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Abstract 

 

 

Optimal Power Flow (OPF) is one of the most important tools in power 

system planning, operation and control. Its purpose is to determine the power 

system controls to find the delicate balance between economy and security. Due to 

the rapid increase of electricity demand and the deregulation of electricity markets, 

power systems tend to operate closer to stability boundaries and, as a consequence, 

resulting in serious damage to national economics and security. Thus, 

consideration of the transient stability limits in the OPF problem of power systems 

is becoming more and more imperative. It is, however, an open question as how to 

include the stability constraints into OPF since transient stability is a dynamic 

concept and differential equations are involved. Some conventional optimization 

methods such as Interior Point Method (IPM) have been attempted to incorporate 

the transient stability constraints into OPF mainly by approximating the 

differential equations to algebraic equations. However, conventional mathematical 

optimization methods are sensitive to the starting points and have convergence 

difficulties in handling nonlinear, non-convex problems. Besides, the discretizing 

scheme will lead to computational inaccuracy in solving the problem; and discrete 

control variable handling such as transformer tap settings is another problem for 

the conventional methods. 
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To address the above mentioned problems, this thesis is devoted to the 

development of an alternative approach in dealing with the OPF problem based on 

a new evolutionary algorithm Differential Evolution (DE). Each individual in the 

DE population is a candidate solution for the OPF problem. In particular, an 

improved version of DE with population re-initialization scheme called RDE is 

reported to ameliorate the premature problem of DE. Simulations on IEEE 14-, 30-, 

and 118-bus systems show the powerful ability of RDE in seeking the global 

optimal solution. As for transient stability constraints, a hybrid method which 

combines time domain simulation and transient energy function is employed to 

assess the transient stability of each individual with no limitation in system 

modeling. Stable individual has more chance to survive in the evolution process in 

seeking both secure and economic global solution. Since transient stability 

assessment is the most time-consuming part of the whole method, strategies called 

“stable-space push” and “fitness sorting” are also developed to reduce the 

searching space as well as the computation time. Besides the transient stability 

constraints, other non-convex and discontinuous practical constraints like 

generator valve-point effects, prohibited operation zones constraints that are 

difficult to handle by conventional methods are also considered into the OPF 

problem. The performance of the proposed algorithm has been tested on the 

WSCC 9-bus and New England 39-bus systems and compared with the reported 

results by conventional methods. The results show that the method developed in 

this thesis is very powerful in solving nonlinear, non-convex, discontinuous 
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complex optimization problem with both continuous and discrete control 

variables. 

A parallel computation platform is also built in this thesis to speed up the 

proposed method. The parallel computation is implemented on a Beowulf 

PC-cluster using Message-Passing Interface (MPI) technology. Topologies like 

Master-Slave, Dual-Ring, and Hybrid Structure of the parallel computation are 

developed to optimize the computation. Case studies shows that parallelization 

does significantly improve the speed of DE; it is possible to realize online 

TSCOPF with moderate scale PC clusters and meet the real-world online 

application requirement. 

The method developed in this thesis is found to be effective and powerful in 

finding the global solution which is economic and secure for the power system. 
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Chapter 1 Introduction 

 

 

 

1.1. Background and Motivation 

Optimal Power Flow (OPF) was firstly introduced by Carpentiers as a 

network constrained economic dispatch [Carpentiers, 1962] and formulated by 

Dommel and Tinny as optimal power flow [Dommel and Tinney, 1968]. The main 

purpose of OPF is to operate the system at the most economic state while 

satisfying specified security constraints. OPF has great meaning for power system 

operation and development especially in the modern society where human beings 

depend much more on electricity. 

Power system security analysis is composed of both static and dynamic 

security analysis. However, most previous research works concern only about 

maintaining static security in the OPF problem; few can effectively deal with 

dynamic security constraints despite the recognition of its great importance.  

Due to the rapid increase of electricity demand and the deregulation of 

electricity markets, power systems tend to operate more closely to stability 

boundaries and as a consequence, many instability problems occurred in many 

countries recently, for example, the power system blackout in large portions of the 
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Midwest and Northeast United States and Ontario, Canada on 14 August 2003 

affected about 50 million people [U.S.-Canada Power System Outage Task Force, 

2004]. Huge losses and expensive costs in these events give good evidences that 

dynamic stability under large disturbances is still the most serious threat for the 

development of modern power systems [Novosel, Begovic, and Madani, 2004]. 

Among various dynamic security analyses, transient stability is one of the most 

essential and important assessments. Huge attentions have been paid on power 

system transient stability analysis by engineers and researchers all these years. 

Therefore, consideration of transient stability constrained optimal power flow 

(TSCOPF) problem is becoming more and more imperative.  

 

1.2. Present State of TSCOPF 

1.2.1. Formulation of OPF 

Currently, basic OPF problem is mathematically described as a nonlinear 

programming problem which aims to minimize an objective function while 

satisfying a serial of equality and inequality constraints. 

Minimize          )( xu,f                                       (1.1) 

Subject to         0)( =xu,g                                    (1.2) 

0)( ≤xu,h                                    (1.3) 

where u  is the vector of control variables of the system, x  is the vector of 

dependent variables of the system. Objective function f  may be system 
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generating fuel cost, available transfer capability etc. Equality and inequality 

constraints (1.2) and (1.3) are system physical and operational constraints. 

1.2.2. Transient Stability Analysis 

Power system transient stability phenomena are associated with the operation 

of synchronous machines in parallel. From a physical viewpoint, transient stability 

is the ability of the power system to maintain synchronism when subjected to a 

severe transient disturbance such as a fault on transmission facilities, loss of 

generation, or loss of a large load. The system response to such disturbances 

involves large excursion of generator rotor angles, power flows, bus voltages, and 

other system variables [Pavella, Murthy, 1994]. If the resulting angular separation 

between the machines in the system remains within certain bounds, the system 

remains synchronism. From the system theory viewpoint, power system transient 

stability is a strongly nonlinear, high-dimensional problem. In large power system, 

transient stability may not always occur as first swing instability associated with a 

single mode; it could be a result of superposition of a slow inter-area swing mode 

and a local-plant swing mode causing a large excursion of rotor angle beyond the 

first swing [Kundur, 1994]. 

Stability is influenced by the nonlinear characteristics of the power system as 

well as the initial operating state and the severity of the disturbance. If the resulting 

angular separation between the machines in the system remains within certain 

bounds, the system remains synchronous. The period of interest of transient 
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stability is the transient period before the new steady-state conditions reached. If a 

system tends to go unstable by the loss of synchronism, relative angular velocities 

of some machines goes on increasing with respect to the rest of system machines. 

Loss of synchronism because of transient instability will usually be evident within 

2 to 3 seconds after the initial disturbance. 

Since transient stability has been in interests for long years, many advanced 

methods have been developed for its analysis. So far, methods for transient 

stability analysis can be categorized into three directions: time-domain simulation, 

direct methods, and hybrid methods. 

Time domain simulation solves the differential-algebraic equations (DAEs) 

describing the dynamic responses of the power system step by step to get 

trajectories of the state variables such as generator rotor angles or active power 

outputs. Time domain simulation has been regarded as the best methods in terms 

of accuracy, reliability and modeling capability. Details of system dynamic 

responses could be provided even for large-scale power systems. Even very large 

systems can be analyzed by time-domain simulation with detail components 

modeling. However, time-domain methods suffer from the drawback that it cannot 

provide sufficient information about the degree of stability of the system. 

Direct methods are originated from the control theory. They determine 

transient stability without explicitly solving the complex differential-algebraic 

system dynamic equations. Direct methods are classified into two directions: one 

is based on the transient energy functions (TEF) methods [Fouad and Vittal, 1992; 
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Pai, 1989], the other is based on extended equal area criterion (EEAC) methods 

[Xue, Van Custem, and Ribbens-Pavella, 1989]. The TEF based methods use 

transient energy functions described by system state variables to present system 

energy in different stages which is stimulated by the fault and accumulated in the 

fault-on stage. The research focuses include controlling unstable equilibrium point 

(CUEP) method, potential energy boundary surface (PEBS) method, and boundary 

of stability region based controlling unstable equilibrium point (BCU) method. 

Difficulties of this kind of methods are the definition and calculation of the energy 

functions. EEAC based methods equivalent the whole system into critical and 

system group, use the equal accelerating and decelerating area to determine the 

system stability; whereas, the discrimination of critical unit group is a crux. 

Compared with time-domain simulation, direct methods are capable of providing a 

quantitative measurement for the transient stability margin. However, the 

modeling capabilities of direct methods are limited and the accuracy and reliability 

are not guaranteed with the theoretic assumptions. 

In order to overcome the drawbacks of these two methods, the hybrid 

methods which incorporate time domain simulation and TEF method have been 

developed in recent years [Maria and Tang, 1990; Fang and David, 2004]. The 

restriction on the application of the classical models has been removed and the 

problem of erratic nonlinearity of the transient energy margin that results in an 

unreliable prediction of the stability limits has also been overcome. The hybrid 

method will be used in this paper in the transient stability assessment. 
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1.2.3. Transient Stability Constrained Optimal Power Flow 

Despite the importance of transient stability constrained OPF has been 

realized for years, few effective methods have yet been proposed till now. The 

reason lies in the fact that TSCOPF problem itself is a nonlinear, semi-infinite 

optimization problem with both algebraic and differential equations, which is hard 

to be solved even for small power systems. The main obstacles tackling this 

problem exist in: (1) how to incorporate the transient stability constraints into the 

OPF problem, namely, how to deal with the differential equations that represent 

the dynamic behavior of the system; and (2) how to deal with TSCOPF effectively 

and efficiently. Existing attempts on TSCOPF problem mainly go along two 

directions. 

One direction is to solve OPF and the transient stability constraints in 

sequence separately. This kind of approach is much like a trial-and-error way. First 

a static OPF solution would be found, then sensitivities of transient stability index, 

such as energy margin, relative rotor angle, or critical clearing time (CCT), to 

system parameters, such as generator output or bus voltage, are used to reschedule 

the power flow of the system thus satisfying the transient stability limitation 

[Bettiol., Wehenkel, and Pavella, 1999; Nguyen and Pai, 2003; Daniel and Pavella, 

2003; Shubhanga and Kulkarni, 2004]. However, instead of searching the solution 

space globally, only a conservative system configuration could be obtained. 

The other direction is to incorporate transient stability constraints into OPF 

directly and solve it as a single problem. The transient stability constraints are 
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considered by converting the differential equations into numerical equivalent 

algebraic equations with specified time steps as inequality constraints such that 

conventional derivative-based optimization methods can be adopted [Gan, 

Thomas, and Zimmerman, 2000; Yuan, Kubkawa, and Sasaki, 2003]. The most 

common used nonlinear programming (NLP) model and interior point method 

(IPM) are briefly introduced here. 

 Nonlinear Programming 

Generally, nonlinear programming needs the utility of Langrange Multiplier 

and Karush-Kuhn-Tucker (KKT) conditions. The typical model of a 

nonlinear programming problem is described as below: 

Minimize          )(zf                                             

Subject to         0)( =zg                                          

0)( ≤zh                                     (1.4) 

Supposing there exits multiplier vector ξ  and μ , the following KKT 

conditions must be satisfied at the global optimal point of the problem: 
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When solving nonlinear programming model, the inequality constraints can 

be converted to equality constraints through methods like relaxation. The 

converted optimization problem can be solved by algorithms like gradient 
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method, Newton method, and interior point method. The most up-to-date 

method is interior point method. 

 Interior Point Method 

Interior point method (IPM) was first proposed by Karmarkar of the Bell 

Laboratories in U.S.A. as an algorithm for solving linear programming 

problems. Instead of following a path on the boundary of the feasible region, 

IPM follows a path through the interior of the feasible region. So a feasible 

interior stating point is needed for IPM. This method is not sensitive to the 

scale of problem; therefore, it is more competitive in optimizing large convex 

non-linear problems, in particular, so-called geometric programs and 

semi-definite programs. As has been developed for more than twenty years, 

there is an enormous variety of branches most of which can be categorized 

into three classes: project scaling IPM, affine scaling IPM, and primal-dual 

IPM. So far, IPM has showed great vitality in power system optimization 

[Quintana, Torres, and Palomo, 2000]. 

The idea of discretizing differential equations into algebraic equations has 

been extended to consider multi-contingencies in [Yuan, Kubkawa, and Sasaki, 

2003] and post-fault steady-state operating limit in [Dawn and Jeyasurya, 2004]. 

Reference [Chen, Tada, and Okamoto, etc., 2001] also proposed a functional 

transformation technique to convert the semi-infinite-dimensional TSCOPF 

problem to a solvable finite-dimensional programming problem. The transformed 

problem has the same variables as those in the static OPF problem so that the 
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efficiency could be improved. Although these works have made valuable 

contributions and improvement in TSCOPF problem solving, following cruxes are 

still open to overcome by the derivative-based conventional optimization methods. 

1. The use of the discretising scheme may result in not only computation 

inaccuracy due to the approximation but also dramatic explosion of 

problem dimension with the introduction of a large number of variables 

corresponding to each time step which may cause convergence problem. 

2. Handling of discrete control variables. Discrete variable may be 

generally treated as continuous variables and then be rounded off to the 

nearest discrete value after the optimization. However, when dispersion 

degree of the discrete variable is high, the objective value of final 

solution may become much worse or even dependent variables surpass 

their limitations and the solution becomes an infeasible one. 

Unfortunately, effective ways for this problem are still not found by 

derivative-based conventional optimization methods up to now. 

3. Sensitive to starting points. Conventional methods search the optimal 

solution from a certain starting point and follow a path guided by the 

derivation information. However, OPF is a non-convex problem 

especially with the introduction of transient stability constraints. 

Therefore, the searching may converge to a nearest minimum 

theoretically. 

4. Response to infeasible problem. When power system is too tight and in 
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deficiency of effective regulation measurements, there exits the 

possibility that no feasible solution could be obtained. It is important for 

an optimization algorithm not only to find out the global optimum, but 

also to distinguish the infeasible situation as early as possible and 

provide a sub-optimal solution. However, this problem is still unresolved 

by conventional methods. 

 

1.3. Intelligent Evolutionary Algorithm 

The derivative-based conventional optimization methods introduced above 

belongs to the category of classic mathematics. With the mutual osmosis of 

multi-field from 50s’ last century, the modern mathematics has gained 

developments and improvements gradually. A serial of intelligent optimization 

algorithms or meta-heuristic algorithms has appeared; most of them were not 

proposed by mathematicians but scientists and engineers from all walks of 

industry with heuristics from their experiences [Bäck, Hammel, and Schwefel, 

1997].  

Evolutionary algorithm (EA) is a typical delegate of intelligent optimization 

algorithms [Dumitrescu, Lazzerini, and Jain, etc., 2000; Fogel, 2000]. It is a 

stochastic global search method that mimics the metaphor of natural biological 

evolution process. Generally, at the beginning of the optimization process, a group 

of candidate solutions are initialized randomly, each candidate solution is named 
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as individual, a group of individuals compose of a population, and the number of 

individuals in a population is called population size. A fitness value related to the 

optimization objective is assigned to each individual; the higher the fitness value, 

the better the candidate individuals. Operations such as crossover, recombination, 

mutation, selection etc. are employed to reproduce the next generation of 

population which has higher global fitness. These operations are different from 

specified algorithm. With the evolution of new generations, the global optimum is 

gradually approximated. 

As a universal adaptive algorithm, EA has following remarkable advantages: 

(1) unlike conventional methods, EA searches the solution space from multi 

directions so that it has higher probability in finding the global optimum. (2) EA 

has few limitations on the objective function of the problem. The objective 

function may even be discontinuous or non-differentiable. (3) EA has good 

robustness. It is convenient for EA to handle discrete and complex nonlinear 

problem. (4) Moreover, EA methods can manage to provide sub-optimal solutions 

for infeasible problem. These features of EA have showed great competitiveness 

on conventional optimization methods. Therefore, EA has been widely used in the 

optimization problem in fields such as mechanics, chemistry, and computation etc. 

as well as the power systems [Miranda, Srinivasan, and Proenca, 1998].  

