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Abstract 

Radiotherapy is one of the mainstream treatment modalities for cancer. A large amount of 

structured data, including image, dose, and structure delineations, is produced during 

treatment planning. Technological advancement, especially artificial intelligence, 

facilitates the development of more sophisticated quantitative biomarkers from 

radiotherapy data for improved performance in precision medicine. Nevertheless, 

challenges in low data processing efficiency, incomplete data usage, and lack of 

reliability assessment hinder the development and bench-to-bedside translation. This 

thesis aims to develop an end-to-end and integrated RAdiotherapy Data Analysis and 

Reporting (RADAR) toolkit for efficient, comprehensive, and reliable quantitative 

biomarker developments and to evaluate its utility and performance in multiple clinical 

applications. 

RADAR is composed of GUI-equipped semi-independent modules for data 

curation, feature extraction, and model development. During the development of 

RADAR, we embedded a new multi-model feature set with innovative designs of 

anatomical features based on structure delineations and implemented perturbation-based 

repeatability assessment algorithm. By using the RADAR platform, we investigated 

radiomic feature (RF) repeatability and its agreements across imaging modalities and 

head-and-neck cancer subtypes via image perturbations, attempting to provide a direct 

perceptivity in RF pre-selection for robust model construction. We retrospectively 

collected contrast-enhanced computed tomography (CECT), contrast-enhanced T1-



weight (CET1-w), T2-weight (T2-w) magnetic resonance (MR) images of 231 

nasopharyngeal carcinoma (NPC) patients from Queen Elizabeth Hospital (QEH), and 

CECT images of 399 oropharyngeal carcinoma (OPC) patients from online database. 

Randomized translation and rotation were implemented to the images for mimicking 

scanning position stochasticity. The intra-class correlation coefficient (ICC) was 

calculated for each RF to assess its repeatability and quantitatively compared to evaluate 

the repeatability agreement. We also investigated the impact of RF repeatability on 

generalizable model development on Nasopharyngeal Carcinoma (NPC) cases using 

CET1-w MR images of 286 NPC patients from QEH for training and 183 from Queen 

Mary Hospital for external validation. Two separate survival models were developed 

using high-repeatable and low-repeatable RFs exclusively and compared on their 

prognostic performance in the validation set. In addition to the two technical studies, we 

developed two quantitative biomarkers based on anatomical and radiomic features for 

prognosis and treatment efficacy predictions of NPC patients. Based on the same NPC 

cohorts, we identified independent prognostic factors from anatomical features of lymph 

node tumor and constructed a prognostic index with N stage. In the last study, we 

identified single predictive radiomic feature extracted from primary gross tumor volume 

for patients receiving concurrent chemoradiotherapy with/without addition of adjuvant 

chemotherapy (ACT). We further investigated the predictive value of its voxel-wise 

feature mapping for feature explanation. 

We have successfully developed RADAR for efficient, comprehensive, and 

reliable radiotherapy data analysis for clinical biomarker development, With the help of 

RADAR, we discovered that more than half of the wavelet-filtered RFs, especially 



texture features, were highly susceptible to scanning position variations, irrespective of 

image modalities or HNC subtypes. It was more prominent when a smaller discretization 

bin number was used. Using high-repeatable RFs for model development yielded a 

significantly higher concordance-index (0.63) in the validation cohort than when only 

low-repeatable RFs were used (0.57, p-value= 0.024), suggesting higher model 

generalizability. For the two developed biomarkers, the anatomy-based prognostic index 

demonstrated superior cross-institutional performance in disease-free survival (DFS) than 

the clinical baseline N stage. The predictive radiomic feature, gldm_DependenceVariance 

in 3mm-sigma LoG filtered image, was discovered, and the high-risk patients who 

received additional adjuvant chemotherapy achieved a 3-year DFS rate of 90% versus 

57% for low-risk patients. The predictive value can also be generalized to the highlighted 

subvolume of the feature map. 

In conclusion, RADAR has been demonstrated as a highly useful tool for efficient 

analysis of radiotherapy data and effective development of biomarkers for precision 

medicine. We urge caution when handling wavelet-filtered RFs and advise taking 

initiatives to exclude low-repeatable RFs during feature pre-selection for generalizable 

model construction. By using the newly designed anatomical features, the spatial 

characterization of lymph node tumor anatomy improved the existing N-stage in NPC 

prognosis. The radiomic signature with its voxel-wise mapping could be a reliable and 

explainable ACT decision-making tool in clinical practice.  
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Chapter 1.  

Introduction 

1.1. Background 

Cancer is a devastating disease threatening billions of lives worldwide annually1. 

Radiotherapy (RT), as a major cancer treatment approach, has gone through numerous 

technological advances in the past decade, consolidating its indispensable role in 

contemporary cancer intervention. Concurrently, the precision medicine initiative has 

been launched with the aim to enhance healthcare delivery by providing personalized 

treatment to patients for maximized effectiveness and minimized side effects2,3. In this 

revolutionary phase, translational research in RT, which aims at moving laboratory 

discoveries to clinical trials or event clinical practice3, has gained increasing attention due 

to the rich information of RT data. Thanks to the rapidly evolving big data and 

quantitative analysis techniques, more sophisticated knowledge can be inferenced from 

RT data with unprecedented complexity and volume4. 

1.2. Radiotherapy Data 

RT data has a high variety and highly digitalized due to the increasing complexity and 

precision of RT treatments5,6. Patient clinical records are continuously produced in 

diagnosis (demographics, TNM stage, histopathology information), treatment delivery 

(surgery, chemotherapy, RT records) and follow-ups (survival and toxicity information)7, 

mostly in numerical, categorical, or free text formats. They can be either undigitized as 

paper charts8 or digitalized and standardized by means of, for instance, electronic medical 
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record9. They can be obtained from the home institution or an external or public database 

such as the Surveillance, Epidemiology, and End Results (SEER) database from the 

National Cancer Institute. Multiple imaging modalities are applied throughout the 

treatment course due to the technological advancements and the increasing popularity of 

image-guided RT10. Computed Tomography (CT) is an effective and widely used 

imaging modality in both diagnosis and treatment planning due to the quantitative and 

high-quality representation of patient anatomy. Magnetic Resonance Imaging (MRI) 

shows outstanding contrast to soft tissue with the absence of radiation dose. It has wide 

applications in diagnosis11 , treatment planning12, treatment guidance13, and response 

assessment14 . Positron Emission Tomography (PET) is a nuclear medicine technique that 

highlights local metabolism by radiotracers. Such functional information makes it highly 

sensible for viable and early cancer tissues, giving it unique advantages in diagnosis, 

treatment planning, and recurrence assessment15. Despite all the different modalities, the 

imaging data are deep down multidimensional matrix, mostly stored and transmitted 

according to the Digital Imaging and Communications in Medicine (DICOM) standard16. 

RT treatment planning data, such as planning CT, structure delineations, calculated dose 

map, and beam configurations, are generated to guide the radiation dose delivery during 

the treatment. Planning CT is one specific CT dedicated to patient localization and dose 

calculation. Structure delineations define patient anatomy by three-dimensional (3D) 

structures of treatment targets and organs-at-risk (OARs). The dose map, represented by a 

3D matrix, simulates the final dose delivered to the patient. Combined with structure 

delineations, the dose map is used for optimization and evaluation of treatment plans with 

the aim of a uniform prescription dose in the target region and a minimum dose in the 



 

27 

surrounding normal tissue. The beam setups describe how the beam should be placed and 

how the radiation should be delivered. The entire set of planning data is standardized by 

the extended DICOM protocol named DICOM-RT17 , facilitating intermachine and 

interinstitutional data sharing. 

1.3. Radiotherapy Data Analysis 

1.3.1. Data Curation  

As the first step of most RT data analysis pipelines, data curation harmonizes the less 

structured raw RT data into organized datasets with enhanced value and veracity. For 

example, standardizations of the structure names in treatment plans are required when 

studying a multi-center patient cohort with inconsistent naming conventions18. Curating a 

larger RT dataset can be time-consuming and tedious due to the large volume and variety 

of RT data. Moreover, the highly complex data structure makes the raw RT data less 

interpretable for non-professionals, which further increases the cost of data curation in 

both time and manpower. Software tools have been developed to facilitate data curation 

by breaking the barrier of technical complexity. For example, 3D slicer is one of the 

widely used open-source software platforms by researchers and clinicians. It provides 

interactive tools for RT data visualization and manipulation19. Similar software tools are 

Medical Imaging Interactive Toolkit (MITK)20, Computational Environment for 

Radiological Research (CERR)21, Cancer Imaging Phenomics Toolkit (CaPTk)22, and 

LIFEx23. All of them are equipped with Graphical User Interface (GUI) to be accessible 

to general public. 
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1.3.2. Biomarker Development 

Biomarkers, defined as “objective indications of medical state observed from outside the 

patient”24, serve as diagnostic and prognostic factors for guiding treatment managements. 

Traditional biomarkers are mostly based on histological or genomic measurements with 

theoretical background in biological or cellular process. Until recently, quantitative 

biomarkers based on RT data have been proposed and clinically validated. They are also 

called models which associate the input RT data with the target clinical endpoint through 

mathematical modeling. They have the unique advantages of non-invasiveness and high 

accessibility, making precision medicine available to a wider population. More complex 

quantitative biomarkers, especially ones developed by advanced machine learning 

techniques, has attracted increasing attention in the field of translation research due to 

their high performance and less dependance on prior knowledge. Despite the variety of 

methods in developing biomarkers, both effectiveness and reproducibility25 need to be 

guaranteed for clinical utility. One popular approach to construct quantitative biomarkers 

is Radiomics26. It leverages the high-throughput features extracted from imaging data by 

extracting a large set of quantitative features. They are later filtered and combined based 

on the correlation with clinical endpoint using machine learning or deep learning 

algorithms. 

Current developments in quantitative biomarker suffered from poor 

reproducibility27. As commented by Steyerberg et al.28(p3), among the large number of 

prognostic models proposed by literature, very few of them have been implemented and 

externally validated in clinic. Radiomic feature (RF) reproducibility has recently received 

increasing attention from the research community due to the poor agreements of selected 
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features between studies29. Image Biomarker Standardisation Initiative (IBSI)27 is an 

ongoing project aiming to achieve consensus on RF definitions, image processing 

workflow, quality assurance pipeline, and reporting guidelines through international 

collaborations. Various software tools with GUI and programming packages have been 

developed to facilitate standardized RF extraction23,30,31. In addition to standardization in 

data processing, more literatures have focused on the assessment of RF repeatability 

using experimental32–35 and perturbation methods. RFs that are less repeatable under the 

same or similar data acquisition conditions and processing methods are recommended to 

be excluded from radiomics analysis36. 

Challenges remain in quantitative RT data analysis that inhibit the further 

development of quantitative biomarkers for precision medicine. First, the current GUI-

equipped software tools are mostly designed for single-patient data processing, which can 

be time consuming for a large patient cohort due to manual operations. Such 

disadvantage often leads to a small sample size and reduced clinical significance of the 

drawn conclusion. Second, limited efforts were made in a comprehensive usage of RT 

data, especially structure delineations. Previous research has analyzed the imaging and 

planning dose data using Radiomcis and Dosimetrics for various clinical endpoints. 

Patient anatomical information is mostly assessed qualitatively for cancer diagnosis and 

prognosis according to established clinical protocols. Quantitative characterization of 

patient anatomy based on structure delineations was seldom investigated but may contain 

unique information of disease condition and predictive to patient prognosis. Third, 

repeatability assessment is not commonly performed in current biomarker developments. 

The assessment by experiments involves repeated data acquisition, which can be costly 
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and hazardous to patients. The perturbation-based method is advantageous37 but has not 

been widely adopted, possibly due to the insufficient consensus on the benefit on model 

reliability and the lack of ready-to-use software tool for rapid implementation.  

1.4. Aim and Objectives 

In an attempt to mitigate the remaining challenges introduced before, this thesis aims to 

(1) develop an end-to-end and integrated RAdiotherapy Data Analysis and Reporting 

(RADAR) toolkit for efficient, comprehensive, and reliable quantitative biomarker 

development and (2) to evaluate its utility and performance conduct in multiple clinical 

applications. Three objectives are achieved in the thesis: 

1. To develop RADAR with end-to-end cohort-level RT data analysis capability and 

technical innovations in feature design and feature repeatability analysis. RADAR 

is designed as GUI-equipped semi-independent modules for data curation, feature 

extraction, and model development. It is also optimized for maximum 

computation speed and minimum human intervention. New feature sets, including 

anatomical features extracted from structure delineations, are proposed to 

comprehensively describe the multifarious RT data. Perturbation based feature 

repeatability assessment is implemented and integrated in RADAR. 

2. To study radiomic feature repeatability and its impact on model development 

using RADAR. Two technical studies are conducted to explore the patterns of 

feature repeatability in different image modalities and patient cohorts and 

investigate whether high-repeatable features can benefit model generalizability. 
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3. To apply RADAR in reliable biomarker developments for Nasopharyngeal 

Carcinoma (NPC) patients. Two clinical studies were performed for survival 

prognosis predictions using anatomical features and treatment efficacy predictions 

using radiomics, respectively. Feature repeatability assessments were 

incorporated into those two studies to ensure the reliability of the established 

models. 

1.5. Thesis overview 

This thesis will first review previous literatures on RT data analysis for clinical 

applications and the ongoing investigation of the reproducibility and repeatability issue. 

In the next chapter, which focuses on the first objective, the design and technical 

innovations of RADAR software will be explained in detail. The third chapter contains 

two published technical studies36,38 on the analysis of the RF repeatability against patient 

positioning variations and its impact on model generalizability (the first study is 

reproduced with permission from Springer Nature). The fourth chapter introduces two 

clinical studies on the survival prognosis using the newly designed anatomical features 

and treatment efficacy prediction using Radiomics, where the first study has been 

published in a peer-reviewed journal39. Lastly, we summarize the entire thesis by 

revisiting the main results and discussing the limitations and future developments.  
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Chapter 2.  

Literature Review 

2.1. Quantitative Radiotherapy Data Analysis for Clinical Application 

The rich information contained in the multifarious RT data promoted a broad range of 

technical and clinical advancements in translational research. Tumor controls and normal 

tissue toxicity are two most studied clinical outcomes, as they are two major 

considerations during clinical decision making. Early works on quantitative RT data 

analysis focused primarily on toxicity prediction and survival prognostication from 

patient clinicopathological records due to the high data availability and simple data 

structure. As a result, large patient cohorts are mostly recruited to enhance the model 

robustness and clinical impact. One sample is the highly influential study published in 

2008 by Wang et al. on survival modeling of adjuvant RT for gallbladder cancer using 

4180 patients collected from the SEER database40. A clinical-ready nomogram and web-

based tool were further published to gain recognition and receive external validation. The 

same research group analyzed further on the survival benefit of adjuvant 

chemoradiotherapy from 1137 patients by constructing and comparing two survival 

regression models with and without the target treatment, and the nomograms along with 

the web-based tool were published41. For toxicity prediction, Langius et al. modeled the 

critical body weight loss after chemoradiotherapy of 910 internal head and neck cancer 

(HNC) patients by classification and regression tree using age and treatment protocol 

features42. The prediction tree was also presented for full transparency and potential 

clinical usage. A comprehensive study by Deist et al. attempted to predict multiple 
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outcomes, including both tumor control and toxicity, of 12 datasets using six different 

classifiers43. Technical recommendations were given instead of clinical solutions. 

In addition to clinicopathological information, quantitative biomarkers are being 

constructed from both imaging and planning data, attempting to give more accurate and 

cost-effective diagnosis and predict multiple clinical endpoints after treatment. Unlike 

clinicopathological data, imaging and planning data are higher dimensional and require 

more complex processing for biomarker development. Some biomarkers from images are 

being used in routine clinical practice, such as TNM stage inferred from multiple imaging 

modalities and bone scan index calculated from SPECT25. Some have passed the 

regulatory approval or undergoing clinical trials, but most of them are still in the 

development stage. The routinely acquired imaging biomarkers, such as TNM staging, 

have been included into clinicopathological data and will be excluded from the 

discussions below. One of the most popular quantitative imaging biomarker development 

techniques is Radiomics. Radiomics leverages a comprehensive set of features extracted 

from standard imaging and correlates them with the underlying pathophysiology26. It has 

been recognized as a potentially effective tool for diagnosis, survival prognosis, and 

toxicity prediction. Zhu et al. constructed a CT-based radiomic signature from five 

features for diagnosing non-small cell lung cancer subtypes with high sensitivity (0.828) 

and specificity (0.900)44. Aerts’ work has made a significant contribution to the field by 

associating prognostic RF with gene patterns and providing evidence of general 

prognostic imaging biomarkers across disease sites45. Several other highly impactful 

studies have demonstrated the independent predictive power of RF on survival. An early 

study by Huang et al. analyzed 132 texture RFs from CT images and constructed a 
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radiomics signature by combining selected features linearly46. The radiomics signature 

was proven to be predictive of disease-free survival of non-small cell lung cancer in 

addition to the widely applied clinicopathological factors. The study by Peng et al. has 

shed more light on value of Radiomics in clinical decision making by demonstrating the 

benefit of the constructed deep-learning-based PET/CT Radiomics prognosis signature in 

patient stratification for induction chemoradiotherapy47. Less studies have applied 

quantitative information from images to toxicity predictions with the exception of 

xerostomia prognostication48. The baseline or change of RFs from multiple imaging 

modalities have shown better performance than traditional analytical toxicity models in 

acute and late xerostomia predictions by several studies49. For example, Van Djik et al. 

found that texture features from pretreatment MRI can be predictive of late xerostomia, 

supporting the hypothesis of the association between predisposed fat and parotid 

toxicity50. 

Unlike imaging data, features from dose maps are mostly used in toxicity 

predictions due to the direct connection between delivered dose to radiation induced 

damage to normal tissues. Various dose features have been designed based on the 

anatomy of normal tissues and their radiobiology51. Dose volume histogram (DVH)  was 

originally proposed to estimate the normal tissue complication probability and guide plan 

optimization and quality assurance in clinic52. Parameters from the DVH have been 

extensively studied to model toxicity outcomes51. Such histogram-based dose features 

lacks spatial information encoded in a 3D dose map, especially for tubular normal tissue 

anatomy such as rectum, esophagus, or pharyngeal mucosa. The DVH alternative — 

dose-length and dose-circumference — were applied to quantify the dose distribution 
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along and around the tube direction of the pharyngeal mucosa by Dean et al., and they 

were shown to be highly predictive to severe acute dysphagia53. More spatial dose 

features were designed to account for the potential spatial heterogeneity of normal 

tissue’s radiosensitivity. Buettner et al. first proposed 3D dose moment invariants, which 

quantifies the center of mass, spread, and skewness of the dose distribution in the left-

right, anterior-posterior and superior-inferior directions54. Their superior performance 

was also validated against traditional models in xerostomia prediction for head-and-

cancer. Bourbonne et al. calculated RFs from the dose map and discovered better 

predictive power for grate ≥ 2 acute and late pulmonary toxicities than clinical and DVH 

models55. Similarly, only dose shape descriptors remained from a combination of DVH 

parameters, 3D dose invariants, dose gradients, and dose radiomics in a xerostomia 

prediction study by Gabrys et al56. Recent studies have combined dose descriptors with 

image biomarkers to enhance the toxicity prediction performance. Chopra et al. found 

better performance of machine learning models with the combination of image and dose 

RFs from lung subregions than DVH models in predicting radiation pneumonitis57. To 

further consider the complementarity and independency of the imaging and dose features, 

technical advancements such as multi-view analysis has been suggested to achieve better 

performance in a lung cancer acute body weight loss study58. In addition to toxicity 

predictions, dose features were demonstrated to be predictive of disease progression after 

the treatment. In a recent study by Wu et al., the PET/CT image radiomics model was 

only prognostic of locoregional recurrence for neck and cancer patient after the 

integration of dose RFs59. 
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Compared to dose descriptors, much fewer investigations were performed on the 

predictions from patient anatomy based on the quantitative descriptions of structure 

delineations. In the study of early prediction of parotid shrinkage and toxicity by Pota et 

al., the high-dose target volume, parotid glands structures, lymph node chain, and their 

overlap volumes were combined with CT/PET for model construction60. Some 

anatomical information was more visible in certain imaging modalities, and the 

quantification is highly dependent on the imaging data. For example, the tumor location, 

mesorectal fascia status, and the extramural vascular invasion were manually quantified 

from MRI landmarks in the recent study by Chen et al61. The final constructed model 

showed an outstanding performance with validation AUC of 0.771 for 3-year disease-free 

survival (DFS) on locally advanced rectal cancer. 

2.2. Repeatability and Reproducibility of Radiomic Features 

During the fast advancement of RT data analysis techniques, increasing attention has 

been paid to the precision of quantitative biomarkers retrieved from RT data, especially 

RF extracted from imaging data. Evidence has suggested a wide range of RFs 

demonstrated unsatisfactory repeatability and reproducibility, which are precision 

measured in the same and different conditions62, despite the effort of standardization in 

RF definitions by IBSI. Test-retest and four-dimensional (4D) imaging are the two 

mainstream techniques to assess RF repeatability and reproducibility.  
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2.2.1. Test-Retest Imaging 

Test-retest imaging is one popular approach that attempts to reproduce the clinical 

variability through repeated scans. Less than half of the RF showed low repeatability in 

the same-day test-retest lung cancer CT imaging experiment conducted by 

Balagurunathan et al 63. They were also found to have poor reproducibility under varying 

imaging conditions such as reconstruction algorithm, voxel size, and image acquisition 

parameters on CT. et al. assessed the repeatability of MR texture features from test-retest 

images of 14 patients with rectal cancer; and emphasized that even when the same 

imaging machine, protocol, and operator were employed, certain high-order texture 

features exhibited extremely deficient repeatability33. Similarly, another recent study 

conducted by Lu et al. evaluated RFs repeatability on 13 prostate cancer patients via test-

retest MR images acquired within two weeks; and concluded that over 90% of the 

extracted RFs in all the studied MR sequences were not robust64. A well-recognized study 

by Berenguer et al. concluded that many RF were redundant and nonreproducible by test-

retest analysis on phantoms65. Leijenaar discovered that around 70% of the radiomic 

features extracted from non-small cell lung cancer PET images were repeatable under 

test-retest. However, short-interval test-retest imaging it is not routinely practiced in 

clinic and may introduce extra dose to patients, limiting its application in prospective 

studies and specific image modalities such as MR and PET imaging. Repeated scans with 

an even prolonged time interval, in the case of two-week apart, might lead to dramatic 

disparity in RFs due to enlarged tumor morphological and intra-tumoral microbiologic 

changes, which may reduce the generalizability of RF repeatability findings32. 
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2.2.2. Four-Dimensional Imaging 

RF repeatability can also be assessed from multi-phase images where each phase 

corresponds to a snapshot in the patient’s breathing cycle. Repeatable RFs across 

different phases in 4D image are insensitive to respiratory motion. Oliver et al. 

discovered that half of the included image features extracted from respiratory-gated PET 

images were susceptible to respiratory motion66. Another exploratory study by Larue 

concluded that low-repeatable features in test-retest could also be identified by 4D 

imaging67. They also pointed out the low generalizability of RF repeatability to cancer 

site and independency to patient survival. Lafata et al. reported around 30% of RF being 

sensitive to motion blurring, some of which were predictive to tumor histology when 

extracted from the end-of-exhalation phase68. Therefore, site-specific RF repeatability 

assessment is recommended for every radiomic study targeting clinical application, and 

4D imaging could be an effective method for assessing the RF repeatability assessments 

when test-retest imaging is not available. On the other hand, 4D imaging is only applied 

to cancer sites that are largely affected by respiratory motion, such as lung and liver 

cancer. A more generalized approach is desired for wide-spread implementation of RF 

repeatability assessment in radiomic studies. 

