., flow volume and associated weights could change in 

every minute). Thereby we may assume the network structure and its characteristics 

may change through time, which is essentially useful to monitor how city works (Zhong 

et al., 2014; Sarkar et al., 2017; Zhang et al., 2018). Single-layer mobility network can 

be easily developed from other data with coordinates. 

 
Figure 5. Constructing single-layer mobility network from mobile phone data  

(Source: Paper IV). 

For a multilayer travel network, it is a natural extension of above notation. By 

referring to Kivelä et al. (2014), the general form of a multilayer network can be 

represented as M = (VM, EM, V, L) by adding layers to the previous definition G = (N, 

E). The node links on a single layer are the intralayer edges, and node links flying over 

different layers are interlayer edges. There can be multiple aspects of layers in the set 

L, where L = {L1, L2, … Ld}. An aspect of layers, for example, can represent transport 

modes or different time frames. In Chapter 4 and Paper III, we construct the multiplex 

networks (a particular model) to integrate shared mobility flows and traditional taxi 

flows in the unified model. To achieve this, aspects in the general multilayer notion is 

set to 1 (Nicosia et al., 2013; Cardillo et al., 2013; Yildirimoglu & Kim, 2018), resulting 

in L = {L1}. Consequently, in a set of mobility networks {(𝑉𝛼, 𝐸𝛼)}𝛼 = 1
𝛽

, different layers 

can share the same set of nodes 𝑉𝛼 = 𝑉𝛽 for all 𝛼 𝑎𝑛𝑑 𝛽. Inter-layer links are the edges 

from node to its counterparts of other layers. This representation is especially in the 

context of multi-flows of city, in which different flows (represented by layers) exist in 

the same set of geographical locations (Figure 6). 
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   (a)          (b) 

Figure 6. Construction of multiplex network models:  

(a) Layers defined by modes; (b) Layers defined by time. Note that every single layer is 

a directed network donated by travel flows, and intralayer edges are weighted by flow 

volume; We use a common way to determine weight of interlayer edges in transport 

networks, namely all equal to 1 and nodes connected to its counterpart on other layers. The 

multiplex network here is mainly used for representing the multiplicity among same set of 

locations. 

3.3.2. Characterizing multilayer network 

This part focuses on introducing the centrality metrics in traffic flow context (Paper 

III and Paper VI). For a comprehensive review on multilayer network diagnosis, one 

can refer to Kivelä et al. (2014) and Interdonato et al. (2020). Centrality is one of the 

essential features reflecting how each node connect to the whole system (Ding et al., 

2009; Agryzkov et al., 2016; Jia et al., 2019). In mobility network, high centrality nodes 

could indicate a transportation hub bearing high travel volumes from decent number of 

directions, that could both face attacking risk and prosperity. Among centrality metrics, 

degree and PageRank is selected as indicators to analyse urban dynamics.  

For node i, multilayer degree can be simply obtained by the summation of degree 

𝑘𝑖
𝛼 of multiple layers. Such method is effective but is mostly used in model without 

interlayer links. Instead, the case studies of the thesis use multiplex network as general 

form, considering multiplicity nature of place better and including interlayer to nodes 
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counterparts. In this sense, degree summation is not suitable while a new variate of 

multilayer degree is found in De Domenico et al. (2015a): 

 

    𝑘𝑖 = 𝑀𝑗𝛽
𝑖𝛼𝑈𝛼

𝛽
𝑢𝑗      (9) 

 

where 𝑘𝑖 is the multilayer degree of node i, 𝑀𝑗𝛽
𝑖𝛼 is the adjacency matrix depicting 

the pairwise flow between node i on layer 𝛼 and node j on layer 𝛽, 𝑢𝑗 is a first-order 

tensor with entries equal to 1, and 𝑈𝛼
𝛽

= 𝑢𝛼𝑢𝛽 is a second-order tensor with all entries 

equal to 1.  

PageRank reveal node importance with more consideration on flows of influential 

neighbours. This definition, to some extent, suit the context of travel flow analysis very 

well (Wen, 2015; Xu et al., 2017), in which transfer behaviours are normal and relying 

on influential nodes (e.g., a station accessible to multiple lines). This metric is originally 

proposed by the founder of Google (Page et al., 1999), and then applied in many 

domains such as biology (Yu et al., 2017) and urban flows (Zhou & Qiu, 2018). While 

extension of PageRank in multilayer context is still at its infancy (Battiston et al., 2014). 

A viable solution can be found in Halu et al. (2013) to develop PageRank beyond 

single-layer network. However, the metric is initially designed for a two-layer network, 

based on which De Domenico et al. (2015b) further develop PageRank in a more 

general context, known as multiplex PageRank. This thesis relies on this solution to 

infer the structures in mobility network.  

Multiplex PageRank utilized an essential concept of original version, that is the 

random walk algorithm to sample nodes for centrality evaluation. What determines the 

walk behaviour is the transition matrix as show in equation 11. Then the Multiplex 

PageRank centrality of node i can be calculated as equation 10: 

 

    𝜔𝑖 = 𝛺𝑖𝛼𝑢𝛼 = ∑ 𝛺𝑖𝛼
𝐿
𝛼=1     (10) 

 

where 𝜔𝑖 is the aggregated PageRank centrality of node i, and 𝛺𝑖𝛼  is the 

eigenvector of tensor 𝑅𝑗𝛽
𝑖𝛼. 

 

 

    𝑅𝑗𝛽
𝑖𝛼 = 𝜏𝑇𝑗𝛽

𝑖𝛼 +
(1−𝜏)

𝑁𝐿
𝑢𝑗𝛽

𝑖𝛼     (11) 
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where 𝜏 is the walking rate being set as fixed value (e.g., 0.85), 𝑇𝑗𝛽
𝑖𝛼 is the transition 

tensor containing the jumping probabilities enabling the walk can be proceeded across 

layers, N is the size of nodes set, L is the number of layers, and 𝑢𝑗𝛽
𝑖𝛼 is a 4th-order tensor 

with all entries equal to 1. 

Multilayer centralities then enable the investigation of versatile locations with 

considering multiple travel flows, which can be checked layer by layer or in an 

aggregative way. We illustrate and discuss more in Chapter 4.  

3.3.3. Multiplex community detection  

Community in network refers to that nodes can be seem as belonging to different groups 

according to connection patterns. This is like ‘Clusters’ in the general machine learning 

context, meaning that nodes have strong links within its community but weak links to 

other communities. In single-layer network, community detection method has been well 

developed and tested using empirical data, for example, revealing different travel 

preferences (Zhong et al., 2014; Liu et al., 2015).  

The process of community detection is to divide network nodes into groups, which 

generally aims for a balanced resulting of maximizing between-group distances and 

minimizing within-group node distances (Grünwald & Grunwald, 2007). One widely 

used metric for evaluation is modularity (Newman & Girvan, 2004). Through iterations 

of trying different ways of nodes grouping, a large modularity is expected to be found. 

Although community detection has been used in mobility networks (Zhong et al., 2014), 

the representation is still relying on single-layer network, which suffers from difficulty 

of comparing community results of different network in a direct manner. Instead, this 

thesis adopted a recent developed algorithm, multiplex-Infomap algorithm (De 

Domenico et al., 2015a) enabling direct comparison that being used to investigate  

urban dynamics from the varying community structure perspectives. The multiplex 

modularity is calculated as equation 12: 

 

   𝑄𝑚𝑢𝑙𝑡𝑖𝑙𝑎𝑦𝑒𝑟 =
1

2𝜇
∑ [(𝐴𝑖𝑗𝑠 − 𝛾𝑠

𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠
) 𝛿𝑠𝑟 + 𝛿𝑖𝑗𝜔] 𝛿(𝑔𝑖𝑠, 𝑔𝑗𝑠)𝑖𝑗𝑠𝑟       (12) 

 

where Aijs is the edge weight between node i and j on layer s; k is calculated by 

adding up all edge weights of a node; kis represents the total weighted flow volumes of 
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node i on layer s; kjs is similar to above; δ is the Kronecker delta function; 𝑘𝑖𝑠 = ∑ 𝐴𝑖𝑗𝑠𝑗 ; 

𝜇 =
1

2
∑ 𝑘𝑗𝑟𝑗𝑟 ; 𝑚𝑠 =

1

2
∑ 𝐴𝑖𝑗𝑠𝑖𝑗 ; gis will be the community label given to node i on 

layer s; 𝛾𝑠 is a resolution parameter being suggested to 1 by default; and 𝜔 is the weight 

for interlayer coupling that range from 0 to 1, we set as 1 for the multiplex networks. 

A community detected in the end is equivalent to a cluster of nodes with similar 

interaction patterns in the whole network, practically, could means travel flow patterns 

inward and outward a location. The community detection mainly results in a community 

label for each node (location). More importantly, a set of labels can be generated for a 

node in multiplex network, associating with which community a node belongs to on 

different layers. In this sense, the dynamics of interaction/structure now can be easily 

investigated across layers that are specially constructed for comparison of interests, 

such as spinning over different time. A benefit of constructing multiplex network from 

urban flows data is that we can then project the community labels from network space 

to geographical space based on the spatial attributes of nodes. We discussed more how 

these are useful for understanding urban dynamics in Chapter 4. 
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Chapter 4. A Multiplex Network Approach for Profiling Urban 

Dynamics 

4.1. Motivation 

Urban structures attributed to different spatial-socio factors has been an important topic 

for geographers and urban planners. While in recent decades, feasibility of fine-grained 

data on urban flows has dramatically reshaping the way we look at urban structure, that 

is now more dynamic and activity-based, rather than fixed or static urban boundaries 

(Zhong et al., 2014; Sarkar et al., 2017; Zhang et al., 2018; Yildirimoglu & Kim, 2018). 

However, there are several limitations in existing literatures. First, different mobility 

data could tell different stories on urban structure, as the travel behaviour linked to 

transport modes originally differs. Thereby single source data is insufficient and biased 

to some extent. Second, although community detection of mobility network has been 

applied in inferring urban structure, the comparison of community across different 

network is not efficient. This is similar to compare result of clustering analysis: the 

cluster labels themselves have no meaning, but only for distinguishing on cluster from 

another in current experiment. The cluster label (e.g., cluster no.2) may not indicate the 

same meaning for another minorly adjusted experiment (e.g., also has cluster no.2 but 

the indication may be totally different). This community comparison problem, 

particularly, can be solved by technics in multilayer network. Third, although 

characteristics of human mobility are widely reported and accepted, such as scale-free 

properties, the characteristics of multilayer mobility network is less reported. 

