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Abstract

The continuous time optimal consumption and investment problem with path-dependent

reference has been extensively investigated by incorporating various model general-

izations in the past half-century. On the other hand, optimal life insurance under

utility maximization has become a mainstream research topic among academics and

practitioners. Different problem formulations and characterizations of consumption

behavior pose exciting challenges and opportunities for stochastic control and analy-

sis, coupled with new modelling and computing implementation. The thesis consists

of three parts solving different important stochastic control problems, to interpret

and guide the consumption, investment, and life insurance premium in the market,

either theoretically or computationally.

Part I focuses on an optimal consumption problem for a loss-averse agent with

reference to the past consumption maximum. To account for loss aversion on rel-

ative consumption, an S-shaped utility is adopted that measures the difference be-

tween the nonnegative consumption rate and a fraction of the historical spending

peak. We consider the concave envelope of the realization utility with respect to

consumption, allowing us to focus on an auxiliary HJB equation on the strength of

the concavification principle and dynamic programming arguments. By applying the

dual transform and smooth-fit conditions, the auxiliary HJB variational inequality

is solved in closed-form piecewisely, and some thresholds of the wealth variable are

obtained. The optimal consumption and investment control of the original problem
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can be derived analytically in piecewise feedback form. Rigorous verification proofs

on optimality and concavification principle are provided. Some numerical sensitivity

analyses and financial implications are also presented.

Part II focuses on a life-cycle optimal portfolio-consumption problem when the

consumption performance is measured by a shortfall aversion preference under an

additional drawdown constraint on the consumption rate. Meanwhile, the agent also

dynamically chooses her life insurance premium to maximize the expected bequest

at death time. By using dynamic programming arguments and the dual transform,

we solve the HJB variational inequality explicitly in a piecewise form across different

regions and derive some thresholds of the wealth variable for the piecewise optimal

feedback controls. Taking advantage of our analytical results, we are able to numeri-

cally illustrate some quantitative impacts on optimal consumption and life insurance

by model parameters and discuss their financial implications.

Part III focuses on an optimal consumption and life insurance problem under

habit formation preference when the return and volatility of the stock price dynam-

ics are unknown. An offline reinforcement learning algorithm is proposed based on a

policy improvement result and the evaluation of the policy by minimizing the mar-

tingale loss. We illustrate by some simulated examples that the algorithm provides

satisfactory performance after combing it with the estimation of volatility. In real

data analysis, it is also shown that the proposed algorithm outperforms the conven-

tional least square estimation method on the unknown return and volatility.

Key words: Life insurance, loss aversion, optimal consumption, shortfall aversion,

path-dependent consumption, piecewise feedback control, reinforcement learning
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Chapter 1

Introduction

1.1 Introduction

Optimal consumption-investment via utility maximization has been one of the fun-

damental research topics in mathematical finance. In the seminal works of Merton

(1969, 1975), the feedback optimal investment and consumption strategy was first

derived by resorting to dynamic programming arguments and the solution of the as-

sociated HJB equation. Since then, abundant influential results and methodologies

have been rapidly developed to accommodate more general financial market models,

trading constraints and other factors in decision making. For instance, Merton’s

problem has been extended with income (Zeldes (1989), Wang (2009)), assets follow-

ing diffusion process (Cox and Huang (1989)), stochastic differential utility (Schroder

and Skiadas (1999)), transaction costs (Liu (2004)), and drawdown constraints on

wealth (Elie and Touzi (2008)).

Some empirical studies have argued that the observed consumption is usually ex-

tremely smooth (Campbell and Deaton (1989)), which cannot be reconciled by the

optimal solution of some time-separable utility maximization problems. To partially

explain the smooth consumption behavior, it has been suggested in the literature to

take into account the past consumption decision in the measurement of the utility

function. By considering the relative consumption with respect to a reference that
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depends on past consumption, striking changes in consumption can essentially be

ruled out from the optimal solution. Time nonseparable preferences have gained

popularity in modelling consumption performance thanks to their capability to ex-

plain the observed consumption smoothness and equity premium puzzle. In the

literature, there are two major types of time nonseparable preferences involving the

information of the past consumption path.

The first type is the so-called habit formation preference, in which utility is gen-

erated by the difference between the consumption rate and the weighted integral of

past consumption control. Habit formation preference has been widely studied for

both discrete-time problems (Abel (1990)) and continuous-time problems (Constan-

tinides (1990), Detemple and Zapatero (1992)). Along this direction, some recent

developments can be found in Englezos and Karatzas (2009), Yang and Yu (2022)

and references therein. One notable advantage of the habit formation preference is

its linear dependence on consumption, which enables one to consider the difference

between the consumption rate and habit formation as an auxiliary control in a fic-

titious market model so that the path-dependence can be hidden. This insightful

transform, first observed in Schroder and Skiadas (2002), significantly reduces the

complexity of the problem. The martingale and duality approach can be applied

by considering the adjusted martingale measure density process essentially based on

Fubini’s theorem; see Detemple and Karatzas (2003) and Yu (2015, 2017). See also

Angoshtari et al. (2022), where habit formation is formulated as a control constraint.

The second type of preference chooses the past consumption maximum as the

reference level. Indeed, a large expenditure might signal the turning point of one’s

standard of living and is usually a decision after careful thought and consideration.

Such historical high spending moments are consequent on adequate wealth accumu-

lation and often give rise to some long-term subsequent consumption decisions such

as maintenance, repairs and upgrade. To take into account the impacts of the past
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consumption maximum, some previous studies focus on the Merton optimal con-

sumption problem incorporated with the ratcheting constraint (Dybvig (1995)) and

drawdown constraint (Arun (2012), Angoshtari et al. (2019)). Meanwhile, it is also

of great importance to understand the consumption behavior when the past spend-

ing maximum appears inside the utility. Recently, Deng et al. (2022) adopted the

formulation from the habit formation preference where the utility is defined on the

difference between the consumption rate and a proportion of the historical consump-

tion maximum. One key feature in Deng et al. (2022) is their allowance of the agent

to strategically consume below the reference level due to the use of exponential utility.

We also note some fruitful studies on the impact of the past consumption maximum

when a ratcheting or a drawdown control constraint was considered under the stan-

dard time separable utility on consumption; for example, see Jeon and Park (2021),

Jeon and Oh (2022). Although the running maximum term complicates the objective

functional, the optimal consumption problems can be approached successfully under

the umbrella of dynamic programming. Nevertheless, from the behavioral finance

perspective, one shortcoming in these works is their incapability to distinguish an

agent’s different feelings on the same-sized overperformance and falling behind by

consumption. In other words, the psychological loss aversion on relative consumption

cannot be reflected in these problems.

Prospect theory utility (Tversky and Kahneman (1992), Kahneman and Tversky

(2013)) has been actively applied in behavioral finance dominantly on terminal wealth

optimization, see among Berkelaar et al. (2004), Jin and Yu Zhou (2008), He and

Zhou (2011, 2014), He and Yang (2019), He and Strub (2022) and references therein.

In contrast with neoclassical expected utility theory with classical smooth utility

function, prospect theory suggests that the attitudes of utility gains and losses defined

are different. Only a handful of papers can be found to encode that the agent may

hurt more when consumption falls below a reference, especially when the reference
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level is endogenously generated by past decisions. Recently, Curatola (2015, 2017)

studied a utility maximization problem on consumption for a loss averse agent under

an S-shaped utility when the reference is chosen as a specific integral of the past

consumption process. Later, van Bilsen et al. (2020) considered a similar problem

under a two-part utility when the reference process is defined as the conventional

consumption habit formation process. By imposing some artificial lower bounds

on consumption control, the martingale and duality approach together with the

concavification principle can be employed. Inspired by prospect theory, Guasoni et al.

(2020) posited a shortfall aversion preference that reflects the higher utility loss of

spending cuts from a reference than the utility gain from similar spending increases.

Liang et al. (2022) generalized the preference in Deng et al. (2022) such that the

risk aversion differs when the consumption falls below the reference process and an

additional drawdown constraint was enforced. However, to the best of our knowledge,

none of the literature utilizes past spending maximum to portray reference levels of

loss aversion.

Since the seminal work of Yaari (1965), utility-based life-cycle models have be-

come attractive among academics in quantifying the impact of bequest motives, risk

aversion, and social security on the decision to purchase life insurance. Richard

(1975) proposed the optimal dynamic life insurance problem by combining the port-

folio and consumption control under a given distribution of a bounded death time.

Pliska and Ye (2007) further studied a similar optimal life insurance and consump-

tion problem for an income earner when the lifetime random variable is unbounded.

Later, Ye (2007) extended the model in Pliska and Ye (2007) by considering the dy-

namic portfolio in a risky asset. Huang and Milevsky (2008) solved a portfolio choice

problem that includes mortality-contingent claims and labor income under general

hyperbolic absolute risk aversion (HARA) utilities. Duarte et al. (2011) extended Ye

(2007) to allow for multiple risky assets. Ekeland et al. (2012) focused on the port-
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folio management problem for an investor with finite time horizon who is allowed to

consume and take out life insurance. Recently, Wei et al. (2020) solved the problem

when a couple aims to optimize their consumption, portfolio and life-insurance pre-

mium strategies by maximizing the family objective until retirement. Some studies

on optimal life insurance in the context of consumption habit-formation can also be

found, for example, in Ben-Arab et al. (1996) and Boyle et al. (2022). Only sporadic

optimal consumption behavior and life insurance has been studied, and none of the

literature considers optimal life insurance with consumption behavior characterized

by past spending maximum.

Traditional model-based studies in mathematical finance provide comprehensive

theoretical results to illustrate the agent’s economic behavior, however, the model-

based assumption may not be satisfied most of the time. In practice, before mak-

ing decisions based on beliefs about future market performance characterized by

a parametric stochastic differential equation, one needs to determine the view by

observation and experience (Markowitz (1952)). Some machine learning method-

s have been studied and applied to estimate the market model, for instance, the

maximum-likelihood method. However, although the maximum-likelihood method

provides almost surely estimation for diffusion coefficients on a time interval (Doob

(1953), Genon-Catalot and Jacod (1994)), it is generally too ambitious to expect an

effective estimator for translation parameters. Therefore, some more direct methods

are expected to overcome the potential error generated by traditional estimation for

the market. Reinforcement learning (RL) is currently one of the most active research

direction in machine learning. In the RL algorithm, the agent does not pre-specify a

known model but, instead, gradually learns the best (or near-best) strategies through

trial and error on the basis of existing data (offline) or future data (online). The

discrete-time RL technique has been studied and explored to solve large-scale prob-

lems during these decades. Recently, RL in continuous-time has become attractive to
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researchers. Wang et al. (2020) proposed a continuous-time framework of reinforce-

ment learning. The continuous-time framework was extended for the mean-variance

portfolio selection problem (Wang and Zhou (2020)) and for corresponding RL tech-

niques: policy evaluation (Jia and Zhou (2022a)), policy gradient (Jia and Zhou

(2022b)), and q-learning algorithm (Jia and Zhou (2022c)). Some other scope of RL

in continuous-time linear quadratic problems can also be found, for instance, see Li

et al. (2022). However, to the best of our knowledge, none of the literatures has

focused on the RL technique to obtain optimal consumption and life insurance.

The thesis composes three parts to solve several important optimal consumption

investment problems with life insurance under different consumption path prefer-

ences. In particular, part I and part II focus on consumption behavior inspired

by prospect theory, and use similar techniques to address challenges posed by past

spending maximum and nonlinear differential equations. The third part focuses on

the problem of data-driven consumer behavior with reference to habit formation by

proposing a reinforcement learning algorithm.

Part I focuses on a loss-averse consumer, who invests in a complete market. Our

primary scientific interest is to examine the optimal consumption behavior and in-

vestment with two-part utility in prospect theory. We solve the optimal consumption

behavior and investment choice semi-analytically with the reference level generated

by the past consumption peak. In the literature, there are rich works studying opti-

mal consumption and investment for a loss-averse individual, in which the reference

level is given by the exponentially weighted past consumption. However, no relat-

ed works have considered the reference level given by the past spending maximum,

which is inspired by the peak-end rule. Therefore a direct solution to optimal con-

sumption behavior and investment choice is important for individuals who feel great

pain when remembering happy times in misery.

Part II focuses on a shortfall-averse consumer who invests in the market and
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purchases life insurance simultaneously. A drawdown constraint on consumption is

considered to highlight both the individual’s psychologistic and substantial needs.

Our contribution lies in solving the life-cycle optimal portfolio-consumption problem

explicitly when the preference is measured by a shortfall aversion preference under

an additional drawdown constraint on the consumption rate, and the expected be-

quest at the death time. There are many existing studies on dynamic consumption,

investment, and life insurance control but path-dependent consumption behavior is

sporadically discussed. Therefore, an explicit result for optimal consumption behav-

ior, investment choice and life insurance purchase is needed for related self-financing

individuals.

Part III is motivated by the reality that one cannot have all the knowledge of the

market. We focus on a consumer investing in the market and purchasing life insur-

ance under conventional habit formation preference. Her consumption exceeds the

reference level treated as standard of living, which is characterized by a backward-

looking updating rule used in the habit formation literature since Constantinides

(1990). Without enough knowledge of the market, the scientific problem is to com-

pute the optimal consumption, investment and life insurance purchase based on

previous market data. Our contribution lies in constructing a reinforcement learning

algorithm to solve the control problem without knowledge of the risky asset in the

market. Practical strategies and detailed computation procedures to obtain the as-

sociated optimal consumption behavior, investment and life insurance purchase seem

necessary for the individual.

1.2 Organization of the thesis

The remainder of the thesis is organized as follows.

Chapter 2 summarizes the notations used and important lemmas cited and market

7



models used in the thesis.

Chapter 3 investigates the optimal consumption behavior of a loss-averse agen-

t who feels differently when the consumption is overperforming and falling below

a proportion to the past spending maximum. We obtain the optimal portfolio-

consumption semi-analytically by dynamic programming arguments and prove the

verification theorem.

Chapter 4 works with the shortfall-aversion preference incorporated with the

bequest provided by life insurance. We derive the optimal consumption, investment

and life insurance purchase explicitly by dynamic programming arguments and prove

the verification theorem.

Chapter 5 develops a reinforcement learning algorithm for optimal consumption

behavior, investment and life insurance under habit formation by proposing a rein-

forcement learning algorithm. A martingale loss is minimized to evaluate the policy,

and the policy is improved by combining a policy improvement theorem and existing

robust statistical estimation. We establish the convergence of the policy improvement

algorithm.

Chapter 6 concludes and discusses potential future works.

Appendix A shows all the proofs.

Chapters 3, 4, and 5 are based on manuscripts Li et al. (2021), Li et al. (2023b),

and Li et al. (2023a), respectively. Chapter 3 is under review, Chapter 4 is published,

and Chapter 5 is prepared to be submitted.
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Chapter 2

Preliminary

In this chapter, we first give a brief introduction to the fundamental mathemati-

cal concepts, list some necessary results that are used throughout the thesis, and

introduce the market model through the thesis.

In the thesis, we use the following notation:

2.1 Probability

We first recall the definition of σ-field and probability space.

Definition 1. Let a set Ω be nonempty, and let F Ă 2Ω (2Ω is the set of all subsets

in Ω), called a class, be nonempty. We call F a σ-field if

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Ω P F;

A,B P F ñ BzA P F ;

Ai P F , i “ 1, 2, ¨ ¨ ¨ ñ
8
ď

i“1

Ai P F .

Definition 2. Let Ω be a nonempty set and F a σ-field on Ω. Then pΩ,Fq is called

a measurable space. A point ω P Ω is called a sample. A map P : F Ñ r0, 1s is called

9



a probability measure on pΩ,Fq if

$

’

’

&

’

’

%

Pp∅q “ 0, PpΩq “ 1;

Ai P F , Ai
č

Aj “ ∅, i, j “ 1, 2, ¨ ¨ ¨ , i ‰ j,ñ P
ˆ 8
ď

i“1

Ai

˙

“

8
ÿ

i“1

PpAiq.

The triple pΩ,F ,Pq is called a probability space. Any A P F is called an event, and

PpAq represents the probability of event A. A set/event A P F is called a P-null

set/event if PpAq “ 0. A probability space pΩ,F ,Pq is said to be complete if for any

P-null set A P F , one has B P F whenever B Ă A.

Definition 3. Let pΩ,Fq and pΩ1,F 1q be two measurable spaces and X : Ω Ñ Ω1 be

a map. The map X is said to be F{F 1-measurable or simply measurable if f´1pF 1q “

F . We then call X an F{F 1-random variable, or simply a random variable if there

would be no confusion.

Definition 4. Next, let pΩ,F ,Pq be a probability space, pΩ1,F 1q a measurable space,

and X : Ω Ñ Ω1 a random variable. Then X induces a probability measure PX on

pΩ1,F 1q as follows:

PXpA1q :“ P ˝X´1
pA1q “ PpX P A1q, @A1 P F 1.

We call PX the distribution of the random variable X. Let us define Borel set BpΩq

as the smallest σ-field containing all open sets of Ω, then if pΩ1,F 1q “ pRm,BpRmqq,

PX can be uniquely determined by the following function:

F pxq “ F px1, ¨ ¨ ¨ , xmq :“ Ppω P Ω : Xipωq ď xi, 1 ď i ď mq.

We call F pxq the distribution function of X. Suppose the following integral exists:

ż

Ω

XpωqdPpωq “
ż

Rm
xdF pxq :“ ErXs,

then we say that X has the mean ErXs.
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2.2 Stochastic Processes

Definition 5. Let I be a nonempty index set and pΩ,F ,Pq a probability space. A

family tXt, t P Iu of random variables from pΩ,F ,Pq to Rm is called a stochastic

process. For any ω P Ω, the map t ÞÑ Xpt, ωq is called a sample path.

In what follows, we let I “ r0,8q. We shall interchangeably use tXt, t P

Iu, X¨, Xt, or even X to denote a stochastic process.

Next, for a given measurable space pΩ,Fq, we introduce a monotone family of

sub-σ-fields Ft Ă F , t P r0,8q. Here, by monotonicity we mean

Ft1 Ă Ft2 , 0 ď t1 ď t2.

Such a family is called a filtration. Set Ft` :“
Ş

sąt

Fs for any t P r0,8q, and Ft´ :“

Ť

săt

Fs for any t P r0,8q. If Ft` “ Ft (resp. Ft´ “ Ft), we say that tFtutě0 is

right (resp. left) continuous. Denoted by F “ tFtutě0, we call pΩ,F,Fq a filtered

measurable space and pΩ,F ,F,Pq a filtered probability space.

Definition 6. We say that pΩ,F ,F,Pq satisfies the usual condition if pΩ,F ,Pq is

complete, F0 contains all the P-null sets in F , and F is right continuous.

Definition 7. Let pΩ,F ,Fq be a filtered measurable space and Xt a process taking

values in a metric space pU, dq.

• The process Xt is said to be measurable if the map pt, ωq ÞÑ Xtpωq is pBr0,8qˆ

Fq{BpUq-measurable.

• The process Xt is said to be F-adapted if for all t P r0,8q, the map ω ÞÑ Xtpωq

is Ft{BpUq-measurable.

• The process Xt is F-progressively measurable if for all t P r0,8q, the map

ps, ωq ÞÑ Xspωq is Br0,8q ˆ Ft{BpUq-measurable.

11



Let us finally recall the extremely important stochastic process, called Brownian

motion.

Definition 8. Let pΩ,F ,F,Pq be a filtered probability space. An F-adapted Rm-

valued process X¨ is called an m-dimensional F-Brownian motion over r0,8q if for

all 0 ď s ă t, Xt ´Xs is independent of Fs and is normally distributed with mean 0

and covariance pt´ sqI.

Throughout the thesis, we only consider one-dimensional Brownian motion, that

is, m “ 1. The underlying uncertainty is generated by a fixed filtered complete

probability space (Ω,F ,F,P) and F “ pFqtě0 satisfies the usual conditions. W is an

F-adapted Brownian motion. We finally recall some propositions to one-dimensional

Brownian motion, which are used later in the thesis.

Lemma 2.1 (Lemma A.5 of Guasoni et al. (2020)). Let pWtqtě0 be a standard Brow-

nian motion under the probability measure P, and denote by W ˚
t “ sup

0ďsďt
Ws its

running maximum. Then, for any constants a, b, k with 2a` b ‰ 0, k ě 0,

E
„

eaWT`bW
˚
T 1 

W˚
T ąk

(



“
2pa` bq

2a` b
exp

"

pa` bq2

2
T

*

Φ

ˆ

pa` bq
?
T ´

k
?
T

˙

`
2a

2a` b
exp

"

p2a` bqk `
a2

2
T

*

Φ

ˆ

´ a
?
T ´

k
?
T

˙

,

and hence

lim
TÑ8

1

T
logE

“

eaWT`bW
˚
T 1tW˚

T ąku

‰

“

$

’

&

’

%

pa`bq2

2
, if a` b ą 0, 2a` b ą 0,

a2

2
, if a ă 0, 2a` b ă 0,

0, ifa` b ď 0, a ě 0,

where Φp¨q is the standard normal distribution function.

Corollary 2.1 (Corollary A.7 of Guasoni et al. (2020)). Let W
pζq
t “ Wt ` ζt, where

W is a standard Brownian motion under probability measure P, and pW
pζq
t q˚ is the
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running maximum of W
pζq
t . Then for any constants a, b, k with 2a ` b ` 2κ ‰ 0,

k ě 0, the following expectation under P is:

E
„

eaB
pζq
T `bpB

pζq
T q˚1 

pW
pζq
T q˚ąk

(



“
2pa` b` ζq

2a` b` 2ζ
exp

"

pa` bqpa` b` 2ζq

2
T

*

Φ

ˆ

pa` b` ζq
?
T ´

k
?
T

˙

`
2pa` ζq

2a` b` 2ζ
exp

"

p2a` b` 2ζqk `
apa` 2ζq

2
T

*

Φ

ˆ

´ pa` ζq
?
T ´

k
?
T

˙

.

Corollary 2.2 (Equation (9.1) of Rogers and Williams (2000)). Let W
pζq
t :“ Wt`ζt

be a Brownian motion with drift, and the first hitting time Hb :“ inf
tą0
tW

pζq
t “ bu for

b ą 0. Then for any ν ą 0, β :“
a

ζ2 ` 2ν ´ ζ, it follows that

E
“

e´νHb
‰

“ expt´bβu.

2.3 Past Consumption Path and Market Models

2.3.1 Past Spending Maximum and Habit Formation

Given a consumption path pctqtě0.

The past spending maximum Ht :“ max th, supsďt csu denotes the past spending

maximum, and H0 “ h ě 0 is the initial reference level.

The habit formation Zt is defined as

Zt “ e´δt
ˆ

z `

ż t

0

ηeδscsds

˙

, t ě 0, (2.3.1)

which is equivalently governed by the differential form:

$

&

%

dZt “ pηct ´ δZtqdt, t ě 0,

Z0 “ z.
(2.3.2)

where z is the initial habit formation, η and δ are the discount factors.
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2.3.2 Market Models

Let pΩ,F ,F,Pq be a filtered probability space and F “ pFtqtě0 satisfies the usual

conditions. The financial market model consists of one riskless asset and one risky

asset. The riskless asset price follows dBt “ rBtdt, where r ą 0 is the interest rate.

The risky asset price is governed by the following stochastic differential equation

(SDE)

dSt “ Stµdt` StσdWt, t ě 0,

where W is an F-adapted Brownian motion, µ P R` and σ ą 0 stand for the drift and

volatility. It is assumed that µ ą r and the sharp ratio is denoted by κ :“ µ´r
σ
ą 0.

Let pπtqtě0 be the amount of wealth that the agent allocates in the risky asset,

and let pctqtě0 represent the consumption rate. Similar to Lee (2021), we assume

that the life insurance contracts cover mortality risk and are actuarially fair. It is

assumed that the individual’s death time τ has an exponential distribution with the

parameter λ ą 0. Denote by pt and Lt the instantaneous life insurance premium rate

paid by the individual and insurance benefit paid by the insurer, respectively. We

have that pt “ λLt, and the bequest bt received by the individual’s heir is given by

bt “ Xt ` Lt “ Xt `
pt
λ

. Thus, the wealth process satisfies

dXt “ prXt ` πtpµ´ rq ´ ct ´ ptq dt` πtσdWt

“ ppr ` λqXt ` πtpµ´ rq ´ ct ´ λbtq dt` πtσdWt, t ě 0,
(2.3.3)

with the initial wealth X0 “ x. A control variable pt is transformed to the bequest

bt, which is assumed to be F-adapted.

The control triple pc, π, bq is said to be admissible if c is F-predictable and non-

negative, π is F-progressively measurable, and pc, π, bq satisfies the integrability con-

dition
ş8

0
pct ` π2

t ` btqdt ă 8 a.s. and the no bankruptcy condition Xt ě 0 a.s. for

t ě 0.
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Remark. The optimal premium pt is not required to be positive. The wage earner is

allowed to purchase a special term pension annuity, and she can receive the premium

pt from the insurance company at time t. However, the wage earner should pay pt to

the company if she dies at time t. This situation is related to the reverse mortgage.

Interested readers may refer to Pirvu and Zhang (2012) for more discussion.

In Chapter 3, we consider the optimal consumption and investment without life

insurance, that is, λ “ 0. Then the self-financing wealth process pXtqtě0 satisfies

dXt “ prXt ` πtpµ´ rq ´ ctq dt` πtσdWt, t ě 0,

with the initial wealth X0 “ x ě 0. The control pair pc, πq is then said to be

admissible if c is F-predictable and non-negative, π is F-progressively measurable,

and pc, πq satisfies the integrability condition
ş8

0
pct ` π2

t qdt ă 8 a.s. and the no

bankruptcy condition Xt ě 0 a.s. for t ě 0. The admissible set is denoted by

Apx, hq

In Chapter 4, we adopt the consumption drawdown constraint ct ě νHt where

ν P p0, 1q, and Ht stands for the past spending maximum defined in Section 2.3.1.

Similar to the proof of Corollary 1 of Arun (2012), to ensure that the consumption

drawdown constraint ct ě νHt is sustainable for all t ě 0, the necessary condition

is Xt ě
νHt
r`λ

a.s. for all t ě 0. Therefore, from this point onwards, we shall only

consider the feasible domain px, hq P r0,`8q ˆ r0,`8q such that x ě νh
r`λ

for the

admissible set Apx, hq.

In Chapter 5, the risky asset price is governed by the SDE

dSt “ St
 

pµ` rqdt` σdWt

(

, t ě 0, (2.3.4)

where µ ą 0 and σ ą 0 stand for the unknown excess rate of returns and volatility.
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As a result, the self-financing wealth process satisfies

dXt “ prXt ` µπt ´ ct ´ ptq dt` πtσdWt

“ ppr ` λqXt ` µπt ´ ct ´ λbtq dt` πtσdWt, t ě 0,
(2.3.5)

with the initial wealth X0 “ x ě 0. In addition, we adopt a habit formation

preference in Chapter 5, therefore, the admissible set is denoted by Apx, zq.
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Chapter 3

Optimal consumption with loss

aversion and reference to past

spending maximum

This chapter studies an optimal consumption problem for a loss-averse agent with

reference to the past consumption maximum. To account for loss aversion on relative

consumption, an S-shaped utility is adopted that measures the difference between

the nonnegative consumption rate and a fraction of the historical spending peak. We

consider the concave envelope of the utility with respect to consumption, allowing us

to focus on an auxiliary Hamilton-Jacobi-Bellman (HJB) equation on the strength of

the concavification principle and dynamic programming arguments. By applying the

dual transform and smooth-fit conditions, the auxiliary HJB equation is solved in

closed-form piecewisely and some thresholds of the wealth variable are obtained. The

optimal consumption and investment control can be derived in piecewise feedback

form. Rigorous verification proofs on optimality and concavification principle are

provided. Some numerical sensitivity analyses and financial implications are also

presented.
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3.1 Model Setup and Problem Formulation

3.1.1 Preference

It is assumed in the present paper that the agent is loss averse on relative consumption

in the sense that the agent feels more pain when the consumption is falling below

the reference than the same-sized gain. The reference level is chosen as a fraction of

the consumption running maximum process λHt, where λ P p0, 1q depicts the degree

towards the reference. The utility maximization problem is defined by

upx, hq “ sup
pπ,cqPApxq

E
„
ż 8

0

e´ρtUpct ´ λHtqdt



, (3.1.1)

where Upxq is described by the conventional two-part power utility (see Kahneman

and Tversky (2013)) that

Upxq :“

$

’

’

’

’

&

’

’

’

’

%

xβ1

β1

, if x ě 0,

´ k
p´xqβ2

β2

, if x ă 0.

Here, k ą 0 stands for the loss aversion degree, and it is assumed in the present

paper that 0 ă β1, β2 ă 1, which represent the risk aversion parameters over the

gain domain x ě 0 and the loss domain x ă 0, respectively. The utility is an S-

shaped function on R. The parameter λ P p0, 1q reflects the degree of adherence

towards the reference level H, which now affects the expected utility directly. ρ ą 0

is the subjective discount rate to guarantee the convergence of the value function.

Two main challenges in solving (3.1.1) are the path-dependence of pHtqtě0 on the

control pctqtě0 and the nonconcavity of the S-shaped utility Up¨q. As a remedy, we

propose to consider the concave envelope of the realization utility on consumption by

first assuming the validity of the concavification principle (see, for example, Reichlin

(2013) and Dong and Zheng (2020)). Later, we plan to characterize the optimal
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control under the concave envelope function and then verify that the optimal con-

trol also attains the value function in the original problem, i.e., the concavification

principle indeed holds. Specifically, for each fixed h, let us consider Ũpc, hq as the

concave envelope of Upc´λhq with respect to the variable c P r0, hs on a constrained

domain. That is, for each fixed h ě 0, let Ũp¨, hq be the smallest concave function

on r0, hs such that Ũpc, hq ě Upc, hq holds for all c P r0, hs.

3.1.2 Concave envelope of the realization utility

To emphasize the concave envelope only with respect to c P r0, hs while keeping the

variable h fixed, let us consider an equivalent bivariate function

U˚pc, hq :“ Upc´ λhq,

on the domain tpc, hq P R2 : c P r0, hsu. Define U˚1 pc, hq :“ 1
β1
pc ´ λhqβ1 and

U˚2 pc, hq :“ ´ k
β2
pλh´cqβ2 and denote U˚1

1
pc, hq :“

BU˚1
Bc
pc, hq and U˚2

1
pc, hq :“

BU˚2
Bc
pc, hq.

Note that U˚1
1
pc, hq Ñ `8 as c Ñ pλhq`. As U˚2

1
pc, hq Ñ `8 when c Ñ pλhq´, we

have two different subcases:

Subcase (i): If U˚1 ph, hq`U
˚
2 p0, hq´hU

˚
1
1
ph, hq ą 0, there exists a unique solution

zphq P pλh, hq to the equation

U˚1 pzphq, hq ` U
˚
2 p0, hq ´ zphqU

˚
1
1
pzphq, hq “ 0. (3.1.2)

That is, zphq is the tangent point of the straight line at p0,´U˚2 p0, hqq to the curve

U˚1 pc, hq for c ě λh. Note that zphq does not admit an explicit expression in this

subcase.

Subcase (ii): If U˚1 ph, hq ` U˚2 p0, hq ´ hU˚1
1
ph, hq ď 0, we simply let zphq “ h.