2.2.3. Image Perturbation 

A new perturbation-based RF repeatability assessment method was proposed by 

Zwanenburg et al.37 to overcome the limitations of test-retest imaging and 4D imaging by 

simulating variabilities in scanning position, image noise, and region-of-interest 

contouring. They examined RFs repeatability through a set of pre-defined image 

perturbations using test-retest CT images of 19 HNC and 31 lung cancer patients; and 
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reported a high concordance with test-retest based RF repeatability37. More recently, 

studies performed by Teng et al.69,70 demonstrated enhanced radiomic model robustness 

and internal generalizability, where models were developed by using high-repeatable RFs 

exclusively. Thus, image perturbation is a promising new technique to assess radiomic 

feature repeatability from any retrospective cohort. However, there is currently no 

software tool that implements the image perturbation algorithm, and there is a lack of 

study investigating the pattern of radiomic feature repeatability and its benefit in 

improving external generalizability of radiomic model.  
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Chapter 3.  

RADAR Development 

3.1. Introduction 

RADAR contains three semi-independent modules including data curation, feature 

extraction, and model construction. It provides a comprehensive analysis of RT data by 

new feature designs, embedded perturbation-based feature repeatability assessment 

algorithms, and standardized modeling workflows. They are also highly efficient with 

fully streamlined data processing optimized for large patient cohorts. RADAR is also 

equipped with interactive and intuitive GUI, making it accessible to users with limited 

skills in programming and computer systems. Herein, we will introduce the first two 

modules extensively including algorithms, technical specifications, and GUI design. 

3.2. Start-Up Window 

The start-up window is the starting point of RADAR where every module can be directly 

accessed. Figure 3-1 is the screen shot of the start-up window. The field named “RT 

database” specifies the folder path of the raw RT database. It is mandatory for all the 

three modules. The “Included patient IDs” field is optional for any module, and it is only 

useful for data curation. User can choose a “csv” file with the first column listing the 

included patient ids for data curation. “Previous cleaning status” specifies the folder 

directory generated by the previous data curation that the user wants to recover. It is an 

optional input parameter for data curation but mandatory for feature extraction. Finally, 

“Extracted features” tells the location of the previously extracted features. It is optional 
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for feature extraction but mandatory for model construction. The independent module 

initialization empowers flexible data analysis workflows and job managements. For 

example, it is possible to try different feature extraction parameters without repeatedly 

entering the data curation module. Data curation can be performed in a regular personal 

computer due to the less requirement in computational power and constant involvement 

of human adjustments. On the other hand, feature extraction is more suitable for a high-

performance computer, and it can be easily transferred given the same database and 

cleaning record. 

 

Figure 3-1. Screen-capture of the start-up window. 

It is the starting point of RADAR and can directly access all the data analysis modules 
including data curation, feature extraction, and model construction. 

3.3. Data Curation 

3.3.1. General Design 

The data curation module is a semi-automatic tool for RT data management and labeling. 

It currently supports image, dose, and structure data in DICOM/DICOM-RT format. The 

supporting DICOM modalities are CT, MR, and PT for image, DOSE for dose, 
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RTSTRUCT and SEG for structure delineations, and SEG for registration, as listed in. 

More modalities and data types will be supported in future developments. The workflow 

of the data curation module is summarized in Figure 3-2. This module starts with 

extracting or importing DICOM metadata of the entire raw database, depending on 

whether the local cache has been generated by previous metadata extraction. 

Registrations between images, dose, and structures are automatically inferred during the 

metadata extraction and recorded in the cache for first-time analysis. The user sets up the 

label names and metadata query criteria for the images and/or dose maps with the 

accompanying masks that are needed for a specific study. The matched data can be 

automatically screened out by multiple query criteria on DICOM metadata combined by 

either “and” or “or” logic. Next, the user can manually confirm and change the selected 

data for each label based on the metadata (listed by “Display metadata” in  

Table 3-1) and image displayed on the user interface. Such labeling strategy emphasizes 

efficiency through automation while ensuring the accuracy with the flexibility of manual 

adjustments. The labeling record can be exported anytime during the data curation 

process. It contains the label query criteria, relative file paths of the selected DICOM 

data, and other necessary information such as structure index and registration matrix. The 

labeling record is a snapshot of the data curation status and can be imported to quickly 

recover previous data curation job. The labeling record is also the final output of the data 

curation module and the input of the feature extraction module. 
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Table 3-1. Supported Digital Imaging and Communications in Medicine (DICOM) 
modalities and the metadata displayed in the user interface. 

Data Type DICOM Modality Display Metadata 

Image CT, MR, PT Modality, StudyDate, 
StudyDescription, SeriesInstanceUID, 
SeriesDescription, SeriesDate, 
ContrastBolusAgent, 
NumberOfSlices, 
DoseSummationType, 
FrameOfReferenceUID 

Dose DOSE 

Structure 
delineation 

RTSTRUCT ROIName, 
ReferencedSeriesInstanceUID, 
StructureSetDate, StructureSetLabel, 
SeriesInstanceUID, 
FrameOfReferenceUID 

 

 

Figure 3-2. General workflow of the data curation module. 
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Compared to performing data curation patient-by-patient on a general-purpose 

medical data visualization and analysis tool such as 3D slicer, the data curation module 

offers its unique advantages in the cohort-based data management. It is designed with a 

DICOM data import strategy that is fully optimized for large patient cohorts. Only the 

DICOM metadata is loaded in the initial data import, and the actual data (e.g. image 

volume) is loaded when requested for visualization during manual label adjustment. Such 

strategy can save both time and random-access memory space. Compared to converting 

the labeled data as a clean database, recording the selected DICOM file paths saves the 

disk space significantly while preventing unwanted data change during conversion. It also 

allows convenient database relocation as only the relative paths are recorded. 

3.3.2. Graphical User Interface 

The GUI of the data curation module is divided into three sections: query widget, cohort 

label widget, patient label widget, as shown in screen shot (Figure 3-3). The query 

widget receives commands from the user for adding new image modalities, doses, or 

structures and modifying the query criteria. It also contains the buttons for operations 

including loading database, importing previous cleaning status, saving cleaning status, 

and starting feature extraction. The cohort selection widget summarizes the labeling 

status of the entire patient cohort by displaying check marks on the labeled patients for 

each label. It is also where individual patients are selected for patient-level label 

adjustment and data visualization in patient label widget. The patient label widget 

contains three areas. The top-left area is a table that displays the metadata of all the image 

and dose objects. It is also a place where the labeling status, which is indicated by an 

exclusive check mark, can be manually adjusted by switching it to another data object. 
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The right area is the place to inspect the metadata and change the labels for structures. 

The button-left area displays the labeled images, dose maps, and structures. Each labeled 

image or dose is displayed on the axial, sagittal, and coronal view with all the selected 

structure masks overlaid. The displaying image or dose can be switched by choosing the 

desired label on the top bar. Different structures show different colors with an adjustable 

transparency, and the colors can be reflected in the structure table. User can control when 

the visualization is updated by pressing the “Update preview” button, as data loading for 

previous can be time-consuming. 

  

Figure 3-3. The annotated screen caption of the graphical user interface of the data 

curation module. 

The graphical user interface is divided into three components: query widget, cohort label 
widget, and patient label widget. 
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3.3.3. DICOM Volume Interpretation 

All the DICOM image, dose, and structure data are interpreted as 3D volumes so that 

they can share the same processing pipeline. To facilitate further data manipulations such 

as resampling, they are formatted by SimpleITK (version 2.1.1) Image class71. A 

SimpleITK image is a set of uniform 3D grid points occupying a physical space. We used 

Python package pydicom (version 2.3) to read individual DICOM files but developed our 

own algorithms to interpret DICOM data for full transparency. 

Image. A complete image series contains multiple DICOM files as different image slices, 

identified by the DICOM metadata SeriesInstanceUID. By stacking the pixel values of 

each image slice, a 3D image array can be generated and further processed into a 

SimpleITK image. Additional metadata including origin, direction, and spacing, which 

describe the physical space the image grid occupies, are required for the construction of 

SimpleITK Image. They are converted from the DICOM metadata of 

ImagePositionPatient, PixelSpacing, and ImageOrientationPatient of the DICOM slices 

defined on the right-handed left-posterior-head coordinate system (LPH). The conversion 

of spatial description can be visualized by Figure 3-4. ImagePositionPatient records the 

coordinates (in mm) of the slice origin, PixelSpacing specifies the width and height of 

each pixel in the image plane, and ImageOrientationPatient contains six values with the 

first three locating the column unit vector and the last three for the row unit vector. 

Mathematically, the ImagePositionPatient of slice k is denoted as 𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘)��������������⃑  with the three 

components along the LPH directions being 𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥(𝑘𝑘), 𝐼𝐼𝐼𝐼𝐼𝐼𝑦𝑦(𝑘𝑘), and 𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧(𝑘𝑘). 

PixelSpacing is denoted as 𝐼𝐼𝑃𝑃����⃑ = (𝐼𝐼𝑃𝑃𝑖𝑖,𝐼𝐼𝑃𝑃𝑗𝑗), assuming uniform planner resolution of each 

slice. The two vectors from ImageOrientationPatient are denoted as 𝐼𝐼𝐼𝐼𝐼𝐼𝚤𝚤��������⃑ =



 

47 

(𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑥𝑥, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑦𝑦, 𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑧𝑧) and 𝐼𝐼𝐼𝐼𝐼𝐼𝚥𝚥��������⃑ = (𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑥𝑥, 𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑦𝑦, 𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑧𝑧), which are supposed to be 

constant across slices. The schematic representation of the DICOM image series is drawn 

in Figure. The slice sequence is determined by ascending slice location 𝑃𝑃𝑆𝑆(𝑘𝑘), which is 

the projection of slice origin along the through-slice direction and can be calculated as 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘)��������������⃑ ∙ (𝐼𝐼𝐼𝐼𝐼𝐼𝚤𝚤��������⃑ × 𝐼𝐼𝐼𝐼𝐼𝐼𝚥𝚥��������⃑ ). The patient position (x, y, z) of pixel (i, j) at slice k can be 

calculated as 𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘)��������������⃑ + 𝐼𝐼𝑃𝑃𝑖𝑖 ∙ 𝑖𝑖 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝚤𝚤��������⃑ + 𝐼𝐼𝑃𝑃𝑗𝑗 ∙ 𝑗𝑗 ∙ 𝐼𝐼𝐼𝐼𝐼𝐼𝚥𝚥��������⃑ , which can be decomposed into  
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𝑦𝑦
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⎣
⎢
⎢
⎡
𝐼𝐼𝑃𝑃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑥𝑥 𝐼𝐼𝑃𝑃𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑥𝑥 0 𝐼𝐼𝐼𝐼𝐼𝐼𝑥𝑥(𝑘𝑘)
𝐼𝐼𝑃𝑃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑦𝑦 𝐼𝐼𝑃𝑃𝐽𝐽𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑦𝑦 0 𝐼𝐼𝐼𝐼𝐼𝐼𝑦𝑦(𝑘𝑘)
𝐼𝐼𝑃𝑃𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖𝑧𝑧 𝐼𝐼𝑃𝑃𝑗𝑗𝐼𝐼𝐼𝐼𝐼𝐼𝑗𝑗𝑧𝑧 0 𝐼𝐼𝐼𝐼𝐼𝐼𝑧𝑧(𝑘𝑘)

0 0 0 1 ⎦
⎥
⎥
⎤
�

𝑖𝑖
𝑗𝑗
𝑘𝑘
1

� . (1) 

A SimpleITK Image is defined on a grid with homogeneous spacing along image axes. 

The conversion from image coordinate (𝑖𝑖, 𝑗𝑗,𝑘𝑘) to patient coordinate (𝑥𝑥,𝑦𝑦, 𝑧𝑧) of a 

SimpleITK Image can be achieved as the matrix multiplication below 
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𝑃𝑃𝑖𝑖𝐷𝐷𝑖𝑖𝑥𝑥 𝑃𝑃𝑗𝑗𝐷𝐷𝑗𝑗𝑥𝑥 𝑃𝑃𝑘𝑘𝐷𝐷𝑘𝑘𝑥𝑥 𝐼𝐼𝑥𝑥
𝑃𝑃𝑖𝑖𝐷𝐷𝑖𝑖𝑦𝑦 𝑃𝑃𝑗𝑗𝐷𝐷𝑗𝑗𝑦𝑦 𝑃𝑃𝑘𝑘𝐷𝐷𝑘𝑘𝑦𝑦 𝐼𝐼𝑦𝑦
𝑃𝑃𝑖𝑖𝐷𝐷𝑖𝑖𝑧𝑧 𝑃𝑃𝑗𝑗𝐷𝐷𝑗𝑗𝑧𝑧 𝑃𝑃𝑘𝑘𝐷𝐷𝑘𝑘𝑧𝑧 𝐼𝐼𝑧𝑧

0 0 0 1
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𝑖𝑖
𝑗𝑗
𝑘𝑘
1

� , (2) 

where 𝐷𝐷𝚤𝚤���⃑ �𝐷𝐷𝑖𝑖𝑥𝑥,𝐷𝐷𝑖𝑖𝑦𝑦,𝐷𝐷𝑖𝑖𝑧𝑧�, 𝐷𝐷𝚥𝚥���⃑ �𝐷𝐷𝑗𝑗𝑥𝑥 ,𝐷𝐷𝑗𝑗𝑦𝑦 ,𝐷𝐷𝑗𝑗𝑧𝑧�, and 𝐷𝐷𝑘𝑘����⃑ �𝐷𝐷𝑘𝑘𝑥𝑥,𝐷𝐷𝑘𝑘𝑦𝑦,𝐷𝐷𝑘𝑘𝑧𝑧� are the three orthogonal 

unit vectors defining image direction, 𝐼𝐼�⃑ �𝐼𝐼𝑥𝑥,𝐼𝐼𝑦𝑦,𝐼𝐼𝑧𝑧� is the image origin, and 𝑃𝑃𝑖𝑖, 𝑃𝑃𝑗𝑗, 𝑃𝑃𝑘𝑘 are 

the image spacing 𝑃𝑃 all in physical space. The following criteria need to be met for a 

conversion with consistent image geometry: 

⎩
⎪
⎨

⎪
⎧𝑃𝑃𝑘𝑘𝐷𝐷𝑘𝑘����⃑ 𝑘𝑘 + 𝐼𝐼�⃑ = 𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘)��������������⃑

𝑃𝑃𝑖𝑖 = 𝐼𝐼𝑃𝑃𝑖𝑖
𝑃𝑃𝑗𝑗 = 𝐼𝐼𝑃𝑃𝑗𝑗
𝐷𝐷𝚤𝚤���⃑ = 𝑃𝑃𝐼𝐼𝐼𝐼𝚤𝚤���������⃑

𝐷𝐷𝚥𝚥���⃑ = 𝐼𝐼𝐼𝐼𝐼𝐼𝚥𝚥��������⃑

. (3) 
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The first criterion requires a constant ImagePositionPatient difference between adjacent 

slices 

𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘)��������������⃑ − 𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘 − 1)�����������������������⃑ = 𝑃𝑃𝑘𝑘𝐷𝐷𝑘𝑘����⃑ . (4) 

It can be transformed into constant slice spacing 𝑃𝑃𝑘𝑘 with the assumption of 𝐷𝐷𝑘𝑘����⃑ =

𝐼𝐼𝐼𝐼𝐼𝐼𝚤𝚤��������⃑ × 𝐼𝐼𝐼𝐼𝐼𝐼𝚥𝚥��������⃑  

𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘)��������������⃑ ∙ 𝐷𝐷𝑘𝑘����⃑ − 𝐼𝐼𝐼𝐼𝐼𝐼(𝑘𝑘 − 1)�����������������������⃑ ∙ 𝐷𝐷𝑘𝑘����⃑ = 𝑃𝑃𝑆𝑆(𝑘𝑘) − 𝑃𝑃𝑆𝑆(𝑘𝑘 − 1) = 𝑃𝑃𝑘𝑘, (5) 

where 𝑃𝑃𝑆𝑆(𝑘𝑘) defines the slice location. 

 

Figure 3-4. The schematic representation of the slice-based Digital Imaging and 

Communications in Medicine (DICOM) image data structure and the volume-based 

SimpleITK image data structure. 

The metadata describing the physical space is also marked on both representations to 
explain the conversion from DICOM image series to SimpleITK image. 
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Both slice duplication and uniformity are checked across slices before 

constructing the 3D image array, as demonstrated in Figure 3-5. The image slice is 

considered as duplicate if the slice spacing 𝑃𝑃𝑘𝑘 is below the tolerance of 1% of the median 

slice spacing.  If the maximum difference of all the slice spacings is within the tolerance 

of 1% of the median slice spacing, we consider the current image series as uniform, and 

the final SimpleITK Image can be constructed directly from the original pixel values and 

the origin, spacing, and direction are calculated based on the above equations. According 

to the convention, the direction of a SimpleITK image is the inverse of the stacked 

direction vectors. The final slice spacing 𝑃𝑃𝑘𝑘 is calculated as the average slice spacings to 

avoid error accumulation, and the image origin 𝐼𝐼�⃑  is the ImagePositionPatient of the first 

slice 𝐼𝐼𝐼𝐼𝐼𝐼(0)��������������⃑ . For non-uniform slice spacings, inter-slice interpolation is performed to 

construct slices with constant spacings. 𝑃𝑃𝑘𝑘 is set as the smallest inter-slice spacing, and 

the number of slices is the ceiling integer of physical size divided by the final resolution. 

The original image matrix is interpolated to the non-uniform slice indexes that are 

linearly mapped from the uniform grid points in physical space. We use the function 

“interpn” from Python package scipy.interpolation to perform the grid interpolation, and 

the nearest neighbor interpolation method is chosen to avoid creating any artificial 

information. 
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Figure 3-5. Workflow for interpreting DICOM image series and the conversion to a 

SimpleITK image. 

 

Dose. Unlike DICOM image data, each DICOM DOSE file contains the complete 3D 

dose array that can be directly used to construct the SimpleITK Image after being 

rescaled by the “DoseGridScaling”. The in-plane resolution is retrieved from 

“PixelSpacing”, and the slice thickness is calculated as the difference of the first two 

elements of the “GridFrameOffsetVector”. Similar to DICOM image data, the 

“ImagePositionPatient” determines the origin of the dose map SimpleITK Image, and the 
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direction is calculated as the inverse of the direction vectors acquired from 

“ImageOrientationPatient”. The above conversion is demonstrated by Figure 3-6. 

 

Figure 3-6. Workflow for interpreting DICOM dose and the conversion to a SimpleITK 

image. 

 

Structure. Multiple DICOM modalities can describe the structure delineation data. 

DICOM RTSTRUCT is the most commonly used modalities in RT treatment planning. A 

DICOM RTSTRUCT object contains a collection of structures, each described by the 

physical space coordinates of the contour points grouped by slice. The contour point 

coordinates can be retrieved from the “ContourSequence” of each 

“ROIContourSequence” object. We convert the single-slice contours into a two-

dimensional (2D) mask by the function “polygon2mask” provided by the python package 

scikit-image.draw (version 0.19.2). The resolution of the mask slice is determined by the 

smallest resolution of the reference image, if provided. Otherwise, the default slice 

resolution of 0.5mmx0.5mm is used. The mask slices that have the same slice location 
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are combined into one by the union operation. The mask slices are then stacked into a 3D 

mask volume according to the rankings of the slice location. The same interpolation 

strategy is applied as the image data if the slice spacings are not uniform. Finally, the 

SimpleITK Image objective of the structure mask is constructed from the 3D mask 

volume using the origin and spacing of the first mask slice and the final slice spacing 

after slice uniformity check. The direction of the mask is set as the identify matrix. The 

entire conversion workflow is summarized in Figure 3-7. 

 

Figure 3-7. Workflow for interpreting DICOM structure and the conversion to a 

SimpleITK image. 
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3.3.4. Metadata Query and Display 

In addition to the volumetric data, other descriptive information is also retrieved from the 

DICOM metadata for query and display purposes. Most of the display metadata can be 

directly retrieved from DICOM metadata in the first or deeper level. The 

StudyDescription, StudyDate, Modality, SeriesDescription, SeriesDate, and 

SeriesInstanceUID are shared by all the three types of DICOM data. They can also be 

retrieved from the first level except FrameOfReferenceUID of structure. The 

ContrastBolusAgent is unique to image and can be retrieved from the first-level DICOM 

metadata. The NumberOfSlices is inferred from the number of DICOM image files that 

share the same SeriesInstanceUID and only applicable to image data. For dose data, the 

only unique display metadata is DoseSummationType, which can be retrieved from the 

first-level metadata. The ROIName, StructureSetDate, StructureSetLabel, and 

ReferencedSeriesInstanceUID are unique to structure data, and three of them are 

retrieved from the DICOM metadata in a deeper level. The ROIName is the second-level 

metadata from each StructureSetROISequence element. FrameOfReferenceUID is also 

the second-level metadata from the first element of 

ReferencedFrameOfReferenceSequence. The ReferencedSeriesInstanceUID is the 

SeriesInstanceUID acquired following the chain of 

ReferencedFrameOfReferenceSequence, RTReferencedStudySequence, and 

RTReferencedSeriesSequence. The acquisition of the display metadata from DICOM 

metadata can also be explained by. All the metadata with the keyword of “UID” are 

generally long texts composed by dots and numbers. They are simplified within each 

patient by re-assigning new IDs with much shorter lengths for the convenience of visual 
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comparisons. All of the display metadata can be queried based on the data type except for 

the “UID”s. Numerical metadata, including StudyDate, SeriesDate, NumberOfSlices, 

StructureSetDate, can be queried based on their maximum or minimum value of each 

patient. Free text or categorical metadata, including StudyDescription, SeriesDescription, 

Modality, ContrastBolusAgent, DoseSummationType, ROIName, and StructureSetLabel, 

are queried by exact match. We assume that most of the patients share the consistent 

naming convention within one institution, although some of the metadata are based on 

free text. 
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Figure 3-8. The acquisition of the display metadata from DICOM metadata. 

The solid purple rectangles are the intermediate DICOM metadata fields where the 
display DICOM metadata is acquired. The solid blue rectangles are the DICOM 
metadata fields that are displayed in the GUI, and the dashed blue rectangle is the 
inferred information to display in the GUI. 
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3.3.5. Registration 

Registrations are necessary to link different images, dose maps, and structures into one 

frame of reference (FoR) so that they can share the same anatomy. This module can 

recognize clusters of FoRs that are directly or indirectly registered and automatically 

apply the registrations during data loading. FoR is identified by the 

FrameOfReferenceUID metadata. 

First, a bidirectional registration dictionary is constructed by analyzing the direct 

and indirect connections between FoRs from all the DICOM REG files belonging to one 

patient. For each DICOM REG file, the FrameOfReferenceUID and 

MatrixRegistrationSequence are retrieved from each element of RegistrationSequence. 

All the MatrixSequence in each MatrixRegistrationSequence are combined by the dot 

product as the registration matrix from the current FoR to the common FoR of the REG 

object. The final registration matrix connecting every moving and fixed FoR pair within 

the REG objective is calculated by the dot product of the corresponding registration 

matrixes. The registration dictionary is thus constructed and expanded as more REG files 

are found within one patient folder. The dictionary also contains reversed registrations 

with inverted registration matrixes. Secondary registrations are also evaluated by finding 

common FoRs in the dictionary. 

Next, registrations are clustered with one fixed FoRs surrounded by the moving 

FoRs. Every unique FoR in the registration dictionary is ranked based the referred 

DICOM modality and its frequency. “CT” is the first-ranked DICOM modality, followed 

by “RTSTRUCT”, “MR”, and others. Iterative search of the moving FoRs is performed 

with the top-ranked FoR as fixed in the registration dictionary until all the FoRs are 
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exhausted. The FoR is removed from the search pool if it is selected as either the fixed or 

moving FoR previously.  

During metadata analysis, all the moving FoRs are converted to the corresponding 

fixed FoRs. Only the fixed FoRs are displayed for the FrameOfReferenceUID, and the 

final registration matrix is recorded and applied during data loading by changing the 

image origin and direction. This pre-analysis strategy in registration releases the burden 

of manual registration file selection during data curation, which is another effort in 

improving efficiency. However, having the same fixed FoR does not guarantee a perfect 

registration. It is the user’s responsibility to ensure the quality of registration by visually 

inspecting the image/structure in the user interface. 

