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Abstract 
 

 

Evolutionary Computation techniques have been used in design systems for 

exploring and generating design solutions in recent years.  However, most of the 

current evolutionary design studies concentrate on analysis and optimisation of 

design solutions for problems at the stage of detailed design.  There has been 

comparatively less research on the synthesis and generation of design solutions 

through a dynamic process of evolution and refinement, at conceptual stage of 

design process.  Furthermore, many conventional studies on evolutionary design do 

not support multiple representations of design objects at different levels of 

abstraction, which are essential for exploring design solutions in an incremental and 

evolutionary manner. 

 

To overcome the above problems, a computational kernel is developed in this thesis 

for the development of design supporting system applications, based on a Generative 

and Evolutionary Design (GED) model.  With this kernel, design objects can be 

dynamically evolved in a specialisation process in which design solutions are 

developed from abstract levels to detailed levels.  Generative mechanisms are 

integrated with this multiple representation scheme to manipulate and generate new 

design solutions from basis and abstract design objects in an interactive manner 

which involves users in making design selections.  This study focuses on the three 

important aspects of this kernel, 1) modelling design object and design process in a 

generative and evolutionary manner within an integrated computational platform; 2) 

adapting and capturing the knowledge of how design objects are generated within 

this platform; and 3) enhancing the exploration ability of generative and 

evolutionary design applications with the use of a number of different evolutionary 

and generative computing techniques, including Genetic Algorithms and Cellular 

Automata. 
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Three examples of applying the GED kernel to design tasks are tested and evaluated. 

 The results show that it is feasible and applicable to use the kernel as the core 

architecture of computational design systems for supporting generative and 

evolutionary design applications, with improved generative, explorative and 

adaptive ability in producing potential design solutions effectively and efficiently. 
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Introduction 

 
 

The study on design has resulted in the formulation of many models including 

computational models that provide bases for developing software systems 

supporting design activities.  A typical computational model is based on a process 

in which design is seen, at least in its computational representation, as an 

evolution of a description from its most abstract form (the original design 

problem) to the least abstract one (the final design solution). The process 

transforms a given problem (a need, an idea for example) to be tackled, through a 

series of designing activities, to a final solution to that problem, with the support 

of computation that generates the complete instruction for manufacturing 

processes to start.  

 

In a process based approach to modelling design, many descriptive and 

prescriptive design models have been developed in literature.  These models give 

clues to how design activities can be generalized as a problem solving process in 

which different methods such as search and optimisation might be used. In the 

meantime, the development of computational design support systems can only be 

limited to supporting various domain specific tasks of the whole design process in 

a disintegrated manner. The reason is that there have been no theories or methods 

to be implemented in the complex domain of design in such a convincing way that 

they can actually be quantitatively or at least qualitatively evaluated to show that 

these models are working in the similar but more efficient ways for designers 

whose immediate task is to produce good designs. 

 

Most current computational design systems suffer from two major problems. 

Either they cannot be scaled up to tackle a whole design project during which the 
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designers have the ultimate responsibility to play as the leaders of the project, or 

they cannot be generalized in a convenient way so as to provide solutions to a 

wide range of design problems even in the same domain.  In other words, a 

completely workable computational model does not exist to offer a revolutionized 

way for the alternative approach to solving design problems, even with the most 

updated technology in 3D computer graphics and Internet based design 

collaboration systems. 

 

This study develops a computational kernel for the development of computational 

design support systems, based on a Generative and Evolutionary Design (GED) 

model.  The proposed kernel based on the GED model is built on an evolutionary 

process in which design objects or products are generated in a process in which 

design activities are guided through a hierarchical structure which represents a 

way for generalization and specialisation of the objects or products being 

designed. In such a hierarchy, design objects are linked with a generalization and 

specification process in which generative mechanisms are invoked to transform 

the states of design from one to another, normally in a top down manner. In such a 

way, a less abstract design with more detailed attribute values of design objects 

are generated from more abstract and more conceptual ones, by the invocation of 

relevant generative mechanisms. A design process is modelled as an evolutionary 

activity which changes those design objects with the support of design 

generalization or specification mechanisms. 

 

With this kernel, the knowledge of design generation can be adapted or captured 

in a form of generative mechanisms, such that not only design objects are 

generated but also the process of how they are generated from a more abstraction 

form is recorded.  This gives indication to solve similar design problems 

efficiently and effectively so that the knowledge of how a design is evolved is 

captured by a process model, together with the final result. 
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1.1 Generative and Evolutionary Design 

 

Evolutionary techniques have been used by many to solve search and optimisation 

problems in various Engineering fields (Jain and Gea, 1998; Khuri et al., 1995).  

Furthermore, supporting design activities with evolutionary computation 

techniques has raised much attention (Bentley, 1999; Frazer, 1995; Gero et al., 

1997; Sims, 1991).  The basic rationale behind these applications is the belief that 

the design process is similar to evolutionary processes of nature. 

 

Designing from nothing is rare (if not impossible), and is generally based on the 

existing or past design primitives or building blocks.  Analogous to design of lives 

in the natural world that environmentally-fit living things and species survive 

better while the poor ones tend to extinct, searching for an optimum design 

solution can be seen the same way. Therefore many researchers developed 

evolutionary computational techniques to simulate design environments in which 

imaginative design solutions emerge from evolutionary processes and the data 

structures which embody intelligent properties or inference mechanisms. 

 

Frazer is one of the first who used evolutionary concept in architectural design 

(Frazer, 1995), while Sims applied GA to graphic design and the design of 

artificial creatures (Sims, 1991, 1994).  In the meantime, many other studies 

concentrated on finding the methods for exploring design problems in the domain 

of engineering (Gero et al., 1997; Graf, 1995; Poon and Maher, 1996). In the field 

of art and design, some researchers applied evolutionary computation techniques 

to artistic and form design (Rowbottom, 1999; Todd and Latham, 1999; Witbrock 

and Neil-Reilly, 1999).  As a result of these developments, many new 

evolutionary design methods have emerged (Bentley, 1999). The capability and 

efficiency of these methods in producing satisfactory design solutions that meet 

the expectations of designers have proved to be promising although many design 

tasks tested on these methods remain abstractive or simplified.  
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Some researchers in computational design also investigate issues in applying 

generative techniques for supporting design.  This approach, termed generative 

design as in this thesis, uses computational generative techniques to generate or 

develop design object, unlike conventional parametric approaches which only 

alter the basic preset parameters of the design object.  In these research works, 

generative evolutionary design is thus related to designing with generative and 

evolutionary techniques. 

 

However, most of the current evolutionary design studies concentrated mainly on 

the analysis and optimisation tasks at the stage of detailed design, which is a later 

stage task in the whole design process.  There are comparatively less research in 

the area of early stage design tasks, i.e., the synthesis and generation of design 

concepts.  At early conceptual design stages, problem specification and design 

requirement are not concretely definable.  In this case, design specifications 

inevitably keep changing with amendments to the problem requirements as more 

information becomes available and more problems are discovered.  Therefore, 

conventional evolutionary techniques cannot adequately function with this 

dynamic nature of design process. In the terminology of evolution, it is difficult to 

formulate a generic process which requires a pre-determined problem 

specification in real design for the definition of a suitable solution chromosome 

structure, an evaluation function and a selection strategy in computational 

representations which are required by the evolutionary algorithms.  In other 

words, although many applications of evolutionary algorithms have proved to be 

satisfactory and promising, the formal theory of such a process in design in terms 

of a generic representation and software architecture has not appeared. 

 

A problem associated with the complexity in defining a unified theory of 

generative and evolutionary design is that different representations of the design 

objects are manipulated at different design stages, as the design problem and its 

solutions are transformed by designers from an abstract level to reach the required 

level of details for various purposes, such as proposing a concept, tending 
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contract, generating initial design, completing the detailed design, specifying 

manufacturing instructions, generating assembly drawings etc. 

 

For example, at the early conceptual stages, descriptive, symbolic and functional 

representations of design objects are often manipulated while physical 

geometrical structures in 2D or 3D are handled at later detailed design stages.  In 

conventional evolutionary design with Genetic Algorithms (GA), the genotype 

(computer representation) can be treated as an abstractive form of the phenotype 

(the real design solutions). Such a mapping method from genotype to phenotype 

embeds the knowledge and information of how a design object might be generated 

from an initially abstract form to the final form with many accurate details. 

However, if such a mapping can only be formulated at the beginning of the design 

task and the mapping cannot be changed as the design process goes on, it can only 

model a fixed design task with limited scope for changing the design problem 

structure. A basic assumption of formulating design computational terms is that 

this design problem structure is supposed to change as design proceeds with new 

variables and parameters that are subsequently resolved with the new constraints. 

Therefore, this promoted the thinking for this thesis, which deals with this 

problem in a generic and systematic way, through the development of a generative 

and evolutionary kernel. The essential objective for such a kernel is that it is able 

to guide the designer or a software developer to formulate a dynamic design 

problem space through a hierarchically structured computational representation 

and integrated software kernel components, and thus provides better mechanisms 

for formulating the design process rather than a predefined design task. 

 

1.2  Objectives and Research Methodology 

 

In order to provide a generic kernel to deepen the study on generative and 

evolutionary design, this thesis developed a computational kernel of generative 

and evolutionary design based on a process based representation and a 

generalization-specification hierarchy in which design objects are evolved by 
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evolutionary computation mechanisms, with the ultimate goal of supporting 

generative and evolutionary design at a level of system configuration and design 

knowledge acquisition.  

 

The objectives of this thesis concentrate on the formulation, implementation and 

evaluation of a computational kernel that supports the following generalized 

design activities: 

a) Modelling design objects and design process in a generative and 

evolutionary manner with a structured representation, 

b) Capturing the knowledge of how a design object is generated with 

generative and evolutionary computation techniques in such a structured 

representation, and 

c) Simplifying the process of mapping design applications to a generative 

and evolutionary system to allow quicker system configurations with the 

structured representation and its related evolutionary computing methods 

and interfaces. 

 

The aim of this study is to test whether it is possible to develop this generic 

computational kernel, named Generative and Evolutionary Design (GED) kernel, 

for it to be used as the core architecture of computer-based systems for supporting 

design, which is similar to the way in which 3D solid modelling kernels such as 

Parasolid (support EDS Unigraphics) and ACIS (supporting ProEngineer) are 

used to support parametric design.  A prototype of this kernel is developed in this 

thesis for demonstrating several key generative and evolutionary techniques 

which are implemented in the GED kernel as the main evolutionary mechanisms.  

This prototype system can demonstrate its feasibility and applicability in 

supporting design for solution adaptation and exploration. 

 

 

 

 



 

 8 
 

The aim and objectives of this study are approached by 

a) examining the nature of design with a view that evolutionary computing 

and structured representation can help to improve the efficiency in using 

computer based design support systems, and formulating a computational 

kernel based on this study and understanding of design, 

b) developing and implementing the proposed Generative and Evolutionary 

Design (GED) kernel, which provides a foundation for the application of 

generative and evolutionary techniques in design domains with examples 

of realistic scales,  

c) integrating several main generative and evolutionary computation methods 

into the GED kernel so that design assistance in terms of adapting design 

solutions and exploring design alternatives can be provided, and 

d) evaluating the GED-based computational systems for design applications, 

with the demonstrations with which the feasibility and applicability of the 

GED kernel can be qualitatively analyzed for improvements and 

validations. 

 

Following the initial findings achieved at the first stage of the study, related 

results were reviewed and analyzed.  A further literature review was carried out in 

order to have a deeper understanding of design problems in general and product 

design in particular.  A design model was then studied, formalized and 

constructed in a general manner, which includes the tasks of synthesis, analysis 

and evaluation.  The applications of generative and evolutionary techniques in the 

proposed design model were investigated and evaluated.  Furthermore, a 

prototype of the GED kernel was implemented and integrated with a commercial 

CAD tool.  The GED kernel was then applied to solving specific simulated and 

practical design tasks. The results of applications were further evaluated for 

validating the feasibility and applicability of the kernel in several different design 

domains with examples reported and analyzed.  
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1.3 Significance and Contributions 

 

A computational kernel for generative and evolutionary design offers the 

opportunity to confront the problems of applying various new computational 

techniques including genetic algorithms in a generic and scaled-up manner for the 

ultimate goal of achieving better design with efficiency.  As such new 

representation and integration methods are needed in order to shorten the process 

of building an application.  In the process of developing this kernel, knowledge 

and strategies are discovered for a unified representation of design objects related 

to their process of being explored and optimized.  This top town approach 

provides insight on how the knowledge outside the discipline of design can be 

utilized and integrated to the theories and methodologies of design which by its 

nature is a multidisciplinary activity and process. 

 

From a perspective of design, it is also necessary to know exactly what the 

prospective is and where the opportunities are for using computational techniques 

in improving design in terms of, supporting the tasks achievable by human 

designers more quickly, and more importantly, supporting the designers in 

deriving better design solutions which would be otherwise unachievable or 

difficult to achieve by designers themselves without the support of such kernel 

and its related computational techniques. 

 

The implementation and evaluation of the kernel involves its application to three 

different design examples, including the development of 3D product forms and 

structures which are normally supported in a certain degree partially with 

parametric technology.  The developed kernel in this thesis provides an alternative 

and potentially more interactive and efficient way of exploring design problems.  

The contributions of this thesis derive from the integrated nature of this kernel 

with its formulation, generative and evolutionary computing techniques that have 

not been tested in such a scale and a generic context. 
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1.4 Thesis Overview 

 

The thesis presents the Generative and Evolutionary Design (GED) kernel with its 

theoretic basis on Artificial Intelligence with a focus on knowledge based systems 

and genetic algorithms.  The key concept of the kernel is built on an integration of 

design object and design process within a structured representation scheme, which 

takes a design object from an abstract level down to the hierarchical structure to 

its detailed level.  At each level of such a hierarchy, generative and evolutionary 

mechanisms are attached. Each evolutionary element has its design attributes, data 

or parameters and is allocated at a specific level in the GED hierarchy.  These 

design attributes represent a design product or object at a specific abstraction 

form.  Design process is then related to the evolution of these elements in the 

model according to their attached generative and evolutionary mechanisms. 

 

As design changes dynamically, the hierarchical structure of the whole 

representation as well as the connected elements in each layer are also evolved.  

When the kernel is applied to solving design tasks, the evolutionary elements at 

an upper layer represent design products in a much abstract level closer to the 

original problem.  Evolutionary elements at lower layers conversely represent 

design in much more concrete formats closer to the final design output domain.  

For example, the upper layer may represent textual specifications while the lower 

one may represent 3D models. 

 

With this GED kernel potential designs can be explored through changing design 

parameters and parameters of generation mechanisms.  This kernel further 

supports the evolution of generative mechanisms themselves, and enhances its 

explorative ability.  Through adaptation methods, generative design knowledge 

can be captured and reconstructed with such dynamically evolving generative 

mechanisms.  Figure 1.1 shows an implemented design supporting system 

presented in details in Chapter 8, which is embedded with the GED Kernel 

(GEDK) shown in the bottom left corner of the diagram. 
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In the rest of this Part I, a literature review is presented.  Conventional design 

representations, models and supporting systems are presented in Chapter 2.  In 

Chapter 3, advanced research work in generative and evolutionary techniques for 

design is further discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: A GEDK-embedded design supporting system. 

 

In Part II, a Generative and Evolutionary Design (GED) model is presented.  

Discussion in Chapter 4 is related to the issues of generative design representation, 

design exploration and adaptation, and in multiple representations of designs, on 

which this thesis focuses.  In Chapter 5, the fundamental features required in a 

GED model are presented, followed by a discussion on the importance of design 

exploration and knowledge adaptation in multiple representations of designs in 

such an evolutionary process.  The formulation of the computational kernel based 

on this Generative and Evolutionary Design (GED) model is also described in 

details, and an implemented GED kernel prototype is introduced. 
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In Part III, three examples of applying the kernel to computational design tasks 

are presented.  They demonstrate how the kernel supports designing with 

enhanced explorative and adaptive ability.  The first demonstrative example in 

Chapter 6 illustrates how the GED kernel can automatically build a GED 

hierarchy.  It forms a complex plant-like structure from a single “self-replicating” 

evolutionary element root, and different effects can be explored when 

evolutionary elements located at different levels of the hierarchy are manipulated.  

The second demonstration in Chapter 7 shows how the kernel supports design 

adaptation through simple knowledge reconstruction in an example of 2D image 

pattern generation and matching with Cellular Automata. 

 

In Chapter 8, a design demonstration presents an application for generating a 

family of wine glasses and their “relative” utensils, when the GED kernel is 

integrated with commercial CAD tools.  Comparison of these three examples in 

various aspects is then discussed and evaluated.  Finally a conclusion and the 

issues for further research in this direction are presented in Chapter 9, the final 

chapter. 
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Design and Support Systems 

 
 

Design involves complex processes, with activities in different areas, including 

idea generation, aesthetics, cognitive expression, problem identification, market 

evaluation, problem specification, conceptual solution searching, detailed design, 

product modelling, manufacture engineering and product evaluation.  Cross 

(1994) categorized these activities into four main groups: communication of 

designs, evaluation of designs, generation of designs, and exploration of designs. 

 

However, we do not have a "universal" definition for the term "design" as yet. 

Neither can we compromise for a "generalized" agreement of what "design" is 

related to, without having to refer to different contexts.  This section introduces 

the research related to the understanding of design in the context of developing 

computer based design support systems.  Most of the research reviewed in this 

chapter focuses on the cognitive and computational modelling of the design 

process with which Artificial Intelligence techniques can be used in a formulation 

involving designers using computer program to deal with a design problem or at 

least a part of a design problem. 

 

2.1 Design and its Contexts 

 

The meaning of design and the activities associated with it differ from one field to 

another and from one aspect to another.  Craftsmen, architects, and the public all 

have different perspectives of what design is and how it is related to their working 

and living.  Mitchell (1996) suggested that various design professionals in 

different domains, such as architects and design educators, see design 

dramatically differently. For the people who develop computational representation 
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for the implementation of computer based design support systems, design is seen 

in symbolic terms that are closer to computer coding and programming languages. 

Even for this kind of professionals, they still have to understand design in general 

terms or their methodologies will not match the expectation of the users who will 

use the systems to participate in design activities. 

 

Although design is generally related to human behaviours and activities, there is 

no restriction to extend the concept beyond that.  Many regard design in the 

context of nature as the very origin of design. Various articles present and 

appreciate the beauty of natural design such as French's (1994).  Still the meaning 

of design deviates from one perspective to another even in a natural context in 

which one can perceive design in terms of a macro (such as the whole ecological 

system) view or a micro (the cellular mechanism) perspective.  Design can even 

be considered in two extremes in (some) human's perspectives – scientific versus 

artistic.  The comparison of gearbox and fashion design in Lawson's article (1990) 

gives an example of this case.  

 

Without losing its generality, design involves a process of making things the way 

they are expected to become.  When one talks about the design of nature, there is 

an expectation that such a design emerges dynamically from an environment 

through competing with species within a process that may take a long time to 

evolve. When one talks about the design of a craftsman, there is an expectation 

that the result would show some unique features that are only made possible by 

skill and experience.   

 

However design is mostly referred to human design in our daily life, where this 

design is for the benefit of human beings in terms of convenience and comforts.  

In a human context, design involves a process of making artefacts the way they 

are expected to function.  The scope and focus of this study combines these two 

kinds of understanding in design, and a software kernel for supporting design is 

developed by the motivation of bringing computational design techniques that 
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simulate the evolution of a natural environment in which a design emerges from 

evolution to normal design tasks such as designing wine glasses or drinking 

devices. 

 

2.2 Design Representation 

 

There are some research works in analyzing design activity such as the Delft 

project (Cross et al., 1996), which analyzes designers' practices through video 

recordings of designers working on engineering product design.  There are also 

studies in natural intelligence of human being in design (Cross, 1999) and in 

design psychology (Crozier, 1994; Lawson, 1990).  Furthermore, a large number 

of design research studies propose theories to reflect its nature, and develop 

concepts and techniques to represent, support or even try to automate it. 

 

There are many studies in representing design, from formal mathematical design 

representation (Braha and Maimon, 1998; Gero and Tyugu, 1994) to descriptive 

and prescriptive models such as Quality Function Deployment (Menon et al., 

1994) and Design Function Deployment (Shahin et al, 1998; Shahin and 

Sivaloganathan, 1998). Although there are diverse interpretations and 

understandings of what design is in different contexts, there are many common 

features in the basic nature of design representation. 

 

2.2.1 The Knowledge of Design 

 

If the main goal of design is to make artefacts for fulfilling our expectations of 

certain new comforts brought about by new functions that cannot be provided by 

the designs that already exist, knowledge and problem solving skills are needed to 

make new artefacts or to improve the existing artefacts, both serving the original 

goal of design to a certain degree of satisfaction and efficiency.  Since this goal is 

based on the people and the environment they act on, design is closely related to 

the knowledge of people’s inner (such as cognitive) and outer (such as physical 
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and chemical) world.  The knowledge of a designer, a team of designers, and even 

the database of a design supporting system for a specific design domain becomes 

the fundamental "nutrition" of that targeted design object.  Lack of this knowledge 

means lack of nutrition and leads to an ill resolved design. 

 

Knowledge involves skills, experiences and techniques in various aspects, 

particularly the ability of analysis and synthesis.  With adequate knowledge, 

suitable solution(s) can be searched or explored to solve a given problem.  This 

requires the acquisition of knowledge in both the problem domain and the solution 

domain of the design task. 

 

Some people argue that design is solution-oriented.  Lawson's study (1979) of 

cognitive strategies used by architecture and science students for solving a given 

structuring problem showed that they concentrated on the solution-oriented and 

problem-oriented approaches respectively. When the main goal of a design has 

been achieved or the design problem has been solved satisfactorily, it does not 

really matter how much the user knows about the design activities involved.  This 

nature is reflected on the long history of mysterious, but workable, "blacksmith" 

type design involving implicit/tacit knowledge. 

 

However, in developing computational tools for supporting design the 

understanding of the design problem becomes more important. Without such an 

understanding it is difficult to obtain and store the knowledge useful for solving 

general design problems such as generalization, specialization, searching, and 

optimization.  There is a need for formulating a repeatable process during which 

variations of design or entirely new designs can be generated and re-generated. 

Some who tried to view design as a matter of science have been working hard to 

identify methodologies or processes in a systematic way. Without such 

methodologies or processes, it is difficult to deal with the problem of design in a 

generalized way in order to achieve better efficiency and quality. Over time, the 

environment, designers and other influential factors related to the original design 
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problem may change, the understanding of the problem in a domain independent 

context helps to establish a pattern or procedure to produce similar designs or 

improve imperfect ones. 

 

Understanding the design problem, even a simple one, to a level at which one can 

formulate computational representation and a process is not straight forward.  To 

seek design solutions in the unconsolidated solution domains further complicates 

the task.  There is still a large "black-box" in design.  One cannot completely 

know how a designer works, and how human links problems to solutions, or 

solutions to problems.  Therefore, in a computational process of design, there 

should be a mechanism to cope with uncertainty of problem definition and there 

should be a mechanism for evolving an initial design solution formulation into 

detailed one with more and more uncertainly cleared up in the process of 

exploring both the solution and the problem. 

 

2.2.2 Design Process 

 

Generally, it is agreed that most design processes start with an identified need 

(Black, 1996) (French, 1999), while the final output (products, services, etc.) is 

the eventual one to make contact with users.  However, the final output can only 

tell us the final output of a design, but not the design itself.  One basic nature of 

design is its process (Blessing, 1994; Navinchandra, 1991), the process to make 

things function or behave in our expected way.   

 

Design process is seen by many as an evolutionary process during which the 

solution to the problem or the objective of the goal is explored. As Medland 

(1992) wrote - "The design process is the activity of turning ideas into reality".  

This evolving process can be endless, that it cannot have a finite and identifiable 

end (Lawson, 1990).  Donald Norman also mentioned in his conversation with 

Mitchell (Mitchell, 1996) that "Design never ends.  Even the most successful 
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design will have to keep evolving continually in response to new practices" 

(p.xviii). 

 

This process can be in various forms.  However, it is commonly decomposed into 

several stages, especially in systematic designing (Braha and Maimon, 1998).  

The final stage of this design process leads to a direct implementation or an 

application of the solution to the problem.  Various models, methods or 

approaches have been proposed and studied.  Some refer this process in a chaotic 

way while others are more concerned with systematic formulation of the process 

for design automation, but both approaches agree that an evolving process 

perhaps suits computational formulation of design better since this allows both 

control and interaction to take place during evolution, which together is seen as 

design exploration, rather then pure design problem solving. 

 

2.2.3 Design Problem Hierarchy 

 

Although a few design products do introduce totally new principles and concepts, 

the majority of designs are rearrangements of not only the existing principles and 

concepts, but also the existing standard components (Black, 1996), especially in 

engineering design.  Design may range from "invention" to "redesigning".  In fact, 

it is a part of daily practices in which choices and decisions (design solutions) are 

made among various alternatives (possible design solution domains) for different 

problem solving.  It is not difficult to find examples of these in designed products 

one encounters everyday, from simple paper clips to complex bridges and 

buildings that Petroski (1996) introduced. 

 

Creativity is an important factor in design as a professional practice, which 

provides users with surprises, and sometimes fun.  The emphasis is on the 

uncertainty, un-commonality and unexpected results, particularly to the users.  

Thus, this creativity provides an "unexpected" way for "expectedly" solving a 

given problem.  Exploring ability is an important element in creativity, which 
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searches for unknown, unusual or unexpected alternatives to solve the design 

problem.  This also requires the ability to adapt important and useful features from 

the explored solution candidates.  With this adaptability, the exploration tends to 

converge to an optimum or at least a suitable solution within all possible solution 

domains. 

 

Often the degree of creativity is proportional to how unexpected the design 

solution might be.  This unexpectedness is closely related to the seeking of new or 

alternative ways to meet the goal.  When a design can be realized in different 

degrees of abstraction in terms of how close the design representation is to the 

final solution, more uncertainty exists and the problem space is less constrained at 

a higher level of abstraction of describing a design problem.  The alternation of 

design representation in higher abstraction produces higher degree of creativity 

while the lower level produces lower, resulting in more knowledge and skills 

being needed in the process of exploration and optimization. 

 

With extensive analysis or long-term practices of the design problems, the 

knowledge of that design problem can be built up and the understanding of how to 

solve the problem, under a specific context, can be systematized.  When the 

understanding is at the stage that any alternation of the problem within a finite 

domain can be solved systematically, this type of design is sometimes referred to 

"routine" design or "mature" design.  This design process can often be structured 

in a hierarchical or layered-network form at this stage.  Any alternation in a higher 

level of the hierarchy would not require a "re-design" in the levels below. 

 

One of the ways with which the degree of complexity of exploring creative and 

abstract design is to build a hierarchy of knowledge of certain products in which 

problems are explored with a top down approach, that is, conceptual solutions or 

so called creative ideas are explored at higher level of the hierarchy with more 

abstract definitions of the problem with less constraints and variables. As the 
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solution space becomes more and more confined, lower level details and 

constraints are introduced to provide optimized results to the problem.  

 

2.3 Computer-Based Design Support Systems 

 

2.3.1 Models and Methodologies 

 

Jones (1992) mentioned that "the new methods that have appeared so far are only 

partial solutions to modern design problems"(p.27).  It is not realistic to construct 

a general model and methodology for all design tasks, because we still cannot 

fully understand and formulate what design is in all aspects.  However, there are 

many "simplified" versions of design models and methodologies, which have been 

developed and shown many successful applications, particularly in engineering 

design.  Cross (1994) gave a detailed description of the nature of engineering 

design, its activities, problems and abilities.  Others (Dhillon, 1996; Dhillon, 1998; 

French, 1999; Pahl and Beitz, 1996; Pugh, 1991) also provided design 

methodologies in various engineering aspects. 

 

Cross identified four themes in this relative short history (Vries, 1993), that he 

labelled with four words that typified the activities in those themes: prescription, 

description, observation and reflection.  The first three themes focus on the role of 

flowchart representations for design process and the extent to which experienced 

and beginning designers follow the steps in these flowcharts.  Computer models 

were made to represent the thinking modes that were found with designers and 

from these possibilities for computer assistance to designers were developed.  The 

theme of reflection is a more philosophical aspect that has become a major issue 

of consideration in design methodology. 

 

As Navinchandra (1991) explained, conceptual design is the part of design 

process in which: problems are identified, functions and specifications are laid out, 

and appropriate solutions are generated through the combination of some basic 
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building blocks.  Conceptual design, unlike analysis, has no fixed procedure and 

involves a mix of numeric and symbolic reasoning. 

 

A typical starting point in a design process is still sketching, despite the great 

advance of computing technology.  In fact, the importance and influence of 

sketching in design does not diminish after these years of studies and 

developments of many computer-based design support tools.  The special issue 

(Volume 19, Number 4) in the journal “Design Studies” provides some thorough 

discussions on this matter.  It reflects that the very primitive approach to 

modelling design in 2D sketching is still a very effective one.  There are some 

computer-based supporting tools for sketching, such as Jenkins and Martin's 

(1993). 

 

There are studies in creative conceptual design (Navinchandra, 1991) (Sekimoto 

and Ukai, 1994).  At the conceptual design stage, a vast among of ideas and 

inspirations are processed, extracted and captured.  This requires an effective and 

efficient way to represent the concept of the design.  Speed and correctness of the 

modelling process are crucial.  Sketching is one method that can convey an idea in 

a 2D visual form that not only captures the thinking of the designer, but also 

further inspires others involved in the design process. 

 

Traditionally before the actual production of a design, the final designed product 

will be modelled.  It typically includes textual description, 2D drawing and/or 

physical 3D prototype modelling.  Even nowadays, most Computer Aided Design 

(CAD) tools developed still use simple 3D geometrical modellers.  All these are 

not exactly modelling the actual design process, but the design product itself 

instead, i.e., the final outcome of process.  It is understandable that most of the 

works done are related to this outcome, as the final product is the least abstract 

and most tangible outcome of the whole design process that is directly applicable 

to solving the original problem.  To develop a model that represents the whole 

design process is comparatively much more of a difficult task. 
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There are some models representing design process.  Blessing (1994), Bliek 

(1995) and Tomiyama (1995) give a comprehensive study in process-based 

design. Quality Function Deployment (QFD) is a proper design process model, 

which provides a structured framework to translate the 'voice of the customer' into 

the actions and resource commitments needed to meet customer expectations 

(Menon et al., 1994).  The model maps the customer requirements into specific 

design features (and eventually into manufacturing processes) through one or 

more matrices of expectations and fulfilment options. 