Particularly, the influence of shared mobility has not been studied using multilayer 

network. 

4.2. Research Questions and Methods 

This study attempts to investigate the following three questions: 

• What are the travel patterns in the multilayer mobility network consisting of 

shared mobility for traditional taxis? 

• How flow-induced communities are spatially arranged and varying in the 

different layers (i.e., transport modes and years) of a multilayer network? 

• Whether and how emergence of shared mobility influences the travel behaviour 

from place to place? 
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To answer those questions, we collect 6 years (2013 to 2018) trip records of 

traditional taxi, for-hired vehicle (FHV), and shared bike in New York City (NYC) 

(Figure 7). During this period the shared mobility services emerge and gradually take 

decent market shares. To investigate multi-flows behaviour, we construct two types of 

multilayer network (Figure 6). First, a temporal multiplex network is constructed using 

traditional taxi data, in which each year serve as a layer. MTime = (Vt, Et, Lt), where Lt = 

{2013, 2014,… 2018}, and Et ⊆ Vt × Vt. Second, a multimodal network is constructed 

to combine shared mobility and traditional taxi data in the last year (2018) when share 

mobility services already take an important part in daily transit (according to the 

number of ridership). MMode = (Vm, Em, Lm), where Lm = {Taxi, FHV, Bike} and Em ⊆ 

Vm × Vm. The multilayer network centralities and community detection are conducted 

on above two models, and whose layer architecture enable us to profile and compare 

the characteristics across years or transport modes. These results are overlayed with the 

inferred statistical models and other spatial data for further discussions.  

 

Figure 7. Spatial Distribution of  Multimodal Travel flows. 

 (a) Traditional Taxi; (b) Shared Bike; (c) FHV. 
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4.3. Results and Implications 

4.3.1. Travel patterns characterized by multilayer mobility network 

For both the multimodal and temporal networks, we compute both multiplex degree 

and PageRank. Then, the statistical distribution is inferred using distfit, a python library 

fitting more than 80 models. Performance of all statistical models will be ranked based 

on a widely used metric, the residual sum of squares (RSS). We found that both two 

types of centralities does not adhere to a power-law or exponential distribution in both 

multi-modal and temporal networks. On the basis of the least RSS, the beta distribution 

is found as the optimal model for depicting centralities structure in multimodal network. 

That means majority of zones (nodes) in multimodal network have strong degree and 

moderate PageRank (Figure 8a). The degree distribution possesses a substantial left tail, 

while the PageRank distribution possesses a tiny right tail. In temporal network, 

however, high degree but low PageRank are found for the majority of nodes (Figures 

8c & 8d). In terms of degree centrality, there are substantial differences between the 

layers (i.e., 2013 and 2018) Chronologically, more zones with greater degree appear. 

Similar PageRank distributions with slightly longer right tails exist across layers. 

  
(a)      (b) 

  

(c)       (d) 

Figure 8. Distribution of node centralities 
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a) multilayer degree of modes network; (b) multilayer PageRank of modes network; (c) 

multilayer degree of temporal network; and (d) multilayer PageRank of temporal network. 

 

Centralities reflect connectiveness of a location in flow network, which may hint 

underlying urban structure that generates such flows (Jia et al., 2019). As shown on 

Figure 9, spatial distribution of zone centralities is an effective means to reveal 

polycentric spatial structure of NYC. While we also notice the differences between  

multilayer degree and PageRank (Figures 9a & 9b). Extremely high degree are most 

prevalent in the Manhattan downtown, whereas high PageRank are identified for nearly 

the entire borough. Possible explanation for the degree's extreme lean to the left is that 

the Manhattan zones are highly interconnected when multiple modes of transportation 

are considered together (i.e., traditional taxis, shared bikes, and FHVs). On such a scale, 

the degree may not be the most appropriate metric for distinguishing a node's 

importance, whereas PageRank reflect more variation in this densely connected 

network. Degree and PageRank calculated from temporal network exhibit more 

comparable patterns (Figures 9c & 9d). In terms of node centralities, Manhattan is the 

most "important" borough; however, certain zones in Brooklyn and Queens also exhibit 

high values. Multiplex centralities in New York City provide evidence for a polycentric 

urban structure that reflects travel demand. 

 

  

(a)      (b) 
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(c)       (d) 

Figure 9. Spatial distribution of node centralities. 

(a) multilayer degree of modes network; (b) multilayer PageRank of modes network; (c) 

multilayer degree of temporal network; and (d) multilayer PageRank of temporal network. 

 

Year change rate is an essential feature to depict how people’s travel choices shift 

among different transport modes. Herby we further investigate whether such behaviour 

shift is particularly related to certain areas revealed by multilayer zone centralities. In 

specific, we choose centralities calculated from temporal network to discuss 

relationship for two reasons. First, the spatial coverage of traditional taxi cover the 

whole city, enabling multiplex centralities in a wider range and diversity context for 

correlation analysis. Second, temporal network considers time variations in the network 

and is more aligned with the year change rate that is also calculated from time series 

flow data.  

In each spatial unit (zone), the yearly change rate of three transport modes are all 

calculated. In Figure 10, X axis depict the multiplex centrality of each zone, and Y axis 

shows the yearly change rate of the specified transport mode. Some visual analytics are 

added to enhance the comprehension. First, the KDE function adds contour lines to 

highlight density of data points. Second, we add the reference line at the position where 

yearly change rate equal to 0, distinguishing data points (zones) with positive or 

negative flow volume changes. In general, both negative and positive change rates are 

recorded for traditional taxis, whereas both two shared mobility services are noticed 
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with dramatic increase of use in many zones. In terms of overall relationship between 

yearly change rate and zone centrality, similar distribution is found in the two vehicle-

based mobility services, FHV and traditional taxi. In Figures 7a and 7b, zones generally 

fall into a relatively low centrality group (350) and the high centrality group (450). 

While the interesting finding is that the yearly change rate of both these two vehicle 

services are low in high centrality group of zones. In some zones with high centrality, 

the annual change rate for traditional taxis is even negative. In other words, people of 

zones with versatile flows are losing interests on vehicle mobility. Another side of the 

same story is revealed by conducting the same analysis by plotting shared bike data 

(Figure 10c). First, the data points are obviously less than other two modes, mainly 

available in Manhattan and its surrounding areas. Second, we found that 450 centrality 

of shared bike network is what most zones present. While number of shared bike flows 

are significantly increasing in these zones, in contrast to the vehicle-based services.   

   

(a)            (b)  

 

               (c) 
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Figure 10. Correlations between multilayer degree and yearly change rate. 

 (a) Traditional Taxi; (b) FHV; (C) Shared Bikes. 

4.3.2. Investigating variation of multi-flow-induced urban structure  

Multiplex community detection is another way to reveal urban structure, more 

importantly, dynamics of flow-induced urban structure can be better investigated than 

the centralities or single-layer community detection. In this section, we adopt the  

multiplex-Infomap algorithm for both two network models proposed in the study: 

multimodal mobility network and temporal taxi network. As we discussed in Chapter 

3, multiplex community detection will group zones with similar flow patterns, and such 

identification is layer-wise. In other words, the layer-wise labels of each zone can 

evaluate the possible changes of flow patterns (travel behavior) over transport modes 

or time. All labels together, on a higher level, can be used to understand the zonal 

characteristics and its associated the urban structure based on if and how the labels vary. 

 

Figure 11. Zonal labels of network community across transport modes (layers).  
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Note that only partial zones are demonstrated in the figure due to limited space. There 

are total 1 zone with varying labels across layers, 57 zones with all labels as 1; 27 zones with 

all labels as 2; 8 zones with all labels as 3, and 13 zones with all labels as 4. 

For multimodal network {Taxi2018, FHV2018, and Bike2018}, the methods 

mentioned above specifically investigates, in 2018 the time when shared mobility 

obtain decent proportion of ridership, whether the flow patterns captured by network 

community are varying among different transport modes? Does the dramatic rise of 

shared mobility ridership mean the varying travel bahviour as well? In total, five types 

of community were identified, for which we assign 0 to 4 as community labels to nodes 

across all three layers. We plot the label distributions using a matrix plot (Figure 11), 

on which Y axis is different zones (i.e., nodes) and X axis is the three transport modes 

constructing as layers. Surprisingly, we found that most zones have identical labels 

among different transport modes. Below the Figure 11 we provide the extract number 

of zones belonging to different labels.  

 

Figure 12. Spatial distribution of zonal labels of modes network. 

On above we present the overall pattens of multiplex communities, while hereby 

the more detailed trend is discussed. Due to limited space, only partial zones are 

represented on Figure 11. Whereas most zones have same labels, a classification 

scheme is reasonable to explore the flow patterns in the aggregative manner. In 

particular, each zone can be generalized as a set of three labels {taxi_community, 

FHV_community, bike_community}. When all labels are same, we use the label value 
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to name the class of the zone. For example,  Yorkville East with all community labels 

as 1 is given the name of ‘Cluster 1’. These zones with consistent labels across transport 

modes reflect that the travel flow patterns are similar no matter for traditional taxi or 

shared mobility services (shared bike and FHV). The community labels of the first zone, 

Governor's Island, however, are 0, 1, 0. That means that the flow patterns by taking 

traditional taxis and shared bike are similar, while shared vehicle present in different 

manner. Figure 12 projects the multimodal network communities on NYC map, from 

which we find that zones with consistent modes flow patterns are strongly spatially 

clustered, for example, label 1 in the centre regions, and label 2 and 3 in more distant 

regions. 

The results obtained from temporal networks share some similarity (Figure 13 & 

14). Using time as layers, thereby this analysis examines whether the flow patterns of 

traditional taxis vary from 2013 to 2018, during when shared mobility services rapidly 

expand their market share. Except, Green-Wood Cemetery, Gothenburg, Riverdale, and 

Country Club, most zones have consistent community labels. This result indicates that 

the flow patterns of the majority of zones for traditional taxi remain consistent. The 

result is comparable to the findings of the multimodal network experiment. In other 

words, despite the large variance in market share between regular taxis and shared 

transportation, flow patterns did not vary considerably. Further discussions are given in 

the next section. 

It is important to note that ground truth data for community detection is often 

difficult to obtain, because spatial structure of a city is complex and dynamic, and the 

detected communities exatracted from dynamic data often not fully match the fixed 

boundaries. However, one exploratory way for the evaluation is to compare the detected 

communities to the geographic features of the city. Using our case as example, the 

selection of geographic feature could consider the population density. Because what we 

observed in two multiplex mobility networks is the stability of variation of community 

structure across layers. That hints although a new transport mode (shared mobility) was 

introduced, the travel behavior between locations presents a robust pattern (Figure 13). 