The concave envelope of U˚pc, hq on r0, hs corresponds to the straight line through

two points p0, U˚2 p0, hqq and ph, U˚1 ph, hqq.
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Remark. The condition of Subcase (ii) is fulfilled if and only if h and model

parameters satisfy one of the following three conditions that

pS1q β2 ą β1 ě 1´ λ, and h ď pβ2p1´λq
β1´1pβ1`λ´1q

β1kλβ2
q

1
β2´β1 ,

pS2q β1 ě 1´ λ, β1 ą β2, and h ě pβ2p1´λq
β1´1pβ1`λ´1q

β1kλβ2
q

1
β2´β1 ,

pS3q β2 “ β1 ě 1´ λ, 1 ď p1´λqβ1´1pβ1`λ´1q

kλβ2
, and h ě 0.

Similar to Dong and Zheng (2020), we can define the concave envelope of U˚pc, hq

for c P r0, hs by

Ũpc, hq “

#

U˚2 p0, hq `
U˚1 pzphq,hq´U

˚
2 p0,hq

zphq
c, if 0 ď c ă zphq,

U˚1 pc, hq, if zphq ď c ď h.
(3.1.3)
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Figure 3.1: Concave envelopes when 0 ă β2 ă 1: (left panel) subcase (i) when zphq ‰ h;
(right panel) subcase (ii) when zphq “ h.

Figure 1 illustrates two subcases of the concave envelope of the S-shaped utility

Upc, hq. We stress that the function Ũpc, hq is implicit in h, as zphq is an implicit

function in general. To simplify the future presentation, let us also define

wphq :“ zphq ´ λh. (3.1.4)

Hence, if zphq “ h, then wphq “ p1´ λqh, i.e., zphq “ λh` wphq.
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3.1.3 Equivalent problem

We now consider the auxiliary stochastic control problem

ũpx, hq “ sup
pπ,cqPApxq

E
„
ż 8

0

e´ρtŨpct, Htqdt



. (3.1.5)

The equivalence between problems (3.1.1) and (3.1.5) is given in the next proposition.

Its proof is deferred to Section A.1.4 after we first establish the verification proof on

optimality.

Proposition 3.1 (Concavification Principle). Two problems (3.1.1) and (3.1.5) ad-

mits the same optimal control pπ˚t , c
˚
t q so that two value functions coincide, i.e.,

upx, hq “ ũpx, hq for any px, hq P R` ˆ R`.

Proof. The proof is given in Appendix A.1.4.

For problem (3.1.5), we can derive the auxiliary HJB equation that

$

&

%

sup
cPr0,hs,πPR

”

´ρũ` ũxprx` πpµ´ rq ´ cq `
1
2
σ2π2ũxx ` Ũpc, hq

ı

“ 0,

ũhpx, hq ď 0,
(3.1.6)

for x ě 0 and h ě 0. The free boundary condition ũhpx, hq “ 0 shall be specified

later. Our goal is to find the optimal feedback control c˚px, hq and π˚px, hq. If ũpx, ¨q

is C2 in x, the first order condition gives the optimal portfolio in feedback form by

π˚px, hq “ ´µ´r
σ2

ũx
ũxx

. This implies that HJB equation (3.1.6) can be simplified to

sup
cPr0,hs

”

Ũpc, hq ´ cũx

ı

´ρũ`rxũx´
κ2

2

ũ2
x

ũxx
“ 0, and ũh ď 0, @x ě 0, h ě 0. (3.1.7)

3.2 Derivation of the Solution

For ease of presentation and technical convenience, we only consider the case where

ρ “ r ą 0 in the present paper. Computations in general cases that ρ ‰ r and
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r “ 0 can be conducted similarly. However, some additional sufficient assumptions

on model parameters are needed to facilitate the proofs of the verification theorem.

Given the implicit concave envelope in (3.1.3), we can still solve the HJB equation

in the analytical form. In particular, we plan to characterize some thresholds (de-

pending on h) for wealth level x such that the auxiliary value function, the optimal

portfolio and consumption can be expressed analytically in each region.

Let us first introduce the boundary curves y1phq ě y2phq ą y3phq by

y1phq :“
kpλhqβ2

β2zphq
`
wphqβ1

β1zphq
,

y2phq :“ min

ˆ

y1phq,
`

p1´ λqh
˘β1´1

˙

,

y3phq :“ p1´ λqβ1hβ1´1,

(3.2.8)

where zphq and wphq are defined in Section 3.1.2. Here, y1phq and y2phq are deriva-

tives of the concave envelope Ũpc, hq at c “ 0 and c “ h respectively, which are used to

simplify the expression of supcPr0,hsrŨpc, hq´cũxs when the maximum occurs at c “ 0

and c “ h. We also use y3phq to describe the free boundary curve ũh “ 0. Note that if

wphq ‰ p1´λqh, we have y1phq ą y2phq “ pp1´λqhq
β1´1 ą p1´λqβ1hβ1´1 “ y3phq as

0 ă λ ă 1 by (3.1.2); on the other hand, if wphq “ p1´λqh, we have zphq “ h, yielding

that y1phq “ y2phq “
kpλhqβ2

β2zphq
`

wphqβ1

β1zphq
ą

wphqβ1

β1zphq
“ 1

β1
p1´ λqβ1hβ1´1 ą p1´ λqβ1hβ1´1 “

y3phq as 0 ă β1 ă 1.

Similar to Deng et al. (2022), we can heuristically decompose the domain into

several regions based on the first order condition of c and express the HJB equation

(3.1.7) piecewisely. However, the concave envelope of the S-shaped utility complicates

the computations here, in which the previous yiphq in (3.2.8), i “ 1, 2, 3, serve as the

boundaries of these regions. We can then separate the following regions:

Region I : on the set R1 “ tpx, hq P R2
` : ũxpx, hq ą y1phqu, Ũpc, hq´cũx is decreasing
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in c, implying that c˚ “ 0 and the HJB equation (3.1.7) becomes

´
k

β2

pλhqβ2 ´ rũ` rxũx ´
κ2ũ2

x

2ũxx
“ 0, and ũh ď 0. (3.2.9)

Region II : on the set R2 “ tpx, hq P R2
` : y2phq ď ũxpx, hq ď y1phqu, Ũpc, hq ´ cũx is

increasing on r0, zphqs and concave on rzphq, hs, implying that c˚ “ λh`ũ
1

β1´1
x ě zphq

and the HJB equation (3.1.7) becomes

1´ β1

β1

ũ
β1
β1´1
x ´ λhũx ´ rũ` rxũx ´

κ2ũ2
x

2ũxx
“ 0, and ũh ď 0. (3.2.10)

Region III : on the set R3 “ tpx, hq P R` ˆ R` : ũxpx, hq ă y2phqu, Ũpcq ´ cũx is

increasing in c on r0, hs, implying that c˚ “ h. To distinguish whether the optimal

consumption c˚t updates the past maximum process H˚
t in this region, one can heuris-

tically substitute h “ c in (3.1.7) and apply the first order condition to Ũpc, cq ´ cũx

with respect to c and derive the auxiliary singular control ĉpxq :“ ũ
1

β1´1
x p1´λq

´
β1
β1´1 .

We then need to split Region III further into three subsets:

Region III-(i): on the set D1 “ tpx, hq P R` ˆ R` : y3phq ă ũx ă y2phqu, it is easy

to see a contradiction that ĉpxq ă h, and therefore the optimal consumption c˚t does

not equal ĉ, and we should follow the previous feedback form c˚px, hq “ h, in which

h is a previously attained maximum level. The HJB equation is written by

1

β1

pp1´ λqhqβ1 ´ hũx ´ rũ` rxũx ´
κ2ũ2

x

2ũxx
“ 0, and ũh ď 0. (3.2.11)

Region III-(ii): on the set D2 :“ tpx, hq P R` ˆ R` : ũxpx, hq “ y3phqu, we obtain

ĉpxq “ h and the feedback optimal consumption is c˚px, hq “ ũ
1

β1´1
x p1´ λq

´
β1
β1´1 “ h.

This corresponds to the singular control c˚t that creates a new peak for the whole

path that H˚
t ą H˚

s for any s ă t. We then impose the free boundary condition

ũhpx, hq “ 0 in this region, and the HJB equation follows the same PDE in (3.2.11).

23



Region III-(iii): on the set D3 :“ tpx, hq P R` ˆ R` : ũxpx, hq ă y3phqu, we obtain

ĉpxq ą h. The optimal consumption is again a singular control c˚pxq “ ũ
1

β1´1
x p1 ´

λq
´

β1
β1´1 ą h, pulls the associated H˚

t´ upward to the new value ũxpX
˚
t , H

˚
t q

1
β1´1 p1´

λq
´

β1
β1´1 , in which ũpx, hq is the solution of the HJB equation on set D2. This suggests

that for any given initial value px, hq in set D3, the feedback control c˚px, hq pushes

px, hq to point px, ĥq on the boundary set D2.

In summary, it is sufficient to consider the effective domain defined by

C :“ tpx, hq P R` ˆ R` : ũxpx, hq ě y3phqu

“ R1 YR2 YD1 YD2 Ă R2
`,

(3.2.12)

and px, hq P D3 can only occur at the initial time t “ 0.

Therefore, the HJB equation (3.1.7) can be written as

´rũ` rxũx ´
κ2ũ2

x

2ũxx
“ ´V pux, hq, and ũh ď 0,

ũh “ 0, if ũx “ y3phq,

(3.2.13)

where

V pq, hq :“

$

’

’

&

’

’

%

´ k
β2
pλhqβ2 , if q ą y1phq,

´
β1´1
β1

q
β1
β1´1 ´ λhq, if y2phq ď q ď y1phq,

1
β1
pp1´ λqhqβ1 ´ hq, if y3phq ď q ă y2phq.

To solve the above equation, some boundary conditions are also needed. First,

to guarantee the global regularity of the solution, we need to impose smooth-fit

conditions along two free boundaries that ũxpx, hq “ y1phq and ũxpx, hq “ y2phq.

Next, if we start with 0 initial wealth, to avoid bankruptcy, the optimal investment

and the consumption rate should be 0 at all times. Therefore, we have that

lim
xÑ0

ũxpx, hq

ũxxpx, hq
“ 0 and lim

xÑ0
ũpx, hq “

ż `8

0

´
k

β2

pλhqβ2e´rtdt “ ´
k

rβ2

pλhqβ2 .

(3.2.14)
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On the other hand, when the initial wealth tends to infinity, one can consume as

much as possible, leading to an infinitely large consumption rate. In addition, a small

variation in initial wealth only leads to a negligible change in the value function. It

follows that

lim
xÑ`8

ũpx, hq “ `8 and lim
xÑ`8

ũxpx, hq “ 0. (3.2.15)

We also note that, as the initial value x is large enough, we have px, hq P D2 and

thus c˚pxq “ ũxpx, hq
1

β1´1 p1 ´ λq
´

β1
β1´1 . Intuitively, our problem is similar to the

Merton problem (Merton (1969)) along the free boundary D2, in which the optimal

consumption is asymptotically proportional to the wealth. Therefore, we expect that

lim
xÑ`8
px,hqPD2

ũxpx, hq
1

β1´1

x
“ c8, (3.2.16)

for some constant c8 ą 0. This condition is verified later in Corollary 3.2.

To tackle the nonlinear HJB equation (3.2.13), we employ the dual transform only

with respect to the variable x and treat the variable h as a parameter; see similar dual

transform arguments in Deng et al. (2022) and Bo et al. (2021). That is, we consider

vpy, hq :“ supxě0tũpx, hq ´ xyu, y ě y3phq. For a given px, hq P C, let us define

the variable y “ ũxpx, hq, and it holds that ũpx, hq “ vpy, hq ` xy. We can further

deduce that x “ ´vypy, hq, ũpx, hq “ vpy, hq ´ yvypy, hq, and ũxxpx, hq “ ´
1

vyypy,hq
.

The nonlinear ODE (3.2.13) can be linearized to

κ2

2
y2vyy ´ rv “ ´V py, hq, (3.2.17)

and the free boundary condition is transformed to y “ y3phq. As h can be regarded

as a parameter, we can study the above equation as an ODE problem of the variable

y. Based on the dual transform, the boundary conditions (3.2.15) can be written as

lim
yÑ0

vypy, hq “ ´8, and lim
yÑ0
pvpy, hq ´ yvypy, hqq “ `8. (3.2.18)
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The boundary condition (3.2.16) becomes

lim
yÑ0

y
1

β1´1

vypy, hq
“ ´c8, (3.2.19)

along the boundary curve y3phq “ p1 ´ λqβ1hβ1´1. The boundary condition (3.2.14)

is equivalent to

yvyypy, hq Ñ 0 and vpy, hq ´ yvypy, hq Ñ ´
k

rβ2

pλhqβ2 as vypy, hq Ñ 0. (3.2.20)

The dual transform holds that vypy, hq “ ´x, and one can derive that ũhpx, hq “

vhpy, hq ` pvypy, hq ` xqdyphq
dh

“ vhpy, hq. The free boundary condition (3.2.13) is

translated to

vhpy, hq “ 0 for y “ y3phq. (3.2.21)

Although the dual ODE problem looks similar to the one in Deng et al. (2022),

we emphasize that the boundary curves y1phq and y2phq are implicit functions of h

that contains the implicit function zphq. As a result, it becomes more complicated

to apply smooth-fit conditions to derive the solution analytically and to prove the

verification theorem. It is inevitable that all coefficient functions (in terms of h) in

the solution involve zphq. In particular, the following assumption on model parame-

ters is needed, which is used to show that the obtained solution vpy, hq is convex in

y and in the verification proof of the optimal control.

Assumption (A1) βj ă ´
r2
r1

, j “ 1, 2, where r1 ą 1 and r2 ă 0 are two roots to

the equation η2 ´ η ´ 2r
κ2
“ 0.

Note that βj ă ´
r2
r1

implies that γj “
βj
βj´1

ą r2, r1βj` r2 “ pγj´ r2qpβj´1q ă 0,

for j “ 1, 2.
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Proposition 3.2. Let Assumption (A1) hold. Under boundary conditions (3.2.18),

(3.2.19), (3.2.20), the free boundary condition (3.2.21), and the smooth-fit conditions

with respect to y along y “ y1phq and y “ y2phq, ODE (3.2.17) in ty P R : y ě y3phqu

admits the unique solution that

vpy, hq “

$

’

&

’

%

C2phqy
r2 ´ k

rβ2
pλhqβ2 , if y ą y1phq,

C3phqy
r1 ` C4phqy

r2 ` 2
κ2γ1pγ1´r1qpγ1´r2q

yγ1 ´ λh
r
y, if y2phq ď y ď y1phq,

C5phqy
r1 ` C6phqy

r2 ` 1
rβ1
pp1´ λqhqβ1 ´ h

r
y, if y3phq ď y ă y2phq,

(3.2.22)

where γ1 “
β1
β1´1

ă 0, wphq is defined in (3.1.4), r1 ą 1 and r2 ă 0 are given

in Assumption (A1), y1phq, y2phq and y3phq are given in (3.2.8), and functions

Ciphq, i “ 2, . . . , 6, are defined by

C2phq :“ C4phq `
y1phq

´r2

rpr1 ´ r2q

ˆ

kr1

β2

pλhqβ2 `
r1r2

γ1pγ1 ´ r2q
y1phq

γ1 ` λhr2y1phq

˙

,

C3phq :“
y1phq

´r1

rpr1 ´ r2q

ˆ

kr2

β2

pλhqβ2 `
r1r2

γ1pγ1 ´ r1q
y1phq

γ1 ` λhr1y1phq

˙

,

C4phq :“ C6phq `
y2phq

´r2

rpr1 ´ r2q

ˆ

r1

β1

pp1´ λqhqβ1 ´
r1r2

γ1pγ1 ´ r2q
y2phq

γ1 ` p1´ λqhr2y2phq

˙

,

C5phq :“ C3phq `
y2phq

´r1

rpr1 ´ r2q

ˆ

r2

β1

pp1´ λqhqβ1 ´
r1r2

γ1pγ1 ´ r1q
y2phq

γ1 ` p1´ λqhr1y2phq

˙

,

C6phq :“

ż `8

h

p1´ λqpr1´r2qβ1C 15psqs
pr1´r2qpβ1´1qds. (3.2.23)

Proof. The proof is given in Appendix A.1.1.

Remark. Note that all Ciphq, i “ 2, . . . , 6, are implicit functions of h. In particular,

C2phq, C4phq and C6phq are written in the integral form. C3phq and C5phq are written

in terms of implicit functions y1phq and y2phq. Some technical efforts are needed to

handle these semi-analytical functions in later verification proof.
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Theorem 3.1 (Verification Theorem). Let px, hq P C, h P R and 0 ă λ ă 1, where

x ě 0 stands for the initial wealth, h ě 0 is the initial reference level, and C is the

effective domain (3.2.12). Let Assumption (A1) hold. For py, hq P tpy, hq P R2
` :

y ě y3phqu, let us define the feedback functions that

c:py, hq “

$

’

’

’

’

&

’

’

’

’

%

0, if y ą y1phq,

λh` y
1

β1´1 , if y2phq ď y ď y1phq,

h, if y3phq ă y ă y2phq,

y
1

β1´1 p1´ λq
´

β1
β1´1 , if y “ y3phq,

(3.2.24)

and

π:py, hq “
µ´ r

σ2
yvyypy, hq

“
µ´ r

σ2

$

’

&

’

%

2r
κ2
C2phqy

r2´1, if y ą y1phq,
2r
κ2
C3phqy

r1´1 ` 2r
κ2
C4phqy

r2´1 `
2pγ1´1q

κ2pγ1´r1qpγ1´r2q
yγ1´1, if y2phq ď y ď y1phq,

2r
κ2
C5phqy

r1´1 ` 2r
κ2
C6phqy

r2´1, if y3phq ď y ă y2phq.

(3.2.25)

We consider the process Yt :“ y˚ertMt, where Mt :“ e´pr`
κ2

2
qt´κWt is the discounted

rate state price density process, and y˚ “ y˚px, hq is the unique solution to the budget

constraint Er
ş8

0
c:pYtpyq, H

:
t pyqq Mtdts “ x with

H:
t pyq :“ h_ sup

sďt
c:pYspyq, H

:
spyqq “ h_

ˆ

p1´ λq
´

β1
β1´1 pinf

sďt
Yspyqq

1
β1´1

˙

.

The value function ũpx, hq can be attained by employing the optimal consumption and

portfolio strategies in the feedback form that c˚t “ c:pY ˚t , H
˚
t q and π˚t “ π:pY ˚t , H

˚
t q

for all t ě 0, where Y ˚t :“ Ytpy
˚q and H˚

t “ H:
t py

˚q.

Proof. The proof is given in Appendix A.1.2.

Remark. Note that the optimal consumption c˚t has a jump when Y ˚t “ y1pH
˚
t q and

c˚t ą λH˚
t whenever c˚t ą 0. Meanwhile, we note that the running maximum process
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H˚
t still has continuous paths for t ą 0. Indeed, from the feedback form, c˚t´ jumps

only when c˚t´ ă H˚
t and we also have that c˚t ď H˚

t after the jump, i.e., the jump

never increases H˚
t . Therefore, both X˚

t and H˚
t still have continuous paths.

By the dual representation, we have that x “ gp¨, hq :“ ´vyp¨, hq. Define fp¨, hq

as the inverse of gp¨, hq, then ũpx, hq “ v ˝ pfpx, hq, hq ` xfpx, hq. Note that the

function f should have a piecewise form across different regions. The invertibility of

the map x ÞÑ gpx, hq is guaranteed by the next lemma.

Lemma 3.1. Let Assumption (A1) hold. The function vpy, hq is convex in all

regions so that the inverse Legendre transform ũpx, hq “ infyěy3phqrvpy, hq ` xys is

well defined. Moreover, it implies that the feedback optimal portfolio π˚py, hq ą 0.

Proof. The proof is given in Appendix A.1.5.

Thanks to Lemma 3.1, we can apply the inverse Legendre transform to the solu-

tion vpy, hq in (3.2.22). Similar to Section 3.1 in Deng et al. (2022), we can derive

the following three boundary curves xzerophq, xaggrphq, and xlavsphq:

xzerophq :“ ´y1phq
r2´1C2phqr2,

xaggrphq :“ ´C3phqr1y2phq
r1´1

´ C4phqr2y2phq
r2´1

´
2

κ2pγ1 ´ r1qpγ1 ´ r2q
y2phq

γ1´1
`
λh

r
,

xlavsphq :“ ´C5phqr1y3phq
r1´1

´ C6phqr2y3phq
r2´1

`
h

r
,

(3.2.26)

and it holds that the feedback function of the optimal consumption satisfies: (i)

c˚px, hq “ 0 when 0 ă x ď xzerophq; (ii) 0 ă c˚px, hq ď h when xzerophq ď x ď

xaggrphq; (iii) c˚px, hq “ h when xaggrphq ă x ď xlavsphq. In particular, the condition

uxpx, hq ě y3phq in the effective domain can be explicitly expressed as x ď xlavsphq.

Moreover, the following inverse function is well defined:

h̃pxq :“ pxlavsq
´1
pxq, x ě 0. (3.2.27)
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Along the boundary x “ xlavsphq, the feedback form of the optimal consumption

in (3.2.30) is presented by c˚px, hq “ p1 ´ λq
´

β1
β1´1fpx, h̃pxqq

´ 1
β1´1 . Using the dual

relationship and Proposition 3.2, the function f can be implicitly determined as

follows:

(i) If x ă xzerophq, Lemma 3.1 implies that vypy, hq is strictly increasing in y and

fpx, hq “ f1px, hq can be uniquely determined by

x “ ´C2phqr2pf1px, hqq
r2´1.

(ii) If xzerophq ď x ď xaggrphq, Lemma 3.1 implies that vypy, hq is strictly increasing

in y and fpx, hq “ f2px, hq can be uniquely determined by

x “´ C3phqr1pf2px, hqq
r1´1

´ C4phqr2pf2px, hqq
r2´1

´
2

κ2pγ1 ´ r1qpγ1 ´ r2q
pf2px, hqq

γ1´1
`
λh

r
.

(3.2.28)

(iii) If xaggrphq ă x ď xlavsphq, Lemma 3.1 implies that vypy, hq is strictly increasing

in y and fpx, hq “ f3px, hq can be uniquely determined by

x “ ´C5phqr1pf3px, hqq
r1´1

´ C6phqr2pf3px, hqq
r2´1

`
h

r
. (3.2.29)

Corollary 3.1. For px, hq P C, 0 ă λ ă 1, β1 ă 1 and β2 ă 1, under Assumption

(A1), let us define the piecewise function

fpx, hq “

$

’

’

&

’

’

%

´

´x
C2phqr2

¯
1

r2´1
, if x ă xzerophq,

f2px, hq, if xzerophq ď x ď xaggrphq,

f3px, hq, if xaggrphq ă x ď xlavsphq,

where f2px, hq and f3px, hq are defined in (3.2.28) and (3.2.29), respectively.
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The value function ũpx, hq in (3.1.5) can be written by

ũpx, hq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

%

C2phqpfpx, hqq
r2 ´ k

rβ2
pλhqβ2 ` xfpx, hq, if x ă xzerophq,

C3phqpfpx, hqq
r1 ` C4phqpfpx, hqq

r2

`
2

κ2γ1pγ1 ´ r1qpγ1 ´ r2q
pfpx, hqqγ1

´
λh

r
fpx, hq ` xfpx, hq,

if xzerophq ď x ď xaggrphq,

C5phqpfpx, hqq
r1 ` C6phqpfpx, hqq

r2

`
1

rβ1

pp1´ λqhqβ1 ´
h

r
fpx, hq ` xfpx, hq,

if xaggrphq ă x ď xlavsphq,

where the free boundaries xzerophq, xaggrphq, and xlavsphq are given explicitly in (3.2.26).

The feedback optimal consumption and portfolio can be expressed in terms of primal

variables px, hq that

c˚px, hq “

$

’

’

’

’

&

’

’

’

’

%

0, if x ă xzerophq,

λh` pfpx, hqq
1

β1´1 , if xzerophq ď x ď xaggrphq,

h, if xaggrphq ă x ă xlavsphq,

p1´ λq
´

β1
β1´1fpx, h̃pxqq

´ 1
β1´1 , if x “ xlavsphq,

(3.2.30)

where h̃pxq is given in (3.2.27), and

π˚px, hq

“
µ´ r

σ2

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

p1´ r2qx, if x ă xzerophq,
ˆ

2r

κ2
C3phqf

r1´1
px, hq `

2r

κ2
C4phqf

r2´1
px, hq

`
2pγ1 ´ 1q

κ2pγ1 ´ r1qpγ1 ´ r2q
fγ1´1

px, hq

˙

,
if xzerophq ď x ď xaggrphq,

2r
κ2
C5phqf

r1´1px, hq ` 2r
κ2
C6phqf

r2´1px, hq, if xaggrphq ă x ď xlavsphq.

(3.2.31)

Moreover, for any initial value X˚
0 , H

˚
0 “ px, hq P C, the stochastic differential

equation

dX˚
t “ rX˚

t dt` π
˚
pµ´ rqdt` π˚σdWt ´ c

˚dt, (3.2.32)
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has a unique strong solution given the optimal feedback control pc˚, π˚q as above.

Proof. The proof is given in Appendix A.1.3.

3.3 Properties of Optimal Controls

First, compared with the main results in the standard Merton’s problem with pow-

er utility (see Merton (1969)), our optimal feedback controls π˚px, hq and c˚px, hq

are fundamentally different, which are expressed as the piecewise implicit nonlinear

functions of both variables x and h. In particular, our optimal consumption pro-

cess exhibits jumps when the wealth level crosses the threshold xzerophq. The more

complicated solution structure is rooted in the path-dependent reference process Ht

inside the utility and the S-shaped utility accounting for loss aversion.

Moreover, based on Corollary (3.1), we can show some asymptotic results on

the optimal consumption-wealth ratio c˚t {X
˚
t and the optimal portfolio-wealth ratio

π˚t {X
˚
t , whose proof is given in Appendix A.1.6.

Corollary 3.2. As x ď xlavsphq, the asymptotic behavior of large wealth xÑ `8 is

equivalent to limhÑ`8 xlavsphq “ `8. We then have that

lim
hÑ`8

c˚pxlavsphq, hq

xlavsphq
“ L1, lim

hÑ`8

π˚pxlavsphq, hq

xlavsphq
“ L2,

for some constants L1 and L2. In addition, as λÑ 0, two limits L1 and L2 coincide

with the asymptotic results in the infinite-horizon Merton’s problem (Merton (1969))

with power utility U˚pxq “ 1
β1
xβ1. As a result, the boundary conditions (3.2.16) and

(3.2.19) hold valid in our problem.

Proof. The proof is given in Appendix A.1.6.

Remark. As the wealth level becomes sufficiently large, both the optimal consumption

and the optimal portfolio amount are asymptotically proportional to the wealth level
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that c˚t « L1X
˚
t and π˚t « L2X

˚
t , in a similar fashion to the asymptotic results in

the standard Merton’s problem with the power utility. However, it is important to

note that our asymptotic limits differ significantly from those in Merton’s problem,

which now sensitively depends on the reference degree parameter λ and risk aversion

parameters β1, β2, k from the S-shaped utility. One can see that, even when the agent’s

wealth level is very high, the impacts from the reference level λHt and the loss aversion

preference do fade out in our model because the large consumption rate c˚t also lifts up

the reference λH˚
t to a new high level. Only in the extreme case when the reference

degree λÑ 0, i.e., there is no reference process, our asymptotic results coincide with

those in the standard Merton’s problem under power utility.

Next, we can characterize the average fraction of time that the agent expects to

stay in each region.

Corollary 3.3. The following properties hold:

1. The long-run fraction of time that the agent stays in the region txaggrpH
˚
t q ď

X˚
t ď xlavspH

˚
t qu equals the value of lim

hÑ`8

y2phq
y1phq

.

2. The long-run fraction of time that the agent stays in the region t0 ď X˚
t ď

xzeropH
˚
t qu equals the value of 1´ lim

hÑ`8

y3phq
y1phq

.

3. Starting from px, hq P tpx, hq : x P pxzerophq, xlavsphqsu, let us consider the first

hitting time of zero consumption that τzero :“ inftt ě 0, Xt “ xzeropHtqu. We

have that

Erτzeros “ C1phqfpx, hq
2
` C2phq `

log fpx, hq

κ2
,

33



where C1phq and C2phq satisfy:

C1phqy1phq
2
` C2phq `

log y1phq

κ2
“ 0,

C
1

1phqy3phq
2
` C

1

2phq “ 0.

4. Starting from px, hq P tpx, hq : x P rxzerophq, xlavsphqqu, let us define the first

hitting time to update the historical consumption maximum τlavs :“ inftt ě 0 :

Xt “ xlavspHtqu. We have that

Erτlavss “
2

κ2
log

ˆ

fpx, hqh1´β1

p1´ λqβ1

˙

.

Proof. The proof is given in Appendix A.1.7.

3.3.1 Boundary Curves

We next present some numerical examples of the thresholds and the optimal feedback

functions and discuss some financial implications.

We first plot in Figure 3.2 the boundary curves xzerophq, xaggrphq and xlavsphq

as functions of h, separating the regions for different feedback forms of the optimal

consumption. First, compared with Figure 1 in Deng et al. (2022), it is interesting

to note that we need to take into account four different cases in total depending

on whether two boundary curves xzerophq and xaggrphq coincide or not. To be more

precise, we know by definition that xzerophq “ xaggrphq if and only if y1phq “ y2phq,

where y1phq and y2phq are given in (3.2.8). In view of Remark 3.1.2, y1phq “ y2phq in

three different scenarios. The upper left panel in Figure 3.2 corresponds to the case

that two boundaries xzerophq and xaggrphq are completely separated for all h ą 0,

i.e., y1phq ą y2phq for h ą 0 (with parameters r “ ρ “ 0.05, µ “ 0.1, σ “ 0.25,

β1 “ 0.2, β2 “ 0.3, k “ 1.5, λ “ 0.5); the upper right panel in Figure 3.2 corresponds

to the case that two boundaries xzerophq “ xaggrphq when the reference level is low
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Figure 3.2: Four cases of boundary curves caused by different parameters

that h ď h˚ for some critical point h˚ ą 0 (with parameters r “ ρ “ 0.05, µ “ 0.1,

σ “ 0.25, β1 “ 0.2, β2 “ 0.3, k “ 1.5, λ “ 0.92); the lower left panel in Figure 3.2

corresponds to the case that two boundaries xzerophq “ xaggrphq when the reference

level is high that h ě h˚ for some h˚ ą 0 (with parameters r “ ρ “ 0.05, µ “ 0.1,

σ “ 0.25, β1 “ 0.2, β2 “ 0.1, k “ 1.5, λ “ 0.973); and the lower right panel in Figure

3.2 corresponds to the case that xzerophq “ xaggrphq for all h ě 0 (with parameters

r “ ρ “ 0.05, µ “ 0.1, σ “ 0.25, β1 “ 0.2, β2 “ 0.2, k “ 1.5, λ “ 0.95).

