

The Hong Kong Polytechnic University

School of Design

A Computational Kernel for Supporting

Generative and Evolutionary Design

Chan, Kwai Hung

A thesis submitted in partial fulfilment of

the requirements for the Degree of

Doctor of Philosophy

June, 2007

 ii

Abstract

Evolutionary Computation techniques have been used in design systems for

exploring and generating design solutions in recent years. However, most of the

current evolutionary design studies concentrate on analysis and optimisation of

design solutions for problems at the stage of detailed design. There has been

comparatively less research on the synthesis and generation of design solutions

through a dynamic process of evolution and refinement, at conceptual stage of

design process. Furthermore, many conventional studies on evolutionary design do

not support multiple representations of design objects at different levels of

abstraction, which are essential for exploring design solutions in an incremental and

evolutionary manner.

To overcome the above problems, a computational kernel is developed in this thesis

for the development of design supporting system applications, based on a Generative

and Evolutionary Design (GED) model. With this kernel, design objects can be

dynamically evolved in a specialisation process in which design solutions are

developed from abstract levels to detailed levels. Generative mechanisms are

integrated with this multiple representation scheme to manipulate and generate new

design solutions from basis and abstract design objects in an interactive manner

which involves users in making design selections. This study focuses on the three

important aspects of this kernel, 1) modelling design object and design process in a

generative and evolutionary manner within an integrated computational platform; 2)

adapting and capturing the knowledge of how design objects are generated within

this platform; and 3) enhancing the exploration ability of generative and

evolutionary design applications with the use of a number of different evolutionary

and generative computing techniques, including Genetic Algorithms and Cellular

Automata.

 iii

Three examples of applying the GED kernel to design tasks are tested and evaluated.

 The results show that it is feasible and applicable to use the kernel as the core

architecture of computational design systems for supporting generative and

evolutionary design applications, with improved generative, explorative and

adaptive ability in producing potential design solutions effectively and efficiently.

 iv

Publications Arising from the Thesis:

Chan, K.H., Lee, H.C., Frazer, J., and Tang, M.X. (1999) A Hierarchical Design

Interface for Collaborative Design. Proceedings of the 6th ISPE International

Conference on Concurrent Engineering (CE99), 1-3 September, Bath, pp.181-186.

Chan, K.H., Lee, H.C., Frazer, J., and Tang, M.X. (1999) A Hierarchical Design

Interface for Integrated CAD Systems. Proceedings of the Fifth International

Conference for Young Computer Scientists (ICYCS '99), 17-20 August, Nanjing,

pp.830-835.

Chan, K.H., Frazer, J. and Tang, M.X. (2000) Handling the Evolution and Hierarchy

Nature of Designing in Computer-Based Design Support Systems. Proceedings of

the Third International Conference Computer-Aided Industrial Design and

Conceptual Design (CAID & CD '2000), November, Hong Kong. Beijing:

International Academic Publisher, pp.447-454.

Chan, K.H., Frazer, J. and Tang, M.X. (2001) Interactive Evolutionary Design in a

Hierarchical Way. Proceedings of 4th Generative Art Conference 2001, 11-14

December, Milan, Italy. (Internet - http://www.generativeart.com/)

Chan, K.H., Frazer, J.H. and Tang, M.X. (2002) An evolutionary framework for

enhancing design: a kernel of computational systems for enhancing design with

dynamic structure of hierarchical representations. In: J.S. Gero and F. Sudweeks

(eds.) Artificial Intelligence in Design '02. Boston: Kluwer Academic, pp.383-403.

 v

Acknowledgement

During my research work, a lot of people have contributed to the completion of my

PhD study. I have received many invaluable ideas, suggestions, comments,

guidance, encouragement and criticism from them.

I owe much debt to Professor Ming-Xi TANG, my supervisor, for his important

suggestions, advices and encouragement in my difficult times, and Professor John

Hamilton FRAZER, my co-supervisor, for the precious inspiration of my research

topic. I would not forget the help and supports from the members of our Design

Technology Research Centre. I would also like to thank Professor Daizhong SU,

Professor Mitchell Miendger TSENG and Professor Michael Kin Wai SIU, for

giving me comments and suggestions to further improve the quality of this thesis.

Finally and most importantly, silent and wholehearted support of my family is a

must for the completion of my study. I cannot imagine how my study can be

finished without the patience and tolerance of my father, mother, brothers and sisters.

 I owe them my sincere gratitude for their understanding and bearing.

 vi

Table of Contents

Abstract ... ii

Publications Arising from the Thesis .. iv

Acknowledgement .. v

Table of Contents .. vi

List of Figures .. xi

Part I Introduction and Literature Review .. 1

Chapter 1 Introduction .. 2

1.1 Generative and Evolutionary Design .. 4

1.2 Objectives and Research Methodology ... 6

1.3 Significance and Contributions ... 9

1.4 Thesis Overview .. 10

Chapter 2 Design and Support Systems .. 13

2.1 Design and its Contexts.. 13

2.2 Design Representation .. 15

2.2.1 The Knowledge of Design .. 15

2.2.2 Design Process ... 17

2.2.3 Design Problem Hierarchy .. 18

 vii

2.3 Computer-Based Design Support Systems ... 20

2.3.1 Models and Methodologies .. 20

2.3.2 Computer Tools Supporting Design.. 22

2.4 Summary ... 23

Chapter 3 Generative and Evolutionary Techniques for Design 25

3.1 Evolutionary Techniques for Design .. 25

3.1.1 Evolutionary Computation ... 25

3.1.2 Evolutionary Design .. 26

3.2 Computational Techniques for Generative Design.. 28

3.2.1 Iterative and Recursive Development Process.. 31

3.2.2 Shape Grammar ... 34

3.2.3 L-System ... 35

3.2.4 Cellular Automata .. 39

3.3 Summary ... 45

Part II A Generative and Evolutionary Design Model 47

Chapter 4 Issues in Modelling Generative and Evolutionary Design 48

4.1 Design Generation and Exploration .. 48

4.1.1 Design Generation and Exploration .. 49

4.1.2 Multiple Design Representations ... 49

4.2 Knowledge Reconstruction ... 52

 viii

4.2.1 Design Adaptation .. 53

4.2.2 Multiple Representations .. 56

4.3 Summary ... 58

Chapter 5 A Computational Model of GED Kernel .. 59

5.1 Modelling Generative and Evolutionary Design (GED) 59

5.1.1 Generative Process as Abstraction .. 59

5.1.2 An Architecture of Generative and Evolutionary Design 63

5.1.3 Abstraction and Interpretation of Design Objects 66

5.2 Formal Representation of GED ... 68

5.2.1 Representation of Design Objects .. 68

5.2.2 Evolutionary Elements and Evolutionary Mechanisms 69

5.3 General Architecture of GED .. 72

5.4 Steps for Building an Application System with the GED Kernel 75

5.5 Summary ... 79

Part III Application of the GED Kernel in Design Examples 81

Chapter 6 Artificial Plant Generation .. 82

6.1 Artificial Life and Plant with Dynamical Hierarchies 83

6.2 Manipulation of Evolutionary Elements in the GED 84

6.2.1 From a Simple Seed to a More Complex Hierarchical Structure 84

6.2.2 Manipulating Internal Design Parameters of Evolutionary Elements .. 85

 ix

6.3 External Influences ... 86

6.4 Enhancing Exploration with a Self-Replication (SR) Mechanism 87

6.5 Issues and Discussions .. 89

6.6 Summary ... 90

Chapter 7 2D Pattern Generation and Matching ... 91

7.1 Generating 2D Patterns with Cellular Automata (CA) 91

7.2 Integration of CA with Genetic Algorithm (GA) ... 94

7.3 Design Knowledge Reconstruction ... 98

7.4 Combining GA and CA with Constraint Mechanism (CM) 100

7.5 Issues and Discussions .. 106

7.6 Summary ... 109

Chapter 8 Wineglass Design with the GED Kernel .. 111

8.1 Wineglass Design .. 111

8.1.1 A Computational Approach ... 112

8.2 A Wineglass Design System with the GED Kernel 115

8.2.1 Wineglass Design with the GED Kernel .. 115

8.2.2 Limitations without 3D Manipulations .. 116

8.3 An Improved Version .. 116

8.3.1 From Seeds to Relatives ... 119

8.4 Disussion and Evaluation .. 122

8.4.1 Dynamics of GED Structural Hierarchy .. 124

8.4.2 Major Generative Mechanisms .. 125

 x

8.4.3 Exploration and Adaptation Abilities ... 126

8.4.4 Design Representation and Interaction .. 128

8.4.5 System Development and Integration ... 129

8.5 Summary ... 130

Chapter 9 Conclusions ... 133

9.1 A Summary of Research Conducted ... 134

9.2 Objectives and Significance Revisited .. 135

9.2.1 GED Model for Dynamic Design Object and Process 136

9.2.2 Knowledge Exploration and Adaptation of Design Generation 137

9.2.3 GEDK-Embedded System Development ... 138

9.3 Contributions.. 140

9.4 Future Work and Directions .. 141

References .. 144

Appendix A .. 153

A.1 Implemented Java Classes and Packages for the GED Kernel 153

A.2 First Example: Artificial Plant Generation ... 154

A.3 Second Example: The 2D Pattern Generation System 170

A.4 Third Example: The Wine-Glass Design System.. 175

 xi

List of Figures

Figure 1.1: A GEDK-embedded design supporting system ... 11

Figure 3.1: A typical operation of Genetic Algorithms (GA) ... 26

Figure 3.2: A typical iterative process .. 32

Figure 3.3: A typical recursive process ... 33

Figure 3.4: A simple combined iterative-recursive process .. 33

Figure 3.5: A deterministic pattern generated with iterative-recursive affine transform 36

Figure 3.6: Another deterministic pattern that is more plant-like ... 37

Figure 3.7: A pseudo-random plant-like pattern generated with straight lines 38

Figure 3.8: Two patterns generated with sketching curves as the basic breeding elements................. 38

Figure 3.9: Three different CA neighbourhoods ... 40

Figure 3.10: The basic operation of CA in two consecutive generations .. 42

Figure 3.11: A pattern generated by a simple1-D multi-state CA ... 43

Figure 3.12: A series of “lives” produced in the “Game of Life” in consecutive generations 44

Figure 4.1: Principle of Piaget’s knowledge reconstruction .. 55

Figure 5.1: An example of manipulating design representations at different abstraction levels 60

Figure 5.2: Dynamics of the GED hierarchy in a temporal axis ... 64

Figure 5.3: Dynamics of an evolving GED ... 65

Figure 5.4: A computational system using the GED Kernel with human interaction 67

Figure 5.5: An example system using the GED Kernel with wineglass representation 68

Figure 5.6: Block diagrams of the implemented GED kernel .. 76

Figure 5.7: Building a design application with GED Kernel ... 77

Figure 5.8: A GED hierarchy created with the GED Builder .. 77

Figure 5.9: Manipulating data to evolve the hierarchy .. 78

Figure 5.10: Linking interface and representation to a GED Hierarchy .. 78

Figure 5.11: A GEDK-embedded application system .. 79

 xii

Figure 6.1: An evolving GED hierarchy ... 85

Figure 6.2: Artificial plants generated with (a) a straight line, and (b) an irregular curve 86

Figure 6.3: More natural plants generated with external influences and some randomness 87

Figure 6.4: More flexible generation effect obtained with an evolutionary SR mechanism 89

Figure 7.1: Patterns generated with a simple 1D binary CA .. 92

Figure 7.2: Patterns generated with a GA-CA system, having a checkerboard as the goal 96

Figure 7.3: A Cellular Automata (CA) Version of Piaget’s knowledge reconstruction 101

Figure 7.4: The knowledge development of a CM-GA-CA system ... 103

Figure 7.5: Successful matching with constraint tightening in the CM-GA-CA system 104

Figure 7.6: Failed pattern matching, even with the most relaxed constraints 105

Figure 7.7: Plant-form structural patterns generated with the CM-GA-CA system 108

Figure 8.1: Some historical drinking vessels ... 112

Figure 8.2: Different series of wineglass families ... 113

Figure 8.3: Some unusual wineglasses .. 113

Figure 8.4: An early attempt of 3D modelling wineglasses ... 114

Figure 8.5: The wineglass design system without integrated to external CAD tools 115

Figure 8.6: The block diagram of the wineglass generation system .. 117

Figure 8.7: The GEDK-embedded system for wineglass generation ... 117

Figure 8.8: Design Generation, evolution and interaction with the GEDK-embedded system 118

Figure 8.9: Different wineglasses can be generated with the system ... 120

Figure 8.10: Seeds produce different species with the GEDK-embedded system 120

Figure 8.11: Some example results, generated with the GEDK-embedded system 121

Figure 9.1: An example of merging different GED hierarchies to a general GED network 142

Figure 9.2: Highly distorted wineglass profiles in an attempt to apply simple GA-CA 142

 1

Part I:

Introduction and

Literature Review

 2

Introduction

The study on design has resulted in the formulation of many models including

computational models that provide bases for developing software systems

supporting design activities. A typical computational model is based on a process

in which design is seen, at least in its computational representation, as an

evolution of a description from its most abstract form (the original design

problem) to the least abstract one (the final design solution). The process

transforms a given problem (a need, an idea for example) to be tackled, through a

series of designing activities, to a final solution to that problem, with the support

of computation that generates the complete instruction for manufacturing

processes to start.

In a process based approach to modelling design, many descriptive and

prescriptive design models have been developed in literature. These models give

clues to how design activities can be generalized as a problem solving process in

which different methods such as search and optimisation might be used. In the

meantime, the development of computational design support systems can only be

limited to supporting various domain specific tasks of the whole design process in

a disintegrated manner. The reason is that there have been no theories or methods

to be implemented in the complex domain of design in such a convincing way that

they can actually be quantitatively or at least qualitatively evaluated to show that

these models are working in the similar but more efficient ways for designers

whose immediate task is to produce good designs.

Most current computational design systems suffer from two major problems.

Either they cannot be scaled up to tackle a whole design project during which the

 3

designers have the ultimate responsibility to play as the leaders of the project, or

they cannot be generalized in a convenient way so as to provide solutions to a

wide range of design problems even in the same domain. In other words, a

completely workable computational model does not exist to offer a revolutionized

way for the alternative approach to solving design problems, even with the most

updated technology in 3D computer graphics and Internet based design

collaboration systems.

This study develops a computational kernel for the development of computational

design support systems, based on a Generative and Evolutionary Design (GED)

model. The proposed kernel based on the GED model is built on an evolutionary

process in which design objects or products are generated in a process in which

design activities are guided through a hierarchical structure which represents a

way for generalization and specialisation of the objects or products being

designed. In such a hierarchy, design objects are linked with a generalization and

specification process in which generative mechanisms are invoked to transform

the states of design from one to another, normally in a top down manner. In such a

way, a less abstract design with more detailed attribute values of design objects

are generated from more abstract and more conceptual ones, by the invocation of

relevant generative mechanisms. A design process is modelled as an evolutionary

activity which changes those design objects with the support of design

generalization or specification mechanisms.

With this kernel, the knowledge of design generation can be adapted or captured

in a form of generative mechanisms, such that not only design objects are

generated but also the process of how they are generated from a more abstraction

form is recorded. This gives indication to solve similar design problems

efficiently and effectively so that the knowledge of how a design is evolved is

captured by a process model, together with the final result.

 4

1.1 Generative and Evolutionary Design

Evolutionary techniques have been used by many to solve search and optimisation

problems in various Engineering fields (Jain and Gea, 1998; Khuri et al., 1995).

Furthermore, supporting design activities with evolutionary computation

techniques has raised much attention (Bentley, 1999; Frazer, 1995; Gero et al.,

1997; Sims, 1991). The basic rationale behind these applications is the belief that

the design process is similar to evolutionary processes of nature.

Designing from nothing is rare (if not impossible), and is generally based on the

existing or past design primitives or building blocks. Analogous to design of lives

in the natural world that environmentally-fit living things and species survive

better while the poor ones tend to extinct, searching for an optimum design

solution can be seen the same way. Therefore many researchers developed

evolutionary computational techniques to simulate design environments in which

imaginative design solutions emerge from evolutionary processes and the data

structures which embody intelligent properties or inference mechanisms.

Frazer is one of the first who used evolutionary concept in architectural design

(Frazer, 1995), while Sims applied GA to graphic design and the design of

artificial creatures (Sims, 1991, 1994). In the meantime, many other studies

concentrated on finding the methods for exploring design problems in the domain

of engineering (Gero et al., 1997; Graf, 1995; Poon and Maher, 1996). In the field

of art and design, some researchers applied evolutionary computation techniques

to artistic and form design (Rowbottom, 1999; Todd and Latham, 1999; Witbrock

and Neil-Reilly, 1999). As a result of these developments, many new

evolutionary design methods have emerged (Bentley, 1999). The capability and

efficiency of these methods in producing satisfactory design solutions that meet

the expectations of designers have proved to be promising although many design

tasks tested on these methods remain abstractive or simplified.

 5

Some researchers in computational design also investigate issues in applying

generative techniques for supporting design. This approach, termed generative

design as in this thesis, uses computational generative techniques to generate or

develop design object, unlike conventional parametric approaches which only

alter the basic preset parameters of the design object. In these research works,

generative evolutionary design is thus related to designing with generative and

evolutionary techniques.

However, most of the current evolutionary design studies concentrated mainly on

the analysis and optimisation tasks at the stage of detailed design, which is a later

stage task in the whole design process. There are comparatively less research in

the area of early stage design tasks, i.e., the synthesis and generation of design

concepts. At early conceptual design stages, problem specification and design

requirement are not concretely definable. In this case, design specifications

inevitably keep changing with amendments to the problem requirements as more

information becomes available and more problems are discovered. Therefore,

conventional evolutionary techniques cannot adequately function with this

dynamic nature of design process. In the terminology of evolution, it is difficult to

formulate a generic process which requires a pre-determined problem

specification in real design for the definition of a suitable solution chromosome

structure, an evaluation function and a selection strategy in computational

representations which are required by the evolutionary algorithms. In other

words, although many applications of evolutionary algorithms have proved to be

satisfactory and promising, the formal theory of such a process in design in terms

of a generic representation and software architecture has not appeared.

A problem associated with the complexity in defining a unified theory of

generative and evolutionary design is that different representations of the design

objects are manipulated at different design stages, as the design problem and its

solutions are transformed by designers from an abstract level to reach the required

level of details for various purposes, such as proposing a concept, tending

 6

contract, generating initial design, completing the detailed design, specifying

manufacturing instructions, generating assembly drawings etc.

For example, at the early conceptual stages, descriptive, symbolic and functional

representations of design objects are often manipulated while physical

geometrical structures in 2D or 3D are handled at later detailed design stages. In

conventional evolutionary design with Genetic Algorithms (GA), the genotype

(computer representation) can be treated as an abstractive form of the phenotype

(the real design solutions). Such a mapping method from genotype to phenotype

embeds the knowledge and information of how a design object might be generated

from an initially abstract form to the final form with many accurate details.

However, if such a mapping can only be formulated at the beginning of the design

task and the mapping cannot be changed as the design process goes on, it can only

model a fixed design task with limited scope for changing the design problem

structure. A basic assumption of formulating design computational terms is that

this design problem structure is supposed to change as design proceeds with new

variables and parameters that are subsequently resolved with the new constraints.

Therefore, this promoted the thinking for this thesis, which deals with this

problem in a generic and systematic way, through the development of a generative

and evolutionary kernel. The essential objective for such a kernel is that it is able

to guide the designer or a software developer to formulate a dynamic design

problem space through a hierarchically structured computational representation

and integrated software kernel components, and thus provides better mechanisms

for formulating the design process rather than a predefined design task.

1.2 Objectives and Research Methodology

In order to provide a generic kernel to deepen the study on generative and

evolutionary design, this thesis developed a computational kernel of generative

and evolutionary design based on a process based representation and a

generalization-specification hierarchy in which design objects are evolved by

 7

evolutionary computation mechanisms, with the ultimate goal of supporting

generative and evolutionary design at a level of system configuration and design

knowledge acquisition.

The objectives of this thesis concentrate on the formulation, implementation and

evaluation of a computational kernel that supports the following generalized

design activities:

a) Modelling design objects and design process in a generative and

evolutionary manner with a structured representation,

b) Capturing the knowledge of how a design object is generated with

generative and evolutionary computation techniques in such a structured

representation, and

c) Simplifying the process of mapping design applications to a generative

and evolutionary system to allow quicker system configurations with the

structured representation and its related evolutionary computing methods

and interfaces.

The aim of this study is to test whether it is possible to develop this generic

computational kernel, named Generative and Evolutionary Design (GED) kernel,

for it to be used as the core architecture of computer-based systems for supporting

design, which is similar to the way in which 3D solid modelling kernels such as

Parasolid (support EDS Unigraphics) and ACIS (supporting ProEngineer) are

used to support parametric design. A prototype of this kernel is developed in this

thesis for demonstrating several key generative and evolutionary techniques

which are implemented in the GED kernel as the main evolutionary mechanisms.

This prototype system can demonstrate its feasibility and applicability in

supporting design for solution adaptation and exploration.

 8

The aim and objectives of this study are approached by

a) examining the nature of design with a view that evolutionary computing

and structured representation can help to improve the efficiency in using

computer based design support systems, and formulating a computational

kernel based on this study and understanding of design,

b) developing and implementing the proposed Generative and Evolutionary

Design (GED) kernel, which provides a foundation for the application of

generative and evolutionary techniques in design domains with examples

of realistic scales,

c) integrating several main generative and evolutionary computation methods

into the GED kernel so that design assistance in terms of adapting design

solutions and exploring design alternatives can be provided, and

d) evaluating the GED-based computational systems for design applications,

with the demonstrations with which the feasibility and applicability of the

GED kernel can be qualitatively analyzed for improvements and

validations.

Following the initial findings achieved at the first stage of the study, related

results were reviewed and analyzed. A further literature review was carried out in

order to have a deeper understanding of design problems in general and product

design in particular. A design model was then studied, formalized and

constructed in a general manner, which includes the tasks of synthesis, analysis

and evaluation. The applications of generative and evolutionary techniques in the

proposed design model were investigated and evaluated. Furthermore, a

prototype of the GED kernel was implemented and integrated with a commercial

CAD tool. The GED kernel was then applied to solving specific simulated and

practical design tasks. The results of applications were further evaluated for

validating the feasibility and applicability of the kernel in several different design

domains with examples reported and analyzed.

 9

1.3 Significance and Contributions

A computational kernel for generative and evolutionary design offers the

opportunity to confront the problems of applying various new computational

techniques including genetic algorithms in a generic and scaled-up manner for the

ultimate goal of achieving better design with efficiency. As such new

representation and integration methods are needed in order to shorten the process

of building an application. In the process of developing this kernel, knowledge

and strategies are discovered for a unified representation of design objects related

to their process of being explored and optimized. This top town approach

provides insight on how the knowledge outside the discipline of design can be

utilized and integrated to the theories and methodologies of design which by its

nature is a multidisciplinary activity and process.

From a perspective of design, it is also necessary to know exactly what the

prospective is and where the opportunities are for using computational techniques

in improving design in terms of, supporting the tasks achievable by human

designers more quickly, and more importantly, supporting the designers in

deriving better design solutions which would be otherwise unachievable or

difficult to achieve by designers themselves without the support of such kernel

and its related computational techniques.

The implementation and evaluation of the kernel involves its application to three

different design examples, including the development of 3D product forms and

structures which are normally supported in a certain degree partially with

parametric technology. The developed kernel in this thesis provides an alternative

and potentially more interactive and efficient way of exploring design problems.

The contributions of this thesis derive from the integrated nature of this kernel

with its formulation, generative and evolutionary computing techniques that have

not been tested in such a scale and a generic context.

 10

1.4 Thesis Overview

The thesis presents the Generative and Evolutionary Design (GED) kernel with its

theoretic basis on Artificial Intelligence with a focus on knowledge based systems

and genetic algorithms. The key concept of the kernel is built on an integration of

design object and design process within a structured representation scheme, which

takes a design object from an abstract level down to the hierarchical structure to

its detailed level. At each level of such a hierarchy, generative and evolutionary

mechanisms are attached. Each evolutionary element has its design attributes, data

or parameters and is allocated at a specific level in the GED hierarchy. These

design attributes represent a design product or object at a specific abstraction

form. Design process is then related to the evolution of these elements in the

model according to their attached generative and evolutionary mechanisms.

As design changes dynamically, the hierarchical structure of the whole

representation as well as the connected elements in each layer are also evolved.

When the kernel is applied to solving design tasks, the evolutionary elements at

an upper layer represent design products in a much abstract level closer to the

original problem. Evolutionary elements at lower layers conversely represent

design in much more concrete formats closer to the final design output domain.

For example, the upper layer may represent textual specifications while the lower

one may represent 3D models.

With this GED kernel potential designs can be explored through changing design

parameters and parameters of generation mechanisms. This kernel further

supports the evolution of generative mechanisms themselves, and enhances its

explorative ability. Through adaptation methods, generative design knowledge

can be captured and reconstructed with such dynamically evolving generative

mechanisms. Figure 1.1 shows an implemented design supporting system

presented in details in Chapter 8, which is embedded with the GED Kernel

(GEDK) shown in the bottom left corner of the diagram.

 11

In the rest of this Part I, a literature review is presented. Conventional design

representations, models and supporting systems are presented in Chapter 2. In

Chapter 3, advanced research work in generative and evolutionary techniques for

design is further discussed.

Figure 1.1: A GEDK-embedded design supporting system.

In Part II, a Generative and Evolutionary Design (GED) model is presented.

Discussion in Chapter 4 is related to the issues of generative design representation,

design exploration and adaptation, and in multiple representations of designs, on

which this thesis focuses. In Chapter 5, the fundamental features required in a

GED model are presented, followed by a discussion on the importance of design

exploration and knowledge adaptation in multiple representations of designs in

such an evolutionary process. The formulation of the computational kernel based

on this Generative and Evolutionary Design (GED) model is also described in

details, and an implemented GED kernel prototype is introduced.

Generic GEDK Wine Glass Design Interface

Design specific GED
Hierarchy

Level 1 Interface

Level 2 Interface

Level n Interface

GEDK

 12

In Part III, three examples of applying the kernel to computational design tasks

are presented. They demonstrate how the kernel supports designing with

enhanced explorative and adaptive ability. The first demonstrative example in

Chapter 6 illustrates how the GED kernel can automatically build a GED

hierarchy. It forms a complex plant-like structure from a single “self-replicating”

evolutionary element root, and different effects can be explored when

evolutionary elements located at different levels of the hierarchy are manipulated.

The second demonstration in Chapter 7 shows how the kernel supports design

adaptation through simple knowledge reconstruction in an example of 2D image

pattern generation and matching with Cellular Automata.

In Chapter 8, a design demonstration presents an application for generating a

family of wine glasses and their “relative” utensils, when the GED kernel is

integrated with commercial CAD tools. Comparison of these three examples in

various aspects is then discussed and evaluated. Finally a conclusion and the

issues for further research in this direction are presented in Chapter 9, the final

chapter.

 13

Design and Support Systems

Design involves complex processes, with activities in different areas, including

idea generation, aesthetics, cognitive expression, problem identification, market

evaluation, problem specification, conceptual solution searching, detailed design,

product modelling, manufacture engineering and product evaluation. Cross

(1994) categorized these activities into four main groups: communication of

designs, evaluation of designs, generation of designs, and exploration of designs.

However, we do not have a "universal" definition for the term "design" as yet.

Neither can we compromise for a "generalized" agreement of what "design" is

related to, without having to refer to different contexts. This section introduces

the research related to the understanding of design in the context of developing

computer based design support systems. Most of the research reviewed in this

chapter focuses on the cognitive and computational modelling of the design

process with which Artificial Intelligence techniques can be used in a formulation

involving designers using computer program to deal with a design problem or at

least a part of a design problem.

2.1 Design and its Contexts

The meaning of design and the activities associated with it differ from one field to

another and from one aspect to another. Craftsmen, architects, and the public all

have different perspectives of what design is and how it is related to their working

and living. Mitchell (1996) suggested that various design professionals in

different domains, such as architects and design educators, see design

dramatically differently. For the people who develop computational representation

 14

for the implementation of computer based design support systems, design is seen

in symbolic terms that are closer to computer coding and programming languages.

Even for this kind of professionals, they still have to understand design in general

terms or their methodologies will not match the expectation of the users who will

use the systems to participate in design activities.

Although design is generally related to human behaviours and activities, there is

no restriction to extend the concept beyond that. Many regard design in the

context of nature as the very origin of design. Various articles present and

appreciate the beauty of natural design such as French's (1994). Still the meaning

of design deviates from one perspective to another even in a natural context in

which one can perceive design in terms of a macro (such as the whole ecological

system) view or a micro (the cellular mechanism) perspective. Design can even

be considered in two extremes in (some) human's perspectives – scientific versus

artistic. The comparison of gearbox and fashion design in Lawson's article (1990)

gives an example of this case.

Without losing its generality, design involves a process of making things the way

they are expected to become. When one talks about the design of nature, there is

an expectation that such a design emerges dynamically from an environment

through competing with species within a process that may take a long time to

evolve. When one talks about the design of a craftsman, there is an expectation

that the result would show some unique features that are only made possible by

skill and experience.

However design is mostly referred to human design in our daily life, where this

design is for the benefit of human beings in terms of convenience and comforts.

In a human context, design involves a process of making artefacts the way they

are expected to function. The scope and focus of this study combines these two

kinds of understanding in design, and a software kernel for supporting design is

developed by the motivation of bringing computational design techniques that

 15

simulate the evolution of a natural environment in which a design emerges from

evolution to normal design tasks such as designing wine glasses or drinking

devices.

2.2 Design Representation

There are some research works in analyzing design activity such as the Delft

project (Cross et al., 1996), which analyzes designers' practices through video

recordings of designers working on engineering product design. There are also

studies in natural intelligence of human being in design (Cross, 1999) and in

design psychology (Crozier, 1994; Lawson, 1990). Furthermore, a large number

of design research studies propose theories to reflect its nature, and develop

concepts and techniques to represent, support or even try to automate it.

There are many studies in representing design, from formal mathematical design

representation (Braha and Maimon, 1998; Gero and Tyugu, 1994) to descriptive

and prescriptive models such as Quality Function Deployment (Menon et al.,

1994) and Design Function Deployment (Shahin et al, 1998; Shahin and

Sivaloganathan, 1998). Although there are diverse interpretations and

understandings of what design is in different contexts, there are many common

features in the basic nature of design representation.

2.2.1 The Knowledge of Design

If the main goal of design is to make artefacts for fulfilling our expectations of

certain new comforts brought about by new functions that cannot be provided by

the designs that already exist, knowledge and problem solving skills are needed to

make new artefacts or to improve the existing artefacts, both serving the original

goal of design to a certain degree of satisfaction and efficiency. Since this goal is

based on the people and the environment they act on, design is closely related to

the knowledge of people’s inner (such as cognitive) and outer (such as physical

 16

and chemical) world. The knowledge of a designer, a team of designers, and even

the database of a design supporting system for a specific design domain becomes

the fundamental "nutrition" of that targeted design object. Lack of this knowledge

means lack of nutrition and leads to an ill resolved design.

Knowledge involves skills, experiences and techniques in various aspects,

particularly the ability of analysis and synthesis. With adequate knowledge,

suitable solution(s) can be searched or explored to solve a given problem. This

requires the acquisition of knowledge in both the problem domain and the solution

domain of the design task.

Some people argue that design is solution-oriented. Lawson's study (1979) of

cognitive strategies used by architecture and science students for solving a given

structuring problem showed that they concentrated on the solution-oriented and

problem-oriented approaches respectively. When the main goal of a design has

been achieved or the design problem has been solved satisfactorily, it does not

really matter how much the user knows about the design activities involved. This

nature is reflected on the long history of mysterious, but workable, "blacksmith"

type design involving implicit/tacit knowledge.

However, in developing computational tools for supporting design the

understanding of the design problem becomes more important. Without such an

understanding it is difficult to obtain and store the knowledge useful for solving

general design problems such as generalization, specialization, searching, and

optimization. There is a need for formulating a repeatable process during which

variations of design or entirely new designs can be generated and re-generated.

Some who tried to view design as a matter of science have been working hard to

identify methodologies or processes in a systematic way. Without such

methodologies or processes, it is difficult to deal with the problem of design in a

generalized way in order to achieve better efficiency and quality. Over time, the

environment, designers and other influential factors related to the original design

 17

problem may change, the understanding of the problem in a domain independent

context helps to establish a pattern or procedure to produce similar designs or

improve imperfect ones.

Understanding the design problem, even a simple one, to a level at which one can

formulate computational representation and a process is not straight forward. To

seek design solutions in the unconsolidated solution domains further complicates

the task. There is still a large "black-box" in design. One cannot completely

know how a designer works, and how human links problems to solutions, or

solutions to problems. Therefore, in a computational process of design, there

should be a mechanism to cope with uncertainty of problem definition and there

should be a mechanism for evolving an initial design solution formulation into

detailed one with more and more uncertainly cleared up in the process of

exploring both the solution and the problem.