 

Based on QFD, a Design Function Deployment (DFD) (Shahin and 

Sivaloganathan, 1998; Shahin et al., 1998) was also proposed.  It is one approach 

in modelling design process, which is structured in a hierarchical manner. These 

models mainly provide guidance, management, and documentation of design 

processes. 

 

2.3.2 Computer Tools Supporting Design 

 

There have been new methods and approaches to assist designing work, such as 

feature-based and parametric modelling methods that are two common 

contemporary approaches used in CAD systems (Andrews and Sivaloganathan, 

1998).  Although computers and computation techniques have been used in 

Computer-Aided Design (CAD) for decades, their applications are mainly limited 

in computerized representations of design product models.  Particularly computer 

support in the conceptual stage of designing is still in a very preliminary stage.  In 

design automation, the current CAD software tools available cannot provide 

sophisticated assistance in solving design problems. 

 

Although with the great advance of the computing power and different 

computational techniques to solve different engineering problems in recent 

decades, it is still a very difficult task to develop computer aided systems that 
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provide a real design environment.  There were some research works on 

Computer Aided Conceptual Design in recent years.  Some of them emphasize on 

the importance of free-hand sketching in conceptual design (Jenkins and Martin, 

1993) and some on developing computational methods to assist specific design 

problems, such as surface modeller (Van Dijk, 1994).  However it is still in a very 

premature stage because of the difficulty of understanding the conceptual design 

process and formulating any computational methods to assist designing at this 

conceptual stage. 

 

There have been many intelligent, integrated CAD systems developed in recent 

years.  In these computer-based design support systems, many studies investigate 

the integration of intelligent computational methods and design models to 

optimize and search a design solution.  Knowledge-based design is one of the 

popular directions in this aspect and is presented in many articles (Rodgers, 1998; 

Tang and Wallance, 1997).  Another research (Yoshioka et al., 1993) categorizes 

designs into design object knowledge and design process knowledge, and 

proposes a framework in which a computable design process model navigates to 

generate and modify design models. 

 

2.4 Summary 

 

Based on the nature of design and the problem of developing computational 

models for computer-based design support, two main criteria in developing 

computational models for supporting design can be identified.  The first one is a 

systematic structure that reflects the progressively evolving nature of design 

process, from a more abstract level to a less one.  The second is the adaptive and 

explorative ability of the model, which is an essential element in creative 

conceptual design.  The model should also provide mechanisms for designer 

interface and future enhancement. 
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There are many process-based design representations.  However, they do not 

provide evolutionary mechanism, which supports the evolution of the design 

process.  There is a need to develop the design process model in a computational 

form, which has engines or mechanisms for evolving the model. 

 

There is little work in developing computational techniques for the generation of 

creative conceptual designs.  Most of the conceptual design studies are still 

immature.  The main problem of developing computational models for conceptual 

design is the unclear problem domain, which must be refined, modified or even 

redefined during the evolving process of design.  Furthermore the generation of 

conceptual design alternatives in computer-based supporting systems is still very 

limited.  The explorative and adaptive ability is essential for this creativity.  It 

requires further studies and developments of creative design modules for 

improving the systems.  The next chapter further reviews the research works on 

generative and evolutionary techniques for supporting design, on which this thesis 

focuses. 
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Generative and Evolutionary 

Techniques for Design 
 

When the design process is realized as a problem solving process, the final ideal 

goal will be a solution (optimal if possible) that can solve the given problem.  In 

this case, the design process can then be related to searching techniques that seek 

the best solution in the solution domain. 

 

3.1 Evolutionary Techniques for Design 

 

There are many searching techniques developed for finding suitable solutions for 

a problem.  The very fundamental one is brute force, which exhaustively seeks all 

possible solutions in the searching domain.  However, it becomes impossible to be 

achieved when the problem is too complex and the domain is too large or infinite.  

Therefore, there are more sophisticated approaches to work in this complex or 

large domain.  Evolutionary Computation (EC) is one of them. 

 

3.1.1 Evolutionary Computation 

 

Evolutionary Computation (EC) is an approach based on mimicking the natural 

evolutionary process for survival.  EC is one of the soft computing techniques.  

Together with Neural Network and Fuzzy Logic, they form the foundation of 

knowledge-based systems (Raton, 1999).  EC conventionally involves 

Evolutionary Algorithm (EA), Evolutionary Strategy (ES), Genetic Algorithm 

(GA) and Genetic Program (GP).  All these techniques mimic the natural 

evolution of real life.  Although there are some differences among their 

mechanisms of mutation and crossover reproduction, all involve a set of 

evolutionary solutions (evolving population) based on preferential selection of the 
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Generation n+1 

Population (size = k) 

Candidate 1 Candidate 2 Candidate k 

Selection based on fitness values of candidates 

Crossover 

Mutate 

Select 

Generation n 

fittest in an environment (objective function). There are many articles and 

materials introducing the working principles and applications of EC (Back, 1996; 

Eiben, 1996; Fogel, 1995; Michalewicz et al., 1996).  Figure 3.1 illustrates a 

typical operation of Genetic Algorithms, in which a population of k candidates 

evolves from generation n to n+1 through the iterative process of selection, 

crossover and mutation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: A typical operation of Genetic Algorithms (GA) 

 

3.1.2 Evolutionary Design 

 

EC techniques have been applied to solve searching and optimization problems in 

various engineering fields, such as packing optimization (Jain and Gea, 1998; 

Khuri et al., 1995), spare parts allocation optimization (Lee et. al., 2008), 

optimization of manufacturing cell (Dimopoulos, 2006), and optimization of 

manufacturing systems (Youssef and ElMaraghy, 2006).  However, their 

applications in design areas are still at a very preliminary stage. 

 

Frazer is one of the first who applied evolutionary techniques in design, 

particularly in architectural and structural designs (Frazer, 1995).  Many new 
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evolutionary design methods have been developed (Bentley, 1999).  Some have 

applied evolutionary computation techniques in artistic design and form design 

(Rowbottom, 1999; Todd and Latham, 1999; Witbrock and Neil-Reilly, 1999).  

Sims is one of the first who applied GA in graphic design and designing artificial 

creatures (Sims, 1991; Sims, 1994).  There are many works on applying GA and 

other EC techniques in form generation for architectural and structural design 

areas (Ceccato, 1999; Kicinger et. al., 2005; Janssen, 2005).  In fact evolutionary 

techniques have been applied to numerous design application areas, including 

online auction (Cliff, 2003), product design and manufacturing systems (Pierreval 

et. al, 2003; Sun et. al., 2007), and robot control (Kondo, 2007). 

 

Other studies concentrate on other issues, such as proposing methods to explore 

the possible design domain in engineering areas (Gero et. al., 1997; Graf, 1995; 

Poon and Maher, 1996), enhancing evolutionary techniques (Gong et. al., 2008; 

Mühlenbein et. al, 2007), improving design navigation (Chien and Flemming, 

2002; Gu, 2006), tackling multi-objective issues (Lee et. al., 2008; Limbourg and 

Kochs, 2008; Liu et. al., 2005), proposing multi-agent or parallel computing 

approaches (He et. al., 2007; Liu and Tang, 2006), and even forming hybrid 

systems with other techniques (Nariman-Zadeh et. al., 2005; Pahl, 2004; Park et. 

al., 2007). 

 

Many terms have been used to describe the way in which design is created with 

additional merits such as creative design, innovative design, evolutionary design 

and generative design.  In this research, generative design is taken as a process 

that differentiates itself from other terms of design by the use of evolutionary 

algorithms as a way to generate, evaluate and select design solutions. 

 

In the next section, an attempt is made to explain the basic scope and 

methodology of generative design with a reference to the context of this research 

which develops a generic software kernel for supporting it.  Without controversy 

and having to define and generalize what generative design is in its most generic 
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terminology, the concern of this research is more on the understanding of how 

computational design techniques such as genetic algorithms and other 

evolutionary algorithms can be utilised in such a process. 

 

3.2 Computational Techniques for Generative Design 

 

When a design is considered creative, it means that the outcome of the design 

gives surprises to the users who interact with the functionality of the product.   

Generative design can be considered creative since it produces many unexpected 

design outcomes together with their alternatives.  The outcome is achieved in an 

uncertain, uncommon and unexpected way that involves computations of many 

iterations, but in the meantime without failing the originally intended goal. 

 

There are research works that focus on supporting generative design in various 

aspects, including the issues on providing aids for generative design to novice 

designers (Chase, 2005), and for supporting design applications in structural and 

architectural areas (Caldas, 2008; Fischer et. al., 2005; Janssen, 2005; Shea and 

Gourtovaia, 2005).  Many of these generative design works are closely related to 

evolutionary design so that the generative, explorative and adaptive abilities of 

these approaches can be integrated together to support the fundamental properties 

in design. 

 

In Bentley’s book “Evolutionary Design by Computer” (1999), he defines 

Generative Evolutionary Design as “The use of evolutionary algorithms to 

generate new designs from scratch”.  Analogously, generative technique is the 

technique that generates new designs from scratch.  In Bentley’s book, some 

introductions and discussions are given in defining evolutionary and generative 

design from a more technical aspect.  Since the matter of defining whether a 

design solution is creative and generative or not is a much of a subjective topic, 

most researchers in computational design mainly investigate and study generative 

design focusing on the aspect of design processes or design techniques.  Bentley’s 
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book concentrates on applying evolutionary techniques to design applications.  In 

his view, generative evolutionary design is designing with generative evolutionary 

techniques. In particular, the relationship between genotype (the internal 

representation of design inside the genetic algorithms) and phenotype (the design 

which the genotype represents in the application domain) is identified as one of 

the key issues.  He believed that generative and evolutionary techniques must 

work on the final form of design rather than on some high-level representations: 

 

“Using computers to generate the form of designs rather than a collection of 

pre-defined high-level concepts has the advantage of giving greater freedom 

to the computer.” (p.40) 

 

This reflects the importance of relaxing the constraints which are pre-defined 

prematurely, and giving much flexibility and diversity to the possible solutions 

that are being generated.  Such flexibility and diversity can be better obtained in 

development processes instead of simple mappings from the problem domain 

directly to that of the final solutions.  Therefore giving computational support to a 

generative design process has the potential of generating new designs which are 

not well defined before the process starts.  The process itself evolves the solution 

from an abstract concept to detailed configurations.  

 

Without further elaborating on how to judge whether a design is creative, 

generative and innovative or not, this study concentrates much on design by 

providing generative capability to the design process and examines such an 

approach through a generic kernel of supporting systems.  The main focus in this 

research is to formulate the design process as a generative one with the support of 

evolutionary computing techniques. A generic framework of generative design 

can be closely examined more in the context of comparing it with those systems 

without such generative capability.   
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Generative computational techniques can be used to develop the design object, 

instead of only alter the basic preset parameters of the object in the way in which 

many other non-generative techniques do.  In other words, generative technique 

can be realized as an approach to support design that develops a design from one 

form to another, leading to a final solution.  Shape grammar and L-systems which 

will be discussed below can be regarded as two examples of these generative 

techniques, while pure searching and optimisation techniques such as simulated 

annealing are not. 

 

For example, if we have a 3D model of a chair, which is formed by its geometrical 

information (the legs, arms, back and seat) and the attributes (say, the material 

and colour), a technique will not be generative if it merely produces a new chair 

in form of a 3D geometry having the same geometrical information but different 

attributes based on the same chair template.  However, if a technique produces 

chairs in a way that is based on building chairs with lower primitives of the chair 

template, the technique will have some degree of generative ability.  The 

generated chairs may be structurally different from the original template, perhaps 

with the legs and seat upside down or with new attributes. 

 

Although there are many computational techniques which support design process 

generatively, much attention has been given to those techniques which produce 

simulated life forms in our natural world.  These techniques often operate in a 

recursive and iterative manner and can generate different life-like patterns or form 

structures. They are closely related to evolutionary development and repetition of 

natural lives.  The following subsection introduces some of these techniques, 

which will later be examined again as the possible inference mechanisms to be 

used in the generative design kernel developed in this thesis. 

 

Many current interests are in those generative techniques for form design which 

mimic the behaviour of nature.  These techniques attempt to mimic natural form 
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in a computational environment.  In particular, many of these techniques often 

operate in an evolutionary manner with iterative and recursive processes. 

 

3.2.1 Iterative and Recursive Development Process 

 

Although there are many methods claimed to be generative in some sense, most 

computational generative techniques exhibit an iterative and recursive way of 

operation, i.e., the way that is closely related to evolution.  The techniques to be 

discussed in this section are in this vein, and most of them have been used to 

support evolutionary design.  Although iterative and recursive processes can 

operate independently, many generative techniques combine both. 

 

There may be different interpretations for iteration and recursion.  In 

programming, recursion operates in a self-calling manner.  During the execution 

of a recursive function or method, another instance of the same recursive function 

is called and executed, before the execution of the calling instance has finished.  

Iterative process operates in a similar manner as the recursive process.  However, 

instead of calling another instance of the function during the calling instance, each 

iterative or repetitive cycle of the iterative process will only be called after the 

finish of another one. 

 

The typical type of iteration process in programming is often in a loop form.  The 

typical iterations of programming languages are the while-iteration or for-

iteration. The flow diagram in figure 3.2 shows the basic operation of an iterative 

loop.  The pseudo-code below shows an example of a loop, which iteratively 

performs the Loop-Process from 0 to the loopLength: 

 

 

From loop = 0 to loop = loopLength, if condition OK 

Loop-Process-Once( ) 
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Figure 3.2: A typical iterative process. 

 

The recursive processes are often implemented with a recursive or “self-calling” 

function.  Recursive process may be better realized with the pseudo-code shown 

below, while the flow diagram in figure 3.3 shows the basic operation of this 

recursive process. 

 

 

 

With the two pseudo-code programs of the iterative and recursive function above, 

a combination of these two can be easily formed.  The simple iterative-recursive 

codes in figure 3.4 perform the recursive operation Recursive_Opn( ) once, from 

the first loop 0 to the last one loopLength, as shown in the flow diagram in the 

figure. 

Recursive_Opn( ) 

 Do_Something( ) 

If (Another_Recursion_Condition = OK) 

  Recursive_Opn( ) 

Else 

 Exit_Recursion 

Start of 
Iteration 

Condition OK? 

End of One Loop 

Start of One Loop 

End of Iteration 

 
Loop-Process-Once( ) 

 

YES 

NO 
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Figure 3.3: A typical recursive process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4: A simple combined iterative-recursive process. 

 

From loop = 0 to loop = loopLength, if condition OK 

Recursive_Opn( ) 

Start of 
Recursion 

End of Iteration 

Do_Something( ) 

... 
If new recursion 

needed?? 

... ...  

End of 
Recursion 

Start of a new 
Recursion 

... 

Start of 
Iteration 

Condition OK? 

End of One Recursive Loop 

Start of One Recursive Loop 

End of Iteration 

              Recursive Operation 
 

 
 ... .  

YES 

NO 
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Although these two processes are seemingly simple, many of the generative 

techniques employ both for producing interesting varieties of patterns of the same 

structural configurations.  Replications with similarity or symmetry of forms and 

patterns are often produced by using these processes as the evolving and 

developing mechanisms which work on data structures and allow the substitution 

of different value ranges for the variables and constraints encoded in the problem 

solution space.  However, the results generated by these processes often seem 

perceptually irregular, complex and chaotic, even if they are generated with very 

simple generative techniques. The following introduces the basic concept of two 

common generative techniques known to various design fields: Shape Grammar, 

and L-System.  These two techniques form the basis of self-replicating 

evolutionary elements in the proposed computational kernel in this research. 

 

3.2.2 Shape Grammar 

 

There are computational techniques, which can produce similar self-symmetric 

forms.  Shape grammar is one of them.  Shape grammar was proposed by Stiny 

and Gips (1972).  It involves a set of rules that generates shapes in a stepwise 

manner, with the results ranging from primitive shape forms to more complex 

ones.  

 

Shape grammar can be realized as a specific type of formal grammars, which is 

related to the very origin of Chomsky’ grammars.  Chomsky, a scholar 

specializing in linguistics, presented a model for characterizing natural languages, 

called generative grammar, and produced a commonly-used definition of 

grammar, which is the vocabulary of symbols or words, together with a set of 

rules that specify how elements in the vocabulary may be combined to form 

strings of symbols, or sentences, in a language (Knight, 1994). 
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In Stiny and Gips’ original shape grammar, there are four main elements: 

a) A set of primitive shapes, p, (and a set of terminal shapes T can then be 

derived from p, which is a finite arrangement (sequence) of scaled-and-

orientated p). 

b) A set of variable shapes, v, which is disjoint with the shape terminals. 

c) Shape rules, Rs, an order pair having the first element (t, v) and the 

second element is 1) (t), 2) (t, v’), or 3) (t, t’, v’); t, t’∈  T and v, v’∈ v 

d) Initial shape, I, a combination of elements in T or v. 

 

The process of shape generation using shape grammar can be realized as the 

development of a shape object with an initial shape (a combination of terminal 

and variable shapes), and the elements in the initial shape are then mapped to 

other shapes with the grammar rules.  This process may continue until the 

generated shape consists of primitive shapes only.  The terminal elements in a 

given shape will be preserved with the shape rules that always transform a shape 

with the terminals to other shapes having the same terminals.  In a design 

situation, as the design objects in shape grammar are often represented in 

geometrical forms, common geometrical transformations such as scaling and 

rotating are used in the shape rules.  While shape grammar can be formally 

explained with mathematical notations, Knight’s book (1994) gives a better 

descriptive explanation of shape grammar and is a good reference for people who 

may feel uneasy to those strange mathematical symbols. 

 

3.2.3 L-System 

 

L-System is named after A. Lindenmayer.  In 1968, Lindenmayer introduced the 

L-System, a parallel rewriting system, to simulate the development process of 

natural lives (Lindenmayer, 1968).  While L-System can be regarded as formal 

grammar and language systems as shape grammar, the system is often used for 

modelling the developmental process of natural lives and produces them in a 

fractal way (Flake, 1998).  Although there are many variations of L-system 
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suitable for different applications, the most basic form of it consists of only three 

elements:  

a) a set of primitives, constants or alphabets in formal language, 

b)  the set of all possible components, variables, or words in formal 

language, associated with the primitives, and  

c) a set of rewriting rules, that maps every possible component to another. 

 

To simulate an object with a specific L-system, one starts by giving the object in 

its most infancy stage with a specific component that can produce different 

components at different temporal frames by recursively applying the rewriting 

rules to the components.  With its formal basis on syntactic rules and symbols, L-

system has the same root of shape grammar in formal grammar and language.  It 

is not surprising that both L-systems and shape grammars operate in a similar 

manner, and may have a similar system structure in an actual implementation. 

 

3.2.3.1 Deterministic and Non-deterministic Generation 

With these two generative techniques (Shape Grammar and L-System) discussed 

above, many interesting patterns can be generated.   Figure 3.5 shows a fractal 

pattern generated with a simple recursive-and-iterative affine transformation.  The 

development rules for the pattern are preset and the pattern grows systematically 

from the left, with the simplest vertical line, to the right after 8 generations.  As 

the recursion, iteration and affine transformation are preset, the pattern is 

deterministically produced. 

 

 

 

 

 

 

Figure 3.5: A deterministic pattern generated with iterative-recursive affine transform. 
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To simulate natural lives, some careful but simple thought may produce a much 

better effect.  Plants are sometimes used as examples to illustrate the power of 

these generative techniques.  A simple alternation of the setting may produce 

much better effect, even deterministically.  For example, when one considers the 

branches of plants in our natural world will most likely grow in some upward 

directions, a little change of a preset parameter may then lead to producing much 

better result.  The generation of the plant-like patterns in figure 3.6 is based on the 

simple system to produce figure 3.5, except that the degree of rotation in the 

affine transformation for figure 3.5 is 90 degree while it is 30 degree for figure 

3.6. 

 

 

 

 

 

 

 

 

Figure 3.6: Another deterministic pattern that is more plant-like. 

 

A little change may lead to more desired results.  However, in a natural world 

absolute regularity is rare.  To produce more realistic natural forms, adding some 

randomness to the generative systems can further enhance the ability of it in 

modelling our nature in a non-deterministic way.  Even a very simple form of 

randomness can lead to a higher complex matter.  In practical programming, 

pseudo-randomness is often applied instead.  When the pseudo-random generator 

is added to the same programming, the results shown in figure 3.7 can be 

generated, with straight line as the basis entity. 

 

When human users interact with a generative system, much realistic life forms can 

be produced.  Figure 3.8 shows two plants generated with the same generative 

mechanism as the ones above.  Instead of using straight lines as their basic 
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elements for breeding, users sketch their preferred curves (shown on the left most 

pictures).  Similarly, the pictures show how two plants grow correspondingly after 

2, 4, and 6 generations. 

 

 

 

 

 

 

 

 

 

 

Figure 3.7: A pseudo-random plant-like pattern generated with straight lines. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Two patterns generated with sketching curves as the basic breeding elements. 
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Another generative technique called Cellular Automata has been applied to many 

design areas.  In particular, various studies of applying CA to urban planning and 

simulation have been done, including those works presented in a special issue in 

the journal “Environment and Planning B” in 1997 (Batty et al., 1997).  Since the 

original CA is regarded as rather limited and restrictive, there are many 

modifications of CA for various applications (Herr and Kvan, 2007; O’Sullivan, 

2001). 

 

3.2.4 Cellular Automata 

 

Many researchers have been connected to the development of Cellular Automaton 

(CA), but undoubtedly von Neumann is the most cited one.  CA was proposed by 

John von Neumann in the late 1940’s (von Neumann, 1966).  Von Neumann was 

interested in self-organizing and reproducing automata which includes associated 

theories to construct large computers with certain degrees of complexity.  Aspray 

and Burk’s book (1987) is a good reference for understanding more about von 

Neumann’s research, including the theory of CA.  From a practical point of view, 

extensive interests were not initiated until the famous CA, Conway’s Game of 

Life, which is a CA that best illustrates the ability of connected “simple” 

autonomous elements which produce “complex” emergent behaviours or patterns. 

 

Cellular Automaton (CA) is closely related to the studies of complexity, self-

organization, emergent pattern, artificial life and adaptive complex systems.  

Instead of giving a rigorous mathematical formulation and formal explanation of 

CA that other references have already presented well, this section introduces its 

basic concept and operating principles which will be utilized in the software 

kernel developed in this research. 
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3.2.4.1 Structure and behaviour 

There are two basic properties of CA, its static spatial structure and the dynamic 

temporal state behaviour.  CA is formed with a static structure.  It consists of a 

lattice of cellular elements (cells) located in a discrete space with a homogenous 

neighbourhood relationship. 

 

� Cellular elements (cells): 

CA consists of a collection of elements, or cells, that have “static locations” but 

“dynamic states”. 

 

� Regular discrete space: 

Each cell is located in a unique point at a regular discrete space of n-dimension.  

In case of 1-dimension, the cells can be realized as the elements in a sequence, 

while in case of 2-dimension, the cells live in a 2-D grid. 

 

� Neighbourhood: 

As the cells are positioned in a regular space, a set of neighbour cells 

corresponding to each cell (often a central cell) can then be identified.  In most 

cases, these neighbour cells include cells that locate within a distance from the 

central cell in the space.  Figure 3.9 (a) shows the immediate 2 neighbours (in 

grey colour) of the central cell (in black).  In a 2-D CA, two most commonly used 

neighbourhoods are 4-connected (or von Neumann) neighbourhood and 8-

connected (or Moore) neighbourhood, as shown in figure 3.9 (b) and (c). 

 

 

 

 

 

           (a)                     (b)      (c) 

Figure 3.9: Three different CA neighbourhoods: (a) 2 neighbour cells in 1D CA, (b) 4-

connected neighbours in 2D CA and (c) 8-connected neighbourhoods in 2D CA. 
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Although CA is structured with spatially static elements, the dynamic state 

behaviour of these elements often leads to produce seemingly complex behaviours 

with the properties of their synchronized transition and a universal transition rule. 

 

� Dynamic state: 

All cells of a CA are in one of the states in a set of finite states, at any specific 

discrete time. 

 

� Synchronized transition: 

All cells in a CA have the same transition rule, and the transition of the state of all 

cells is synchronously activated in a discrete time interval. 

 

� Locally universal transition rule: 

The same transition rule is applied to every cell in a CA, based on the states of the 

cell and the neighbour cells.  Therefore the transition of a cell is based regionally 

on the states of its neighbours, and its own. 

 

From a computational point of view, Cellular Automata (CA) is a specific 

computational model with a very simple autonomous mechanism.  Much attention 

is given to this simple mechanism applied locally that seemingly leads to produce 

unexpected complex global behaviours or patterns.  Figure 3.10 shows the 

operating principle of a typical 1-dimensional binary CA.  The CA in the figure 

has a size of nine (the number of cells) and each binary-cell can have a state of 

either one (black in colour) or zero (white in colour), while the neighbourhood of 

each cell is limited to its nearest neighbours.  Thus the transition rules only 

concern the direct two neighbours (left and right) of a cell (middle).  At any 

generation, say n as shown at the top row of the figure, each cell of the CA will be 

mapped to a new state according to the current state of its own and those of its 

neighbours. 
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For example, the current state of the second leftmost cell is one (black) while 

those of its neighbours (both left and right) are zero.  Following the arrow under 

this second leftmost cell leads to the third transition rule, which maps any cells 

having the state pattern of “zero-one-zero” to a state of zero.  Therefore the new 

state of the second leftmost cell in the generation n+1 is zero.  This transition 

mapping process is applied to each cell of the CA.  The figure shows the mapping 

(arrows) of only five outmost cells in order to avoid the confusion of arrows.  A 

typical CA has boundaries (finite) and the boundary cells require special handling 

as they have fewer neighbours.  A circular approach is used in the figure, that the 

two boundary ends are treated as circularly connected such that the leftmost cell 

becomes the right neighbour of the rightmost cells while the rightmost become the 

left neighbour of the leftmost.  In this case, the same mapping process can be 

applied to the boundary cells. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.10: The basic operation of CA in two consecutive generations. 

 

When the number of possible states of the cells increases even with very simple 

transition rules, some complex behaviours or patterns can be obtained.  Figure 

3.11 shows the result of such a CA.  The 1-dimensional CA that produces this 

pattern has 256 states.  This CA starts with one non-zero cell in the middle of the 

1D array, at the top of the image.  The transition rule is simply based on mapping 

the sum of the regionally effective cells (the 2-neighbour cells and the central cell) 

 

Transition rules 
maps the cell state 

of one generation to 
another 

Generation n 

Generation n+1 

1-dimensional Cellular Automata  
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to the same value (with special handling in overflow cases) as the next state of the 

central cell.  The states of the CA cells are then visualized with a mapping to 

corresponding RGB (red, green and blue) colours, according the some threshold 

levels. 

 

 

 

 

 

 

 

 

 

Figure 3.11: A pattern generated by a simple1-D multi-state CA, from earlier generation 

(top) to later generation (bottom). 

 

3.2.4.2 Totalistic and semi-totalistic 

As shown in the earlier figure 3.10, the number of different state patterns of 3 

binary-cells (the central cell with 2 neighbours) is 23=8.  The number of possible 

transition rules is then 28=256.  In fact, given that the number of states of a CA is 

s, and the number of locally-effective cells (including the neighbour cells and the 

central one) is k, the number of total possible transition rules is s to the power of 

sk.  When the number of states of the CA is increased, the number of possible 

transition rules will be increased dramatically. 

 

Many studies restrain the investigation to a much simple type of transition rules.  

In fact, the colour pattern shown in Figure 3.11 is produced by a 1D multi-nary 

CA, which falls in a specific category of CA, a totalistic CA.  Totalistic CA have 

transition rules that can be realized as density functions that the next state of a cell 

is solely dependent on the density of its local region, and thus the sum of the state 

of its neighbourhoods.  Furthermore, if the transition rules lead the next state of a 

cell to a new state that depends not only on the sum of the states of neighbouring 

 



 44 
 

cells but also on the state of its own, such CA and their rules are called semi-

totalistic. 

 

The well-known Conway’s Game of Life CA belongs to this type.  Conway’s 

Game of Life is a semi-totalistic binary (2-state) CA, working on a 2D space with 

an 8-connected neighbourhood.  The transition rule is simple, while the emergent 

behaviour produced is unexpectedly complicated.  Because of this, this CA 

particularly attracts much attention in various research fields and studies.  The 

transition rule of this CA is as following. 

a) An “off” cell will become “on” in the next state, if and only if 3 of its 

neighbours are “on”. 

b) An “on” cell will become “off” in the next state, if more than 3 of its 

neighbours are “on”, or fewer than 2 of its neighbours are “on”. 

c) In all other cases, the cell will remain the same in the next state. 

 

This transition rule is also often presented in a way of living systems, for a better 

understanding of its emergent behaviour (the “Game of Life”), as below: 

a) A new cell will be “born” when 3 of its neighbours are “alive”,  

b) A cell will die because of “overcrowded” (more than 3 neighbours are 

alive) or “isolated” (fewer than 2 alive neighbours). 

 

The following figure 3.12 shows some of the emergent patterns produced by this 

CA.  Be noted that the seemingly “life” patterns are mainly realized on the 

illusion of the temporal motion (from left to right) of lives (formed by groups of 

cells); while in facts all the cells of the CA themselves are stationed statically in 

their own positions. 

 

 

 

 

Figure 3.12: A series of “lives” produced in the “Game of Life” in consecutive 

generations, from left to right. 

     



 45 
 

 

3.2.4.3 Study of emergent behaviour and computation 

While many totalistic and semi-totalistic CA are studied in many research works, 

another challenging task is associated with applying CA in distributed 

computation and studying the underneath emergent behaviour.  If Conway’s 

Game of Life is the most well-known CA, design-classification problem is 

possibly the most well-known example of emergent computation of CA being 

studied. 

 

Given a list of binary bits with 0 or 1, the computation of the total number of 0’s 

and that of 1’s in the list can be done with very simple programs in diverse 

methods.  This seemingly easy task becomes an extremely difficult one when the 

computation is changed from the central approach with “global vision”, to a 

distributed one that the computation is relied on the locally autonomous entities 

that only have limited information of their local regions. 