Second, Figure 3.2 illustrates again that the positive optimal consumption can
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never fall below the reference level, i.e., we must have c˚px, hq ą λh if c˚px, hq ą 0

so that there exists a jump when the wealth process X˚
t crosses the boundary curve

xzeropH
˚
t q. In particular, for some value of h such that xzerophq “ xaggrphq hold,

the optimal consumption may jump from 0 to the current maximum level H˚
t “ h

immediately, indicating that the agent consumes at the historical maximum level h if

the agent starts to consume. This differs substantially from the continuous optimal

consumption process derived in Deng et al. (2022). The jump of consumption is

caused by the risk-loving attitude over the loss domain in the S-shaped utility, which

corresponds to the linear piece of the concave envelope. In this wealth region, the

agent prefers to stop the current consumption if it cannot surpass the reference level.

Therefore, our result under the S-shaped utility can depict the extreme behavior of

some agents who cannot endure any positive consumption plan below the current

reference. We emphasize that, all the boundary curves in Figure 2 are generally

nonlinear functions of h, featuring the necessity of two dimensional state processes

of Xt and Ht in our control problem. Only in the extreme case when β1 “ β2, the

boundary curves can be expressed in a linear manner, and the dimension reduction

can be conducted.

Remark. When risk aversion parameters satisfy β1 “ β2, our problem has homo-

geneous property that ũpx, hq “ hβ1ũpx{h, 1q, and it is sufficient to consider the

function ûpωq :“ ũpω, 1q to reduce the dimension. In this case, the boundary curves

degenerate to boundary points for the new state variable ω “ x{h.

3.3.2 Sensitivity Analysis

We now fix the model parameters to r “ 0.05, ρ “ 0.05, µ “ 0.1, σ “ 0.25,

β1 “ 0.2, β2 “ 0.3, k “ 1.5, and reference level h “ 1. We numerically illustrate

the sensitivity with respect to the reference degree λ P p0, 1q. Let us choose λ P

t0.1, 0.3, 0.5, 0.7, 0.9u. The value function, the optimal feedback consumption, and
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the optimal feedback portfolio together with marked boundaries xzero, xaggr and xlavs

are plotted in Figure 3.3. From all panels, one can observe that the boundary curve

xzerop1;λq is increasing in λ, while boundary curves xaggrp1;λq and xlavsp1;λq are

both decreasing in λ. On the one hand, one can explain that when the agent has

a higher reference with a larger λ and the current wealth is low, it is more likely

that the optimal consumption falls below the reference, leading to zero consumption.

Therefore, the threshold for positive consumption becomes larger for a larger λ. On

the other hand, when the wealth is sufficiently large, larger reference degree λ results

in more aggressive consumption (see the middle panel), and it is more likely that the

agent lowers the threshold to consume at the global maximum level even by reducing

the portfolio amount. Moreover, when λ increases, we can also observe that λH˚
t

actually increases faster than the consumption c˚t during the life cycle, which leads

to a drop of c˚t ´ λH
˚
t and a decline in the value function from the left panel. From

the right panel, when wealth decreases to the region x ă xzerop1;λq, the optimal

consumption stays at 0 due to the linear piece of the concave envelope, but the

optimal portfolio is increasing in x with a large slope. This can be interpreted by the

fact that the agent needs to invest very aggressively to pull the wealth level back to

the threshold xzerop1;λq driven by the strong desire for positive consumption under

the loss aversion preference. When wealth starts to surpass the threshold xzerop1;λq,

the agent chooses the positive consumption above the reference level λh, and we

can see from the right panel that the agent strategically withdraws some wealth

from the risky asset account to support the high consumption plan. In addition, the

higher reference degree λ is, the more drastic the decrease in portfolio with respect

to x. When wealth tends to be further larger, both the optimal consumption and

optimal portfolio become increasing in x. By comparison from the right panel, when

wealth is very large, the optimal portfolio is decreasing in the reference degree λ,

which is consistent with the fact that the agent needs more cash to support the more
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aggressive consumption as λ increases.
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Figure 3.3: Sensitivity analysis on the reference degree λ.

Finally, we numerically illustrate the sensitivity with respect to the expected

return µ of the risky asset. Let us fix the model parameters such that r “ 0.05,

ρ “ 0.05, λ “ 0.5, σ “ 0.25, β1 “ 0.2, β2 “ 0.3, k “ 1.5, h “ 1 and consider

µ P t0.06, 0.08, 0.1, 0.12, 0.14u. The value function and the optimal feedback control-

s together with marked boundaries are plotted in Figure 3.4. First, from the left

panel, one can observe that the value function increases in µ, which matches with

the intuition that better market performance guarantees higher wealth and a larger

consumption plan. From all panels, it is also interesting to observe that both bound-

aries xzerop1;µq and xaggrp1;µq are decreasing in µ, while the boundary xlavsp1;µq is

increasing in µ. On the one hand, the higher return from the financial market secures

better wealth growth, leading to lower thresholds for the agent to start positive con-

sumption and consumption at the historical peak level. On the other hand, a higher

return rate µ also motivates the agent to invest more in the risky asset, as one can

see that the optimal portfolio is increasing in µ from the right panel. As a result,

the agent does not blindly lower the threshold xlavsp1;µq to create the new global

consumption peak as it becomes more beneficial in the long run to invest more cash

into the risky asset when x is sufficiently large. Therefore, the threshold xlavsp1;µq

is actually increased with an increased parameter µ. One can also observe that for

xzerop1;µq ď x ď xlavsp1;µq, as the expected return µ increases, the agent gradually

shifts from the willingness of high consumption plan by sacrificing the portfolio to
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the more aggressive investment behavior to accumulate the larger wealth. Combin-

ing Figure 3.3 and Figure 3.4, we also note that the optimal portfolio π˚px, 1;λ, µq is

decreasing in λ but increasing in µ when x is large, suggesting that some agents with

a large reference degree λ are only motivated to invest more wealth in the financial

market when the expected return is excessively high. This is consistent with and may

partially help to explain the equity premium puzzle (see Mehra and Prescott (1985))

that the market premium needs to be very high to attract some agents (possibly

those agents with the large reference degree if they adopt our proposed preference

on consumption performance) to actively invest in the risky asset.
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Figure 3.4: Sensitivity analysis on the expected return µ.
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Chapter 4

Optimal consumption and life

insurance under shortfall aversion
and a drawdown constraint

In this chapter, we adopt the shortfall aversion preference proposed in Guasoni et al.

(2020) together with dynamic life insurance control, and enforce an additional draw-

down constraint on the consumption rate as a subsistence consumption requirement.

The objective function of the control problem also involves the expected bequest

from life insurance, which renders the dimension reduction in Guasoni et al. (2020)

not applicable in our problem. Instead, we encounter a two-dimensional HJB equa-

tion. Similar to Deng et al. (2022), taking the wealth level and reference level as

two state variables, we can derive the value function and optimal strategies in ana-

lytical form by solving the associated HJB equation with some boundary conditions.

The HJB equation can be expressed in a piecewise form based on the decomposition

of the state domain such that the feedback optimal consumption: (1) equals the

drawdown constraint rate, (2) lies between the drawdown constraint and the past

spending maximum, and (3) attains the past consumption peak. By using the dual

transform and some smooth-fit conditions, the HJB equation is linearized to a pa-

rameterized ODE, which can be solved in closed-form. The desired feedback form

of optimal consumption, investment and insurance strategies can be obtained by the
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inverse transform. Contrary to Guasoni et al. (2020), our boundary curves for the

wealth variable to distinguish different optimal feedback controls are all nonlinear

functions due to the additional life insurance control. Our analytical results allow

us to numerically illustrate how the model parameters affect the optimal decision on

consumption and life insurance. By comparing with some existing results without

shortfall aversion, we can also illustrate how the reference of past spending maximum

motivates the insurance purchase. Some interesting financial implications induced by

the shortfall aversion preference and the drawdown constraint are discussed therein.

The remainder of this chapter is organized as follows. Section 4.1 introduces

the market model with mortality risk and the stochastic control problem under the

shortfall aversion preference. Section 4.2 gives some heuristic arguments to solve the

HJB equation and presents theS main results on the optimal feedback consumption,

portfolio and life insurance controls. Section 4.3 presents several numerical examples

to illustrate some sensitivity analysis results and their financial implications.

4.1 Model Setup and Problem Formulation

4.1.1 Shortfall Aversion Preference and Control Problem

It is assumed in the present paper that the agent is shortfall averse on relative

consumption in the sense that utility losses of spending cuts from a reference. The

reference process is chosen as the running maximum consumption process Ht :“

max th, supsďt csu, and H0 “ h ě 0 is the initial reference level. We adopt the

shortfall aversion preference proposed in Guasoni et al. (2020) on consumption and

consider the expected utility on bequest at the time of death. The objective function
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of the control problem is defined by

E
„
ż τ

0

e´ρtUpct, Htqdt` e
´ρτV pbτ q



“E
„
ż 8

0

e´pρ`λqtUpct, Htqdt` λ

ż 8

0

e´pρ`λqtV pbtqdt



,

(4.1.1)

where Upc, hq is the so-called shortfall aversion preference that satisfies

Upc, hq “

#

1
γ1

`

c
hα

˘γ1 , if νh ď c ă h,
1
γ1

`

c1´α
˘γ1 , if c ě h,

with 0 ă γ1 ă 1, and V pbq is a standard constant relative risk aversion (CRRA)

utility that

V pbq “ K
bγ2

γ2

, 0 ă γ2 ă 1, K ą 0,

and K stands for the bequest motive level. According to Figure 4.1, the utility

function Upc, hq has a kink at c “ h.

Utility function

Figure 4.1: Utility Upc, hq for a consumption rate c, with reference point h

The agent aims to maximize the expected utility under a shortfall aversion pref-

erence subject to a drawdown constraint on consumption control that

max
pc,π,bqPApx,hq

E
„
ż 8

0

e´pρ`λqtUpct, Htqdt` λ

ż 8

0

e´pρ`λqtV pbtqdt



. (4.1.2)
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For ease of presentation, it is assumed that the discount factor ρ equals the risk-free

rate r.

4.2 Main Results

4.2.1 The HJB Equation

For problem (4.1.2), we can derive the auxiliary HJB equation on the feasible domain

tpx, hq P r0,`8q ˆ r0,8q : x ě νh
r`λ
u using some heuristic arguments that

sup
cPrνh,hs,πPR,bě0

„

´ pr ` λqu` ux ppr ` λqx` πpµ´ rq ´ c´ λbq

`
1

2
σ2π2uxx ` Upc, hq ` λV pbq



“ 0,

uhpx, hq ď 0,

(4.2.3)

for x ě νh
r`λ

and h ě 0. The free boundary condition uhpx, hq “ 0 shall be spec-

ified later. Our goal is to find the optimal feedback control c˚px, hq, π˚px, hq, and

b˚px, hq. If upx, ¨q is C2 in x, the first order condition gives the optimal portfolio and

optimal bequest in feedback form that π˚px, hq “ ´µ´r
σ2

ux
uxx

and b˚px, hq “
`

ux
K

˘
1

γ2´1 ,

respectively. The HJB equation (4.2.3) can be simplified to

sup
cPrνh,hs

rUpc, hq ´ cuxs ´ pr ` λqu` pr ` λqxux ´ λK
´ 1
γ2´1

1´ γ2

γ2

u
γ2
γ2´1
x ´

κ2

2

u2
x

uxx
“ 0,

uh ď 0, @x ě
νh

r ` λ
.

(4.2.4)

4.2.2 Some Heuristic Results

We aim to solve the HJB equation in analytical form. In particular, we plan to char-

acterize some thresholds (depending on h) for wealth level x such that the auxiliary
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value function, the optimal portfolio and consumption can be expressed analytically

in each region.

Similar to Deng et al. (2022) and Li et al. (2021), we can heuristically decompose

the domain based on the first order condition with respect to c and express the HJB

equation (4.2.4) piecewisely. In particular, we have the following disjoint regions:

Region I : on the set R1 “ tpx, hq P R2
` : x ě νh

r`λ
, ux ą νγ1´1hp1´αqγ1´1u, Upc, hq´

cux is decreasing in c on rνh, hs, implying that c˚ “ νh.

Region II : on the setR2 “ tpx, hq P R2
` : x ě νh

r`λ
, hp1´αqγ1´1 ď ux ď νγ1´1hp1´αqγ1´1u,

Upc, hq ´ cux attains its maximum in rνh, hs, implying that c˚ “ h
αγ1
γ1´1u

1
γ1´1
x .

Region III : on the setR3 “ tpx, hq P R2
` : x ě νh

r`λ
, ux ă hp1´αqγ1´1u, Upc, hq´cux

is increasing in c on rνh, hs, implying that c˚ “ h. To distinguish whether the optimal

consumption c˚t updates the past maximum process H˚
t in this region, we need to

split Region III into three subregions:

Region III-(i): on the set D1 “ tpx, hq P R` ˆ R` : x ě νh
r`λ

, p1´ αqhp1´αqγ1´1 ă

ux ă hp1´αqγ1´1u, we have a contradiction that ĉpxq “
`

uxpx,hq
1´α

˘
1

p1´αqγ1´1 ă h, and

therefore c˚t is not a singular control. We still need to follow the previous feedback

form c˚px, hq “ h, in which h is a previously attained maximum level. The corre-

sponding running maximum process remains flat at the instant time. In this region,

we only know that uhpx, hq ď 0 as we have dHt “ 0.

Region III-(ii): on the set D2 :“ tpx, hq P R` ˆ R` : x ě νh
r`λ

, ux “ p1 ´

αqhp1´αqγ1´1u, we obtain ĉpxq “
`

uxpx,hq
1´α

˘
1

p1´αqγ1´1 “ h and the feedback optimal

consumption c˚px, hq “
`

uxpx,hq
1´α

˘
1

p1´αqγ1´1 . This corresponds to the singular control

c˚t that creates a new peak for the whole path and H˚
t “ c˚t “

`uxpX
˚
t ,H

˚
t q

1´α

˘
1

p1´αqγ1´1 is

strictly increasing at the instant time so that H˚
t ą H˚

s for any s ă t and we must

require the following free boundary condition that uhpx, hq “ 0. In this region, it is
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noted that c˚px, hq “ h, therefore, the HJB equation follows the same PDE with in

Region I but together with the new free boundary condition.

Region III-(iii): on the set D3 :“ tpx, hq P R`ˆR` : uxpx, hq ă p1´αqh
p1´αqγ1´1u,

we obtain ĉpxq “
`

uxpx,hq
1´α

˘
1

p1´αqγ1´1 ą h. This indicates that the initial reference level

h is below the feedback control ĉpxq, and the optimal consumption is again a singular

control c˚pxq ą h, which creates a new consumption peak. As the running maximum

process H˚
t is updated immediately by c˚t , the feedback optimal consumption pulls

the associated H˚
t´ upward from its original value to the new value in the direction

of h and X˚
t remains the same, in which upx, hq is the solution of the HJB equation

on set D2. This suggests that for any given initial value px, hq in set D3, the feedback

control c˚px, hq pushes px, hq to jump immediately to the point px, ĥq on the boundary

set D2 for the given level of x, where ĥ “
`

uxpx,ĥq
1´α

˘
1

p1´αqγ1´1 .

Therefore, it is sufficient to consider the effective domain defined by

C :“

"

px, hq P R` ˆ R` : x ě
νh

r ` λ
, uxpx, hq ě p1´ αqh

p1´αqγ1´1

*

“ R1 YR2 YD1 YD2 Ă R2
`.

(4.2.5)

The only possibility for px, hq P D3 occurs at the initial time t “ 0. If pX˚
0 , H

˚
0 q

starts from C, then the controlled process pX˚
t , H

˚
t q always stays inside region C and

either reflects at the boundary or moves along boundary D2 after visiting boundary

D2. On the other hand, if the process pX˚
0 , H

˚
0 q starts from the value px, hq inside

region D3, the optimal control enforces an instant jump (and the only jump) of the

process H from H0´ “ h to H0 “ ĥ on boundary D2 and both processes Xt and Ht

become continuous processes diffusing inside the effective domain C afterwards for

t ă 0.
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Therefore, the HJB equation (4.2.4) can be written as

´pr ` λqu` pr ` λqxux ´
κ2

2

u2
x

uxx
“ ´Ṽ pux, hq, and uh ď 0,

uh “ 0, if ux “ p1´ αqh
p1´αqγ1´1,

(4.2.6)

where we define

Ṽ pq, hq :“

$

’

’

&

’

’

%

λK
´ 1
γ2´1 1´γ2

γ2
q

γ2
γ2´1 ` νγ1

γ
hp1´αqγ1 ´ νhq, if q ą νγ1´1hp1´αqγ1´1,

λK
´ 1
γ2´1 1´γ2

γ2
q

γ2
γ2´1 `

1´γ1
γ1
h

αγ1
γ1´1 q

γ1
γ1´1 , if hp1´αqγ1´1 ď q ď νγ1´1hp1´αqγ1´1,

λK
´ 1
γ2´1 1´γ2

γ2
q

γ2
γ2´1 ` 1

γ1
hp1´αqγ1 ´ hq, if p1´ αqhp1´αqγ1´1 ď q ă hp1´αqγ1´1.

(4.2.7)

To solve the equation, some boundary conditions are needed. First, to guaran-

tee the desired global regularity of the solution, we need to impose the smooth-

fit condition along two free boundaries such that uxpx, hq “ νγ1´1hp1´αqγ1´1 and

uxpx, hq “ hp1´αqγ1´1. Next, note that if we start with initial wealth x “ νh
r`λ

, to

confront the risk of bankruptcy, the optimal investment π˚pxq “ ´
µ´r
σ2

ux
uxx

should

always be 0. The wealth level never changes as there is no trading strategy, the

consumption rate should also be ct “ νh, and the optimal bequest should also be 0

all the time. Therefore, we can conclude that

lim
xÑ νh

r`λ

uxpx, hq

uxxpx, hq
“ 0 and lim

xÑ νh
r`λ

upx, hq “

ż `8

0

e´pr`λqt
1

γ1

ˆ

νh

hα

˙γ1

dt “
νγ1

pr ` λqγ1

hp1´αqγ1 .

(4.2.8)

On the other hand, when the initial wealth tends to infinity, one can consume as

much as possible, which leads to an infinitely large consumption rate and bequest.

A small variation in initial wealth only leads to a negligible change in the value

function. In addition, the optimal consumption rate should be proportional to the

wealth level in region D2. It follows that

lim
xÑ`8

uxpx, hq “ 0, and lim
xÑ`8, px,hqPD2

h

x
“ C8, (4.2.9)
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where C8 ą 0 is a constant. See Corollary 4.1 for the verification of the last boundary

condition .

To tackle the nonlinear HJB equation (4.2.6), we employ the dual transform

only with respect to the variable x and treat the variable h as a parameter; see

similar dual transform arguments in Bo et al. (2021), Deng et al. (2022) and Li et al.

(2021). That is, we consider vpy, hq :“ supxě νh
r`λ
tupx, hq´xyu, y ě p1´αqhp1´αqγ1´1.

For a given px, hq P C, let us define the variable y “ uxpx, hq and it holds that

upx, hq “ vpy, hq ` xy. We can further deduce that

x “ ´vypy, hq, upx, hq “ vpy, hq ´ yvypy, hq and uxxpx, hq “ ´
1

vyypy, hq
.

The nonlinear equation (4.2.6) can be reduced to

κ2

2
y2vyy ´ pr ` λqv “ ´Ṽ py, hq, (4.2.10)

where Ṽ p¨, ¨q is defined in (4.2.7), and the free boundary condition is transformed

to the point y “ p1 ´ αqhp1´αqγ1´1. As h can be regarded as a parameter, we can

study the above equation as the ODE problem of the variable y. Based on the dual

transform, the boundary conditions (4.2.9) can be written as

lim
yÑ0

vypy, hq “ ´8, and lim
hÑ8

h

vypy, hq
“ ´C8, (4.2.11)

on free boundary y “ p1´αqhp1´αqγ1´1. The boundary condition (4.2.8) is equivalent

to

yvyypy, hq Ñ 0 and vpy, hq ´ yvypy, hq Ñ
νγ1

pr ` λqγ1

hp1´αqγ1 as vypy, hq Ñ ´
νh

r ` λ
.

(4.2.12)

The dual transform holds that vypy, hq “ ´x, and one can derive that uhpx, hq “

vhpy, hq`pvypy, hq`xq
dyphq
dh

“ vhpy, hq. The free boundary condition (4.2.6) is written
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by

vhpy, hq “ 0 as y “ p1´ αqhp1´αqγ1´1. (4.2.13)

In particular, to facilitate some mathematical arguments, we need to impose the

following technical assumption on model parameters. This assumption is needed in

deriving the explicit form of coefficient functions Ciphq, i “ 1, ..., 6, in Proposition

4.1 below. It is also needed in the proof of Lemma 4.1 when we verify that the ob-

tained solution vpy, hq is convex in the variable y and in the proof of the verification

theorem on optimality.

Assumption (A1) γ2 ď p1 ´ αqγ1 ă ´
r2
r1
‰ γ1, where r1 ą 1 and r2 ă 0 are two

solutions to the equation η2 ´ η ´ 2pr`λq
κ2

“ 0.

Proposition 4.1. Under Assumption (A1), boundary conditions (4.2.11), (4.2.12),

the free boundary condition (4.2.13), and the smooth-fit conditions with respect to y

at free boundary points y “ νγ1´1hp1´αqγ1´1 and y “ hp1´αqγ1´1, the ODE (4.2.10) in

the domain ty P R : y ě p1´αqhp1´αqγ1´1u admits the unique solution given explicitly

by

vpy, hq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

C2phqy
r2 `

2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
yβ2

`
νγ1

pr ` λqγ1
hp1´αqγ1 ´

νh

r ` λ
y,

if y ą νγ1´1hp1´αqγ1´1,

C3phqy
r1 ` C4phqy

r2 `
2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
yβ2

`
2hαβ1

κ2β1pβ1 ´ r1qpβ1 ´ r2q
yβ1 ,

if hp1´αqγ1´1 ď y ď νγ1´1hp1´αqγ1´1,

C5phqy
r1 ` C6phqy

r2 `
2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
yβ2

`
1

pr ` λqγ1
hp1´αqγ1 ´

h

r ` λ
y,

if p1´ αqhp1´αqγ1´1 ď y ă hp1´αqγ1´1,

(4.2.14)
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where β1 “
γ1
γ1´1

, β2 “
γ2
γ2´1

, and functions C2phq, C3phq, ¨ ¨ ¨ , C6phq are given by

C2phq “ C4phq `
1´ β1

pr ` λqpr1 ´ r2qpβ1 ´ r2q
νr1γ1`r2hr1p1´αqγ1`r2 ,

C3phq “
1´ β1

pr ` λqpr1 ´ r2qpβ1 ´ r1q
νr2γ1`r1hr2p1´αqγ1`r1 ,

C4phq “ C6phq `
β1 ´ 1

pr ` λqpr1 ´ r2qpβ1 ´ r2q
hr1p1´αqγ1`r2 ,

C5phq “ C3phq ´
1´ β1

pr ` λqpr1 ´ r2qpβ1 ´ r1q
hr2p1´αqγ1`r1 ,

C6phq “
p1´ αqr1´r2p1´ β1qpr2p1´ αqγ1 ` r1q

pr ` λqpr1 ´ r2qpβ1 ´ r1qpr1p1´ αqγ1 ` r2q
p1´ νr2γ1`r1qhr1p1´αqγ1`r2

(4.2.15)

where r1 ą 1 and r2 ă 0 are two roots to the quadratic equation η2 ´ η ´ 2pr`λq
κ2

“ 0.

Proof. The proof is given in Appendix A.2.1.

Theorem 4.1 (Verification Theorem). Let px, hq P C, h P R and 0 ă λ ă 1, where

x ě 0 stands for the initial wealth, h ě 0 is the initial reference level, and C stands

for the effective domain (4.2.5). For py, hq P tpy, hq P R2
` : y ě p1 ´ αqhp1´αqγ1´1u,

let us define the feedback functions that

c:py, hq “

$

’

’

’

’

&

’

’

’

’

%

νh, if y ą νγ1´1hp1´αqγ1´1,

h
αγ1
γ1´1u

1
γ1´1
x , if hp1´αqγ1´1 ď y ď νγ1´1hp1´αqγ1´1,

h, if p1´ αqhp1´αqγ1´1 ă y ă hp1´αqγ1´1,
`

y
1´α

˘
1

p1´αqγ1´1 , if y “ p1´ αqhp1´αqγ1´1,

(4.2.16)
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π:py, hq “
µ´ r

σ2
yvyypy, hq

“
µ´ r

σ2

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

2pr`λq
κ2

C2phqy
r2´1 `

2λK1´β2 pβ2´1q
κ2pβ2´r1qpβ2´r2q

yβ2´1, if y ą νγ1´1hp1´αqγ1´1,

2pr ` λq

κ2
C3phqy

r1´1 `
2pr ` λq

κ2
C4phqy

r2´1

`
2λK1´β2pβ2 ´ 1q

κ2pβ2 ´ r1qpβ2 ´ r2q
yβ2´1

`
2pβ1 ´ 1qhαγ1

κ2pβ1 ´ r1qpβ1 ´ r2q
yβ1´1,

if hp1´αqγ1´1 ď y ď νγ1´1hp1´αqγ1´1,

2pr ` λq

κ2
C5phqy

r1´1 `
2pr ` λq

κ2
C6phqy

r2´1

`
2λK1´β2pβ2 ´ 1q

κ2pβ2 ´ r1qpβ2 ´ r2q
yβ2´1,

if p1´ αqhp1´αqγ1´1 ď y ă hp1´αqγ1´1,

(4.2.17)

and

b:py, hq “

ˆ

y

K

˙
1

γ2´1

. (4.2.18)

We consider the process Ytpyq :“ yepr`λqtMt, where Mt :“ e´pr`λ`
κ2

2
qt´κWt is the

discounted rate state price density process, and y˚ “ y˚px, hq is the unique solution

to the budget constraint Er
ş8

0
pc:pYtpyq, H

:
t pyqq ` λb

:pYtpyq, H
:
t pyqqqMtdts “ x, where

H:
t pyq :“ h_ sup

sďt
c:pYspyq, H

:
spyqq “ h_

ˆ

inf
sďt

Yspyq{p1´ αq

˙
1

p1´αqγ1´1

,

is the optimal reference process corresponding to any fixed y ą 0. The value function

upx, hq can be attained by employing the optimal consumption and portfolio strategies

in the feedback form that c˚t “ c:pY ˚t , H
˚
t q and π˚t “ π:pY ˚t , H

˚
t q for all t ě 0, where

Y ˚t :“ Ytpy
˚q and H˚

t “ H:
t py

˚q.

The process H˚
t is strictly increasing if and only if Y ˚t “ p1 ´ αqH˚

t
p1´αqγ1´1. If

we have y˚px, hq ă p1 ´ αqhp1´αqγ1´1 at the initial time, the optimal consumption

creates a new peak and brings H˚
0´ “ h jumping immediately to a higher level H˚

0 “

`

y˚px,hq
1´α

˘
1

p1´αqγ1´1 such that t “ 0 becomes the only jump time of H˚
t .
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Proof. The proof is given in Appendix A.2.2.

Using the dual relationship between u and v, we have the optimal x “ gp¨, hq :“

´vyp¨, hq. Define fp¨, hq as the inverse of gp¨, hq, then upx, hq “ vpfpx, hq, hq `

xfpx, hq. Note that v has different expressions in the regions c “ 0, 0 ă c ă h and

c “ h, and the function f should also have piecewise across these regions. By the

definition of g, the invertibility of the map x ÞÑ gpx, hq is guaranteed by the following

lemma.

Lemma 4.1. Under Assumption (A1), the value function vpy, hq in (4.2.14) is

convex in all regions so that the inverse Legendre transform upx, hq “ infyěp1´αqhp1´αqγ´1

rvpy, hq`xys is well defined. Moreover, it implies that the feedback optimal portfolio

π˚py, hq ą 0 all the time.

Proof. See Appendix A.2.3.

4.2.3 Optimal Feedback Controls

The main result in this subsection is based on Assumption (A1). Thanks to Lemma

4.1, we can apply the inverse Legendre transform to the solution vpy, hq in (4.2.14).

Similar to Section 3.1 in Deng et al. (2022), we can characterize the following four
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boundary curves xboundphq, xlowphq, xaggrphq, and xlavsphq:

xboundphq :“
νh

r ` λ
,

xlowphq :“ ´C2phqr2ν
´r1pγ1´1qh´r1pp1´αqγ1´1q ´

2λK1´β2νpβ2´1qpγ1´1q

κ2pβ2 ´ r1qpβ2 ´ r2q
hpβ2´1qpp1´αqγ1´1q `

νh

r ` λ
,

xaggrphq :“ ´C3phqr1h
´r2pp1´αqγ1´1q ´ C4phqr2h

´r1pp1´αqγ1´1q

´
2λK1´β2

κ2pβ2 ´ r1qpβ2 ´ r2q
hpβ2´1qpp1´αqγ1´1q ´

2

κ2pβ1 ´ r1qpβ1 ´ r2q
h,

xlavsphq :“ ´C5phqr1p1´ αq
r1´1h´r2pp1´αqγ1´1q ´ C6phqr2p1´ αq

r2´1h´r1pp1´αqγ1´1q

´
2λp1´ αqβ2´1K1´β2

κ2pβ2 ´ r1qpβ2 ´ r2q
hpβ2´1qpp1´αqγ1´1q `

h

r ` λ
,

(4.2.19)

and it holds that the feedback function of the optimal consumption satisfies: (i)

c˚px, hq “ νh when xboundphq ď x ă xlowphq; (ii) νh ă c˚px, hq ă h when xlowphq ď

x ď xaggrphq; (iii) c˚px, hq “ h when xaggrphq ă x ď xlavsphq. In particular, the

condition uxpx, hq ě p1 ´ αqhp1´αqγ1´1 in the effective domain C in (4.2.5) now can

be explicitly expressed as x ď xlavsphq.

We also define functions f1px, hq, f2px, hq and f3px, hq to be the respective solu-

tions to three equations that

x “ ´C2phqr2pf1px, hqq
r2´1 ´

2λK1´β2f1px, hq
β2´1

κ2pβ2 ´ r1qpβ2 ´ r2q
`

νh

r ` λ
, if xboundphq ď x ă xlowphq,

x “ ´C3phqr1pf2px, hqq
r1´1 ´ C4phqr2pf2px, hqq

r2´1

´
2λK1´β2f2px, hq

β2´1

κ2pβ2 ´ r1qpβ2 ´ r2q
´

2hαβ1f2px, hq
β1´1

κ2pβ1 ´ r1qpβ1 ´ r2q
, if xlowphq ď x ď xaggrphq,

x “ ´C5phqr1pf3px, hqq
r1´1 ´ C6phqr2pf3px, hqq

r2´1

´
2λK1´β2f3px, hq

β2´1

κ2pβ2 ´ r1qpβ2 ´ r2q
`

h

r ` λ
, if xaggrphq ă x ď xlavsphq.

(4.2.20)

The following proposition shows the semi-analytical form for the value function,
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optimal consumption, and optimal portfolio.