In other words, travel demands remain although passengers are free to choose other 

transport modes (Figure 10). While the analysis of reasons for travel demand is not the 

objective of this study, and the correlation analysis can be done in future studies. The 

community structures hereby are used as indication of the travel behaviour.  



48 

 

 

Figure 13. Zonal labels of network community across years (layers). 

Note that only partial zones are demonstrated in the figure due to limited space. There 

are total 3 zones with varying labels, 65 zones with all labels as 1, 62 zones with all labels as 

2, 29 zones with all labels as 3, 46 zones with all labels as 4, 37 zones with all labels as 5, and 

18 zones with all labels as 6. 

 

Figure 14. Spatial distribution of zonal labels of temporal network. 
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4.4. Conclusion 

In recent years, shared mobility services have expanded considerably. In light of recent 

advancements in multilayer network analysis, this research develops empirical 

multiplex network models to investigate how the spatial structure of city is shaped and 

varies due to dynamic urban flows. The logic complexity of multiplex models is O(n) 

where n is the number of types of layers. For each layer’s type, the users need to 

determine what donates to the inter-layer edges. The computational complexity of 

multilayer methods highly depends on the specific algorithms or tools used, thereby 

was not examined in this study while one can further refer to the Boccaletti et al. (2014), 

Domenico et al. (2013), and Kivelä et al. (2014). 

A set of diagnosis methods in multilayer network is used to depict the flow patterns. 

First, multiplex degree and PageRank are calculated to reflect the hierarchical structure 

of NYC zones. In a multimodal network, we discovered major distinctions between 

Manhattan's uptown and downtown, being similar to results in Zhou et al. (2019). The 

spatial distribution of node degree in temporal network is more intriguing, showing that 

Manhattan and its surrounding areas have similar high contact flows. The disparity may 

be attributed to the different layer architecture between modes network and temporal 

network. The results indicate that the chosen layer adequately captures the variation 

attributed to the selected context, namely the relative magnitude of the flow between 

modes and the relatively minor variation over years. These results are valuable as lenses 

of spatial structures using multiple flows, while presenting two distinct perspectives. 

The statistical distribution of network centrality is contrary to findings from earlier 

research (Gonzalez et al., 2008; Zhao et al., 2015). Rather than power-law, degree is 

found to be left-skewed and PageRank is found to be a small right-skewed. The non-

power-law is especially pronounced in the multimodal network, indicating that 

multimodal transit alternatives increase connectivity between zones. That leads to a 

more equal chance of travel. Using multilayer degree, the found empirical evidence 

support the argument made by Kong et al. (2020) on that supplement of shared mobility 

for traditional transportation is significant for distant areas.   

Multilayer community detection enables direct comparison of the identified role 

of node under different circumstances. Despite the fact that the ridership amount of 

traditional taxis has been largely supplanted by FHVs and shared bikes, the flow pattern 

depicted by community detection indicates that the majority of zones are consistent no 
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matter in the context of transport modes or multiple years. The indication is interesting 

because the shared mobility is often seemed as totally new way of travel comparting to 

traditional mode, while the destination where people travel to may not vary significantly. 

The collective travel behavior spinning over zones is not influenced by new technology 

and travel modes, but instead, may be associated with the demographic attributes of the 

travellers.For instance, regardless of the traveler's means of transportation, the 

relationship between a home zone and a working zone remains unchanged. The 

constancy of neighborhood patterns across transit modes in New York City is consistent 

with another agent-simulation-based study (Lokhandwala & Cai, 2018). In simple 

words, shared mobility do competes with traditional modes severely, which is however 

may not influence the travel demand and supply collectively for the travellers.   

Consistent community labels are also found in temporal taxi network, which is 

more surprisingly than the findings of multimodal network. Because we do see the 

dramatic decline of taxi ridership amount from 2013 to 2018. Our findings imply that 

the human mobility in long period of time might be generalizable to other cities. In this 

sense, taxi data is an appropriate candidate as observing long-term human mobility 

(Riascos and Mateos, 2020). A further implication is that environmental factors may 

have a greater impact on flow pattern and travel behaviour than the advent of shared 

mobility services (Zhang et al., 2020). 

The association with land use was not explicitly investigated, while the clustering 

of zone degree also provides some hints on how ‘location’ influence on flow patterns. 

Figure 10 reveals similar suggestions that urban context characteristics rather than the 

emergence of shared transportation may influence the change in mode selection 

preferences. We have witnessed the increase of flow volume of vehicle-based mobility 

in 350-degree zones (suburban), but decline in 450-degree zones (city centrals). This 

phenomenon is attributed to the convenience of shared bike comparting to car-driving 

in the dense area. While multiple transport modes do provide more choices for the 

distant areas, thereby transforming more travel demands into real flows. The results 

indicate that travel demand is on the rise and that regular taxis and shared vehicles do 

not have to be "competitors," but offer their own advantages for travellers in different 

locations. The multilayer network methods here are, therefore, useful tools for location-

based policies on which modes should be encouraged or suppressed for specific regions. 

Such policies should also well consider the built environment and local demographics, 
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as what community detection presents is the consistent spatial interaction patterns 

among zones.  

This work possesses certain limitations. This study does not incorporate public 

transport flows when examining travel behavior and urban form. We concern that 

public transportation is more constrained by the pre-planned infrastructure routes, in 

which flow patterns may not be comparable to shared mobility service being operated 

by mixed-mode mechanism (face-to-face and online matching). In addition, further 

studies are deserving on investigation how contextual information influence the flow 

patterns, providing more practical implications. With all limitations being aware, our 

approach contributes to a new perspective to comprehend urban dynamics by 

integrating multiple urban flows into multilayer network models.  
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Chapter 5. Diversity of Spatial Interaction: A Novel Metric for 

Geographical Flows 

5.1. Motivation 

Diversity has been a vital concept in urban life and development. In urban context, 

many big-city problems nowadays are the consequences of lacking diversity, such as 

traffic overcrowding, income inequality, and social discrimination (Jacobs, 1961; 

Dincer & Hotard, 2011; Thompson, 2020). It is urgent to develop quantitative 

measurement on various facets of urban diversity to guide policymaking. However, an 

essential feature of complex city, urban flows, has still been neglected in diversity 

evaluation. Besides the methodological void, quantifying diversity embedded in flows 

are necessary for several reasons. First, evaluating diversity because it is widely 

regarded a beneficial component for city, however, growing evidence from many have 

suggested that flow is the fundamental force for the benefit, such as for ecological 

resilience, social inclusion, economic prosperity, and innovations (Vreeker et al., 2004; 

Pardikes et al., 2018; Smith et al., 2018; Vormann, 2015). In other words, diversity 

benefits system through enhancing flow and interaction. Second, although quantitative 

measurement on urban diversity has long been a core topic in geography (Zimmerer, 

1994; Low et al., 2009; Nash, 2012), most existing methods focuses on first-order 

attributes of each location (e.g., either land characteristics or time-series human 

activities of each unit). Increasing attention nowadays has been attracted to extract 

spatial knowledge from second-order data (i.e., flow). In new urban sciences, flow is 

also regarded as a fundamental lens to observe complex city. Thereby developing a 

metric for flow diversity contributes to the latest initiatives of both geography and urban 

science.  

5.2. Research Questions and Methods 

This study attempts to investigate the following three questions: 

• What are the basic components of interaction diversity and how to form the 

integrative metric? 

• What are the spatial-temporal characteristics of interaction diversity? 

• How interaction diversity can be used in understanding urban issues? 

 

To answer those questions, we collect taxi trip data in Shenzhen of a whole month 

as the observation on spatial flows (Figure 15), and test our newly proposed metric, 
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diversity of spatial interaction (DSI). We refer to the philosophy of diversity metric in 

scientometrics field (Figure 4) to define the basic components of flow diversity in 

geographical context (Figure 16). The calculation of DSI is conducted in weekly 

manner, covering the week before, within, and after the Spring Festival of China. 

Spatial statistics methods are used to quantify spatial patterns of DSI, and temporal 

changes are discussed. Relationship between DSI and landuse mixture are investigated 

to validate the usefulness of DSI. In the final parts, we further examine the intersection 

between DSI with specific built environment types (using POI), to address practical 

implications on the positive and negative sides of interaction diversity. 

 

Figure 15. Study Area and Taxi OD Flows.  

Note that central-city areas include Nanshan, Futian, Luohu districts (Zhou et al., 2022). 

5.3. Results and Implications 

5.3.1. Constructing DSI from geographical flows 

The analogy between the two fields is natural because the format of citations among 

articles and travel flows are fairly similar. In geographic space, we describe a 

diversified spatial interaction as having a large number of origins (Variety), a balanced 

interaction volume (Balance), and origins of differing types (Disparity). The DSI index 

is comprised of the aforementioned three components, and its reasoning and use are 

described below. 

For a location j, DSI index has three components as shown in Equation 13:  

 

   𝐷𝑆𝐼𝑗 = 𝑉𝑎𝑟𝑗  × 𝐵𝑎𝑙𝑗  × 𝐷ⅈ𝑠𝑗    (13) 

 

where 𝐵𝑎𝑙𝑗 values originally range from 0 to 1, as it is calculated based on 1-Gini 

coefficient. 𝑉𝑎𝑟𝑗 and 𝐷ⅈ𝑠𝑗 are normalized so that all DSI components are bounded in 

the same range. 
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Eech DSI components have clear physical meaning in geographical space: 

Variety means the number of classes that have flows to the destination. We regard 

each origin location as a class, addressing the uniqueness of city places (Cao et al., 

2018). Physical meaning of Variety is similar to the richness of places (Kang et al., 

2021) or node degree in a spatial network (Ni & Weng, 2009). The more places a 

destination can attract flows, the higher the interaction diversity will be. Using travel 

as example, high Var value represents a destination can serve travel purposes from 

many locations. 

 

Figure 16. Components of Diversity of Spatial Interaction. 