3.4. Feature Extraction 

3.4.1. General Design 

The feature extraction module offers high-performance high-throughput feature 

extraction from the labeled RT data. It can be initiated from the data curation module or 

directly from the start-up window. It accepts the labeling record generated from the data 

curation module and outputs the extracted feature values as csv files. The output feature 

value files can be directly used by the model construction model and other data analysis 

software, depending on user’s preferred workflow.  
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Figure 3-9. Screen capture of the feature extraction module. 

Table 3-2. Text and color of the feature extraction status. 

Status Text Color Name Color Code 

Pending White #fffff 

Missing Yellow #ffff00 

Ongoing Light blue #00ffea 

Finished Green #00ff00 

Failed Red #ff0000 

 

3.4.2. Graphical User Interface 

The GUI screen capture of this module during one feature extraction job is shown in 

Figure 3-9. Users can switch between “Original feature” and “Perturbation feature” in 
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the drop-down combobox to choose whether the features from the original data or ones 

from the perturbed data are to be extracted. They can also adjust the patient batch number 

in the slider bar to control how many patients are to be paralleled for each feature 

extraction iteration. The feature extraction job is initiated by clicking the “start” button. 

To facilitate monitoring of the feature extraction progress, the main component of the 

GUI is a table displaying the status of the feature extraction job for each patient and 

feature category. The text and color of each feature extraction status are listed in Table 

3-2. 

3.4.3. Feature Definitions 

Volumetric features. A systematic and comprehensive set of features are defined for the 

multiple types of RT data. Image and dose data share the same feature definitions, but 

different features were designed for structures due to the uniqueness of the structure data. 

Both image and dose data present as cubical 3D volumes with continuously varying 

voxel values. We adopted the conventional RF definitions following the standardization 

proposed by the IBSI for image and dose data. In addition, spatial-invariant 3D moment 

and gradients features, which describe the spatial deposition of the volumetric data, are 

also included. Spatial-invariant 3D moments were first adopted in dosimetric predictions 

by Buettner et al.54. They validated the superior performance of dose moments on in 

xerostomia prediction than the standard mean-dose model for head-and-cancer cases. 

Dose gradients were included in the dosimetric feature set proposed by Gabrys et al. in 

their study on xerostomia predictions56. Besides, histogram features are included by 

defining the point values on the original or cumulative histogram curve. 
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1. Scale-invariant 3D moments quantify the ordered center-of-mass of the 3D 

volume within the ROI on the anterior-posterior, medial-lateral, and craniocaudal 

directions. The translation-invariant 3D moments are defined as 

𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝 = ���(𝑥𝑥 − �̅�𝑥)𝑝𝑝(𝑦𝑦 − 𝑦𝑦�)𝑝𝑝(𝑧𝑧 − 𝑧𝑧̅)𝑝𝑝𝐷𝐷(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧)
𝑧𝑧𝑦𝑦𝑥𝑥

, (6) 

where 𝐷𝐷(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the voxel value at location (𝑥𝑥, 𝑦𝑦, 𝑧𝑧), and 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧) is the binary 

indicator of whether the current voxel is in the ROI. 𝑝𝑝, 𝑞𝑞, 𝑟𝑟 are the user defined 

orders for each dimension. The scale invariance is achieved by normalization: 

𝜂𝜂𝑝𝑝𝑝𝑝𝑝𝑝 =
𝜇𝜇𝑝𝑝𝑝𝑝𝑝𝑝

𝜇𝜇000
𝑝𝑝+𝑝𝑝+𝑝𝑝

3 +1
. (7) 

Four example dose distributions showing contrasting Scale-invariant 3D dose 

moments are presented in Figure 3-10. Two examples are presented by three 

axial slices in Figure 3-10(a), and the rest two cases are represented by three 

coronal slices in Figure 3-10(b). A high accumulation of dose on the upper side 

of the x-y direction can be seen for the high 𝜂𝜂110 case, but the distribution is more 

even for the low 𝜂𝜂110 case, although a tendency towards the (-x)-y direction is 

observed. Similarly, the high 𝜂𝜂003 case shows a higher dose accumulation towards 

the positive direction of the z axis compared to the low 𝜂𝜂003 case. 
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Figure 3-10. Primary planning target volume dose distributions with four representative 

scale-invariant three-dimensional (3D) dose moments. 

Primary planning target volume dose distributions with four representative scale-
invariant 3D dose moments, each presented by three slices. (a) Qualitative comparison of 
dose distributions between high and low dose moments with the order of 1, 1, 0 on the x, 
y, and z dimension. Each slice is taken on the x-y plane with the horizontal line as the x-
axis. (b) Qualitative comparison of dose distributions between high and low dose 
moments with the order of 0, 0, 3 on the x, y, and z dimension. Each slice is taken on the 
x-z plane with the vertical line as the z-axis. 

2. Gradient features are the gradient values of the 3D volume along the anterior-

posterior, medial-lateral, and craniocaudal directions, which correspond to the x, 

y, and z directions on a SimpleITK image. The mathematical definition of the 

gradient feature for x axis is 

𝐺𝐺𝑟𝑟𝐺𝐺𝐺𝐺𝑖𝑖𝐺𝐺𝐺𝐺𝑡𝑡𝑥𝑥 =
∑ 𝐷𝐷(𝑥𝑥 + 1,𝑦𝑦, 𝑧𝑧)𝐼𝐼(𝑥𝑥 + 1,𝑦𝑦, 𝑧𝑧) − 𝐷𝐷(𝑥𝑥 − 1,𝑦𝑦, 𝑧𝑧)𝐼𝐼(𝑥𝑥 − 1,𝑦𝑦, 𝑧𝑧)𝑥𝑥,𝑦𝑦,𝑧𝑧

2∑ 𝐼𝐼(𝑥𝑥,𝑦𝑦, 𝑧𝑧)𝑥𝑥,𝑦𝑦,𝑧𝑧
. (8) 

3. Histogram features record the voxel accumulation or distribution depending on 

whether the histogram curves are cumulative or not. The histogram features can 

be defined on both axes of the curves. 

Geometric features. RADAR contains a new set of geometric features based on the 

geometric relationships between structure contours, which describes patient anatomy in a 
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quantitative manner. Distance and angle features are currently proposed for locating a 

target relative to the surrounding structures. The geometric relationships between the 

target volume and the OARs are primarily used in knowledge base treatment planning to 

predict dose-volume histogram or even 3D dose distributions. Overlap volume histogram 

(OVH) was first proposed by Kazhdan et al. for quantifying patient geometries72 and 

successfully applied by Wu et al. to predict the optimal dose-volume histogram for 

knowledge-based treatment planning73. It summarizes the distances between organ-at-risk 

(OAR) and the target volume (TV) by recording the fractional OAR volume as a function 

of the maximum distance from the target surface: 

𝐼𝐼𝑂𝑂𝑂𝑂(𝐺𝐺) =
𝑐𝑐𝑐𝑐𝑐𝑐𝐺𝐺𝑡𝑡𝑖𝑖 �𝑟𝑟�𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 , 𝑃𝑃𝑇𝑇𝑇𝑇��

𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂
, (9) 

where 𝑟𝑟�𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 , 𝑃𝑃𝑇𝑇𝑇𝑇� is the surface distance defined as the minimum distance from OAR 

voxel 𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖  to all the target surface points 𝑣𝑣𝑇𝑇𝑇𝑇𝑘𝑘 : 

𝑟𝑟�𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 , 𝑃𝑃𝑇𝑇𝑇𝑇� = min
𝑘𝑘
��𝑣𝑣𝑂𝑂𝑂𝑂𝑂𝑂𝑖𝑖 − 𝑣𝑣𝑇𝑇𝑇𝑇𝑘𝑘 ��𝑣𝑣𝑇𝑇𝑇𝑇𝑘𝑘 ∈ 𝑃𝑃𝑇𝑇𝑇𝑇�.  (10) 

The surface distance is positive for an OAR voxel outside TV surface and 

negative when inside. We used the signed Euclidean distance transform algorithm74 

provided by the Python package SimpleITK (version 2.1.1)71 to calculate the surface 

distance map and acquired the OVH as the cumulative histogram within the OAR mask. 

An example distance map for a lymph node gross tumor volume (GTVn) is visualized by 

the heat map in Figure 3-11 where the left parotid (Parotid_L) is drawn as a red contour.  
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Figure 3-11. Demonstration of distance and angle maps. 

Distance and angle maps based on example lymph node gross tumor volume (GTVn) and 
left parotid (Parotid_L) structures. (a) One axial slice of the structure masks (white: 
GTVn, red: Parotid_L) with the overlap region highlighted by blue. (b) The rendered 
three-dimensional structures. (c) One axial slice of the GTVn distance map with 
annotated contour lines and the Parotid_L contour. (d) One slice of the Parotid_L angle 
map masked by the GTVn sinogram edges (white contours). 

Spatial configuration of the TV may not be precisely determined by distance 

alone due to the potential complex organ structures, especially in the head-and-neck 

region. We designed the projection overlap volume (POV) histogram to quantify the 

angular relationships between TV and the surrounding OARs. POV is defined as the 

relative OAR volume that overlaps with the parallel projection of TV: 

𝐼𝐼𝐼𝐼𝑂𝑂(α) =
∑ χα𝑖𝑖𝑖𝑖

𝑂𝑂
, χα𝑖𝑖 = 𝑓𝑓(𝑥𝑥) = �

1, 𝑖𝑖𝑓𝑓 min
𝑗𝑗
𝜃𝜃𝑖𝑖𝑗𝑗 < 𝛼𝛼 < max

𝑗𝑗
𝜃𝜃𝑖𝑖𝑗𝑗

0, 𝑐𝑐𝑡𝑡ℎ𝐺𝐺𝑟𝑟𝑒𝑒𝑖𝑖𝑒𝑒𝐺𝐺
, (11) 
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where 𝑂𝑂 is the voxel volume of the OAR and 𝜃𝜃𝑖𝑖𝑗𝑗 is the angle from TV surface point 𝑣𝑣𝑗𝑗  to 

OAR voxel point 𝑣𝑣𝑖𝑖 on the axial plane. POV histogram is calculated by summing up the 

masked OAR sinogram along the angle direction. The masked OAR sinogram is the 

modified radon transform of the OAR mask volume around the axial axis; only the voxels 

located before TV are counted for each OAR mask volume projection. One Parotid_L 

masked sinogram is shown in Figure 3-11(d). Customized histogram features can be 

extracted from OVH and POV curves as geometric features, as well as other dimension 

reduction methods such as principal component analysis (PCA). 

3.4.4. Perturbation Feature Extraction 

Features can also be extracted under RT data perturbation for feature reproducibility 

assessment. Currently only translation, rotation, and contour randomization are 

implemented in the software. More perturbation modes such as noise addition are still 

under development. Translation displaces the image, dose, and structure mask by a 

distance within the voxel size, and rotation is performed around the axial axis located at 

the center of the region-of-interest (ROI) bounding box. The same translation and(or) 

rotation is performed on the accompanying ROI to ensure the consistent registrations. 

During the implementation of translation and rotation perturbation, images/dose maps 

and the ROI masks are resampled with transformation by the resample filter offered by 

the SimpleITK package. The combination of translation and rotation can simulate the 

patient position variations during scanning setup. Figure 3-12 demonstrates three 

translated and rotated CT images of one patient in three different views. 
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Figure 3-12. Three translated and rotated images and masks of a lung computed 

tomography (CT). 

Three translated and rotated images with the nodule masked by red of one lung CT 
image. Every row shows one combination of translation and rotation perturbation, and 
the three columns are the three views of the 3D image volume. 

Contour randomization simulates multiple delineations of the same structure. A 

3D random displacement field deforms the segmented mask and results in a randomized 

contour. The algorithm of random displacement field generation is adapted from the 
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methodology proposed by Simard et al.75. A random field vector component on each 

dimension is generated randomly under a uniform distribution between -1 and 1 for each 

voxel point. All the z-component of the field vectors on the same slice are kept to the 

same value to mimic the uniform inter-slice contour variations from the slice-by-slice 

contouring. The field vectors are then normalized on each dimension by the root mean 

square and scaled by the user-defined intensity value. They are then smoothed by a 

gaussian filter with user-defined sigma to ensure the continuous change of the random 

displacement field and avoid sharp changes of the deformed contours. Figure 3-13(a) 

shows one example of random displacement field, and the original and the corresponding 

randomized contour are visualized by the red and green lines respectively. Four 

randomized contours in different colors and the original contour are superimposed in 

Figure 3-13(b), showing similar variations to the actual repeated manual segmentations 

by five different operators in Figure 3-13(c). The similarity between the original and 

randomized contour is evaluated by two metrics: Dice similarity coefficient (DSC) and 

symmetric Hausdorff distance (HD). DSC is defined as the ratio between the union 

volume and average total volume of the two segmentations 𝑂𝑂𝛼𝛼 and 𝑂𝑂𝛽𝛽: 

𝐷𝐷𝑃𝑃𝐷𝐷 =
2�𝑂𝑂𝛼𝛼 ∩ 𝑂𝑂𝛽𝛽�
|𝑂𝑂𝛼𝛼| + �𝑂𝑂𝛽𝛽�

, (12) 

where |𝑂𝑂𝛼𝛼| denotes the voxel number within the segmentation 𝑂𝑂𝛼𝛼. The calculation of DSC 

is implemented by LabelOverlapMeasuresImageFilter.GetDiceCoefficient in SimpleITK 

package. HD is defined as the longest Euclidean distance from every point on one 

contour (𝑣𝑣𝛼𝛼𝑖𝑖 ) to the other contour (𝑣𝑣𝛽𝛽), as formulated in equation below, and the 

symmetric HD finds the longest distance in both directions: 
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𝑂𝑂𝐷𝐷 =  max
𝑖𝑖
�min

𝑗𝑗
�𝑣𝑣𝛼𝛼𝑖𝑖 − 𝑣𝑣𝛽𝛽

𝑗𝑗�� . (13) 

The calculation of HS is implemented by 

HausdorffDistanceImageFilter.GetHausdorffDistance in SimpleITK package. Two 

contour randomization parameters – Intensity and smoothing sigma – can be determined 

from clinical experience or tuned based on the resulting randomized contour similarities. 

 

Figure 3-13. Demonstration of the contour randomization method. 

Demonstration of the contour randomization method by one example lung CT image and 
the nodule contour. (a) The original contour (red) is randomized by the random 
deformation field (white arrows) into the new contour (green). (b) The original contour 
(red) and four randomized contours in different colors overlaid. (c) Five manual 
delineations by different operators. 
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3.5. Discussion 

This chapter presents the design and technical innovations of the RADAR toolkit, with an 

emphasis on efficiency, flexibility, and usability. The data curation module can reliably 

parse and reconstruct DICOM files, and facilitate efficient and accurate data selection 

through data query, image/structure visualization, and manual selection. The feature 

extraction module is equipped with advanced and innovative feature extraction 

algorithms tailored for different types of radiotherapy data, as well as image perturbations 

for feature repeatability analysis. All calculations are accelerated by parallel computation 

to fully exploit the advantages of multi-core CPUs. 

This thesis has not provided detailed information on two modules that are still 

under development, which are model development and model deployment. The model 

development module accepts the feature table generated by the feature extraction module 

and outputs the performance of model candidates, ultimately identifying the best 

performing model as the final model. Users can build their own model development 

pipelines by combining different steps of feature selection and classification/regression 

models. The model deployment module is an independent component for external model 

sharing and clinical translation. It includes an intuitive user interface that facilitates data 

selection through data visualization. Most importantly, it can reproduce the entire data 

preparation, feature extraction, and model predictions specified by the final model. 

RADAR offers several key features that greatly benefit model development and 

clinical translation. One such feature is its support for multi-modal feature extraction. 

This can be performed simultaneously for different types of radiotherapy data, including 

images, doses, and structures, within the feature extraction module. The extracted multi-



 

69 

modal features are then combined into a single feature table and sent to the model 

development module for building. Users can also choose to build their own models using 

third-party software tools. The final model contains all the necessary specifications for 

data preparation, feature extraction, and model prediction. It can be exported for sharing 

and external deployment, facilitated by the model deployment module. While a typical 

model development cycle, starting from raw radiotherapy data, can take weeks to 

complete, the model prediction can be achieved within 5 minutes using the model 

deployment module. This allows for fast clinical decision-making and minimal waiting 

time for patients. 
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Chapter 4.  

Radiomic Feature Repeatability Under Perturbation 

4.1. Introduction 

Radiomics has been reported to be successful in predicting numerous clinical endpoints 

through statistical modeling. However, the clinical applicability of these radiomic models 

has largely been impeded by the lack of studies assessing the RF repeatability in their 

models76–80. As highlighted in several excellent review articles, repeatability and 

reproducibility of RFs are crucial for reaching reliable and consistent conclusions 

between studies35,81,82. In particular, high repeatability, referring to RFs that remain stable 

when imaged multiple times if the conditions keep unchanged33,78, is the first and 

foremost criterion towards clinical utility. Features with poor repeatability against 

random changes during the same-condition imaging, where the clinical implication is 

ensured to be the same, could cause significant uncertainties in the downstream radiomics 

models, degrading model generalizability in both the same- and multi-institutional 

settings. As such, RF repeatability should be incorporated into feature pre-selection 

strategy and downstream predictive model construction in any radiomic studies. For 

example, excluding low-repeatability RFs by a certain threshold before any other feature 

selection procedures can ensure only high repeatable RFs are used during model 

construction. 

This chapter includes two technical studies focusing on the pattern of radiomic 

feature repeatability and its impact on model’s external generalizability under simulated 

patient position stochasticity. Specifically, the first study attempted to identify high or 
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low repeatable RFs that are generalizable across different cancer subtypes of HNC. Such 

information will provide the radiomics community with direct perceptivity for selecting 

reliable radiomic features and building robust predictive models for implementing 

precision medicine. The second study focused on the investigation of RF repeatability of 

NPC patients and compared the external generalizability of survival models built using 

high-repeatable and low-repeatable features. Data curation, feature extraction, and image 

perturbations in both studies were performed by the RADAR software. 

4.2. Repeatability of Radiomic Features against Simulated Scanning 

Position Stochasticity across Imaging Modalities and Cancer 

Subtypes 

4.2.1. Introduction 

Test-retest imaging is one of the widely applied methods for effective radiomics feature 

repeatability assessment which underlines the pronounced impacts of scanning position 

variations on RFs repeatability. Notwithstanding, there are noteworthy shortcomings. 

First, the impact of segmentation variations on RFs repeatability is often inherent in a 

test-retest study, where segmentations of region-of-interest are separately delineated on 

test and retest images, which hinders direct interpretations of the influences on RFs 

repeatability caused purely by positional discrepancies. Secondly, the prolonged time-

interval between test and retest images, in the case of 2-week apart, might disregard the 

implications of intra-tumoral microbiologic changes during that period of time, which 

itself might lead to dramatic disparity in RFs between the two scans. Thirdly, the limited 
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sample size owing to the need for recruiting consented patients renders their conclusions 

less statistically convincible. Lastly, other test-retest studies looked into the robustness of 

RFs under a mixture of variables (e.g., image preprocessing steps, scanning protocols, 

segmentation methods, etc.) 76–80, which, however, pose significant challenges in 

identifying the culprit of the declined repeatability of particular RFs. 

To address these limitations, we attempted to deploy our in-house developed 

image perturbation framework, taking reference from a previous work by Zwanenburg et 

al. 37, to mimic a vast amount of scanning position stochasticity via large patient cohorts 

of NPC and oropharyngeal carcinoma (OPC) . To our best knowledge, the RF 

repeatability against scanning position variations in HNC is yet to be explored, and there 

are no relevant publications with multiple imaging modalities. The main objectives of 

this study were: 

1. To ascertain the repeatability of RFs against scanning position stochasticity via 

image perturbations in both cohorts; 

2. To examine their generalizability across CT and MR imaging modalities among 

NPC patients; 

3. To assess their generalizability among HNC subtypes via a publicly available 

OPC dataset. 

4.2.2. Methods and Materials 

Figure 4-1 illustrates the overall study workflow. Two HNC cohorts were enrolled in this 

study: an internal NPC cohort of 250 patients collected from Queen Elizabeth Hospital 

(QEH) and a publicly available OPC cohort of 492 patients. The NPC cohort consists of 

three image modalities, which are contrast-enhanced CT (CECT), contrast-enhanced T1 
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weighted (CET1-w) MR, and T2 weighted (T2-w) MR. Only CECT images were studied 

for the OPC cohort. Details of data acquisition can be found in Appendix A. Each image 

set was processed through preprocessing, rotation and translation perturbations, and RF 

extraction before evaluating RF repeatability. By comparing the RF repeatability between 

each pair of the three imaging modalities in the NPC cohort, we examined repeatability 

generalizability across NPC imaging modalities. The comparison was also made between 

the CECT images of NPC and OPC cohorts to evaluate the generalizability across head-

and-neck cancer subtypes. Finally, multiple validation experiments were conducted to 

evaluate bias from feature collinearity, ROI contouring, and ROI volume. 

  

Figure 4-1. Overall study workflow. 
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Patient cohorts. A total of 250 biopsy-proven (Stage I-IVB) NPC patients who received 

cancer treatment at the Queen Elizabeth Hospital between 2012 and 2016 were 

retrospectively screened, and 231 patients that had same-institution MR images and 

eligible target contours were enrolled in the study. 

CECT images of 492 (Stage I-IV) OPC patients treated between 2005 and 2012 

were downloaded from The Cancer Imaging Archive83–85, and 399 patients who have 

eligible target contours were enrolled in this study. The cancer subsites of origin include 

base of tongue (n=255), tonsil (n=194), NOS (n=24), glossopharyngeal sulcus (n=11) and 

soft palate (n=8). 

Image acquisition & volume of interest segmentation. All imaging data were acquired in 

a DICOM format archived using Picture Archiving and Communication System (PACs). 

In the internal NPC cohort, each primary gross-tumor-volume (GTVp) of NPC was 

manually delineated on axial CT slices co-registered with MR images by oncologists 

specialized in head-and-neck cancer with accreditations. In the external OPC cohort, 

expert radiation oncologists manually segmented GTVp. Details of the image acquisition 

and contouring protocols can be found in Appendix A. 

Image preprocessing, perturbation, and feature extraction. All the calculations in image 

preprocessing, perturbation, and feature extraction were performed by our in-house 

developed Python-based (3.7.3) pipeline using the SimpleITK (1.2.4) 86 and PyRadiomics 

(2.2.0) package 30. All the image processing parameters were listed in Table 4-1. Before 

image perturbation, the signal intensities of MR images were normalized using brainstem 

as the reference structure with a rescaling factor of 100, and N4B bias correction from 

SimpleITK was employed for inhomogeneity correction. 
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Table 4-1. Image processing parameters 

 CECT CET1-w MR and T2-w 
MR 

N4B bias correction 
maximum iterations 

N/A [50, 40, 30] 

Normalization reference 
structure 

N/A Brainstem 

Normalization rescale 
factor 

N/A 25 

Pixel value offset 2000 2000 

Resample pixel size 
(mm) 

[1,1,1] [1,1,1] 

Anti-aliasing low-pass 
filter 

Gaussian,  𝛽𝛽 = 0.97 Gaussian,  𝛽𝛽 = 0.97 

Image/mask 
interpolation algorithm 

Trilinear Trilinear 

CT image intensity 
rounding 

No N/A 

Mask partial volume 
threshold 

0.5 0.5 

Interpolation grid 
alignment 

Align grid origins Align grid origins 

Image thresholding ±3𝜎𝜎 ±3𝜎𝜎 
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Translation distances 
(pixel) 

[ 0.0, 0.2, 0.4, 0.6, 0.8] [ 0.0, 0.2, 0.4, 0.6, 0.8] 

Rotation angles (degree) [-20,-15,-10,-
5,0,5,10,15,20] 

[-20,-15,-10,-
5,0,5,10,15,20] 

Image discretization bin 
size 

10 10 

Image filters Unfiltered, Laplacian-of-
Gaussian, Wavelet 

Unfiltered, Laplacian-of-
Gaussian, Wavelet 

Kernel size of Laplacian-
of-Gaussian filter (mm) 

[1,2,3,4,6] [1,2,3,4,6] 

Wavelet filter starting 
level 

0 0 

Wavelet filter total level 1 1 

Wavelet filter type Coilf1 Coilf1 

Wavelet filter 
decompositions 

[LLL, HLL, LHL, LLH, 
LHH, HLH, HHL, HHH] 

[LLL, HLL, LHL, LLH, 
LHH, HLH, HHL, HHH] 

Feature class shape, firstorder, glcm, 
glrlm, glszm, gldm, 
ngtdm 

shape, firstorder, glcm, 
glrlm, glszm, gldm, 
ngtdm 
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Figure 4-2: Demonstration of translation and rotation perturbation using one sample 

patient. 