Despite the superiority described above, EA has its disadvantage that the 

searching ability is constrained by the population size. The population size is 

decided by the dimension and complexity of the problem to be optimized. Higher 
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dimension needs larger population size, so does the complexity. If population size 

is not large enough, diversity of the population will be destroyed so that population 

will be trapped in a sub-optimum. This phenomenon is called premature 

convergence. Since each individual has to calculate its fitness function in the 

evolution process, when population size is large and the problem complexity is 

high, it has to take a plenty of time to obtain a satisfying solution. 

Even though applications of EA in the study of static OPF are not new 

[Yuryevich & Wong, 1999; Bakirtzis & Biskas, 2002], research on the transient 

stability constrained OPF problem is few. Modeling of TSCOPF problem with EA 

method may be a main reason. The superiorities of EA to conventional 

derivative-based methods described above give itself strong reasons to be a 

promising way for solving the complex TSCOPF problem. This thesis aims to 

develop a novel way to deal with the transient stability constrained OPF problem 

using a new developed EA method called differential evolution (DE). Its 

optimization behaviors in both static OPF and transient stability constrained OPF 

problem are studied thoroughly. Transient stability performance of each individual 

(candidate solution) is assessed by hybrid method and incorporated into the DE 

based OPF as an index which has important influence on the evolution direction of 

DE. In particular, improvements have been made in DE’s evolution scheme to 

ameliorate both the premature problem and long computation time caused by 

transient stability analysis of each individual. Besides the transient stability 

constraints, other non-convex and discontinuous constraints like generator 
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valve-point effects, prohibited operation zones constraints that are difficult to 

handle by conventional methods are also considered into the OPF problem to 

study its capability in practical application. Further more, a parallel computation 

platform is constructed for RDE to release the intense computational burden 

especially for large-scale systems.  

1.4. Thesis Layout 

Chapter 1 provides the background of transient stability constrained optimal 

power flow problem. Different methodologies are introduced and compared. 

Chapter 2 introduces the mechanism of differential evolution (DE) algorithm. 

Performance and parameter setting of DE are studied through static OPF problem 

thoroughly. An improved version of DE is also proposed to address the premature 

problem of it. 

Chapter 3 studies the performance of DE in handling continuous TSCOPF 

problem in detail. A hybrid method is employed to assess the transient stability of 

individuals. Strategies named stable-space push and fitness sorting are also 

developed to reduce the searching space as well as the computation time caused by 

the introduction of transient stability constraints. Comparisons with results 

obtained by conventional mathematical methods are also presented. 

Chapter 4 focus on the ability of the proposed method in handling 

discontinuous and non-differentiable practical operation constraints such as 

discrete transformer tap settings, generators prohibitive operation zones (POZ), 
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and valve-point effects. 

Chapter 5 investigates the parallel computation technologies and constructs a 

Beowulf pc-cluster platform for the proposed DE methods to release the 

computational burden.  

Chapter 6 validates the effectiveness of parallel DE on the computation 

platform constructed in chapter 5 with both small and large systems. Different 

parallel topologies are studied. The performance of parallel DE is discussed in 

detail. 

Chapter 7 presents overall conclusion of the work reported in this thesis and 

further possible directions. 
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Chapter 2 Differential Evolution 

 

 

 

2.1 Introduction 

Differential Evolution (DE) is a new kind of evolutionary optimization 

algorithm developed by Storn and Price. It is a simple yet powerful algorithm 

especially for problem with real-valued parameters [Storn & Price, 1995]. DE is 

proposed at the same year as Particle Swarm Optimization (PSO). Many 

researches [He, Wen, etc., 2004; Ahmed, Germano, 2005;] on OPF have shown 

that PSO is better than previously proposed EAs, such as Genetic Algorithm (GA), 

Evolutionary Programming (EP), and Evolution Strategy (ES). However, DE is 

paid much less attention than PSO, especially in the research field of OPF. In 

[Vesterstrom & Thomson, 2004], DE is compared with PSO based on 34 

benchmark problems. The results have shown that DE is more efficient and robust. 

The optimization solutions are highly compromise with each other among 

different trials and barely influenced by the randomness of the initial population. 

Besides, DE has less parameter which means less dependence on parameter 

settings. 

This chapter introduces the general mechanism of differential evolution 
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algorithm; applies it to the OPF problem to investigate the parameter setting and 

performance; and proposes a partial re-initialization strategy to improve the 

performance. 

 

2.2 Basic DE Algorithm 

DE seeks the solution of a problem by evolving a population composed of 

pN  individuals (solutions) },,,{ 21 pNuuu K  over a number of generations. Each 

individual is given a fitness function to indicate its optimality to the problem to be 

resolved. The evolution of the population is achieved through a reproduction 

process which creates new individuals from exiting ones. These new individuals 

will compete with their ancestors. Survivals compose the new generation for the 

next evolution. This iterative process moves on until a termination condition 

reached and the optimum solution is the best individual found ever. The basic 

process of DE is illustrated in Fig. 2.1 and the components are described in detail 

as below. 

2.2.1 Individuals 

An individual in the population is a candidate solution to the problem to be 

optimized, thus it principally takes the form of a D-dimensional real-valued vector. 

Each component in this vector is corresponding to a control variable of the 

problem. Suppose ][kiu  represents the i-th individual in generation k, ][, ku ji  
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denotes the value of the j-th gene (control variable) of the i-th individual; the 

structure of an individual is as shown in Fig. 2.2. 

 

START

Population Initialization
k = 0

Fitness Evaluation

END

Fitness Evaluation

Reproduction

Selection

k = k+1

k > Gmax ?

Yes

No

 

Fig. 2.1 Flowchart of differential evolution based OPF 

 

][1, kui ][2, kui L L][, ku ji ][, ku Di
 

Fig. 2.2 Structure of an individual 

 

2.2.2 Initialization 

All individuals in the population should be initialized at the beginning of the 

evolution process. The value of each control variable in an individual is obtained 
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as in equation (2.1). 

DjNiuuUu pjjji ,,1,,,1],[]0[ maxmin
, KK ===           (2.1) 

where ],[ maxmin
jj uuU  is a uniform random number between the lower limit min

ju  

and upper limit max
ju  of control variable j. For discrete variables, this random 

value is rounded off to the nearest valid value of the variable. In this way the initial 

population maintains a large diversity and hence provides an excellent starting 

point for a global search of the solution space. 

2.2.3 Fitness 

Each individual is given a fitness function ])[( kF iu  to indicate its 

optimality to the problem to be resolved. Typically it is some function of the 

objective function of the problem. 

2.2.4 Reproduction 

Like other EAs, an offspring population of solutions of DE is produced from 

the existing population through a reproduction operator. The reproduction is 

driven by perturbing the value of each control variable in an individual using the 

difference between individuals selected randomly from the population; this is why 

the algorithm named as ‘Differential Evolution’. The reproduction operator of DE 

combines the functions of mutation and crossover; two commonly used 

reproduction forms named DE/current-to-rand/1 and DE/current-to-best/1 are 

described here in equation (2.2) and (2.3). 
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DE/current-to-rand/1: 

])[][(])[(][][' ,3,2,,1,, kukukuukuku jrjrjijrjiji −+−+= λγ          (2.2) 

DE/current-to-best/1: 

])[][(])[(][][' ,2,1,,,, kukukuukuku jrjrjijbestjiji −+−+= λγ         (2.3) 

where jbestu ,  is the j-th control variable of the history best individual bestu  

found till the present generation; irrr ≠≠≠ 321 are integers randomly selected 

in range of [1, pN ]; the parameter γ and λ are parameters for contraction and 

diffusion. If ][, ku ji′  is outside the feasible range of ],[ maxmin
jj uu , it is fixed to the 

limit min
ju  or max

ju . For discrete variables, ][, ku ji′  is rounded off to the nearest 

valid value. 

DE/current-to-best/1 can be viewed as a greedier version of 

DE/current-to-rand/1, since it exploits the information of the best individual bestu  

to guide the following search. By experience, the searching abilities of 

DE/current-to-best/1 and DE/current-to-rand/1 differ not much in case parameter 

λ is selected little larger in DE/current-to-best/1 than in DE/current-to-rand/1. 

Since DE/current-to-best/1 needs one less random numbers when reproducing an 

individual, we chose DE/current-to-best/1 as the reproduction operator in this 

work. 

The mechanism of DE/current-to-best/1 can be illustrated with Fig. 2.3. The 

effect of item ])[( ,, kuu jijbest −γ  is accordant with the idea of ‘population 

acceleration’ [Wong & Li, 2002], it drives an individual ][kiu  to move towards 

bestu  and reaches point M as shown in Fig. 2.3 (0< γ <1); while term 
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])[][( ,2,1 kuku jrjr −λ  gives a disturbance at point M to diverge the individual 

away from bestu , the strength and direction of this disturbance are decided by the 

difference of two individuals ][1 kru  and ][2 kru  randomly selected from the 

population. These two items finally decide the position of the offspring individual 

][kiu′ . Though the contractive effect introduced by the acceleration may lead to 

premature of the population, it can be balanced by the diffusion effect provided by 

])[][( ,2,1 kuku jrjr −λ . Thus DE can still maintain a strong global searching ability 

when λ and γ are carefully selected. 

 

2u

1u

][1 kru

][kiu

][kiu′

bestu

][2 kru

Global Optimum

Local Optimum

M

 

Fig. 2.3 Illustration of the mechanism of DE/current-to-best/1 

 

2.2.5 Selection 

The original population and the population produced by the reproduction 

operator will compete with each other and survivors build up the new generation 
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for the next evolution. Generally, DE uses the Binary Tournament Selection 

One-to-one Selection scheme. In other word, each offspring individual ][kiu′   is 

compared with its parent individual ][kiu  and winner is selected to be ]1[ +kiu  

in the next generation as shown in (2.4). 

⎩
⎨
⎧ ≥′′

=+
Otherwisek

kFkFifk
k

i

iii
i ][

])[(])[(][
]1[

u
uuu

u       pNi ,,1K=          (2.4) 

Practically, there are two ways to implement the selection operation 

[Lampinen & Storn, 2004]:  

(1) The selection operation is implemented after all offspring individuals 

have been produced. The offspring individuals do not participate in the 

reproduction procedure. Each offspring individual is compared with his 

corresponding father one by one; 

(2) Each time when a father individual produces his offspring individual, 

these two competes with each other and survivor substitutes the old one in the 

population immediately. These survivors will participate in the reproduction 

operation for the following individuals in the population. Thus the reproduction 

and selection process will interact with each other. 

The latter way is greedier than the former since new individuals participate in 

the evolution earlier. High greedy may help the population converge faster; 

however, it may also lead the population to premature. Moreover, the second way 

introduces an unbalance into the population since individuals have different 

lifetimes according to their positions in the population. Therefore, the first way of 

selection is used in this work. 
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2.2.6 Termination Criteria 

The commonly used termination criterion that stops the evolution when a 

preset maximum generation maxG  reached is adopted in this work. Also criterion 

like stops the evolution when there is no appreciable change in the best fitness 

within the population for a number of iterations can be adopted. 

 

2.3 Basic DE Optimal Power Flow 

The optimal power flow problem is described in section 1.2. In this section, 

the basic OPF problem is formulated based on DE to investigate the parameter 

settings and performances of DE. For convenience, the detail mathematical model 

of OPF is formulated here. The optimization object in this work is to minimize the 

total generating fuel cost; control variables are generator active output ( gP ), 

generator voltage magnitude ( gV ), and transformer tap settings (T); dependent 

variables are generator reactive output ( gQ ), and PQ-node voltage magnitude 

( pqV ). 

Min:   ∑
=

=
gN

i
iCf

1
                                                        (2.5) 

s.t.    0)sincos(
1

=+−− ∑
=

ijijijij

N

j
jidigi BGVVPP αα ,    Ni ,,1K=       (2.6) 

0)cossin(
1

=−−− ∑
=

ijijijij

N

j
jidigi BGVVQQ αα ,     Ni ,,1K=      (2.7) 

maxmin
gigigi PPP ≤≤ ,     gNi ,,1K=                                (2.8) 
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maxmin
gigigi VVV ≤≤ ,     gNi ,,1K=                                 (2.9) 

maxmin
iii TTT ≤≤ ,      tNi ,,1K=                                 (2.10) 

maxmin
gigigi QQQ ≤≤  ,   gNi ,,1K=                                (2.11) 

 maxmin
pqipqipqi VVV ≤≤ ,    pqNi ,,1K=                               (2.12) 

where iC  in (2.5) is the fuel cost of generator i, N  is the total number of system 

buses, gN  is the total number of generating units, pqN  is the total number of 

PQ-node, lN  is the total number of branches, and tN  is the total number of 

transformers. diP  and diQ  are the active and reactive power loads of bus i; ijα  

is the voltage angle difference between bus i and j; ijG  and ijB  are transfer 

admittance between bus i and j; iT  is the tap settings of transformer i. 

Equation (2.6) and (2.7) are load flow equality constraints; (2.8) to (2.10) are 

control variable inequality constraints; and (2.11) to (2.12) are dependent variable 

inequality constraints. The major components of DE that related to the optimal 

power flow problem are described below. 

2.3.1 Individuals 

An individual within the population represents a candidate optimal power 

flow solution. The elements within the individual are control variables of the 

problem as stated above. It has to be mentioned here that slack unit active 

generation is not a control variable here since its value is determined by load flow 

equations. Detail composition of an individual is illustrated in Fig. 2.4. 
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Fig. 2.4 Control variables encoded in DE individuals 

 

2.3.2 Constrained Initialization 

Generally, all control variables in an individual are initialized randomly 

within their limits. To help to meet the satisfaction of the slack bus active power 

constraints and power flow balance, a constrained initialization are introduced 

here for the generator active power outputs initialization. Suppose the total active 

load of the system is LP , total power loss is lossP , sum of the power that has been 

dispatched to all generators excluding the slack unit is dsP , lower and upper limits 

of slack bus active power are min
slackP  and max

slackP . 

(a) If dsP + max
slackP < LP , the candidate is inevitably an infeasible solution, it 

will be abandoned and a new one will be re-initialized; 

(b) If LP + lossP < dsP + min
slackP , here we set lossP  as 10% of LP , the candidate 

will not be accepted and also a new candidate will be generated, because 

we think the candidate is not a good one since the power loss rate is too 

high; These constraints will help to reduce the searching space with little 

time consumption. 

2.3.3 Fitness of Individual 

As we have mentioned, a fitness value F  is assigned to each individual to 
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measure the quality of this individual in DE. In the OPF problem, as well as 

minimizing the system generating fuel cost, we have to ensure the feasibility of the 

solutions. Violations of variable constraints are treated as punishment in the fitness 

function. Thus, the fitness function of individual i is formulated as below: 

)/(1 PSPSQiQViVii FKFKFKfF +++=                         (2.13) 

∑
=

−−=
pqN

j
pqijpqijpqijpqijVi VVVVF

1

minmaxlim )/(|)(|                         (2.14) 

∑
=

−−=
gN

j
gijgijgijgijQi QQQQF

1

minmaxlim )/(|)(|                          (2.15) 

)/()( minmaxlim
slackslackslackslackPS PPPPF −−=                            (2.16) 

where if  is the total generating fuel cost, ViF  and QiF  denote the sum of the 

normalized violations of PQ-bus voltages and generator reactive power outputs of 

individual i, respectively; lim
pqijV  and lim

gijQ  denote the violated lower or upper 

limits of the load-bus voltages ),( maxmin
pqijpqij VV  and the generators’ reactive power 

outputs ),( maxmin
gijgij QQ  respectively; PSF  denotes the violation of slack bus 

active power limitation of individual i, min
slackP  and max

slackP are the lower and upper 

limits of it. QK , VK , and PSK  are the corresponding penalty coefficients. An 

individual is deemed better if its fitness value is higher. 

 

2.4 Parameter Selection of DE 

Similar to other EAs, proper parameter selection is important for the 

performance of DE. Parameters in the DE algorithm are much less than other EAs, 
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therefore, it is relatively easier to determine. The parameters in DE include 

reproduction coefficients γ and λ in (2.3) and the population size pN . Although 

the parameter settings are problem-specified, in DE, they normally lie within a 

close range.  

