

Copyright Undertaking

This thesis is protected by copyright, with all rights reserved.

By reading and using the thesis, the reader understands and agrees to the following terms:

1. The reader will abide by the rules and legal ordinances governing copyright regarding the
use of the thesis.

2. The reader will use the thesis for the purpose of research or private study only and not for
distribution or further reproduction or any other purpose.

3. The reader agrees to indemnify and hold the University harmless from and against any loss,
damage, cost, liability or expenses arising from copyright infringement or unauthorized
usage.

IMPORTANT

If you have reasons to believe that any materials in this thesis are deemed not suitable to be
distributed in this form, or a copyright owner having difficulty with the material being included in
our database, please contact lbsys@polyu.edu.hk providing details. The Library will look into
your claim and consider taking remedial action upon receipt of the written requests.

Pao Yue-kong Library, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong

http://www.lib.polyu.edu.hk

IMPROVING THE SECURITY AND

RELIABILITY OF APPLICATION SYSTEMS

WITH BLOCKCHAIN TECHNOLOGY

ZHONGHAO LIU

MPhil

The Hong Kong Polytechnic University

2023

The Hong Kong Polytechnic University

Department of Computing

Improving the Security and Reliability of Application

Systems with Blockchain Technology

Zhonghao Liu

A thesis submitted in partial fulfillment of the requirements for

the degree of Master of Philosophy

January 2023

Abstract

As the backbone of cryptocurrencies, blockchain technology records data in a chain

of blocks and brings features, including decentralization and immutability, by coop-

erating with other core technologies. Many researchers start to explore the combi-

nation between blockchain technology and application system for improving system

security and reliability. In this thesis, we focus on two application systems of the

electronic voting system (E-voting system) and audit log system, and improve their

security and reliability by utilizing blockchain and related technologies.

Firstly, we note that existing E-voting systems cannot cover five core require-

ments in E-voting, i.e., auditability, privacy, authentication, correctness, and un-

reusability, which make them unpractical in the reality. We propose a Double

Blockchain-based E-voting (DBE-voting) system, which consists of a private blockchain

and a public blockchain. In the DBE-voting system, the voter information is only

recorded in the private blockchain for further auditing and the voting results are

recorded in both blockchains. This design ensures the voter’s privacy can be pro-

tected in the private blockchain while the voting results can be queried in the public

blockchains for verifying the correctness of the election process. Moreover, the bal-

lot recorded in both blockchains is signed with a valid linkable ring signature to

ensure authentication and unreusability. We propose an on-chain and off-chain hy-

brid storage mechanism to ensure the consistency and correctness of voting data in

the private blockchain and public blockchain. To evaluate our system, we implement

i

a prototype of our system by Hyperledger Fabric. Experimental results demonstrate

that the throughput of our system can reach 29 transactions per second when the

block size is 512 KB. Furthermore, the security analysis shows that DBE-voting is

the first blockchain-based system that can meet all five requirements for E-voting

simultaneously.

Secondly, we find that current audit log systems have a requirement of trusting

the logger and auditor which may be compromised. Their centralized storage of

log files also can cause single-point failure, preventing them from achieving data

integrity. We propose a blockchain-based audit log system to address the above

drawbacks while ensuring data integrity. We propose a general threat model in

which the logger and auditor can both be untrusted and the log provider is trusted

only when it generates log files. Under this threat model, we design a blockchain-

based audit log system with multiple loggers and auditors to protect data integrity

that can tolerate a certain number of malicious nodes. Our system adopts an effi-

cient integrity proof generation method, which generates a sub-Non-Fungible Token

(sub-NFT) for each log file and keeps it on the blockchain as the integrity proof.

This method saves blockchain space and resolves the single-point failure problem

by outsourcing log files to a distributed file system, the InterPlanetary File System

(IPFS). To evaluate our system, we implement a prototype by Hyperledger Fabric.

The results demonstrate that our system is reliable to tolerate one-third of colluded

loggers and auditors. Our proof generation method can save approximately 50%

storage space for Hyperledger Fabric compared with other blockchain-based audit

log systems. Moreover, we provide security analysis to show that our system ensures

log file data integrity under the general threat model.

ii

Acknowledgments

Many people have given me valuable help in my thesis writing, including my super-

visor, my colleagues, my parents, and my friends.

Firstly, I am deeply indebted to Prof. Bin Xiao, my supervisor, who guide me

throughout the writing of the thesis. He took me through all the stages of writing

this thesis. This thesis would not be in its current form without his consistently

inspiring guidance.

Secondly, I would also like to thank my colleagues, Mr. Xinwei Zhang, Mr.

Laphou Lao, Mr. Jiaping Yu, Mr. Rui Song, Mr. Yanjie Li, Prof. Shang Gao, and

Mr. Zecheng Li who have offered me the great support for both my research and life

at PolyU. Thank you for inspiring me during my research and helping me during

my school life. It is my fortune and honor to work with such great colleagues and

friends.

Finally, my thanks would go to my beloved family for their loving consideration

and great confidence in me all through these years. I would also like to thank my

other friends who have given me generous support and helpful advice over the past

few years.

iii

Table of Contents

Abstract i

Acknowledgments iii

List of Figures viii

List of Tables xi

1 Introduction 1

1.1 Thesis Contribution . 2

1.1.1 Privacy-preserving and Auditable blockchain-based E-voting

System . 2

1.1.2 Secure and Reliable Audit Log System 3

1.2 Thesis Outline . 4

2 Background 5

2.1 Blockchain and Hyperledger Fabric 5

2.2 Linkable Ring Signature . 9

2.3 InterPlanetary File System (IPFS) 9

iv

2.4 Non-Fungible Token (NFT) . 10

3 DBE-voting: A Privacy-preserving and Auditable Blockchain-based

E-voting System 11

3.1 Introduction . 11

3.2 Related work . 15

3.2.1 Conventional E-voting researches 15

3.2.2 Blockchain-based E-voting researches 16

3.3 The Proposed DBE-voting . 18

3.3.1 System Overview . 18

3.3.2 Election Process . 20

3.4 Data Consistency in DBE-voting . 26

3.4.1 Ensuring the transactions are recorded in private blockchain . 26

3.4.2 Ensuring the transactions are recorded in public blockchain . . 28

3.4.3 Verifying the data consistency before generating the receipt . . 28

3.5 Evaluation . 30

3.5.1 Experiments . 30

3.5.2 Security analysis . 38

3.6 Conclusion . 41

4 A Secure and Reliable Blockchain-based Audit Log System 43

4.1 Introduction . 43

4.2 Related Work . 47

v

4.3 System Roles and Threat Model . 48

4.3.1 System Roles . 48

4.3.2 Threat Model . 49

4.3.3 System Notations . 51

4.4 System Method Description . 52

4.4.1 Logging Process . 53

4.4.2 Auditing Process . 57

4.5 Performance Evaluation . 59

4.5.1 Setup . 60

4.5.2 Methodology . 60

4.5.3 Encryption and Decryption Performance 61

4.5.4 Upload and Integrity Proof Generation Performance 64

4.5.5 Integrity Proof Performance 65

4.5.6 Blockchain Scalability . 67

4.6 Security Analysis . 68

4.6.1 Data Privacy . 68

4.6.2 Data Integrity . 70

4.7 Conclusions . 75

5 Conclusions and Suggestions for Future Research 77

5.1 Conclusion . 77

5.2 Suggestions for Future Research . 79

vi

5.2.1 System Performance Improvement 79

5.2.2 Robustness and Usability . 80

5.2.3 More General Threat Model in Audit Log System 80

References 81

vii

List of Figures

2.1 The blockchain data structure. 6

2.2 An example of Hyperledger Fabric network. This figure shows some

characteristics in a Hyperledger Fabric network that peer node in

one network can contain multiple blockchians and install different

chaincodes. 6

2.3 Execute-order-validate transaction process. This is the main process

by which Hyperledger Fabric reaches consensus. 7

3.1 The proposed DBE-voting architecture. This figure shows the main

structure of the entire system. 18

3.2 Transaction flow of signed ballot in the private blockchain. This figure

shows the detail of transaction process in Fig. 3.1. The fabric SDK

can be viewed as a "gateway" file installed in the vote server to help

the vote server transact with the private blockchain. The endorser

and orderer are nodes in Hyperledger Fabric. Endorser processes the

transaction by invoking the chaincode, and orderer generates new

block to store it. 23

3.3 The receipt that voter received when the ballot was recorded in

blockchains successfully. 24

viii

3.4 The data consistency process in the proposed system. This figure

shows the detail of data consistency process in Fig. 2. The vote

server requires the voter to revote if the transaction fails in the pri-

vate blockchain. It stores the queryable data in the controlled off-

chain database before transacting with the public blockchain. The

queryable data is recaptured by the vote server, and if the transac-

tion fails, it is recreated in the public blockchain. Finally, the vote

server verifies the data consistency between the private blockchain

and the public blockchain. 26

3.5 The impact of block size parameter on system performance. (a) The

impact of block size on throughput. (b) The impact of block size on

transfer rate. (c) The impact of block size on time taken for test. . . 31

3.6 The impact of data consistency process on system performance. (a)

The impact of data consistency process on throughput. (b) The im-

pact of consistency process on transfer rate. (c) The impact of con-

sistency process on time taken for test. 32

3.7 The impact of endorsement policy on system performance. (a) The

impact of endorsement policy on throughput. (b) The impact of

endorsement policy on transfer rate. (c) The impact of endorsement

policy on time taken for test. 35

3.8 The impact of committer on system performance. (a) The impact of

committer on throughput. (b) The impact of committer on transfer

rate. (c) The impact of committer on time taken for test. 36

4.1 The comparison of the threat model of conventional audit log systems

with that of our system. (a) The threat model in conventional audit

log systems. (b) the threat model in our system. 50

ix

4.2 The proposed blockchain-based audit log system model. 52

4.3 An example of a key-value pair for a sub-NFT recorded in Hyperledger

Fabric. 54

4.4 The conclusion of NFT and sub-NFT generation processes. (a) The

NFT generation process in Ethereum. (b) The sub-NFT generation

process in our Hyperledger Fabric based system. 55

4.5 The generation process of CID. 57

4.6 The time taken for separated files encrypt and decrypt. 62

4.7 The time taken for combined files encrypt and decrypt. 62

4.8 The time cost and upload rate of log files encrypted by AES-128. . . 63

4.9 The time cost and upload rate of log files encrypted by AES-256. . . 64

4.10 The time of integrity proof for log files encrypted by AES-128. 65

4.11 The time of integrity proof for log files encrypted by AES-256. 65

4.12 The time of generating cid for different log files. 66

4.13 The size of block when it stores log files or related integrity proofs

(the maximum block size is fixed and large enough). 67

4.14 Integrity proof time for log files encrypted with AES-128 under one-

third collusion attack. The deep blue bars represent the performance

under a normal situation and the light blue bars represent the per-

formance under attack. 73

x

List of Tables

3.1 Comparison between related research. 15

3.2 Example of transaction in public blockchain and record in off-chain

database. (The TxID, height and create time are generated by the

private blockchain) . 23

4.1 Comparison between NFT and sub-NFT. 55

4.2 Brief introduction of log files. 60

xi

Chapter 1

Introduction

With the boom in cryptocurrencies, blockchain technology as the backstop tech-

nology has attracted people’s attention. Blockchain technology was first proposed

and implemented with Bitcoin in 2008 by Satoshi Nakamoto. The data structure of

the blockchain is an append-only chain structure that each block has a hash of the

previous block and chain together. This data structure makes the block with packed

data hard to modify or delete. Meanwhile, by comprising several other technologies,

such as digital signature, cryptography, and distributed network consensus algo-

rithm, blockchain can work in a decentralized environment and all the transactions

that happened and data recorded in this decentralized manner can be immutable

and auditable.

While blockchain technology is broadly used in cryptocurrencies, the researchers

believe it can be implemented in diverse applications rather than just cryptocurren-

cies. Since the type of transaction data recorded in blockchain can be various, it

can provide immutability, auditability, and many other properties for these differ-

ent data. The blockchain is prepared to transform and improve the security and

reliability of a wide range of applications, including supply chain and medical data

management.

1

Chapter 1. Introduction

This thesis takes the electronic voting system (E-voting system) and audit log

system as the research objects and we aim to improve the security and reliability of

the E-voting system and audit log system with state-of-art blockchain technology

and other related technologies.

1.1 Thesis Contribution

In this thesis, we propose several improvements in the security and reliability of the

E-voting system and audit log system.

1.1.1 Privacy-preserving and Auditable blockchain-based E-

voting System

Blockchain technology can construct a distributed and trusted ledger, which can be

used for E-voting systems to ensure the security of voting data and improve gov-

ernment credibility. However, existing blockchain-based solutions cannot cover five

core requirements in E-voting, i.e., auditability, privacy, authentication, correctness,

and unreusability, which make them unpractical in the reality.

We propose a Double Blockchain-based E-voting (DBE-voting) system and this

system contains two blockchains: private blockchain and public blockchain. Both

two blockchains record ballot data, however, the voter’s information is only recorded

in the private blockchain and only for further auditing (auditability). The private

blockchain does not reveal personal information to the public and it can protect

the voter’s privacy. The voting results can be queried in the public blockchain

and the public can verify the correctness of the election process. Meanwhile, to

restrict multiple voting (unreusability) and guarantee the voting right of valid vot-

ers (authentication), the votes are signed with valid linkable ring signatures before

2

1.1. Thesis Contribution

being recorded in two blockchains. For consisting the voting data recorded in two

blockchains, we propose an on-chain and off-chain hybrid storage mechanism to

ensure the consistency and correctness of these data. The security analysis shows

that our privacy-preserving and auditable DBE-voting system that can meet all five

requirements.

1.1.2 Secure and Reliable Audit Log System

Log files are widely used in digital forensics. It is important to ensure the data

integrity of log files for auditing. However, current audit log systems have a re-

quirement of trusting the logger and auditor which may be compromised. Their

centralized storage of log files also can cause single-point failure, preventing them

from achieving data integrity.

We propose a blockchain-based audit log system to ensure data integrity under

a general threat model and resolve the concern of centralized storage. We build a

general threat model which assumes the logger and auditor are untrusted and the

log provider is trusted only when it generates log files. Under this threat model,

we set multiple loggers and auditors in our system that can tolerate a certain num-

ber of malicious nodes while protecting data integrity. To handle the single-point

failure and blockchain limited scalability problem, we propose an efficient integrity

proof generation method. During the integrity proof generation process, our system

generates a sub-Non-Fungible Token (sub-NFT) for each log file and the blockchain

only stores small-sized sub-NFT as the integrity proof. The log files are outsourced

to a distributed file system, the InterPlanetary File System (IPFS), to resolve the

single-point failure problem. Through these designs, our audit log system can be

more secure and reliable, save blockchain storage space, and resolve the single-point

failure problem.

3

Chapter 1. Introduction

1.2 Thesis Outline

The remainder of this thesis is structured as follows. Chapter 2 introduces the main

technologies we used in this thesis. Chapter 3 presents our work on DBE-voting.

The work of our blockchain-based audit log system is proposed in Chapter 4. Finally,

we conclude the thesis and give our suggestions for future research in Chapter 5.

4

Chapter 2

Background

In this chapter, we take an overview of the main technologies used in our thesis.

We first introduce Hyperledger Fabric, an advanced blockchain technology that is

utilized in both two application systems. Then, we discuss the cryptography applied

in the DBE-voting system. Finally, we introduce other technologies that are used

in our audit log system.

2.1 Blockchain and Hyperledger Fabric

The structure of blockchain is an append-only data structure. As shown in Fig. 2.1,

the transactions and data are packed in a block, and the block links the previous

block by solving the mining puzzle and storing the previous block hash value. If

a new block wants to link to the blockchain, it must reach a consensus in a dis-

tributed network that nodes in the network approve the block and append it to

their local blockchain. This design guarantees immutability. The type of blockchain

includes public blockchain, private blockchain, and consortium blockchain. Pub-

lic blockchains are widely used in cryptocurrency, for example, Bitcoin [48] and

Ethereum [64]. They reserve read and write access to any user who joined the

5

Chapter 2. Background

Previous Hash Previous Hash Previous Hash

BlockHashBlockHashBlockHash

Data DataData

Figure 2.1: The blockchain data structure.