Theorem 4.2. For px, hq P tpx, hq P R2
` : x ě xboundphqu, 0 ă ν ă 1, γ1, γ2 ą 0, the

value function upx, hq in (4.1.1) can be expressed in a piecewise form that

upx, hq “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

C2phqf1px, hq
r2 `

2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
f1px, hq

β2

`
νγ

pr ` λqγ1
hp1´αqγ ´

νh

r ` λ
f1px, hq,

if xboundphq ď x ă xlowphq,

C3phqf2px, hq
r1 ` C4phqf2px, hq

r2 `
2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
f2px, hq

β2

`
2hαγ1

κ2β1pβ1 ´ r1qpβ1 ´ r2q
f2px, hq

β1 ,
if xlowphq ď x ď xaggrphq,

C5phqf3px, hq
r1 ` C6phqf3px, hq

r2 `
2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
f3px, hq

β2

`
1

pr ` λqγ1
hp1´αqγ1 ´

h

r ` λ
f3px, hq,

if xaggrphq ă x ď xlavsphq,

(4.2.21)

where the boundaries xboundphq, xlowphq, xaggrphq, and xlavsphq are given in (4.2.19).

Moreover, the feedback optimal consumption and portfolio can also be given in terms

of primal variables px, hq accordingly:

c˚px, hq “

$

’

’

’

’

&

’

’

’

’

%

νh, if xboundphq ď x ă xlowphq,

h
αγ1
γ1´1f2px, hq

1
γ1´1 , if xlowphq ď x ď xaggrphq,

h, if xaggrphq ă x ă xlavsphq,
`

f3px,h̃pxqq
1´α

˘
1

p1´αqγ1´1 , if x “ xlavsphq,

(4.2.22)
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where h̃pxq :“ x´1
lavspxq, the optimal portfolio

π˚px, hq

“
µ´ r

σ2

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

2pr`λq
κ2

C2phqf1px, hq
r2´1 `

2λK1´β2 pβ2´1q
κ2pβ2´r1qpβ2´r2q

f1px, hq
β2´1, if xboundphq ď x ă xlowphq,

2pr ` λq

κ2
C3phqf2px, hq

r1´1 `
2pr ` λq

κ2
C4phqf2px, hq

r2´1

`
2λK1´β2pβ2 ´ 1q

κ2pβ2 ´ r1qpβ2 ´ r2q
f2px, hq

β2´1

`
2pβ1 ´ 1qhαγ1

κ2pβ1 ´ r1qpβ1 ´ r2q
f2px, hq

β1´1,

if xlowphq ď x ď xaggrphq,

2pr ` λq

κ2
C5phqf3px, hq

r1´1 `
2pr ` λq

κ2
C6phqf3px, hq

r2´1

`
2λK1´β2pβ2 ´ 1q

κ2pβ2 ´ r1qpβ2 ´ r2q
f3px, hq

β2´1,
if xaggrphq ă x ď xlavsphq,

(4.2.23)

and the optimal bequest

b˚px, hq “

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

ˆ

f1px,hq
K

˙
1

γ2´1

, if xbound ď x ă xlowphq,

ˆ

f2px,hq
K

˙
1

γ2´1

, if xlow ď x ă xaggrphq,

ˆ

f3px,hq
K

˙
1

γ2´1

, if xaggr ă x ď xlavsphq.

(4.2.24)

Moreover, for any initial value pX˚
0 , H

˚
0 q “ px, hq P C, the stochastic differential

equation

dX˚
t “ pr ` λqX

˚
t dt` π

˚
pµ´ rqdt´ c˚dt´ λb˚t dt` π

˚σdWt, (4.2.25)

has a unique strong solution under the optimal feedback control pc˚, π˚q.

Proof. The proof of Theorem 4.2 is trivial under the results of Theorem 4.1 and the

inverse Legendre transform. Moreover, the existence and uniqueness of the strong

solution to SDE (4.2.25) follows the same argument in the proof of Proposition 5.1

of Deng et al. (2022).
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Based on Theorem 4.2, we can derive some asymptotic results of the optimal

consumption-wealth ratio c˚t {X
˚
t and the invest fraction π˚t {X

˚
t when the wealth is

sufficiently large. As wealth x Ñ `8, the running maximum h updates to h “

x´1
lavspxq and tends to infinity. Therefore, from the constraint that x ď xlavsphq, the

asymptotic properties of optimal controls as xÑ `8 should be restrained along the

boundary curve x “ xlavsphq as hÑ `8.

Corollary 4.1. Two limits lim
hÑ`8

c˚pxlavsphq,hq
xlavsphq

and lim
hÑ`8

π˚pxlavsphq,hq
xlavsphq

exist and are both

positive. Meanwhile, the asymptotic behavior of the optimal bequest lim
hÑ`8

b˚pxlavsphq,hq
xlavsphq

also exists, and is positive if and only if γ2 “ p1´ αqγ1.

Proof. See Appendix A.2.4.

Remark. Contrary to Guasoni et al. (2020), all boundary curves xlowphq, xaggrphq

and xlavsphq in the present paper are all nonlinear functions of h, because the expected

bequest and the optimal life insurance control are considered in our problem. If

λ “ 0 such that there is no life insurance control, the boundary curves become linear

functions of the reference variable h, and the results are similar to those in Guasoni

et al. (2020).

Remark. Under optimal control pc˚, π˚, b˚q, the wealth process X˚
t satisfies the con-

straint that X˚
t ě

νH˚t
r`λ

if the initial condition X˚
0 “ x ě νh

r`λ
is satisfied. Indeed, let

Z˚t :“ X˚
t ´

νH˚t
r`λ

. If Z˚t “ 0 at some t ě 0, the optimal feedback controls satisfy that

c˚t “ νH˚
t , π˚t “ 0, and b˚t “ 0, indicating that Z˚s “ 0 and c˚s “ νH˚

s for all s ě t.

That is, the optimal wealth X˚
t stays at the level

νH˚t
r`λ

once this level is hit.

Remark. As wealth x tends to the lower bound νh
r`λ

, the optimal bequest b˚ Ñ 0,

and thus the optimal premium p˚ “ λpb˚ ´ xq ă 0. If the parameters satisfy κ2pβ2
2 ´

1q ě 2r, the optimal premium shall always be negative. If the parameters satisfy
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κ2pβ2
2 ´ 1q ă 2r, the optimal premium would be positive if x ą x˚, where x˚ satisfies

fpx˚, hq ă hp1´αqγ1´1 and

κ2pβ2
2 ´ 1q ´ 2r

κ2pβ2 ´ r1qpβ2 ´ r2qKβ2´1
fpx˚, hqβ2´1 “ ´r1C5phqfpx

˚, hqr1´1´r2C6phqfpx
˚, hqr2´1`

h

r ` λ
.

4.3 Numerical Illustrations

In this section, we numerically illustrate some quantitative properties of the feedback

functions of optimal consumption, investment, and life insurance premium policy es-

tablished in Theorem 4.2. Let us choose the following values of the model parameters:

r “ 0.05, µ “ 0.1, σ “ 0.25, ρ “ 0.05, λ “ 0.03, ν “ 0.2, γ1 “ 0.5, γ2 “ 0.1, α “ 0.7,

K “ 5, and reference level h “ 1. In the following figures, we only change the value

of one parameter (while keeping other parameters fixed) to show some sensitivity

results with respect to that parameter.

4.3.1 Boundary Curves

The left panel of Figure 4.2 shows that three boundary curves xlowphq, xaggrphq,

and xlavsphq are increasing nonlinear functions of h. The graphs are consistent with

the intuition that if the past reference level is higher, the investor would expect

larger wealth thresholds to trigger the change of consumption from the low constraint

c “ νh to c ą νh, and from c ă h to the historical maximum c “ h, respectively.

From the middle panel, the higher mortality probability motivates the agent to reduce

all thresholds and consume more aggressively before the death occurs. It can be seen

from the right panel of Figure 4.2 that xlow, xaggr and xlavs are all decreasing in the

shortfall aversion parameter α, indicating that the more shortfall averse the agent is,

the more eager the agent is to consume at the historical maximum level by lowering

the corresponding thresholds.
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Figure 4.2: Boundary curves xbound, xlow, xaggr and xlavs with respect to the reference

variable h (left), the force of mortality λ (middle), and the shortfall aversion parameter α

(right), respectively.

4.3.2 Sensitivity Analysis

Figures 4.3 to 4.5 show the sensitivity results of optimal controls on the force of

mortality λ, the shortfall aversion α and the bequest motive K, respectively. From

Figure 4.3, when the wealth level x is sufficiently large, the higher force of mortality

motivates the larger optimal consumption and higher optimal insurance premium

but results in the lower portfolio allocation in the risky asset. These observations

can be explained by the real life situation that the agent spends more cash from

the financial market to consume more and purchase more life insurance in view

of the higher probability of death. It is interesting to see from Figure 4.4 that a

larger shortfall aversion parameter α (i.e., the stronger desire to consume at the

historical peak level), leads to a larger optimal insurance premium, which is similar

to the observation made in Ben-Arab et al. (1996) that higher consumption habits

would increase the demand for life insurance. It is also consistent with two real

life observations: piq the agent who develops a higher standard of living due to a

larger α would purchase more life insurance, possibly to ensure that the left family

members can afford the high living standard after the death of the agent; piiq when

the agent has sufficient wealth, purchasing more life insurance can also be an effective

instrument to reduce some spared cash and smooth out the consumption path so that
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the reference level does not increase significantly. From Figure 4.5, it is natural to see

that the higher bequest motive K yields higher demand for life insurance and lower

portfolio allocation. We stress that a higher bequest goal also lowers all consumption

thresholds and increases the consumption level. This can be explained by the real

life observation that the agent who cares more about life insurance protection is more

likely to develop a higher standard of living and consume more aggressively due to

a higher reference level.

2 4 6 8 10 12 14 16 18 20

Wealth x

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

c(
x,

1)

Optimal Consumption

λ=0.01
λ=0.03
λ=0.05

2 4 6 8 10 12 14 16 18 20

Wealth x

0

1

2

3

4

5

6

7

π
(x

,1
)

Optimal Portfolio

λ=0.01
λ=0.03
λ=0.05

2 4 6 8 10 12 14 16 18 20

Wealth x

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

p(
x,

1)

Optimal Insurance Premium

λ=0.01
λ=0.03
λ=0.05

Figure 4.3: Optimal consumption, portfolio and insurance premium for various forces of

mortality.

4 6 8 10 12 14

Wealth x

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

c(
x,

1)

Optimal Consumption

α=0.3
α=0.5
α=0.7

4 6 8 10 12 14

Wealth x

0

2

4

6

8

10

12

14

π
(x

,1
)

Optimal Portfolio

α=0.3
α=0.5
α=0.7

4 6 8 10 12 14

Wealth x

-0.2

-0.1

0

0.1

0.2

0.3

0.4

p(
x,

1)

Optimal Insurance Premium

α=0.3
α=0.5
α=0.7

Figure 4.4: Optimal consumption, portfolio and insurance premium for various shortfall

aversion.

Figure 4.6 shows the sensitivity results of optimal controls on the drawdown con-

straint parameter ν. When the wealth level is sufficient such that the drawdown

constraint on the consumption rate can be supported, the larger parameter ν in-

creases all thresholds for the consumption plan and leads to a higher past spending

maximum when the wealth level is large. Due to the higher minimum consumption
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Figure 4.5: Optimal consumption, portfolio and insurance premium for various bequest

motives.

rate at the drawdown constraint level and higher consumption when the wealth level

is large, it is reasonable to observe that the larger parameter ν reduces the incentives

of portfolio allocation and life insurance when wealth is sufficient.
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Figure 4.6: Optimal consumption, portfolio and insurance premium for various drawdown

constraint parameters.

Figures 4.7 and 4.8 present the simulated paths of the optimal wealth, the optimal

consumption, the optimal portfolio, and the optimal life insurance premium in ten

years in three different models: 1) our proposed model with life insurance, reference

to past spending maximum and drawdown constraint (our model), 2) the shortfall

aversion model in Guasoni et al. (2020), and 3) the standard optimal consumption

and life insurance model. If we do not consider life insurance and drawdown con-

straints, that is, λ “ 0 and ν “ 0, our model is equivalent to Guasoni’s model

(Guasoni). Moreover, a nonhabit individual would not be affected by the consump-

tion path in her model and can be characterized by our model if shortfall aversion
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α “ 0 (non-habit). We set the initial wealth to be X0 “ 3.5. One can observe

that the optimal wealth sample path in the nonhabit model dominates the other two

counterparts, and the optimal wealth path in our model grows slowest due to the

life insurance purchase and the consumption reference. For the same reasoning, the

portfolio allocation in our model is also the least. Regarding the optimal consump-

tion paths, the simulated path in our model is smoother than the other two paths,

and the overall consumption level is also highest due to the drawdown constraint. Fi-

nally, comparing the demand for life insurance between our model and the nonhabit

model, our life insurance premium path becomes much smoother, indicating that the

reference to past consumption not only leads to stable consumption behavior, but

also helps to smooth out the optimal premium plan.

Time

Wealth Process

Our model
Guasoni
Non-habit

Time

Consumption Process

Our model
Guasoni
Non-habit

Figure 4.7: Wealth and consumption processes (X0 “ 3.5).

4.4 Conclusion

In this chapter, we study the optimal life insurance problem together with dynamic

portfolio and consumption plans in a new framework under the shortfall aversion

preference and a drawdown constraint on consumption. For the infinite horizon s-

tochastic control problem, we can find the classical solution to the associated HJB

equation in piecewise form and characterize the optimal feedback controls explic-
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Figure 4.8: Portfolio and life insurance premium processes (X0 “ 3.5).

itly across different regions. Thanks to our analytical results, we can numerically

illustrate the sensitivity results of the optimal strategies on model parameters and

conclude with some interesting financial implications.

Several directions of future research can be considered. For example, one may

consider the problem in the market model with regime switching, and discuss some

quantitative changes in optimal strategies in bull and bear regime states. It is also

appealing to study the more challenging problem over a finite horizon, in which the

analytical characterization of the value function is not promising and all boundary

curves to distinguish different optimal feedback controls are time-dependent. Some

new techniques are needed to tackle the parabolic PDE problem.
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Chapter 5

On the Policy Improvement

Algorithm for Optimal

Consumption and Life Insurance

with Habit Formation

In this chapter, we propose a reinforcement learning method to choose the optimal

relative consumption, portfolio and life insurance purchasing under habit formation

preference. In particular, the risky asset in the market is unknown. The preference

measures both the difference between consumption and living standard and expect-

ed bequest at the time of death. Any given policy is evaluated by minimizing the

martingale loss rather than the classical temporal difference (TD) error. With some

necessary estimation for some market coefficient, the policy is updated by our pro-

posed policy improvement theorem (PIT). Our proposed algorithm and results are

applied to obtain the optimal portfolio, consumption, and life insurance purchase in

the real market.

The remainder of this chapter is organized as follows. Section 5.1 introduces the

market model, habit formation, mortality risk, and the stochastic control problem.

Section 5.2 proposes the reinforcement learning algorithm based on the solution to

the classical stochastic control problem. Simulation studies are conducted to assess
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the performance of our proposed algorithm in Section 5.3. In section 5.4, we further

apply our algorithm to consume, invest and purchase life insurance from July 2021

to June 2022 based on the market in the previous 12 months.

5.1 Problem Formulation

The value function is defined by

Jpx, z; c, π, bq “ EF0

„
ż τ

0

e´ρsUpcs ´ Zsqds`Ke
´ρτUpbτ qds



“ EF0

„
ż 8

0

e´pρ`λqs
`

Upcs ´ Zsq ` λKUpbsq
˘

ds



,

(5.1.1)

where ρ ą 0 is the discount factor, Upxq :“ 1
γ
xγ is the constant relative risk aversion

(CRRA) utility function where parameter γ ă 1, and K ą 0 stands for the bequest

motive level. Our problem is to find a control triple pc˚, π˚, b˚q P Apx, zq such that

Jpx, z; c˚, π˚, b˚q “ sup
pc,π,bqPApx,zq

Jpx, z; c, π, bq :“ upx, zq,

where upx, zq is called the value function of our problem.

To ensure that under the optimal policy, the expected utility of consumption flow

grows at a rate that is lower than the time preference, then the problem is well-posed,

we need the following conditions:

0 ă η ă r`λ`δ, ρ`λ´γpr`λq´
γµ2

2p1´ γqσ2
ą 0, and λK

1
1´γ

ˆ

r ` λ` δ ´ η

r ` λ` δ

˙
γ
γ´1

ă 1.

(5.1.2)

5.2 Algorithm Design

In this section, we propose an algorithm to obtain the optimal value function, the

optimal feedback consumption and investment strategies with unknown µ and σ in
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the stock price dynamics (2.3.4). To be more specific, we first refer to the classical

optimal consumption-investment problem with life insurance if we have knowledge of

all the parameters in the model, then propose a policy improvement theorem (PIT)

inspired by the solution to the classical problem, and evaluate the policy by mini-

mizing the martingale loss. In practice, the policy is improved by the combination

of PIT and the estimation of some model parameters.

5.2.1 Optimality of the classical problem

In this section, we refer to the solution to the classical optimal consumption and life

insurance problem with habit formation.

Theorem 5.1. The optimal value function of problem (5.1.1) is given by

upx, zq “
dhγ´1

pd` ηqγ

ˆ

x´
z

d

˙γ

, (5.2.3)

where d :“ r ` λ` δ ´ η and h is defined as

h :“

ˆ

1´λK
1

1´γ

ˆ

d

d` η

˙
γ
γ´1

˙´1ˆ
d

pd` ηqp1´ γq

˙ˆ

ρ`λ´γpr`λq´
γµ2

2p1´ γqσ2

˙

.

(5.2.4)

Moreover, the optimal feedback control triple is

c˚px, zq “ z ` h

ˆ

x´
z

d

˙

,

π˚px, zq “
µ

p1´ γqσ2

ˆ

x´
z

d

˙

,

b˚px, zq “

ˆ

d

pd` ηqK

˙
1

γ´1

h

ˆ

x´
z

d

˙

.

(5.2.5)

The associated optimal wealth and habit formation processes under pc˚, π˚q are the
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unique solution of the SDE

dX˚
t “ prX

˚
t ` π

˚
t µ´ c

˚
t ´ λb

˚
t qdt` π

˚
t σdWt,

dZ˚t “ pηc
˚
t ´ δZ

˚
t qdt, t ě 0,

(5.2.6)

with initial pair pX˚
0 , Z

˚
0 q “ px, zq satisfying x ě z

d
.

Proof. The proof is similar to the proof of Theorem 1 in Constantinides (1990), so

we omit it here.

5.2.2 A policy improvement theorem

In this section, we provide a policy improvement theorem that guarantees that the

iterated value functions are nondecreasing, and ultimately converge to the optimal

value function. Jacka and Mijatovi (2017) proved the policy improvement theorem

for continuous-time stochastic control problems. However, for the completeness of

this paper, we still show the proof in this section.

Theorem 5.2 (Policy Improvement Theorem). Let c “ cp¨, ¨q, π “ πp¨, ¨q and b “

bp¨, ¨q be a triple of arbitrarily given admissible feedback control policies. Suppose

that the corresponding value function uc,π,bp¨, ¨q P C2,1ptpx, zq : x ě z
d
uq satisfies

uc,π,bxx px, zq ă 0, for any x ě z
d
. Suppose further that the feedback policy triplet

pc̃, π̃, b̃q defined by

c̃px, zq “ z `
`

uc,π,bx ´ ηuc,π,bz

˘
1

γ´1 , π̃px, zq “ ´
µ

σ2

uc,π,bx

uc,π,bxx

, b̃px, zq “

ˆ

uc,π,bx

K

˙
1

γ´1

,

(5.2.7)

is admissible. Then

uc̃,π̃,b̃px, zq ě uc,π,bpx, zq, x ě
z

d
ą 0. (5.2.8)

Proof. See Appendix A.3.1.
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The optimal feedback control (5.2.5) in Theorem 5.1 suggests that a candidate

initial feedback policy triple may take the form c0px, zq “ z ` a1

`

x ´ z
d

˘

, π0px, zq “

a2

`

x´ z
d

˘

, and b0 “ a3

`

x´ z
d

˘

. Therefore, such a choice leads to the convergence of

both the value functions and the policies in a finite number of iterations theoretically

if r, λ, δ, η are known and thus d is known.

Theorem 5.3. Consider the initial control triple c0px, zq “ z`a1

`

x´ z
d

˘

, π0px, zq “

a2

`

x´ z
d

˘

, with a1, a2 ą 0, and b0 “ a3

`

x´ z
d

˘

. Denote by tpcnpx, zq, πnpx, zq, bnpx, zqq,

x ě z
d
ą 0, n ě 1u the sequence of feedback triples by the policy improvement scheme

(5.2.7), and tucn,πn,bn , x ě z
d
ą 0, n ě 1u is the sequence of the corresponding value

functions. Then

lim
nÑ8

cnpx, zq “ c˚px, zq, lim
nÑ8

πnpx, zq “ π˚px, zq, lim
nÑ8

bnpx, zq “ b˚px, zq, (5.2.9)

and

lim
nÑ8

ucn,πn,bnpx, zq “ upx, zq, (5.2.10)

for any x ě z
d
ą 0, where pc˚, π˚, b˚q is the optimal policy triplet in (5.2.5) and u is

the value function (5.2.3).

Proof. See Appendix A.3.2.

5.2.3 TD error and martingale loss for policy evaluation

For policy evaluation to learn the value function uc,π,b under any arbitrarily given

admissible feedback policy pair pc, πq, we first review the temporal difference (TD)

methods, and show that mean square TD error (MSTDE) is not applicable for our

problem. We then extend the martingale loss proposed by Jia and Zhou (2022a) in

finite horizon for our infinite horizon problem.
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By Bellman’s consistency, we have

e´ρtuc,π,bpx, zq “ EFt
„

e´ρsuc,π,bpXs, Zsq`

ż s

t

e´ρv
1

γ

`

pcv´Zvq
γdv`λKbγv

˘

dv



, s ě t,

(5.2.11)

for x ě z
d
ą 0. Rearranging this equation and dividing both sides by s´ t, we obtain

EFt
„

e´ρps´tquc,π,bpXs, Zsq ´ u
c,π,bpXt, Ztq

s´ t
`

1

s´ t

ż s

t
e´ρpv´tq

1

γ

`

pcv´Zvq
γdv`λKbγv

˘

dv



“ 0.

Let sÑ t on the left-hand side, then we obtain the TD error

εt :“ ´ρuc,π,bpXt, Ztq ` 9uc,π,bpXt, Ztq `
1

γ
pct ´ Ztq

γ
`
λK

γ
bγt , (5.2.12)

where 9uc,π,bpXt, Ztq “
uc,π,bpXt`4t,Zt`4tq´u

c,π,bpXt,Ztq

4t is the total derivative and4t is the

discretization step for the learning algorithm. The objective of the policy evaluation

is to minimize the sum square of the TD error εt. Denote by Jθ and pcϕ, πϕ, bϕq the

value function and policy, respectively with θ and ϕ being the vector of weights to

be learned. The objective function is defined as

Rpθ, ϕq “ 1

2
E
„
ż 8

0

e´ρt|εt|
2dt



“
1

2
E
„
ż 8

0

e´ρt
ˇ

ˇ

ˇ

ˇ

´ ρJθpXt, Ztq ` 9JθpXt, Ztq `
1

γ
pcϕt ´ Ztq

γ
`
λK

γ
pbϕt q

γ

ˇ

ˇ

ˇ

ˇ

2

dt



,

where pcϕ, πϕq “ tcϕt , π
ϕ
t , b

ϕ
t , t ě 0u is generated from pcϕ, πϕ, bϕq in an implementable

algorithm.

To make the minimization process applicable, one needs to discretize an infinite

time horizon into small equal-length intervals rti, ti`1s for i “ 0, 1, ¨ ¨ ¨ , with t0 “ 0.

Then a set of samples D “ tpxi, ziq : i “ 0, 1, ¨ ¨ ¨ u are collected in the following way.

The initial sample is px0, z0q for i “ 0. Then at each time ti, i “ 0, ¨ ¨ ¨ , l, one applies

pcϕti , π
ϕ
tiq to be the consumption and investment in the risky asset, and then observe
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the wealth xi`1 at the next time instant ti`1. Therefore, the discretization version

of the infinite horizon mean square TD error is defined as

MSTDE4tpθ, ϕq :“
1

2
E
„ 8
ÿ

i“0

e´ρti
ˆ

´ ρJθpXti , Ztiq `
JθpXti`1

, Zti`1
q ´ JθpXti , Ztiq

ti`1 ´ ti

`
1

γ
pcϕti ´ Ztiq

γ
`
λK

γ
pbϕtiq

γ

˙2

4t


(5.2.13)

Denote by Mϕ
t “ e´ρtuc

ϕ,πϕpXt, Ztq `
şt

0
e´ρs 1

γ

`

pcϕs ´ Zsq
γ ` λKpbϕs q

γ
˘

ds, then

8
ÿ

i“0

e´ρti
ˆ

´ ρuc
ϕ,πϕ,bϕ

pXti , Ztiq `
uc

ϕ,πϕpXti`1
, Zti`1

q ´ uc
ϕ,πϕpXti , Ztiq

ti`1 ´ ti

`
1

γ

`

pcϕti ´ Ztiq
γ
` λKbγti

˘

˙2

4t

“
1

4t

8
ÿ

i“0

e´ρti
ˆ

´ ρuc
ϕ,πϕ

pXti , Ztiq4t` uc
ϕ,πϕ

pXti`1
, Zti`1

q ´ uc
ϕ,πϕ

pXti , Ztiq

`

ż ti`1

ti

1

γ

`

pcϕs ´ Zsq
γ
` λKbϕs

˘

ds`Op4tq2
˙2

«
1

4t
xMy8 “

σ2

4t
xuc

ϕ,πϕ,bϕ

x pXt, Ztqy,

which is the quadratic variation and thus nonzero. Thus, the minimizer ofMSTDE4tpθ, ϕq

cannot provide a good approximation of the value function.

Because the minimizer of MSTDE minimizes the quadratic variation of the mar-

tingale Mϕ
t , we aim to apply the martingale loss proposed in Jia and Zhou (2022a)

to approximate the value function. According to the martingale condition that
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Mt “ ErMs|Fts for all s ě t, we aim to minimize the following martingale loss

MLpθq :“
1

2
}Mϕ

¨ pθq ´M
ϕ
s pθq}

2
2

“
1

2
E
ż 8

0

|Mϕ
t pθq ´M

ϕ
s pθq|

2dt

«
1

2
E
„ 8
ÿ

i“0

ˆ

e´ρtiJθpXti , Ztiq ´
8
ÿ

j“i`1

e´ρtj
1

γ

`

pcϕtj ´ Ztjq
γ
` λKbγtj

˘

˙2

4t


:“ML4tpθq,

(5.2.14)

as sÑ 8, where ti is a mesh grid in time. Loss function ML4pθq does not rely on the

knowledge of µ and σ in the system, it is implementable in the algorithm. Moreover,

the time horizon we observe cannot be infinite, but we can select a truncated time

T that is sufficiently large.

5.2.4 The habit formation algorithms

In this section, we present an algorithm to solve (5.1.1). The algorithm consists of

two procedures: policy evaluation and policy improvement. Policy is evaluated by

minimizing the martingale loss, and is improved by PIT. By virtue of Theorem 5.1

and Theorem 5.3, we focus on the optimal policy triplet taking the form cpx, zq “

z ` ϕ1

`

x ´ z
d

˘

and πpx, zq “ ϕ2

`

x ´ z
d

˘

, bpx, zq “ ϕ3px ´
z
d

˘

, and denoted by ϕ “

pϕ1, ϕ2, ϕ3q
J the parameters to be learned.

For policy evaluation, as suggested by the theoretical optimal value function

(5.2.3) in Theorem 5.2.3, we consider the parameterized Jθ, where θ ą 0, by

Jθpx, zq “ θ

ˆ

x´
z

d

˙γ

. (5.2.15)

We can minimize ML4tpθq using the gradient descent algorithms to devise the up-
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dating rules for θ. Precisely ,we compute

BML4tpθq

Bθ
“

8
ÿ

i“0

ˆ

e´ρtiJθpXti , Ztiq ´
8
ÿ

j“i

e´ρtj
1

γ

`

pcϕtj ´ Ztjq
γ
` λKpbϕtjq

γ
˘

˙

4t

¨ e´ρti
BJθpXti , Ztiq

Bθ
,

(5.2.16)

where BJθpx,zq
Bθ

“
Jθpx,zq

θ
due to the form Jθpx, zq “ θ

`

x´ z
d

˘γ
.

From the policy improvement updating scheme (5.2.7), it follows that the optimal

consumption cpx, zq “ z ` p θγpd`ηq
d

˘
1

γ´1
`

x ´ z
d

˘

and the optimal bequest bpx, zq “

p
θγ
K

˘
1

γ´1
`

x ´ z
d

˘

, indicating that ϕ1 “ p
θγpd`ηq

d

˘
1

γ´1 and ϕ3 “ p
θγ
K

˘
1

γ´1 . Parameter ϕ2

may not change by the policy improvement theorem 5.2, however, by the expression

ϕ˚2 “
µ

p1´γqσ2 , a basic idea is to make some estimation for µ or σ and then update

ϕ2 while updating ϕ1 and θ. Statistical estimation is the first choice to estimate µ

and σ by the trajectories D. However, although the classical estimator σ is accurate,

the estimator for µ may have large variance and is thus not robust, therefore, we

aim to update ϕ2 under ϕ1, θ, and estimation for σ. To be more specific, for wealth,

consumption and investment trajectories tXtiu
l
i“0, tcϕtiu

l
i“0, tπϕtiu

l
i“0 and tbϕtiu

l
i“0 with

tl “ T ą 0, we can first estimate σ2 by

σ̂2 “

l´1
ÿ

i“0

ˆ

Xti`1
´ p1` r4tqXti ´ c

ϕ
ti4t´ λb

ϕ
ti4t

πϕti
´

1

l

l´1
ÿ

j“0

Xtj`1
´ p1` r4tqXtj ´ c

ϕ
tj4t´ λb

ϕ
tj4t

πϕtj

˙2

,

(5.2.17)

and define

µ̂2
“

2p1´ γqσ̂2

γd
¨

ˆ

ρ` λ´ γpr ` λq ´

ˆ

1´ λK
1

1´γ

ˆ

d

d` η

˙
γ
γ´1

˙

pd` ηqp1´ γqϕ1

˙

,

(5.2.18)

by virtue of (5.2.4). Then ϕ2 can be updated by ϕ2 “
µ̂

p1´γqσ̂2 . Based on the

discussion above, we propose algorithm 1 to obtain the optimal θ, ϕ1, ϕ2, and ϕ3,
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and thus the corresponding value function and optimal policy triplet.

Algorithm 1 Algorithm based on PIT

Inputs: Initial wealth and habit formation px0, z0q, horizon T , discretization 4t,
learning rate ηθ, and number of episodes n.
Required program: an wealth and reference simulator px1, z1q “

Environment4tpt;x, z; c, π, bq that takes current time-wealth and action pc, π, bq as
inputs and generates wealth and reference px1, z1q at time t`4t.
Learning procedure:

Initialize θ, ϕ
for i P t1, ¨ ¨ ¨ , nu do

Obtain two local state trajectories tpXti , Ztiq, i “ 0, 1, ¨ ¨ ¨ , lu by running system
(2.3.5) with parameter triplet ϕ “ pϕ1, ϕ2, ϕ3q

Update θ (policy evaluation) using (5.2.16) by

θ Ð θ ´ ηθ
BML4tpθq

Bθ

Update ϕ1 and ϕ3 (policy improvement) by

ϕ1 Ð

ˆ

θγpd` ηq

d

˙
1

γ´1

, and ϕ3 Ð

ˆ

θγ

K

˙
1

γ´1

Estimate σ̂ and determine µ̂2 using (5.2.17) and (5.2.18) respectively
Update ϕ2 (policy improvement) by

ϕ2 Ð
µ̂

p1´ γqσ̂2

end for

5.3 Simulation Studies

In this section, we use a simulated example to illustrate the feasibility and advan-

tages of our proposed learning algorithm. We compare the performance of our habit

formation algorithm (HF) with the conventional least square method (LS). Recall

that in the classical LS method, the estimators for µ and σ can be plugged into

(5.2.5) and then the corresponding policy is obtained.