The selection of pN  is largely dependent on the control variable dimension 

D. For real-world engineering problems, pN ≥20D may probably be more than 

enough and it will lead to heavy computation burden, while it is generally difficult 

to obtain the optimal solution for DN p 2< [Corne, Dorigo, & Glover, 1999]. 

Other experiments suggest to address pN  in [3D, 8D] [Gamperle, Muller & 

Koumoutsakos, 2002]. As a rough principle, pN =5D is a good choice for a first 

try because the optimal solutions are often possible to be obtained. 

The reproduction scheme in (2.3) combines two parts of operations. The term  

])[( ,, kuu jijbest −γ  contracts an individual to move to the present optimal point 

bestu , while term ])[][( ,2,1 kuku jrjr −λ  tries to give it a random deflection to 

escape from the moving direction to maintain population diversity. It is obvious 

that γ controls the strength of contractive pressure and λ controls the strength of 

diffusive pressure. High ratio of γ to λ may result in premature convergence, while, 

low ratio of it may slow down the convergence speed. Therefore, the contractive 

and diffusive effective should be well balanced. K. V. Price pointed out that for DE, 

when using reproduction scheme in (2.3), choosing γ randomly from the range of 

[0, 1] per individual per generation is frequently very effective, which is the 

scheme to be used in this paper. For parameter λ, when it is lower than 0.5 may 
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lead to premature convergence, while greater than 1.0 tend to slow down the 

convergence speed. So we range λ in [0.5, 0.9], and the critical value will be 

determined by the simulation tests. 

2.4.1 Test cases 

The IEEE 14- and 30-bus test systems are employed to investigate the setting 

of DE parameters. System bus and branch data are available on 

[http://www.ee.washington.edu/research/pstca/]; generator cost data and control 

variable limits are the same as in [Zimmerman & Gan, 1997, MATPOWER] for 

IEEE 14-bus system and in [Alsac & Scott, 1974] for IEEE 30-bus system. The 

IEEE 14-bus system has 12 control variables including 4 generator active power 

outputs, 5 generator bus voltages, and 3 transformer tap settings; the IEEE 30-bus 

system has 15 control variables including 5 generator active power outputs, 6 

generator bus voltages, and 4 transformer tap settings. Thus the population size for 

each system is 60 and 75, respectively. The tests are run on a 2.66GHz Pentium IV 

PC. Totally 20 trails are performed for each test case to see the average 

performance. 

2.4.2 Simulation results of DE with different λ values 

In this part, simulations are conducted with different λ values from 0.5 to 0.9 

on IEEE 14 and 30-bus systems. To eliminate the influence of population size, 

pN  is set as large as 5D for all λ, the maximum generation number maxG  is set to 
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100. the minimum, maximum, and average fuel cost corresponding to different λ 

values among those 20 trials for each case are listed in Table 2.1 and Table 2.2. 

Similar conclusions can be drawn that considering both the fuel cost solutions and 

the standard deviations of all trails, the best setting for λ should be 0.7. Therefore, 

λ is set to 0.7 for the rest of the simulation studies in this paper. 

 

Table 2.1 Simulation results with different λ for IEEE 14-bus system 

λ 0.5 0.6 0.7 0.8 0.9 

Minimum Cost ($/h) 8076.83 8076.79 8076.75 8077.10 8078.49 

Maximum Cost ($/h) 8085.97 8077.54 8077.06 8079.11 8084.18 

Average Cost ($/h) 8078.79 8076.89 8076.81 8077.59 8080.66 

Standard Deviation 2.09 0.16 0.07 0.47 1.63 

 

Table 2.2 Simulation results with different λ for IEEE 30-bus system 

λ 0.5 0.6 0.7 0.8 0.9 

Minimum Cost ($/h) 802.11 802.02 802.03 802.08 802.30 

Maximum Cost ($/h) 806.57 802.62 802.09 802.31 803.41 

Average Cost ($/h) 803.03 802.13 802.05 802.16 802.54 

Standard Deviation 1.13 0.16 0.01 0.06 0.24 

 

2.4.3 Basic DE performance 

Since λ has been set, different population sizes of pN >5D have been tried 

for these two systems but no significant improvements made. It can be concluded 

that pN =5D is large enough. The best system control variable settings with 
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minimum fuel costs are listed in Table 2.3 and Table 2.4 for IEEE 14-bus and IEEE 

30-bus systems, respectively. Fig. 2.5 and Fig. 2.6 show the average convergence 

curves over those 20 trails for these two test systems. In the beginning parts of the 

convergence curves, the fuel costs may increase during several generations. This 

phenomenon indicates the process of eliminating system variables’ violations. For 

both systems, the convergence curves drop rapidly which proves the effectiveness 

of DE. Moreover, the slight differences between the minimum cost and maximum 

cost also prove the robustness of DE. 

DE took 1.0 s to evaluate 100 generations for the IEEE 14-bus system and 3.2 

s for the IEEE 30-bus system; however, since the algorithm converges rapidly, it 

took only 50 generations of DE to find a good enough solution for both systems, 

which means half of the running time. 

 

 

Fig. 2.5 Average convergence curve for IEEE 14-bus system 
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Fig. 2.6 Average convergence curve for IEEE 30-bus system 

 

Table 2.3 Best system control variable settings for IEEE 14-bus system 

Bus Pg (MW) Vg (p.u.) Branch Transformer Tap 

1 194.77 1.060 4 – 7 1.01 

2 36.78 1.039 4 – 9 0.90 

3 28.82 1.016 5 – 6 0.98 

6 0.00 1.054   

8 7.83 1.060   

Fuel Cost ($/h) 8076.75 

Initial Cost ($/h) 8172.00 

Cost Saving 1.17% 

 

Table 2.4 Best system control variable settings for IEEE 30-bus system 

Bus Pg (MW) Vg (p.u.) Branch Transformer Tap 
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1 176.46 1.050 6 – 9 1.00 

2 48.71 1.037 6 – 10 0.96 

5 21.53 1.013 4 – 12 1.00 

8 22.06 1.020 28 – 27 0.94 

11 12.01 1.087   

13 12.03 1.085   

Fuel Cost ($/h) 802.03 

Initial Cost ($/h) 872.29 

Cost Saving 8.05% 

 

In order to investigate the robustness of DE, the simulation results on the 

IEEE 30-bus system are compared with those reported in literatures: the gradient 

based optimal power flow method in [Alsac & Scott, 1974], the EP based OPF 

combined with gradient acceleration in [Yuryevich & Wong, 1999], the best 

known result obtained in [Bakirtzis & Biskas, 2002] using enhanced GA, and 

improved PSO method in [He, Wen, Prempain, etc., 2004]. All simulations on 

these methods have the same system data, control variable limits and initial 

conditions. These simulation results are summarized in Table 2.5. Obviously, the 

minimum fuel cost obtained by DE is lower than those obtained by gradient 

method and EP. For GA and PSO, the results are close to DE, however, GA needed 

a population of 80 individuals over 200 generations; and PSO needed a population 

of 50 individuals over 500 generations to obtain these results. While for DE, it 

used 75 individuals iterating over 100 generation (which means much less load 

flow calculation times) to get a better solution of 802.03$/h. These results 
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demonstrate that DE converges fast with excellent optimization capability. 

 

Table 2.5 Simulation results comparison for IEEE 30-bus system 

 Gradient  EP GA PSO DE 

Minimum Cost  ($/h) 802.40 802.62 802.06 802.0477 802.03 

Population size \ 20 80 50 75 

Generation \ 50 200 500 100 

Load flow times \ 1000 16000 25000 7500 

 

 

2.5 Reinitialized Differential Evolution 

2.5.1 Method Introduction 

Despite the simplicity, effectiveness, and robustness of DE, it requires 

relatively large population size to avoid premature convergence. The reason for 

this disadvantage exits in the reproduction scheme of DE. From (2.3), we can see 

that unlike GA or EP, which has a randomly mutation scheme in reproduction, any 

offspring individual of DE is actually a linear combination of the initial population 

space. When the population size is small, the information embedded in the 

individuals to share and spread over is finite. This limitation on possible 

combinations may impede the global search ability of DE and lead to premature 

especially for high dimensional problem. Larger population size may not only 

increase current searching points but also bring more combination possibilities; 
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however, computational burden also becomes heavier with the population size 

increasing especially for large systems. To address this disadvantage, an improved 

version of DE named reinitialized DE (RDE) is proposed here. 

The main idea is after iteration of L generations; we do not reproduce 

population but reinitialize it. The reinitialized individuals act as fresh blood from 

external family which can help much to maintain the population diversity and 

stretch the searching space. The history best individual bestu  is kept recorded and 

acts as seed in the reproduction of new generations, the convergence 

characteristics will not be influenced by the reinitialization. Since repeated load 

flow calculation is the most time consuming part in DE based OPF, time for 

reinitialization is almost negligible; therefore, the whole computation time will 

reduce since smaller population size is need by RDE. 

The main process of RDE is illustrated in Fig. 2.7 below. 
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START

Population Initialization
j=0,k=0

Power Flow Calculation
and Fitness Evaluation

END

Reinitialize the Population
j=0
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No

No

Yes

 

Fig. 2.7 Flowchart of reinitialized differential evolution (RDE) 

 

2.5.2 RDE Performance Study 

The IEEE 118-bus system is employed here to testify the effect of the 

proposed RDE method. System bus and branch data are available on 

[http://www.ee.washington.edu/research/pstca/]; generator cost data and control 

variable limits are the same as in [Zimmerman & Gan, 1997, MATPOWER]. This 
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system has totally 116 control variables including 53 unit active power outputs, 54 

generator voltage magnitudes, and 9 transformer tap-settings. For basic DE, we set 

the population size from about 3D to 5D, that is, from 360 to 600. For RDE, we set 

the population size at 360 (3D) and change L, the cycle of reinitialization, to 

examine the performance of RDE. Both DE and RDE are run over 1000 

generations for 20 trails. Simulations results for these two methods are listed in 

Table 2.6 and 2.7.  

 

Table 2.6 Simulation results of basic DE with different population size for 

IEEE 118-bus test system 

pN
Minimum 

Cost ($/h) 

Maximum

Cost ($/h)

Average 

Cost ($/h)
STD % ACT (s) 

360 131495.72 134326.64 132568.10 0.61% 1088.15 

480 130414.08 132501.33 131134.27 0.36% 1446.87 

600 130265.52 131142.27 130634.69 0.19% 1818.46 

   STD: Standard Deviation.    ACT: Average Computational Time. 

 

Table 2.7 Simulation results of RDE with different re-initialization cycle for 

IEEE 118-bus test system 

L 
Minimum 

Cost ($/h) 

Maximum

Cost ($/h)

Average 

Cost ($/h)
STD % ACT (s) 

500 131045.02 134248.66 131938.60 0.52% 1088.65 

300 130614.29 133049.00 131652.62 0.50% 1088.73 

250 130585.87 132958.91 131473.57 0.43% 1091.28 

200 130533.61 132585.44 131359.55 0.42% 1092.05 

100 130204.93 131574.06 130636.57 0.21% 1094.35 
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Compare Table 2.6 and Table 2.7, it is no doubt that RDE can obtain better 

solution than basic DE with the same population size, moreover, when the 

reinitialization cycle L reaches 100, that is, reinitialize the population per 100 

generations during the 1000 iterations, the solution obtained by RDE is 

comparable to basic DE with population size as large as 5D. The computation time 

needed for basic DE is 1818.46 seconds, for RDE is 1094.35 seconds which differs 

not much with that of basic DE with pN =3D. Thus, conclusion can be dawn that 

RDE do help to rescue the population from trap of local minimum with less 

population size and computation time. 

 

 

Fig. 2.8 Average convergence curve for IEEE 118-bus system 

 

The average converge curves of basic DE and RDE based OPF for IEEE 

118-bus system with population size = 360 (3D) are shown in Fig. 2.8. Obviously 
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we can see that RDE converges better than basic DE. The best system control 

variable settings obtained by RDE method with pN =360, L=100 are listed in 

Table 2.8. 

 

Table 2.8 Best solution of RDE based OPF of IEEE 118-bus system 

Bus Pg (MW) Vg (p.u.) Bus Pg (MW) Vg (p.u.) 

69 431.54 1.0549 62 2.62 1.0532 

1 1.11 1.0163 65 354.75 1.0596 

4 0.00 1.0599 1.0599 343.88 1.0599 

6 21.58 1.0448 1.0448 2.79 1.0301 

8 24.71 1.0234 1.0234 0.26 1.0597 

10 401.72 1.0594 1.0594 2.30 1.0356 

12 86.53 1.0463 1.0463 6.10 1.0061 

15 0.00 1.005 1.005 25.15 0.9923 

18 2.19 1.009 1.009 0.26 1.0265 

19 17.59 0.9983 0.9983 42.09 1.0396 

24 0.08 1.029 1.029 2.20 1.0345 

25 20.77 1.0366 1.0366 3.63 1.0533 

26 27.01 1.0514 1.0514 490.89 1.0577 

27 1.17 1.0027 1.0027 0.48 1.0216 

31 6.55 1.0237 1.0237 0.00 1.0046 

32 28.5 1.0175 1.0175 0.18 1.0348 

34 25.84 0.9808 0.9808 8.58 1.0385 

36 0.00 0.9755 0.9755 226.57 1.042 

40 36.81 0.9629 0.9629 36.58 1.0333 

42 34.18 0.9437 0.9437 0.00 1.0204 

46 17.47 1.0331 1.0331 0.00 1.0223 
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49 201.53 1.0596 1.0596 98.87 1.0362 

54 50.87 1.038 1.038 0.05 1.0108 

55 49.31 1.0357 1.0357 32.36 1.0109 

56 0.15 1.0353 1.0353 39.11 1.0169 

59 160.41 1.0394 1.0394 0.32 1.0397 

61 143.80 1.0573 1.0573 7.16 1.0191 

Branch Transformer Tap Branch Transformer Tap 

8 – 5 0.95 64 – 61 1.00 

26 – 25 1.05 65 – 66 1.00 

30 – 17 1.02 68 – 1 1.00 

38 – 37 1.05 81 – 88 0.95 

65 – 59 0.98   

Fuel Cost ($/h) 130204.93 

 

2.6 Summary 

In this chapter, basic DE algorithm is introduced and applied to solve the OPF 

problem. The mechanism of DE has been analyzed in detail; the parameters of DE 

is discussed and decided by simulation. So far, the simulation results showed that 

although DE needs a relatively large population size, it manages to provide better 

results than those obtained from other optimization techniques in terms of 

accuracy and convergence speed due to DE’s simple reproduction scheme and 

robustness. Based on basic DE, a reinitialized differential evolution (RDE) 

algorithm is proposed to address the premature problem of it. By introduction of 

the re-initialization, population diversity can be optimized which help to reduce 
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the population size as well as speed the optimization. Numerical experiments 

carried out on the IEEE 118-bus system verified that RDE can save the 

computational time significantly. 
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Chapter 3 Continuous Transient Stability 

Constrained OPF 

 

 

 

3.1 Introduction 

From the discussion in Chapter 1, it is of increasingly importance to consider 

transient stability constraints in Optimal Power Flow (OPF) problems since 

modern power systems tend to operate closer to stability boundaries due to the 

rapid increase of electricity demand and the deregulation of electricity markets. 

New and robust algorithm should be developed for the transient stability 

constrained OPF (TSCOPF) problem which overcomes the difficulties that 

conventional mathematical methods are limited to handle. This chapter develops a 

TSCOPF method based on the RDE algorithm introduced in Chapter 2. The 

transient stability constraints are embedded into the OPF problem as a stability 

index of the individuals which has an impact on the evolution direction of the 

population. It removes the difficulties associated with the handling of transient 

differential equations. To reduce the computational burden, several strategies are 

further proposed in the transient assessment and selection of solution individuals 

in evolution process of RDE. 
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As mentioned in Chapter 1, it is difficult for the present mathematical 

methods to handle discrete optimal problems. To compare the performance with 

conventional methods reported in the literature, only continuous control variables 

are considered in this chapter. 