Images are shown in axial, sagittal, and coronal views. The regions-of-interest are drawn 
by red masks. 

Image perturbations were applied to each pair of the preprocessed original-

resolution image and ROI mask during isotropic (1mm x 1mm x 1 mm) resampling after 

Gaussian anti-aliasing filtering. Two perturbation modes, rotation (θ ∈ [-20˚, 20˚], step 

size = 5, around central z-axis) and translation (µ ∈ [0.00, 0.80], step size = 0.2, along all 

three dimensions), were implemented following the procedures proposed by Zwanenburg 

et al.37 to mimic variations in scanning setup positions during image acquisition. All the 
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resampling procedures were performed using SimpleITK. In this study, 40 perturbation 

parameter sets (θ and µ) were randomly chosen without replacement from the 1125 

possible combinations and used to generate 40 sets of perturbed images. Choices of 

parameters for different patients were independent to generate the broadest range of 

perturbations with the minimum computational cost. Figure 4-2 demonstrates the 

original and two perturbed images and the corresponding GTVp contours in three views. 

Table 4-2. Extracted radiomic feature number separated by image filter and feature 
category. 

Image Filter Feature Category Feature Number 

Original Shape 14 

Original First-order 18 

Original Texture 73 

LoG (sigma=1, 2, 3, 4, 6 
mm) 

First-order, texture 91x5 = 455 

Wavelet (8 compositions) First-order, texture 91x8 = 728 

Total  1288 

 

Feature computation was performed on the perturbed images using PyRadiomics, 

which is compliant with recommendations from IBSI27. The perturbed image pixel values 

were shifted by the same offset value of 2000 and further discretized into a fixed bin 

width of 25. Laplacian-of-Gaussian (LoG) filters (Sigma values of 1, 2, 3, 4, and 6 mm) 
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and coilf1 wavelet filters (HHH, HLL, LHL, LLH, LHH, HLH, HHL, HHH) were 

applied to the discretized images for yielding advanced RFs. A total of 1288 RFs (14 

shape features, 91 from the unfiltered image, and 91x13 from filtered images) was 

computed per perturbed image, as reported in Table 4-2. 

RF repeatability and repeatability agreement. Feature repeatability was quantified using 

the intraclass correlation coefficient (ICC). Since the perturbation parameters were 

independently applied to images of different patients, the lower 95% confidence interval  

of one-way, random, absolute ICC was employed to assess RF repeatability. The 

calculation was performed by our in-house developed algorithm following the equations 

presented by McGraw et al.87.  The ICC for each RF was binarized to a threshold of 0.9 

to classify high and low RF repeatability, as adopted in previous literature 88. 

The repeatability agreement between two image sets was assessed using two metrics. The 

mean absolute difference (MAD) of the ICC was computed between the two compared 

datasets for each RF category, irrespective of the chosen ICC threshold. We also 

evaluated the RF repeatability consistency between image sets. It is quantified as the ratio 

of the commonly high-/low-repeatable RFs binarized by the specified ICC threshold of 

0.9. 

Bias analysis. We analyzed the applicability of our results by evaluating bias introduced 

from feature collinearity, ROI contouring, and ROI volume. The relationship between 

feature collinearity and repeatability was investigated through two sub-analyses. First, we 

analyzed whether the inter-feature correlation affects the skewness of RF repeatability. 

For example, significantly more inter-correlated features that are high-repeatable can 

result in an overestimation of RF repeatability for modeling. We followed the analysis 
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procedure proposed by Fiset et al. 34 and compared the feature repeatability distributions 

between all the extracted features and the representative features selected by clustering. 

KMeans provided by scikit-learn (version 0.23.2)89 was used to separate the extracted 

features into clusters. We tested the number of clusters from 50 to 450 with a step size of 

50. The smallest number of clusters with more than 75% of in-cluster pairs having the 

absolute Pearson correlation coefficient exceeds 0.9 in every cluster was chosen. The 

representative feature in each cluster was selected as the one with the highest median 

correlation with other cluster members. Quantitatively, we compared the ratios of low-

repeatable features (ICC < 0.9) between all the extracted features and the representative 

features for each image set. 

Second, how ROI volume dependency affects repeatability was also investigated. 

ROI volume is one highly repeatable feature by definition if no contouring variation is 

introduced. GTVp size is also a common prognostic factor for many disease types90–92. 

Some prognostic RFs have been discovered to be “proxy features” to ROI volume due to 

their high correlations29,93. In this study, we evaluated bias in repeatable feature selection 

towards volume-correlated features. For each feature category and image set, the high-

repeatable portion of volume-independent features was compared with the ratio relative 

to all the extracted features. The squared value of the Pearson correlation coefficient was 

used to quantify the volume correlation, and a threshold of 0.6 was chosen to determine 

whether an RF correlates with volume. 

We simulated the systematic contouring protocol deviation by eroding/dilating all 

the contours twice using a binary 3x3x3-sized structure with one-pixel connectivity. All 

the RFs under perturbations were recalculated, followed by the same repeatability 
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evaluations. Wilcoxon signed-rank tests and mean difference calculations on ICCs 

between the original and the eroded/dilated contours were conducted for each feature 

category. 

Differences in ROI volumes are artificially created by separating patients into five 

groups by four volume thresholds. The values of the volume thresholds are determined so 

that each volume group contains the same number of patients. The repeatability score 

ICC is calculated under bootstrapping (shuffled split) with a 50% test size due to the 

small patient number in one volume group. The calculations were conducted 

independently for each volume group. Feature repeatability is compared statistically 

using repeated-measures one-way analysis of variance (ANOVA) among the five volume 

groups for each feature category. The pairwise Student t-test was adopted as the post-hoc 

analysis method. 

4.2.3. Results 

Radiomic feature repeatability. As shown in Table 4-3, all the shape RFs and most 

unfiltered RFs (NPC:≥95.6%, OPC:83.5%) and LoG-filtered RFs (NPC:≥93.0%, 

OPC:93.6%) was highly repeatable against the studied positional variations, which is also 

visualized as the dominating blue-shaded regions in Figure 4-3. However, more than half 

of the wavelet RFs in all the analyzed image sets had low repeatability (Table 4-3). 

Within the wavelet-filtered categories, we observed that applying high-pass wavelet 

filters on more dimensions or on the slice direction (from LLL to HLL/LHL to 

LLH/LHH/HLH/HHL/HHH) caused a significant increase in low-repeatable RFs, as 

quantified by Table 4-3 (from 3.3~13.2% to 31.3~41.2% to 69.7~80.0%) and visualized 

by the increasing fractions of green-shaded regions in Figure 4-3. 
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Table 4-3. Distribution of low repeatability radiomics feature across different imaging 
modalities and head and neck cancer subtypes. 

Tumor Subtype NPC OPC 

Image Modality CET1-
w MR 

T2-w 
MR 

CECT CECT 

Low 
repeatable 
features 
(ICC > 0.9) 

Shape 0% 0% 0% 0% 

Unfiltered 0% 4.4% 3.3% 16.5% 

LoG filtered 3.5% 7.0% 4.0% 6.4% 

Wavelet 
filtered 

LLL 3.3% 7.7% 7.7% 13.2% 

HLL, 
LHL 

31.3% 35.2% 33.0% 41.2% 

LLH, 
LHH, 
HLH, 
HHL, 
HHH 

75.2% 73.0% 80.0% 69.7% 

All 
wavelet 

55.2% 55.4% 59.2% 55.5% 

 All 32.4% 34.1% 35.1% 34.8% 

Commonly low-repeatable features 
(all features) 

28.5% N/A 

29.7% 29.7% 

Abbreviations: NPC, nasopharyngeal carcinoma; OPC, oropharyngeal carcinoma; 
CET1-w MR, contras-enhanced T1-weighted MR; T2-w MR T2-weighted MR; CECT, 
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contrast-enhanced CT; ICC, intra-class correlation coefficient; LoG, Laplacian-of-
Gaussian. 

 

Figure 4-3: Visualization of category-based radiomic feature repeatability, binarized 

according to a threshold of 0.9 for the intra-class correlation coefficient (ICC).  

The green vertical lines represent low repeatability (ICC < 0.9) and the blue ones 
represent high repeatability (ICC >= 0.9). Within each category, features are sorted 
based on the ICCs of NPC CECT images and aligned at the same horizontal positions for 
all the image datasets. 

Agreement of radiomic feature repeatability across imaging modalities. For all the 

extracted RFs, high repeatability agreements were observed between any pair of the 

studied NPC image sets (ICC MAD<0.05, consistency>0.9). As shown in Figure 4-4(a-

c), shape, unfiltered, and LoG-filtered RFs expressed the highest repeatability agreements 

in terms of ICC MAD (<0.02) and consistency (>0.92). Wavelet-LLL/-HLL/-LHL 

showed the intermediate agreement with small ICC MAD (<0.03) but lower consistency 

(0.83~0.98). The remaining wavelet-filtered RFs demonstrated the lowest repeatability 
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agreement in terms of both ICC MAD (0.04-0.14) and consistency (0.70~0.98). The color 

agreements in Figure 4-3 visualized such repeatability agreements too. Of note, 28.5% of 

all the extracted RFs (367/1288) with low repeatability were commonly found across all 

the imaging modalities within the NPC cohort (Table 4-3). 

 

Figure 4-4: Dual y-axis plots demonstrating absolute difference of ICC and the accuracy 

of binarized repeatability across the studied datasets.  

Distributions of ICC absolute difference across imaging modalities of nasopharyngeal 
carcinoma (NPC) patients (a-c) and between NPC and oropharyngeal carcinoma 
contrast-enhanced CT images (d) are represented as blue boxes, and the repeatability 
accuracies using the threshold of 0.9 are drawn as green curves with triangle points.  
The median value of absolute ICC differences is represented as a horizontal line within 
each box, and the means are indicated by the diamonds. The edges of each box represent 
25 (lower quartile) and 75 (upper quartile) percentiles of the distributions, and the 
whisker has a range of 1.5 interquartile. 
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Table 4-4. Comparison of high/low repeatable feature counts and ratios between all the 
extracted features and representative features after clustering 

 NPC OPC 

 CECT CET1-w 
MR 

T2-w MR CECT 

All high-
repeatable 

816 (65%) 870 (67%) 849 (66%) 840 (65%) 

Representative 
high-repeatable 

163 (66%) 172 (66%) 182 (70%) 156 (59%) 

All low-
repeatable 

452 (35%) 418 (32%) 439 (34%) 448 (35%) 

Representative 
low-repeatable 

84 (34%) 88 (34%) 78 (30%) 107 (41%) 

Abbreviations: NPC, nasopharyngeal carcinoma; OPC, oropharyngeal carcinoma; 
CET1-w MR, contras-enhanced T1-weighted MR; T2-w MR T2-weighted MR; CECT, 
contrast-enhanced CT. 

Agreement of radiomic feature repeatability across head and neck cancer subtypes. RF 

repeatability was slightly lower between CECTs of the NPC and OPC cohort (ICC MAD 

= 0.06, consistency=0.89) for all the extracted RFs than the inter-modality repeatability 

agreements. Similar patterns of repeatability agreements that exist across imaging 

modalities were also observed across HNC subtypes, as shown in Figure 4-4(d). Shape, 

unfiltered, and LoG filtered RFs had the highest repeatability agreement (ICC 

MAD<0.05, consistency≥0.87), followed by wavelet-LLL/-HLL/-LHL (ICC MAD: 0.02-

0.05, consistency: 0.83~0.96). RFs from LLH-/LHH-/HLH-/HHL-/HHH-wavelet-filtered 
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images showed the lowest repeatability agreement in terms of ICC MAD (≥0.1) and 

consistency (0.69~0.83). Meanwhile, a significant proportion of RFs within the five 

wavelet-filtered categories had low repeatability (73.0~80% for NPC cohort and 69.7% 

for OPC cohort, Table 4-3).  Of note, 30% of all the extracted RFs (383/1288) with low 

repeatability were commonly found across the CECT images of the two HNC subtypes 

(Table 4-3). 

Bias analysis. The optimum number of clusters and the representative features for NPC 

CECT, NPC CET1-w MR, NPC T2-w MR, and OPC CECT were 250, 350, 450, and 400. 

The low/high-repeatable feature counts and ratios between the representative and all the 

extracted features are listed in  

Table 4-4. Notably, the differences in low-repeatable feature fractions are 0.06 maximum 

among all the four image sets. During the investigation of bias from volume correlation, 

the proportions of RFs with high/low correlation and high/low repeatability were 

compared for each feature category and image set, as demonstrated in Figure 4-5. The 

proportion of RFs with high volume correlation and high repeatability fluctuates between 

0.06 and 0.1 for all the feature categories except shape features. In total, less than five 

low-repeatable features with high volume correlation were observed and only in wavelet 

categories. Therefore, for every feature category, the portion of low/high repeatable 

features underwent minimum changes (maximum absolute difference=0.06) after 

excluding all the volume-correlated features. 

Most feature categories (NPC CECT: 13/15, NPC CET1-w MR: 13/15, NPC T2-

w MR: 13/15, OPC CECT: 12/15) demonstrated statistically significant (Wilcoxon p-

value < 0.05) changes of ICC under either erosion or dilation contouring bias simulations. 
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However, the absolute values of the mean differences for all the feature categories and 

image sets were below 0.05. 

 

Figure 4-5. Stacked bar plots comparing the fractions of radiomic features with different 

volume correlation and repeatability levels for the four studies image sets.  

Each bar contains the fraction of low-volume-correlated, low-repeatable (green), low-
volume-correlated, high-repeatable (blue), high-volume-correlated, low-repeatable (light 
green), and high-volume-correlated, high-repeatable (light blue) radiomic features. The 
portion of high volume-correlated and high repeatable features remained consistent 
among the image filters. A minimum number of high volume-correlated and low 
repeatable features was found in each image filter. 

At least 14 out of 15 feature categories have repeated-measures one-way ANOVA 

p-values smaller than 0.05 for all the image sets, suggesting statistically significant 



 

88 

changes of feature repeatability among the different levels of volume. Generally, all the 

image sets show increasing mean ICCs from smaller to larger volume groups for all the 

RF categories except shape and wavelet-LLL filtered RFs. Wavelet-filtered RFs 

demonstrated larger overall ICC increments (up to 0.2) with increasing volumes 

compared with other RF categories (<0.05). Of all the four analyzed image sets, the OPC 

CECT image set had the largest ICC increase. 

4.2.4. Discussion 

Results of our study suggested that the majority of the shape, unfiltered, and LoG-filtered 

RFs (Table 4-3) demonstrated high repeatability (ICC≥0.9) in all the studied image 

modalities and HNC subtypes (Table 4-3, Figure 4-4). Notwithstanding, over 50% of the 

wavelet-filtered RFs exhibited weak repeatability, irrespective of image modalities and 

HNC subtypes (Table 4-3).  Notably, we observed numerous interesting fashions within 

the wavelet-filtered category. One example can be visually perceived in Figure 4-3, 

where images with high-pass filtering on more dimensions demonstrated decreased 

feature repeatability. Specifically, wavelet-HHH and wavelet-LLL expressed an 

overwhelming disparity in RF repeatability.  

The lower repeatability of RFs from wavelet-filtered images and their distinct 

patterns could partially be ascribed to the principle of the wavelet filter. Wavelet filter 

decomposes the original images into eight decompositions in various frequency domains 

along three possible imaging axes. A high-pass-filter collects noisy and sharp edge 

signals, while a low-pass-filter smooths the images. Hence, high-pass-filtering could 

result in a more heterogeneous distribution of pixel values along the dimension where it 

applies. Our perturbation algorithm translated the high pixel value heterogeneity into the 
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high RF value variation through interpolation during image/mask resampling. This might 

elucidate our observation that the more dimensions the high-pass-filter applies to, the 

fewer repeatable RFs remain, and that HHH-wavelet RFs had the worst performance 

(Figure 4-4). In contrast, LoG-filter combines Laplacian filter for edge detection and 

Gaussian filter for varying extents of image smoothing; and applies to all image 

dimensions simultaneously. Compared to wavelet-filter, it, therefore, renders less pixel-

value heterogeneity and hence less susceptible to the perturbations. This rationale might 

shed light on our finding that LLL-wavelet-filtered and LoG-filtered RFs shared similar 

repeatability performance (Figure 4-4). 

Apart from the above, our data demonstrated high repeatability agreements (ICC 

MAD≤0.06, consistency≥0.89) in all the compared image sets (Figure 4-3, Figure 4-4) 

in general. The marginally drop in the agreement between cancer subtypes, compared to 

the inter-modality agreement, might be attributed to the discrepancies in bin counts 

during image intensity discretization (Figure 4-6) and ROI volumes (Figure 4-7, Figure 

4-8). We believe that the translation and rotation perturbations change feature values by 

altering voxel intensities on the ROI edges. We observed fewer bin counts of the 

unfiltered, LoG filtered, and wavelet-LLL filtered images for OPC CECT than NPC 

CECT (Figure 4-6). The smaller bin counts could introduce more significant changes to 

image intensity distributions from edge voxel intensity variations, resulting in declined 

repeatability of the corresponding RFs. The remaining wavelet-filtered OPC CECT 

images had similar or more bin counts than NPC CECT and would yield RFs with higher 

repeatability. The OPC cohort has smaller ROI volumes (Figure 4-7, Figure 4-8). The 

higher surface-to-volume ratio caused by smaller volumes led to larger relative variations 
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of image intensity distributions within ROIs, contributing to the decreased RF 

repeatability under the applied perturbations. This theory is consistent with our results. 

The OPC CECT image set showed reduced RF repeatability than NPC CECT without 

filtering or under LoG and wavelet-LLL filters due to both the fewer bin counts and 

smaller volumes. The improved RF repeatability under the rest of the wavelet filters 

could be caused by the more significant improvement from larger bin counts. The theory, 

again, illuminates our observation that RFs with the high-pass wavelet filter on more 

dimensions expressed declined repeatability, as the bin counts of the filtered images 

increased (Figure 4-6). Herein, we speculate the impact of the rigid perturbations on RF 

repeatability might, to a large extent, depend directly on image filters and the inherent 

image characteristics such as ROI volume and number of gray levels, rather than on the 

types of image modalities/sequences and cancer subtypes. Nevertheless, there might be 

other contributing factors and are worthy of further investigation. 
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Figure 4-6. Box plots of bin counts of the unfiltered/filtered images for all the image 

datasets.  

Each image type was drawn as a separate plot, and each plot contains the distributions 
of the four studied image sets. The whisker edges indicate the maximum and minimum 
value. Abbreviations: LoG, Laplacian-of-Gaussian. 
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Figure 4-7. Category-based binary radiomics feature repeatability separated by volume 

groups for contrast-enhanced CT (CECT), contrast-enhanced T1-weighted (CET1-w) 

MR, and T2-weighted (T2-w) MR of the Nasopharyngeal Carcinoma (NPC) cohort.  

The top figure is the histogram of the primary gross tumor volume for the NPC patient 
cohort, and the dashed black lines indicate the four threshold values (24213, 31616, 
50164, 74242, and 243786) for patient grouping. 
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Figure 4-8. Category-based binary radiomics feature repeatability separated by volume 

groups for CECT of the NPC cohort and CECT of the Oropharyngeal Carcinoma (OPC) 

cohort.  

The top figure is the histogram of the primary gross tumor volume for the OPC patient 
cohort, and the dashed black lines indicate the four threshold values (3338, 6256, 10307, 
20001, 153301) for patient grouping. 
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Multiple validation experiments suggested minimum bias introduced from feature 

collinearity and ROI contouring, while apparent bias was observed from ROI volume. 

Notably, the minimum repeatability skewness from feature collinearity is consistent with 

the conclusion addressed by Fiset et al.34 Minimum bias from ROI volume correlation 

was observed, as the proportion of high-repeatable features remains stable after excluding 

volume-correlated features. Negligible RF repeatability changes in terms of magnitude 

were observed after the 2-voxel contour dilation and erosion, although they were 

statistically significant. However, the repeatability variations may be vastly magnified if 

larger deviations in contouring protocols are introduced. The statistically significant and 

large mean ICC increment from smaller to larger volume levels showed substantial 

repeatability bias from ROI volume, especially for RFs from wavelet-filtered images. 

This positive correlation is another evidence that supports the theory in how ROI volume 

affects RF repeatability discussed in the previous paragraph. The highest magnitude of 

repeatability increase for the OPC CECT dataset could be explained by the larger 

increase rate of the surface-to-volume ratio of ROI under small volumes. The dependency 

of feature repeatability on ROI volume raises the alarm on the generalizability of 

radiomics models across treatment sites where the ROI sizes are significantly different. 

Many factors could introduce bias to our results besides the studied ones. They 

were not investigated due to the scope of this study. Image preprocessing procedures, 

such as bin size/bin counts in image discretization and re-segmentation range, may affect 

feature repeatability in various ways. As explained before, larger bin size/smaller bin 

counts would result in declined RF repeatability. Image re-segmentation directly limits 

the maximum, minimum, and range of pixel intensities within the ROIs. It magnifies the 



 

95 

relative variations of those three features if parts of the patients have truncated image 

intensities within ROI after re-segmentation. Bias could also arise from other factors such 

as treatment site and radiomics calculation software.  

In light of the progressively increasing adoption of wavelet-filter within the 

radiomics community in recent years 94–102, our scrutiny of category-based RF 

repeatability is of paramount importance for RF pre-selection and robust model 

construction. Of note, various studies reported that over 90% of the key features in their 

models originated from wavelet-filtered images 97–99. However, among the selected 

wavelet RFs reported in the literature for HNC cases in MR images, we only observed 

high repeatability in 17/36 RFs, while certain extremely underperforming RFs (ICC≤0.5) 

were noted (Table 4-5).  Meanwhile, we recognized that a robust model construction is 

multifactorial, scanning parameters, model of scanners, preprocessing steps, and 

delineation uncertainties might additively play a role in altering RF repeatability. 

Although our study intentionally focused on revealing positional variation dependence of 

RF repeatability, we, herein, argue that an even larger proportion of the underperforming 

(especially wavelet-filtered) RFs would likely be foreseen when additional factors come 

into play. Thereby, we stress our pressing concerns on cautious handling of the wavelet-

filtered RFs within the radiomics community. 
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Table 4-5. Repeatability of wavelet feature used as final selected features in previous 
literature. Low repeatable radiomic features were highlighted as red. 

CET1-w MR T2-w MR 

HLL-wavelet Category 

HLL-first-order-median (0.94) HLL-glcm-cluster-prominence (0.95) 

HLL-glrlm-run-percentage (0.98) HLL-gldm-dependence-entropy (0.98) 

HLL-glcm-correlation (0.90) HLL-gldm-small-dependence-low-gray-
level-emphasis (0.61) 

HLL-ngtdm-complexity (0.90)  

LHH-wavelet Category 

LHH-first-order-mean (0.92) LHH-first-order-mean (0.90) 

LHH-first-order-median (0.75)  

LHH-glszm-gray-level-non-uniformity-
normalized (0.30)*  

LHH-glszm-small-area-high-gray-level-
emphasis (0.50)*  

LLH-wavelet Category 

LLH-first-order-mean (0.98) LLH-first-order-mean (0.99) 

LLH-first-order-median (0.93)  
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LLL-wavelet Category 

LLL-glcm-cluster-shade (1.00) LLL-glcm-cluster-shade (1.00) 

 LLL-glcm-inverse-variance (1.00) 

 LLL-glrlm-short-run-low-gray-level-
emphasis (0.89) 

 LLL-glrlm-long-run-high-gray-level-
emphasis (0.99) 

HHL-wavelet Category 

HHL-glszm-zone-size-non-uniformity-
normalized (0.67) HHL-first-order-mean (0.62) 

 HHL-glcm-sum-average (0.70) 

HLH-wavelet Category 

HLH-first-order-skewness (0.70) HLH-first-order-rms (0.86) 

HLH-glcm-informational-measure-of-
correlation-1 (0.66) 

HLH-glcm-informational-measure-of-
correlation-1 (0.62) 

 HLH-glcm-autocorrelation (0.45)* 

 HLH-glcm-informational-measure-of-
correlation-2 (0.62) 

LLH-wavelet Category 
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LLH-glrlm-long-run-high-gray-level-
emphasis (0.66) LLH-glcm-cluster-shade (0.89) 

LLH-first-order-skewness (0.90) LLH-glcm-correlation (0.63) 

LLH-ngtdm-strength (0.75)  

LLH-glszm-size-zone-non-uniformity-
normalized (0.17)*  

LHL-wavelet Category  

LHL-glszm-small-area-high-gray-level-
emphasis (0.86)  

Abbreviations: CET1-w MR, contras-enhanced T1-weighted MR; T2-w MR T2-weighted 
MR.  