2.2.2 Design Process

Generally, it is agreed that most design processes start with an identified need

(Black, 1996) (French, 1999), while the final output (products, services, etc.) is

the eventual one to make contact with users. However, the final output can only

tell us the final output of a design, but not the design itself. One basic nature of

design is its process (Blessing, 1994; Navinchandra, 1991), the process to make

things function or behave in our expected way.

Design process is seen by many as an evolutionary process during which the

solution to the problem or the objective of the goal is explored. As Medland

(1992) wrote - "The design process is the activity of turning ideas into reality".

This evolving process can be endless, that it cannot have a finite and identifiable

end (Lawson, 1990). Donald Norman also mentioned in his conversation with

Mitchell (Mitchell, 1996) that "Design never ends. Even the most successful

 18

design will have to keep evolving continually in response to new practices"

(p.xviii).

This process can be in various forms. However, it is commonly decomposed into

several stages, especially in systematic designing (Braha and Maimon, 1998).

The final stage of this design process leads to a direct implementation or an

application of the solution to the problem. Various models, methods or

approaches have been proposed and studied. Some refer this process in a chaotic

way while others are more concerned with systematic formulation of the process

for design automation, but both approaches agree that an evolving process

perhaps suits computational formulation of design better since this allows both

control and interaction to take place during evolution, which together is seen as

design exploration, rather then pure design problem solving.

2.2.3 Design Problem Hierarchy

Although a few design products do introduce totally new principles and concepts,

the majority of designs are rearrangements of not only the existing principles and

concepts, but also the existing standard components (Black, 1996), especially in

engineering design. Design may range from "invention" to "redesigning". In fact,

it is a part of daily practices in which choices and decisions (design solutions) are

made among various alternatives (possible design solution domains) for different

problem solving. It is not difficult to find examples of these in designed products

one encounters everyday, from simple paper clips to complex bridges and

buildings that Petroski (1996) introduced.

Creativity is an important factor in design as a professional practice, which

provides users with surprises, and sometimes fun. The emphasis is on the

uncertainty, un-commonality and unexpected results, particularly to the users.

Thus, this creativity provides an "unexpected" way for "expectedly" solving a

given problem. Exploring ability is an important element in creativity, which

 19

searches for unknown, unusual or unexpected alternatives to solve the design

problem. This also requires the ability to adapt important and useful features from

the explored solution candidates. With this adaptability, the exploration tends to

converge to an optimum or at least a suitable solution within all possible solution

domains.

Often the degree of creativity is proportional to how unexpected the design

solution might be. This unexpectedness is closely related to the seeking of new or

alternative ways to meet the goal. When a design can be realized in different

degrees of abstraction in terms of how close the design representation is to the

final solution, more uncertainty exists and the problem space is less constrained at

a higher level of abstraction of describing a design problem. The alternation of

design representation in higher abstraction produces higher degree of creativity

while the lower level produces lower, resulting in more knowledge and skills

being needed in the process of exploration and optimization.

With extensive analysis or long-term practices of the design problems, the

knowledge of that design problem can be built up and the understanding of how to

solve the problem, under a specific context, can be systematized. When the

understanding is at the stage that any alternation of the problem within a finite

domain can be solved systematically, this type of design is sometimes referred to

"routine" design or "mature" design. This design process can often be structured

in a hierarchical or layered-network form at this stage. Any alternation in a higher

level of the hierarchy would not require a "re-design" in the levels below.

One of the ways with which the degree of complexity of exploring creative and

abstract design is to build a hierarchy of knowledge of certain products in which

problems are explored with a top down approach, that is, conceptual solutions or

so called creative ideas are explored at higher level of the hierarchy with more

abstract definitions of the problem with less constraints and variables. As the

 20

solution space becomes more and more confined, lower level details and

constraints are introduced to provide optimized results to the problem.

2.3 Computer-Based Design Support Systems

2.3.1 Models and Methodologies

Jones (1992) mentioned that "the new methods that have appeared so far are only

partial solutions to modern design problems"(p.27). It is not realistic to construct

a general model and methodology for all design tasks, because we still cannot

fully understand and formulate what design is in all aspects. However, there are

many "simplified" versions of design models and methodologies, which have been

developed and shown many successful applications, particularly in engineering

design. Cross (1994) gave a detailed description of the nature of engineering

design, its activities, problems and abilities. Others (Dhillon, 1996; Dhillon, 1998;

French, 1999; Pahl and Beitz, 1996; Pugh, 1991) also provided design

methodologies in various engineering aspects.

Cross identified four themes in this relative short history (Vries, 1993), that he

labelled with four words that typified the activities in those themes: prescription,

description, observation and reflection. The first three themes focus on the role of

flowchart representations for design process and the extent to which experienced

and beginning designers follow the steps in these flowcharts. Computer models

were made to represent the thinking modes that were found with designers and

from these possibilities for computer assistance to designers were developed. The

theme of reflection is a more philosophical aspect that has become a major issue

of consideration in design methodology.

As Navinchandra (1991) explained, conceptual design is the part of design

process in which: problems are identified, functions and specifications are laid out,

and appropriate solutions are generated through the combination of some basic

 21

building blocks. Conceptual design, unlike analysis, has no fixed procedure and

involves a mix of numeric and symbolic reasoning.

A typical starting point in a design process is still sketching, despite the great

advance of computing technology. In fact, the importance and influence of

sketching in design does not diminish after these years of studies and

developments of many computer-based design support tools. The special issue

(Volume 19, Number 4) in the journal “Design Studies” provides some thorough

discussions on this matter. It reflects that the very primitive approach to

modelling design in 2D sketching is still a very effective one. There are some

computer-based supporting tools for sketching, such as Jenkins and Martin's

(1993).

There are studies in creative conceptual design (Navinchandra, 1991) (Sekimoto

and Ukai, 1994). At the conceptual design stage, a vast among of ideas and

inspirations are processed, extracted and captured. This requires an effective and

efficient way to represent the concept of the design. Speed and correctness of the

modelling process are crucial. Sketching is one method that can convey an idea in

a 2D visual form that not only captures the thinking of the designer, but also

further inspires others involved in the design process.

Traditionally before the actual production of a design, the final designed product

will be modelled. It typically includes textual description, 2D drawing and/or

physical 3D prototype modelling. Even nowadays, most Computer Aided Design

(CAD) tools developed still use simple 3D geometrical modellers. All these are

not exactly modelling the actual design process, but the design product itself

instead, i.e., the final outcome of process. It is understandable that most of the

works done are related to this outcome, as the final product is the least abstract

and most tangible outcome of the whole design process that is directly applicable

to solving the original problem. To develop a model that represents the whole

design process is comparatively much more of a difficult task.

 22

There are some models representing design process. Blessing (1994), Bliek

(1995) and Tomiyama (1995) give a comprehensive study in process-based

design. Quality Function Deployment (QFD) is a proper design process model,

which provides a structured framework to translate the 'voice of the customer' into

the actions and resource commitments needed to meet customer expectations

(Menon et al., 1994). The model maps the customer requirements into specific

design features (and eventually into manufacturing processes) through one or

more matrices of expectations and fulfilment options.

Based on QFD, a Design Function Deployment (DFD) (Shahin and

Sivaloganathan, 1998; Shahin et al., 1998) was also proposed. It is one approach

in modelling design process, which is structured in a hierarchical manner. These

models mainly provide guidance, management, and documentation of design

processes.

2.3.2 Computer Tools Supporting Design

There have been new methods and approaches to assist designing work, such as

feature-based and parametric modelling methods that are two common

contemporary approaches used in CAD systems (Andrews and Sivaloganathan,

1998). Although computers and computation techniques have been used in

Computer-Aided Design (CAD) for decades, their applications are mainly limited

in computerized representations of design product models. Particularly computer

support in the conceptual stage of designing is still in a very preliminary stage. In

design automation, the current CAD software tools available cannot provide

sophisticated assistance in solving design problems.

Although with the great advance of the computing power and different

computational techniques to solve different engineering problems in recent

decades, it is still a very difficult task to develop computer aided systems that

 23

provide a real design environment. There were some research works on

Computer Aided Conceptual Design in recent years. Some of them emphasize on

the importance of free-hand sketching in conceptual design (Jenkins and Martin,

1993) and some on developing computational methods to assist specific design

problems, such as surface modeller (Van Dijk, 1994). However it is still in a very

premature stage because of the difficulty of understanding the conceptual design

process and formulating any computational methods to assist designing at this

conceptual stage.

There have been many intelligent, integrated CAD systems developed in recent

years. In these computer-based design support systems, many studies investigate

the integration of intelligent computational methods and design models to

optimize and search a design solution. Knowledge-based design is one of the

popular directions in this aspect and is presented in many articles (Rodgers, 1998;

Tang and Wallance, 1997). Another research (Yoshioka et al., 1993) categorizes

designs into design object knowledge and design process knowledge, and

proposes a framework in which a computable design process model navigates to

generate and modify design models.

2.4 Summary

Based on the nature of design and the problem of developing computational

models for computer-based design support, two main criteria in developing

computational models for supporting design can be identified. The first one is a

systematic structure that reflects the progressively evolving nature of design

process, from a more abstract level to a less one. The second is the adaptive and

explorative ability of the model, which is an essential element in creative

conceptual design. The model should also provide mechanisms for designer

interface and future enhancement.

 24

There are many process-based design representations. However, they do not

provide evolutionary mechanism, which supports the evolution of the design

process. There is a need to develop the design process model in a computational

form, which has engines or mechanisms for evolving the model.

There is little work in developing computational techniques for the generation of

creative conceptual designs. Most of the conceptual design studies are still

immature. The main problem of developing computational models for conceptual

design is the unclear problem domain, which must be refined, modified or even

redefined during the evolving process of design. Furthermore the generation of

conceptual design alternatives in computer-based supporting systems is still very

limited. The explorative and adaptive ability is essential for this creativity. It

requires further studies and developments of creative design modules for

improving the systems. The next chapter further reviews the research works on

generative and evolutionary techniques for supporting design, on which this thesis

focuses.

 25

Generative and Evolutionary

Techniques for Design

When the design process is realized as a problem solving process, the final ideal

goal will be a solution (optimal if possible) that can solve the given problem. In

this case, the design process can then be related to searching techniques that seek

the best solution in the solution domain.

3.1 Evolutionary Techniques for Design

There are many searching techniques developed for finding suitable solutions for

a problem. The very fundamental one is brute force, which exhaustively seeks all

possible solutions in the searching domain. However, it becomes impossible to be

achieved when the problem is too complex and the domain is too large or infinite.

Therefore, there are more sophisticated approaches to work in this complex or

large domain. Evolutionary Computation (EC) is one of them.

3.1.1 Evolutionary Computation

Evolutionary Computation (EC) is an approach based on mimicking the natural

evolutionary process for survival. EC is one of the soft computing techniques.

Together with Neural Network and Fuzzy Logic, they form the foundation of

knowledge-based systems (Raton, 1999). EC conventionally involves

Evolutionary Algorithm (EA), Evolutionary Strategy (ES), Genetic Algorithm

(GA) and Genetic Program (GP). All these techniques mimic the natural

evolution of real life. Although there are some differences among their

mechanisms of mutation and crossover reproduction, all involve a set of

evolutionary solutions (evolving population) based on preferential selection of the

 26

Generation n+1

Population (size = k)

Candidate 1 Candidate 2 Candidate k

Selection based on fitness values of candidates

Crossover

Mutate

Select

Generation n

fittest in an environment (objective function). There are many articles and

materials introducing the working principles and applications of EC (Back, 1996;

Eiben, 1996; Fogel, 1995; Michalewicz et al., 1996). Figure 3.1 illustrates a

typical operation of Genetic Algorithms, in which a population of k candidates

evolves from generation n to n+1 through the iterative process of selection,

crossover and mutation.

Figure 3.1: A typical operation of Genetic Algorithms (GA)

3.1.2 Evolutionary Design

EC techniques have been applied to solve searching and optimization problems in

various engineering fields, such as packing optimization (Jain and Gea, 1998;

Khuri et al., 1995), spare parts allocation optimization (Lee et. al., 2008),

optimization of manufacturing cell (Dimopoulos, 2006), and optimization of

manufacturing systems (Youssef and ElMaraghy, 2006). However, their

applications in design areas are still at a very preliminary stage.

Frazer is one of the first who applied evolutionary techniques in design,

particularly in architectural and structural designs (Frazer, 1995). Many new

 27

evolutionary design methods have been developed (Bentley, 1999). Some have

applied evolutionary computation techniques in artistic design and form design

(Rowbottom, 1999; Todd and Latham, 1999; Witbrock and Neil-Reilly, 1999).

Sims is one of the first who applied GA in graphic design and designing artificial

creatures (Sims, 1991; Sims, 1994). There are many works on applying GA and

other EC techniques in form generation for architectural and structural design

areas (Ceccato, 1999; Kicinger et. al., 2005; Janssen, 2005). In fact evolutionary

techniques have been applied to numerous design application areas, including

online auction (Cliff, 2003), product design and manufacturing systems (Pierreval

et. al, 2003; Sun et. al., 2007), and robot control (Kondo, 2007).

Other studies concentrate on other issues, such as proposing methods to explore

the possible design domain in engineering areas (Gero et. al., 1997; Graf, 1995;

Poon and Maher, 1996), enhancing evolutionary techniques (Gong et. al., 2008;

Mühlenbein et. al, 2007), improving design navigation (Chien and Flemming,

2002; Gu, 2006), tackling multi-objective issues (Lee et. al., 2008; Limbourg and

Kochs, 2008; Liu et. al., 2005), proposing multi-agent or parallel computing

approaches (He et. al., 2007; Liu and Tang, 2006), and even forming hybrid

systems with other techniques (Nariman-Zadeh et. al., 2005; Pahl, 2004; Park et.

al., 2007).

Many terms have been used to describe the way in which design is created with

additional merits such as creative design, innovative design, evolutionary design

and generative design. In this research, generative design is taken as a process

that differentiates itself from other terms of design by the use of evolutionary

algorithms as a way to generate, evaluate and select design solutions.

In the next section, an attempt is made to explain the basic scope and

methodology of generative design with a reference to the context of this research

which develops a generic software kernel for supporting it. Without controversy

and having to define and generalize what generative design is in its most generic

 28

terminology, the concern of this research is more on the understanding of how

computational design techniques such as genetic algorithms and other

evolutionary algorithms can be utilised in such a process.

3.2 Computational Techniques for Generative Design

When a design is considered creative, it means that the outcome of the design

gives surprises to the users who interact with the functionality of the product.

Generative design can be considered creative since it produces many unexpected

design outcomes together with their alternatives. The outcome is achieved in an

uncertain, uncommon and unexpected way that involves computations of many

iterations, but in the meantime without failing the originally intended goal.

There are research works that focus on supporting generative design in various

aspects, including the issues on providing aids for generative design to novice

designers (Chase, 2005), and for supporting design applications in structural and

architectural areas (Caldas, 2008; Fischer et. al., 2005; Janssen, 2005; Shea and

Gourtovaia, 2005). Many of these generative design works are closely related to

evolutionary design so that the generative, explorative and adaptive abilities of

these approaches can be integrated together to support the fundamental properties

in design.

In Bentley’s book “Evolutionary Design by Computer” (1999), he defines

Generative Evolutionary Design as “The use of evolutionary algorithms to

generate new designs from scratch”. Analogously, generative technique is the

technique that generates new designs from scratch. In Bentley’s book, some

introductions and discussions are given in defining evolutionary and generative

design from a more technical aspect. Since the matter of defining whether a

design solution is creative and generative or not is a much of a subjective topic,

most researchers in computational design mainly investigate and study generative

design focusing on the aspect of design processes or design techniques. Bentley’s

 29

book concentrates on applying evolutionary techniques to design applications. In

his view, generative evolutionary design is designing with generative evolutionary

techniques. In particular, the relationship between genotype (the internal

representation of design inside the genetic algorithms) and phenotype (the design

which the genotype represents in the application domain) is identified as one of

the key issues. He believed that generative and evolutionary techniques must

work on the final form of design rather than on some high-level representations:

“Using computers to generate the form of designs rather than a collection of

pre-defined high-level concepts has the advantage of giving greater freedom

to the computer.” (p.40)

This reflects the importance of relaxing the constraints which are pre-defined

prematurely, and giving much flexibility and diversity to the possible solutions

that are being generated. Such flexibility and diversity can be better obtained in

development processes instead of simple mappings from the problem domain

directly to that of the final solutions. Therefore giving computational support to a

generative design process has the potential of generating new designs which are

not well defined before the process starts. The process itself evolves the solution

from an abstract concept to detailed configurations.

Without further elaborating on how to judge whether a design is creative,

generative and innovative or not, this study concentrates much on design by

providing generative capability to the design process and examines such an

approach through a generic kernel of supporting systems. The main focus in this

research is to formulate the design process as a generative one with the support of

evolutionary computing techniques. A generic framework of generative design

can be closely examined more in the context of comparing it with those systems

without such generative capability.

 30

Generative computational techniques can be used to develop the design object,

instead of only alter the basic preset parameters of the object in the way in which

many other non-generative techniques do. In other words, generative technique

can be realized as an approach to support design that develops a design from one

form to another, leading to a final solution. Shape grammar and L-systems which

will be discussed below can be regarded as two examples of these generative

techniques, while pure searching and optimisation techniques such as simulated

annealing are not.

For example, if we have a 3D model of a chair, which is formed by its geometrical

information (the legs, arms, back and seat) and the attributes (say, the material

and colour), a technique will not be generative if it merely produces a new chair

in form of a 3D geometry having the same geometrical information but different

attributes based on the same chair template. However, if a technique produces

chairs in a way that is based on building chairs with lower primitives of the chair

template, the technique will have some degree of generative ability. The

generated chairs may be structurally different from the original template, perhaps

with the legs and seat upside down or with new attributes.

Although there are many computational techniques which support design process

generatively, much attention has been given to those techniques which produce

simulated life forms in our natural world. These techniques often operate in a

recursive and iterative manner and can generate different life-like patterns or form

structures. They are closely related to evolutionary development and repetition of

natural lives. The following subsection introduces some of these techniques,

which will later be examined again as the possible inference mechanisms to be

used in the generative design kernel developed in this thesis.

Many current interests are in those generative techniques for form design which

mimic the behaviour of nature. These techniques attempt to mimic natural form

 31

in a computational environment. In particular, many of these techniques often

operate in an evolutionary manner with iterative and recursive processes.

3.2.1 Iterative and Recursive Development Process

Although there are many methods claimed to be generative in some sense, most

computational generative techniques exhibit an iterative and recursive way of

operation, i.e., the way that is closely related to evolution. The techniques to be

discussed in this section are in this vein, and most of them have been used to

support evolutionary design. Although iterative and recursive processes can

operate independently, many generative techniques combine both.

There may be different interpretations for iteration and recursion. In

programming, recursion operates in a self-calling manner. During the execution

of a recursive function or method, another instance of the same recursive function

is called and executed, before the execution of the calling instance has finished.

Iterative process operates in a similar manner as the recursive process. However,

instead of calling another instance of the function during the calling instance, each

iterative or repetitive cycle of the iterative process will only be called after the

finish of another one.

The typical type of iteration process in programming is often in a loop form. The

typical iterations of programming languages are the while-iteration or for-

iteration. The flow diagram in figure 3.2 shows the basic operation of an iterative

loop. The pseudo-code below shows an example of a loop, which iteratively

performs the Loop-Process from 0 to the loopLength:

From loop = 0 to loop = loopLength, if condition OK

Loop-Process-Once()

 32

Figure 3.2: A typical iterative process.

The recursive processes are often implemented with a recursive or “self-calling”

function. Recursive process may be better realized with the pseudo-code shown

below, while the flow diagram in figure 3.3 shows the basic operation of this

recursive process.

With the two pseudo-code programs of the iterative and recursive function above,

a combination of these two can be easily formed. The simple iterative-recursive

codes in figure 3.4 perform the recursive operation Recursive_Opn() once, from

the first loop 0 to the last one loopLength, as shown in the flow diagram in the

figure.

Recursive_Opn()

 Do_Something()

If (Another_Recursion_Condition = OK)

 Recursive_Opn()

Else

 Exit_Recursion

Start of
Iteration

Condition OK?

End of One Loop

Start of One Loop

End of Iteration

Loop-Process-Once()

YES

NO

 33

Figure 3.3: A typical recursive process.

Figure 3.4: A simple combined iterative-recursive process.

From loop = 0 to loop = loopLength, if condition OK

Recursive_Opn()

Start of
Recursion

End of Iteration

Do_Something()

...
If new recursion

needed??

... ...

End of
Recursion

Start of a new
Recursion

...

Start of
Iteration

Condition OK?

End of One Recursive Loop

Start of One Recursive Loop

End of Iteration

 Recursive Operation

YES

NO

 34

Although these two processes are seemingly simple, many of the generative

techniques employ both for producing interesting varieties of patterns of the same

structural configurations. Replications with similarity or symmetry of forms and

patterns are often produced by using these processes as the evolving and

developing mechanisms which work on data structures and allow the substitution

of different value ranges for the variables and constraints encoded in the problem

solution space. However, the results generated by these processes often seem

perceptually irregular, complex and chaotic, even if they are generated with very

simple generative techniques. The following introduces the basic concept of two

common generative techniques known to various design fields: Shape Grammar,

and L-System. These two techniques form the basis of self-replicating

evolutionary elements in the proposed computational kernel in this research.

3.2.2 Shape Grammar

There are computational techniques, which can produce similar self-symmetric

forms. Shape grammar is one of them. Shape grammar was proposed by Stiny

and Gips (1972). It involves a set of rules that generates shapes in a stepwise

manner, with the results ranging from primitive shape forms to more complex

ones.

Shape grammar can be realized as a specific type of formal grammars, which is

related to the very origin of Chomsky’ grammars. Chomsky, a scholar

specializing in linguistics, presented a model for characterizing natural languages,

called generative grammar, and produced a commonly-used definition of

grammar, which is the vocabulary of symbols or words, together with a set of

rules that specify how elements in the vocabulary may be combined to form

strings of symbols, or sentences, in a language (Knight, 1994).

 35

In Stiny and Gips’ original shape grammar, there are four main elements:

a) A set of primitive shapes, p, (and a set of terminal shapes T can then be

derived from p, which is a finite arrangement (sequence) of scaled-and-

orientated p).

b) A set of variable shapes, v, which is disjoint with the shape terminals.

c) Shape rules, Rs, an order pair having the first element (t, v) and the

second element is 1) (t), 2) (t, v’), or 3) (t, t’, v’); t, t’∈ T and v, v’∈ v

d) Initial shape, I, a combination of elements in T or v.

The process of shape generation using shape grammar can be realized as the

development of a shape object with an initial shape (a combination of terminal

and variable shapes), and the elements in the initial shape are then mapped to

other shapes with the grammar rules. This process may continue until the

generated shape consists of primitive shapes only. The terminal elements in a

given shape will be preserved with the shape rules that always transform a shape

with the terminals to other shapes having the same terminals. In a design

situation, as the design objects in shape grammar are often represented in

geometrical forms, common geometrical transformations such as scaling and

rotating are used in the shape rules. While shape grammar can be formally

explained with mathematical notations, Knight’s book (1994) gives a better

descriptive explanation of shape grammar and is a good reference for people who

may feel uneasy to those strange mathematical symbols.

3.2.3 L-System

L-System is named after A. Lindenmayer. In 1968, Lindenmayer introduced the

L-System, a parallel rewriting system, to simulate the development process of

natural lives (Lindenmayer, 1968). While L-System can be regarded as formal

grammar and language systems as shape grammar, the system is often used for

modelling the developmental process of natural lives and produces them in a

fractal way (Flake, 1998). Although there are many variations of L-system

 36

suitable for different applications, the most basic form of it consists of only three

elements:

a) a set of primitives, constants or alphabets in formal language,

b) the set of all possible components, variables, or words in formal

language, associated with the primitives, and

c) a set of rewriting rules, that maps every possible component to another.

To simulate an object with a specific L-system, one starts by giving the object in

its most infancy stage with a specific component that can produce different

components at different temporal frames by recursively applying the rewriting

rules to the components. With its formal basis on syntactic rules and symbols, L-

system has the same root of shape grammar in formal grammar and language. It

is not surprising that both L-systems and shape grammars operate in a similar

manner, and may have a similar system structure in an actual implementation.

3.2.3.1 Deterministic and Non-deterministic Generation

With these two generative techniques (Shape Grammar and L-System) discussed

above, many interesting patterns can be generated. Figure 3.5 shows a fractal

pattern generated with a simple recursive-and-iterative affine transformation. The

development rules for the pattern are preset and the pattern grows systematically

from the left, with the simplest vertical line, to the right after 8 generations. As

the recursion, iteration and affine transformation are preset, the pattern is

deterministically produced.

Figure 3.5: A deterministic pattern generated with iterative-recursive affine transform.

 37

To simulate natural lives, some careful but simple thought may produce a much

better effect. Plants are sometimes used as examples to illustrate the power of

these generative techniques. A simple alternation of the setting may produce

much better effect, even deterministically. For example, when one considers the

branches of plants in our natural world will most likely grow in some upward

directions, a little change of a preset parameter may then lead to producing much

better result. The generation of the plant-like patterns in figure 3.6 is based on the

simple system to produce figure 3.5, except that the degree of rotation in the

affine transformation for figure 3.5 is 90 degree while it is 30 degree for figure

3.6.

Figure 3.6: Another deterministic pattern that is more plant-like.

A little change may lead to more desired results. However, in a natural world

absolute regularity is rare. To produce more realistic natural forms, adding some

randomness to the generative systems can further enhance the ability of it in

modelling our nature in a non-deterministic way. Even a very simple form of

randomness can lead to a higher complex matter. In practical programming,

pseudo-randomness is often applied instead. When the pseudo-random generator

is added to the same programming, the results shown in figure 3.7 can be

generated, with straight line as the basis entity.

When human users interact with a generative system, much realistic life forms can

be produced. Figure 3.8 shows two plants generated with the same generative

mechanism as the ones above. Instead of using straight lines as their basic

 38

elements for breeding, users sketch their preferred curves (shown on the left most

pictures). Similarly, the pictures show how two plants grow correspondingly after

2, 4, and 6 generations.

Figure 3.7: A pseudo-random plant-like pattern generated with straight lines.

Figure 3.8: Two patterns generated with sketching curves as the basic breeding elements.

 39

Another generative technique called Cellular Automata has been applied to many

design areas. In particular, various studies of applying CA to urban planning and

simulation have been done, including those works presented in a special issue in

the journal “Environment and Planning B” in 1997 (Batty et al., 1997). Since the

original CA is regarded as rather limited and restrictive, there are many

modifications of CA for various applications (Herr and Kvan, 2007; O’Sullivan,

2001).

3.2.4 Cellular Automata

Many researchers have been connected to the development of Cellular Automaton

(CA), but undoubtedly von Neumann is the most cited one. CA was proposed by

John von Neumann in the late 1940’s (von Neumann, 1966). Von Neumann was

interested in self-organizing and reproducing automata which includes associated

theories to construct large computers with certain degrees of complexity. Aspray

and Burk’s book (1987) is a good reference for understanding more about von

Neumann’s research, including the theory of CA. From a practical point of view,

extensive interests were not initiated until the famous CA, Conway’s Game of

Life, which is a CA that best illustrates the ability of connected “simple”

autonomous elements which produce “complex” emergent behaviours or patterns.

Cellular Automaton (CA) is closely related to the studies of complexity, self-

organization, emergent pattern, artificial life and adaptive complex systems.

Instead of giving a rigorous mathematical formulation and formal explanation of

CA that other references have already presented well, this section introduces its

basic concept and operating principles which will be utilized in the software

kernel developed in this research.

 40

3.2.4.1 Structure and behaviour

There are two basic properties of CA, its static spatial structure and the dynamic

temporal state behaviour. CA is formed with a static structure. It consists of a

lattice of cellular elements (cells) located in a discrete space with a homogenous

neighbourhood relationship.

� Cellular elements (cells):

CA consists of a collection of elements, or cells, that have “static locations” but

“dynamic states”.

� Regular discrete space:

Each cell is located in a unique point at a regular discrete space of n-dimension.

In case of 1-dimension, the cells can be realized as the elements in a sequence,

while in case of 2-dimension, the cells live in a 2-D grid.

� Neighbourhood:

As the cells are positioned in a regular space, a set of neighbour cells

corresponding to each cell (often a central cell) can then be identified. In most

cases, these neighbour cells include cells that locate within a distance from the

central cell in the space. Figure 3.9 (a) shows the immediate 2 neighbours (in

grey colour) of the central cell (in black). In a 2-D CA, two most commonly used

neighbourhoods are 4-connected (or von Neumann) neighbourhood and 8-

connected (or Moore) neighbourhood, as shown in figure 3.9 (b) and (c).

 (a) (b) (c)

Figure 3.9: Three different CA neighbourhoods: (a) 2 neighbour cells in 1D CA, (b) 4-

connected neighbours in 2D CA and (c) 8-connected neighbourhoods in 2D CA.

 41

Although CA is structured with spatially static elements, the dynamic state

behaviour of these elements often leads to produce seemingly complex behaviours

with the properties of their synchronized transition and a universal transition rule.

� Dynamic state:

All cells of a CA are in one of the states in a set of finite states, at any specific

discrete time.

� Synchronized transition:

All cells in a CA have the same transition rule, and the transition of the state of all

cells is synchronously activated in a discrete time interval.

� Locally universal transition rule:

The same transition rule is applied to every cell in a CA, based on the states of the

cell and the neighbour cells. Therefore the transition of a cell is based regionally

on the states of its neighbours, and its own.

From a computational point of view, Cellular Automata (CA) is a specific

computational model with a very simple autonomous mechanism. Much attention

is given to this simple mechanism applied locally that seemingly leads to produce

unexpected complex global behaviours or patterns. Figure 3.10 shows the

operating principle of a typical 1-dimensional binary CA. The CA in the figure

has a size of nine (the number of cells) and each binary-cell can have a state of

either one (black in colour) or zero (white in colour), while the neighbourhood of

each cell is limited to its nearest neighbours. Thus the transition rules only

concern the direct two neighbours (left and right) of a cell (middle). At any

generation, say n as shown at the top row of the figure, each cell of the CA will be

mapped to a new state according to the current state of its own and those of its

neighbours.

 42

For example, the current state of the second leftmost cell is one (black) while

those of its neighbours (both left and right) are zero. Following the arrow under

this second leftmost cell leads to the third transition rule, which maps any cells

having the state pattern of “zero-one-zero” to a state of zero. Therefore the new

state of the second leftmost cell in the generation n+1 is zero. This transition

mapping process is applied to each cell of the CA. The figure shows the mapping

(arrows) of only five outmost cells in order to avoid the confusion of arrows. A

typical CA has boundaries (finite) and the boundary cells require special handling

as they have fewer neighbours. A circular approach is used in the figure, that the

two boundary ends are treated as circularly connected such that the leftmost cell

becomes the right neighbour of the rightmost cells while the rightmost become the

left neighbour of the leftmost. In this case, the same mapping process can be

applied to the boundary cells.

Figure 3.10: The basic operation of CA in two consecutive generations.

When the number of possible states of the cells increases even with very simple

transition rules, some complex behaviours or patterns can be obtained. Figure

3.11 shows the result of such a CA. The 1-dimensional CA that produces this

pattern has 256 states. This CA starts with one non-zero cell in the middle of the

1D array, at the top of the image. The transition rule is simply based on mapping

the sum of the regionally effective cells (the 2-neighbour cells and the central cell)

Transition rules
maps the cell state

of one generation to
another

Generation n

Generation n+1

1-dimensional Cellular Automata

 43

to the same value (with special handling in overflow cases) as the next state of the

central cell. The states of the CA cells are then visualized with a mapping to

corresponding RGB (red, green and blue) colours, according the some threshold

levels.

Figure 3.11: A pattern generated by a simple1-D multi-state CA, from earlier generation

(top) to later generation (bottom).

3.2.4.2 Totalistic and semi-totalistic

As shown in the earlier figure 3.10, the number of different state patterns of 3

binary-cells (the central cell with 2 neighbours) is 23=8. The number of possible

transition rules is then 28=256. In fact, given that the number of states of a CA is

s, and the number of locally-effective cells (including the neighbour cells and the

central one) is k, the number of total possible transition rules is s to the power of

sk. When the number of states of the CA is increased, the number of possible

transition rules will be increased dramatically.

Many studies restrain the investigation to a much simple type of transition rules.

In fact, the colour pattern shown in Figure 3.11 is produced by a 1D multi-nary

CA, which falls in a specific category of CA, a totalistic CA. Totalistic CA have

transition rules that can be realized as density functions that the next state of a cell

is solely dependent on the density of its local region, and thus the sum of the state

of its neighbourhoods. Furthermore, if the transition rules lead the next state of a

cell to a new state that depends not only on the sum of the states of neighbouring

 44

cells but also on the state of its own, such CA and their rules are called semi-

totalistic.