Balance means the evenness of flows spinning over originated locations. In other 

words, this component measures the inequality of interaction flows. For instance, a set 

of flow volumes (7,1,1,1) is more ‘unbalanced’ than the set (4,3,2,1). The Balance has 

two practical meanings in geographical space. First, distribution of interaction volume 

serves as ‘weights’ of Variety (i.e., number of originated locations) to have a more 

realistic evaluation of interaction diversity. If a location attracts flows from many 

origins but very few origins dominate the flows volume (i.e., overweigh than others), 

the destination is indeed not diversely interacting. Second, we are not pursuing totally 

homogenous interaction in city, but addressing the importance to reduce the gap 
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between flows-dominant locations and flows-shortage locations. The gap of interaction 

volume is found in large cities, also known as the ’80-20’ rule (Jiang et al., 2009; Liang 

et al., 2013), while the huge gap also raises concern on equality and safety (Yin et al., 

2018; Choudhury et al., 2020). A more balanced flows distribution matches the pursuit 

of ‘polycentric’ in modern urban planning (Kloosterman & Musterd, 2001), offering 

relatively equal opportunities for different communities to access important areas. 

Disparity means the overall difference of originated locations. In other words, if 

a destination attracts flows from locations with the different urban context, the overall 

interaction diversity is decent. We acknowledge that there are sophisticated methods to 

determine the similarity of urban context (Cai et al., 2019; Chen et al., 2021), while we 

choose distance as Disparity metric in this study. First, it can keep Disparity and DSI 

index in simple form, which enable DSI to be easily implemented in other cities. Second, 

distance-based metric is widely used in other Geography studies to proxy different 

urban contexts (Solon, 2009; Chang & Liao, 2011; La Rosa et al., 2017). Based on the 

First law of Geography, we assume that near origins have similar urban context, while 

more distant origins have more diverse context (Tobler, 2004). Using travel as an 

example, a destination has higher interaction diversity when attracting flows from all 

over the city. Interaction diversity is relatively low when a destination attracts flows 

from origins only located in a certain area. 

5.3.2. Effectiveness of DSI 

Monotonicity is required for measuring diversity with multiple dimensions (Rousseau, 

2018). It means that when two dimensions (components) of diversity remain the same 

(i.e., as constant), the increase of the third component will increase the overall diversity 

index. This concept is met by the DSI index. DSI integrates three components to depict 

the diversity of spatial interaction. Compared to a single diversity index alone, DSI 

captures more heterogeneity and dynamics. 
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Figure 17. Examples of calculation of DSI for destination j1, j2 and j3.  

Note that all destinations (j1, j2, j3) attract flows from 5 originated locations (A, B, C, D, 

E), interaction diversity cannot be differentiated using richness of origins. Regarding to the 

origins, Balance supplements information of flows volume distribution, and Disparity 

supplements different spatial context. 

The effectiveness of DSI is demonstrated using example cases of spatial 

interaction. As shown in Figure 17, the example calculates the DSI of three destinations 

(location j1, location j2, and location j3). They separately interact with the same 5 

origins (A, B, C, D, E) in different ways. It is obvious that if interaction diversity is 

only determined by the richness of places, all destinations (j1, j2, j3) have identical 

diversity. While the visual patterns obviously tell the different story that spatial 

interaction patterns are distinct. If considering two components, interaction diversity 

cannot be differentiated very well. It would be wrong to conclude that diversity of j1 

equal to j2 because they have the same spatial layout of origins locations (i.e., same 

Disparity). While interaction volumes indicate overall diversity j2 is larger than j1. It 

would be wrong to conclude that diversity of j1 equal to j3 because they have the same 

distribution of interaction volume ( 𝑉𝑗 ) (same Balance). While disparity of spatial 

context indicate overall diversity j1 is larger than j3. Therefore, diversity of spatial 
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interaction can be effectively reflected when combining all three components, 

specifically found that 𝐷𝑆𝐼𝑗2 > 𝐷𝑆𝐼𝑗1 > 𝐷𝑆𝐼𝑗3. 

5.3.3. Spatial-temporal Characteristics of DSI 

This section reports how DSI, and its disaggregated components are spatially 

distributed in Shenzhen, and to what extent spatial heterogeneity of DSI is significant. 

In Figure 18, we use week 1 to discuss spatial pattern, and other four weeks will be 

discussed in the temporal heterogeneity. First, the DSI and components values are 

classified into 4 grades by user-defined percentiles. We are interested in locations with 

top and bottom interaction diversity, which are more indicative for specific policies. 

Therefore, we define the following symmetric categories: Grade 1 means ‘very high’ 

value (rank above 90th percentile), Grade 2 means ‘high’ value (between 50th and 90th), 

Grade 3 means ‘low’ value (between 10th and 50th), and Grade 4 mean ‘very low’ 

value (below 10th). 

 

Figure 18. Spatial Distribution of DSI in Shenzhen. 

We find that urban areas generally have higher interaction diversity than suburban 

areas. For instance, very high DSI values are noticed in the well-built districts such as 

Futian and Luohu. But a more interesting finding is that very high DSI places are indeed 

not in the most densely built areas near the south city boundary, such as location A. But 

very high DSI seems to be related to several urban complex (i.e., metropolitan planning 

area with integrated services), such as location C (Shenzhen North Railway Station), 
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Location E (Nanshan Science and Technology where encompass high tech companies 

such as Tencent), Location D (Several large city parks and scenery), and Location B 

(Meilin and Lianhua Village where are large and cozy residential area). Overcrowding 

and compact built environment are not necessarily related to decent diversity of 

interaction. For example, we found that Location A (Luohu Commercial Street) has a 

high total trip amount while it is only from very few locations, resulting in low Balance 

and DSI value. This old city market is rebuilt and famous for catering and life-related 

business, while cannot attract diverse travel flows as other urban complex do. Beyond 

measuring urban diversity, the results show that DSI might be a better metric to identify 

vibrant locations of city, compared to population-density-based vitality proxy (Yue et 

al., 2017; Wu & Niu, 2019).  

We further quantify the DSI heterogeneity using spatial autocorrelation statistics. 

Moran’s I is used to test the assumption that the DSI of a location is influenced by its 

neighbours. To obtain spatial weights matrix, K-nearest neighbour method is used with 

considering that spatial unit (grid cells) in this study doesn’t always have continuity-

based neighbours. As shown in Figure 19, we compare the results of monte-carlo 

simulation with increasing k (1 to 16). The moran’s I of DSI are all significant (p=0.001) 

and located on the right tail of distribution. It means that we can reject the null 

hypothesis that DSI is randomly distributed in urban space but conclude that similar 

DSI values are concentrated in specific areas. We choose k=8 for the following analysis. 

The moran scatter plot classify locations with different DSI effect (Figure 20). The 

four quadrants correspond to four types of spatial autocorrelation: low-low (lower left, 

clustering of low DSI locations); high-high (upper right, clustering of high DSI 

locations); low-high (upper left, cold spot surrounding by high DSI neighbours); and 

high-low (lower right, hot spot surrounding by low DSI neighbours). The dual urban 

structure of DSI is obvious in Shenzhen, with low values in suburban areas (North) and 

high values in urban area (South). 
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Figure 19. Monte-Carlo Simulation of DSI Moran’s I. 

 
       (a) 

 
        (b) 

Figure 20. Local moran’s I plot. 

(a) Relationship between DSI and its spatial lag; (b) Map of local morans’ I. Note that 

significance level is set as 0.05 for masking non-significant locations as grey. 



60 

 

 

Figure 21. Temporal Changes of DSI from Week 1 to Week 5. 

Note ‘Variance’ values are calculated by subtracting locational DSI values in 

consecutive weeks. 

We further investigate whether and how DSI varies over time. Particularly, we 

conduct comparative experiments during the Spring festival travel season. It should be 

noted that the travel season is normally categorized into 5 weeks: The first (1st) and the 

last (5th) week are the normal working weeks; the 2nd week is the pre-holiday week; 

the 4th is the post-holiday week; the middle week (3rd) is the whole week of holiday.  

In Figure 21, locational DSI values are subtracted in consecutive weeks. We found 

that seasonal backgrounds do have impacts on DSI. From a normal week to pre-holiday 

week (i.e., week 2), we find increasing DSI in widespread areas, particularly location 1 

(Railway station). Because many workers will leave the city during the 2nd week, and 

other citizens will travel with more purposes such as purchasing goods and gathering. 

To the 3rd week (holiday), the results show that a wide range of suburban areas faces a 

dramatic decrease of DSI (Figure 21b). In the urban area, Futian and Luohu districts 

are very active while science and technology park in Nanshan district lack interaction 

diversity severely. In the post-holiday week (Figure 21c), the periodical patterns are 
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observed for location 1 and location 2, where are active in week 1, cooldown in week 

2, and being interactive again in week 4. It reflects the back-to-work behaviour in the 

festival season. In week 5 (Figure 21d), the uprise of DSI is found in a more dispersed 

manner across the whole city, showing the returning citizen are re-vitalize more urban 

locations. 

 
Figure 22. Monte-Carlo Simulation in All Weeks.  

Note that y axis represents moran’s I value of DSI. 

In the above results, DSI variance depicts the temporal effect in microscale (i.e., 

grid). We further investigate the temporal effect on the DSI macro structure (i.e city). 

With increasing k-nearest neighbours, we repeat the monte-carlo simulations in all 

weeks to quantify the DSI spatial autocorrelation (Figure 22). The results show that 

moran’s I of all 5 weeks are significantly large positive value (0.47-0.65), indicating 

locations with similar DSI are clustered together. It is reasonable to see the overall 

global moran’s I decrease with larger k, because more k neighbours involved for 

calculating spatial lag (i.e., average attribute value of neighbours), the more uncertainty 

(or spatial heterogeneity) involve. While the more useful finding is that decrease trend 

of moran’s I is similar in all weeks, indicating indeed the spatial structure of DSI is not 

influenced by temporal (seasonal) context. This pattern is revealed more clearly in maps 

of DSI spatial lags (Figure 23), where we use DSI ranks (i.e., percentiles) instead of 

absolute values in colour scheme. 
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Figure 23. Spatial distribution of DSI lags. 

Overall, the results show that temporal context does have an impact on the 

magnitude of interaction diversity at grid level, while it does not lead to changes of city 

level structure. Based on these results, we conclude that interaction diversity might be 

intrinsic characteristics of place, as a capability to attract diverse travel flows. To 

delineate what factor may affect such capability, we further explore the relationship 

between urban functions and DSI in the next section. 

5.3.4. Implications of DSI 

First, human behaviour is highly influenced by land characteristics, it is therefore 

natural to question whether interaction diversity is associated with land diversity? 

Based on urban vitality theory and knowledge spillover effect, a diverse urban 

environment will generate fruitful types of human activity and interaction (Jacobs, 1961; 

Talen, 2005; Firestone, 2010). To proxy land diversity, we calculate the entropy-based 

diversity index of POI types (Cervero, 1989; Zhang & Zhao, 2017).  