Our study has limitations that need to be addressed in future studies. First, the 

perturbation algorithm might not fully mimic the positional variations as in real clinical 

scenarios owing to technical challenges in simulating small deformations of the patient’s 

body between positionings. Second, there exists an inherent inter/intra-observer bias in 

GTVp delineation, which is commonly encountered in most studies. In view of this, we 

performed extensive bias analyses regarding the ROI contours used in our study. Third, 

owing to the limited transparency of previous test-retest studies, detailed results of their 

RF repeatability/reproducibility are often not provided. This does not allow us to perform 

comparisons against the results of our study. Besides, a number of works were not 

accomplished in our research for the sake of maintaining comprehensiveness while 

minimizing complexity. This includes investigating the implication of RF repeatability to 
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predictive model building and the agreement of our RF repeatability results in different 

cancer types or in a phantom study. We encouraged the community to carry out further 

investigations and will consider an extension of this work in the future. 

4.2.5. Conclusions 

In conclusion, although most RFs from unfiltered and LoG-filtered images demonstrated 

high repeatability, more than half of the wavelet-filtered RFs had poor repeatability, 

regardless of imaging modalities and HNC subtypes. Besides, RF repeatability 

agreements between imaging modalities were outstanding, while slightly worse between 

cancer subtypes. In particular, we discovered that different sub-categories of the wavelet-

filtered RFs exhibited remarkably dissimilar repeatability performance. While LLL-

wavelet RFs were the best-performing sub-category, HHH-wavelet RFs expressed 

diametrically opposite behaviors. Minimum bias was observed from feature collinearity 

and simulated contouring protocol change. Improvements in RF repeatability were 

extensive and significant from the ROI volume increase. Herein, we urge caution when 

handling wavelet-filtered RFs and advise excluding underperforming RFs during feature 

pre-selection for robust model construction. 
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4.3. Radiomic Feature Repeatability and its Impact on Prognostic Model 

Generalizability: A Multi-Institutional Study on Nasopharyngeal 

Carcinoma Patients 

4.3.1. Introduction 

Radiomics is an emerging technique that leverages high-throughput feature extraction 

from medical images for discovering hidden information that is prognostic or predictive 

of various clinical endpoints. Accumulating evidence has suggested the promising 

application of Radiomics in the prognosis103, clinical management104–106, and treatment 

response predictions107,108 of NPC from several imaging modalities, including CT109, 

MR110–112, and PET/CT47,113. MR was favored in recent publications13,114 due to its 

superior soft-tissue contrast. However, the majority of the previous MRI radiomics 

analysis on NPC were deemed less reliable due to the lack of stability analysis and 

external validation115, which impedes the clinical applicability of the research findings116. 

RF repeatability, which indicates the RF stability under the same imaging condition, 

should be the fundamental requirement of reliable modeling.  

Effective assessment of RF repeatability has attracted growing attention in the 

past decades117. However, limited effort has been made to demonstrate the benefit of 

repeatable features in improving downstream modeling, especially on its cross-

institutional model generalizability. More direct evidence on this topic is needed to 

provide the community with an enhanced understanding on the benefit and usage of RF 

repeatability in radiomics studies. 
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This study aims to investigate the RF repeatability via perturbation and its impact 

on the cross-institutional generalizability of the prognostic model for NPC DFS 

prediction. We attempted to assess cohort-specific RF repeatability by our in-house 

developed image perturbation framework, taking reference from the previous work 

carried out by Zwanenburg et al.37 to mimic a vast amount of scanning position 

stochasticity on CET1-w MR in a retrospective NPC cohort. The main objectives of this 

study were (i) to ascertain the repeatability of a comprehensive set of RFs against 

scanning position stochasticity via translation and rotation perturbations and (ii) to 

examine the benefit of repeatable RF in improving cross-institutional generalizability of 

prognosis modeling by externally validating prognostic models built separately from 

high- and low-repeatable RFs. Results from this study would provide a direct and 

conservative perceptiveness of RF repeatability pattern under a wide range of image 

filtering and discretization settings, offer evidence of its impact on inter-institutional 

generalizability, and encourage the radiomics community to exclusively adopt high-

repeatable RFs for modeling to safeguard model generalizability. 

4.3.2. Methods and Materials 

Patient cohort. We retrospectively recruited two biopsy-proven NPC patient cohorts from 

QEH between 2012 and 2015 and Queen Mary Hospital (QMH) between 2013 and 2019. 

Due to the retrospective nature of this study, informed consents from patients were 

waived during the recruitment. Patients with (1) co-existing cancer or distant metastasis 

before treatment, (2) radiation therapy only without concurrent chemoradiotherapy, and 

(3) incomplete clinical record and missing segmentations were excluded from this study. 

In total, 286 patients from QEH and 183 patients from QMH were included in this study. 
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CET1-w MR images and the planning GTVp contours were retrieved from the 

treatment planning systems. MR scanning and GTVp contouring protocols can be found 

in Appendix A. DFS information was collected from patient folders. The time of DFS is 

defined from the date of treatment to the earliest occurrence of death from any cause, 

local or regional tumor recurrence, or distant metastasis. 

Preprocessing and feature extraction. All the calculations in image preprocessing and 

feature extraction followed the guidelines proposed by the IBSI27. They were performed 

by our in-house developed Python-based (3.7.3) pipeline using the SimpleITK (1.2.4) and 

PyRadiomics (2.2.0) packages. The workflow is explained by Figure 4-9. Image 

preprocessing and feature extraction parameters are listed in Table 4-6. We extracted all 

the first-order features and texture features from Gray-Level Co-occurrence Matrix 

(GLCM), Gray Level Dependence Matrix (GLDM), Gray Level Size Zone Matrix 

(GLSZM), Gray Level Run Length Matrix (GLRLM), and Neighbouring Gray Tone 

Difference Matrix (NGTDM) from the original, 3D LoG filtered (sigma values of 1, 2, 3, 

4, and 5 mm) and all the Coiflet-1 wavelet-filtered images. Each image was discretized 

by a fixed bin number of 8, 16, 32, 64, and 128 before feature extraction. In total, 6510 

RFs were computed per patient.  



 

103 

 

Figure 4-9. Overall study workflow. 

Table 4-6. Image preprocessing, perturbation, and feature extraction parameters 

Parameter Value 

N4B bias correction maximum 
iterations [50, 50, 50, 50] 

Normalization scale 100 

Pixel value offset 0 
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Resample pixel size (mm) [1,1,1] 

Image/mask interpolation algorithm BSpline 

Mask partial volume threshold 0.5 

Interpolation grid alignment Align grid origins 

Translation distances (pixel) [ 0.0, 0.2, 0.4, 0.6, 0.8] 

Rotation angles (degree) [-5, 0, 5] 

Perturbation times 40 

Image discretization bin count 8, 16, 32, 64, 128 

Image filters Unfiltered, Laplacian-of-Gaussian (3D), 
Wavelet 

Kernel size of Laplacian-of-Gaussian 
filter (mm) [1,2,3,4,5] 

Wavelet filter type Coilf1 

Wavelet filter decompositions [LLL, HLL, LHL, LLH, LHH, HLH, 
HHL, HHH] 

Wavelet filter starting level 0 

Wavelet filter total level 1 
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Feature class First-order, GLCM, GLRLM, GLSZM, 
GLDM, NGTDM 

 

Perturbation and radiomic feature repeatability assessment. Patient position variations 

were simulated by applying translation and rotation perturbations to each image and 

GTVp mask simultaneously during image preprocessing. They were implemented 

following the procedures proposed by Zwanenburg et al.37, and the parameters are listed 

in Table 4-6. In this study, 40 translation and rotation combinations were randomly 

generated without replacement. The same preprocessing and feature extraction 

procedures were applied in calculating the RFs under perturbations. Feature repeatability 

was quantified from the perturbation RFs using the ICC. The one-way, random, absolute-

agreement ICC was employed to assess RF repeatability due to the independent 

assignment of perturbation parameters to patients. 

Feature selection. RFs from the unperturbed images were selected based on volume 

dependency first and then equally separated into high- and low-repeatable groups by the 

median ICC value before the feature redundancy and outcome relevancy test. The feature 

selection procedure is also explained in Figure 4-9. Since the primary tumor volume has 

been recognized as a reliable prognostic factor93, RFs that were highly correlated with 

GTVp mesh volume were first removed to minimize potential bias in the subsequent 

analyses29. We used the square of the Pearson correlation coefficient (𝑟𝑟2) to quantify the 

volume correlation, and the threshold of 0.6 was used to filter the volume-independent 

features. The final features were selected from each repeatability group by the feature 

redundancy and outcome relevancy test. During the feature redundancy test, 𝑟𝑟2 was used 
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to evaluate the correlation between features. For each highly correlated feature pair that 

has 𝑟𝑟2 exceeding 0.6, the one that has a larger mean 𝑟𝑟2 with the rest of the features were 

removed. The outcome relevancy was evaluated by univariate Cox regression, and the 10 

best features were finally selected, which were defined as the ones having the smallest 

hazard ratio (HR) p-values. 

Prognostic model development and evaluation. Two separate prognostic models were 

developed and evaluated on the selected high- and low-repeatable RFs. DFS survival 

risks were modeled by multivariate Cox regression on the training cohort, and the 

concordance index (C-index) was used to evaluate the discriminability on both training 

and validation. Classification performances at different time points were also assessed by 

the receiver operating characteristic (ROC) and the area under the curve (AUC) using the 

function “cumulative_dynamic_auc” provided by the Python package scikit-survival 

(version 0.18.0). In addition, we conducted 3-fold cross-validation with 10-time random 

repetitions on the training cohort, in order to assess the internal performance reliability. 

Independent redundancy test, outcome relevancy test, and Cox regression were 

performed on each cross-validation iteration. 95CI was obtained from 1000-iteration 

bootstrapping, and p-values were assessed by permutation tests where labels of high- and 

low-repeatable features were randomly shuffled by 1000 times for model performance 

comparisons. In addition, we evaluated the efficacy of the constructed prognostic model 

in risk stratification by Kaplan-Meier (KM) analysis. Patients were stratified into low- 

(G1) and high-risk (G2) groups based on the median training prediction, and the log-rank 

test p-value was used to quantify the performance of the risk stratification. 
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Figure 4-10. Mean ICC of the extracted radiomic features. 

Mean ICC of the extracted features subgrouped by image filters, feature classes, and 
discretization bin numbers. High-pass wavelet-filtered features with smaller bin numbers 
demonstrated significantly lower repeatability with mean ICC = 0.69 for bin number = 8 
(red boxes). 

4.3.3. Results 

The distributions of the baseline patient characteristics for the two cohorts are listed in 

Table 4-7. Consistent distributions of age and sex were found between the training and 

validation cohort. The overall stage, chemotherapy strategy, and World Health 

Organization (WHO) histology were significantly different (p-value < 0.05) between the 

two institutions. The three-year DFS rate was 74.3% in training and 72.1% in validation.  
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Table 4-7. Baseline patient characteristics of the Queen Mary Hospital (QEH, training) 
and Queen Mary Hospital (QMH, validation) cohort. 

 QEH (Training) QMH (External 
Validation) 

p-value 

Age    

    Median 53 55 0.055 

Sex    

    Female 70 40 0.590 

    Male 216 143  

Overall stage    

    2 1 29 < 0.001 

    3 187 90  

    4 98 64  

Chemotherapy    

    CCRT 178 37 < 0.001 

    CCRT+ACT 62 65  

    CCRT+ICT 44 81  

WHO histology    
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    Type 2 73 28 0.012 

    Type 3 213 155  

Note: Staging was performed according to the 7th edition of the American Joint 
Committee on Cancer (AJCC) protocol for the training cohort and switched to the 8th 
edition after 2017 for the validation cohort. P values were obtained by student t-test for 
age and chi-square test for the rest of the clinical parameters. Abbreviations: CCRT, 
concurrent chemoradiotherapy; ACT, adjuvant chemotherapy; ICT, induction 
chemotherapy; WHO, World Health Organization. 

RFs with lower repeatability were mostly texture features extracted from high-

pass wavelet-filtered images discretized by smaller bin numbers, as visualized by the 

lighter green colors in the average ICC heatmap (Figure 4-10(a)). The average ICC of 

high-pass wavelet-filtered 8-bin discretized texture RFs (Figure 4-10(a), red rectangles) 

was 0.69 but up to 0.99 for the remaining RFs. For image filters (Figure 4-10(b)), RFs 

from unfiltered, all the LoG and LLL wavelet-filtered images yielded an average ICCs 

higher than 0.95, while the rest showed lower average RF repeatability (ICC: 0.73-0.87). 

Moreover, a decreasing trend of repeatability was found with high-pass wavelet filtering 

on more image dimensions. The first-order and NGTDM RFs showed the highest average 

ICC of 0.96 and 0.94, while the rest of the texture classes had mean ICCs below 0.90 

(Figure 4-10(c)). Notably, the GLSZM class had the lowest repeatability with an average 

ICC of 0.85. An increasing trend of repeatability was observed for larger image gray 

level discretization bin numbers. Specifically, bin number 8 had the lowest average ICC 

of 0.88, and the highest repeatability (mean ICC = 0.92) was achieved at 128 bin number 

(Figure 4-10(d)). 
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Figure 4-11. Scatter plot of volume correlation versus feature repeatability. 

Volume correlation was quantified by the square Pearson correlation r with the primary 
gross tumor mesh volume, and feature repeatability was quantified by the intra-class 
correlation coefficient under translation and rotation perturbations. A cutoff of volume 
correlation at 0.6 was applied with the volume correlated features indicated by orange 
and the non-volume-correlated ones by blue. 

A strong correlation between GTVp volume dependency and repeatability was 

found on the RFs extracted from QEH T1-w MR images (Figure 4-11). 673 out of 709 

(95%) volume-dependent features (𝑟𝑟2  > 0.6) had high patient positioning repeatability 

(ICC > 0.9) whereas 3902 out of 5801 (67.3%) volume-independent features showed high 

repeatability. The 709 volume-dependent features were removed from the subsequent 

analysis. 
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Figure 4-12. Distributions of mean feature correlation and disease-free survival prognosis 

during feature selection. 

Distributions of mean feature correlation and disease-free survival prognosis after (a) 
volume dependent feature removal and (b) redundancy test. The high-repeatable feature 
group is indicated by orange and the low-repeatable group by blue. 

Distinct distributions of the feature redundancy measured by the mean 𝑟𝑟2 to the 

rest of the features were observed on the high-repeatable and low-repeatable feature 

groups (Figure 4-12(a)), which were split by the median ICC of 0.95. Forty-four percent 

(1281/2901) of the low-repeatable features appeared to have low redundancy (mean 𝑟𝑟2 < 

0.1) whereas 15% (445/2902) had low redundancy for the high-repeatable features. 

Distributions of the DFS prognosis, which was measured by univariate Cox p-value, were 

similar between the two feature groups, except for the extreme-high prognosis region. 

Only 286 out of 2901 for the low-repeatable group had high DFS prognosis with p-value 

< 0.001 (− log2 𝐼𝐼 > 10.0) while 541 out of 2901 for the high-repeatable group.  
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Table 4-8. Final selected radiomic features and multivariate Cox regression parameters of 
the low-repeatable and high-repeatable model. 

Image 
Filter 

Feature 
Class 

Bin 
Number 

Feature Name Hazard 
Ratio 

p-
value 

Low-Repeatable 

Wavelet
-HHH 

GLRL
M 

64 LongRunHighGrayL
evelEmphasis 

1.14 0.269 

Wavelet
-HHH 

GLDM 16 DependenceVariance 1.02 0.858 

Wavelet
-LHL 

GLDM 8 LargeDependenceLo
wGrayLevelEmphasi
s 

1.13 0.346 

Wavelet
-LHL 

GLRL
M 

8 RunVariance 0.94 0.684 

wavelet
-HHL 

GLSZM 16 LargeAreaLowGray
LevelEmphasis 

1.08 0.355 

wavelet
-LLL 

GLRL
M 

32 RunVariance 1.06 0.628 

LoG 
(sigma=
5mm) 

GLCM 128 MCC 1.23 0.195 

LoG 
(sigma=
2mm) 

GLSZM 64 ZoneEntropy 0.97 0.848 
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LoG 
(sigma=
4mm) 

GLSZM 32 ZoneEntropy 1.19 0.300 

Original GLSZM 8 ZoneEntropy 1.15 0.373 

High-Repeatable 

Wavelet
-LLH 

First-
order 

128 Mean 1.72 0.002 

Wavelet
-LHL 

First-
order 

128 Mean 0.81 0.371 

Wavelet
-HLL 

First-
order 

32 Mean 1.13 0.205 

LoG 
(sigma=
3mm) 

GLCM 32 InverseVariance 1.65 0.05 

LoG 
(sigma=
3mm) 

GLRL
M 

8 LongRunHighGrayL
evelEmphasis 

0.91 0.590 

LoG 
(sigma=
4mm) 

GLCM 32 InverseVariance 1.12 0.596 

LoG 
(sigma=
4mm) 

GLRL
M 

8 RunEntropy 0.91 0.677 

LoG 
(sigma=
5mm) 

GLSZM 64 LargeAreaHighGray
LevelEmphasis 

1.24 0.045 
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LoG 
(sigma=
5mm) 

GLRL
M 

64 LongRunHighGrayL
evelEmphasis 

1.06 0.641 

LoG 
(sigma=
5mm) 

GLSZM 64 ZoneEntropy 1.06 0.702 

 

Ten RFs were finally selected from both the two feature groups after redundancy 

and outcome relevancy filtering. Details of the final selected features can be found in 

Table 4-8. After redundancy filtering, more low-repeatable features (317) remained with 

less redundancy but similar outcome relevancy compared to high-repeatable features 

(116), as shown in Figure 4-12(b). Quantitatively, 23% (72/317) of the low-repeatable 

features had the mean 𝑟𝑟2 larger than 0.05 while up to 84% (97/116) for the high-

repeatable ones, and 28% (88/317) and 36% (42/116) had p-value < 0.05 (− log2 𝐼𝐼 > 4.3) 

for the two groups. 
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Table 4-9. Training and validation performance of the two constructed Cox survival 
regression model using high-repeatable and low-repeatable features. 

 Low-Repeatable High-
Repeatable 

p-value 

Training 

C-index 0.62 (0.57-0.66) 0.67 (0.61-0.72) 0.526 

1y AUC 0.65(0.60-0.67) 0.64 (0.64-0.72) 0.328 

3y AUC 0.63 (0.55-0.67) 0.70 (0.62-0.76) 0.216 

5y AUC 0.53 (0.46-0.58) 0.63 (0.55-0.71) 0.381 

External Validation 

C-index 0.57 (0.45-0.67) 0.63 (0.53-0.74) 0.024 

1y AUC 0.54 (0.38-0.72) 0.62 (0.44-0.79) 0.031 

3y AUC 0.58 (0.46-0.71) 0.70 (0.58-0.81) 0.015 

5y AUC 0.53 (0.28-0.78) 0.72 (0.46-0.92) 0.427 

Abbreviations: C-index, concordance index; 1y, 1-year; 3y, 3-year; 5y, 5-year; AUC, 
area under the curve. Note: the numbers within brackets are 95% confidence intervals. 
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Figure 4-13. Time-dependent receiver operating characteristic curves of low- and high-

repeatable Cox regression models. 

Time-dependent receiver operating characteristic curves of Cox regression models from 
low (blue, dashed)) and high repeatable (orange, solid) features on disease-free survival 
(DFS). Results on one year, three years, and five years were plotted for both training and 
validation. 

The discriminability of the multivariate Cox survival regression models 

developed from both low and high-repeatable features remained stable in the training 

cohort. As reported in Table 4-9, the C-index (low-repeatable = 0.65; high-repeatable = 

0.67; p-value = 0.526) and time-dependent AUCs (p-value> 0.05) were similar in the 

training cohort. Time-dependent ROCs on the training cohort were also similar between 

the two feature sets, as shown in Figure 4-13. During cross-validation, similar training 
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performances were achieved with a mean C-index of 0.61 (low-repeatable) and 0.63 

(high-repeatable). However, the low-repeatable models demonstrated significantly lower 

C-index values (mean = 0.55) than the high-repeatable ones (mean = 0.60) for internal 

validation, as shown in Figure 4-14. Both low and high-repeatable features stratified the 

training cohort into distinct survival groups (G1 and G2) with similar discriminability 

(HR=2.50, 3.19) and statistically significant separations (log-rank p-values <= 0.001), as 

presented in Figure 4-15. 

The prognostic model based on the high-repeatable features demonstrated 

significantly higher predictive performance in the validation cohort. Statistically higher 

C-index (high-repeatable = 0.63; low-repeatable = 0.57; p-value = 0.024), 1-year AUC 

(high-repeatable = 0.62; low-repeatable = 0.54; p-value = 0.031), and 3-year AUC (high-

repeatable = 0.70; low-repeatable = 0.58; p-value = 0.015) were achieved (Table 4-9), 

while the 5-year AUC demonstrated weak statistical significance. Figure 4-13 

demonstrated distinctive differences in ROCs, especially for the 3-year progression event 

where the deviations were magnified. For survival risk stratifications, the high-repeatable 

features resulted in a significant separation of survival curves (p-value < 0.001) whereas a 

marginal separation (p-value = 0.054) can be found for the counterpart (Figure 4-15). 
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Figure 4-14. Comparison of internal validation performance between low- and high-

repeatable features on the training cohort. 

The training performance remained similar while significantly higher internal validation 
performance for concordance index (C-index) (p-value =0.008), 36-month (36m) area 
under the curve (AUC) (p-value =0.020), and 60-month (60m) AUC (p-value =0.009) 
can be observed for the high-repeatable model. P-values were calculated by Mann-
Whitney U-test. 
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Figure 4-15. Kaplan-Meier analysis of the low (G1) and high (G2) risk groups. 

Kaplan-Meier analysis of the low- and high risk groups determined by the survival 
regression model from low-repeatable and high-repeatable features. Both features 
yielded similar survival curves on training, but a non-significant separation was found on 
validation with low-repeatable features. 
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4.3.4. Discussion 

This study directly demonstrated the benefit of the unique information from RF 

repeatability assessed by translation and rotation perturbations in reducing false discovery 

and improving cross-institutional generalizability. Results of our study suggested that 

different image filters, discretization bin numbers, and feature classes displayed 

heterogeneous patterns of RF repeatability. Notably, texture RFs from high-pass wavelet-

filtered images discretized with smaller bin numbers were more susceptible to image 

perturbations (Figure 4-10). After removing the volume-dependent RFs, the low-

repeatable features demonstrated less redundancy, but outcome relevancy distributions 

were similar. The pattern remained unchanged after the redundancy test. Similar 

prognostic performance was achieved between the high and low-repeatable RFs during 

model training (Table 4-9), while the low-repeatable RFs yielded non-significant 

prognostic stratification on validation (Figure 4-15).  

Our image preprocessing strategy, especially the homogeneous resampling and 

gray-level discretization, aimed to minimize the impact of inconsistent image resolutions 

and intensity levels on feature repeatability and model performance from different 

scanners and scanning settings within and across institutions. Previous studies have 

shown the pronounced effect of pixel sizes on radiomic feature variability and suggested 

resampling to enhance the robustness118,119. Gray-level discretization with a fixed bin 

number could normalize the image intensities and reduce noise simultaneously120. It is 

also recommended by the IBSI for preprocessing image modalities with arbitrary 

intensities such as MRI27. 
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Figure 4-16. Demonstration of wavelet filtering on two example perturbations. 