The well-known Conway’s Game of Life CA belongs to this type. Conway’s

Game of Life is a semi-totalistic binary (2-state) CA, working on a 2D space with

an 8-connected neighbourhood. The transition rule is simple, while the emergent

behaviour produced is unexpectedly complicated. Because of this, this CA

particularly attracts much attention in various research fields and studies. The

transition rule of this CA is as following.

a) An “off” cell will become “on” in the next state, if and only if 3 of its

neighbours are “on”.

b) An “on” cell will become “off” in the next state, if more than 3 of its

neighbours are “on”, or fewer than 2 of its neighbours are “on”.

c) In all other cases, the cell will remain the same in the next state.

This transition rule is also often presented in a way of living systems, for a better

understanding of its emergent behaviour (the “Game of Life”), as below:

a) A new cell will be “born” when 3 of its neighbours are “alive”,

b) A cell will die because of “overcrowded” (more than 3 neighbours are

alive) or “isolated” (fewer than 2 alive neighbours).

The following figure 3.12 shows some of the emergent patterns produced by this

CA. Be noted that the seemingly “life” patterns are mainly realized on the

illusion of the temporal motion (from left to right) of lives (formed by groups of

cells); while in facts all the cells of the CA themselves are stationed statically in

their own positions.

Figure 3.12: A series of “lives” produced in the “Game of Life” in consecutive

generations, from left to right.

 45

3.2.4.3 Study of emergent behaviour and computation

While many totalistic and semi-totalistic CA are studied in many research works,

another challenging task is associated with applying CA in distributed

computation and studying the underneath emergent behaviour. If Conway’s

Game of Life is the most well-known CA, design-classification problem is

possibly the most well-known example of emergent computation of CA being

studied.

Given a list of binary bits with 0 or 1, the computation of the total number of 0’s

and that of 1’s in the list can be done with very simple programs in diverse

methods. This seemingly easy task becomes an extremely difficult one when the

computation is changed from the central approach with “global vision”, to a

distributed one that the computation is relied on the locally autonomous entities

that only have limited information of their local regions.

In the design-classification problem solved by CA, the goal is to seek the right

transition rule(s) that can be applied to every cell of the CA for leading to obtain a

desired outcome that either (a) the states of all cells will converge to 1 if the

majority of the cells have 1 as their very initial state, or (b) the states of all cells

will converge to 0 otherwise. To avoid further complexity, the length of the list is

often restricted to odd numbers. The interest of this problem solved with CA falls

in two aspects: seeking the right or best transition rules to solve the problem and

studying the emergent properties of different transition rules that leads to the right

solutions. Further details of recent study in density-classification problem can be

found in (Das et al., 1995; Ferreira, 2001).

3.3 Summary

In this chapter, some evolutionary and generative computational techniques for

generative design in evolutionary approach are presented. These computational

 46

techniques can be used as the fundamental mechanisms for exploration,

adaptation and generation of potential design candidates. Further discussion on

issues related to design generation and exploration for generalizing a generative

and evolutionary design model will be given in next chapter. Design knowledge

adaptation and reconstruction in such a generative and evolutionary approach will

be discussed. The theoretic foundation of such a kernel and its technical

innovation for implementation in real design applications will also be presented in

the later chapters in Part II.

 47

Part II:

A Generative and

Evolutionary Design

Model

 48

Issues in Modelling Generative and

Evolutionary Design

The computational Generative and Evolutionary Design (GED) kernel proposed

in this study is intended for modelling design in a generation and evolutionary

approach. In this chapter, issues on design generation and exploration are further

discussed. Design knowledge adaptation and reconstruction in such a generative

and evolutionary approach are also presented, as well as the importance of

multiple representations of design in such an approach.

4.1 Design Generation and Exploration

Gero has categorized design into three types: routine, innovative and creative

design (Gero, 1990). This approach is closely related to the state-space searching

perspective in problem solving (Newell and Simon, 1972). Some researchers

argued that general design activity should not be treated as a process of pure

searching problems and their corresponding solutions (Janssen et al., 2002), as

this approach tends to over-rely on searching within a static set of parameters.

Instead of handling design process as a pure domain searching issue, this study

emphasizes on the methods to generate and explore potential designs with

generative techniques. These generative techniques or mechanisms produce less

abstract, more complex and detailed design objects from a more abstract, simpler

and conceptual design representation. This is similar to generate a mature plant

from its seed or analogous to making the phenotype from a much abstract form of

genotype in an evolutionary computation.

 49

4.1.1 Design Generation and Exploration

Supporting design generation and exploration with computational systems has

been studied for a few decades, including evolutionary design approach. Some

computational systems in particular improved the efficiency and accuracy in many

design aspects, including analysis, geometrical modelling and design project

management. However, it is still a question at what level of abstraction at the

conceptual design stage the computer power could be better utilized to provide

support to designers since there is no generic theory of design computation. In

many cases, design applications have to be modelled as one of the search or

optimisation problems at which level the design problem has already been

simplified or constrained with additional limitations imposed.

In a design process, supporting the generation and exploration of potential

solutions is one of the major objectives in developing computational design

supporting systems. There are different works on studying how this generative

and explorative ability can further be enhanced, including Hornby’s work on

applying a generative design representation approach to supporting design and

emphasizing its scalability in design exploration (Hornby, 2003). To further

enhance this exploration ability in the proposed kernel in this research, the issue

of multiple representation of design is discussed below.

4.1.2 Multiple Design Representations

Many evolutionary design methods have been developed for supporting the

exploration of dramatic and creative potential designs with those evolutionary

techniques as discussed in (Bentley, 1999). The term “creativity” is often related

to “unexpectedness”, “surprise” or “new”. It is also relative and subjective to

specific groups of people. Different groups of observers, designers or users in

different specific times or spaces would find the same design having different

 50

degrees of creativeness. Some people may find a design very ordinary while

others may find it very creative.

Design models have also been created as multiple-representation, network, layer-

network or hierarchy in some studies (de Vries, 2006; Rosenman and Gero, 1999;

Stouffs, 2008; Suh, 1990; Tomiyama, 1995). When attention is put further on the

creativity of design, “creative leap” (Cross, 1997) or “sudden mental insight”

(Akin and Akin, 1996) becomes an important factor for successful design

computation, which emphasizes on the mapping from one design representation to

another.

There are two perspectives in viewing multiple design representations. One is

based on different kinds of representations which provide different views and

each representation type captures a specific aspect and neglects others (Gero and

Reffat, 1997). For example, emphasis may be given to the kind of representations

related to the aspects of aesthetics, psychology, technology, structure and

geometry.

The other perspective concentrates on managing design multiple representations

at different degree of abstractions with specific abstraction properties, from more

abstract to less abstract and more detailed levels. There are various formal

theories of abstraction (Giunchiglia and Walsh, 1992; Giunchiglia et al., 1997), in

particular relation to formal grammar and language, and formal models of

abstraction hierarchies (Fikes and Nilsson, 1971; Knoblock, 1994; Sacerdoti,

1974).

The importance of developing multiple representations at different levels of

abstraction of design problem has been discussed in recent studies (Heisserman et

al., 2000; Kim and Yoon, 2005; Liu et al., 2000). However, these studies adopted

a static hierarchical structure for representing design product, which restricts the

flexibility of evolving design with dynamic representations that can be specialized

 51

during the design process from a general initial concept. This study emphasizes

on the multiple representations of design which allow a design to develop and

evolve from an abstraction perspective. The proposed kernel tackles this problem

by providing a generic representation that can be developed in a hierarchical

manner with evolutionary inference algorithms serving as the transition

mechanisms to transfer an abstract representation to a less abstract one.

Although abstraction can be related to different aspects, in formal theories they

are often related to property generalization and refinement. In this case,

abstraction is basically a grouping process of less abstract objects (or its

representation) to a higher abstract one, based on certain abstraction properties.

Extending from this concept, a specific representation, R1, of design objects is

more abstract than another, R2, if R1 contains only the subset of the information

specifying the same objects in R2. In other words, the set of all possible objects

represented by R2 is a subset of design objects in R1. Based on this concept, it

can be realized that more possible objects can be generated and explored in an

action at a higher abstraction than at a lower one.

Apart from the issue of multiple representations, another important point for

attention is related to design adaptation. While design exploration in this study

emphasizes on the issues of what potential designs can be generated at different

abstractions from one level to another until the process reaches the lowest level of

abstraction (i.e., with the most detailed design outcome), design adaptation is

concerned with why and how they can be generated. Proper adaptation requires

knowledge for the reasons or goals of generating certain designs and the methods

for achieving them.

To support generative and evolutionary design with multiple representations, the

explorative ability of the system must be complemented with adaptive functions.

While design systems explore to generate possible design solutions, they should

also know how to generate the most potential ones efficiently. Without proper

 52

adaptation, pure exploration would behave like an inefficient “blind” searching.

In a blind way, random generation of weir objects are often obtained.

4.2 Knowledge Reconstruction

Design involves a process of identifying the problem, analysing it with the

existing knowledge, reconstructing the existing knowledge to synthesize the

potential solutions. The process is adaptive in nature as more and more features

are added into the product with the introduction of new knowledge into the

process. This design process is a knowledge-intensive activity, through which

creative and innovative outcomes are highly desirable.

This activity of exploration and adaptation is highly dynamic since the overall

domain for defining and searching the design space keeps changing as design

proceeds. Gero studied this and referred it as the problem of state-space

enlargement (Gero, 1996). With any newly added knowledge into the design, the

overall domain is continuously modified, and the search space is enlarged or

narrowed. There is need to model this adaptive process with proper data structure

and control mechanisms in order to provide flexible support, particularly when

highly divergent inference mechanisms such as genetic algorithms or cellular

automata are employed.

There are several proposals for achieving evolution of knowledge from a

cognitive and computational perspective in the AI-based design area. For

example, Gero (1996) proposed process models based on notions of additive and

substitutive variables resulting in additive and substitutive schemas for creative

design. Two kinds of computationally supporting design approaches, discovery

and learning, are also introduced in (Mukesh et al., 2001). They are related to the

issue of having an explorative and adaptive ability in computer based supporting

tools and systems for design applications.

 53

There are also many studies of theories and applications of computational

adaptation in different areas, in Machine Learning, which requires adaptation

functionality. Different approaches were also studied in applying machine

learning techniques to design. Some studies relate learning and creativity in

design to transformation and evolution of knowledge from one perspective to

another (Sim and Duffy, 2002; Wu and Duffy, 2002), while others to analogical

reasoning (Goel, 1997). Some articles (Duffy, 1997; Grecu and Brown, 1998;

Sim and Duffy, 1998) presented findings of studies on machine learning in design,

and introduced the fundamental techniques developed. In AI, intelligent systems

for supporting learning and creativity in design have also been introduced (Brazier

and Wijngaards, 2002; Brown and Grecu, 2000).

Machine learning is typically adequate for solving analysis problems. However

adaptation in design has further emphasis on the issue which is related to how to

generate and explore design solutions at a knowledge level. For ill-defined

problems like design, soft computing techniques (such as Genetic Algorithms and

Artificial Neural Network) are often applied and the knowledge of design

generation is implicitly embedded.

4.2.1 Design Adaptation

In this research, adaptation of knowledge is handled in an evolutionary and

generative design process. Such evolution of design knowledge involves the

knowledge of not only design data as objects but also generative process of

producing these objects, powered by mechanisms or algorithms such as cellular

automata, genetic algorithms or other computation methods including machine

learning. In this investigation, the evolution of knowledge is related to the

learning theory of Piaget’s well-known child psychology theory.

 54

Knowledge is related to understanding things (e.g. objects) in a form of

representation at a certain level of abstraction. Piaget’s concept on knowledge

and learning is based on three issues:

• schemata,

• concepts, and

• structures.

Schemata are the actions to be taken under certain situations for achieving

specific goals. Concepts are relations and abstractions (of objects, situations and

actions). Structures are about the organisation of knowledge (about objects,

schemata, concepts). Knowledge development process is a form of construction.

In particular, Piaget proposed two forms of knowledge construction based on the

concepts of assimilation and accommodation (Piaget, 1970, 1971, 1983).

In Piaget’s view, most of the time we are in an equilibrating state. Our existing

knowledge and experiences govern our behaviour acting upon various situations

and our understanding of the world. When new situations are encountered, we

then need some ways to relate them to our existing knowledge. Assimilation is

the organisation of knowledge with our own logical structures or understandings.

Given a new situation, it will be related to our existing knowledge in order to

preserve a consistent view of the world. However, when new situations contradict

the present knowledge and our understandings of the world, and cause a dis-

equilibrating state of our intelligence, we have to reconstruct our knowledge in

order to better accommodate the new situations. This concept is illustrated with

the diagram in figure 4.1.

Relating this knowledge reconstruction approach to the domain of design an

accommodation action will alter the whole solution domain. Figure 4.1 illustrates

exploration and adaptation of new problems with domain knowledge. When

encountering new tasks, new requirements, and new needs as the design problem

evolves, intelligent evolutionary mechanisms react and attempt to make a

 55

response. At this exploring stage, synthesis and generation of potential sub-

solutions take place, with the current form of generative mechanisms within the

existing design knowledge. These generative mechanisms explore potential

solutions within the existing knowledge domain in an assimilation way. This

assimilation exploration may be supported through evolving the internal rules and

logics of an evolutionary mechanism.

Figure 4.1: Principle of Piaget’s knowledge reconstruction, with assimilation and

accommodation.

Input Problem

Old?

Cannot Be
Handled

Solved?

Equilibrating

State

No

No

No

Assimilation
Attempt

Accommodation
Attempt

Yes

Yes

Yes

Solved?

 56

When the existing knowledge is not enough for generating the right design

outcomes and acceptable results, the system may have to update, modify or even

reconstruct the existing knowledge. Through such knowledge reconstruction, the

domain of potential solutions is modified in a way analogous to Piaget’s

accommodation. This accommodation can be obtained by using different

approaches, including merging the knowledge represented, extending current

generative mechanisms separately or reconstructing entirely known knowledge by

merging generative mechanisms themselves to form a more powerful generative

mechanism. In a demonstration example to be presented in the chapter 7 it will be

illustrated with an example of using a simple constraint relaxation approach as a

knowledge reconstruction mechanism.

Based on this perspective, the process of knowledge evolution in design can be

linked to assimilation and accommodation, for producing design alternatives by

the exploration of the existing knowledge and new knowledge. In a conventional

evolutionary design approach, the knowledge adaptation issue is mostly handled

in an assimilation way. With Genetic Algorithms as the main evolutionary

mechanism the exploration is limited by the way in which the genotype is mapped

to phenotype, with the adaptation being implicit in its selection process. It is a

goal-oriented approach with certain degree of randomness because the genotype is

generated and explored and guided towards the populations who best fit to certain

preset objective functions. However, once the genotype-phenotype mapping is

formulated, there is no mechanism to support knowledge reconstruction as in

Piaget’s accommodation. The proposed kernel in this research attempts to tackle

this problem. Furthermore, this adaptation ability can be enhanced with the

method of multiple representations.

4.2.2 Multiple Representations

Design knowledge has many different perspectives and can be related to design

objects, design processes, interpretations and relationships of the processes and

 57

objects (Kakihara and Sorensen, 2002). Knowledge construction has also been

related to the field of organisational management. Its fundamental issues are

about solving problems with a group of people, autonomous entities or modules.

Some research projects modelled such a social system to a hierarchical form, as

presented in the book by Burton and Obel (1995).

Compositional design approach based on process and knowledge composition was

also introduced in (Brazier et al., 2001). In the paper, design knowledge is

associated with the knowledge emergence of social (or organisational) systems.

Some relates this problem of emergence to hierarchical complexity (Ueda, 2001).

Miller’s living systems (Miller, 1978), Simon’s hierarchical complexity of the

artefacts (Simon, 1996) and multinational enterprises (Westney, 2001) are all

related to a hierarchical complexity.

In a generative and evolutionary system, design can be regarded as an

evolutionary process that evolves from a conceptual stage to a detailed stage.

That is, the representation of designs evolves from the most abstract level to the

most detailed level through some forms of generation. During the design process,

design objects are manipulated by different participants (such as designers or

computational modules) at various abstractions.

The proposed computational kernel in this is based on such a generative and

evolutionary design (GED) approach. It supports modelling design process as an

evolutionary process of generating design objects from a much abstract form to

more detailed ones at multiple representations. With this approach, design

generation and exploration can be enhanced in such an evolutionary hierarchy of

abstractions, and knowledge of design generation can be adapted or captured by

generative mechanisms.

 58

4.3 Summary

In this chapter, several key concepts are introduced, which will be further

elaborated in the remaining chapters. These include the concept of computational

design as an exploration and adaptation process in which generative and

evolutionary algorithms can be employed as the mechanisms that transfer a design

representation from an abstract level to a more specific level. Therefore a design

object can have multiple representations, and the evolution of which with

generative and evolutionary algorithms is seen as the process of finding solutions

that meet the requirements at a desired level of details. These concepts form the

basis for constructing a kernel that supports design exploration and adaptation,

thus providing a way for elaborating design problem and identifying its solutions

in an evolutionary manner. The theoretic foundation of such a kernel and its

technical innovation for implementation in real design applications will be

presented in the coming chapters.

 59

A Computational Model of GED

Kernel

This thesis focuses on modelling design with a dynamically evolving structure, in

which evolutionary elements and evolutionary mechanisms are integrated in a

hierarchical architecture. This hierarchical architecture allows the development of

design solutions from abstractive concepts to detailed specifications by invoking

the inference mechanisms attached to the nodes in the hierarchy, which represent

the intermediate results of the solution. As the hierarchical structure is explored

downwards, the problem is explored. To build such a kernel it is necessary to

formulate a process model for the integration of design objects and the

evolutionary mechanisms which infer on these objects.

5.1 Modelling Generative and Evolutionary Design (GED)

As discussed in previous chapter, this study develops a computational kernel for

supporting generative and evolutionary design. In design abstraction is a way of

synthesizing the problem with the available information at a proper level that the

conceptual solutions can be developed first. The detailed solutions can then

evolve from these initial concepts.

5.1.1 Generative Process as Abstraction

When a specific design task is structured within a hierarchical data structure, a

change made at a higher level of the hierarchy results in more possible domain

changes than that at lower abstraction. Analogy to practice of design, changes

made at earlier conceptual stages with abstractive representation of design

 60

problem formulation often generate much radical outcomes than that at a later

stage.

Figure 5.1 illustrates the idea of multiple representation of design which evolves

from abstractive concept to detailed solution. This abstraction structure is related

to 4 design stages using Suh’s axiomatic design example (Suh, 1990). In figure

5.1, the representation at a higher abstraction is represented with “conceptual 2D

sketch” while “detailed 3D model” represents a less abstraction of the design.

Although this cannot be fully formulated in a quantitative way, an alternation in

the 2D sketch may mean that a change happens at an abstract conceptual level.

This leads to a much more radical change to the final product than what could do

if a change were made to the 3D solid, which derives from the sketch in the first

place.

Figure 5.1: An example of manipulating design representations at different abstraction

levels, at different stages by clients, designers, and manufacturer.

Furthermore, exploration of potential design solutions at different levels of

abstraction can be enhanced by using generative and evolutionary mechanisms.

In the process model proposed in this thesis for the implementation of a generic

Functional Requirements
(Conceptual 2D Sketch)

Design Parameters
 (Detailed 3D Model)

Process Variables
(CNC Code for 3D Objects)

Customer Attributes
(Textual Description)

Client

Designer

Manufacturer

 61

kernel of generative and evolutionary design, design objects which have variables

and constraints are attached with certain generative and evolutionary computation

mechanisms such as genetic algorithms or cellular automata. In this process, a

design concept is firstly explored at an abstractive level with fewer variables and

constraints that would have at a lower level of abstraction, with evolutionary

algorithms that only need to manipulate a few design variables and constraints.

This generates a population of candidate solutions at that level of abstraction.

These candidate solutions are then explored further, which means that any of the

candidates can be selected and explored further by adding new variables and

constraints to it. At this level, evolutionary algorithms need only to work on the

newly added variables and constraints, thus reducing the complexity of having to

work on all the variables and constraints at both levels in one go. If a change

needs to be made at this level in order to explore more possibilities, in most cases

this would not affect those candidate solutions at the first level.

This top town approach continues if a specified level of abstraction is reached and

the solutions contain enough details for the successful evaluation of them against

the original evaluation criteria, then the process can be terminated, or it is

possible to backtrack to a higher level of abstraction for the exploration of more

alternatives. This approach has been reported in Engineering Design (Chakrabarti

and Bligh, 1996; Chakrabarti et al., 2002) in a system perform functional

synthesis, but the approach was not formulated as a generic kernel with

generative and evolutionary mechanisms to support a wide range of industrial

design applications.

With the data being substantially different at different levels of the hierarchy, it is

difficult to have a unified set of evolutionary algorithms that can manipulate any

data no matter what level of abstract they are. If that is the case, it is possible to

fix the inference programs to allow the data to evolve. However, if a new design

problem is encountered, the whole hierarchical structure would have to be

reconstructed and integrated. As a generic kernel for generative and evolutionary

 62

design, the purpose of this research is to develop the hierarchical kernel in such a

way that it is used to configure the applications with generalized data structures

and evolutionary mechanisms. To achieve this, an adaptation mechanism is

needed in order to alter the complexity of generative techniques to suit the

problem at hand based on exploration at an upper level of abstraction. This point

will be visited again with an example.

Without limiting the application of the kernel to practical design tasks, evolution

in this thesis is treated in a broader meaning that includes progressively dynamic

changes in both data structures and inference mechanisms. Within such a

formulation, the kernel can employ a wide range of evolutionary algorithms as

inference engines to derive design solutions by increasing their specifications and

reducing abstractions. In this thesis Genetic Algorithms (GA) and other Darwinist

evolutionary mechanisms are treated as evolutionary mechanisms as in

conventional evolutionary design. Other mechanisms, which may simply change

a design object or its related evolutionary mechanisms, are also treated as

evolutionary mechanisms. There are three basic functions that these evolutionary

mechanisms support the process in general. That is, generation, exploration and

adaptation.

Generative techniques often involve a certain degree of procedural repetition. In

the proposed generative and evolutionary kernel, a generative mechanism itself

can be further generalized to become the one that generates a more abstract object.

Cellular Automata, L-System, and Shaper Grammar are some of these

mechanisms, as well as those performing simple self-replications. These

mechanisms explore possible design solutions based on the existing knowledge,

while adaptation mechanisms reconstruct the existing knowledge in certain way.

GA is both an explorative and adaptive mechanism. Furthermore for handling

practical design applications with human designers, interfaces for manually

interaction with the system are also treated as a form of evolutionary mechanisms.

 63

With this process model of generalization and specification, the following

subsections describe how design objects and design process are handled with

three evolutionary mechanisms to form a hierarchy, referred to as Generative and

Evolutionary Design (GED) kernel.

5.1.2 An Architecture of Generative and Evolutionary Design

The architecture for generative and evolutionary design is an extendable

hierarchical structure in which the development and instantiation of evolutionary

elements and evolutionary mechanisms resemble the process of design exploration

and adaptation. Within such an architecture, a design starting as an evolutionary

element is gradually specialized using evolutionary mechanisms, resulting in

alternative design solutions at each level of the hierarchy being generated,

evaluated, selected, and further elaborated within the same hierarchy downwards

until the process comes to an end either by the satisfaction of the users or the

system hierarchy can no longer be expanded due to implementation limitation.

In the hierarchy, each evolutionary element has its design attributes or parameters

which represent a specific level of abstraction for the design problem. An element

evolves in the hierarchy according to its attached evolutionary mechanisms. With

its expendable hierarchy, the kernel offers a generative capability based on the

evolutionary mechanisms for individual evolutionary elements. In the hierarchy, a

design problem can be represented with different degrees of complex, each of

which has a different representation. These representations at different levels may

form a general to specific relation in a top down direction. The representation at a

lower level of abstraction may inherit those attributes above, but with additional

variables and constraints introduced at its own level to further specialize a design

solution.

When the kernel is applied to solving design problems, the evolutionary elements

at an upper layer represent the problem, solution or sub-solutions at a much more

 64

abstractive conceptual level than those at a lower layer. Those evolutionary

elements in lower layers represent in much more concrete formats closer to the

final design output domain. For example, an upper layer may represent textual

specifications while a lower one may represent 3D models.

Figure 5.2 shows the dynamical structure of the GED hierarchy during the

evolutionary process, and illustrates how it is developed from a simple form to a

complex one in a design application. The hierarchy at each time frame represents

a set of design solutions, situated at different layers of representation abstraction.

Each layer represents the set of connected evolutionary elements (the vertices in

the figure) that construct the design solution(s) at that representation domain.

Figure 5.2: Dynamics of the GED hierarchy in a temporal axis.

Figure 5.3 illustrates such evolutionary structure of an actual example discussed

in details in later Chapter 6. At time t=0 in figure 5.3(a), there is only one

evolutionary element seed in our GED, the root seed, which has no linked lower

abstract elements. The attached evolutionary mechanism is a simple self-

replicating mechanism, which will replicate the root to two children in the next

level as in figure 5.3(b). Such replication is then propagated to lower abstraction

levels and the process will continue at the following time frames. A dynamically

 GED
Hierarchy,

at t = n

GED
Hierarchy,

at t = 0

Time Axis (t)

 65

evolving hierarchical structure is formed, as shown in figure 5.3(c) and 5.3(d).

More than one solution may situate at one representation level, especially when

population-based evolutionary techniques such as GA are used as the evolutionary

mechanism.

 (a) (b) (c) (d)

Figure 5.3: Dynamics of an evolving GED, at (a) t = 0, (b) t = 1, (c) t = 3, and (d) t = 5.

The growth of the tree structure in breadth first or depth first manner reflects a

possible way in which a design solution is explored. Design objects are

represented as evolutionary elements which contain design attributes or

parameters, with attached methods to allow themselves to be realized, visualized

or presented in meaningful design representations. Each of them may also be

linked with two sets of evolutionary elements (one above and one below) and one

set of evolutionary mechanisms.

Evolutionary mechanisms are essential parts of the kernel to make the

computational GED hierarchy change dynamically, and evolutionarily. They

support three basic functions: design generation, exploration and adaptation.

These functions are achieved through

1) evolving the evolutionary elements to which they are attached,

2) influencing other evolutionary elements at adjacent layers in the

hierarchical structure, and/or

3) adapting to new inference mechanisms when the data they received require

doing so.

Therefore, changing design objects at one abstraction level may lead to the

corresponding modification of those at levels down below, and their evolutionary

mechanisms.

 66

In this study, evolutionary mechanisms are not restricted to genetic algorithms.

They are not limited to the category of conventional evolutionary computation

techniques either. Any module can be an evolutionary mechanism in the

proposed kernel as long as it offers a dynamic mechanism to evolve design

objects, based upon specific dynamic environment towards a specific tendency or

preference. Designers, users, expert systems, Genetic Algorithms are potential

evolutionary mechanisms since their actions interacting with the system in an

intelligent way may achieve the same or sometimes even better results than an

invoked computer program. These mechanisms which involve human

participations may be described as entities, or agents, that run autonomously, and

preferably collaboratively, under a dynamic environment. However, in general,

user interfaces and evolutionary mechanisms are treated differently in the kernel

that has been implemented as a prototype in this thesis. In this prototype, several

standard evolutionary mechanisms are integrated. The general notation of any

thing such as user interactions acting also as evolutionary mechanisms are not

fully addressed due to the fact that it is out of the scope of the thesis.

5.1.3 Abstraction and Interpretation of Design Objects

In the proposed kernel, internal data are meaningless without correct

representation and interpretation of them. This is because internally it is

important to have an efficient representation domain in order for the computer

systems to manipulate them with evolutionary mechanisms. But with a specific

design application, domain specific representation or interpretation functions are

needed in order to map the kernel data to some meaningful, interpretable, or even

interacting forms to the external computers, designers, and users, as shown in

Figure 5.4.

The proposed computational kernel itself is application-independent. How this

kernel is applied to specific design tasks relies on the correct interpretation of the

 67

data in the kernel to human-understandable information. Thus there is an

interpretation middle-layer that links the kernel data to the external domain.

Figure 5.4: A computational system using the GED Kernel with human interaction.

Figure 5.5 shows an example of how this GED hierarchy can be mapped to the

representation of wineglasses at different abstraction levels. In this example,

internal data of each evolutionary element are represented with wineglasses at

various abstraction levels, such as parametric features of wineglasses, the 2D

profile and the 3D geometric models as shown. Details of this example will be

discussed in the later chapter 8.

The kernel of generative and evolutionary design developed in this research is

based on a hierarchical structure in which evolutionary elements and evolutionary

mechanisms are instantiated in a dynamic process during which a design is

developed from an abstract concept to a detailed specification. The model for

such a hierarchical structure can be formulated as a process of generalization and

specialization during which a design solution and its alternatives are explored

with the participation of designers interacting with the system.

Interpretation Layer

(Application-Specific)
GED Hierarchy

(Application-Independent)
Human Interaction

(Application-Specific)

e.g.
Text

e.g.
2D Sketch

e.g.
3D Model

010011100…

011010100…

11001110…

 68

GED Hierarchy

(Application-Independent)

Human Interaction
(Application-Specific)

Geometric
Features

2D
Profiles

3D
Models

Figure 5.5: An example system using the GED Kernel with wineglass representation.

5.2 Formal Representation of GED

The proposed GED supports the exploration and adaptation of design in a

generative and evolutionary process in which design objects are derivable from

the developed evolutionary elements in a hierarchical representation. The

representation includes a set of connected evolutionary elements and their

attached evolutionary mechanisms. With this representation, a GED hierarchy of

multiple design objects can be instantiated for a given specific design task. The

formal representation defines these evolutionary elements and mechanisms with

the data primitives that can be mapped into design attributes or parameters of a

specific design.

5.2.1 Representation of Design Objects

The formal representation starts from computational primitive p, which is the

most fundamental element in the GED system. The primitive is a numerical set,

such as real number or integer, which is used to represent physical design object

in a computational form. Then a design parameter dp can be defined in the GED

 69

system that represents a (or a part of) potential design object at a specific level of

abstraction. It can be either:

a) a simple primitive, p, or

b) a finite sequence of primitives < p_1, p_2, p_3, …p_n >

A design parameter dp in the representation is application-independent. It is only

meaningful within the context of a specific domain in which it can be interpreted

by designers or users. Using the GED kernel, when a specific domain of design

applications is introduced, a design parameter must be mapped to a domain of a

specific application, which is conceivable to human users or designers. For

example: a design parameter dp can be mapped to a 2D graphic domain, g2d, with

a representation function fr,

fr(dp) = g, g∈ g2d.

5.2.2 Evolutionary Elements and Evolutionary Mechanisms

The basic element, the evolutionary element e, is a 4-tuple, (dp, M, Eh, El), which

consists of

1) a design parameter dp,

2) a set of evolutionary mechanisms M,

3) a set of linked evolutionary elements of higher level abstraction Eh, and

4) a set of linked evolutionary elements of lower level abstraction El.

An evolutionary mechanism, m, is a member of M that evolves the attached

evolutionary element e. The evolutionary mechanism not only changes the design

parameter dp in e, but also influences its evolutionary mechanisms M and the

linked evolutionary elements Eh and El. This influence may even further

 70

propagate to the evolutionary mechanisms of the linked evolutionary elements. In

general, they can be represented in a temporal form at time t as

et = (dpt, Mt, Eht, Elt) (5.1)

When only one evolutionary mechanism mt-1 is attached to an evolutionary

element at time t-1, there is a relation in the form of

et = mt-1 (et-1) = mt-1 (dpt-1, Mt-1, Eht-1, Elt-1)

= (dpt, Mt, Eht, Elt), where Mt-1 = {mt-1} (5.2)

There are three special cases regarding the results of evolving an element. When

an evolutionary element is the same as before, et = mt-1 (et-1) = et-1, it can be

regarded as at a saturated or at an inactive stage. When an evolutionary element

is periodically repeated within a sequence of temporal pattern, it is at a vibrated or

cyclic stage. Finally an evolutionary element may also be eliminated, and

vanishes.

In conventional evolutionary design with a Genetic Algorithms (GA), some direct

mappings are used to transform a genotype to a phenotype. They can be realized

as a specific function that only maps a design parameter dp, to another design

parameter dp’, with the evolutionary mechanism dpt = m(dpt-1). In this study

they are handled in the kernel as a specific form of evolutionary mechanism, dm,

such that they can only change the design parameters of the linked lower

abstraction elements.

et = dmt-1(et-1) = dmt-1 (dpt-1, Mt-1, Eht-1, Elt-1)

= (dpt-1, Mt-1, Eht-1, Elt) (5.3)

Or

et = dmt-1(et-1) = dmt-1 (dpt-1, {dmt-1}, Eht-1, Elt-1)

= (dpt-1, {dmt-1}, Eht-1, Elt) (5.4)

 71

Only the design parameters related to a lower level of abstraction Elt-1 is changed

to Elt while all dpt-1, Mt-1 and Eht-1, are kept unchanged in this case.