 

Figure 24. Chi-test between landuse mixture and dsi intensity grade. 
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Rather than comparing absolute magnitude, we categorize DSI and entropy (POI) 

values into classes for comparison, under the same scheme (i.e. [10%, 50%, 90%]). 

This scheme produces 4 classes based on value ranks. This step results in two types of 

diversity classes for each location, i.e. (grid_id, entropy_class, dsi_class). Using the 

chi-test, we find that the distribution of these two classes is significantly associated in 

all weeks. As shown in Figure 24, chi-square values are larger than the critical value 

16.919 (with the degree of freedom 9=(4-1)*(4-1), and significance level 0.05). In 

another word, level of interaction diversity is associated with the level of landuse 

mixture in Shenzhen. The strongest association is observed in the week 3 (holiday 

week). 

Second, although we report the association between landuse diversity and 

interaction diversity, it is still largely unknown what specific landuse types play 

important role in driving high/low DSI. Landuse types is proxied by the types of POI 

points intersected with DSI grid cells. This step results in a spectrum of POI types for 

each DSI classes (Figure 25). Technically, this spectrum is a barplot made based on the 

ranks of POI type proportion in each grade DSI locations. A higher rank of a specific 

POI type means that the type appears more in the selected DSI locations. 

The results show that the combination of POI types is divergent in different DSI 

locations:  

• In very high DSI locations (>90 percentiles), the top POI types are Utility, 

Transportation, Financial Service, Hotel, and Office Building. We name this 

group as Business-driven destination. 

• In high DSI locations, Hotel, Administration, Cultural-Education, and 

Residential are dominated. We name this group as Entertainment-driven 

destination. 

• The low and very low DSI locations present similar POI profiles, where 

Mechanical Service, Medical, Shopping, Catering and Tourist Sites in high 

ranks. We name these two DSI groups as Living-driven destination. Minor 

differences are that residential POI appear more in DSI low locations, and 

Office building appear more in DSI very low locations. 
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Figure 25. POI ranking in DSI areas.  

Note that POI types are ranked by f(poi)ijk / Nij, where f(poi)ijk is the frequency of poi 

type i in week j and spatially intersected with the locations of DSI grade k, Nij is the total 

number of poi type i in week j. Full names of POI types: r – Residential, sh – Shopping, lb – 

Life service business, ct – Catering, tr – Transportation, ut – Utilities, ob – Office building, ce 

– Cultural & Education, med – Medical, sp – Sport Facilities, gov – Government & 

Administration, fin – Financial Service, mac – Mechanical Service & Factory, hot – Hotel, ts 

– Tourist Sites. 

Practical implications can be also drawn from locational DSI value. Although high 

diversity is generally regarded as a good condition of city (Jacobs, 1961; Vreeker et al., 

2004; Kang et al., 2021). We argue that interaction diversity might be the two sides of 

the same coin, influencing both life and death of city. Examples linked with prosperity 

(point 1 and 2 below) and danger (point 3 and 4 below) are futher discussed below. 

Specifically, we intersect DSI values with the density of four important POI types to 

showcase how DSI can be considered in urban development (Figure 26 & 27). 

• Locations with high DSI have high potential benefit for economic success 

because attracting diverse travel flows will bring more opportunity for human 

interaction that relates to knowledge spillover (Talen, 2005; Firestone, 2010; 

Vormann, 2015). In other words, diverse interaction brings money, resources, 

and information exchange. As shown on Figure 26a, there are several clusters 

in urban area with both high office density and high DSI, where can be 

considered as the most competitive locations for choosing offices. 

• DSI can improve evaluation of urban vitality. In previous studies, the catering 

business was used to proxy urban vitality as eating is an essential need even if 

other business has not been built up (Ye et al., 2018; Xia et al., 2020). Single 

view based on catering density lack observations on real human activity, while 
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DSI enriches the meaning of catering density for measuring urban vitality 

(Figure 26b). For locations with both high DSI and catering (urban area), it 

indicates vibrant places that connect/serve a wider range of city (high interaction 

diversity). Locations with low DSI and high catering also indicate good urban 

vitality, but the place may only serve locally (low interaction diversity). 

• DSI reveals the inequality issue between urban and suburban areas. Due to 

historical reasons, unbalanced development exists between urban and suburban 

areas in many aspects, such as employment and commuting costs (Yang et al., 

2018; Zhou et al., 2018). Figure 27a identify the same gap from interaction 

perspective. High DSI locations should be accessible for citizens. However, the 

majority of urban area in Shenzhen have both high transport density and high 

DSI, while the status in suburban area is less decent. Urban planners could 

prioritize transportation improvement in suburban locations with high DSI. 

Shenzhen government has long interests in improving connection between 

central and suburb districts. Urban expansion or industry re-vitalization in 

suburban can be conducted in the surrounding area of DSI hotpot, benefiting 

from materials and human resources brought by diverse spatial interaction. 

• High DSI warns us of the potential risks of disease transmission, because 

diverse human mobility and interaction can lead to high possibility of epidemic 

transmission (Ni & Weng, 2009; Xiong et al., 2020). Considering the fact that 

the recent Covid-19 is spreading severely and globally in large cities, DSI 

provides a powerful tool access interaction diversity and enable location-based 

policy (Figure 27b). For instance, high DSI residential area might be given more 

strict controls while low DSI locations could be relatively relieved, reducing the 

overall impact on the economy and citizen’s life. 
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Figure 26. Positive Implications of DSI. 

 (a) Intersection with Industry Density suggests for business development; (b) 

Intersection with Catering Density enrich meaning of urban vitality 

 

Figure 27. Negative Implications of DSI. 

 (a) Intersection with Transportation Utility Density reveal inequality issue; (b) 

Intersection with Residential Density warns on pandemic risk 
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5.4. Conclusion 

This work defines the diversity of spatial interaction and develops a simple yet effective 

DSI index as a quantitative measurement. DSI index can capture diversity donated by 

both land and human activity through the lens of spatial interaction. DSI defines that 

interaction diversity of a location is determined by how it attracts diverse urban flows 

with consideration of three dimensions: Variety of originated locations, Balance of 

interaction volume among originated locations, and Disparity of originated locations. 

Inspired by informatics research, DSI index is the geography version of 

interdisciplinary citation index. 

Some studies have extracted locational indicator from flow data based on network 

analysis (Cats et al., 2015; Xia et al., 2019; Liu et al., 2021). However, network metrics 

are more representative for the characteristics in topological space, which may ignore 

or loss fruitful geographical meanings. Similar to DSI, some recent flow metrics have 

considered more aspects of geographical meanings, for example the I-index (Wang et 

al., 2021) and X-index (Wang et al., 2023). I-index depicts the irreplaceability of 

location (destination) as a function of travel distance and flow volume from the 

orientations. X-index measures centrality of location (destination) as a function of flow 

volume and flow directions. However, DSI provides several unique contributions 

comparing to these two metrics. First, DSI captures and integrates three aspects of 

interaction diversity as locational diversity metric while I-index and X-index are mainly 

designed for measuring location importance (e.g., irreplaceability and centrality) based 

on two aspects. Although spatial diversity was considered as a component of X-index, 

it is only measured by the flow direction. Whereas the interaction diversity can have 

fruitful geographical meanings regarding to the not only flow but the orientation 

locations. Second, there are several parameters need to be determined before calculating 

I-index and X-index. Although the authors suggested rule to pre-define the parameters, 

the applicability of the rule may not perform consistently across different scales and 

cities. While the DSI is better in generality due to its simple form of composite index. 

The components of DSI are easy to calculate from any scales of geographical flows and 

there are no parameters to be pre-defined. In this regard, DSI can be used as a basic 

feature reflecting the locational diversity due to flows. 

DSI index is not intended to replace an early glance at the spatial and temporal 

characteristics of interaction diversity: significant spatial autocorrelation, temporally 
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varied intensity at grid scale, and stable spatial structure at city scale. On a theoretical 

aspect, quantifying interaction diversity reveals that interaction diversity could be an 

intrinsic capability of urban places affected by physical form, meanwhile, its magnitude 

also varies at local scale due to the dynamic nature of human behaviour. On the practical 

side, DSI is quite important because interaction fundamentally shapes many aspects of 

city and people. For instance, interaction enhance economy via the knowledge spillover 

effect, but interaction also increases possibility of disease transmission.  

To best of our knowledge, this article is the first one to quantify diversity of spatial 

interaction. We are not tending to conduct exhaustive analysis on the characteristics of 

DSI in this article. But more importantly, this work attempts to address the importance 

of interaction diversity in geographical space and inspire more future work. The use of 

our empirical results should be aware of study area (Shenzhen) and interaction data 

used (taxi OD). But still, DSI index proposed in this study is easy to implement and 

interpret, thus a wide range of big data (e.g., communications, social network) available 

nowadays can be used to calculate it and provide more insights on interaction diversity. 

We validated the strong relationship between landuse diversity and DSI, while future 

work can be also conducted to investigate other influential factors on interaction 

diversity. With awareness of its contributions and limitations, the interaction diversity 

and DSI index can benefit for urban planning and policymaking towards a diverse, 

balance, and vibrant city. 
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Chapter 6. Urban Vitality: Insights from Flow, Ridership, and Built 

Environment Diversity  

6.1. Motivation 

Urban vitality has become an essential concept in assessing the quality of urban 

development (March et al., 2012; Sung et al., 2013; Sung & Lee, 2015), lack of which 

could lead to serious planning failures such as ghost cities—large and well-built 

residential areas within which few people live (Woodworth & Wallace, 2017; Williams 

et al., 2019). Suggested by abundant qualitative research (Jacobs, 1961; Montgomery 

et al., 1998; Gehl, 2011), a key component of generating vitality is diversity Yet, current 

diversity framework for vitality either relies on static feature (e.g., built environment) 

or first-order mobility feature (e.g., travel intensity), more importantly, lacks flow-

induced diversity. Another gap lies on that the relationship between diversity metrics 

and urban vitality reported in existing literatures are either general pattern (using global 

regression) or varying patterns but in fixed scale (using GWR). The multi-scale varying 

patterns need to be further investigated in this research topic. The last minor gap is the 

necessity to advance current knowledge on application of night-time light images (NTL) 

in intra-city studies. Overall, for urban vitality analysis, this study aims to contributes 

to new diversity framework, and application of multiscale regression and new NTL data. 

6.2. Research Questions and Methods 

This study attempts to investigate the following questions: 

• How to advance framework of urban diversity for capturing different facets of 

city? 