We generate 100 datasets from model (2.3.4). This is repeated by the following

combinations of µ and σ from the sets µ P t0.05, 0.1, 0.15u and σ P t0.2, 0.25, 0.3u.
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µ σ θ ϕ1 ϕ2 ϕ3

HF algorithm
0.05 0.2

0.3868(0.0007) 4.0087(0.1342) 3.3997(2.8084) 26.7565(0.8957)
LS method 0.4166(0.0056) 3.5593(0.5317) 5.6471(6.5414) 23.7573(3.5500)
Theoretical 0.3841 4.0617 2.5 27.1100

HF algorithm
0.05 0.25

0.3865(0.0007) 4.0166(0.1420) 2.6397(2.2169) 26.8095(0.9475)
LS method 0.4144(0.0051) 3.5818(0.5074) 4.2800(5.0979) 23.9071(3.3865)
Theoretical 0.3837 4.0708 1.6 27.1713

HF algorithm
0.05 0.3

0.3865(0.0007) 4.0146(0.1319) 2.1897(1.8494) 26.7959(0.8805)
LS method 0.4131(0.0048) 3.5961(0.4915) 3.4376(4.1725) 24.0024(3.2804)
Theoretical 0.3834 4.0758 1.1111 27.2046

HF algorithm
0.1 0.2

0.3876(0.0009) 3.9950(0.1697) 3.8156(2.9471) 26.6651(1.1328)
LS method 0.4233(0.0053) 3.4544(0.5898) 7.0726(7.0602) 23.0571(3.9367)
Theoretical 0.3878 3.9851 5 26.5992

HF algorithm
0.1 0.25

0.3877(0.0009) 3.9928(0.1619) 3.0072(2.4254) 26.6505(1.0807)
LS method 0.4250(0.0083) 3.4845(0.6088) 5.2825(5.6165) 23.2575(4.0629)
Theoretical 0.3860 4.0219 3.2 26.8444

HF algorithm
0.1 0.3

0.3867(0.0009) 4.0141(0.1851) 2.3446(1.9179) 26.7929(1.2352)
LS method 0.4208(0.0069) 3.5192(0.5738) 4.1081(4.5445) 23.4893(3.8300)
Theoretical 0.3851 4.0418 2.2222 26.9776

HF algorithm
0.15 0.2

0.3882(0.0009) 3.9825(0.1815) 4.2310(2.9906) 26.5819(1.2111)
LS method 0.4405(0.0084) 3.2912(0.7314) 8.9684(7.6968) 21.9676(4.8821)
Theoretical 0.3941 3.8576 7.5 25.7479

HF algorithm
0.15 0.25

0.3880(0.0008) 3.9864(0.1512) 3.1194(2.3816) 26.6075(1.0090)
LS method 0.4292(0.0063) 3.3938(0.6449) 6.4216(5.8667) 22.6521(4.3046)
Theoretical 0.3900 3.9402 4.8 26.2996

HF algorithm
0.15 0.3

0.3876(0.0009) 3.9950(0.1697) 2.5437(1.9647) 26.6651(1.1328)
LS method 0.4233(0.0053) 3.4544(0.5898) 4.7151(4.7068) 23.0571(3.9367)
Theoretical 0.3878 3.9851 3.3333 26.5992

Table 5.1: Learned/Estimated value function parameters and policies (standard er-
rors in brackets) in 100 simulations by habit-formation algorithm and LS method
with initial wealth and living standard pair px0, z0q “ p1, 0.02q.

We choose

λ “ 0.02, ρ “ 5, r “ 0.0063, η “ 0.2, δ “ 0.3, γ “ 0.5.

We generate prices of the risky asset by taking T “ 1 and 4t “ 1
252

with daily

rebalancing in horizon r0, T s for the training set and testing set, respectively. We

consider the habit formation problem with initial wealth x0 “ 1 and living standard

z0 “ 0.02, and thus z0
r`λ`δ´η

« 0.188 ă x0. Across all the simulations in this section,

the learning rate is fixed as α “ 0.02. Moreover, in some iterated steps using PIT,

µ̂2 may be computed as negative, and we simply let µ̂ “ 0 in this step.
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Table 5.3 summarizes the simulation results for the habit-formation method and

LS method, under market scenarios different combinations of µ’s and σ’s. In each

scenario, the value function parameter θ learned by our proposed algorithm is nearer

to the true value than that given by the classical LS method and is more robust with

lower standard errors. The HF algorithm also proposes optimal consumption and life

insurance premium nearer to the true value and lower standard deviation than the LS

method. In most scenarios, the HF algorithm also provides a better investment policy

with a lower standard deviation. As the expected return µ increases or volatility σ

decreases, the theoretical value function becomes slightly larger.

5.4 Real Data Analysis

In this section, we apply the habit-formation algorithm to a real dataset. We also

compare the HF algorithm with the policy based on the LS method.

All data used can be freely downloaded from Kenneth French’s website http://

mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html. The

riskless asset is set to be the treasury bill, and the risky asset is set to be the value-

weighted CRSP firms incorporated in the US and listed on the NYSE, AMEX, or

NASDAQ that have a CRSP share code of 10 or 11 at the beginning of day t, good

shares and price data at the beginning of t, and good return data for t. The train

dataset consists of the daily risk-free and excess return rates from July 1, 2020 to

June 30, 2021, and the test dataset consists of the return rates from July 1, 2021

to June 30, 2022. To have a better idea about what the data are like, we plot the

observations from July 2020 to June 2022, of the value-weighted stock index and

treasury bill in Figure 5.1.

We compare the HF algorithm and LS method to consume and invest from July

2021 to June 2022. The risk-free rate is estimated as r “ 0.0063 using both the
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Figure 5.1: Scaled prices of the treasury bill and stock index from July 2020 to June
2022

train and test data, and we simply treat it as a constant in our numerical study.

The mortality risk is selected as λ “ 0.02, and the model parameters are selected as

ρ “ 5, η “ 0.2, δ “ 0.3, and γ “ 0.5. The learned and estimated optimal policy is

trained from July 2020 to June 2021. For each year, we trade on each trading day,

which is approximately 252 trading days per year. At the beginning of the year, we

assume we have an initial balance of $100 and a living standard of $2. Although

this initial choice is arbitrary due to the homogeneous property of our problem, it is

a useful way of comparing the performance during the course of a year. Similar to

section 5.3, time discretization is also selected to be 4t “ 1
252

, and the time horizon

in our study is T “ 1.

The wealth and living standard trajectories under optimal policies obtained by

the HF algorithm and the LS method are plotted in Figure 5.2. The wealth process

obtained by the HF algorithm fluctuates less than that obtained by the LS method

and has a higher ending than that obtained by the LS method. Moreover, the

living standard obtained by the HF algorithm dominates that obtained using the LS

method. The consumption investment and premium processes are plotted in Figure

5.3. The optimal consumption, investment, and premium processes all decreased near
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0 after the end of 2021, which may due to the fact that the stock index increases in

the training year, and decreases in the testing year. Moreover, the consumption and

premium processes obtained by the HF algorithm almost dominate those generated

by the LS method respectively. The utility obtained by the HF algorithm is 3.8166,

which is larger than that obtained by the LS method (3.0377). Although both

approaches are too optimistic about the bull market from July 2020 to June 2021 to

resist the impact of the bear market from July 2021 to June 2022 on wealth, the HF

algorithm still provides higher utility on consumption and bequest.
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Figure 5.2: Wealth and living standard trajectories from July 2021 to June 2022
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Chapter 6

Concluding Remarks

The thesis focuses on three problems related to optimal consumption, investment,

and life insurance purchase decisions from the perspective of behavioral finance. The

three problems are formulated via utility maximization, in which utility depends

on the agents’ consumption path. Inspired by prospect theory, the past spending

maximum was first considered to be the reference level by the loss aversion agent in

Chapter 3. Then, the past spending maximum was applied by a shortfall aversion

agent, who also consumes life insurance in her life cycle in Chapter 4. Dynamic pro-

gramming and the dual transform technique play important roles in addressing both

problems. Finally, the classical exponentially weighted average consumption path

was considered to be the living standard, and the agent also purchases life insurance

during her life without knowing model-based knowledge to the market in Chapter 5.

We proposed an actor-critic algorithm under the framework of reinforcement learn-

ing, where the value function is learned by minimizing the martingale loss, and a

specific policy improvement result.

In Chapter 3, the consumption is limited to be nonnegative, which cannot guar-

antee the living standard to survive. Therefore, we may further add some constraints

on consumption to ensure that the agent can enjoy her living standard. In Chapter

4, the agent is allowed to purchase life insurance from the market, and the drawdown
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constraint is considered to guarantee the agent’s living standard. Both chapters de-

rive the optimal consumption and portfolio for a self-financed agent in the complete

market, whose assumptions may not be satisfied in the real world. Therefore, some

more realistic extensions can be considered in the future, for instance, similar prob-

lems with income, assets following the diffusion process, transaction costs, and bor-

rowing constraints. Moreover, data-driven problems with past spending maximum

are also attractive. All these open problems deserve more future efforts separate-

ly. In Chapter 5, we tried to obtain the optimal consumption, portfolio, and life

insurance purchase without any model-based knowledge of the market. We need to

point out that our algorithm is not direct, because our algorithm has to estimate the

market parameters in each iteration and then update the parameters in the value

function and policy. Some direct reinforcement learning algorithms can be developed

and designed in this framework without any estimation for the model parameters,

for example, the continuous time reinforcement learning algorithms in Wang and

Zhou (2020), Jia and Zhou (2022a), Jia and Zhou (2022b), and Jia and Zhou (2022c)

may also be applied to formulate and solve problems in more comprehensive market

settings under consumption habit formation preferences.
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Appendix A

Proofs

We then show all the proofs of the thesis.

A.1 Proofs for Chapter 3

A.1.1 Proof of Proposition 3.2

It is straightforward to see that the linear ODE (3.2.17) admits the general solution

vpy, hq “

$

’

&

’

%

C1phqy
r1 ` C2phqy

r2 ´ k
rβ2
pλhqβ2 , if y ą y1phq,

C3phqy
r1 ` C4phqy

r2 ` 2
κ2γ1pγ1´r1qpγ1´r2q

yγ1 ´ λh
r
y, if y2phq ď y ď y1phq,

C5phqy
r1 ` C6phqy

r2 ` 1
rβ1
pp1´ λqhqβ1 ´ h

r
y, if y3phq ď y ă y2phq,

where C1p¨q, ¨ ¨ ¨ , C6p¨q are functions of h to be determined.

The free boundary condition vypy, hq Ñ 0 in (3.2.20) implies that y Ñ `8.

Together with the free boundary conditions in (3.2.20) and the formula of vpy, hq

in the region y ě y1phq, we deduce that C1phq ” 0. To determine the remaining

parameters, we consider the smooth-fit conditions with respect to the variable y
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along y “ y1phq and y “ y2phq that

´ C3phqy1phq
r1 ` pC2phq ´ C4phqqy1phq

r2

“
k

rβ2

pλhqβ2 `
2

κ2γ1pγ1 ´ r1qpγ1 ´ r2q
y1phq

γ1 ´
λh

r
y1phq,

´ r1C3phqy1phq
r1´1

` r2pC2phq ´ C4phqqy1phq
r2´1

“
2

κ2pγ1 ´ r1qpγ1 ´ r2q
y1phq

γ1´1
´
λh

r
,

pC3phq ´ C5phqqy2phq
r1 ` pC4phq ´ C6phqqy2phq

r2

“
1

rβ1

pp1´ λqhqβ1 ´
2

κ2γ1pγ1 ´ r1qpγ1 ´ r2q
y2phq

γ1 ´
p1´ λqh

r
y2phq,

r1pC3phq ´ C5phqqy2phq
r1´1

` r2pC4phq ´ C6phqqy2phq
r2´1

“´
2

κ2pγ1 ´ r1qpγ1 ´ r2q
y2phq

γ1´1
´
p1´ λqh

r
.

(A.1.1)

The equations in (A.1.1) can be treated as linear equations for C3phq, C2phq´C4phq,

and C3phq ´ C5phq and C4phq ´ C6phq. By solving the system of equations, we can

obtain

C3phq “
y1phq

´r1

rpr1 ´ r2q

ˆ

kr2

β2
pλhqβ2 `

r1r2

γ1pγ1 ´ r1q
y1phq

γ1 ` λhr1y1phq

˙

,

C2phq ´ C4phq “
y1phq

´r2

rpr1 ´ r2q

ˆ

kr1

β2
pλhqβ2 `

r1r2

γ1pγ1 ´ r2q
y1phq

γ1 ` λhr2y1phq

˙

,

C3phq ´ C5phq “
y2phq

´r1

rpr1 ´ r2q

ˆ

´
r2

β1
pp1´ λqhqβ1 `

r1r2

γ1pγ1 ´ r1q
y2phq

γ1 ´ p1´ λqhr1y2phq

˙

,

C4phq ´ C6phq “
y2phq

´r2

rpr1 ´ r2q

ˆ

r1

β1
pp1´ λqhqβ1 ´

r1r2

γ1pγ1 ´ r2q
y2phq

γ1 ` p1´ λqhr2y2phq

˙

.

Therefore, C2phq to C5phq can be expressed by (3.2.23). To solve C2phq, C4phq and

C6phq, we shall find C6phq first, and C4phq and C2phq can then be determined.

Indeed, as h Ñ `8, we obtain y Ñ 0 in the region y3phq ď y ă y2phq, and
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the boundary condition (3.2.19) leads to lim
hÑ`8

h
vypy3phq,hq

“ C, where C is a posi-

tive constant. Along the free boundary, we have vypy3phq, hq “ r1C5phqy3phq
r1´1 `

r2C6phqy3phq
r2´1 ` h

r
. It follows from lim

hÑ`8

h
vypy3phq,hq

ą 0 that vypy3phq, hq “ Ophq

as h Ñ `8. Therefore, we can deduce that C6phq “ OpC5phqh
pr1´r2qpβ1´1qq `

Ophr1pβ1´1q`1q. By Lemma A.1 and the definition y3phq “ p1 ´ λqβ1hβ1´1, it fol-

lows that

C6phq “ OpC5phqh
pr1´r2qpβ1´1q

q `Ophr1pβ1´1q`1
q

“ Ophpr1´r2qpβ1´1q`r2β1`r1`pβ2´β1qq `Ophpr1´r2qpβ1´1q`r2β1`r1q `Ophr1β1`r2q

“ Ophr1β2`r2q `Ophr1β1`r2q,

as hÑ `8, where the last equation holds because

minpr1β1 ` r2, r1β2 ` r2q ď r1β1 ` r2 ` pβ2 ´ β1q ď maxpr1β1 ` r2, r1β2 ` r2q.

From Assumption (A1), it follows that lim
hÑ`8

C6phq “ 0. Therefore, we can write

C6phq “ ´
ş8

h
C 16psqds. We then apply the free boundary condition (3.2.21) at y3phq “

p1´ λqβ1hβ1´1 that

C 15phqy3phq
r1 ` C 16phqy3phq

r2 `
1

r
p1´ λqβ1hβ1´1

´
1

r
y3phq “ 0,

which implies the desired result of C6phq in (3.2.23).

A.1.2 Proof of Theorem 3.1 (Verification Theorem)

The proof of the verification theorem boils down to show that the solution of the

auxiliary HJB equation (3.1.6) coincides with the value function, i.e. there exists

pπ˚, c˚q P Apxq such that ũpx, hq “ Er
ş8

0
e´rtŨpc˚t , H

˚
t qdts. For any admissible strat-

egy pπ, cq P Apxq, we have Er
ş8

0
ctMtdts ď x by the supermartingale property and

the standard budget constraint argument, see Karatzas et al. (1991).
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Let pλ, hq be regarded as parameters, the dual transform of U with respect to c

in the constrained domain that V pq, hq :“ supcě0rŨpc, hq ´ cqs defined in (3.2.17).

Moreover, V can be attained by the construction of the feedback optimal control

c:py, hq in (3.2.24).

In what follows, we distinguish the two reference processes, namely Ht :“ h _

supsďt cs and H:
t pyq :“ h _ supsďt c

:pYspyq, H
:
spyqq that correspond to the reference

process under an arbitrary consumption process ct and under the optimal consump-

tion process c: with an arbitrary y ą 0. Note that the global optimal reference

process shall be defined later by H˚
t :“ H:

t py
˚q with y˚ ą 0 to be determined. Let

us now further introduce

Ĥtpyq :“ h_

ˆ

p1´ λq
´

β1
β1´1 pinf

sďt
Yspyqq

1
β1´1

˙

, (A.1.2)

where Ytpyq “ yertMt is the discounted martingale measure density process.

For any admissible controls pπ, cq P Apxq, recall the reference process Ht “ h _

supsďt cs, and for all y ą 0, we see that

E
„
ż 8

0

e´rtŨpct, Htqdt



“ E
„
ż 8

0

e´rtpŨpct, Htq ´ Ytpyqctqdt



` yE
„
ż 8

0

ctMtdt



ď E
„
ż 8

0

e´rtV pYtpyq, H
:
t pyqqdt



` yx

“ E
„
ż 8

0

e´rtV pYtpyq, Ĥtpyqqdt



` yx

“ vpy, hq ` yx,

(A.1.3)

the third equation holds because of Lemma A.3, and the last equation is verified

by Lemma A.2. In addition, Lemma A.4 guarantees equality with the choice of

c˚t “ c:pYtpy
˚q, H:

t py
˚qq, in which y˚ satisfies that E

“ ş8

0
c:pYtpy

˚q, H:
t py

˚qqMtdt
‰

“ x
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for a given x P R` and h ě 0. In conclusion, we have

sup
pπ,cqPApxq

E
„
ż 8

0

e´rtŨpct, Htqdt



“ inf
yą0
pvpy, hq ` yxq “ ũpx, hq.

Then we prove some auxiliary results that have been used above. We first need

some asymptotic results on the coefficients in Proposition 3.2.

Lemma A.1. Based on the semi-analytical forms in Proposition (3.2), we have that

C2phq “ O
`

hβ2wphq´r2pβ1´1q
˘

`O
`

wphqr1β1`r2
˘

`O
`

wphqpγ2´r2qpβ1´1q
˘

,

C3phq “ O
`

wphqr2β1`r1`pβ2´β1q
˘

`O
`

wphqr2β1`r1q,

C4phq “ O
`

hr1β1`r2`pβ2´β1q
˘

`O
`

hr1β1`r2
˘

,

C5phq “ O
`

hr2β1`r1`pβ2´β1q
˘

`O
`

hr2β1`r1
˘

,

C6phq “ O
`

hr1β1`r2`pβ2´β1q
˘

`O
`

hr1β1`r2
˘

,

where γ2 “
β2
β2´1

, and wphq is defined in (3.1.4). Moreover, the function wphq satisfies

wphq “ Ophq, wphq´1 “ Oph´1q`Oph
´
β2´1
β1´1 q, h “ Opwphqq`Opwphq

β2´1
β1´1 q, h´1 “ Opwphq´1q.

Proof. In what follows, C denotes a positive constant, whose value may change from

line to line. We first discuss the asymptotic results of y1phq and y2phq. It is easy to

see that p1´ λqβ1hβ1´1 “ y3phq ă y2phq ď pp1´ λqhq
β1´1 and thus y2phq “ Ophβ1´1q,

y2phq
´1 “ Oph1´β1q. Moreover, if y1phq ą y2phq, we have y1phq “ wphqβ1´1; if

y1phq “ y2phq, indicating that wphq “ p1´λqh, thus we have y1phq ď pp1´λqhq
β1´1 “

wphqβ1´1 and y1phq ą y3phq “ p1´ λq
β1hβ1´1 “ p1´ λqwphqβ1´1. Therefore, we have

y1phq “ Opwphqβ1´1q and y1phq
´1 “ Opwphq1´β1q.

To obtain the asymptotic properties of C2phq to C6phq, we need to derive the

asymptotic property of wphq. If y1phq ą y2phq, equation (3.1.2) indicates that

1´ β1

β1

ˆ

wphq

h

˙β1

`
k

β2

λβ2hβ2´β1 ´ λ

ˆ

wphq

h

˙β1´1

“ 0, (A.1.4)
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where 0 ă β1 ă 1, 0 ă β2 ă 1, 0 ă λ ă 1 and h ą 0. We shall obtain the asymptotic

property of w in two cases: β1 ă β2 and β1 ą β2. In the sequel of the proof below, let

C ą 0 be a generic positive constant independent of px, hq, which may be different

from line to line. If β1 ă β2, as h Ñ `8, the second term of equation (A.1.4) goes

to infinity, yielding pwphq
h
qβ1´1 ´ Chβ2´β1 Ñ 0 and thus w ě Ch

β2´1
β1´1 ; as h Ñ 0, the

second term goes to 0, yielding pwphq
h
qβ1 ´ Cpwphq

h
qβ1´1 Ñ 0 and thus wphq ě Ch. If

β1 ą β2, we can similarly obtain that wphq ě Ch and wphq ě Ch
β2´1
β1´1 as h goes to

infinity and 0 respectively. Together with the fact that wphq ď p1´ λqh, we deduce

that

h “ Opwphqq `Opwphq
β1´1
β2´1 q, and h´1

“ Opwphq´1
q.

If y1phq “ wphqβ1´1 ą y2phq “ pp1´λqhq
β1´1, then y11phq “ pβ1´1qwphqβ1´2w1phq “

O
`

wphqβ1´2w1phq
˘

, and y12phq “ O
`

hβ1´2
˘

. If y1phq “ y2phq “
k
β2
λβ2hβ2´1 ` 1

β1
p1 ´

λqβ1hβ1´1, then wphq “ p1 ´ λqh, w1phq “ 1 ´ λ, and thus y11phq “
k
γ2
λβ2hβ2´2 `

1
γ1
p1´λqβ1hβ1´1 “ O

`

h´1y1phq
˘

“ Oph´1wphqβ1´1q “ Opwphqβ1´2w1phqq, and y12phq “

O
`

y2phq
h

˘

“ O
`

hβ1´2
˘

. In summary, we have y11phq “ Opwphqβ1´2w1phqq and y12phq “

O
`

hβ1´2
˘

.

We further discuss the asymptotic property of w1phq. If wphq “ p1 ´ λqh, it is

obvious that w1phq “ 1´ λ “ Op1q. Otherwise, we have

w1phq “
λ

1´ β1

¨
wphqβ1´1 ´ kpλhqβ2´1

wphqβ1´1 ` λhwphqβ1´2
.

Since λhwphqβ1´1 ą k
β2
pλhqβ2 ą kpλhqβ2 , we can derive that w1phq ą 0, w1phq ă C,

w1phq “ Op1q, and hw1phq “ Opwphqq.

Based on the asymptotic property of y1phq and y2phq, we shall find the asymptotic

results of C2phq to C6phq. Let us begin with C3phq and C5phq. It is easy to see that

C3phq “ Opwphqr2β1`r1`pβ2´β1qq `Opwphqr2β1`r1q.
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Note that

C3phq “
1

rpr1 ´ r2q

"

kr2

β2

pλhqβ2y1phq
´r1 `

r1r2

pγ1 ´ r1qγ1

y1phq
γ1´r1 ` λhr1y1phq

r2

*

“ C1hβ2y1phq
´r1 ` C2y1phq

γ1´r1 ` C3hy1phq
r2 ,

and

C3phq ´ C5phq “
y2phq

´r1

rpr1 ´ r2q

ˆ

´
r2

β1

pp1´ λqhqβ1 `
r1r2

γ1pγ1 ´ r1q
y2phq

γ1 ´ p1´ λqhr1y2phq

˙

“ C1hβ1y2phq
´r1 ` C2y2phq

γ1´r1 ` C3hy2phq
r2 ,

where C1 to C3 are discriminant constants in each equation. Then by y1phq “

O
`

wphqβ1´1
˘

, y1phq
´1 “ O

`

wphq1´β1
˘

“ O
`

h1´β1
˘

, y11phq “ O
`

wphqβ1´2w1phq
˘

,

y2phq “ O
`

hβ1´1
˘

, y2phq
´1 “ O

`

h1´β1
˘

, y12phq “ O
`

hβ1´2
˘

, wphq “ Ophq, w1phq “

Op1q and hw1phq “ Opwphqq, we have

C 13phq “C
1hβ2´1y1phq

´r1 ` C2hβ2y1phq
´r1´1y11phq ` C

3y1phq
γ1´r1´1y11phq

` C4y1phq
r2 ` hy1phq

r2´1y11phq

“O
`

hr2pβ1´1q`pβ2´β1q
˘

`O
`

hr2pβ1´1q
˘

,

and

C 13phq ´ C
1
5phq “C

1hβ1´1y2phq
´r1 ` C2hβ1y2ph

´r1´1y12phqq ` C
3y2phq

γ1´r1´1y12phq

` C4y2phq
r2 ` C5hy2phq

´r2´1y12phq

“Ophr2pβ1´1q`pβ2´β1qq `Ophr2pβ1´1q
q,

where C1 to C5 are discriminant constants, and thus

C 15phq “ Ophr2pβ1´1q`pβ2´β1qq `Ophr2pβ1´1q
q.

Recall that

C 16phq “ ´p1´ λq
pr1´r2qβ1C 15phqh

pr1´r2qpβ1´1q
“ Ophr1pβ1´1q`pβ2´β1qq `Ophr1pβ1´1q

q.
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We can obtain the asymptotic property of C6phq that

C6phq “ ´

ż 8

h

C 16phqdh “ Ophr1β1`r2`pβ2´β1qq `Ophr1β1`r2q.

Finally, it follows that

C4phq “ Ophr1β1`r2`pβ2´β1qq `Ophr1β1`r2q.

and

C2phq “ Ophβ2wphq´r2pβ1´1q
q `Opwphqr1β1`r2q `Opwphqpγ2´r2qpβ1´1q

q,

in view that h “ Opwphqq `O
`

wphq
β1´1
β2´1

˘

.

Following similar proofs of Lemma 5.1 and Lemma 5.2 in Deng et al. (2022) and

using asymptotic results in Lemma A.1, we can readily obtain the next two lemmas.

Lemma A.2. For any y ą 0 and h ě 0, the dual transform vpy, hq of the value

function ũpx, hq satisfies

vpy, hq “ E
„
ż 8

0

e´rtV pYtpyq, Ĥtpyqqdt



,

where V p¨, ¨q is defined in (3.2.17), and Ytp¨q and Ĥtp¨q are defined in (A.1.2).

Lemma A.3. Let V p¨, ¨q, Yt, H
˚
t and Ĥt be the same as in Lemma A.2, then for all

y ą 0, we have H:
t “ Ĥtpyq, t ě 0, and hence

E
„
ż 8

0

e´rtV pYtpyq, H
:
t pyqqdt



“ E
„
ż 8

0

e´rtV pYtpyq, Ĥtpyqqdt



.

Let us then continue to prove some other auxiliary results.

Lemma A.4. The inequality in (A.1.3) becomes equality with c˚t “ c:pYtpy
˚q, Ĥtpy

˚qq,

t ě 0, with y˚ “ y˚px, hq as the unique solution to

E
„
ż 8

0

c:pYtpy
˚
q, Ĥtpy

˚
qqMtdt



“ x. (A.1.5)
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Proof. By the definition of V , it is obvious that for all pπ, cq P Apxq, Ũpct, Htq ´

Ytpyqct ď V pYtpyq, Htq. Moreover, the inequality becomes an equality with the opti-

mal feedback c:pYtpyq, H
:
t pyqq. Thus, it follows that

ż 8

0

e´rtpŨpct, Htq ´ Ytpyqctqdt ď

ż 8

0

e´rtV pYtpyq, H
:
t pyqqdt.

To turn (A.1.3) into an equality, the equality of (A.1.5) needs to hold with some

y˚ ą 0 to be determined later, and

Ũpct, Htq ´ Ytpyqct “ V pYtpyq, Htq (A.1.6)

also needs to hold. Hence, we choose to employ c:pYtpyq, Ĥtpyqq :“ ĤtpyqFtpy, Ytpyqq,

where

Ftpy, zq :“ I
ty3pĤtpyqqďzăy2pĤtpyqqu

`

ˆ

λ`
z

1
β1´1

Ĥtpyq

˙

I
ty2pĤtpyqqďzăy1pĤtpyqqu

.

It follows from definition that: (i) If y Ñ 0`, then Ĥtpyq Ñ `8 and Ftpy, Ytpyqq ą

0, it indicates that Er
ş8

0
Mtc

:pYtpyq, Ĥtpyqqdts Ñ `8; (ii) If y Ñ `8, then Ĥtpyq Ñ

h` and Ftpy, Ytpyqq Ñ 0`, it indicates that Er
ş8

0
Mtc

:pYtpyq, Ĥtpyqqdts Ñ 0`. The

existence of y˚ can thus be verified if Er
ş8

0
Mtc

:pYtpyq, Ĥtpyqqdts is continuous in y.

Indeed, let c;pYtpyq, Ĥtpyqq “ maxpc:pYtpyq, λĤtpyqqq, then Er
ş8

0
Mtc

;pYtpyq, Ĥtpyqqdts

exists and is continuous in y, and

Er
ż 8

0

Mtc
:
pYtpyq, Ĥtpyqqdts “ Er

ż 8

0

Mtc
;
pYtpyq, Ĥtpyqq1tYtpyq ď y1pĤtpyqqudts.

Therefore, Er
ş8

0
Mtc

:pYtpyq, Ĥtpyqqdts is also continuous in y.

Lemma A.5. The following transversality condition holds that for all y ą 0,

lim
TÑ`8

E
„

e´rTvpYT pyq, ĤT pyqq



“ 0.
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Proof. Recall that Ĥtpyq :“ h_

ˆ

p1´ λq
´

β1
β1´1 pinfsďt Yspyqq

1
β1´1

˙

. In this proof, the

results in Lemma A.7 and Lemma A.8 are applied repeatedly, therefore, we omit

the illustrations if there is no ambiguity. In more detail, we use Lemma A.7 with

β “ β2 ě minpβ1, β2q, and use Lemma A.8 with γ “ γ1, γ2, and β2
β1´1

since r1 ą 0 ą

β2
β1´1

ě minpγ1, γ2q ą r2, which can be obtained by some simple computations.