Extending this concept to another evolutionary mechanism, a generative

mechanism, gm, can then be realized as a function that changes the design

parameter of an evolutionary element and those linked to it at a lower level of

abstraction.

et = gmt-1 (et-1) = gmt-1 (dpt-1, Mt-1, Eht-1, Elt-1)

= (dpt, Mt-1, Eht-1, Elt) (5.5)

Or

et = gmt-1 (et-1) = gmt-1 (dpt-1, {gmt-1}, Eht-1, Elt-1)

= (dpt, {gmt-1}, Eht-1, Elt) (5.6)

In this case, only design parameters, dpt, and those at a lower level of abstraction,

i.e., Elt-1 will be changed.

When an evolutionary mechanism performs an exploration and adaptation

activity, it will affect those evolutionary elements and evolutionary mechanism at

a higher level. In an ideal case, a GED-based computational design support

system with all these evolutionary mechanisms can generate, explore and adapt

potential design solutions automatically. In practice, design must accommodate

human interaction. Therefore in this formulation human interaction is handled as

an external evolutionary mechanism through an interface. Such an interaction

usually involves user’s invoking a mechanism or a software system to perform a

task which changes the concerned evolutionary element and its immediate lower

and upper level neighbours.

 72

The evolution of one evolutionary element, e_k, at layer k, leads to the updating or

influencing those elements in the connected layers k-1 and k+1 in the bi-

directional GED hierarchy, although in a practical implementation it can often be

simplified as a top-down one way process.

When there is more than one evolutionary mechanism attached to an evolutionary

element in the set Mt, there are a variety of execution orders when applying the

attached evolutionary mechanisms to the element. Evolving an element with a set

of evolutionary mechanisms can be handled in the following ways:

a) Once in a queue: execute only one mechanism in a time, sequentially in a

queue,

b) Random: execute one mechanism in a time, randomly, and

c) All in a queue: execute all mechanisms in a time, sequentially in a queue.

In this study the option of “All in the Queue” is implemented in the demonstration

examples, as will be introduced in the later chapters. For example, if there are 3

evolutionary mechanisms attached, Mt = {m_1t, m_2t, m_3t}, then element et will

be evolved in the order of:

et = m_3t-1 (m_2t-1 (m_1t-1 (et-1))) (5.7)

If no evolutionary mechanism is attached to an evolutionary element, the

evolutionary element is not self-evolvable or in an in-active state. However, it

may still be evolved by its linked elements in higher or lower levels.

5.3 General Architecture of GED

The generative and evolutionary design (GED) is generalized as a design support

system with a set of connected evolutionary elements and their attached

evolutionary mechanisms structured in a hierarchical form. These elements are

 73

allocated at different levels of hierarchy, representing different abstractions of a

design or a partial design problem.

A generative and evolutionary design, GEDt, contains multiple n layers of

connected evolutionary element sets, GEDt = { E_1t, E_2t, … E_it, … E_nt }.

Each set of evolutionary elements, E_i, represents design at a specific abstraction

level, i, and the elements at each level are E_it = { e_i1t, e_i2t, …, e_ijt, …e_imt }.

Elements at higher levels, such as those in E_1t and E_2t represent design objects

in a more abstract form such as functional features while at lower levels E_n-1t

and E_nt represent in a more detailed form, for example 3D geometric models.

With the above definitions, the formal representation of the GED can be

summarized as:

a) Generative and Evolutionary Design, GEDt, is structured with a set of

connected evolutionary element levels in a hierarchical form, at a specific

time frame t:

� GEDt = { E_1t, E_2t,… E_it, … E_nt } , where i represents a specific

level in the hierarchy.

� E_it = { e_i1t, e_i2t, …, e_ijt, …e_imt }, a set of evolutionary elements

representing design objects at the specific abstraction level, i.

b) An evolutionary element, e_ijt, in a GED consists of 1) design parameters, 2)

a set of evolutionary mechanisms, 3) a set of linked higher abstraction

elements, and 4) a set of linked lower abstraction elements:

e_ijt = (dp_ijt, M_ijt, Eh_ijt, El_ijt), where

� dp_ijt is the design parameters of the element, that represent design

objects at that specific abstraction.

� M_ijt = { m_ij1t, m_ij2t, …, m_ijkt, …m_ijrt }, where M_ijt is the set of

evolutionary mechanisms attached to e_ijt, i is level-index, j is the

element-index, and k is the mechanism-index.

 74

� Eh_ijt ⊆ E_i-1_jt , where Eh_ijt is the set of evolutionary elements

linked to e_ijt, at the “higher” abstraction level E_i-1_jt.

� El_ijt ⊆ E_i+1_jt , where El_ijt is the set of evolutionary elements

linked to e_ijt, at the “lower” abstraction level E_i+1_jt.

c) Each evolutionary mechanism, m_ijkt, in the set, M_ijt, attached to a specific

evolutionary element, e_ijt, will be applied to the element and produce a new

element in the following time frame, t+1.

� e_ijt+1 = (m_ijrt…m_ijkt(…((m_ij1t (e_ijt))…)…),

where m_ijkt ∈ M_ijt

In case of only one evolutionary mechanism attached to the element,

� e_ijt+1 = m_ij1t (e_ijt), where M_ijt = { m_ij1t }.

d) Design parameter, dp, in our GED represents a (or a part of) potential design

object at a specific abstraction representation. It can be:

1. a simple primitive, p, or

2. a finite sequence of primitives < p_1, p_2, p_3, … >.

When this GED kernel is applied to model a conventional evolutionary design

with standard GA as the evolutionary mechanism, two different architectures can

be obtained.

In those cases where the genotype is the same as the phenotype,

� Root: e_11t = (genotypet, {GA t }, {}, El_11t).

� Population: e_2jt = (genot, {}, { e_11t }, {}),

where e_2jt∈ El_11t

In this case, the genotypet represents itself as well as the phenotype, and El_11t

contains the population of all individuals e_2jt evolved by GA. In those cases

where the genotype is different from the phenotype, a 3-level GED can be created:

 75

� Root: e_11t = (genotypet, {GA t }, {}, El_11t)

� Population (geno): e_2jt = (genot, {gpm_2jt }, { e_11t }, El_2jt),

where e_2jt∈ El_11t

� Population (pheno): e_3kt = (phenot, { }, { e_2jt }, {}),

where e_3kt∈ El_2jt

In this case, the genotype represents the form of itself as well as the phenotype,

and El_11t contains the population of all individuals in genotype form e_2jt

evolved by GA while gpm_2jt maps genotype individuals to their corresponding

phenotype elements e_3kt.

The software kernel proposed in this thesis provides basic data structures and

inference mechanisms for the development of an application in a domain of

design, mainly in product design. The kernel is based on a hierarchy of

evolutionary elements and evolutionary mechanisms. The next section gives a

summarized description of the kernel and its implementation. The detailed

description of how the GED kernel was developed and implemented is given in

the Appendix A.

5.4 Steps for Building an Application System with the GED Kernel

An object oriented programming language (Java) has been used to implement the

proposed kernel, which consists mainly of four parts:

1) a generic core containing classes of design parameters, evolutionary

elements and evolutionary mechanisms,

2) a set of direct interfaces of the classes in the core,

3) a set of graphical user interfaces (GUI) for visualizing and interacting with

the GED kernel, and

4) a GED builder that constructs a specific GED application for a specific

design task.

 76

The kernel has been implemented as a software package (or library), which can be

integrated with other software that supports Java application interfaces, including

external commercial CAD tools. Figure 5.6 shows the block diagram of the

developed kernel.

Figure 5.6: Block diagrams of the implemented GED kernel.

To construct a specific GED application with the kernel for a specific design task,

the GED builder is initialised with a root empty seed without design parameters,

evolutionary mechanisms, or linked higher or lower neighbours, as shown in

Figure 5.7(a). An interface for a specific evolutionary element can then be

instantiated and edited for its design parameters or attributes as shown in Figure

5.7(b). With the appropriate assignment of evolutionary elements, their design

parameters, evolutionary mechanisms and linked neighbours, a GED application

is established and the instantiated element as an initial abstract design concept can

then be evolved, either manually or automatically, with the input from the users or

with those evolutionary mechanisms which have been activated.

Figure 5.7(c) shows the process of how a root element is manipulated and

attached with a self-replication evolutionary mechanism. A more complicated

hierarchy with more elements is evolved from this root element after a few

generations.

GED Kernel

Generic Classes

EEs EMs

GEDH Builder

Generic Interface

Generic
Representation

 77

(a) Creating an initial empty seed in the kernel architecture

(b) Editing an evolutionary element (c) Evolving a seed into a hierarchy

Figure 5.7: Building a design application with GED Kernel.

In general, an instantiated GED application can be developed in the following

steps:

a) Starting with the generic builder to construct a GED hierarchy for a

specific design task by creating an initial evolutionary element, as shown

in Figure 5.8.

Figure 5.8: A GED hierarchy created with the GED Builder.

Generic Builder

GEDK

 78

b) Manually editing or auto-evolving the initial evolutionary element (with

the attached evolutionary mechanisms) located at the highest level of

abstraction of the GED hierarchy, as shown in Figure 5.9.

Figure 5.9: Manipulating data to evolve the hierarchy

c) Linking the instantiated GED to an interface for user manipulation or

autonomous module interactions (either internal or external interfaces),

and converting design representations, such as 2D graphical or 3D, as

shown in Figure 5.10.

Figure 5.10: Linking interface and representation to a GED Hierarchy.

Figure 5.11 shows a typical GED application system for a specific design task.

Three examples of applying the kernel to computational design tasks are to be

presented next in order to illustrate in more details how the GED can be used to

support generative and evolutionary design applications. These examples

demonstrate how the kernel supports design with enhanced explorative and

adaptive ability. The first example illustrates how the GED kernel (GEDK)

automatically builds a GED hierarchy and explores different forms of plant

Generic Builder

Generic Builder

 79

structures from a single “self-replicating” evolutionary root element. The second

demonstration shows how the GED kernel (GEDK) supports a simple design

adaptation, in the form of knowledge reconstruction in design. The third design

demonstration works on a more complex design application of generating

wineglasses, after being integrated with a commercial CAD tool.

Figure 5.11: A GEDK-embedded application system.

5.5 Summary

This chapter has presented a formal representation of the GED kernel. This

formal representation articulates the relation between evolutionary elements and

evolutionary mechanisms in a timely manner so that the process of designing

using this kernel can be formulated as instantiating and specializing evolutionary

elements with the associated evolutionary mechanisms. In this process, a change

caused by an evolutionary mechanism operating on an evolutionary element may

propagate a chain of actions through the hierarchy. In a real design, a propagation

top town represents a process of exploration and specialization, while a

propagation bottom up represents a process of backtracking or generalization.

The system architecture adopts changes to update the system so that the

A GEDK-Embedded System

Design Specific
GED Hierarchy

Level 1 Representation and Interface

Level 2 Representation and Interface

Level n Representation and Interface

GEDK

 80

consistency of the knowledge it holds is maintained. In a design practice, such a

hierarchy allows a designer to create an initial design concept, explore the

alternatives of it, and then select one for specialization by going down a level in

the hierarchy. If a satisfactory solution cannot be derived at a particular level, the

designer may wish to get back to an upper level which is a more abstractive level,

to explore more. This process continues until a satisfactory result is derived.

This chapter has further introduced an architecture for generative and

evolutionary design. This architecture provides a basis for linking evolutionary

elements (representing design objects) and evolutionary mechanisms

(representing inference methods or design methods). The evolutionary

mechanisms develop and specialize evolutionary elements within a hierarchical

structure with which a design concept is evolved to a desirable detail. This

represents a process of design exploration and adaptation, during which a design

solution is generated, explored, evaluated and selected with the alternatives and

justification data are retained for possible back tracking and review. The proposed

kernel provides key functions for building an application within this architecture.

 81

Part III:

Application of the GED

Kernel in Design

Examples

 82

Artificial Plant Generation

With the GED kernel, implementation of a design application system can be

simplified. Creating an abstract design concept and then exploring this concept in

the hierarchy with evolutionary mechanisms attached to the hierarchy, a design

exploration and adaptation task can be supported. The kernel provides key

support for the implementation of a design application system. Additional work

to make a design application can focus on building the initial objects and

providing proper interfaces. The last chapter has given a formal representation of

the kernel and a detailed description of building application system with it, the

coming three chapters in this Part III present the application of the GED kernel to

three different design examples. The detailed implementation and coding issues

of developing these applications can be referred to Appendix A.

In the first example presented in this Chapter 6, the patterns of plant structure are

generated with the developed GED kernel as a supporting tool. Initially the

system starts with a structural gene or seed, attached with a self-replication (SR)

mechanism. This root seed then self-replicates itself to a number of children at a

lower level of abstraction of the hierarchy. This self-replication proceeds

automatically generation by generation. The elements at higher abstraction levels

represent the macro structure of the visualized plants, while the lower ones affect

the micro details. Different visual effects with artificial plant structures can be

generated, with manipulation of the internal evolutionary elements and external

interference. The generation and exploration of the patterns can be further

enhanced with an evolutionary self-replication mechanism.

 83

6.1 Artificial Life and Plant with Dynamical Hierarchies

This artificial plant example can be related to the research area of Artificial Life.

There are different issues in the field of Artificial Life. Some of these are raised

in Lenaerts, Gross and Watson’s paper (Lenaerts et al., 2002). Bedau et al.

(Bedau et al., 2000) also introduced some common issues. One of these issues is

to study and simulate the self-organization of dynamical hierarchies in artificial

living systems.

The importance of studying the dynamical hierarchies in artificial life is to

simulate, explore and adapt the possible patterns, behaviours and outcomes of the

simulated systems. This is also close to a generative and evolutionary design

approach, in which exploration and adaptation are considered an important issue.

To develop computational systems for supporting dynamical hierarchies of

artificial lives, the evolutionary behaviour has to be handled. In this example it is

shown that the proposed kernel provides potential support to tackling these issues.

This application is developed with the GED kernel and the design is evolved from

a single self-replicating cell. After a few generations of evolution, a multi-level

hierarchy is generated. When the design parameters of each evolutionary element

are mapped to a geometrical structure, various structural patterns are obtained. In

this example, a manual single freehand stroke is also treated as an evolutionary

mechanism and is seen as an external influence. The GED hierarchy can then be

represented and realized as:

a) a single plant, in which the leaves of the hierarchy become the leaves

of the plant, or

b) a group of plants in which a path from the root to each leaf becomes a

plant of the group.

 84

6.2 Manipulation of Evolutionary Elements in the GED

The specific GED hierarchy in this demonstration can be formulated as:

� e_11t = (structuralPara_11t, {SR_11t }, {}, El_11t),

where SR = Self-Replication Mechanism

� e_ikt = (structuralPara_ijt, { SR_ik t }, { e_(i-1)jt }, El_ikt),

 where e_11t is the root seed, while e_ikt is the kth

evolutionary element situated at the i level of the hierarchy.

All elements (except the root) have only one parent. SRt is a self-replicating

evolutionary mechanism. Each self-replicating mechanism, SRt, attached to an

evolutionary element, et, at any time frame, t, can be in the state of 1) inactive,

et+1 = SRt (et) = et, or 2) actively replicating a fixed number of new elements and

linking them to a lower abstraction level of the element, such that

� et = SRt-1 (et-1) = SRt-1 (structuralPara_et-1, {SRt-1}, {eHt-1}, {})

= (structuralPara_et-1, {SRt-1}, {eHt-1}, Elt)

� el_it = (structuralPara_el_it, {SR_it }, {et}, {}), where el_it ∈ Elt

In this example, the evolutionary element et becomes inactive if it has one or more

replicated elements at a lower level of abstraction. In other words, only the

elements without any lower level elements can replicate themselves.

6.2.1 From a Simple Seed to a More Complex Hierarchical Structure

At time t=0, there is only one evolutionary element seed in the GED application,

i.e., the root seed e_11t, which has no linked higher or lower abstract elements, as

shown in Figure 6.1(a). The attached evolutionary mechanism is a self-replicating

mechanism.

� e_110 = (structuralPara_110, { SR_110}, {}, {})

 85

At time t=1, the root seed attempts to replicate itself with the attached self-

replicating mechanism, and a number of lower level images are produced as

shown in Figure 6.1(b).

� e_111 = (structuralPara_111, { SR_111}, {}, El_111)

� el_2i1 = (structuralPara_el_2i1, {SR_2i1 }, {e_111}, {}),

where el_2i1 ∈ El_111

If more than one root images have been replicated, the attached self-replicating

mechanism of the root seed, SR_111, at this time frame, t=1, becomes inactive.

Such replication will then be propagated to the lower abstraction levels and the

process will continue at the following time frames, and a dynamically evolving

hierarchical structure will be formed, as shown in Figure 6.1(c) and 6.1(d).

 (a) (b) (c) (d)

Figure 6.1: An evolving GED hierarchy, at time (a) t = 0, (b) t = 1, (c) t = 3, and (d) t = 5.

6.2.2 Manipulating Internal Design Parameters of Evolutionary Elements

This evolving hierarchy can be interacted with the interfaces supported by the

kernel and represented with a plant form structure, as shown in Figure 6.2. Based

on the hierarchy generated with the SR mechanism having a fixed number (2) of

replications as shown in Figure 6.1, a regular pattern of plants can be generated as

shown in Figure 6.2(a), as the design parameter of the root seed has a line pattern

and this line pattern is propagated towards the leaves. Design parameters

structuralPara of each element can be further manipulated by the users, and

different forms of desired plants can be generated as shown in Figure 6.2(b). In

Figure 6.2(b) a less regular pattern is generated when the root seed pattern is

mapped to a curve, which is further propagated to the leaves.

 86

However, for generating more realistic, flexible and seemingly natural form of

plant structures, more features should be supported. Some degree of randomness

may be applied. External influences such as user defined features and evolving

SR mechanisms are further introduced in the next two subsections for extending

the possible patterns generated.

Figure 6.2: Artificial plants generated with (a) a straight line, and (b) an irregular curve,

at t = 0, t = 1, t = 3 and t = 5.

6.3 External Influences

For supporting user interaction in the system, manual drawn curve is applied as an

external influence of the GED hierarchy in this example. When external influence

is added as a generative mechanism, the formal representation of this example is

formulated as below:

� e_11t = { structuralPara_11t, {SR_11t , ExInf_11t}, {}, El_11t }

� e_ikt = { structuralPara_ijt, {SR_ik t , ExInf_ikt}, { e_(i-1)jt }, El_ikt }

where SR = Self-Replication Mechanism, and ExInf = External Influence at level i.

t = 0 t = 1 t = 3 t = 5

(a)

(b)

 87

In the implemented kernel, external influence ExInf is supported in the form of

geometric deviation through 2D curve points as shown in Figure 6.3. The GED

hierarchy in this case is exactly the same as the hierarchy used in the Figures 6.1

and 6.2, with a static SR mechanism of 2 children. With this external influence

and some degree of randomness, more natural plant patterns can be manipulated

and produced.

Figure 6.3: More natural plants generated with external influences and some randomness.

6.4 Enhancing Exploration with a Self-Replication (SR) Mechanism

The results of the GED system developed for generating plant-like structural

pattern have shown how the GED hierarchy can be automatically evolved from a

single root seed to a more complicated structure. The hierarchy can be further

represented and visualized in a 2D image of plant form. Human interaction with

GED Hierarchy External Interface Final Representation

 88

internal evolutionary elements and the external influences can act as a manual

evolution mechanism that supports interactively exploring and generating variety

of outcomes. The results have shown that different effects are obtained when the

changes are made at different levels of the hierarchy.

Generation and exploration of the output can be further enhanced when the SR

mechanism can be evolved instead of being fixed in a specific form or type. SR

mechanism used in the last examples has a fixed number of replications and

reproduces two “exact” elements. When an evolutionary SR mechanism is

applied such that the number of replication is evolved over time instead of a fixed

number, much wider possible outcomes can be obtained and more naturally

realistic plants can be generated as shown in Figure 6.4.

The left GED hierarchy in Figure 6.4 shows that the overall hierarchy is not a

simple binary tree as those in previous examples and the numbers of lower

elements attached at each element are different. At any time frame t, an

evolutionary element can be 1) inactive, et+1 = SRt (et) = et, or 2) actively

replicating zero, one, or more new elements and link them to a lower abstraction

level element. Furthermore, the design parameters of the replicated ones may be

deviated from those of the original ones.

As discussed earlier, the hierarchical structure generated with the kernel alone is

application-independent. Different forms of representation, visualization and

realization may be applied to the framework for interacting with external users or

intelligent software agents. The application so far generated one plant from the

hierarchy. In fact the same hierarchy can be realized differently, such as a group

of plants as shown in Figure 6.3. Instead of representing a level in the hierarchy

as a branch of a plant, each path from the root seed to a leave becomes an

individual plant when the hierarchy is presented as a group of plants.

 89

Figure 6.4: More flexible generation effect obtained with an evolutionary SR mechanism.

6.5 Issues and Discussions

This example has shown the exploration ability of the kernel in generating

structural patterns with a simple self-replication generative mechanism. The

GED hierarchy developed with the kernel and its builder for this example can

automatically be evolved from a single seed to a complex plant or a group of

plant structures. This GED system also supports manual intervention as an

external interference of the evolutionary elements situated at different abstraction

levels in the hierarchy to produce different generation effects when needed. More

generic structural patterns can be explored if changes are made at higher

abstraction levels while evolution of elements at lower abstraction levels

 90

produces detailed modifications near the leave level of the plant. Generation and

exploration can be enhanced with a dynamically evolving SR mechanism.

Regular structural patterns as well as more natural realistic plants with certain

randomness are produced.

All domains at different levels are represented with geometrical structures.

Higher levels can be realized as more geometric abstractions containing

information of basic overall structural patterns, while lower levels obtain finer or

detailed information of the final plant structure. The GED hierarchy itself is

application-independent. While the elements of this hierarchy is mapped and

realized to a plant-like structure, it can also be mapped to other representations

such as image or audio. This mapping of different representations may provide

the similar pattern in some other forms of design outputs, but it needs further

work to represent this hierarchy in a more generic manner.

6.6 Summary

This chapter has described the GED kernel and explained how it can support the

development of generative and evolutionary design. The application of the kernel

in an example of generating plant-like structures is presented. This simple

example illustrates mainly how the developed GED kernel supports and enhances

a more flexible exploration of generating potential patterns with the manipulation

of design representations at different abstractions and evolutionary generative

mechanisms. However, without proper adaptation ability supported in the system,

such generation activity may behave as an aimless and inefficient exploration.

The demonstration example presented in the next chapter in generating and

matching 2D digital image patterns with a simple 1D binary Cellular Automata

presents how the kernel supports such adaptation.

 91

2D Pattern Generation and

Matching

The last example is built with the kernel as a supporting tool without any

additional external software. With some additions of problem specific supporting

systems, more complex applications can be developed with adaptation ability.

With such a system the potential problems of design can be explored more

efficiently. In this chapter, an example using Cellular Automata as an

evolutionary mechanism is introduced to provide a demonstration.

This example illustrates how design knowledge is evolved and adapted for

generating and matching desired patterns with the GED system. Genetic

Algorithm (GA) is used as an evolutionary mechanism that handles the global

exploration and adaptation of a set of elementary elements, each of which is

attached with another evolving generative mechanism – Cellular Automata (CA).

GA provides a mechanism for adaptation and exploration through its objective

function. CA contains the design knowledge of generating 2D pattern formation

with its transition rules and seeds (initial cell states). Furthermore, a constraint

mechanism (CM) is used to restructure the knowledge embedded in CA in terms

of design objects and their generative design process.

7.1 Generating 2D Patterns with Cellular Automata (CA)

Cellular Automata (CA) is firstly introduced by von Neumann (1966). It is a

specific computational model with a simple self-organizing mechanism. Much

attention is particularly given to its simple self-organizing mechanism applied

locally, which can seemingly produce complex global behaviours or patterns.

The cells (elements) of CA behave in a self-organizing manner with their

 92

neighbours according to a transition rule. A well-known 2 dimensional CA is

Conway's game of life (Berlekamp et al., 1982).

In the case of using CA to generate 2D patterns in this example, knowledge is

referred to as

1) how 1D spatial information (the 1D CA seed) is evolved (with the

transition rules), and

2) how the history of this evolution is used to form the 2D pattern.

To simplify this illustration the second issue is kept static with sequentially

packing 1D cell arrays together to form the 2D image. The first issue is directly

related to the transition rules and initial states (seeds) of CA.

One-dimensional (1D) CA can generate a 2D image pattern based on initial states

(or seed) and the transition rules. It can be regarded as a generative mechanism,

and can generate a more complex 2D pattern with its evolutionary rules (the

transition rules) and its states. Figure 7.1 shows 5 sample patterns generated with

different transition rules (TR) and initial states (S0) of a simple 1D binary CA.

Figure 7.1: Patterns generated with a simple 1D binary CA.

In the example, CA plays the central role on generating seemingly complex 2D

patterns with simple transition rules and seeds, which are regarded as another

 93

representation of the 2D patterns at a higher abstraction level. As introduced in

an earlier chapter, CA can be categorized into different types:

1) totalistic,

2) semi-totalistic,

3) non-totalistic 1D binary CA with 2-neighbourhood.

A totalistic CA has transition rules that can be realized as density functions. The

next state of a cell in the transition is solely dependent on the density of its local

region, and thus the sum of the states of its neighbourhood. Furthermore, if the

transition rules lead the next state of a cell to a new state that depend not only on

the sum of the states of neighbouring cells but also on the state of its own, such

CA and their rules are called semi-totalistic. The transition rules of a non-

totalistic CA are not related to the density of its local region, and each next state

of a cell depends on itself and the state patterns of its neighbours. The possible

patterns produced by a totalistic CA is a subset of those by semi-totalistic, which

in turn is a subset by non-totalistic.

Therefore, the next state (s’) of a cell (c) having current state (s), of a totalistic

CA is

� s’ = TR(Sum(All_NeighbourStates(c)))

For a semi-totalistic CA, it is

� s’ = TR(Sum(All_NeighbourStates(c), s))

For a non-totalistic CA, it is

� s’ = TR(All_NeighbourStates(c), s),

where All_NeighbourStates(c) is the list of the states of the cell c neighbours.

In the case of 2-neighbourhood:

� s’ = TR(Sum(s+1, s-1, s)),

 94

A simple CA can be modelled with the GED kernel in the form of

� eCA1Dt = (1DPatternt, {CAt}, { }, {eCA2Dt})

� eCA2Dt = (2DPatternt, { }, {eCA1Dt}, { })

� CAt(eCA1Dt) = eCA1Dt+1

such that

� 1DPatternt+1 = 1DPatternt

� CAt+1 = CAt

� 2DPatternt +1 = TR_of_CAt (1DPatternt)

where TR_of_CA represents the transition rules of CA applied to the initial 1D

pattern.

In a design application, designers or users manipulate data at a high level of

abstraction in terms of design features or characteristics. For example, instead of

inputting the actual checkerboard pattern or specifying the initial seed and

transition rules of CA, a designer may wish to characterize his/her own desired

pattern with a feature stated as “no adjacent cells have the same colour in the

digitized space”. However, CA itself has no mechanism to control and reflect this

characteristic. Furthermore, designers sometimes may not be able to specify what

a desired feature is in explicit terms. In this case, genetic algorithm is a better

choice to handle this problem, as will be explained below.

7.2 Integration of CA with Genetic Algorithm (GA)

Holland’s Genetic Algorithm (1975) can be realised as a stochastic searching

method, which seeks optimal solution(s) from a pool of possible candidates (the

population). From the initial population, which is often generated randomly, the

candidates/individuals/chromosomes of the population go through evaluation,

selection, crossover and mutation from one generation to another.

In this example, the goal of the Genetic Algorithm is reflected in its selection

process, either through a formulated objective function or through artificial

 95

selection. GA also provides the main interaction with designers as an external

influence to the system.

Constructing a mini GA-CA system with GA and CA mechanisms to solve the

problem just mentioned is a case of GA controlling CA. This can be related to the

studies of applying GA to CA for solving the problems of density classification

and synchronization (Das et al., 1995). Instead of finding a universal rule that can

be applied to every random seed for obtaining a final goal or a pattern, the main

goal here is to find the right transition rules that can be applied to the right seeds

to produce the right patterns. The global environment for producing the right

pattern is governed by the GA. This GA controls the transition rule of each CA

instead of the final pattern, while the transition rule of CA influences the final

pattern.

In this GA-CA system, GA captures the characteristics or features of the desired

patterns. When these features are formulated and embedded into the objective

function of the GA, the GA-CA system can then run automatically without human

interaction to achieve the goal. However, design problems are often ill defined,

and the problem itself is to be evolved during the design process together with the

solutions. Furthermore design knowledge is often implicit in designers’ mind and

this tacit knowledge cannot be formulated easily in computational systems. In

this situation, GA can offer an artificial selection mechanism to let designers

select the candidates with desired features without explicitly specifying what

those features are. This implicit human objective function guides the system to

produce the similar effect of selecting and reproduce fitter candidates with a

computational objective function.

The evolution of the CA transition rules and the seed, governed by the GA,

exhibits a way of knowledge evolution, which explores the possible solutions at a

different level of abstraction in terms of the representation of 2D patterns. As

shown in Figure 7.2, a population of three CA is governed by the GA. As the

 96

checkerboard feature can be formulated and programmed as an objective function,

this GA-CA system can automatically evolve the right transition rules and the

seed. Furthermore, the client user can also rate the CA candidate(s) or artificially

select the best-matched CA according to his/her desired pattern. With this

external influence to GA, the checkerboard pattern can be obtained after a few

generations with the GA seeking the right seed and transition rules for the CA to

run.

Figure 7.2: Patterns generated with a GA-CA system, having a checkerboard as the goal.

With the GED kernel, this GACA application can be structured as:

� eGA_11t = { gaParat, { GAt }, {}, El_11t }

� eCA1D_2jt = { 1Dt, { CAt }, { eGA_11t }, { eCA2D_3jt } },

where eCA1D_2jt ∈ El_11t

� eCA2D_3jt = { 2Dt, { }, { eCA1D_2jt }, {} }

With GA, the right pattern can be generated with the given CA and the explored

pairs of initial states (s0) and transition rules (TR). This CA may properly

function if the given problem is fixed. However when the problem is dynamically

changing or still not well-defined, this static CA may not be working efficiently.

User Interface
(User determines desired patterns)

)

Genetic Algorithms
(GA governs TR and S0 of CA)

 97

Without knowing what possible 2D image patterns are wanted, prematurely fixing

the type of CA may cause 1) no acceptable solution can be found if a simple CA

is used to try to generate a complex pattern, or 2) wasting time and computational

power if a complex CA is used for generating a simple pattern.

For the example of a simple CA mechanism, different types of CA have different

lengths of TR and the total numbers of different TR, as shown the table 1 below.

Acceptable solutions for complex patterns cannot be found with such a simple

totalistic binary 2-neighbourhood CA, which has only 8 possible TRs.

Conversely it is inefficiency (and sometimes infeasible) to explore a simple

checkerboard pattern, through a comparative complex 4-state 4-neighbourhood

non-totalistic CA searching within the domain of 41024 possible TR solutions. As

design is considered to be an exploration of feasible candidates rather than

searching for the optimal solutions, therefore for an efficient exploration of

acceptable solutions, some mechanisms for adapting the right CA at specific

times are needed. Table 1 compares CA of three types, each having different

numbers of states (S) and numbers of neighbourhoods (N).

 General (sS, nN) 2S, 2N

2S, 4N 4S,4N

 TR length Total TR TR length Total TR TR length Total TR TR length Total
TR

(1)
Totalistic(T

)

n.(s-1)+1 s n.(s-1)+1 2(1)+1 =
3

23 = 8 4(1)+1 = 5 25 = 32 4(3)+1= 13 413>
6.7x107

(2)
Semi-T

s.n.(s-1)+1 s s.n.(s-1)+1 2.3=6 26=64 2.5=10 210=1024 4.13=52 452

(3)
Non-T

s(n+1) s (n+1) 23=8 28 = 256 25=32 232>
4.2x109

45=1024 41024

Table 1: Comparison of transition rules (TR) length and Total possible TR of different

CA types: (1) Totalistic, (2) Semi-Totalistic, and (3) Non-Totalistic, having different

states (S) and different numbers of neighbourhood.

Although Cellular Automata has been studied extensively in different aspects

including the variant versions from conventional CA (Sarkar, 2000), there is not

much work on studying how an evolving CA can further enhance design

s

 98

exploration and knowledge. A tempting approach is applying the concept of

hierarchical GA and Genetic Programming (Koza 1989, 1992) to the problem.

However, this hierarchical approach deviates from the problem of abstracting

knowledge in design generation.

To tackle this problem, a new approach is introduced in this study to evolve the

generative mechanism, the CA type, apart from changing the parameters of a

static CA, the transition rules and the initial states. For evolving generative

mechanisms, adaptation needs to be supported by the kernel.

There are two approaches to integrate this adaptation ability in a GED-based

system. An adaptive ability can be embedded in the generation mechanism to

form an adaptive mechanism such that the GA guides how CA evolves. However

this limits the possible future extension of the system and restricts the employable

evolutionary mechanisms only to CA. Instead, in this study, a separate

evolutionary mechanism is used as an adaptive mechanism to evolve the

generative mechanism. This approach can be more flexible and extensible for

further modification and enhancement of the system such that different internal

generative modules and external adaptive modules can be interacted.