Pi Peer i

Blockchain i

Chaincode i
L1 S1

P1

S2 L1 L2

S1 S3

P3

L1

P2

Figure 2.2: An example of Hyperledger Fabric network. This figure shows some

characteristics in a Hyperledger Fabric network that peer node in one network can

contain multiple blockchians and install different chaincodes.

network. Private blockchains are the opposite of public blockchains. They only al-

low authorized participants to hold read and write access. Consortium blockchains

may leave the read access to the public. They select a set of nodes to operate the

consensus process [23] and allow these participants to hold write access. The node

topology is decided by the consensus policy and can be changed if the consensus

policy updates.

We use Hyperledger Fabric, a consortium blockchain, to build our E-voting

system and audit log system. As shown in Fig. 2.2, Hyperledger Fabric allows

different peer nodes to operate the same blockchain with different chaincodes or

operate different blockchains with their related chaincodes in one system. It designs

a novel consensus mechanism to ensure the correctness of executing a chaincode.

6

2.1. Blockchain and Hyperledger Fabric

client endorser 1 endorser 2

o
rd

e
rin

g se
rvice

s

orderers committer

invoke

simulating

simulating

result
collection

block
validation

block
validation

block
validation

commit commit commit

Figure 2.3: Execute-order-validate transaction process. This is the main process by

which Hyperledger Fabric reaches consensus.

Meanwhile, compared with the public blockchain platform (e.g., Bitcoin, Ethereum),

Hyperledger Fabric is better suited to serving large-scale modern systems since it

can achieve higher throughput and lower confirmation latency [6]. These properties

improves the system’s security, protects users’ privacy and supports the design of

our systems.

We introduce the key components shown in Fig. 2.2 and the consensus mecha-

nism in Hyperledger Fabric.

Peer: Peers are the foundation of the entire blockchain network. It is the

customized operation node in the Hyperledger Fabric system. It stores and updates

the blockchain locally, and it can install chaincode to execute transactions. The

peer calls the endorser if it can execute the transaction, or it calls the committer if

it only stores and updates the blockchain. In addition. all peers can validate the

transactions and update the blockchain.

Orderer: Different from peer nodes, the orderers are not responsible for exe-

cuting and validating the transaction. They only focus on receiving the transaction,

generating block, and sending it to peer nodes.

7

Chapter 2. Background

Chaincode: The smart contract installed in peers is also called chaincode in

Hyperledger Fabric. As the smart contract, the chaincode defines the logic and

function of a specific network, and the client creates the transaction by invoking a

function in the chaincode. However, the chaincode only be executed based on the de-

signed endorsement policy, which may not be a decentralized executing environment

and could be updated.

Channel: Hyperledger Fabric allows multiple blockchains to exist in one sys-

tem, and these blockchains are all connected to the same ordering service. Each

such blockchain is called a channel and may have different peers as its members.

Endorsement policy: It is a boolean expression to guide peers on how to

determine whether the transaction is approved or not. It is defined in the endorsers

when instantiating the chaincode in endorsers. It could be changed and updated

during the system process.

Execute-order-validate architecture: The Hyperledger Fabric uses execute-

order-validate architecture to help the system reach the consensus. In Fig. 2.3,

the consensus mechanism can summarize into three phases: executing phase, the

ordering phase, and the validation phase. In executing phase, a client sends a trans-

action to endorsers specified by the endorsement policy. The endorsers simulate

the transaction and return the simulation result to the client. After execution and

transactions enter the ordering phase. In this phase, all transactions are totally

ordered sequence, packed in a block, and the block is broadcast to all peers. Finally,

each peer validates the changes caused by the new block and the consistency of the

execution in the validation phase.

Fabric Software Development Kit: To address some of the original re-

quirements that customers face directly in blockchain networks, the Hyperledger

Fabric design the Software Development Kit (SDK) to support the developers with

powerful and convenient API.

8

2.2. Linkable Ring Signature

2.2 Linkable Ring Signature

This technology is not directly related to Hyperledger Fabric, but it is an essential

component in our E-voting system for helping to satisfy some requirements. Unlike

traditional public key encryption, which could only encrypt the content, the ring

signature can hide the origin and destination by increasing the single public key to

a set of keys. Moreover, the linkable ring signature applies the linkability in the

ring signature by implementing the one-time keys or other methods in the public

key ring. The linkability could limit the same real public key sign the transaction

once, and even it hides in the public key vector. This property not only protects the

users’ privacy but enhances system security. For example, Monero [50], a strongly

decentralized anonymous cryptocurrency, uses the linkable ring signature to prevent

the double-spending attack.

2.3 InterPlanetary File System (IPFS)

The IPFS is a distributed file system where peers are connecting to each other to

store files [9]. IPFS synthesizes successful design principles from previous peer-

to-peer systems, including Distributed Hash Tables (DHTs), BitTorrent, Git and

Self-Certified File Systems (SFS). It provides a new platform for distributing and

storing large data.

IPFS nodes store IPFS objects locally and connect and transfer objects. These

objects represent files (blob) or other structures (list, tree, commit). Files may be

separated into several objects if they are too large. On top of these objects, IPFS

builds Merkel DAGs, a directed acyclic graph, to link these objects. Merkel DAGs

bring one of the most important properties is content addressing. All contents are

uniquely identified by their multihash checksum which is also called content identi-

fication (CID). Users can get a file that has been published on IPFS by inputting

9

Chapter 2. Background

the related CID to any IPFS node. All content is verified with checksum. If data is

tampered with or corrupted, IPFS can detect it and the user can perceive it.

In our audit log system, we outsource log files to IPFS. Its distributed storage

mechanism helps us release the concern of single-point failure. The CID generated

by IPFS can be treated as integrity proof, stored on the blockchain, and verified by

our system’s auditor.

2.4 Non-Fungible Token (NFT)

NFT is a cryptocurrency [26] that can be defined by Ethereum’s smart contracts [64].

According to Ethereum’s token standard, we can distinguish each token with an

identifiable sign. NFT can bond with virtual or digital properties as their unique

identifications, which makes it impossible to trade equivalently like standard coins

such as Bitcoin [48]. Specifically, creators can apply NFTs to smart contracts to

prove ownership of digital assets such as audio, video, images, artworks [28], etc.,

and provide exchange opportunities

In this thesis, we extract the property of NFT in Ethereum and realize it in

our audit log system called sub-NFT. In the current stage, sub-NFT is stored in

Hyperledger Fabric, it can prove the existence of one specific object and we use this

property as a log file integrity proof.

10

Chapter 3

DBE-voting: A Privacy-preserving

and Auditable Blockchain-based

E-voting System

3.1 Introduction

Voting is the embodiment of justice and democracy, and a tool for citizens to use

their rights legally. In a traditional voting scheme, the entire election is processed

by humans, which is resource-intensive and prone to human error [33]. Some gov-

ernments have replaced traditional paper voting with electronic voting (E-voting)

in recent years to make the voting process more efficient. Voters can register and

vote through their electronic devices, and the records are received by the govern-

ment server and saved in the database. The civil servants can launch the computer

program to traverse the database and generate the final result. However, the tradi-

tional E-voting scheme with security problems, such as data tampering and privacy

leaking, leads many governments to reject this method [29].

Since blockchain technology can provide a distributed and immutable ledger to

11

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

store data, this technology has been widely used in many fields, e.g., healthcare [8],

Internet of Things [63] and supply chain [56]. Recently, the blockchain has also been

introduced to E-voting system for addressing the security problems in traditional

E-voting systems, which called blockchain-based E-voting (BE-voting) [35]. In the

BE-voting systems, the electronic ballots are recorded in the immutable ledger and

distributed across the blockchain network to improve the data authentication, and

voters’ identities are encrypted by cryptography when they make a transaction with

the BE-voting system to protect voters’ privacy. Without loss of generality, for a

reliable BE-voting system, it should satisfy the following core requirements:

1) Auditability : Only registered and verified voters can vote, and the records

should keep who are involved in the voting;

2) Privacy : The voter’s personal information and the voting process will be kept

in private;

3) Authentication: The ballot must be generated by valid voters and nobody can

change them;

4) Correctness : The recording and counting processes should execute correctly;

5) Unreusability : A valid voter can only vote once;

Previous approaches can meet some requirements. For the privacy, most exist-

ing work encrypts the voters’ identity [32,35,44,49,61,67] or customizes the system

framework [36, 39]. They implement the digital signature technique (e.g., blind

signature and ring signature) to improve the authentication and enhance voters’

privacy. For the correctness of the recording and counting process, some approaches

program these processes in the smart contract [20, 35, 36, 49, 61], and others design

the voting protocol [31, 39]. For the unreusability, a small number of researchers

apply the E-wallet [35] or ring signature [61] or design algorithms [32, 65] or zero-

knowledge authentication [49] to restrict voters from voting multiple times. For the

12

3.1. Introduction

auditability, only a few studies attempt to achieve it through utilizing the smart

contract [20] or customizing the system framework [65] to involve voters’ identi-

ties in the records. However, the existing BE-voting systems do not meet all the

requirements, which remains a concern for the voters and delays the adoption of

E-voting.

Meeting all five requirements in a BE-voting system is still a huge challenge.

For example, if ballot recorded in a single blockchain contains voter personal infor-

mation for auditing purposes and is kept confidential for privacy protection, voters

and public cannot verify the correctness of election process since the data are en-

crypted and they are not allowed to access the system. Similarly, if the system

satisfies the privacy and correctness, the auditability may not be satisfied. The sin-

gle blockchain, which records voting data without voter personal information, can

be accessed by anyone to verify the correctness. However, without the related voter

personal information, the system cannot prevent the impersonating attack [4], audit

the election result, and investigate the legal issues.

In this chapter, we propose a Double Blockchain-based E-voting (DBE-voting)

system, including a private blockchain and a public blockchain to meet all five

requirements. Both two blockchains record the same voting data. The private

blockchain also records voters’ encrypted public key, voting location, and device pa-

rameters for further auditing, and no one will be able to access the private blockchain

until the election is finished for privacy protection. The public blockchain allows

voters to query their ballots and supervise the election tallying process to verify

the correctness of the election. Besides, the linkable ring signature [58] is used to

authenticate and encrypt the voters’ identification and restrict voters from voting

multiple times.

Meanwhile, cooperating with two isolated blockchains brings another challenge,

which is maintaining the data consistency between two blockchains, because of the

low scalability [10] and lack of interoperability [45] in the blockchain network. We

13

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

cannot require the voter to revote if the transaction only fails in the public blockchain

since the valid data recorded in the private blockchain cannot be reversed.

We propose an on-chain and off-chain hybrid storage mechanism to overcome

this challenge. The off-chain database is set up to store the public blockchain trans-

action data and server can retrieve it to remake the transaction only with the public

blockchain if the transaction fails in it. Transaction delay between two blockchains

is allowed by comparing the block height and timestamps in these two blockchains.

In general, we present a privacy-preserving and auditable DBE-voting system

that can meet all security requirements. The main contributions in this chapter can

be summarized as follows:

(1) Double Blockchain-based E-voting System.We propose a novel DBE-

voting system, which consists of a private blockchain and a public blockchain,

to meet all the requirements for a reliable E-voting system.

(2) Cross-chain Data Consistency. We propose an on-chain and off-chain

hybrid storage mechanism, which ensures data consistency between the private

blockchain and public blockchain.

(3) System Implementation and Security Analysis. We develop a prototype

based on Hyperledger Fabric [6] and evaluate its performance. The results

demonstrate that our system has a good performance when the block size is

512 KB, and the data consistency method has not become the bottleneck at

the current stage. The security analysis proves that our system can satisfy all

the requirements.

The remainder of this chapter is structured as follows. Section 3.2 provides

a literature review of the existing BE-voting research. The system model and the

data consistency method is described in section 3.3 and section 3.4. Section 3.5

14

3.2. Related work

Table 3.1: Comparison between related research.
Relevant Literature Auditability Privacy Authentication Correctness Unreusability Implementation

Ethereum-based E-voting system [35] ×
√ √ √ √

×

Permissioned BE-voting system [31] × × ×
√

×
√

zVote [49] ×
√ √ √ √ √

Decentralized BE-voting protocol [32] ×
√ √

×
√ √

Large-scale BE-voting protocol [61] ×
√ √ √ √ √

Prêt à Voter E-voting method [39] ×
√ √ √

×
√

Permissionless BE-voting protocol [44] ×
√ √

× × ×

BroncoVote [20]
√

×
√ √

×
√

BE-voting system in P2P network [65]
√

×
√

×
√

×

Privacy-preserving BE-voting protocol [67] ×
√ √

× × ×

Decentralized BE-voting system [36] ×
√ √ √

× ×

Our System (DBE-voting)
√ √ √ √ √ √

reports the evaluation results and analyses the requirements. Finally, we conclude

this paper in Section 3.6.

3.2 Related work

In literature, there exist some research that try to realize a reliable E-voting system.

We first introduce some conventional E-voting system. Then, we introduce some

blockchain-based E-voting system based on the number of satisfying requirements.

3.2.1 Conventional E-voting researches

In 1981, Chaum [15] firstly proposed using the public key cryptography to encrypt

the ballot, which allowed the voters voting anonymously. After that, many countries

have used various E-voting systems since 21st century. In 2000, the United States

became the first country to use the E-voting for a political election [25]. Between

2002 and 2007, the number of countries using E-voting system increased, including

the United Kingdom (2002), Estonia (2005) and Canada (2006) [25,30,46]. In 2008,

15

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

Ben Adida developed the first web-based, open-audit voting system, Helios [4,],

which lays the foundation for the future E-voting applications. Helios, in 2009, held

a presidential election in Belgium’s Université Catholique de Louvain [40]. Based

on the Helios’s innovations, the United Stated company Voatz [2] proposed the first

blockchain-based E-voting application in 2014. And, in 2018, the Voatz made a pilot

project in West Virginia, allowing the voters to vote from oversea in the midterm

election [40].

3.2.2 Blockchain-based E-voting researches

Ngyuen et al. [49] propose a BE-voting that satisfied most of the requirements for

a reliable system, but it did not meet all of them. The authors wrote the smart

contract in the system to maintain the correctness of the voting process. They

designed a registration process to verify voters’ identities, and the non-interactive

zero-knowledge proof was used to protect the voters’ privacy. They utilized zero-

knowledge authentication to restrict voters’ voting multiple times. However, they

did not provide the auditability that the records did not keep who were involved

in them and did not mention what type of blockchain to realize and evaluate the

entire system. Wang et al. [61] proposed a blockchain-based voting protocol for

large-scale voting, and this design met most of the requirements. They designed the

registration process to verify the voters’ identities and applied the ring signature to

ensure authentication, unreusability and to protect voters’ privacy. They utilized

the smart contract and public verification mechanism to ensure the correctness of

the recording and tallying process. However, even if they launched experiments to

evaluate the performance of the protocol, the system architecture in this research

was unknown, and the audit process was unclear.

These two are the most comprehensive work in the existing research since they

satisfy the most requirements except the auditability, and the detail of comparison

16

3.2. Related work

is shown in Table 3.1.

According to Table 3.1, only a little work satisfy the auditability. Yi [65] pro-

posed technology to employ blockchain in the E-voting system. He designed three

models in his system to meet the requirements. The synchronized model utilized the

distributed ledger technology to avoid the forgery of votes and store the voter ID

with the corresponding ballot to provide the auditability. The user credential model

applied the elliptic curve cryptography to ensure authentication. The withdrawal

model allowed voters to replace their votes and accept the latest vote. However,

the voters’ privacy was a problem since the voter ID could be exposed to the ad-

versary, and he did not provide the correctness. Dagher et al. [20] programmed

three Ethereum smart contracts to satisfy the requirements. The registrar contract

verified the voter identity and ensured the authentication. The creator contract and

voting contract provided the auditability and correctness. However, the voting con-

tract stored the voter’s Ethereum address in the record and threatened the voter’s

privacy. Since Ethereum is a public blockchain network, voters’ account and their

transactions were directly exposed to the public during the election, and they did

not provide the unreusability.

As shown in the above work and the Table 3.1, we conclude that the exist-

ing research do not provide a comprehensive BE-voting system to satisfy all the

abovementioned requirements. Some proposed designs only consider a couple of

requirements and implement them in the E-voting system. Some work only in-

troduce the E-voting system’s requirements and propose the design, but they do

not implement any E-voting system. The DBE-voting system we proposed satisfies

all the requirements mentioned above, and we implement a prototype to test its

performance.