 

In the design-classification problem solved by CA, the goal is to seek the right 

transition rule(s) that can be applied to every cell of the CA for leading to obtain a 

desired outcome that either (a) the states of all cells will converge to 1 if the 

majority of the cells have 1 as their very initial state, or (b) the states of all cells 

will converge to 0 otherwise.  To avoid further complexity, the length of the list is 

often restricted to odd numbers.  The interest of this problem solved with CA falls 

in two aspects: seeking the right or best transition rules to solve the problem and 

studying the emergent properties of different transition rules that leads to the right 

solutions.  Further details of recent study in density-classification problem can be 

found in (Das et al., 1995; Ferreira, 2001). 

 

3.3 Summary 

 

In this chapter, some evolutionary and generative computational techniques for 

generative design in evolutionary approach are presented.  These computational 
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techniques can be used as the fundamental mechanisms for exploration, 

adaptation and generation of potential design candidates.  Further discussion on 

issues related to design generation and exploration for generalizing a generative 

and evolutionary design model will be given in next chapter.  Design knowledge 

adaptation and reconstruction in such a generative and evolutionary approach will 

be discussed.  The theoretic foundation of such a kernel and its technical 

innovation for implementation in real design applications will also be presented in 

the later chapters in Part II. 
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Part II: 

 

A Generative and 

Evolutionary Design 
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Issues in Modelling Generative and 

Evolutionary Design 
 

The computational Generative and Evolutionary Design (GED) kernel proposed 

in this study is intended for modelling design in a generation and evolutionary 

approach.  In this chapter, issues on design generation and exploration are further 

discussed.  Design knowledge adaptation and reconstruction in such a generative 

and evolutionary approach are also presented, as well as the importance of 

multiple representations of design in such an approach. 

 

4.1 Design Generation and Exploration 

 

Gero has categorized design into three types: routine, innovative and creative 

design (Gero, 1990).  This approach is closely related to the state-space searching 

perspective in problem solving (Newell and Simon, 1972).  Some researchers 

argued that general design activity should not be treated as a process of pure 

searching problems and their corresponding solutions (Janssen et al., 2002), as 

this approach tends to over-rely on searching within a static set of parameters. 

 

Instead of handling design process as a pure domain searching issue, this study 

emphasizes on the methods to generate and explore potential designs with 

generative techniques.  These generative techniques or mechanisms produce less 

abstract, more complex and detailed design objects from a more abstract, simpler 

and conceptual design representation.  This is similar to generate a mature plant 

from its seed or analogous to making the phenotype from a much abstract form of 

genotype in an evolutionary computation. 
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4.1.1 Design Generation and Exploration 

 

Supporting design generation and exploration with computational systems has 

been studied for a few decades, including evolutionary design approach.    Some 

computational systems in particular improved the efficiency and accuracy in many 

design aspects, including analysis, geometrical modelling and design project 

management.  However, it is still a question at what level of abstraction at the 

conceptual design stage the computer power could be better utilized to provide 

support to designers since there is no generic theory of design computation. In 

many cases, design applications have to be modelled as one of the search or 

optimisation problems at which level the design problem has already been 

simplified or constrained with additional limitations imposed. 

 

In a design process, supporting the generation and exploration of potential 

solutions is one of the major objectives in developing computational design 

supporting systems.  There are different works on studying how this generative 

and explorative ability can further be enhanced, including Hornby’s work on 

applying a generative design representation approach to supporting design and 

emphasizing its scalability in design exploration (Hornby, 2003). To further 

enhance this exploration ability in the proposed kernel in this research, the issue 

of multiple representation of design is discussed below. 

 

4.1.2 Multiple Design Representations 

 

Many evolutionary design methods have been developed for supporting the 

exploration of dramatic and creative potential designs with those evolutionary 

techniques as discussed in (Bentley, 1999).  The term “creativity” is often related 

to “unexpectedness”, “surprise” or “new”.  It is also relative and subjective to 

specific groups of people.  Different groups of observers, designers or users in 

different specific times or spaces would find the same design having different 



 50 
 

degrees of creativeness.  Some people may find a design very ordinary while 

others may find it very creative. 

 

Design models have also been created as multiple-representation, network, layer-

network or hierarchy in some studies (de Vries, 2006; Rosenman and Gero, 1999; 

Stouffs, 2008; Suh, 1990; Tomiyama, 1995).  When attention is put further on the 

creativity of design, “creative leap” (Cross, 1997) or “sudden mental insight” 

(Akin and Akin, 1996) becomes an important factor for successful design 

computation, which emphasizes on the mapping from one design representation to 

another. 

 

There are two perspectives in viewing multiple design representations.  One is 

based on different kinds of representations which provide different views and 

each representation type captures a specific aspect and neglects others (Gero and 

Reffat, 1997).  For example, emphasis may be given to the kind of representations 

related to the aspects of aesthetics, psychology, technology, structure and 

geometry. 

 

The other perspective concentrates on managing design multiple representations 

at different degree of abstractions with specific abstraction properties, from more 

abstract to less abstract and more detailed levels.  There are various formal 

theories of abstraction (Giunchiglia and Walsh, 1992; Giunchiglia et al., 1997), in 

particular relation to formal grammar and language, and formal models of 

abstraction hierarchies (Fikes and Nilsson, 1971; Knoblock, 1994; Sacerdoti, 

1974). 

 

The importance of developing multiple representations at different levels of 

abstraction of design problem has been discussed in recent studies (Heisserman et 

al., 2000; Kim and Yoon, 2005; Liu et al., 2000).  However, these studies adopted 

a static hierarchical structure for representing design product, which restricts the 

flexibility of evolving design with dynamic representations that can be specialized 
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during the design process from a general initial concept.  This study emphasizes 

on the multiple representations of design which allow a design to develop and 

evolve from an abstraction perspective. The proposed kernel tackles this problem 

by providing a generic representation that can be developed in a hierarchical 

manner with evolutionary inference algorithms serving as the transition 

mechanisms to transfer an abstract representation to a less abstract one.  

 

Although abstraction can be related to different aspects, in formal theories they 

are often related to property generalization and refinement.  In this case, 

abstraction is basically a grouping process of less abstract objects (or its 

representation) to a higher abstract one, based on certain abstraction properties.  

Extending from this concept, a specific representation, R1, of design objects is 

more abstract than another, R2, if R1 contains only the subset of the information 

specifying the same objects in R2.  In other words, the set of all possible objects 

represented by R2 is a subset of design objects in R1.  Based on this concept, it 

can be realized that more possible objects can be generated and explored in an 

action at a higher abstraction than at a lower one. 

 

Apart from the issue of multiple representations, another important point for 

attention is related to design adaptation.  While design exploration in this study 

emphasizes on the issues of what potential designs can be generated at different 

abstractions from one level to another until the process reaches the lowest level of 

abstraction (i.e., with the most detailed design outcome), design adaptation is 

concerned with why and how they can be generated.  Proper adaptation requires 

knowledge for the reasons or goals of generating certain designs and the methods 

for achieving them. 

 

To support generative and evolutionary design with multiple representations, the 

explorative ability of the system must be complemented with adaptive functions.  

While design systems explore to generate possible design solutions, they should 

also know how to generate the most potential ones efficiently.  Without proper 
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adaptation, pure exploration would behave like an inefficient “blind” searching.  

In a blind way, random generation of weir objects are often obtained.   

 

4.2 Knowledge Reconstruction 

 

Design involves a process of identifying the problem, analysing it with the 

existing knowledge, reconstructing the existing knowledge to synthesize the 

potential solutions. The process is adaptive in nature as more and more features 

are added into the product with the introduction of new knowledge into the 

process. This design process is a knowledge-intensive activity, through which 

creative and innovative outcomes are highly desirable. 

  

This activity of exploration and adaptation is highly dynamic since the overall 

domain for defining and searching the design space keeps changing as design 

proceeds. Gero studied this and referred it as the problem of state-space 

enlargement (Gero, 1996).  With any newly added knowledge into the design, the 

overall domain is continuously modified, and the search space is enlarged or 

narrowed. There is need to model this adaptive process with proper data structure 

and control mechanisms in order to provide flexible support, particularly when 

highly divergent inference mechanisms such as genetic algorithms or cellular 

automata are employed.   

 

There are several proposals for achieving evolution of knowledge from a 

cognitive and computational perspective in the AI-based design area.  For 

example, Gero (1996) proposed process models based on notions of additive and 

substitutive variables resulting in additive and substitutive schemas for creative 

design.  Two kinds of computationally supporting design approaches, discovery 

and learning, are also introduced in (Mukesh et al., 2001). They are related to the 

issue of having an explorative and adaptive ability in computer based supporting 

tools and systems for design applications. 
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There are also many studies of theories and applications of computational 

adaptation in different areas, in Machine Learning, which requires adaptation 

functionality.  Different approaches were also studied in applying machine 

learning techniques to design.  Some studies relate learning and creativity in 

design to transformation and evolution of knowledge from one perspective to 

another (Sim and Duffy, 2002; Wu and Duffy, 2002), while others to analogical 

reasoning (Goel, 1997).  Some articles (Duffy, 1997; Grecu and Brown, 1998;  

Sim and Duffy, 1998) presented findings of studies on machine learning in design, 

and introduced the fundamental techniques developed.  In AI, intelligent systems 

for supporting learning and creativity in design have also been introduced (Brazier 

and Wijngaards, 2002; Brown and Grecu, 2000). 

 

Machine learning is typically adequate for solving analysis problems.  However 

adaptation in design has further emphasis on the issue which is related to how to 

generate and explore design solutions at a knowledge level. For ill-defined 

problems like design, soft computing techniques (such as Genetic Algorithms and 

Artificial Neural Network) are often applied and the knowledge of design 

generation is implicitly embedded. 

 

4.2.1 Design Adaptation 

 

In this research, adaptation of knowledge is handled in an evolutionary and 

generative design process.  Such evolution of design knowledge involves the 

knowledge of not only design data as objects but also generative process of 

producing these objects, powered by mechanisms or algorithms such as cellular 

automata, genetic algorithms or other computation methods including machine 

learning.  In this investigation, the evolution of knowledge is related to the 

learning theory of Piaget’s well-known child psychology theory. 
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Knowledge is related to understanding things (e.g. objects) in a form of 

representation at a certain level of abstraction.  Piaget’s concept on knowledge 

and learning is based on three issues:  

• schemata,  

• concepts, and  

• structures.   

 

Schemata are the actions to be taken under certain situations for achieving 

specific goals.  Concepts are relations and abstractions (of objects, situations and 

actions).  Structures are about the organisation of knowledge (about objects, 

schemata, concepts).  Knowledge development process is a form of construction.  

In particular, Piaget proposed two forms of knowledge construction based on the 

concepts of assimilation and accommodation (Piaget, 1970, 1971, 1983). 

 

In Piaget’s view, most of the time we are in an equilibrating state.  Our existing 

knowledge and experiences govern our behaviour acting upon various situations 

and our understanding of the world.  When new situations are encountered, we 

then need some ways to relate them to our existing knowledge.  Assimilation is 

the organisation of knowledge with our own logical structures or understandings.  

Given a new situation, it will be related to our existing knowledge in order to 

preserve a consistent view of the world.  However, when new situations contradict 

the present knowledge and our understandings of the world, and cause a dis-

equilibrating state of our intelligence, we have to reconstruct our knowledge in 

order to better accommodate the new situations.  This concept is illustrated with 

the diagram in figure 4.1. 

 

Relating this knowledge reconstruction approach to the domain of design an 

accommodation action will alter the whole solution domain.  Figure 4.1 illustrates 

exploration and adaptation of new problems with domain knowledge. When 

encountering new tasks, new requirements, and new needs as the design problem 

evolves, intelligent evolutionary mechanisms react and attempt to make a 
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response. At this exploring stage, synthesis and generation of potential sub-

solutions take place, with the current form of generative mechanisms within the 

existing design knowledge.  These generative mechanisms explore potential 

solutions within the existing knowledge domain in an assimilation way.  This 

assimilation exploration may be supported through evolving the internal rules and 

logics of an evolutionary mechanism. 

 

Figure 4.1: Principle of Piaget’s knowledge reconstruction, with assimilation and 

accommodation. 
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When the existing knowledge is not enough for generating the right design 

outcomes and acceptable results, the system may have to update, modify or even 

reconstruct the existing knowledge.  Through such knowledge reconstruction, the 

domain of potential solutions is modified in a way analogous to Piaget’s 

accommodation.  This accommodation can be obtained by using different 

approaches, including merging the knowledge represented, extending current 

generative mechanisms separately or reconstructing entirely known knowledge by 

merging generative mechanisms themselves to form a more powerful generative 

mechanism.  In a demonstration example to be presented in the chapter 7 it will be 

illustrated with an example of using a simple constraint relaxation approach as a 

knowledge reconstruction mechanism. 

 

Based on this perspective, the process of knowledge evolution in design can be 

linked to assimilation and accommodation, for producing design alternatives by 

the exploration of the existing knowledge and new knowledge.  In a conventional 

evolutionary design approach, the knowledge adaptation issue is mostly handled 

in an assimilation way.  With Genetic Algorithms as the main evolutionary 

mechanism the exploration is limited by the way in which the genotype is mapped 

to phenotype, with the adaptation being implicit in its selection process.  It is a 

goal-oriented approach with certain degree of randomness because the genotype is 

generated and explored and guided towards the populations who best fit to certain 

preset objective functions.  However, once the genotype-phenotype mapping is 

formulated, there is no mechanism to support knowledge reconstruction as in 

Piaget’s accommodation.  The proposed kernel in this research attempts to tackle 

this problem.  Furthermore, this adaptation ability can be enhanced with the 

method of multiple representations. 

 

4.2.2 Multiple Representations 

 

Design knowledge has many different perspectives and can be related to design 

objects, design processes, interpretations and relationships of the processes and 
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objects (Kakihara and Sorensen, 2002).  Knowledge construction has also been 

related to the field of organisational management.  Its fundamental issues are 

about solving problems with a group of people, autonomous entities or modules.  

Some research projects modelled such a social system to a hierarchical form, as 

presented in the book by Burton and Obel (1995). 

 

Compositional design approach based on process and knowledge composition was 

also introduced in (Brazier et al., 2001).  In the paper, design knowledge is 

associated with the knowledge emergence of social (or organisational) systems.  

Some relates this problem of emergence to hierarchical complexity (Ueda, 2001).  

Miller’s living systems (Miller, 1978), Simon’s hierarchical complexity of the 

artefacts (Simon, 1996) and multinational enterprises (Westney, 2001) are all 

related to a hierarchical complexity. 

 

In a generative and evolutionary system, design can be regarded as an 

evolutionary process that evolves from a conceptual stage to a detailed stage.  

That is, the representation of designs evolves from the most abstract level to the 

most detailed level through some forms of generation.  During the design process, 

design objects are manipulated by different participants (such as designers or 

computational modules) at various abstractions.   

 

The proposed computational kernel in this is based on such a generative and 

evolutionary design (GED) approach. It supports modelling design process as an 

evolutionary process of generating design objects from a much abstract form to 

more detailed ones at multiple representations.  With this approach, design 

generation and exploration can be enhanced in such an evolutionary hierarchy of 

abstractions, and knowledge of design generation can be adapted or captured by 

generative mechanisms. 
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4.3 Summary 

 

In this chapter, several key concepts are introduced, which will be further 

elaborated in the remaining chapters.  These include the concept of computational 

design as an exploration and adaptation process in which generative and 

evolutionary algorithms can be employed as the mechanisms that transfer a design 

representation from an abstract level to a more specific level.  Therefore a design 

object can have multiple representations, and the evolution of which with 

generative and evolutionary algorithms is seen as the process of finding solutions 

that meet the requirements at a desired level of details.  These concepts form the 

basis for constructing a kernel that supports design exploration and adaptation, 

thus providing a way for elaborating design problem and identifying its solutions 

in an evolutionary manner.  The theoretic foundation of such a kernel and its 

technical innovation for implementation in real design applications will be 

presented in the coming chapters. 
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A Computational Model of GED 

Kernel 
 

This thesis focuses on modelling design with a dynamically evolving structure, in 

which evolutionary elements and evolutionary mechanisms are integrated in a 

hierarchical architecture. This hierarchical architecture allows the development of 

design solutions from abstractive concepts to detailed specifications by invoking 

the inference mechanisms attached to the nodes in the hierarchy, which represent 

the intermediate results of the solution. As the hierarchical structure is explored 

downwards, the problem is explored. To build such a kernel it is necessary to 

formulate a process model for the integration of design objects and the 

evolutionary mechanisms which infer on these objects. 
 

5.1 Modelling Generative and Evolutionary Design (GED) 

 

As discussed in previous chapter, this study develops a computational kernel for 

supporting generative and evolutionary design.  In design abstraction is a way of 

synthesizing the problem with the available information at a proper level that the 

conceptual solutions can be developed first.  The detailed solutions can then 

evolve from these initial concepts. 

 

5.1.1 Generative Process as Abstraction 

 

When a specific design task is structured within a hierarchical data structure, a 

change made at a higher level of the hierarchy results in more possible domain 

changes than that at lower abstraction.  Analogy to practice of design, changes 

made at earlier conceptual stages with abstractive representation of design 
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problem formulation often generate much radical outcomes than that at a later 

stage. 

 

Figure 5.1 illustrates the idea of multiple representation of design which evolves 

from abstractive concept to detailed solution. This abstraction structure is related 

to 4 design stages using Suh’s axiomatic design example (Suh, 1990).  In figure 

5.1, the representation at a higher abstraction is represented with “conceptual 2D 

sketch” while “detailed 3D model” represents a less abstraction of the design.  

Although this cannot be fully formulated in a quantitative way, an alternation in 

the 2D sketch may mean that a change happens at an abstract conceptual level. 

This leads to a much more radical change to the final product than what could do 

if a change were made to the 3D solid, which derives from the sketch in the first 

place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1:  An example of manipulating design representations at different abstraction 

levels, at different stages by clients, designers, and manufacturer. 

 

Furthermore, exploration of potential design solutions at different levels of 
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kernel of generative and evolutionary design, design objects which have variables 

and constraints are attached with certain generative and evolutionary computation 

mechanisms such as genetic algorithms or cellular automata. In this process, a 

design concept is firstly explored at an abstractive level with fewer variables and 

constraints that would have at a lower level of abstraction, with evolutionary 

algorithms that only need to manipulate a few design variables and constraints. 

This generates a population of candidate solutions at that level of abstraction. 

These candidate solutions are then explored further, which means that any of the 

candidates can be selected and explored further by adding new variables and 

constraints to it. At this level, evolutionary algorithms need only to work on the 

newly added variables and constraints, thus reducing the complexity of having to 

work on all the variables and constraints at both levels in one go. If a change 

needs to be made at this level in order to explore more possibilities, in most cases 

this would not affect those candidate solutions at the first level.  

 

This top town approach continues if a specified level of abstraction is reached and 

the solutions contain enough details for the successful evaluation of them against 

the original evaluation criteria, then the process can be terminated, or it is 

possible to backtrack to a higher level of abstraction for the exploration of more 

alternatives. This approach has been reported in Engineering Design (Chakrabarti 

and Bligh, 1996; Chakrabarti et al., 2002) in a system perform functional 

synthesis, but the approach was not formulated as a generic kernel with 

generative and evolutionary mechanisms to support a wide range of industrial 

design applications. 

 

With the data being substantially different at different levels of the hierarchy, it is 

difficult to have a unified set of evolutionary algorithms that can manipulate any 

data no matter what level of abstract they are.  If that is the case, it is possible to 

fix the inference programs to allow the data to evolve.  However, if a new design 

problem is encountered, the whole hierarchical structure would have to be 

reconstructed and integrated. As a generic kernel for generative and evolutionary 
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design, the purpose of this research is to develop the hierarchical kernel in such a 

way that it is used to configure the applications with generalized data structures 

and evolutionary mechanisms. To achieve this, an adaptation mechanism is 

needed in order to alter the complexity of generative techniques to suit the 

problem at hand based on exploration at an upper level of abstraction.  This point 

will be visited again with an example. 

 

Without limiting the application of the kernel to practical design tasks, evolution 

in this thesis is treated in a broader meaning that includes progressively dynamic 

changes in both data structures and inference mechanisms.  Within such a 

formulation, the kernel can employ a wide range of evolutionary algorithms as 

inference engines to derive design solutions by increasing their specifications and 

reducing abstractions. In this thesis Genetic Algorithms (GA) and other Darwinist 

evolutionary mechanisms are treated as evolutionary mechanisms as in 

conventional evolutionary design.  Other mechanisms, which may simply change 

a design object or its related evolutionary mechanisms, are also treated as 

evolutionary mechanisms.  There are three basic functions that these evolutionary 

mechanisms support the process in general. That is, generation, exploration and 

adaptation. 

  

Generative techniques often involve a certain degree of procedural repetition.  In 

the proposed generative and evolutionary kernel, a generative mechanism itself 

can be further generalized to become the one that generates a more abstract object. 

Cellular Automata, L-System, and Shaper Grammar are some of these 

mechanisms, as well as those performing simple self-replications.  These 

mechanisms explore possible design solutions based on the existing knowledge, 

while adaptation mechanisms reconstruct the existing knowledge in certain way.  

GA is both an explorative and adaptive mechanism.  Furthermore for handling 

practical design applications with human designers, interfaces for manually 

interaction with the system are also treated as a form of evolutionary mechanisms. 
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With this process model of generalization and specification, the following 

subsections describe how design objects and design process are handled with 

three evolutionary mechanisms to form a hierarchy, referred to as Generative and 

Evolutionary Design (GED) kernel. 

 

5.1.2 An Architecture of Generative and Evolutionary Design 

 

The architecture for generative and evolutionary design is an extendable 

hierarchical structure in which the development and instantiation of evolutionary 

elements and evolutionary mechanisms resemble the process of design exploration 

and adaptation. Within such an architecture, a design starting as an evolutionary 

element is gradually specialized using evolutionary mechanisms, resulting in 

alternative design solutions at each level of the hierarchy being generated, 

evaluated, selected, and further elaborated within the same hierarchy downwards 

until the process comes to an end either by the satisfaction of the users or the 

system hierarchy can no longer be expanded due to implementation limitation.  

 

In the hierarchy, each evolutionary element has its design attributes or parameters 

which represent a specific level of abstraction for the design problem. An element 

evolves in the hierarchy according to its attached evolutionary mechanisms.  With 

its expendable hierarchy, the kernel offers a generative capability based on the 

evolutionary mechanisms for individual evolutionary elements. In the hierarchy, a 

design problem can be represented with different degrees of complex, each of 

which has a different representation. These representations at different levels may 

form a general to specific relation in a top down direction. The representation at a 

lower level of abstraction may inherit those attributes above, but with additional 

variables and constraints introduced at its own level to further specialize a design 

solution. 

 

When the kernel is applied to solving design problems, the evolutionary elements 

at an upper layer represent the problem, solution or sub-solutions at a much more 
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abstractive conceptual level than those at a lower layer. Those evolutionary 

elements in lower layers represent in much more concrete formats closer to the 

final design output domain.  For example, an upper layer may represent textual 

specifications while a lower one may represent 3D models. 

 

Figure 5.2 shows the dynamical structure of the GED hierarchy during the 

evolutionary process, and illustrates how it is developed from a simple form to a 

complex one in a design application.  The hierarchy at each time frame represents 

a set of design solutions, situated at different layers of representation abstraction.  

Each layer represents the set of connected evolutionary elements (the vertices in 

the figure) that construct the design solution(s) at that representation domain. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2: Dynamics of the GED hierarchy in a temporal axis. 

 

Figure 5.3 illustrates such evolutionary structure of an actual example discussed 

in details in later Chapter 6.  At time t=0 in figure 5.3(a), there is only one 

evolutionary element seed in our GED, the root seed, which has no linked lower 

abstract elements.  The attached evolutionary mechanism is a simple self-

replicating mechanism, which will replicate the root to two children in the next 

level as in figure 5.3(b).  Such replication is then propagated to lower abstraction 

levels and the process will continue at the following time frames.  A dynamically 
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evolving hierarchical structure is formed, as shown in figure 5.3(c) and 5.3(d).  

More than one solution may situate at one representation level, especially when 

population-based evolutionary techniques such as GA are used as the evolutionary 

mechanism. 

 

 

 

 

   (a)         (b)             (c)         (d) 

Figure 5.3: Dynamics of an evolving GED, at (a) t = 0, (b) t = 1, (c) t = 3, and (d) t = 5. 

 

The growth of the tree structure in breadth first or depth first manner reflects a 

possible way in which a design solution is explored. Design objects are 

represented as evolutionary elements which contain design attributes or 

parameters, with attached methods to allow themselves to be realized, visualized 

or presented in meaningful design representations.  Each of them may also be 

linked with two sets of evolutionary elements (one above and one below) and one 

set of evolutionary mechanisms. 

 

Evolutionary mechanisms are essential parts of the kernel to make the 

computational GED hierarchy change dynamically, and evolutionarily.  They 

support three basic functions: design generation, exploration and adaptation.  

These functions are achieved through  

1) evolving the evolutionary elements to which they are attached,  

2) influencing other evolutionary elements at adjacent layers in the 

hierarchical structure, and/or  

3) adapting to new inference mechanisms when the data they received require 

doing so. 

 

Therefore, changing design objects at one abstraction level may lead to the 

corresponding modification of those at levels down below, and their evolutionary 

mechanisms. 
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In this study, evolutionary mechanisms are not restricted to genetic algorithms. 

They are not limited to the category of conventional evolutionary computation 

techniques either.  Any module can be an evolutionary mechanism in the 

proposed kernel as long as it offers a dynamic mechanism to evolve design 

objects, based upon specific dynamic environment towards a specific tendency or 

preference.  Designers, users, expert systems, Genetic Algorithms are potential 

evolutionary mechanisms since their actions interacting with the system in an 

intelligent way may achieve the same or sometimes even better results than an 

invoked computer program. These mechanisms which involve human 

participations may be described as entities, or agents, that run autonomously, and 

preferably collaboratively, under a dynamic environment. However, in general, 

user interfaces and evolutionary mechanisms are treated differently in the kernel 

that has been implemented as a prototype in this thesis. In this prototype, several 

standard evolutionary mechanisms are integrated. The general notation of any 

thing such as user interactions acting also as evolutionary mechanisms are not 

fully addressed due to the fact that it is out of the scope of the thesis. 

 

5.1.3 Abstraction and Interpretation of Design Objects 

 

In the proposed kernel, internal data are meaningless without correct 

representation and interpretation of them.  This is because internally it is 

important to have an efficient representation domain in order for the computer 

systems to manipulate them with evolutionary mechanisms.  But with a specific 

design application, domain specific representation or interpretation functions are 

needed in order to map the kernel data to some meaningful, interpretable, or even 

interacting forms to the external computers, designers, and users, as shown in 

Figure 5.4. 

 

The proposed computational kernel itself is application-independent.  How this 

kernel is applied to specific design tasks relies on the correct interpretation of the 
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data in the kernel to human-understandable information.  Thus there is an 

interpretation middle-layer that links the kernel data to the external domain. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4:  A computational system using the GED Kernel with human interaction. 

 

Figure 5.5 shows an example of how this GED hierarchy can be mapped to the 

representation of wineglasses at different abstraction levels.  In this example, 

internal data of each evolutionary element are represented with wineglasses at 

various abstraction levels, such as parametric features of wineglasses, the 2D 

profile and the 3D geometric models as shown.  Details of this example will be 

discussed in the later chapter 8. 

 

The kernel of generative and evolutionary design developed in this research is 

based on a hierarchical structure in which evolutionary elements and evolutionary 

mechanisms are instantiated in a dynamic process during which a design is 

developed from an abstract concept to a detailed specification.  The model for 

such a hierarchical structure can be formulated as a process of generalization and 

specialization during which a design solution and its alternatives are explored 

with the participation of designers interacting with the system. 
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Figure 5.5:  An example system using the GED Kernel with wineglass representation. 

 

5.2 Formal Representation of GED 

 

The proposed GED supports the exploration and adaptation of design in a 

generative and evolutionary process in which design objects are derivable from 

the developed evolutionary elements in a hierarchical representation.  The 

representation includes a set of connected evolutionary elements and their 

attached evolutionary mechanisms.  With this representation, a GED hierarchy of 

multiple design objects can be instantiated for a given specific design task.  The 

formal representation defines these evolutionary elements and mechanisms with 

the data primitives that can be mapped into design attributes or parameters of a 

specific design. 

 

5.2.1 Representation of Design Objects 

 

The formal representation starts from computational primitive p, which is the 

most fundamental element in the GED system.  The primitive is a numerical set, 

such as real number or integer, which is used to represent physical design object 

in a computational form.  Then a design parameter dp can be defined in the GED 
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system that represents a (or a part of) potential design object at a specific level of 

abstraction.  It can be either: 

 

a) a simple primitive, p, or  

b) a finite sequence of primitives < p_1, p_2, p_3, …p_n > 

 

A design parameter dp in the representation is application-independent.  It is only 

meaningful within the context of a specific domain in which it can be interpreted 

by designers or users. Using the GED kernel, when a specific domain of design 

applications is introduced, a design parameter must be mapped to a domain of a 

specific application, which is conceivable to human users or designers.  For 

example: a design parameter dp can be mapped to a 2D graphic domain, g2d, with 

a representation function fr, 

 

fr(dp) = g, g∈ g2d. 

 

 

5.2.2 Evolutionary Elements and Evolutionary Mechanisms 

 

The basic element, the evolutionary element e, is a 4-tuple, (dp, M, Eh, El), which 

consists of 

 

1) a design parameter dp,  

2) a set of evolutionary mechanisms M,  

3) a set of linked evolutionary elements of higher level abstraction Eh, and  

4) a set of linked evolutionary elements of lower level abstraction El. 