The original images and primary gross tumor volume contours were also presented. 
More heterogeneous pixel distributions were observed with high-pass wavelet filterings 
on more image dimensions, and larger deviations were found between the two 
perturbations. Notably, applying high-pass filter on the third axis (superior-inferior) 
yielded more smooth images than the first two dimensions. 
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The observed wavelet RF repeatability pattern could be ascribed to multiple 

factors, including the nature of wavelet filtering, image resampling strategy, and 

perturbation settings. High-pass wavelet filtering collects high-frequency signals and 

yields more heterogeneous pixel values. As demonstrated in Figure 4-16, images with 

high-pass wavelet filters on more dimensions appeared more heterogeneous, with fewer 

connected pixels with the same discretized intensity after binning. Notably, the wavelet-

LLH image was less heterogeneous than wavelet-HLL and wavelet-LHL, possibly due to 

the larger slice thickness than in-plane resolution. The uniform 1x1x1mm resampling 

process up-sampled images along the axial direction, which may create artificial smooth 

textures. Our perturbation algorithm alters the left-right and anterior-posterior axes by 

rotation. It may induce drastic changes in pixel distributions under high-pass wavelet 

filtering on the first two dimensions while much less along the axial direction. It can also 

be observed in Figure 4-16 where the texture of wavelet-LLH filtered images was more 

similar under the two example perturbations than wavelet-HLL and wavelet-LHL. 

Furthermore, a lower bin number may magnify the discrepancies of texture features due 

to the smaller size of the gray-level matrix, which is consistent with the results of a 

previous phantom study121. Similar patterns were found in results reported by Larue et al. 

on a lung 4DCT, RIDER test-retest, and 4D-OES dataset67 where more statistical high-

pass wavelet RFs were highly repeatable than texture features. 

The feature selection results suggest that the adopted redundancy and outcome 

relevancy tests, which are standard approaches in RF reduction, failed to identify the 

high-repeatable RFs. As expected, a large portion of ROI volume-dependent features 

were found to be highly repeatable under patient positioning variations, which agrees 
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with previous studies on RF repeatability122. The outcome relevancy distributions were 

consistent between the high and low-repeatable features, but larger differences in 

redundancy patterns were found. Similar to the previous research67, a minimum 

correlation was found between the univariate predictive power and feature repeatability. 

This suggests that either high or low-repeatable RFs have an equal chance of correlating 

with the prediction target. The low-repeatable features, which are “noisy” by nature, are 

more likely to be independent, which may elucidate our finding of the more low-

redundant low-repeatable features.  

Although the final feature number was strictly controlled, the low-repeatable RFs 

still suffered severe false discovery. Satisfactory prognostic model performance in 

training was achieved by the high and low-repeatable RFs with a C-index of 0.67 and 

0.65 (Table 4-9) respectively due to the stringent outcome relevancy test criteria. The 

significant drop in internal testing performance suggests poor internal generalizability, 

which is consistent with the previous findings by Teng et al70. During external validation, 

the high-repeatable features yielded slightly lower discriminability of 0.63 in C-index, 

possibly due to inconsistent patient distributions between the two institutions. However, 

the low-repeatable RFs showed minimum prognostic power on the unseen data with C-

index dropped to 0.57. Consequently, a much less significant survival curve separation of 

the validation cohort was achieved using only low-repeatable features (p-value= 0.054), 

as suggested by Figure 4-15. Meanwhile, we observed a higher 5-year AUC in the 

validation cohort compared to training (Table 4-9), possibly due to random effect caused 

by small sample size and bias in staging between the two patient cohorts. 
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Our study has limitations that need to be addressed in future studies. First, the 

perturbation algorithm might not fully mimic the positional variations as in real clinical 

scenarios owing to technical challenges in simulating small deformations of the patient’s 

body between positionings. Second, the prognostic model performance, especially during 

validation, was slightly lower than previous radiomics research on NPC prognosis, where 

a range of C-index between 0.72 to 0.85 for NPC survival prognosis was reported114. This 

could be caused by the omission of clinical factors and lymph node tumor RFs in our 

final model. Nevertheless, our study did not intend to construct the best-performing 

model for clinical utility. Finally, several works were not accomplished in our research to 

maintain comprehensiveness while minimizing complexity. They include investigations 

under different imaging modalities, cancer types, feature extraction settings, or in a 

phantom study. We encouraged the community to carry out further investigations and to 

consider extending this work in the future. 

4.3.5. Conclusions 

Most textural RFs from high-pass wavelet-filtered CET1-w MR images of primary NPC 

tumor had poor repeatability under patient position variations, especially under a smaller 

bin number discretization. The prognostic model developed by low-repeatable RFs had 

significantly lower performance than high-repeatable RFs in the validation cohort, 

suggesting poor cross-institutional generalizability. We urge caution when handling high-

pass wavelet-filtered RFs and advise exclusive use of high-repeatable RFs for prognostic 

model development to safeguard generalizability. 
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Chapter 5.  

Biomarker Development for Nasopharyngeal Carcinoma Patients 

5.1. Introduction 

NPC is a radiosensitive epithelial malignancy in Southern China123,124. With the 

development of the intensity modulated radiation therapy (IMRT) technique, better 

survival patterns can be achieved for patients with early and late stage NPC, especially 

local and regional tumor control5,125. However, locoregional recurrence and distant 

metastasis remained the primary failure patterns with a high occurrence rate in five years, 

especially for patients with advanced lymph node (LN) metastasis126,127. Of the newly 

diagnosed 133,354 NPC worldwide in 20201, over 70% of diagnosed cases were 

classified as locoregionally advanced diseases. Concurrent chemoradiotherapy (CCRT) 

and CCRT following adjuvant chemotherapy (ACT) is recommended for locoregionally 

advanced NPC by the National Comprehensive Cancer Network (NCCN) guidelines. 

However, the individualized treatment regimen remains debated in clinical practice. 

Thus, effective prognosis stratification, especially for the LN tumor, and treatment 

efficacy predictions by development of new quantitative biomarkers are necessary to 

guide more accurate clinical decision-making for personalized treatments128,129. This 

chapter presents two clinical studies focusing on the development of geometric and 

radiomics signatures for improved prognosis and treatment efficacy predictions on NPC 

patients. Both of them utilized RADAR for data cleaning and feature extraction, and 

feature repeatability assessments were included for optimal model reliability. 
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5.2. Quantitative Spatial Characterization of Lymph Node Tumor for N 

Stage Improvement of Nasopharyngeal Carcinoma Patients 

5.2.1. Introduction 

N stage, which belongs to the tumor–node–metastasis (TNM) staging system jointly 

proposed by the American Joint Committee on Cancer (AJCC) and the Union for 

International Cancer Control (UICC), is one of the most robust and widely used LN 

classifications130. The current edition (8th) for NPC is based on anatomical 

characterization, including size, laterality, and location. However, N stage has been 

suggested to be less comprehensive and precise due to the qualitative definitions131. 

Over the past decades, various new LN anatomical descriptors have been 

proposed to improve the current N staging system132. For instance, parotid lymph node 

(PLN) involvement was found to be associated with a poor prognosis in distant 

metastasis, and an upgrade to the N3 classification was recommended133,134. Besides, the 

current N-staging system categorizes retropharyngeal lymph node (RLN) involvement 

(<6 cm) as N1 disease. However, Huang et al. suggested an upgrade of patients with 

bilateral retropharyngeal lymph node involvement to N2 due to the distinctive prognostic 

performance within N1135. Other anatomical characteristics of LN, such as extra-nodal 

extension136–138 and positive LN numbers131,139 have been proposed to improve the 

existing N stage classification system for NPC. 

Despite the tremendous efforts made, the development of a more accurate N 

staging system was still hindered by the rather complex LN anatomical environment.  In 

the era of IMRT, detailed tumor and normal tissue delineations have become the standard 
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procedure for treatment planning with the increasing availability of advanced imaging 

techniques such as MRI and PET140–142. Quantitative spatial characterization of metastatic 

LN may provide more accurate descriptions of its anatomy, enabling the holistic 

discovery of anatomical prognostic factors by a data-driven approach. 

Therefore, this study aims to investigate the feasibility of improving the prognosis 

stratification of N staging system from quantitative spatial characterizations of metastatic 

LN. We designed two types of geometric histograms based on the distances and angles of 

LN tumor volume to surrounding normal tissues. Independent prognostic factors were 

extracted by principal component analysis and combined into one prognostic index. A 

new risk stratification from the combined index was proposed and evaluated on multiple 

survival endpoints, including DFS, overall survival (OS), relapse-free survival (RFS) and 

distant metastasis-free survival (DMFS) both internally and externally. Our methodology 

may promote accelerated improvement of the LN classification for NPC and can be 

potentially generalized to other cancer sites. 

5.2.2. Materials and Methods 

Two cohorts of biopsy-proven NPC patients receiving chemoradiotherapy were 

retrospectively recruited from Hong Kong QMH between 2013 and 2019 and Hong Kong 

QEH between 2012 and 2015, respectively. Informed consents from patients were waived 

due to the retrospective nature of this study. The total number of included patients was 

194 from QMH and 284 from QEH after excluding patients with (1) co-existing cancer or 

distance metastasis before treatment, (2) radiation therapy only without concurrent 

chemoradiotherapy, (3) patients in stage N0 who do not have visible tumor in the lymph 

node region and (4) incomplete clinical record and missing segmentations. Patients from 
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the QMH cohort were used for deriving independent prognostic factors and development 

of prognostic index, while the QEH cohort was used solely for external validation. 

Clinical factors, including age, sex, T stage, N stage, M stage, overall stage, 

chemotherapy strategy, and survival information were collected from patient folders. The 

time of OS, RFS, DMFS, and DFS is defined from the date of treatment to the earliest 

occurrence of death from any cause, local or regional tumor recurrence, distant 

metastasis, and the combination of above all, respectively. The TNM stage was 

administered according to the 7th edition of the AJCC protocol for the QEH cohort and 

switched to the 8th edition after 2017 for the QMH cohort. Treatment planning structure 

sets were retrieved from the PACs in DICOM format. GTVn was contoured from CECT 

fused with MRI in QEH and an extra imaging modality of PET/CT in QMH by 

oncologists with at least five years of experience. 

Both OVH and POV (see Chapter III-Feature Extraction-Feature Definitions) 

were adopted to describe the spatial configuration of GTVn relative to the surrounding 

OARs. OARs that were consistently delineated across the two institutions, including 

SpinalCord, Parotids (combined Left and Right Parotid), Mandible, Larynx, and 

Brainstem, were included in this study. Dimensions of the OVH and POV histograms 

were reduced by PCA, where the components that explained the greatest variance across 

patients were highlighted. This study included the smallest number of principal 

components (PCs) of OVH and POV that explained 75% of the cumulative variance for 

each OAR. The coefficients of the PCs were extracted as the potential prognostic factors. 

Independent prognostic factors were identified from the selected PCs by 

univariate Cox regression on DFS followed by the covariate independency test with N 
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stage through multivariate Cox regression. The final prognostic index was built by 

combining the independent prognostic factors with N stage through multivariate Cox 

regression and evaluated by C-index. The confidence interval and p-values for baseline N 

stage comparison were determined by 1000-iteration bootstrapping. Risk stratification 

performance was assessed by KM analysis, where patients were equally stratified into 

high (G1), median (G2), and low (G3) risk groups based on the prognostic index in the 

discovery cohort. The stratification thresholds were applied to the testing cohort as well 

for the three-grade stratification. HRs with 95CI and the log-rank p-values between risk 

groups were acquired from univariate Cox regression. All Cox regressions and KM 

analysis were implemented by the Python package lifelines (version 0.27.0)143, and the p-

value of 0.05 was considered significant. 

5.2.3. Results 

Baseline patient characteristics. Distributions of the baseline patient characteristics for 

the two cohorts were listed in Table 5-1. Consistent distributions of age, sex, overall 

stage, chemotherapy strategy, and WHO histology were found between the discovery and 

validation cohort. The T stage and N stage were significantly different (p-value < 0.05) 

between the two institutions. The median follow-up time of the discovery cohort is 2.5 

years and 4.6 years for the validation cohort. Of the 194 discovery patients within the 

follow-up period, 22 developed local recurrence, 17 with regional recurrence, 29 with 

distant metastases, and 25 died. The three-year DFS, OS, RFS, and DMFS rates were 

72.1%, 90.0%, 82.4%, and 82.4%, respectively. In the validation cohort, 34, 25, 44, and 

40 patients of 284 developed local recurrence, regional recurrence, distant metastasis, and 

death, and the five-year DFS, OS, RFS, DMFS are 74.3%, 94.0%, 85.0%, and 86.2%. 
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Table 5-1. Baseline patient characteristics of the discovery and validation cohort. 

 Discovery 
Cohort 

Validation 
Cohort 

p-value 

Age    

    Mean 53.39 52.16 0.249 

Sex    

    Female 41 70 0.667 

    Male 153 214  

N stage    

    N1 62 17 0.035 

    N2 93 228  

    N3 39 39  

Chemotherapy    

    CCRT 33 178 0.330 

    CCRT+ACT 78 61  

    CCRT+ICT 83 43  

WHO histology    
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    Type 2 27 74 0.142 

    Type 3 167 210  

Note: Staging was performed according to the 7th edition of the AJCC protocol for the 
validation cohort and switched to the 8th edition after 2017 for the discovery cohort. 
Abbreviations: CCRT, concurrent chemoradiotherapy; ACT, adjuvant chemotherapy; 
ICT, induction chemotherapy; WHO, World Health Organization. 

Prognostic lymph node spatial factors. Thirty-one PCs were extracted from the OVH and 

POV histograms in total, including four OVH PC and three POV PC of SpinalCord, five 

OVH PC and three POV PC of Parotids, two OVH PC and two POV PC of Brainstem, 

three OVH OC and three POV PC of Larynx, and four OVH PC and two POV OC of 

Mandible. After univariate and multivariate Cox regressions, two spatial factors including 

the first PC of spinal cord OVH (𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1) and the third PC of spinal cord POV 

(𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3) were selected as independently prognostic to DFS. Between the two spatial 

factors, 𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1demonstrated a higher discriminability to DFS with C-index of 0.66 at 

discovery and 0.56 at external validation, while 0.57 at discovery and 0.54 at external 

validation for 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3. 

As listed in Table 5-2, 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 contributed the highest positive hazard (HR = 

3.35, 95CI: 1.41--7.99), followed by the N stage (HR = 2.26, 95CI: 1.46--3.49). On the 

other hand, 𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1 had the negative impact of survival hazard (HR = 0.63, 95CI: 

0.48--0.83).  Figure 5-1(a) presents the distributions of the two spatial factors of the 3-

year disease and non-disease progressed patients at both discovery and validation. 

Patients who developed disease progression within three years had significantly lower 

𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1 (mean: -0.80 vs. -0.07, p-value = 0.007) and higher 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 (mean: 0.082 
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vs. 0.057, p-value = 0.012) at discovery, but smaller differences were found on the 

validation cohort (𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1: 0.46 vs. 0.74, p-value = 0.032}; 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3: -0.18 vs. -0.25, 

p-value = 0.089). Moreover, the spinal cord OVH appeared to be overall larger in the 

validation but smaller for the POV. After binarizing the two spatial factors by the median 

values in the discovery cohort, more patients in the validation cohort fell into the low-risk 

groups, as indicated by Figure 5-1(b). The odds ratios were 0.30 (p-value = 0.006}) for 

𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1  and 2.21 (p-value = 0.052) for 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 in the discovery cohort. They were 

less significant for 𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1 (odds ratio = 0.60, p-value = 0.275) but more significant 

for 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 (odds ratio = 2.83, p-value = 0.004) in the validation cohort. 
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Figure 5-1. Continuous and binarized spatial factor distributions and N stage distributions 

for 3-year disease progressed and non-disease progressed patients in the discovery and 

validation cohort. 

(a) Box plots of continuous spatial factor distributions. Patients with disease progression 
within three years had lower spinal cord overlap volume histogram (OVH) factor values 
and higher spinal cord projection overlap volume (POV) values at both discovery and 
validation. (b) Mosaic plots of the binarized spatial factor and N stage distributions of 
patients with and without 3-year disease progression. 
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Table 5-2. Hazard ratios and p-values of the selected spatial factors and N stage from 
multivariate Cox regression on disease-free survival. 

Covariate HR (95CI) p-value 

𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1 0.63 (0.48-0.83) < 0.001 

𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 3.35 (1.40-7.99) 0.006 

N stage 2.26 (1.46-3.49) < 0.001 

Abbreviations: HR, hazard ratio; 95CI, 95% confidence interval. 

Combined prognostic index. The combined prognostic index had better discriminability 

than N stage on all the survival endpoints but showed statistical significance mainly in 

DFS and RFS, as reported in Table 5-3. C-index in DFS increased from 0.654 (training) 

and 0.568 (external validation) to 0.722 (training) and 0.603 (external validation) when 

combining the two new spatial factors with N stage. Such improvement was significant in 

training (p-value = 0.020) while much less in external validation (0.086). On the other 

hand, the training and validation improvements were both significant in RFS with C-

index reaching 0.723 (p-value = 0.020) and 0.603 (p-value = 0.019), respectively. 
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Table 5-3. Hazard ratios and p-values of the selected spatial factors and N stage from 
multivariate Cox regression on disease-free survival. 

  DFS OS RFS DMFS 

Discovery 
cohort 

Anatomical 
Index 
(95CI) 

0.72 
(0.65-
0.79) 

0.75 
(0.63-
0.84) 

0.72 
(0.62-
0.82) 

0.72 
(0.63-
0.81) 

 
N-stage 
(95CI) 

0.65 
(0.57-
0.73) 

0.72 
(0.64-
0.80) 

0.64 
(0.54-
0.73) 

0.65 
(0.54-
0.76) 

 p-value 0.02 0.245 0.02 0.062 

Validation 
cohort 

Anatomical 
Index 
(95CI) 

0.60 
(0.54-
0.67) 

0.59 
(0.48-
0.71) 

0.60 
(0.52-
0.69) 

0.57 
(0.47-
0.67) 

 
N-stage 
(95CI) 

0.56 
(0.52-
0.62) 

0.58 
(0.50-
0.67) 

0.53 
(0.47-
0.60) 

0.57 
(0.50-
0.65) 

 p-value 0.086 0.395 0.019 0.536 

Abbreviations: DFS, disease-free survival; OS, overall survival; RFS, relapse-free 
survival; DMFS, distant metastasis-free survival; 95CI: 95% confidence interval. 

Better risk stratifications were achieved by the combined prognostic index in DFS 

and DMFS than N stage itself, as shown by the KM curves in Figure 5-2. Table 5-4 

reports the hazard ratios and the corresponding p-values between different risk groups as 

well as the three-year survival rates in DFS, OS, RFS, and DMFS. On the discovery 

cohort, the DFS survivals of the three new risk groups were statistically different (p-value 

< 0.05) whereas much lower statistical significance was found between the N1 and N2 
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groups (p-value = 0.139). Higher hazard ratios were observed between G2 (4.49) and G3 

(9.07) to G1 compared to the N stage (N1 vs. N2: 1.83, N1 vs. N3: 5.19). However, the 

HR was less between G3 to G2 (1.913) compared to the one between N3 to N2 (2.988). A 

similar trend was found in DMFS where G2 (4.11) and G3 (10.41) were better separated 

from G1 but worse between G2 and G3 (2.26). In the validation cohort, the HRs between 

G2 (DFS: 1.71, p-value = 0.021; DMFS: 1.72, p-value = 0.101}) and G3 (DFS: 4.02, p-

value < 0.01; DMFS: 2.93, p-value = 0.014) to G1 also increased significantly compared 

to that between N2 (DFS: 0.772, p-value = 0.518; DMFS: 0.552, p-value = 0.271) and N3 

to N1 (DFS: 1.821, p-value = 0.171; DMFS: 1.876, p-value = 0.216) in both DFS and 

DMFS. Similarly, a less HR was found between G2 and G3 (DFS: 2.44, p-value = 0.006; 

DMFS: 1.74, p-value = 0.219) than between N2 and N3 (DFS: 2.66, p-value < 0.001; 

DMFS: 3.17, p-value = 0.001). 
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Figure 5-2. Kaplan-Meier curves of the three-risk patient groups based on the new spatial 

index and N stage. 

Kaplan-Meier curves of the low-(G1), median-(G2), and high-risk (G3) patient groups 
based on the new spatial index and the three N stages on (a) disease-free survival and (b) 
distant metastasis-free survival. Each plot also contains the hazard ratio (HR) and the 
corresponding p-value between each two groups. 
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Table 5-4. Risk stratification performance of the new risk groups and N stage in multiple 
survival endpoints and discovery and validation cohort. 

  DFS OS RFS DMFS 

Discovery Cohort 

G1 HR − − − − 

 p-value − − − − 

 
3-y 
survival 
rate 

89.60% 97.30% 89.60% 94.00% 

G2 HR 4.49 7.66 2.23 4.11 

 p-value 0.007 0.055 0.181 0.074 

 
3-y 
survival 
rate 

74.60% 92.70% 85.30% 86.80% 

G3 HR 9.07 13.98 4.76 10.41 

 p-value <0.001 0.011 0.005 0.002 

 
3-y 
survival 
rate 

52.10% 79.70% 72.20% 66.50% 

N1 HR − − − − 

 p-value − − − − 
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3-y 
survival 
rate 

87.90% 100.00% 93.00% 92.20% 

N2 HR 1.83 3.33 2.64 1.52 

 p-value 0.139 0.115 0.079 0.428 

 
3-y 
survival 
rate 

72.60% 89.40% 79.50% 84.50% 

N3 HR 5.19 11.62 4.59 4.51 

 p-value <0.001 0.002 0.014 0.006 

 
3-y 
survival 
rate 

45.60% 72.60% 74.90% 59.80% 

Validation cohort 

G1 HR − − − − 

 p-value − − − − 

 
3-y 
survival 
rate 

81.20% 95.20% 88.70% 89.30% 

G2 HR 1.71 1.36 1.46 1.72 

 p-value 0.021 0.384 0.219 0.101 
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3-y 
survival 
rate 

67.20% 93.50% 82.90% 82.00% 

G3 HR 4.02 2.28 3.69 2.93 

 p-value <0.001 0.076 0.001 0.014 

 
3-y 
survival 
rate 

45.50% 85.90% 62.70% 76.20% 

N1 HR − − − − 

 p-value − − − − 

 
3-y 
survival 
rate 

76.50% 87.80% 87.80% 82.40% 

N2 HR 0.77 1.56 0.84 0.55 

 p-value 0.518 0.548 0.736 0.271 

 
3-y 
survival 
rate 

77.80% 95.30% 85.90% 88.70% 

N3 HR 1.82 2.57 1.2 1.88 

 p-value 0.171 0.223 0.764 0.276 
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3-y 
survival 
rate 

52.70% 89.00% 78.20% 73.50% 

Note: HR and P value were relative to the low-risk group (G1) or N1. Abbreviations: HR, 
hazard ratio; DFS, disease-free survival; OS, overall survival; RFS, relapse-free 
survival; DMFS, distant metastasis-free survival; 95CI: 95% confidence interval. 

The remaining survival endpoints showed heterogeneous patterns under the new 

risk stratification (Table 5-4). Significant HR improvements were observed in OS, but 

marginal in RFS for the discovery cohort. On the other hand, RFS showed significantly 

higher stratification performance in the validation cohort, but no improvement in OS was 

observed. Moreover, the validation cohort demonstrated higher 3-year survival rates on 

G1 and lower on G2 for RFS and DMFS, whereas marginal improvement of 3-year 

survival rates was found in the discovery cohort. 

