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Abstract 

Background: Radiomic models for clinical applications need to be reliable. However, 

the model reliability is conventionally established in prospective settings, requiring 

proposal and special design of a separate study. As prospective studies are rare, the 

reliability of most proposed models is unknown. Facilitating the assessment of radiomic 

model reliability during development would help to identify the most promising models 

for prospective studies. 

Purpose: This thesis aims to propose a framework to build reliable radiomic models 

using perturbation method. The aim was separated to three studies: 1) develop a 

perturbation-based assessment method to quantitatively evaluate the reliability of 

radiomic models, 2) evaluate perturbation-based method against test-retest method for 

developing reliable radiomic model, and 3) evaluate radiomic model reliability and 

generalizability after removing low-reliable radiomics features.  

Methods and Materials: Four publicly available head-and-neck carcinoma (HNC) 

datasets and one breast cancer dataset, in total of 1,641 patients, were retrospectively 

recruited from The Cancer Image Archive (TCIA). The computed tomography (CT) 

images, their gross tumor volume (GTV) segmentations, distant metastasis (DM) and 

local-/regional- recurrence (LR) after definitive treatment were collected from HNC 

datasets. Multi-parametric diffusion-weighted images (DWI), test-retest DWI scans, 

pathological complete response (pCR) were collected from breast cancer dataset. For 

the development of reliability assessment method for radiomic model, one dataset with 
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DM outcome as clinical task was used to build the survival model. Sixty perturbed 

datasets were simulated by randomly translating, rotating, and adding noise to the 

original image and randomizing GTV segmentation. The perturbed features were 

subsequently extracted from the perturbed datasets. The radiomic survival model was 

developed for DM risk prediction, and its reliability was quantified with intra-class 

coefficient of correlation (ICC) to evaluate the model prediction consistency on 

perturbed features. In addition, the sensitivity analysis was performed to verify the 

variation between input feature reliability and output prediction reliability. Then, a new 

radiomic model to predict pCR with DWI-derived apparent diffusion coefficient (ADC) 

map was developed, and its reliability was quantified with ICC to quantify the model 

prediction consistency on perturbed image features and test-retest image features 

respectively. Following the establishment of perturbation-based model reliability 

assessment (ICC), the model reliability and generalizability after removing low-reliable 

features (ICC thresholds of 0, 0.75 and 0.95) was evaluated under a repeated stratified 

cross-validation with HNC datasets. The model reliability is evaluated with 

perturbation-based ICC and the model generalizability is evaluated by the average train-

test area under the receiver operating characteristic curve (AUC) difference in cross-

validation. The experiment was conducted on all four HNC datasets, two clinical 

outcomes and five classification algorithms. 

Results: In development of model reliability assessment method, the reliability index 

ICC was used to quantify the model output consistency in features extracted from the 

perturbed images and segmentations. In a six-feature radiomic model, the concordance 

indexes (C-indexes) of the survival model were 0.742 and 0.769 for the training and 
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testing cohorts, respectively. For the perturbed training and testing datasets, the 

respective mean C-indexes were 0.686 and 0.678. This yielded ICC values of 0.565 

(0.518–0.615) and 0.596 (0.527–0.670) for the perturbed training and testing datasets, 

respectively. When only highly reliable features were used for radiomic modeling, the 

model’s ICC increased to 0.782 (0.759–0.815) and 0.825 (0.782–0.867) and its C-index 

decreased to 0.712 and 0.642 for the training and testing data, respectively. It shows 

our assessment method is sensitive to the reliability of the input. In the comparison 

experiment between perturbation-based and test-retest method, the perturbation method 

achieved radiomic model with comparable reliability (ICC: 0.90 vs. 0.91, P-value > 

0.05) and classification performance (AUC: 0.76 vs. 0.77, P-value > 0.05) to test-retest 

method. For the model reliability and generalizability evaluation after removing low-

reliable features, the average model reliability ICC showed significant improvements 

from 0.65 to 0.78 (ICC threshold 0 vs 0.75, P-value < 0.01) and 0.91 (ICC threshold 0 

vs. 0.95, P-value < 0.01) under the increasing reliability thresholds. Additionally, model 

generalizability has increased substantially, as the mean train-test AUC difference was 

reduced from 0.21 to 0.18 (P-value < 0.01) and 0.12 (P-value < 0.01), and the testing 

AUCs were maintained at the same level (P-value > 0.05).  

Conclusions: We proposed a perturbation-based framework to evaluate radiomic 

model reliability and to develop more reliable and generalizable radiomic model. The 

perturbation-based method is a practical alternative to test-retest scans in assessing 

radiomic model reliability. Our results also suggest the pre-screening of low-reliable 

radiomics features prior to modeling is a necessary step to improve final model 

reliability and generalizability to the unseen dataset. 
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prediction outcomes, and classifiers. The testing AUCs remain stable except 



 

24 

 

for local-regional recurrence prediction on HN-PETCT dataset. .............. 110 

Figure 23. The comparison of the original and perturbed testing AUCs of HN-

PETCT-298 averaged over train-test splits for the prediction of DM (a) and 

LR (b) using SVC. The testing AUCs showed high consistencies between 

the original images and perturbed images for the prediction of DM while 

large deviations were observed for the prediction of LR. .......................... 118 

 

  



 

25 

 

List of Tables 

Table 1. The example of insufficient biomarker for survival prediction of clinical 

characteristics of non-small cell lung cancer patients. Two non-small cell 

lung cancer patients with similar age, same TNM staging, histology, and 

gender, yet end up with different survival. The conventional clinical 

characteristics did not show consistent risk stratification between two 

patients. ........................................................................................................ 4 

Table 2. The literature investigating the image acquisition and reconstruction on 

CT and MRI. ................................................................................................ 13 

Table 3. Literatures investigating the impact of segmentation variability on 

radiomic feature reproducibility and repeatability. ...................................... 20 

Table 4. Literatures investigating the impact of image preprocessing on radiomic 

feature reproducibility and repeatability. ..................................................... 25 

Table 5. The characteristics of selected features for model building. The 

univariate C-index, P-value, and ICC were tabulated. Feature names 

indicate the feature, the bin count (if applicable), and the image used to 

compute it..................................................................................................... 48 

Table 6. The model performance in discrimination and reliability. An 

improvement in model reliability is observed after removing non-robust 

radiomics features. ....................................................................................... 53 

Table 7. Image perturbation, preprocessing, and radiomic feature extraction 

parameters. ................................................................................................... 67 

Table 8. Summary of patient numbers, patient distributions of the two binary 

prediction outcomes, and the train-test cross-validation methods of the 

screened patient cohort of the four public datasets. ..................................... 92 



 

26 

 

Table 9. The parameters of perturbation modes. AP: anterior-posterior, SI: 

superior-inferior, LM: lateral-medial. .......................................................... 94 

Table 10. The model reliability (ICC) for different feature reliability pre-

screening thresholds. .................................................................................. 113 

Table 11. The training and testing AUC between different feature reliability pre-

screening thresholds. .................................................................................. 114 

 

  



 

27 

 

Abbreviations 

CT Computed Tomography 

HU Hounsfield unit 

GLCM gray-level co-occurrence matrix 

PET Positron Emission Tomography 

MRI Magnetic Resonance Imaging 

VIM International Vocabulary of Metrology 

ROI Region of Interest 

GTV Gross Tumor Volume 

IBSI Image Biomarker Standardization Initiative 

3D/4D Three-/four-dimensional 

CAD Computer Aided Detection 

C-index Concordance Index 



 

28 

 

ICC Intra-class Coefficient of Correlation 

TR Repetition Time 

TE Echo Time 

AUC Area under the Receiver Operating Characteristic Curve 

LR Local-/Regional- Recurrence 

DM Distant Metastasis 

HNC Head-and-Neck Carcinoma 

OPC Oropharyngeal Carcinoma 

SVC Support Vector Classifier 

KNN K-nearest Neighbors Algorithm 

MLP Multilayer Perceptron Network 

AP Anterior-Posterior 

SI Superior-Inferior 



 

29 

 

LM Lateral-Medial 

TCIA The Cancer Imaging Archive 

DECT Dual Energy Computed Tomography 

IRB Institutional Review Board 

RQS Radiomics Quality Score 

pCR Pathological Complete Response 

HNSCC Head and Neck Squamous Cell Carcinoma 

Dice Dice Similarity Coefficients 

ADC Apparent Diffusion Coefficients 



 

1 

 

Radiomic is a flourishing field utilizing machine learning to associate cancer 

imaging phenotype to cancer genotype or clinical outcome for precision medicine [1–

3]. The number of publications in radiomics rose dramatically in recent years [4]. 

Radiomics strives to characterize differences in tumor phenotypes based on non-

invasive medical images such as computed tomography (CT), magnetic resonance 

imaging (MRI), and positron emission tomography (PET) with hand-crafted features. 

Also, it has demonstrated that it can capture the heterogeneity of a tumor [5], associates 

it with tumor characteristics for diagnosis [6] and treatment prognostication [7], and 

improve the overall decision-making during the treatment [8]. Despite the great 

potential of radiomics, the reliability and generalizability of radiomic models are the 

major concerns taking radiomics from bench to bedside. This study, therefore, attempts 

to facilitate the reliability and generalizability of radiomic models with simulated 

perturbations.  

Radiomics is a new research regime for the field of radiation oncology, derived 

from a combination of 'radio-' meaning medical imaging and '-omic' meaning collective 

characterization and quantification of the object of interest [9]. Radiomics is an analytic 

tool containing feature extraction [10] and analysis with machine learning techniques. 

Feature extraction refers to a large number of features [11] are collectively extracted 

Chapter 1. Literature Review 

1.1. Introduction 

1.2. Clinical Value of Radiomics 
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from tomographic images, conversion of digital medical images into mineable high-

dimensional data. With a large amount of data, machine learning techniques are 

implemented to perform inferences based on advanced computational algorithms [12]. 

The relationship between radiomic feature extraction and machine learning is 

dependent on each other. A large amount of the features requires an analytical tool to 

empower it from data to information. Machine learning, empowered by computer 

technology advances, is designed to infer information from available data and predict 

outcomes accurately. 

In summary, radiomics is an analytical tool in the medical imaging field. The high-

throughput exploitation of quantitative image features from routinely acquired medical 

imaging enables data to be extracted and applied with machine learning techniques 

within clinical-decision support systems.  

Radiomics has become an uprising research regime involving medical imaging, 

such as radiology and radiation oncology [2]. Conventionally, the medical imaging data 

is evaluated visually or qualitatively, for example, the staging of the tumor, and it leaves 

a large amount of data unused [10]. With the leverage in image feature quantification 

and advances in machine learning, the value of a large amount of unused image data 

has opportunities to be mined. 

A typical and simplified scenario for explaining the need for radiomics would be 

that two lung cancer patients end up with different survival despite having similar TNM 

staging, histology, and ages, shown in Table 1. TNM staging, histology, and ages are 

the common prognosis factors for oncologists to decide the treatment plan and predict 



 

3 

 

the patient's prognosis after treatment. However, the current characterization of the 

tumor and patients are not enough to provide sufficiently accurate information to 

predict patient outcome. It turns out that the unmined and vast amounts of medical 

image data may hide some useful information, which may provide different patient 

stratifications with the information hidden in the images. One of the earliest radiomic 

papers [13] showed the possibility of it, Decoding tumour phenotype by noninvasive 

imaging using a quantitative radiomics approach. It shows that cancer represents 

strong phenotypic differences that can be visualized non-invasively by medical imaging. 

Phenotype means a set of observable characteristics of an organism (“Phenotype,” 

2021). The tumor phenotypes can be decoded with the extraction of radiomics features. 

Figure 1 shows the CT images with tumor segmentation in the axial view, the shape of 

tumors, Hounsfield unit (HU) value intensity, and texture differences. Such differences 

have the potential to stratify patients into different subgroups and optimize the 

treatment for each subgroup for an optimal outcome. Machine learning techniques such 

as a decision tree [13] can infer useful information from quantified data. Consequently, 

these data could be able to be used to support the clinical decision. Stratification of 

patients into subtypes for better outcomes is precision medicine. The concept of 

precision medicine is gaining popularity, and radiomics is a potential way to achieve it 

by having a deep look at the image data. 
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Table 1. The example of insufficient biomarker for survival prediction of clinical 

characteristics of non-small cell lung cancer patients. Two non-small cell lung cancer 

patients with similar age, same TNM staging, histology, and gender, yet end up with 

different survival. The conventional clinical characteristics did not show consistent risk 

stratification between two patients. 

ID Age T N M 
Overall 

Stage 
Histology Gender 

Survival 

(days) 

Survival 

Status 
 

A 71 4 3 0 IIIb SCC female 2119 alive  

B 62 4 2 0 IIIb SCC female 261 dead  
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Figure 1. The demonstration of axial CT slices, tumor contour shape, histogram of CT 

HU value within the segmentation, and GLCM visualized with heatmap. Conceptually, 

the shape, histogram and GLCM texture maps are different in two patients. The 

comparison visualized the potential of quantitative image feature characterization for 

patient risk stratification.  
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Although radiomics is gaining popularity and publications have been exploded in 

recent years, the challenge of radiomics is the reliability of radiomic models [14]. 

Radiomics starts with quantifying features from medical images within a region of 

interest (ROI) with handcrafted definitions [15,16]. The quantification is intrinsically 

sensitive to the variations on the image and ROI, and the workflow of radiomics 

inevitably introduces variations into medical images from image acquisition to 

processing of the image. Therefore, the reliability of radiomics has gained awareness 

since the very beginning of this field, for example, the first radiomic-based article by 

Hugo et al. intentionally utilized a set of test-retest image data, RIDER Lung CT [17], 

to evaluate the repeatability and reproducibility of the radiomics features. However, the 

nature of medical imaging, expensive and harm to patient, limited the acquisition of 

test-retest data, and the intensive repeated scans are not viable due to the radiation dose 

of CT and PET to the patient and the long scanning time of MRI. Furthermore, many 

factors are affecting the radiomic feature value precisions, such as imaging protocol 

and acquisition parameters. Therefore, the repeatability and reproducibility of 

radiomics features were also intensively studied in recent years. The factors affecting 

radiomics features’ reproducibility such as imaging protocol and acquisition parameters 

are categorized as controllable factors [18], meaning that with a well-controlled scanner 

and image acquisition protocol, the factors can be minimized. However, in real life, a 

standard image acquisition protocol and reconstruction algorithm is difficult to achieve 

across institutions since such variations have no significant impact on the routine 

1.3. Challenges in Radiomics Workflow 
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function of medical images.  

Radiomics workflow involves several independent steps, Figure 2, and each step 

has its challenges. In the following sections, the variations in each step of the radiomics 

workflow were review and discussed. These steps are (a) image acquisition and 

reconstruction, (b) segmentation of the ROI, (c) feature extraction, and (d) radiomic 

modeling.  
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Figure 2. The complete workflow of Radiomics, including image data acquisition, 3D 

volume reconstruction, ROI segmentation, feature extraction, and modeling with 

machine learning algorithms. Each step consists of variation sources and may affect the 

reproducibility and repeatability of extracted features as well as the output consistency 

of radiomic models.  
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1.3.1. Challenges in Image Acquisition and Reconstruction 

The widely used imaging modalities in current radiomic studies are CT, MR, and 

PET, allowing for image acquisition and reconstructions. The standardization of the 

image acquisition and reconstructions protocols is typically different from institution 

to institution. The lack of imaging protocol consistency does not affect the conventional 

diagnosis of medical imaging. In contrast, differences in acquisition and reconstruction 

protocols would affect radiomics since radiomics involves quantification of the images 

on the voxel level [19], which affects the image noise and textures. Such variability in 

imaging and reconstruction would affect inconsistent prediction results when validating 

developed radiomic models using other institutions' datasets. The reconstruction 

algorithms [20] would also affect the quantification of the images and, therefore, affect 

the predictive model's performance.  

Institution-independent features is the starting point to build a model which is more 

likely to be generalized between institutions. Study [21] intensively scanned the 

phantom, shown in Figure 3, with 17 CT scans with varied manufacturers and thoracic 

imaging protocols. They reported the observation of variation in radiomics features for 

different acquisition parameters.The studies are often focused on single tumor site, and 

single modality, the generalizability of the reported feature reliability to the dataset of 

interest is still unknown. Paper [22] conducted a comprehensive study in the feature 

reliability against multi-center and multi-vendor using apparent diffusion coefficient 

(ADC) maps. A study [23] conducted experiments on three settings, reporting the 

radiomic feature reproducibility and repeatability on T2-weighted MRI of cervical 
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cancer patients. These publications thoroughly investigated the impact of acquisition 

parameters on radiomics features, and the reliability of each feature has been reported.  
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Figure 3. The Credence Cartridge Radiomics phantom with 10 cartridges for radiomic 

feature robust analysis against scanners, image acquisition protocols, and 

reconstruction algorithms. Each cartridge contains unique textures. The top four 

cartridges are 3D printed ABS plastic with 20% to 50% honeycomb fill, which provide 

regular and periodic textures. Then, the following cartridges are sycamore wood, cork, 

extra dense cork, solid acrylic, natural cork, and plaster resin. The lower six cartridges 

provide natural textures for the radiomic. The image is adapted from TCIA [24].  
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Literatures on the image acquisition and reconstruction was tabulated in Table 2. 