17

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

Vote Server

Voter

Query Server

Identity Verifier
Private Blockchain

Public Blockchain

Endorsement

Endorsement

3. Verify

2
. V

o
te

1
. R

eg
is

te
r

5
. Q

ue
ry

4.1. Valid vote

5.1. Result

Figure 3.1: The proposed DBE-voting architecture. This figure shows the main

structure of the entire system.

3.3 The Proposed DBE-voting

This section will devise a double blockchain-based electronic voting system, which

satisfies and optimizes identified requirements and considerations. In the following

subsection, we place the roles and components for implementing an E-voting system.

Then, we describe the entire voting process and elaborate on the data process in

each phrase.

3.3.1 System Overview

The system can divide into five different parts, and each one of them is responsible

for the specific task in one election. We start by describing each system part, followed

by the election process. As shown in Fig. 3.1, some system parts have more than

one character, and we unite them together. Each part of the proposed system is

indispensable and relatively independent.

Identity Verifier, Vote Server, and Query Server: Verifying the voter’s

18

3.3. The Proposed DBE-voting

identity, launching the election, receiving the vote from the valid voter, sending the

vote tho the blockchain, querying the vote stored in the blockchain, and announcing

the result.

This system part manages the lifecycle of the election. Identity verifier registers

and verifies the voters’ identities, which satisfies our E-voting system’s first part of

auditability. It supplies the API for the valid voter to generate the linkable ring

signature locally and protect their privacy. The vote server verifies the validity and

linkability of each voter’s ring signature to satisfy the authentication and unreusabil-

ity in our system. To ensure the correctness, the recording and counting process

are processed by private and decentralized blockchain network. Moreover, the vote

server generates the receipt for each voter to prove the correctness of the recording

process. Query server allows voters to query their ballots through the receipt and

supervise the tallying process to verify the correctness of the recording process and

counting process.

Voters: For elections to which they are applicable, voters first need to au-

thenticate themselves through the identity verifier. Then, they can cast their vote

through the government vote server and get the exclusive receipt generated from

the vote server. Moreover, they can send the receipt to the government query server

to search their ballot, and they can verify their vote in their local device after they

get the ballot from the query server.

Private Blockchain: Invoking the private chaincode, reaching a consensus

through the endorsement policy, and saving the valid vote and voter’s personal in-

formation in the private blockchain. The private blockchain receives valid votes

from the vote server and processes them independently. The private chaincode and

endorsement policy ensure the correctness of the recording process in the private

blockchain. The voters’ unique public key ring, voting location, and device param-

eter are recorded in the private blockchain to satisfy the second part of auditability

in the system. No one can access the records in the private blockchain until the

19

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

election is over to protect the voters’ privacy.

Off-chain Database: Saving the queryable data before the vote server invokes

the public chaincode, helping the vote server maintain the data consistency between

the private blockchain and public blockchain. In addition to recording the queryable

data, the off-chain database records the creation time when each valid vote save in

the private blockchain.

Public Blockchain: Invoking the public chaincode, reaching a consensus

through the endorsement policy, and saving the queryable data in the public blockchain.

The voter can use their receipt to query the data from the public blockchain based

on the query server platform. After an election, the vote server launches the pub-

lic chaincode to tally the ballots recorded on the public blockchain. The public

chaincode and endorsement policy ensure the correctness of the recording process

and tallying process in the public blockchain. Voters can query their ballots and

supervise the tallying process on the public blockchain to verify the correctness of

the recording process and counting process.

3.3.2 Election Process

In our work, each election process is cooperated by five system parts (shown in

Fig. 3.1) that receive the valid data from upstream, process it, and send it to the

downstream. The followings are the main activities in the election process:

Election creation

Election administrators design and write the election-related options in the vote

server platform, for example, the candidate list and the voting district list. Af-

ter that, they design the private chaincode and public chaincode with the decided

option lists. Then, they install the chaincodes in the corresponding organizations,

20

3.3. The Proposed DBE-voting

which affiliate with either private blockchain or public blockchain, and instantiate

these organizations to create the first block of the election. At the same time,

the administrators create the table of the off-chain database and design the query

server platform, which displays the query result and data in the database. Finally,

they build the connection using the fabric SDK between the central servers and

blockchains.

Voter registration

The identity verifier processes the registration of a voter. It currently uses offline

registration and online verification to authenticate the voters’ identities. The offline

registration requires the voter to send their personal information, including the ID

number and phone number, to create an account on the identity verifier platform.

The online verification requires the voter to send their real-time face ID and fin-

gerprints to the identity verifier. The staff behind the identity verifier verify the

voter’s personal information and real-time biological information. If the voters pass

the verification, they can generate the private key and the public key ring through

the API supplied by the identity verifier in their local devices. The voting server

checks for the validity and linkability of the signature when voters send their signed

vote to the vote server.

Vote verification

As shown in the Algorithm 1, after the valid voter fulfills the vote and signs it, the

vote server verifies the validity of the signature. Then, it checks for the linkability

with signatures that have been recorded in the private blockchain. The truth of

signature validity represents the voter has a valid identity, and the truth of signature

linkability represents the voter may have voted. The vote server firstly checks the

signature validity. Then, it checks the signature linkability if the validity is true.

21

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

In the final, only one condition can make the system move to the following process:

The validity is true, and the linkability is false.

Algorithm 1 Verify the validity and linkability of signed ballot
1: function Verify(Ring, Sign)

2: H ← GetHistoryForKey(”Signature”)

3: if V alidity(Ring, Sign) 6= true then

4: return false

5: end if

6: for each s ∈ H do

7: if Link(Sign, s) = true then

8: return false

9: else

10: continue

11: end if

12: end for

13: return true

14: end function

Vote transaction in private blockchain

When the signed vote passes the verification, the vote server makes a transaction

with the private blockchain through the fabric SDK (shown in Fig. 3.2). Since the

blockchain network is isolated and its process is independent from the vote server,

the fabric SDK can be treated as "gateway" to build a connection between the vote

server and private blockchain network. After the connection is built, it sends the

transaction proposal to the endorsers by invoking the functions in fabric SDK. The

transaction proposal includes the operation type, the function name, public key ring,

candidate name, voting district, the linkable ring signature, and other parameters.

The consensus mechanism in Hyperledger Fabric initiates when the endorser peer

22

3.3. The Proposed DBE-voting

Vote Server

Private Chaincode

Endorser

Orderer

Fabric SDK

1. Transaction proposal

2. Transaction proposal

3. Simulate result 5
. N

ew
 b

lo
ck

7. TxID, CreateTime, Height

Figure 3.2: Transaction flow of signed ballot in the private blockchain. This figure

shows the detail of transaction process in Fig. 3.1. The fabric SDK can be viewed

as a "gateway" file installed in the vote server to help the vote server transact with

the private blockchain. The endorser and orderer are nodes in Hyperledger Fabric.

Endorser processes the transaction by invoking the chaincode, and orderer generates

new block to store it.

Table 3.2: Example of transaction in public blockchain and record in off-chain

database. (The TxID, height and create time are generated by the private

blockchain)

TxID Height Candidate Location Signature Create time

8dfa76... 4 Jason Haidian 616242... 16:07:18

executes the transaction proposal. Supposing the result of the transaction proposal

reaches a consensus in the private blockchain. In that case, the orderer returns the

transaction’s status, including transaction ID, block height and create time, back to

the vote server. Table 3.2 shows the combination of proposed parameters and the

response, which is the new transaction format in the following system processes.

Data store in off-chain database

The off-chain database stores the combined data (shown in Table 3.2) in the off-chain

database before the vote server makes a transaction with the public blockchain. En-

23

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

private transaction ID:
a92f246fa7a3ac8b509d34fbaee3e64af281fd7a5124072dd0cfcc15831d948f

private block height: 6

private timestamp: 2021-09-16 16:07:18 +0800 HKT

public transaction ID:
224d0ddd295c9fa7def58ec222c7512b2f68fe489511532617c510df9a282d70

public block height: 6

public timestamp: 2021-09-16 16:07:38 +0800 HKT

Figure 3.3: The receipt that voter received when the ballot was recorded in

blockchains successfully.

suring that the data queried by voters from the public blockchain have corresponding

records in the private blockchain, the system must maintain data consistency be-

tween the private blockchain and the public blockchain. So, before the vote server

transactions with the public blockchain, the system stores the queryable data in the

off-chain database. We use the off-chain database, and the details of data consis-

tency process are introduced in the next section.

Vote transaction in public blockchain

After the system stores the cross-chain data in the off-chain database, the vote

server transactions with the public blockchain through the fabric SDK. The process

details are similar to the vote transaction in the private blockchain. When the

vote server receives the result returned from the public blockchain, it generates the

unique receipt and sends it back to the voter. The content of the receipt, as shown

in Fig. 3.3, is combined into two parts, and each part contains the response data

from the blockchain. Voters can use the receipt generated from the vote server to

their vote recorded in the blockchain.

24

3.3. The Proposed DBE-voting

Ballot query

Voters who receive the receipt from the vote server successfully can access the query

server to search their ballots recorded in the blockchain. The voter needs to input

the public transaction ID, as the keyword, to the query server platform. The query

server makes a query operation with public blockchain through the fabric SDK,

which process is similar to the vote transaction in the private blockchain. Table

3.2 shows the search result returned from the query server, and the transaction ID

represents the transaction made in the private blockchain. Voters can compare the

unique private transaction ID recorder in the receipt with the result shown in the

query platform and verify the validity of the linkable ring signature in their local

device.

Tallying result

When the election is over, the vote server starts tallying the results based on the

ballots recorded in the public blockchain. The vote server invokes the tallying func-

tion programmed in the chaincode, and endorsers of public blockchain traversal the

entire public blockchain and select the vote transaction recorded in it. Then, They

count the ballot number for each candidate, compare them to get the result, and

make a consensus. Eventually, the vote server gets the consistent result and pub-

lishes the final result to the citizen. During this process, the citizen can supervise

the entire tallying process. If the final result is correct and the audit process is

complete, the records in each peer’s local storage need to be eliminated before the

next election to ensure the voter privacy.

25

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

Vote Server

Private Blockchain Public Blockchain

Off-Chain Database

Voter

1. Vote

2.2. Revote

5. Verification

Figure 3.4: The data consistency process in the proposed system. This figure shows

the detail of data consistency process in Fig. 2. The vote server requires the voter to

revote if the transaction fails in the private blockchain. It stores the queryable data

in the controlled off-chain database before transacting with the public blockchain.

The queryable data is recaptured by the vote server, and if the transaction fails,

it is recreated in the public blockchain. Finally, the vote server verifies the data

consistency between the private blockchain and the public blockchain.

3.4 Data Consistency in DBE-voting

To ensure the ballot information searched by voters and counted in the tallying

process does have the corresponding valid ballots recorded in the private blockchain.

As shown in Fig. 3.4, Our proposed system returns the errors to voters’ local devices

if the transaction fails in the private or public blockchain. Then, the vote server

remakes the transaction again. After the ballot is recorded in the public blockchain,

the voter server invokes the specific verify function to check the consistency of the

transaction above.

3.4.1 Ensuring the transactions are recorded in private blockchain

The first step to realize the data consistency is recording the ballot in the pri-

vate blockchain successfully. According to the consensus mechanism in Hyperledger

26

3.4. Data Consistency in DBE-voting

Fabric (shown in Fig. 2.3), if the transaction fails in executing phase, it will not be

packed in the new block; If the transaction fails in validation, the packed transaction

will be marked as invalid.

The vote server sends the transaction proposal to different endorsers through

the fabric SDK and waits for simulated results. If the simulated results that the vote

server received are different, the transaction failed and the vote server will notify the

voters and asks them to vote again. Another situation is that the parameters in the

transaction proposal do not satisfy the conditions set in the private chaincode. The

endorsers return an error to fabric SDK even it satisfies the endorsement policy.

Supposing the transaction proposal passes the conditions specified in the private

chaincode and the simulated results are same. In that case, this transaction will be

sent to the orderer to be packaged into a new block.

The orderer sorts the received transactions by arriving time, generates the new

block by calling a timeout or reaching the maximum transaction number in one

block, and sends the block to the peer nodes. After the peer nodes receive the

block sent from the orderer, they evaluate these transactions based on the default

system chaincodes and the endorsement policy. If it does not pass the evaluation,

the transaction will be marked as an invalid transaction. Finally, the peer nodes

update this new block to their local ledger and return the result to the vote server.

If the transaction success, the result contains the transaction ID and other related

data stored in the peer’s local ledger. Otherwise, the vote server notifies the voters

and asks them to vote again since their ballots are marked as invalid transactions

in the block.

This process ensures the ballot is recorded in the private blockchain when the

vote server receives the transaction ID, create time, and block height from Hyper-

ledger Fabric.

27

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

3.4.2 Ensuring the transactions are recorded in public blockchain

The second step to realize the data consistency is guaranteeing the queryable data

(shown in Table 3.2) are recorded in the public blockchain. The vote server stores

the queryable data in an off-chain database before it transactions with the public

blockchain. The transaction flow in the public blockchain is similar to the previous

step, but it is different when they handle invalid transactions.

In the previous step, if the vote server receives an error or the transaction

is invalid, the vote server can return an error to the voter’s local device and ask

the voter to vote again. However, this method is ineffective when the vote server

transactions with the public blockchain. The valid vote has been recorded in the

private blockchain, and the voter cannot vote again, based on the requirement of

unreusability. So, the vote server can only return the error to the voter’s local device

and solve the error by itself.

We designed the method to set the off-chain database to store the queryable

data before the transaction starts. If the vote server fails to make the transaction in

the public blockchain, it can retake the queryable data from the off-chain database

and make a transaction again. In the future, developing more methods to treat and

prevent transaction failure is one of our main tasks because requiring the vote server

to relaunch the transaction is a necessary process but not a real solution when facing

transaction failure.

3.4.3 Verifying the data consistency before generating the

receipt

The last step to data consistency is verifying the correlation of properties that

the vote server gets from the private and public blockchain. As aforementioned

in vote transactions, the vote server gets the response, including the transaction

28

3.4. Data Consistency in DBE-voting

ID, block height, create time, and other properties, when the transaction succeeds.

These properties represent the position and status of the transaction recorded in the

blockchain. We can use these fixed properties and the system setting parameters

to build a special relationship, verifying the data consistency of one transaction

recorded in the private and public blockchain separately.

(Tpub − Tpri) <= (Hpub −Hpri + 1) ∗BatchT imeout (3.1)

As shown in Equation 3.1, the BatchTimeout means the duration of generating

one block, the T indicates the create time, and the H means the block height. The

BatchTimeout is set at the system design and fixed when the system is launched.

The left side represents the actual duration of recording the queryable data into the

public blockchain. The right side represents the maximum theoretical duration of

recording the queryable data into the public blockchain.

This logic is adaptive for verifying the data consistency in the situation that the

vote server meets the error when making the transaction with the public blockchain.

For example, a particular transaction fails to store in the public blockchain, and

the vote server has to spend extra time to make the transaction again until the

transaction is recorded in the public blockchain successfully. The public blockchain

might generate new blocks in this period if the error does not affect the system’s

operation. So, this transaction’s block height in the public blockchain may be larger

than that in the private blockchain.

In this verification process, we assume the public blockchain records other trans-

actions successfully, even the error happened in a particular transaction. This con-

dition ensures the Equation 3.1 working correctly. In the future, we need to consider

the error which might stop the entire operation in the public blockchain because this

type of error can stop public blockchain from generating new blocks and making the

Equation 3.1 ineffective. Meanwhile, we need to enhance the data security in the

29

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

off-chain database to prevent data tampering and other attacks.

3.5 Evaluation

This section reports some preliminary performance numbers of our E-voting system,

even though it is not performance-tuned and optimized. Then, we analyze whether

the system meets the requirements summarized in section 3.1.

The Hyperledger Fabric implements our E-voting system. According to the [6],

we know that the Hyperledger Fabric is a complex distributed system; its perfor-

mance is related to many parameters, including the parameters of implementing a

system, the network parameters, the hardware on which the nodes run, and others.

In our experiment, we set different parameters to observe our system performance

changes. Moreover, we design the off-chain database and related verifying algorithm

to ensure the data consistency between the private and public blockchain. This im-

plementation might impact the system performance except for the influence from

Hyperledger Fabric, so we decide to remove this implementation and observe the

change of our system performance. Other in-depth performance evaluations of our

system are postponed to future work.