 

3.2 Transient Stability Assessment 

Transient stability assessment (TSA) is the evaluation of the stability of a 

power system to withstand specified contingencies by surviving the subsequent 

transient events and arrive at an acceptable steady state operating condition [Fouad 

and Vittal, 1992]. Many advanced methods have been developed for transient 

stability assessment. These methods include time-domain simulation, transient 

energy function (TEF) methods [Fouad and Vittal, 1992; Pai, 1989], and hybrid 

methods [Maria, Tang, and Kim, 1990; Pavella, 1998].  

Most of the researches in TSCOPF problems consider the transient stability 

constraints through time domain simulation and constrain the relative rotor angle 

within a predefined limit, for example 100 degree [Gan, Thomas, and Zimmerman, 

2000; Yuan, Kubkawa, and Sasaki, 2003] or π rad [Nguye and Pai, 2003]. 

However, these thresholds for different systems may vary and also cannot be 

defined easily. Besides, although TEF methods can produce a Transient Stability 

Index (TSI) to measure the relative stability of the system, these methods are 

suffering from convergence problems in the calculation of the controlling unstable 
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equilibrium point, limited modeling capability and difficulty to identify the critical 

machine group. To avoid these problems, the hybrid method, which combines 

time-domain simulation and TEF method, is used in this study. Time-domain 

simulation is first performed to calculate the generator rotor angles and then 

transient energies are calculated to determine the system stability based on the 

results of time-domain simulation, in which the detailed models can be 

incorporated. This section will describe the representation of transient stability 

constraints and the procedure of transient stability assessment in detail. 

The transient behavior of a gN -generator power system is described by a set 

of differential and algebraic equations as follows:  

eimi
i

i PP
dt

d
M −=2

2δ
                                    (3.1) 

ii ωδ =&                                           (3.2) 

where iδ&  and iω  are rotor angle and angular speed of generator i; miP  and eiP  

are the mechanical power input and electrical power output of generator i; and 

iM  is the moment of inertia of generator i. 

Since in transient stability studies, relative movements of rotor angles have to 

be studied, a frame of reference must be set up. Usually, the center of inertia (COI) 

coordinate is used. It can be represented by a linear combination of all generator 

rotor angles: 

∑
=

=
gN

i
ii

T
COI M

M 1

1 δδ                                  (3.3) 

where TM  is the inertia center and it is defined as: 
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∑
=

=
gN

i
iT MM

1
                                        (3.4) 

Then we have the rotor angle and speed in COI frame in (3.5) and (3.6) 

respectively as below: 

COIii δδθ −=                                       (3.5) 

ii ωθ ~=&                                               (3.6) 

Thus the system equations with respect to the COI frame are denoted here as: 

iCOI
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i
eimiii PACP

M
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PPM ≡−−=ω&~                      (3.7) 

∑
=

−=
gN

i
eimiCOI PPP

1
)(                                  (3.8) 

where iPAC  is the accelerating power of generator i. 

The transient energy function of a power system modeled above is defined as: 

PEKETEF +=                                     (3.9) 
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                             (3.11) 

where KE is the system kinetic energy; PE is the system potential energy; 

SEP
iθ  represents the rotor angle of the post-fault system’s stable equilibrium point; 

and P
iPAC  is the accelerating power of the post-fault systems. 

According to the transient energy function theory [Fouad and Vittal, 1992], 

the TEF remains constant in the post-fault period if the system damping is 

neglected; and this is called the TEF conservation property. If a system is stable 

after a contingency, KE and PE are both positive and keep smaller than TEF; 



 

 47

otherwise, KE increases and PE drops rapidly. Fig. 3.1 and 3.2 illustrate the 

variation of KE, PE, and TEF along typical stable and unstable trajectories 

respectively. 

 

Fig. 3.1 Variations of KE, PE, and TEF along a stable trajectory 

 

Fig. 3.2 Variations of KE, PE, and TEF along an unstable trajectory 
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From (3.10), it can be observed that KE is in proportion to the square of the 

angular speed ω , so the increasing rate of KE is very large. Since the TEF keeps 

almost constant, KE will surpass the limitation of the TEF and become much larger 

than it when the system goes unstable. We can make use of these characteristics to 

determine whether the system is transiently stable or not by the following 

procedures: 

Step 1: Perform a time-domain simulation till the contingency is cleared; and 

calculate the value of TEF at this moment and denote it as clTEF ; 

Step 2: Continue the time-domain simulation in Step 1 till the predefined 

simulation period reached; and then calculate KE of the last time step; 

Step 3: Check whether KE is bounded within the value of clTEF . If yes, the 

system is stable; otherwise, the system is unstable. 

 

3.3 Differential Evolution Algorithm for TSCOPF 

Unlike conventional derivative based mathematical TSCOPF methods, RDE 

based TSCOPF needs not to combine the differential dynamic equations directly 

with basic OPF equations. Like the fitness function, we assign an index Stability to 

each individual in RDE. After fitness evaluation of each individual, transient 

stability assessment is carried out.  If Stability = YES, the individual is able to 

keep the system stable after the contingency. Otherwise, this individual is not a one 
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that satisfies the transient stability requirements. Thus the relationship between 

OPF equations and dynamic equations are relaxed. The transient stability is not 

included into the fitness function, since transient stability here is a condition to be 

met, not an objective to optimize. This transient stability index will take its 

affection in the evolution procedure of RDE. 

3.3.1 Stability Constrained Selection 

The global best individual bestu  denotes the best individual obtained from 

all former generations and it is also the final solution of the problem. For the first 

generation, it is just the best one in the initial population. To find bestu , 

individuals needs to compete with one another. When two individuals au  and bu  

compete, we define that au  is better than bu  if one of the following conditions 

is matched: 

Condition (i): If both of them are stable, au  has higher fitness value; 

Condition (ii): If both of them are unstable, au  has higher fitness value; 

Condition (ii): If au  is stable, while bu  is unstable. 

This “stable space push” strategy helps to induce the searching direction 

towards space where the system can maintain its stability. 
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Fig. 3.3 Illustration of the reproduction mechanism of DE in TSCOPF searching 

space 

 

The reproduction mechanism of DE for only two control variables is 

illustrated in Fig. 3.3. Obviously, the survival priority of stable individuals will 

devote to push the whole population to a stable space as well as finding the optimal 

fuel cost solution. 

3.3.2 Partial Transient Stability Assessment 

Since the searching space is very huge for TSCOPF optimization problems, 

and the transient stability assessment is the most time-consuming part, it is 

necessary to improve the efficiency for the practical use. Two measures are 

proposed here to improve the speed of DE iteration: 
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Strategy 1: After fitness evaluation of a generation, the whole population will 

be sorted by fitness from the best to the worst. It aims at finding out the elite part of 

the whole individuals, stable ones among these elite can help to lead the converge 

direction. 

Strategy 2: Instead of all individuals in the population, only certain 

percentages of the population with better fitness will undergo the TSA calculation 

to find out some stable seeds used to push the population converging to a feasible 

and stable space. This can help to release the computational burden without 

deteriorating the reproduction characteristics of the evolution. The impacts of 

different percentages on the whole TSCOPF performance will be studied by 

following simulations. 

The flowchart of the proposed TSCOPF is illustrated in Fig. 3.4. 
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Fig. 3.4 Illustration of the DE based TSCOPF flowchart 

 

3.4 Case Studies 

The proposed RDE based TSCOPF method is tested on the WSCC 

3-generator, 9-bus system and New England 10-generator, 39-bus system. In both 

test systems, the classical generator model is used for synchronous generator and 

loads are modeled as constant impedances. Integration time step is 0.01 second for 

transient stability simulation, the whole simulation period is 3.0 second. Besides, 

Critical Clearing Time (CCT), which is determined by repeating the transient time 
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domain simulation with different fault clearing times, is used to compare the 

stability performance of the optimal solutions obtained. For each test case, totally 

20 trials are performed to verify the robustness of the proposed method. Program 

is run on a computer with Intel Pentium IV 2.66G CPU. 

3.4.1 Simulation on the WSCC 3-generator, 9-bus System 

The single line diagram of this system is shown in Fig. 3.5; and the system 

data are available in [Sauer, Pai, 1998]. The fuel cost parameters and the rating of 

generators are taken from [Nguyen, Pai, 2003]. The lower and upper limits of all 

bus voltage magnitudes are set at 0.95 p.u. and 1.05 p.u., respectively. There are 

five control variables including 2 generator active power outputs and 3 generator 

node voltages. The population size is set as 20 (i.e. four times of the number of 

control variables); and the maximum generation number is 100. The population is 

reinitialized per 10 generations. As a rough try for a simple system, half of the 

population will undergo the transient stability assessment. Two contingency cases 

are studied: 

Case A: A three phase to ground fault at bus 7 and cleared by tripping line 7-5 

at 350 ms, which is greater than the initial CCT 162 ms. 

Case B: A three phase to ground fault at bus 9 and cleared by tripping line 9-6 

at 300 ms, which is greater than the initial CCT 214 ms. 
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Fig. 3.5 WSCC 3-generator, 9-bus test system 

 

The minimum, maximum, and average fuel costs of the final solutions among 

all 20 trials for the base OPF case, Case A, and Case B are listed in Table 3.1. Here, 

the base OPF case means the OPF solution without transient stability constraints, 

and it is also solved by the RDE algorithm. It can be found that the proposed 

method is very robust because the differences between the minimum costs and the 

maximum costs are very slight and also the standard deviations for all trials are 

fairly small. The average fuel costs for Case A and Case B are $1140.65 and 

$1148.58 respectively, which are rather smaller than the corresponding costs 

reported in [Nguyen, Pai, 2003] as $1191.56 and $1179.95 respectively. The costs 

of all TSCOPF cases are higher than that of the base OPF as expected because the 

economy of the system operation is sacrificed for the enhancement of the stability 

performance. It is important to note that the proposed method can ensure the 
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system stability in all 20 trials (100% stable) while the base OPF cannot (0% stable) 

as shown in Table 3.1. Besides, the average convergence curves for different cases 

in Fig. 3.6 clearly show the fast convergence property of the proposed method and 

a rapid drop of the fuel costs in the first 20 RDE generations. 

The best system solutions (i.e. with minimum fuel cost among all trials) for 

each case are listed in Table 3.2; the CCTs for different conditions and 

contingencies are compared in Table 3.3. The CCT of the best solution obtained by 

the base OPF is only 0.293s for Case A and 0.219s for Case B respectively. Both 

are smaller than the fault clearing time (FCT), which means that the system will go 

unstable when the corresponding contingencies occur. While the proposed 

TSCOPF method can schedule the system with CCT larger than the FCT as well as 

minimize the generating cost. Besides, Fig. 3.7 and Fig. 3.8 show the stable 

trajectories of rotor angles with respect to COI coordinate of best solutions for 

Case A and Case B with best system solutions in Table 3.2 respectively. 

 

Table 3.1 Simulation results of the WSCC 3-generator, 9-bus system 

Case Base OPF A B 

Minimum Cost  ($/h) 1132.30 1140.06 1147.77 

Maximum Cost ($/h) 1132.71 1141.57 1151.37 

Average Cost ($/h) 1132.32 1140.65 1148.58 

Standard Deviation (%) 0.001 0.04 0.07 

Feasible (%) 100 100 100 

Stable (%) 0 100 100 
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Fig. 3.6 Average convergence curves of the WSCC 3-generator, 9-bus system 

 

Table 3.2 Best solutions of the WSCC 3-generator, 9-bus system 

Case Base OPF A B 

G1 (MVA) 105.94+j17.14 130.94-j9.63 130.01+j19.39 

G2 (MVA) 113.04+j4.92 94.46+j9.22 127.17+j7.34 

G3 (MVA) 99.29-j15.31 93.09+j24.77 60.72-j18.34 

V1 (p.u.) 1.050 0.9590 1.0495 

V2 (p.u.) 1.050 1.0139 1.0481 

V3 (p.u.) 1.040 1.0467 1.0327 

Cost ($/h) 1132.30 1140.06 1148.58 

 

Table 3.3 Comparison of CCT for cases A and B 

Case A B 

Fault Clearing Time (ms) 350 300 

CCT of Initial Condition (ms) 162 214 

CCT of Base OPF Solution (ms) 293 219 
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CCT of TSCOPF Solution (ms) 398 376 
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Fig. 3.7 Stable trajectory of rotor angles of TSCOPF solution for case A 
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Fig. 3.8 Stable trajectory of rotor angles of TSCOPF solution for case B 
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3.5 Simulation on the New England 10-generator, 39-bus 

System 

The single line diagram of this system is shown in Fig. 3.9. System data is 

available in [Sauer, Pai, 1998]. The fuel cost parameters and the ratings of 

generators are taken from [Nguyen, Pai, 2003]. The lower and upper limits of all 

bus voltage magnitudes are as those in the MATPOWER software package 

[Zimmerman, Gan, 1997]. There are 19 control variables, including 9 generator 

active power outputs and 10 generator voltages. We set the population size as 60 

(i.e. almost three times of the number of control variables); and the maximum 

generation number is 100. The following two contingency cases are studied: 

Case C: A three phase to ground fault at bus 4 and cleared by tripping line 4-5 

at 250 ms, which is greater than the initial CCT 222 ms. 

Case D: A three phase to ground fault at bus 21 and cleared by tripping line 

21-22 at 160 ms, which is greater than the initial CCT 144 ms. 
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Fig. 3.9 New England 10-generator, 39-bus test system 

 

In this study, the effectiveness of the proposed TSCOPF method under 

different percentages of the population selected for the TSA is studied. The 

average convergence curves corresponding to Case C are shown in Fig. 3.10 as an 

example. The fuel costs and computation times for different percentages of 

population for TSA are shown in Fig. 3.11. It can be observed that the proposed 

method converges very well for different percentages and it can find out stable 

solutions even only 20% of the whole population is selected to undergo TSA. 

Obviously, higher percentage can find a better system condition, but this effect is 

reduced when the percentage becomes large enough. Meanwhile, the computation 

time is almost linear to the percentage since TSA is the most time-consuming part 

of the program. Therefore, a good compromise between the cost and computation 
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time can be achieved according to their relationship. In this study, 40% percentage 

of the population for TSA is selected. 

 

 

Fig. 3.10 Average convergence curves for different percentages of population 

undergoing TSA in case C 
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Fig. 3.11 Fuel cost and computation time versus different percentages of 

population for TSA in case C 

 

The average convergence curves of Cases C and D are shown in Fig. 3.12, 

from which we can observe that both cases converge very well. In the beginning 

part of the converge curves, the fuel costs may increase during several generations 

as shown in Fig. 3.12 and it is a consequence of the DE activity to eliminate the 

violations and insecurities. 
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Fig. 3.12 Average convergence curves of the New England 39-bus system 

 

TSCOPF simulation results are summarized in Table 3.4. Comparisons of the 

fuel costs of the best solutions for different cases are listed in Table 3.5. The 

system conditions of the best solutions for different cases are listed in Table 3.6. 

Small standard deviation of different cases has verified the robustness of the 

proposed methods again. 

For the Reported Results in Table 3.5, Cases C is the result reported in 

[Nguyen, Pai, 2003] which used transient sensitivities to reschedule the generator 

outputs to maintain system stability; Cases D is the result reported in [Dawn, 

Jeyasurya, 2004], which converted the dynamic differential equations into 

equivalent algebraic equations to solve the TSCOPF problem. Obviously, the 

stable solutions obtained by DE method are much economical than the 

conventional methods. As we know, conventional methods are local search 
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methods and only able to search the local optimal solution, which meets the 

transient stability constraints, in local region; while DE searches the solution in the 

global search space and avoids to be trapped by a local optimum. The simulation 

results thus have verified that RDE has a much stronger searching ability than 

conventional mathematical methods.  