• What is multi-scale spatially varying relationship between urban diversity and 

vitality? 

• How model coefficients of diversity metrics can be used to depict spatial-

temporal context? 

 

To answer those questions, we develop a framework to analyse the relationship 

between Vitality Indices and Vitality Proxy (Figure 28). Multiple data source are 

collected during the 3 weeks of Spring Festival Month of China in 2017 (Figure 29): 

NTL remote sensing images for extracting vitality proxy; Trip records of metro, bus, 

and taxi for calculating ridership diversity; Taxi OD flows for calculating interaction 

diversity, POI data for calculating several metrics of built environment diversity. 
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Vitality proxy is the dependent variable and other metrics are independent variables, 

upon which MGWR models are calibrated to infer the multiscale spatial coefficients.  

 
Figure 28. Methodological framework of urban vitality evaluation. 

 

Figure 29. Multi-source Urban Big Data in Shenzhen City. 

(a) NTL; (b) Smart Card Data; (c) Taxi Trips; and (d) POI. 
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6.3. Results and Implications 

6.3.1. Spatial-temporal patterns of vitality proxy 

The processed pixel values based on NTL data effectively proxy the spatial-temporal 

characteristics of urban vitality. It should be noted again the selected time period has 

its unique background: the first week as normal week, the second as pre-festical week, 

and the third as festival week. In Figure 5, intensity of vitality proxy is visualized. It 

shows that locations with decent vitality are mainly clustered in districts like Nanshan, 

Luohu, and Futian, and some other distant suburban centres. The value of the vitality 

proxy tends to diminish with increasing distance from these centres. Although the 

vitality variation in week 2 and 3 present differences, we still identify from the maps 

that overall spatial structure are nearly identical. 

 

Figure 30. Vitality Proxy Distribution across Space and Time 

Temporal fluctuation of the vitality proxy across multiple grids illustrates urban 

dynamics attributed to festival season. The subtraction is conducted for the vitality 

proxy of each pixel from week to week (Figure 30). Results show that vitality proxy 

increases in a variety of locations from the normal week to pre-festival week, as 

cultural-driven activities would be enhanced such as reunions and tourism (Huang et 

al., 2019; Liu et al., 2020). During transition to festival week, vitality proxy is found to 

be shifted to lower levels in wide range of location, while some hotspots in city still 

face dramatic rise of vitality in this period, such as Northern area of Shenzhen. This 

phenomenon may be largely attributed to the economic developing of Shenzhen, which 

has planned distant areas in the North as manufacturing clusters. During festival week, 

residents are not necessary to travel to urban area in the south for work, instead, sustain 
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and even increase the vitality in those distant regions. These findings demonstrate that 

NTL-based vitality proxy can effectively capture spatial structure of city and dynamics 

of human behaviour in temporal dimension. 

6.3.2. MGWR model performance and statistics 

For each week, MGWR models are derived to explore the local relationship between 

the vitality proxy and vitality metrics. Assessing model performance is essential for 

obtaining reliable interpretation of the relationship. The evaluation here relies on 

goodness of fit of model and significance of the bandwidth (Table 2). The r-squared 

values for weeks 1 (R2 = 0.931), 2 (R2 = 0.908), and 3 (R2 = 0.918) indicate that the 

overall performance of all weekly models is satisfactory. Bandwidths of MGWR 

explicitly mean the size of spatial range to include data points for fitting local models. 

The results show that all variables have significant inference on bandwidth, judged by 

the alpha value smaller than 0.05. Notably, the bandwidth significance of flow diversity 

variable (DSI) is smaller than 0.001, showing the strong relationship between flow 

diversity and vitality.  

Flexible bandwidth is the novel feature that makes MGWR superior to traditional 

GWR, in terms of additional information obtained on spatial relationship. In this 

research, obvious differences of bandwidths are noticed on vitality variables. In normal 

week, VPub, CPub, CTaxi, RNR, and DOC exhibit small bandwidths smaller than 100 

m, whereas VTaxi and DSI exhibit around 300 m, and LUM exhibits bandwidth larger 

than 1000 m. The bandwidth sizes here can be understood as indication of resolution 

that a variable can significantly depict vitality proxy. According to Table 2, no vitality 

index explains vitality on a set scale. Most bandwidths differ between normal and 

festival week. LUM and DSI have consistent bandwidths against time. This is reason 

that LUM is measuring land diversity that has long-term and stable impact on urban 

vitality (Yue et al., 2017), scale of which is found to be large in this thesis (1000m). 

DSI, although as a metric extracted from dynamic human mobility data, exhibit a stable 

and small bandwidth over all weeks. It shows that diversity of spatial interaction is 

indeed very related to urban vitality across space and time, indicating its high potential 

as solid element that should be considered in the future studies.  
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Table 2. Diagnosis Metrics of MGWR. 

  Bandwidth Diagnosis Overall Diagnosis 

  
Band- 

width 
ENP_j 

Adj t-

val(95%) 

Adj 

alpha 
R2 AICc 

Residual 

sum of 

squares 

Model 

Constant 10 307.19 3.8 0.000*** 

0.93 1939.41 88.28 Week1 

VPub 96 26.89 3.1 0.002*** 

CPub 48 41.23 3.2 0.001*** 

VTaxi 294 4.04 2.5 0.012* 

CTaxi 82 30.12 3.2 0.002*** 

LUM 1272 1.26 2.1 0.04* 

RNR 50 48.18 3.3 0.001*** 

DOC 59 37.44 3.2 0.001*** 

DSI 110 16.54 3.0 0.003*** 

Constant 10 314.84 3.8 0.000*** 

0.91 1905.24 114.47 Week2 

VPub 300 8.30 2.8 0.006*** 

CPub 338 7.54 2.7 0.007*** 

VTaxi 189 6.62 2.7 0.008*** 

CTaxi 110 20.89 3.0 0.002*** 

LUM 1054 1.78 2.2 0.028* 

RNR 179 12.79 2.9 0.004*** 

DOC 51 42.96 3.3 0.001*** 

DSI 97 19.23 3.0 0.003*** 

Constant 10 285.07 3.8 0.000*** 

0.92 1768.03 94.91 Week3 

VPub 210 11.23 2.9 0.004*** 

CPub 666 4.08 2.5 0.012* 

VTaxi 290 3.45 2.4 0.015* 

CTaxi 34 63.27 3.4 0.000*** 

LUM 1158 1.29 2.1 0.039* 

RNR 52 43.18 3.3 0.001*** 

DOC 902 1.90 2.2 0.026* 

DSI 94 17.79 3.0 0.003*** 

*** represents significance level of 1%.         

* represents significance level of 5%.         

 

In this study, the collinearity issue is also evaluated, although MGWR has been 

improved to better handle such problem (Fotheringham et al., 2017). The local 

condition number \and local variation decomposition proportions are used as diagnosis 

as suggested by Fotheringham et al. (2017). The former is calculated at variable level, 

while the latter is evaluated at model level (Table 4). All weeks obtained satisfactory 

results that CN is suggested to be under 30, and the VDP of should be under 0.5. These 

results argue that the MGWR collinearity is acceptable in this study. In terms of model 
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performance, we compare MGWR with OLS and classic GWR on the same dataset 

(Table 3). In terms of goodness of fit, MGWR is superior to OLS and GWR, as 

evidenced by the high r-squared and low AIC. Together with the additional information 

provided on bandwidth, we argue that MGWR is more suitable for inferring urban 

vitality model as well as exploring the spatially varying relationship with diversity 

indices at local scale. 

Table 3. Comparison among OLS, GWR, and MGWR Performance 

  Week1 Week2 Week3 

  ols gwr mgwr ols gwr mgwr ols gwr mgwr 

R2 0.216 0.729 0.931 0.216 0.697 0.908 0.176 0.680 0.918 

Adj-R2  0.211 0.639 0.884 0.211 0.603 0.859 0.170 0.590 0.870 

aic 3323 2591 1242 3248 2640 1434 3085 2478 1253 

aicc   2807 1939   2827 1905   2621 1768 

 

Table 4. Multicollinearity Evaluation of MGWR Models 

    Week 1 Week 2 Week 3 

Local 

variation 

decomposition 

proportions 

(VDP) 

metrics mean std max mean std max mean std max 

VPub 0.109 0.150 0.809 0.053 0.083 0.568 0.063 0.091 0.612 

CPub 0.228 0.261 0.975 0.033 0.050 0.392 0.014 0.021 0.155 

VTaxi 0.215 0.245 0.848 0.494 0.299 0.945 0.321 0.264 0.867 

CTaxi 0.208 0.253 0.943 0.244 0.258 0.954 0.408 0.320 0.991 

DSI 0.450 0.342 0.977 0.574 0.292 0.986 0.553 0.333 0.981 

DOC 0.262 0.249 0.959 0.223 0.265 0.939 0.023 0.046 0.465 

LUM 0.006 0.008 0.075 0.013 0.019 0.165 0.009 0.018 0.184 

RNR 0.259 0.267 0.963 0.079 0.115 0.748 0.186 0.240 0.944 

Local 

condition 

number (CN) 

  3.702 0.984 7.983 3.684 1.271 9.945 3.643 1.407 11.802 
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6.3.3. MGWR coefficient analysis  

The inferred MGWR models are reliable to depict the relationship between vitality 

proxy and diversity indices, as evidenced by their model performance illustrated in the 

above section. In this section, we further extract patterns and insights from the 

coefficients at multiple scales (city and districts). 

Coefficients give two types of information. Positive and negative numbers show 

whether an increase in the vitality indices predicts an increase or decrease in the vitality 

proxy. Alternatively, the value of the coefficient reflects the extent to which the vitality 

indices may explain the vitality proxy. In Table 4, statistical characteristics of model 

coefficients is presented. We found that vitality proxy is adversely related to public 

transport ridership diveristy (VPub and CPub) and built environment diversity. Positive 

relationship is generally found with taxi ridership diversity (CTaxi), DOC, and DSI. 