3.5.1 Experiments

Setup

We implement our system based on the Hyperledger Fabric [6]. In our experiment:

(1) the prototype is realized on Fabric v1.4.2-preview and the system performance

is monitored by a local logging process, (2) peers are hosted separately in Docker

containers [12] as dedicated VMs, (3) all clients are hosted in one node, (4) a single

Fabric orderer node offers ordering service, (5) each blockchain has 3 endorsers and

30

3.5. Evaluation

0 25 50 75 100 125 150 175 200
Concurrency

0

5

10

15

20

25

30

35
Re

qu
es

ts
 p

er
 se

co
nd

blocksize = 512 KB
blocksize = 1 MB
blocksize = 2 MB

(a)

0 25 50 75 100 125 150 175 200
Concurrency

0

10

20

30

40

50

60

70

Tr
an

sf
er

 ra
te

 [K
by

te
s/

se
c]

blocksize = 512 KB
blocksize = 1 MB
blocksize = 2 MB

(b)

18 36 54 72 90 108 136 158 176 194
Concurrency

0

100

200

300

400

500

Ti
m

e
ta

ke
n

[s
ec

on
ds

]

blocksize = 512 KB
blocksize = 1 MB
blocksize = 2 MB

(c)

Figure 3.5: The impact of block size parameter on system performance. (a) The

impact of block size on throughput. (b) The impact of block size on transfer rate.

(c) The impact of block size on time taken for test.

each endorser represents one organization (Org), (6) the endorsement policy is de-

signed to satisfy the majority rule, which is implemented as OR(AND(PriOrgOne,

PriOrgTwo), AND(PriOrgOne, PriOrgThree), AND(PriOrgTwo, PriOrgThree

)), and (7) the sqlite3 is applied as the off-chain database to store the cross-chain

data.

31

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

0 25 50 75 100 125 150 175 200
Concurrency

0

5

10

15

20

25

30

35

Re
qu

es
ts

 p
er

 se
co

nd

with database
without database

(a)

0 25 50 75 100 125 150 175 200
Concurrency

0

10

20

30

40

50

60

70

80

Tr
an

sf
er

 ra
te

 [K
by

te
s/

se
c]

with database
without database

(b)

18 36 54 72 90 108 136 158 176 194
Concurrency

0

100

200

300

400

500

Ti
m

e
ta

ke
n

[s
ec

on
ds

]

with database
without database

(c)

Figure 3.6: The impact of data consistency process on system performance. (a) The

impact of data consistency process on throughput. (b) The impact of consistency

process on transfer rate. (c) The impact of consistency process on time taken for

test.

Methodology

In every experiment, we assume all voters have passed the identity verification and

ignore the time that voters fill the ballot form. They send the request to the vote

server and wait to receive the receipt. We use the Apache Benchmark as the bench-

marking tool to test the performance of our E-voting system. The total number of

requests is not changed. We regularly increase the concurrency number in each test

32

3.5. Evaluation

to see system performance changes. In addition, the BatchTimeout, as a system pa-

rameter in Hyperledger Fabric, can be treated as the response time when the voters

get their receipt, and we set this parameter as 2 seconds for a good user experience.

Experiment 1: Impact of block size

According to the [6], we understand that the block size is a critical system parameter

to impact the throughput. We set the maximum number of messages to 800 to

eliminate the impact of unrelated parameters and compare the system performance

at the block sizes equal to 512 KB, 1 MB, and 2 MB. The results are depicted in

Fig. 3.5.

Fig. 3.5(a) and Fig. 3.5(b) show that when the concurrency number is larger

than the 72, the system performance of 512 KB is better than those of 1 MB or 2

MB. Moreover, the 512 KB block size system is more stable than others when the

concurrency number is larger than 90. The performances of 1 MB and 2 MB are not

stable and stop increasing because the nodes crash when the concurrency number

is larger than 136. In future work, to make the system more stable, we can apply

the crash-fault tolerance method in the system and increase the number of endorser

nodes to reduce the computing load of each node.

The Fig. 3.5(c) shows the time consumed in each test. We can observe that

as the number of concurrencies increases and the total number of requests stays the

same, the time taken for the test decreases. Since the system performance of 512 KB

is better than those of 1 MB or 2 MB, its time taken is generally less than others.

Although the system throughput in this experiment is not sufficient for real-

world government elections, we demonstrate the system’s feasibility. To satisfy all

the abovementioned requirements, we implement two relatively isolated blockchains

in one system, and our experiment shows that the design is achievable. Due to

equipment limitations, the system prototype is implemented on a personal computer

33

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

on which all peer nodes are hosted. We believe our system can achieve better

performance when each node can be implemented on a single server.

In this experiment, we also observe the size of the vote transaction and queryable

data transaction from the local Docker log. In particular, the 512KB-size block can

contain 72 vote or 71 queryable data transactions, so the average transaction size

is 7.11 KB for the vote transaction and 7.21 KB for the queryable data transac-

tion. The transaction recorded in the Fabric blockchain automatically carries the

certificate information, making it larger than the transaction proposed from the vote

server.

Experiment 2: Impact of data consistency process

The designed on-chain and off-chain hybrid storage scheme might become the bot-

tleneck of the system performance. We run an experiment by comparing the perfor-

mance of adding this scheme in the system with the performance of removing this

scheme to evaluate the impact of this design scheme. Results are depicted in Fig.

3.6(a) and Fig. 3.6(b), with the increasing number of concurrency, the throughput

reaches its peak and fluctuates between 25 and 30 requests per second, and the

transfer rate fluctuates between 63 and 71 KB per second.

The Fig. 3.6(c) shows the impact of the data consistency process on time taken.

Overall, the time taken in Fig. 3.6(c) is not significantly different. It indicates that

the data consistency process does not consume plenty of time to manipulate and

verify the data consistency between the private blockchain and the public blockchain.

However, this design scheme can still be the bottleneck of system performance

when the database read and write speed reaches the maximum value. Meanwhile,

the data consistency design may take voters plenty of time to get receipts when the

system fails in the data consistency process. In future work, we need to consider

improving this design scheme to reduce the impact on system performance and

34

3.5. Evaluation

0 25 50 75 100 125 150 175 200
Concurrency

0

5

10

15

20

25

30

35
Re

qu
es

ts
 p

er
 se

co
nd

endorser = 3
endorser = 5

(a)

0 25 50 75 100 125 150 175 200
Concurrency

0

10

20

30

40

50

60

70

Tr
an

sf
er

 ra
te

 [K
by

te
s/

se
c]

endorser = 3
endorser = 5

(b)

18 36 54 72 90 108 136 158 176 194
Concurrency

0

100

200

300

400

500

Ti
m

e
ta

ke
n

[s
ec

on
ds

]

endorser = 3
endorser = 5

(c)

Figure 3.7: The impact of endorsement policy on system performance. (a) The

impact of endorsement policy on throughput. (b) The impact of endorsement policy

on transfer rate. (c) The impact of endorsement policy on time taken for test.

enhance the user experience.

Experiment 3: Impact of endorsement policy

When building the system, the number of endorsers and the design of endorsement

policy are likely to change based on the actual government situations. To evaluate

the impact of the endorsement policy, we increase the endorser number to five in

each blockchain and set the different endorsement policy to satisfy the majority rule.

35

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

0 25 50 75 100 125 150 175 200
Concurrency

0

5

10

15

20

25

30

35

Re
qu

es
ts

 p
er

 se
co

nd

with committer
without committer

(a)

0 25 50 75 100 125 150 175 200
Concurrency

0

10

20

30

40

50

60

70

Tr
an

sf
er

 ra
te

 [K
by

te
s/

se
c]

without committer
with committer

(b)

18 36 54 72 90 108 136 158 176 194
Concurrency

0

100

200

300

400

500

Ti
m

e
ta

ke
n

[s
ec

on
ds

]

without committer
with committer

(c)

Figure 3.8: The impact of committer on system performance. (a) The impact of

committer on throughput. (b) The impact of committer on transfer rate. (c) The

impact of committer on time taken for test.

For reaching the consensus, three of five endorsers should simulate the same result.

Then, we set the experiment to compare the system performance with the setup

that the endorser number is three. Results are depicted in Fig. 3.7(a) and Fig.

3.7(b), with the increasing number of concurrency, the throughput and transfer rate

reach their peak when the concurrency is equal to 90 and start to decrease.

As shown in Fig. 3.7(c), the system that each blockchain with five endorsers

needs more time to finish the requests than the system with three endorsers. It

indicates that the increasing number of endorsers has a significant impact on the

36

3.5. Evaluation

system performance.

The increasing number of endorsers can affect the system’s performance since

the computing resources are not enough for the system to satisfy the endorsement

policy. As the endorser number increases, more resources are needed. However, in

our experiment, we set the whole peer nodes in one computer and each endorser

needs to share the resource to simulate the request, which affects the performance

and causes more time to finish the experiment. We believe this problem can be

solved when each endorser is hosted on a single server, and their performances are

not affected by each other.

Experiment 4: Impact of committer

The committer in Hyperledger Fabric is a type of peer node that has only the system

chaincode to update the blockchain in its local ledger. To enhance the data security,

we can set the committer in each blockchain network for retaining the copy of the

ledger as a backup. Since the committer does not install any customized chaincode

and its local ledger is regarded as a backup, the probability of adversary attacking

committer is low. We leaves the security issues for the committer to the future work.

The experiment shows the impact on system performance when setting two

committers in our system. As shown in Fig. 3.8, although the committer does not

seriously degrade system performance, it still causes a non-ignorable influence on

system performance.

The reason why the committer degrades the system performance is similar to

experiment 3. The committer needs computing resources to update the ledger,

and resources for the endorser have to be reduced since all the nodes are hosted

in one computer. But, according to the experiment result, we can observe that

the committer needs fewer resources than the endorser because it does not need to

simulate requests. This problem can also be solved by setting the committer in a

37

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

single server, in which the endorser’s resource will not be occupied.

3.5.2 Security analysis

This subsection analyzes how our designed system satisfies the requirements. And

the analysis is stated as follows:

Auditability

Impersonating attack [4] can disrupt the election by impersonating unqualified cit-

izens as the legitimate voters to cast the ballots on the government server. The

E-voting system should ensure the identity of each voter is authentic and legiti-

mate. The records should keep who is involved in the transactions to audit the

election result and investigate the legal issues.

In our system, the voters are instructed to complete the offline registration and

online verification before joining the election. The offline registration requires the

voters to submit valid personal information to the official website, including the ID

number and phone number. The system produces a list of eligible voters privately for

further verification. The online verification requires the voters, who have registered

on the list, to provide the face ID and fingerprint to the official website. The online

verifiers check the list and audit the validity of the voters’ information submitted.

This offline-online design leads the technologies to form an auditable verification

system. Meanwhile, the records in the private blockchain contain the voters’ public

key ring and other personal information that can be traced back to voters when

auditing elections or investigating legal issues.

38

3.5. Evaluation

Privacy

Privacy protection in E-voting is the biggest concern of voters because the leakage

of privacy may threaten the personal and property safety of voters. When voters’

privacy is leaked, the E-voting can be threatened by voter coercion attack [29]. The

coercers can oblige the voter to vote as they wish.

The double blockchain system structure allows us to store the voting results

and voter information separately. After the signed ballots have been recorded in the

private blockchain, the system strips the personal private information and the public

key ring to form the queryable data. Then, it is appended to a public blockchain for

public supervision. The original ballots recorded in private blockchain only be used

for legal purposes, and the private information will never be leaked to the public.

This design keeps the voters’ information confidential, and the public key ring brings

anonymity for the voter when they vote.

Authentication

Suffrage or enfranchisement, the right to vote, are important but seldom mentioned

in the E-voting paper until the authentication is defined. The authentication must

be satisfied in our E-voting system to solve these legal issues in E-voting [62].

The system designs an identity verifier to verify the validity of voters and au-

thorize them the right to vote. The voters must register and verify themselves

by sending personal information, real-time face ID, and fingerprints to the iden-

tity verifier. After the voters pass this process, the unique linkable ring signature

is generated for each valid voter, representing they have the right to vote in this

election. The valid voters sign the filled ballot by their unique linkable ring signa-

ture before submitting their ballots. Moreover, the distributed, append-only and

immutable properties in blockchain technology ensure that valid signed ballots can-

39

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

not be changed when recorded. These technologies provide authentication in the

system.

Correctness

The E-voting system must record and count the valid ballots correctly to prevent

server attacks such as ballot tampering [57].

In our design, the recording and counting processes are executed in a secured,

distributed blockchain-based system, preventing hackers attacks from the server-

side. The peer nodes are launched in the Docker container, which supports a secure

execution environment for the endorsers to execute the chaincode safely. As well as,

the endorsers must comply with the specific endorsement policy when running the

chaincode. The endorsement policy requires the majority of the execution results

generated by different endorsers must be consistent before updating the blockchain.

It prevents internal corruption from disrupting the regular operation of the system.

The system provides the query server, allowing voters to search the ballot data

recorded in the public blockchain. The queried data contains the ring signature,

and voters can verify the validity to prove the integrity and correctness of recorded

ballots. The citizens can supervise the voting results, which have been recorded

in the public blockchain, through the website supported by the system. This de-

sign prevents the government server from tampering with the ballots before being

recorded in the blockchain.

The trusted executing environment, endorsement policy, and public supervision

bring the recording and counting process correctness into our system.

40

3.6. Conclusion

Unreusability

The E-voting systems need to satisfy this requirement to prevent the double-voting

attack [62]. The double-voting attack in the E-voting system means attackers try

to clone and cast a ballot that has been cast by another valid voter previously, or

the voters want to execute the voting process more than once.

In our system, this requirement is supported by the linkable ring signature.

When the voters submit the signed ballots to the system, the system checks the

linkability of each signature besides the validity. The linkability of the ring signature

is represented by the public key image stored in the signature data structure. The

public key image is generated by a hash function whose input is the real public

key. According to the principle of hash collision, if two hash values are equal, the

input value of the hash function is also the same. Therefore, if the signature of the

submitted ballot is linkable with the signature recorded in the private blockchain, it

means that the public key image of the two signed ballots is the same, thus inferring

that the voter has already voted and the submitted ballot is invalid.

3.6 Conclusion

This chapter presents a DBE-voting system, which is the first BE-voting that can

covers all the core requirements of a reliable BE-voting system. DBE-voting is

powered by two innovative designs: double blockchain architecture, consisting of a

private blockchain and a public blockchain, and an on-chain and off-chain hybrid

storage mechanism that combines the off-chain database with the blockchain. Be-

sides, we implement a prototype of our system and analyze whether our system can

meet all requirements. The experimental results show that the system has better

performance when the block size is 512 KB, and the data consistency method has not

become the bottleneck of the experiment at the current stage. The security analysis

41

Chapter 3. DBE-voting: A Privacy-preserving and Auditable Blockchain-based
E-voting System

proves that the DBE-voting can satisfy all the core requirements simultaneously.

42

Chapter 4

A Secure and Reliable

Blockchain-based Audit Log System

4.1 Introduction

In computing, log files are responsible for recording events of an operation system

or software [22], and the messages exchanged between different users can also be

treated as log data. Log files have been widely used for digital forensics [3], such

as tracking database tampering, versioning file system, or Internet of Things (IoT)

based vehicle systems [14]. Many researchers propose various methods to generate

and analyze the log file efficiently and effectively [16,34]. However, log data security

problems are paid relatively little attention, especially, many of them neglect the

importance of protecting the data integrity of log files.

Ensuring the data integrity for auditing the log file is crucial. For example,

we can consider the scenario where a conflict happened between the server and the

user. The server operates a system to supply some services, and the user may use

this system through an application or something else. Log files generated during the

period of user interaction with the system are stored in the system’s local database,

43

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

and they can be treated as digital forensics. When a conflict happened between the

server and the user, they need a trusted third party, e.g., the court, to arbitrate

between them. Then, the related log file, as the important evidence, can help the

court judge where the responsibility lies. However, log files are controlled by the

server before it sends them to the court. If the server knows in advance that it takes

the responsibility for the conflict, there is a high possibility that it tampers with

the log file to avoid the penalty from the court. Therefore, maintaining the data

integrity for the log file is significant.