In the next section, Piaget’s concept of knowledge reconstruction is applied to the

CA example, followed by an illustration of how a constraint management (CM)

concept can be used as a possible adaptation mechanism.

7.3 Design Knowledge Reconstruction

In this study, the kernel supports the handling of generative mechanisms in design

as the core of a knowledge evolution and reconstruction process. Generative

mechanisms evolve and adapt to the new situations by adjusting their internal

rules, and even the goals. The emphasis in this study is on knowledge

development in terms of design objects and design process through Piaget’s

 99

concept of assimilation and accommodation. From a cognitive perspective

related to Piaget’s view discussed earlier on design knowledge, the evolution of

knowledge may become possible in the form of assimilation for exploring

potential design solutions given the existing knowledge, or of accommodation for

synthesising possible design outcomes through proper knowledge reconstruction.

Both are often needed in order to tackle new design problems.

In the CA case, certain solutions are obtained based on the knowledge obtained

from the past information. Although it is impossible to encounter all possible

solutions that can be produced by this specific CA, it is possible to derive from

the existing knowledge (of a specific CA) to obtain a domain of all possible

solutions. When this situation is adequately managed, an equilibrating state of

Piaget’s knowledge construction can be reached. There are four possible cases

when further new problems are encountered.

First, a new problem is identical to an existed one. In this case old knowledge can

be used to handle this new problem without altering the knowledge. Therefore, a

new CA is the same as one of those encountered before. What is needed to do is

to get the right S0 and TR back. In the rest of the cases, the new problem is not

the same as any one encountered before.

In the second case, an assimilation concept can be applied to re-organising the

knowledge with predefined logical structures. Relating to the CA cases, the right

S0 and TR can be searched and obtained, and correspondingly evolved into a new

schemata, to generate the right (acceptable) 2D patterns.

In the third and fourth cases, the accommodation concept can be applied to re-

constructing the knowledge with some form of restructuring. Relating to the CA

cases in the third case, the search domain can be dynamically modified by altering

the CA structure, or the type of CA in the later example, as well as its right S0 and

 100

TR in order to generate the final 2D patterns, while correspondingly evolving the

CA structure.

Finally, if all the above mentioned cases still cannot handle the problem with the

existing knowledge or the new knowledge generated with the above methods, then

it is necessary to turn to other knowledge domain for solving the problem. It may

need to re-construct the existing knowledge with some new external knowledge

sources. For example, besides CA some other 1D to 2D generative mechanisms

exist which might be able to do the job better. It may even be necessary to change

the concept, by asking if producing 2D pattern from 1D CA is the right one choice

for the new problem. Figure 7.3 illustrates this CA case with the block diagram.

Based on this concept, the example of this CA demonstration has been further

extended to work with constraint management as an adaptive mechanism.

7.4 Combining GA and CA with Constraint Mechanism (CM)

The term “constraint management” is often referred to the theory of constraints

(Goldratt, 1986) in the field of organizational management, for guiding

management actions in reaching a goal upon certain constraints imposed.

However, in this thesis the constraint mechanism (CM) that handles design

constraints is not defined from this perspective. Instead, it is specifically related

to handling knowledge constraints that produce design candidates.

In the kernel, transition rules of CA constrain the dynamics of the cells, and thus

limit their possible output patterns. Different types of transition rules have

different levels of constraints. Totalistic, semi-totalistic and non-totalistic CA are

all considered, with the tightest constraints being in the case of totalistic CA, less

tight in semi-totalistic CA and further relaxed constraints in non-totalistic CA

respectively. A CM module is designed in the kernel to relax or tighten the

constraints (the transition rules) of these CA for adapting and exploring the right

desired patterns.

 101

Figure 7.3: A Cellular Automata (CA) Version of Piaget’s knowledge reconstruction.

In the above GA-CA case, the knowledge representing the right transition rules

and initial seeds to produce the right patterns is evolved and the knowledge of the

generating process with GA-CA is emerged. However, the basic structure of the

1D CA (the binary totalistic transition rules) is not changed. The possible 2D

images produced by the GA-CA system are still the same within the searchable

domain of the original CA.

Input 2D
Pattern

Old?

2D Pattern Cannot
Be Handled.

Solved?

Solved?

Equilibrating
State

No

No

No

Assimilation
Attempt

Accommodation
Attempt

Yes

Yes

Yes

Check if Existing CA OK?

Reconstructing CA

 102

When the desired patterns are out of this original domain, e.g. some seemly

chaotic patterns, no solution can be found no matter how the GA-CA system

evolves. In this case, further knowledge evolution is required to handle this.

When the knowledge is related to a set of constraints adding upon a set of objects

under a certain context, reconstructing the knowledge may be obtained after

relaxing and tightening the constraints.

A constraint mechanism can be applied with GA-CA for evolving design

generation knowledge to solve the new problem. The role of CM here is to relax

and tighten the constraints. In this example the constraints are related to the types

of CA. Tightening constraints is related to using a CA that produces limited

patterns, while relaxing constraints attempts to obtain a CA that can produce more

patterns. The evolutionary process of this CM-GA-CA system can be realized in

the psychological perspective, in particular in Piaget’s knowledge reconstruction

process as discussed in the last section. Figure 7.4 is the schematic diagram

showing how this application works and how the knowledge of this CM-GA-CA

is developed through the assimilation and accommodation process. The system is

operated in the following way:

� Equilibrating state

In equilibrating state, the CA is generating and matching the known patterns (the

top right corner in Figure 7.4) with the known transition rules and seeds in

advance according to the current condition of the evolving knowledge pool (the

top left circle in the figure).

� Assimilation for new patterns

When a new unknown input pattern is required and causes a dis-equilibrating

state, assimilation process will take place. The GA supports this assimilation, by

exploring new patterns within the existing knowledge domain. GA attempts to

govern the transition rules of a set of CA candidates and their initial seeds and

 103

Acceptable
patterns

found with
existing

knowledge?

Assimilation

Accommodation

Pattern generator
(CA)

Pattern explorer and
adaptor (GA)

Acceptable pattern

Input pattern
features

Unknown input

New knowledge
found for the
new pattern

Exploring
suitable

transition rules
and seeds

Relaxing and

tightening
constraints

Assimilation
failure

Accommodation
failure

Desired output pattern

No adequate knowledge can be developed
for the new input pattern

Pattern knowledge
 re-constructor (CM)

find the right transition rules and seeds for producing the desired patterns. While

the right CA is found, GA returns the finding back to the knowledge pool and the

system is then back to the equilibrating state.

Figure 7.4: The knowledge development of a CM-GA-CA system, through the

assimilation and accommodation process with the CA, GA and CM

� Accommodation for patterns which are out of existing domain

However, when acceptable CA cannot be found in the existing domain,

reconstructing the current design knowledge and its domain of CA is required.

Through GA information related to the matching error will be used by CM. CM

 104

relaxes or tightens CA corresponding to GA. The process is repeatedly running

until right solutions are found and a right reconstructed CA is done, or the right

solution is not found after all possible knowledge reconstruction attempts. When

the solutions are found, the system gets back to its equilibrating state. However

when they are not, this CM-GA-CA system will not be able to solve the new

problems, and no adequate knowledge can be developed for the new input pattern

as shown in the bottom left in Figure 7.4. If there is a computational system

having more intelligent modules, some potential modification of the existing

knowledge may be reconstructed with these modules to solve this problem.

As mentioned earlier, CA is relaxed and tightened from totalistic, semi- totalistic,

to non-totalistic. Furthermore, together with relaxing the number of cell states of

CA from 2-neighbours to 4-neighbours, more complex patterns are handled as

shown in Figures 7.5 and 7.6. In this example, the population of GA is 30 and the

probabilities of crossover and mutation are preset as 0.2 and 0.05 respectively.

Figure 7.5: Successful matching with constraint tightening in the CM-GA-CA system.

The GACA system has been modified and further enhanced to explore and adapt

the right CA form with a prototype CM-GA-CA system based on the kernel

developed in this thesis. The system relaxes or tightens CA constraints according

to the accumulated errors for finding the best results. In the bottom left of the

CA Type
Governed

by CM

Desired
2D

Pattern

GA:
Population
of 30 CAs

 105

Figure 7.5, a checkerboard pattern is to be matched or approximated. When an

acceptable CA has been found for closely matching the input pattern, the system

will be in its equilibrating state and stop further assimilation or accommodation.

There are two cases that CA will have to be restructured. When the matching is

close to a perfect one, the CA will be tightened from a more complex to a simpler

one to check if the simpler one can sufficiently and efficiently handle the given

matching, as shown in Figure 7.5. Conversely, the second case restructures CA

from a simpler one to a more complex one if the matching error is over the

acceptable limit. In this case, attempts will be made to see if CA reconstruction

with constraint relaxation can lead to a perfect matching or an acceptable

approximation, as shown in Figure 7.6 for matching a more irregular pattern (like

a character ‘A’).

Figure 7.6: Failed pattern matching, even with the most relaxed constraints.

 106

7.5 Issues and Discussions

Although the illustrated example is simple, it shows how simple evolutionary

mechanisms (CA, GA, and CM) adapt to new requirements with the evolution of

the system knowledge. There are, however, some issues which need to be further

discussed.

In this example a constraint relaxation approach is used. With this approach, the

generative mechanism is related to a set of constraints. Three types of CA are

related to how to relax the constraints. However, in term of computational

implementation, further constraints may need to be introduced. Besides the

perspective of density (totalistic, semi-totalistic, and non-totalistic) and the

number of cell states, there are other perspectives such as 1) static versus dynamic

transition rules, 2) synchronous versus asynchronous transition of cell states, and

3) size of neighbourhood.

� Decomposing constraints

To make this approach work in a computational system, the evolutionary

mechanisms should be constructed and programmed in an appropriate way. In

this case, decomposing CA for constraint manipulation is needed and CA should

then be implemented in a way that the constraints are partitioned into program

segments for CM to split and merge for relaxing or tightening those constraints.

In fact, this split-and-merge (or decomposition-and-composition) approach not

only works in the natural world such as the splitting and merging of chromosomes,

but also in many design tasks. Further study in applying Genetic Programming

(GP) in modularising and re-composing generative mechanisms is worth to be

investigated.

� Efficiency and resource

The knowledge evolution in the system is further closely related to the issues of

resource and efficiency. It would be wasting resource with low efficiency when

 107

producing very simple patterns with complex systems having complicated

generation mechanisms, while these simple patterns can be generated with very

simple rules. In the CA case, seeking the right transition rules and seeds in a

totalistic CA is much faster than that in a non-totalistic one although all the

patterns generated with totalistic CA can also be generated by non-totalistic CA.

For a 1D binary totalistic CA with 2 neighbouring cells, the number of possible

transition rule sets is 23 = 8 while that of a 1D binary non-totalistic one is 28 =

256. The difference between the two types of CA having one relaxing constraint

feature is large even in this extremely simple CA, and more constraint differences

require huge computational resources in terms of memory and time. Therefore

further study is needed on modifying the domain so that not only the newly

needed sub-domains can be added but also the unused sub-domains can be

subtracted out, for a much more efficient exploration to be achieved.

� Exact versus approximate solutions

CA cannot produce all the desired images, and exact solutions are not often found

with the limited knowledge. However, with the limited resources, it is almost

always the case that knowledge kept by generative techniques, such as CA in this

case, can only produce approximated results to some desired optimal patterns

which are out of the knowledge domain. Despite of the inexact outcomes, like

lossy compression techniques in image compression applications, design

exploration is not necessarily to be exact. In fact, one basic criterion for creativity

is the unexpectedness. When applied appropriately, this defect can be used as a

driving force for achieving surprising results.

� Forms of adaptation

In this example both constraint management (CM) and Genetic Algorithms (GA)

have different adaptation abilities. While CM has a clear and explicit mechanism

to guide how the constraint is to be changed according to the feedback matching

error from GA, GA conversely implicitly directs the changes of CA parameters to

 108

achieve the goal (pattern matching) through selection with certain degree of

randomness. In comparison, the form of adaptation supported by CM can be

treated as an explicit or hard adaptation while that by GA an implicit or soft

adaptation. Similar to evolutionary design concept, soft adaptation approach may

be more appropriate for handling highly dynamic and diverse problems while hard

adaptation for managing comparatively simple and direct tasks.

� Other representations of structural patterns

Although this example generates and handles only some simple 2D digital pattern

images, the adaptive exploration and generation mechanisms provide a suitable

infrastructure to be further extended to other pattern domains. With the kernel,

the same 2D pattern can be used to form some structural patterns of plant-form as

shown in Figure 7.7. Further work is needed for generating and matching other

forms of pattern.

Figure 7.7: Plant-form structural patterns generated with the CM-GA-CA system.

This CM-GA-CA example has shown the exploration and adaptation ability of a

computational system with the GED kernel. The simple adaptation is based on

2D Image
Pattern

Plant Structure
Representation

 109

tightening or relaxing CA constraints with CM for dynamically changing the

types of CA such that exploration of acceptable CA for a desired pattern can be

done more efficiently with GA.

The earlier artificial plant and this CA example can be run automatically without

much user intervention. However for practical design tasks, more works should

be given to system integration and user interaction. An example in the next

chapter demonstrates how the developed GED kernel is integrated with external

commercial CAD tool and database to form a more sophisticated system, with

more emphasis on human interaction.

7.6 Summary

The issue of design knowledge reconstruction is discussed with the simple

example presented in this chapter. Given a specific 1D CA, with specific initial

cell states (S0) and transition rules (TR), it can be shown that specific 2D digital

maps or images can be generated. Such S0 and TR can be treated as a schemata

referred by Piaget, while a 1D-generating-2D approach can be regarded as the

underneath concept (abstraction and relation). There are different types of CA,

including totalistic, semi-totalistic, non-totalistic, neighbourhood, and

synchronization. While a fixed form of such structure is used in most research

works in generative design, this study emphasizes the evolution of such

generation structure or mechanism.

Most conventional research studies use a fixed form of CA in generative design.

Design generation is thus based on the transition rules and seeds within this fixed

form of CA to produce the desired patterns. However, the basic structure of CA

is not changed as well as the possible design domain. This study demonstrates

how the GED kernel supports capturing the knowledge of how a design object is

generated through evolving generative mechanisms, and thus actually changing

 110

the form of CA in this example so that design generation can be achieved more

effectively and efficiently.

In real design, however, more attention should be paid to how a design problem

can be converted to a formulation with the necessary information, knowledge and

user interaction to allow the problem being explored with the kernel functions. In

the next chapter, a more substantial design problem is used to demonstrate the

applicability of the generative and evolutionary approach with the necessary

components of the GED kernel from a more designer oriented perspective.

 111

Wineglass Design with the GED

Kernel

Research on generative and evolutionary design has advanced in the last decade

but the application of such technique in a real product design has been limited to

isolated reports on experiments with simplified or abstracted examples. To

develop a software kernel enabling the application of this technique in a larger

and more realistic scale, a design oriented approach is needed. In this chapter, an

application of the developed kernel to the design of wine glasses is presented from

a designer’s perspective. Non-computational issues related to design activities are

taken into account in an attempt to examine the feasibility and the limitations of

the technological solution proposed in this issue to the problem of fully

supporting design activities with generative and evolutionary techniques.

8.1 Wineglass Design

The evolution of a product is closely related to the social, historical, and

technological development as the life styles of people change and improve over a

long period of time. The design of wine glasses has not been a simple matter and

it is an established business in the west. The revolution in drinking glasses had

emanated from the two southern English workshops of George Ravenscroft, who

in 1675 had discovered how to make LEAD crystal. This gave rise to a whole

new style of English glassware quite distinct from intricate Venetian fashions.

Increasingly, different glasses were designed and produced to be used specifically

for certain wines, and by the end of the 18th century the concept of a uniformly

decorated glass service was well established throughout Europe.

 112

The picture in Figure 8.1 is a typical catalogue in London's Army & Navy store in

1902, after the Victorians further developed the notion of complete range of

matching glasses, including finger bowls (Robinson, 1994). After centuries of

evolution, techniques and knowledge in wine glass productions have been

improved and a variety of wineglass types can be produced. Figure 8.2 shows 3

traditional series of modern wine-glass families from a well-known wine-glass

manufacturer (Riedel, 2006). Figure 8.3 shows some unusual wineglasses

(Johnson, 1993).

Figure 8.1: Some historical drinking vessels.

8.1.1 A Computational Approach

Computationally, forms of wine glass can be generated and evolved relatively

more easily than other products which have complex functional and aesthetic

requirements. This example of wineglass generation was originally motivated by

the earlier works of Frazer’s (top image in Figure 8.4). A simple demonstration

program was later implemented in Visual Basic (VB) programming language to

 113

show how conventional GA can be applied to generate a number of 3D models of

wineglasses (shown at the bottom of Figure 8.4).

The "Basic" stemware series

The "Wine" stemware series Two sample wineglasses

The "Sommeliers" stemware series

Figure 8.2: Different series of wineglass families.

Figure 8.3: Some unusual wineglasses.

 114

Figure 8.4: An early attempt of 3D modelling wineglasses.

However, this program, once developed like most conventional evolutionary

design systems, provided little flexibility for reconstructing the generating process

of the wineglass. Its exploration ability is highly restricted to what had been preset

by the programmer. With the support of the GED kernel, a better version of this

program can be developed which offers stronger support to designers in order for

them to explore their designs.

 115

8.2 A Wineglass Design System with the GED Kernel

With little modification to the GED kernel software, a new version of wineglass

generation system is developed. This new system with the kernel alone generates

wineglasses in a 2D profile representation as shown in Figure 8.5, without

integrated to external CAD tools.

8.2.1 Wineglass Design with the GED Kernel

This simple version is hierarchically structured as a demonstration of how

different GUI can be linked to interact with each level of the hierarchy. In the

middle layer of the hierarchy, a set of templates or seeds represented in a 2D

profile form is provided. The geometrical form of these seeds is based on a

wineglass series of a famous manufacturer, Riedel.

Figure 8.5: The wineglass design system without integrated to external CAD tools, in

simple 2D profile representation.

 116

Representation of this example can be formulated as

� e_11t = { textualInfot, { }, { }, {e_21t } }

� e_21t = { ImageInfot, {mm_21t }, { e_11t }, {e_31t } }

� e_31t = { MathInfot, {mm_31t }, { e_21t }, {e_41t } }

� e_41t = { 2Dprofile_41t, {mm_41t , Dbtemplate_41t }, { e_31t }, {e_51t ,

e_52t , ..} }

� e_5it = { 2Dprofile_5it, {mm_5it , Dbtemplate_5i t }, { e_41t }, { } }

where mm represents a manual mechanism in a form of manual

evolutionary mechanisms

8.2.2 Limitations without 3D Manipulations

However, functions supported by this simple system are limited, without the

support from commercial 3D solid modelling tools. For example, the

representation of wineglass in this generic GED kernel system is limited to 2D

geometrical graphical representation. To improve this, the kernel can be either

further developed to a more complex software system that is resource consuming,

or it can be integrated with external tools to make use of their advanced features

such as 3D geometrical modelling. In the following example, the kernel is

integrated with an external CAD tool and shows that it is feasible and applicable

to product design applications.

8.3 An Improved Version

In this improved version the GED kernel (GEDK) is integrated to a commercial

CAD tool (MicroStation) and external CAD functions are utilized. The block

diagram of this GEDK-embedded system is shown in Figure 8.6 and a captured

image of the system is shown in Figure 8.7.

 117

Generic GEDK Wine Glass Generation Interface

Design specific GED
Hierarchy

Level 1 Interface

Level 2 Interface

Level n Interface

GEDK

Figure 8.6: The block diagram of the wineglass generation system.

Figure 8.7: The GEDK-embedded system for wineglass generation.

 118

With such GED kernel (GEDK) embedded, the application system can be

interacted with designers or users at different abstraction levels and different

results can be explored as shown in Figure 8.8. In this application, there are five

levels in the GED hierarchy. The element in the first layer represents the root

seed of the whole family, while that at the second layer captures the basic

geometric feature of desired wineglasses. The element in the third layer consists

of more than one mechanism, including 2D profile interface and a GA. At the

moment, only artificial or manual selection is used in this GA process, while more

research work are required to study what objective functions are needed and can

be formulated for fully-automating the GA selection process.

Figure 8.8: Design Generation, evolution and interaction with the GEDK-embedded

system.

The best candidate from GA is generated, selected and directed to the fourth level.

The evolutionary element at the fourth level is embedded with a family variants

Family

 2D Profile GA

Root Seed

Features

GED Hierarchy

 119

loaded from a database. The family includes eight members for serving different

wines: Riesling, Champagne, Underberg, Water, Cognac XO, Martini, Moscato

and Sauternes. The final family members, retaining all inherited styles and

features from higher abstractions, are generated and fed to the fifth layer, at which

they can be transformed to 3D models by the integrated CAD tool.

In this example, the GED kernel is integrated to an external CAD tool and the

system can then be formally represented and formulated as

� e_11t = { WG_ProfileSeedt, { mm_11t }, { }, { e_21t } }

� e_21t = { FRFeaturest, {mm_21t }, { e_11t }, { e_31t } }

� e_31t = { 2Dprofilet, {mm_31t, GA_32t }, { e_21t }, {e_41 t } }

� e_41t = { Best2Dprofilet, { Dbtemplate_41t }, { e_31t }, { e_51 t ,

e_52t , ..} }

� e_5kt = { WG_FamilyProfile_5kt, { CAD_tools }, { e_41t }, { } }

With this system, designers can manipulate wineglasses at various abstractions:

from the abstract descriptive features of wineglasses in the top-right window, the

2D profile of the wineglasses, the add-on evolutionary mechanisms including a

Genetic Algorithm, to the final 3D models of the generated series. A large

number of alternative design solutions can then be explored and generated, as

shown in Figure 8.9.

8.3.1 From Seeds to Relatives

When further modification of this system is made for generating wineglasses with

different genes or “seeds”, various design solutions (“relatives” or “species”) can

be generated with the same evolutionary hierarchy developed for wineglass

generation. Figure 8.10 shows the results obtained from an extended example of

this case. With a simple modification, corresponding series of bottles (the second

row in the figure), plates (the third row) and bowls (the last row) having same

inheritance from a wineglass family (the first row) can be generated.

 120

Figure 8.9: Different wineglasses can be generated with the system.

Figure 8.10: Seeds produce different species with the GEDK-embedded system.

 121

In this case the GED hierarchy can been formulated as

� e_11t = { Relative_ProfileSeedt, { mm_11t }, { }, {e_21t } }

� e_21t = { FRFeaturest, {mm_21t }, { e_11t }, {e_31t } }

� e_31t = { 2Dprofilet, {mm_31t, GA_32t }, { e_21t }, {e_41 t } }

� e_41t = { Best2Dprofilet, { Dbtemplate_41t }, { e_31t }, {e_51 t ,

e_52t , ..} }

� e_5kt = { Relative_FamilyProfile_5kt, { CAD_tools }, { e_41t }, { } }

Close “relatives” (bottles, plates and bowls) of the wineglass “family” can easily

be generated with the GED system. Many potential design solutions of these

close relatives can then be explored as shown in Figure 8.11.

Figure 8.11: Some example results, generated with the GEDK-embedded system.

 122

This design example presents an application for generating a family of

wineglasses and their “relative” utensils when the GED kernel is integrated with

commercial CAD tools. The emphasis in this example has been given on

developing a design system in a designer’s perspective with the GED kernel and

integrating the kernel with external design tools available for supporting practical

design tasks. Together with the previous two design examples in Chapters 6 and

7, these three examples have shown the feasibility and applicability of the GED

kernel for supporting design in various aspects which will be discussed further in

the next session.

8.4 Discussion and Evaluation

Three chapters in this Part III have described and illustrated the generative and

evolutionary design (GED) kernel on how it supports the development of

generative and evolutionary design systems, through the introduction of three

different design examples. In the first example presented in Chapter 6, patterns of

plant structure are generated with the GED kernel as a supporting tool. The

system starts with a structural root gene or seed, which self-replicates itself to a

number of children at a lower level of abstraction in the GED hierarchy through

an attached self-replication (SR) mechanism. This self-replication proceeds

automatically generation by generation. The elements at lower abstraction levels

represent the micro details of the artificial plants, while the higher ones affect

their macro structure.

This first example illustrates how the developed GED kernel supports and

enhances a more flexible exploration of generating potential patterns with

manipulation of design representations at different abstractions and evolutionary

generative mechanisms. However, without proper adaptation ability supported in

the system, such generation activity may behave as an aimless and inefficient

exploration.

 123

The second demonstration example presented in Chapter 7 shows how the kernel

supports such adaptation. In this example Genetic Algorithm (GA) is used as an

evolutionary mechanism that handles the global exploration and adaptation of a

set of elementary elements, each of which is attached with another evolving

generative mechanism – Cellular Automata (CA). GA provides a mechanism for

adaptation and exploration through its objective matching function. CA contains

the design knowledge of generating 2D pattern formation with its transition rules

and seeds. Furthermore, a constraint mechanism (CM) is used to restructure such

knowledge of generating 2D pattern formation embedded in the system, in terms

of design objects and their generative design process.

This example focuses on showing how design knowledge is evolved and adapted

for generating and matching desired patterns with the GED system. However, in

real design tasks much attention is required for knowing how to convert a design

problem to a formulation with the necessary information, knowledge and user

interaction to allow the problem being explored with the kernel functions. In

Chapter 8, a more substantial design problem is used to demonstrate the

applicability of the generative and evolutionary approach with the necessary

components of the GED kernel from a more designer oriented perspective.

To develop a software kernel enabling the application of this technique in a larger

and more realistic scale, a design oriented approach is needed. An application of

the developed kernel to the design of wineglasses is presented from a designer’s

perspective in Chapter 8. Non-computational issues related to design activities

are taken into account in an attempt to examine the feasibility and the limitations

of the technological solution proposed in this issue to the problem of fully

supporting design activities with generative and evolutionary techniques.

These three application examples have demonstrated the feasibility and

applicability of the GED kernel in supporting computer-based design systems in

various aspects, particularly in the issues of dynamics of GED hierarchies,

 124

knowledge of design generation, abilities in design exploration and adaptation,

design representation and interaction, and the system development and integration

with external design tools.

8.4.1 Dynamics of GED Structural Hierarchy

The three examples have shown that the GED kernel supports an evolving

structure with multiple design representations in a hierarchical form, and provides

mechanisms for manipulating different design abstractions at different design

stages. Compared to traditional evolutionary design approach in which design

representation is fixed and lack of flexibility once preset, such evolving structure

changes dynamically according to the generative mechanisms attached to the

evolutionary design elements and supports a wider exploration of potential design

candidates. Three examples have different degrees of evolutionary dynamics,

which can be related to design cases that require a higher degree of innovation

and creativity (e.g. the first plant example) to a lower degree one (e.g. the

wineglass example).

In the first example the artificial plant generation system supports a fully dynamic

GED hierarchy that forms an evolutionary structure. This simple example

illustrates how the developed GED kernel supports and enhances a more flexible

exploration of generating potential patterns with a fully-automated system. The

system keeps evolving the design elements as well as the overall hierarchical

representation of design objects at different abstractions. Although this automatic

evolving structure exhibited in an aimless way without human intervention, this

example demonstrates the ability of the kernel in supporting structural evolution

of the multiple design representations in a hierarchical form. As discussed in

earlier chapters in Part II, alternation of design representations at more abstraction

forms often leads to much radical and innovative design, which is particularly

important in new design tasks that emphasize creativity and new design features.

 125

Compared to the first example, the second 2D image pattern example emphasizes

on how the GED kernel based system supports knowledge adaptation in design

generation. In this example the overall hierarchical representation is a static

structure as a whole, while the generative and evolutionary mechanisms

demonstrated with Cellular Automata, Genetic Algorithms, and Constraint

Management techniques are manipulated to improve the effectiveness and

efficiency in design exploration. Therefore, each evolutionary element attached

with a CA mechanism changes while the overall GED hierarchy does not.

In the last example, the system supports a fixed GED hierarchy of wineglass

design with external design tools. While our internal GED hierarchy itself in this

example can be dynamic, the system for this example is developed for handling a

comparatively mature practical design case with a static GED design

representation. The integration of the kernel with external CAD tool, database,

and other computational modules imposes difficulties to produce a flexible system

which can operate in a much dynamic way as the last two examples.

8.4.2 Major Generative Mechanisms

In this study much emphasis is also given to the ability in exploring and

generating designs, through various computationally generative mechanisms.

These generative mechanisms are used to retain the knowledge of how design

objects are generated, from a more abstract form to a less one.

In the first plant example, a simple self-replication (SR) mechanism is used. This

SR mechanism supports simple reproduction process having a mechanism of

generating details similar to a “fractal” way. The system then generates less

abstract forms from a more abstract one at different levels of abstraction in the

GED hierarchy in a self-symmetric manner. This simple SR mechanism

illustrates the ability of our GED kernel in dynamically evolving the GED

hierarchy which represents design in multiple abstractions.

 126

In the second 2D pattern matching example, 1D binary Cellular Automata (CA) is

applied for producing seemingly much complex pattern with a set of simple

transition rules. This generative mechanism in this example shows how the

knowledge adaptation of design generation is achieved and affects the

effectiveness and efficiency of exploration, through adapting suitable transition

rules and initial states of the CA within the GED kernel.

In practical design cases as the third wineglass example, manual manipulation and

designer interaction are important. In this example human interfaces for

manipulating 2D curve and geometrical features of the wineglass shape are

provided. Generative mechanisms then rely on human interaction, and

computational generative modules are comparatively fixed. For further

enhancements, appropriate and suitable computational generative mechanisms

should be investigated and applied to specific design tasks, as discussed in next

chapter.

8.4.3 Exploration and Adaptation Abilities

Three examples also demonstrate how the GED kernel (GEDK) enhances the

exploration and adaptation ability of GEDK-embedded system for supporting

generative design in an evolutionary manner. In the exploration aspect, the

GEDK-embedded systems provide a suitable mechanism to explore potential

candidates without limiting to a fixed or preset domain. However, without proper

knowledge adaptation such exploration would be aimless, inefficient and

ineffective. The three examples presented in this Part III have illustrated how the

GED kernel supports design with different degrees of explorative and adaptive

abilities.

 127

In the plant example, artificial plant structures are generated with pure exploration

without adaptation ability, although implicit human adaptation is supported

through manual interactions. In this example, exploration can be exhibited more

freely to produce different hierarchical forms, while the underneath meaning of

why these forms should be is not retained or captured without any adaptation

mechanism.

In the second 2D pattern example, the exploration mechanism for seeking

appropriate CA to generate and match the right 2D patterns is governed by a GA,

while a Constraint Management module further controls the adaptation of the CA

types and improves the effectiveness and efficiency of the exploration. Even

though such mechanism is not complicated, it shows how the GED kernel

provides the fundamental feature in collaborating exploration and adaptation

activities within a design supporting system, and enhances the design generation

more effectively and efficiently.

In the third wineglass example, the importance of the involvement of designers in

the system has been shown. Without undermining the ability of the GEDK-

embedded systems, human and designer interaction is considered in the

exploration and adaptation process through human selection in a GA process.

Such semi-automatic exploration and adaptation process can be effective and

efficient when the computational module is carefully tailored.

In practical design tasks, formulating appropriate computational modules for

exploration and adaptation incurs a lot of works and problems to be solved.

Without awaiting such tremendous works and limiting the application of GED

kernel, designer exploration and adaptation with human interaction are supported.

The wineglass example shows how this issue is tackled and how the integrated

system makes use of sophisticated functions provided by these externally

developed design supporting tools, such as 3D modelling and rendering.

 128

8.4.4 Design Representation and Interaction

The examples have further demonstrated how the GED kernel supports design

objects to be represented with multiple forms which are situated at different

abstraction levels of the GED hierarchy. In this representation and interaction

issue, the GED kernel provides a basic generic representation and interface of

design objects. This can be used to directly develop computational systems for

supporting some simple design tasks such as the first example, while it can also be

integrated easily with external CAD tools which further support more

sophisticated design representations and interactions.

In the plant example, 2D geometric structure in a plant-like form is generated with

the GED kernel based system. With human interaction that alternates the

geometrical shape of the plant at different levels of details, different forms can be

produced. In the 2D pattern example, the final representation is in a form of 2D

digital grids, which is then directly mapped to 2D image patterns. The generated

2D image patterns can also be visualized and represented as artificial plants.

In the wineglass example, it shows how the GED kernel alone supports designing

wineglasses and represents design products such as wineglasses with simple 2D

geometric profiles. With the GED kernel alone, these design objects can also be

mapped to and represented with 2D plants or audio sound patterns. Furthermore

much sophisticated representation can be provided when the GED kernel is

integrated with external commercial CAD tools. When the GED kernel is

integrated with external tools, much sophisticated design representation such as

3D geometric models and interactions provided by external tools can be used in

the integrated design system.

 129

8.4.5 System Development and Integration

The degrees of sophistication of three example design systems are deviated from a

simple and generic one (the first artificial plant) to a much sophisticated one (the

wineglass design system). While the simple plant example has shown how a

generic GED kernel (GEDK) alone can develop a general system which supports

designing in a generative and evolutionary approach, the comparatively

sophisticated wineglass example has demonstrated the feasibility and applicability

of applying our kernel for developing a more sophisticated system with external

computational design tools when needed.