In total, 38 literatures performed experiments with scanners and analyzed the impact of 

inter-scanner, test-retest, image acquisition parameters, and reconstruction algorithms 

on the reproducibility of radiomics features. Most literatures identified that the texture 

features are more vulnerable to variations in the image acquisition and reconstruction 

than intensity (or first order) features. 

The major limitation of the reviewed literatures is that their result is hardly be 

applied to the clinical-oriented studies. In clinical-oriented studies, the feature 

reliability needs to be quantified and plays a role in feature selection. A well-known 

study [3] used feature reliability index and feature relevant outcome  index to rank the 

radiomics features  

The first reason is that majority of the studies did not tabulate the feature 

reproducibility index for individual features. The second reason is that the scanner is 

required to perform such study, which is a major barrier to most research groups. 
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Table 2. The literature investigating the image acquisition and reconstruction on CT 

and MRI. 

Author Year Sites Modalities Sources of variation 
Feature 

categories 

Cabini 
[25] 

2022 Lung CT Image acquisition parameters 

Shape, Intensity, 

GLCM, GLRLM, 
NGLDM, 

GLZLM 

Carbonell 

[26] 
2022 Liver 

T1-w MR, 

T2-w MR, 
ADC 

1.Test-retest repeatability 

2. Inter-scanner 
3. Inter-observer segmentation 

Shape, Intensity, 
GLCM, GLSZM, 

GLDM, GLRLM, 

NGTDM 

Chen 

[27] 
2021 Hematoma CT 

1. Test-retest repeatability 

2. Image acquisition parameters  

Intensity, GLCM, 
GLRLM, 

NGTDM 

Chen 
[28] 

2022 Phantom CT 

1. Test-retest repeatability 

2. Scanning modes 

3. Inter-scanners 

Intensity, GLCM, 

GLDM, GLRLM, 
GLSZM, 

NGTDM 

Crombe 

[29] 
2021 Abdomen T2-w MR T2-w acquisition methods 

Intensity, GLCM, 
GLRLM, 

NGLDM, 

GLZLM 

Denzler 

[30] 
2021 

NSCLC, MPM, 

SSc-ILD 
Lung 

CT Reconstruction kernels 

Intensity, GLCM, 

NGTDM, 

GLRLM, 
GLSZM, 

NGLDM 

Emaminejad 

[31] 
2021 

CA Lung 

Lung 
CT 

1. Dose level variation 

2. Reconstruction kernel 
3. Slice thickness variation 

Intensity, GLCM, 
GLRLM, 

GLSZM, 

NGTDM, GLDM 

Euler 

[32] 
2021 Phantom CT 

1. Image acquisition parameters 
2. Radiation dose  

 3. DECT approach 

Shape, Intensity, 

GLCM, GLRLM, 

GLSZM, 
NGTDM, GLDM 

Fiset 
[23] 

2019 Cervix T2-w MR 

1. Test-retest repeatability 

2. Acquisition protocols 

3. Inter-observer segmentation 

Shape, Intensity, 

GLCM, GLSZM 
GLDM, GLRLM, 

NGTDM 

Gao 

[33] 
2022 

Pulmonary 

nodules  
Lung 

CT 
1. Radiation dose 

2. Reconstruction kernels 

Shape, Intensity, 
GLCM, GLSZM 

GLDM, GLRLM, 

NGTDM 

Granzier 

[34] 
2022 

Breast 

(Healthy) 

T1-w MR, 
T2-w MR, 

ADC 

Test-retest repeatability 

Intensity, GLCM, 

GLSZM GLDM, 

GLRLM, 
NGTDM 
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Ibrahim 

[35] 
2021 

HCC 

Liver 
CT Imaging phases 

shape, Intensity, 

GLCM, GLDM, 

GLRLM, 
GLSZM, 

NGTDM 

Ibrahim 
[36] 

2021 Phantom CT 
1. Inter-scanners 

2. Scanning parameters 

Shape, Intensity, 
GLCM, GLDM, 

GLRLM, 

GLSZM, 
NGTDM 

Lee 
[37] 

2021 Phantom 
T1-w MR 
and T2-w 

MR 

1. MRI scanning protocols parameters 
2. Scanner types 

Intensity, GLCM, 
GLRLM, 

NGDTM 

Lennartz 
[38] 

2022 

Phantom & 

human 
(Abdomen) 

DECT Inter-scanners 

Intensity, GLCM, 

GLDM, GLRLM, 
GLZLM 

Mahon 

[39] 
2019 

NSCLC 

Lung 

4DCT,   

T1-w MR 
Test-retest repeatability 

Intensity, GLCM, 
GLRLM, 

GLSZM, 
NGTDM 

McHugh 

[40] 
2021 

Colorectal 

Cancer Liver 
Metastases 

T1-w MR, 

T2-w MR, 
qT1-wMR 

1. MR sequences 

2. Pre- and post-contrast 
3. Image normalization 

Shape, Intensity, 

GLCM, GLDM, 

GLRLM, 
GLSZM, 

NGTDM 

Meyer 
[41] 

2019 
Metastatic liver 

lesions 
CT 

1. Radiation dose  
2. Reconstruction settings 

Shape, Intensity, 
GLCM, GLDM, 

GLRLM, 

GLSZM, 

NGTDM 

Mitchell-

Hay 

[42] 

2022 Brain T1-w MR 
1. Inter-scanner 

2. Test-retest repeatability for weeks 

Intensity, GLCM, 

GLSZM, 
GLRLM, 

NGTDM 

Nazeri 

[43] 
2021 

Brown adipose 

tissue 

CT (and 

PET) 
Test-retest repeatability within 14 days 

Shape, Intensity, 

GLCM, GLSZM, 
GLRLM, GLDM 

Pandey 

[44] 
2020 Healthy Brain T2-w MR 

1. Age and gender 
2. Test-retest repeatability 

3. Inter-scanner 

Intensity, GLCM, 
GLSZM, 

GLRLM, GLDM 

Perrin 
[45] 

2018 
Liver 

malignancy 
CE-CT 

1. Contrast injection rate  

2. pixel resolution 

3. Scanner model 

Intensity, GLCM 

Prayer 

[46] 
2020 

Fibrosing 
interstitial lung 

disease 

Lung 

CT 
1. Test-retest repeatability 

2. Inter-scanner 

Intensity, GLCM, 

GLRLM, 
GLSZM, GLDM 

Raisi-
Estabragh 

[47] 

2020 

Healthy 

volunteer, 

Myocardial 
infarction 

MR 
Different Heart pathology 

Multi-centre & multi-vendor test-retest 

Shape, Intensity, 

GLCM, GLRLM, 

GLSZM, 
NGTDM, GLDM 
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Refaee 

[48] 
2022 Phantom CT Reconstruction kernel normalization 

Intensity, GLCM, 

GLRLM, 

GLSZM, GLDM, 
NGTDM 

Reiazi 
[49] 

2021 

Oropharyngeal 

Cancer 

Oropharynx 

CT Inter-scanners 

Shape, Intensity, 

GLRLM, 
GLSZM, GLCM, 

GLDM, NGTDM 

Rinaldi 

[50] 
2022 

NSCLC 

Lung 
CT 

1. Tube voltage, scanner model 

2. Reconstruction algorithm 

Shape, Intensity, 
GLCM, GLRLM, 

GLSZM, GLDM, 

NGTDM 

Sanchez 

[51] 
2021 

Liver Tumor & 
Muscle 

Liver 

CT 
1. Voxel sizes 

2. Reconstruction slice thickness 

Shape, Intensity, 

GLCM, GLRLM, 

GLSZM, GLDM, 
NGTDM 

Sun 
[52] 

2022 

jellies, 

fruit/vegetables,  

phantom 

T2-w MR 

1. Test and retest repeatability 

2. Inter-observer segmentation 

3. Resampling on slice thickness 

Shape, Intensity, 

GLCM, GLRLM, 
GLSZM, 

NGTDM, GLDM 

Xue 

[53] 
2021 

CA Prostate 

(PSA) 
T2-w MR Inter-scanners 

Intensity, GLCM, 
GLDM, GLRLM, 

GLSZM, 

NGTDM 

Xue 

[54] 
2020 Phantom T2-w MR Image reconstruction settings 

Intensity, GLCM, 

GLDM, GLRLM, 

GLSZM, 

NGTDM 

Alis 
[55] 

2020 Heart MR 

1. Inter-observer reproducibility of 

radiomics features 

2. Cardiac cycle 

Intensity, GLCM, 

GLRLM, GLDM, 

GLSZM 

Bologna 

[56] 
2019 

Virtual 

Phantom 
T1-w MR Acquisition parameters, TR and TE 

Intensity, GLCM, 

GLRLM 

Hoebel 

[57] 
2021 

Glioblastoma 

Brain 
T1-w MR 

1. Test-retest repeatability 
2. Normalization strategy 

3. Image intensity quantization 

Shape, Intensity, 

GLCM 

Hu 

[58] 
2022 

Phantom + 
Human 

(Healthy) 

T1-w, 

fluid-
attenuated 

T1-w, T2-w 

MR 

Integrated parallel acquisition technologies 
GLDM, GLCM, 

GLSZM, 

NGTDM 

Lee 

[59] 
2022 

Abdominal 
phantom with 

liver nodules 

CT 
1. Reconstruction protocols 

2. Reconstruction kernels 

Intensity, GLCM, 
GLRLM, 

GLSZM, GLDM 

Muenzfeld 
[60] 

2021 

3D printed 

anthropomorphi

c 

CT Reconstruction kernels 

Intensity, GLCM, 

GLRLM, GLDM, 

GLSZM 
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Whitney 

[61] 
2021 CA Breast 

T1-w DCE 

MR 
Field strength of MRI  Shape, Intensity 
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1.3.2. Challenges in Segmentation 

Segmentation of the ROI is the next critical step in radiomics since the radiomics 

features are primarily extracted from the region that interests us. Majority of radiomic 

studies in radiation oncology use the visible tumor volume or the gross tumor volume 

(GTV) [62]. The manual segmentations by the oncologist are considered the gold 

standard. However, besides being time-consuming and labor-intensive with manual 

contour, the segmentations are subject to inter-observer and intra-observer variations. 

Figure 4 shows the variability of the GTV segmentation by oncologists on CT images 

of prostate cancer. The inconsistency between different oncologists on the medical 

images would lead to variability in extracted radiomics features.  

Besides the manual segmentations, the automatic or semi-automatic method for 

tumor volume delineation is considered better than manual segmentation in terms of 

stability and cost-effectiveness. Publication by [63] shows stable feature extraction 

when using automatic segmentation than manual segmentation with non-small cell lung 

cancer patients. The limitations of auto-segmentation are also apparent in two ways. 

Firstly, the auto segmentation is primarily applied to a simple scenario such as lung 

cancer or prostate cancer, where the anatomic structure is simple and the contrast of the 

tumor to surrounding tissue is significant. For a more complex case such as head-and-

neck carcinoma (HNC), the accuracy of the auto segmentation will not be as good as 

manual segmentation, thus the scope of auto segmentation is limited.  
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Figure 4. A demonstration of the variability of contour inconsistency by different 

oncologists or inter-observer variability on penile bulb. The images are the CT image 

central slice with manual segmentation on penile bulb by different oncologists on two 

patients [64].  
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In order to minimize the effects of variations of radiomic models from inter-

observer segmentation, some studies assessed the feature variability with either with 

multiple segmentations by different oncologists (inter-observer variability) or same 

oncologist (intra-observer variability). Besides the labor-intensive feature 

reproducibility assessment method, Zwanenburg et al.[65] proposed a super-voxel 

approach to estimate the possible segmentation variations. The limitation of both 

methods is that it does not account for the variations in images. For manual 

segmentation, this method is labor-intensive and may cause difficulties when applying 

such a method in research.  

Table 3 tabulated 25 studies focusing on the feature reproducibility study by 

segmentation variability. Majority of the study focuses on the impact of inter-observer 

variability on radiomics features, some studies also studied the impact of intra-observer 

variability, only few of them studied the impact of inter-observer variability with 

combination of test-retest images. The literatures of ROI variability on radiomics 

features shared similar limitation as we discussed in section 1.3.1 that most studies did 

not explicitly tabulate their quantitative results and clinical-oriented study cannot 

directly use their results. Furthermore, it is labor-intense for each radiomic study to 

carry out an analysis on the impact of inter-observer variability on radiomics features. 
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Table 3. Literatures investigating the impact of segmentation variability on radiomic 

feature reproducibility and repeatability. 

Author Year Site Modalities Sources of variation Feature category 

Bianconi 

[66] 
2021 Lung Lesions CT 

1. Inter-observer variability 

2. Image quantization method 

Intensity, GLCM, 

GLDM, GLRLM, 

GLSZM, 
NGTDM 

Carbonell 

[26] 
2022 Liver 

T1-w MR, 

T2-w MR, 
ADC 

1.Test-retest repeatability 

2. Inter-scanner 
3. Inter-observer segmentation 

Shape, Intensity, 
GLCM, GLSZM, 

GLDM, GLRLM, 

NGTDM 

Chen 

[67] 
2021 CA Cervix DWI 

1. Inter-observer segmentation 

2. Intra-observer segmentation 

Shape, Intensity, 

GLCM, GLDM, 
GLRLM, 

GLSZM, 

NGTDM 

Duan 

[68] 
2022 

HCC 

Liver 

CT, T1-w 

MR, T2-w 
MR 

Inter-observer segmentation 

Intensity, GLCM, 
GLDM, GLRLM, 

GLSZM, 

NGTDM 

Fiset 

[23] 
2019 Cervix T2-w MR 

1. Test-retest repeatability 
2. Acquisition protocols 

3. Inter-observer segmentation 

Shape, Intensity, 

GLCM, GLSZM 

GLDM, GLRLM, 
NGTDM 

Gitto 

[69] 
2021 

Cartilaginous 

bone tumors 

CT, T1-w 

MR, T2-w 
MR 

Inter-observer segmentation 

Shape, Intensity, 

GLCM, GLSZM 
GLDM, GLRLM 

Gitto 

[70] 
2022 

Spine bone 

tumor 
T2-w MR 

Small geometrical transformations of the 

ROIs  

Shape, Intensity, 

GLCM, GLSZM 

GLDM, GLRLM, 
NGTDM 

Granzier 

[71] 
2020 

Bresat 

(Maligant) 

DCE T1-w 

MR 

Inter-observer variability in VOIs 

segmentation 

Shape, Intensity, 
GLCM, GLSZM 

GLDM, GLRLM, 

NGTDM 

Haarburger 

[72] 
2020 

Lesions and 

tumors of  

Lung, Kidney, 
Liver 

CT 
1. Inter-observer segmentation 

2.  Manual vs. automated segmentations 

Shape, GLCM, 

GLSZM, 

GLRLM, 
NDGTM 

Haniff 

[73] 
2021 

HCC 

Liver 
T1-w MR 

segmentation method  

(semi-automatic vs manual) 

Shape, Intensity, 

GLCM, GLDM, 
GLRLM 

Jensen 

[74] 
2021 Phantom 

CT, T1-w 
MR, T2-w 

MR 

Size of ROI 

Intesnity, GLCM, 

GLRLM, 

GLSZM, GLDM, 
NGTDM 
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Kelahan 

[75] 
2022 

Liver metastasis 

from CA 
colorectal 

CT Size of ROI 

Intensity, GLCM, 
GLRLM, 

NGLDM, 

GLZSM 

Kocak 
[76] 

2019 

Clear cell renal 

cell carcinoma 

Kidney 

CT 
1. Inter-observer segmentation 
2. Intra-observer segmentation 

Intensity, GLCM, 

GLDM, GLRLM, 
GLSZM, 

NGTDM 

Le 

[77] 
2021 

Carotid 

H&N 
CT 

1. ROI Segmentation 
2. ROI Perturbations 

3. Pre-Processing  

4. Image discretization  

Intensity, GLCM, 
GLDM, GLRLM, 

GLSZM, 

NGTDM 

Müller-

Franzes 

[78] 