Let us first consider the case cT “ 0. We first write that

e´rTErvpYT pyq, ĤT pyqqs “ e´rTE
„

C2pĤT pyqqYT pyq
r2 ´

k

rβ2

pλĤT pyqq
β2



, (A.1.7)

in which the second term converges to 0 as T Ñ `8 due to Lemma A.7. For the

first term in (A.1.7), since YT pyq ą y1pĤT pyqq ě wT pyq
β1´1, we have

e´rTE
„

C2pĤT pyqqpYT pyqq
r2



“ e´rTOpErĤβ2
T pyqw

´r2pβ1´1q
T YT pyq

r2sq

` e´rTOpErwT pyqr1β1`r2YT pyqr2sq

` e´rTOpErwpγ2´r2qpβ1´1q
T YT pyq

r2sq

“ e´rTOpErĤβ2
T pyqsq ` e

´rTOpErYT pyqγ1sq

` e´rTOpErYT pyqγ2sq,

which vanishes as T Ñ `8 due to Lemma A.7 and Lemma A.8.

We then consider the case 0 ă cT ă ĤT pyq. In this case, y2pĤT pyqq ď YT pyq ď

y1pĤT pyqq, and thus

e´rTvpYT pyq, ĤT pyqq “ e´rT
„

C3pĤT pyqqYT pyq
r1 ` C4pĤT pyqqYT pyq

r2

`
2

κ2γ1pγ1 ´ r1qpγ1 ´ r2q
YT pyq

γ1 ´
λĤT pyq

r
YT pyq



.

(A.1.8)

We consider asymptotic behavior of the above equation term by term as T Ñ `8.
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The third term in (A.1.8) clearly converges to 0 by Lemma A.7. For the fourth

term in (A.1.8), since YT pyq ď y1pĤT pyqq “ OpĤT pyq
β2´1q `OpĤT pyq

β1´1q, we have

Ere´rTYT pyqĤT pyqs “ e´rTOpErĤT pyq
β2sq ` e´rTOpErĤT pyq

β1sq,

which also vanishes as T Ñ `8 by Lemma A.7.

Let us continue to consider the terms containing C3pĤT pyqq and C4pĤT pyqq in

equation (A.1.8). Because of the constraint wT pyq “ OpYtpyq
1

β1´1 q due to Ytpyq ď

y1pĤT pyqq ď wT pyq
β1´1 which is discussed in the proof of Remark (A.1), we can

deduce that

e´rTE
„

C3pĤT pyqqpYT pyqq
r1



“e´rTOpErwT pyqr1`r2β1`pβ2´β1qYT pyqr1sq ` e´rTOpErwT pyqr1`r2β1pYT pyqqr1sq

“e´rTOpErYT pyq
β2
β1´1 sq ` e´rTOpErYT pyqγ1sq,

which converges to 0 by Lemma A.8.

In addition, from YT pyq ě p1´λq
β1ĤT pyq

β1´1, it follows that ĤT pyq
´1 “ OpYT pyq

1
1´β1 q,

and thus

e´rTE
„

C4pĤT pyqqpYT pyqq
r2



“e´rTOpErĤT pyq
r1β1`r2`pβ2´β1qYT pyq

r2sq ` e´rTOpErĤT pyq
r1β1`r2pYT pyqq

r2sq

“e´rTOpErYT pyq
β2
β1´1 sq ` e´rTOpErYT pyqγ1sq,

which vanishes as T Ñ `8 by Lemma A.8.

Finally, we consider the case cT “ ĤT pyq and write that

e´rTvpYT pyq, ĤT pyqq “ e´rT
ˆ

C5pĤT pyqqYT pyq
r1 ` C6pĤT pyqqYT pyq

r2

`
1

rβ1

pp1´ λqĤT pyqq
β1 ´

1

r
ĤT pyqYT pyq

˙

.

(A.1.9)
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In this case, similar to the discussion for (A.1.8), we have wT pyq “ OpYT pyq
1

β1´1 q.

The last two terms of the right-hand side in equation (A.1.9), similar to the last

two terms of the right-hand side in equation (A.1.8), also converge to 0 as T Ñ `8.

For the first term in (A.1.9), by Remark A.1, we have

e´rTC5pĤT pyqqYT pyq
r1 “ e´rT

ˆ

OpwT pyq
r2β1`r1`pβ2´β1qq `OpwT pyq

r2β1`r1q

˙

YT pyq
r1

“ e´rTO

ˆ

YT pyq
β2
β1´1

˙

` e´rTO

ˆ

YT pyq
γ1

˙

,

which converges to 0 as T Ñ `8 by Lemma A.8.

For the second term in (A.1.9), by Remark A.1, we have

e´rTC6pĤT pyqqYT pyq
r2 “ e´rT

ˆ

OpĤT pyq
r1β1`r2`pβ2´β1qq `OpĤT pyq

r1β1`r2qq

˙

YT pyq
r1

“ e´rTO

ˆ

YT pyq
β2
β1´1

˙

` e´rTO

ˆ

YT pyq
γ1

˙

,

which also vanishes as T Ñ `8 by Lemma A.8. Therefore, we obtain the desired

result.

Lemma A.6. For any T ą 0, we have

lim
nÑ`8

E
“

e´rτnvpYτnpyq, Ĥτnpyqq1tTąτnu
‰

“ 0. (A.1.10)

Proof. By the definition of τn, for all t ď τn, we have Ytpyq P
“

1
n
, n
‰

, and thus

Ĥtpyq ď maxph, p1´ λq
´

β1
β1´1n1´β1q “ Op1q `Opn1´β1q.

Therefore, we have that Ytpyq
r1 ď nr1 , Ytpyq

r2 ď
`

1
n

˘r2
“ n´r2 . Together with the

fact that r1 ą 0 ą maxtγ1, γ2u ě mintγ1, γ2u ą r2 by Assumption (A1), we shall

show the order of vpYτnpyq, Ĥτnpyqq in cases when c˚τn “ 0, 0 ă c˚τn ă Ĥτnpyq, and

c˚τn “ Ĥτnpyq.
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Similar to the proof of Lemma A.5, if c˚τn “ 0, we have that

vpYτnpyq, Ĥτnpyqq “ C2pĤτnpyqqYτnpyq
r2 ´

k

rβ2

pλĤτnpyqq
β2

“ Op1q `Opnβ2p1´β1qq `Opn´γ1q `Opn´γ2q

“ Opn´r2q.

If 0 ă c˚τn ă Ĥτnpyq, we have that

vpYτnpyq, Ĥτnpyqq “C3pĤτnpyqqYτnpyq
r1 ` C4pĤτnpyqqYτnpyq

r2

`
2

κ2γ1pγ1 ´ r1qpγ1 ´ r2q
Yτnpyq

γ1 ´
λĤτnpyq

r
Yτnpyq

“ Op1q `Opnβ2p1´β1qq `Opnβ1p1´β1qq `Opn
β2

1´β1 q `Opn´γ1q

“ Opn´r2q.

If cτn “ Ĥτnpyq, we have that

vpYτnpyq, Ĥτnpyqq “ C5pĤτnpyqqYτnpyq
r1 ` C6pĤτnpyqqYτnpyq

r2

`
1

rβ1

pp1´ λqĤτnpyqq
β1 ´

1

r
ĤτnpyqYτnpyq

“ Opn´r2q.

In conclusion, in all cases, vpYτnpyq, Ĥτnpyqq “ Opn´r2q. In addition, similar to the

proof of (A.25) in Guasoni et al. (2020), there exists some constant C such that

Er1tτďT us ď n´2ξp1 ` y2ξqeCT , for any ξ ě 1. Putting all the pieces together, we

obtain the desired claim (A.1.10).

Lemma A.7. For β P tβ1, β2u, we have

lim
TÑ`8

E
„

e´rT ĤT pyq
β



“ 0. (A.1.11)
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Proof. It is obvious that

e´rTE
„

ĤT pyq
β



ď e´rTE
„

sup
sďT

Yspyq
β

β1´1 p1´ λq
´

β1β
β1´1



` e´rTErhβs,

and it is clear that e´rTErhβs “ Ope´rT q as T Ñ `8.

Let us define W
p 1
2
κq

t :“ Wt`
1
2
κt with its running maximum

ˆ

W
p 1
2
κq

t

˙˚

. It follows

that

e´rTE
„

sup
sďT

Yspyq
β

β1´1 p1´ λq
´

β1β
β1´1



“e´rTO

ˆ

E
„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚

I
"ˆ

W
pζq
T

˙˚

ě k

**˙

,

where a “ 0, b “ ´ β
β1´1

κ ą 0, ζ “ 1
2
κ ą 0, and k “ 0. Note that 2a ` b ` 2ζ ą

2a` b` ζ ą 0, thanks to Corollary A.7 in Guasoni et al. (2020), we have that

E
„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(



“
2pa` b` ζq

2a` b` 2ζ
exp

"

pa` bqpa` b` 2ζq

2
T

*

Φ

ˆ

pa` b` ζq
?
T ´

k
?
T

˙

`
2pa` ζq

2a` b` 2ζ
exp

"

p2a` b` 2ζqk `
apa` 2ζq

2
T

*

Φ

ˆ

´ pa` ζq
?
T ´

k
?
T

˙

,

and therefore

lim
TÑ`8

1

T
logE

„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(



´ r

“
pa` bqpa` b` 2ξq

2
´ r “

κ2

2
γ0pγ0 ´ 1q ´ r “

κ2

2
pγ0 ´ r1qpγ0 ´ r2q,
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where γ0 “
β

β1´1
. It thus holds that

e´rTE
„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚

1 `
W
pζq
T

˘˚

ěk
(

*

“ exp

"ˆ

1

T
logE

„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(



´ r

˙

T

*

“O

ˆ

exp

"

κ2

2
pγ0 ´ r1qpγ0 ´ r2qT

*˙

,

as T Ñ `8. Thanks to Assumption (A1), we have r1 ą 0 ą γ0 ě minpγ1, γ2q ą r2.

It follows that pγ0 ´ r1qpγ0 ´ r2q ă 0 and thus

E
„

e´rT ĤT pyq
β



“ O

ˆ

exp

"

κ2

2
pγ0 ´ r1qpγ0 ´ r2qT

*˙

`Ope´rT q,

which tends to 0 as T Ñ `8.

Lemma A.8. For any r2 ă γ ă r1, we have

lim
TÑ`8

E
„

e´rTYT pyq
γ



“ 0. (A.1.12)

Proof. In fact, we have that

E
„

e´rTYT pyq
γ



“ e´rTE
„

pyerT ¨ e´pr`
κ2

2
qT´κWT q

γ



“ yγe´rTE
“

eγp´
κ2

2
T´κWT q

‰

“ O

ˆ

epγ´r1qpγ´r2q
κ2

2
T

˙

,

which converges to 0 in view that r2 ă γ ă r1 by Assumption (A1).

A.1.3 Proof of Corollary 3.1

To conclude the main results in Corollary 3.1, it is sufficient to prove that the SDE

(3.2.32) has a unique strong solution pX˚
t , H

˚
t q for any initial value px, hq P C. To
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this end, we can essentially follow the arguments in the proof of Proposition 5.9 in

Deng et al. (2022). However, due to more complicated expressions of C2phq-C6phq

in (3.2.23) and different feedback functions, we need to prove the following auxiliary

lemmas to conclude Corollary 3.1.

Lemma A.9. The function f is C1 within each of the subsets of R2
` : x ď x1phq,

x1phq ă x ă x2phq and x2phq ď x ď x3phq, and it is continuous at the boundary of

x “ x2phq and x “ x3phq. Moreover, we have that

fxpx, hq “
1

gpy, hq

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

ˆ

´ C2phqr2pr2 ´ 1qpfpx, hqqr2´2

˙´1

, if x ď xzerophq,
ˆ

´ C3phqr1pr1 ´ 1qpfpx, hqqr1´2

´ C4phqr2pr2 ´ 1qpfpx, hqqr2´2

´
2pγ1 ´ 1q

κ2pγ1 ´ r1qpγ1 ´ r2q
pfpx, hqqγ1´2

˙´1

,

if xzerophq ă x ă xaggrphq,

ˆ

´ C5phqr1pr1 ´ 1qpfpx, hqqr1´2

´ C6phqr2pr2 ´ 1qpfpx, hqqr2´2

˙´1

,

if xaggrphq ď x ď xlavsphq,

(A.1.13)

and

fhpx, hq “ ´ghpfpx, hq, hq ¨ fxpx, hq. (A.1.14)

Proof. The proof is the same as Lemma 5.6 in Deng et al. (2022), so we omit it.

Lemma A.10. The function π˚ is Lipschitz on C.

Proof. By (3.2.24), (3.2.25) and the inverse transform, we can express c˚ and π˚ in

terms of the primal variables as in (3.2.30) and (3.2.31). Combining the expressions

of c˚ and π˚ with Proposition 3.2 which implies that the coefficients pCiq2ďiď5 are

C1, Lemma A.9 implies that the C1 regularity of f , together with the continuity
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of f at the boundary between the three regions, we can draw the conclusion that

px, hq Ñ c˚px, hq and px, hq Ñ π˚px, hq are locally Lipschitz on C.

(i) Boundedness of Bπ
˚

Bx
.

First using π˚ in (3.2.31), we have

Bπ˚

Bx
px, hq “

µ´ r

σ2

ˆ

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

1´ r2, if x ă xzerophq,
ˆ

2r

κ2
C3phqpr1 ´ 1qf r1´2

2 px, hq
Bf2

Bx

`
2r

κ2
C4phqpr2 ´ 1qf r2´2

2 px, hq
Bf2

Bx

`
2pγ1 ´ 1q2

κ2pγ1 ´ r1qpγ1 ´ r2q
fγ1´2

2 px, hq
Bf2

Bx

˙

,

if xzerophq ď x ď xaggrphq,

2r

κ2
C5phqpr1 ´ 1qf r1´2

px, hq
Bf2

Bx

`
2r

κ2
C6phqpr2 ´ 1qf r2´2

px, hq
Bf2

Bx
,

if xaggrphq ă x ď xlavsphq.

(A.1.15)

Note that the first line is constant and hence bounded. For the second line, by

differentiating (3.2.28) and using the fact that r1pr1 ´ 1q “ r2pr2 ´ 1q “ 2r
κ2

, we have

that

1 “´
2r

κ2
C3phqf2px, hq

r1´2Bf2

Bx
px, hq ´

2r

κ2
C4phqf2px, hq

r2´2Bf2

Bx
px, hq

´
2pγ1 ´ 1q

κ2pγ1 ´ r1qpγ1 ´ r2q
f2px, hq

γ1´2Bf2

Bx
px, hq.

Plugging this back to Bπ˚

Bx
, we can obtain

Bπ˚

Bx
px, hq “

µ´ r

σ2

"ˆ

2r

κ2
C3phqf

r1´1
2 px, hqpr1 ´ r2q `

2pγ1 ´ 1q

κ2pγ1 ´ r1q
fγ1´1

2 px, hq

˙

1

f2

Bf2

Bx
` p1´ r2q

*
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Combined with Lemma A.9, we can obtain Bπ˚

Bx
px, hq “ µ´r

σ
pA1

B1
` p1´ r2qq, where

A1 :“
2r

κ2
C3phqf

r1´1
2 px, hqpr1 ´ r2q `

2pγ1 ´ 1q

κ2pγ1 ´ r1q
fγ1´1

2 px, hq,

B1 :“ ´
2r

κ2
C3phqf2px, hq

r1´1
´

2r

κ2
C4phqf2px, hq

r2´1
´

2pγ1 ´ 1q

κ2pγ1 ´ r1qpγ1 ´ r2q
f2px, hq

γ1´1.

(A.1.16)

We shall show that A1 ą 0 and B1 ă 0, and A1

B1
is bounded. We only need to

discuss the case that y1phq ą y2phq “ pp1 ´ λqhqβ1´1, because the second region

reduces to a point for any fixed h if y1phq “ y2phq. Indeed, it is obvious that A1 ą 0

since C3phq ą 0 according to the proof of Lemma 3.1 and γ1 ă 0. Moreover, we have

that

A1 “
2

κ2

ˆ

rpr1 ´ r2qC3phq `
γ1 ´ 1

γ1 ´ r1

fγ1´r12 px, hq

˙

f r1´1
2 px, hq

“
2

κ2

ˆ

r2

γ1 ´ r1

y1phq
γ1´r1 `

λ

p1´ λqpγ1´1qpβ1´1q
y2phq

γ1´1y1phq
1´r1

`
γ1 ´ 1

γ1 ´ r1

¨ fγ1´r12 px, hq

˙

f r1´1
2 px, hq

ď K1

`

y1phq
1´r1y2phq

γ1´1f2px, hq
r1´1

` f2px, hq
γ1´1

q,

where K1 is a positive constant. For B1, according to the proof of Lemma 3.1, we

have that

B1 “ ´
2r

κ2
C3phqf2px, hq

r1´1
´

2r

κ2
C4phqf2px, hq

r2´1
´

2pγ1 ´ 1q

κ2pγ1 ´ r1qpγ1 ´ r2q
f2px, hq

γ1´1

ď ´
2r

κ2
C3phqf2px, hq

r1´1
´ Cf2px, hq

γ1´1

ď ´K2py1phq
1´r1y2phq

γ1´1f2px, hq
r1´1

` f2px, hq
γ1´1

q,

where K2 is some positive constant. Therefore, 0 ą A1

B1
ě ´C for some positive

constant independent of h, and thus Bπ˚

Bx
in the second line of (A.1.15) is bounded.
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For the third line, by differentiating (3.2.29) and using the fact that r1pr1´ 1q “

r2pr2´1q “ 2r
κ2

, we have that 1 “ ´ 2r
κ2
C5phqf3px, hq

r1´2 Bf3
Bx
px, hq´ 2r

κ2
C6phqf3px, hq

r2´2 Bf3
Bx
px, hq.

Putting this back to the third line of (A.1.15), we can obtain Bπ˚

Bx
px, hq “ µ´r

σ2 t
A2

B2
`

p1´ r2qu, where

A2 :“
2rpr1 ´ r2q

κ2
C5phqf

r1´1
3 px, hq,

B2 :“ ´
2r

κ2
C5phqf3px, hq

r1´1
´

2r

κ2
C6phqf3px, hq

r2´1,

(A.1.17)

by combining with the results of Lemma A.9. In fact, by the proof of Lemma 3.1,

we have C5phq ą 0 and C6phq ą 0, therefore, A2 ą 0 and B2 ă 0. Moreover, we have

that

B2 “ ´
2r

κ2
C5phqf3px, hq

r1´1
´

2r

κ2
C6phqf3px, hq

r2´1
ď ´

2r

κ2
C5phqf3px, hq

r1´1,

and thus 0 ą A2

B2
ě r2 ´ r1, indicating that Bπ˚

Bx
is bounded in the third line.

(ii) Boundedness of Bπ
˚

Bh
.

First, using equations (A.1.13) and (A.1.14) and the definition of gp¨, hq “ ´vyp¨, hq,

we have

fhpx, hq “ ´ghpf, hq ¨ fxpx, hq

“

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

C 12phqr2f1px, hq
r2´1 ¨

ˆ

´ 2r
κ2
C2phqf1px, hq

r2´2

˙´1

, if x ă xzerophq,

ˆ

C 13phqr1f2px, hq
r1´1 ` C 14phqr2f2px, hq

r2´1 ´
λ

r

˙

ˆ

ˆ

´
2r

κ2
C3phqf2px, hq

r1´2 ´
2r

κ2
C4phqf2px, hq

r2´2

´
2pγ1 ´ 1q

κ2pγ1 ´ r1qpγ1 ´ r2q
f2px, hq

γ1´2

˙´1

,

if xzerophq ď x ď xaggvphq,

ˆ

C 15phqr1f3px, hq
r1´1 ` C 16phqr2f3px, hq

r2´1 ´
1

r

˙

ˆ

ˆ

´
2r

κ2
C5phqf3px, hq

r1´2 ´
2r

κ2
C6phqf3px, hq

r2´2

˙´1

,

if xaggvphq ď x ď xlavsphq.
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We analyze the derivative Bπ˚

Bh
in different regions separately. In the region x ă

xzerophq,
Bπ˚

Bh
“ 0, hence it is bounded. In the region xzerophq ď xphq ď xaggvphq, we

also only need to discuss the case that y1phq ą y2phq “ pp1´ λqhq
β1´1, and

Bπ˚

Bh
“
µ´ r

σ2

ˆ

2r

κ2
C 13phqf2px, hq

r1´1
`

2r

κ2
C3phqpr1 ´ 1qf2px, hq

r2´2Bf2

Bh

`
2r

κ2
C 14phqf2px, hq

r2´1
`

2r

κ2
C4phqpr2 ´ 1qf2px, hq

r2´2Bf2

Bh

`
2pγ1 ´ 1q2

κ2pγ1 ´ r1qpγ1 ´ r2q
fγ1´2

2 px, hq
Bf2

Bh

˙

.

By differentiating (3.2.28) and using the fact that r1pr1 ´ 1q “ r2pr2 ´ 1q “ 2r
κ2

, we

have that

C 14phq
2r

κ2
f2px, hq

r2´1
` C4phq

2r

κ2
pr2 ´ 1q

Bf2

Bh
f2px, hq

r2´2

“´ C 13phqr1pr2 ´ 1qf2px, hq
r1´1

´ C3phq
2r

κ2
pr2 ´ 1q

Bf2

Bh
f2px, hq

r1´2

´
2pγ1 ´ 1qpr2 ´ 1q

κ2pγ1 ´ r1qpγ1 ´ r2q

Bf2

Bh
f2px, hq

γ1´2
` pr2 ´ 1q

λ

r
.

Putting this back to the previous expression of Bπ
˚

Bh
, we can obtain that

Bπ˚

Bh
“
µ´ r

σ2

ˆ„

2r

κ2
pr1 ´ r2qC3phqf2px, hq

r1´1
´

2pγ1 ´ 1qpr2 ´ 1q

κ2pγ1 ´ r1qpγ1 ´ r2q
f2px, hq

γ1´1



1

f2

Bf2

Bh

` r1pr1 ´ r2qC
1
3phqf2px, hq

r1´1
` pr2 ´ 1q

λ

r

˙

“
µ´ r

σ2

ˆ

A1 ¨
1

f2

Bf2

Bh
` r1pr1 ´ r2qC

1
3phqf2px, hq

r1´1
´
λ

r
p1´ r2q

˙

,

(A.1.18)

where A1 is defined in (A.1.16). In (A.1.18), the third term is a constant. For the
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second term, by the proof of Lemma 3.1, we first have C 13phq ą 0, and

C 13phq “
1

rpr1 ´ r2qh
pkr2pλhq

β2 ` λhr1wphq
β1´1

qwphq´r1pβ1´1q

“
1

rpr1 ´ r2q

ˆ

λpr1 ` r2β2qy1phq
1´r1 `

r2β2

γ1h
y1phq

γ1´r1

˙

.

In the sequel of the proof below, letK1 ą 0 be a generic positive constant independent

of px, hq, which may be different from line to line. Hence, we have that

r1pr1 ´ r2qC
1
3phqf2px, hq

r1´1
“

ˆ

λpr1 ` r2β2qy1phq
1´r1 `

r2β2

γ1h
y1phq

γ1´r1

˙

f2px, hq
r1´1

ď

ˆ

λpr1 ` r2β2qy1phq
1´r1 `

r2β2

γ1h
y1phq

γ1´r1

˙

y1px, hq
r1´1

ď K1

ˆ

1`

ˆ

y2phq

y1phq

˙1´γ1˙

ď K1.

Therefore, the second term is bounded.

For the first term in (A.1.18), by virtue of A1 ď Cpy1phq
1´r1y2phq

γ1´1f2px, hq
r1´1`

f2px, hq
γ1´1q, it is sufficient to show that 1

f2

Bf2
Bh
ě Cpy1phq

1´r1y2phq
γ1´1f2px, hq

r1´1 `

f2px, hq
γ1´1q for some positive constant C. Indeed, we have that

1

f2

Bf2

Bh
“

ˆ

C 13phqr1f2px, hq
r1´1

` C 14phqr2f2px, hq
r2´1

´
λ

r

˙

ˆ
1

B1

,

where B1 is defined in (A.1.16). As C 13phqr1f2px, hq
r1´1 and λ

r
are bounded, it is

sufficient to show that C 14phqr2f2px, hq
r2´1 is bounded. As C 16phq “ ´C

1
5phqy3phq

r1´r2 ,

similar to K1, constant K2 in the following equation may differ from line to line, and

99



we have that

|C 14phq| “ |C
1
4phq ´ C

1
6phq ` C

1
6phq|

“

ˇ

ˇ

ˇ

ˇ

pγ1 ´ r2qpβ1 ´ 1q

pr2 ´ r1qp1´ β1qpγ1 ´ r2q
p1´ λqpγ1´r2qpβ1´1qhr1pβ1´1q

´ C 15phqy3phq
r1´r2

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

K2h
r1pβ1´1q

´
`

C 13phq ´ pC
1
3phq ´ C

1
5phqq

˘

y3phq
r1´r2

ˇ

ˇ

ˇ

ˇ

“ |K2h
r1pβ1´1q

´ C 13phqy3phq
r1´r2 |

ď K2h
r1pβ1´1q

` C
`

y1phq
1´r1 ` y2phq

1´γ1y1phq
γ1´r1

˘

y2phq
r1´r2

ď K2

`

y2phq
r1 ` y2phq

r1´r2y1phq
1´r1 ` y2phq

2r1´γ1y1phq
γ1´r1

˘

,

where the first inequality holds because y3phq “ p1´λqy2phq. Similar to K1, constant

K3 in the following equation may differ from line to line, and it follows that

|C 14phqr2pf2px, hq
r2´1

q|

“K3|C
1
4phq|f2px, hq

r2´1

ďK3|C
1
4phq|y2phq

r2´1

ďK3

`

y2phq
r1 ` y2phq

r1´r2y1phq
1´r1 ` y2phq

2r1´γ1y1phq
γ1´r1

˘

y2phq
r2´1

“K3

ˆ

1`

ˆ

y2phq

y1phq

˙r1´1

`

ˆ

y2phq

y1phq

˙r1´γ1˙

,

which is bounded as y1phq ą y2phq.

In the region xaggrphq ď xphq ď xlavsphq, similar computations yield that

Bπ˚

Bh
“
µ´ r

σ2

ˆ

A2 ¨
1

f3

Bf3

Bh
` r1pr1 ´ r2qC

1
5phqf3px, hq

r1´1
´

1

r
p1´ r2q

˙

,

where A2 is defined in (A.1.17). For the term r1pr1 ´ r2qC
1
5phqf3px, hq

r1´1, due to

C 15phq ă C 13phq, we have that rpr1´r2qC
1
5phqf3px, hq

r1´1 ď rpr1´r2qC
1
3phqf2px̄, hq

r1´1,

which is bounded as f3px, hq ă y2phq ď f2px̄, hq, where x̄ is chosen such that y2phq ď
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f2px̄, hq ď y1phq. Moreover, for the term A2 ¨
1
f3

Bf3
Bh

, similar to the proof in the region

y2phq ď f2px, hq ď y1phq, it is enough to check that C 16phqf3px, hq
r2´1 is bounded.

Indeed, we can obtain

|C 16phqf3px, hq
r2´1

| “ |C 15phqy3phq
r1´r2f3px, hq

r2´1
| ď C 15phqf3px, hq

r1´1,

which is shown to be bounded. Putting all the pieces together completes the proof.

A.1.4 Proof of Proposition 3.1 (Concavification Principle)

To prove this proposition, we claim that under the optimal controls c˚t and π˚t , it

holds that Ũpc˚t , H
˚
t q “ Upc˚t´λH

˚
t q all the time. In fact, for any px, hq P C, according

to the definition of concave envelop Ũpx, hq of U˚px, hq in x P r0, hs in (3.1.3), we can

easily see that Ũpx, hq “ U˚px, hq if x P Ch :“ t0u Y rzphq, hs, where zphq is defined

in Section 3.1.2. We shall interpret the claim in all the regions of wealth X˚
t .

If X˚
t ă xzeropH

˚
t q, then c˚t “ 0 P CH˚t , indicating that Ũpc˚t , H

˚
t q “ Upc˚t ´ λH

˚
t q.

If xzeropH
˚
t q ď X˚

t ď xaggrpH
˚
t q, yielding the existence of the solution zpH˚

t q for

equation (3.1.2) with h “ H˚
t . Moreover, the optimal consumption satisfies that

zpH˚
t q ď c˚t “ λH˚

t ` pfpX
˚
t , H

˚
t qq

1
β1´1 ď H˚

t , where fpx, hq is defined in Corollary

3.1. This leads to the fact that c˚t P CH˚t and thus Ũpc˚t , H
˚
t q “ Upc˚t ´ λH

˚
t q.

If xaggrpH
˚
t q ă X˚

t ď xlavspH
˚
t q, then c˚t “ H˚

t P CH˚t , indicating that Ũpc˚t , H
˚
t q “

Upc˚t ´ λH
˚
t q.

Therefore, we have verified that the optimal consumption rate c˚t always leads

to Upc˚t ´ λH˚
t q “ Ũpc˚t , H

˚
t q. Thus, given the optimal portfolio π˚t and c˚t for the

stochastic control problem (3.1.5), based on the fact that Ũpx, hq ě Upx ´ λhq

everywhere and corresponding ũ ě u, we have

ũpx, hq “ E
„
ż 8

0

e´rtŨpc˚t , H
˚
t qdt



“ E
„
ż 8

0

e´rtUpc˚t ´ λH
˚
t qdt



ď upx, hq ď ũpx, hq,
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that is, ũ “ u, and the optimal portfolio and consumption for (3.1.1) are the same

as (3.1.5).

A.1.5 Proof of Lemma 3.1

We prove vyypy, hq ą 0 in three regions: y ą y1phq, y2phq ď y ď y1phq, and y3phq ď

y ă y2phq, respectively.

(i) In the region y3phq ď y ă y2phq, vyypy, hq “ r1pr1 ´ 1qC5phqy
r1´2 ` r2pr2 ´

1qC6phqy
r2´2.

As r1pr1 ´ 1q “ r2pr2 ´ 1q “ 2r
κ2
ą 0, we only need to prove that C5phq ą 0 and

C6phq ą 0. We shall separate the proof into two cases: the case that y1phq ą y2phq

and that y1phq “ y2phq. If y1phq “ wphqβ1´1 ą y2phq “ pp1´λqhq
β1´1, we can deduce

that

C3phq “
y1phq

´r1

rpr1 ´ r2q

ˆ

kr2

β2

pλhqβ2 `
r1r2

pγ1 ´ r1qγ1

y1phq
γ1 ` λhr1y1phq

˙

,

“
wphq´r1pβ1´1q

rpr1 ´ r2q

ˆ

r2

γ1

wphqβ1 ` λhr2wphq
β1´1

`
r1r2

pγ1 ´ r1qγ1

wphqβ1 ` λhr1wphq
β1´1

˙

“
wphq´r1pβ1´1q

rpr1 ´ r2q

ˆ

r2

γ1 ´ r1

wphqβ1 ` λhwphqβ1´1

˙

ą 0,

and

C3phq ´ C5phq “
y2phq

´r1

rpr1 ´ r2q

ˆ

´
r2

β1

pp1´ λqhqβ1 `
r1r2

γ1pγ1 ´ r1q
y2phq

γ1 ´ p1´ λqhr1y2phq

˙

“
1

rpr1 ´ r2qp1´ β1qpγ1 ´ r1q
pp1´ λqhqr2β1`r1 ă 0,

therefore, we have C5phq “ C3phq ´ pC3phq ´ C5phqq ą 0.