Some existing efforts are trying to maintain the data integrity for log files. These

existing schemes can be separated into two categories: centralized audit log system

and blockchain-based audit log system. In the centralized audit log system, log

files are stored in a central database. They propose the hash-based data structure

for storing the log data in a tamper-proof manner, such as trees, Rivest-Shamir-

Adleman (RSA) accumulators [47], skip lists, or authenticated Directed Acyclic

Graphs (DAGs). These data structures are leveraged to build certificate revocation

list [11,60], tamper-evidence graph, geometric searching [69], and authenticated re-

sponses to Extensible Markup Language (XML) queries. However, the single logger

and/or auditor design in centralized log systems are vulnerable to the log injec-

tion attack [21] and collusion attack, which compromise data integrity. Meanwhile,

the central database suffers from single-point failure, which prevents systems from

achieving data integrity.

Blockchain technology enables secure and immutable record-keeping in a dis-

tributed system. Applied to the audit log system, blockchain can process and repli-

cate log files correctly over a set of peers, thereby providing them with a consis-

tent and tamper-proof view of the system. Some researchers have proposed the

blockchain-based audit log systems [5, 7, 13, 18, 27, 37, 38, 43, 51, 52, 59, 66, 68]. This

design increases the cost and complexity of the attack and enhances the overall

defense capability of the audit log system. However, the current blockchain-based

44

4.1. Introduction

audit log systems still have two challenges.

(1) Partial threat model and system design. the threat models proposed

by the existing systems are not general enough to defend against complicated

attacks. They set a single logger and/or auditor, which can be compromised

by the adversary or colluded with others. The adversary party may inject log

data, return false audit results, and leak data privacy.

(2) Data storage flaws. They meet the problem that the blockchain is not

suitable to store large-sized files [17]. With the increase of the scale of a modern

system, the size of the generated log file can be very large (e.g., 22,000 events

per second) and surpass the scalability of blockchain [41]. Besides, the single-

point failure problem remains if the system only stores proofs in a blockchain

and leaves log files in a central database.

In this paper, we propose a blockchain-based audit log system to ensure the

data integrity for generated log files while addressing the remaining challenges.

First, in our threat model, we assume the logger and the auditor are untrusted

machines to generate integrity proof and audit the proof. The log provider is trusted

when it generates log files, but it may tamper with log data after files are stored in

its central database. Our designed audit log process can detect the log tampering

attack from the log provider. In our design, multiple nodes can operate the logging

and auditing processes. They install the smart contract and follow the consensus

algorithm to tolerate a degree of compromise and collusion attack. Compared with

other approaches [7, 13, 18, 27, 37, 38, 43, 52, 59, 66, 68], our system can tolerate one-

third of colluded loggers and auditors while ensuring data integrity. In addition, log

providers encrypt log files before sending them to the logger to protect data privacy.

Second, to solve the data storage flaws, we extract the concept of the non-

fungible token (NFT) from the Ethereum [64] and realize it in a consortium blockchain

45

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

called sub-NFT. Our system can generate a sub-NFT as the integrity proof for the

log file, and only these sub-NFTs are stored on the blockchain. The scalability of

blockchain is capable to store small-sized sub-NFT, and log files are stored in Inter-

Planetary File System (IPFS) as well as in a central database. IPFS is a distributed

file system and files stored in it have a backup in multiple IPFS nodes. This de-

sign also eliminates the concern of single-point failure in a central database. Our

system can resolve the single-point failure in the central database and save approx-

imately 50% storage space for Hyperledger Fabric compared with a conventional

blockchain-based audit log system [5].

• Secure design with a general threat model. We build a general threat

model for the audit log system and propose a blockchain-based audit log sys-

tem to ensure data integrity. Our system can ensure data integrity as well as

detect the log tampering attack from the log provider under the circumstance

of colluded loggers and auditors, providing a more secure and reliable audit

log system.

• Storage saving with an NFT-based integrity proof generation method.

We propose an NFT-based integrity proof generation method to generate and

store a sub- NFT on blockchain for a log file as integrity proof. Compared with

the state of the art, our method can save approximately 50% storage space for

Hyperledger Fabric and resolve single-point failures in the central database.

• System implementation and security analysis. We build a system pro-

totype based on Hyperledger Fabric and evaluate its performance. Security

analysis proves that under the proposed threat model, our system can tolerate

one-third of colluded nodes while ensuring data integrity.

The remainder of this chapter is structured as follows. Section 4.2 reviews

the related work of the blockchain-based audit log file system. The system roles

46

4.2. Related Work

and notations, and threat model are defined in Section 4.3. The system model is

described in Section 4.4. Section 4.5 and Section 4.6 report the evaluation results

and the security analysis. Finally, this paper is concluded in Section 4.7.

4.2 Related Work

In this section, we first review some related work for the blockchain-based audit log

system.

The log files are owned by the log provider and stored in its central database.

In the current blockchain-based audit log systems, they set a module called logger

to collect log files from the log provider, transact with the blockchain network and

generate integrity proofs. The logger in [5, 7, 37, 43, 51] stores log files directly in

the blockchain network and gets the transaction identification as the integrity proof.

it returns the proofs back to the log provider, which stores the proofs in its local

database. However, the local database storage method may cause the single-point

failure problem, the scalability of blockchain is limited and it is not suitable to store

large-sized files [17]. For evading the scalability problem, the logger in [13, 18, 27,

38,52,59,66,68] uses a hybrid storage method. It collects log files, generates small-

sized integrity proofs of these files, such as hashes or anchor messages, and stores

these data on the blockchain network. The original log files and related transaction

identifications are stored in the local database of the log provider. However, the

concern of single-point failure still exists in the off-chain database, and the cost of

their use of public blockchains (Bitcoin and Ethereum) is expensive.

Meanwhile, the threat models in most of these systems are not general [5,18,27,

37, 38, 43, 52, 59, 66]. They need to trust a single logger to collect log files, generate

proofs, and store them in a central database. A single logger can be compromised

by the adversary to leak privacy or launch a log injection attack, or it can also

47

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

collude with another party. Moreover, relying on a single auditor to verify data

integrity and achieve system feasibility is not reliable and impractical in the real

world. Some works do not even have an auditor, or their auditing processes are

unclear [7, 13,37,68].

To eliminate these aforementioned limitations, we propose a general threat

model that assumes the logger and the auditor are untrusted. They can be compro-

mised or colluded with another party to fraud others. Under this threat, we design

the logging and auditing processes in our blockchain-based audit log system to en-

sure data integrity (details are introduced in Section 4.4). We design an NFT-based

integrity proof generation method to resolve data storage flaws in existing audit log

systems. Our system can generate sub-NFT as integrity proof and store this small-

sized data in blockchain to resolve its limited scalability problem. Meanwhile, log

files are stored in IPFS as well as in a central database, which relieves the concern

of single-point failure.

4.3 System Roles and Threat Model

In this section, we introduce the system roles in our audit log system and the

notations that will be used throughout the rest of this paper. Then, we construct

the threat model of our system.

4.3.1 System Roles

Based on the summary of related work, we understand that the audit log system con-

sists of multiple roles which are responsible for different functions. In the remainder

of this paper, we will use the following system roles:

• Log Provider: The representation and abstraction of all systems that can gen-

48

4.3. System Roles and Threat Model

erate different types of log files, such as web servers or cloud service providers.

• User: People use the client or application to interact with the Log Provider.

The crucial log file will generate during the interaction between the User and

the Log Provider. These log files may become important digital evidence when

a conflict happens.

• Logger: The system component receives the encrypted log file, outsource it,

and transacts with the blockchain to generate the integrity proof for the log

file.

• Court : A third party arbitrates the conflict between the Log Provider and

the User. It will receive the log file and corresponding proof from the Log

Provider. The log file is treated as digital evidence, and the proof is used to

verify the log data integrity.

• Auditor: The system component to verify the data integrity of the log file sent

by the Court.

For these five system roles. we mainly discuss and analyze the Log Provider,

Logger and Auditor. They compose the entire audit log system and realize the

fundamental processes of file generation, proof generation, and proof verification.

The User and Court are also important and essential for the system, but they are

not the focus of this paper. We set up these two roles to have a comprehensive

security analysis for the Log Provider, Logger, and Auditor, and to be close to

realistic scenarios.

4.3.2 Threat Model

Different from the conventional audit log systems which need to trust the single

logger and/or auditor (as shown in Fig. 4.1a), in our system we consider that the

49

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

Log Provider

DatabaseAuditor
4. Receive log files

and related roofs

1. Send log files

3
. S

to
re

 lo
g
 file

s

a
n

d
 p

ro
o

fs

Loggers

(a)

Log Provider

Database

Loggers

Auditor

(b)

Figure 4.1: The comparison of the threat model of conventional audit log systems

with that of our system. (a) The threat model in conventional audit log systems.

(b) the threat model in our system.

Log Provider, Logger, and Auditor are not the trusted machine (as shown in Fig.

4.1b). The states and malicious behaviors of our system roles are described as

follows.

• The Log Provider can be compromised. It may tamper with the log files, which

are stored in its local database, to avoid the penalty. It can also operate in

collusion with the Logger or Auditor to defraud the other members. Finally,

due to the unpredictable malfunction that happened in the hardware, the

single-point failure, and the data loss concerns in the Log Provider central

database are un-negligible.

• The Logger and Auditor can be compromised. They may leak the private data

recorded in the file, and the Logger can inject additional information into the

log file that it is processing. Meanwhile, the Log Provider may collude with

the Auditor to defraud the other member. For example, the Log Provider can

collude with the Auditor to return the false audit result of the log file that the

Court received from the Log Provider. Finally, the single-point failure needs

50

4.3. System Roles and Threat Model

to be concerned in the Logger and Auditor.

• The User and Court are fully trusted in our system.

It is important to note that the Log Provider is trusted when it generates log

files. According to the [55], we know that there is no security measure that can

protect log files generated after the system has been compromised. So, we assume

the Log Provider is trusted at the log file generation stage. We also regard the data

recorded in the Hyperledger Fabric is immutable, and the blockchain is hard to fork.

4.3.3 System Notations

In the remainder of this paper, we will use the following notations:

• logi represents the ith log file sent from the Log Provider.

• EKs(logi) is the secret key encryption, under the Log Provider secret key, of

logi, using Advanced Encrypting Standard (AES) [19] algorithm with a key

length such as 128 bits and scheme such as Cipher Block Chaining (CBC).

• CIDi is the content identifier of logi, indicating the logi has stored in the

IPFS.

• TxIDi is the transaction identifier of CIDi, showing the Logger makes the

transaction with the blockchain.

• EPKc(Ks) is the public-key encryption, under the Court public key, of Ks

using an algorithm such as RSA [53].

• Truei or Falsei is the result of integrity verification process on logi. The Truei

means the data integrity of logi is maintained, and the Falsei means not.

51

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

Database

Loggers

Auditors

Blockchain

Log Provider

Court

User

6. [CID, TxID]

4. CID

3. TxID

4. CID

5. TxID

1. [log, Epkc(ks), TxID]

2. [Eks(log), TxID]

logging

auditing

2. cip 3. CID

1. Eks(log)

5. True or False

7. [log, CID, TxID]

Figure 4.2: The proposed blockchain-based audit log system model.

4.4 System Method Description

In this section, we propose the system model of our blockchain-based audit log

system and describe our method in detail.

As shown in Fig. 4.2, our system has two different processes: the logging

process and the auditing process. In the logging process, some important log files

are generated during the interaction between the User and the Log Provider. Then,

the Log Provider generates the data integrity proof for each log file by requesting

the Logger. During the logging process, the Logger outsources the encrypted log

files to IPFS to solve the single-point failure problem and generate CID as integrity

proof. Finally, the original log file and related proof information are stored in the

Log Provider local database for other proposes like data analysis and system check.

When the conflict happened between the User and the Log Provider, the auditing

process is launched. During this process, the Court, as the trusted third party,

arbitrates this conflict, and it receives the log file from the Log Provider as the

important digital evidence. Before the arbitration, the Court launches the auditing

52

4.4. System Method Description

Algorithm 2 Sub-NFT generation chaincode in the Logger

Input: Encrypted log file cipi, chaincode stub interface stub.

Output: Content identifier CIDi, transaction identifier TxIDi.

1: Connect IPFS peer node: sh = NewShall("IPFS API")

2: Add file to IPFS and get CID: CIDi = sh.AddFile(cipi)

3: Get current TxIDi from Hyperledger Fabric:

4: TxIDi ← stub.GetTxID()

5: Generate key of sub_NFT: key ← "CID" +TxIDi

6: Generate sub_NFT by recording key and CIDi as a pair in Hyperledger Fabric:

stub.PutState(key, CIDi)

7: return TxIDi, CIDi

process by requesting the Auditor to verify the data integrity of the receiving log

file.

In the following subsections, we will describe the logging process and auditing

process in detail.

4.4.1 Logging Process

• Setup: The Log Provider generates the secret key Ks randomly, which key

length can be 128 bits or 256 bits.

• Encrypt: Before interacting with the Logger, the Log Provider encrypts the

log file, e.g. logi, by the secret key Ks and generates the ciphertext cipi ←

EKs(logi).

• Generate: After the encryption, the Log Provider sends the cipi to the Log-

ger to generate the data integrity proof for the encrypted log file cipi. The

Logger executes the chaincode to generate the sub-NFT as the integrity proof,

outsource the cipi in IPFS and return the result to the Log Provider. In this

53

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

Key
CID7571e20a3021cd0a1

d4721c63a28d26a7227c9

aeee3b3beec3a1ed49b00

bab26

Value
bafybeibvulxydn2czn

dwrz4krnesermgpt7p

xlhmw2l5xpoe24mhpf

vx7a

:

Figure 4.3: An example of a key-value pair for a sub-NFT recorded in Hyperledger

Fabric.

example, the result is (TxIDi, CIDi).

• Store: If the Logger executes the chaincode successfully and the Log Provider

receives the result, the Log Provider combines the log file and the related proof

information as a triple and stores it in its local database. In this example, the

triple is (logi, TxIDi, CIDi)

The Algorithm 2 shows the detail of the chaincode in the logging process. The

peer node in the Logger installs this chaincode and launches the transaction. In

this chaincode, the peer node first builds a connection with the IPFS server by

calling the NewShall() function and uploads the cipi to IPFS. If the peer node

successfully adds cipi to IPFS, we can get the corresponding CIDi. Then, the peer

node can get the current transaction identifier TxIDi and combines it with the string

"CID" to form a specific key. In Hyperledger Fabric, the transaction identification

is genereated when invoking the chaincode, so it can be obtained by calling the

GetTxID() function. Finally, the peer node generates the sub-NFT by recording

the key-value pair in the blockchain.

Since we assume the logger is untrusted in our threat model, we utilize blockchain

technology and design NFT-based integrity proof generation method in our system

to defend against adversary attacks in the logger. As shown in Fig. 4.2, we set

multiple peer nodes in the Logger, and these nodes all install the same chaincode

54

4.4. System Method Description

User

3. CID

5. TxID

1
.

O
b

je
c
t

2
. C

ID

(a)

User

1. Object

5. (CID,TxID)

1
.

O
b

je
c
t 2

. C
ID

(b)

Figure 4.4: The conclusion of NFT and sub-NFT generation processes. (a) The

NFT generation process in Ethereum. (b) The sub-NFT generation process in our

Hyperledger Fabric based system.

Table 4.1: Comparison between NFT and sub-NFT.

Existence Ownership Trade Cost

NFT in Ethereum
√ √ √

High

Sub-NFT in our system
√

× × Low

to generate sub-NFT as the data integrity proof. All the peer nodes in the Logger

follow the endorsement policy to reach the consensus and return the valid transac-

tion. Section 4.6 proves our system can defend against attacks from compromised

or colluded logger nodes.

Fig. 4.4 shows a comparison of the NFT generation process in Ethereum and

the sub-NFT generation process in our system and Table 4.1 summarizes the main

different properties between NFTs and sub-NFTs. We can see both NFT and sub-

NFT are minted by launching smart contracts in different blockchains; blockchain

network stores CIDs and IPFS stores objects, but the process of outsourcing objects

55

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

Algorithm 3 Audit chaincode in the Auditor

Input: Encrypted log file cip′i, transaction identifier TxID′
i.

Output: Audit result Truei or Falsei.