2022 

Tumour of 

Lung, Liver, 

Kidney, Brain 

CT, FLAIR 
MR 

1. Inter-observer segmentation 
2. Intra-observer segmentation 

Shape, Intensity, 

GLCM, GLSZM, 

GLRLM, GLDM 

Schurink 

[79] 
2022 CA Rectum 

T2-w MR 

and ADC 

1. Inter-observer variability in VOIs 

segmentation 
2. Feature extraction software 

Shape, Intensity, 
GLCM, GLRLM, 

GLSZM, 

NGTDM 

Sun 
[52] 

2022 

jellies, 

fruit/vegetables,  

phantom 

T2-w MR 

1. Test and retest repeatability 

2. Inter-observer segmentation 

3. Resampling on slice thickness 

Shape, Intensity, 

GLCM, GLRLM, 
GLSZM, 

NGTDM, GLDM 

Tixier 

[80] 
2019 

Glioblastoma 

Brain 

T1-w MR, 

FLARE 
MR 

Inter-observer segmentation GLCM, GLSZM 

Tunali 
[81] 

2019 

CA Lung 

(Peritumoral 
regions of  

lesions) 

CT ROI segmentation 

Shape, Intensity, 

GLCM, GLRLM, 
GLSZM, 

NGTDM 

Urraro 

[82] 
2021 

CA Prostate 

(PSA) 

T2-w MR, 

ADC 
Inter-observer segmentation 

Shape, Intensity, 

GLCM, 

NGLDM, 
GLRLM, 

GLZLM 

Wang 
[83] 

2020 

Stomach 

(Gastric Cancer 
with liver 

metastasis) 

CT 
1. Intra-observer segmentation  
2. Inter-observer segmentation 

Shape, Intensity, 
GLDM, GLCM, 

GLRLM, 

GLSZM, 
NGTDM 

Wong 

[84] 
2021 Phantom T1-w MR 

1. Intra-observer segmentation  

2. Inter-observer segmentation 
3. Test-retest repeatability 

Shape, Intensity, 

GLCM 

Alis 
[55] 

2021 Heart MR 

1. Inter-observer reproducibility of 

radiomics features 

3. Cardiac cycle 

Intensity, GLCM, 

GLRLM, GLDM, 

GLSZM 

Gruzdev 

[85] 
2020 

Pancreatic 

neuroendocrine 
neoplasms 

CT 
1. Intra-observer segmentation  

2. Inter-observer segmentation 
Not Specified 
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Konik 

[86] 
2021 

Cystic renal 

masses 
Kidney 

CT Inter-observer segmentation 

Intensity, GLCM, 
GLRLM, 

GLSZM, 

NGTDM 
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1.3.3. Challenges in Image Preprocessing 

With the images and segmentations of ROI, the features can be extracted from the 

image within the ROI. There are primarily four common radiomic feature extraction 

platforms, PyRadiomics, LIFEx, CERR and IBEX. Publication [87] shows that the 

feature reliability is highly dependent on the choice of feature extraction platform as 

well as the parameters associated with feature calculation. Despite an international 

collaboration in the standardization of the feature calculation [88], it does not address 

the parameters associated with feature calculations, such as resampling, image 

interpolation algorithms, and bias correction in MR images. These extraction 

parameters would also affect the feature values.  

The image biomarker standardization initiative (IBSI) [88], an independent 

international collaboration, has been proposed to standardize the definition and 

implementation of qualitative image features, and a calibration dataset has been 

provided for image feature consensus calculation. This initiative is a comprehensive 

project with collaborations of 25 research teams using different software, and finally, 

more than 97% of the features studied reached excellent reproducibility. It shows the 

reduction of feature value after standardization between different extraction software. 

Although the IBSI provided guidelines in calculating radiomics features, it does not 

standardize the features from filtered images, such as the Log-Gaussian filter and 

wavelet filter image. Both filtered images have been proved to be useful in radiomic 

studies. 

Table 4 tabulated 13 literatures focusing on the impact of image preprocessing on 
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radiomics features. Most literatures study the impact of image discretization method, 

some literatures study the impact of normalization methods, and few studies focus on 

impact of resampling method on the images. The literatures of the image preprocessing 

algorithms also shared similar limitations as shown in Sections 1.3.1 and 1.3.2, however, 

the barrier of replicate similar variations is not as high as studying image acquisition 

variability and ROI variations.  

  



 

25 

 

Table 4. Literatures investigating the impact of image preprocessing on radiomic 

feature reproducibility and repeatability.  

Author Year Site Modalities Sources of variation Feature category 

Duron 

[89] 
2019 

lachrymal 

gland, 
breast 

T1-w MR, 

T2-w MR 
Image discretization methods 

GLCM, GLSZM, 

GLRLM, GLDM, 
NGTDM 

Fornacon-
Wood 

[87] 

2020 
CA H&N  

CA Lung 
CT Different feature extraction platforms 

Shape, Intensity, 

GLCM, NGTDM 

Gao 
[33] 

2022 

Pulmonary 

nodules  

Lung 

CT 
1. Radiation dose 

2.  Image preprocessing 

Shape, Intensity, 

GLCM, GLSZM 
GLDM, GLRLM, 

NGTDM 

Hoebel 

[57] 
2021 

Glioblastoma 

Brain 

T1-w MR, 

T2-w MR 
Pre-processing techniques 

Shape, Intensity, 

GLCM 

Ibrahim 

[90] 
2021 Phantom CT 

1. In-plane spatial resolution,  

2. Interpolation and resampling 

Intensity, GLCM, 

GLRLM, 

GLSZM, GLDM, 
NGTDM 

Li 
[91] 

2020 Phantom CT 
Image preprocessing parameters 
[re-segmentation, width of bins] 

Shape, Intensity, 

GLCM, GLRLM, 

GLSZM 

McHugh 

[40] 
2021 

Colorectal 

Cancer Liver 
Metastases 

T1-w MR, 

T2-w MR, 
qT1-w MR 

1. MR sequence 
2. contrast enhancement pre- and post-

contrast 

3. Normalization 

Shape, Intensity, 
GLCM, GLRLM, 

GLSZM, GLDM, 

NGTDM 

Moradmand 

[92] 
2020 

Glioblastoma 

Brain 

T1-w MR, 
T2-w MR, 

FLARE 

1. Intensity inhomogeneity correction 
[N4Bias Correction] 

2. Noise filtering [SUSAN Denoise] 

Shape, Intensity, 

GLCM, GLRLM, 

GLSZM, GLDM, 
NGTDM 

Scalco 
[93] 

2020 CA Prostate T2-w MR Image normalization techniques 

Intensity, GLCM, 

GLRLM, 
GLSZM, GLDM, 

NGTDM 

Schwier 

[94] 
2019 CA Prostate 

T2-w MR, 

ADC 

1. Image normalization techniques 

2. Image filters 
3. Image discretization 

Shape, Intensity, 
GLCM, GLRLM, 

GLSZM, 

NGTDM 

Sun 

[52] 
2022 

jellies, 
fruit/vegetables,  

phantom 

T2-w MR 
1. Test and retest repeatability 
2. Inter-observer segmentation 

3. Resampling on slice thickness 

Shape, Intensity, 

GLCM, GLRLM, 

GLSZM, 
NGTDM, GLDM 
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Hoebel 

[57] 
2021 

Glioblastoma 

Brain 

T1-w MR, 

FLARE 

1. Test-retest repeatability 

2. Normalization strategy 
3. Image intensity quantization 

Shape, Intensity, 

GLCM 

Simpsons 

[95] 
2020 

Phantom + 

Human 
MR Image discretization methods 

GLCM, GLRLM, 
GLSZM, 

NGTDM 
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1.3.4. Challenges in Modeling 

The radiomic modeling includes two parts, feature selection and model building. 

The feature selection aims to reduce dimension of high-dimensional radiomics features. 

The feature selection follows two principles: 1) the selected features need to be 

correlated with the outcome and 2) the selected features need to be less correlated with 

each other. The modeling building aims to use the advanced machine learning 

algorithms for identify the optimal model maximizing the correlation with outcome.  

With the extraction of radiomics features, advanced machine learning techniques 

were used to infer useful information and help the clinical decision. However, different 

feature selection and modeling methods would affect the performance of the model in 

terms of its sensitivity. The study by Parmar et al. [96] showed various feature model 

performances on an unseen testing cohort with different feature selection and classifiers. 

However, limited publications focused on feature selection and modeling methods 

comparison in the field of radiomics. There are still no universal modeling methods, 

and the optimal modeling selection method may differ dataset to datasets [97]. It is 

worth noting that the variations in feature selection and model building are different 

from the variations in image acquisition and reconstruction section 1.3.1, segmentation 

section 1.3.2 and image preprocessing 1.3.3. The variations in feature selection and 

model building are the varied radiomic model performance with different feature 

selection and model building methods, while the previous sections discussed the feature 

value variations under different settings. The variations in feature selection and model 

building are unlikely to be the issue as the variations of selected features reflects that 
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different feature selection methods focused on different aspects of data. 

1.3.5. Summary of Current Challenge 

The fundamental question to ask is that can radiomic model have an output with a 

reasonable error range for routine clinical application. As discussed in previous sections, 

multiple sources of variation in each step of radiomic workflow create an essential 

weakness of radiomics. This weakness was recognized in the very early days of 

radiomics, and Figure 5 visualizes the variations in each step. Despite an explosive 

increase in the radiomics literature, researchers frequently failed to adequately consider 

sources of variation and report the reliability individual radiomics features. The 

concerns on reliability and reproducibility slow the pace of innovation in radiomics and 

limit its translational potential. 
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Figure 5. Summary of variations sources in each step of radiomics workflow. 
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A key goal of clinically-oriented radiomics studies is to build a radiomic score that 

can reliably describe tumour characteristics using medical images. The first step 

towards achieving this goal is to identify reliable features that can be used under 

different circumstances. Despite numerous publications on radiomic feature 

reproducibility, the lack of a feature reliability index for individual features has 

prevented researchers from directly referencing previous results and building a reliable 

radiomic model. Test-retest reliability measurements, achieved by scanning patients 

twice, are among the most straightforward methods for evaluating radiomic feature 

reliability. However, it is near impossible to perform test-retest scans for every 

radiomics study, as extra scans incur additional costs and can harm patients. Several 

practical methods have been proposed to evaluate the feature reliability of radiomics 

studies. For example, radiomic feature reliability can be evaluated using already 

available test-retest scans. RIDER lung [17], is an available test-retest dataset that can 

be accessed through The Cancer Image Archive (TCIA). The limitation of this method 

that feature reproducibility may not be generalisable across diseases and imaging 

modalities. Timmeren et al. has raised concerns about generalisability across datasets 

as well [98]. Feature reproducibility can also be evaluated using multiple segmentations 

of the same medical image, acquired by several experienced oncologists [64]; many 

clinically-oriented radiomics studies have already adopted this method. However, the 

method is labour-intensive and can only be used to evaluate the effect of ROI on feature 

Chapter 2. Research Objectives 

2.1. Research Gap 
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reliability. Therefore, a method to assess dataset-specific radiomic feature reliability is 

warranted.  

However, a comprehensive evaluation of radiomic feature reliability is challenging 

due to the limited availability of imaging resources. A review by Zhao et al. [18] 

discussed the sources of radiomic variations and posited that these sources could be 

categorised into controllable and random factors. Controllable factors are sources that 

can be minimised by retaining the same parameters for each step of the radiomics 

workflow. For example, during image acquisition, the manufacturer, imaging protocol, 

reconstruction kernel, reconstruction slice thickness, reconstruction algorithm and 

reconstruction algorithm parameters can be controlled. During feature calculation, the 

resampling resolution, image interpolation algorithm, discretisation and compliance 

with internationally recognised standards for feature value calculation can be 

maintained. These variabilities can be minimised given sufficiently transparent 

reporting for each step. Recognition of the need to evaluate the scientific integrity and 

clinical utility of radiomics studies led to the development of a radiomics quality score 

(RQS) in 2017 [99]. The RQS comprises a checklist that researchers can use to score 

radiomics studies based on predefined guidelines. In contrast to controllable factors, 

random factors are sources of variations that cannot be minimised by controlling 

reporting details as they are intrinsic to the medical imaging process. For example, 

during image acquisition, patient position may differ across scans, leading to slight 

translations or rotations that affect image intensity values and, in turn, the feature values. 

During segmentation, uncertainties are unavoidable due to ambiguous tumour 

boundaries and limited knowledge of tumour micro-aggression. For instance, one study 
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showed that the GTV contours of prostate cancers could not be exactly reproduced by 

the same oncologist in a one-week interval [71]. The above evidence strengthens the 

categorisation of the sources of variability into random and controllable factors. The 

evaluation of random factors is more essential than that of controllable factors. 

Recently, a simulation-based method to evaluate feature reliability was proposed 

by Zwanenburg et al. [65]. They suggested applying linear transformations, namely 

translation, rotation and noise addition, followed by randomised perturbations of the 

contours, to original images to obtain perturbed images. Then, the perturbed features 

were used to evaluate feature reliability against random factors. They further compared 

the simulation method with the test-retest method for the evaluation of radiomic model 

reproducibility. 

The advantage of the above simulation-based perturbation method is feasibility. 

Most radiomics studies can harness such perturbations to evaluate feature reliability 

and, importantly, evaluate it in a dataset-specific manner. However, this method has a 

clear limitation in that it can only be used to evaluate the reliability of radiomics features. 

This contrasts the purposes of prospective studies that investigate the factors affecting 

radiomic feature reliability. The key issue here is that the reported feature reliability 

may not be generalisable to other datasets. Some studies have used phantoms to 

investigate feature reliability but have not provided precise reports of specific features; 

this has deterred the applicability of their results to radiomics research. Other studies 

have assessed the inter-observer variability of segmentations and yielded data-specific 

reliability assessments, but such results do not reflect all of the sources of variation in 
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radiomics studies. As most of these methods are not data-specific, the direct reliability 

assessment of radiomic models has not been achieved.  

Many studies on radiomic feature reliability assessment have evaluated the effects 

of manufacturers, imaging protocols and reconstruction parameters. It is clear that these 

studies have provided valuable information on the generalisation of radiomic models 

across institutions. However, the most fundamental variations, i.e., random factors that 

cannot be minimised, have not been adequately investigated. 

The simulation-based method of perturbation is a perfect solution to this problem 

as the perturbation was designed to simulate randomness in the image and can be 

applied to any dataset without extra costs or resources, such as imaging resources and 

labour. Furthermore, the method offers a new regime that can be explored and 

potentially utilised for many purposes. Therefore, in this thesis, a novel simulation 

method in radiomics has been used to improve radiomic model reliability. Model 

reliability is defined as the model output variability after slight variations on images 

and masks. 

The aim of this project was to develop and investigate a perturbation-based method 

of assessing model reliability to improve model reliability and generalisability. 

Perturbations have been used to generate internal validation datasets that account for 

randomisations in the radiomic workflow. To develop and validate the previously 

described method, we retrospectively collected four publicly available HNC datasets. 

2.2. Research Aim 
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Once fully developed, this method can be applied to any radiomics study to evaluate 

radiomic model reliability and further improve model reliability and generalisability. 

To the best of our knowledge, this is the first recorded attempt to improve radiomic 

model reliability using perturbations. 

2.3.1. Objective 1: Develop a novel perturbation-based framework for the 

evaluation of radiomic model reliability. 

Here, we aimed to develop and evaluate a reliability assessment framework based 

on image perturbation for the evaluation of radiomic model reliability. Although the 

radiomics community has been aware of the significance of radiomic model reliability, 

the lack of materials has precluded the development of a method to directly measure 

model reliability. We used a publicly available dataset and developed two radiomic 

models to validate our method. One model was developed using the full feature set, and 

the other was developed with at minimum number of good, reliable features. Model 

variability in the perturbation datasets and reliability evaluation metrics was compared 

for validation purposes. To the best of our knowledge, this is the first study to provide 

a data-specific and practical method for the direct evaluation of model reliability. 

Despite the perturbation-based framework being more practical for implementation 

than the test–retest method, the latter has been the gold-standard method for assessing 

measurement reliability. Therefore, in the second objective described below, we aimed 

to check whether the perturbation-based method can substitute the test–retest method 

in evaluating radiomic model reliability. 

2.3. Research Objectives 
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2.3.2. Objective 2: Compare the perturbation-based method with the test-

retest method for the evaluation of radiomic model reliability. 

Model reliability assessment is solely based on simulated perturbations. Therefore, 

it is important to evaluate the perturbation-based method against the test-retest method 

of model reliability assessment. The breast multiparametric MRI for prediction of NAC 

response challenge was used to obtain test-retest data for ADC mapping; the 

pathological complete response (pCR) was set as the outcome. This dataset provided a 

platform to compare the effect of model reliability by weighing the test-retest dataset 

against the simulated perturbation dataset.  