Representative cases. To further explain the contribution of the two anatomical factors in 

better identifying the risk of disease progression, we selected two representative cases 

from the discovery cohort with the same N stage but distinct risks based on the spatial 

index. The high-risk patient was classified as G1 and the low-risk one as G3, both having 

the same N stage (N2) and chemotherapy strategy (CCRT + ACT). The high-risk patient 

developed distant metastases at 32.3 months, while the low-risk patient showed no signs 

of disease progression for at least 34.3 months. Figure 5-3(a) presents the 2D axial 

masks and the 3D volumes of GTVn and three OARs for the high and low-risk patient. 

Anatomically, both patients had metastatic retropharyngeal LN, but a significantly larger 

{extent} of the right cervical LN tumor was observed in the high-risk patient. Meanwhile, 

distinct patterns of the spinal OVH and POV curves were found, as drawn in Figure 
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5-3(b), where the selected PC vectors were also included. The OVH curve of the high-

risk patient was significantly higher than that of the low-risk patient with the largest 

overlap volume difference emphasized at around the global minimum (~75 mm) of the 

first PC vector. The POV at the first local maximum (~25 degrees) of the PC vector was 

much higher in the high-risk patient, exceeding the higher POV of the low-risk patient at 

the second local maximum (~125 degrees). 

 

Figure 5-3. Quantitative anatomical characterizations of the high-risk and low-risk 

patient. 

(a) The axial slice masks and rendered 3D volumes of lymph node gross tumor volume 
(GTVn), Parotid_L, Parotid_R, and SpinalCord structures. (b) The SpinalCord overlap 
volume histogram (POV) and projection overlap volume (POV) of the two patients and 
the corresponding selected principal component (PC) vector. Significant differences in 
lymph node anatomy were captured by the large variations in the histograms and 
highlighted by the PCs. 

5.2.4. Discussion 

This study demonstrated the feasibility of discovering new prognostic factors from 

quantitative spatial characterization of LN tumor for better LN risk stratification with 
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high cross-site generalizability. Two histograms precisely characterized the LN tumor 

anatomy by distances (OVH) and angles (POV). PCA effectively reduced the high-

dimensional histograms into several informative and independent anatomical factors, and 

two final independent prognostic factors were discovered by Cox regressions in DFS. 

The prognostic index that combines the independent prognostic spatial factors and the N 

stage achieved better new three-level risk stratifications than the N stage itself in DFS 

and DMFS at both discovery and external validation. 

Only the spinal cord spatial factor 𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1 and  𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 were identified as 

the independent prognostic factors to DFS. 𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1 highlights the overlap of the lower 

spinal cord with the expansion of isotropic LN tumor by approximately 75 mm (Figure 

5-3(b)), indicating a smaller axial expansion of LN. The PC vector of 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 has two 

peaks at around 25 and 125 degrees and reaches local minimums at 0 and 180 degrees 

(Figure 5-3(b)). Higher projection overlaps at the peak angles indicate more volume of 

LN tumor in the anterior direction of the spinal cord, whereas the valley angles suggest 

less involvement of the LN tumor on the lateral sides. Additionally, both factors are 

correlated with the axial extent of the LN tumor due to the thin cylindrical structure of the 

spinal cord. Such correlation was also demonstrated by the two example patients in 

Figure 5-3(a) where the high-risk patient with lower 𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1 and higher 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 

had a significantly larger axial extent of cervical LN. 

Previous clinical observations on the prognostic power of the anatomy of LN 

tumors were highly correlated with our quantitative findings. The results of our survival 

analysis suggest an increased risk of disease progression with lower 𝐼𝐼𝑂𝑂𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆1 (adjusted 

HR = 0.63, 95CI: 0.48--0.83; p-value < 0.001) and higher 𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3 (adjusted HR = 
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3.35, 95CI: 1.41--7.99), regardless of the N stage. Their independent prognostic power 

could be explained by the two example patients in whom the high-risk one developed 

early distant metastases despite their identical N stage. As discussed in the previous 

paragraph, a higher prognostic index value suggests a higher axial expansion and extent 

of the LN tumor, which supports the ongoing discussion of the high prognostic value of 

the quantitative LN burden. Previous clinical studies reported the number of metastatic 

LN regions as an independent predictor of DMFS 131,139. For  𝐼𝐼𝐼𝐼𝑂𝑂𝑆𝑆𝑆𝑆,𝑃𝑃𝑆𝑆3, a higher value 

may also indicate retropharyngeal LN metastasis with a larger size or bilateral 

involvement. Retropharyngeal LN has also been suggested to indicate worse in DFS and 

DMFS 135,144. Specifically, the size of the metastatic retropharyngeal LN with a cutoff 

axial diameter of 6mm has been identified as a significant prognostic factor for OS and 

DMFS 145,146. It was also suggested that the bilateral involvement of the retropharyngeal 

lymph nodes should be upgraded to N2 disease due to the worse 5-year OS and DMFS 

135. These anatomical characteristics have been partially included in the definition of the 

N1 classification of the 7th and 8th N staging system 147, where metastasis is limited 

above the caudal border of cricoid cartilage and/or retropharyngeal lymph node(s) does 

not exceed 6mm in greatest dimension. Our quantitative anatomical factors may provide 

more precise descriptions of various LN anatomy characterizations, thus independent of 

the existing N stage classifications.  

The two final spatial factors were predictive of three-year DFS and DMFS at both 

discovery and validation. However, the binarization thresholds were less generalizable 

from discovery to validation due to the overall different magnitudes of the spatial factor 

values. As a result, much higher low-risk patients were classified in the validation cohort 
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when using the median values in the discovery as the binarization thresholds. The 

systematic cross-institutional variations in the spatial factor magnitudes could be 

attributed to the inconsistent spinal cord volume definitions, especially the starting and 

ending point. A higher spinal cord extent may lead to a lower relative overlap volume for 

both OVH and POV at the same absolute distance and angle, and the resulting PC 

coefficients are expected to be smaller. For clinical utility, consistent organ and tumor 

segmentations are important to ensure a reliable quantitative spatial characterization. 

Further adjustments in the spatial factor definitions for enhanced robustness are needed in 

future studies. 

Despite the promising performance of the spatial characterization of lymph node 

tumors in survival prognosis, the analysis involves standardized tumor and OAR 

segmentations148 as well as complex computations of distance and angle histograms for 

thorough characterization, which often require specific training. The potential long 

learning curve for clinicians may hinder the clinical application of the proposed 

predictors. Integration of auto-segmentation 149 and dedicated calculation scripts into the 

existing treatment planning system could be one solution for fast implementation in daily 

clinical practice. On the other hand, other types of biomarkers, which are easier to 

implement in clinics, have been proposed as strong survival predictors for patients with 

NPC and other HNC diseases. Systematic inflammation indicators, which can be directly 

measured from blood test results, have been reported to be prognostic in multiple HNC 

subtypes. For example, pre-treatment neutrophil-to-lymphocyte ratio (NLR) has been 

investigated, and a strong statistical correlation was observed with positive neck occult 

metastasis in laryngeal squamous cell carcinoma 150. Another study by Orabona et al. 
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confirmed the independent prognostic power of the systemic immune-inflammation index 

(SII) and the systemic inflammation response index (SIRI) on OS of patients who 

received malignant salivary gland tumor surgery151. 

The constructed prognostic index results in improved risk stratifications in DFS 

and DMFS compared to the existing N stage both internally and externally. It is 

consistent with previous findings on the improved DMFS prognostication of the LN 

tumor region number 131 and the involvement of the retropharyngeal LN tumor 135. Better 

risk stratifications on OS were only observed on the discovery cohort and RFS on the 

external validation cohort. Several reasons could contribute to the heterogeneous results. 

First, the thresholds of the prognostic index for the three-class risk classification could be 

suboptimal and less generalizable. The threshold optimization method for risk 

stratification requires a more careful design and wide validation for clinical practice. As 

discussed in the previous paragraph, the overall magnitudes of the spatial factors were 

inconsistent, which may contribute to the reduced generalizability of the prognostic index 

and the resulting risk groups. Second, some patient characteristics, such as stages and 

chemotherapy treatments, are rather different between discovery and external validation. 

They may affect the generalizability of the risk stratification performance due to the 

different baseline performances. Third, the sample sizes and follow-up durations are 

limited, especially in the discovery cohort. Less patients remained as uncensored 

samples, resulting in less reliable results. Increasing the sample size with more complete 

follow-up information is needed in future studies to enhance the clinical evidence of our 

findings. 
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5.2.5. Conclusions 

This study used the distance histogram OVH and the newly proposed angle histogram 

POV to quantitatively characterize the anatomy of the LN tumor in relation to the 

surrounding spinal cord and parotids. Independent prognostic factors on DFS were 

discovered from the principal components of the anatomical histograms and combined 

with the N stage into a spatial index. It surpassed the N stage itself in risk discrimination 

and stratification. The proposed quantitative approach may facilitate the discovery of new 

anatomical characteristics in a more holistic and precise way to improve patient staging 

in other diseases. 

5.3. Explainable Machine Learning via Intra-Tumoral Radiomics Feature 

Mapping for Patient Stratification in Adjuvant Chemotherapy for 

Locoregionally Advanced Nasopharyngeal Carcinoma 

5.3.1. Introduction 

The extraction and analysis of high-dimensional image features, known as radiomics, 

provides a unique non-invasive tool to quantify intra-tumor heterogeneity that are nearly 

impossible to be perceived by human eyes45. The emerging evidence has confirmed that 

radiomic features have the potential to predict the treatment response in NPC and 

contribute to individualized treatment decision-making without extra medical procedures 

for patients. Peng et al.47 and Zhong et al.152 utilized deep learning algorithms with 

radiomic features from pre-treatment PET/CT and multi-parametric MR images to 

identify high-risk locoregionally advanced (LA) NPC patients who may potentially 
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benefit from induction chemotherapy over CCRT-alone. Shen et al.153 also constructed a 

joint multi-parametric MR-based radiomic and clinical signature to identify patients who 

benefit more from induction chemotherapy or adjuvant chemotherapy. Despite the 

promising performance from previous publications, the lack of explainability in radiomic 

features and transparency in radiomic signatures prevent the further validation of the 

signature and hinder the clinical application of the radiomic model. Severn et al.154 

proposed an intra-tumoral heterogeneity measurement by a voxel-wised calculation of 

radiomic features. An intra-tumoral heterogeneity map visualized the spatial response to 

radiomic features within the tumor, however, the prognosis and treatment guidance 

characteristics of the intra-tumoral signatures have not been investigated. 

In this study, we aim to identify and validate quantitative intra-tumor 

heterogeneity signatures from pre-treatment CET1-w MR images and investigate the 

application of their voxel-wise mapping for personalized adjuvant chemotherapy 

decision-making in LA NPC patients. Heterogeneity signatures were selected from 

repeatable texture radiomics features with high predictive value. They were further 

mapped locally to account for the spatial variations of tumor tissue heterogeneity. We 

further evaluated the predictive value of tumor subvolumes highlighted on the voxel-wise 

mappings, which could potentially serve as direct signature visualizations and 

explainable treatment decision making tool. To maximize the transparency of the 

signature, we provided an end-to-end signature calculator from the image to treatment 

decision recommendations. 
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5.3.2. Materials and Methods 

Patients. This retrospective study was approved by Institutional Review Board (ethics 

approval number: KC/KE-18-0085/ER-1). Signed informed consent form was waived 

due to the retrospective nature of this study. A total of 398 patients with biopsy-

confirmed NPC from the Queen Elizabeth Hospital (hospital 1) were screened. We 

recruited patients with initial diagnosis of NPC confirmed by pathologists in hospital 1 

from 2014–2016. The inclusion criteria were:  (1) patients who received definitive IMRT 

with the following treatment modes: CCRT or CCRT+ACT , (2) patients diagnosed with 

stage III–IVA NPC re-staged according to the 8th Edition of AJCC Cancer Staging 

Manual, (3) patients in good performance status (KPS ≥ 70), without serious medical or 

surgical diseases, and no other malignant tumors, (4) patients with available complete 

initial medical history, chemotherapy and radiation therapy data and treatment planning 

MRI. The patients from hospital 1 were divided into discovery and validation with 

diagnosed time. The flowchart of patients' inclusion is found in Figure 5-4. 
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Figure 5-4. Flowchart of patients’ inclusion of the study. 

 

All patients received CCRT with or without ACT. For radiation therapy, the 

prescribed dose was 68 to 76 Gy for the GTVnp, 60 to 71 Gy for any involved cervical 

lymph nodes, 60 to 66 Gy for the high-risk region, and 54 to 60 Gy for the low-risk 

region in 30 to 33 fractions over 6 to 7 weeks. All patients were treated with 2 to 3 cycles 

of chemotherapy concomitant with RT, with or without 2–3 cycles of ACT. Patients have 

all received 100 mg/m2 of cisplatin (3-weekly in D1, D22, and D43), or 40 mg/m2 
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cisplatin every week, while CCRT + ACT group received another 2-3 cycles of adjuvant 

cisplatin plus fluorouracil (cisplatin 80 mg/m2 on the first day and 5-fluorouracil (5FU) 

1000 mg/m2 daily on days 1-4 (or continuous intravenous infusion for 96 hours) every 4 

weeks. For those with a contraindication to cisplatin, carboplatin was offered 

alternatively. 

Radiation therapy data collection. All the enrolled patients underwent pre-treatment 

planning CECT, CET1-w MR, and RT plan. The images and contoured structures were 

retrospectively retrieved in DICOM format from the PACs. 

Image acquisition. All patients in hospital 1 were scanned with 3T MRI (Achieve, Philips 

Healthcare). The contrast-enhanced T1-weighted sequence of pre-treatment 

nasopharyngeal and neck MR images were collected for each patient. Scanning 

parameters for CET1-w MR images acquisition were as follows: contrast agent 

(gadolinium-based Dotarem, Gd-DOTA); axial CET1-w spin-echo MR sequence 

(repetition time [TR]: 4.8-9.4ms, echo time [TE]: 2.4-8.0ms, field-of-view [FOV] = 24 x 

24 cm, number of acquisition = 1, slice thickness = 0.7-4 mm x 48 slices, spacing: 0-

3mm, matrix: 280-640. 

Segmentation. The gross nasopharyngeal tumor, GTVnp for radiation therapy, was 

collected as the volume of interest for the radiomic feature extraction. The GTVnp was 

delineated by experienced (at least 5-year clinical experience) oncologists on the 

planning CECT images with reference to CET1-w MR or T2-w MR or PET if available. 

The GTVnp contours were reviewed and approved by a 15-year clinical experienced 

oncologist for RT treatment planning. In previous publications, the primary 
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nasopharyngeal tumor volume has shown its prognostic value99,153 and predictive role in 

treatment response47,152,153. 

Follow-up and clinical endpoint. After completion of treatment, patients were assessed 

every three months during the first two years, every six months for third year, and 

annually thereafter. The information obtained was used to evaluate patient survival, 

patterns of relapse, and other clinical symptoms.  

For the endpoint definition, the primary endpoint was DFS, defined as the time from 

starting RT until first progression (locoregional failure or distant failure) or death from 

any cause, whichever occurred first155,156.OS was defined as the time from RT starting 

date until death from any cause. The endpoints of local-regional relapse-free survival 

(LRFS) and DMFS were determined by the patient's first relapse of a local or nodal 

tumor and the occurrence of distant metastasis. 

Feature extraction. A total of 140 texture radiomic features were extracted from GTVnp 

on CET1-w MR images, with and without LoG filters. They are categorized by 14 

GLDM, 24 GLCM, 16 GLRLM, and 16 GLSZM. Both the original and LoG-filtered 

images were preprocessed by a fixed 64 bin count discretization before feature extraction. 

Both image preprocessing and feature extraction were performed by PyRadiomics 30, 

which is compliant with IBSI27. The radiomic features was extracted from CET1-w MR 

images within the volume of GTVnp for radiation therapy. The GTVnp contours were 

propagated from CECT image to CET1-w MR with rigid registration using SimpleITK 

(2.1.1.2). The radiomic features was extracted from the original images and LoG filters 

(1mm, 3mm and 5mm as sigma value). 
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Predictive signature identification. We identified the repeatable heterogeneity signatures 

with high predictive value in CCRT+ACT treatment response based on the signature-

treatment interaction. Figure 5-5 lays out the signature discovery workflow. Firstly, the 

intra-class coefficient of correlation, ICC(1,1), was used to evaluate the feature 

robustness against random errors and inter-observer variabilities simulated by image 

perturbations and contour randomization37,69,157. Features with ICC(1,1) > 0.9 were 

considered repeatable and remained for further analysis. Secondly, features with variance 

less than 10-3 were removed. Third, we binarized the signature value by median and 

calculated the interaction between signature and treatment through multiplication. 

Features with significant association of itself and its treatment interaction to 3-year DFS 

in multivariate analysis remained as the final signatures. 

 

Figure 5-5. Study workflow. 
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Voxel-wise mapping and predictive subregion acquisition. The voxel-wised mappings of 

the identified heterogeneity signatures were performed on the entire patient cohort. 

Signature values were calculated for each voxel on a sliding window with kernel size of 

21mm. Predictive subregions were acquired by thresholding the signature maps within 

GTVnp by the mean map value across the entire cohort. The relative volume of the 

prediction subregion, which are named predictive subvolume, was calculated and 

binarized by the median value across the entire cohort. It was proposed as the explainable 

decision-making signature. Source code of signature, heterogeneity map, and high 

heterogeneity subregion calculations can be found in our GitHub page  for 

standardization and reproducibility 

(https://github.com/vivixinzhi/ACT_Decision_Making_With_CET1-

wMR_Radiomic_Feature). 

Survival analysis. Multiple survival analysis procedures were performed to assess the 

prognosis and predictive value of both heterogeneity signature and its predictive 

subregion from voxel-wise mapping. The prognostic value of the signature was evaluated 

on the training and validation set separately using univariate, multivariate, and KM 

analysis. To assess the predictive value of both heterogeneity signatures and predictive 

subvolume, subgroup analysis was performed on the entire cohort due to limited sample 

size. We evaluated and compared the prognostic value of the two treatments in each 

patient subgroup through univariate and multivariate analyses, followed by KM analysis 

were the curves and survival rates were reported. 

Statistical analysis. Categorical variables were compared using the Chi-square or Fisher 

exact test. KM method was used to estimate the cumulative survival rates, and survival 

https://github.com/vivixinzhi/ACT_Decision_Making_With_CET1-wMR_Radiomic_Feature
https://github.com/vivixinzhi/ACT_Decision_Making_With_CET1-wMR_Radiomic_Feature
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curves were compared using the log-rank test. HRs with 95% CIs were calculated using 

the Cox proportional hazards model. Univariate and multivariate analyses with Cox 

proportional hazards models were performed to evaluate the independent significance of 

the treatments and other potential prognostic factors, including age, sex, and overall 

tumor stage. All tests were 2-sided, and a p-value < 0.05 was considered significant. 

Bonferroni multi-test correction is performed with the false discovery rate set as 0.05. 

5.3.3. Results 

Patient population. We included 232 patients with locally advanced NPC patients 

received CCRT (N = 177, 74.06%) or CCRT plus ACT (N = 62, 25.94%) between 2014-

2016. Patient baseline characteristics in the discovery and validation cohort were listed in 

Table 5-5. No statistically significant differences were observed in patient demographics 

and tumor characteristics. There were no statistically significant differences between the 

two treatments regarding gender, N stage, T stage, and overall grade. 

Table 5-5. Baseline characteristics comparison between the discovery and validation 
patients. 

Characteristic Discovery Cohort Validation Cohort p-value 

Total patient 
number 

128 104  

Age    

    Mean 53.73 52.12 0.130 
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    Range 30-73 19-75  

Gender    

    Male 102 (79.69%) 71(68.27%) 0.056 

    Female 26(20.31%) 33(31.73%)  

T stage    

    T1 7(5.47%) 4(3.85%) 0.422 

    T2 2(1.56%) 6(5.77%)  

    T3 105(82.03%) 83(79.81%)  

    T4 14(10.94%) 11(10.58%)  

N stage    

    N1 9(7.03%) 5(4.81%) 0.815 

    N2 101(78.91%) 85(81.73%)  

    N3 18(14.06%) 14(13.46%)  

Overall stage    

    III 96(75.00%) 80(76.92%) 0.842 

    IV 32(25.00%) 24(23.08%)  
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Treatment    

    CCRT 97(75.78%) 77(74.04%) 0.996 

    CCRT+ACT 31(24.22%) 27(25.96%)  

Abbreviation: CCRT, concurrent chemoradiotherapy; ACT, adjuvant chemotherapy; 
Note: Stage was given according to the 7th edition of AJCC protocol for the validation 
cohort and switched to the 8th edition after 2017 for the discovery cohort. 

Discovery and validation of heterogeneity signature. Only one radiomic feature, 

gldm_DependenceVariance (gldm_DV), extracted from GTVnp on log-sigma filtered 

CET1-w image, with a median binarization cutoff of 7.10, was discovered and validated 

as robust, prognostic and predictive for 3-year DFS. Figure 5-6 visualizes the CET1-w 

image, log-sigma filtered CET1-w image, gldm matrix and voxel-wised mapping for 8 

random selected patients with T3N2M0 NPC. We observed that the patients with lower 

3-year DFS tend to have larger gldm matrix (Figure 5-6, third column) as well as larger 

highlighted regions within the GTVnp on the voxel-wised gldm_DV map (Figure 5-6, 

fourth column). The highlighted tumor subregions tend to have more homogeneous 

appearance in the original image. 

The signature values (Figure 5-7) in progression group and progression-free 

group were averaged to be 8.06 (range: 3.37 to 13.94) and 6.68 (range: 2.70 to 13.08), P 

< 0.001. The feature robustness index ICC was 0.97 (95CI: 0.96 – 0.98), indicating the 

excellent reliability of the feature measurement under image resampling and inter-

observer GTVnp segmentation variability. 
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Figure 5-6. Voxel-wised intra-tumoral heterogeneity mapping (4th column) and the 

intermediate graphs for heterogeneity mapping. 

The first column are the CET1-w images, the second column are the log-sigma filtered 
CET1-w images, the third column shows the gldm matrix and the fourth column shows 
the selected quantitative image marker (Dependence variance). The contours in the red 
represent the GTVnp for radiation therapy. Plot (a) shows the T3N2M0 NPC patients 
without disease progression in three years and (b) shows the T3N2M0 patients with 
disease progression in three years. Eight patients with T3N2M0 were chosen randomly. 
The window and level were fixed across patients. 

 

Figure 5-7. Box plot of gldm_DependenceVariance feature value distribution between the 

event and non-event group. 

Statistically larger feature values were observed for patient with three-year disease 
progression than the patients without. 
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In the discovery cohort, patients with positive gldm_DV status (≥7.10) 

demonstrated higher progression risk than patients with negative status (<7.10). As 

shown in Figure 5-8, the high-risk patients achieved worse 3-year DFS rate (65% vs. 

85%; OR, 3.12; 95CI, 1.33 – 7.35; p-value = 0.009) and LRFS rate (80% vs. 94%; OR, 

4.00; 95CI, 1.21 – 13.17; p-value = 0.023). The univariate and KM analysis results 

suggest a high DFS HR (2.65; 95CI = 1.18 – 5.07) with a significant survival curve 

separation (p-value = 0.008). Similarly, the signature had a LRFS HR of 3.74 (95CI = 

1.21 – 11.73) with log-rank test p-value of 0.014. No statistically significant association 

for 3-year OS and 3-year DMFS, were found in the discovery cohort (p-value > 0.05). In 

a multivariable cox regression on DFS (Table 5-6), the signature’s HR was 2.20 (95CI: 

1.04 – 4.63, P = 0.038) while the treatment (CCRT+ACT vs. CCRT-alone) did not 

demonstrate a statistically significant prognostic power (p-value = 0.221). For the 

treatment predictive value discovery (Table 5-7), the treatment-signature interaction was 

added to the multivariable cox regression model. The HR of the signature maintained in 

3.34 (95CI: 1.38 – 8.09, p-value = 0.007), and the HR for treatment-signature interaction 

was 0.14 (95CI: 0.02 – 0.92, p-value = 0.040). 
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Figure 5-8. Kaplan Meier curves and mosaic plots (3-year event) on disease-free survival 

(DFS) and local-regional relapse-free survival (LRFS) of discovery and validation 

groups. 