1: Initializes key-value pair data structure to store transactions: kvpair ←

map[string]string

2: Get the specific Hyperledger Fabric block by querying the TxID′
i: block ←

QueryBlockByTxID(TxID′
i)

3: key ← "CID" +TxID′
i

4: Get all transactions in the block: tx← GetTransaction(block.Data)

5: for k, v ∈ tx do

6: kvpair[k] = v

7: end for

8: Get the CIDi that is recorded in Hyperledger Fabric: CIDi ← kvpair[key]

9: Generate CID′
i from cip′i: CID′

i ← cid.Perfix.Sum(cip′i)

10: Audit the input log file data integrity:

11: result← CIDi.Equal(CID′
i)

12: if result = true then

13: return Truei

14: else

15: return Falsei

16: end if

is executed by different roles. A similar generation method ensures the existence

of sub-NFTs to prove the integrity of corresponding objects. NFTs generated in

Ethereum are signed by their owner to ensure ownership, however, it is unnecessary

for sub-NFTs since all log files are generated by the same Log Provider. Meanwhile,

sub-NFTs cannot trade since they do not have transaction value. Finally, NFTs

generated in Ethereum cost expensive gas fees, and sub-NFTs generated in our

system do not require money, but computational resources.

56

4.4. System Method Description

File

0101000

1001010

1100010

0101010

0000110

1001010

Chunk

fda890df

s56adf...

kpo1fd08

sd43as...

mp43tk5

4psd92...

Digest

bafybeibs

a56mjb...

bafybeigl

dw52vs...

bafybeich

w6ngby...

b
a
fyb

e
ib

v
u
lxy

d
n
2
cz

n
d
w

rz
4
krn

e
se

r
m

g
p
t7

p
xlh

m
w

2
l5

xp
o
e

2
4
m

h
p
fvx

7
a

CID for each digest

C
ID

DAG

Figure 4.5: The generation process of CID.

4.4.2 Auditing Process

• Setup: The Court chooses a key pair (PKC , SKC), as the private key and

public key.

• Send: The Log Provider sends the log file log′i as the digital evidence, to the

Court and sends the related TxID′
i as the proof information. In addition, since

the Logger generates the sub-NFT for the encrypted log′i, the Log Provider

sends its secret key K ′
s to the Court, which the K ′

s is encrypted by the Court

public key PKC .

• Encrypt: Before auditing the data integrity proof, the Court encrypts the

log′i by the K ′
s and generates the ciphertext cip′i ← EK′

s
(log′i).

• Audit: After the encryption, the Log Provider sends the cip′i and TxID′
i

to the Auditor to verify the data integrity of log′i. The Auditor launches

the chaincode to generate the CID′
i locally, query the corresponding CIDi

recorded in the blockchain through TxID′
i, compare the CID and return the

result to the Court. The result is Truei or Falsei.

The Algorithm 3 shows the detail of the auditing process. The peer node in the

Auditor installs the chaincode, accesses the record in the blockchain, and audits the

57

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

file integrity. In this chaincode, the Auditor first calls the QueryBlockByTxID()

to locate the specific block which stores the transaction with the TxID′
i as the

transaction identifier. The block.Data data structure contains all the key-value pairs

in that block and the Auditor extracts all the pairs by calling the GetTransaction()

function. Then, the Auditor finds the specific CIDi whose key is the combination

of string "CID" and TxID′
i. Finally, the Auditor can generate the content identifier

CID′
i of the cip′i locally and compare the hash value of these two identifiers. If

they are equal, the Equal() function returns true value and the Auditor returns

the Truei to indicate the data integrity of log′i is maintained. If they are not, the

Auditor returns the Falsei.

Fig. 4.5 illustrates how the function in Algorithm 3 generates CID. First, the

function divides the file into multiple chunks and each size is 256 KB. Then, it digests

each chunk into a unique hash code by a specific hash function. Next, it further edits

and processes each digest, and generates the unique CID for each chunk. Finally,

it aggregates all the chunk CID by forming a DAG data structure and generates

only CID which is the unique identifier for the input file. This file CID can help our

system locate the file content in IPFS and audit the data integrity.

In this section, we describe how the Auditor verifies log file integrity proofs and

checks whether they are tampered with by the Log Provider or the Logger. And,

similar to the Logger, the Auditor also has multiple peer nodes which install the

same chaincode and follow the designed endorsement policy to reach the consensus.

Section 4.6 proves our system can defend against attacks from compromised or

colluded auditor nodes.

58

4.5. Performance Evaluation

4.5 Performance Evaluation

We build a prototype of our system. In this section, we evaluate the performance

of some system processes.

The performances of different system processes are affected by different fac-

tors. For example, our system is implemented by Hyperledger Fabric. According

to [6], we know that the Hyperledger Fabric is a complex distributed system, and

its performance is related to many parameters, including the system node topology,

network bandwidth, query efficiency, and hardware. IPFS is utilized in our system

to back up log files and generate integrity proof. The time costs of uploading files

and generating CID can affect the system’s performance. Meanwhile, the AES en-

cryption algorithm takes time and computation resources to encrypt and decrypt

different sizes of log files, which also affects system performance.

Since the Log Provider, the Logger, and the Auditor are the main roles in our

system and each is responsible for a specific system process, our experiments are

separated into three parts: encryption and decryption performance, upload and

integrity generation performance and integrity proof performance. In each part, we

set experiments to evaluate the performance of the system process and analyze why

we get these experimental data.

The results demonstrate that our system can save approximately 50% storage

space for Hyperledger Fabric compared with the work in [5]. The AES algorithm

is efficient to process large-size log files in our system. When the log file size ex-

ceeds 28.95 MB, the performance of the logging and auditing process needs further

improvement in future work.

59

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

Table 4.2: Brief introduction of log files.

File

Name

Number of

Event

Size of

Original File

Size of

Encrypted File

Log_100 100 217 KB 289 KB

Log_2000 2000 4.3 MB 5.8 MB

Log_4000 4000 8.7 MB 11.6 MB

Log_6000 6000 13 MB 17.4 MB

Log_8000 8000 17.4 MB 23.2 MB

Log_10000 10000 21.7 MB 28.9 MB

4.5.1 Setup

In our experiments: (1) nodes run on Fabric v1.4.2-preview instrumented for perfor-

mance evaluation through local logging, (2) nodes are hosted in docker containers

as dedicated VMs, (3) all nodes are running on a single macOS with Inter Core

i9 2.4 GHz 8-vCPU, 32 GB of RAM and SSDs as local disks, (4) a single-channel

ordering service runs a test solo with one Fabric orderer, (5) there are six peers in

total, all belonging to different organizations, and the Logger and the Auditor have

three peers as endorsers for each, (6) the endorsement policy is designed as OR(

AND(LoggerOne, LoggerTwo), AND(LoggerOne, LoggerThree), AND(LoggerTwo,

LoggerThree)), which satisfies the majority rule, and (7) the INFURA [1] provides

IPFS service to backup the encrypted log file and generate CID.

4.5.2 Methodology

In Section 4.3.1, we suppose the Log Provider is the representation and abstrac-

tion of all systems that can generate different types of log files. To facilitate the

implementation of experiments, we choose L2TAP privacy logs as the log file used

in experiments. L2TAP provides a set of classes and properties that can be used

60

4.5. Performance Evaluation

to represent and publish log events, such as log initialization events, participant

registration events, and privacy events [54]. According to [41], we know the mod-

ern system can generate a large log file in one second, which may contain over ten

thousand events. In our experiments, we assume the Logger and the Auditor need

to handle log files that contain multiple events. The size for each L2TAP log event

is approximately 2 KB, and the AES CBC encrypt algorithm may also enlarge the

size of log files by padding them. The Table 4.2 shows some details of L2TAP log

files, and we can observe the size and the contained log event number in different

log files that we used in experiments. In addition, the BatchTimeout, as a system

parameter in Hyperledger Fabric, can be treated as the response time when the Log

Provider or the Court gets the result, and we set this parameter as 2 seconds as the

default value.

4.5.3 Encryption and Decryption Performance

Before the Log Provider sends the log file to the Logger, it needs to encrypt the log

file for privacy protection. According to [42], we know the AES-128 is secure enough

for any type of commercial application, and the security level of AES-256 is beyond

anything required by the ordinary application. Meanwhile, there are two patterns

for the Log Provider generating log file: separated pattern and combined pattern.

For the separated pattern, one log file contains one event; for the combined pattern,

one log file contains multiple events. The encryption algorithm with different key

lengths and different log file generation patterns may affect system performance.

We run experiments to compare the performance of encryption and decryption by

AES-128 and AES-256 in different log file generation patterns.

Fig. 4.6 shows the time taken for the file encryption and decryption under the

separated pattern with different key lengths. The encryption and decryption time

increases as the number of log files increases. The reason why the encryption time

61

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

Figure 4.6: The time taken for separated files encrypt and decrypt.

Figure 4.7: The time taken for combined files encrypt and decrypt.

is larger than the decryption time is log files are firstly read from the hard disk.

In this experiment, we create and store log files on the hard disk beforehand. The

Log Provider needs to access multiple times to encrypt each log file and generate

and store the encrypted file in the hard disk for follow-up experiments. Since the

decryption performance evaluation is launched after the encryption performance

evaluation, the Log Provider may read encrypted files from the cache rather than

the hard disk and this is time-saving.

62

4.5. Performance Evaluation

Figure 4.8: The time cost and upload rate of log files encrypted by AES-128.

Fig. 4.7 shows the time taken for the file encryption and decryption under the

combined pattern with different key lengths. Similarly, we generate and store log

files that contain multiple events on the hard disk; the encryption and decryption

time increases as the size of the log file increases. Compared with Fig. 4.6, the time

taken is reduced significantly in this experiment. The reason is the Log Provider

only needs access hard disk once in each test.

Through this part of the experiment, we think the normal large-scale systems

can utilize the AES algorithm to encrypt log files before sending them to the Logger

since this algorithm has little effect on system performance. From Fig 4.7, we can

observe that the time taken of encrypting and decrypting a log file that contains

10,000 events are no more than 105 ms. We believe this resource cost is acceptable

for normal large-scale systems, and this cost can be reduced if the Log Provider

reads and encrypts the log file as soon as it is generated, rather than waiting for it

to be stored on a hard disk.

63

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

Figure 4.9: The time cost and upload rate of log files encrypted by AES-256.

4.5.4 Upload and Integrity Proof Generation Performance

After the Log Provider encrypted log files, the Log Provider sent them to the Logger

for outsourcing log files and generating integrity proof. Fig. 4.8 shows the perfor-

mance of executing combined log files encrypted by AES-128 and the log files in

Fig. 4.9 are encrypted by AES-256. The size of log files encrypted by different key

lengths are the same, and these two experiments have the same logging procedure,

so we use Fig. 4.8 as an example to analyze this part of the experiment.

In Fig. 4.8, we can observe the time taken for the logging process increases as

the size of the encryption log file increases. The entire system process is executed

by chaincode in Hyperledger Fabric, but it can be roughly divided into two parts:

IPFS and Hyperledger Fabric. In detail, we can observe the time taken occupied by

IPFS and the upload rate increase as the size of the encrypted log file increases. We

think the time taken in Hyperledger Fabric is mainly cost by peer communication

and execute-order-validate procedure. Since we set the BatchTimeout is 2 seconds

and the size of the encrypted log file is increasing, all the time taken in Hyperledger

Fabric is larger than 2 seconds and keeps increasing.

64

4.5. Performance Evaluation

Figure 4.10: The time of integrity proof for log files encrypted by AES-128.

Figure 4.11: The time of integrity proof for log files encrypted by AES-256.

4.5.5 Integrity Proof Performance

This part of the experiment evaluates the performance of the auditing process when

the Court receives a log file and wants to verify its data integrity. Section 4.4.2

introduces the auditing process in the Auditor, and Fig. 4.10 and Fig. 4.11 show

the performance of auditing different encrypted log files. As aforementioned, the size

of log files encrypted by different key lengths and the auditing procedure are the

65

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

Figure 4.12: The time of generating cid for different log files.

same, so we choose Fig. 4.10 as an example to analyze this part of the experiment.

As shown in Fig. 4.10, the time taken for auditing process increases as the

size of the encrypted log file increases. Similar to the experiment in Section 4.5.4,

we roughly separate process into three parts: generate CID, query blockchain, and

Hyperledger Fabric. Specifically, Fig. 4.12 clearly shows the time taken to generate

CID for different encrypted log files. It is obvious that the peer node needs to take

more time to generate CID for the encrypted log file if it is larger than the previous

file. We consider the performance of generating CID locally acceptable since it takes

no more than 85 ms to generate the CID for a log file containing 10,000 events.

The query time shows in Fig. 4.10 is increased as the file size increased. The

query process in Hyperledger Fabric is different from other blockchains by setting up

a Leveldb to store the addresses of blocks and their corresponding transactions. This

design avoids traversing the entire blockchain and saves time. In this experiment,

we evaluate each performance in the order of file size. The addresses of the block

and the transaction that record a larger file are stored deeper in the database and

it takes more time to get them by the sequential query.

The time taken in the Hyperledger Fabric part includes the time of other Hy-

66

4.5. Performance Evaluation

Figure 4.13: The size of block when it stores log files or related integrity proofs (the

maximum block size is fixed and large enough).

perledger Fabric processes, which are the same as the processes in Section 4.5.4.

Generally, the time taken in this part increases as the size of the log file increases.

From Fig. 4.10 and Fig. 4.11, we can conclude the longest time to audit the largest

file in experiments is less than 9 seconds.

4.5.6 Blockchain Scalability

The scalability of blockchains is limited and they are not suitable to store large-sized

files. With the increase of the scale of the Log Provider, the size of the generated

log file may surpass the scalability of blockchains. In our system, we design an

NFT-based integrity proof generation method to resolve this problem. Our system

only stores the sub-NFT, not the original encrypted log file, on blockchain as an

integrity proof, and Fig. 4.13 shows that our method, compared with other [5],

can significantly reduce the storage pressure caused by the limited scalability of

blockchain.

Ahmad et al. [5] propose an audit log system by utilizing blockchain to ensure

67

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

log file integrity. Both our system and their system are implemented by Hyperledger

Fabric, but the main difference is they store the original log file on a blockchain. In

this experiment, we evaluate two methods by comparing the size of two blocks. The

block in the first test stores related integrity proofs, and the block in the second

test stores log files. For comparing easily, each block only contains one transaction

that records the log file or integrity proof; the maximum block size, a Hyperledger

Fabric parameter, is the same and large enough.

As shown in Fig. 4.13, our method can save nearly half of the blockchain stor-

age space and reduce its burden significantly. The reason the block size increases

with the file size is that according to the design of Hyperledger Fabric, each valid

transaction contains multiple pieces of information, such as key-value pairs, simula-

tion I/O, signatures, etc. The simulation input is an original encrypted log file in

our and Ahmad et al.’s Hyperledger Fabric transaction. It also explains why the

block size in our system is close to the size of the input file, even though the size of

the recorded sub-NFT is small, and why the block size in Ahmad et al.’s system is

more than twice the size of the input file.

4.6 Security Analysis

In this section, we analyze the system security to demonstrate that our system can

ensure log file data integrity under the proposed threat model.

4.6.1 Data Privacy

The information recorded in the log file can be private and sensitive for the User

and the Log Provider. In the threat model, we define the Logger and the Auditor

can be compromised, and they may leak the private data recorded in the log file. To

protect the data privacy, we require the Log Provider and the Court to encrypt the

68

4.6. Security Analysis

Algorithm 4 PKCS7Padding method for the AES
Input: Plaintext data, block size size.

Output: Plaintext with padding content data′.

1: function Padding(data)

2: padtext← []byte

3: length← len(data)

4: padding ← size− length%size

5: for i = 0→ padding − 1 do

6: padtext[i] = padding

7: end for

8: data′ ← append(data, padtext)

9: return data′

10: end function

log file before sending it to the Logger or the Auditor. For the encryption algorithm,

we choose the AES [19], a symmetric encryption algorithm, to encrypt the log file

with different key lengths (128, 192, and 256 bits). According to [42], we know that,

in theory, AES-128 can keep any type of commercial application in secure, and

the security level higher than AES-128 and AES-192 exceeds any requirements for

common applications. When the Logger or the Auditor receives the ciphertext that

is encrypted by the AES algorithm, it is impossible for them to deduce the plaintext

from the ciphertext or decrypt the ciphertext without the secret key. Therefore, the

data privacy of the log file can be protected.

The AES encryption algorithm implemented in our system has some specialized

settings that are used in conjunction with other security goals.