2.3.3. Objective 3: Explore the utility of perturbed image features in 

developing reliable and generalisable radiomic models. 

Here, we aimed to optimise the utility of perturbed image features in improving the 

reliability and generalisability of radiomic models. The reliability evaluation 

framework, achieved in the first objective, can help to evaluate dataset-specific 

radiomic reliability. We hypothesised that removing low-reliability features quantified 

by image perturbation improves radiomic model reliability and generalisability, with 

model reliability quantifying the model output consistency in terms of perturbed 

features and model generalisability quantifying the difference between a testing and 

training area under the receiver operating characteristic curve (AUC). This hypothesis 

was tested on four publicly available HNC datasets, two classification tasks and five 

classifiers.  
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Radiomics is a flourishing field in which machine learning is used to associate 

cancer imaging phenotypes with cancer genotypes or clinical outcomes for precision 

medicine [10,13,100]. Radiomics strives to characterize the differences in tumor 

phenotypes based on non-invasive medical images, such as CT, MRI, and PET. 

Furthermore, radiomics can be used to capture the heterogeneity of a tumor [5], 

associate heterogeneity with tumor characteristics for diagnosis [101] and treatment 

prognostication [102], and improve the overall decision-making during treatment [103].  

Despite the potential of radiomics, the unknown reliability of reported radiomics 

features and signatures against the variability of image acquisition, reconstruction, and 

segmentation is one of the major challenges in translating radiomic models from bench 

to bedside [14,104]. Lafata et al. [105] reported the variability of a classification model 

for non-small-cell lung cancer histology with respect to free-breathing three-

dimensional (3D)-CT and phases of four-dimensional (4D)-CT imaging. In addition to 

radiomic model applications, the deep-learning model variability caused by variations 

in analyzed images should be considered. Blazis et al. [20] reported the impact of CT 

reconstruction parameters on the performance of a lung nodule computer-aided 

diagnosis (CAD) system based on deep learning. They found that the performance of 

the CAD system increased when the iterative reconstruction levels or the image quality 

Chapter 3. Development of Perturbation-based Radiomic Model 

Reliability Assessment Framework 

3.1. Introduction 
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were also increased. Both publications suggest that the impact of imaging variations on 

the reliability of radiomic models need to be better understood. 

To our knowledge, no study has compared the reliability of radiomic models with 

that of features against imaging variations. Multiple scans of the same patients obtained 

within a short interval are necessary to conduct a model reliability study, where the 

predicted outcomes from different scan sets could reflect the model variability. As 

obtaining such datasets is resource intensive and increases the burden on the patient, 

they are only obtained for research purposes. To obtain multiple datasets, Zwanenburg 

et al. [65] proposed perturbing the images and contours to simulate the acquisition of 

multiple image sets. They validated this method by comparing the feature reliability 

with that in two test-retest datasets.  

Following this idea, we propose a reliability assessment method of the radiomic 

model using perturbations. In addition to traditional radiomic modeling methods, we 

simulated multiple internal validation datasets by adding plausible perturbations to the 

original images and segmentations. The perturbed data were then used to validate the 

reliability of the radiomic model against randomization, and reliability was indicated 

by the intra-class coefficient of correlation (ICC), which was used to describe the 

consistency of model prediction outcomes within the same patient across all 

perturbations.  

3.2.1. Overview 

3.2. Materials and Methods 
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The overview of the workflow used to demonstrate our model reliability assessment 

method is illustrated in Figure 6. First, we collected pre-treatment CT images and 

clinical outcomes from a publicly available HNC dataset and randomly split the data 

into training (70%) and testing cohorts (30%), with similar outcome ratios between the 

two cohorts. Second, a radiomic survival model was built to assess distant metastasis 

(DM)-free survival. Third, internal validation datasets with perturbations were 

simulated [65,106]. The simulated perturbation datasets were used to extract perturbed 

radiomics features and validate the survival model's reliability against randomizations, 

as shown in Figure 6 (b). Finally, the ICC was used to quantify the model's reliability, 

reflecting its prediction consistency when using the perturbed data. 
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Figure 6. The general workflow of the study. The part (a) shows the model construction 

workflow with first randomly split the cohort into the training and testing data, in which 

the training part is for the model development and test part is for the model performance 

validation. The part (b) shows the reliability assessment workflow. The entire cohort is 

used to simulate the perturbed cohort by adding the randomizations to image through 

translation, rotation and noise addition, and to contour. Then, the perturbed data was 

used to validate the model for the reliability against randomization. Finally, the model 

reliability is quantitatively evaluated with ICC. 
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3.2.2. Materials 

The dataset, Head-Neck-PET-CT [107], was collected in TCIA [24]. This dataset 

consists of 298 patients with head and neck squamous cell carcinoma (HNSCC) with a 

median follow-up of 43 months. The patients were treated at four different centers and 

received only radiation (n = 48, 16%) or chemo-radiation (n = 250, 84%) with curative 

intent. The informed consent has been waived due to retrospect nature of the study. 

The ROI for feature extraction was the primary GTV, which was the primary 

treatment target of radiation therapy. The GTV is the most reliable region for predictive 

feature extraction [108] and has been used in several predictive radiomics studies of 

HNSCC [13,109,110].   

Distant metastasis-free survival, defined as the interval from the first day of 

treatment to the date of the event, was the clinical endpoint in this study to demonstrate 

the reliability assessment of the radiomic model [111]. Previous studies of binary 

classification models of HNC [110,112] have achieved good prediction results but were 

limited because the time-to-event was neglected during model development.  

3.2.3. Image Preprocessing and Radiomic Feature Extraction 

The CT images and their GTV contours were preprocessed before their features 

were extracted to maintain the features' reproducibility and consistency [92,113]. First, 

the GTV contours were interpolated to a voxel-based segmentation mask. Second, an 

isotropic resampler (1 mm × 1 mm × 1 mm) was applied to the images and masks, with 

B-spline interpolation on the image and nearest-neighbor interpolation on the mask to 
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enhance the reproducibility of the radiomics features [114]. The preprocessing steps 

were implemented on Python v3.8 using the SimpleITK v1.2.4 [115] and OpenCV [116] 

packages. 

The radiomics features were then extracted using the Pyradiomics v2.2.0 [11] 

package, which is Image Biomarker Standardization Initiative-compliant [87,88]. A 

total of 5,486 radiomics features were extracted from the GTV of each patient’s CT 

scan. Twelve images were included in the feature extraction, including one unfiltered 

image, three Laplacian-of-Gaussian filtered images (with sigma values of 1 mm, 3 mm, 

and 6 mm), and eight Coiflet1 wavelet filtered images (LLL, HLL, LHL, LLH, LHH, 

HLH, HHL, HHH). In addition to the 14 shape features from GTV segmentation, 18 

first-order and 73 second-order features were extracted from the ROI of each filtered 

image. A re-segmentation of the soft-tissue range (−150 to 180) [65] and discretization, 

with fixed bin counts of 4, 8, 16, 32, 64, and 128, were specified for the texture feature 

extraction.  

3.2.4. Radiomic Modeling Summary 

Patients were randomly assigned to the training and testing cohorts (70/30 split) 

with stratification by DM status [102,117]. The data in the training cohort were used 

for feature selection and subsequent model training, while the data in the testing cohort 

were used to evaluate the model’s performance, shown in Figure 6.  

3.2.5. Feature Selection 

A filter-based feature selection method was adopted in our analysis [118]. This 
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process has two steps: feature–outcome relevance filtering and feature–feature 

redundancy filtering. Identifying the most relevant and less redundant features is a 

common practice in radiomics studies, regardless of the evaluation metric [96].   

Relevance filtering. Relevance filtering aims to identify the radiomics features that 

are correlated with the outcomes [110]. First, the outcome relevance of each feature 

was repeatedly evaluated by log-rank test P-values under downsample bootstrapping 

(imbalanced-learn 0.8.0 [119]) without replacement over 100 iterations on the training 

dataset. Downsampling can be used to capture useful information in an imbalanced 

dataset [120]. Second, features with P-values less than 0.1 were selected in each 

iteration and ranked by their frequencies, with the top 10% of features with the highest 

frequencies selected.  

Redundancy filtering. Redundancy filtering aims to remove features correlated with 

each other [121]. First, the feature pairs with Pearson correlation coefficients higher 

than 0.6 were identified. Then, the features with higher mean correlation coefficients 

than the rest of the features were removed. The removal of these redundant features 

should improve the predictive ability of the classifiers [122]. 

3.2.6. Model Building 

To build the survival model, the optimal features for model building were identified 

using backward recursive feature elimination based on the penalized Cox proportional 

hazard model [123]. This approach maximizes the validation concordance index (C-

index) curve by using repeated three-fold cross-validation in the training set. After 

identifying the optimal features, a penalized Cox proportional hazard survival model 
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was built for DM-free survival. The hyperparameter of the model was fine-tuned with 

five-fold cross-validation to maximize the C-index for the survival model. Thus, the 

model’s performance with the training and testing cohorts was evaluated. 

3.2.7. Reliability Assessment 

This section describes the method to evaluate the model reliability using 

perturbations and the workflow shown in Figure 6(b). First, the internal validation 

datasets were simulated with the perturbations by adding plausible randomizations to 

the original images and segmentations. Second, the survival model was evaluated using 

both the perturbed training and testing data. Third, the model reliability against 

simulated randomization was quantified using the reliability index ICC. 

3.2.8. Validation Data Simulation 

The internal validation data sets were simulated using the perturbation method 

[65,124]. For each perturbation, both the image and mask were translated and rotated 

simultaneously by a random amount. This simulation aimed to mimic variations in the 

patient’s position during imaging. Then, a random Gaussian noise field was added to 

the image to mimic the noise level variations between different image acquisitions 

[125]. Next, the GTV mask was also perturbed by a randomly generated deformable 

vector field, which aimed to simulate uncertainties in inter-observer delineations on the 

same target [126]. In total, 60 sets of perturbed images and contours were simulated, 

with the corresponding radiomics features extracted as the internal validation sets to 

evaluate the model reliability under randomization.  

3.2.9. Model Validation 
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The model performance was validated and reported on the original and perturbed 

datasets using the C-index as the evaluation metric. Two observations may warrant 

attention. First, the model performance consistency between the original and perturbed 

datasets might be a qualitative indicator of model performance reliability against the 

simulated randomizations. Second, the model performance variance with perturbed 

datasets may reflect the model’s sensitivity to slight fluctuations. A quantitative 

assessment of model reliability could be performed by comparing the model 

performance on the original and perturbed data.  

3.2.10. Model Reliability Quantification 

In addition to the qualitative analysis of model reliability, a quantification metric, 

the ICC, was proposed to evaluate model reliability under randomization. The ICC is 

often used as a reliability index for inter-rater reliability analysis [127], and several 

radiomic studies have used this measure to quantify feature reproducibility 

[37,106,128]. 

The model reliability ICC reflects the extent to which the measurements can be 

replicated. We aimed to determine whether model predictions can be repeatedly 

measured/produced after adding plausible randomizations to the images and 

segmentations both for the same patient and across the entire dataset. As each perturbed 

dataset was simulated randomly and the model was expected to yield an identical 

outcome, the one-way random effects with absolute agreement, ICC(1, 1), were 

calculated to quantify the model’s reliability, with patients as the subjects and 

perturbations as the raters [129]. ICC values range between 0 and 1, with values closer 
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to 1 representing more robust reliability. Typically, ICC values less than 0.5, between 

0.5 and 0.75, between 0.75 and 0.9, and greater than 0.9 indicate poor, moderate, good, 

and excellent reliability, respectively [129]. 

3.2.11. Model Reliability Validation 

To validate the calculation of model reliability, the same experiment was repeated 

with highly reliable features (ICC > 0.75). This validation aimed to verify the sensitivity 

of the ICC in response to changes in model input reliability. An increase in feature 

reliability was expected to increase the model ICC. 

First, the optimal features and associated characteristics for model building are 

reported. Second, the model’s performance on the original and perturbed dataset are 

evaluated. Third, the reliability of the radiomic model is computed.  

The first step was to identify the features relevant to the outcome and remove 

redundant features. After filtering, 17 of 5486 features were selected. Then, a backward 

recursive feature elimination based on a penalized Cox proportional hazard model was 

used to find the optimal feature set for model building. Figure 7 shows the changes in 

training and validation C-indexes of a 10-times-repeated, three-fold cross-validation of 

the training dataset with respect to the number of features in the recursive feature 

elimination process. The feature set with the highest validation C-index was identified 

as the optimal feature set, and thus six features were identified as the optimal feature 

set and used for model building. The characteristics of these six selected features are 

3.3. Results 
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tabulated in Table 5.  
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Figure 7. Changes in the training and validation C-indexes with respect to feature 

numbers in the stepwise backward feature elimination method under three-fold cross-

validation, repeated 10 times. The points indicate the averaged C-index over cross-

validation folds, and the shaded area indicates the range of one standard deviation (std). 

The curve indicates the feature number (N=6) yielding an optimal validation 

performance. 
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Table 5. The characteristics of selected features for model building. The univariate C-

index, P-value, and ICC were tabulated. Feature names indicate the feature, the bin 

count (if applicable), and the image used to compute it. 

features C-index P-value ICC 

log-sigma-6-0-mm-

gldm_LargeDependenceLowGrayLevelEmphasis_64_binCount 0.619 0.045 0.747 

wavelet-

HHL_glrlm_LongRunLowGrayLevelEmphasis_128_binCount 0.587 0.169 0.454 

original_glszm_LargeAreaLowGrayLevelEmphasis_128_binCount 0.614 0.066 0.610 

wavelet-LLL_glrlm_RunEntropy_128_binCount 0.608 0.064 0.900 

wavelet-LHL_glszm_LowGrayLevelZoneEmphasis_64_binCount 0.572 0.091 0.491 

wavelet-

HLL_glszm_SmallAreaHighGrayLevelEmphasis_128_binCount 0.604 0.085 0.542 

After identifying the six optimal features, the radiomic survival model was 

constructed and validated. The C-indexes of the survival radiomic model in the training 

and testing cohorts were 0.742 and 0.769, respectively. The averaged model 

performance C-indexes (standard deviation) over the perturbed training and testing 

cohorts were 0.686 (0.038) and 0.678 (0.065), respectively.  

The model performance on the original and perturbed cohorts is visualized in 

Figure 8, which shows that the original training and testing C-indexes probably 

overestimate the model’s performance compared with the perturbed cohort evaluation. 
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Furthermore, the model performance variations on the perturbed cohorts are significant, 

with C-indexes ranging from 0.609 to 0.758 in training and from 0.514 to 0.794 in 

testing. 
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Figure 8. Visualization of model performance on the original and perturbed data. The 

training and testing C-index on the original data is within the performance of perturbed 

data, indicating that the original dataset could be a subset of the perturbed subset. 

Furthermore, Although the averaged C-index for the perturbed training and testing did 

not show a statistically significant difference (P-value = 0.418), the variations in the 

testing data (STD = 0.065, ICC = 0.565) is larger than the training data (STD = 0.038, 

ICC = 0.596). 
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After evaluating the model’s performance, the quantified model performance using 

ICC was calculated with a 95% confidence interval. The model reliability ICC was 

0.565 (0.518–0.615) on the training set and 0.596 (0.527–0.670) on the testing set. 

According to the convention [129], this model’s reliability is moderate (0.5 < ICC < 

0.75), and it is consistent with the significant variations in model performance with the 

perturbed datasets as shown in Figure 8. 

An additional experiment was performed to validate the sensitivity of the reliability 

ICC, using the highly reliable features (ICC > 0.75) to repeat the radiomic modeling 

process. After prescreening the reliable features, 67% (3667 / 5486) of features were 

retained; these were reduced to four optimal features for model building after feature 

selection. The new model performance C-indexes for the original training and testing 

cohorts were 0.711 and 0.641, respectively, while the averaged perturbed training and 

testing C-indexes (standard deviation) were 0.640 (0.029) and 0.625 (0.042). The model 

reliability ICC values, with a 95% confidence interval, were 0.782 (0.749–0.815) and 

0.825 (0.782–0.867) for the perturbed training and testing sets, respectively.  

An additional experiment, starting with highly reliable features, led to a significant 

increase in the model reliability ICC values from moderate to good. This result 

demonstrated the sensitivity of our method to input reliability. 

The subgroup analysis based on filtered images was also performed. The median 

value radiomic feature ICC (range) for the original image group, log-sigma image group, 

and wavelet image group is 0.87 (0.42-1.00), 0.91 (0.35-0.99), and 0.77 (0.14-0.99). 