We next prove that C 16phq ă 0, and hence C6phq “ ´
ş8

h
C 16psqds ą 0. It is easy

to see that C 13phq ´ C 15phq ă 0, and hence C 15phq ą C 13phq ą 0, where the second
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inequality follows from

C 13phq “
1

rpr1 ´ r2q

ˆ

´
k

β2
pλhqβ2 `

1

γ1
wphqβ1 ` λhwphqβ1´1

˙

r1r2pβ1 ´ 1qwphq´r1β1´r2w1phq

`
1

rpr1 ´ r2qh
pkr2pλhq

β2 ` λhr1wphq
β1´1qwphq´r1pβ1´1q ą 0,

thanks to k
β2
pλhqβ2 ´ 1

γ1
wphqβ1 ´ λhwphqβ1´1 ď 0 and w1phq ą 0.

Along the free boundary condition (3.2.21), we have C 15phqy3phq
r1`C 16phqy3phq

r2 “

0, therefore, we can deduce that C 16phq “ ´C
1
5phqy3phq

r1´r2 ă 0.

We then consider the case that y1phq “ y2phq “
k
β2
λβ2hβ2´1 ` 1

β1
p1´ λqβ1hβ1´1 ď

pp1´ λqhqβ1´1, in which we have that

C5phq “
y1phq

r2´1

rpr1 ´ r2q

ˆ

kr2

β2

pλhqβ2 `
r2

β1

pp1´ λqhqβ1 ` hr1y1phq

˙

“
h

rpr1 ´ r2q
y1phq

r2 ą 0,

and C 15phq “
y1phqr2´1

rpr1´r2q

ˆ

y1phq`r2hy
1
1phq

˙

ą 0. Thus, it holds that C 16phq“ ´C
1
5phqy3phq

r1´r2ă

0, implying that C6phq ą 0 when y1phq “ y2phq.

(ii) In the region y2phq ď y ď y1phq, we only need to consider the case that

y1phq “ wphqβ1´1 ą y2phq “ pp1´ λqhq
β1´1, otherwise the second-order derivative of

vpy, hq in y is trivial because this region reduces to a point.

Because C3phq ą 0, C4phq ą C4phq ´ C6phq, r1pr1 ´ 1q “ r2pr2 ´ 1q “ 2r
κ2

, we can

deduce that

vyypy, hq “
2r

κ2

ˆ

C3phqy
r1´γ1 ` C4phqy

r2´γ1 `
γ1 ´ 1

rpγ1 ´ r1qpγ1 ´ r2q

˙

yγ1´2

ą
2r

κ2

ˆ

pC4phq ´ C6phqqy
r2´γ1 `

γ1 ´ 1

rpγ1 ´ r1qpγ1 ´ r2q

˙

yγ1´2

ě
2r

κ2

ˆ

pC4phq ´ C6phqqpp1´ λqhq
pr2´γ1qpβ1´1q

`
γ1 ´ 1

rpγ1 ´ r1qpγ1 ´ r2q

˙

yγ1´2,

where the last inequality holds because y ě pp1 ´ λqhqβ1´1, γ1 ą r2, and C4phq ´
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C6phq ă 0. Moreover, we have that

pC4phq ´ C6phqqpp1´ λqhq
pr2´γ1qpβ1´1q

`
γ1 ´ 1

rpγ1 ´ r1qpγ1 ´ r2q
“

γ1 ´ 1

rpγ1 ´ r1qpr1 ´ r2q
ą 0.

Thus, we can deduce that vyypy, hq ą 0.

(iii) In the region y ą y1phq, vyypy, hq “ r2pr2 ´ 1qC2phqy
r2´2. Since r2pr2 ´ 1q “

2r
κ2
ą 0, we only need to prove that C2phq ą 0. We shall also discuss C2phq ą 0 for

two cases that y1phq ą y2phq or y1phq “ y2phq.

If y1phq ą y2phq, indicating that y1phq “ wphqβ1´1, we have k
β2
pλhqβ2´ 1

γ1
wphqβ1´

λhwphqβ1´1 “ 0. Similar to the proof of C5phq ą 0, we have

C2phq ą C2phq ´ C6phq “ pC2phq ´ C4phqq ` pC4phq ´ C6phqq

“
wphq´r2pβ1´1q

rpr1 ´ r2q

ˆ

r1

γ1 ´ r2

wphqβ1 ` λhwphqβ1´1

˙

´
1

rpr2 ´ r1qp1´ β1qpγ1 ´ r2q
y2phq

γ1´r2

ą
r1

rpr1 ´ r2qpγ1 ´ r2q
y1phq

γ1´r2 `
γ1 ´ 1

rpr1 ´ r2qpγ1 ´ r2q
y2phq

γ1´r2

ą
1

rpr1 ´ r2q
y2phq

γ1´r2 ą 0.

If y1phq “ y2phq, similar to the proof of C5phq ą 0, we can obtain that C2phq ą

C2phq ´ C6phq “
h

rpr1´r2q
y1phq

r1 ą 0.
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A.1.6 Proof of Corollary 3.2

Proof. We first have that

lim
hÑ`8

C6phqh
´r2´r1β1 “

1

r2 ` r1β1

lim
hÑ`8

C 16phq

hr1pβ1´1q

“´
1

r2 ` r1β1

p1´ λqβ1pr1´r2q lim
hÑ`8

C 15phq

hr2pβ1´1q

“´
γ1 ´ r1

γ1 ´ r2

p1´ λqβ1pr1´r2q lim
hÑ`8

C5phqh
´r1´r2β1 ,

by L’Hôpital’s rule. To compute lim
hÑ`8

C5phqh
´r1´r2β1 , we need to consider two cases

that y1phq ą y2phq and y1phq “ y2phq.

We first consider the case that y1phq “ y2phq as h Ñ `8, indicating that β1 ą

1 ´ λ and β2 ď β1 in condition (S2) or (S3), therefore, C5phq “
h

rpr1´r2q
y1phq

r2 , and

thus

lim
hÑ`8

C5phqh
´r2β1´r1 “

1

rpr1 ´ r2q
lim

hÑ`8

ˆ

k

β2

λβ2hβ2´β1 `
1

β1

p1´ λqβ1
˙r2

“
1

rpr1 ´ r2q

ˆ

k

β2

λβ21tβ2“β1u `
1

β1

p1´ λqβ1
˙r2

.

Therefore, we can derive that

lim
hÑ`8

c˚pxlavsphq, hq

xlavsphq
“ lim

hÑ`8

h

xlavsphq

“ lim
hÑ`8

h

´C5phqr1p1´ λqβ1pr1´1qhpβ1´1qpr1´1q ´ C6phqr2p1´ λqβ1pr2´1qhpβ1´1qpr2´1q ` h
r

“

ˆ

1´
p1´ λqβ1pr1´1qγ1

γ1 ´ r2

ˆ

k

β2

λβ21tβ2“β1u `
1

β1

p1´ λqβ1
˙r2˙´1

r,
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and

lim
hÑ`8

π˚pxlavsphq, hq

xlavsphq
“ lim

hÑ`8

π˚pxlavsphq, hq

h
¨

h

xlavsphq

“
2r

µ´ r
lim

hÑ`8

h

xlavsphq
ˆ lim

hÑ`8

p1´ λqβ1pr1´1qC5phqh
´r1´r2β1 ` p1´ λqβ1pr2´1qC6phqh

´r2´r1β1

h

“
2r

µ´ r
ˆ

ˆ

1´
p1´ λqβ1pr1´1qγ1

γ1 ´ r2

ˆ

k

β2

λβ21tβ2“β1u `
1

β1

p1´ λqβ1
˙r2˙´1

ˆ
p1´ λqβ1pr1´1q

γ1 ´ r2

ˆ

k

β2

λβ21tβ2“β1u `
1

β1

p1´ λqβ1
˙r2

.

Let us then consider the other case when y1phq ą y2phq. If β2 ă β1, the second

term in (A.1.4) converges to 0, and thus wphq
h

converges to a constant ´λγ1. If

β2 “ β1, the second term in (A.1.4) equals a constant, and wphq
h

becomes a constant

wp1q that is the unique solution to ´ 1
γ1
wp1qβ1 ` k

β2
λβ2 ´ λwp1qβ1´1 “ 0. Otherwise,

if β2 ą β1, the second term in (A.1.4) goes to infinity as h Ñ `8, indicating that

wphq
h

converges to 0.

Thus, we always have that

lim
hÑ`8

C3phqh
´r1´r2β1 “ lim

hÑ`8

«

r2

rpr1 ´ r2qpγ1 ´ r1q

ˆ

w

h

˙r1`r2β1

`
λ

rpr1 ´ r2q

ˆ

w

h

˙r2pβ1´1q
ff

“
w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq

rpr1 ´ r2qpγ1 ´ r1q
,

where w0 :“ lim
hÑ`8

wphq
h

. It holds that

lim
hÑ`8

C5phqh
´r1´r2β1 “

w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq ` pγ1 ´ 1qp1´ λqr2β1`r1

rpr1 ´ r2qpγ1 ´ r1q
.
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Then we can deduce that

lim
hÑ`8

c˚pxlavsphq, hq

xlavsphq
“ lim

hÑ`8

1

´p1´ λqβ1pr1´1q γ1pr1´r2q
γ1´r2

C5phqh´r2β1´r1 `
1
r

“

ˆ

1´
γ1p1´ λq

´r2β1

pγ1 ´ r1qpγ1 ´ r2q

ˆ

w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq ` pγ1 ´ 1qp1´ λqr2β1`r1

˙˙´1

r,

and

lim
hÑ`8

π˚pxlavsphq, hq

xlavsphq

“
2r

µ´ r
lim

hÑ`8

h

xlavsphq
¨ p1´ λqβ1pr1´1q r1 ´ r2

γ1 ´ r2

¨
w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq ` pγ1 ´ 1qp1´ λqr2β1`r1

rpr1 ´ r2qpγ1 ´ r1q

“
2rp1´ λq´r2β1

µ´ r

¨

ˆ

1´
γ1p1´ λq

´r2β1

pγ1 ´ r1qpγ1 ´ r2q

ˆ

w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq ` pγ1 ´ 1qp1´ λqr2β1`r1

˙˙´1

¨
w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq ` pγ1 ´ 1qp1´ λqr2β1`r1

pγ1 ´ r1qpγ1 ´ r2q
,

where

w0 “

$

’

&

’

%

´λγ1, if β2 ă β1 ď 1´ λ,

wp1q, if β2 “ β1,

0, if β2 ą β1.

Recall that π˚pxq
x

“
µ´r

σ2p1´β1q
and c˚pxq

x
“

pγ1´r1qpγ1´r2q
r1r2

r in Merton’s problem. In

our setting, as λ Ñ 0, it is obvious that β1 ă 1 ´ λ. On the other hand, similar to

the discussion of the limit of wphq
h

as h Ñ `8, we have that wp1q Ñ 0 as λ Ñ 0,

and thus w0 Ñ 0 as λ Ñ 0 in all three scenarios when y1phq ą y2phq as h Ñ `8.
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Therefore, we can deduce that

lim
λÑ0

lim
hÑ`8

c˚pxlavsphq, hq

xlavsphq

“ lim
λÑ0

ˆ

1´
γ1p1´ λq

´r2β1

pγ1 ´ r1qpγ1 ´ r2q

ˆ

w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq ` pγ1 ´ 1qp1´ λqr2β1`r1

˙˙´1

r

“
pγ1 ´ r1qpγ1 ´ r2q

r1r2
r,

and

lim
λÑ0

lim
hÑ`8

π˚pxlavsphq, hq

xlavsphq

“ lim
λÑ0

2rp1´ λq´r2β1

µ´ r
ˆ

ˆ

1´
γ1p1´ λq

´r2β1

pγ1 ´ r1qpγ1 ´ r2q

ˆ

w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq

` pγ1 ´ 1qp1´ λqr2β1`r1
˙˙´1

ˆ
w
r2pβ1´1q
0 pr2w0 ` λpγ1 ´ r1qq ` pγ1 ´ 1qp1´ λqr2β1`r1

pγ1 ´ r1qpγ1 ´ r2q

“
2rpγ1 ´ 1q

pµ´ rqr1r2

“
2rpγ1 ´ 1q

´ 2r
κ2
pµ´ rq

“
µ´ r

σ2p1´ β1q
,

which completes the proof.

A.1.7 Proof of Corollary 3.3

Proof. Let us consider the auxiliary process Y ˚t :“ Ytpy
˚q and H˚

t defined in Theorem

3.1.

(i) The long-run fraction of time that the agent stays in the region txaggrpH
˚
t q ď
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X˚
t ď xlavspH

˚
t qu can be computed by

lim
TÑ`8

1

T
E
„
ż T

0

1txaggrpH˚t qăXtďxlavspH˚t qudt



“ lim
TÑ`8

1

T
E
„
ż T

0

1ty3pH˚t qďYtpy˚qăy2pH˚t qudt



“ lim
TÑ`8

1

T
E
„
ż T

0

1
t inf
sďt

Yspy˚qďYtpy˚qă lim
hÑ`8

y2phq
y3phq

inf
sďt

Yspy˚qu
dt



“1´ lim
hÑ`8

y3phq

y2phq
,

where the last equation holds by the same argument to prove Theorem 5.1 in Guasoni

et al. (2020).

(ii) The long-run fraction of time that the agent stays in the region t0 ď X˚
t ď

xzeropH
˚
t qu can be computed by

lim
TÑ`8

1

T
E
„
ż T

0

1tXtăxzeropH˚t qudt



“1´ lim
TÑ`8

1

T
E
„
ż T

0

1txzeropH˚t qďXtďxlavspH˚t qudt



“1´ lim
TÑ`8

1

T
E
„
ż T

0

1ty3pH˚t qďYtpy˚qďy1pH˚t qudt



“1´ lim
TÑ`8

1

T
E
„
ż T

0

1
t inf
sďt

Yspy˚qďYtpy˚qď lim
hÑ`8

y1phq
y3phq

¨ inf
sďt

Yspy˚qu
dt



“ lim
hÑ`8

y3phq

y1phq
.

(iii) Let Ṽ py, hq be the solution to the following PDE:

κ2

2
y2Ṽyypy, hq ´

κ2

2
yṼypy, hq “ ´1, for py, hq P Ω,

Ṽ py1phq, hq “ 0, Ṽhpy3phq, hq “ 0,
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where Ω “ tpy, hq P R2
` : y3phq ď y ď y1phqu. It holds that Ṽ py, hq “ C1phqy

2 `

C2phq `
log y
κ2

, where C1phq and C2phq satisfy

C1phqy1phq
2
` C2phq `

log y1phq

κ2
“ 0,

C
1

1phqy3phq
2
` C

1

2phq “ 0.

Applying Itô’s formula to Ṽ pYtpy
˚q, H˚

t q, and integrating from 0 to τzero, we have

that

Ṽ pYτzeropy
˚
q, H˚

τzeroq ´ Ṽ py
˚, H˚

0 q

“ ´ τzero ´ κ

ż τzero

0

Yspy
˚
qṼypYspy

˚
q, H˚

s qdWs`

ż τzero

0

ṼhpYspy
˚
q, H˚

s qdH
˚
s .

Note that Ṽ pYτzeropy
˚q, H˚

τzeroq “ 0, the stochastic integral is square-integrable and

thus a martingale with zero mean, and H˚
t only increases when ṼhpYspy

˚q, H˚
s q “ 0,

implying
şτzero
0

ṼhpYspy
˚q, H˚

s qdH
˚
s “ 0. Together with the fact that y˚ “ fpx, hq, we

can finally deduce that Erτzeros “ Ṽ pfpx, hq, hq “ C1phqfpx, hq
2 ` C2phq `

log fpx,hq
κ2

.

(iv) Before time τlavs, the historical consumption peak H˚
t “ h does not increase,

and

tYtpy
˚
q ď y3phqu “

"

´ κWt ´
κ2

2
t ď ´ log

ˆ

y˚h1´β1

p1´ λqβ1

˙*

.

Then, by equation (9.1) in Rogers and Williams (2000), let b “ 1
κ

log
`

y˚h1´β1

p1´λqβ1

˘

, c “ κ
2
,

β “
?
c2 ` 2ν ´ c, it follows that for any ν ą 0: Ere´ντlavss “ e´bβ. Then, it holds

that

Erτlavss “ ´
dEre´ντlavss

dν

ˇ

ˇ

ˇ

ˇ

νÓ0

“
b

c
“

2

κ2
log

ˆ

y˚h1´β1

p1´ λqβ1

˙

“
2

κ2
log

ˆ

fpx, hqh1´β1

p1´ λqβ1

˙

.
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A.2 Proofs for Chaptper 4

A.2.1 Proof of Proposition 4.1

It is easy to show that the general solution of linear ODE (4.2.10) admits the piecewise

form in each region that

vpy, hq “

$

’

&

’

%

C1phqy
r1 ` C2phqy

r2 `
pνhqγ1

pr`λqγ1hαγ1
´ νh

r`λ
y, if ą νγ1´1hp1´αqγ1´1

C3phqy
r1 ` C4phqy

r2 ` 2hαβ1
κ2β1pβ1´r1qpβ1´r2q

yβ1 , if hp1´αqγ1´1 ď y ď νγ1´1hp1´αqγ1´1,

C5phqy
r1 ` C6phqy

r2 ` 1
pr`λqγ1

hp1´αqγ ´ h
r`λ

y, if p1´ αqhp1´αqγ1´1 ď y ă hp1´αqγ1´1,

(A.2.19)

where C1p¨q, ¨ ¨ ¨ , C6p¨q are functions of h to be determined.

The free boundary condition vypy, hq Ñ ´ νh
r`λ

in (4.2.12) implies that y Ñ `8.

Together with the free boundary conditions in (4.2.12) and the formula of vpy, hq

in the region y ą νγ1´1hp1´αqγ1´1, we deduce C1phq ” 0. To determine the left

parameters, we consider the smooth-fit conditions with respect to the variable y at

two free boundary points y “ y1phq “ νγ1´1hp1´αqγ1´1 and y “ y2phq “ hp1´αqγ´1,
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that is,

´ C3phqy1phq
r1 ` pC2phq ´ C4phqqy1phq

r2

“
2hαβ1

κ2β1pβ1 ´ r1qpβ1 ´ r2q
y1phq

β1 `
νh

r ` λ
y1phq ´

pνhqγ

pr ` λqγhαγ
,

´ r1C3phqy1phq
r1´1

` r2pC2phq ´ C4phqqy1phq
r2´1

“
2hαβ1

κ2pβ1 ´ r1qpβ1 ´ r2q
y1phq

β1´1
`

νh

r ` λ
,

pC3phq ´ C5phqqy2phq
r1 ` pC4phq ´ C6phqqy2phq

r2

“ ´
2hαβ1

κ2β1pβ1 ´ r1qpβ1 ´ r2q
y2phq

β1 `
1

pr ` λqγ
hp1´αqγ ´

h

r ` λ
y2phq,

r1pC3phq ´ C5phqqy2phq
r1´1

` r2pC4phq ´ C6phqqy2phq
r2´1

“ ´
2hαβ1

κ2pβ1 ´ r1qpβ1 ´ r2q
y2phq

β1´1
´

h

r ` λ
.

(A.2.20)

Then the equations (A.2.20) are linear equations for C3phq, C2phq ´ C4phq, and

C3phq ´C5phq and C4phq ´C6phq. By solving the above two systems, we can obtain

C3phq “
1´ β1

pr ` λqpr1 ´ r2qpβ1 ´ r1q
pνhqr2γ1`r1h´r2αγ1 ,

C2phq ´ C4phq “
1´ β1

pr ` λqpr1 ´ r2qpβ1 ´ r2q
pνhqr1γ1`r2h´r1αγ1 ,

C3phq ´ C5phq “
1´ β1

pr ` λqpr1 ´ r2qpβ1 ´ r1q
hr2p1´αqγ1`r1 ,

C4phq ´ C6phq “
β1 ´ 1

pr ` λqpr1 ´ r2qpβ1 ´ r2q
hr1p1´αqγ1`r2 ,

(A.2.21)

therefore, C2phq to C5phq can be written by (4.2.14).

To obtain C2phq, C4phq and C6phq, we aim to find C6phq first, and then C4phq

and C2phq can be determined. Indeed, as h Ñ `8, we obtain y Ñ 0 in the region
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p1´ αqhp1´αqγ1´1 ď y ă hp1´αqγ1´1, and the boundary condition (4.2.11) leads to

lim
hÑ`8

h

vypp1´ αqhp1´αqγ1´1, hq
“ C,

where C is a negative constant. Along the free boundary, we have

vypp1´αqh
p1´αqγ1´1, hq “ r1C5phq

`

p1´αqhp1´αqγ1´1
˘r1´1

`r2C6phq
`

p1´αqhp1´αqγ1´1
˘r2´1

`
h

r ` λ
.

It follows from lim
hÑ`8

h
vypp1´αqhp1´αqγ´1,hq

ă 0 that vypp1 ´ αqhp1´αqγ´1, hq “ Ophq as

hÑ `8. Therefore, we can deduce that

C6phq “ OpC5phqh
pr1´r2qpp1´αqγ1´1q

q `Ophr1p1´αqγ1`r2q.

From the asymptotic property of C5phq in Lemma A.2.2, it follows that

C6phq “ OpC5phqh
pr1´r2qpp1´αqγ1´1q

q `Ophr1p1´αqγ1`r2q “ Ophr1p1´αqγ1`r2q,

as h Ñ `8. By Assumption (A1), we have lim
hÑ`8

C6phq “ 0, and thus we have

C6phq “ ´
ş8

h
C 16psqds.

In addition, to obtain C 16phq, we apply the free boundary condition (4.2.13) at

point y “ p1´ αqhp1´αqγ1´1 such that

C 15phq
`

p1´αqhp1´αqγ1´1
˘r1
`C 16phq

`

p1´αqhp1´αqγ1´1
˘r2
`

1´ α

r ` λ
hp1´αqγ1´1´

1´ α

r ` λ
hp1´αqγ1´1 “ 0,

which yields

C 16phq “ ´p1´ αq
r1´r2C 15phqh

pr1´r2qpp1´αqγ1´1q

“
p1´ αqr1´r2p1´ β1qpr2p1´ αqγ1 ` r1q

pr ` λqpr1 ´ r2qpβ1 ´ r1q
p1´ νr2γ1`r1qhr1pp1´αqγ1´1q.

As a result, we conclude that

C6phq “ ´

ż 8

h

C 16psqds “
p1´ αqr1´r2p1´ β1qpr2p1´ αqγ1 ` r1q

pr ` λqpr1 ´ r2qpβ1 ´ r1qpr1p1´ αqγ1 ` r2q
p1´ νr2γ1`r1qhr1p1´αqγ1`r2 .
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A.2.2 Proof of Theorem 4.1

Similar to Deng et al. (2022), we need to show that the solution of the HJB equation

(4.2.3) coincides with the value function, i.e. there exists pπ˚, c˚, b˚q P Apxq such

that upx, hq “ E
„

ş8

0
e´rtupc˚t , H

˚
t qdt



. For any admissible strategy pπ, cq P Apxq,

similar to the proof of Lemma 1 in Arun (2012), we have

E
„
ż 8

0

pct ` λbtqMtdt



ď x. (A.2.22)

Let h be the fixed parameter, the dual transform of Upc, hq ` λV pbq with re-

spect to c and b in the constrained domain that rV pq, hq :“ supcPrνh,hs
“

Upc, hq ´

cq
‰

` λ supbě0

“

V pbq ´ bq
‰

defined in (4.2.7). Moreover, rV can be attained by the

construction of the feedback optimal control c:py, hq in (4.2.16).

In what follows, we distinguish the two reference processes, namely Ht :“ h _

supsďt cs and H:
t pyq :“ h _ supsďt c

:pYspyq, H
:
spyqq that correspond to the reference

process under an arbitrary consumption process ct and under the optimal consump-

tion process c: with an arbitrary y ą 0. Note that the global optimal reference

process shall be defined later by H˚
t :“ H:

t py
˚q with y˚ ą 0 to be determined. Let

us now further introduce

Ĥtpyq :“ h_

ˆ

p1´ αq
´ 1
p1´αqγ1´1

`

inf
sďt

Yspyq
˘

1
p1´αqγ1´1

˙

, (A.2.23)

where Ytpyq “ yertMt is the discounted martingale measure density process.

For any admissible controls pπ, cq P Apxq, recall the reference process Ht “ h _
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supsďt cs, and for all y ą 0, we see that

E
„
ż 8

0

e´pr`λqtUpct, Htqdt` λ

ż 8

0

e´pr`λqtV pbtqdt



“ E
„
ż 8

0

e´pr`λqtpUpct, Htq ´ Ytpyqctqdt



` λE
„
ż 8

0

e´pr`λqtpV pbtq ´ Ytpyqbtqdt



` yE
„
ż 8

0

pct ` λbtqMtdt



ď E
„
ż 8

0

e´pr`λqtṼ pYtpyq, H
:
t pyqqdt



` yx

“ E
„
ż 8

0

e´pr`λqtṼ pYtpyq, Ĥtpyqqdt



` yx

“ vpy, hq ` yx.

(A.2.24)

The third equation holds because of Lemma A.12, and the last equation is verified

by Lemma A.11. In addition, Lemma A.13 guarantees the inequality, and shows

that it becomes an equality with the choices of c˚t “ c:pYtpy
˚q, H:

t py
˚qq and b˚t “

b:pYtpy
˚q, H:

t py
˚qq , in which y˚ is the solution to the equation E

“ ş8

0
pc:pYtpy

˚q, H:
t py

˚qq`

λb:pYtpy
˚q, H:

t py
˚qqq Mtdt

‰

“ x for a given x ě νh
r`λ

. In conclusion, we have

sup
pπ,cqPApxq

E
„
ż 8

0

e´pr`λqtUpct, Htqdt` λ

ż 8

0

e´pr`λqtV pbtqdt



“ inf
yą0
pvpy, hq ` yxq “ upx, hq.

The proof of the theorem is also based on some auxiliary results. We present some

asymptotic results on the coefficients in Proposition 4.1, whose proof is straightfor-

ward and hence omitted.

Remark. Based on the semi-analytical forms in Proposition (4.1), we note that

C2phq “ Ophr1p1´αqγ1`r2q, C3phq “ Ophr2p1´αqγ1`r1q, C4phq “ Ophr1p1´αqγ1`r2q,

C5phq “ Ophr2p1´αqγ1`r1q, C6phq “ Ophr1p1´αqγ1`r2q,
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as hÑ `8, which are used in later proofs.

By following similar proofs of Lemma 5.1 to Lemma 5.3 in Deng et al. (2022)

and using asymptotic results in Remark A.2.2, we can readily obtain the next three

lemmas.

Lemma A.11. For any y ą 0 and h ě 0, the dual transform vpy, hq of the value

function upx, hq satisfies

vpy, hq “ E
„
ż 8

0

e´rtrṼ pYtpyq, Ĥtpyqq ` V̄ pYtpyqqsdt



,

where Ytp¨q and Ĥtp¨q are defined in (A.2.23).

Lemma A.12. For all y ą 0, we have H:
t “ Ĥtpyq, t ě 0, and hence

E
„
ż 8

0

e´rtṼ pYtpyq, H
:
t pyqqdt



“ E
„
ż 8

0

e´rtṼ pYtpyq, Ĥtpyqqdt



.

Lemma A.13. The inequality in (A.2.24) becomes equality with c˚t “ c:pYtpy
˚q, Ĥtpy

˚qq

and b˚t “ b:pYtpy
˚q, Ĥtpy

˚qq, t ě 0, with y˚ “ y˚px, hq as the unique solution to

Er
ż 8

0

pc:pYtpy
˚
q, Ĥtpy

˚
qq ` λb:pYtpy

˚
q, Ĥtpy

˚
qqqMtdts “ x.

Let us continue to prove some other auxiliry results.

Lemma A.14. The following transversality condition holds that for all y ą 0,

lim
TÑ`8

E
„

e´rTvpYT pyq, ĤT pyqq



“ 0.

Proof. Let us recall that

Ĥtpyq :“ h_

ˆ

p1´ αq
´ 1
p1´αqγ1´1 pinf

sďt
Yspyqq

1
p1´αqγ1´1

˙

.
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Let us first consider the case cT “ 0. We first write that

e´rTErvpYT pyq, ĤT pyqqs “ e´rTE
„

C2pĤT pyqqYT pyq
r2 `

2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
YT pyq

β2

`
νγ

pr ` λqγ1

ĤT pyq
p1´αqγ

´
νĤT pyq

r ` λ
YT pyq



,

(A.2.25)

where the last two terms can vanish due to Lemma A.16 and Lemma A.18 respective-

ly, and the last third term can also vanish because of Lemma A.17 and the fact β2 ą r2

by Assumption (A1). For the first term in (A.2.25), since YT pyq ą ĤT pyq
p1´αqγ1´1,

we have

e´rTE
„

C2pĤT pyqqpYT pyqq
r2



“ O
`

e´rTC2pĤT pyqqĤT pyq
r2pp1´αqγ1´1q

˘

“ O
`

e´rT ĤT pyq
r1p1´αqγ1`r2ĤT pyq

r2pp1´αqγ1´1q
˘

“ O
`

e´rT ĤT pyq
p1´αqγ1

˘

,

which vanishes as T Ñ `8 due to Lemma A.16.

We then consider the case 0 ă cT ă ĤT pyq.

Ere´rTvpYT pyq, ĤT pyqqs

“e´rTE
„

C3pĤT pyqqYT pyq
r1 ` C4pĤT pyqqYT pyq

r2

`
2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
YT pyq

β2 `
2ĤT pyq

αβ1

κ2β1pβ1 ´ r1qpβ1 ´ r2q
YT pyq

β1



.

(A.2.26)

We consider asymptotic behavior of the above equation term by term as T Ñ `8.

Thanks to Assumption (A1), β2 ą r2, and the third term can vanish due to

Lemma A.17. For the fourth term in (A.2.26), since YT pyq ě ĤT pyq
p1´αqγ1´1 and

β1 “
γ1
γ1´1

ă 0, we have

Ere´rT ĤT pyq
αβ1YT pyq

β1s “ O
`

e´rTE
“

ĤT pyq
αβ1`β1pp1´αqγ1´1q

‰˘

“ O
`

e´rTE
“

ĤT pyq
p1´αqγ1

‰˘

,
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which also vanishes as T Ñ `8 due to Lemma A.16.

Let us consider the terms containing C3pĤT pyqq and C4pĤT pyqq in equation

(A.2.26). Because of the constraint Ytpyq “ OpĤT pyq
p1´αqγ1´1q, we can deduce that

e´rTE
„

C3pĤT pyqqpYT pyqq
r1



“ O
`

e´rTC3pĤT pyqqĤT pyq
r1pp1´αqγ1´1q

˘

“ O
`

e´rT ĤT pyq
r2p1´αqγ1`r1ĤT pyq

r1pp1´αqγ1´1q
˘

“ O
`

e´rT ĤT pyq
p1´αqγ1

˘

,

which converges to 0 by Lemma A.16.

In addition, since YT pyq ě ĤT pyq
p1´αqγ1´1 and r2 ă 0, we obtain

e´rTE
„

C4pĤT pyqqpYT pyqq
r2



“ O
`

e´rTC4pĤT pyqqĤT pyq
r2pp1´αqγ1´1q

˘

“ O
`

e´rT ĤT pyq
r1p1´αqγ1`r2ĤT pyq

r2pp1´αqγ1´1q
˘

“ O
`

e´rT ĤT pyq
p1´αqγ1

˘

,

which vanishes as T Ñ `8 by Lemma A.16.