 

An evolutionary mechanism, m, is a member of M that evolves the attached 

evolutionary element e.  The evolutionary mechanism not only changes the design 

parameter dp in e, but also influences its evolutionary mechanisms M and the 

linked evolutionary elements Eh and El.  This influence may even further 
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propagate to the evolutionary mechanisms of the linked evolutionary elements.  In 

general, they can be represented in a temporal form at time t as 

 

et = ( dpt, Mt, Eht, Elt ) (5.1) 

 

When only one evolutionary mechanism mt-1 is attached to an evolutionary 

element at time t-1, there is a relation in the form of 

 

et = mt-1 (et-1 ) = mt-1 ( dpt-1, Mt-1, Eht-1, Elt-1 )  

= ( dpt, Mt, Eht, Elt ), where Mt-1 = {mt-1} (5.2) 

 

There are three special cases regarding the results of evolving an element.  When 

an evolutionary element is the same as before, et = mt-1 (et-1 ) = et-1, it can be 

regarded as at a saturated or at an inactive stage.  When an evolutionary element 

is periodically repeated within a sequence of temporal pattern, it is at a vibrated or 

cyclic stage.  Finally an evolutionary element may also be eliminated, and 

vanishes. 

 

In conventional evolutionary design with a Genetic Algorithms (GA), some direct 

mappings are used to transform a genotype to a phenotype.  They can be realized 

as a specific function that only maps a design parameter dp, to another design 

parameter dp’, with the evolutionary mechanism dpt = m(dpt-1 ).  In this study 

they are handled in the kernel as a specific form of evolutionary mechanism, dm, 

such that they can only change the design parameters of the linked lower 

abstraction elements. 

 

et = dmt-1(et-1 ) = dmt-1 ( dpt-1, Mt-1, Eht-1, Elt-1 )  

= ( dpt-1, Mt-1, Eht-1, Elt )  (5.3) 

Or 

et = dmt-1(et-1 ) = dmt-1 ( dpt-1, {dmt-1}, Eht-1, Elt-1 )  

= ( dpt-1, {dmt-1}, Eht-1, Elt ) (5.4) 
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Only the design parameters related to a lower level of abstraction Elt-1 is changed 

to Elt while all dpt-1, Mt-1 and Eht-1, are kept unchanged in this case. 

 

Extending this concept to another evolutionary mechanism, a generative 

mechanism, gm, can then be realized as a function that changes the design 

parameter of an evolutionary element and those linked to it at a lower level of 

abstraction. 

 

et = gmt-1 (et-1 ) = gmt-1 ( dpt-1, Mt-1, Eht-1, Elt-1 )  

= ( dpt, Mt-1, Eht-1, Elt ) (5.5) 

 

Or 

et = gmt-1 (et-1 ) = gmt-1 ( dpt-1, {gmt-1}, Eht-1, Elt-1 )  

= ( dpt, {gmt-1}, Eht-1, Elt ) (5.6) 

 

In this case, only design parameters, dpt, and those at a lower level of abstraction, 

i.e., Elt-1 will be changed. 

 

When an evolutionary mechanism performs an exploration and adaptation 

activity, it will affect those evolutionary elements and evolutionary mechanism at 

a higher level. In an ideal case, a GED-based computational design support 

system with all these evolutionary mechanisms can generate, explore and adapt 

potential design solutions automatically.  In practice, design must accommodate 

human interaction. Therefore in this formulation human interaction is handled as 

an external evolutionary mechanism through an interface. Such an interaction 

usually involves user’s invoking a mechanism or a software system to perform a 

task which changes the concerned evolutionary element and its immediate lower 

and upper level neighbours.  
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The evolution of one evolutionary element, e_k, at layer k, leads to the updating or 

influencing those elements in the connected layers k-1 and k+1 in the bi-

directional GED hierarchy, although in a practical implementation it can often be 

simplified as a top-down one way process.   

 

When there is more than one evolutionary mechanism attached to an evolutionary 

element in the set Mt, there are a variety of execution orders when applying the 

attached evolutionary mechanisms to the element.  Evolving an element with a set 

of evolutionary mechanisms can be handled in the following ways: 

 

a) Once in a queue: execute only one mechanism in a time, sequentially in a 

queue, 

b) Random: execute one mechanism in a time, randomly, and 

c) All in a queue: execute all mechanisms in a time, sequentially in a queue. 

 

In this study the option of “All in the Queue” is implemented in the demonstration 

examples, as will be introduced in the later chapters.  For example, if there are 3 

evolutionary mechanisms attached, Mt = {m_1t, m_2t, m_3t}, then element et will 

be evolved in the order of: 

 

et = m_3t-1 ( m_2t-1 ( m_1t-1 (et-1 ) ) ) (5.7) 

 

If no evolutionary mechanism is attached to an evolutionary element, the 

evolutionary element is not self-evolvable or in an in-active state.  However, it 

may still be evolved by its linked elements in higher or lower levels. 

 

5.3 General Architecture of GED 

 

The generative and evolutionary design (GED) is generalized as a design support 

system with a set of connected evolutionary elements and their attached 

evolutionary mechanisms structured in a hierarchical form.  These elements are 
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allocated at different levels of hierarchy, representing different abstractions of a 

design or a partial design problem. 

 

A generative and evolutionary design, GEDt, contains multiple n layers of 

connected evolutionary element sets, GEDt = { E_1t, E_2t, … E_it, … E_nt }. 

Each set of evolutionary elements, E_i, represents design at a specific abstraction 

level, i, and the elements at each level are E_it = { e_i1t, e_i2t, …, e_ijt, …e_imt }.  

Elements at higher levels, such as those in E_1t and E_2t represent design objects 

in a more abstract form such as functional features while at lower levels E_n-1t 

and E_nt represent in a more detailed form, for example 3D geometric models. 

 

With the above definitions, the formal representation of the GED can be 

summarized as: 

 

a) Generative and Evolutionary Design, GEDt, is structured with a set of 

connected evolutionary element levels in a hierarchical form, at a specific 

time frame t: 

� GEDt = { E_1t, E_2t,… E_it, … E_nt } , where i represents a specific 

level in the hierarchy. 

� E_it = { e_i1t, e_i2t, …, e_ijt, …e_imt }, a set of evolutionary elements 

representing design objects at the specific abstraction level, i. 

 

b) An evolutionary element, e_ijt, in a GED consists of 1) design parameters, 2) 

a set of evolutionary mechanisms, 3) a set of linked higher abstraction 

elements, and 4) a set of linked lower abstraction elements:  

e_ijt = ( dp_ijt, M_ijt, Eh_ijt, El_ijt ), where 

� dp_ijt is the design parameters of the element, that represent design 

objects at that specific abstraction. 

� M_ijt = { m_ij1t, m_ij2t, …, m_ijkt, …m_ijrt }, where M_ijt is the set of 

evolutionary mechanisms attached to e_ijt, i is level-index, j is the 

element-index, and k is the mechanism-index. 
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� Eh_ijt ⊆ E_i-1_jt , where Eh_ijt is the set of evolutionary elements 

linked to e_ijt, at the “higher” abstraction level E_i-1_jt. 

� El_ijt ⊆ E_i+1_jt , where El_ijt is the set of evolutionary elements 

linked to e_ijt, at the “lower” abstraction level E_i+1_jt. 

 

c) Each evolutionary mechanism, m_ijkt, in the set, M_ijt, attached to a specific 

evolutionary element, e_ijt, will be applied to the element and produce a new 

element in the following time frame, t+1. 

� e_ijt+1 = ( m_ijrt…m_ijkt(…((m_ij1t (e_ijt ))…)…),  

where   m_ijkt ∈ M_ijt 

In case of only one evolutionary mechanism attached to the element, 

� e_ijt+1 = m_ij1t ( e_ijt ), where   M_ijt  = { m_ij1t }. 

 

d) Design parameter, dp, in our GED represents a (or a part of) potential design 

object at a specific abstraction representation.  It can be:  

1. a simple primitive, p, or  

2. a finite sequence of primitives < p_1, p_2, p_3, … >. 

 

When this GED kernel is applied to model a conventional evolutionary design 

with standard GA as the evolutionary mechanism, two different architectures can 

be obtained. 

 

In those cases where the genotype is the same as the phenotype,  

� Root:   e_11t = ( genotypet, {GA t }, {}, El_11t ). 

� Population:  e_2jt = ( genot, {}, { e_11t }, {} ), 

where   e_2jt∈ El_11t 

 

In this case, the genotypet represents itself as well as the phenotype, and El_11t 

contains the population of all individuals e_2jt evolved by GA.  In those cases 

where the genotype is different from the phenotype, a 3-level GED can be created: 
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� Root:   e_11t = ( genotypet, {GA t }, {}, El_11t ) 

� Population (geno): e_2jt = ( genot, {gpm_2jt }, { e_11t }, El_2jt ),  

where   e_2jt∈ El_11t 

� Population (pheno): e_3kt = ( phenot, { }, { e_2jt }, {} ), 

where   e_3kt∈ El_2jt 

 

In this case, the genotype represents the form of itself as well as the phenotype, 

and El_11t contains the population of all individuals in genotype form e_2jt 

evolved by GA while gpm_2jt maps genotype individuals to their corresponding 

phenotype elements e_3kt. 

 

The software kernel proposed in this thesis provides basic data structures and 

inference mechanisms for the development of an application in a domain of 

design, mainly in product design.  The kernel is based on a hierarchy of 

evolutionary elements and evolutionary mechanisms.  The next section gives a 

summarized description of the kernel and its implementation.  The detailed 

description of how the GED kernel was developed and implemented is given in 

the Appendix A. 

 

5.4 Steps for Building an Application System with the GED Kernel 

 

An object oriented programming language (Java) has been used to implement the 

proposed kernel, which consists mainly of four parts:  

 

1) a generic core containing classes of design parameters, evolutionary 

elements and evolutionary mechanisms,  

2) a set of direct interfaces of the classes in the core,  

3) a set of graphical user interfaces (GUI) for visualizing and interacting with 

the GED kernel, and  

4) a GED builder that constructs a specific GED application for a specific 

design task.   



 76 
 

 

The kernel has been implemented as a software package (or library), which can be 

integrated with other software that supports Java application interfaces, including 

external commercial CAD tools.  Figure 5.6 shows the block diagram of the 

developed kernel. 

 

 

 

 

 

 

 

 

 

 

Figure 5.6:  Block diagrams of the implemented GED kernel. 

 

To construct a specific GED application with the kernel for a specific design task, 

the GED builder is initialised with a root empty seed without design parameters, 

evolutionary mechanisms, or linked higher or lower neighbours, as shown in 

Figure 5.7(a).  An interface for a specific evolutionary element can then be 

instantiated and edited for its design parameters or attributes as shown in Figure 

5.7(b).  With the appropriate assignment of evolutionary elements, their design 

parameters, evolutionary mechanisms and linked neighbours, a GED application 

is established and the instantiated element as an initial abstract design concept can 

then be evolved, either manually or automatically, with the input from the users or 

with those evolutionary mechanisms which have been activated. 

 

Figure 5.7(c) shows the process of how a root element is manipulated and 

attached with a self-replication evolutionary mechanism. A more complicated 

hierarchy with more elements is evolved from this root element after a few 

generations.   
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(a) Creating an initial empty seed in the kernel architecture  

 

 

 

 

 

 

 

 

(b) Editing an evolutionary element (c) Evolving a seed into a hierarchy 
 

Figure 5.7:  Building a design application with GED Kernel. 

 

In general, an instantiated GED application can be developed in the following 

steps: 

 

a) Starting with the generic builder to construct a GED hierarchy for a 

specific design task by creating an initial evolutionary element, as shown 

in Figure 5.8. 

 

 

 

 

 

 

Figure 5.8:  A GED hierarchy created with the GED Builder. 

 

 
  

 

  

Generic Builder 

 

GEDK 



 78 
 

 

b) Manually editing or auto-evolving the initial evolutionary element (with 

the attached evolutionary mechanisms) located at the highest level of 

abstraction of the GED hierarchy, as shown in Figure 5.9. 

 

 

 

 

 

 

Figure 5.9:  Manipulating data to evolve the hierarchy 

 

c) Linking the instantiated GED to an interface for user manipulation or 

autonomous module interactions (either internal or external interfaces), 

and converting design representations, such as 2D graphical or 3D, as 

shown in Figure 5.10. 

 

 

 

 

 

 

 

Figure 5.10:  Linking interface and representation to a GED Hierarchy. 

 

Figure 5.11 shows a typical GED application system for a specific design task.  

Three examples of applying the kernel to computational design tasks are to be 

presented next in order to illustrate in more details how the GED can be used to 

support generative and evolutionary design applications. These examples 

demonstrate how the kernel supports design with enhanced explorative and 

adaptive ability.  The first example illustrates how the GED kernel (GEDK) 

automatically builds a GED hierarchy and explores different forms of plant 

Generic Builder 

Generic Builder 
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structures from a single “self-replicating” evolutionary root element.  The second 

demonstration shows how the GED kernel (GEDK) supports a simple design 

adaptation, in the form of knowledge reconstruction in design.  The third design 

demonstration works on a more complex design application of generating 

wineglasses, after being integrated with a commercial CAD tool. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11:  A GEDK-embedded application system. 

 

5.5 Summary 

 

This chapter has presented a formal representation of the GED kernel.  This 

formal representation articulates the relation between evolutionary elements and 

evolutionary mechanisms in a timely manner so that the process of designing 

using this kernel can be formulated as instantiating and specializing evolutionary 

elements with the associated evolutionary mechanisms.  In this process, a change 

caused by an evolutionary mechanism operating on an evolutionary element may 

propagate a chain of actions through the hierarchy.  In a real design, a propagation 

top town represents a process of exploration and specialization, while a 

propagation bottom up represents a process of backtracking or generalization.  

The system architecture adopts changes to update the system so that the 

A GEDK-Embedded System 
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consistency of the knowledge it holds is maintained. In a design practice, such a 

hierarchy allows a designer to create an initial design concept, explore the 

alternatives of it, and then select one for specialization by going down a level in 

the hierarchy.  If a satisfactory solution cannot be derived at a particular level, the 

designer may wish to get back to an upper level which is a more abstractive level, 

to explore more.  This process continues until a satisfactory result is derived. 

 

This chapter has further introduced an architecture for generative and 

evolutionary design. This architecture provides a basis for linking evolutionary 

elements (representing design objects) and evolutionary mechanisms 

(representing inference methods or design methods). The evolutionary 

mechanisms develop and specialize evolutionary elements within a hierarchical 

structure with which a design concept is evolved to a desirable detail. This 

represents a process of design exploration and adaptation, during which a design 

solution is generated, explored, evaluated and selected with the alternatives and 

justification data are retained for possible back tracking and review. The proposed 

kernel provides key functions for building an application within this architecture. 
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Artificial Plant Generation 

 
 

With the GED kernel, implementation of a design application system can be 

simplified.  Creating an abstract design concept and then exploring this concept in 

the hierarchy with evolutionary mechanisms attached to the hierarchy, a design 

exploration and adaptation task can be supported.  The kernel provides key 

support for the implementation of a design application system.  Additional work 

to make a design application can focus on building the initial objects and 

providing proper interfaces. The last chapter has given a formal representation of 

the kernel and a detailed description of building application system with it, the 

coming three chapters in this Part III present the application of the GED kernel to 

three different design examples.  The detailed implementation and coding issues 

of developing these applications can be referred to Appendix A. 

 

In the first example presented in this Chapter 6, the patterns of plant structure are 

generated with the developed GED kernel as a supporting tool.  Initially the 

system starts with a structural gene or seed, attached with a self-replication (SR) 

mechanism.  This root seed then self-replicates itself to a number of children at a 

lower level of abstraction of the hierarchy.  This self-replication proceeds 

automatically generation by generation.  The elements at higher abstraction levels 

represent the macro structure of the visualized plants, while the lower ones affect 

the micro details.  Different visual effects with artificial plant structures can be 

generated, with manipulation of the internal evolutionary elements and external 

interference.  The generation and exploration of the patterns can be further 

enhanced with an evolutionary self-replication mechanism. 
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6.1 Artificial Life and Plant with Dynamical Hierarchies 

 

This artificial plant example can be related to the research area of Artificial Life.  

There are different issues in the field of Artificial Life.  Some of these are raised 

in Lenaerts, Gross and Watson’s paper (Lenaerts et al., 2002).  Bedau et al. 

(Bedau et al., 2000) also introduced some common issues.  One of these issues is 

to study and simulate the self-organization of dynamical hierarchies in artificial 

living systems. 

  

The importance of studying the dynamical hierarchies in artificial life is to 

simulate, explore and adapt the possible patterns, behaviours and outcomes of the 

simulated systems. This is also close to a generative and evolutionary design 

approach, in which exploration and adaptation are considered an important issue.  

To develop computational systems for supporting dynamical hierarchies of 

artificial lives, the evolutionary behaviour has to be handled.  In this example it is 

shown that the proposed kernel provides potential support to tackling these issues. 

 

This application is developed with the GED kernel and the design is evolved from 

a single self-replicating cell.  After a few generations of evolution, a multi-level 

hierarchy is generated.  When the design parameters of each evolutionary element 

are mapped to a geometrical structure, various structural patterns are obtained.  In 

this example, a manual single freehand stroke is also treated as an evolutionary 

mechanism and is seen as an external influence.  The GED hierarchy can then be 

represented and realized as: 

a) a single plant, in which the leaves of the hierarchy become the leaves 

of the plant, or 

b) a group of plants in which a path from the root to each leaf becomes a 

plant of the group. 
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6.2 Manipulation of Evolutionary Elements in the GED 

 

The specific GED hierarchy in this demonstration can be formulated as: 

� e_11t = ( structuralPara_11t, {SR_11t }, {}, El_11t ),  

where   SR = Self-Replication Mechanism 

� e_ikt = ( structuralPara_ijt, { SR_ik t }, { e_(i-1)jt },  El_ikt ), 

    where   e_11t is the root seed, while e_ikt is the kth 

evolutionary element situated at the i level of the hierarchy. 

 

All elements (except the root) have only one parent.  SRt is a self-replicating 

evolutionary mechanism.   Each self-replicating mechanism, SRt, attached to an 

evolutionary element, et, at any time frame, t, can be in the state of 1) inactive, 

et+1 = SRt (et) = et, or 2) actively replicating a fixed number of new elements and 

linking them to a lower abstraction level of the element, such that 

� et = SRt-1 (et-1) = SRt-1 ( structuralPara_et-1, {SRt-1}, {eHt-1}, {} ) 

= ( structuralPara_et-1, {SRt-1}, {eHt-1}, Elt )  

� el_it = ( structuralPara_el_it, {SR_it }, {et}, {} ), where   el_it ∈ Elt 

 

In this example, the evolutionary element et becomes inactive if it has one or more 

replicated elements at a lower level of abstraction.  In other words, only the 

elements without any lower level elements can replicate themselves. 

 

6.2.1 From a Simple Seed to a More Complex Hierarchical Structure 

 

At time t=0, there is only one evolutionary element seed in the GED application, 

i.e., the root seed e_11t, which has no linked higher or lower abstract elements, as 

shown in Figure 6.1(a).  The attached evolutionary mechanism is a self-replicating 

mechanism. 

� e_110 = ( structuralPara_110, { SR_110}, {}, {} ) 
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At time t=1, the root seed attempts to replicate itself with the attached self-

replicating mechanism, and a number of lower level images are produced as 

shown in Figure 6.1(b). 

� e_111 = ( structuralPara_111, { SR_111}, {}, El_111 ) 

� el_2i1 = ( structuralPara_el_2i1, {SR_2i1 }, {e_111}, {} ), 

where   el_2i1 ∈ El_111 

 

If more than one root images have been replicated, the attached self-replicating 

mechanism of the root seed, SR_111, at this time frame, t=1, becomes inactive.  

Such replication will then be propagated to the lower abstraction levels and the 

process will continue at the following time frames, and a dynamically evolving 

hierarchical structure will be formed, as shown in Figure 6.1(c) and 6.1(d). 

 

 

 

 

   (a)         (b)             (c)         (d) 

Figure 6.1: An evolving GED hierarchy, at time (a) t = 0, (b) t = 1, (c) t = 3, and (d) t = 5. 

 

6.2.2 Manipulating Internal Design Parameters of Evolutionary Elements 

 

This evolving hierarchy can be interacted with the interfaces supported by the 

kernel and represented with a plant form structure, as shown in Figure 6.2.  Based 

on the hierarchy generated with the SR mechanism having a fixed number (2) of 

replications as shown in Figure 6.1, a regular pattern of plants can be generated as 

shown in Figure 6.2(a), as the design parameter of the root seed has a line pattern 

and this line pattern is propagated towards the leaves.  Design parameters 

structuralPara of each element can be further manipulated by the users, and 

different forms of desired plants can be generated as shown in Figure 6.2(b).  In 

Figure 6.2(b) a less regular pattern is generated when the root seed pattern is 

mapped to a curve, which is further propagated to the leaves.  
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However, for generating more realistic, flexible and seemingly natural form of 

plant structures, more features should be supported.  Some degree of randomness 

may be applied.  External influences such as user defined features and evolving 

SR mechanisms are further introduced in the next two subsections for extending 

the possible patterns generated. 

 

 

 

 

 

 

 

 

 

 

               

 

Figure 6.2: Artificial plants generated with (a) a straight line, and (b) an irregular curve, 

at t = 0, t = 1, t = 3 and t = 5. 

 

 

6.3 External Influences 

 

For supporting user interaction in the system, manual drawn curve is applied as an 

external influence of the GED hierarchy in this example.  When external influence 

is added as a generative mechanism, the formal representation of this example is 

formulated as below: 

� e_11t = { structuralPara_11t, {SR_11t , ExInf_11t}, {}, El_11t } 

� e_ikt = { structuralPara_ijt, {SR_ik t , ExInf_ikt}, { e_(i-1)jt },  El_ikt } 

 

where SR = Self-Replication Mechanism, and ExInf = External Influence at level i. 

t = 0 t = 1 t = 3 t = 5 

(a) 

(b) 
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In the implemented kernel, external influence ExInf is supported in the form of 

geometric deviation through 2D curve points as shown in Figure 6.3.  The GED 

hierarchy in this case is exactly the same as the hierarchy used in the Figures 6.1 

and 6.2, with a static SR mechanism of 2 children.  With this external influence 

and some degree of randomness, more natural plant patterns can be manipulated 

and produced. 

 

 

Figure 6.3:  More natural plants generated with external influences and some randomness. 

 

 

6.4 Enhancing Exploration with a Self-Replication (SR) Mechanism 

 

The results of the GED system developed for generating plant-like structural 

pattern have shown how the GED hierarchy can be automatically evolved from a 

single root seed to a more complicated structure.  The hierarchy can be further 

represented and visualized in a 2D image of plant form.  Human interaction with 
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internal evolutionary elements and the external influences can act as a manual 

evolution mechanism that supports interactively exploring and generating variety 

of outcomes.  The results have shown that different effects are obtained when the 

changes are made at different levels of the hierarchy. 

 

Generation and exploration of the output can be further enhanced when the SR 

mechanism can be evolved instead of being fixed in a specific form or type.  SR 

mechanism used in the last examples has a fixed number of replications and 

reproduces two “exact” elements.  When an evolutionary SR mechanism is 

applied such that the number of replication is evolved over time instead of a fixed 

number, much wider possible outcomes can be obtained and more naturally 

realistic plants can be generated as shown in Figure 6.4. 

 

The left GED hierarchy in Figure 6.4 shows that the overall hierarchy is not a 

simple binary tree as those in previous examples and the numbers of lower 

elements attached at each element are different.  At any time frame t, an 

evolutionary element can be 1) inactive, et+1 = SRt (et) = et, or 2) actively 

replicating zero, one, or more new elements and link them to a lower abstraction 

level element.  Furthermore, the design parameters of the replicated ones may be 

deviated from those of the original ones. 

 

As discussed earlier, the hierarchical structure generated with the kernel alone is 

application-independent.  Different forms of representation, visualization and 

realization may be applied to the framework for interacting with external users or 

intelligent software agents.  The application so far generated one plant from the 

hierarchy.  In fact the same hierarchy can be realized differently, such as a group 

of plants as shown in Figure 6.3.  Instead of representing a level in the hierarchy 

as a branch of a plant, each path from the root seed to a leave becomes an 

individual plant when the hierarchy is presented as a group of plants. 
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Figure 6.4:  More flexible generation effect obtained with an evolutionary SR mechanism. 

 

 

6.5 Issues and Discussions 

 

This example has shown the exploration ability of the kernel in generating 

structural patterns with a simple self-replication generative mechanism.  The 

GED hierarchy developed with the kernel and its builder for this example can 

automatically be evolved from a single seed to a complex plant or a group of 

plant structures.  This GED system also supports manual intervention as an 

external interference of the evolutionary elements situated at different abstraction 

levels in the hierarchy to produce different generation effects when needed.  More 

generic structural patterns can be explored if changes are made at higher 

abstraction levels while evolution of elements at lower abstraction levels 
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produces detailed modifications near the leave level of the plant.  Generation and 

exploration can be enhanced with a dynamically evolving SR mechanism.  

Regular structural patterns as well as more natural realistic plants with certain 

randomness are produced. 

 

All domains at different levels are represented with geometrical structures.  

Higher levels can be realized as more geometric abstractions containing 

information of basic overall structural patterns, while lower levels obtain finer or 

detailed information of the final plant structure.  The GED hierarchy itself is 

application-independent.  While the elements of this hierarchy is mapped and 

realized to a plant-like structure, it can also be mapped to other representations 

such as image or audio.  This mapping of different representations may provide 

the similar pattern in some other forms of design outputs, but it needs further 

work to represent this hierarchy in a more generic manner. 

 

6.6 Summary 

 

This chapter has described the GED kernel and explained how it can support the 

development of generative and evolutionary design.  The application of the kernel 

in an example of generating plant-like structures is presented.  This simple 

example illustrates mainly how the developed GED kernel supports and enhances 

a more flexible exploration of generating potential patterns with the manipulation 

of design representations at different abstractions and evolutionary generative 

mechanisms.  However, without proper adaptation ability supported in the system, 

such generation activity may behave as an aimless and inefficient exploration.  

The demonstration example presented in the next chapter in generating and 

matching 2D digital image patterns with a simple 1D binary Cellular Automata 

presents how the kernel supports such adaptation. 
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2D Pattern Generation and 

Matching 
 

The last example is built with the kernel as a supporting tool without any 

additional external software.  With some additions of problem specific supporting 

systems, more complex applications can be developed with adaptation ability. 

With such a system the potential problems of design can be explored more 

efficiently.  In this chapter, an example using Cellular Automata as an 

evolutionary mechanism is introduced to provide a demonstration. 

 

This example illustrates how design knowledge is evolved and adapted for 

generating and matching desired patterns with the GED system.  Genetic 

Algorithm (GA) is used as an evolutionary mechanism that handles the global 

exploration and adaptation of a set of elementary elements, each of which is 

attached with another evolving generative mechanism – Cellular Automata (CA).  

GA provides a mechanism for adaptation and exploration through its objective 

function.  CA contains the design knowledge of generating 2D pattern formation 

with its transition rules and seeds (initial cell states).  Furthermore, a constraint 

mechanism (CM) is used to restructure the knowledge embedded in CA in terms 

of design objects and their generative design process. 

 

7.1 Generating 2D Patterns with Cellular Automata (CA) 

 

Cellular Automata (CA) is firstly introduced by von Neumann (1966).  It is a 

specific computational model with a simple self-organizing mechanism.  Much 

attention is particularly given to its simple self-organizing mechanism applied 

locally, which can seemingly produce complex global behaviours or patterns.  

The cells (elements) of CA behave in a self-organizing manner with their 
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neighbours according to a transition rule.  A well-known 2 dimensional CA is 

Conway's game of life (Berlekamp et al., 1982). 

 

In the case of using CA to generate 2D patterns in this example, knowledge is 

referred to as  

1) how 1D spatial information (the 1D CA seed) is evolved (with the 

transition rules), and  

2) how the history of this evolution is used to form the 2D pattern.    

 

To simplify this illustration the second issue is kept static with sequentially 

packing 1D cell arrays together to form the 2D image.  The first issue is directly 

related to the transition rules and initial states (seeds) of CA. 

 

One-dimensional (1D) CA can generate a 2D image pattern based on initial states 

(or seed) and the transition rules.  It can be regarded as a generative mechanism, 

and can generate a more complex 2D pattern with its evolutionary rules (the 

transition rules) and its states.  Figure 7.1 shows 5 sample patterns generated with 

different transition rules (TR) and initial states (S0) of a simple 1D binary CA. 

 

 

 

 

 

 

 

 

 

Figure 7.1:  Patterns generated with a simple 1D binary CA. 

 

In the example, CA plays the central role on generating seemingly complex 2D 

patterns with simple transition rules and seeds, which are regarded as another 
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representation of the 2D patterns at a higher abstraction level.  As introduced in 

an earlier chapter, CA can be categorized into different types: 

1) totalistic,  

2) semi-totalistic,  

3) non-totalistic 1D binary CA with 2-neighbourhood. 

 

A totalistic CA has transition rules that can be realized as density functions.  The 

next state of a cell in the transition is solely dependent on the density of its local 

region, and thus the sum of the states of its neighbourhood.  Furthermore, if the 

transition rules lead the next state of a cell to a new state that depend not only on 

the sum of the states of neighbouring cells but also on the state of its own, such 

CA and their rules are called semi-totalistic.  The transition rules of a non-

totalistic CA are not related to the density of its local region, and each next state 

of a cell depends on itself and the state patterns of its neighbours.  The possible 

patterns produced by a totalistic CA is a subset of those by semi-totalistic, which 

in turn is a subset by non-totalistic.   

 

Therefore, the next state (s’) of a cell (c) having current state (s), of a totalistic 

CA is 

� s’ = TR( Sum( All_NeighbourStates( c ) ) ) 

 

For a semi-totalistic CA, it is 

� s’ = TR( Sum( All_NeighbourStates( c ), s ) ) 

 

For a non-totalistic CA, it is 

� s’ = TR( All_NeighbourStates( c ), s ), 

where All_NeighbourStates(c) is the list of the states of the cell c neighbours. 

 

In the case of 2-neighbourhood: 

� s’ = TR( Sum( s+1, s-1, s ) ), 
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A simple CA can be modelled with the GED kernel in the form of 

� eCA1Dt = ( 1DPatternt, {CAt}, { }, {eCA2Dt} ) 

� eCA2Dt = ( 2DPatternt, { }, {eCA1Dt}, { } ) 

� CAt( eCA1Dt ) = eCA1Dt+1 

such that  

� 1DPatternt+1 = 1DPatternt 

� CAt+1  = CAt 

� 2DPatternt +1  = TR_of_CAt ( 1DPatternt ) 

where TR_of_CA represents the transition rules of CA applied to the initial 1D 

pattern. 