In the first plant example, the generation and exploration of artificial plant-like

patterns is supported with the GED kernel alone. The graphical user interface

(GUI) of the system is solely developed with the generic GED builder of the

kernel such that the GED hierarchy of the system is initially structured with a

single root seed attached to a simple evolutionary self-replication (SR)

mechanism. The generic interface provided by the kernel is used for visualizing,

manipulating and interacting with the evolutionary elements (and their attached

SR mechanisms) through the generic interfaces of the kernel.

With some further development works, a more application-specific system for the

2D pattern generation and matching application with adaptation ability is

developed in the second example. As this example concentrates on demonstrating

the adaptation ability of the GED kernel, interfaces for comparatively in-depth

manipulation of computational modules involved in this adaptation are developed.

For developing design systems in a much design-oriented approach, the

sophistication of the systems in supporting designer manipulation and interaction

in different design aspects should be emphasized, including making use of and

integrating with externally developed CAD tools. The third wineglass example

illustrates how the GED kernel is integrated with external design tools to develop

 130

a design supporting system. This integrated system supports designing tasks with

external design tools more effectively and efficiently, and makes use of those

functions supported by these external computational tools such as sophisticated

3D geometric modelling and rendering functions.

However, further issues in this integration approach need to be handled. Before

using this integration approach, it is important to know the availability of

technical supports in integrating external design tools with the GED kernel, such

as the source code and software development kits of the external tools. It is also

worth to question if the efficiency and effectiveness of this integration approach is

higher than those of developing a new system based on the GED kernel alone

such as the first two examples.

8.5 Summary

Results of three demonstration examples presented in this and the last two

chapters show that it is feasible and applicable to use the kernel as the core

architecture of computational systems for supporting generative and evolutionary

design. The kernel further improves the generative, explorative and adaptive

ability of the computational design supporting systems with the kernel in

producing potential design solutions efficiently. Discussion and evaluation of

these three examples in various aspects have been given in the last section. The

comparison of three examples discussed in the last section is summarized as given

in table 2.

Despite of those discussed issues in how the GED kernel supports in various

aspects, there are many other properties and factors to be considered in practical

designing, including design science, psychology, culture, material, production

technology, aesthetics, and cost. For example, the wineglass example

concentrates on its geometrical form, in terms of how this form can be generated

and manipulated. In this case, abstract representations at different hierarchical

 131

levels are mainly related to geometrical issues. Supporting other representations

of wineglasses, such as those related to aesthetics and cultural issues, can further

sophisticate the system so that wineglass design can be represented and

manipulated with other important features in different aspects.

Table 2: Comparison of three demonstrative examples.

Examples

 Issues
Plant 2D Image Pattern Wineglasses

GED Hierarchy • Dynamic structure • Static structure • Static structure

Major Generative

Mechanism

• Self-Replication

(SR)

• Static

• 1D Binary CA

• Dynamic

• 2D curve

manipulation

• geometric

feature

manipulation

Exploration

Ability

• Auto aimless-

exploration

• Manual intervention

• GA (pattern

matching and

approximation)

• Manual

intervention

• GA (human

judgement)

• Manual

intervention

Adaptation

Ability
• None

• GA (GM para: TR,

S0)

• CM (GM types:

CA)

• GA: human

selection

Representation

and Interaction

• 2D geometric

structure

• Plants

• 2D digital grid

• 2D image pattern

• 3D geometric

model

• 2D Plants

• Audio

System

Development &

Integration

• GED Kernel

• GED Builder

• Generic GUI

• GED Kernel

• GED Builder

• Problem specific

GUI

• GED Kernel

• GED Builder

• Additional GUI

• External CAD

 132

Furthermore only artificial or manual selection is used in the GA process of the

wineglass design system at the moment, while more research works are required

to study what objective functions are needed and can be formulated for further

automating this GA process. More investigations and studies are also worth to be

taken, and some further directions will be discussed in the next conclusion chapter.

 133

Conclusions

A computational Generative and Evolutionary Design (GED) kernel has been

formulated and developed for supporting design in this study. Design objects are

represented with multiple abstractions, and are evolved from a more abstract form

to a less abstract one through the exploration process supported with the kernel.

Knowledge of design generation can also be adapted in the form of generative

mechanisms in the kernel, so that possible generation process of potential design

candidates can be captured.

When computational design supporting systems are integrated with this GED

kernel (GEDK), a large number of potential designs can be explored more

efficiently and effectively, through evolving the initial abstract design objects

together with their generative mechanisms. With the adaptation methods attached

to the kernel, knowledge of design object generation can be reconstructed with

those evolving generative mechanisms. Explorative and adaptive abilities of these

GEDK-embedded applications can then be enhanced.

To demonstrate the feasibility and applicability of the kernel for supporting

computational design tasks, three example of GEDK-embedded systems are

developed and evaluated in various aspects. The results show that it is feasible

and applicable to use the kernel as an architectural core of computational systems

for supporting generative and evolutionary design. The generative, explorative

and adaptive ability of such GEDK-embedded computational design applications

is improved in producing potential design solutions effectively and efficiently.

Before concluding the thesis through revisiting the main objectives and

 134

significance of the study, the coming section recaptures and summarizes the main

topics of this thesis.

9.1 A Summary of Research Conducted

This study focuses on how the evolutionary design process can be more efficiently

handled, with the GED kernel that supports the evolution of design objects in a

design oriented manner as presented in Chapter 4. In particular, the GED kernel

is used for exploring and adapting different potential design objects with different

ways of generating them through the evolving generative mechanisms attached to

a hierarchical representation scheme.

With the formulation of this hierarchical representation and evolutionary

mechanisms, the knowledge that generates design can be captured and adapted

with different levels of abstraction in order for designers to explore design

solutions in a gradual and general-to-specific manner. Therefore the kernel and

its underlying model concern themselves not only with what the design solutions

are, but also with how they are explored. The formal representation of the GED

model has been presented and discussed in Chapter 5 which provided the basis for

the implementation, testing and evaluation.

In the thesis, the details of how the kernel supports modelling design in a form of

evolutionary hierarchy, constructed with interlinked evolutionary elements and

mechanisms are described. The GED kernel has been examined with three

examples which have shown the feasibility and applicability of the kernel for

design tasks. In Chapter 6 the first example illustrated how a simple self-

replicating seed can automatically evolve into a more complex plant-like structure

in a multi-level hierarchical form with the kernel alone.

Example two in Chapter 7 showed how the kernel enhanced the explorative and

adaptive ability of a 2D pattern generation and matching application with Cellular

 135

Automata, Genetic Algorithms, and Constraint Management as the main

evolutionary mechanisms. Finally the kernel has been used to support a product

design task. In the last example presented in Chapter 8, the kernel was integrated

with an external CAD tool to generate a variety of wineglasses in a short time

with user interaction. Other utensils having similar styles and features of

wineglasses can also be generated by replacing different product seeds.

The results of these examples have been evaluated and have shown that the kernel

can improve the flexibility and efficiency of generating, exploring and adapting

potential designs. To conclude this study, the main objectives and the

significance as outlined in Chapter 1 are revisited in the next section in order to

give a detailed account of how the research contributes to the field of generative

and evolutionary design.

9.2 Objectives and Significance Revisited

The major objective of this research study is to examine the feasibility and

applicability of a generic computational kernel, i.e., the Generative and

Evolutionary Design (GED) kernel, to be used as an architectural core of

computer-based design supporting systems. The main focus of this research is on

the formulation, implementation and evaluation of this computational GED kernel

(GEDK) which supports 1) modelling design object and design process in a

generative and evolutionary manner with a structured representation, 2) capturing

and adapting knowledge on how design objects can possibly be generated, and 3)

simplifying the process of mapping design applications to a generative

evolutionary system. In an integrated way, the GEDK-embedded systems can

enhance the exploration ability on potential designs more efficiently and

effectively than normal CAD systems which do not have a generative and

evolutionary kernel.

 136

9.2.1 GED Model for Dynamic Design Object and Process

Before the Generative and Evolutionary Design (GED) model can be formulated

and the associated GED kernel is computationally implemented, the nature of

design and how to support design with computational techniques have been

examined. Such GED model focuses on providing a foundation for the

application of generative and evolutionary techniques in design domains, which is

verified with the examples of realistic scales. In particular, much emphasis is

given to evolutionary computing and structured representation that improve the

efficiency in using computer-based design supporting systems. Without

examining and understanding the generative and evolutionary nature of design,

formulating and implementing a computationally kernel of such model will not be

feasible.

Following the initial findings and literature reviews presented in Part I, a GED

model was developed and the GED kernel was then formulated in the way as

introduced in Part II. Such modelling and formulation of the GED kernel

particularly focused on the issues of dynamics of GED hierarchies that support

representing design objects and their generation process, knowledge of design,

abilities in design exploration and adaptation, design representation and

interaction, and the system development and integration with external design tools.

As discussed in the evaluation section 8.4 with three demonstration examples, it

has shown that the GED kernel supports an evolving structure with multiple

design representations in a hierarchical form. Compared to traditional

evolutionary design approach in which design representation is inflexibly preset

and fixed, such evolving structure dynamically changes the design data according

to the attached generative mechanisms. This dynamic nature of evolving design

reflects an exploration process in which potential design candidates are generated.

The kernel further provides the mechanisms for manipulating different design

abstraction forms at different design stages.

 137

Several difficult issues were encountered during the research, given the

complexity as demonstrated in the three examples used to verify the system kernel

and its underlying representation. The formation of a suitable GED hierarchy for

different design tasks involves a generalization at both data structure level and

design process level. While generating artificial plants can be achieved with a

fully dynamic GED hierarchy, the overall hierarchical representation has to be

adjusted when a comparatively more constrained data structure is involved in the

example of product design applications such as the wineglass example.

9.2.2 Knowledge Exploration and Adaptation of Design Generation

The main objective of this study is also associated with the issue of how to

capture the knowledge of design generation in which design solutions are

explored, captured and adapted. Through a knowledge adaptation mechanism

supported by the kernel, possible generative methods of design can be utilized to

retain the data as well as the process of evolving them. To achieve this, the

emphasis is given to the ability of the system in exploring and generating designs,

through various computationally generative mechanisms. These mechanisms can

retain the knowledge of how design objects are generated, from a more abstract

form to a less one. Some evolutionary computation methods were integrated into

the GED kernel so that design assistance in terms of adapting design solutions and

exploring design alternatives can be provided to designers.

Three demonstration examples presented in Part III have shown how the GED

kernel (GEDK) enhanced the exploration and adaptation ability of GEDK-

embedded system for supporting generative design in an evolutionary manner. In

the exploration aspect, the GEDK-embedded applications provide suitable

mechanisms to explore potential candidates without limiting to a fixed or preset

domain. With such adaptation ability, the design exploration process is more

focused, efficient and effective.

 138

The second pattern matching example presented in Chapter 7 in particular has

demonstrated how the kernel supports this adaptive activity. However,

formulating fully-automated computational modules for design exploration and

adaptation in product design tasks, such as the third wineglass example, are more

difficult to formulate and support without the integration with external systems

that deal with the 3D construction of components and assemblies. The wineglass

example was developed to find out how the kernel can be integrated with external

kernel to evolve complex designs. However, developing such complex

computational modules in specific design domains requires better understanding

of designers’ knowledge and the way in which they explore design solutions,

especially at the conceptual design stages. This research has provided a

foundation for further exploring this issue of generalizing product design process

with extensive design specific knowledge, in order to fully utilizing the generative

and evolutionary mechanisms built into the kernel and the hierarchical

representation.

9.2.3 GEDK-Embedded System Development

Besides the issues of knowledge adaptation, the development issue of GED

kernel-embedded systems has also been studied. For simplifying the process of

mapping design applications to a generative evolutionary system and enhancing

the exploration ability to explore potential designs more efficiently and

effectively, the feasibility and applicability of the developed GED kernel to

computational design systems are tested and evaluated.

As discussed earlier, the sophistication degrees of three example design

applications presented in Part III deviate from a simple generic one (the first

artificial plant) to a much sophisticated one (the wineglass design system). While

the simple plant example has shown how a generic GED kernel (GEDK) alone

can develop a fully-automated system that supports designing in a generative and

 139

evolutionary approach, the comparatively sophisticated wineglass system has

shown the feasibility and applicability of applying the kernel for developing a

more complex system when the kernel is integrated with external computational

design tools. This integrated approach supports designing tasks with external

design tools more effectively and efficiently, and makes use of those functions

supported by these external tools such as 3D geometric modelling and rendering

functions.

However this sophisticated system cannot be functioning in a fully-automated

way as the first example. For product design applications, it is necessary to

involve designer interactions at various key stages of the design process.

Therefore being a way to overcome the limitation of a fully automated system for

evolving and exploring design solutions, this study also focused on how to find a

balance between a fully automated evolutionary system controlled by nature

selection criteria and an interactive system that provides ways for the designers to

intervene in the process of evolving and exploring design by providing data or

decisions on the evaluation of the candidate solutions or the directions of the

evolution. Given the nature of complexity in product design and with the three

examples tested in this study, it is concluded that the kernel is used as a

framework for developing generative and evolutionary design applications at

which further domain specific knowledge and control strategies are to be worked

together by the system developers and designers.

The results of these examples show that the kernel can improve the flexibility and

efficiency of generating, exploring and adapting potential design candidates.

Some further issues are worth to be investigated, particularly those issues

discussed in section 8.4 relating to dynamics of GED hierarchies, knowledge of

design, abilities in design exploration and adaptation, design representation and

interaction, and the system development and integration with external design tools.

 140

9.3 Contributions

A computational Generative and Evolutionary Design (GED) kernel offers an

opportunity to tackle design problems by using computational techniques in a

generic and scalable manner, for achieving better designing more efficiently and

shortening the process of building an application. In the process of developing

this kernel, knowledge and strategies were discovered for a unified representation

of design objects related to their process of being explored and adapted. This

approach provides insight on how the knowledge outside the discipline of design

can be utilized and integrated to the theories and methodologies of design which

by its nature is a multidisciplinary activity and process.

From a perspective of design, it is also necessary to know exactly what the

prospective is and where the opportunities are for using computational techniques

in improving design in terms of supporting the tasks achievable by human

designers more quickly, and more importantly, supporting the designers in

deriving better design solutions which would be difficult to achieve by designers

themselves without the support of such kernel and its related computational

techniques.

The developed GED kernel in this thesis provides an alternative and potentially

more interactive and efficient way of exploring design problems. The

implementation and evaluation of the kernel involving its applications in three

different design examples has provided a foundation for the development of a new

generation of design tools which are generative and evolutionary. This offers

considerable advantages over other systems for the development of 3D product

forms and structures which are normally supported in a certain degree partially

with parametric technology.

Formulation, implementation and integration of the GEK kernel (GEDK) to these

three demonstration systems have shown that it is feasible and applicable to use

 141

the GEDK as a computational core of design supporting systems. These GEDK-

embedded example systems have been evaluated and further demonstrated that the

GED kernel can improve the flexibility and efficiency of generating, exploring

and adapting potential solutions in design. This research has demonstrated the

potentials of three different evolutionary mechanisms in different design

applications that involved generalization and specialization of design

representation as well as design exploration process. As such this study

contributes to the field of computational design by the formulation of the

evolutionary kernel which has the potentials to be further studied and enhanced as

an alternative and potentially more powerful design tool than those systems

without generative and evolutionary mechanisms. This new tool can be integrated

with existing design systems at a proper level for the designers to interact and

evolve a large number of design solutions.

9.4 Future Work and Directions

One potential work is related to the formation of a suitable GED hierarchy for a

specific design task. In the example of generating wineglasses, geometric

structure is the main abstraction property of the GED hierarchy. Different

hierarchies are constructed based on different abstraction aspects used, such as

cultural and aesthetic aspects. It is worth to further investigate the issues relating

to constructing a more general GED network, in which different abstraction

aspects are handled within one GED system, as shown in the illustration in Figure

9.1. The figure shows how the GED hierarchies of the three examples may be

merged to form a new network for including different abstraction aspects in one

GED system which is more generic.

In fact, based on the last two examples in 2D pattern matching and wineglass

generation, some experimental works were conducted in this research for

producing wineglasses with a hybrid system formed by directly integrating these

two examples without much of additional programming. As expected the

 142

outcome is largely distorted as shown in the image of figure 9.2. This shows

clearly that in a product design domain where the form of a design object is more

constrained than a naturally growing plant or a random generated graphic pattern,

additional knowledge or control mechanisms are needed in order to generate the

design solutions which fit more with the functional and aesthetic design

requirements rather than merely giving surprised and over diversified results.

Figure 9.1: An example of merging different GED hierarchies to a general GED network.

Figure 9.2: Highly distorted wineglass profiles in an attempt to apply simple GA-CA.

Family
Regularity
Hierarchy

The new wineglass GED Hierarchy

Product
Geometry
Hierarchy

Structural
Pattern

Hierarchy

 143

Another work is to get the right generative design mechanisms for potential

design solutions at specific abstractions. For example, CA is used in the second

demonstration example as the generative mechanism to generate a more complex

form (2D image) from a simple one (1D data). It is shown that there are a variety

of 1D CA types that can produce different 2D patterns. However there are other

generative mechanisms, such as Shape Grammars and L-Systems, which may also

produce other potential design patterns that cannot be generated by CA. It is

necessary to compare their effectiveness in a unified system such as the kernel

developed in this thesis, and through experimental studies to show how a similar

approach with appropriate techniques can generate more potential solutions in a

wider dynamic domain.

The kernel has not been implemented at a level at which three examples of

different complexity can be tested and evaluated. As such it is not intended to be

a fully automated system kernel to support any design applications, which is out

of the scope of this study. However, more investigations in applying the

developed kernel to other design application can certain enrich the knowledge and

generic properties of the kernel. Further investigations are needed in order to

maximize the potentials of the kernel and its associated generative and

evolutionary mechanisms.

 144

References

Akin, O. and Akin, C. (1996) Frames of reference in architectural design: analyzing the

hyperacclamation (A-h-a!). Design Studies, 17(4), pp.341-361.

Andrews, P.T.J. and Sivaloganathan, S. (1998) A Variant Model for Storing Families of

Mechanical Designs. In: S. Sivaloganathan and T.M.M. Shahin (eds.) Engineering
Design Conference, '98: Design Reuse. London: Professional Engineering Pub.,
pp.361-369.

Aspray, W. and Burks, A. (eds.)(1987) Papers of John von Neumann on computing and

computer theory. Cambridge: MIT Press.

Back, T. (1996) Evolutionary Algorithms in Theory and Practice. England: Oxford

University Press.

Batty, M., Couclelis, H. and Eichen, M. (1997) Urban systems as cellular automata.

Environment and Planning B: Planning and Design, 24, pp.159-164.

Bedau, M., McCaskill, J., Packard, N., Rasmussen, S., Adami, C., Green, D., Ikegami, T.,

Kaneko, K. and Ray, T. (2000) Open Problems in Artificial Life. Artificial Life, 6(4),
pp.363-376.

Bentley, P.J. (ed.) (1999) Evolutionary Design by Computers. San Francisco: Morgan

Kaufmann.

Berlekamp, E., Conway, J.H., and Guy, R. (1982) Winning Ways for Your Mathematical

Plays. Volume 2. New York: Academic Press.

Black, R. (1996) Design and Manufacture: An Integrated Approach. London: Macmillan

Press Ltd.

Blessing, L.T.M. (1994) A Process-Based Approach to Computer-Supported Engineering

Design. Thesis, University of Twente, Enschede, Netherlands.

Bliek, C. (1995) Set Based Hierarchical Design: a Constraint Satisfaction Approach.

Proceedings of the 1995 Design Engineering Technical Conferences, 17-20 September,
Boston, pp.437-446.

Braha, D. and Maimon, O. (1998) A mathematical theory of design: foundations,

algorithms, and applications. Boston: Kluwer.

Brazier, F.M.T., Jonker, C.M., Treur, J. and Wijngaards, N.J.E. (2001) Compositional

design of a generic design agent. Design Studies, 22(5), pp.439-471.

Brazier, F.M.T. and Wijingaards, N.J.E. (2002) Designing Creativity. AID 02 Learning

and Creativity in Design Workshop, July, Cambridge University, UK.

 145

Brown, D.C. and Grecu, D.L. (2000) Always Expect the Unexpected! AID 00 Machine
Learning in Design Workshop, June, Worcester Polytechnic Institute, USA.

Burton, R.M. and Obel, B. (eds.) (1995) Design models for hierarchical organizations:

computation, information, and Decentralization. Boston: Kluwer.

Caldas, L. (2008) Generation of energy-efficient architecture solutions applying

GENE_ARCH: An evolution-based generative design system. Advanced Engineering
Informatics, 22(1), pp.59-70.

Ceccato, C. (1999) The Architect as Toolmaker. Proceedings of the Fourth Conference

on Computer Aided Architectural Design Research in Asia CAADRIA '99, 5-7 May,
Shanghai, pp.294-304.

Chakrabarti, A. and Bligh, T.P. (1996) An Approach to Functional Synthesis of Solutions

in Mechanical Conceptual Design, Part III: Spatial Configuration. Research in
Engineering Design, 8(2), pp.116-124.

Chakrabarti, A., Langton, P., Liu, Y. and Bligh, T. (2002) An approach to compositional

synthesis of mechanical design concepts using computers. In: A. Chakrabarti (ed.)
Engineering Design Synthesis: Understanding, Approaches, and Tools. New York:
Springer, pp.179-198.

Chase, S.C. (2005) Generative design tools for novice designers: Issues for selection.

Automation in Construction, 14(6), pp.689-698.

Chien, S. and Flemming, U. (2002) Design space navigation in generative design systems.

Automation in Construction, 11(1), pp.1-22.

Cliff, D. (2003) Explorations in evolutionary design of online auction market mechanisms.

Electronic Commerce Research and Applications, 2(2), pp.162-175.

Coyne, R., Finger, S., Konda, S., Monarch, I., Prinz, F.B., Siewiorek, D.P.,

Subrahmanian, E., Tenenbaum, J.M., Weber, J., Cutkosky, M., Leifer, L.J., Bajcsy, R.,
Koivunen, V. and Birmingham, W. (1994) Creating an Advanced Collaborative Open
Resource Network. Design Theory and Methodology, 68, pp.375-380.

Cross, N. (1994) Engineering design methods: strategies for product design. New York:

Wiley.

Cross, N. (1997) Descriptive models of creative design: application to an example.

Design Studies, 18, pp.427-455.

Cross, N. (1999) Natural Intelligence in Design. Design Studies, 20, pp.25-39.

Cross N, Christiaans, H. and Dorst, K. (1996) Analysing design activity. Chichester:

Wiley.

Crozier, R. (1994) Manufactured pleasures: psychological responses to design.

Manchester: Manchester University Press.

Das, R., Crutchfield, J.P., Mitchell, M. and Hanson, J.E. (1995) Evolving globally

 146

synchronized Cellular Automata. In: L.J. Eshelman (ed.) Proceedings of the Sixth
International Conference on Genetic Algorithms, July, Pittsburgh. San Francisco:
Morgan Kaufmann, pp.336-343.

de Vries, E. (2006) Students' construction of external representations in design-based

learning situations. Learning and Instruction, 16(3), pp.213-227.

Dhillon, B.S. (1996) Engineering design: a modern approach. Chicago: Irwin.

Dhillon, B.S. (1998) Advanced design concepts for engineers. Lancaster: Technomic Pub.

Co.

Dimopoulos, C. (2006) Multi-objective optimization of manufacturing cell design.

International Journal of Production Research, 44(22), pp.4855-4875.

Duffy, A.H.B. (1997) The what and how of learning in design. IEEE Expert, 12(3),

pp.71-76.

Eiben, A.E. (1996) Evolutionary exploration of search spaces. In: Z. Ras and M.

Michalewicz (eds.) Proceedings of Foundations of Intelligent Systems: 9th
international symposium, ISMIS '96, 9-13 June, Zakopane, Poland. New York:
Springer, pp.178-188.

Ferreira, C. (2001) Gene Expression Programming: A New Adaptive Algorithm for

Solving Problems. Complex Systems, 13(2), pp.87-129.

Fikes, R.E. and Nilsson, N.J. (1971) STRIPS: A New Approach to the Application of

Theorem Proving to Problem Solving. Artificial Intelligence, 2(3-4), pp.189-208.

Fischer, T., Burry, M. and Frazer, J. (2005) Triangulation of generative form for

parametric design and rapid prototyping. Automation in Construction, 14(2), pp.233-
240.

Flake, G.W. (1998) The computational beauty of nature: computer explorations of

fractals, chaos, complex systems, and adaptation. Cambridge: MIT Press.

Fogel, D.B. (1995) Evolutionary Computation: Toward a New Philosophy of Machine

Intelligence. New York: IEEE press.

Frazer, J. (1995) An Evolutionary Architecture. London: Architecture Association.

French, M.J. (1994) Invention and evolution: design in nature and engineering. New

York: Cambridge University Press.

French, M.J. (1999) Conceptual design for engineers. Berlin: Springer-Verlag.

Gero, J. (1990) Design Prototypes: A Knowledge Representations Schema for Design. AI
Magazine, 11(4), pp.26-36.

Gero, J.S. (1996) Creativity, emergence and evolution in design: concepts and framework.
Knowledge Based Systems, 9(7), pp.435-448.

 147

Gero, J.S., Kazakov, V.A. and Schnier, T. (1997) Genetic Engineering and Design
Problems. In: D. Dasgupta and Z. Michalewicz (eds.) Evolutionary algorithms in
engineering applications. Berlin: Springer, pp.47-69.

Gero, J.S. and Reffat, R. (1997) Multiple representations for situated agent-based learning.
In: B. Varma, B. and X. Yao (eds.) Proceedings of the International Conference on
Computational Intelligence and Multimedia applications (ICCIMA-97), 10-12 February,
Griffith University, Gold Coast, pp.81-85.

Gero, J.S. and Tyugu, E. (eds.) (1994) Formal Design Methods for CAD. New York:
Elsevier.

Giunchiglia, F., Villafiorita, A and Walsh, T. (1997) Theories of Abstraction. AI

Communications, 10(3-4), pp.167-176.

Giunchiglia, F. and Walsh, T. (1992) A Theory of Abstraction. Artificial Intelligence,

56(2-3), pp.323-390.

Goel, A.K. (1997) Design, analogy, and creativity. IEEE Expert, 12(3), pp.62-70.

Goldratt, E.M. and Fox, R.E. (1986) The Race. New York: The North River Press.

Gong, D., Guo, G., Lu, L. and Ma, H. (2008) Adaptive interactive genetic algorithms

with individual interval fitness. Progress in Natural Science, 18(3), pp.359-365.

Graf, J. (1995) Interactive Evolutionary Algorithms in Design. International Conference

on Artificial Neural Networks and Genetic Algorithms ICANNGA '95, Ales, France,
pp.227-230.

Grecu, D.L. and Brown, D.C. (1998) Dimensions of machine learning in design. Artificial

Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM), 12,
pp.117-121.

Gu, Z. (2006) Towards capturing aesthetic intent of design in an interactive evolutionary

system using neural networks. Thesis (PhD.), School of Design, Hong Kong
Polytechnic University.

He, K., Zheng, L., Dong, S. and Tang, L. (2007) PGO: A parallel computing platform for

global optimization based on genetic algorithm. Computers & Geosciences, 33, pp.357–
366.

Heisserman, J., Callahan, S. & Mattikalli, R. (2000) A design representation to support

automated design generation. In: J.S. Gero and F. Sudweeks (eds.) Artificial
Intelligence in Design '00. Boston: Kluwer Academic, pp.545-566.

Herr, C.M. and Kvan, T. (2007) Adapting cellular automata to support the architectural

design process. Automation in Construction, 16(1), pp.61-69.

Holland, J.H. (1975) Adaptation in Natural and Artificial Systems. 2nd edition. Ann Arbor:

the University of Michigan Press.

Hornby, H.S. (2003) Generative Representations for Evolutionary Design Automation.

 148

Thesis (PhD.), Department of Computer Science, Brandeis University.

Jain, S. and Gea, H.C. (1998) Two-Dimensional Packing Problems Using Genetic

Algorithms. Engineering with Computers, 14, pp.206-213.

Janssen, P., Frazer, J. and Tang, M. (2002) Evolutionary Design Systems and Generative

Processes. Applied Intelligence, 16(2), pp.119-128.

Janssen, P.H.T. (2005) A design method and computational architecture for generating

and evolving building designs. Thesis (PhD.), School of Design, Hong Kong
Polytechnic University.

Jenkins, D.L. and Martin, R.R. (1993) The Importance of Free-Hand Sketching in

Conceptual Design: Automatic Sketch Input. Design Theory and Methodology, 53, 155-
128.

Johnson, H. (1993) How to enjoy your wine : understanding, storing, serving, ordering,

enjoying every glass to the full. London: Chancellor Press, p.58-59.

Jones, J.C. (1992) Design Methods. 2nd edition. New York: Van Nostrand Reinhold.

Kakihara, M. and Sorensen, C. (2002) Exploring knowledge emergence: from chaos to

organizational knowledge. Journal of Global Information Technology Management,
5(3), pp.48-66.

Khuri, S., Schutz, M. and Heitkotter, J. (1995) Evolutionary Heuristics for the Bin

Packing Problem. International Conference on Artificial Neural Networks and Genetic
Algorithms, ICANNGA '95, Ales, France, pp.286-288.

Kicinger, R., Arciszewski, T. and Jong, K.D. (2005) Evolutionary computation and

structural design: A survey of the state-of-the-art. Computers & Structures, 83(23-24),
pp.1943-1978.

Kim, H. and Yoon, W.C. (2005) Supporting the cognitive process of user interface design

with reusable design cases. International Journal of Human-Computer Studies, 62(4),
pp.457-486.

Knight, T.W. (1994) Transformations in design: a formal approach to stylistic change

and innovation in the visual arts. Cambridge: Cambridge University Press.

Knoblock, C.A. (1994) Automatically Generating Abstractions for Planning. Artificial

Intelligence, 68(2), 243-302.

Kondo, T. (2007) Evolutionary design and behavior analysis of neuromodulatory neural

networks for mobile robots control. Applied Soft Computing, 7(1), pp.189-202.

Koza, J.R. (1989) Hierarchical genetic algorithms operating on populations of computer

programs. In: N.S. Sridharan (ed.) Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence IJCAI-89, 20-25 August, Michigan, pp 768--774.

Koza, J.R. (1992) Genetic Programming: On the Programming of Computers by Means

of Natural Selection. Cambridge: The MIT Press.

 149

Lawson, B.R. (1979) Cognitive strategies in architectural design. Ergonomics, 22(1),
pp.59-68.

Lawson, B. (1990) How designers think. 2nd edition. London: Butterworth Architecture.

Lee, L.H., Chew, E.P., Teng, S. and Chen, Y. (2008) Multi-objective simulation-based

evolutionary algorithm for an aircraft spare parts allocation problem. European Journal
of Operational Research, 189(2), pp.476-491.

Lenaerts, T., Gross, D. and Watson, R. (2002) On the Modelling of dynamical hierarchies:

Introduction to the Workshop WDH 2002. Workshop Proceedings Alife VIII: Modeling
Dynamical Hierarchies in Artificial Life, University of New South Wales, Sydney,
pp.37-44.

Limbourg, P. and Kochs, H. (2008) Multi-objective optimization of generalized reliability

design problems using feature models—A concept for early design stages. Reliability
Engineering and System Safety, 93(6), pp.815–828

Lindenmayer, A. (1968) Mathematical models for cellular interaction in development.
Journal of Theoretical Biology, 18, pp.280-315.

Liu, H. and Tang, M. (2006) Evolutionary design in a multi-agent design environment.

Applied Soft Computing, 6(2), pp.207-220.

Liu, H., Tang, M.X. and Frazer, J. (2000) Supporting learning in a shared design

environment. Advances in Engineering Software, 32(4), pp.285-293.

Liu, X., Tang, M. and Frazer, J.H. (2005) An eco-conscious housing design model based

on co-evolution. Advances in Engineering Software, 36(2), pp.115-125.

Medland, A.J. (1992) The computer-based design process. London: Chapman & Hall.

Menon, U., O'Grady, P.J., Gu, J.Z. and Young, R.E. (1994) Quality Function

Deployment: an overview. In: C.S. Syan and U. Menon (eds.) Concurrent Engineering:
Concepts, Implementation, and Practice. London: Chapman & Hall, pp.91-99.

Michalewicz, Z., Xiao, J. and Trojanowski, K. (1996) Evolutionary computation: one

project, many directions. In: Z. Ras and M. Michalewicz (eds.) Proceedings of
Foundations of Intelligent Systems: 9th international symposium, ISMIS '96, 9-13 June,
Zakopane, Poland. New York: Springer, pp.189-201.

Miller, J.G. (1978) Living systems. New York: McGraw-Hill.

Mitchell, C.T. (1996) New Thinking in Design: Conversations on Theory and Practice.
New York: Van Nostrand Reinhold.