 

Table 3.4 Simulation results of the New England 39-bus system 

Case C D 

Minimum Cost ($/h) 61021.04 60988.25 

Maximum Cost ($/h) 61107.62 61068.87 

Average Cost ($/h) 61061.35 61027.57 

Average Time (s) 86.61 91.86 

Standard Deviation (%) 0.05 0.04 

Feasible (%) 100 100 

Stable (%) 100 100 

 

Table 3.5 Comparisons of fuel cost for cases C and D 

Case Base OPF ($/h) TSCOPF ($/h) Reported Results ($/h) 

C 60936.51 61021.04 61826.53 

D 60936.51 60988.25 62263.00 

 

Table 3.6 Best solutions of the New England 10-generator, 39-bus system 

Case C D Case C D 

G1 (MW) 251.97 237.06 V1 (p.u.) 0.9881 0.9925 

G2 (MW) 540.70 587.35 V2 (p.u.) 1.0457 1.0284 
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G3 (MW) 587.96 668.64 V3 (p.u.) 1.0292 1.0139 

G4 (MW) 643.11 634.92 V4 (p.u.) 0.9734 0.9876 

G5 (MW) 509.93 493.77 V5 (p.u.) 1.0164 1.0301 

G6 (MW) 639.09 619.79 V6 (p.u.) 1.0600 1.0456 

G7 (MW) 540.30 514.00 V7 (p.u.) 1.0009 1.0455 

G8 (MW) 565.09 542.87 V8 (p.u.) 0.9974 1.0391 

G9 (MW) 839.99 837.03 V9 (p.u.) 1.0284 1.0249 

G10 (MW) 1023.96 1003.93 V10 (p.u.) 1.0389 0.9836 

Cost ($/h) 61021.04 60988.25    

 

Comparisons of CCT for different cases are listed in Table 3.7. Once again, 

the base OPF solution can schedule the system in a more economical condition but 

with weak stability performance, while the proposed DE based TSCOPF method 

is able to not only ensure the system stability, but also schedule the system more 

economically than other reported TSCOPF methods.  Stable trajectories of rotor 

angles with respect to COI coordinate of the best solutions for Cases C and D are 

shown in Fig. 3.13 and Fig. 3.14, respectively. 

 

Table 3.7 Comparisons of CCT for cases C and D 

Case C D 

Fault Clearing Time (ms) 250 160 

CCT of Initial Condition (ms) 222 144 

CCT of Base OPF Solution (ms) 224 145 

CCT of TSCOPF Solution (ms) 260 169 
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The relationship between the fuel cost and the requirement of the FCT is also 

studied. Curves of optimal fuel cost versus different FCTs for different cases are 

shown in Fig. 3.15. It is found that an optimal solution can be found when FCT is 

reasonable. As the requirement of FCT increases and becomes critical, the fuel 

cost increases rapidly.  However, the system will have no stable solution up to 

certain level of FCT requirement and this is represented by the dashed line in the 

figure. 

 

 

Fig. 3.13 Stable trajectory of rotor angles for case C 
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Fig. 3.14 Stable trajectory of rotor angles for case D 

 

 

Fig. 3.15 TSCOPF solution versus different fault clearing time 
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3.6 Summary 

In this chapter, the proposed RDE is applied to solve the TSCOPF problem. It 

is found that the proposed method is not only able to ensure the transient stability 

performance of the system, but also determine a lower fuel cost solution compared 

with other reported results in the literature. The robustness and effectiveness of the 

proposed method have also been verified based on the simulation results. Besides, 

impact of the fault clearing time requirement on the total system fuel cost is 

investigated by this new powerful tool. 
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Chapter 4 Multi-Constrained Discrete 

TSCOPF 

 

 

 

4.1 Introduction 

The researches in last chapter have investigated the strong ability of DE in 

continuous transient stability constrained optimal power flow problem. However, 

the power systems can not be adjusted smoothly in practice as expected. Some 

control variables such as the transformer tap settings are discrete; generators have 

prohibitive operation zones (POZ), valve-point effects. The continuous TSCOPF 

problem itself is a nonlinear and non-convex problem which is hard to be handled 

by conventional methods, these practical operation constraints make it more 

complicated. With these constraints, the decision space of the TSCOPF problem is 

divided into disjoint sub-regions which make the problem numerically 

discontinuous and non-differentiable. As a result, the conventional numerical 

approach cannot be applied directly. Applications of EAs in solving economic 

dispatch problems with all kinds of generator constraints have proved their power 

in handling nonlinear, non-convex, non-smooth, non-differential and 

discontinuous problems [Gaing, 2003; Park, Lee, etc., 2005; Chiang, 2005; Liu 
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and Cai, 2006; Coelho and Mariani, 2006]. 

In this chapter, the TSCOPF problem with multi practical operation 

constraints is resolved using DE algorithm to examine its behavior in handling 

discontinuous and non-differentiable optimization problems.  

 

4.2 Practical Operation Constraints 

Practical operation constraints considered in this chapter are introduced as 

below. 

(1) Valve Point Effects of Generator 

In most of research works, the cost function of each unit has been 

approximately represented by a single quadratic cost function. Conventional 

methods based on derivation need these simplicities to obtain solutions. However, 

in reality, large steam turbines have steam admission valves, the valve-point effect 

is the rippling effect added to the generating unit curve when each steam 

admission valve in a turbine starts to open. Thus, the input–output characteristics 

of the generating units will become non-convex and furthermore they may 

generate multiple local optimum points in the cost function. Therefore, the cost 

function is normally described as the superposition of a sinusoidal function and a 

quadratic function as below. 

          ))(sin( min2
iiiigiigiiii PPedPcPbaf −+++=                   (4.1) 

where ia , ib , and ic  are the fuel consumption cost coefficients of unit i, id  and 
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ie  are fuel cost coefficients of the ith unit with valve-point effects.  

(2) Prohibited Operating Zones of Generator 

For convenience, the unit generation output is usually assumed to be adjusted 

smoothly. Practically, there are prohibited operating zones in the input-output 

curve of generator due to steam valve operation or vibration in a shaft bearing. In 

practical operation, adjusting the generation output giP  of a unit must avoid these 

prohibited zones. The feasible operating zones of unit i  can be described as 

follows: 

l
gigigi PPP 1,

min ≤≤            

  l
jgigi

u
jgi PPP 1,, +≤≤ ,    )1(,...,2,1 −= zNj  

max
, gigi

u
Ngi PPP

z
≤≤                                     (4.2) 

where u
jgiP ,  and l

jgiP ,  are upper and lower bounder of the jth prohibited zone of 

unit i; zN  is the total number of prohibited zones in unit i. 

(3) Discrete Control Region of Transformers 

Adjusting transformer tap settings is a common way in power system control. 

Most transformers in power systems are discontinuously variable transformer, 

values of the transformer ratios are within their available sets as below: 

},,,,{ maxmin
iikii TTTT LL∈ ,      tNi ,,1K=     (4.3) 

where iT  is the tap setting of transformer i , min
iT  and max

iT  are minimum and 

maximum tap settings, ikT  is one of the valid tap settings, and tN  is the total 

number of adjustable transformers. 



 

 72

(4) Static Thermal Constraints 

                  max
ii SS ≤ ,      lNi ,,1K=        (4.4) 

where lN  is the total number of branches; and iS  is the apparent power flow in 

branch i , max
iS  is the upper limit of branch flow apparent power. 

4.3 Multi-constrained discrete TSCOPF 

The implementation of the multi-constrained TSCOPF problem differs not 

much with that of the continuous TSCOPF studied in last chapter. However, a few 

questions have to be mentioned here. 

4.3.1 Handling of Discrete Variables 

As introduced above, control variables like transformer tap settings and 

generator active power outputs are discrete variables now. During the optimization 

process, we have to take some measures to handle this. Fortunately, discrete 

control variables influence only the initialization and reproduction stages of DE. 

When these two operations occur, discrete variables are firstly treated as 

continuous variables within their lower and upper boundaries, and then will be 

rounded off the nearest possible values. 

4.3.2 Fitness Evaluation Function 

The fitness function has to make some modifications in the multi-constrained 

TSCOPF. Violation of static thermal constraint of individual is added into 
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punishment items in the fitness function. 

)/(1 BFBFPSPSQiQViVii FKFKFKFKfF ++++=               (4.5) 

∑
=

−=
lN
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jjijBFi SSSF

1

maxmax /|)(|         (4.6) 

where BFiF  is the sum of violation of branch flow limitations of individual i , 

and BFK  is the corresponding penalty coefficient. 

 

4.4 Case Studies 

The DE based multi-constrained TSCOPF method is tested on the New 

England 10-machine, 39-bus system. Lower and upper limits for transformer tap 

settings are 0.90 and 1.10 p.u., respectively, and the adjustment step is 0.01 p.u.. 

Branch flow apparent power limits is set at 800MVA for each line, and branch 

29-38 has a flow of 852.61MVA which violates the limits. There are 31 control 

variables, including 9 generator active power outputs, 10 generator voltage 

magnitudes and 12 transformer tap settings. A three phase to ground fault is 

applied at bus 21 and cleared by tripping line 21-22 at 0.16s. Transient simulation 

time step is set as 0.01 second, the whole simulation period is 3.0 second. CCT of 

the test system under original system configuration is 144ms which is less than the 

fault clearing time. The population size is set at 90, and the maximum generation 

number is 100. Re-initialization period is set as 10 generations. Totally 20 trial 

runs are performed. 
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4.4.1 Case A: Discrete Optimization Validation 

Before all the TSCOPF simulations, basic OPF is run on both MATPOWER 

[Zimmerman and Gan, 1997] software without transformer tap adjustment and DE 

method with transformer tap adjustment. Temporarily, generator valve-point 

effects, generator POZ constraints, and branch flow constraints are all not 

considered, since MATPOWER solves OPF by conventional methods, and 

discrete constraints can not be handled. The results are compared to verify the 

ability of DE in handling discrete control variables.  

The minimum fuel cost obtained by MATPOWER is 61761.68$/h. DE 

simulation results are listed in Table 4.1. The best system solutions are listed in 

Table 4.2. The average fuel cost obtained from the 20 trials is 60916.11$/h, which 

saved 1.37% more fuel cost than the MATPOWER solution. It is obviously that 

DE has stronger ability to handle discrete control variables and converges to more 

optimal solution than conventional method embedded in the MATPOWER. 

Moreover, DE takes 3.95 seconds to reach the solution while MATPOWER takes 

4.78 seconds under the same computing conditions. 

 

Table 4.1 Simulation results for case A 

Minimum Cost ($/h) 60907.65 

Maximum Cost ($/h) 60928.04 

Average Cost ($/h) 60916.11 

Standard Deviation (%) 0.007 

Feasible (%) 100 
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Stable (%) 100 

ACT (s) 3.95 

 

Table 4.2 Best system solutions for case A 

Unit Generation (MW) Unit Voltage (p.u.) 

G30 234.30 G30 1.0443 

G31 563.77 G31 1.0164 

G32 634.69 G32 0.9993 

G33 628.97 G33 1.0023 

G34 509.35 G34 1.0197 

G35 654.36 G35 1.0441 

G36 562.58 G36 1.0539 

G37 536.52 G37 1.0592 

G38 830.45 G38 1.0594 

G39 983.94 G39 1.0485 

Branch Tap Settings (p.u.) Branch Tap Settings (p.u.) 

12-11 1.02 22-35 1.03 

12-13 1.01 23-36 1.03 

6-1 1.10 25-37 1.00 

10-32 1.10 2-30 1.00 

19-33 1.08 29-38 1.00 

20-34 0.99 19-20 1.06 

Fuel Cost ($/h) 60907.65 

CCT (ms) 127 
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4.4.2 Case B: TSCOPF with Valve-point Effects 

In this section, valve-point effects are included into the TSCOPF problem. 

The fuel cost coefficients with valve-point effects are listed in Table 4.3. 

 

Table 4.3 Unit fuel cost coefficients with valve-point effects 

Unit a b c d e 

30 0.0193 6.900 0.000 100.000 0.084 

31 0.0111 3.700 0.000 150.000 0.063 

32 0.0104 2.800 0.000 200.000 0.042 

33 0.0088 4.700 0.000 150.000 0.063 

34 0.0128 2.800 0.000 150.000 0.063 

35 0.0094 3.700 0.000 150.000 0.063 

36 0.0099 4.800 0.000 150.000 0.063 

37 0.0113 3.600 0.000 150.000 0.063 

38 0.0071 3.700 0.000 200.000 0.042 

39 0.0064 3.900 0.000 250.000 0.036 

 

Table 4.4 shows the minimum, maximum and average fuel costs obtained 

among all 20trials. The best system solutions are listed in Table 4.5. The average 

convergence curve is shown in Fig. 4.1. As seen in Table 4.4, all trials are managed 

to converge to a feasible and stable solution. Standard deviation of all solutions is 

small which proves the robustness of the proposed method. The best solution with 

a minimum cost of 61514.18 $/h has a CCT of 197 ms which is longer than the 

fault clearing time. Fig. 4.2 shows the stable trajectory of generator rotor angles 
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under COI coordinate. Branch 29-38 has a branch flow of 865.03MVA which is 

large than 800MVA, other branches are within the limits. 

 

Table 4.4 Simulation results for case B 

Minimum Cost ($/h) 61514.18 

Maximum Cost ($/h) 61757.21 

Average Cost ($/h) 61598.48 

Standard Deviation (%) 0.13 

Feasible (%) 100 

Stable (%) 100 

ACT (s) 136.39 

 

Table 4.5 Best System Solutions for Case B 

Unit Generation (MW) Unit Voltage (p.u.) 

G30 295.57 G30 1.0084 

G31 600.87 G31 0.9922 

G32 672.96 G32 1.0204 

G33 600.15 G33 0.9930 

G34 495.44 G34 1.0018 

G35 557.80 G35 0.9737 

G36 502.54 G36 1.0366 

G37 546.13 G37 1.0132 

G38 823.64 G38 0.9647 

G39 1045.99 G39 1.0409 

Branch Tap Settings (p.u.) Branch Tap Settings (p.u.) 

12-11 1.02 22-35 1.04 

12-13 0.98 23-36 1.05 
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6-1 0.99 25-37 1.02 

10-32 1.04 2-30 1.02 

19-33 0.97 29-38 1.04 

20-34 1.00 19-20 0.98 

Fuel Cost ($/h) 61514.18 

CCT (ms) 197 
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Fig. 4.1 Average converge curve for case B 
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Fig. 4.2 Stable trajectories of rotor angles for case B 

 

4.4.3 Case C: Multi-Constrained OPF 

All practical operation constraints mentioned in this chapter are finally 

incorporated to check the adaptability of the proposed method. Three units are 

selected to have POZs. The generator prohibited operating zones data are listed in 

Table 4.6. These POZs are designed to locate the unit active power output 

solutions in last section into the POZ regions. 

 

Table 4.6 Prohibited operating zones of New England 39-bus system 

Unit min
iP (MW) max

iP  (MW) Prohibited Zones (MW) 
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30 0 350 [200, 300] 

32 0 800 [400, 500] [600, 700] 

39 0 1200 [700, 800] [900, 1100] 

 

Simulation results are summarized in Table 4.7 and best system solutions are 

listed in Table 4.8. Fig. 4.3 and Fig. 4.4 illustrate the average converge curve and 

stable rotor angle trajectory of case C. 

As seen from the results, generation power solutions of those units have POZ 

have been moved away from the POZ to feasible regions. Branch flow in line 

29-38 has been decreased to 752.53MVA without any other branch flow violations. 

Though the mean fuel cost is slightly large than that in Case B, solutions obtained 

in this case are more meaningful to practical operations.   

 

Table 4.7 Simulation results for case C 

Minimum Cost ($/h) 61527.30 

Maximum Cost ($/h) 61696.31 

Average Cost ($/h) 61639.44 

Standard Deviation (%) 0.11 

Feasible (%) 100 

Stable (%) 100 

ACT (s) 138.56 

 

Table 4.8 Best system solutions for case C 

Unit Generation (MW) Unit Voltage (p.u.) 
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G30 300.51 G30 1.0252 

G31 599.42 G31 1.0462 

G32 598.96 G32 1.0187 

G33 599.24 G33 0.9754 

G34 501.32 G34 1.0234 

G35 600.33 G35 0.9982 

G36 503.17 G36 1.0236 

G37 550.05 G37 0.9835 

G38 74.84 G38 0.9835 

G39 1135.44 G39 0.9867 

Branch Tap Settings (p.u.) Branch Tap Settings (p.u.) 