 

In a design application, designers or users manipulate data at a high level of 

abstraction in terms of design features or characteristics.  For example, instead of 

inputting the actual checkerboard pattern or specifying the initial seed and 

transition rules of CA, a designer may wish to characterize his/her own desired 

pattern with a feature stated as “no adjacent cells have the same colour in the 

digitized space”. However, CA itself has no mechanism to control and reflect this 

characteristic.  Furthermore, designers sometimes may not be able to specify what 

a desired feature is in explicit terms.  In this case, genetic algorithm is a better 

choice to handle this problem, as will be explained below. 

 

7.2 Integration of CA with Genetic Algorithm (GA) 

 

Holland’s Genetic Algorithm (1975) can be realised as a stochastic searching 

method, which seeks optimal solution(s) from a pool of possible candidates (the 

population).  From the initial population, which is often generated randomly, the 

candidates/individuals/chromosomes of the population go through evaluation, 

selection, crossover and mutation from one generation to another. 

 

In this example, the goal of the Genetic Algorithm is reflected in its selection 

process, either through a formulated objective function or through artificial 
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selection.  GA also provides the main interaction with designers as an external 

influence to the system. 

 

Constructing a mini GA-CA system with GA and CA mechanisms to solve the 

problem just mentioned is a case of GA controlling CA. This can be related to the 

studies of applying GA to CA for solving the problems of density classification 

and synchronization (Das et al., 1995).  Instead of finding a universal rule that can 

be applied to every random seed for obtaining a final goal or a pattern, the main 

goal here is to find the right transition rules that can be applied to the right seeds 

to produce the right patterns.  The global environment for producing the right 

pattern is governed by the GA.  This GA controls the transition rule of each CA 

instead of the final pattern, while the transition rule of CA influences the final 

pattern. 

 

In this GA-CA system, GA captures the characteristics or features of the desired 

patterns.  When these features are formulated and embedded into the objective 

function of the GA, the GA-CA system can then run automatically without human 

interaction to achieve the goal.  However, design problems are often ill defined, 

and the problem itself is to be evolved during the design process together with the 

solutions.  Furthermore design knowledge is often implicit in designers’ mind and 

this tacit knowledge cannot be formulated easily in computational systems.  In 

this situation, GA can offer an artificial selection mechanism to let designers 

select the candidates with desired features without explicitly specifying what 

those features are.  This implicit human objective function guides the system to 

produce the similar effect of selecting and reproduce fitter candidates with a 

computational objective function. 

 

The evolution of the CA transition rules and the seed, governed by the GA, 

exhibits a way of knowledge evolution, which explores the possible solutions at a 

different level of abstraction in terms of the representation of 2D patterns.  As 

shown in Figure 7.2, a population of three CA is governed by the GA.  As the 
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checkerboard feature can be formulated and programmed as an objective function, 

this GA-CA system can automatically evolve the right transition rules and the 

seed.  Furthermore, the client user can also rate the CA candidate(s) or artificially 

select the best-matched CA according to his/her desired pattern.  With this 

external influence to GA, the checkerboard pattern can be obtained after a few 

generations with the GA seeking the right seed and transition rules for the CA to 

run. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.2:  Patterns generated with a GA-CA system, having a checkerboard as the goal. 

 

With the GED kernel, this GACA application can be structured as: 

� eGA_11t = { gaParat, { GAt }, {}, El_11t } 

� eCA1D_2jt = { 1Dt, { CAt }, { eGA_11t },  { eCA2D_3jt } },  

where   eCA1D_2jt ∈ El_11t 

� eCA2D_3jt = { 2Dt, { }, { eCA1D_2jt }, {} } 

 

With GA, the right pattern can be generated with the given CA and the explored 

pairs of initial states (s0) and transition rules (TR).  This CA may properly 

function if the given problem is fixed.  However when the problem is dynamically 

changing or still not well-defined, this static CA may not be working efficiently.  

User Interface 
(User determines desired patterns) 

) 

 

Genetic Algorithms 
(GA governs TR and S0 of CA) 
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Without knowing what possible 2D image patterns are wanted, prematurely fixing 

the type of CA may cause 1) no acceptable solution can be found if a simple CA 

is used to try to generate a complex pattern, or 2) wasting time and computational 

power if a complex CA is used for generating a simple pattern. 

 

For the example of a simple CA mechanism, different types of CA have different 

lengths of TR and the total numbers of different TR, as shown the table 1 below.  

Acceptable solutions for complex patterns cannot be found with such a simple 

totalistic binary 2-neighbourhood CA, which has only 8 possible TRs.  

Conversely it is inefficiency (and sometimes infeasible) to explore a simple 

checkerboard pattern, through a comparative complex 4-state 4-neighbourhood 

non-totalistic CA searching within the domain of 41024 possible TR solutions.  As 

design is considered to be an exploration of feasible candidates rather than 

searching for the optimal solutions, therefore for an efficient exploration of 

acceptable solutions, some mechanisms for adapting the right CA at specific 

times are needed.  Table 1 compares CA of three types, each having different 

numbers of states (S) and numbers of neighbourhoods (N). 

 

 General (sS, nN) 2S, 2N 
 

2S, 4N 4S,4N 

 TR length Total TR TR length Total TR TR length Total TR TR length Total 
TR 

(1) 
Totalistic(T

) 

n.(s-1)+1 s n.(s-1)+1 2(1)+1 = 
3 

23 = 8 4(1)+1 = 5 25 = 32 4(3)+1= 13 413> 
6.7x107 

(2) 
Semi-T 

s.n.(s-1)+1 s s.n.(s-1)+1 2.3=6 26=64 2.5=10 210=1024 4.13=52 452 

(3) 
Non-T 

s(n+1) s (n+1) 23=8 28 = 256  25=32 232> 
4.2x109 

45=1024 41024 

 

Table 1: Comparison of transition rules (TR) length and Total possible TR of different 

CA types: (1) Totalistic, (2) Semi-Totalistic, and (3) Non-Totalistic, having different 

states (S) and different numbers of neighbourhood. 

 

Although Cellular Automata has been studied extensively in different aspects 

including the variant versions from conventional CA (Sarkar, 2000), there is not 

much work on studying how an evolving CA can further enhance design 

s 
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exploration and knowledge.  A tempting approach is applying the concept of 

hierarchical GA and Genetic Programming (Koza 1989, 1992) to the problem.  

However, this hierarchical approach deviates from the problem of abstracting 

knowledge in design generation.  

 

To tackle this problem, a new approach is introduced in this study to evolve the 

generative mechanism, the CA type, apart from changing the parameters of a 

static CA, the transition rules and the initial states.  For evolving generative 

mechanisms, adaptation needs to be supported by the kernel.   

 

There are two approaches to integrate this adaptation ability in a GED-based 

system.  An adaptive ability can be embedded in the generation mechanism to 

form an adaptive mechanism such that the GA guides how CA evolves.  However 

this limits the possible future extension of the system and restricts the employable 

evolutionary mechanisms only to CA.  Instead, in this study, a separate 

evolutionary mechanism is used as an adaptive mechanism to evolve the 

generative mechanism.  This approach can be more flexible and extensible for 

further modification and enhancement of the system such that different internal 

generative modules and external adaptive modules can be interacted. 

 

In the next section, Piaget’s concept of knowledge reconstruction is applied to the 

CA example, followed by an illustration of how a constraint management (CM) 

concept can be used as a possible adaptation mechanism. 

 

7.3 Design Knowledge Reconstruction 

 

In this study, the kernel supports the handling of generative mechanisms in design 

as the core of a knowledge evolution and reconstruction process.  Generative 

mechanisms evolve and adapt to the new situations by adjusting their internal 

rules, and even the goals.  The emphasis in this study is on knowledge 

development in terms of design objects and design process through Piaget’s 
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concept of assimilation and accommodation.  From a cognitive perspective 

related to Piaget’s view discussed earlier on design knowledge, the evolution of 

knowledge may become possible in the form of assimilation for exploring 

potential design solutions given the existing knowledge, or of accommodation for 

synthesising possible design outcomes through proper knowledge reconstruction.  

Both are often needed in order to tackle new design problems. 

 

In the CA case, certain solutions are obtained based on the knowledge obtained 

from the past information.  Although it is impossible to encounter all possible 

solutions that can be produced by this specific CA, it is possible to derive from 

the existing knowledge (of a specific CA) to obtain a domain of all possible 

solutions.  When this situation is adequately managed, an equilibrating state of 

Piaget’s knowledge construction can be reached.  There are four possible cases 

when further new problems are encountered. 

 

First, a new problem is identical to an existed one.  In this case old knowledge can 

be used to handle this new problem without altering the knowledge.  Therefore, a 

new CA is the same as one of those encountered before.  What is needed to do is 

to get the right S0 and TR back.  In the rest of the cases, the new problem is not 

the same as any one encountered before. 

 

In the second case, an assimilation concept can be applied to re-organising the 

knowledge with predefined logical structures.  Relating to the CA cases, the right 

S0 and TR can be searched and obtained, and correspondingly evolved into a new 

schemata, to generate the right (acceptable) 2D patterns. 

 

In the third and fourth cases, the accommodation concept can be applied to re-

constructing the knowledge with some form of restructuring.  Relating to the CA 

cases in the third case, the search domain can be dynamically modified by altering 

the CA structure, or the type of CA in the later example, as well as its right S0 and 
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TR in order to generate the final 2D patterns, while correspondingly evolving the 

CA structure. 

 

Finally, if all the above mentioned cases still cannot handle the problem with the 

existing knowledge or the new knowledge generated with the above methods, then 

it is necessary to turn to other knowledge domain for solving the problem.  It may 

need to re-construct the existing knowledge with some new external knowledge 

sources.  For example, besides CA some other 1D to 2D generative mechanisms 

exist which might be able to do the job better.  It may even be necessary to change 

the concept, by asking if producing 2D pattern from 1D CA is the right one choice 

for the new problem.  Figure 7.3 illustrates this CA case with the block diagram.  

Based on this concept, the example of this CA demonstration has been further 

extended to work with constraint management as an adaptive mechanism. 

 

7.4 Combining GA and CA with Constraint Mechanism (CM) 

 

The term “constraint management” is often referred to the theory of constraints 

(Goldratt, 1986) in the field of organizational management, for guiding 

management actions in reaching a goal upon certain constraints imposed.  

However, in this thesis the constraint mechanism (CM) that handles design 

constraints is not defined from this perspective.  Instead, it is specifically related 

to handling knowledge constraints that produce design candidates. 

 

In the kernel, transition rules of CA constrain the dynamics of the cells, and thus 

limit their possible output patterns.  Different types of transition rules have 

different levels of constraints.  Totalistic, semi-totalistic and non-totalistic CA are 

all considered, with the tightest constraints being in the case of totalistic CA, less 

tight in semi-totalistic CA and further relaxed constraints in non-totalistic CA 

respectively.  A CM module is designed in the kernel to relax or tighten the 

constraints (the transition rules) of these CA for adapting and exploring the right 

desired patterns. 
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Figure 7.3:  A Cellular Automata (CA) Version of Piaget’s knowledge reconstruction. 

 

In the above GA-CA case, the knowledge representing the right transition rules 

and initial seeds to produce the right patterns is evolved and the knowledge of the 

generating process with GA-CA is emerged.  However, the basic structure of the 

1D CA (the binary totalistic transition rules) is not changed.  The possible 2D 

images produced by the GA-CA system are still the same within the searchable 

domain of the original CA. 

Input 2D 
Pattern 

Old? 

2D Pattern Cannot 
Be Handled. 

Solved? 

Solved? 
 

Equilibrating 
State 

No 

No 

No 

Assimilation 
Attempt 

Accommodation 
Attempt 

Yes 

Yes 

Yes 

Check if Existing CA OK? 

Reconstructing CA 



 102 
 

 

When the desired patterns are out of this original domain, e.g. some seemly 

chaotic patterns, no solution can be found no matter how the GA-CA system 

evolves.  In this case, further knowledge evolution is required to handle this.  

When the knowledge is related to a set of constraints adding upon a set of objects 

under a certain context, reconstructing the knowledge may be obtained after 

relaxing and tightening the constraints. 

 

A constraint mechanism can be applied with GA-CA for evolving design 

generation knowledge to solve the new problem.  The role of CM here is to relax 

and tighten the constraints.  In this example the constraints are related to the types 

of CA.  Tightening constraints is related to using a CA that produces limited 

patterns, while relaxing constraints attempts to obtain a CA that can produce more 

patterns.  The evolutionary process of this CM-GA-CA system can be realized in 

the psychological perspective, in particular in Piaget’s knowledge reconstruction 

process as discussed in the last section.  Figure 7.4 is the schematic diagram 

showing how this application works and how the knowledge of this CM-GA-CA 

is developed through the assimilation and accommodation process. The system is 

operated in the following way: 

 

� Equilibrating state 

In equilibrating state, the CA is generating and matching the known patterns (the 

top right corner in Figure 7.4) with the known transition rules and seeds in 

advance according to the current condition of the evolving knowledge pool (the 

top left circle in the figure). 

 

� Assimilation for new patterns 

When a new unknown input pattern is required and causes a dis-equilibrating 

state, assimilation process will take place.  The GA supports this assimilation, by 

exploring new patterns within the existing knowledge domain.  GA attempts to 

govern the transition rules of a set of CA candidates and their initial seeds and 
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find the right transition rules and seeds for producing the desired patterns.  While 

the right CA is found, GA returns the finding back to the knowledge pool and the 

system is then back to the equilibrating state. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.4: The knowledge development of a CM-GA-CA system, through the 

assimilation and accommodation process with the CA, GA and CM 

 

 

� Accommodation for patterns which are out of existing domain 

However, when acceptable CA cannot be found in the existing domain, 

reconstructing the current design knowledge and its domain of CA is required.  

Through GA information related to the matching error will be used by CM. CM 
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relaxes or tightens CA corresponding to GA. The process is repeatedly running 

until right solutions are found and a right reconstructed CA is done, or the right 

solution is not found after all possible knowledge reconstruction attempts. When 

the solutions are found, the system gets back to its equilibrating state.  However 

when they are not, this CM-GA-CA system will not be able to solve the new 

problems, and no adequate knowledge can be developed for the new input pattern 

as shown in the bottom left in Figure 7.4.  If there is a computational system 

having more intelligent modules, some potential modification of the existing 

knowledge may be reconstructed with these modules to solve this problem. 

 

As mentioned earlier, CA is relaxed and tightened from totalistic, semi- totalistic, 

to non-totalistic.  Furthermore, together with relaxing the number of cell states of 

CA from 2-neighbours to 4-neighbours, more complex patterns are handled as 

shown in Figures 7.5 and 7.6.  In this example, the population of GA is 30 and the 

probabilities of crossover and mutation are preset as 0.2 and 0.05 respectively. 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.5: Successful matching with constraint tightening in the CM-GA-CA system. 

 

The GACA system has been modified and further enhanced to explore and adapt 

the right CA form with a prototype CM-GA-CA system based on the kernel 

developed in this thesis.  The system relaxes or tightens CA constraints according 

to the accumulated errors for finding the best results. In the bottom left of the 
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Figure 7.5, a checkerboard pattern is to be matched or approximated.  When an 

acceptable CA has been found for closely matching the input pattern, the system 

will be in its equilibrating state and stop further assimilation or accommodation. 

 

There are two cases that CA will have to be restructured. When the matching is 

close to a perfect one, the CA will be tightened from a more complex to a simpler 

one to check if the simpler one can sufficiently and efficiently handle the given 

matching, as shown in Figure 7.5.  Conversely, the second case restructures CA 

from a simpler one to a more complex one if the matching error is over the 

acceptable limit.  In this case, attempts will be made to see if CA reconstruction 

with constraint relaxation can lead to a perfect matching or an acceptable 

approximation, as shown in Figure 7.6 for matching a more irregular pattern (like 

a character ‘A’). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.6: Failed pattern matching, even with the most relaxed constraints. 
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7.5 Issues and Discussions 

 

Although the illustrated example is simple, it shows how simple evolutionary 

mechanisms (CA, GA, and CM) adapt to new requirements with the evolution of 

the system knowledge.  There are, however, some issues which need to be further 

discussed. 

 

In this example a constraint relaxation approach is used.  With this approach, the 

generative mechanism is related to a set of constraints.  Three types of CA are 

related to how to relax the constraints.  However, in term of computational 

implementation, further constraints may need to be introduced.  Besides the 

perspective of density (totalistic, semi-totalistic, and non-totalistic) and the 

number of cell states, there are other perspectives such as 1) static versus dynamic 

transition rules, 2) synchronous versus asynchronous transition of cell states, and 

3) size of neighbourhood. 

 

� Decomposing constraints 

To make this approach work in a computational system, the evolutionary 

mechanisms should be constructed and programmed in an appropriate way.  In 

this case, decomposing CA for constraint manipulation is needed and CA should 

then be implemented in a way that the constraints are partitioned into program 

segments for CM to split and merge for relaxing or tightening those constraints.  

In fact, this split-and-merge (or decomposition-and-composition) approach not 

only works in the natural world such as the splitting and merging of chromosomes, 

but also in many design tasks.  Further study in applying Genetic Programming 

(GP) in modularising and re-composing generative mechanisms is worth to be 

investigated. 

 

� Efficiency and resource 

The knowledge evolution in the system is further closely related to the issues of 

resource and efficiency.  It would be wasting resource with low efficiency when 
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producing very simple patterns with complex systems having complicated 

generation mechanisms, while these simple patterns can be generated with very 

simple rules.  In the CA case, seeking the right transition rules and seeds in a 

totalistic CA is much faster than that in a non-totalistic one although all the 

patterns generated with totalistic CA can also be generated by non-totalistic CA. 

 

For a 1D binary totalistic CA with 2 neighbouring cells, the number of possible 

transition rule sets is 23 = 8 while that of a 1D binary non-totalistic one is 28 = 

256.  The difference between the two types of CA having one relaxing constraint 

feature is large even in this extremely simple CA, and more constraint differences 

require huge computational resources in terms of memory and time.  Therefore 

further study is needed on modifying the domain so that not only the newly 

needed sub-domains can be added but also the unused sub-domains can be 

subtracted out, for a much more efficient exploration to be achieved. 

 

� Exact versus approximate solutions 

CA cannot produce all the desired images, and exact solutions are not often found 

with the limited knowledge.  However, with the limited resources, it is almost 

always the case that knowledge kept by generative techniques, such as CA in this 

case, can only produce approximated results to some desired optimal patterns 

which are out of the knowledge domain.  Despite of the inexact outcomes, like 

lossy compression techniques in image compression applications, design 

exploration is not necessarily to be exact.  In fact, one basic criterion for creativity 

is the unexpectedness.  When applied appropriately, this defect can be used as a 

driving force for achieving surprising results. 

 

� Forms of adaptation 

In this example both constraint management (CM) and Genetic Algorithms (GA) 

have different adaptation abilities.  While CM has a clear and explicit mechanism 

to guide how the constraint is to be changed according to the feedback matching 

error from GA, GA conversely implicitly directs the changes of CA parameters to 
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achieve the goal (pattern matching) through selection with certain degree of 

randomness.  In comparison, the form of adaptation supported by CM can be 

treated as an explicit or hard adaptation while that by GA an implicit or soft 

adaptation.  Similar to evolutionary design concept, soft adaptation approach may 

be more appropriate for handling highly dynamic and diverse problems while hard 

adaptation for managing comparatively simple and direct tasks. 

 

� Other representations of structural patterns 

Although this example generates and handles only some simple 2D digital pattern 

images, the adaptive exploration and generation mechanisms provide a suitable 

infrastructure to be further extended to other pattern domains.  With the kernel, 

the same 2D pattern can be used to form some structural patterns of plant-form as 

shown in Figure 7.7.  Further work is needed for generating and matching other 

forms of pattern. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7.7: Plant-form structural patterns generated with the CM-GA-CA system. 

 

This CM-GA-CA example has shown the exploration and adaptation ability of a 

computational system with the GED kernel.  The simple adaptation is based on 
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tightening or relaxing CA constraints with CM for dynamically changing the 

types of CA such that exploration of acceptable CA for a desired pattern can be 

done more efficiently with GA. 

 

The earlier artificial plant and this CA example can be run automatically without 

much user intervention.  However for practical design tasks, more works should 

be given to system integration and user interaction.  An example in the next 

chapter demonstrates how the developed GED kernel is integrated with external 

commercial CAD tool and database to form a more sophisticated system, with 

more emphasis on human interaction. 

 

7.6 Summary 

 

The issue of design knowledge reconstruction is discussed with the simple 

example presented in this chapter.  Given a specific 1D CA, with specific initial 

cell states (S0) and transition rules (TR), it can be shown that specific 2D digital 

maps or images can be generated.  Such S0 and TR can be treated as a schemata 

referred by Piaget, while a 1D-generating-2D approach can be regarded as the 

underneath concept (abstraction and relation).  There are different types of CA, 

including totalistic, semi-totalistic, non-totalistic, neighbourhood, and 

synchronization.  While a fixed form of such structure is used in most research 

works in generative design, this study emphasizes the evolution of such 

generation structure or mechanism. 

 

Most conventional research studies use a fixed form of CA in generative design.  

Design generation is thus based on the transition rules and seeds within this fixed 

form of CA to produce the desired patterns.  However, the basic structure of CA 

is not changed as well as the possible design domain.  This study demonstrates 

how the GED kernel supports capturing the knowledge of how a design object is 

generated through evolving generative mechanisms, and thus actually changing 
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the form of CA in this example so that design generation can be achieved more 

effectively and efficiently. 

 

In real design, however, more attention should be paid to how a design problem 

can be converted to a formulation with the necessary information, knowledge and 

user interaction to allow the problem being explored with the kernel functions.  In 

the next chapter, a more substantial design problem is used to demonstrate the 

applicability of the generative and evolutionary approach with the necessary 

components of the GED kernel from a more designer oriented perspective. 
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Wineglass Design with the GED 

Kernel 
 

Research on generative and evolutionary design has advanced in the last decade 

but the application of such technique in a real product design has been limited to 

isolated reports on experiments with simplified or abstracted examples. To 

develop a software kernel enabling the application of this technique in a larger 

and more realistic scale, a design oriented approach is needed. In this chapter, an 

application of the developed kernel to the design of wine glasses is presented from 

a designer’s perspective. Non-computational issues related to design activities are 

taken into account in an attempt to examine the feasibility and the limitations of 

the technological solution proposed in this issue to the problem of fully 

supporting design activities with generative and evolutionary techniques. 

 

8.1 Wineglass Design 

 

The evolution of a product is closely related to the social, historical, and 

technological development as the life styles of people change and improve over a 

long period of time. The design of wine glasses has not been a simple matter and 

it is an established business in the west. The revolution in drinking glasses had 

emanated from the two southern English workshops of George Ravenscroft, who 

in 1675 had discovered how to make LEAD crystal.  This gave rise to a whole 

new style of English glassware quite distinct from intricate Venetian fashions.  

Increasingly, different glasses were designed and produced to be used specifically 

for certain wines, and by the end of the 18th century the concept of a uniformly 

decorated glass service was well established throughout Europe. 
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The picture in Figure 8.1 is a typical catalogue in London's Army & Navy store in 

1902, after the Victorians further developed the notion of complete range of 

matching glasses, including finger bowls (Robinson, 1994).  After centuries of 

evolution, techniques and knowledge in wine glass productions have been 

improved and a variety of wineglass types can be produced.  Figure 8.2 shows 3 

traditional series of modern wine-glass families from a well-known wine-glass 

manufacturer (Riedel, 2006).  Figure 8.3 shows some unusual wineglasses 

(Johnson, 1993). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.1:  Some historical drinking vessels. 

 

8.1.1 A Computational Approach 

Computationally, forms of wine glass can be generated and evolved relatively 

more easily than other products which have complex functional and aesthetic 

requirements.  This example of wineglass generation was originally motivated by 

the earlier works of Frazer’s (top image in Figure 8.4). A simple demonstration 

program was later implemented in Visual Basic (VB) programming language to 
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show how conventional GA can be applied to generate a number of 3D models of 

wineglasses (shown at the bottom of Figure 8.4). 
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Figure 8.2:  Different series of wineglass families. 

 

 

 

 

 

 

 

 

 

Figure 8.3:  Some unusual wineglasses. 
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Figure 8.4:  An early attempt of 3D modelling wineglasses. 

 

 

However, this program, once developed like most conventional evolutionary 

design systems, provided little flexibility for reconstructing the generating process 

of the wineglass. Its exploration ability is highly restricted to what had been preset 

by the programmer. With the support of the GED kernel, a better version of this 

program can be developed which offers stronger support to designers in order for 

them to explore their designs. 
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8.2 A Wineglass Design System with the GED Kernel 

 

With little modification to the GED kernel software, a new version of wineglass 

generation system is developed.  This new system with the kernel alone generates 

wineglasses in a 2D profile representation as shown in Figure 8.5, without 

integrated to external CAD tools.  

 

8.2.1 Wineglass Design with the GED Kernel 

 

This simple version is hierarchically structured as a demonstration of how 

different GUI can be linked to interact with each level of the hierarchy.  In the 

middle layer of the hierarchy, a set of templates or seeds represented in a 2D 

profile form is provided.  The geometrical form of these seeds is based on a 

wineglass series of a famous manufacturer, Riedel. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.5:  The wineglass design system without integrated to external CAD tools, in 

simple 2D profile representation. 
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Representation of this example can be formulated as 

� e_11t = { textualInfot, { }, { }, {e_21t } } 

� e_21t = { ImageInfot, {mm_21t }, { e_11t }, {e_31t } } 

� e_31t = { MathInfot, {mm_31t }, { e_21t }, {e_41t } } 

� e_41t = { 2Dprofile_41t, {mm_41t , Dbtemplate_41t }, { e_31t }, {e_51t , 

e_52t , ..} } 

� e_5it = { 2Dprofile_5it, {mm_5it , Dbtemplate_5i t }, { e_41t }, { } } 

 

where mm represents a manual mechanism in a form of manual 

evolutionary mechanisms 

 

8.2.2 Limitations without 3D Manipulations 

 

However, functions supported by this simple system are limited, without the 

support from commercial 3D solid modelling tools.  For example, the 

representation of wineglass in this generic GED kernel system is limited to 2D 

geometrical graphical representation.  To improve this, the kernel can be either 

further developed to a more complex software system that is resource consuming, 

or it can be integrated with external tools to make use of their advanced features 

such as 3D geometrical modelling.  In the following example, the kernel is 

integrated with an external CAD tool and shows that it is feasible and applicable 

to product design applications. 

 

8.3 An Improved Version 

 

In this improved version the GED kernel (GEDK) is integrated to a commercial 

CAD tool (MicroStation) and external CAD functions are utilized.  The block 

diagram of this GEDK-embedded system is shown in Figure 8.6 and a captured 

image of the system is shown in Figure 8.7. 
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Figure 8.6:  The block diagram of the wineglass generation system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.7:  The GEDK-embedded system for wineglass generation. 
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With such GED kernel (GEDK) embedded, the application system can be 

interacted with designers or users at different abstraction levels and different 

results can be explored as shown in Figure 8.8.  In this application, there are five 

levels in the GED hierarchy.  The element in the first layer represents the root 

seed of the whole family, while that at the second layer captures the basic 

geometric feature of desired wineglasses.  The element in the third layer consists 

of more than one mechanism, including 2D profile interface and a GA.  At the 

moment, only artificial or manual selection is used in this GA process, while more 

research work are required to study what objective functions are needed and can 

be formulated for fully-automating the GA selection process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.8:  Design Generation, evolution and interaction with the GEDK-embedded 

system. 

 

The best candidate from GA is generated, selected and directed to the fourth level. 

The evolutionary element at the fourth level is embedded with a family variants 
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loaded from a database.  The family includes eight members for serving different 

wines: Riesling, Champagne, Underberg, Water, Cognac XO, Martini, Moscato 

and Sauternes.  The final family members, retaining all inherited styles and 

features from higher abstractions, are generated and fed to the fifth layer, at which 

they can be transformed to 3D models by the integrated CAD tool. 

 

In this example, the GED kernel is integrated to an external CAD tool and the 

system can then be formally represented and formulated as 

� e_11t = { WG_ProfileSeedt, { mm_11t }, { }, { e_21t } } 

� e_21t = { FRFeaturest, {mm_21t }, { e_11t }, { e_31t } } 

� e_31t = { 2Dprofilet, {mm_31t, GA_32t }, { e_21t }, {e_41 t } } 

� e_41t = { Best2Dprofilet, { Dbtemplate_41t }, { e_31t }, { e_51 t ,  

e_52t , ..} } 

� e_5kt = { WG_FamilyProfile_5kt, { CAD_tools }, { e_41t }, { } } 

 

With this system, designers can manipulate wineglasses at various abstractions: 

from the abstract descriptive features of wineglasses in the top-right window, the 

2D profile of the wineglasses, the add-on evolutionary mechanisms including a 

Genetic Algorithm, to the final 3D models of the generated series.  A large 

number of alternative design solutions can then be explored and generated, as 

shown in Figure 8.9. 

 

8.3.1 From Seeds to Relatives 

 

When further modification of this system is made for generating wineglasses with 

different genes or “seeds”, various design solutions (“relatives” or “species”) can 

be generated with the same evolutionary hierarchy developed for wineglass 

generation.  Figure 8.10 shows the results obtained from an extended example of 

this case.  With a simple modification, corresponding series of bottles (the second 

row in the figure), plates (the third row) and bowls (the last row) having same 

inheritance from a wineglass family (the first row) can be generated. 
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Figure 8.9:  Different wineglasses can be generated with the system. 

 

 

 

 

 

 

 

 

 

 

Figure 8.10:  Seeds produce different species with the GEDK-embedded system. 