Mühlenbein, H., Zinchenko, L., Kureichik, V. and Mahnig, T. (2007) Effective mutation

rate for probabilistic evolutionary design of analogue electrical circuits. Applied Soft
Computing, 7(3), pp.1012-1018.

Mukesh, J.P., Honavar, V. and Balakrishnan, K. (2001) Advances in the Evolutionary

 150

Synthesis of Intelligent Agents. Cambridge: MIT Press.

Nariman-Zadeh, N., Darvizeh, A., Jamali, A. and Moeini, A. (2005) Evolutionary design

of generalized polynomial neural networks for modelling and prediction of explosive
forming process. Journal of Materials Processing Technology, 164-165, pp.1561-1571.

Navinchandra, D. (1991) Exploration and innovation in design: towards a computational
model. New York: Springer-Verlag.

Newell, A. and Simon, H. (1972) Human Problem Solving. New Jersey: Prentice-Hall.

O’Sullivan, D. (2001) Graph-cellular automata: a generalised discrete urban and regional

model. Environment and Planning B: Planning and Design, 28, pp.687-705.

Pahl, C. (2004) Adaptive development and maintenance of user-centric software systems.

Information and Software Technology, 46(14), pp.973-986.

Pahl, G. and Beitz, W. (1996) Engineering design: a systematic approach. London:

Springer.

Park, H., Pedrycz, W. and Oh, S. (2007) Evolutionary design of hybrid self-organizing

fuzzy polynomial neural networks with the aid of information granulation. Expert
Systems with Applications, 33(4), pp.830-846.

Petroski, H. (1996) Invention by design: how engineers get from thought to thing. London:

Harvard University Press.

Piaget, J. (1970) Structuralism. New York: Harper & Row.

Piaget, J. (1971) Biology and Knowledge. Chicago: University of Chicago Press.

Piaget, J. (1983) Piaget's theory. In: P. Mussen (ed.) Handbook of Child Psychology. 4th

edition. New York: Wiley.

Pierreval, H., Caux, C., Paris, J. L. and Viguier, F. (2003) Evolutionary approaches to the

design and organization of manufacturing systems. Computers & Industrial
Engineering, 44(3), pp.339-364.

Poon, J. and Maher, M.L. (1996) Emergent Behaviour in Co-Evolutionary Design. In: J.S.

Gero and F. Sudweeks (eds.) Artificial Intelligence in Design '96. Netherlands: Kluwer
Academic, pp.703-722.

Pugh, S. (1991) Total design: integrated methods for successful product engineering.

Wokingham: Addison-Wesley.

Raton, B. (1999) Fusion of neural networks, fuzzy sets, and genetic algorithms: industrial

applications. FL: CRC press.

Riedel (2006) The Wine Glass Company. Available from http://www.riedel.com/

[accessed December 2006].

Robinson, J. (ed.) (1994) The Oxford companion to wine. New York: Oxford University

 151

Press, pp.449.

Rodgers, P.A. (1998) The Role of Artificial Intelligence as 'text' within Design. Design

Studies, 19, pp.143-160.

Rosenman, M. and Gero, J. (1999) Evolving Designs by Generating Useful Complex

Gene Structures. In: P.J. Bentley (ed.) Evolutionary Design by Computers. San
Francisco: Morgan Kaufmann, pp.345-364.

Rowbottom, A. (1999) Evolutionary Art and Form. In: P.J. Bentley (ed.) Evolutionary

Design by Computers. San Francisco: Morgan Kaufmann, pp.261-277.

Sacerdoti, E.D. (1974) Planning in a Hierarchical Abstraction Spaces. Artificial

Intelligence, 5(2), pp.115-135.

Sarkar, P. (2000) A Brief History of Cellular Automata. ACM Computing Systems, 32(1),

pp.80–107.

Sekimoto, S. and Ukai, M. (1994) A Study of Creative Design Based on the Axiomatic

Design Theory. Design Theory and Methodology, 68, pp.71-77.

Shahin, T.M.M., Andrews, P.T.J. and Sivaloganathan, S. (1998) A Design Reuse System.

In: S. Sivaloganathan and T.M.M. Shahin (eds.) Engineering Design Conference, '98:
Design Reuse. London: Professional Engineering Pub., pp.163-172.

Shahin, T.M.M. and Sivaloganathan, S. (1998) Representing Conceptual Designs. In: S.

Sivaloganathan and T.M.M. Shahin (eds.) Engineering Design Conference, '98: Design
Reuse. London: Professional Engineering Pub., pp.569-576.

Shea, K., Aish, R. and Gourtovaia, M. (2005) Towards integrated performance-driven

generative design tools. Automation in Construction, 14(2), pp.253-264.

Sim, S.K. and Duffy, A.H.B. (1998) A foundation for machine learning in design.

Artificial Intelligence for Engineering Design, Analysis and Manufacturing (AIEDAM),
12, pp.193-209.

Sim, S.K. and Duffy, A.H.B. (2002) Knowledge transformers – a link between learning

and creativity. AID 02 Learning and Creativity in Design Workshop, July, Cambridge
University, UK.

Simon, H.A. (1996) The Sciences of the Artificial. 3rd edition. London: MIT Press.

Sims, K. (1991) Artificial Evolution for Computer Graphics. Computer Graphics

Proceedings (SIGGRAPH '91), 28 July-2 August, Las Vegas, pp.319-328.

Sims, K. (1994) Evolving Virtual Creatures. Computer Graphics Proceedings

(SIGGRAPH '94), 24-29 July, Florida, pp.15-22.

Stiny, G. and Gips, J. (1972) Shape grammars and the generative specification of painting

and sculpture. In: C.V. Freiman (ed.) Information Processing 71. Amsterdam: North-
Holland, pp.1460-1465.

 152

Stouffs, R. (2008) Constructing design representations using a sortal approach. Advanced
Engineering Informatics, 22(1), pp.71-89.

Suh, N.P. (1990) The Principles of Design. New York: Oxford University Press.

Sun, J., Frazer, J.H. and Tang, M. (2007) Shape optimisation using evolutionary

techniques in product design. Computers & Industrial Engineering, 53(2), pp.200-205.

Tang, M.X. and Wallance, K.M. (1997) A Knowledge-Based Approach to CAD System

Integration. International Conference on Engineering Design ICED ‘97, August,
Finland, pp.185-190.

Todd, S. and Latham, W. (1999) The Mutation and Growth of Art by Computers. In: P.J.

Bentley (ed.) Evolutionary Design by Computers. San Francisco: Morgan Kaufmann,
pp.221-250.

Tomiyama, T. (1995) A Design Process Model that Unifies General Design Theory and

Empirical Findings. Proceedings of the 1995 Design Engineering Technical
Conferences, ASME, Boston, pp.329-340.

Ueda, K. (2001) Synthesis and emergence – research overview. Artificial Intelligence in

Engineering, 15, pp.321-327.

Van Dijk, C.G.C. (1994) Evaluation of a Surface Modeler for Conceptual Design.

Proceedings of the 1994 Lancaster International Workshop on Engineering Design
(CACD '94), Lancaster, pp.11-13.

von Neumann, J (1966) Theory of self-reproducing automata. Edited and completed by

Arthur W. Burks. Urbana: University of Illinois Press.

Vries, M.J. (1993) Design methodology and relationships with science: introduction. In:

M.J. Vries, N. Cross, and D.P. Grant (eds.) Design methodology and relationships with
science. Boston: Kluwer, pp.2.

Westney, D.E. (2001) Multinational enterprises and cross-border knowledge creation. In:

I. Nonaka and T. Nishiguchi (eds.) Knowledge Emergence: Social, Technical, and
Evolutionary Dimensions of Knowledge Creation. New York: Oxford University Press,
pp.147-175.

Witbrock, M. and Neil-Reilly, S. (1999) Evolving Genetic Art. In: P.J. Bentley (ed.)

Evolutionary Design by Computers. San Francisco: Morgan Kaufmann, pp.251-260.

Wu, Z. and Duffy, A. (2002) Mutual Knowledge Evolution in Team Design. AID 02

Learning and Creativity in Design Workshop, July, Cambridge University, UK.

Yoshioka, M., Nakamura, M., Tomiyama, T. and Yoshikawa, H. (1993) A Design

Process Model with Multiple Design Object Models. Design Theory and Methodology,
53, pp.7-14.

Youssef, A.M.A. and ElMaraghy, H.A. (2006) Modelling and optimization of multiple-

aspect RMS configurations. International Journal of Production Research, 44(22),
pp.4929-4958.

 153

Appendix A: GED Kernel Implementation

In order to demonstrate the feasibility and applicability of the kernel for

supporting different computational design tasks, the kernel has been implemented

as a software package (or library) in Java programming language. It can be

integrated with other software that supports Java application interfaces, including

external commercial CAD tools. This appendix introduces the major Java

program components implemented and provides information for possible further

development based on this study. The implemented programs include the GED

kernel and three example systems presented in chapters 5, 6, 7 and 8 of this thesis.

A.1 Implemented Java Classes and Packages for the GED Kernel

An objective of this research study is to examine the feasibility and applicability

of a generic computational kernel. In this study, Java programming language is

used to implement the GED kernel as a software library or Java package, which

can be used as the core framework of design supporting systems. There are four

main Java packages implemented in this study:

1. The generic GED kernel (Chapter 5), �����, includes the basic interface

(�������) and GUI representation (�����	
�). The GED Kernel �����

alone is used in the first example (Chapter 6) without additional

modification.

2. The 2D pattern generation system (Chapter 7), ���������, uses the

generic kernel to generate and match image patterns for demonstrating the

kernel ability of knowledge adaptation in design generation.

3. The simple wine-glass system (Chapter 8), �������, is developed with

the generic kernel that generates wine-glasses in a 2D profile form.

 154

GED Kernel (Package gedah)

Generic Classes
(in Package gedah)

GEDH Builder
(in Package gedah.edah_IF)

Generic Interface
(in Package gedah.edah_IF)

Generic Representation
(in Package gedah.edah_GUI)

4. The enhanced wine-glass system (Chapter 8), ��
����, is developed by

embedding the kernel with an external CAD tool (MicroStation).

Figure A.1 shows the block diagram of these four packages.

Figure A.1: A block diagram of the implemented Java packages for the GED kernel.

A.2 First Example: Artificial Plant Generation

The Java package ����� is the implementation of the GED kernel presented in

this study. It consists of the major generic classes: evolutionary elements and

mechanisms, together with basic interfaces (in �������) and GUI representations

(in �����	
�) as shown in figure A.2. The first application example, the

artificial plant generation, is also demonstrated with this kernel alone.

Figure A.2: Block diagrams of the implemented GED kernel.

 155

A.2.1 Package �����: the GED Kernel

Figure A.3 shows the block diagram of the implemented ����� generic classes,

followed by listing the summary of this package (including the classes

implemented in the package, the class inheritance in Java class hierarchy, and the

list of major variables, constructors and methods).

Figure A.3: Block diagrams of the implemented ����� package.

Classes in �����

C_AttrB C_Gee

C_EM C_GEMI

Class Hierarchy For Package �����

o java.lang.Object
o gedah.C_AttrB
o gedah.C_EM
o gedah.C_Gee
o gedah.C_GEMI

List of major variables, constructors and methods in �����

A

allGeeV - Variable in class gedah.C_GEMI

allGeeVSize - Variable in class gedah.C_GEMI

AppendGCVGee(C_Gee) - Method in class gedah.C_Gee

AppendGPVGee(C_Gee) - Method in class gedah.C_Gee

 156

attr - Variable in class gedah.C_AttrB

attrRange - Variable in class gedah.C_AttrB

C

C_AttrB - Class in gedah

C_AttrB() - Constructor for class gedah.C_AttrB

C_AttrB(int) - Constructor for class gedah.C_AttrB

C_AttrB(float[]) - Constructor for class gedah.C_AttrB

C_AttrB(float[], float) - Constructor for class gedah.C_AttrB

C_AttrB(C_AttrB) - Constructor for class gedah.C_AttrB

C_EM - Class in gedah

C_EM() - Constructor for class gedah.C_EM

C_EM(int) - Constructor for class gedah.C_EM

C_EM(int, C_Gee, C_Gee) - Constructor for class gedah.C_EM

C_EM(C_EM, boolean) - Constructor for class gedah.C_EM

C_Gee - Class in gedah

C_Gee() - Constructor for class gedah.C_Gee

C_Gee(int) - Constructor for class gedah.C_Gee

C_Gee(int, int, C_AttrB) - Constructor for class gedah.C_Gee

C_Gee(int, int, C_AttrB, C_EM, C_Gee) - Constructor for class gedah.C_Gee

C_Gee(C_Gee) - Constructor for class gedah.C_Gee

C_Gee(C_Gee, boolean) - Constructor for class gedah.C_Gee

C_GEMI - Class in gedah

C_GEMI() - Constructor for class gedah.C_GEMI

C_GEMI(C_Gee) - Constructor for class gedah.C_GEMI

C_GEMI(float[], float[]) - Constructor for class gedah.C_GEMI

CreateAllGeeV(int) - Method in class gedah.C_GEMI

CreateHierarchy(float[], float[], int[], C_Gee) - Method in class gedah.C_GEMI

CreateIAttr(int, float[]) - Method in class gedah.C_GEMI

CreateIEM(int, float[]) - Method in class gedah.C_GEMI

CreateIGee(int, float[]) - Method in class gedah.C_GEMI

CreateLevelPop(int, int, long) - Method in class gedah.C_GEMI

CreateRootGee(int, float[]) - Method in class gedah.C_GEMI

D

defaultGee - Variable in class gedah.C_EM

E

EDH_RCCreate(int, int[], int[], int[], float[], int[], int) - Method in class gedah.C_GEMI

EDH_RCEvolve(int) - Method in class gedah.C_GEMI

EDH_RCGetPop(C_Gee) - Method in class gedah.C_GEMI

eM - Variable in class gedah.C_Gee

EMEvolve(int, C_Gee, int, int, Random) - Method in class gedah.C_EM

eMGA - Variable in class gedah.C_Gee

emGee - Variable in class gedah.C_EM

emType - Variable in class gedah.C_EM

G

gAttr - Variable in class gedah.C_Gee

gCVGee - Variable in class gedah.C_Gee

gedah - package gedah

geeStr - Variable in class gedah.C_Gee

 157

GetAllGeeV() - Method in class gedah.C_GEMI

GetAllGeeVSize() - Method in class gedah.C_GEMI

GetIAttr(float[]) - Method in class gedah.C_GEMI

GetIEM(int, float[]) - Method in class gedah.C_GEMI

GetIGee(int, float[]) - Method in class gedah.C_GEMI

GetITypeStatus(int) - Method in class gedah.C_GEMI

gExtraInfo - Variable in class gedah.C_Gee

globalIndex - Variable in class gedah.C_Gee

gPVGee - Variable in class gedah.C_Gee

gStatus - Variable in class gedah.C_Gee

gType - Variable in class gedah.C_Gee

I

iAttr - Variable in class gedah.C_GEMI

iEM - Variable in class gedah.C_GEMI

igCVGee - Variable in class gedah.C_GEMI

iGee - Variable in class gedah.C_GEMI

igStatus - Variable in class gedah.C_GEMI

igType - Variable in class gedah.C_GEMI

itGee - Variable in class gedah.C_GEMI

M

main(String[]) - Static method in class gedah.C_AttrB

main(String[]) - Static method in class gedah.C_EM

main(String[]) - Static method in class gedah.C_Gee

main(String[]) - Static method in class gedah.C_GEMI

R

Reset(int) - Method in class gedah.C_GEMI

rootGee - Variable in class gedah.C_GEMI

S

SetAllGeeV(int, float[]) - Method in class gedah.C_GEMI

SetIAttr(int, float[]) - Method in class gedah.C_GEMI

SetIEM(int, float[]) - Method in class gedah.C_GEMI

SetIGee(int) - Method in class gedah.C_GEMI

SetITypeStatus(int, float[]) - Method in class gedah.C_GEMI

Simple1DCACreateHierarchy(long, int, int, int) - Method in class gedah.C_GEMI

T

tGee - Variable in class gedah.C_Gee

TotalAllGees() - Method in class gedah.C_GEMI

W

WineGlassCreateHierarchy(long, int) - Method in class gedah.C_GEMI

 158

A.2.2 Package �����������	
�: the Generic Graphical User Interface (GUI)

Figure A.4 shows the block diagram of the implemented �����������	
�

package, followed by listing the summary of this package (including the classes

implemented in the package, the class inheritance in Java class hierarchy, and the

list of major variables, constructors and methods).

Figure A.4: Block diagrams of the implemented �����������	
��package.

Classes in ������������	

edfMidi gui_generic

gui_CA1D gui_Image

gui_Composite gui_Math

gui_Curve2D gui_Sound

gui_EDAH gui_Text

gui_Fractal

 159

Class Hierarchy For Package ������������	

o java.lang.Object

o java.awt.Component (implements java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable)

o java.awt.Container
o java.awt.Panel (implements javax.accessibility.Accessible)

o java.applet.Applet
o javax.swing.JApplet (implements

javax.accessibility.Accessible,
javax.swing.RootPaneContainer)

o gedah.edah_GUI.edfMidi (implements
java.lang.Runnable)

o gedah.edah_GUI.gui_CA1D (implements
java.awt.event.ActionListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_Composite (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_Curve2D (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_EDAH (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_Fractal (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_generic (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_Image (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_Math (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_Sound (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_GUI.gui_Text (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

 160

List of major variables, constructors and methods in ������������	

A

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_CA1D

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Composite

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Curve2D

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_EDAH

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Fractal

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_generic

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Image

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Math

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Sound

actionPerformed(ActionEvent) - Method in class gedah.edah_GUI.gui_Text

B

butStr - Static variable in class gedah.edah_GUI.gui_CA1D

C

close() - Method in class gedah.edah_GUI.edfMidi

close() - Method in class gedah.edah_GUI.gui_Sound

D

DatabaseAction(int) - Method in class gedah.edah_GUI.gui_EDAH

def_selectNo - Static variable in class gedah.edah_GUI.gui_CA1D

def_selectNoStr - Static variable in class gedah.edah_GUI.gui_CA1D

DrawForest() - Method in class gedah.edah_GUI.gui_Fractal
DrawForestBranch(Vector, int, double, double, double, double, double, Random, int, int) - Method in
class gedah.edah_GUI.gui_Fractal

DrawForestTree(Vector, Random) - Method in class gedah.edah_GUI.gui_Fractal

DrawForestTree_OLD(Vector, Random) - Method in class gedah.edah_GUI.gui_Fractal

DrawImage() - Method in class gedah.edah_GUI.gui_Image

DrawTree() - Method in class gedah.edah_GUI.gui_Fractal

DrawTree_Determine() - Method in class gedah.edah_GUI.gui_Fractal

E

edahMouseListener - Variable in class gedah.edah_GUI.gui_Composite

edahMouseListener - Variable in class gedah.edah_GUI.gui_Curve2D

edahMouseListener - Variable in class gedah.edah_GUI.gui_generic

edahMouseListener - Variable in class gedah.edah_GUI.gui_Image

edahMouseListener - Variable in class gedah.edah_GUI.gui_Math

edahMouseListener - Variable in class gedah.edah_GUI.gui_Sound

edahMouseListener - Variable in class gedah.edah_GUI.gui_Text

edfAllNotesOff(int) - Method in class gedah.edah_GUI.edfMidi

edfAllNotesOff(int) - Method in class gedah.edah_GUI.gui_Sound

edfMidi - Class in gedah.edah_GUI

edfMidi() - Constructor for class gedah.edah_GUI.edfMidi

edfNoteOn(int, int, int) - Method in class gedah.edah_GUI.edfMidi

edfNoteOn(int, int, int) - Method in class gedah.edah_GUI.gui_Sound

edfProgChange(int, int) - Method in class gedah.edah_GUI.edfMidi

edfProgChange(int, int) - Method in class gedah.edah_GUI.gui_Sound

EvolutionAction(int) - Method in class gedah.edah_GUI.gui_EDAH

EvolveOnce() - Method in class gedah.edah_GUI.gui_CA1D

 161

F

FileAction(int) - Method in class gedah.edah_GUI.gui_EDAH

G

gedah.edah_GUI - package gedah.edah_GUI

geeTextFA - Variable in class gedah.edah_GUI.gui_Math

geeTextFA - Variable in class gedah.edah_GUI.gui_Text

geeV - Variable in class gedah.edah_GUI.gui_Composite

geeV - Variable in class gedah.edah_GUI.gui_Curve2D

geeV - Variable in class gedah.edah_GUI.gui_Fractal

geeV - Variable in class gedah.edah_GUI.gui_generic

geeV - Variable in class gedah.edah_GUI.gui_Image

geeV - Variable in class gedah.edah_GUI.gui_Math

geeV - Variable in class gedah.edah_GUI.gui_Sound

geeV - Variable in class gedah.edah_GUI.gui_Text

GenerateGeeMidi(C_Gee) - Method in class gedah.edah_GUI.gui_Sound

GenerateMidi() - Method in class gedah.edah_GUI.edfMidi

GenerateMidi(C_AttrB) - Method in class gedah.edah_GUI.edfMidi

GenerateMidi(Point[][]) - Method in class gedah.edah_GUI.gui_Sound

GenerateMidi_CA(C_AttrB) - Method in class gedah.edah_GUI.edfMidi

genSoundBut - Variable in class gedah.edah_GUI.gui_Sound

gui_CA1D - Class in gedah.edah_GUI

gui_CA1D() - Constructor for class gedah.edah_GUI.gui_CA1D

gui_Composite - Class in gedah.edah_GUI

gui_Composite(String, JApplet[]) - Constructor for class gedah.edah_GUI.gui_Composite

gui_Curve2D - Class in gedah.edah_GUI

gui_Curve2D(String, Vector) - Constructor for class gedah.edah_GUI.gui_Curve2D

gui_EDAH - Class in gedah.edah_GUI

gui_EDAH() - Constructor for class gedah.edah_GUI.gui_EDAH

gui_Fractal - Class in gedah.edah_GUI

gui_Fractal() - Constructor for class gedah.edah_GUI.gui_Fractal

gui_Fractal(String, Vector, C_Gee, int) - Constructor for class gedah.edah_GUI.gui_Fractal

gui_generic - Class in gedah.edah_GUI

gui_generic(String, Vector) - Constructor for class gedah.edah_GUI.gui_generic

gui_Image - Class in gedah.edah_GUI

gui_Image(String, Vector) - Constructor for class gedah.edah_GUI.gui_Image

gui_Math - Class in gedah.edah_GUI

gui_Math(String, Vector) - Constructor for class gedah.edah_GUI.gui_Math

gui_Sound - Class in gedah.edah_GUI

gui_Sound(String, Vector) - Constructor for class gedah.edah_GUI.gui_Sound

gui_Text - Class in gedah.edah_GUI

gui_Text(String, Vector) - Constructor for class gedah.edah_GUI.gui_Text

guiA - Variable in class gedah.edah_GUI.gui_Composite

GUIAction(int) - Method in class gedah.edah_GUI.gui_EDAH

guiNameL - Variable in class gedah.edah_GUI.gui_Composite

guiNameL - Variable in class gedah.edah_GUI.gui_Curve2D

guiNameL - Variable in class gedah.edah_GUI.gui_generic

guiNameL - Variable in class gedah.edah_GUI.gui_Image

guiNameL - Variable in class gedah.edah_GUI.gui_Math

guiNameL - Variable in class gedah.edah_GUI.gui_Sound

 162

guiNameL - Variable in class gedah.edah_GUI.gui_Text

guiNameStr - Variable in class gedah.edah_GUI.gui_Composite

guiNameStr - Variable in class gedah.edah_GUI.gui_Curve2D

guiNameStr - Variable in class gedah.edah_GUI.gui_Fractal

guiNameStr - Variable in class gedah.edah_GUI.gui_generic

guiNameStr - Variable in class gedah.edah_GUI.gui_Image

guiNameStr - Variable in class gedah.edah_GUI.gui_Math

guiNameStr - Variable in class gedah.edah_GUI.gui_Sound

guiNameStr - Variable in class gedah.edah_GUI.gui_Text

guiP - Variable in class gedah.edah_GUI.gui_Composite

guiP - Variable in class gedah.edah_GUI.gui_Curve2D

guiP - Variable in class gedah.edah_GUI.gui_generic

guiP - Variable in class gedah.edah_GUI.gui_Image

guiP - Variable in class gedah.edah_GUI.gui_Math

guiP - Variable in class gedah.edah_GUI.gui_Sound

guiP - Variable in class gedah.edah_GUI.gui_Text

guiTypeL - Variable in class gedah.edah_GUI.gui_Composite

guiTypeL - Variable in class gedah.edah_GUI.gui_Curve2D

guiTypeL - Variable in class gedah.edah_GUI.gui_generic

guiTypeL - Variable in class gedah.edah_GUI.gui_Image

guiTypeL - Variable in class gedah.edah_GUI.gui_Math

guiTypeL - Variable in class gedah.edah_GUI.gui_Sound

guiTypeL - Variable in class gedah.edah_GUI.gui_Text

guiTypeStr - Variable in class gedah.edah_GUI.gui_Composite

guiTypeStr - Variable in class gedah.edah_GUI.gui_Curve2D

guiTypeStr - Variable in class gedah.edah_GUI.gui_Fractal

guiTypeStr - Variable in class gedah.edah_GUI.gui_generic

guiTypeStr - Variable in class gedah.edah_GUI.gui_Image

guiTypeStr - Variable in class gedah.edah_GUI.gui_Math

guiTypeStr - Variable in class gedah.edah_GUI.gui_Sound

guiTypeStr - Variable in class gedah.edah_GUI.gui_Text

H

HelpAction(int) - Method in class gedah.edah_GUI.gui_EDAH

I

imageI - Variable in class gedah.edah_GUI.gui_Image

imageP - Variable in class gedah.edah_GUI.gui_Image

imBG - Static variable in class gedah.edah_GUI.gui_CA1D

imSelectedBG - Static variable in class gedah.edah_GUI.gui_CA1D

init() - Method in class gedah.edah_GUI.gui_CA1D

init() - Method in class gedah.edah_GUI.gui_Composite

init() - Method in class gedah.edah_GUI.gui_Curve2D

init() - Method in class gedah.edah_GUI.gui_Fractal

init() - Method in class gedah.edah_GUI.gui_generic

init() - Method in class gedah.edah_GUI.gui_Image

init() - Method in class gedah.edah_GUI.gui_Math

init() - Method in class gedah.edah_GUI.gui_Sound

init() - Method in class gedah.edah_GUI.gui_Text

InitGem() - Method in class gedah.edah_GUI.gui_CA1D

iS - Variable in class gedah.edah_GUI.gui_Curve2D

 163

IsExit() - Method in class gedah.edah_GUI.gui_EDAH

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Composite

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Curve2D

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_EDAH

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Fractal

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_generic

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Image

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Math

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Sound

itemStateChanged(ItemEvent) - Method in class gedah.edah_GUI.gui_Text

K

kochBasis - Static variable in class gedah.edah_GUI.gui_Fractal

L

lastImBG - Static variable in class gedah.edah_GUI.gui_CA1D

M

m_gui_Curve2D - Variable in class gedah.edah_GUI.gui_Curve2D

m_gui_generic - Variable in class gedah.edah_GUI.gui_generic

m_gui_Sound - Variable in class gedah.edah_GUI.gui_Sound

m_gui_Text - Variable in class gedah.edah_GUI.gui_Composite

m_gui_Text - Variable in class gedah.edah_GUI.gui_Image

m_gui_Text - Variable in class gedah.edah_GUI.gui_Math

m_gui_Text - Variable in class gedah.edah_GUI.gui_Text

main(String[]) - Static method in class gedah.edah_GUI.edfMidi

main(String[]) - Static method in class gedah.edah_GUI.gui_CA1D

main(String[]) - Static method in class gedah.edah_GUI.gui_Composite

main(String[]) - Static method in class gedah.edah_GUI.gui_Curve2D

main(String[]) - Static method in class gedah.edah_GUI.gui_EDAH

main(String[]) - Static method in class gedah.edah_GUI.gui_Fractal

main(String[]) - Static method in class gedah.edah_GUI.gui_generic

main(String[]) - Static method in class gedah.edah_GUI.gui_Image

main(String[]) - Static method in class gedah.edah_GUI.gui_Math

main(String[]) - Static method in class gedah.edah_GUI.gui_Sound

main(String[]) - Static method in class gedah.edah_GUI.gui_Text

MakeForest(C_Gee, int, Vector, Random) - Method in class gedah.edah_GUI.gui_Fractal
MakeGeeFractal(C_Gee, int, double, double, double, double, double, Random) - Method in class
gedah.edah_GUI.gui_Fractal
MakeGeeFractal_Determine(C_Gee, int, double, double, double, double, double, Random) - Method in
class gedah.edah_GUI.gui_Fractal
MakeLeaves(int, double, double, double, double, double, Random) - Method in class
gedah.edah_GUI.gui_Fractal

menuBar - Variable in class gedah.edah_GUI.gui_EDAH

menuBarStr - Static variable in class gedah.edah_GUI.gui_EDAH

menuItemStr - Static variable in class gedah.edah_GUI.gui_EDAH

mItem - Variable in class gedah.edah_GUI.gui_EDAH

O

open() - Method in class gedah.edah_GUI.edfMidi

open() - Method in class gedah.edah_GUI.gui_Sound

R

repLevel - Variable in class gedah.edah_GUI.gui_Fractal

 164

rootG - Variable in class gedah.edah_GUI.gui_Fractal

run() - Method in class gedah.edah_GUI.edfMidi

run() - Method in class gedah.edah_GUI.gui_CA1D

run() - Method in class gedah.edah_GUI.gui_Composite

run() - Method in class gedah.edah_GUI.gui_Curve2D

run() - Method in class gedah.edah_GUI.gui_EDAH

run() - Method in class gedah.edah_GUI.gui_Fractal

run() - Method in class gedah.edah_GUI.gui_generic

run() - Method in class gedah.edah_GUI.gui_Image

run() - Method in class gedah.edah_GUI.gui_Math

run() - Method in class gedah.edah_GUI.gui_Sound

run() - Method in class gedah.edah_GUI.gui_Text

RunSound() - Method in class gedah.edah_GUI.edfMidi

S

seedStr - Static variable in class gedah.edah_GUI.gui_CA1D

selectFont - Static variable in class gedah.edah_GUI.gui_CA1D

SetStates(int, float) - Method in class gedah.edah_GUI.gui_CA1D

splitDivSize - Variable in class gedah.edah_GUI.gui_EDAH

srcPts - Variable in class gedah.edah_GUI.gui_Fractal

start() - Method in class gedah.edah_GUI.edfMidi

start() - Method in class gedah.edah_GUI.gui_CA1D

start() - Method in class gedah.edah_GUI.gui_Composite

start() - Method in class gedah.edah_GUI.gui_Curve2D

start() - Method in class gedah.edah_GUI.gui_EDAH

start() - Method in class gedah.edah_GUI.gui_Fractal

start() - Method in class gedah.edah_GUI.gui_generic

start() - Method in class gedah.edah_GUI.gui_Image

start() - Method in class gedah.edah_GUI.gui_Math

start() - Method in class gedah.edah_GUI.gui_Sound

start() - Method in class gedah.edah_GUI.gui_Text

stateCol - Static variable in class gedah.edah_GUI.gui_CA1D

stop() - Method in class gedah.edah_GUI.edfMidi

stop() - Method in class gedah.edah_GUI.gui_CA1D

stop() - Method in class gedah.edah_GUI.gui_Composite

stop() - Method in class gedah.edah_GUI.gui_Curve2D

stop() - Method in class gedah.edah_GUI.gui_EDAH

stop() - Method in class gedah.edah_GUI.gui_Fractal

stop() - Method in class gedah.edah_GUI.gui_generic

stop() - Method in class gedah.edah_GUI.gui_Image

stop() - Method in class gedah.edah_GUI.gui_Math

stop() - Method in class gedah.edah_GUI.gui_Sound

stop() - Method in class gedah.edah_GUI.gui_Text

subWinSplitP - Variable in class gedah.edah_GUI.gui_EDAH

T

tabbedPane - Variable in class gedah.edah_GUI.gui_EDAH

TestSound() - Method in class gedah.edah_GUI.edfMidi

TestSound(int) - Method in class gedah.edah_GUI.edfMidi

threadInterval - Variable in class gedah.edah_GUI.gui_Composite

threadInterval - Variable in class gedah.edah_GUI.gui_Curve2D

 165

threadInterval - Variable in class gedah.edah_GUI.gui_generic

threadInterval - Variable in class gedah.edah_GUI.gui_Image

threadInterval - Variable in class gedah.edah_GUI.gui_Math

threadInterval - Variable in class gedah.edah_GUI.gui_Sound

threadInterval - Variable in class gedah.edah_GUI.gui_Text

topP - Variable in class gedah.edah_GUI.gui_Composite

topP - Variable in class gedah.edah_GUI.gui_Curve2D

topP - Variable in class gedah.edah_GUI.gui_generic

topP - Variable in class gedah.edah_GUI.gui_Image

topP - Variable in class gedah.edah_GUI.gui_Math

topP - Variable in class gedah.edah_GUI.gui_Sound

topP - Variable in class gedah.edah_GUI.gui_Text

treeNum - Variable in class gedah.edah_GUI.gui_Fractal

trStr - Static variable in class gedah.edah_GUI.gui_CA1D

U

UpdateResult() - Method in class gedah.edah_GUI.gui_EDAH

UpdateStates() - Method in class gedah.edah_GUI.gui_CA1D

W

WaitSound() - Method in class gedah.edah_GUI.edfMidi

A.2.3 Package �������������: The Basic Interface

Figure A.5 shows the block diagram of the implemented ������������� package,

followed by listing the summary of this package (including the classes

implemented in the package, the class inheritance in Java class hierarchy, and the

list of major variables, constructors and methods).