The high-risk group patients, stratified by the predictive signature 
gldm_DependenceVariance (>7.10) showed higher progression risk with statistically 
lower DFS and LRFS rates than the low-risk patients in both discovery and validation 
cohort. 

Table 5-6. Multivariable stratified cox regression analysis for three-year disease-free 
survival for prognosis. 

Variable Discovery  Validation  

 HR (95CI) p-value HR (95CI) p-value 

Stage (IVA vs. III) 2.43 (1.19-
4.98) 

0.015 2.64 (1.18-
5.90) 

0.018 

ACT (yes vs. no) 0.57 (0.23-
1.40) 

0.221 0.56 (0.19-
1.64) 

0.293 
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gldm_DependenceVaria
nce (>=7.10 vs. < 7.10) 

2.20 (1.04-
4.63) 

0.038 2.66 (1.05-
6.74) 

0.040 

Abbreviation: ACT, adjuvent chemotherapy; HR, hazard ratio; 95CI, 95% confidence 
interval. Note: Stage was given according to the 7th edition of AJCC protocol for the 
validation cohort and switched to the 8th edition after 2017 for the discovery cohort. 

Table 5-7. Multivariable Cox regression analysis of three-year disease-free survival 
(DFS) in the discovery and validation cohorts with the interaction term. 

Variable Discovery  Validation  

 HR 
(95CI) 

P-value HR 
(95CI) 

P-value 

Stage (IVA vs. III) 
2.30 
(1.38-
8.09) 

0.022 2.78 (1.23-
6.25) 

0.014 

ACT (yes vs. nno) 
1.73 
(0.51-
5.92) 

0.381 2.51 (0.50-
12.48) 

0.262 

gldm_DependenceVariance 
(>=7.10 vs. < 7.10) 

3.34 
(1.38-
8.09) 

0.007 4.82 (1.41-
16.48) 

0.012 

Interaction (ACT=yes and 
DependenceVariance >= 
7.10 vs. ACT=no or 
DependenceVariance < 
7.10 

0.14 
(0.02-
0.92) 

0.040 0.07 (0.01-
0.91) 

0.042 

Abbreviation: ACT, adjuvant chemotherapy; HR, hazard ratio; 95CI, 95% confidence 
interval. Note: Stage was given according to the 7th edition of AJCC protocol for the 
validation cohort and switched to the 8th edition after 2017 for the discovery cohort. 
Note: p-values less than 0.05 were bolded. 
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The findings on prognostic and predictive value of feature gldm_DV were 

consistent in the validation cohort. Patients with positive signature status achieved worse 

DFS compared to a patient with negative status (Figure 5-8) with 3-year survival rate of 

67% vs. 87% (OR, 3.59; 95CI, 1.30 – 9.96; p-value = 0.014). The 3-year LRFS rate was 

77% for the high-risk patients compared with 96% for the low-risk ones (OR, 6.95; 95CI, 

1.48 – 32.62; p-value = 0.014). Univariate HRs of the signature were 3.20 (95CI = 1.28 – 

8.01) and 6.56 (95CI = 1.48 – 29.08) and log-rank test p-values were 0.009 and 0.004 for 

DFS and LRFS, respectively. During multivariable cox regression (Table 5-6), the HR of 

the signature was 2.66 (95CI: 1.05 – 6.74, p-value = 0.040), and the treatment 

(CCRT+ACT vs. CCRT-alone) did not demonstrate a statistically significant prognostic 

power (p-value = 0.262). For the predictive value validation (Table 5-7), the HR of the 

signature and interaction was 4.82 (95CI: 1.41 – 16.48, p-value = 0.012) and 0.07 (95CI: 

0.01 – 0.91, p-value = 0.042), respectively. 

Table 5-8. Multivariable analysis on 3-year DFS for high-/low-risk patient subgroups 
stratified by the heterogeneity signature and predictive subvolume. 

 High risk  Low risk  

 HR (95CI) p-value HR (95CI) p-value 

Heterogeneity Signature 

Age (< 53 vs. 
≥ 53 years) 

0.77 (0.41 - 
1.45) 0.418  0.25 (0.08 - 

0.76) 0.002  
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Gender 
(female vs. 
male) 

1.55 (0.54 - 
4.48)  0.418  1.63 (0.51 - 

5.14) 0.408  

T stage (T3-4 
vs. T1-2) 

1.15 (0.15 - 
8.57)  0.895  0.53 (0.11 - 

2.60) 0.437  

N stage (N2-
3 vs. N1) 

0.60 (0.13 - 
2.67)  0.499  0.53 (0.11 - 

2.60) 0.437  

Overall stage 
(IVA vs. III) 

1.83 (0.95 - 
3.53) 0.072  5.19 (1.82 - 

14.79) 0.002  

Treatment 
(CCRT+ACT 
vs. CCRT 
alone) 

0.21 (0.06 - 
0.68)  0.009  1.28 (0.46 - 

3.56) 0.636  

Predictive Subvolume 

Age (< 53 vs. 
≥ 53 years) 

0.52 (0.26-
1.04) 0.065 0.47 (0.18-

1.22) 0.120 

Gender 
(female vs. 
male) 

3.10 (0.71-
13.58) 0.133 1.30 (0.48-

3.51) 0.607 

T stage (T3-4 
vs. T1-2) 

1.25 (0.37-
4.20) 0.712 N/A 0.996 

N stage (N2-
3 vs. N1) 

0.19 (0.03-
0.99) 0.049 1.20 (0.25-

5.66) 0.821 

Overall stage 
(IVA vs. III) 

2.80 (1.40-
5.57) 0.003 2.57 (0.96-

6.86) 0.059 
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Treatment 
(CCRT+ACT 
vs. CCRT 
alone) 

0.27 (0.09-
0.80) 0.017 1.13 (0.35-

3.61) 0.836 

Note: Hazard ratio of N stage in the predictive sub-volume low risk group cannot be 
calculated because of no progression event for N1 patients. Abbreviations: HR, hazard 
ratio;95CI, 95% confidence interval.  

 

Figure 5-9. Kaplan Meier curves and mosaic plots of low-risk and high-risk patient 

groups stratified by the heterogeneity signature. 

Results on both 3-year disease-free survival (DFS) and local-regional free survival 
(LRFS) were reported. Among the high-risk group patients stratified by the heterogeneity 
signature gldm_DependenceVariance (>7.10), patients who underwent CCRT+ACT had 
significantly higher DFS and LRFS than patients how underwent CCRT alone However, 
minimum survival differences were found on the low-risk group for both survival 
endpoints. 

Subgroup analysis of the predictive value. For the whole cohort, all the clinical outcomes 

were comparable between CCRT+ACT and CCRT alone groups. Within the high-risk 
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group identified by the positive status of the signature gldm_DV, the HR of CCRT+ACT 

vs. CCRT-alone was 0.21 (95CI: 0.06 – 0.68, p-value = 0.009) in multivariate analysis on 

DFS (Table 5-8). During KM analysis, patients who received CCRT+ACT achieved a 

better 3-year DFS (Figure 5-9(b)) with the survival rate of 90% versus 57% (HR, 0.20; 

95CI, 0.06 – 0.64; p-value = 0.007) and 3-year LRFS with 93% versus 72% (HR, 0.22; 

95CI, 0.05 – 0.94; p-value = 0.042). On the other hand, no statistically significant 

difference was observed between patients treated with CCRT+ACT and CCRT-alone (p-

value > 0.05) in the low-risk group (Figure 5-10). 

Similar patterns were found for the patient stratification determined by the 

predictive tumor subvolume derived from the voxel-wise heterogeneity mapping. The 

cohort mean of the heterogeneity map, which was 12, was used to generate the predictive 

tumor subvolume within PTV, and the relative volume threshold of 0.25 was used to 

binarize the predictive subvolume into high- and low-risk groups. As listed in Table 5-8, 

the multivariate DFS HR of CCRT+ACT vs. CCRT-alone was 0.27 (95CI: 0.09 – 0.80, 

p-value = 0.017) on the high-risk group, while minimum prognostic was found on the 

low-risk group (HR = 0.73, 95% CI = 0.22-2.36, p-value = 0.601). KM analysis also 

suggested statistically significant separations of survival curves between patient receiving 

CCRT+ACT and CCRT alone in the high-risk group (DFS: HR=0.36, p-value=0.025; 

LRFS: HR=0.25, p-value=0.042) while minimum significant was found in the low-risk 

group (DFS: HR=1.05, p-value=0.930; LRFS: HR=0.86, p-value=0.845). 
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Figure 5-10. Kaplan Meier curves comparing all patients receiving concurrent 

chemoradiotherapy (CCRT)+adjuvant chemotherapy (ACT) vs. CCRT alone. 

No statistically significant differences were observed in (a) three-year DFS, (b) three-
year DMFS, (c) three-year LRFS, and (d) three-year OS. 

5.3.4. Discussions 

This study successfully discovered and validated an independent prognostic and 

predictive image-based tumor heterogeneity signature, gldm_DV, for locally advanced 

NPC patients in a retrospectively collected cohort. The acquisition of the tumor 

heterogeneity signature only requires the CET1-w images and the GTVnp contour from 

RT planning, rendering it non-invasive, economic, and fully automatic. The predictive 



 

167 

value of the signature was also confirmed by the tumor subvolume derived from voxel-

wised mapping, which is a direct visualization and explanation of the signature. Our 

results suggest that patients with the positive status of the image marker gldm_DV as 

well as the relative size of the predictive subvolume could benefit more in 3-year DFS 

and 3-year LRFS when receiving adjuvant chemotherapy. 

The clinical question of the adjuvant chemotherapy decision is still in debating 

after the landmark intergroup 0099 trial158 establishing the chemo-radiation therapy as the 

standard treatment for local advanced NPC. Several network meta-analyses159–161 

reported potential survival benefit in CCRT+ACT compared with CCRT alone, but the 

differences were not statistically significant. Routine usage of adjuvant chemotherapy for 

all advanced NPC likely represents an over-treatment. This approach results in high 

cumulative cisplatin exposure, which could lead to irreversible long-term complications 

such as peripheral neuropathy, renal impairment, and ototoxicity, hence severely impair 

the quality of life of survivors. Therefore, novel biomarker guided ACT treatment 

selection is in demand to identify patients who may benefit from ACT after CCRT. Early 

attempt in the use of post-treatment plasma EBV-DNA level to risk-stratify NPC patients 

for ACT has not been proven useful162. Further clinical trials, such as the NRG-HN001, 

are ongoing to explore this approach. In our study, the single radiomic feature, gldm_DV, 

was externally validated to be independent prognostic factor in addition to overall stage 

(Spearman r = 0.16, p-value < 0.05). Significant DFS and LRFS benefits from the 

addition of ACT were observed among patients who demonstrated positive level of the 

features. However, the benefit in 3-year OS and DMFS were not observed. There are two 

potential reasons. First, our image signature quantifies the status of the primary 
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nasopharyngeal tumor, but the status of the lymph node involvement was not considered. 

The primary tumor characteristics, such as orbital or intracranial invasion, were reported 

as independent prognostic factors for local failure, whereas the N stage-related factors 

such as retropharyngeal lymph node involvement and cervical lymph node involvement 

were reported as the independent prognostic factor for distant metastasis163. As the image 

marker was quantified within the primary nasopharyngeal tumor, it is more likely that the 

quantified image phenotype was associated with the recurrence of the tumor. Secondly, 

the adjuvant chemotherapy is likely to offer local tumor control benefit than distant 

control. A network meta-analysis which compared various chemotherapy sequences in 

localized NPC159  reported ACT following CCRT ranked the highest in LRFS. Therefore, 

it is more likely to identify a subgroup of patients who were benefit ACT in terms of 

local and regional control.  

During predictive signature identification, we emphasized repeatability as the 

first-line selection criteria to minimize the chance of false discovery in the following 

observations. Previous studies have shown that using repeatable radiomic-based image 

markers could improve both robustness and the generalizability of the model predictions. 

In our observations, the prognostic value of the final identified signature gldm_DV 

shared statistically significant multi-variable HRs in both the discovery and validation 

cohort. The reproducibility of gldm_DV in image acquisition phase has also been 

confirmed before with an ICC of 0.933 under different scanners, image reconstruction 

parameters, and contrast medium122. It has also been suggested to be intrinsically 

reproducible in different image preprocessing settings164. Overall, we believe the 

proposed tumor heterogeneity signature gldm_DV is repeatable and reproducible in each 
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step of the signature acquisition workflow. However, the robustness of the prognostic and 

predictive values requires further validation in inter-group and inter-institutional settings.  

This study confirmed the applicability of the voxel-wise mapping of the tumor 

heterogeneity signature gldm_DV in ACT decision making using the highlighted tumor 

subvolume. Although the global signature gldm_DV has been validated to be predictive, 

whether the predictive value can still retain locally in different tumor sublocations is 

another important measure of reliability. In this study, we used the relative volume of the 

highlighted region of gldm_DV voxel-wise mapping within GTV (predictive subvolume) 

to locally assess the predictive value of the signature. This assessment also avoids the 

bias from volume-confounding effect29 as a fixed kernel size is used for local signature 

calculations. The example patients demonstrated a strong correlation between global 

signature value and predictive subvolume, indicating a high consistency of global and 

local tumor heterogeneity pattern (Figure 5-6). The survival analysis results suggests that 

the predictive subvolume demonstrated high predictive value in subgroup analysis where 

the high-risk grouped demonstrated better DFS and LRFS under the treatment of 

CCRT+ACT, suggesting a high reliability in ACT efficacy prediction (Figure 5-11). 

Moreover, the voxel-wise tumor heterogeneity mapping also serves as a direct 

visualization and explanation of the signature which can be used more confidently in 

clinical practice (Figure 5-6). 
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Figure 5-11. Kaplan Meier curves and mosaic plots of low-risk and high-risk patient 

groups stratified by the predictive tumor subvolume. 

Results on both 3-year disease-free survival (DFS) and local-regional free survival 
(LRFS) were reported. Patients were stratified by the predictive tumor subvolume based 
on signature mapping (map threshold = 12, subvolume threshold = 0.25) The high-risk 
group patients showed statistically significant DFS and LRFS rate differences between 
CCRT+ACT and CCRT. However, minimum survival differences were found on the low-
risk group for both survival endpoints. 

This study has its limitations. First, the treatment efficacy evaluation was 

conducted on a retrospectively collected cohort, which it is difficult to control the 

treatment efficacy related confounding factors, such as the adjuvant chemotherapy 

preference by physicians and patients. Nevertheless, the efficacy analysis on the high-risk 

and low-risk patients provided extra credit in the potential clinical value of our identified 

image marker. Secondly, a larger validation cohort is required to validate the prognosis 

value and predictive value of identified signature and its voxel-wise mapping for better 

understanding the performance under different clinical settings. Furthermore, validations 
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from different groups and institutions are still necessary. Thirdly, the EBV-DNA was not 

included in the analysis due to limited data, therefore, we cannot rule out the correlation 

between identified image signature and EBV-DNA, and further analysis is demanded. 

5.3.5. Conclusion 

We discovered and validated a robust, prognostic, and predictive quantitative tumor 

heterogeneity signature, gldm_DependenceVariance, on CET1-w MR images for local-

regionally advanced NPC patients. Patients with larger signature values were identified as 

high-risk group, which was associated with poorer 3-year DFS and LRFS, and benefited 

from the addition of ACT to CCRT-alone. Meanwhile, the high-risk patients with bigger 

highlighted regions on the voxel-wised feature mapping were also observed to derive 

more benefit from ACT. The proposed signature could be a potential candidate for 

reliable and explainable non-invasive image biomarker for ACT decision making in 

locoregionally advanced NPC. 
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Chapter 6. Summary 

This thesis presents the development and clinical application of an end-to-end 

RADAR toolkit for quantitative biomarker development for prediction medicine. The 

third chapter introduces the design and algorithms of RADAR, with emphasis on the 

innovative features that enhance the curation and analysis of radiotherapy data. First, we 

developed our own radiotherapy data processing algorithm to ensure reliable data 

transcoding. Using a semi-automatic data curation strategy, we demonstrated that the 

efficiency and accuracy of data curation can be greatly improved by batch data query at 

the cohort level, followed by patient-specific data selection guided by embedded data 

visualization. We also developed batch feature extraction capabilities from the curated 

radiotherapy data for maximizing efficiency. The RADAR toolkit also includes a user-

friendly GUI dashboard, enabling real-time monitoring of each feature extraction task for 

fast trouble-shooting as needed. Additionally, we developed an extended feature set that 

provides a comprehensive description of multi-model radiotherapy datasets. Specifically, 

we integrated new histogram features based on the distance and angular projection 

distributions, which quantitatively characterizes geometric relationships between 

structure delineations. Lastly, we implemented an image perturbation-based feature 

repeatability assessment method and integrated it into RADAR, which is further 

optimized by parallel computation for optimal speed. 

The fourth chapter presents two technical studies that shed light on the patterns of 

RF repeatability and their impact on the generalizability of prognostic models under 

stochastic patient positioning. In the first study, we analyzed different image modalities 
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and cancer subtypes of HNC to identify patterns of RF repeatability. We found that the 

majority of the shape, unfiltered, and LoG-filtered RFs demonstrated high repeatability 

(ICC≥0.9), whereas more than half of the wavelet-filtered RFs displayed poor 

repeatability. Further analysis of NPC MR images revealed heterogeneous patterns of RF 

repeatability under different image filters, discretization bin numbers, and feature classes. 

Specifically, texture RFs extracted from wavelet-filtered images showed the lowest 

repeatability to image perturbation, which was consistent with the results of the first 

study. During the development of the survival model, we found that low-repeatable RFs 

achieved similar prognostic performance as high-repeatable ones during training, but 

resulted in non-significant survival stratification on external validation. 

Chapter five includes two clinical studies focusing on the development of clinical 

biomarkers for prognosis and treatment efficacy predictions of NPC patients. In the first 

study, we utilized newly designed geometric features between GTVn and OARs, 

discovering two independent prognostic factors based on spinal cord and parotids. This 

led to improved LN risk stratifications in both the discovery and external validation 

cohort. In the second study, we discovered an independent prognostic and predictive 

image-based signature, gldm_DV, from CET1-w MR for locally advanced NPC patients. 

It describes intra-tumor heterogeneity, and the subvolume identified with heterogeneous 

CCRT+ACT mapping also demonstrated strong predictive value. 

This thesis has some limitations that require further investigation and 

development. Despite the highly structured DICOM format for data encoding, different 

naming conventions of the radiotherapy data, such as ROI names, imposes challenges for 

external sharing and collaborations. Development and integration of automatic naming 
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standardization following the protocol provided by TG report 263 into the data curation 

module could be one solution to further enhance the usability and impact of RADAR 

toolkit. When using RADAR to perform feature extraction, less-experienced users may 

find it challenging to configure the settings using the parameter file due to its complexity. 

Therefore, future RADAR development should focus on migrating to GUI-based settings 

to improve user-friendliness during configuration. Another limitation is that the 

perturbation-based feature repeatability assessment only considers translation, rotation, 

and contour randomization. As a result, we will conduct research to simulate image noise 

using multiple models proposed for different image modalities. The effects of noise 

addition on feature repeatability and model generalizability will also be studied. 

Furthermore, we only analyzed RFs in the two repeatability studies, and other feature 

categories such as dosiomics and geometric features need to be comprehensively assessed 

for their susceptibility to perturbations and their impact on model performance. 

Regarding biomarker developments, the sample size and follow-up durations may limit 

our results' clinical significance. We will expand our data collection efforts to include 

data from more institutions and externally validate and fine-tune our established image 

signatures for potential clinical utility. 

In conclusion, RADAR can be a valuable tool for efficiency, comprehensive, and 

reliable radiotherapy data analysis and predictive model development. We urge caution 

when handling high-pass wavelet-filtered RFs and advise exclusion of low-repeatable 

RFs for predictive model development to safeguard generalizability. The newly designed 

anatomical features may facilitate the discovery of new anatomical characteristics in a 

more holistic and precise way, thereby improving patient prognosis predictions. 
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Additionally, the image signature gldm_DV, which we discovered, could serve as a 

valuable biomarker for reliable and explainable ACT decision-making for patients with 

locoregionally advanced NPC. 

Appendix A: Image Acquisition and Contouring Protocols 

Nasopharyngeal Carcinoma Cohort 

For CECT images acquisition, each patient was immobilized in a supine position with a 

thermoplastic cast. Intravenous (IV) contrast-enhanced CT simulation was performed at 

3-mm intervals from the vertex to 5-cm below the sternoclavicular notch with a 16-slice 

Brilliance Big Bore CT (Philips Medical Systems, Cleveland, OH). For patients to be 

treated under the Tomotherapy machine, the field-of-view (FOV) was set to be 

sufficiently large to cover the CT couch with a 2-cm margin (i.e., FOV>570-mm). CECT 

acquisition parameters were as follows: scan mode: Helical, voltage = 120-kVp, X-ray 

tube current = 264-mA, exposure = 325-msec, pixel spacing = 1.152x1.152 mm, slice 

thickness = 3-mm, matrix = 512x512 pixels. Two types of IV contrast agents were 

available: (i) OMNIPAQUE TM 350 mg I/ml and (ii) VISIPAQUE TM 320 mg I/ml; 

either one of them was prescribed to each eligible patient and was injected at a rate of 2-

ml/sec for 70-ml, followed by scanning after a 30-sec delay. 

For MR images, all patients were scanned with 1.5-T MRI (Avanto, Siemens, 

Germany). Acquisition parameters for T2-w MR images were as follows: axial T2-w 

using short-tau-inversion-recovery (STIR) MR sequence (repetition time [TR]/ echo time 

[TE]: 7640/97 ms, field-of-view [FOV] = 24 x 24 cm, number of acquisition = 1, slice 
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thickness = 4 mm x 25 slices, spacing: 0.75mm x 0.75mm x 4.4mm, matrix: 320). 

Scanning parameters for CET1-w MR images acquisition were as follows: contrast agent 

(gadolinium-based Dotarem, Gd-DOTA); axial CET1-w spin-echo MR sequence 

(repetition time [TR]/ echo time [TE]: 739/17 ms, field-of-view [FOV] = 24 x 24 cm, 

number of acquisition = 1, slice thickness = 3 mm x 48 slices, spacing: 0.938mm x 

0.938mm x 3.3mm, matrix: 256). 

All the GTV contours were manually delineated slice-by-slice by oncologists 

specialized in head-and-neck cancer with accreditations using Eclipse Aria 13 (Varian 

Medical Systems). The GTVp and GTVn were determined from the imaging, clinical and 

endoscopic findings. 

Online Oropharyngeal Carcinoma Cohort  

Data was downloaded from https://doi.org/10.7937/tcia.2020.2vx6-fy46. CECT 

acquisitions involved scanners from various manufacturers, a couple of tube voltage 

settings, and multiple image resolutions. Details are tabulated in Table 6-1. The contouring 

of the primary gross-tumor-volumes follows the protocol specified in ICRU62/83 using 

VelocityAI 3.0.1, according to the original publication 165. 

Table A-1. Image acquisition parameters for the online Oropharyngeal Carcinoma cohort 

Image acquisition 
parameter 

Parameter values Patient number 

Scanner Aquilion 9 

https://doi.org/10.7937/tcia.2020.2vx6-fy46
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BrightSpeed 2 

Brilliance16 3 

Brilliance 16P 1 

CT/e 2 

Definition 1 

Discovery CT750 HD 8 

ECLOS 1 

Emotion 16 1 

Emotion 6 1 

Gemini TF 64 1 

LightSpeed Plus 38 

LightSpeed Pro 16 1 

LightSpeed QX/i 15 

LightSpeed Ultra 1 

LightSpeed VCT 90 

LightSpeed16 217 
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Mx8000 IDT 16 2 

Sensation 16 2 

Sensation 64 2 

Volume Zoom 1 

KVP 120 205 

130 2 

135 1 

191 140 

Exposure time (msec) 400-1921 399 

Tube current (mA) 61-599 399 

Exposure (mAs) 0-21103 399 

Slice thickness (mm) 1, 1.25 345 

2, 2.5 18 

3, 3.75 33 

5 3 

Pixel spacing (mm) 0.34-0.63 398 
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0.98 1 

Matrix 512x512 399 
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