 

 



 121 
 

In this case the GED hierarchy can been formulated as 

� e_11t = { Relative_ProfileSeedt, { mm_11t }, { }, {e_21t } } 

� e_21t = { FRFeaturest, {mm_21t }, { e_11t }, {e_31t } } 

� e_31t = { 2Dprofilet, {mm_31t, GA_32t }, { e_21t }, {e_41 t } } 

� e_41t = { Best2Dprofilet, { Dbtemplate_41t }, { e_31t }, {e_51 t ,   

e_52t , ..} } 

� e_5kt = { Relative_FamilyProfile_5kt, { CAD_tools }, { e_41t }, { } } 

 

Close “relatives” (bottles, plates and bowls) of the wineglass “family” can easily 

be generated with the GED system.  Many potential design solutions of these 

close relatives can then be explored as shown in Figure 8.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8.11: Some example results, generated with the GEDK-embedded system. 
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This design example presents an application for generating a family of 

wineglasses and their “relative” utensils when the GED kernel is integrated with 

commercial CAD tools.  The emphasis in this example has been given on 

developing a design system in a designer’s perspective with the GED kernel and 

integrating the kernel with external design tools available for supporting practical 

design tasks.  Together with the previous two design examples in Chapters 6 and 

7, these three examples have shown the feasibility and applicability of the GED 

kernel for supporting design in various aspects which will be discussed further in 

the next session. 

 

8.4 Discussion and Evaluation 

 

Three chapters in this Part III have described and illustrated the generative and 

evolutionary design (GED) kernel on how it supports the development of 

generative and evolutionary design systems, through the introduction of three 

different design examples.  In the first example presented in Chapter 6, patterns of 

plant structure are generated with the GED kernel as a supporting tool. The 

system starts with a structural root gene or seed, which self-replicates itself to a 

number of children at a lower level of abstraction in the GED hierarchy through 

an attached self-replication (SR) mechanism.  This self-replication proceeds 

automatically generation by generation.  The elements at lower abstraction levels 

represent the micro details of the artificial plants, while the higher ones affect 

their macro structure. 

 

This first example illustrates how the developed GED kernel supports and 

enhances a more flexible exploration of generating potential patterns with 

manipulation of design representations at different abstractions and evolutionary 

generative mechanisms.  However, without proper adaptation ability supported in 

the system, such generation activity may behave as an aimless and inefficient 

exploration. 
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The second demonstration example presented in Chapter 7 shows how the kernel 

supports such adaptation.  In this example Genetic Algorithm (GA) is used as an 

evolutionary mechanism that handles the global exploration and adaptation of a 

set of elementary elements, each of which is attached with another evolving 

generative mechanism – Cellular Automata (CA).  GA provides a mechanism for 

adaptation and exploration through its objective matching function.  CA contains 

the design knowledge of generating 2D pattern formation with its transition rules 

and seeds.  Furthermore, a constraint mechanism (CM) is used to restructure such 

knowledge of generating 2D pattern formation embedded in the system, in terms 

of design objects and their generative design process. 

 

This example focuses on showing how design knowledge is evolved and adapted 

for generating and matching desired patterns with the GED system.  However, in 

real design tasks much attention is required for knowing how to convert a design 

problem to a formulation with the necessary information, knowledge and user 

interaction to allow the problem being explored with the kernel functions.  In 

Chapter 8, a more substantial design problem is used to demonstrate the 

applicability of the generative and evolutionary approach with the necessary 

components of the GED kernel from a more designer oriented perspective. 

 

To develop a software kernel enabling the application of this technique in a larger 

and more realistic scale, a design oriented approach is needed.  An application of 

the developed kernel to the design of wineglasses is presented from a designer’s 

perspective in Chapter 8.  Non-computational issues related to design activities 

are taken into account in an attempt to examine the feasibility and the limitations 

of the technological solution proposed in this issue to the problem of fully 

supporting design activities with generative and evolutionary techniques. 

 

These three application examples have demonstrated the feasibility and 

applicability of the GED kernel in supporting computer-based design systems in 

various aspects, particularly in the issues of dynamics of GED hierarchies, 
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knowledge of design generation, abilities in design exploration and adaptation, 

design representation and interaction, and the system development and integration 

with external design tools. 

 

8.4.1 Dynamics of GED Structural Hierarchy 

 

The three examples have shown that the GED kernel supports an evolving 

structure with multiple design representations in a hierarchical form, and provides 

mechanisms for manipulating different design abstractions at different design 

stages.  Compared to traditional evolutionary design approach in which design 

representation is fixed and lack of flexibility once preset, such evolving structure 

changes dynamically according to the generative mechanisms attached to the 

evolutionary design elements and supports a wider exploration of potential design 

candidates.  Three examples have different degrees of evolutionary dynamics, 

which can be related to design cases that require a higher degree of innovation 

and creativity (e.g. the first plant example) to a lower degree one (e.g. the 

wineglass example). 

 

In the first example the artificial plant generation system supports a fully dynamic 

GED hierarchy that forms an evolutionary structure.  This simple example 

illustrates how the developed GED kernel supports and enhances a more flexible 

exploration of generating potential patterns with a fully-automated system.  The 

system keeps evolving the design elements as well as the overall hierarchical 

representation of design objects at different abstractions.  Although this automatic 

evolving structure exhibited in an aimless way without human intervention, this 

example demonstrates the ability of the kernel in supporting structural evolution 

of the multiple design representations in a hierarchical form.  As discussed in 

earlier chapters in Part II, alternation of design representations at more abstraction 

forms often leads to much radical and innovative design, which is particularly 

important in new design tasks that emphasize creativity and new design features. 
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Compared to the first example, the second 2D image pattern example emphasizes 

on how the GED kernel based system supports knowledge adaptation in design 

generation.  In this example the overall hierarchical representation is a static 

structure as a whole, while the generative and evolutionary mechanisms 

demonstrated with Cellular Automata, Genetic Algorithms, and Constraint 

Management techniques are manipulated to improve the effectiveness and 

efficiency in design exploration.  Therefore, each evolutionary element attached 

with a CA mechanism changes while the overall GED hierarchy does not. 

 

In the last example, the system supports a fixed GED hierarchy of wineglass 

design with external design tools.  While our internal GED hierarchy itself in this 

example can be dynamic, the system for this example is developed for handling a 

comparatively mature practical design case with a static GED design 

representation.  The integration of the kernel with external CAD tool, database, 

and other computational modules imposes difficulties to produce a flexible system 

which can operate in a much dynamic way as the last two examples. 

 

8.4.2 Major Generative Mechanisms 

 

In this study much emphasis is also given to the ability in exploring and 

generating designs, through various computationally generative mechanisms.  

These generative mechanisms are used to retain the knowledge of how design 

objects are generated, from a more abstract form to a less one. 

 

In the first plant example, a simple self-replication (SR) mechanism is used.  This 

SR mechanism supports simple reproduction process having a mechanism of 

generating details similar to a “fractal” way.  The system then generates less 

abstract forms from a more abstract one at different levels of abstraction in the 

GED hierarchy in a self-symmetric manner.  This simple SR mechanism 

illustrates the ability of our GED kernel in dynamically evolving the GED 

hierarchy which represents design in multiple abstractions. 
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In the second 2D pattern matching example, 1D binary Cellular Automata (CA) is 

applied for producing seemingly much complex pattern with a set of simple 

transition rules.  This generative mechanism in this example shows how the 

knowledge adaptation of design generation is achieved and affects the 

effectiveness and efficiency of exploration, through adapting suitable transition 

rules and initial states of the CA within the GED kernel. 

 

In practical design cases as the third wineglass example, manual manipulation and 

designer interaction are important.  In this example human interfaces for 

manipulating 2D curve and geometrical features of the wineglass shape are 

provided.  Generative mechanisms then rely on human interaction, and 

computational generative modules are comparatively fixed.  For further 

enhancements, appropriate and suitable computational generative mechanisms 

should be investigated and applied to specific design tasks, as discussed in next 

chapter. 

 

8.4.3 Exploration and Adaptation Abilities 

 

Three examples also demonstrate how the GED kernel (GEDK) enhances the 

exploration and adaptation ability of GEDK-embedded system for supporting 

generative design in an evolutionary manner.  In the exploration aspect, the 

GEDK-embedded systems provide a suitable mechanism to explore potential 

candidates without limiting to a fixed or preset domain.  However, without proper 

knowledge adaptation such exploration would be aimless, inefficient and 

ineffective.  The three examples presented in this Part III have illustrated how the 

GED kernel supports design with different degrees of explorative and adaptive 

abilities. 
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In the plant example, artificial plant structures are generated with pure exploration 

without adaptation ability, although implicit human adaptation is supported 

through manual interactions.  In this example, exploration can be exhibited more 

freely to produce different hierarchical forms, while the underneath meaning of 

why these forms should be is not retained or captured without any adaptation 

mechanism. 

 

In the second 2D pattern example, the exploration mechanism for seeking 

appropriate CA to generate and match the right 2D patterns is governed by a GA, 

while a Constraint Management module further controls the adaptation of the CA 

types and improves the effectiveness and efficiency of the exploration.  Even 

though such mechanism is not complicated, it shows how the GED kernel 

provides the fundamental feature in collaborating exploration and adaptation 

activities within a design supporting system, and enhances the design generation 

more effectively and efficiently. 

 

In the third wineglass example, the importance of the involvement of designers in 

the system has been shown.  Without undermining the ability of the GEDK-

embedded systems, human and designer interaction is considered in the 

exploration and adaptation process through human selection in a GA process.  

Such semi-automatic exploration and adaptation process can be effective and 

efficient when the computational module is carefully tailored. 

 

In practical design tasks, formulating appropriate computational modules for 

exploration and adaptation incurs a lot of works and problems to be solved.  

Without awaiting such tremendous works and limiting the application of GED 

kernel, designer exploration and adaptation with human interaction are supported.  

The wineglass example shows how this issue is tackled and how the integrated 

system makes use of sophisticated functions provided by these externally 

developed design supporting tools, such as 3D modelling and rendering. 
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8.4.4 Design Representation and Interaction 

 

The examples have further demonstrated how the GED kernel supports design 

objects to be represented with multiple forms which are situated at different 

abstraction levels of the GED hierarchy.  In this representation and interaction 

issue, the GED kernel provides a basic generic representation and interface of 

design objects.  This can be used to directly develop computational systems for 

supporting some simple design tasks such as the first example, while it can also be 

integrated easily with external CAD tools which further support more 

sophisticated design representations and interactions. 

 

In the plant example, 2D geometric structure in a plant-like form is generated with 

the GED kernel based system.  With human interaction that alternates the 

geometrical shape of the plant at different levels of details, different forms can be 

produced.  In the 2D pattern example, the final representation is in a form of 2D 

digital grids, which is then directly mapped to 2D image patterns.  The generated 

2D image patterns can also be visualized and represented as artificial plants. 

 

In the wineglass example, it shows how the GED kernel alone supports designing 

wineglasses and represents design products such as wineglasses with simple 2D 

geometric profiles.  With the GED kernel alone, these design objects can also be 

mapped to and represented with 2D plants or audio sound patterns.  Furthermore 

much sophisticated representation can be provided when the GED kernel is 

integrated with external commercial CAD tools.  When the GED kernel is 

integrated with external tools, much sophisticated design representation such as 

3D geometric models and interactions provided by external tools can be used in 

the integrated design system. 
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8.4.5 System Development and Integration 

 

The degrees of sophistication of three example design systems are deviated from a 

simple and generic one (the first artificial plant) to a much sophisticated one (the 

wineglass design system).  While the simple plant example has shown how a 

generic GED kernel (GEDK) alone can develop a general system which supports 

designing in a generative and evolutionary approach, the comparatively 

sophisticated wineglass example has demonstrated the feasibility and applicability 

of applying our kernel for developing a more sophisticated system with external 

computational design tools when needed. 

 

In the first plant example, the generation and exploration of artificial plant-like 

patterns is supported with the GED kernel alone.  The graphical user interface 

(GUI) of the system is solely developed with the generic GED builder of the 

kernel such that the GED hierarchy of the system is initially structured with a 

single root seed attached to a simple evolutionary self-replication (SR) 

mechanism.  The generic interface provided by the kernel is used for visualizing, 

manipulating and interacting with the evolutionary elements (and their attached 

SR mechanisms) through the generic interfaces of the kernel. 

 

With some further development works, a more application-specific system for the 

2D pattern generation and matching application with adaptation ability is 

developed in the second example.  As this example concentrates on demonstrating 

the adaptation ability of the GED kernel, interfaces for comparatively in-depth 

manipulation of computational modules involved in this adaptation are developed. 

 

For developing design systems in a much design-oriented approach, the 

sophistication of the systems in supporting designer manipulation and interaction 

in different design aspects should be emphasized, including making use of and 

integrating with externally developed CAD tools.  The third wineglass example 

illustrates how the GED kernel is integrated with external design tools to develop 
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a design supporting system.  This integrated system supports designing tasks with 

external design tools more effectively and efficiently, and makes use of those 

functions supported by these external computational tools such as sophisticated 

3D geometric modelling and rendering functions.   

 

However, further issues in this integration approach need to be handled.  Before 

using this integration approach, it is important to know the availability of 

technical supports in integrating external design tools with the GED kernel, such 

as the source code and software development kits of the external tools.  It is also 

worth to question if the efficiency and effectiveness of this integration approach is 

higher than those of developing a new system based on the GED kernel alone 

such as the first two examples. 

 

8.5 Summary 

 

Results of three demonstration examples presented in this and the last two 

chapters show that it is feasible and applicable to use the kernel as the core 

architecture of computational systems for supporting generative and evolutionary 

design.  The kernel further improves the generative, explorative and adaptive 

ability of the computational design supporting systems with the kernel in 

producing potential design solutions efficiently.  Discussion and evaluation of 

these three examples in various aspects have been given in the last section.  The 

comparison of three examples discussed in the last section is summarized as given 

in table 2. 

 

Despite of those discussed issues in how the GED kernel supports in various 

aspects, there are many other properties and factors to be considered in practical 

designing, including design science, psychology, culture, material, production 

technology, aesthetics, and cost.  For example, the wineglass example 

concentrates on its geometrical form, in terms of how this form can be generated 

and manipulated.  In this case, abstract representations at different hierarchical 
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levels are mainly related to geometrical issues.  Supporting other representations 

of wineglasses, such as those related to aesthetics and cultural issues, can further 

sophisticate the system so that wineglass design can be represented and 

manipulated with other important features in different aspects. 

 

 

Table 2: Comparison of three demonstrative examples. 

 

 

Examples       

  Issues 
Plant 2D Image Pattern Wineglasses 

GED Hierarchy • Dynamic structure • Static structure • Static structure 

Major Generative 

Mechanism 

• Self-Replication 

(SR) 

• Static 

• 1D Binary CA 

• Dynamic 

• 2D curve 

manipulation 

• geometric 

feature 

manipulation 

Exploration 

Ability 

• Auto aimless-

exploration 

• Manual intervention 

• GA (pattern 

matching and 

approximation) 

• Manual 

intervention 

• GA (human 

judgement) 

• Manual 

intervention 

Adaptation 

Ability 
• None 

• GA (GM para: TR, 

S0) 

• CM (GM types: 

CA) 

• GA: human 

selection 

Representation 

and Interaction 

• 2D geometric 

structure 

• Plants 

• 2D digital grid 

• 2D image pattern 

 

• 3D geometric 

model 

• 2D Plants 

• Audio 

System 

Development & 

Integration 

• GED Kernel 

• GED Builder 

• Generic GUI 

• GED Kernel 

• GED Builder 

• Problem specific 

GUI 

• GED Kernel 

• GED Builder 

• Additional GUI 

• External CAD 
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Furthermore only artificial or manual selection is used in the GA process of the 

wineglass design system at the moment, while more research works are required 

to study what objective functions are needed and can be formulated for further 

automating this GA process.  More investigations and studies are also worth to be 

taken, and some further directions will be discussed in the next conclusion chapter. 
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Conclusions 

 
 

A computational Generative and Evolutionary Design (GED) kernel has been 

formulated and developed for supporting design in this study.  Design objects are 

represented with multiple abstractions, and are evolved from a more abstract form 

to a less abstract one through the exploration process supported with the kernel.  

Knowledge of design generation can also be adapted in the form of generative 

mechanisms in the kernel, so that possible generation process of potential design 

candidates can be captured. 

 

When computational design supporting systems are integrated with this GED 

kernel (GEDK), a large number of potential designs can be explored more 

efficiently and effectively, through evolving the initial abstract design objects 

together with their generative mechanisms.  With the adaptation methods attached 

to the kernel, knowledge of design object generation can be reconstructed with 

those evolving generative mechanisms.  Explorative and adaptive abilities of these 

GEDK-embedded applications can then be enhanced. 

 

To demonstrate the feasibility and applicability of the kernel for supporting 

computational design tasks, three example of GEDK-embedded systems are 

developed and evaluated in various aspects.  The results show that it is feasible 

and applicable to use the kernel as an architectural core of computational systems 

for supporting generative and evolutionary design.  The generative, explorative 

and adaptive ability of such GEDK-embedded computational design applications 

is improved in producing potential design solutions effectively and efficiently.  

Before concluding the thesis through revisiting the main objectives and 
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significance of the study, the coming section recaptures and summarizes the main 

topics of this thesis. 

 

9.1 A Summary of Research Conducted 

 

This study focuses on how the evolutionary design process can be more efficiently 

handled, with the GED kernel that supports the evolution of design objects in a 

design oriented manner as presented in Chapter 4.  In particular, the GED kernel 

is used for exploring and adapting different potential design objects with different 

ways of generating them through the evolving generative mechanisms attached to 

a hierarchical representation scheme. 

 

With the formulation of this hierarchical representation and evolutionary 

mechanisms, the knowledge that generates design can be captured and adapted 

with different levels of abstraction in order for designers to explore design 

solutions in a gradual and general-to-specific manner.  Therefore the kernel and 

its underlying model concern themselves not only with what the design solutions 

are, but also with how they are explored.  The formal representation of the GED 

model has been presented and discussed in Chapter 5 which provided the basis for 

the implementation, testing and evaluation. 

 

In the thesis, the details of how the kernel supports modelling design in a form of 

evolutionary hierarchy, constructed with interlinked evolutionary elements and 

mechanisms are described.  The GED kernel has been examined with three 

examples which have shown the feasibility and applicability of the kernel for 

design tasks.  In Chapter 6 the first example illustrated how a simple self-

replicating seed can automatically evolve into a more complex plant-like structure 

in a multi-level hierarchical form with the kernel alone. 

 

Example two in Chapter 7 showed how the kernel enhanced the explorative and 

adaptive ability of a 2D pattern generation and matching application with Cellular 
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Automata, Genetic Algorithms, and Constraint Management as the main 

evolutionary mechanisms.  Finally the kernel has been used to support a product 

design task.  In the last example presented in Chapter 8, the kernel was integrated 

with an external CAD tool to generate a variety of wineglasses in a short time 

with user interaction.  Other utensils having similar styles and features of 

wineglasses can also be generated by replacing different product seeds. 

 

The results of these examples have been evaluated and have shown that the kernel 

can improve the flexibility and efficiency of generating, exploring and adapting 

potential designs.  To conclude this study, the main objectives and the 

significance as outlined in Chapter 1 are revisited in the next section in order to 

give a detailed account of how the research contributes to the field of generative 

and evolutionary design. 

 

9.2 Objectives and Significance Revisited 

 

The major objective of this research study is to examine the feasibility and 

applicability of a generic computational kernel, i.e., the Generative and 

Evolutionary Design (GED) kernel, to be used as an architectural core of 

computer-based design supporting systems.  The main focus of this research is on 

the formulation, implementation and evaluation of this computational GED kernel 

(GEDK) which supports 1) modelling design object and design process in a 

generative and evolutionary manner with a structured representation, 2) capturing 

and adapting knowledge on how design objects can possibly be generated, and 3) 

simplifying the process of mapping design applications to a generative 

evolutionary system. In an integrated way, the GEDK-embedded systems can 

enhance the exploration ability on potential designs more efficiently and 

effectively than normal CAD systems which do not have a generative and 

evolutionary kernel. 
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9.2.1 GED Model for Dynamic Design Object and Process 

 

Before the Generative and Evolutionary Design (GED) model can be formulated 

and the associated GED kernel is computationally implemented, the nature of 

design and how to support design with computational techniques have been 

examined.  Such GED model focuses on providing a foundation for the 

application of generative and evolutionary techniques in design domains, which is 

verified with the examples of realistic scales.  In particular, much emphasis is 

given to evolutionary computing and structured representation that improve the 

efficiency in using computer-based design supporting systems.  Without 

examining and understanding the generative and evolutionary nature of design, 

formulating and implementing a computationally kernel of such model will not be 

feasible. 

 

Following the initial findings and literature reviews presented in Part I, a GED 

model was developed and the GED kernel was then formulated in the way as 

introduced in Part II.  Such modelling and formulation of the GED kernel 

particularly focused on the issues of dynamics of GED hierarchies that support 

representing design objects and their generation process, knowledge of design, 

abilities in design exploration and adaptation, design representation and 

interaction, and the system development and integration with external design tools. 

 

As discussed in the evaluation section 8.4 with three demonstration examples, it 

has shown that the GED kernel supports an evolving structure with multiple 

design representations in a hierarchical form.  Compared to traditional 

evolutionary design approach in which design representation is inflexibly preset 

and fixed, such evolving structure dynamically changes the design data according 

to the attached generative mechanisms. This dynamic nature of evolving design 

reflects an exploration process in which potential design candidates are generated. 

The kernel further provides the mechanisms for manipulating different design 

abstraction forms at different design stages. 
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Several difficult issues were encountered during the research, given the 

complexity as demonstrated in the three examples used to verify the system kernel 

and its underlying representation. The formation of a suitable GED hierarchy for 

different design tasks involves a generalization at both data structure level and 

design process level.  While generating artificial plants can be achieved with a 

fully dynamic GED hierarchy, the overall hierarchical representation has to be 

adjusted when a comparatively more constrained data structure is involved in the 

example of product design applications such as the wineglass example.   

 

9.2.2 Knowledge Exploration and Adaptation of Design Generation 

 

The main objective of this study is also associated with the issue of how to 

capture the knowledge of design generation in which design solutions are 

explored, captured and adapted.  Through a knowledge adaptation mechanism 

supported by the kernel, possible generative methods of design can be utilized to 

retain the data as well as the process of evolving them.  To achieve this, the 

emphasis is given to the ability of the system in exploring and generating designs, 

through various computationally generative mechanisms.  These mechanisms can 

retain the knowledge of how design objects are generated, from a more abstract 

form to a less one.  Some evolutionary computation methods were integrated into 

the GED kernel so that design assistance in terms of adapting design solutions and 

exploring design alternatives can be provided to designers. 

 

Three demonstration examples presented in Part III have shown how the GED 

kernel (GEDK) enhanced the exploration and adaptation ability of GEDK-

embedded system for supporting generative design in an evolutionary manner.  In 

the exploration aspect, the GEDK-embedded applications provide suitable 

mechanisms to explore potential candidates without limiting to a fixed or preset 

domain.  With such adaptation ability, the design exploration process is more 

focused, efficient and effective. 
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The second pattern matching example presented in Chapter 7 in particular has 

demonstrated how the kernel supports this adaptive activity.  However, 

formulating fully-automated computational modules for design exploration and 

adaptation in product design tasks, such as the third wineglass example, are more 

difficult to formulate and support without the integration with external systems 

that deal with the 3D construction of components and assemblies. The wineglass 

example was developed to find out how the kernel can be integrated with external 

kernel to evolve complex designs. However, developing such complex 

computational modules in specific design domains requires better understanding 

of designers’ knowledge and the way in which they explore design solutions, 

especially at the conceptual design stages.  This research has provided a 

foundation for further exploring this issue of generalizing product design process 

with extensive design specific knowledge, in order to fully utilizing the generative 

and evolutionary mechanisms built into the kernel and the hierarchical 

representation. 

 

9.2.3 GEDK-Embedded System Development 

 

Besides the issues of knowledge adaptation, the development issue of GED 

kernel-embedded systems has also been studied.  For simplifying the process of 

mapping design applications to a generative evolutionary system and enhancing 

the exploration ability to explore potential designs more efficiently and 

effectively, the feasibility and applicability of the developed GED kernel to 

computational design systems are tested and evaluated. 

 

As discussed earlier, the sophistication degrees of three example design 

applications presented in Part III deviate from a simple generic one (the first 

artificial plant) to a much sophisticated one (the wineglass design system).  While 

the simple plant example has shown how a generic GED kernel (GEDK) alone 

can develop a fully-automated system that supports designing in a generative and 
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evolutionary approach, the comparatively sophisticated wineglass system has 

shown the feasibility and applicability of applying the kernel for developing a 

more complex system when the kernel is integrated with external computational 

design tools.  This integrated approach supports designing tasks with external 

design tools more effectively and efficiently, and makes use of those functions 

supported by these external tools such as 3D geometric modelling and rendering 

functions. 

 

However this sophisticated system cannot be functioning in a fully-automated 

way as the first example.  For product design applications, it is necessary to 

involve designer interactions at various key stages of the design process. 

Therefore being a way to overcome the limitation of a fully automated system for 

evolving and exploring design solutions, this study also focused on how to find a 

balance between a fully automated evolutionary system controlled by nature 

selection criteria and an interactive system that provides ways for the designers to 

intervene in the process of evolving and exploring design by providing data or 

decisions on the evaluation of the candidate solutions or the directions of the 

evolution. Given the nature of complexity in product design and with the three 

examples tested in this study, it is concluded that the kernel is used as a 

framework for developing generative and evolutionary design applications at 

which further domain specific knowledge and control strategies are to be worked 

together by the system developers and designers. 

 

The results of these examples show that the kernel can improve the flexibility and 

efficiency of generating, exploring and adapting potential design candidates.  

Some further issues are worth to be investigated, particularly those issues 

discussed in section 8.4 relating to dynamics of GED hierarchies, knowledge of 

design, abilities in design exploration and adaptation, design representation and 

interaction, and the system development and integration with external design tools. 
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9.3 Contributions 

 

A computational Generative and Evolutionary Design (GED) kernel offers an 

opportunity to tackle design problems by using computational techniques in a 

generic and scalable manner, for achieving better designing more efficiently and 

shortening the process of building an application.  In the process of developing 

this kernel, knowledge and strategies were discovered for a unified representation 

of design objects related to their process of being explored and adapted.  This 

approach provides insight on how the knowledge outside the discipline of design 

can be utilized and integrated to the theories and methodologies of design which 

by its nature is a multidisciplinary activity and process. 

 

From a perspective of design, it is also necessary to know exactly what the 

prospective is and where the opportunities are for using computational techniques 

in improving design in terms of supporting the tasks achievable by human 

designers more quickly, and more importantly, supporting the designers in 

deriving better design solutions which would be difficult to achieve by designers 

themselves without the support of such kernel and its related computational 

techniques. 

 

The developed GED kernel in this thesis provides an alternative and potentially 

more interactive and efficient way of exploring design problems.  The 

implementation and evaluation of the kernel involving its applications in three 

different design examples has provided a foundation for the development of a new 

generation of design tools which are generative and evolutionary. This offers 

considerable advantages over other systems for the development of 3D product 

forms and structures which are normally supported in a certain degree partially 

with parametric technology.  

 

Formulation, implementation and integration of the GEK kernel (GEDK) to these 

three demonstration systems have shown that it is feasible and applicable to use 
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the GEDK as a computational core of design supporting systems.  These GEDK-

embedded example systems have been evaluated and further demonstrated that the 

GED kernel can improve the flexibility and efficiency of generating, exploring 

and adapting potential solutions in design. This research has demonstrated the 

potentials of three different evolutionary mechanisms in different design 

applications that involved generalization and specialization of design 

representation as well as design exploration process. As such this study 

contributes to the field of computational design by the formulation of the 

evolutionary kernel which has the potentials to be further studied and enhanced as 

an alternative and potentially more powerful design tool than those systems 

without generative and evolutionary mechanisms. This new tool can be integrated 

with existing design systems at a proper level for the designers to interact and 

evolve a large number of design solutions. 

 

9.4 Future Work and Directions 

 

One potential work is related to the formation of a suitable GED hierarchy for a 

specific design task.  In the example of generating wineglasses, geometric 

structure is the main abstraction property of the GED hierarchy.  Different 

hierarchies are constructed based on different abstraction aspects used, such as 

cultural and aesthetic aspects.  It is worth to further investigate the issues relating 

to constructing a more general GED network, in which different abstraction 

aspects are handled within one GED system, as shown in the illustration in Figure 

9.1.  The figure shows how the GED hierarchies of the three examples may be 

merged to form a new network for including different abstraction aspects in one 

GED system which is more generic. 

 

In fact, based on the last two examples in 2D pattern matching and wineglass 

generation, some experimental works were conducted in this research for 

producing wineglasses with a hybrid system formed by directly integrating these 

two examples without much of additional programming.  As expected the 
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outcome is largely distorted as shown in the image of figure 9.2. This shows 

clearly that in a product design domain where the form of a design object is more 

constrained than a naturally growing plant or a random generated graphic pattern, 

additional knowledge or control mechanisms are needed in order to generate the 

design solutions which fit more with the functional and aesthetic design 

requirements rather than merely giving surprised and over diversified results.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9.1: An example of merging different GED hierarchies to a general GED network. 

 

 

 

 

 

 

 

 

Figure 9.2: Highly distorted wineglass profiles in an attempt to apply simple GA-CA. 
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Another work is to get the right generative design mechanisms for potential 

design solutions at specific abstractions.  For example, CA is used in the second 

demonstration example as the generative mechanism to generate a more complex 

form (2D image) from a simple one (1D data).  It is shown that there are a variety 

of 1D CA types that can produce different 2D patterns.  However there are other 

generative mechanisms, such as Shape Grammars and L-Systems, which may also 

produce other potential design patterns that cannot be generated by CA. It is 

necessary to compare their effectiveness in a unified system such as the kernel 

developed in this thesis, and through experimental studies to show how a similar 

approach with appropriate techniques can generate more potential solutions in a 

wider dynamic domain. 

 

The kernel has not been implemented at a level at which three examples of 

different complexity can be tested and evaluated.  As such it is not intended to be 

a fully automated system kernel to support any design applications, which is out 

of the scope of this study.  However, more investigations in applying the 

developed kernel to other design application can certain enrich the knowledge and 

generic properties of the kernel. Further investigations are needed in order to 

maximize the potentials of the kernel and its associated generative and 

evolutionary mechanisms. 
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Appendix A: GED Kernel Implementation  

 
 

In order to demonstrate the feasibility and applicability of the kernel for 

supporting different computational design tasks, the kernel has been implemented 

as a software package (or library) in Java programming language.  It can be 

integrated with other software that supports Java application interfaces, including 

external commercial CAD tools.  This appendix introduces the major Java 

program components implemented and provides information for possible further 

development based on this study.  The implemented programs include the GED 

kernel and three example systems presented in chapters 5, 6, 7 and 8 of this thesis. 