Table 6 showed the subgroup analysis results based on the filtered image groups. In 
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general, the trend of improving model reliability is maintained, which also indicates 

that our method can be used to quantify radiomic model reliability for quantitative 

analysis using filtered or non-filtered images. 
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Table 6. The model performance in discrimination and reliability. An improvement in 

model reliability is observed after removing non-robust radiomics features. 

    

Training C-

index 

Testing C-

index 

Model Reliability 

ICC 

No 

Filtering 

Original 

features 0.67 0.71 0.72 

Log-sigma 

features 0.72 0.54 0.59 

Wavelet 

features 0.80 0.56 0.51 

Feature  

ICC > 

0.75 

Original 

features 0.65 0.74 0.85 

Log-sigma 

features 0.58 0.54 0.91 

Wavelet 

features 0.62 0.55 0.89 
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The feature maps of feature wavelet-LLL_glrlm_RunEntropy and wavelet-

HHL_glrlm_LongRunLowGrayLevelEmphasis were calculated across perturbed 

images to interpret the results visually. As shown in Figure 9, the feature map of 

RunEntropy showed a homogeneous pattern across perturbed images than the feature 

map of LongRunLowGrayLevelEmphasis, which is consistent with the feature 

reliability ICC calculated using perturbation images. 
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Figure 9. The feature map of wavelet-LLL_glrlm_RunEntropy (left) and wavelet-

HLL_glszm_SmallAreaHighGrayLevelEmphasis_128_binCount (right) for same 

patient with identical axial slice. The window is fixed between 1 percentile and 99 

percentile of the feature map to eliminate the effects of noise. The visualization of 

feature maps revealed the radiomic feature reliability against perturbations.  
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After evaluating the model's discriminatory power, the quantified model 

performance using ICC was calculated with a 95% confidence interval. The model 

reliability ICC was 0.565 (0.518–0.615) on the training set and 0.596 (0.527–0.670) on 

the testing set. According to convention [130], this model's reliability is moderate (0.5 

< ICC < 0.75), and it is consistent with the significant variations in model performance 

with the perturbed datasets, as shown in Figure 8. 

An additional experiment was performed to validate the sensitivity of the reliability 

ICC, using the highly reliable features (ICC > 0.75) to repeat the radiomic modeling 

process. After prescreening the reliable features, 67% (3667 / 5486) of features were 

retained; these were reduced to four optimal features for model building after feature 

selection. The new model performance C-indexes for the original training and testing 

cohorts were 0.711 and 0.641, respectively, while the averaged perturbed training and 

testing C-indexes (standard deviation) were 0.640 (0.029) and 0.625 (0.042). The model 

reliability ICC values, with a 95% confidence interval, were 0.782 (0.749–0.815) and 

0.825 (0.782–0.867) for the perturbed training and testing sets, respectively. The 

univariable analysis result has been tabulated in Table 6. 

This study proposed a radiomic model reliability evaluation method using data 

perturbations. We demonstrated this method using a publicly available dataset and by 

building radiomic models to predict DM-free survival. To our knowledge, this is the 

first study to describe a method to assess the reliability of radiomics models based on 

image perturbation. Our method evaluates model reliability against randomization in a 

3.4. Discussion 
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radiomic workflow using the perturbation method. This study may provide a new 

perspective on model assessment for the radiomic community. Our results showed that 

model performance can be overestimated, despite the decent model predictability 

achieved using an independent testing set. Moreover, simulated perturbation data can 

serve as an internal validation method for a model reliability assessment.  

This study is also the first to assess radiomic model reliability. Currently, there is 

no radiomic model reliability assessment method, despite consensus on the importance 

of building reliable radiomic models within the community [131]. This paradox may be 

due to several reasons. First, the reliability of a model covers a wide range of aspects, 

as radiomics is a multi-step process and uncertainties may be introduced in each step 

[104,132]. Therefore, it is challenging to characterize the stability of radiomic models. 

Second, limited medical resources, such as re-scanned images, prevent the internal 

validation of model reliability. If multiple scanned image sets obtained over a short 

time interval and inter-observer delineations of different scans were available, the 

model could be validated internally to account for random variations in parameters such 

as patient positioning and inter-observer delineation. Third, it is challenging to 

characterize a model’s reliability against controllable factors, such as different scanners 

and acquisition parameters, because such medical resources are inaccessible. These 

factors have been shown to affect radiomic feature reproducibility and, potentially, 

model reliability. To tackle some of these challenges, our study used the perturbation 

method to simulate perturbed datasets, thereby accounting for randomized factors in 

the radiomic workflow. For example, rotation and translation mimic variations in the 

patient’s positioning during the scans and resampling uncertainties, noise addition 
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mimics fluctuations in the voxel values caused by statistical uncertainties, and contour 

randomization mimics inter-observer uncertainty in region-of-interest delineation. 

These simulated datasets play a crucial role in assessing radiomic model reliability.  

This study also evaluated the reliability of the model against randomness. The 

majority of reliability studies in radiomics publications have focused on the 

reproducibility and reliability of controllable factors, such as the scanner brand [133], 

image acquisition parameters [134], reconstruction kernels [135], and preprocessing 

parameters [136]. However, the effects of these controllable factors can be minimized 

with sufficiently transparent reporting [104]. In contrast, random and natural variations 

persist in every radiomic study and are difficult to address by harmonization or 

standardization. Therefore, understanding the impact of randomness on radiomics 

features and models is crucial for establishing clinical radiomic applications.  

Our results revealed the vulnerability of our radiomic model to randomness. In our 

results, the model performance evaluation using perturbed data showed lower training 

and testing C-indexes for the survival model and considerable variability in its 

distribution under perturbations. The lower training C-index for the perturbed data 

reveals that evaluating models using their original data results in overfitting to noise in 

the original data and over-estimation of the model’s learning. If a model is unable to 

achieve a similar performance using the same data with plausible randomization, it is 

unlikely that it could be translated to the clinic. Careful assessment of radiomic models’ 

reliability is therefore essential. 

A potential solution to this issue is to evaluate the reliability of features under 
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randomization and integrate this information into radiomic modeling. Despite plenty of 

discussion and studies of radiomic feature reliability and reliability under various 

circumstances, only two methods have been implemented in a few clinical studies. The 

first method uses a test-retest dataset and evaluates radiomic feature reliability using 

two consecutive scans in a short interval, followed by incorporating this reliability into 

the dataset. This method may reflect realistic feature reliability under test and retest 

settings. However, the acquisition of test-retest imaging is rarely conducted outside of 

a research context, and most medical imaging datasets therefore lack complimentary 

test-retest image data. Although some studies have adopted the test-retest RIDER Lung 

dataset [137] to assess feature reliability in an attempt to build reliable models, the 

generalizability of feature reliability from the RIDER Lung data to the dataset being 

studied has been criticized [98]. The second method assesses feature reliability using 

inter-observer variability on the contours. The ROI on the images is delineated multiple 

times by independent oncologists, and feature reliability is evaluated from the inter-

observer consistency of feature values. This method is more practically accessible than 

test-retest images to assess feature reliability. However, this method also has limitations 

in terms of the insufficient identification of non-robust features and high medical 

personnel costs [65]. The shortcomings of these two methods for assessing feature 

reliability limit their effectiveness for removing non-robust radiomics features during 

radiomic modeling, potentially resulting in radiomic models that are vulnerable to 

randomization. Therefore, simulated randomization of a dataset via the perturbation 

method may enable estimation of the impact of randomness on radiomic modeling. 

Multiple perturbed datasets can be generated with perturbations, and their feature 



 

60 

 

values can be determined. Feature reliability can be quantified using the ICC for each 

feature by considering its variability within a single subject and across the dataset. Then, 

removing the less reliable features can improve the reliability of radiomic models 

against randomizations. In contrast to test-retest and inter-observer variability, 

simulation methods may be more versatile for evaluating feature reliability with no 

additional clinical resource costs and could enable data-specific feature reliability 

evaluations. Moreover, perturbations can provide additional validation data to evaluate 

model reliability and safeguard it against randomization. 

In addition to these contributions, some aspects of our approach could be explored 

to enhance the impact of this study. First, image and contour perturbation via simulation 

is a new method in radiomics, so comparisons between this and established methods 

(e.g., test-retest and inter-observer variability) could be studied further to identify their 

respective advantages and disadvantages. Second, our validation results showed a 

decline in model predictability performance from the testing data when poorly and 

moderately reliable features were removed. A future study could investigate how to 

balance the model’s predictive performance with its reliability. 

This study proposed a radiomic model reliability assessment method using 

perturbations. This method identifies unreliable models by comparing the model’s 

performance on the training dataset with the performance achieved on random 

perturbations of the training dataset. Using this approach could help the radiomics 

community to build more reliable models for future clinical applications.  

3.5. Conclusions 
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Chapter 4. Comparing Effectiveness of Image Perturbation and 

Test-retest Imaging Towards Establishment of Reliable 

Radiomic Models 

4.1. Introduction 

Radiomics is one of the most up-to-date quantitative imaging techniques nowadays. 

Quantitative features, which are believed to represent tumor phenotypes that are 

imperceptible to human eyes, are extracted in a high-throughput manner from routine 

medical imaging, such as CT, MR, or PET. Morphological, histogram, as well as 

textural information could be included in different classes of radiomics features. They 

are then selected and built into different models to help noninvasive diagnosis [138–

140], prognosis [141–143], and treatment response prediction [144–146]. Despite the 

promising potential of radiomics, the reliability of radiomic models is one of the major 

concerns when translating into routine clinical practice. 

Radiomic feature reliability refers to the feature's ability to keep stable when the 

same subject is imaged several times under the same acquisition settings. It is believed 

to be the first and foremost criteria to ensure model reliability and has been studied 

extensively by previous research. Test-retest imaging is one of the most popular 

approaches by repeatedly scanning each patient within a short period of time, and 

feature reliability is assessed by comparing the feature values between the two different 

scans. For example, Granzier et al. identified repeatable radiomics features within 

breast tissues using a two-day interval test-retest data with fixed scanner and clinical 
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breast protocol [147]. However, test-retest imaging is not a standard clinical procedure 

and requires additional medical resources and potential extra dose to patients. 

Consequently, the existing test-retest study include only a limited number of patients, 

which further reduced the significance of their findings. In addition, the conclusions of 

feature reliability are hardly generalizable across image modalities and cancer sites 

[148], rendering the necessity of specific reliability analysis for different radiomic 

studies. 

Several methods have been proposed to assess radiomic feature reliability through 

perturbations. Marco et al. first applied random translations of the ROIs to assess the 

radiomic feature reliability on ADC images [149]. They found an overall satisfactory 

reliability and a high site dependency. Zwanenburg et al. proposed to generate pseudo-

retest images by random translation, rotation, noise addition and contour 

randomizations, and demonstrated the similar patterns of feature reliability to test-retest 

imaging [150]. Further studies have demonstrated the potential of perturbed images in 

quantifying radiomic model output reliability and improving the model generalizability 

and reliability by removing low-repeatable features [151]. Although perturbation 

methods have been proven to be capable of capturing most non-repeatable features in 

test-retest images, it is still unknown if image perturbation could replace test-retest 

imaging in building a reliable radiomic model. 

This study aimed to compare radiomic model reliability after removing non-

repeatable radiomics features assessed by image perturbation and test-retest imaging. 

A unique breast cancer dataset with available test-retest ADC images derived from 
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diffusion weighted MRI (DWI) scans and pCR outcome was retrospectively collected. 

Patients were randomly split into one training and testing set for model development 

and validation. We compared model reliability, including both generalizability and 

reliability, between models built from repeatable feature assessed by image 

perturbation and test-retest under a wide range of reliability thresholds. The overall 

study workflow is summarized by Figure 10. This study could provide the radiomic 

community direct evidence of the benefit of image perturbation on building reliable 

radiomic models. Most importantly, whether image perturbation is equivalent to test-

retest imaging in building a reliable radiomic model could be directly validated. 
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Figure 10. Study workflow. We conducted our study by radiomic feature reliability 

assessment by test-retest and perturbation, radiomic model development using high-

repeatable features from the two assessments, and generalizability and reliability 

analysis of the two models. 
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4.2. Material and Methods 

4.2.1. Patient Data 

We retrospectively collected 191 patients from the publicly available BMMR2 

challenge dataset [34,152]. It was derived from the ACRIN 6698 trail where female 

patients with invasive breast cancer were prospectively enrolled from ten institutions 

between 2012 and 2015 [153]. Institutional review board (IRB) approval is waived due 

to the solely use of public data. Pre-treatment DWI-derived ADC maps and manual 

tumor segmentations were downloaded from TCIA [24] for radiomics model 

development. pCR at the time of surgery [154] was used as the prediction endpoint. We 

adopted the same train-test split as the BMMR2 challenge with 60% (n=117) randomly 

chosen as the training set and the remaining 40% (n=74) set as the testing set. We also 

downloaded 71 test-retest pre-treatment ADC map pairs scanned within a “coffee-break” 

with 41 overlapped with the primary patient cohort. The tumor volume was manually 

drawn on dynamic contrast-enhanced MR subtraction images [153], and migrated to 

the ADC map. The number of 74 testing patients is selected to ensure a sufficient 

statistical power to test the association between image feature and pCR. 

4.2.2. Radiomics Feature Extraction 

A comprehensive set of Radiomics features was extracted from the original and 

filtered DWI images within the tumor volume. All the images were preprocessed by 

isotropic resampling (1x1x1mm) and 32-bin-number discretization before feature 

extraction. Both first-order (n=18) and texture features (n=70) were extracted from each 

preprocessed image, and shape features (n=14) were extracted from the tumor 
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segmentation. The definitions and extraction of radiomics features follow the 

standardization by the IBSI [155]. In total, 1316 radiomics features were extracted for 

each patient. Detailed settings of the image preprocessing and feature extraction 

parameters are listed in Table 7. All the image preprocessing and feature extraction 

procedures were performed by the Python package PyRadiomics [11]. 

4.2.3. Feature Reliability Assessment 
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Table 7. Image perturbation, preprocessing, and radiomic feature extraction parameters. 

Parameters Specifications 

Pixel value offset 0 

Resample pixel size (mm) [1,1,1] 

Image/mask interpolation algorithm B-spline 

Mask partial volume threshold 0.5 

Interpolation grid alignment Align grid origins 

Translation distances (pixel) [ 0.0, 0.2, 0.4, 0.6, 0.8] 

Rotation angles (degree) [-5,0,5] 

Rotation axis Mask bounding box center, axial direction 

Contour randomization smoothing sigma 

(mm) 
[10,10,10] 

Contour randomization intensity (mm) [1,1,1] 

Perturbation times 40 

Image discretization bin number 32 

Image filters 
Unfiltered, Laplacian-of-Gaussian (3D), 

Wavelet 

Kernel size of Laplacian-of-Gaussian filter 

(mm) 
[1,2,3,4,5] 

Wavelet filter starting level 0 

Wavelet filter total level 1 

Wavelet filter type Coilf1 

Wavelet filter decompositions 
[LLL, HLL, LHL, LLH, LHH, HLH, HHL, 

HHH] 

Feature class 
shape, firstorder, glcm, glrlm, glszm, gldm, 

ngtdm 
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Radiomics feature reliability was assessed from both perturbed images and test-

retest images for model reliability comparisons, shown in Figure 10. We performed 40 

image perturbations independently for each patient by random combinations of 

rotations, translations, and contour randomizations, same as the methodology adopted 

by Teng et al [151]. Detailed image perturbation parameters can be found in Table 7. 

The same set of radiomics features were extracted from each perturbed or test/retest 

image with the same preprocessing procedure. One-way, random, absolute, single rater 

ICC [156] was calculated for each radiomic feature under both image perturbation and 

test-retest due to the random choice of perturbation parameters and scanning condition 

for each patient. The ICC calculation was provided by the Python package Pingouin 

(version 0.5.2) [157]. 

4.2.4. Radiomics Model Construction 

Two radiomics models were separately constructed from the repeatable features 

under image perturbation (𝑀𝑝) and test-retest (𝑀𝑡𝑟), as shown in Figure 10. Volume 

dependent radiomics features were first removed to minimize its confounding effect on 

the comparison results, as tumor volume is more stable by definition. Radiomics 

features that had a Pearson correlation r > 0.6 to the tumor mass volume was removed 

from subsequent analysis. Repeatable features were determined from the pre-set ICC 

thresholds of 0, 0.5, 0.75, 0.9, and 0.95. They were further filtered by redundancy and 

outcome relevancy before model training. We adopted the minimum Redundancy - 

Maximum Relevance (mRMR) feature selection algorithm to rank the repeatable 

features based on the redundancy and outcome relevancy [158]. Finally, 5 top-ranked 



 

69 

 

features were selected for model development. The majority pCR group (non-event) 

was randomly down-sampled by 500 times and an ensemble of logistic regression 

models were trained. The final prediction probability of each patient was given by the 

average of the individual model predictions. This easy-ensemble approach could reduce 

the training bias from the heavily imbalanced outcome [159]. It was implemented by 

the publicly available python package imbalance-learn (version 0.9.1) [160]. 