Notably the relationship with ridership diversity differs from that reported by Sulis 

et al. (2018). In a prior study, variability of travels is positively associated with vitality, 

whereas consistency is inversely associated. Possible explanation for the contrast is the 

disparities in the city's general backdrop. Our empirical findings indicate that less 

within-day variations is indicative of more urban vitality in Shenzhen; in other words, 

the stability of various forms of transportation is more significant. The taxi industry's 

good within-day ridership variability (i.e., sudden peaks in daily trip numbers) indicates 

a more accurate vitality proxy. This result is fair since the abrupt spike in taxi demand 

represents a variety of travel goals at a given place, which corresponds to a high level 

of socioeconomic activity. A greater magnitude of CTaxi coefficients are discovered in 

week 2, indicating that taxis is a more favourable choice in Fesvital week than public 

transportation. There is comparable evidence that VPub is heavier in the first and the 

third week, showing that public transportation weighs more in non-festival period. 
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Table 5. Statistics of MGWR Coefficients 

  Min Median Max Mean SD Model 

Constant -1.974 0.130 2.815 0.168 0.787 

Week1 

VPub -0.165 -0.014 0.629 -0.005 0.108 

CPub -0.812 0.022 1.237 0.094 0.308 

VTaxi -0.339 -0.106 0.012 -0.129 0.118 

CTaxi -0.200 0.013 0.206 0.013 0.075 

LUM -0.039 -0.037 -0.036 -0.038 0.001 

RNR -0.462 -0.026 0.365 -0.032 0.108 

DOC -0.161 0.087 0.451 0.093 0.100 

DSI -0.096 0.098 0.473 0.117 0.119 

Constant -1.951 0.222 3.045 0.233 0.797 

Week2 

VPub -0.071 -0.024 0.118 -0.020 0.030 

CPub -0.175 -0.010 0.028 -0.028 0.048 

VTaxi -0.496 -0.086 0.190 -0.102 0.212 

CTaxi -0.140 0.014 0.260 0.021 0.087 

LUM -0.048 -0.017 -0.003 -0.022 0.014 

RNR -0.134 -0.023 0.159 -0.026 0.064 

DOC -0.116 0.088 0.681 0.111 0.115 

DSI -0.163 0.099 0.397 0.115 0.105 

Constant -2.256 0.218 3.045 0.255 0.851 

Week3 

VPub -0.049 -0.003 0.273 0.020 0.059 

CPub -0.098 -0.048 -0.005 -0.045 0.023 

VTaxi -0.309 0.020 0.122 -0.033 0.135 

CTaxi -0.654 0.015 1.430 0.046 0.270 

LUM -0.035 -0.033 -0.026 -0.032 0.002 

RNR -0.315 -0.041 0.275 -0.037 0.094 

DOC 0.065 0.096 0.109 0.090 0.015 

DSI -0.113 0.199 0.572 0.215 0.155 

 

The LUM and RNR coefficients contradict the commonly held belief that variety 

of land use is associated with a more accurate vitality proxy. In the majority of instances, 

the coefficients have negative values according to our findings. This does not imply 

that built environment is detrimental to vitality; rather, we suggest that other indices, 

such as ridership diversity, are more positively associated. Due to the fact that all 

indices jointly describe the vitality proxy together, the substantial positive relationship 

of some variables may make coefficients of other variables to be negative. In our case, 

indices extracted from travel flows show more prominent roles, namely ridership 

variations and DSI. This is also supported by the smaller bandwidth as described in the 

preceding section. On the basis of our findings, we contend that flow-based metrics 

explain vitality proxy better. What’s consistent to previous theory is the role of DOC 
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(Long & Huang, 2017). Although it is not a flow-based indicator, is found to be a robust 

positive variable for vitality in all weeks.  

 

Figure 31. Spatial Distribution of MGWR Coefficients. 

Second, coefficients are projected on maps to enhance comprehension of urban 

vitality (Figure 31). Different weeks are presented horizontally, whilst diversity indices 

are presented along the vertical axis. Positive coefficients are depicted in red, and blue 

is used for negative values. White colour is used to mask the locations with non-

significant coefficients determined by t-value. Previous sections only depict the over 

patterns of coefficients (Table 5), while the spatially varying effects are explained in 

details in Figure 11. An interesting finding appears on the differences between DSI and 

DOC, both are stronger positive variable for vitality. We found that DSI is positively 

correlated in a wider range of places, whereas DOC only in a few hot regions. The maps 

do show the relationship in urban vitality evaluation could vary from place to place.  

Consequently, earlier research relying on global linkages to overlook the spatial 

heterogeneity by large (Delclòs -Alió & Miralles-Guasch, 2018), may result in biased 

estimation or explanation in some areas.  

Standard deviation permits observation of temporal changes in coefficients (Table 

5 and Figure 32). This statistic is calculated across multiple places, therefore larger 

standard deviations suggest greater variation of relationship in space. We ranked all 
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diversity indices by standard deviation value. VTaxi, with the largest standard deviation 

coefficient, and LUM has smallest deviation for describing city vitality. The 

coefficients of the public transportation and taxi trip indices vary both spatially and 

temporally. DSI and DOC vary across space while are stable over time. From a higher 

level, this analysis offers important guide for future study that may consider how the 

variation may introduce biases to their model. 

   

(a)                                                                       (b) 

 

   (c) 

Figure 32. Coefficient Values across Districts and Weeks. 

 

Figure 33. Standard Deviation of Coefficient Values across Weeks. 
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Third, we undertake additional analysis by plotting district-level coefficients. Due 

to the fact that administrative boundaries are obstacles that influence numerous crucial 

urban dynamics and developments, characterizing coefficients for district may yield 

differing vitality conclusions. According to Lai et al. (2021) and Zhou et al. (2022), 

Shenzhen's districts have developed unevenly. Using the combination of prominent 

vitality indices, one can provide an alternate perspective for profiling district vitality. 

Figure 32 depicts three districts for illustration purposes. Nanshan is a neighborhood 

recognized for its concentration of technological industries, that is reflected by the 

strong relationship with DSI. High rank of DSI in Nanshan may relate to diverse 

business-related motives. In contrast, high rank of CTaxi in Guangming may attribute 

to the context that it is through a distant district for travellers while being famous as 

regional hub of manufacturing. Thereby, taxi peaks of daily ridership is stronger 

variable to depict overall vitality. Luohu’s vitality can be effectively reflected by DOC, 

which is reasonably related to abundant entertainment and catering streets in this district. 

Overall, the ranking analysis of MGWR coefficients can deliver fruitful information on 

the district context, and furthermore on the polices being interested in travel flow or 

built environment diversity.  

6.4. Conclusion 

This research developed a comprehensive framework to integrate multisource urban 

data to examine the spatially varying relationship between urban vitality and urban 

diversity. By conducting comparative experiments on both normal and festival weeks, 

the following highlights importance implications: 

In multiple ways, the MGWR framework outperforms OLS- and GWR- models. 

In all weeks, better performance of MGWR models are obtained. The flexible scales of 

the new models provide additional information beyond coefficients. Throughout the 

investigation, we found that NTL effectively capture the spatial-temporal structure of 

city, suggesting its viability for understanding intracity dynamics. Substantial 

correlation between the vitality proxy and diversity indices contribute to the empirical 

evidence on the detailed mechanism. Overall, both flow-based diversity and land-based 

diversity are essential for vitality. 

It is important to highlight that the practical implications reported should be 

limited in Shenzhen. While using the framework developed in this research, further 

comparison research can be undertaken in other cities. It should be noted that urban 
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vitality is a broad notion encompassing numerous facets of the city. Although we adopt 

a standard rule (i.e., economic activity strength) to proxy vitality from NTL, it is 

important to recognize the representativeness of such data. NTL represents more on 

socioeconomic intensity from the reflective light attributed to infrastructures and 

human activities. Notwithstanding, integrating NTL in urban vitality framework is still 

useful because this data is widely available, free, and with decent spatial coverage. 
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Chapter 7. Conclusion 

7.1. Contributions of Each Chapter 

First, the thesis starts with a review of urban flows from geography, economic, and 

complex science perspectives. The Chapter 2 is a comprehensive review dedicated to 

urban flows, including not only the examples and historical views on the impacts of 

flows, but also the shifting theories and methods of flows. The chapter then highlights 

the research significance and challenge of multi-flow in multi-space that has potential 

to open up a new research direction to extend the foundation of geographical notion on 

space and human activity. Multi-flow analytics contributes to realistic representation of 

complex interaction of city, which benefit many applications such as transportation and 

travel policies.  

Second, after reviewing on historical and contemporary research on urban flows, 

we develop a methodological framework in Chapter 3 to address several important 

aspects and applications of flows in transport sector. This framework clearly sketches 

out the key methods and related domains. The framework addresses the urban dynamics 

by including ridership variation metrics, a new metric on flow diversity, and mobility 

network, and associated urban dynamics applications. Then the construction and 

analysis of multiplex network is presented in detail, contributing to literatures of multi-

modal travel behaviour studies using advance network method.  

Third, the case study in New York City (Chapter 4) is one of first academic papers 

to use multiplex network to study shared mobility. The multi-modal network and 

temporal network developed in this study address our first research question on how to 

properly integrate multiple flows for quantifying interaction patterns. The multilayer 

network is widely reported in transportation studies, while is relatively new for 

geography and urban science researcher, thereby our study contributes an early practice 

to inspire more future work. Some empirical findings are interesting and new. First, 

statistical distribution of centralities in multiplex network is not the power-law reported 

in many human mobility studies. It may indicate the across layers (i.e., modes) 

connectivity make flow among places smoother than the case of single transport mode. 

Second, community structure in multiplex network is directly comparable, in which we 

found that even shared mobility dramatically arise in term of total ridership, while flow-

induced urban structures remain similar across layers, indicating the stability of total 

travel demand (i.e., volume and travel direction).  
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Fourth, the Chapter 5 contributes to geography and quantitative urban research 

by defining and implementing a new metric on diversity of spatial interaction. This 

work is the first attempt towards such issue, and address the first and the second 

research question of this thesis. This diversity metric can be calculated from 

geographical flow data, and the notion of ‘diversity’ is a key component for vibrant and 

sustainable city. The metric itself is easy to implement (generalizable) with three highly 

explainable metric components addressing on location numbers, travel volumes, and 

location differences. At the end of this study, we demonstrate how interaction diversity 

can be used as an effective tool for urban evaluation and policy implications in various 

aspects. Overall, this study contributes to both method and application.  

Fifth, the urban vitality study in Chapter 6 is an updated application of flow 

analytics towards a better life of city. For urban science, we advance the framework of 

measuring urban diversity, the core component of urban vitality, by including flow 

diversity, ridership diversity, and built environment diversity. Analysis of model 

coefficients contributes to few quantitative research on the relationship between 

diversity and vitality. From methods perspective, this study provides new application 

using new data (NTL images) and new method (MGWR) in vitality evaluation. Flow 

diversity is found to be significantly related to vitality proxy, which is evident for its 

effectiveness argued in Chapter 5. 