 

 

A.1 Implemented Java Classes and Packages for the GED Kernel 

An objective of this research study is to examine the feasibility and applicability 

of a generic computational kernel.  In this study, Java programming language is 

used to implement the GED kernel as a software library or Java package, which 

can be used as the core framework of design supporting systems. There are four 

main Java packages implemented in this study: 

1. The generic GED kernel (Chapter 5), �����, includes the basic interface 

(�������) and GUI representation (�����	
�).  The GED Kernel ����� 

alone is used in the first example (Chapter 6) without additional 

modification. 

2. The 2D pattern generation system (Chapter 7), ���������, uses the 

generic kernel to generate and match image patterns for demonstrating the 

kernel ability of knowledge adaptation in design generation. 

3. The simple wine-glass system (Chapter 8), �������, is developed with 

the generic kernel that generates wine-glasses in a 2D profile form. 
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GED Kernel (Package gedah) 
 

Generic Classes 
(in Package gedah) 

 

GEDH Builder 
(in Package gedah.edah_IF) 

 

Generic Interface 
(in Package gedah.edah_IF) 

Generic Representation 
(in Package gedah.edah_GUI) 

 

4. The enhanced wine-glass system (Chapter 8), ��
����, is developed by 

embedding the kernel with an external CAD tool (MicroStation). 

 

Figure A.1 shows the block diagram of these four packages. 

 

 

 

 

 

 

 

 

 

 

 

Figure A.1: A block diagram of the implemented Java packages for the GED kernel. 

 

 

A.2 First Example: Artificial Plant Generation 

The Java package ����� is the implementation of the GED kernel presented in 

this study.  It consists of the major generic classes: evolutionary elements and 

mechanisms, together with basic interfaces (in �������) and GUI representations 

(in �����	
�) as shown in figure A.2.  The first application example, the 

artificial plant generation, is also demonstrated with this kernel alone.   

 

 

 

 

 

 
 

Figure A.2:  Block diagrams of the implemented GED kernel. 
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A.2.1 Package �����: the GED Kernel 

Figure A.3 shows the block diagram of the implemented ����� generic classes, 

followed by listing the summary of this package (including the classes 

implemented in the package, the class inheritance in Java class hierarchy, and the 

list of major variables, constructors and methods). 

 
 

 
Figure A.3:  Block diagrams of the implemented ����� package. 

 
 

Classes in ����� 

C_AttrB C_Gee 

C_EM C_GEMI 
 
  
Class Hierarchy For Package ����� 

o java.lang.Object  
o gedah.C_AttrB  
o gedah.C_EM  
o gedah.C_Gee  
o gedah.C_GEMI 

 
 
List of major variables, constructors and methods in ����� 

 
A 

allGeeV - Variable in class gedah.C_GEMI 

allGeeVSize - Variable in class gedah.C_GEMI 

AppendGCVGee(C_Gee) - Method in class gedah.C_Gee 

AppendGPVGee(C_Gee) - Method in class gedah.C_Gee 
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attr - Variable in class gedah.C_AttrB 

attrRange - Variable in class gedah.C_AttrB 
 
C 

C_AttrB - Class in gedah 

C_AttrB() - Constructor for class gedah.C_AttrB 

C_AttrB(int) - Constructor for class gedah.C_AttrB 

C_AttrB(float[]) - Constructor for class gedah.C_AttrB 

C_AttrB(float[], float) - Constructor for class gedah.C_AttrB 

C_AttrB(C_AttrB) - Constructor for class gedah.C_AttrB 

C_EM - Class in gedah 

C_EM() - Constructor for class gedah.C_EM 

C_EM(int) - Constructor for class gedah.C_EM 

C_EM(int, C_Gee, C_Gee) - Constructor for class gedah.C_EM 

C_EM(C_EM, boolean) - Constructor for class gedah.C_EM 

C_Gee - Class in gedah 

C_Gee() - Constructor for class gedah.C_Gee 

C_Gee(int) - Constructor for class gedah.C_Gee 

C_Gee(int, int, C_AttrB) - Constructor for class gedah.C_Gee 

C_Gee(int, int, C_AttrB, C_EM, C_Gee) - Constructor for class gedah.C_Gee 

C_Gee(C_Gee) - Constructor for class gedah.C_Gee 

C_Gee(C_Gee, boolean) - Constructor for class gedah.C_Gee 

C_GEMI - Class in gedah 

C_GEMI() - Constructor for class gedah.C_GEMI 

C_GEMI(C_Gee) - Constructor for class gedah.C_GEMI 

C_GEMI(float[], float[]) - Constructor for class gedah.C_GEMI 

CreateAllGeeV(int) - Method in class gedah.C_GEMI 

CreateHierarchy(float[], float[], int[], C_Gee) - Method in class gedah.C_GEMI 

CreateIAttr(int, float[]) - Method in class gedah.C_GEMI 

CreateIEM(int, float[]) - Method in class gedah.C_GEMI 

CreateIGee(int, float[]) - Method in class gedah.C_GEMI 

CreateLevelPop(int, int, long) - Method in class gedah.C_GEMI 

CreateRootGee(int, float[]) - Method in class gedah.C_GEMI 
 
D 

defaultGee - Variable in class gedah.C_EM 
 
E 

EDH_RCCreate(int, int[], int[], int[], float[], int[], int) - Method in class gedah.C_GEMI 

EDH_RCEvolve(int) - Method in class gedah.C_GEMI 

EDH_RCGetPop(C_Gee) - Method in class gedah.C_GEMI 

eM - Variable in class gedah.C_Gee 

EMEvolve(int, C_Gee, int, int, Random) - Method in class gedah.C_EM 

eMGA - Variable in class gedah.C_Gee 

emGee - Variable in class gedah.C_EM 

emType - Variable in class gedah.C_EM 
 
G 

gAttr - Variable in class gedah.C_Gee 

gCVGee - Variable in class gedah.C_Gee 

gedah - package gedah 

geeStr - Variable in class gedah.C_Gee 



 

 157 

GetAllGeeV() - Method in class gedah.C_GEMI 

GetAllGeeVSize() - Method in class gedah.C_GEMI 

GetIAttr(float[]) - Method in class gedah.C_GEMI 

GetIEM(int, float[]) - Method in class gedah.C_GEMI 

GetIGee(int, float[]) - Method in class gedah.C_GEMI 

GetITypeStatus(int) - Method in class gedah.C_GEMI 

gExtraInfo - Variable in class gedah.C_Gee 

globalIndex - Variable in class gedah.C_Gee 

gPVGee - Variable in class gedah.C_Gee 

gStatus - Variable in class gedah.C_Gee 

gType - Variable in class gedah.C_Gee 
 
I 

iAttr - Variable in class gedah.C_GEMI 

iEM - Variable in class gedah.C_GEMI 

igCVGee - Variable in class gedah.C_GEMI 

iGee - Variable in class gedah.C_GEMI 

igStatus - Variable in class gedah.C_GEMI 

igType - Variable in class gedah.C_GEMI 

itGee - Variable in class gedah.C_GEMI 
 
M 

main(String[]) - Static method in class gedah.C_AttrB 

main(String[]) - Static method in class gedah.C_EM 

main(String[]) - Static method in class gedah.C_Gee 

main(String[]) - Static method in class gedah.C_GEMI 
 
R 

Reset(int) - Method in class gedah.C_GEMI 

rootGee - Variable in class gedah.C_GEMI 
 
S 

SetAllGeeV(int, float[]) - Method in class gedah.C_GEMI 

SetIAttr(int, float[]) - Method in class gedah.C_GEMI 

SetIEM(int, float[]) - Method in class gedah.C_GEMI 

SetIGee(int) - Method in class gedah.C_GEMI 

SetITypeStatus(int, float[]) - Method in class gedah.C_GEMI 

Simple1DCACreateHierarchy(long, int, int, int) - Method in class gedah.C_GEMI 
 
T 

tGee - Variable in class gedah.C_Gee 

TotalAllGees() - Method in class gedah.C_GEMI 
 
W 

WineGlassCreateHierarchy(long, int) - Method in class gedah.C_GEMI 
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A.2.2 Package �����������	
�: the Generic Graphical User Interface (GUI) 

Figure A.4 shows the block diagram of the implemented �����������	
� 

package, followed by listing the summary of this package (including the classes 

implemented in the package, the class inheritance in Java class hierarchy, and the 

list of major variables, constructors and methods). 

 

 

 

Figure A.4:  Block diagrams of the implemented �����������	
��package. 

 

 

Classes in ������������	
 

edfMidi gui_generic 

gui_CA1D gui_Image 

gui_Composite gui_Math 

gui_Curve2D gui_Sound 

gui_EDAH gui_Text 

gui_Fractal   
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Class Hierarchy For Package ������������	
 
o java.lang.Object  

o java.awt.Component (implements java.awt.image.ImageObserver, 
java.awt.MenuContainer, java.io.Serializable)  

o java.awt.Container  
o java.awt.Panel (implements javax.accessibility.Accessible)  

o java.applet.Applet  
o javax.swing.JApplet (implements 

javax.accessibility.Accessible, 
javax.swing.RootPaneContainer)  

o gedah.edah_GUI.edfMidi (implements 
java.lang.Runnable)  

o gedah.edah_GUI.gui_CA1D (implements 
java.awt.event.ActionListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_Composite (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_Curve2D (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_EDAH (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_Fractal (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_generic (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_Image (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_Math (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_Sound (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_GUI.gui_Text (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  
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List of major variables, constructors and methods in ������������	
 
 
A 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_CA1D 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Composite 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Curve2D 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_EDAH 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Fractal 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_generic 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Image 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Math 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Sound 

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Text 
 
B 

butStr - Static variable in class gedah.edah_GUI.gui_CA1D 
 
C 

close() - Method in class gedah.edah_GUI.edfMidi 

close() - Method in class gedah.edah_GUI.gui_Sound 
 
D 

DatabaseAction(int) - Method in class gedah.edah_GUI.gui_EDAH 

def_selectNo - Static variable in class gedah.edah_GUI.gui_CA1D 

def_selectNoStr - Static variable in class gedah.edah_GUI.gui_CA1D 

DrawForest() - Method in class gedah.edah_GUI.gui_Fractal 
DrawForestBranch(Vector, int, double, double, double, double, double, Random, int, int) - Method in 
class gedah.edah_GUI.gui_Fractal 

DrawForestTree(Vector, Random) - Method in class gedah.edah_GUI.gui_Fractal 

DrawForestTree_OLD(Vector, Random) - Method in class gedah.edah_GUI.gui_Fractal 

DrawImage() - Method in class gedah.edah_GUI.gui_Image 

DrawTree() - Method in class gedah.edah_GUI.gui_Fractal 

DrawTree_Determine() - Method in class gedah.edah_GUI.gui_Fractal 
 
E 

edahMouseListener - Variable in class gedah.edah_GUI.gui_Composite 

edahMouseListener - Variable in class gedah.edah_GUI.gui_Curve2D 

edahMouseListener - Variable in class gedah.edah_GUI.gui_generic 

edahMouseListener - Variable in class gedah.edah_GUI.gui_Image 

edahMouseListener - Variable in class gedah.edah_GUI.gui_Math 

edahMouseListener - Variable in class gedah.edah_GUI.gui_Sound 

edahMouseListener - Variable in class gedah.edah_GUI.gui_Text 

edfAllNotesOff(int) - Method in class gedah.edah_GUI.edfMidi 

edfAllNotesOff(int) - Method in class gedah.edah_GUI.gui_Sound 

edfMidi - Class in gedah.edah_GUI 

edfMidi() - Constructor for class gedah.edah_GUI.edfMidi 

edfNoteOn(int, int, int) - Method in class gedah.edah_GUI.edfMidi 

edfNoteOn(int, int, int) - Method in class gedah.edah_GUI.gui_Sound 

edfProgChange(int, int) - Method in class gedah.edah_GUI.edfMidi 

edfProgChange(int, int) - Method in class gedah.edah_GUI.gui_Sound 

EvolutionAction(int) - Method in class gedah.edah_GUI.gui_EDAH 

EvolveOnce() - Method in class gedah.edah_GUI.gui_CA1D 
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F 

FileAction(int) - Method in class gedah.edah_GUI.gui_EDAH 
 
G 

gedah.edah_GUI - package gedah.edah_GUI 

geeTextFA - Variable in class gedah.edah_GUI.gui_Math 

geeTextFA - Variable in class gedah.edah_GUI.gui_Text 

geeV - Variable in class gedah.edah_GUI.gui_Composite 

geeV - Variable in class gedah.edah_GUI.gui_Curve2D 

geeV - Variable in class gedah.edah_GUI.gui_Fractal 

geeV - Variable in class gedah.edah_GUI.gui_generic 

geeV - Variable in class gedah.edah_GUI.gui_Image 

geeV - Variable in class gedah.edah_GUI.gui_Math 

geeV - Variable in class gedah.edah_GUI.gui_Sound 

geeV - Variable in class gedah.edah_GUI.gui_Text 

GenerateGeeMidi(C_Gee) - Method in class gedah.edah_GUI.gui_Sound 

GenerateMidi() - Method in class gedah.edah_GUI.edfMidi 

GenerateMidi(C_AttrB) - Method in class gedah.edah_GUI.edfMidi 

GenerateMidi(Point[][]) - Method in class gedah.edah_GUI.gui_Sound 

GenerateMidi_CA(C_AttrB) - Method in class gedah.edah_GUI.edfMidi 

genSoundBut - Variable in class gedah.edah_GUI.gui_Sound 

gui_CA1D - Class in gedah.edah_GUI 

gui_CA1D() - Constructor for class gedah.edah_GUI.gui_CA1D 

gui_Composite - Class in gedah.edah_GUI 

gui_Composite(String, JApplet[]) - Constructor for class gedah.edah_GUI.gui_Composite 

gui_Curve2D - Class in gedah.edah_GUI 

gui_Curve2D(String, Vector) - Constructor for class gedah.edah_GUI.gui_Curve2D 

gui_EDAH - Class in gedah.edah_GUI 

gui_EDAH() - Constructor for class gedah.edah_GUI.gui_EDAH 

gui_Fractal - Class in gedah.edah_GUI 

gui_Fractal() - Constructor for class gedah.edah_GUI.gui_Fractal 

gui_Fractal(String, Vector, C_Gee, int) - Constructor for class gedah.edah_GUI.gui_Fractal 

gui_generic - Class in gedah.edah_GUI 

gui_generic(String, Vector) - Constructor for class gedah.edah_GUI.gui_generic 

gui_Image - Class in gedah.edah_GUI 

gui_Image(String, Vector) - Constructor for class gedah.edah_GUI.gui_Image 

gui_Math - Class in gedah.edah_GUI 

gui_Math(String, Vector) - Constructor for class gedah.edah_GUI.gui_Math 

gui_Sound - Class in gedah.edah_GUI 

gui_Sound(String, Vector) - Constructor for class gedah.edah_GUI.gui_Sound 

gui_Text - Class in gedah.edah_GUI 

gui_Text(String, Vector) - Constructor for class gedah.edah_GUI.gui_Text 

guiA - Variable in class gedah.edah_GUI.gui_Composite 

GUIAction(int) - Method in class gedah.edah_GUI.gui_EDAH 

guiNameL - Variable in class gedah.edah_GUI.gui_Composite 

guiNameL - Variable in class gedah.edah_GUI.gui_Curve2D 

guiNameL - Variable in class gedah.edah_GUI.gui_generic 

guiNameL - Variable in class gedah.edah_GUI.gui_Image 

guiNameL - Variable in class gedah.edah_GUI.gui_Math 

guiNameL - Variable in class gedah.edah_GUI.gui_Sound 
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guiNameL - Variable in class gedah.edah_GUI.gui_Text 

guiNameStr - Variable in class gedah.edah_GUI.gui_Composite 

guiNameStr - Variable in class gedah.edah_GUI.gui_Curve2D 

guiNameStr - Variable in class gedah.edah_GUI.gui_Fractal 

guiNameStr - Variable in class gedah.edah_GUI.gui_generic 

guiNameStr - Variable in class gedah.edah_GUI.gui_Image 

guiNameStr - Variable in class gedah.edah_GUI.gui_Math 

guiNameStr - Variable in class gedah.edah_GUI.gui_Sound 

guiNameStr - Variable in class gedah.edah_GUI.gui_Text 

guiP - Variable in class gedah.edah_GUI.gui_Composite 

guiP - Variable in class gedah.edah_GUI.gui_Curve2D 

guiP - Variable in class gedah.edah_GUI.gui_generic 

guiP - Variable in class gedah.edah_GUI.gui_Image 

guiP - Variable in class gedah.edah_GUI.gui_Math 

guiP - Variable in class gedah.edah_GUI.gui_Sound 

guiP - Variable in class gedah.edah_GUI.gui_Text 

guiTypeL - Variable in class gedah.edah_GUI.gui_Composite 

guiTypeL - Variable in class gedah.edah_GUI.gui_Curve2D 

guiTypeL - Variable in class gedah.edah_GUI.gui_generic 

guiTypeL - Variable in class gedah.edah_GUI.gui_Image 

guiTypeL - Variable in class gedah.edah_GUI.gui_Math 

guiTypeL - Variable in class gedah.edah_GUI.gui_Sound 

guiTypeL - Variable in class gedah.edah_GUI.gui_Text 

guiTypeStr - Variable in class gedah.edah_GUI.gui_Composite 

guiTypeStr - Variable in class gedah.edah_GUI.gui_Curve2D 

guiTypeStr - Variable in class gedah.edah_GUI.gui_Fractal 

guiTypeStr - Variable in class gedah.edah_GUI.gui_generic 

guiTypeStr - Variable in class gedah.edah_GUI.gui_Image 

guiTypeStr - Variable in class gedah.edah_GUI.gui_Math 

guiTypeStr - Variable in class gedah.edah_GUI.gui_Sound 

guiTypeStr - Variable in class gedah.edah_GUI.gui_Text 
 
H 

HelpAction(int) - Method in class gedah.edah_GUI.gui_EDAH 
 
I 

imageI - Variable in class gedah.edah_GUI.gui_Image 

imageP - Variable in class gedah.edah_GUI.gui_Image 

imBG - Static variable in class gedah.edah_GUI.gui_CA1D 

imSelectedBG - Static variable in class gedah.edah_GUI.gui_CA1D 

init() - Method in class gedah.edah_GUI.gui_CA1D 

init() - Method in class gedah.edah_GUI.gui_Composite 

init() - Method in class gedah.edah_GUI.gui_Curve2D 

init() - Method in class gedah.edah_GUI.gui_Fractal 

init() - Method in class gedah.edah_GUI.gui_generic 

init() - Method in class gedah.edah_GUI.gui_Image 

init() - Method in class gedah.edah_GUI.gui_Math 

init() - Method in class gedah.edah_GUI.gui_Sound 

init() - Method in class gedah.edah_GUI.gui_Text 

InitGem() - Method in class gedah.edah_GUI.gui_CA1D 

iS - Variable in class gedah.edah_GUI.gui_Curve2D 
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IsExit() - Method in class gedah.edah_GUI.gui_EDAH 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Composite 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Curve2D 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_EDAH 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Fractal 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_generic 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Image 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Math 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Sound 

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Text 
 
K 

kochBasis - Static variable in class gedah.edah_GUI.gui_Fractal 
 
L 

lastImBG - Static variable in class gedah.edah_GUI.gui_CA1D 
 
M 

m_gui_Curve2D - Variable in class gedah.edah_GUI.gui_Curve2D 

m_gui_generic - Variable in class gedah.edah_GUI.gui_generic 

m_gui_Sound - Variable in class gedah.edah_GUI.gui_Sound 

m_gui_Text - Variable in class gedah.edah_GUI.gui_Composite 

m_gui_Text - Variable in class gedah.edah_GUI.gui_Image 

m_gui_Text - Variable in class gedah.edah_GUI.gui_Math 

m_gui_Text - Variable in class gedah.edah_GUI.gui_Text 

main(String[]) - Static method in class gedah.edah_GUI.edfMidi 

main(String[]) - Static method in class gedah.edah_GUI.gui_CA1D 

main(String[]) - Static method in class gedah.edah_GUI.gui_Composite 

main(String[]) - Static method in class gedah.edah_GUI.gui_Curve2D 

main(String[]) - Static method in class gedah.edah_GUI.gui_EDAH 

main(String[]) - Static method in class gedah.edah_GUI.gui_Fractal 

main(String[]) - Static method in class gedah.edah_GUI.gui_generic 

main(String[]) - Static method in class gedah.edah_GUI.gui_Image 

main(String[]) - Static method in class gedah.edah_GUI.gui_Math 

main(String[]) - Static method in class gedah.edah_GUI.gui_Sound 

main(String[]) - Static method in class gedah.edah_GUI.gui_Text 

MakeForest(C_Gee, int, Vector, Random) - Method in class gedah.edah_GUI.gui_Fractal 
MakeGeeFractal(C_Gee, int, double, double, double, double, double, Random) - Method in class 
gedah.edah_GUI.gui_Fractal 
MakeGeeFractal_Determine(C_Gee, int, double, double, double, double, double, Random) - Method in 
class gedah.edah_GUI.gui_Fractal 
MakeLeaves(int, double, double, double, double, double, Random) - Method in class 
gedah.edah_GUI.gui_Fractal 

menuBar - Variable in class gedah.edah_GUI.gui_EDAH 

menuBarStr - Static variable in class gedah.edah_GUI.gui_EDAH 

menuItemStr - Static variable in class gedah.edah_GUI.gui_EDAH 

mItem - Variable in class gedah.edah_GUI.gui_EDAH 
 
O 

open() - Method in class gedah.edah_GUI.edfMidi 

open() - Method in class gedah.edah_GUI.gui_Sound 
 
R 

repLevel - Variable in class gedah.edah_GUI.gui_Fractal 
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rootG - Variable in class gedah.edah_GUI.gui_Fractal 

run() - Method in class gedah.edah_GUI.edfMidi 

run() - Method in class gedah.edah_GUI.gui_CA1D 

run() - Method in class gedah.edah_GUI.gui_Composite 

run() - Method in class gedah.edah_GUI.gui_Curve2D 

run() - Method in class gedah.edah_GUI.gui_EDAH 

run() - Method in class gedah.edah_GUI.gui_Fractal 

run() - Method in class gedah.edah_GUI.gui_generic 

run() - Method in class gedah.edah_GUI.gui_Image 

run() - Method in class gedah.edah_GUI.gui_Math 

run() - Method in class gedah.edah_GUI.gui_Sound 

run() - Method in class gedah.edah_GUI.gui_Text 

RunSound() - Method in class gedah.edah_GUI.edfMidi 
 
S 

seedStr - Static variable in class gedah.edah_GUI.gui_CA1D 

selectFont - Static variable in class gedah.edah_GUI.gui_CA1D 

SetStates(int, float) - Method in class gedah.edah_GUI.gui_CA1D 

splitDivSize - Variable in class gedah.edah_GUI.gui_EDAH 

srcPts - Variable in class gedah.edah_GUI.gui_Fractal 

start() - Method in class gedah.edah_GUI.edfMidi 

start() - Method in class gedah.edah_GUI.gui_CA1D 

start() - Method in class gedah.edah_GUI.gui_Composite 

start() - Method in class gedah.edah_GUI.gui_Curve2D 

start() - Method in class gedah.edah_GUI.gui_EDAH 

start() - Method in class gedah.edah_GUI.gui_Fractal 

start() - Method in class gedah.edah_GUI.gui_generic 

start() - Method in class gedah.edah_GUI.gui_Image 

start() - Method in class gedah.edah_GUI.gui_Math 

start() - Method in class gedah.edah_GUI.gui_Sound 

start() - Method in class gedah.edah_GUI.gui_Text 

stateCol - Static variable in class gedah.edah_GUI.gui_CA1D 

stop() - Method in class gedah.edah_GUI.edfMidi 

stop() - Method in class gedah.edah_GUI.gui_CA1D 

stop() - Method in class gedah.edah_GUI.gui_Composite 

stop() - Method in class gedah.edah_GUI.gui_Curve2D 

stop() - Method in class gedah.edah_GUI.gui_EDAH 

stop() - Method in class gedah.edah_GUI.gui_Fractal 

stop() - Method in class gedah.edah_GUI.gui_generic 

stop() - Method in class gedah.edah_GUI.gui_Image 

stop() - Method in class gedah.edah_GUI.gui_Math 

stop() - Method in class gedah.edah_GUI.gui_Sound 

stop() - Method in class gedah.edah_GUI.gui_Text 

subWinSplitP - Variable in class gedah.edah_GUI.gui_EDAH 
 
T 

tabbedPane - Variable in class gedah.edah_GUI.gui_EDAH 

TestSound() - Method in class gedah.edah_GUI.edfMidi 

TestSound(int) - Method in class gedah.edah_GUI.edfMidi 

threadInterval - Variable in class gedah.edah_GUI.gui_Composite 

threadInterval - Variable in class gedah.edah_GUI.gui_Curve2D 
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threadInterval - Variable in class gedah.edah_GUI.gui_generic 

threadInterval - Variable in class gedah.edah_GUI.gui_Image 

threadInterval - Variable in class gedah.edah_GUI.gui_Math 

threadInterval - Variable in class gedah.edah_GUI.gui_Sound 

threadInterval - Variable in class gedah.edah_GUI.gui_Text 

topP - Variable in class gedah.edah_GUI.gui_Composite 

topP - Variable in class gedah.edah_GUI.gui_Curve2D 

topP - Variable in class gedah.edah_GUI.gui_generic 

topP - Variable in class gedah.edah_GUI.gui_Image 

topP - Variable in class gedah.edah_GUI.gui_Math 

topP - Variable in class gedah.edah_GUI.gui_Sound 

topP - Variable in class gedah.edah_GUI.gui_Text 

treeNum - Variable in class gedah.edah_GUI.gui_Fractal 

trStr - Static variable in class gedah.edah_GUI.gui_CA1D 
 
U 

UpdateResult() - Method in class gedah.edah_GUI.gui_EDAH 

UpdateStates() - Method in class gedah.edah_GUI.gui_CA1D 
 
W 

WaitSound() - Method in class gedah.edah_GUI.edfMidi 

 

A.2.3 Package �������������: The Basic Interface 

Figure A.5 shows the block diagram of the implemented ������������� package, 

followed by listing the summary of this package (including the classes 

implemented in the package, the class inheritance in Java class hierarchy, and the 

list of major variables, constructors and methods). 