• Cipher Block Chaining (CBC): This is an encryption pattern in AES. In this

pattern, the plaintext is first divided into several segments, and then each

segment is XORed with the initial block or the ciphertext of the previous seg-

69

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

ment, and then encrypted with the secret key. It conceals plaintext structure

information and, therefore, it is not easy to be attacked [24]

• PKCS7Padding: This is a padding method to make the plaintext 128 bits long

or multiple of it since the AES algorithm encrypts the plaintext by splitting

it into blocks and each block length is 128 bits. The Algorithm 4 shows that

the padding content is specific and unchanged for the given plaintext. This

property ensures the ciphertext is unchanged for the given plaintext that is

encrypted by the same secret key.

Definition 1. (EK, AES encryption with PKCS7Padding) For the AES encryption

function EKS
which follows the PKCS7Padding pattern satisfies the property that:

The plaintext ti and t′i, the corresponding ciphertext ci = EKS
(ti) and c′i =

EKS
(ti). If ti = t′i and use the same secret key KS, then we have ci = c′i.

4.6.2 Data Integrity

According to the threat model, the log file can be tampered with by the Log Provider

in its local database or by the Logger in the logging process. Our system applies

blockchain technology and sub-NFT as integrity proof to detect or prevent tamper-

ing attacks. Before the analysis, some definitions need to be declared.

Definition 2. (CID, content identifier) It is a hash value based on file contents

encryption and the unique representation of the file contents. The function sum()

is defined to calculate the CID of the input file. If the file F1 and F2 have exactly

same contents, then sum(F1) = CID1 = sum(F2) = CID2.

Definition 3. (TxID, transaction identifier) It is a hash value automatically gener-

ated by the Hyperledger Fabric for each transaction. TxID is unique for each trans-

action, even if its information and value may duplicate those previously recorded.

70

4.6. Security Analysis

TxIDi represents the transaction identifier for the ith transaction and it has a prop-

erty that if i 6= j, then TxIDi 6= TxIDj.

Log Tampering Detection

When the conflict happened between the Log Provider and the User, the Log

Provider may tamper the log file in its local database to evade punishment from the

Court. To detect this log tampering attack, the Court can require the Log Provider

to send the TxID besides the log file. Then, the Court can verify the data integrity

of the log file by sending the log file and TxID to the Auditor.

Theorem 1. We assume the CID′ is calculated from the log file, and CID is

searched by the TxID. If CID′ = CID, then the log file that the Court received is

not tampered with by the Log Provider.

Proof. We assume the logging process and the auditing process are operated cor-

rectly (the proof is in Section 4.6.2 and Section 4.6.2). The relationship between

TxID and CID can refer to the logging process in Section 4.4.1. The Auditor can

search the CID recorded in the blockchain through the TxID sent by the Court. If

the queried CID is not null, according to the Definition 3 and the threat model,

we believe the Log Provider provides integrity proof for a particular log file. Then,

the Auditor calculates the CID′ for the log file sent by the Court and compares the

CID and CID′. If CID = CID′, according to the Definition 2 we affirm the log

file that the Court received is not tampered with by the Log Provider.

Log Tapmering Preventation

According to the threat model, the Logger in our system is not the trusted machine,

and it can be compromised to tamper with the log file even if the Log Provider is

71

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

trusted at this stage. To prevent the Logger from tampering with the log file when

the Logger processes it, we utilize the technologies in Hyperledger Fabric.

Specifically, the node that executes the logging process is called an endorser in

the Hyperledger Fabric. It installs the chaincode, which contains the logic and code

of the logging process, and executes the chaincode in a secure execution environment

supported by the Docker container [12]. Moreover, in our system, we set multiple

endorsers in the Logger, and they follow the designed endorsement policy to reach

a consensus when they execute the same transaction. The endorsement policy re-

quires the majority of the endorsers to execute the same result before updating the

blockchain.

We assume all the endorsers in the Logger install the correct chaincode suc-

cessfully at the setup stage. Since the endorser is launched in a trusted executing

environment, the only way for the adversary to compromise the Logger is by rewrit-

ing the chaincode and reinstalling it to a majority of endorsers. However, it is

impossible for the adversary to shut down and reset a majority of endorsers without

getting attention from the system. Therefore, the Logger tampering with logs is

prevented.

Operation Correctness

In the threat model, we assume the Auditor can collude with the Log Provider.

The Auditor can return a false audit result to the Court even if it detects the log

data integrity is destructed. Therefore, we need to achieve operation correctness to

defend against collusion attack when verifying data integrity.

The security goal of the operation correctness is tolerating a degree of collusion

between the Log Provider and the Auditor. Specifically, the Log Provider can collude

with the Auditor to return the false audit value to the Court and the Log Provider

can avoid the penalty. To tolerate a degree of this collusion, we apply blockchain

72

4.6. Security Analysis

Figure 4.14: Integrity proof time for log files encrypted with AES-128 under one-

third collusion attack. The deep blue bars represent the performance under a normal

situation and the light blue bars represent the performance under attack.

technologies in Hyperledger Fabric.

The measure for the Auditor is similar to the Logger in Section 4.6.2. The Au-

ditor node installs the designed chaincode, becomes the endorser, and executes the

program in a trusted executing environment. Moreover, we set multiple endorsers

in the Auditor, and they follow the specific endorsement policy to reach a consensus

before returning the audit result.

The endorsement policy in Hyperledger Fabric is a boolean expression to guide

endorsers on how to determine whether the transaction is approved or not. In our

system, we require the audit result to be valid when a majority of endorsers in the

Auditor approve this result correctly. For example, there are three endorsers in

the Auditor and the endorsement policy is OR(AND(AuditorOne, AuditorTwo),

AND(AuditorOne, AuditorThree), AND(AuditorTwo, AuditorThree)). In this ex-

ample, the audit result is valid if two of three endorsers approve the result correctly

73

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

which means the Auditor can tolerate the collusion attack when only one endorser

has colluded. Therefore, if we want the Auditor to be more tolerant of the collusion

attack, we can set more endorsers and scale up the endorsement policy. In addition,

the Logger can also tolerate a degree of collusion with the Log Provider since the

Logger has the same design pattern as the Auditor.

Fig. 4.14 shows the result that our system tolerates one-third of collusion attack

when Auditor and Logger have three peer nodes in each. We choose the auditing

process, where the Auditor verifies the integrity of log files encrypted by AES-128,

as a representation. In this experiment, the Auditor follows the setup in Section

4.5 and we assume one scenario that the AuditorThree node has been colluded and

cannot work properly during the auditing process. The performance with three valid

auditors represents the performance of the auditing process under a normal situa-

tion and the performance with two valid auditors represents the performance under

attack. Comparing the normal situation with this scenario, Fig. 4.14 shows the per-

formance of the Auditor attacked by one-third of colluded nodes is not significantly

different from the performance where all nodes are normal.

Data Recovery

The goal of data recovery is to reduce concerns about single-point failure when our

system attempts to ensure and prove data integrity.

The Log Provider can store the generated log file in its local database for data

analysis or digital forensics. However, the log data in its central database may

be lost due to various malfunctions. For recovering those lost data, we design the

Logger to outsource the encrypted log file in the distributed file system, e.g., IPFS

and require the Log Provider to store the triple instead the single lof file in its local

database. The example of the triple is {logi, CIDi, TxIDi}.

Theorem 2. We assume the triple {logi, CIDi, TxIDi} has lost some data. The

74

4.7. Conclusions

triple can be recovered if one of the elements in that triple is complete.

Proof. We assume that the data stored in the IPFS and the Hyperledger Fabric are

permanent since all the data are duplicated and distributed in these systems. First,

we suppose logi is complete, and the other two elements are lost. According to the

Definition 2 the Log Provider can regenerate the CID′
i through the API supported

by the IPFS and CID′
i = CIDi. Then, the Log Provider can query the Hyperledger

Fabric to find the key-value pair in which the value is equal to CIDi and the TxIDi

is found since the key is equal to "CID" + TxIDi in that pair. Second, we suppose

CIDi is complete, and the other two elements are lost. According to [9], we know

all the files stored in the IPFS are content-addressed, which means the file can be

found in IPFS by providing its CID. Hence, the Log Provider can recover logi by

using the CIDi to query the IPFS. Then, the TxIDi can be found by repeating the

procedure in the first scenario. Finally, we suppose TxIDi is complete. According

to our system design, the Log Provider can create the specific key which is equal to

"CID" + TxIDi and query the Hyperledger Fabric to find the value which is CIDi.

Then, the Log Provider can recover logi by following the step in the second scenario.

Therefore, the lost data in the Log Provider local database can be recovered as long

as one of the elements in that triple is complete.

Meanwhile, the concern of single-point failure in the Logger and the Auditor can

be resolved since there are multiple endorsers in each role to execute the program.

These two roles can tolerate the point failure as long as the majority of endorsers

are online and operating normally.

4.7 Conclusions

In this paper, we propose a blockchain-based audit log system to ensure log file data

integrity. Our system can detect the log tampering attack from the log provider and

75

Chapter 4. A Secure and Reliable Blockchain-based Audit Log System

logger, and reliably tolerate one-third of colluded nodes. We propose an NFT-based

integrity proof generation method, which resolves the blockchain limited scalabil-

ity problem by only storing small-sized proofs (sub-NFT) on the blockchain. This

method also eliminates the concern of single-point failure and data loss in a cen-

tral database by outsourcing log files to IPFS and recording integrity proofs in the

blockchain network. Finally, we implement a prototype of our system and analyze

whether our system can ensure data integrity. The experimental results show our

system is reliable to tolerate one-third of colluded nodes, and our proof generation

method can save approximately 50% storage space for Hyperledger Fabric. Mean-

while, the security analysis proves that our system can ensure log file data integrity

under the threat model. In future work, the system performance of the logging and

auditing processes need further improvement.

76

Chapter 5

Conclusions and Suggestions for

Future Research

5.1 Conclusion

Researchers are exploring blockchain technology broadly to collaborate with other

applications beyond cryptocurrencies. Its chain data structure and the combination

with other technologies bring decentralization, immutability, and other properties,

which can improve the security and reliability of the application systems.

In the work of the E-voting system, we propose a Double Blockchain-based E-

voting system, which is the first E-voting system that covers all the core requirements

of a reliable system. Our system consists of two blockchains: private blockchain and

public blockchain. Both blockchains record the same voting data, and only the

private blockchain records the voter’s personal information, and the data recorded

in the private blockchain are not allowed to be accessed by anyone until the election

is finished. Voters can query the voting data and supervise the election tallying

process in the public blockchain. Therefore, the voters’ personal information can

be audited in the private blockchain, and their privacy can be protected. The

77

Chapter 5. Conclusions and Suggestions for Future Research

correctness of the system process can be verified by querying and supervising data on

the public blockchain. Besides, we use the linkable ring signature to authenticate and

encrypt voters’ identification and restrict voters from multiple voting. Meanwhile,

we propose an on-chain and off-chain hybrid storage mechanism, which combines the

off-chain database with the distributed ledger, to ensure data consistency between

the private blockchain and the public blockchain. Finally, we implement a prototype

to evaluate and analyze our system. The experiment results show our system has a

better performance when the block size is 512 KB, and the hybrid storage mechanism

has not become the bottleneck of our system performance. The security analysis

shows that our system is reliable by satisfying all core requirements.

In the work of the audit log system, we propose a secure and reliable blockchain-

based audit log system to ensure log file data integrity. We set a general threat

model which assumes the logger and auditor are untrusted and the log provider is

only trusted when it generates log files. Our system based on this threat model

has multiple loggers and auditors nodes to operate system processes. These nodes

install the smart contracts and follow the consensus algorithm to reliably tolerate

one-third of collusion nodes. We also employ the AES algorithm to protect log data

privacy from compromised loggers and auditors. For resolving data storage flaws,

we propose an NFT-based integrity proof generation method to record integrity

proof (sub-NFT) in blockchain and outsource related log files to IPFS. This method

resolves the limited blockchain scalability problem by only storing small-sized proofs

on the blockchain. It also eliminates the concern of single-point failure and data

loss in a central database by outsourcing log files to a distributed file system (IPFS)

and recording integrity proofs in the blockchain network. Finally, we implement a

prototype of our system and analyze whether our system can ensure data integrity.

The experimental results show our system is reliable to tolerate one-third of colluded

nodes, and our proof generation method can save approximately 50% storage space

for Hyperledger Fabric. Meanwhile, the security analysis proves that our system

78

5.2. Suggestions for Future Research

can ensure log file data integrity under the general threat model.

5.2 Suggestions for Future Research

In future work, we will focus on improving the system performance and security of

our current work.

5.2.1 System Performance Improvement

In the work of the E-voting, the system performance is unsatisfactory due to equip-

ment limitations and the prototype is implemented on a personal computer. We

need to set up a new prototype in a distributed environment with multiple devices

and evaluate the system performance by setting different parameters and configu-

rations. Besides, Although the off-chain database has not become the bottleneck

of the system performance in the current experiment, it can still be the bottleneck

when the read and write speed reaches the maximum value. We still need to con-

sider how to improve the hybrid storage scheme to reduce the impact on system

performance and make it securer.

In the work of audit log system, the performance of the logging and auditing

processes can be further improved by resetting the BatchTimeout parameter, ex-

panding the bandwidth, and building a prototype in a distributed environment with

multiple devices. In addition, the AES key length may become an influencing factor

since, according to AES design, the longer key length takes more time and resources

to process files, and makes the algorithm more secure. How to set a proper key

length in this system is another research direction.

79

Chapter 5. Conclusions and Suggestions for Future Research

5.2.2 Robustness and Usability

An E-system is considered robust if it can function properly even when some vot-

ers misbehave or if the system experiences partial failure. This typically requires a

distributed system that can support fault tolerance. In the future, we should con-

sider the influence of voters’ misbehavior on our E-voting system and optimize our

system to tolerate these effects. Then, we should also consider improving system

usability to attract more people to use our E-voting system. For example, the need

to improve the accessibility for disabled individuals in our E-voting system.

5.2.3 More General Threat Model in Audit Log System

In the work of the audit log system, we can set a more general threat model that

the Log Provider is trusted only when it generates lof files and launches the logging

process for the first time. Then, we can upgrade the system to be more robust. In

this threat model, the Log Provider can regenerate or tamper with the log file and

gets its related CID and TxID by normally transacting with the Logger. Then, it

can send the new triple to the Court and avoid penalty. One possible solution is

to compare the time stamp of proof recorded in the blockchain and the time stamp

written in the log file during the auditing process.

80

References

[1] Infura.

[2] Voatz mobile voting platform an overview: Security, identity, auditability, 2020.

[3] Rafael Accorsi. Log data as digital evidence: What secure logging protocols

have to offer? In Proc. Annual IEEE International Computer Software and

Applications Conference (COMPSAC’09), volume 2, pages 398–403, Seattle,

WA, Jul. 2009. IEEE.

[4] Ben Adida. Helios: Web-based open-audit voting. In Proc. USENIX Security

Symposium (USENIX Security’08), volume 17, pages 335–348. San Jose, CA,

USA, Jul. 2008.

[5] Ashar Ahmad, Muhammad Saad, Mostafa Bassiouni, and Aziz Mohaisen. To-

wards blockchain-driven, secure and transparent audit logs. In Proc. Interna-

tional Conference on Mobile and Ubiquitous Systems: Computing, Networking

and Services (MobiQuitous’18), pages 443–448, New York, USA, Nov. 2018.

[6] Elli Androulaki, Artem Barger, Vita Bortnikov, Christian Cachin, Konstanti-

nos Christidis, Angelo De Caro, David Enyeart, Christopher Ferris, Gennady

Laventman, Yacov Manevich, et al. Hyperledger fabric: a distributed operating

system for permissioned blockchains. In Proc. the thirteenth EuroSys conference

(EuroSys’18), number 30, pages 1–15, Porto, Portugal, Apr. 2018.

81

References

[7] Leonardo Aniello, Roberto Baldoni, Edoardo Gaetani, Federico Lombardi, An-

drea Margheri, and Vladimiro Sassone. A prototype evaluation of a tamper-

resistant high performance blockchain-based transaction log for a distributed

database. In Proc. European Dependable Computing Conference (EDCC’17),

pages 151–154, Geneva, Switzerland, Sep. 2017.