12-11 1.02 22-35 1.01 

12-13 0.96 23-36 1.05 

6-1 1.07 25-37 1.06 

10-32 0.98 2-30 0.96 

19-33 1.00 29-38 1.01 

20-34 0.97 19-20 0.97 

Fuel Cost ($/h) 61527.30 

CCT (ms) 180 
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Fig. 4.3 Average converge curve for case C 
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Fig. 4.4 Stable trajectories of rotor angles for case C 
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4.5 Summary 

This chapter extends and improves continuous TSCOPF to multi-constrained 

OPF problem. Transient stability constraints, generator prohibited operating zones, 

and other practical operation constraints are all included as constraints to the OPF 

problem which makes the problem a particularly complex one. Fortunately, 

simulation results show the proposed method is very effective and robust in 

handling this nonlinear, non-smooth, non-convex, and non-differentiable 

optimization problem.  

The computational time is acceptable for the New-England 39-bus system, 

however, the searching process may become slow in practical system where more 

contingencies have to be considered and the system size is much larger. To 

improve the proposed method to practical utility, parallel computation technology 

will be introduced in the next chapter. 
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Chapter 5 Parallel Computation 

 

 

 

5.1 Introduction 

The studies in last two chapters show that DE is effective and robust in 

solving the TSCOPF problem. However, transient stability assessment is a CPU 

intensive task especially when system becoming large. Fortunately, the 

development in the world of modern computing offers the possible way of parallel 

computation to decrease the computation time of engineering problem and meet 

the need of practical application. 

As one of the evolutionary algorithms, DE is intrinsically a parallel searching 

algorithm. Thus, it is very suitable for parallel computation. So far, researches 

about parallel evolutionary algorithm on OPF problem are inadequate. This 

chapter will parallelize the RDE based TSCOPF problem on a Beowulf PC-cluster 

platform. The construction of parallel platform is firstly introduced; details about 

parallelization of RDE-TSCOPF are described consequently; and the 

characteristics and performance of parallel RDE are investigated through OPF 

simulations on IEEE 118-node system. 
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5.2 Parallel Computation and PC-cluster 

5.2.1 Structures of parallel computer systems 

Parallel computation can be utilized in different levels in computer systems, 

such as task level, instruction level, or hardware level [Alba & Tomassini, 2002]. 

According to the number of instruction streams and data streams, Michael Flynn 

divided computer systems into four kinds of architecture in 1966: Single 

Instruction Single Data Stream system (SISD), Single Instruction Multiple Data 

Stream system (SIMD), Multiple Instruction Single Data Stream system (MISD), 

and Multiple Instruction Multiple Data Stream system (MIMD). Although there is 

great development in computer systems, this kind of division is still widely 

accepted today. SISD refers to serial computer system corresponds to ordinary 

computer or station with single CPU. The other three architectures belong to 

parallel architecture. In reality, MISD is seldom used; while SIMD and MIMD are 

most used parallel architectures. The structure of SIMD and MIMD systems are 

illustrated in Fig. 5.1 and Fig. 5.2. 

MEMORY

Control
Unit

ALU1 ALU2 ALUn...

Instructions

Instructions

Data Data

 

Fig. 5.1 Illustration of the SIMD architecture 
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Instructions
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Unit

Control
Unit
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Fig. 5.2 Illustration of the MIMD architecture 

 

In SIMD system, there is only one control unit and several algorithm logic 

units (ALU) as slaves. In each instruction cycle, the control unit will broadcast an 

instruction to all slave ALUs; each ALU may execute the instruction or idle for 

new instruction. The SIMD system runs in a precise synchronous mode. When 

data structure is inerratic, this parallel system has the advantage of easy coding; 

however, when data structure is not regular or the program has many branches, the 

whole efficiency of this parallel system will slow down with many ALUs’ idling. 

In MIMD system, each CPU is autonomous with both control unit and ALU. 

Each CPU can run the program in its own pace unless the program demands them 

to run synchronistically. Thus, the MIMD system is synchronous system. MIMD 

system is more flexible than SIMD system and is the most widely used system. 

Generally, there are two kinds of MIMD architectures: shared memory 

architecture and distributed architecture as shown in Fig. 5.3 and 5.4. 
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CPU CPUCPU

MEMORYMEMORYMEMORY
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Fig. 5.3 Shared memory MIMD architecture 

 

NETWORK

CPU CPUCPU MEMORYMEMORYMEMORY ...

 

Fig. 5.4 Distributed memory MIMD architecture 

 

5.2.2 Beowulf PC-cluster 

Cluster is a powerful concept and technique for driving extended capabilities 

from exiting classed of component. In the field of computing system, cluster are 

ensembles of independently operational computers integrated by means of an 

interconnection network and supporting user-accessible software for organizing 

and controlling concurrent computing tasks that may cooperate on a common 



 

 89

application program or workload [Sterling, 2002]. Nowadays, it is among the first 

class computer system architecture techniques for achieving significant 

improvements in overall performance. Obviously, it belongs to the distributed 

memory MIMD structure. 

Beowulf is a class of cluster that may be implemented by the end users 

themselves from available components. It exploits mass-market PC hardware and 

software in conjunction with cost-effective commercial network technology. Key 

advantages of this approach are high performance for low price, system scalability, 

and rapid adjustment to new technology advances. Nowadays, Beowulf cluster are 

becoming the main platform for many scientific, engineering, and commercial 

applications. 

 

5.3 Build a Beowulf PC-cluster 

5.3.1 Hardware Construction 

Hardware construction of a Beowulf cluster is simple and convenient as 

demonstrated in Fig. 5.5. A host node (computer) is used to control the cluster, 

write and run programs, etc. Work nodes are connected to the host node via one or 

more Ethernet switches according to the work node number and switch port 

number. 
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Fig. 5.5 Configuration of the Beowulf cluster used in this research 

 

5.3.2 Network configurations 

Before the cluster starts to work, configurations have to be made on networks 

before the cluster starting to work. These configurations mainly include protocol 

settings and security settings. 

(1) IP address setting 

After operating system Linux (Red Hat 9.0) installation, assign unique IP 

addresses and hostnames for each computer in the cluster. Suppose there are 

totally HW nodes included in the cluster, we named our nodes here from ciarlab00 

to ciarlabHW, using the ciarlab00 as our administrative node. Our cluster is 

private, so theoretically we could assign any valid IP addresses to our nodes as 

long as each had a unique value. We used IP addresses 192.168.100.200 for the 
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host node and added 1 for each work node (192.168.100.201, etc). Also, the 

hostname for each node is ciarlabXX.cluster.net, where ‘XX’ is from 00 to HW and 

the DNS name is cluster.net with net mask: 255.255.255.0. These settings can be 

made from the X-windows: System Settings → Network → eth0 (Gigabit Ethernet 

adapter) → DNS. 

Then, modify the file /etc/hosts on each node to include all the nodes in the 

cluster as follows: 

192.168.100.200      ciarlab00.cluster.net      ciarlab00
192.168.100.201      ciarlab01.cluster.net      ciarlab01
192.168.100.202      ciarlab02.cluster.net      ciarlab02
             .                                .                           .
             .                                .                           .
             .                                .                           .
192.168.100.2HW    ciarlab40.cluster.net      ciarlabHW
127.0.0.1                 localhost.localdomain     localhost

 

Since the computers in our Lab have two Ethernet adapters, Gigabit (eth0) 

and 100Mbps (eth1), in order to minimize the startup time of the Linux operating 

system, one can optionally turn off the 100Mbps Ethernet adapter (eth1) by editing 

the following file: /etc/sysconfig/networking/devices/ifcfg-eth1, modifying the line 

ON BOOT = yes to ON BOOT = no. 

(2) Network Services 

In order to have remote login functions, certain network services should be 

enabled. At /etc/xinetd.d directory, modified rsh, rlogin, rexec, telnet, nfs, rsync, 

ntpd ⇒ disabled = yes changed to disabled = no. Then type the command: xinetd 

–restart or reboot the computer in order to activate those functions. Also, turn off 
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kudzu function (automatically detect new hardware) in the master node only. All 

these tasks can also be performed under the X-Windows graphic user’s interface, 

chose System Settings → Server Settings → Services, and then select the 

appropriate items. 

(3) Remote Shell Login (RSH) 

Create .rhosts file in the user directory (/home/ciarlab) and hosts.equiv file in 

the /etc directory. Then, use the command chmod 644 .rhosts to change the 

ownership of the .rhosts file. The two files are distributed to all nodes in the cluster. 

The files are shown as follows: 

ciarlab00.cluster.net ciarlab
ciarlab01.cluster.net ciarlab
ciarlab02.cluster.net ciarlab
            .                           .
            .                           .
            .                           .
ciarlabHW.cluster.net ciarlab

 

(4) NFS Security Settings 

Disable the firewall under X-Windows, System Settings → Network. Also, 

create files hosts.allow and hosts.deny in the /etc directory for all nodes.  

In file hosts.allow, write in: 

portmap:     192.168.100.200, 192.168.100.201, ＃ , 192.168.100.2HW
lockd:         192.168.100.200, 192.168.100.201, ＃ , 192.168.100.2HW
mountd:      192.168.100.200, 192.168.100.201, ＃ , 192.168.100.2HW
rquotad:      192.168.100.200, 192.168.100.201, ＃ , 192.168.100.2HW
statd:          192.168.100.200, 192.168.100.201, ＃ , 192.168.100.2HW
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In file hosts.deny, write in: 

portmap:      ALL
lockd:          ALL
mountd:       ALL
rquotad:       ALL
statd:           ALL

 

(5) Clock Synchronization (NTP Setup) 

The Network Time Protocol (NTP) provides the clock synchronization. The 

following shows the reader how to setup our own NTP servers for other clients 

which are behind the firewalls. Open file /etc/ntp.conf on each node and edit it 

(suggestion: backup the original one and then create a new one): 

For master node: 

server                127.127.1.0            #local clock
fudge                127.127.1.0            stratum 10
driftfile/etc/ntp/drift
restrict           default ignore
restrict           127.0.0.1
restrict           192.168.100.201     nomodify
restrict           192.168.100.202     nomodify
...
restrict               192.168.100.2HW   nomodify
authenticate        no

 

For slave nodes: 
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server                192.168.100.200
restrict               default ignore
restrict               127.0.0.1
restrict               192.168.100.200     nomodify
driftfile/etc/ntp/drift
authenticate        no

 

Then, create a file /etc/rc2.d/S168ntp for all nodes, add the line /usr/sbin/ntpd 

–c /etc/ntp.conf to the newly created file. Change the ownership by typing: chmod 

777 S168ntp. After rebooting, one can check the status at: /usr/sbin/ntpq –p. 

(6) Secure Shell Login (SSH) 

Ssh is a secure clone of rsh with RSA encryption based authentication. The 

basis of using ssh without typing your password is public key based authentication. 

A pair of public/private keys is needed to be generated for this. 

Firstly, generate user’s public/private keys in the /home/ciarlab directory by 

typing the command: ssh-keygen –t rsa. This will generate user’s id_rsa and 

id_rsa.pub in the .ssh directory in the /home/ciarlab/ directory. 

Secondly, copy the id_rsa.pub to the .ssh directory of the remote hosts that 

one wants to logon to as authorized_keys2. 

Thirdly, change the ownership (chmod) of the ciarlab and .ssh to 755. Then 

copy the .ssh to all nodes: scp –r .ssh ciarlabXX:/home/ciarlab (where XX is from 

01 to 36). 

5.3.3 Software Environment and Tools 

Parallel computation on a Beowulf is accomplished by dividing a 
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computation into parts and making use of multiple processes, each executing on a 

separate processor, to carry out these parts. Sometimes an ordinary program can be 

used by all the process, thus no communication occurs among the separate tasks. 

However, when a parallel computer system is needed to attack a large problem 

with a more complex structure, such communication is necessary. One of the most 

straightforward approaches to communication is to have the processes coordinate 

their activities by sending and receiving messages, much like a group of people 

cooperate to perform a complex task. This approach to achieve parallelism is 

called Message Passing [Sterling, 2002]. 

In computing world, message is defined as a group of information organized 

in specified format that can be understood by both dispatchers and receivers. 

Messages provide the data exchange and cooperation among different process. 

Generally, a message passing tool should be employed to carry out the 

communication in parallel programming. Basic message communication tools 

such as sockets and more sophisticated environments, such as Parallel Virtual 

Machine (PVM) and Message Passing Interface (MPI) are discussed here. 

The socket interface is a widely available message passing programming tool 

which defines a set of data structures and C functions for programmers to establish 

the full-duplex connection among different computers through TCP protocol. 

Synchronous and asynchronous parallel programs can be developed with the 

socket application programmer’s interface (API), with the added benefits of 

common availability, high standardization, and complete control over the 
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communication primitives. But programming with sockets is error-prone and 

requires understanding low level characteristics of the network. Also, it does not 

include any process management, fault tolerance, task migration, security options, 

or other features usually requested by modern parallel applications [Comer and 

Stevens, 1993]. 

PVM is the first widely used software system for message passing developed 

by Oak Ridge National Laboratory (ORNL), University of Tennessee, Emory 

University etc. [Sunderam, 1990]. It permits the utilization of a heterogeneous 

network as a single general and flexible concurrent computational resource. The 

advantages of PVM are its wide acceptability and its heterogeneous computing 

facilities, including fault-tolerance issues and interoperability. However, its 

flexibility is at the cost of capability [Buyya, Vol. 2, 1999]. PVM has recently 

begun to be unsupported and no further releases come out. Users are shifting from 

PVM to more efficient paradigms, such as MPI. 

MPI is a message passing library specification established by MPI Forum, a 

group of parallel computer vendors, computer scientists, and users who came 

together to cooperatively work out a community standard.  

[http://www.mpi-forum.org/index.htm]. The first version was released in 1994 

[William, Vol. 1, 1998], the second version was released in 1997 as the extension 

of the first one [William, Vol. 2, 1998]. Similar to PVM, MPI is a library of 

message passing routines but more complete. Users can call corresponding MPI 

functions to accomplish the message passing efficiently with programs coding in 

http://www.mpi-forum.org/index.htm
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C/C++ or FORTRAN languages. The MPI functions support process-to-process 

communication, group communication, setting up and managing communication 

groups, and interacting with the environment. The communication speed is much 

fast with the implementation of MPI. As a result, the MPI specification is accepted 

by more and more computer vendors, such as DEC, HITACH, HP, IBM, and SUN, 

etc. MPI has now become a defacto standard and several implementations exist. 

The most common used are MPICH [MPICH home page, 

http://www-unix.mcs.anl.gov/mpi/mpich/] and LAM/MPI [LAM/MPI parallel 

computing home page, http://www.lam-mpi.org/]. In this research, LAM/MPI 

7.0.2 in C language is employed and installed in each node of the Beowulf cluster. 

 

5.4 MPI Programming 

5.4.1 MPI Commands 

MPI is a set of API functions enabling programmers to write 

high-performance parallel programs that pass messages between serial processes 

to make up an overall parallel job. MPI library provides users full-fledged function 

definitions, so it is fare convenient for MPI programming. A typical MPI parallel 

program in C language is shown in Fig. 5.6 as below.  

Header file mpi.h should be included into the program like ordinary C 

libraries before call functions in MPI library. All MPI library functions are labeled 

with MPI_ at the beginning of function name.  
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An MPI parallel program is composed of multiple processes that 

communicate with one another. All processes that on task are ranked from 0 and 

they group into a community which is named as MPI_COMM_WORLD. 

Function MPI_Init() starts up the MPI, and it must be called before any other 

MPI function.  

Function MPI_Finalize() shuts down the MPI, all activities related to MPI 

will be finalized, for example, release the memory allocated by MPI. No MPI 

function may be called after this function is called. 

Function MPI_Comm_rank() returns the rank of the calling process and 

stores it in variable rank; function MPI_Comm_size() returns the total number of 

processes and store it in variable size. 