4.2.5. Model Reliability Assessment 

We assessed radiomics model reliability in both generalizability and reliability 

(Figure 10). Model generalizability was assessed by comparing training and testing 

classification performance evaluated by AUC. Model reliability was assessed by the 

model prediction reliability under the setting of both training perturbation, testing 

perturbation, and test-retest. Probability predictions of either model was generated on 

the perturbed training, perturbed testing, and test-retest images, and the one-way, 

random, absolute ICCs were calculated for the prediction reliability using the same 

rationale of feature reliability. Both generalizability and reliability were compared 

between 𝑀𝑝 and 𝑀𝑡𝑟 with different ICC threshold settings, as shown in Figure 10. 

4.2.6. Statistical Analyses 

Each classification performance metric was evaluated under 1000-iteration patient 

bootstrapping to acquire 95% confidence interval (95CI). Two-way P-values for 

comparing the classification performance were calculated by permutation test with 

1000 iterations using the function “permutation_test” provided by the open-source 

Python package SciPy (version 1.9.1) [161]. The comparison was performed between 
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each pair of models with and without feature reliability filtering as well as 𝑀𝑝 and 𝑀𝑡𝑟. 

A P-value < 0.05 was considered significant. The 95CI of the model prediction ICC 

was evaluated according to the formulas presented by McGraw et al [156]. 

4.3. Results 

4.3.1. Feature Reliability and Predictability 

A systematic larger feature reliability based on image perturbation was found 

compared to test-retest imaging. Figure 11 visualizes the distribution of feature ICCs 

assessed by training perturbation versus test-retest. Among all the 1120 volume-

independent radiomics features, only 143 showed lower ICC under training 

perturbation than test-retest, which can be visualized as scarce scattered points above 

the diagonal line in Figure 12. However, they demonstrated a strong correlation with 

Pearson correlation r = 0.79 (P-value<0.001). 
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Figure 11. Scatter plots showing the reliability of volume independent features 

measured by ICC under test-retest imaging (y-axis) and image perturbation (x-axis). 

The perturbation method yielded higher ICC values than test-retest method in general. 

Furthermore, features that had significant univariate correlations with the outcome, 

pCR, where colored as orange while the rest as blue.  
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The feature reliability agreement between perturbation and test-retest showed a 

strong dependence on ICC thresholds, as shown in Figure 12. In general, the number 

of commonly repeatable and non-repeatable features between the two ICC measures 

increased with higher ICC thresholds. Specifically, the number of mutually agreed 

repeatable features decreased from 621 to 141, 18, and 2 with ICC threshold increased 

from 0.5 to 0.75, 0.9, and 0.95, as suggested by the shrinking blue bars in Figure 12. 

In contrast, the number of mutually disagreed repeatable features increased from 151 

to 484, 989, and 1072 (green bars). For disagreements between perturbation and test-

retest evaluation, very few (<0.7%) features are repeatable against test-retest variations 

while unrepeatable against perturbations (red bars), and a considerate number of 

features are repeatable against perturbation while unrepeatable under test-retest settings 

(orange bars). 
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Figure 12. Stacked bar plot displaying the feature reliability agreement between 

perturbation and test-retest. P+/- indicates the repeatable/unrepeatable feature group by 

the perturbation method and TR+/- for repeatable/unrepeatable feature group in the test-

retest method. 
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Only a small portion of all the volume-independent radiomics features 

demonstrated strong univariate correlation with the prediction outcome with an 

inclination towards high repeatable features (Figure 12). Quantitatively, 111 radiomics 

features reached statistical significance (P-value < 0.05) when correlating with pCR. 

With the ICC threshold of 0.5, 11% (n=71) of the high-repeatable features under test-

retest had statistical significance and 10% (n=93). The percentage increased to 23% at 

ICC threshold of 0.75 but decreased to 5% (n=1) and 0% (n=0) at 0.9 and 0.95 for test-

retest. However, a continuous increase to 11% (n=72), 25% (n=32), and 27% (n=12) 

for perturbation was discovered. 

4.3.2. Model Generalizability and Reliability 
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Figure 13. Comparison of generalizability between models based on repeatable features 

assessed by image perturbations (𝑀𝑝, blue) and the test-retest imaging (𝑀𝑡𝑟, orange) 

under varying thresholds. ICC was used to quantify the feature reliability under 

perturbation for 𝑀𝑝  and under tests-retest imaging for 𝑀𝑡𝑟 . Training and testing 

classification performance were quantified by AUC. The error bars indicate 95% 

confidence intervals acquired from 1000-iteration bootstrapping. 
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An overall trend of increasing generalizability and reliability was observed with 

increasing ICC thresholds. Figure 13 presented the overall trend and comparisons of 

training and testing AUCs of 𝑀𝑝  and 𝑀𝑡𝑟  under varying feature ICC thresholds. 

Testing AUC increased significantly from 0.56 (0.41-0.70) at baseline (ICC threshold 

= 0) to the maximum of 0.76 (0.64-0.88, p=0.021) at ICC threshold = 0.9 under 

perturbation and 0.77 (0.64-0.88, p=0.018) under test-retest.  On the other hand, both 

𝑀𝑝 and 𝑀𝑡𝑟 demonstrated steady decreases of the training AUCs under increasing ICC 

thresholds without statistically significant differences to the baseline. Similarly, the 

baseline model had the lowest reliability with prediction ICC = 0.51 (0.45-0.58) on 

training perturbation, 0.57 (0.49-0.66) on testing perturbation, and 0.45 (0.25-0.62) on 

test-retest, as indicated by the lowest bars in Figure 13. Significant improvement can 

be already observed when increasing the feature ICC threshold to 0.5 for both 𝑀𝑝 and 

𝑀𝑡𝑟. The prediction ICC of 𝑀𝑡𝑟 grew faster than 𝑀𝑝 at higher ICC thresholds before 

reaching the maximum at ICC threshold = 0.9. 
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Figure 14. Bar plots for comparing reliability between models based on repeatable 

features assessed by image perturbations (𝑀𝑝, blue) and the test-retest imaging (𝑀𝑡𝑟, 

orange) under varying thresholds. ICC was used to quantify the feature reliability under 

perturbation for 𝑀𝑝  and under tests-retest imaging for 𝑀𝑡𝑟 . Model reliability was 

evaluated by probability prediction ICC under perturbation or tests-retest. The error 

bars indicate 95% confidence intervals acquired during ICC calculation. 
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𝑀𝑡𝑟  demonstrated slightly higher generalizability and significantly higher 

reliability than 𝑀𝑝 on multiple feature ICC filtering thresholds. We observed a smaller 

training AUCs and higher testing AUCs of 𝑀𝑡𝑟  at ICC thresholds of 0.5 and 0.75 

(Figure 14). The AUC differences between 𝑀𝑝 and 𝑀𝑡𝑟  were kept small with the 

absolute values below 0.05 (p>0.05). Under the ICC threshold of 0.75, 𝑀𝑡𝑟  had a 

significantly higher prediction ICC on both testing perturbation (𝑀𝑡𝑟=0.93 (0.91-0.95), 

𝑀𝑝=0.86 (0.82-0.90)) and test-retest (𝑀𝑡𝑟=0.87 (0.80-0.92), 𝑀𝑝=0.75 (0.63-0.84)), 

while no obvious difference found on training perturbation (𝑀𝑡𝑟=0.91 (0.89-0.93), 

𝑀𝑝=0.90 (0.86-0.92)), as demonstrated by Figure 14. Both the ICC threshold of 0.5 

and 0.9 demonstrated minimum model reliability deviations between 𝑀𝑝 and 𝑀𝑡𝑟 with 

absolute prediction ICC difference < 0.03. 
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Figure 15. Distributions of the linearly combined feature values and predicted 

probabilities of the logistic regression models developed from test-retest repeatable 

features and perturbation repeatable features using the feature ICC threshold of 0.95. 

The predicted probabilities follow the sigmoid mapping of the logistic regression. 

Samples with ground-truth of non-event are colored by blue and event by orange. 

Predictions of the test-retest model were aggregated in the high-slop region whereas a 

wider spread is found for the perturbation model. 
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Both 𝑀𝑡𝑟 generalizability and reliability dropped significantly when increasing the 

ICC threshold from 0.9 to 0.95. The training AUCs of both 𝑀𝑝 and 𝑀𝑡𝑟 remained table, 

while a much larger decrease of testing AUC to 0.59 (0.45-0.73) was found for 𝑀𝑡𝑟 at 

ICC threshold = 0.95. On the contrary, 𝑀𝑝 had a slightly reduced testing AUC to 0.75 

(0.62-0.86). Similar to model generalizability, the prediction ICC of 𝑀𝑡𝑟  fell 

significantly from above 0.9 to below 0.75 on training perturbation, testing perturbation, 

and test-retest. On the other hand, the prediction ICC of 𝑀𝑝 increased continuously and 

maximized at ICC threshold = 0.95. Figure 15 presents the distributions of the 

predicted probabilities of 𝑀𝑡𝑟 and 𝑀𝑝 combining both training and testing samples at 

ICC threshold of 0.95. As expected, they both followed the sigmoid mapping as logistic 

regression from the linearly combined features values. The predictions of 𝑀𝑡𝑟 are more 

aggregated in the high-slop region in comparison with 𝑀𝑝  with more spread to the 

lower tail. 

4.4. Discussion 

This is the first study that directly compared the reliability of radiomic models based 

on repeatable radiomics features selected by image perturbation and test-retest imaging 

using ADC maps derived from a publicly available breast cancer DWI dataset. We 

observed systematically lower radiomic feature reliability assessed by test-retest than 

perturbations with better binary agreement at higher ICC thresholds. In general, model 

generalizability and reliability increased continuously with higher ICC thresholds. 

Similar optimal generalizability and reliability were achieved by the classification 

model based on perturbation (𝑀𝑝) and test-retest (𝑀𝑡𝑟) at the ICC threshold of 0.9 
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simultaneously. Notably, increasing the ICC threshold to 0.95 resulted in significant 

drops of testing AUC and prediction ICCs for 𝑀𝑡𝑟 . Our results provide the direct 

evidence that our perturbation method could replace test-retest method in building a 

reliable radiomic model with optimal generalizability and reliability. 

The lower radiomic feature reliability under test-retest could be largely attributed 

by the larger variations of tumor segmentations. We further evaluated the segmentation 

similarities by the Dice similarity coefficients (Dice) and Hausdorff distances (HD) 

with rigid registrations between test and retest images. The tumor segmentations were 

less similar between test and retest images (Dice = 0.51(±0.16), HD = 

12.47mm(±10.95mm)) than training perturbations (Dice = 0.71(±0.11), HD = 

2.72mm(±0.90mm)). Previous research by Saha et al. has also suggested less stable 

radiomics features from breast MRI within the tumor volume due to a large inter-reader 

variability (Dice = 0.60) [162]. They also emphasized the necessity of standardization 

in breast tumor segmentation through precise instructions or auto-contouring, where 

Dice can be increased to 0.77. 

We discovered a positive impact of higher feature reliability on model reliability, 

as suggested by the increasing testing AUCs and prediction ICCs under higher ICC 

thresholds. Our results are consistent with the findings by Teng et al. that image 

perturbation could enhance radiomic model reliability on multiple HNC datasets [151]. 

A higher model output reliability is generally guaranteed with increased input reliability 

when using a linear logistic regression model, as long as the predictability is ensured. 

For model generalizability, a higher ICC threshold could result in less final selected 
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features with decreased variabilities, thus enhancing the probability of true discovery. 

However, the extremely high feature ICC threshold of 0.95 resulted in a much lower 

model generalizability and reliability under test-retest. During feature selection, only 5 

features remained as repeatable for 𝑀𝑡𝑟, and none of them showed significant univariate 

correlation with pCR in training. Consequently, the final selected features had a 

minimum probability of being truly predictive, and the constructed model was largely 

overfitted on training with significantly reduced testing AUC. Meanwhile, the predicted 

probabilities were confounded within the high-slop region (Figure 15). Although the 

selected features and their linear combinations are guaranteed to be highly repeatable 

(ICC >= 0.95), they could result in larger variations of the prediction values due to the 

sigmoid transformation. Although generalizability and reliability describe model 

reliability from two different perspectives, a model built from features with low 

sensitivity to the prediction target is more likely to have low performances on both due 

to the previous discussed reasons. Such findings underline the importance of careful 

selection on repeatable feature criteria when optimizing the final predictive model. A 

balance between sensitivity and reliability needs to be achieved depending on the level 

of data standardization during application.  

Despite the different reliabilities of 𝑀𝑝 and 𝑀𝑡𝑟 under multiple feature reliability 

criteria, they both achieved similar optimal generalizability and high reliability at the 

ICC threshold of 0.9. Such observation provides the direct evidence that perturbation 

could replace test-retest imaging while achieving the similar optimal model 

performance. It is advised to incorporate radiomic feature reliability analysis using 
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image perturbation when test retest is less achievable due to limited medical resources. 

Nevertheless, the optimal ICC threshold discovered by this study may not be 

generalizable to other radiomics applications where different image modalities and 

cancer site were studied and different radiomics features were extracted. 

Our study has several limitations that need to be addressed by future investigations. 

First, only one public dataset was used to conduct this experiment. Further 

investigations on the generalizability of our findings need to be conducted on other 

image modalities, cancer sites, and radiomic feature categories. Second, previous 

studies have also suggested the impact of scanning settings and image preprocessing 

parameters on radiomic feature reliability [21,37,163]. Therefore, a comprehensive 

test-retest dataset including different scanners, image acquisition protocols and 

preprocessing settings is needed to further evaluate the role of perturbation in building 

a reliable radiomic model. Third, we evaluated model reliability in terms of internal 

generalizability and model reliability without considering external validation 

performance. Patient data from multiple institutions could be recruited to further 

enhance our understandings of the impact of feature reliability on cross-institutional 

reliability. 

4.5. Conclusion 

We systematically compared the radiomic model reliability, including both 

generalizability and reliability, between using repeatable radiomics features assessed 

by image perturbation and test-retest imaging. The same optimal reliability can be 

achieved by image perturbation as test-retest imaging. Higher feature reliability 
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resulted in higher model reliability in general but may have an opposite effect at 

extremely high reliability threshold. We recommend the radiomic community to 

include feature reliability analysis using image perturbation in any radiomic study when 

test-retest is not feasible, but care should be taken when deciding the optimal feature 

reliability criteria. 
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Radiomics is an emerging artificial intelligence technology that utilizes high-

throughput features extracted from imaging features for divulging cancer biological and 

genetic characteristics [10,13,100,164]. It has demonstrated promises and offered 

insights with its defined radiomic signatures into cancer diagnosis [165], 

prognostication [166], treatment response [167] as well as toxicity prediction [168]. 

Despite a wide range of potential applications in the clinic, a primary concern of 

radiomics modeling is the reliability of radiomic models. Its clinical applicability has 

largely been hindered by lacking the assessment on the reliability of features and 

models [169]. In particular, highly robust radiomics features and models shall remain 

stable under various imaging conditions and contouring preferences [170,171] if the 

patient conditions remain unchanged. Features with poor reliability against unexpected 

changes in imaging and delineation could lead to uncertainties in the downstream 

radiomics models, leading to non-robust prediction even for the same set of patients 

[172]. Therefore, using robust radiomics features in the predictive model should be the 

first and foremost criterion towards clinical application. 

Recently, there has been an increasing interest in the investigation of feature 

reliability. Jin et al. [173] conducted a phantom study to evaluate CT radiomics features' 

reliability on acquisition parameters and feature extraction parameters. They further 

Chapter 5. Improving Reliable Radiomics Model Reliability using 

Image Perturbation for Head and Neck Carcinoma 

5.1. Introduction 
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verified the results using patient data. Lee et al. [37] conducted a similar study on MRI 

radiomics features, and they focused on the feature variability on different MRI 

scanners and imaging protocol parameters. Sofia et al. [174] assessed the feature 

reliability of day-by-day test-retest MRI of 14 patients with rectal cancer and reported 

a wide range of poor repeatable secondary/texture features with the fixed imaging 

machine, imaging protocol, and machine operator. Lu et al. [175] evaluated the feature 

reliability of test-retest MRI using a public prostate cancer dataset. They also reported 

poor repeatable features in different sequences of MRI. Recently, Zwanenburg et al. 