 

 
Figure A.5:  Block diagrams of the implemented ��������������package. 
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Classes in �����������
� 

edahArchi IFem 

edahBuilder IFgee 

edahDB showEM 

IFattr SketchSPane 
 
 
Class Hierarchy For Package �����������
� 

o java.lang.Object  
o java.awt.Component (implements java.awt.image.ImageObserver, 

java.awt.MenuContainer, java.io.Serializable)  
o java.awt.Container  

o java.awt.Panel (implements 
javax.accessibility.Accessible)  

o java.applet.Applet  
o javax.swing.JApplet (implements 

javax.accessibility.Accessible, 
javax.swing.RootPaneContainer)  
o gedah.edah_IF.edahArchi 

(implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_IF.edahBuilder 
(implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o gedah.edah_IF.IFattr (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener)  

o gedah.edah_IF.IFem (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener)  

o gedah.edah_IF.IFgee (implements 
java.awt.event.ActionListener)  

o gedah.edah_IF.showEM (implements 
java.awt.event.ActionListener)  

o gedah.edah_IF.SketchSPane 
(implements 
java.awt.event.ActionListener, 
java.awt.event.MouseListener, 
java.awt.event.MouseMotionListener)  

o gedah.edah_IF.edahDB 
 
 
List of major variables, constructors and methods in �����������
� 

 
A 

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.edahArchi 

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.edahBuilder 

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.IFattr 
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actionPerformed(ActionEvent) - Method in class gedah.edah_IF.IFem 

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.IFgee 

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.showEM 

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.SketchSPane 

Archi2Builder() - Method in class gedah.edah_IF.edahBuilder 

attrNatureStr - Static variable in class gedah.edah_IF.IFattr 
 
B 

boundH - Variable in class gedah.edah_IF.SketchSPane 

boundW - Variable in class gedah.edah_IF.SketchSPane 

butGee - Variable in class gedah.edah_IF.edahArchi 
 
C 

CreateNewGeeB(C_Gee) - Method in class gedah.edah_IF.edahBuilder 

CreateNewGeeB() - Method in class gedah.edah_IF.edahBuilder 

CreateNewLevelP() - Method in class gedah.edah_IF.edahBuilder 
 
D 

DeleteGee() - Method in class gedah.edah_IF.edahBuilder 

DeleteGee(C_Gee) - Method in class gedah.edah_IF.edahBuilder 

DeleteLevel() - Method in class gedah.edah_IF.edahBuilder 

dispGATipStr - Static variable in class gedah.edah_IF.IFem 

DisplayGEM(float[], int[], int, int, int, Graphics) - Method in class gedah.edah_IF.edahArchi 

DoubleA2Str(double[]) - Static method in class gedah.edah_IF.edahDB 

DrawBound(Graphics) - Method in class gedah.edah_IF.SketchSPane 
 
E 

edahA - Variable in class gedah.edah_IF.edahBuilder 

edahArchi - Class in gedah.edah_IF 

edahArchi() - Constructor for class gedah.edah_IF.edahArchi 

edahBuilder - Class in gedah.edah_IF 

edahBuilder(int) - Constructor for class gedah.edah_IF.edahBuilder 

edahDB - Class in gedah.edah_IF 

edahDB(String) - Constructor for class gedah.edah_IF.edahDB 

edahMouseListener - Variable in class gedah.edah_IF.edahBuilder 

edhMouseListener - Variable in class gedah.edah_IF.edahArchi 

edhMouseMotionListener - Variable in class gedah.edah_IF.edahArchi 

EditGee() - Method in class gedah.edah_IF.edahBuilder 

emDisp - Variable in class gedah.edah_IF.IFgee 

emTypeStr - Static variable in class gedah.edah_IF.IFem 
 
G 

gedah.edah_IF - package gedah.edah_IF 

geeAttached - Variable in class gedah.edah_IF.IFgee 

geeB2P - Variable in class gedah.edah_IF.edahBuilder 

geeButtonV - Variable in class gedah.edah_IF.edahBuilder 

geeItemStr - Static variable in class gedah.edah_IF.edahDB 

geePanelExplainStr - Static variable in class gedah.edah_IF.edahBuilder 

geePanelStr - Static variable in class gedah.edah_IF.edahBuilder 

geeTipStr - Static variable in class gedah.edah_IF.IFgee 

geeTLabel - Variable in class gedah.edah_IF.edahBuilder 

geeTopB - Variable in class gedah.edah_IF.edahBuilder 
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geeTopP - Variable in class gedah.edah_IF.edahBuilder 

geeV - Variable in class gedah.edah_IF.edahBuilder 

gemI - Variable in class gedah.edah_IF.edahArchi 

GenGeeLevel(C_Gee, int) - Method in class gedah.edah_IF.edahBuilder 

GetExtremeOSTableAllData(int, Vector) - Method in class gedah.edah_IF.edahDB 

GetExtremeVSTableAllData(int, Vector) - Method in class gedah.edah_IF.edahDB 

GetTableAllData(int, Vector) - Method in class gedah.edah_IF.edahDB 

gH - Variable in class gedah.edah_IF.edahBuilder 

gHF - Variable in class gedah.edah_IF.edahBuilder 

guiApplets - Variable in class gedah.edah_IF.edahBuilder 
 
H 

height - Variable in class gedah.edah_IF.edahArchi 

hMin - Variable in class gedah.edah_IF.edahArchi 

hP - Variable in class gedah.edah_IF.edahArchi 

hP - Variable in class gedah.edah_IF.edahBuilder 

hP1 - Variable in class gedah.edah_IF.edahArchi 
 
I 

ifA - Variable in class gedah.edah_IF.IFgee 

IFattr - Class in gedah.edah_IF 

IFattr() - Constructor for class gedah.edah_IF.IFattr 

IFattr(C_AttrB) - Constructor for class gedah.edah_IF.IFattr 

IFem - Class in gedah.edah_IF 

IFem() - Constructor for class gedah.edah_IF.IFem 

IFem(C_EM) - Constructor for class gedah.edah_IF.IFem 

IFgee - Class in gedah.edah_IF 

IFgee() - Constructor for class gedah.edah_IF.IFgee 

IFgee(C_Gee) - Constructor for class gedah.edah_IF.IFgee 

init() - Method in class gedah.edah_IF.edahArchi 

init() - Method in class gedah.edah_IF.edahBuilder 

InsertLevel() - Method in class gedah.edah_IF.edahBuilder 

itemStateChanged(ItemEvent) - Method in class gedah.edah_IF.edahArchi 

itemStateChanged(ItemEvent) - Method in class gedah.edah_IF.edahBuilder 

itemStateChanged(ItemEvent) - Method in class gedah.edah_IF.IFattr 

itemStateChanged(ItemEvent) - Method in class gedah.edah_IF.IFem 
 
J 

JPanelStruct - Variable in class gedah.edah_IF.edahArchi 
 
L 

labCount - Variable in class gedah.edah_IF.edahArchi 

labNum - Variable in class gedah.edah_IF.edahArchi 

levelGUICB - Variable in class gedah.edah_IF.edahBuilder 

levelGUIStr - Static variable in class gedah.edah_IF.edahBuilder 

levelPanelExplainStr - Static variable in class gedah.edah_IF.edahBuilder 

levelPanelStr - Static variable in class gedah.edah_IF.edahBuilder 

levelPV - Variable in class gedah.edah_IF.edahBuilder 

levelTLabel - Variable in class gedah.edah_IF.edahBuilder 

levelTopB - Variable in class gedah.edah_IF.edahBuilder 

levelTopP - Variable in class gedah.edah_IF.edahBuilder 

LinkGee() - Method in class gedah.edah_IF.edahBuilder 
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LinkGUI() - Method in class gedah.edah_IF.edahBuilder 

LoadAllDB() - Method in class gedah.edah_IF.edahDB 

LocateComponent() - Method in class gedah.edah_IF.edahArchi 
 
M 

m_edahBuilder - Variable in class gedah.edah_IF.edahBuilder 

m_Gem - Variable in class gedah.edah_IF.edahArchi 

main(String[]) - Static method in class gedah.edah_IF.edahArchi 

main(String[]) - Static method in class gedah.edah_IF.edahBuilder 

main(String[]) - Static method in class gedah.edah_IF.edahDB 

main(String[]) - Static method in class gedah.edah_IF.IFattr 

main(String[]) - Static method in class gedah.edah_IF.IFem 

main(String[]) - Static method in class gedah.edah_IF.IFgee 

main(String[]) - Static method in class gedah.edah_IF.showEM 

main(String[]) - Static method in class gedah.edah_IF.SketchSPane 

MapSketchAttr() - Method in class gedah.edah_IF.IFattr 

minPanelSize - Variable in class gedah.edah_IF.IFgee 

mouseClicked(MouseEvent) - Method in class gedah.edah_IF.SketchSPane 

mouseDragged(MouseEvent) - Method in class gedah.edah_IF.SketchSPane 

mouseEntered(MouseEvent) - Method in class gedah.edah_IF.SketchSPane 

mouseExited(MouseEvent) - Method in class gedah.edah_IF.SketchSPane 

mouseMoved(MouseEvent) - Method in class gedah.edah_IF.SketchSPane 

mousePressed(MouseEvent) - Method in class gedah.edah_IF.SketchSPane 

mouseReleased(MouseEvent) - Method in class gedah.edah_IF.SketchSPane 
 
N 

NewGee() - Method in class gedah.edah_IF.edahBuilder 

NewGee(C_Gee) - Method in class gedah.edah_IF.edahBuilder 

nodeSize - Variable in class gedah.edah_IF.edahArchi 
 
P 

paint(Graphics) - Method in class gedah.edah_IF.SketchSPane 
 
R 

RefreshIFA() - Method in class gedah.edah_IF.IFattr 

RefreshIFem() - Method in class gedah.edah_IF.IFem 

RefreshIFgee() - Method in class gedah.edah_IF.IFgee 

RefreshShowEM() - Method in class gedah.edah_IF.showEM 

RefreshShowEM_CA() - Method in class gedah.edah_IF.showEM 

RefreshShowEM_GA() - Method in class gedah.edah_IF.showEM 

rootLevelP - Variable in class gedah.edah_IF.edahBuilder 

run() - Method in class gedah.edah_IF.edahArchi 

run() - Method in class gedah.edah_IF.edahBuilder 
 
S 

SaveAttr() - Method in class gedah.edah_IF.IFattr 

SaveGee() - Method in class gedah.edah_IF.IFgee 

SaveGeesDB(C_GEMI) - Method in class gedah.edah_IF.edahDB 

showEM - Class in gedah.edah_IF 

showEM() - Constructor for class gedah.edah_IF.showEM 

showEM(C_EM) - Constructor for class gedah.edah_IF.showEM 

ShowStructure() - Method in class gedah.edah_IF.edahBuilder 
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SketchSPane - Class in gedah.edah_IF 

SketchSPane() - Constructor for class gedah.edah_IF.SketchSPane 

start() - Method in class gedah.edah_IF.edahArchi 

start() - Method in class gedah.edah_IF.edahBuilder 

stop() - Method in class gedah.edah_IF.edahArchi 

stop() - Method in class gedah.edah_IF.edahBuilder 
 
T 

tablesStr - Static variable in class gedah.edah_IF.edahDB 

TestGEM(int) - Method in class gedah.edah_IF.edahArchi 

threadInterval - Variable in class gedah.edah_IF.edahArchi 

threadInterval - Variable in class gedah.edah_IF.edahBuilder 

titleNameStr - Static variable in class gedah.edah_IF.edahArchi 

titleNameStr - Static variable in class gedah.edah_IF.edahBuilder 

topButLeng - Variable in class gedah.edah_IF.edahArchi 

topButStr - Static variable in class gedah.edah_IF.edahArchi 

topButStr - Static variable in class gedah.edah_IF.IFgee 

topCheckB - Variable in class gedah.edah_IF.edahArchi 

topP - Variable in class gedah.edah_IF.edahArchi 

topP - Variable in class gedah.edah_IF.edahBuilder 
 
U 

UpdateBound(int, int, int, int) - Method in class gedah.edah_IF.SketchSPane 

UpdateFromStructure() - Method in class gedah.edah_IF.edahBuilder 

UpdateIFem() - Method in class gedah.edah_IF.IFem 

UpdateIFgee(C_Gee) - Method in class gedah.edah_IF.IFgee 

UpdateShowEM() - Method in class gedah.edah_IF.showEM 

UpdateShowEM_CA() - Method in class gedah.edah_IF.showEM 

UpdateShowEM_GA() - Method in class gedah.edah_IF.showEM 
 
W 

width - Variable in class gedah.edah_IF.edahArchi 

wMin - Variable in class gedah.edah_IF.edahArchi 

wP1 - Variable in class gedah.edah_IF.edahArchi 
 
X 

xP1 - Variable in class gedah.edah_IF.edahArchi 

xStroke - Variable in class gedah.edah_IF.SketchSPane 
 
Y 

yInterval - Variable in class gedah.edah_IF.edahArchi 

yOffset - Variable in class gedah.edah_IF.edahArchi 

yP1 - Variable in class gedah.edah_IF.edahArchi 

yStroke - Variable in class gedah.edah_IF.SketchSPane 

yTopOffset - Variable in class gedah.edah_IF.edahArchi 

 

 

A.3 Second Example: The 2D Pattern Generation System 

The second application example, a 2D Pattern Generation and Matching system, 

is implemented in the Java package ��������� and is embedded with the GED 
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kernel package �����.  Figure A.6 shows the block diagram of this implemented 

package, followed by listing the summary of this package (including the classes 

implemented in the package, the class inheritance in Java class hierarchy, and the 

list of major variables, constructors and methods). 

 

Figure A.6:  Block diagrams of the implemented ����������package. 

 
 

Classes in ��������� 

C_GCAEM gaGUI 

ca2D_Plant pureGA 

gaca   
 
  
 
Class Hierarchy For Package ��������� 

o java.lang.Object  
o C_EM  

o edah_gaca.C_GCAEM 
o java.awt.Component (implements java.awt.image.ImageObserver, 

java.awt.MenuContainer, java.io.Serializable)  
o java.awt.Container  

o java.awt.Panel(implements javax.accessibility.Accessible)  
o java.applet.Applet  

o javax.swing.JApplet(implements 
javax.accessibility.Accessible, 
javax.swing.RootPaneContainer)  

o edah_gaca.ca2D_Plant 
(implements 
java.awt.event.ActionListener, 
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java.awt.event.ItemListener, 
java.lang.Runnable)  

o edah_gaca.gaca (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o edah_gaca.gaGUI (implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener)  

o edah_gaca.pureGA 
 
 
List of major variables, constructors and methods in ��������� 

 
A 

actionPerformed(ActionEvent) - Method in class edah_gaca.ca2D_Plant 

actionPerformed(ActionEvent) - Method in class edah_gaca.gaca 

actionPerformed(ActionEvent) - Method in class edah_gaca.gaGUI 
 
B 

bottomInfoStr - Static variable in class edah_gaca.gaGUI 
 
C 

C_GCAEM - Class in edah_gaca 

C_GCAEM() - Constructor for class edah_gaca.C_GCAEM 

CA_2M_NONTOTAL - Static variable in class edah_gaca.gaca 

CA_2M_SEMI - Static variable in class edah_gaca.gaca 

CA_2M_TOTAL - Static variable in class edah_gaca.gaca 

CA_4H_NONTOTAL - Static variable in class edah_gaca.gaca 

CA_4H_SEMI - Static variable in class edah_gaca.gaca 

CA_4H_TOTAL - Static variable in class edah_gaca.gaca 

CA_NONTOTAL - Static variable in class edah_gaca.gaca 

CA_SEMI - Static variable in class edah_gaca.gaca 

CA_TOTAL - Static variable in class edah_gaca.gaca 

CA1D2Dbinary(double[]) - Method in class edah_gaca.pureGA 

ca2D_Plant - Class in edah_gaca 

ca2D_Plant() - Constructor for class edah_gaca.ca2D_Plant 

ca2D_Plant(String, int[][]) - Constructor for class edah_gaca.ca2D_Plant 

ca2dLeng - Static variable in class edah_gaca.gaca 

CA2MNonTotal(int[], int[][], int[]) - Static method in class edah_gaca.C_GCAEM 

CA2MSemi(int[], int[][], int[]) - Static method in class edah_gaca.C_GCAEM 

CA2MTotal(int[], int[][], int[]) - Static method in class edah_gaca.C_GCAEM 

CA4HNonTotal(int[], int[][]) - Static method in class edah_gaca.C_GCAEM 

CA4HSemi(int[], int[][]) - Static method in class edah_gaca.C_GCAEM 

CA4HTotal(int[], int[][]) - Static method in class edah_gaca.C_GCAEM 

caLeng - Static variable in class edah_gaca.gaca 

CAMap(double[], double) - Method in class edah_gaca.pureGA 

CANonTotal(int[], int[][]) - Static method in class edah_gaca.C_GCAEM 

caPlant - Variable in class edah_gaca.gaca 

caRange - Static variable in class edah_gaca.gaca 

CASemi(int[], int[][]) - Static method in class edah_gaca.C_GCAEM 

CATotal(int[], int[][]) - Static method in class edah_gaca.C_GCAEM 
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caTypeStr - Static variable in class edah_gaca.gaca 

copyCurrentToLastGen() - Method in class edah_gaca.pureGA 
 
D 

DatabaseAction(int) - Method in class edah_gaca.gaca 

DrawFractal() - Method in class edah_gaca.ca2D_Plant 
 
E 

edah_gaca - package edah_gaca 

EvolutionAction(int) - Method in class edah_gaca.gaca 

evolveBStr - Static variable in class edah_gaca.gaGUI 

ExhaustiveMatching() - Method in class edah_gaca.gaca 

ExhaustiveMatchingOnce() - Method in class edah_gaca.gaca 

exhaustiveRunning - Variable in class edah_gaca.gaca 
 
F 

FileAction(int) - Method in class edah_gaca.gaca 
 
G 

gaca - Class in edah_gaca 

gaca() - Constructor for class edah_gaca.gaca 

gaGUI - Class in edah_gaca 

gaGUI(gaca) - Constructor for class edah_gaca.gaGUI 

gaRunning - Variable in class edah_gaca.gaca 

GCAOnce(int[], int[][], int, int[]) - Static method in class edah_gaca.C_GCAEM 

GetMatchingError() - Method in class edah_gaca.gaca 

global_errorLimit - Static variable in class edah_gaca.gaca 

global_TRBest - Static variable in class edah_gaca.gaca 

global_TRMinError - Static variable in class edah_gaca.gaca 

global_TRval - Static variable in class edah_gaca.gaca 

GUIAction(int) - Method in class edah_gaca.gaca 

guiNameStr - Variable in class edah_gaca.ca2D_Plant 

guiTypeStr - Variable in class edah_gaca.ca2D_Plant 
 
H 

HelpAction(int) - Method in class edah_gaca.gaca 
 
I 

init() - Method in class edah_gaca.ca2D_Plant 

init() - Method in class edah_gaca.gaGUI 

InitPop() - Method in class edah_gaca.pureGA 

IsExit() - Method in class edah_gaca.gaca 

itemStateChanged(ItemEvent) - Method in class edah_gaca.ca2D_Plant 

itemStateChanged(ItemEvent) - Method in class edah_gaca.gaca 

itemStateChanged(ItemEvent) - Method in class edah_gaca.gaGUI 
 
K 

kochBasis - Static variable in class edah_gaca.ca2D_Plant 
 
L 

leftButStr - Static variable in class edah_gaca.gaca 
 
M 

main(String[]) - Static method in class edah_gaca.ca2D_Plant 
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main(String[]) - Static method in class edah_gaca.gaca 

main(String[]) - Static method in class edah_gaca.gaGUI 
MakeCA2DFractal(int, double, double, double, double, double, Random) - Method in class 
edah_gaca.ca2D_Plant 
MakeCA2DFractal_OLD(int, double, double, double, double, double, Random) - Method in class 
edah_gaca.ca2D_Plant 
MakeLeaves(int, double, double, double, double, double, Random) - Method in class 
edah_gaca.ca2D_Plant 

matchingCA2D - Variable in class edah_gaca.gaca 

menuBar - Variable in class edah_gaca.gaca 

menuBarStr - Static variable in class edah_gaca.gaca 

menuItemStr - Static variable in class edah_gaca.gaca 

mItem - Variable in class edah_gaca.gaca 
 
P 

P2IntIgnite1D() - Method in class edah_gaca.gaca 

P2IntMatching2D() - Method in class edah_gaca.gaca 

pureGA - Class in edah_gaca 

pureGA(int, double, double, int, double, double, int[][]) - Constructor for class edah_gaca.pureGA 
 
R 

ReconstructCA(int) - Method in class edah_gaca.gaGUI 

repLevel - Variable in class edah_gaca.ca2D_Plant 

ResetBottomInfoLabel() - Method in class edah_gaca.gaGUI 

run() - Method in class edah_gaca.ca2D_Plant 

run() - Method in class edah_gaca.gaca 

runningGCA - Variable in class edah_gaca.gaca 
 
S 

SelectedExhaustiveMatching() - Method in class edah_gaca.gaca 

SelectedExhaustiveMatchingOnce() - Method in class edah_gaca.gaca 

selectedExhaustRun - Variable in class edah_gaca.gaca 

splitDivSize - Variable in class edah_gaca.gaca 

start() - Method in class edah_gaca.ca2D_Plant 

start() - Method in class edah_gaca.gaca 

stop() - Method in class edah_gaca.ca2D_Plant 

stop() - Method in class edah_gaca.gaca 

subWinSplitP - Variable in class edah_gaca.gaca 
 
T 

tabbedPane - Variable in class edah_gaca.gaca 

topLStr - Static variable in class edah_gaca.gaGUI 

TRAddOne() - Method in class edah_gaca.gaca 

trMAX - Static variable in class edah_gaca.gaca 

trMAXlist - Static variable in class edah_gaca.gaca 
 
U 

Update(pureGA) - Method in class edah_gaca.gaGUI 

UpdateAllGCA() - Method in class edah_gaca.gaGUI 

UpdateBottomInfoLabel() - Method in class edah_gaca.gaGUI 

UpdateChromP() - Method in class edah_gaca.gaGUI 

UpdateResult() - Method in class edah_gaca.gaca 
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A.4 Third Example: The Wine-Glass Design System 

The third application example, a wine-glass design system, is implemented in the 

package ������� and is embedded with the GED kernel package �����.  The 

wine-glass design example is further enhanced by integrating an external CAD 

tool, MicroStation.  This enhanced system is implemented in a Microstation jmdl 

package ��
���� within the CAD tool MicroStation platform and is embedded 

with both the package ������and the pure java wine glass package��������. 

 

A.4.1 Package �������: the Pure Java-Based Wine-Glass System 

Figure A.7 shows the block diagram of this implemented package �������, 

followed by listing the summary of this package (including the classes 

implemented in the package, the class inheritance in Java class hierarchy, and the 

list of major variables, constructors and methods). 

 

Figure A.7:  Block diagrams of the implemented ��������package. 

 

Classes in �����
� 

DrawISpline InterpoSpline 

edfDataBase ScrobarApplet 

edfMidi SketchApplet 

gaSelectHist wg 

GemApplet   
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Class Hierarchy For Package �����
� 
o java.lang.Object  

o java.awt.Component (implements java.awt.image.ImageObserver, 
java.awt.MenuContainer, java.io.Serializable)  

o java.awt.Container  
o java.awt.Panel(implements javax.accessibility.Accessible)  

o java.applet.Applet  
o javax.swing.JApplet(implements 

javax.accessibility.Accessible, 
javax.swing.RootPaneContainer)  
o edah_wg.DrawISpline  
o edah_wg.edfDataBase  
o edah_wg.edfMidi (implements 

java.lang.Runnable)  
o edah_wg.gaSelectHist 

(implements 
java.awt.event.ItemListener)  

o edah_wg.InterpoSpline 
(implements 
java.awt.event.ActionListener, 
java.awt.event.ItemListener)  

o edah_wg.ScrobarApplet 
(implements 
java.awt.event.AdjustmentListener)  

o edah_wg.SketchApplet  
o edah_wg.wg (implements 

java.awt.event.ActionListener, 
java.awt.event.ItemListener, 
java.lang.Runnable)  

o edahArchi  
o edah_wg.GemApplet (implements java.awt.event.ActionListener, 

java.awt.event.ItemListener, java.lang.Runnable)  
 
List of major variables, constructors and methods in �����
� 

 
A 

absLayerStr - Static variable in class edah_wg.wg 

actionPerformed(ActionEvent) - Method in class edah_wg.InterpoSpline 

actionPerformed(ActionEvent) - Method in class edah_wg.wg 

adjustmentValueChanged(AdjustmentEvent) - Method in class edah_wg.ScrobarApplet 
 
C 

cbPanel - Variable in class edah_wg.gaSelectHist 

close() - Method in class edah_wg.edfMidi 
 
D 

dbMaxStr - Static variable in class edah_wg.DrawISpline 

dbMaxStr - Static variable in class edah_wg.edfDataBase 

dbMinStr - Static variable in class edah_wg.DrawISpline 

dbMinStr - Static variable in class edah_wg.edfDataBase 

dbNameStr - Static variable in class edah_wg.DrawISpline 

dbNameStr - Static variable in class edah_wg.edfDataBase 

dbNameTable - Static variable in class edah_wg.edfDataBase 

dbStdName - Static variable in class edah_wg.DrawISpline 

drawIS - Variable in class edah_wg.InterpoSpline 
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DrawISpline - Class in edah_wg 

DrawISpline() - Constructor for class edah_wg.DrawISpline 

DrawISpline(Point[], float, Point[], Point[]) - Constructor for class edah_wg.DrawISpline 

DrawISpline(wg) - Constructor for class edah_wg.DrawISpline 

DrawWineGlass(Point[], float) - Method in class edah_wg.DrawISpline 
 
E 

edah_wg - package edah_wg 

edfAllNotesOff(int) - Method in class edah_wg.edfMidi 

edfDataBase - Class in edah_wg 

edfDataBase() - Constructor for class edah_wg.edfDataBase 

edfDataBase(Point[][]) - Constructor for class edah_wg.edfDataBase 

edfMidi - Class in edah_wg 

edfMidi() - Constructor for class edah_wg.edfMidi 

edfMidi(wg) - Constructor for class edah_wg.edfMidi 

edfNoteOn(int, int, int) - Method in class edah_wg.edfMidi 

edfProgChange(int, int) - Method in class edah_wg.edfMidi 

emAttached - Variable in class edah_wg.gaSelectHist 
 
F 

fnCheckB - Variable in class edah_wg.wg 

fnStr - Static variable in class edah_wg.wg 

FormGAWineGlass(Point[], float, Point[], float) - Method in class edah_wg.DrawISpline 

fractalGUI - Variable in class edah_wg.wg 
 
G 

gaIS - Variable in class edah_wg.gaSelectHist 

gaPts - Variable in class edah_wg.gaSelectHist 

gaSelectCB - Variable in class edah_wg.gaSelectHist 

gaSelectHist - Class in edah_wg 

gaSelectHist() - Constructor for class edah_wg.gaSelectHist 

gaSelectHist(C_EM, DrawISpline) - Constructor for class edah_wg.gaSelectHist 

gaSHBase - Variable in class edah_wg.gaSelectHist 

gaSHPanel - Variable in class edah_wg.gaSelectHist 

gaSHScrollP - Variable in class edah_wg.gaSelectHist 

GemApplet - Class in edah_wg 

GemApplet() - Constructor for class edah_wg.GemApplet 

GemApplet(wg) - Constructor for class edah_wg.GemApplet 

GenCPts(Point[]) - Method in class edah_wg.DrawISpline 

GenerateIS() - Method in class edah_wg.DrawISpline 

GenerateMidi(Point[][]) - Method in class edah_wg.edfMidi 

GenSplinePoly() - Method in class edah_wg.DrawISpline 

GenTangVector(Point[]) - Method in class edah_wg.DrawISpline 

GetDrawCPts() - Method in class edah_wg.DrawISpline 

GetDrawIPts() - Method in class edah_wg.DrawISpline 

GetGAPts(C_Gee) - Method in class edah_wg.gaSelectHist 
 
I 

InterpoSpline - Class in edah_wg 

InterpoSpline() - Constructor for class edah_wg.InterpoSpline 

InterpoSpline(wg) - Constructor for class edah_wg.InterpoSpline 

InterpoSpline(wg, C_Gee) - Constructor for class edah_wg.InterpoSpline 
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invertOffSetH - Variable in class edah_wg.DrawISpline 

invertOffSetW - Variable in class edah_wg.DrawISpline 

iPts - Variable in class edah_wg.DrawISpline 

iS - Variable in class edah_wg.edfDataBase 

itemStateChanged(ItemEvent) - Method in class edah_wg.gaSelectHist 

itemStateChanged(ItemEvent) - Method in class edah_wg.InterpoSpline 

itemStateChanged(ItemEvent) - Method in class edah_wg.wg 

itemStr - Static variable in class edah_wg.ScrobarApplet 
 
L 

labelStr - Static variable in class edah_wg.InterpoSpline 

labelStr - Static variable in class edah_wg.SketchApplet 

labelTipStr - Static variable in class edah_wg.InterpoSpline 
 
M 

main(String[]) - Static method in class edah_wg.DrawISpline 

main(String[]) - Static method in class edah_wg.edfDataBase 

main(String[]) - Static method in class edah_wg.edfMidi 

main(String[]) - Static method in class edah_wg.gaSelectHist 

main(String[]) - Static method in class edah_wg.GemApplet 

main(String[]) - Static method in class edah_wg.InterpoSpline 

main(String[]) - Static method in class edah_wg.ScrobarApplet 

main(String[]) - Static method in class edah_wg.SketchApplet 

main(String[]) - Static method in class edah_wg.wg 

MakeFeatureGene(int[]) - Method in class edah_wg.ScrobarApplet 

minPanelSize - Variable in class edah_wg.gaSelectHist 
 
O 

open() - Method in class edah_wg.edfMidi 

orgISAttached - Variable in class edah_wg.gaSelectHist 
 
P 

paint(Graphics) - Method in class edah_wg.DrawISpline 

paint(Graphics) - Method in class edah_wg.edfDataBase 
 
R 

RefreshGaSH() - Method in class edah_wg.gaSelectHist 

ResetIS() - Method in class edah_wg.DrawISpline 

ResetScrobar() - Method in class edah_wg.ScrobarApplet 

run() - Method in class edah_wg.edfMidi 

run() - Method in class edah_wg.GemApplet 

run() - Method in class edah_wg.wg 
 
S 

scaleF - Variable in class edah_wg.gaSelectHist 

ScrobarApplet - Class in edah_wg 

ScrobarApplet() - Constructor for class edah_wg.ScrobarApplet 

ScrobarApplet(wg) - Constructor for class edah_wg.ScrobarApplet 

ScrobarApplet(wg, C_Gee) - Constructor for class edah_wg.ScrobarApplet 

SetDrawCPts(Point[]) - Method in class edah_wg.DrawISpline 

SetDrawIPts(Point[]) - Method in class edah_wg.DrawISpline 

SetGAFitness() - Method in class edah_wg.gaSelectHist 

ShowPts(Graphics2D) - Method in class edah_wg.DrawISpline 
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SketchApplet - Class in edah_wg 

SketchApplet() - Constructor for class edah_wg.SketchApplet 

SketchApplet(wg, C_Gee) - Constructor for class edah_wg.SketchApplet 

start() - Method in class edah_wg.edfMidi 

start() - Method in class edah_wg.wg 

stop() - Method in class edah_wg.edfMidi 

stop() - Method in class edah_wg.wg 

subWinStr - Static variable in class edah_wg.wg 
 
U 

UpdateDB() - Method in class edah_wg.edfDataBase 

UpdateResult() - Method in class edah_wg.wg 
 
W 

wg - Class in edah_wg 

wg() - Constructor for class edah_wg.wg 

wgDbOut - Variable in class edah_wg.wg 

wgIs2 - Variable in class edah_wg.wg 

 

A.4.2 Package ��
����: the Wine-Glass System with External CAD Tool 

Figure A.8 shows the block diagram of this implemented package ��
����, 

followed by listing the summary of this package (including the classes 

implemented in the package, the class inheritance in Java class hierarchy, and the 

list of major variables, constructors and methods). 

 

Figure A.8:  Block diagrams of the implemented ��
�����package. 

 

Class in 
������ 

wgm   
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 Class Hierarchy For Package 
������ 
o java.lang.Object  

o java.awt.Component (implements java.awt.image.ImageObserver, 
java.awt.MenuContainer, java.io.Serializable)  

o java.awt.Container  
o java.awt.Panel (implements 

javax.accessibility.Accessible)  
o java.applet.Applet  

o javax.swing.JApplet (implements 
javax.accessibility.Accessible, 
javax.swing.RootPaneContainer)  

o wgmedah.wgm (implements 
java.awt.event.ActionListener, 
java.lang.Runnable)  

 
List of major variables, constructors and methods in 
������ 

 
A 

actionPerformed(ActionEvent) - Method in class wgmedah.wgm 
 
D 

DrawMStation(int[][]) - Method in class wgmedah.wgm 

DrawWineGlassMStation(Point[][], boolean) - Method in class wgmedah.wgm 
 
G 

GenerateAllOnce() - Method in class wgmedah.wgm 
 
I 

InvertingPts(Point[][]) - Method in class wgmedah.wgm 
 
M 

main(String[]) - Static method in class wgmedah.wgm 

msTBarStr - Static variable in class wgmedah.wgm 
 
N 

NewToolBar() - Method in class wgmedah.wgm 
 
R 

run() - Method in class wgmedah.wgm 
 
S 

start() - Method in class wgmedah.wgm 

stop() - Method in class wgmedah.wgm 
 
U 

UpdateBottleOnce(boolean) - Method in class wgmedah.wgm 

UpdateBowlOnce(boolean) - Method in class wgmedah.wgm 

UpdatePlateOnce(boolean) - Method in class wgmedah.wgm 

UpdateWGOnce(boolean) - Method in class wgmedah.wgm 
 
W 

wgm - Class in wgmedah 

wgm() - Constructor for class wgmedah.wgm 

wgmedah - package wgmedah 

 

~ END ~ 
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