Finally, we consider the case CT “ ĤT pyq and write that

Ere´rTvpYT pyq, ĤT pyqqs

“e´rTE
„

C5pĤT pyqqYT pyq
r1 ` C6pĤT pyqqYT pyq

r2

`
2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
YT pyq

β2 `
1

pr ` λqγ1

ĤT pyq
p1´αqγ1 ´

ĤT pyq

pr ` λq
YT pyq



,

(A.2.27)

where the last three terms converge to 0 by Lemma A.17 with Assumption (A1),

Lemma A.16, and Lemma A.18, respectively.
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For the first term in (A.2.27), since YT pyq ď ĤT pyq
p1´αqγ1´1, we have

e´rTE
„

C5pĤT pyqqpYT pyqq
r1



“ O
`

e´rTC5pĤT pyqqĤT pyq
r1pp1´αqγ1´1q

˘

“ O
`

e´rT ĤT pyq
r2p1´αqγ1`r1ĤT pyq

r1pp1´αqγ1´1q
˘

“ O
`

e´rT ĤT pyq
p1´αqγ1

˘

,

which converges to 0 as T Ñ `8 by Lemma A.16.

For the second term in (A.2.27), by YT pyq ě p1 ´ αqĤT pyq
p1´αqγ1´1 and r2 ă 0, we

have

e´rTE
„

C6pĤT pyqqpYT pyqq
r2



“ O
`

e´rTC6pĤT pyqqĤT pyq
r2pp1´αqγ1´1q

˘

“ O
`

e´rT ĤT pyq
r1p1´αqγ1`r2ĤT pyq

r2pp1´αqγ1´1q
˘

“ O
`

e´rT ĤT pyq
p1´αqγ1

˘

,

which also vanishes as T Ñ `8 by Lemma A.16. Therefore, we obtain the desired

result.

Lemma A.15. For any T ą 0, we have

lim
nÑ`8

E
“

e´rτnvpYτnpyq, Ĥτnpyqq1tTąτnu
‰

“ 0,

where τn is defined by

τn “ inftt ě 0|Ytpyq ě n, Ĥtpyq ě
`

p1´ αqn
˘´ 1

p1´αqγ1´1 u.

Proof. By the definition of τn, for all t ď τn, we have Ytpyq P
“

1
n
, n
‰

, and thus

h ď Ĥtpyq ď maxph,
`

p1´ αqn
˘´ 1

p1´αqγ1´1 q “ Op1q `Opn
´ 1
p1´αqγ1´1 q.

Therefore, we have Ytpyq
r1 ď nr1 , Ytpyq

r2 ď
`

1
n

˘r2
“ n´r2 . Then we shall obtain the

order of vpYτnpyq, Ĥτnpyqq in three cases, in the sense that c˚τn “ 0, 0 ă c˚τn ă Ĥτnpyq,

and c˚τn “ Ĥτnpyq.
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Similar to the proof of Lemma A.14, if c˚τn “ 0, we have

vpYτnpyq, Ĥτnpyqq “ C2pĤτnpyqqYτnpyq
r2 `

2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
Yτnpyq

β2

`
νγ

pr ` λqγ1

Ĥτnpyq
p1´αqγ1 ´

νĤτnpyq

r ` λ
Yτnpyq

“ Opn´r2q `Opn´β2q `Opn
´

p1´αqγ1
p1´αqγ1´1 q `Opn

p1´αqγ1´2
p1´αqγ1´1 q

“ Opnr
˚

q,

where r˚ :“ max
 

´ r2,´β1,
p1´αqγ1´2
p1´αqγ1´1

, pr1´r2qp1´αqγ1´2r1
pα´1qγ1´1

(

. Here, we have ´β2 ă ´r2

by Assumption (A1). If 0 ă c˚τn ă Ĥτnpyq, we have

vpYτnpyq, Ĥτnpyqq “C3pĤτnpyqqYτnpyq
r1 ` C4pĤτnpyqqYτnpyq

r2

`
2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
Yτnpyq

β2 `
2Ĥτnpyq

αβ1

κ2β1pβ1 ´ r1qpβ1 ´ r2q
Yτnpyq

β1

“ Opn
pr1´r2qp1´αqγ1´2r1

pα´1qγ1´1 q `Opn´r2q `Opn´β2q `Opn´β1q

“ Opnr
˚

q.

If cτn “ Ĥτnpyq, we have

vpYτnpyq, Ĥτnpyqq “ C5pĤτnpyqqYτnpyq
r1 ` C6pĤτnpyqqYτnpyq

r2

`
2λK1´β2

κ2β2pβ2 ´ r1qpβ2 ´ r2q
Yτnpyq

β2 `
1

pr ` λqγ1
Ĥτnpyq

p1´αqγ1 ´
Ĥτnpyq

r ` λ
YT pyq

“ Opn
pr1´r2qp1´αqγ1´2r1

pα´1qγ1´1 q `Opn´r2q `Opn´β2q `Opn
´p1´αqγ1
p1´αqγ1´1 q `Opn

p1´αqγ1´2
p1´αqγ1´1 q

“ Opnr
˚

q.

Therefore, in all the cases, vpYτnpyq, Ĥτnpyqq “ Opnr
˚

q. In addition, similar to the

proof of (A.25) in Guasoni et al. (2020), there exists some constant C such that

Er1tτnďT us ď n´2ξ
p1` y2ξ

qeCT ,
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for any ξ ě 1. Putting all the pieces together, the desired claim holds that

lim
nÑ`8

E
“

e´rτnvpYτnpyq, Ĥτnpyqq1tTąτnu
‰

“ 0.

Lemma A.16. For γ1 that satisfies Assumption (A1), we have

lim
TÑ`8

E
„

e´rT ĤT pyq
γ˚1



“ 0, (A.2.28)

where γ˚1 :“ p1´ αqγ1.

Proof. Let β˚1 :“
γ˚1
γ˚1 ´1

. It is obvious that

e´rTE
„

ĤT pyq
p1´αqγ1



ď e´rTE
„

sup
sďT
p1´ αq

´
p1´αqγ1
p1´αqγ1´1Yspyq

p1´αqγ1
p1´αqγ1´1



` e´rTErhp1´αqγ1s

“ e´rTE
„

sup
sďT
p1´ αq´β

˚
1 Yspyq

β˚1



` e´rTErhp1´αqγ1s,

in which it is clear that e´rTErhp1´αqγ1s “ Ope´rT q as T Ñ `8.

Then we consider the first term e´rTErsupsďT p1´αq
´β˚1 Yspyq

β˚1 s. Define W
p 1
2
κq

t “

Wt`
1
2
κt, which is also a Brownian motion under the equivalent measure Q, with its

running maximum pW
p 1
2
κq

t q˚. It follows that

e´rTE
„

ĤT pyq
p1´αqγ1



ď e´rTE
„

sup
sďT
p1´ αq´β

˚
1 Yspyq

β˚1



“e´rTO

ˆ

E
„

exp

"

´ β˚1 sup
sďT

`1

2
κ2s` κWs

˘

*˙

“e´rTO

ˆ

E
„

exp

"

´ κβ˚1 sup
sďT

W
p 1
2
κq

s

*˙

:“e´rTO

ˆ

E
„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(

˙

,
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where a “ 0, b “ ´β˚1κ ą 0, ζ “ 1
2
κ ą 0, and k “ 0. Note that 2a ` b ` 2ζ ą

2a` b` ζ ą 0, thanks to Corollary A.7 in Guasoni et al. (2020), we have

E
„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(



“
2pa` b` ζq

2a` b` 2ζ
exp

"

pa` bqpa` b` 2ζq

2
T

*

Φ

ˆ

pa` b` ζq
?
T ´

k
?
T

˙

`
2pa` ζq

2a` b` 2ζ
exp

"

p2a` b` 2ζqk `
apa` 2ζq

2
T

*

Φ

ˆ

´ pa` ζq
?
T ´

k
?
T

˙

,

and thus

lim
TÑ`8

1

T
logE

„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(



´ r

“
pa` bqpa` b` 2ξq

2
´ r “

κ2

2
β˚1 pβ

˚
1 ´ 1q ´ r “

κ2

2
pβ˚1 ´ r1qpβ

˚
1 ´ r2q.

It follows that

e´rTE
„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚

1 `
W
pζq
T

˘˚

ěk
(

*

“ exp

"ˆ

1

T
logE

„

exp

"

aW
pζq
T ` b

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(



´ r

˙

T

*

“O

ˆ

exp

"

κ2

2
pβ˚1 ´ r1qpβ

˚
1 ´ r2qT

*˙

,

as T Ñ `8. Together with the fact that r2 ă β˚1 ă r1 under Assumption (A1),

we have pβ˚1 ´ r1qpβ
˚
1 ´ r2q ă 0 and thus

E
„

e´rT ĤT pyq
p1´αqγ1



“ O

ˆ

exp

"

κ2

2
pβ˚1 ´ r1qpβ

˚
1 ´ r2qT

*˙

`Ope´rT q

“ O

ˆ

exp

"

κ2

2
pβ˚1 ´ r1qpβ

˚
1 ´ r2qT

*˙

,

which tends to 0 as T Ñ `8.
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Lemma A.17. For r2 ă β0 ă r1, we have

lim
TÑ`8

E
„

e´rTYT pyq
β0



“ 0. (A.2.29)

Proof. In fact,

E
„

e´rTYT pyq
β0



“ e´rTE
„

pyerT ¨ e´pr`
κ2

2
qT´κWT q

β0



“ yγ1e
´rTE

“

eβ0p´
κ2

2
T´κWT q

‰

“ O

ˆ

epβ0´r1qpβ0´r2q
κ2

2
T

˙

,

which converges to 0 in view that r2 ă β0 ă r1.

Lemma A.18. For β˚1 “
γ˚1
γ˚1 ´1

ă 0 with γ˚1 :“ p1´ αqγ1, we have

lim
TÑ`8

E
„

e´rT ĤT pyqYT pyq



“ 0. (A.2.30)

Proof. In fact,

E
„

e´rT ĤT pyqYT pyq



ď E
„

e´rThYT pyq



` E
„

e´rTYT pyq sup
sďT
p1´ αq

´ 1
p1´αqγ1´1Yspyq

1
p1´αqγ1´1



,

where the first term converges to 0 by Lemma A.17. For the second term,

E
„

e´rTYT pyq sup
sďT
p1´ αq

´ 1
p1´αqγ1´1Yspyq

1
p1´αqγ1´1



“ O

ˆ

E
„

e´rTYT pyq sup
sďT

Yspyq
1

γ˚1 ´1

˙

“ e´rTO

ˆ

E
„

exp

"

´
κ2

2
T ´ κWT ´

1

γ˚1 ´ 1
sup
sďT

ˆ

κ2

2
s` κWs

˙*˙

“ e´rTO

ˆ

E
„

exp

"

´ κW pζq
´

κ

γ˚1 ´ 1

ˆ

W
pζq
T

˙˚*˙

“ e´rTO

ˆ

E
„

exp

"

a1W
pζq
` b1

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(

˙

,
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where a1 “ ´κ, b1 “ ´ κ
γ˚1 ´1

ą 0, ζ “ 1
2
κ, and k “ 0. Note that 2a1 ` b1 ` 2ζ “

γ˚1
1´γ˚1

ą 0 and a1 ` ζ ă 0, thanks to Corollary A.7 in Guasoni et al. (2020), we can

derive

e´rTO

ˆ

E
„

exp

"

a1W
pζq
` b1

ˆ

W
pζq
T

˙˚*

1 `
W
pζq
T

˘˚

ěk
(

˙

“O

ˆ

exp

"ˆ

pa1 ` b1qpa1 ` b1 ` 2ζq

2
´ r

˙

T

*˙

`O

ˆ

exp

"ˆ

a1pa1 ` 2ζq

2
´ r

˙

T

*˙

,

where the second term equals Opexpt´rT uq as a1 ` 2ζ “ 0. For the first term,

pa1 ` b1qpa1 ` b1 ` 2ζq

2
´ r “

κ2

2

ˆ

γ˚1
γ˚1 ´ 1

¨
1

γ˚1 ´ 1

˙

´ r

“
κ2

2

ˆ

β˚1 pβ
˚
1 ´ 1q ´

2pr ` λq

κ2

˙

“
κ2

2
pβ˚1 ´ r1qpβ

˚
1 ´ r2q.

Thanks to Assumption (A1), we have β˚1 ą r2, and therefore κ2

2
pβ˚1´r1qpβ

˚
1´r2q ă

0. In summary, we complete the proof.

A.2.3 Proof of Lemma 4.1

We prove vyypy, hq ą 0 the three regions: y ą νγ1´1hp1´αqγ1´1, hp1´αqγ1´1 ď y ď

νγ1´1hp1´αqγ1´1, and p1 ´ αqhp1´αqγ´1 ď y ă hp1´αqγ´1, respectively. To be more

specific, we first analyze vyypy, hq in the region p1´αqhp1´αqγ´1 ď y ă hp1´αqγ´1, then

the region hp1´αqγ´1 ď y ď νγ1´1hp1´αqγ1´1, and finally the region y ą νγ1´1hp1´αqγ1´1.

(i) In the region p1´αqhp1´αqγ´1 ď y ă hp1´αqγ´1, vyypy, hq “ r1pr1´1qC5phqy
r1´2`

r2pr2 ´ 1qC6phqy
r2´2 `

2λpβ2´1qK1´β2

κ2pβ2´r1qpβ2´r2q
yβ2´2. Since r1pr1 ´ 1q “ r2pr2 ´ 1q “

2pr`λq
κ2

ą 0 and 2λpβ2´1qK1´β2

κ2pβ2´r1qpβ2´r2q
ą 0, we only need to prove C5phq ě 0 and

C6phq ą 0. According to (4.2.22), we can easily deduce that C5phq ą 0 and

C6phq ą 0.
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(ii) In the region hp1´αqγ1´1 ď y ď νγ1´1hp1´αqγ1´1, because r1pr1´1q “ r2pr2´1q “

2pr`λq
κ2

, we can deduce that

vyypy, hq “ r1pr1 ´ 1qC3phqy
r1´2 ` r2pr2 ´ 1qC4phqy

r2´2

`
2λpβ2 ´ 1qK1´β2

κ2pβ2 ´ r1qpβ2 ´ r2q
yβ2´2 `

2pβ1 ´ 1qhαβ1

κ2pβ1 ´ r1qpβ1 ´ r2q
yβ1´2

“
2pr ` λq

κ2

ˆ

C3phqy
r1´β1 ` C4phqy

r2´β1 `
pβ1 ´ 1qhαβ1

pr ` λqpβ1 ´ r1qpβ1 ´ r2q

˙

yβ1´2

`
2λpβ2 ´ 1qK1´β2

κ2pβ2 ´ r1qpβ2 ´ r2q
yβ2´2.

Let us define ϕpyq :“ C3phqy
r1´β1 ` C4phqy

r2´β1 `
pβ1´1qhαβ1

pr`λqpβ1´r1qpβ1´r2q
. Because

the last term in the above equation is positive, it is sufficient to verify that

ϕpyq ą 0. We separate the proof into the following steps: (1) showing ϕpyq is

either monotone or first increasing and then decreasing; (2) show ϕpyq ą 0 at

two points y “ νγ1´1hp1´αqγ1´1 and y “ hp1´αqγ1´1.

Indeed, the extreme point y: of ϕpyq should satisfy the first order condition

ϕ1py:q “ 0, i.e.,

C3phqpr1 ´ β1qpy
:
q
r1´β1´1

` C4phqpr2 ´ β1qpy
:
q
r2´β1´1

“ 0.

We remark that C3phq ă 0, r1 ´ β1 ą 0, while C4phqpr2 ´ β1q can be negative

or positive. If C4phqpr2 ´ β1q ď 0, there is no solution for y:, hence ϕpyq is

monotone. If C4phqpr2 ´ β1q ą 0, there exists a unique real solution to the

above equation

y: “

ˆ

pβ1 ´ r2qC4phq

pr1 ´ β1qC3phq

˙
1

r1´r2

,

which might fall into the interval rhp1´αqγ´1, νγ1´1hp1´αqγ1´1s. Noticing that

C3phq ă 0, pr1 ´ β1q ą 0, and

ϕ1pyq “ C3phqpr1 ´ β1qy
r1´β1´1

` C4phqpr2 ´ β1qy
r2´β1´1,
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it follows that when y ď y:, ϕ1pyq ě 0; when y ą y:, ϕ1pyq ď 0. Hence ϕpyq

increases before reaching y:, and then decreases after exceeding y:.

Then we aim to prove ϕpνγ1´1hp1´αqγ1´1q ě 0 and ϕphp1´αqγ1´1q ě 0. Indeed, if

y “ νγ1´1hp1´αqγ1´1, we obtain

ϕpνγ1´1hp1´αqγ1´1
q

“ C3phqy
r1´β1 ` C4phqy

r2´β1 `
pβ1 ´ 1qhαβ1

pr ` λqpβ1 ´ r1qpβ1 ´ r2q

ě C3phqy
r1´β1 ` pC4phq ´ C6phqqy

r2´β1 `
pβ1 ´ 1qhαβ1

pr ` λqpβ1 ´ r1qpβ1 ´ r2q

“
1´ β1

pr ` λqpr1 ´ r2qpβ1 ´ r1q
hαβ1 `

β1 ´ 1

pr ` λqpr1 ´ r2qpβ1 ´ r2q

hr1γ1`r2`αβ1

pνhqr1γ1`r2

`
β1 ´ 1

pr ` λqpβ1 ´ r1qpβ1 ´ r2q
hαβ1

ě
pβ1 ´ 1qhαβ1

r

ˆ

´
1

pr1 ´ r2qpβ1 ´ r1q
`

1

pr1 ´ r2qpβ1 ´ r2q
`

1

pβ1 ´ r1qpβ1 ´ r2q

˙

“ 0,

where the last second inequality holds because pβ1 ´ r2qpr1γ1 ` r2q ă 0 and
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0 ă ν ă 1. On the other hand, if y “ hp1´αqγ´1, we can obtain

ϕphp1´αqγ1´1
q

ě C3phqy
r1´β1 ` pC4phq ´ C6phqqy

r2´β1 `
pβ1 ´ 1qhαβ1

pr ` λqpβ1 ´ r1qpβ1 ´ r2q

“
1´ β1

pr ` λqpr1 ´ r2qpβ1 ´ r1q

pνhqr2γ1`r1

hr2γ1`r1´αβ1
`

β1 ´ 1

pr ` λqpr1 ´ r2qpβ1 ´ r2q
hαβ1

`
β1 ´ 1

pr ` λqpβ1 ´ r1qpβ1 ´ r2q
hαβ1

ě
pβ1 ´ 1qhαβ1

r ` λ

ˆ

´
1

pr1 ´ r2qpβ1 ´ r1q
`

1

pr1 ´ r2qpβ1 ´ r2q
`

1

pβ1 ´ r1qpβ1 ´ r2q

˙

“ 0.

(iii) In the region y ą pνhqγ´1hαγ, similar to the proof of C5phq ě 0, we can obtain

C2phq ą C2phq ´ C6phq ě 0.

Therefore, vyypy, hq “ r2pr2 ´ 1qC2phqy
r2´2 `

2λpβ2´1qK1´β2

κ2pβ2´r1qpβ2´r2q
yβ2´2 ą 0.

A.2.4 Proof of Corollary 4.1

Along the boundary xlavsphq, we first have c˚pxlavsphq,hq
xlavsphq

“ h
xlavsphq

, where xlavsphq is

defined in (4.2.19):

xlavsphq :“ ´C5phqr1p1´ αq
r1´1h´r2pp1´αqγ1´1q

´ C6phqr2p1´ αq
r2´1h´r1pp1´αqγ1´1q

´
2λp1´ αqβ2´1K1´β2

κ2pβ2 ´ r1qpβ2 ´ r2q
hpβ2´1qpp1´αqγ1´1q

`
h

r ` λ
.

In addition, we have

C5phqr1p1´ αq
r1´1h´r2pp1´αqγ1´1q

“
r1p1´ αq

´r2pνr2γ1`r1 ´ 1qp1´ β1q

pr ` λqpr1 ´ r2qpβ1 ´ r1q
h,

C6phqr2p1´ αq
r2´1h´r1pp1´αqγ1´1q

“
r2p1´ αq

´r2p1´ νr2γ1`r1qp1´ β1qpr2p1´ αqγ1 ` r1q

pr ` λqpr1 ´ r2qpβ1 ´ r1qpr1p1´ αqγ1 ` r2q
h,
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and

pβ2 ´ 1qpp1´ αqγ1 ´ 1q ď 1,

thanks to Assumption (A1), and the equality holds if and only if γ2 “ p1´ αqγ1.

Therefore, we have

lim
hÑ`8

xlavsphq

h
“ ´

r1p1´ αq
´r2pνr2γ1`r1 ´ 1qp1´ β1q

pr ` λqpr1 ´ r2qpβ1 ´ r1q

´
r2p1´ αq

´r2p1´ νr2γ1`r1qp1´ β1qpr2p1´ αqγ1 ` r1q

pr ` λqpr1 ´ r2qpβ1 ´ r1qpr1p1´ αqγ1 ` r2q

´
2λp1´ αqβ2´1K1´β2

κ2pβ2 ´ r1qpβ2 ´ r2q
1tγ2“p1´αqγ1u `

1

r ` λ
.

The optimal investment on xlavsphq is

π˚pxlavsphq, hq “
2pr ` λq

κ2
C5phqf3pxlavsphq, hq

r1´1
`

2pr ` λq

κ2
C6phqf3pxlavsphq, hq

r2´1

`
2λK1´β2pβ2 ´ 1q

κ2pβ2 ´ r1qpβ2 ´ r2q
f3pxlavsphq, hq

β2´1

“
2pr ` λqp1´ αq´r2

κ2
C5phqh

´r2pp1´αqγ1´1q

`
2pr ` λqp1´ αq´r1

κ2
C6phqh

´r1pp1´αqγ1´1q

`
2λK1´β2pβ2 ´ 1qp1´ αqβ2´1

κ2pβ2 ´ r1qpβ2 ´ r2q
hpβ2´1qpp1´αqγ1´1q.

Therefore, we conclude

lim
hÑ`8

π˚pxlavsphq, hq

xlavsphq
“ lim

hÑ`8

π˚pxlavsphq, hq

h
¨ lim
hÑ`8

h

xlavsphq
,

which also exists.

The optimal bequest on xlavsphq is

b˚pxlavsphq, hq “ K
´ 1
γ2´1

ˆ

p1´ αqhp1´αqγ1´1

˙
1

γ2´1

“

ˆ

1´ α

K

˙
1

γ2´1

h
p1´αqγ1´1

γ2´1 .
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Therefore, we conclude

lim
hÑ`8

b˚pxlavsphq, hq

xlavsphq
“ lim

hÑ`8

ˆ

1´ α

K

˙
1

γ2´1 h

xlavsphq
¨ h

p1´αqγ1´γ2
γ2´1

“ 1tγ2“p1´αqγ1u

ˆ

1´ α

K

˙
1

γ2´1

lim
hÑ`8

h

xlavsphq

is positive if γ2 “ p1´ αqγ1, and equals 0 otherwise.

A.3 Proofs for Chaptper 5

A.3.1 Proof of Theorem 5.2

Fix px, zq satisfying x ě z
d
ą 0. By assumption, the feedback control pair pc̃, π̃b̃q is ad-

missible, the open-loop control strategy, pc̃s, π̃s, bsqsět, generated from pc̃, π̃q with re-

spect to the initial condition pX c̃,π̃,b̃
t , Z c̃,π̃,b̃

t q “ px, zq is admissible. Let tpX c̃,π̃,b̃
s , Z c̃,π̃,b̃

s q, s ě

tu be the corresponding wealth and habit formation process under pc̃, π̃, b̃q. Applying

Itô’s formula, we have

e´ρsuc,π,bpX c̃,π̃,b̃
s , Z c̃,π̃,b̃

s q

“e´ρtuc,πpx, zq `

ż s

t

e´ρv
ˆ

´ ρuc,π,bpX c̃,π̃,b̃
v , Z c̃,π̃,b̃

v q

` uc,π,bx pX c̃,π̃,b̃
v , Z c̃,π̃,b̃

v q ¨ prX c̃,π̃,b̃
v ` µπ̃v ´ c̃v ´ λb̃vq ` u

c,π,b
z pX c̃,π̃,b̃

v , Z c̃,π̃,b̃
v q ¨ pηc̃v ´ δZ

c̃,π̃,b̃
v q

`
1

2
pπc̃,π̃,b̃v q

2σ2uc,π,bxx pX c̃,π̃,b̃
v , Z c̃,π̃,b̃

v q

˙

dv `

ż s

t

e´ρvπ̃vσu
c,π,b
pX c̃,π̃,b̃

v , Z c̃,π̃,b̃
v qdWv, s ě t.

(A.3.31)
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Define the stopping times τn :“ infts ě t :
şs

t
e´2ρvπ̃2

vσ
2puc,π,bpX c̃,π̃,b̃

v , Z c̃,π̃,b̃
v qq2 ě nu,

for n ě 1. Then from (A.3.31), we obtain

e´ρtuc,π,bpx, zq “ EFt
„

e´ρps^τnquc,π,bpX c̃,π̃,b̃
s^τn , Z

c̃,π̃,b̃
s^τnq ´

ż s^τn

t

e´ρv
ˆ

´ ρuc,π,bpX c̃,π̃,b̃
v , Z c̃,π̃,b̃

v q

` uc,π,bx pX c̃,π̃,b̃
v , Z c̃,π̃,b̃

v q ¨ prX c̃,π̃,b̃
v ` µπ̃v ´ c̃v ´ λb̃vq

` uc,π,bz pX c̃,π̃,b̃
v , Z c̃,π̃,b̃

v q ¨ pηc̃v ´ δZ
c̃,π̃,b̃
v q `

1

2
pπc̃,π̃,b̃v q

2σ2uc,π,bxx pX c̃,π̃,b̃
v , Z c̃,π̃,b̃

v q

˙

dv



.

(A.3.32)

On the other hand, by standard arguments and the assumption that uc,π,b is smooth,

we have

´ρuc,π,bpx, zq`uc,π,bx px, zq¨prx`µπ´c´λbq`uc,π,bz px, zq¨pηc´δzq`
1

2
π2σ2uc,π,bxx px, zq`

1

γ
pc´zqγ`

λK

γ
bγ “ 0,

for any x ě z
d
ą 0. It follows that

´ρuc,π,bpx, zq ` sup
c1PR,π1PR,b1PR`

"

uc,π,bx px, zq ¨ prx` µπ1 ´ c1 ´ b1q ` uc,π,bz px, zq ¨ pηc1 ´ δzq

`
1

2
pπ1q2σ2uc,π,bxx px, zq `

1

γ
pc1 ´ zqγ `

λK

γ
pb1qγ

*

ě 0.

(A.3.33)

Note that the maximizer of the Hamiltonian in (A.3.33) is given by the feedback

policy pc̃, π̃, b̃q in (5.2.7). Therefore, equation (A.3.31) implies that

e´ρtuc,π,bpx, zq ď EFt
„

e´ρps^τnquc,π,bpX c̃,π̃,b̃
s^τn , X

c̃,π̃,b̃
s^τnq`

ż s^τn

t

e´ρv
1

γ

 

pc̃v´Z
c̃,π̃,b̃
v q

γ
`λKb̃γv

(

dv



,

for x ě z
d

and s ě t. Now sending nÑ 8, we obtain

e´ρtuc,π,bpx, zq ď EFt
„

e´ρsuc,π,bpX c̃,π̃,b̃
s , Z c̃,π̃,b̃

s q `

ż s

t

e´ρv
1

γ

 

pc̃v ´ Z
c̃,π̃,b̃
v q

γ
` λKb̃γv

(

dv



,

taking sÑ `8, we have

uc,π,bpx, zq ď EFt
„
ż 8

t

e´ρpv´tq
1

γ

 

pc̃v ´ Z
c̃,π̃,b̃
v q

γ
` λKb̃γv

(

dv



.
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A.3.2 Proof of Theorem 5.3

For feedback policy pair c0px, zq “ z`a1

`

x´ z
d

˘

, π0px, zq “ a2

`

x´ z
d

˘

and b0px, zq “

a3

`

x´ z
d

˘

that is admissible with respect to initial px, zq. It follows from the standard

argument that the corresponding value function uc0,π0 satisfies the PDE

´ ρuc0,π0px, zq ` uc0,π0x px, zqprx` µπ0px, zq ´ c0px, zq ´ λb0px, zqq

` uc0,π0z px, zqpηc0px, zq ´ δzq `
1

2
π2

0σ
2uc0,π0xx px, zq `

1

γ
pc0 ´ zq

γ
`
λK

γ
bγ0 “ 0,

(A.3.34)

with initial condition upx, bxq “ 0 for any x ą 0. Solving this equation, we obtain

uc0,π0,b0 “ L0

ˆ

x´
z

d

˙γ

,

where L0 is some constant related to a1, a2 and a3. By Theorem 5.2, we can obtain

the optimal feedback control triple pc1px, zq, π1px, zq, b1px, zqq

c1px, zq “ z `

ˆ

L0γpd` ηq

d

˙
1

γ´1
ˆ

x´
z

d

˙

,

π1px, zq “
µ

p1´ γqσ2

ˆ

x´
z

d

˙

,

b1px, zq “

ˆ

L0γ

K

˙
1

γ´1
ˆ

x´
z

d

˙

,

and we can obtain the associated value function

uc1,π1,b1 “ L1

ˆ

x´
z

d

˙γ

,

for some constant L1 ą 0. Following this process, we can obtain a sequence tLn, n ě

0u as the coefficient of the value function. By Theorem 5.2, the sequence tLn, n ě 0u

is indeed a non-decreasing sequence, and has an upper bound L˚ by our assumption
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that the solution exists. Because the value function has a limit uc8,π8,b8 , the optimal

control triplet pcnpx, zq, πnpx, zq, bnpx, zqq also has the limit pc8px, zq, π8px, zq, b8px, zqq.

By the standard argument, the value function uc8,π8,b8 “ L˚
`

x ´ z
d

˘γ
satisfies the

following PDE

´ ρuc8,π8,b8px, zq ` uc8,π8,b8x px, zqprx` µπ8px, zq ´ c8px, zqq

` uc8,π8,b8z px, zqpηc8px, zq ´ δzq `
1

2
π2
8σ

2uc8,π8,b8xx px, zq `
1

γ
pc8 ´ zq

γ
`
λK

γ
bγ8 “ 0,

for any x ě z
d
ą 0 with initial condition upx, bxq “ 0 for all x ą 0. Moreover, limit

of the optimal control triples

c8px, zq “ z `

ˆ

L˚γpd` ηq

d

˙
1

γ´1
ˆ

x´
z

d

˙

,

π8px, zq “
µ

p1´ γqσ2

ˆ

x´
z

d

˙

,

b8px, zq “

ˆ

L˚γ

K

˙
1

γ´1
ˆ

x´
z

d

˙

.

Combining these equations, we have L˚ “ d
γpb`ηq

hγ´1 and thus uc8,π8,b8px, zq “

u˚px, zq, pc8px, zq, π8px, zq, b8px, zqq “ pc
˚px, zq, π˚px, zq, b˚px, zqq.
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