Condition-branch statement if…else… is the main part to realize parallel 

computation. It assigns different processes to execute different tasks. Tasks that 

doesn’t been assigned to a specified process will be executed by all processes. 
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# include "mpi.h"

main(int argc, char* argv[])
{
    int rank, size;

    MPI_Init(&argc, &argv); // No MPI function should be called before here.
    MPI_Comm_rank(MPI_COMM_WORLD, &rank);
    MPI_Comm_size(MPI_COMM_WORLD, &size);

    if(rank==0)
    {

     }
     else if(rank==1)
    {

     }
     else
    {

     }
     MPI_Finalize(); // No MPI functions should be called after here.

     return 0;
}

M

M

M

M

M

M

M

M

 

Fig. 5.6 A typical MPI program 

 

There are different ways for processes to communicate through different MPI 

functions. Most commonly used is point-to-point sending and receiving 

(MPI_Send(), MPI_Recv()) or point-to-all broadcasting (MPI_Bcast()). They are 

interpreted below: 

 

int MPI_Send(void* message, int count, MPI_Datatype datatype, int dest, int tag, 

MPI_Comm comm) 

It sends count copies of data stored in memory block message to the process with 
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rank dest. 

 

int MPI_Recv(void* message, int count, MPI_Datatype datatype, int source, int 

tag, MPI_Comm comm, MPI_Status* status) 

It receives count copies of data sent by process source and store it into memory 

block message. 

 

int MPI_Bcast(void* message, int count, MPI_Datatype datatype, int root, 

MPI_Comm comm) 

It sends count copies of data stored in memory block message in the process with 

rank root to every process (including root) in comm. 

 

All of the above functions return an integer value which is used as an echo 

code. If an error is detected in data transfer, the program will make response 

accordingly. In default situation, the program will exit with an error code. 

Parameter tag is used to pair up the sending and receiving activity. An 

MPI_Recv() can only receive the data from an MPI_Send() with the same tag. 

Parameter datatype describe the data type of the message defined by MPI. 

These data types may be basic types corresponding to C language, or special data 

type of MPI, such as MPI_BYTE and MPI_PACKED, even data types constructed 

by programmers. Table 5.1 listed the data types corresponding to basic C data 

types. 
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Table 5.1 MPI data types corresponding to fundamental C data types 

MPI DATA TYPE C DATA TYPE 

MPI_CHAR signed char 

MPI_SHORT signed short int 

MPI_INT signed int 

MPI_LONG signed long int 

MPI_UNSIGNED_CHAR unsigned char 

MPI_UNSIGEND_SHORT unsigned short int 

MPI_UNSIGEND unsigned int 

MPI_UNSIGNED_LONG unsigned long int 

MPI_FLOAT float 

MPI_DOUBLE double 

MPI_LONG_DOUBLE long double 

 

Besides these basic functions introduced above, other MPI functions used for 

timing, counting, and cooperating are listed below: 

double MPI_Wtime(void) 

It returns a double precision number representing the number of seconds that have 

elapsed since some time in the past. 

 

int MPI_Reduce(void* operand, void* result, int count, MPI_Datatype datatype, 

MPI_Op operator, int root, MPI_Comm, comm) 

It combines the contents of each process’s operand using the operation operator. 

Store the result on process with rank root only. 
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int MPI_Waitall(int array_size, MPI_Request requests[], MPI_Status statuses[]) 

It waits for all the operations associated to elements of the array requests to 

complete. 

 

int MPI_Barrier(MPI_Comm comm) 

It blocks the calling process until all processes in comm have entered the function 

(for synchronization). 

 

Details of the usage of these functions and other advanced MPI functions 

please refer to [Pacheco, 1997]. 

5.4.2 How to Run MPI Program 

In order to run MPI program, every computational nodes need to install the 

LAM/MPI software. LAM/MPI is a high-performance, freely available, open 

source implementation of the MPI standard. LAM/MPI is not only a library that 

implements the mandated MPI API, but also the LAM run-time environment: a 

user-level, daemon-based run-time environment that provides many of the 

services required by MPI programs. Details on the configuration and usage of the 

LAM/MPI can be found in its installation guide and getting started manual 

respectively. 
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(1) Compiling MPI Programs 

LAM/MPI provides wrapper compilers to add the correct compiler/linker 

flags and then invoke the underlying compiler to actually perform the 

compilation/link. The wrapper compiler is named mpicc for C programs. The 

usage of mpicc is: 

mpicc mpi_program1.c mpi_program2.c –o my_mpi_program 

where mpi_program1.c and mpi_program2.c is the programs to be 

compiled/linked, my_mpi_program is the output executable file which is ready to 

run in the LAM/MPI run-time environment. 

(2) Booting LAM/MPI 

Before any MPI programs can be executed, the LAM/MPI run-time 

environment must be launched. This is typically called booting LAM/MPI.A 

successfully boot process creates an instance of the LAM/MPI run-time 

environment commonly referred to as the LAM/MPI universe. When booting 

LAM/MPI, a boot schema file listing the hosts on which to launch the LAM/MPI 

run-time environment is needed. This file is typically referred to as a hostfile. For 

example, if the contents of hostfile is: 

ciarlab00  cpu=2
ciarlab01  cpu=2

ciarlab20       cpu=2
M

 

It tells the LAM/MPI that totally 21 nodes are specified and 2 MPI processes can 
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be launched on each node. It is important to note that the number of CPUs 

specified in here has no correlation to the physical number of CPUs in the machine. 

The lamboot command is used to launch the LAM run-time environment. For 

example: 

lamboot –v hostfile 

Note that it is not necessary to have LAM/MPI booted to compile MPI programs. 

(3) Running MPI Programs 

Before running MPI programs, make sure every slave nodes in the cluster has 

a copy of the executable (in this case, my_mpi_program) in the same directory as 

in the master node. A batch file which includes a serial of remote copy commands 

(scp) is usually employed to take this mission. 

Now the parallel program can be run with the command of mpirun. Mainly 

there are three modes to run a program as listed below: 

mpirun C my_mpi_program 

mpirun N my_mpi_program 

mpirun –np X my_mpi_program 

where item C means to create a process on each CPU; item N means to create a 

process on each node in the LAM/MPI universe; and item –np X means to create X 

copies of processes of my_mpi_program, LAM/MPI will schedule how many 

copies of my_mpi_program will be run in a round-robin fashion on each node by 

how many CPUs were listed in the boot schema file or hosftile.  
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(4) Shutdown LAM/MPI 

When complete the parallel computation, use command lamhalt to shutdown 

the LAM/MPI run-time environment. 

 

5.5 Parallel Topologies 

The most well-know topologies for parallel evolutionary algorithms are 

Global Parallel topology, Decomposition topology, and Hybrid topology. 

5.5.1 Global (Master-Slave) Parallel Topology 

The Global Parallel topology which is also called Master-Slave topology is 

shown in Fig. 5.7. A master processor is always employed to coordinate all other 

processors (slaves) equally. This method maintains a single population and most of 

the steps in this loop (evaluation, selection of the individuals) can be executed in 

parallel. The procedure for Master-Slave DE algorithm can be described as 

follows. 

1. Master processor initializes the whole population of individuals and then 

divides it evenly among the other slaves.  

2. After receiving the sub-populations, the slave processors execute fitness 

evaluation independently. Then each slave processor sends its result back 

to the master for the reproduction or reinitialization. 

3. The reproduced offspring population is then divided evenly and sent to 
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slave processors again for fitness evaluation. After fitness evaluation, the 

offspring individuals compete with their corresponding father, the 

survivals are sent back to the master for the next reproduction and 

selection for the best fitness individual. 

4. The stopping rule is checked. If it is not satisfied, return to Step 3. 

 

. . .

Master

Slave 1 Slave 2 Slave p. . .  

Fig. 5.7 Global (Master-Slave) topology for parallel DE 

 

The optimization ability of this structure has no difference to that of the 

sequential DE while the computational speed can be improved greatly. 

5.5.2 Decomposition Topology 

Instead of performing the evolution on a single population, in decomposition 

topology, the population are partitioned (usually equally) into several 

sub-populations to evolve. The most popular decomposition methods are 

Coarse-Grain topology (Fig. 5.8) and Fine-Grain topology (Fig. 5.9). 
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(1) Coarse Grain Topology 

The Coarse-Grain topology is also called Island topology. Each 

sub-population is assigned to a different processor (island). Each processor runs a 

sequential DE independently and in parallel on its own sub-population. Sparse 

exchanges of individuals among different sub-populations will be performed 

periodically; this is called migration. Individuals may migrate randomly from one 

sub-population to another or only to geographically nearby sub-populations. A 

migration policy controls the kind of island being used. Additional controlling 

parameters have to be decided when migration occurs and how migrants are 

selected/incorporated from/to the source/target islands are needed, including 

which other processors to exchange individuals with, how often processor 

exchange individuals (migration interval), the number of individuals that 

processors exchange with each other (migration size). 

(2) Fine Grain Topology 

Relatively larger amount of sub-populations exits in a Fine-Grain topology 

(Cellular topology or 2D-mesh topology) which also means the small amount or 

even one individual in each sub-population. Individuals in the sub-population are 

allowed to mate only with a neighborhood. The shape of a neighborhood may be a 

cross, square, line etc. Other critical parameters are the radius of the neighborhood 

to the size of the underlying grid (neighborhood size) and the individual 

replacement scheme. 
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…

 

Fig. 5.8 Coarse-Grain parallel topology 

 

…

…

…

…

… … …

…

 

Fig. 5.9 Fine-Grain parallel topology 

 

Actually a dual-direction Island topology is a special case of 2D-mesh 

topology which only has a single row of processors connected together. Whatever 

decomposition strategy chosen, additional parameters that control the 

optimization behavior of the algorithm have to be decided. These 

algorithm-specified decisions may improve the optimization performance but also 

complicate the situation. General procedure for a decomposition parallel DE is 
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summarized as follows. 

1. Host processor initialized the whole population and divides it evenly 

among p processors. 

2. Each processor executes a sequential DE after receiving the 

sub-population from the host. 

3. After some generation, each processor sends part of its individuals to 

other processors and replaces part of its own individuals after receiving 

the individuals from others processors. 

4. Check the stopping rule, if it is not satisfied, return to Step 2. Otherwise, 

each processor sends back its result to host for sorting out the best 

individual among the sub-populations. 

5.5.3 Hybrid Topology 

Combination of above topologies results in hybrid topology. These hybrids 

may use a Master-Slave parallelization on each island of a Coarse-Grain (Fig. 

5.10), or have a Coarse-Grain at upper level and Fine-Grain at the lower (Fig. 5.11), 

or two-level Coarse-Grained parallelization (Fig. 5.12), and etc. Some of these 

hybrids may keep a same complexity as one of their components or add a new 

degree of complexity. 
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Fig. 5.10 Hybrid Coarse-Grain and Master-Slave Parallel topology  

 

 

Fig. 5.11 Hybrid Coarse and Fine-Grain topology 

 

 

Fig. 5.12 Two Level Coarse-Grain topology 

 

5.6 Summary 

As a stochastic searching method based on population, DE is intrinsically 
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suitable for parallel computation. This chapter introduced modern parallel 

computation technology to speed up the searching process of DE.  The 

construction of Beowulf PC-cluster, coding, compiling, and running of parallel 

program are described in detail. Different topologies of parallel DE are analyzed 

and implemented to study the performance. With the help of parallel computation, 

it is possible for DE to realize optimization with moderate population size to 

obtain better solutions.  
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Chapter 6 Validation of the Parallel DE 

Based TSCOPF 

 

 

 

6.1 Introduction 

Chapter 5 constructed the Beowulf pc-cluster parallel computation platform. 

The speeding up effect is now validated in this chapter on standard test systems. 

There are totally 31 computers in our cluster including one host node with a 

monitor and 30 computers act as work nodes without monitors. They are 

connected via two 24-port Gigabit Ethernet switches. The host node is configured 

with a single Intel Pentium IV 3GHz CPU; each work node is configured with dual 

Intel Xeon 2.66GHz CPUs. So there are maximum 61 processors on call.  

 

6.2 Topologies Studies 

The basic OPF problem on IEEE 118-bus systems with quadratic generation 

cost curves for minimizing the total system active power generation cost is 

employed here to investigate the optimization behavior of different parallel 

topologies described in last chapter. All system data are the same as that in Chapter 
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2. For all topologies, the population size was set at 600 for even distribution of 

sub-populations; the total number of generations was 1000 and run for 20 trials. 

For Coarse-Grain topology, the migration strategy is dual-ring as illustrated 

in Fig. 5.8. The sub-population size is of 10 individuals. The best 20% of the 

sub-population will migrate to the adjacent 2 processors and replace the worst with 

individuals received from other sub-population each generation. 

For Fine-Grain topology, the 2D-mesh is constructed as 10 rows and 6 

columns. Each sub-population will exchange individuals with their 4 neighbors 

that next to it from up, down, left, and right as the dark circles shown in Fig. 5.9. 

The best 20% individuals of each elementary sub-population are migrated within 

the neighborhood and the worst one is replaced by new coming individual. 

For Hybrid topology, a combination of the Master-Slave and Coarse-Grain 

parallel topologies has been implemented as shown in Fig. 5.10. At the upper-level, 

the hybrid topology is ring-liked which evolves several populations independently. 

At the lower-level, the Master-Slave topology is adopted in each of the populations 

(processors). Migration of the best individual occurs between adjacent processors 

as in the Coarse-Grain topology. The migration size is also set at 20% of the 

sub-population. 4 processors are appointed to upper-level, and each island has 15 

processors to construct the lower-level Master-Slave topology. To improve the 

availability, unlike global Master-Slave implementation, the master processor of 

the lower-level in the Hybrid topology has to take the evolution task of one 

sub-population besides the reproduction work, and the sub-population can be 
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distributed evenly among the lower-level processors.  

For comparison, the sequential simulation results with same population size 

are listed with the parallel ones in Table 6.1 together. Convergence characteristics 

of different topologies are shown in Fig. 6.1. The average, minimum and 

maximum costs of solutions are found to be very similar for sequential and 

Master-Slave DE implementations. However, optimization performances of other 

three topologies are much worse than the Master-Slave one. The reason lies in that 

DE is a kind of evolutionary algorithm without actual mutation operation in its 

evolution, the reproduction of new individual relies on the difference of other 

individuals in the population. Therefore, it needs relatively large population to 

prevent premature. The Master-Slave implementation reproduces its offspring 

based on the whole population; however, the Coarse-Grain, Fine-Grain, and 

Hybrid parallel DE evolve independently on the sub-populations whose sizes are 

much smaller than the whole population, therefore, overall fitness of these 

implementations is decreased by the small sub-population which deteriorates the 

diversity of the optimal solutions. This conclusion is also told by the relatively 

better performance of Hybrid implementation which has larger sub-population 

size than the Coarse-Grain and Fine-Grain implementations.  

 

 

Table 6.1 Simulation results of parallel OPF on different topologies for 

IEEE 118-bus test system 

Topology Minimum Maximum Average STD % 
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Cost ($/h) Cost ($/h) Cost ($/h)

Sequential 130019.73 130905.36 130304.51 0.19% 

Master-Slave 130025.80 130898.02 130299.05 0.18% 

Coarse-Grain 136258.42 146688.36 141268.01 2.03% 

Fine-Grain 136026.41 145972.06 140687.62 1.60% 

Hybrid 131063.70 134422.92 132703.50 0.67% 
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Fig. 6.1 Average convergence curve for IEEE 118-bus system 

 

From the above, Master-Slave is the best topology for parallel DE 

implementation theoretically and numerically. It speeds up the computation 

without sacrifice the optimization performance. Especially, the implementation of 

Master-Slave topology is the most convenient one. Therefore, Master-Slave is 

chosen implementation in the following studies in this thesis. 
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6.3 Computation Time Analysis 

According to the Amdahl’s law [Amdahl, 1967], the ideal speedup ratio with 

constant problem size is equal to the number of processors used in the parallel 

computation. The experimental speedup ratio ψ  is computed as the ratio of the 

sequential execution time to the parallel execution time. Assuming that a program 

is perfectly parallelized and taking the communication time into account, the 

speedup is given by, 

max
max)()(

ψ
TpT

T

TpT

T

T

T
ψ

comm
s

comp

s
comp

comm
s

comp

s
comp

p
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where p is the number of processors, commT  is the total communication time that 

used to transfer information among different processors, s
compT  is the serial 

execution time, and p
compT  is the parallel execution time. Obviously, the 

experimental speedup is less than the ideal speedup due to the inclusion of 

communication time. When p  = maxp , the speedup upper bound maxψ  is 

achieved. 