Overall, this thesis set out to contribute to the modelling and analytics of urban 

flows by integrating multi-source data and implementing explainable metrics, to make 

applications in the emerging topics of urban science (diversity, vitality, and dynamic 

structure). The works made in above chapters have addressed the research question 

proposed, and we believe that there are still plenty of room for advancing urban flow 

analytics in order to make a comprehensive understanding of city and its dynamics for 

a better future. 

7.2. Wider Impacts of the Thesis 

The framework proposed in this thesis has a significant potential impact on urban flow 

analysis beyond the current use of mobility datasets. By modifying the definition of 

flows and layers, the framework can be adapted to represent a wide range of urban 

flows analysis using various types of locational data, both big and small. For example, 

geo-located social media and population migration extracted from national surveys can 

be directly adopted using the framework. The spatial behaviour can be modelled using 
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the same layer definition as did in NYC study, while the social interaction can be treated 

as other layers where the intra-layer edges are donated by intensity of social 

communications. In addition, the framework can also represent implicit interactions 

between locations, such as co-location of people in nearby locations and the correlation 

of groups of people visiting the same locations. This is achieved through the 

representation of both explicit and implicit scenarios, allowing for a comprehensive 

understanding of the urban flows. The representation of implicit interaction in the flow 

models require more aggressive modification on the layer and edges definition. For 

example, the co-location / co-interests matrix need be inferred by intersecting spatial-

temporal information of entities (e.g., both locations or peoples), similarity of online 

contents, similarity of friends lists, and so on. Pairs of entities do not have direct 

interactions / flows with each other, while they are correlated based on other features, 

so that we call the extracted data model as the correlational matrices. The correlational 

matrices in nature have the same format as a OD matrix has, thereby we can treat 

correlational matrices as the OD matrix to construct the multilayer network models, or 

use the metrics proposed in the thesis to quantify the implicit flow patterns.  

The canvas that the thesis attempts to lay out is the intimate relationship 

between flows and cities. Places and urban structure influence urban flows: The 

physical design of urban spaces, built environment, and even cultural and historical 

legacies can influence the way people move through and interact with the city. For 

example, the distribution of public transportation, the design of streets and sidewalks, 

and the location of amenities have been largely reported to be influential factors in 

spatial morphology studies. Urban flows shape the function of places and urban 

structure: The movement of people, goods, and information within the city can shape 

the function and character of urban spaces. For example, areas with high traffic flow 

can become centers of economic activity and cultural exchange even though the areas 

might not have dominant spatial characteristics, while low-traffic areas may gradually 

become neglected or underutilized as the local business can not be sustained. It is no 

wonder that methodologies implemented is not merely for the case studies for travel 

behaviour in NYC, urban diversity revealed by DSI, and the economic vitality in 

Shenzhen, but aiming for longer impacts on future perspectives of flows in the fields of 

Urban Planning, Economic Studies, and Transportation Studies. 
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For urban planning, it is urgent to face the challenges raised by highly dynamic 

urban flows nowadays. Population migration, in conventional perspective, might be 

determined by the change of the residing cities in decades time window, while a more 

frequent migration behaviour is witnessed in both China and western cities. Massive 

moving into cities are triggered by the rapid urbanization process, while in some larger 

cities in China people are moving out in most recent years due to unbearably high 

housing price, air pollution, and narrowed margin of leisure time. The regional planning 

and strategic policies are thereby in much need to model and quantify the spatial flows 

over cities, to obtain an updated view of regional structure and role of cities in the whole 

systems, for example, using the network centralities metrics. Similar problems also 

exist in intra-city level to require quantitative tool to pace up the urban design with 

urban flows that are densified and interconnected. To promote ‘polycentric’ design, one 

could use the proposed framework to unveil the underlying urban structures and explore 

their relationship to the built environment. Certain environmental elements with high 

association with urban flows can be built more the over the designed centres. Overall, 

considering urban flow analytics as a key component in the urban planning practices 

would provide a more connected view to inform policy-making. 

For economic studies, the framework could aid in the development of economic 

models by integrating spatial-, social-, and economic flows. By doing such, one can 

better understand how human behaviour is associated with economic status of their own 

and with the city’s vitality. The thesis presented in the Chapter 5 and Chapter 6 that 

quantifying flow is not an end of the research direction, but a beginning to identify 

stronger links to urban diversity and urban vitality. In macro level, the flow-based 

analytics raise new consideration of the dominants factors in driving economic 

activities. Similar to the impact in urban planning, the identified key amenities and 

services should be sustained and enhanced to main the role of key spatial nodes 

(financial centres and hubs). In micro level, site selection is a classic problem in 

economics. From conventional geography perspectives, the common practices in 

determining sites wit business potentials depend on the neighbouring features: whether 

population density is sufficient and the number of competitive businesses. While due 

to rapid transportation even online shopping, the analysis for site selection limited in 

local places is obviously not enough. The new definition and implementation of the 

flow diversity metric, is an effective indicator for quantifying attractiveness and 
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potential in second-order form that consider the activities without constraints of certain 

geographical scales. Overall, the economic studies involve a great amount of 

observations on human behaviour, thereby should be ignore the increasing 

complexified and connected context. 

The analysis of multi-dimensional flows is early than the thesis, namely the multi-

modal transportation analysis. Constructing multi-modal models match the real 

scenarios better and therefore provide more accurate simulation on the traffic volumes. 

However, the urban flows framework of the thesis not only draw on the travel behaviour, 

but also urban environment factors, and incorporate geographical meaning in the flow 

metrics and analysis, implying for future transportation studies in several ways. First, 

the influential factors for traffic volumes not only rely on the transportation system 

itself, but the geographical features attracting the travel behaviour. For example, the 

job-housing distributions, the places with high flow diversity value, and the place with 

high catering densities are the typical factors driving and changing travel behaviour. 

Second, to further understanding the relationship in the first point, a multi-scale 

geographically regression approach has indications for transportation studies when 

evaluating accessibility. The spatial design the transportation facilities normally follow 

some rule of thumb value of accessibility, for example, a ’30mie life circle’. While the 

relationship and accessibility could function in varying scales as reported in Chapter 6. 

Overall, the traffic volume estimation, the infrastructure design, and travel behaviour 

analysis in transportation studies could embrace a wider and integrated scope of 

geography, urban, and transportation, by adopting or extend the urban flow framework 

of the thesis.   

7.3. Future Directions and Outlook  

There are two main limitations of this doctoral research. First, the proposed framework 

on urban flow analytics is mainly tested by mobility data (geographical movements 

flowing among locations), while it should be highlighted that all the analysis of this 

research can be adopted on other flow data with minor modifications such as the 

definitions of network nodes, edges, and layers. Although the case studies in the thesis 

emphasize much on mobility data, while the author totally agrees with the view that 

human activities not only work for the representations but are intrinsic components to 

generate more other types of urban flows and behaviours. Future works in testing this 

framework in other cities will provide a general view on characteristics of urban flows 
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and its relationship with places. Second, one city for testing all the mentioned methods 

would generate deeper and more comprehensive insights, while the reasons for 

selecting two cities (New York and Shenzhen) in the case studies of the thesis mainly 

are the different data privacy standards. The open data in NYC is more comprehensive 

in terms of spatial-temporal resolution and multiplicity, while at the moment of 

conducting this thesis, multi-modal travel data in Shenzhen is not accessible for the 

general researcher. While it should be noted that all the proposed analysis can be 

directly to one city (e.g., Shenzhen) with increasingly available open data. With 

awareness of these limitations, this body of doctoral research has several wider and 

longer impacts as discussed in Section 7.2. Beyond the methodological framework, the 

conceptual contributions and the perspectives of this thesis may lay the ground for 

future investigation on the following topics:  

1) Reassessment of basic laws of geography. Thousands of goods and millions 

of people are interacting every day through online and offline technologies. 

The multiple flows studied in this thesis are in travelling context, while the 

more complex flows beyond geographical space are diversifying our way of 

life (at the bottom) that eventually may lead to dramatic transformation of the 

physical form of city. The classic laws in geography largely depend on spatial 

dependence to explain spatial configuration of city. However, in the multi-flow 

context, whether spatial dependence need to be extended to, for example, 

spatial-social dependence is still an open question (See our illustration in 

Figure 34). The following related question would be the notion of distance. If 

new notion of dependence is investigated, the notion of distance across the 

multi-spaces where multi-flows are in will be a key question to explore. During 

the limited time of my PhD study, I’m interested in involving other flow data 

such as social media or online logs to study on this direction.  
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        Figure 34. Thematic illustration of spatial-social dependency. 

2) Predicting socio-economic status using multi-flows. People are more 

influential than they think, to others and to themselves. How people behave 

and interact with others are highly influencing socio-economic background of 

themselves and the object they are interacting with. Reversely, it seems 

feasible and interesting to evaluate ones or groups’ socio-economic status 

according to behaviour data that is more dynamic and frequently updated. In 

contrast, traditional way relying on survey is less efficient and costly. The 

integrated spatial-social flow model proposed should incorporates both 

implicit (e.g., similar interests) and explicit (e.g. re-post) connections between 

people for realistic evaluation. The multilayer network introduced in the 

Chapter 3 and Chapter 4 are the promising tool for such purpose. The results 

have a wide range of applications for studying social segregation and policies 

for individual development.  

 

3) Co-evolution of physical form and urban flows. A research challenge 

identified in Chapter 2 has not been studied due to time limitation, that is how 

urban physical network co-evolve with urban flows. Because settlements and 

infrastructure are not developing for no reasons, but to serve (potential) travel 

demand, whilst the demand may change dramatically and make places are 

reinvented, which will influence how flows can be generated backwards. This 

is a circle between physical form and human activity, but in the context of flow, 

this topic has not been well studied. This thesis addresses more on dynamic 
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network that is constructed from human activity data, but that is not to dismiss 

the value of static network of city. In future works, we can integrate both static 

and dynamic in the same network model to better understand the co-evolution 

issue. This research direction will provide comprehensive tools and results for 

urban planning.  

 

With more than half the world’s population living in cities, I feel strong interest 

and urge to study on city, and work for its bright future. In face of challenges, city 

shows magnificent prosperities and resilience. Back to two years ago when Covid-19 

started to take over the world, we are concerned about city and regular life. But what 

we have seen is the strong capability of city and people to adapt: working from home 

via online software, house price drop at city centres where the spaces are spared for 

public use. Although technologies do enhance the connectiveness, but resilience and 

prosperity of city may not hold forever. It is our duties to deepen the understanding of 

how city work and transform, specifically, urban flows is a promising lens. 
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