[8] Asaph Azaria, Ariel Ekblaw, Thiago Vieira, and Andrew Lippman. Medrec:

Using blockchain for medical data access and permission management. In Proc.

International Conference on Open and Big Data (OBD’16), pages 25–30. IEEE,

Aug. 2016.

[9] Juan Benet. Ipfs-content addressed, versioned, p2p file system. arXiv preprint

arXiv:1407.3561, 2014.

[10] Léo Besançon, Catarina Ferreira Da Silva, and Parisa Ghodous. Towards

blockchain interoperability: Improving video games data exchange. In Proc.

International Conference on Blockchain and Cryptocurrency (ICBC’19), pages

81–85, Seoul, Korea (South), Jul. 2019.

[11] Johannes Braun, Franziskus Kiefer, and Andreas Hülsing. Revocation and non-

repudiation: when the first destroys the latter. In Proc. European Public Key

Infrastructure Workshop (EuroPKI’13), pages 31–46, Berlin, Heidelberg, 2013.

[12] Thanh Bui. Analysis of docker security. arXiv:1501.02967, 2015.

[13] Luigi Castaldo and Vincenzo Cinque. Blockchain-based logging for the cross-

border exchange of ehealth data in europe. In Proc. International ISCIS Secu-

rity Workshop (Euro-CYBERSEC’18), pages 46–56, Cham, Jul. 2018.

[14] Mumin Cebe, Enes Erdin, Kemal Akkaya, Hidayet Aksu, and Selcuk Ulu-

agac. Block4forensic: An integrated lightweight blockchain framework for

forensics applications of connected vehicles. IEEE Communications Magazine,

56(10):50–57, Oct. 2018.

82

References

[15] David L Chaum. Untraceable electronic mail, return addresses, and digital

pseudonyms. Communications of the ACM, 24(2):84–90, 1981.

[16] Boyuan Chen and Zhen Ming (Jack) Jiang. A survey of software log instru-

mentation. ACM Comput. Surv., 54(4):1–34, May 2021.

[17] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels,

Ahmed Kosba, Andrew Miller, Prateek Saxena, Elaine Shi, Emin Gün Sirer,

et al. On scaling decentralized blockchains. In Proc. International Conference

on Financial Cryptography and Data Security (FC’16), pages 106–125, Berlin,

Heidelberg, Aug. 2016.

[18] Jordi Cucurull and Jordi Puiggalí. Distributed immutabilization of secure logs.

In Proc. International Workshop on Security and Trust Management (STM’16),

volume 9871, pages 122–137, Sep. 2016.

[19] Joan Daemen and Vincent Rijmen. Aes proposal: Rijndael. 1999.

[20] Gaby G Dagher, Praneeth Babu Marella, Matea Milojkovic, and Jordan

Mohler. Broncovote: Secure voting system using ethereum’s blockchain. In

Proc. International Conference on Information Systems Security and Privacy

(ICISSP’18), pages 96–107, Funchal, Madeira, Portugal, Jan. 2018.

[21] Prerit Datta, Natalie Lodinger, Akbar Siami Namin, and Keith S Jones. Cyber-

attack consequence prediction. arXiv preprint arXiv:2012.00648, 2020.

[22] Alexander DeLaRosa. Log monitoring: not the ugly sister. Pandora FMS.

Archived from the original on February, 14, 2018.

[23] Omar Dib, Kei-Leo Brousmiche, Antoine Durand, Eric Thea, and Elyes Ben

Hamida. Consortium blockchains: Overview, applications and challenges. In-

ternational Journal On Advances in Telecommunications, 11(1&2):51–64, 2018.

83

References

[24] Razvi Doomun, Jayramsingh Doma, and Sundeep Tengur. Aes-cbc software ex-

ecution optimization. In Proc. International Symposium on Information Tech-

nology (ITCC’08), volume 1, pages 1–8, Kuala Lumpur, Malaysia, Aug. 2008.

[25] Jordi Barrati Esteve, Ben Goldsmith, and John Turner. International

experience with e-voting. Norwegian E-Vote Project. International

Foundation for Electoral Systems. Document disponibil online la adresa

http://www. ifes. org/Content/Publications/News-in-Brief/2012/June/%

7E/media/B7FB434187E943C18F4D4992A4EF75DA. pdf, 2012.

[26] Joshua AT Fairfield. Tokenized: The law of non-fungible tokens and unique

digital property. Ind. LJ, 97:1261, 2022.

[27] Yu Fei, Jing Ning, and Qing Hu. A log storage system based on block chain

(in chinese). Cyberspace Security, 9(6):6, 2018.

[28] Massimo Franceschet, Giovanni Colavizza, Blake Finucane, Martin Lukas Osta-

chowski, Sergio Scalet, Jonathan Perkins, James Morgan, Sebástian Hernández,

et al. Crypto art: A decentralized view. Leonardo, 54(4):402–405, Aug. 2021.

[29] J Paul Gibson, Robert Krimmer, Vanessa Teague, and Julia Pomares. A re-

view of e-voting: the past, present and future. Annals of Telecommunications,

71(7):279–286, Jun. 2016.

[30] Nicole J Goodman and Jon H Pammett. The patchwork of internet voting in

canada. In 2014 6th International Conference on Electronic Voting: Verifying

the Vote (EVOTE), pages 1–6. IEEE, 2014.

[31] Rifa Hanifatunnisa and Budi Rahardjo. Blockchain based e-voting recording

system design. In Proc. International Conference on Telecommunication Sys-

tems Services and Applications (TSSA’17), pages 1–6, Lombok, Indonesia, Oct.

2017.

84

References

[32] Freya Sheer Hardwick, Apostolos Gioulis, Raja Naeem Akram, and Konstanti-

nos Markantonakis. E-voting with blockchain: An e-voting protocol with decen-

tralisation and voter privacy. In Proc. International Conference on Internet of

Things (iThings’18) and IEEE Green Computing and Communications (Green-

Com’18) and IEEE Cyber, Physical and Social Computing (CPSCom’18) and

IEEE Smart Data (SmartData’18), pages 1561–1567, Halifax, NS, Canada, Jul-

Aug. 2018.

[33] Richard L Hasen. The 2016 us voting wars: From bad to worse. Wm. & Mary

Bill Rts. J., 26:629, Mar. 2017.

[34] Shilin He, Pinjia He, Zhuangbin Chen, Tianyi Yang, Yuxin Su, and Michael R.

Lyu. A survey on automated log analysis for reliability engineering. ACM

Comput. Surv., 54(6):1–37, Jul. 2021.

[35] Friðrik Þ Hjálmarsson, Gunnlaugur K Hreiðarsson, Mohammad Hamdaqa, and

Gísli Hjálmtỳsson. Blockchain-based e-voting system. In Proc. International

Conference on Cloud Computing (CLOUD’18), pages 983–986, San Francisco,

CA, USA, Jul. 2018.

[36] Jen-Ho Hsiao, Raylin Tso, Chien-Ming Chen, and Mu-En Wu. Decentralized

e-voting systems based on the blockchain technology. In Proc. Advances in

Computer Science and Ubiquitous Computing (CUTR’17), volume 474, pages

305–309, Singapore, Dec. 2017.

[37] Jiansen Huang, Hui Li, and Jiyang Zhang. Blockchain based log system. In

Proc. International Conference on Big Data (Big Data’18), pages 3033–3038,

San Francisco, CA, USA, Sep. 2018.

[38] Lv Jiangfu, Yinggxu Lai, and Jing Liu. Log security storage and retrieval

based on combination of on-chain and of-chain (in chinese). Computer Science,

47(3):6, 2020.

85

References

[39] Kashif Mehboob Khan, Junaid Arshad, and Muhammad Mubashir Khan. Se-

cure digital voting system based on blockchain technology. International Jour-

nal of Electronic Government Research (IJEGR’18), 14(1):53–62, 2018.

[40] Peter Lam. From helios to voatz: Blockchain voting and the vulnerabilities it

opens for the future.

[41] Max Landauer, Florian Skopik, Markus Wurzenberger, and Andreas Rauber.

System log clustering approaches for cyber security applications: A survey.

Computers & Security, 92:101739, May 2020.

[42] Arjen K. Lenstra. Unbelievable security matching aes security using public key

systems. In Proc. International Conference on the Theory and Application of

Cryptology and Information Security (ASIACRYPT’01), pages 67–86, Berlin,

Heidelberg, Nov. 2001.

[43] Xueping Liang, Sachin Shetty, Deepak Tosh, Charles Kamhoua, Kevin Kwiat,

and Laurent Njilla. Provchain: A blockchain-based data provenance architec-

ture in cloud environment with enhanced privacy and availability. In Proc. In-

ternational Symposium on Cluster, Cloud and Grid Computing (CCGRID’17),

pages 468–477, Madrid, Spain, Jul. 2017.

[44] Yi Liu and Qi Wang. An e-voting protocol based on blockchain. Cryptology

ePrint Archive, Report 2017/1043, 2017. https://ia.cr/2017/1043.

[45] Zhuotao Liu, Yangxi Xiang, Jian Shi, Peng Gao, Haoyu Wang, Xusheng Xiao,

Bihan Wen, and Yih-Chun Hu. Hyperservice: Interoperability and programma-

bility across heterogeneous blockchains. In Proc. ACM SIGSAC Conference on

Computer and Communications Security (CCS’19), pages 549–566, London,

United Kingdom, Nov. 2019.

[46] Ülle Madise and Tarvi Martens. E-voting in estonia 2005. the first practice of

country-wide binding internet voting in the world. In Electronic Voting 2006–

86

https://ia.cr/2017/1043

References

2nd International Workshop, Co-organized by Council of Europe, ESF TED,

IFIP WG 8.6 and E-Voting. CC. Gesellschaft für Informatik eV, 2006.

[47] Ian Miers, Christina Garman, Matthew Green, and Aviel D Rubin. Zerocoin:

Anonymous distributed e-cash from bitcoin. In Proc. IEEE Symposium on

Security and Privacy (S&P’13), pages 397–411, Berkeley, CA, USA, May 2013.

[48] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Decentral-

ized Business Review, page 21260, Oct. 2008.

[49] Truc Nguyen and My T Thai. zvote: A blockchain-based privacy-preserving

platform for remote e-voting. In Proc. International Conference on Communi-

cations (ICC’22), pages 4745–4750, Seoul, South Korea, May 2022.

[50] Shen Noether. Ring signature confidential transactions for monero. IACR

Cryptol. ePrint Arch., 2015:1098, 2015.

[51] William Pourmajidi and Andriy Miranskyy. Logchain: Blockchain-assisted log

storage. In Proc. International Conference on Cloud Computing (CLOUD’18),

pages 978–982, San Francisco, CA, USA, 2018.

[52] Benedikt Putz, Florian Menges, and Günther Pernul. A secure and auditable

logging infrastructure based on a permissioned blockchain. Computers & Secu-

rity, 87:101602, Nov 2019.

[53] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signa-

tures and public-key cryptosystems. Communications of the ACM, 21(2):120–

126, Feb. 1978.

[54] Reza Samavi and Mariano P. Consens. Publishing l2tap logs to facilitate trans-

parency and accountability. LDOW, 2014.

[55] Bruce Schneier and John Kelsey. Secure audit logs to support computer foren-

sics. ACM Trans. Inf. Syst. Secur., 2(2):159–176, May 1999.

87

References

[56] Qun Song, Yuhao Chen, Yan Zhong, Kun Lan, Simon Fong, and Rui Tang.

A supply-chain system framework based on internet of things using blockchain

technology. ACM Transactions on Internet Technology (TOIT’21), 21(1):1–24,

Jan 2021.

[57] Michael A Specter, James Koppel, and Daniel Weitzner. The ballot is busted

before the blockchain: A security analysis of voatz, the first internet voting

application used in us federal elections. In 29th USENIX Security Symposium

(USENIX Security 20), pages 1535–1553. USENIX Association, Aug. 2020.

[58] Shi-Feng Sun, Man Ho Au, Joseph K Liu, and Tsz Hon Yuen. Ringct 2.0:

A compact accumulator-based (linkable ring signature) protocol for blockchain

cryptocurrency monero. In Proc. European Symposium on Research in Com-

puter Security (ESORICS’17), pages 456–474, Cham, 2017.

[59] Andrew Sutton and Reza Samavi. Blockchain enabled privacy audit logs.

In Proc. International Semantic Web Conference (ISWC’17), pages 645–660,

Cham, Oct. 2017.

[60] Pawel Szalachowski, Stephanos Matsumoto, and Adrian Perrig. Policert: Secure

and flexible tls certificate management. In Proc. ACM Conference on Computer

and Communications Security (CCS’14), page 406–417, Scottsdale, Arizona,

USA, Nov. 2014.

[61] Baocheng Wang, Jiawei Sun, Yunhua He, Dandan Pang, and Ningxiao Lu.

Large-scale election based on blockchain. Procedia Computer Science, 129:234–

237, Mar. 2018.

[62] King-Hang Wang, Subrota K Mondal, Ki Chan, and Xiaoheng Xie. A review of

contemporary e-voting: Requirements, technology, systems and usability. Data

Science and Pattern Recognition, 1(1):31–47, 2017.

88

References

[63] Xu Wang, Guangsheng Yu, Ren Ping Liu, Jian Zhang, Qiang Wu, Steven Su,

Ying He, Zongjian Zhang, Litao Yu, Taoping Liu, et al. Blockchain-enabled

fish provenance and quality tracking system. IEEE Internet of Things Journal,

9(11):8130–8142, Sep. 2021.

[64] Gavin Wood et al. Ethereum: A secure decentralised generalised transaction

ledger. Ethereum project yellow paper, 151(2014):1–32, 2014.

[65] Haibo Yi. Securing e-voting based on blockchain in p2p network. EURASIP

Journal on Wireless Communications and Networking, 2019(1):1–9, May 2019.

[66] Haoran Yuan, Xiaofeng Chen, Jianfeng Wang, Jiaming Yuan, Hongyang Yan,

and Willy Susilo. Blockchain-based public auditing and secure deduplication

with fair arbitration. Information Sciences, 541:409–425, Dec. 2020.

[67] Wenbin Zhang, Yuan Yuan, Yanyan Hu, Shaohua Huang, Shengjiao Cao, Anuj

Chopra, and Sheng Huang. A privacy-preserving voting protocol on blockchain.

In Proc. International Conference on Cloud Computing (CLOUD’18), pages

401–408. San Francisco, CA, USA, Jul. 2018.

[68] Yuan Zhang, Chunxiang Xu, Nan Cheng, Hongwei Li, Haomiao Yang, and

Xuemin Shen. Chronos +: An accurate blockchain-based time-stamping scheme

for cloud storage. IEEE Transactions on Services Computing, 13(2):216–229,

Oct. 2020.

[69] Fei Zhu, Wei Wu, Yuexin Zhang, and Xiaofeng Chen. Privacy-preserving au-

thentication for general directed graphs in industrial iot. Information Sciences,

502:218–228, Oct. 2019.

89

	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	Introduction
	Thesis Contribution
	Privacy-preserving and Auditable blockchain-based E-voting System
	Secure and Reliable Audit Log System

	Thesis Outline

	Background
	Blockchain and Hyperledger Fabric
	Linkable Ring Signature
	InterPlanetary File System (IPFS)
	Non-Fungible Token (NFT)

	DBE-voting: A Privacy-preserving and Auditable Blockchain-based E-voting System
	Introduction
	Related work
	Conventional E-voting researches
	Blockchain-based E-voting researches

	The Proposed DBE-voting
	System Overview
	Election Process

	Data Consistency in DBE-voting
	Ensuring the transactions are recorded in private blockchain
	Ensuring the transactions are recorded in public blockchain
	Verifying the data consistency before generating the receipt

	Evaluation
	Experiments
	Security analysis

	Conclusion

	A Secure and Reliable Blockchain-based Audit Log System
	Introduction
	Related Work
	System Roles and Threat Model
	System Roles
	Threat Model
	System Notations

	System Method Description
	Logging Process
	Auditing Process

	Performance Evaluation
	Setup
	Methodology
	Encryption and Decryption Performance
	Upload and Integrity Proof Generation Performance
	Integrity Proof Performance
	Blockchain Scalability

	Security Analysis
	Data Privacy
	Data Integrity

	Conclusions

	Conclusions and Suggestions for Future Research
	Conclusion
	Suggestions for Future Research
	System Performance Improvement
	Robustness and Usability
	More General Threat Model in Audit Log System

	References