In order to investigate the practical computational time speedup performance 

of the proposed parallel methods, simulations with different number of slave 

processes engaged in the computation are re-performed on two cases: 

A. Basic OPF problem on the IEEE 118-bus system 

B. TSCOPF problem on the New England 39-bus system 

Since parallelization may significantly improve the speed of DE for solving 

TSCOPF problems; it is possible to realize the OPF problem on the PC-clusters 
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with moderate population size. For the IEEE 118-bus system, the simulation 

conditions are the same as in last section. For the New England 39-bus system, the 

system parameters are the same as the multi-constrained discrete TSCOPF case 

studied in chapter 4. The population size of case B in this testing is enlarged to 120 

(4 times of the control variable size) and the maximum generation number is 

extended to 200. All individuals in the population will take participant into the 

transient stability assessment so as to obtain better solutions. The average 

computational time (ACT) and speedup ratios corresponding to different slave 

numbers among the total 20 trials for case A and B are listed in Table 6.2 and 6.3, 

respectively. Where slave number = 1 represents the sequential computation case. 

The speedup ratio curves of both cases are plotted in Fig. 6.2. 

 

Table 6.2 Computational time for parallel DE with different number of slave 

processes for IEEE 118-bus system (population size = 600) 

Slave Number 1 2 4 6 8 10 

ACT (s) 1820.52 1089.48 580.34 430.79 328.44 260.48 

Speedup Ratio 1.000 1.671 3.137 4.226 5.543 6.989 

Slave Number 12 15 20 30 40 60 

ACT (s) 223.07 176.17 141.61 129.25 124.11 120.16 

Speedup Ratio 8.161 10.334 12.856 14.085 14.668 15.151 

 

 

Table 6.3 Computational time for parallel DE with different number of slave 

processes for New England 39-bus system (population size = 120) 

Slave Number 1 2 4 8 10 12 
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ACT (s) 575.5 304.59 174.32 118.43 90.65 74.42 

Speedup Ratio 1.000 1.823 3.185 4.688 6.125 7.460 

Slave Number 15 20 24 30 40 60 

ACT (s) 66.2 52.75 39.60 28.44 21.60 15.03 

Speedup Ratio 8.387 10.526 14.020 19.522 25.704 36.939 
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Fig. 6.2 Speedup ratios correponding to different slave processe numbers 

 

ACTs listed in Table 6.2 and 6.3 show that parallelization does significantly 

improve the speed of DE for solving both basic OPF and transient stability 

constrained OPF problems. The performance of the parallel implementation can 

be reflected by the speedup ratio. As expected, the more is the number of 

processors, the higher is the speedup ratio, until maxψ  is reached when p  

= maxp  (60 processors).  
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However, it is also found that although the computational time keeps 

decreasing with the increase of the number of slave processes, the speedup ratios 

saturate gradually (comparing to the ideal speedup ratio line in Fig. 6.2), which 

means that the efficiency of the PC-cluster drops with the increase of the slave 

processors. Besides, speedup ratio of case A saturates much more quickly than that 

of case B. The reason for this phenomenon exits in the sequential nature of data 

communications between master and slaves processors (via the only one data 

channel). For Master-Slave topology, when problem and its population size are 

given, the communication time commT  keeps almost the same despite the different 

slave process numbers. When p  is small, the communication time commT  is 

negligible to the total execution time; whereas, with the number of slave processes 

becoming large, the calculating time pT s
comp /  decreases rapidly. When 

pT s
comp /  is small enough and comparable with the communication time commT , 

the speedup ratio starts to be saturated. The computational time for one load flow 

calculation is much shorter than transient stability assessment for an individual, 

therefore, the speedup ratio of basic OPF saturates more early than that of 

TSCOPF.  The speedup ratio saturation is an important item considering both the 

efficiency and the economy in parallel computation. In this research, 20 slave 

processes is a good balance for basic OPF problem; while, all available processes 

should be employed when solving the TSCOPF problem. 
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6.4 Multi-contingency TSCOPF 

Power system operating conditions are classified into five states: Normal, 

Alert, Emergency, In Extremis, and Restorative states [Kundur, 1994]. The main 

goal of system operators is to operate and maintain power systems in normal 

secure state with time-varied operating conditions. Practically, the supervisory 

control and data acquisition (SCADA) system in collects the power system data at 

a specified scan rate frequency. Energy management system (EMS) estimates the 

system status based on these data and make corresponding preventive or 

operational decisions. Preventive control is carried out in the normal or alert state 

of the operation, which is before the occurrence of contingencies. The number of 

possible contingencies could be huge in a real power system. Only the most 

dangerous contingencies are considered for dispatch. Therefore, a fast on-line 

contingency assessment tool is usually embedded in the EMS to rank and filter out 

those credible ones time window by time window. Preventive strategies based on 

TSCOPF are then expected to re-dispatch the system and maintain the system 

stable in most credible contingencies. Thus TSCOPF with respect to single 

contingency might deteriorate the security level in other contingencies. 

Multi-contingency cases should be considered for the improvement of the overall 

security level. Consider multi-contingency constraints in TSCOPF may be a rather 

rough task for traditional sequential computation because of the huge CPU 

intensity.  

In this study, the definition of "multi-" or "single-" contingency in preventive 
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control is according to [Yuan, Kubkawa, and Sasaki, 2003]. "Single contingency" 

is defined as one fault (with or without enclosure) or two faults (simultaneous or 

cascading), etc. Multi-contingency, such as contingency (A+B), is defined as 

either contingency A or contingency B will occur at the same operating point. In 

other word, for preventive control based on transient stability constrained OPF, the 

system remains stable no matter which contingency A or B occurs.  

In the following study, a three-phase fault is applied at the sending end of all 

lines of the New England 39-bus system and is then cleared with the faulty line 

tripped simultaneous at the ends of the line. Three contingencies are screened out 

and listed as below: 

1. Contingency A: A three-phase-to-ground fault at bus 21 and cleared by 

tripping line 21-22 at 160 ms, which is greater than the initial CCT 144 ms 

2. Contingency B: A three-phase-to-ground fault at bus 17 and cleared by 

tripping line 17-18 at 200 ms, which is greater than the initial CCT 167 ms 

3. Contingency C: A three-phase-to-ground fault at bus 4 and cleared by tripping 

line 4-5 at 250 ms, which is greater than the initial CCT 222 ms 

Simulations are conducted with 60 slave processes and all system data and 

parameters are the same as last section. Contingency combinations (A), (A+B), 

and (A+B+C) are applied to the TSCOPF problem and simulation results are 

summarized in Table 6.4. The convergence curves of each situation are plotted in 

Fig. 6.3.  

All cases converge well as shown in Fig. 6.3. As has expected, the system has 
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to sacrifice more economy when consider more security. The average system cost 

is 61428.65 $/h when only contingency A is considered and increases to 61515.60 

$/h when all three contingencies included. Especially, two infeasible solutions 

occurred among the 20 trials for case (A+B+C) which shows the solution is very 

close the economy and security boundary.  
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Fig. 6.3 Average converge curves for different contingency combinations 

 

 

 

Table 6.4 Simulation results for different contingency combinations 

Contingency A A+B A+B+C 
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Minimum Cost  ($/h) 61360.66 61349.63 61389.01 

Maximum Cost ($/h) 61604.05 61725.02 61808.31 

Average Cost ($/h) 61428.65 61438.36 61515.60 

Standard Deviation (%) 0.09 0.15 0.18 

Feasible (%) 100 100 90 

Stable (%) 100 100 100 

ACT (s) 15.03 29.95 47.17 

 

Unlike conventional optimization methods whose CPU time increases 

exponentially with the contingency size (since the number of variables increases 

with that of contingencies), the average CPU time for different cases bears a linear 

relationship to the number of contingencies.  

 

6.5 TSCOPF on Dynamic 17-generator System 

Above simulations of TSCOPF problems are carried out on a small test 

system. The dynamic 17-generator system is employed in this section to 

investigate the ability of the proposed parallel method on large system. This 

system has 162 bus and 284 branches. System data is available in [Power System 

Test Case Archieve: http://www.ee.washington.edu/research/pstca/] and all 

negative generator real power at each bus is treated as positive load. Ten 

transformers are selected as adjustable with regulation range from 0.90 p.u. to 1.10 

p.u.. The regulation interval is set as 0.01 p. u.. The fuel cost parameters and the 

rating of generators are listed in Table 6.5. The lower and upper limits of all bus 

http://www.ee.washington.edu/research/pstca/
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voltage magnitudes are set at 0.94 and 1.06, respectively. There are 43 control 

variables, including 16 generator active power outputs, 17 generator voltages and 

10 discrete transformer tap settings. The population size is set as 180 (i.e. each 

slave processor needs to handle 3 individuals per generation); and the maximum 

generation number is 200. A three-phase to ground fault occurs at bus 1 and 

cleared by tripping line 1-4 at 240 ms, which is greater than the initial CCT 220 ms. 

The initial operating state has a fuel cost of 29416.48 $/h. All individuals are 

participated in the transient stability assessment.  

 

Table 6.5 Generator data of the 17-generator, 162-bus system 

Bus No. Pmin Pmax a b c 

3 1000 2300 0.00064 0.50 0.0 

6 500 1094 0.00098 0.30 0.0 

15 1000 1800 0.00076 0.50 0.0 

27 1000 1800 0.00076 0.50 0.0 

73 200 747 0.00150 0.20 0.0 

76 500 1355 0.00088 0.30 0.0 

99 0 450 0.00200 0.40 0.0 

101 0 382 0.00200 0.40 0.0 

108 0 1200 0.00084 0.30 0.0 

114 0 431 0.00200 0.40 0.0 

118 0 473 0.00200 0.40 0.0 

121 200 920 0.00150 0.30 0.0 

124 1000 2851 0.00640 0.52 0.0 

125 1000 2688 0.00640 0.67 0.0 

126 1000 2767 0.00640 0.42 0.0 
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130 200 755 0.00150 0.30 0.0 

131 200 875 0.00150 0.30 0.0 

 

Simulation results are listed in Table 6.6. All violations have been eliminated 

at the end of the evolution. The average fuel cost among all 20 trials is 26520.39 

$/h and the cost reduction is 9.85% when compared with that of the original 

operating state.  The small standard deviation of 0.07% reveals the robustness of 

DE based TSCOPF method even for large systems. All solutions obtained can 

maintain the system stable after the contingency. Convergence curve in Fig. 6.4 

shows that DE converges well. 

 

Table 6.6 Simulation results of the 17-generator, 162-bus system 

Minimum Cost ($/h) 26480.28 

Maximum Cost ($/h) 26566.08 

Average Cost ($/h) 26520.39 

Standard Deviation (%) 0.07 

Feasible (%) 100 

Stable (%) 100 

ACT (s) 598.73 
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Fig. 6.4 Average converge curves of the dynamic 17-generator system 

 

6.6 Summary 

This chapter makes use of the parallel computation platform constructed in 

chapter 5 to resolve the TSCOPF problem. Master-Slave topology is selected as 

the most suitable implementation for DE method numerically and theoretically. 

Simulations results on both basic OPF and TSCOPF problems have proven the 

strong accelerating ability of parallelization. Speedup ratio studies provide a 

criterion for slave process size selection and balance of the efficiency and 

economy. With parallel computation, multi-contingency and large system 

TSCOPF problem could be resolved in acceptable time. As a result, parallel DE 

based TSCOPF provides a promising way to realize on-line economic system 
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operation with dynamic security insurance.   
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Chapter 7 Conclusion and Future Work 

 

 

7.1 Conclusion 

The electric power industry has undergone fundamental changes over the 

past two decades. Modern deregulated competitive environments have pushed 

the system to operate much closer to security boundaries than ever before. 

Operating the system in a most economical way as well as maintain its stability 

especially for credible disturbances becomes an imperative problem. However, it 

is practically an extremely difficult task since the stability constrained OPF is 

mathematically a non-linear, non-convex, and discontinuous problem with both 

differential and algebraic constraints. Conventional derivative-based methods 

always suffer from these non-differentiable features of the TSCOPF problem. 

This thesis has done some pioneer work in solving the TSCOPF problem using 

the new-fashioned Differential Evolution algorithm and parallel computation 

technology. The main work and conclusions can be summarized as follows: 

1) Firstly introduces the differential evolution (DE) algorithm to resolve the 

TSCOPF problem. The mechanism and parameter settings of DE are thoroughly 

discussed. Performance studies showed that DE is an excellent optimization 

method. Since DE needs a relatively large population size to avoid premature, an 
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improved version of DE which re-initializes the population at certain generation 

interval has also been proposed to address this problem. 

2) Transient stability constraint is denoted as an index of individual which has 

decision in the evolving process of DE. This problem modeling way relaxes the 

binding of OPF equations and transient stability DAEs. Hybrid method which 

combines time domain simulation and transient energy function is employed to 

assess the transient stability of each individual with no limitation in system 

modeling. Stable individual has more chance to survive in the evolution process in 

seeking both secure and economy global solution. Since transient stability 

assessment is the most time-consuming part of the whole method, strategies called 

“stable-space push” and “fitness sorting” are also developed to reduce the 

searching space as well as the computation time. With the flexibility and 

robustness of DE, more practical discontinuous and non-differentiable constraints 

such as generator prohibited operating zones, generator valve-point effects could 

have been considered in the TSCOPF problem. Despite the complexity, DE 

showed its strong optimization ability. Comparison of the simulations results 

revealed the high superiority of DE to conventional methods. 

3)  Since DE is intrinsically easy to be parallelized, parallel computation 

platform is constructed in this thesis to speedup the searching process of DE. The 

parallel computation is implemented on a Beowulf PC-cluster using 

Message-Passing Interface (MPI) technology. Different parallel topologies and the 

speedup ratios are studied in detail. Case studies shows that parallelization does 
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significantly improve the speed of DE; Moreover, unlike conventional 

optimization methods whose CPU time increases exponentially with the 

contingency size, the average CPU time for different cases bears a linear 

relationship to the number of contingencies. Therefore, it is possible to realize 

online TSCOPF with moderate scale PC clusters and meet the real-world online 

application requirement.  

 

7.2 Future Work 

The research work presented in this thesis is an attempt to develop new 

methodologies for maintaining transient stability of the power system as well as its 

economical operation. With the progress made in this research work, the following 

issues are expected to be further explored in the future: 

1) Transient stability is one of the most important concerns of power system 

security and it is the only dynamic constraint considered in this research. However, 

power systems face various disturbances in practice. Other security problem such 

as voltage stability constraints could also be integrated in. 

2) Although parallel computation speeds up the computation dramatically, 

improvements of DE by methods such as constructing hybrid algorithms or 

incorporating OPF related knowledge are highly preferred to reduce the required 

population size to further speedup the computation or enable the use of smaller 

scale PC-clusters for economy consideration. 
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Appendix: List of Abbreviation 

 

ACT                Average Computational Time 

ALU                AlgorithmLogic Unit 

API                Application Programmer’s Interface 

CCT                Critical Clearing Time 

COI                Center of Inertia 

DAEs               Differential-Algebraic Equations 

DE                 Differential Evolution 

EA                 Evolutionary Algorithm 

EP                 Evolutionary Programming 

GA                 Genetic Algorithm 

IPM                Interior Point Method 

KE                 Kinetic Energy 

LP                 Linear Programming 

MIMD               Multiple Instruction Multiple Data Stream 

MISD               Multiple Instruction Single Data Stream 

MPI                Message Passing Interface 

NLP                Non-linear Programming 

NTP                Network Time Protocol 

OPF                Optimal Power Flow 
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ORNL               Oak Ridge National Laboratory 

PE                 Potential Energy 

POZ                Prohibited Operating Zones 

PSO                Particle Swarm Optimization 

PVM                Parallel Virtual Machine 

QP                 Quadratic Programming 

RDE                Re-initialized Differential Evolution 

RSL                Remote Shell Login 

SIMD               Single Instruction Multiple Data Stream 

SISD               Single Instruction Single Data Stream 

SSH                 Secure Shell Login 

STD                Standard Deviation 

TEF                Transient Energy Function 

TSCOPF             Transient Stability Constrained Optimal Power Flow 
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