[65] proposed an image perturbation method to quantify feature reliability and 

compared their results under test-retest imaging.  

Despite extensive research on feature reliability, few studies analyzed the reliability 

of radiomic models, which includes model reliability and generalizability. One example 

is the research performed by Parmar et al. [96] on model reliability evaluation against 

patient subsampling. They observed varied model reliability under different feature 

selection methods and classifiers. However, there has been no study attempting to 

correlate feature reliability with the downstream radiomic models by explicitly 

demonstrating the impact of feature reliability on the model reliability. We 

hypothesized that radiomic feature reliability could provide additional knowledge in 

feature reproducibility that improves model reliability which includes model reliability 

and generalizability. The main challenge of performing a large-scale patient data 

analysis to test this hypothesis is the high demand for medical resources if the 

traditional test-retest imaging approach is adopted. Subsequently, we designed our 

study using the image perturbation method proposed by Zwanenburg et al. [150] to 
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evaluate both radiomic feature reliability and model reliability. We constructed 

multiple groups of radiomic models under three robust feature selection criteria using 

four publicly available HNC datasets, two clinic endpoints, and five classifiers. Both 

model reliability and generalizability were analyzed and compared their results under 

the three robust feature selection criteria. 

5.2.1. Overview 

  

5.2. Materials and Methods 



 

89 

 

 

Figure 16. The overall study workflow (a) and model construction and performance 

analyses workflow (b).   
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The overall study workflow is summarized in Figure 16(a). Four publicly available 

datasets of HNC named 1) Head-Neck-Radiomics-HN1 (HN1) [13,110], 2) Head-

Neck-PET-CT (HN-PETCT) [107,110], 3) HNSCC [108], 4) Oropharyngeal 

Carcinoma (OPC)-Radiomics [176,177] were analyzed, and each dataset was used to 

test our hypothesis independently. Two prediction outcomes, including DM and local-

/regional- recurrence (LR), were modeled using five representative commonly used 

classifiers. The five classifiers include Ridge [178], Support Vector Classifier (SVC) 

[106], classifiers implementing the k-nearest neighbors algorithm (KNN) [179], 

Decision Tree [180], and Multilayer Perceptron Network (MLP) [181]. Each dataset 

was randomly split into multiple training and testing cohorts for repeated stratified 

cross-validation, and the training cohorts underwent reliability analysis, reliability 

filtering, and feature selection and modeling. During each cross-validation iteration, the 

reliability of each radiomic feature was analyzed by image perturbations on the training 

samples and quantified by ICC. Features with high reliability scores were filtered out 

and further selected based on outcome relevance and redundancy before model training. 

To validate the improvements of both model generalizability and reliability using 

radiomics features with increasing reliability, three groups of radiomic models were 

constructed without feature reliability filtering, with filtering threshold of 0.75, and 

with filtering threshold of 0.95, as shown in Figure 16(b). The reliability and 

generalizability of the three groups of radiomic models were compared statistically. 

The comparisons were performed independently for the 4 datasets, 2 outcomes, and 5 

classifiers, resulting in 40 experiments in total. The improvements of the final selected 

radiomic feature reliability were also validated through statistical comparisons. 
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5.2.2. Patient Population 

A total of 1,419 HNC patients were recruited from the four publicly available 

datasets from TCIA [24]. Pre-treatment CT images and their corresponding structure-

sets were downloaded in DICOM format from the TCIA website. DM and LR records 

were also collected as predictive targets for radiomic modeling. They are two critical 

oncological endpoints in cancer treatment prognosis [182,183] and the common 

predictive outcomes in many radiomics studies [166,184,185].  The patient consent 

form has been waived due to the retrospective nature of the study. 

In order to ensure data consistency, a set of inclusion criteria were applied. Only 

patients with available 1) pre-treatment CT images, 2) clinical outcomes record of both 

DM and LR, and 3) primary GTV contours were included in the study. The identifier 

of the selected image and the GTVs are also shared in GitHub for replication purposes. 

Each dataset was split into 60 training and testing set using repeated stratified cross-

validation. The folder numbers were chosen in a way that at least two patients in the 

minority group and 100 patients in total are left for testing to ensure the reliability of 

the testing performance. The final selected patient numbers, patient distributions for the 

two prediction outcomes, and train-test split cross-validation methods for the five 

datasets are listed in Table 8.  
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Table 8. Summary of patient numbers, patient distributions of the two binary prediction 

outcomes, and the train-test cross-validation methods of the screened patient cohort of 

the four public datasets.  

Dataset 

name 

Total 

patient 

No. 

Distant metastasis  

Local-/regional- 

recurrence 
Cross-validation 

method 

Event Non-event  Event Non-event 

HN1 137 8 129  34 103 

Stratified 2-fold, 30 

repetitions 

HN-PETCT 298 40 258  43 255 

Stratified 3-fold, 20 

repetitions 

HNSCC 460 39 421  65 395 

Stratified 4-fold, 15 

repetitions 

OPC 524 74 450  73 451 

Stratified 4-fold, 15 

reptations 
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5.2.3. Image Preprocessing and Radiomic Feature Extraction 

Radiomics features were extracted from the pre-treatment CTs within GTVs. The 

images and GTV contours were preprocessed before extracting features to maintain 

feature reproducibility and consistency [92,113]. First, CT images were isotopically 

resampled into 1mm x 1mm x 1mm using B-spline interpolation. The GTV contours 

were converted into voxel-based segmentation masks according to the resampled CT 

image grids. Additionally, a re-segmentation mask of the HU range of [-150, 180] was 

generated for each image to limit the texture feature extraction within soft tissue. All 

the mentioned preprocessing steps were implemented on Python (3.8) using SimpleITK 

(1.2.4) [115] and OpenCV [116] packages. 

The rest of image preprocessing and radiomic feature extraction were performed 

using Pyradiomics (2.2.0) [11] package. In addition to the original image, features were 

extracted from 11 filtered images, including three Laplacian-of-Gaussian (LoG) filtered 

images (with a sigma value of 1, 3, and 6 mm), and eight coilf1 wavelet filtered images 

(LLL, HLL, LHL, LLH, LHH, HLH, HHL, HHH). The image intensities of both the 

original and filtered images were discretized into multiple fixed bin counts of 50, 100, 

150, 200, 250, 300, and 350 for texture feature extraction to reduce the feature 

susceptibility to image noise. A total of 5,486 radiomics features were extracted for 

each patient. The radiomic feature extraction parameter file for Pyradiomics can be 

found in the GitHub link. 

5.2.4. Feature Reliability Analysis and Filtering 
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Table 9. The parameters of perturbation modes. AP: anterior-posterior, SI: superior-

inferior, LM: lateral-medial. 

Perturbation 

modes 

Perturbation range Reference axis 

Perturbation 

number 

Total 

number 

Translation 

distance (mm) 

0 to 3 with a 0.2 step size AP, SI, LM 4,096 

4,423,680 

Rotation angles 

(degree) 

-20 to 20 with a 5-step size SI 9 

Noise addition 

level 

0, 1, 2, 3 - 4 

Contour 

Randomization 

30 - 30 

 

  



 

95 

 

The reliability of radiomics features were analyzed via the image perturbations in 

four modes proposed by Zwanenburg et al. [65] with slight modifications. For each 

perturbation, both the image and mask were translated and rotated simultaneously by a 

random amount. They aim to simulate the patient position variation during imaging. A 

random Gaussian noise field was added to the image to mimic the noise level variations 

between different imaging acquisitions. The GTV mask was also deformed by a 

randomly generated deformable vector field. It aims to mimic the inter-observer 

variability during GTV delineation. Multiple parameters of the different perturbation 

modes were chosen. The translation distances, rotation angles, noise addition levels, 

and contour randomization parameters were listed in Table 9. To explore the 

perturbations within the specified range as much as possible, 60 perturbations among 

the entire 4,423,680 combinations of perturbation modes were randomly chosen 

independently for each patient. The complete set of radiomics features were extracted 

for the chosen perturbations, and the feature reliability was calculated for each training 

set using the one-way, random ICC [129,186] with patients as subjects and 

perturbations as raters. The ICC scores were used to filter out the robust features based 

on a pre-defined threshold before feature selection and modeling. 

5.2.5. Feature Selection and Modeling  

A two-step feature selection approach was adopted to obtain the top features that 

are less redundant and more relevant to the outcome for modeling. First, the outcome 

relevance of each feature was evaluated by one-way ANOVA P-value repeatedly under 

down-sampled bootstrapping (imbalanced-learn 0.8.0 [119])  without replacement with 
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100 iterations on the training set. Features with P-values less than 0.1 were picked out 

in each iteration and ranked by their frequencies, and the top 10% features with the 

highest frequencies were chosen. Second, the feature with a higher mean correlation 

with the rest of the features in each highly correlated feature pair was removed. Pearson 

correlation coefficient was used to evaluate inter-feature correlation, and the threshold 

of 0.6 was chosen to identify the feature pairs with high correlations. A maximum of 

10 features was further filtered based on the outcome relevance frequency ranking 

acquired in the previous step. The predictive models were trained from the final selected 

features using five different classification methods with automatic hyper-parameter 

tunning. All the model trainings were implemented with the scikit-learn (0.24.0) [187] 

package.  

5.2.6. Performance Analyses 

The reliability of the predictive models was evaluated in both generalizability and 

reliability. Model generalizability evaluates model predictability consistency between 

the training cohort and unseen cohort. It is quantified as the difference between training 

and testing predictability which is scored by the AUC. The model reliability metric was 

designed to evaluate prediction reliability of one patient under varying imaging and 

contouring conditions. In this study, it is defined as the reliability of the predicted event 

probability on the perturbed testing samples and calculated by the one-way random ICC. 

These two performance scores were calculated for all the models generated from the 60 

cross-validation iterations and statistically compared between each of the two feature 

reliability filtering thresholds (ICC > 0.75, ICC > 0.95) and the performance of models 
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constructed without reliability filtering using pairwise t-test. The comparisons were 

performed for each dataset, prediction outcome, and modeling classifier independently. 

Additionally, the reliability of the final selected features with and without reliability 

filtering was statistically compared by pairwise t-test for each dataset and prediction 

outcome. 

5.3.1. Feature Reliability and Model Reliability 

  

5.3. Results 
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Figure 17. Histograms of the reliability of all the extracted radiomics features for the 

four analyzed datasets averaged under cross-validations. Feature reliability is quantified 

as ICC. The shaded areas indicate the 95% confidence interval of the average histogram 

curves. In general, there are more high-robust features than ones with low reliability. 

Different datasets show distinctive patterns of feature reliability distributions. HN1 and 

HN-PETCT have more features with high reliability, whereas HNSCC and OPC have 

the histograms skewed towards the lower end. 
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The radiomic feature reliability was quantified by the ICC under image 

perturbations. The distributions of all the extracted radiomics features show a strong 

skewness towards higher reliability, as shown by the histograms of feature ICCs for the 

four datasets in Figure 17. Different datasets show distinctive patterns of feature 

reliability distributions. HN1 (median = 0.84) and HN-PETCT (median = 0.82) has 

more features with high reliability whereas HNSCC (median = 0.77) and OPC (median 

= 0.74) have the histograms skewed towards the lower end. On average, 3320/5486 

radiomics features remained after being filtered by the threshold of 0.75 and 605/5486 

remained for the threshold of 0.95. The final selected radiomics features after the 

subsequent feature selection procedures showed a significant increase (P-value < 10-11) 

in mean ICC with increasing feature reliability filtering thresholds. On average, the ICC 

of the final selected features improved by 0.18 under the filtering threshold of 0.75, and 

the improvement increased to 0.30 under the threshold of 0.95, as shown by the first 

column of the heatmaps in Figure 19(a).  

The radiomic model reliability showed significant improvements with feature 

reliability filtering before feature selection and modeling. Model reliability was 

evaluated by the testing prediction ICC under the same set of image perturbations 

performed during feature reliability analysis. The prediction ICC of radiomic models 

constructed without feature reliability filtering is 0.65 averaged overall all the datasets, 

outcomes, and classifiers. It is increased to 0.78 and 0.91 after feature reliability 

filtering with ICC > 0.75 and ICC > 0.95 respectively. The detailed results in model 

reliability improvements and their statistical tests for the four datasets (row) and five 

classifiers (column) are visualized in the last five columns of the heatmaps in Figure 



 

100 

 

19 separated by outcome and reliability filtering thresholds. Heterogeneous model 

reliability improvements can be observed in different datasets, classifiers, and 

prediction outcomes. Higher (ICC > 0.75: 0.045~0.24, ICC > 0.95: 0.11~0.47) and 

more statistically significant (ICC > 0.75: P-value=9.8 × 10-35~1.1 × 10-2, ICC > 0.95: 

P-value=8.9 × 10-48~1.2 × 10-8) prediction ICC increases were found with the higher 

feature reliability filtering threshold in general. 
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Figure 18. The boxplot shows the model reliability ICC distribution for three feature 

reliability filtering groups, ICC > 0, ICC > 0.75, and ICC > 0.95. The feature reliability 

filtering of ICC > 0.95 yields the most robust model. *** indicates the P-value is smaller 

than 0.0001. 
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Figure 19. Average ICC improvement (a) and t-test P-values (b) of the final selected 

features and testing predictions after robust feature pre-selection shown in heatmaps. 
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Each heatmap contains the results of one prediction outcome and one feature reliability 

filtering threshold. The first column of each heatmap represents the improvements of 

the final selected radiomics features, and the remaining five columns are the 

improvements of the testing prediction reliability using different classifiers. Results of 

the four datasets are recorded in rows. All the experiments showed positive 

improvements in ICC. A higher and more statistically significant increase in average 

ICC improvements can be observed with a higher filtering threshold. 
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5.3.2. Model Generalizability 

Model generalizability is quantified as the difference between the training and 

testing AUCs, and a lower score indicates better generalizability. The model 

generalizability score averaged over all the datasets, outcomes, and classifiers are 0.21, 

0.18, and 0.12 without reliability filtering, with the filtering threshold of 0.75, and the 

threshold of 0.95 respectively. In general, model generalizability showed statistically 

significant improvements after feature reliability filtering on most experiments, as 

shown by the majority of negative mean generalizability differences and small t-test P-

values in Figure 19.  
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Figure 20. The boxplot showed the train-test performance differences. The most 

restricted feature reliability filtering provides the most generalizable models. *** 

indicates the P-value is smaller than 0.0001. 
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However, the prediction of LR on HN-PETCT had positive mean generalizability 

differences (ICC > 0.75: -0.026~0.013, ICC > 0.95: -0.025~0.016) for most of the 

classifiers under both filtering thresholds. Despite the heterogeneous results among 

datasets, outcomes, and classifiers, larger improvements with higher statistical 

significance in mode generalizability were observed with the higher feature reliability 

filtering threshold (ICC > 0.75: -0.06~-0.02, P-value = 7.2 × 10-7~2.1 × 10-1; ICC > 

0.95: -0.19~-0.054, P-value=4.8 × 10-15~6.5 × 10-1) apart from LR models for HN-

PETCT. Figure 20 shows the comparisons of average training and testing AUCs along 

with its 95% confident interval across the cross-validation models with increasing 

feature reliability filtering thresholds. Each subfigure contains the results of all the five 

classifiers shown in different colors and separated by datasets and clinic outcomes. 

Decreasing training AUCs were observed with increasing filtering thresholds. 