Figure A.5: Block diagrams of the implemented ��������������package.

 166

Classes in �����������
�

edahArchi IFem

edahBuilder IFgee

edahDB showEM

IFattr SketchSPane

Class Hierarchy For Package �����������
�

o java.lang.Object
o java.awt.Component (implements java.awt.image.ImageObserver,

java.awt.MenuContainer, java.io.Serializable)
o java.awt.Container

o java.awt.Panel (implements
javax.accessibility.Accessible)

o java.applet.Applet
o javax.swing.JApplet (implements

javax.accessibility.Accessible,
javax.swing.RootPaneContainer)
o gedah.edah_IF.edahArchi

(implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_IF.edahBuilder
(implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o gedah.edah_IF.IFattr (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener)

o gedah.edah_IF.IFem (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener)

o gedah.edah_IF.IFgee (implements
java.awt.event.ActionListener)

o gedah.edah_IF.showEM (implements
java.awt.event.ActionListener)

o gedah.edah_IF.SketchSPane
(implements
java.awt.event.ActionListener,
java.awt.event.MouseListener,
java.awt.event.MouseMotionListener)

o gedah.edah_IF.edahDB

List of major variables, constructors and methods in �����������
�

A

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.edahArchi

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.edahBuilder

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.IFattr

 167

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.IFem

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.IFgee

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.showEM

actionPerformed(ActionEvent) - Method in class gedah.edah_IF.SketchSPane

Archi2Builder() - Method in class gedah.edah_IF.edahBuilder

attrNatureStr - Static variable in class gedah.edah_IF.IFattr

B

boundH - Variable in class gedah.edah_IF.SketchSPane

boundW - Variable in class gedah.edah_IF.SketchSPane

butGee - Variable in class gedah.edah_IF.edahArchi

C

CreateNewGeeB(C_Gee) - Method in class gedah.edah_IF.edahBuilder

CreateNewGeeB() - Method in class gedah.edah_IF.edahBuilder

CreateNewLevelP() - Method in class gedah.edah_IF.edahBuilder

D

DeleteGee() - Method in class gedah.edah_IF.edahBuilder

DeleteGee(C_Gee) - Method in class gedah.edah_IF.edahBuilder

DeleteLevel() - Method in class gedah.edah_IF.edahBuilder

dispGATipStr - Static variable in class gedah.edah_IF.IFem

DisplayGEM(float[], int[], int, int, int, Graphics) - Method in class gedah.edah_IF.edahArchi

DoubleA2Str(double[]) - Static method in class gedah.edah_IF.edahDB

DrawBound(Graphics) - Method in class gedah.edah_IF.SketchSPane

E

edahA - Variable in class gedah.edah_IF.edahBuilder

edahArchi - Class in gedah.edah_IF

edahArchi() - Constructor for class gedah.edah_IF.edahArchi

edahBuilder - Class in gedah.edah_IF

edahBuilder(int) - Constructor for class gedah.edah_IF.edahBuilder

edahDB - Class in gedah.edah_IF

edahDB(String) - Constructor for class gedah.edah_IF.edahDB

edahMouseListener - Variable in class gedah.edah_IF.edahBuilder

edhMouseListener - Variable in class gedah.edah_IF.edahArchi

edhMouseMotionListener - Variable in class gedah.edah_IF.edahArchi

EditGee() - Method in class gedah.edah_IF.edahBuilder

emDisp - Variable in class gedah.edah_IF.IFgee

emTypeStr - Static variable in class gedah.edah_IF.IFem

G

gedah.edah_IF - package gedah.edah_IF

geeAttached - Variable in class gedah.edah_IF.IFgee

geeB2P - Variable in class gedah.edah_IF.edahBuilder

geeButtonV - Variable in class gedah.edah_IF.edahBuilder

geeItemStr - Static variable in class gedah.edah_IF.edahDB

geePanelExplainStr - Static variable in class gedah.edah_IF.edahBuilder

geePanelStr - Static variable in class gedah.edah_IF.edahBuilder

geeTipStr - Static variable in class gedah.edah_IF.IFgee

geeTLabel - Variable in class gedah.edah_IF.edahBuilder

geeTopB - Variable in class gedah.edah_IF.edahBuilder

 168

geeTopP - Variable in class gedah.edah_IF.edahBuilder

geeV - Variable in class gedah.edah_IF.edahBuilder

gemI - Variable in class gedah.edah_IF.edahArchi

GenGeeLevel(C_Gee, int) - Method in class gedah.edah_IF.edahBuilder

GetExtremeOSTableAllData(int, Vector) - Method in class gedah.edah_IF.edahDB

GetExtremeVSTableAllData(int, Vector) - Method in class gedah.edah_IF.edahDB

GetTableAllData(int, Vector) - Method in class gedah.edah_IF.edahDB

gH - Variable in class gedah.edah_IF.edahBuilder

gHF - Variable in class gedah.edah_IF.edahBuilder

guiApplets - Variable in class gedah.edah_IF.edahBuilder

H

height - Variable in class gedah.edah_IF.edahArchi

hMin - Variable in class gedah.edah_IF.edahArchi

hP - Variable in class gedah.edah_IF.edahArchi

hP - Variable in class gedah.edah_IF.edahBuilder

hP1 - Variable in class gedah.edah_IF.edahArchi

I

ifA - Variable in class gedah.edah_IF.IFgee

IFattr - Class in gedah.edah_IF

IFattr() - Constructor for class gedah.edah_IF.IFattr

IFattr(C_AttrB) - Constructor for class gedah.edah_IF.IFattr

IFem - Class in gedah.edah_IF

IFem() - Constructor for class gedah.edah_IF.IFem

IFem(C_EM) - Constructor for class gedah.edah_IF.IFem

IFgee - Class in gedah.edah_IF

IFgee() - Constructor for class gedah.edah_IF.IFgee

IFgee(C_Gee) - Constructor for class gedah.edah_IF.IFgee

init() - Method in class gedah.edah_IF.edahArchi

init() - Method in class gedah.edah_IF.edahBuilder

InsertLevel() - Method in class gedah.edah_IF.edahBuilder

itemStateChanged(ItemEvent) - Method in class gedah.edah_IF.edahArchi

itemStateChanged(ItemEvent) - Method in class gedah.edah_IF.edahBuilder

itemStateChanged(ItemEvent) - Method in class gedah.edah_IF.IFattr

itemStateChanged(ItemEvent) - Method in class gedah.edah_IF.IFem

J

JPanelStruct - Variable in class gedah.edah_IF.edahArchi

L

labCount - Variable in class gedah.edah_IF.edahArchi

labNum - Variable in class gedah.edah_IF.edahArchi

levelGUICB - Variable in class gedah.edah_IF.edahBuilder

levelGUIStr - Static variable in class gedah.edah_IF.edahBuilder

levelPanelExplainStr - Static variable in class gedah.edah_IF.edahBuilder

levelPanelStr - Static variable in class gedah.edah_IF.edahBuilder

levelPV - Variable in class gedah.edah_IF.edahBuilder

levelTLabel - Variable in class gedah.edah_IF.edahBuilder

levelTopB - Variable in class gedah.edah_IF.edahBuilder

levelTopP - Variable in class gedah.edah_IF.edahBuilder

LinkGee() - Method in class gedah.edah_IF.edahBuilder

 169

LinkGUI() - Method in class gedah.edah_IF.edahBuilder

LoadAllDB() - Method in class gedah.edah_IF.edahDB

LocateComponent() - Method in class gedah.edah_IF.edahArchi

M

m_edahBuilder - Variable in class gedah.edah_IF.edahBuilder

m_Gem - Variable in class gedah.edah_IF.edahArchi

main(String[]) - Static method in class gedah.edah_IF.edahArchi

main(String[]) - Static method in class gedah.edah_IF.edahBuilder

main(String[]) - Static method in class gedah.edah_IF.edahDB

main(String[]) - Static method in class gedah.edah_IF.IFattr

main(String[]) - Static method in class gedah.edah_IF.IFem

main(String[]) - Static method in class gedah.edah_IF.IFgee

main(String[]) - Static method in class gedah.edah_IF.showEM

main(String[]) - Static method in class gedah.edah_IF.SketchSPane

MapSketchAttr() - Method in class gedah.edah_IF.IFattr

minPanelSize - Variable in class gedah.edah_IF.IFgee

mouseClicked(MouseEvent) - Method in class gedah.edah_IF.SketchSPane

mouseDragged(MouseEvent) - Method in class gedah.edah_IF.SketchSPane

mouseEntered(MouseEvent) - Method in class gedah.edah_IF.SketchSPane

mouseExited(MouseEvent) - Method in class gedah.edah_IF.SketchSPane

mouseMoved(MouseEvent) - Method in class gedah.edah_IF.SketchSPane

mousePressed(MouseEvent) - Method in class gedah.edah_IF.SketchSPane

mouseReleased(MouseEvent) - Method in class gedah.edah_IF.SketchSPane

N

NewGee() - Method in class gedah.edah_IF.edahBuilder

NewGee(C_Gee) - Method in class gedah.edah_IF.edahBuilder

nodeSize - Variable in class gedah.edah_IF.edahArchi

P

paint(Graphics) - Method in class gedah.edah_IF.SketchSPane

R

RefreshIFA() - Method in class gedah.edah_IF.IFattr

RefreshIFem() - Method in class gedah.edah_IF.IFem

RefreshIFgee() - Method in class gedah.edah_IF.IFgee

RefreshShowEM() - Method in class gedah.edah_IF.showEM

RefreshShowEM_CA() - Method in class gedah.edah_IF.showEM

RefreshShowEM_GA() - Method in class gedah.edah_IF.showEM

rootLevelP - Variable in class gedah.edah_IF.edahBuilder

run() - Method in class gedah.edah_IF.edahArchi

run() - Method in class gedah.edah_IF.edahBuilder

S

SaveAttr() - Method in class gedah.edah_IF.IFattr

SaveGee() - Method in class gedah.edah_IF.IFgee

SaveGeesDB(C_GEMI) - Method in class gedah.edah_IF.edahDB

showEM - Class in gedah.edah_IF

showEM() - Constructor for class gedah.edah_IF.showEM

showEM(C_EM) - Constructor for class gedah.edah_IF.showEM

ShowStructure() - Method in class gedah.edah_IF.edahBuilder

 170

SketchSPane - Class in gedah.edah_IF

SketchSPane() - Constructor for class gedah.edah_IF.SketchSPane

start() - Method in class gedah.edah_IF.edahArchi

start() - Method in class gedah.edah_IF.edahBuilder

stop() - Method in class gedah.edah_IF.edahArchi

stop() - Method in class gedah.edah_IF.edahBuilder

T

tablesStr - Static variable in class gedah.edah_IF.edahDB

TestGEM(int) - Method in class gedah.edah_IF.edahArchi

threadInterval - Variable in class gedah.edah_IF.edahArchi

threadInterval - Variable in class gedah.edah_IF.edahBuilder

titleNameStr - Static variable in class gedah.edah_IF.edahArchi

titleNameStr - Static variable in class gedah.edah_IF.edahBuilder

topButLeng - Variable in class gedah.edah_IF.edahArchi

topButStr - Static variable in class gedah.edah_IF.edahArchi

topButStr - Static variable in class gedah.edah_IF.IFgee

topCheckB - Variable in class gedah.edah_IF.edahArchi

topP - Variable in class gedah.edah_IF.edahArchi

topP - Variable in class gedah.edah_IF.edahBuilder

U

UpdateBound(int, int, int, int) - Method in class gedah.edah_IF.SketchSPane

UpdateFromStructure() - Method in class gedah.edah_IF.edahBuilder

UpdateIFem() - Method in class gedah.edah_IF.IFem

UpdateIFgee(C_Gee) - Method in class gedah.edah_IF.IFgee

UpdateShowEM() - Method in class gedah.edah_IF.showEM

UpdateShowEM_CA() - Method in class gedah.edah_IF.showEM

UpdateShowEM_GA() - Method in class gedah.edah_IF.showEM

W

width - Variable in class gedah.edah_IF.edahArchi

wMin - Variable in class gedah.edah_IF.edahArchi

wP1 - Variable in class gedah.edah_IF.edahArchi

X

xP1 - Variable in class gedah.edah_IF.edahArchi

xStroke - Variable in class gedah.edah_IF.SketchSPane

Y

yInterval - Variable in class gedah.edah_IF.edahArchi

yOffset - Variable in class gedah.edah_IF.edahArchi

yP1 - Variable in class gedah.edah_IF.edahArchi

yStroke - Variable in class gedah.edah_IF.SketchSPane

yTopOffset - Variable in class gedah.edah_IF.edahArchi

A.3 Second Example: The 2D Pattern Generation System

The second application example, a 2D Pattern Generation and Matching system,

is implemented in the Java package ��������� and is embedded with the GED

 171

kernel package �����. Figure A.6 shows the block diagram of this implemented

package, followed by listing the summary of this package (including the classes

implemented in the package, the class inheritance in Java class hierarchy, and the

list of major variables, constructors and methods).

Figure A.6: Block diagrams of the implemented ����������package.

Classes in ���������

C_GCAEM gaGUI

ca2D_Plant pureGA

gaca

Class Hierarchy For Package ���������

o java.lang.Object
o C_EM

o edah_gaca.C_GCAEM
o java.awt.Component (implements java.awt.image.ImageObserver,

java.awt.MenuContainer, java.io.Serializable)
o java.awt.Container

o java.awt.Panel(implements javax.accessibility.Accessible)
o java.applet.Applet

o javax.swing.JApplet(implements
javax.accessibility.Accessible,
javax.swing.RootPaneContainer)

o edah_gaca.ca2D_Plant
(implements
java.awt.event.ActionListener,

 172

java.awt.event.ItemListener,
java.lang.Runnable)

o edah_gaca.gaca (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o edah_gaca.gaGUI (implements
java.awt.event.ActionListener,
java.awt.event.ItemListener)

o edah_gaca.pureGA

List of major variables, constructors and methods in ���������

A

actionPerformed(ActionEvent) - Method in class edah_gaca.ca2D_Plant

actionPerformed(ActionEvent) - Method in class edah_gaca.gaca

actionPerformed(ActionEvent) - Method in class edah_gaca.gaGUI

B

bottomInfoStr - Static variable in class edah_gaca.gaGUI

C

C_GCAEM - Class in edah_gaca

C_GCAEM() - Constructor for class edah_gaca.C_GCAEM

CA_2M_NONTOTAL - Static variable in class edah_gaca.gaca

CA_2M_SEMI - Static variable in class edah_gaca.gaca

CA_2M_TOTAL - Static variable in class edah_gaca.gaca

CA_4H_NONTOTAL - Static variable in class edah_gaca.gaca

CA_4H_SEMI - Static variable in class edah_gaca.gaca

CA_4H_TOTAL - Static variable in class edah_gaca.gaca

CA_NONTOTAL - Static variable in class edah_gaca.gaca

CA_SEMI - Static variable in class edah_gaca.gaca

CA_TOTAL - Static variable in class edah_gaca.gaca

CA1D2Dbinary(double[]) - Method in class edah_gaca.pureGA

ca2D_Plant - Class in edah_gaca

ca2D_Plant() - Constructor for class edah_gaca.ca2D_Plant

ca2D_Plant(String, int[][]) - Constructor for class edah_gaca.ca2D_Plant

ca2dLeng - Static variable in class edah_gaca.gaca

CA2MNonTotal(int[], int[][], int[]) - Static method in class edah_gaca.C_GCAEM

CA2MSemi(int[], int[][], int[]) - Static method in class edah_gaca.C_GCAEM

CA2MTotal(int[], int[][], int[]) - Static method in class edah_gaca.C_GCAEM

CA4HNonTotal(int[], int[][]) - Static method in class edah_gaca.C_GCAEM

CA4HSemi(int[], int[][]) - Static method in class edah_gaca.C_GCAEM

CA4HTotal(int[], int[][]) - Static method in class edah_gaca.C_GCAEM

caLeng - Static variable in class edah_gaca.gaca

CAMap(double[], double) - Method in class edah_gaca.pureGA

CANonTotal(int[], int[][]) - Static method in class edah_gaca.C_GCAEM

caPlant - Variable in class edah_gaca.gaca

caRange - Static variable in class edah_gaca.gaca

CASemi(int[], int[][]) - Static method in class edah_gaca.C_GCAEM

CATotal(int[], int[][]) - Static method in class edah_gaca.C_GCAEM

 173

caTypeStr - Static variable in class edah_gaca.gaca

copyCurrentToLastGen() - Method in class edah_gaca.pureGA

D

DatabaseAction(int) - Method in class edah_gaca.gaca

DrawFractal() - Method in class edah_gaca.ca2D_Plant

E

edah_gaca - package edah_gaca

EvolutionAction(int) - Method in class edah_gaca.gaca

evolveBStr - Static variable in class edah_gaca.gaGUI

ExhaustiveMatching() - Method in class edah_gaca.gaca

ExhaustiveMatchingOnce() - Method in class edah_gaca.gaca

exhaustiveRunning - Variable in class edah_gaca.gaca

F

FileAction(int) - Method in class edah_gaca.gaca

G

gaca - Class in edah_gaca

gaca() - Constructor for class edah_gaca.gaca

gaGUI - Class in edah_gaca

gaGUI(gaca) - Constructor for class edah_gaca.gaGUI

gaRunning - Variable in class edah_gaca.gaca

GCAOnce(int[], int[][], int, int[]) - Static method in class edah_gaca.C_GCAEM

GetMatchingError() - Method in class edah_gaca.gaca

global_errorLimit - Static variable in class edah_gaca.gaca

global_TRBest - Static variable in class edah_gaca.gaca

global_TRMinError - Static variable in class edah_gaca.gaca

global_TRval - Static variable in class edah_gaca.gaca

GUIAction(int) - Method in class edah_gaca.gaca

guiNameStr - Variable in class edah_gaca.ca2D_Plant

guiTypeStr - Variable in class edah_gaca.ca2D_Plant

H

HelpAction(int) - Method in class edah_gaca.gaca

I

init() - Method in class edah_gaca.ca2D_Plant

init() - Method in class edah_gaca.gaGUI

InitPop() - Method in class edah_gaca.pureGA

IsExit() - Method in class edah_gaca.gaca

itemStateChanged(ItemEvent) - Method in class edah_gaca.ca2D_Plant

itemStateChanged(ItemEvent) - Method in class edah_gaca.gaca

itemStateChanged(ItemEvent) - Method in class edah_gaca.gaGUI

K

kochBasis - Static variable in class edah_gaca.ca2D_Plant

L

leftButStr - Static variable in class edah_gaca.gaca

M

main(String[]) - Static method in class edah_gaca.ca2D_Plant

 174

main(String[]) - Static method in class edah_gaca.gaca

main(String[]) - Static method in class edah_gaca.gaGUI
MakeCA2DFractal(int, double, double, double, double, double, Random) - Method in class
edah_gaca.ca2D_Plant
MakeCA2DFractal_OLD(int, double, double, double, double, double, Random) - Method in class
edah_gaca.ca2D_Plant
MakeLeaves(int, double, double, double, double, double, Random) - Method in class
edah_gaca.ca2D_Plant

matchingCA2D - Variable in class edah_gaca.gaca

menuBar - Variable in class edah_gaca.gaca

menuBarStr - Static variable in class edah_gaca.gaca

menuItemStr - Static variable in class edah_gaca.gaca

mItem - Variable in class edah_gaca.gaca

P

P2IntIgnite1D() - Method in class edah_gaca.gaca

P2IntMatching2D() - Method in class edah_gaca.gaca

pureGA - Class in edah_gaca

pureGA(int, double, double, int, double, double, int[][]) - Constructor for class edah_gaca.pureGA

R

ReconstructCA(int) - Method in class edah_gaca.gaGUI

repLevel - Variable in class edah_gaca.ca2D_Plant

ResetBottomInfoLabel() - Method in class edah_gaca.gaGUI

run() - Method in class edah_gaca.ca2D_Plant

run() - Method in class edah_gaca.gaca

runningGCA - Variable in class edah_gaca.gaca

S

SelectedExhaustiveMatching() - Method in class edah_gaca.gaca

SelectedExhaustiveMatchingOnce() - Method in class edah_gaca.gaca

selectedExhaustRun - Variable in class edah_gaca.gaca

splitDivSize - Variable in class edah_gaca.gaca

start() - Method in class edah_gaca.ca2D_Plant

start() - Method in class edah_gaca.gaca

stop() - Method in class edah_gaca.ca2D_Plant

stop() - Method in class edah_gaca.gaca

subWinSplitP - Variable in class edah_gaca.gaca

T

tabbedPane - Variable in class edah_gaca.gaca

topLStr - Static variable in class edah_gaca.gaGUI

TRAddOne() - Method in class edah_gaca.gaca

trMAX - Static variable in class edah_gaca.gaca

trMAXlist - Static variable in class edah_gaca.gaca

U

Update(pureGA) - Method in class edah_gaca.gaGUI

UpdateAllGCA() - Method in class edah_gaca.gaGUI

UpdateBottomInfoLabel() - Method in class edah_gaca.gaGUI

UpdateChromP() - Method in class edah_gaca.gaGUI

UpdateResult() - Method in class edah_gaca.gaca

 175

A.4 Third Example: The Wine-Glass Design System

The third application example, a wine-glass design system, is implemented in the

package ������� and is embedded with the GED kernel package �����. The

wine-glass design example is further enhanced by integrating an external CAD

tool, MicroStation. This enhanced system is implemented in a Microstation jmdl

package ��
���� within the CAD tool MicroStation platform and is embedded

with both the package ������and the pure java wine glass package��������.

A.4.1 Package �������: the Pure Java-Based Wine-Glass System

Figure A.7 shows the block diagram of this implemented package �������,

followed by listing the summary of this package (including the classes

implemented in the package, the class inheritance in Java class hierarchy, and the

list of major variables, constructors and methods).

Figure A.7: Block diagrams of the implemented ��������package.

Classes in �����
�

DrawISpline InterpoSpline

edfDataBase ScrobarApplet

edfMidi SketchApplet

gaSelectHist wg

GemApplet

 176

Class Hierarchy For Package �����
�
o java.lang.Object

o java.awt.Component (implements java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable)

o java.awt.Container
o java.awt.Panel(implements javax.accessibility.Accessible)

o java.applet.Applet
o javax.swing.JApplet(implements

javax.accessibility.Accessible,
javax.swing.RootPaneContainer)
o edah_wg.DrawISpline
o edah_wg.edfDataBase
o edah_wg.edfMidi (implements

java.lang.Runnable)
o edah_wg.gaSelectHist

(implements
java.awt.event.ItemListener)

o edah_wg.InterpoSpline
(implements
java.awt.event.ActionListener,
java.awt.event.ItemListener)

o edah_wg.ScrobarApplet
(implements
java.awt.event.AdjustmentListener)

o edah_wg.SketchApplet
o edah_wg.wg (implements

java.awt.event.ActionListener,
java.awt.event.ItemListener,
java.lang.Runnable)

o edahArchi
o edah_wg.GemApplet (implements java.awt.event.ActionListener,

java.awt.event.ItemListener, java.lang.Runnable)

List of major variables, constructors and methods in �����
�

A

absLayerStr - Static variable in class edah_wg.wg

actionPerformed(ActionEvent) - Method in class edah_wg.InterpoSpline

actionPerformed(ActionEvent) - Method in class edah_wg.wg

adjustmentValueChanged(AdjustmentEvent) - Method in class edah_wg.ScrobarApplet

C

cbPanel - Variable in class edah_wg.gaSelectHist

close() - Method in class edah_wg.edfMidi

D

dbMaxStr - Static variable in class edah_wg.DrawISpline

dbMaxStr - Static variable in class edah_wg.edfDataBase

dbMinStr - Static variable in class edah_wg.DrawISpline

dbMinStr - Static variable in class edah_wg.edfDataBase

dbNameStr - Static variable in class edah_wg.DrawISpline

dbNameStr - Static variable in class edah_wg.edfDataBase

dbNameTable - Static variable in class edah_wg.edfDataBase

dbStdName - Static variable in class edah_wg.DrawISpline

drawIS - Variable in class edah_wg.InterpoSpline

 177

DrawISpline - Class in edah_wg

DrawISpline() - Constructor for class edah_wg.DrawISpline

DrawISpline(Point[], float, Point[], Point[]) - Constructor for class edah_wg.DrawISpline

DrawISpline(wg) - Constructor for class edah_wg.DrawISpline

DrawWineGlass(Point[], float) - Method in class edah_wg.DrawISpline

E

edah_wg - package edah_wg

edfAllNotesOff(int) - Method in class edah_wg.edfMidi

edfDataBase - Class in edah_wg

edfDataBase() - Constructor for class edah_wg.edfDataBase

edfDataBase(Point[][]) - Constructor for class edah_wg.edfDataBase

edfMidi - Class in edah_wg

edfMidi() - Constructor for class edah_wg.edfMidi

edfMidi(wg) - Constructor for class edah_wg.edfMidi

edfNoteOn(int, int, int) - Method in class edah_wg.edfMidi

edfProgChange(int, int) - Method in class edah_wg.edfMidi

emAttached - Variable in class edah_wg.gaSelectHist

F

fnCheckB - Variable in class edah_wg.wg

fnStr - Static variable in class edah_wg.wg

FormGAWineGlass(Point[], float, Point[], float) - Method in class edah_wg.DrawISpline

fractalGUI - Variable in class edah_wg.wg

G

gaIS - Variable in class edah_wg.gaSelectHist

gaPts - Variable in class edah_wg.gaSelectHist

gaSelectCB - Variable in class edah_wg.gaSelectHist

gaSelectHist - Class in edah_wg

gaSelectHist() - Constructor for class edah_wg.gaSelectHist

gaSelectHist(C_EM, DrawISpline) - Constructor for class edah_wg.gaSelectHist

gaSHBase - Variable in class edah_wg.gaSelectHist

gaSHPanel - Variable in class edah_wg.gaSelectHist

gaSHScrollP - Variable in class edah_wg.gaSelectHist

GemApplet - Class in edah_wg

GemApplet() - Constructor for class edah_wg.GemApplet

GemApplet(wg) - Constructor for class edah_wg.GemApplet

GenCPts(Point[]) - Method in class edah_wg.DrawISpline

GenerateIS() - Method in class edah_wg.DrawISpline

GenerateMidi(Point[][]) - Method in class edah_wg.edfMidi

GenSplinePoly() - Method in class edah_wg.DrawISpline

GenTangVector(Point[]) - Method in class edah_wg.DrawISpline

GetDrawCPts() - Method in class edah_wg.DrawISpline

GetDrawIPts() - Method in class edah_wg.DrawISpline

GetGAPts(C_Gee) - Method in class edah_wg.gaSelectHist

I

InterpoSpline - Class in edah_wg

InterpoSpline() - Constructor for class edah_wg.InterpoSpline

InterpoSpline(wg) - Constructor for class edah_wg.InterpoSpline

InterpoSpline(wg, C_Gee) - Constructor for class edah_wg.InterpoSpline

 178

invertOffSetH - Variable in class edah_wg.DrawISpline

invertOffSetW - Variable in class edah_wg.DrawISpline

iPts - Variable in class edah_wg.DrawISpline

iS - Variable in class edah_wg.edfDataBase

itemStateChanged(ItemEvent) - Method in class edah_wg.gaSelectHist

itemStateChanged(ItemEvent) - Method in class edah_wg.InterpoSpline

itemStateChanged(ItemEvent) - Method in class edah_wg.wg

itemStr - Static variable in class edah_wg.ScrobarApplet

L

labelStr - Static variable in class edah_wg.InterpoSpline

labelStr - Static variable in class edah_wg.SketchApplet

labelTipStr - Static variable in class edah_wg.InterpoSpline

M

main(String[]) - Static method in class edah_wg.DrawISpline

main(String[]) - Static method in class edah_wg.edfDataBase

main(String[]) - Static method in class edah_wg.edfMidi

main(String[]) - Static method in class edah_wg.gaSelectHist

main(String[]) - Static method in class edah_wg.GemApplet

main(String[]) - Static method in class edah_wg.InterpoSpline

main(String[]) - Static method in class edah_wg.ScrobarApplet

main(String[]) - Static method in class edah_wg.SketchApplet

main(String[]) - Static method in class edah_wg.wg

MakeFeatureGene(int[]) - Method in class edah_wg.ScrobarApplet

minPanelSize - Variable in class edah_wg.gaSelectHist

O

open() - Method in class edah_wg.edfMidi

orgISAttached - Variable in class edah_wg.gaSelectHist

P

paint(Graphics) - Method in class edah_wg.DrawISpline

paint(Graphics) - Method in class edah_wg.edfDataBase

R

RefreshGaSH() - Method in class edah_wg.gaSelectHist

ResetIS() - Method in class edah_wg.DrawISpline

ResetScrobar() - Method in class edah_wg.ScrobarApplet

run() - Method in class edah_wg.edfMidi

run() - Method in class edah_wg.GemApplet

run() - Method in class edah_wg.wg

S

scaleF - Variable in class edah_wg.gaSelectHist

ScrobarApplet - Class in edah_wg

ScrobarApplet() - Constructor for class edah_wg.ScrobarApplet

ScrobarApplet(wg) - Constructor for class edah_wg.ScrobarApplet

ScrobarApplet(wg, C_Gee) - Constructor for class edah_wg.ScrobarApplet

SetDrawCPts(Point[]) - Method in class edah_wg.DrawISpline

SetDrawIPts(Point[]) - Method in class edah_wg.DrawISpline

SetGAFitness() - Method in class edah_wg.gaSelectHist

ShowPts(Graphics2D) - Method in class edah_wg.DrawISpline

 179

SketchApplet - Class in edah_wg

SketchApplet() - Constructor for class edah_wg.SketchApplet

SketchApplet(wg, C_Gee) - Constructor for class edah_wg.SketchApplet

start() - Method in class edah_wg.edfMidi

start() - Method in class edah_wg.wg

stop() - Method in class edah_wg.edfMidi

stop() - Method in class edah_wg.wg

subWinStr - Static variable in class edah_wg.wg

U

UpdateDB() - Method in class edah_wg.edfDataBase

UpdateResult() - Method in class edah_wg.wg

W

wg - Class in edah_wg

wg() - Constructor for class edah_wg.wg

wgDbOut - Variable in class edah_wg.wg

wgIs2 - Variable in class edah_wg.wg

A.4.2 Package ��
����: the Wine-Glass System with External CAD Tool

Figure A.8 shows the block diagram of this implemented package ��
����,

followed by listing the summary of this package (including the classes

implemented in the package, the class inheritance in Java class hierarchy, and the

list of major variables, constructors and methods).

Figure A.8: Block diagrams of the implemented ��
�����package.

Class in
������

wgm

 180

 Class Hierarchy For Package
������
o java.lang.Object

o java.awt.Component (implements java.awt.image.ImageObserver,
java.awt.MenuContainer, java.io.Serializable)

o java.awt.Container
o java.awt.Panel (implements

javax.accessibility.Accessible)
o java.applet.Applet

o javax.swing.JApplet (implements
javax.accessibility.Accessible,
javax.swing.RootPaneContainer)

o wgmedah.wgm (implements
java.awt.event.ActionListener,
java.lang.Runnable)

List of major variables, constructors and methods in
������

A

actionPerformed(ActionEvent) - Method in class wgmedah.wgm

D

DrawMStation(int[][]) - Method in class wgmedah.wgm

DrawWineGlassMStation(Point[][], boolean) - Method in class wgmedah.wgm

G

GenerateAllOnce() - Method in class wgmedah.wgm

I

InvertingPts(Point[][]) - Method in class wgmedah.wgm

M

main(String[]) - Static method in class wgmedah.wgm

msTBarStr - Static variable in class wgmedah.wgm

N

NewToolBar() - Method in class wgmedah.wgm

R

run() - Method in class wgmedah.wgm

S

start() - Method in class wgmedah.wgm

stop() - Method in class wgmedah.wgm

U

UpdateBottleOnce(boolean) - Method in class wgmedah.wgm

UpdateBowlOnce(boolean) - Method in class wgmedah.wgm

UpdatePlateOnce(boolean) - Method in class wgmedah.wgm

UpdateWGOnce(boolean) - Method in class wgmedah.wgm

W

wgm - Class in wgmedah

wgm() - Constructor for class wgmedah.wgm

wgmedah - package wgmedah

~ END ~

	theses_copyright_undertaking
	b22338093