Specifically, the training AUCs averaged over all the datasets and prediction outcomes 

without feature reliability filtering, with reliability filtering on ICC > 0.75, and with 

filtering on ICC > 0.95 are 0.78, 0.76, and 0.69 respectively. Significant drops of 

training AUCs (pairwise t-test P-values < 0.05) were observed in 33/40 experiments 

from no feature reliability filtering to the threshold of 0.75 and 40/40 experiments to 

the threshold of 0.95. Meanwhile, the average testing AUCs are 0.57, 0.58, 0.57 with 

18/40 experiments showing statistically significant difference (pairwise t-test P-values 

< 0.05) for ICC > 0.75 and 24/40 for ICC > 0.95. Different classifiers showed 

heterogeneous trends of testing AUCs under increasing thresholds. Notably, the testing 

AUCs of LR radiomic models on HN-PETCT showed significant decrease for feature 

reliability filtering with ICC > 0.75 (mean decrease: 0.026, 5/5 classifiers with P-value 
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< 0.05) and ICC > 0.95 (mean decrease: 0.102, 4/5 classifiers with P-value < 0.05), 

shown in Figure 21. 
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Figure 21. Heatmaps on mean model generalizability improvements (a) and statistical 

test results (b) after feature reliability filtering. Model generalizability is defined as the 

difference between training and testing AUCs, AUCtesting - AUCtraining. A score closer 

to zero shows better generalizability. In general, model generalizability improved after 

feature reliability filtering, as shown by the negative values on the heatmaps (a) for both 

filtering thresholds. Greater improvements were observed with the higher filtering 

threshold (ICC > 0.95). Moreover, more significant differences are shown by the 

smaller P-value. However, the predictions of LR on the dataset HN-PETCT showed 

worse generalizability after feature reliability filtering and the opposite trend of 

generalizability change and statistical test results with increasing filtering thresholds. 
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Figure 22. The mean and its 95% confidence interval of the training and testing AUCs 

of the final constructed models. Each color represents one classifier for modeling. The 
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solid lines represent the training performances, and the dashed lines represent the 

testing performances. The 95% confidence intervals are drawn by the error bars. Each 

subfigure contains the evolution of training/testing AUCs with increasing feature 

reliability filtering thresholds for one dataset and prediction outcome. A decreasing 

trend of training AUCs were observed with increasing thresholds for all the datasets, 

prediction outcomes, and classifiers. The testing AUCs remain stable except for local-

regional recurrence prediction on HN-PETCT dataset. 
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5.3.3. Bias Evaluation 

The model reliability improved significantly with the improved feature reliability 

via the mRMR feature selection, as shown in Table 10, which is consistent with the 

model reliability improvement with filer-based feature selection. The training AUC 

also showed a consistent drop with the increase in the threshold of feature reliability, 

shown in Table 11. In contrast, the testing AUC showed an increase or maintaining the 

same level, resulting in the improved model generalizability.  

The bias analysis against the feature selection method showed consistent results 

between the filter-based and mRMR feature selection methods in improving model 

reliability and generalizability with robust radiomics features. Therefore, it is unlikely 

that different feature selection algorithms would affect the conclusion. 
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Table 10. The model reliability (ICC) for different feature reliability pre-screening 

thresholds. 

Outcomes  ICC > 0 ICC > 0.75 ICC > 0.95 

DM 

HN1 0.73 (0.66 - 0.79) 0.88 (0.84 - 0.91) 0.95 (0.94 - 0.96) 

HN-PETCT 0.76 (0.71 - 0.80) 0.92 (0.90 - 0.94) 0.92 (0.97 - 0.98) 

HNSCC 0.69 (0.64 - 0.75) 0.78 (0.93 - 0.82) 0.94 (0.93 - 0.96) 

OPC 0.74 (0.70 - 0.79) 0.91 (0.90 - 0.93) 0.99 (0.99 - 0.99) 

LR 

HN1 0.70 (0.64 - 0.77) 0.86 (0.82 - 0.90) 0.96 (0.95 - 0.98) 

HN-PETCT 0.63 (0.57 - 0.70) 0.81 (0.77 - 0.85) 0.94 (0.92 - 0.95) 

HNSCC 0.73 (0.68 - 0.78) 0.89 (0.86 - 0.91) 0.98 (0.97 - 0.98) 

OPC 0.70 (0.66 - 0.75) 0.84 (0.81 - 0.87) 0.97 (0.97 - 0.98) 
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Table 11. The training and testing AUC between different feature reliability pre-

screening thresholds. 

Outcomes   ICC > 0 ICC > 0.75 ICC > 0.95 

 
  

Training 

AUC 

Testing 

AUC 

Training 

AUC 

Testing 

AUC 

Training 

AUC 

Testing 

AUC 

DM 

HN1 0.96  0.52  0.92  0.53  0.82  0.60  

HN-

PETCT 
0.84  0.69  0.82  0.70  0.74  0.70  

HNSCC 0.76  0.53  0.68  0.50  0.63  0.53  

OPC 0.72  0.60  0.68  0.62  0.64  0.62  

LR 

HN1 0.86  0.57  0.82  0.60  0.70  0.60  

HN-

PETCT 
0.83  0.62  0.79  0.63  0.70  0.54  

HNSCC 0.74  0.62  0.72  0.64  0.68  0.65  

OPC 0.72  0.52  0.69  0.54  0.61  0.54  
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5.3.4. Results Summary 

Overall, the results demonstrated that both the reliability and generalizability of the 

final constructed radiomic model are increased when applying feature reliability 

filtering before feature selection and modeling.  

This study demonstrated the impact of feature reliability filtering on the 

generalizability and reliability of the final constructed HNC radiomic models by 

comparing the performances under different filtering thresholds. To reduce the bias on 

patient cohort, prediction outcome, and classifier, four publicly HNC datasets, two 

prediction outcomes, and five classifiers were used to conduct the experiment. The 

results showed that pre-screening on the feature reliability before radiomic modeling 

could increase the reliability of the final selected features and the constructed model 

against image perturbations. Model generalizability also increased as the consistency 

of the model predictability between the training and testing datasets has improved, 

shown in Figure 22. Our results confirmed the hypothesis that image perturbations 

could provide additional knowledge in radiomic feature stability and improve the 

radiomic models' reliability and generalizability.  

Previous literature has discussed the positive impact of robust feature pre-selection 

on radiomic model generalizability and reliability. For instance, Haarburger et al. [72] 

envisioned that robust-only features are more likely to lead to a more reliable radiomic 

model. Vuong et al. [188] obtained a radiomic model with multi-institutional datasets, 

5.4. Discussion 
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which performed equally well as a model on a standardized dataset by including pre-

screening on the robust features. Our results confirmed their envision and findings with 

quantifiable measurements on the improvements in model reliability and 

generalizability, providing concrete evidence of increased model stability after feature 

reliability filtering.  

The improved model reliability can be explained by the reduced variability of the 

final selected features after pre-screening on feature reliability, as indicated by the 

statistically smaller mean feature ICCs. Model output variability is thus reduced as the 

final selected features are the direct model input. On the other hand, some non-robust 

features remained after feature selection without feature reliability filtering beforehand. 

They are more likely to be related to the outcome in the training cohort by chance and 

less likely to be predictive on the testing cohort or the entire population. Thus, the final 

constructed models tend to have high AUCs in training but low in testing. The high 

type I error caused by low feature reliability reduces the power of feature selection in 

identifying the truly predictive features and lowers the generalizability of the final 

constructed models. However, a statistically significant reduction (mean: 0.007, P-

value < 0.001) in LR prediction generalizability and testing AUCs (mean: 0.1, P-value 

< 0.001) with pre-selection of robust features on the HN-PETCT dataset is discovered, 

as shown in Figure 22. We found out that one non-robust feature - wavelet-

LHH_glszm_ZoneEntropy - demonstrated a significant correlation with LR in the entire 

HN-PETCT cohort with P-value < 0.001. Meanwhile, it is vulnerable against the image 

perturbations with an ICC of 0.36 (95% CI: [0.32, 0.42]) and thus removed from 

modeling, resulting in a reduction in overall model predictability and generalizability. 
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This raises the concern in the limited reliability of testing predictability in representing 

the model generalizability on the unseen population. To further explain the reduced 

testing performance, we have calculated the distribution of testing AUCs on the 

perturbed data and compared with the results on the original data for dataset HN-

PETCT and SVC, as visualized in Figure 23. Compared with DM predictions, the 

testing AUCs for LR demonstrated higher variabilities, and the original testing AUCs 

deviated more to the averaged AUCs under perturbations. Although the original testing 

AUCs increased statistically (ICC < 0.75: mean increase = 0.02, P-value < 0.01; ICC < 

0.95: mean increase = 0.019, P-value < 0.01) after feature reliability filtering for LR, 

the average testing AUCs showed the opposite trend. The high variability of testing 

AUCs on LR increases the risk of under-representative testing performance evaluation 

on the original data, which can be alleviated by feature reliability filtering. Our new 

findings also support Zwanenburge et al.'s recommendation of using the averaged 

feature values under image perturbations for modeling. 
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Figure 23. The comparison of the original and perturbed testing AUCs of HN-PETCT-

298 averaged over train-test splits for the prediction of DM (a) and LR (b) using SVC. 

The testing AUCs showed high consistencies between the original images and 

perturbed images for the prediction of DM while large deviations were observed for the 

prediction of LR. 
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Notably, we applied a comprehensive evaluation framework to assess model 

reliability and generalizability under repeated cross-validations. Instead of only 

splitting the entire cohort into a single training-testing pair and generating a single 

model for evaluation, multiple independent train-test splits can give statistical and 

unbiased evaluations of the impact of radiomic feature reliability on model reliability 

and generalizability. The main drawback of this method is the high heterogeneity in 

training and testing performance among iterations [189], which may reduce the 

statistical significance of our results. We used image perturbations to assess both 

radiomic feature reliability and model reliability. Although the scope of the image 

perturbations applied in this study might be limited, and the resulting feature reliability 

and model reliability is not guaranteed to be as sensitive as test-retest imaging and 

manual re-contouring, they are rather conservative simulations that impose no 

additional cost in medical resources and can be easily applied to any dataset. 

Comprehensive validations of the proposed perturbation method in the future are 

warranted to increase the credibility of this work. There are other limitations of this 

study. First, we only considered four datasets of HNC datasets from TCIA and our 

results may only be generalizable to HNC data. To further generalize the findings to 

other sites, it is encouraged to test our method on more cancer sites. Second, bias could 

arise from the single feature selection method, as different criteria and techniques in 

feature selection have different power in identifying truly predictive radiomics features. 

It is also suggested to validate our methods with different feature selection methods.  

The clinical task in this study also poses challenges to this study. As the definition of 

DM and LR would be affected by the interval of follow-up and diagnostic methods. 
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In this study, we aimed to assess the impact of feature reliability on the reliability 

and generalizability of radiomic models. We found that using robust features improved 

model reliability and strengthened model generalizability. This work highlighted the 

significance of radiomic feature reliability when it comes to developing reliable 

prediction models.  

  

5.5. Conclusion 
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The major contribution of this work to the radiomics field is the development of a 

perturbation-based framework for the evaluation of radiomic model reliability. This has 

added a brand-new dimension for radiomic model evaluation. Traditional radiomic 

model evaluation only determines the accuracy of model prediction with respect to the 

ground truth, whereas the reliability evaluation method developed in this study can also 

determine the consistency of model prediction when randomness is introduced in the 

image. Notably, the perturbation-based framework evaluates model reliability against 

random factors. Most of the reliability studies in the field of radiomics have focused on 

the reproducibility and reliability of controllable factors such as the scanner brand [133], 

image acquisition parameters [134], reconstruction kernels [135], and pre-processing 

parameters [136]. The effects of these factors on radiomic models can be minimised by 

carefully managing imaging protocols and harmonising image pre-processing. 

However, the effect of randomness cannot be minimised using current radiomics 

workflows. Therefore, the effect of randomness should be a priority when evaluating 

the reliability of radiomic models. Furthermore, the results reported in Chapter 3 

revealed vulnerabilities of radiomic models under the influence of random factors. In 

Chapter 3, model classification performance showed a low training and testing C-index 

with a perturbed dataset. It appeared that developing a model using only original 

features would lead to overfitting on randomness if the number of samples is limited. 

Without perturbed features, the model was unlikely to identify such an overfitting issue 

Chapter 6. Discussion 

6.1. Advances in Radiomics 
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even when an external validation cohort was used. The perturbation-based method can 

thus serve as a safeguard when evaluating the reliability of radiomic models against 

randomness. Chapter 3 provides a foundation for further investigations of radiomic 

model reliability and generalisability.  

 The standard method of evaluating the reliability of image-based biomarkers 

involves comparing feature values between test and retest scans. Test-retest scans 

reflect the true variations introduced by multiple scans, whereas image perturbation 

methods are based on simulation. Therefore, in Chapter 4, we checked whether 

perturbation-based methods could replace test-retest scans for evaluating radiomic 

model reliability. Despite observing systematically lower radiomic feature reliability 

using the test–retest method than using the perturbation-based method, model 

generalisability and reliability showed consistent pattern, where an increase of model 

generalizability and reliability as the ICC thresholds increased. Similar optimal 

generalisability and reliability were achieved by the classification model based on 

perturbation (𝑀𝑝 ) and test-retest (𝑀𝑡𝑟 ) scans at an ICC threshold of 0.9. Notably, 

increasing the ICC threshold to 0.95 significantly reduced the testing AUC and 

predicted ICCs for 𝑀𝑡𝑟. Our results directly prove that the perturbation-based method 

can replace the test–retest method for building a reliable radiomic model with optimal 

generalisability and reliability. Furthermore, a positive effect of high feature reliability 

on model reliability was observed upon increasing both the AUC and ICC of the test 

set. However, an extremely high feature ICC threshold of 0.95 drastically lowered 

model generalisability and reliability for the test-retest method. During feature selection, 

only five features remained repeatable for 𝑀𝑡𝑟 , none of which showed significant 
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univariate correlation with pCR during training. Therefore, the selection of reliable 

radiomics features needs to be investigated to obtain reliable and generalisable models.  

 Subsequent studies should aim to improve model reliability and generalisability 

using only reliable features. The results reported in Chapter 4 show that perturbed 

features can not only be used to evaluate radiomic model reliability but can also help to 

improve model generalisability by removing low-reliability features. Therefore, in 

Chapter 5, we aimed to thoroughly evaluate the effect of radiomic feature reliability on 

radiomic model reliability and generalisability. Our results showed that removing low-

robustness features during radiomic model development substantially improved model 

generalisability to unknown dataset. We used four publicly available datasets to verify 

the above. Thus, these results show that removing low-reliability radiomics features 

during radiomic model development improve model generalisability.  

 Five publicly available datasets from an open respiratory TCIA were included this 

to improve the transparency and replicability of our conclusions. These datasets 

minimise barriers to access and to testing the reproducibility of experiments. 

Furthermore, we repeated our experiments on four datasets, two clinically relevant tasks 

and five classic classification algorithms. All of the experimental results were 

consistent, strengthening our results and confirming the positive effect of perturbations 

in radiomic modelling. 

The conclusions of this thesis are not limited to the radiomics or machine learning 

fields but have strong implications for deep learning and medical image analysis as well. 

Perturbations in radiomics are analogous to augmented data in deep learning. Instead 
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of using augmented or perturbed data to train a deep learning model and improve 

generalisability [190],  we used augmented or perturbed data to quantify feature 

reliability and then enhance generalisability by removing low-reliability features. 

Similar results have been achieved with different approaches. Importantly, this implies 

that both fields can cross-reference each other. For example, augmented images can be 

used to evaluate the reproducibility of deep learning models. In addition, robust deep 

learning models can be expected to reproduce similar results. Such methods can 

enhance the explainability of end-to-end models as the inputs and outputs are both 

images. For instance, if a model can exactly reproduce performance after the translation, 

rotation or cropping of input images, then the model is deemed translation- or rotation-

invariant and can partially explain the outputs of deep learning models. 

The main limitation of this study is that the method cannot be implemented using 

an automated pipeline or software. Although Zwanenburger et al. [155] have 

thoroughly described the mathematical details of the perturbation-based method, its 

implementation requires some training in programming and testing. However, the 

purpose of this study was to not only demonstrate the potential of perturbation in 

radiomics studies but also highlight its generalisability to other studies. Although the 

codes used in this thesis and other studies have been shared on GitHub, it may be 

difficult for others to implement this technique. As in other radiomics studies, the core 

objective of our work was to extract radiomics features within an ROI; most researchers 

achieve this using integrated packages in Python, such as PyRadiomics, or in MATLAB, 

6.2. Limitations 
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such as Radiomics Toolbox. Only when the toolbox or integrated packages are made 

more accessible and user-friendly can the scope of radiomics research expand. One 

solution to this problem is straightforward packaging by the software, which could 

allow more uses with different levels of experience to use the technique.  

Another limitation of our method is that perturbation is not a comprehensive 

simulation of all of the variations possible in a radiomic workflow. Perturbations can 

only simulate patient position variations, contour variations and resampling errors and 

not variations such as in scanners, reconstruction protocols and inter-observer 

segmentations. Therefore, the perturbation-based method can only be used to evaluate 

a subset of variations. However, as there are currently no other alternatives to the test–

retest method for such evaluations, the perturbation-based method is the next best 

option.  
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In this study, we have successfully developed a radiomic model reliability 

evaluation method using perturbation and validated the improvement of radiomic 

models’ reliability and generalizability with removing the low reliable features from 

radiomic modeling. The method proposed is dataset-specific which does not rely on 

other medical or human resources to achieve, it takes the randomization factors into the 

radiomic workflow and improve the radiomic model’s reliability against 

randomizations. To the best of our knowledge, it is the first time the radiomic model 

reliability is studies in a simulation setting, and it is expected to be one of the solutions 

facilitating radiomic model reliability problem.  

  

Chapter 7. Conclusion 
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