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Abstract

The aging of the population and the outbreak of pandemics place the challenges on global

healthcare. With advances in artificial intelligence and big data, intelligent healthcare

improves the efficiency of themedical system and reduces theworkload of the practition-

ers greatly. In this context, we aim to facilitate autonomous, low-cost, and customizable

clinical communication training by developing intelligent techniques.

Effective clinical communication is essential for delivering safe and high-quality pa-

tient care, especially under the scenarios that the healthcare system faces high pressure.

Training on standardized clinical communication helps to organize the conversation in

a structured and focused way that ensures clinical staff get timely and appropriate re-

sponses without missing any important information. Traditional classroom teaching on

clinical communication requires substantial human and medical resources, and more

importantly, lacks enough high-fidelity practice. Therefore, the primary function of this

intelligent training system is to simulate the dialogue among the clinicians. We develop

a task-oriented multiturn chatbot, which can play various roles to practice conversations

with clinical staff. The key research problem addressed here is the detection of sentence-

level intents referring to the context of clinical communication standards. Compared to

the existing works on intent detection, the sample dialogues for standardized clinical
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handover are insufficient. Moreover, these dialogues are inherently sequential and their

intents are interrelated. Given this feature, we propose Intent-aware Long-Short Term

Memory (IA-LSTM) to incorporate context information into intent detection. In the ex-

periments, IA-LSTM outperforms all baseline methods of intent detection on clinical

handovers. Moreover, the proposed intent-aware mechanism can be expanded to other

deep learning models, thereby improving their performances.

The second piece of work we have delivered is a timely assessment model, which

can automatically evaluate the performance of individual clinical staff in a conversation.

The research problem addressed here is the accurate recognition of the conversation

content by integrating the information from both the domain knowledge and the learning

examples. Based on the biomedical ontology for general purpose, we construct a specific

knowledge graph for the clinical communications. A novel method called Knowledge-

infused Prompt Tuning is proposed to infuse the external knowledge into prompts. The

empirical validation in real world application shows that the proposed method not only

achieves superior performance, but also provesmore robust with limited data or complex

components.

The third function we have developed for intelligent clinical communication training

is a friendly platform that enables users to define new training tasks by themselves. The

key research problem addressed here is the customizable conversational system with in-

sufficient training data. We propose a novel data augmentation methods for user-defined

scenarios, such as the clinical handover under the COVID-19. Based on the pre-trained

conversational system with user-defined knowledge, the proposed Data Augmentation

with User-Defined Knowledge (UDK-DA) significantly boosts the performance of the

clinical training system with only a few samples.

By integrating the aforementioned modules, we develop Heallo, an intelligent, au-
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tonomous, and customizable conversational system for clinical communication training.

Now Heallo has been incorporated into junior staff training programs at local hospitals

and largely benefits the promotion of intelligent healthcare.
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Chapter 1

Introduction

1.1 Background

The escalating pressures on the global healthcare system, driven by an aging popula-

tion, a surge in chronic disease patients, and a rising demand for improved quality of

life, have been further exacerbated by the COVID-19 pandemic [4]. The pandemic has

precipitated the collapse of numerous medical systems, placing an unprecedented strain

on healthcare worldwide.

Modern healthcare is characterized by its collaborative nature, often involving a di-

verse team of physicians, nurses, and other medical professionals. As such, effective

communication within these teams has emerged as a critical prerequisite for successful

collaboration [85]. This importance of clear communication becomes even more pro-

nounced in high-stress situations, such as during pandemic response or in the manage-

ment of complex chronic conditions, where the ability to accurately convey information

can directly impact patient outcomes.

In response to these challenges, substantial investments have beenmade in intelligent

1
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healthcare with the aim of alleviating practitioner workload and enhancing the efficiency

of medical care [24]. It is also observed that there was a sudden increased demand of

intelligent healthcare with the COVID-19 advent, and the adoption rate of intelligent

healthcare is further projected to grow in the post-COVID-19 scenario [42].

With the rapid advances in computational power and the widespread digitization of

medical data, Artificial Intelligence (AI) technologies have emerged as a powerful tool

with the potential to revolutionize numerous facets of patient care, as well as adminis-

trative and operational procedures [27]. And AI has already facilitated transformative

advancements in areas such as drug discovery, clinical trials, and personalized medicine

[113]. However, despite these significant strides, the potential application of these in-

telligent techniques to enhance clinical communication remains largely unexplored.

In the subsequent sections of this thesis, we delve deeper into our motivation for this

research by examining the current landscape of clinical communication. Based on this

analysis, we then formulate specific research problems with the ultimate goal of enhanc-

ing the efficiency and effectiveness of clinical communication through the application

of AI technologies.

1.2 Scenario Description

1.2.1 Clinical Communication

Clinical communication, a vital component of patient care, encompasses the dynamic

exchange of ideas, messages, or knowledge between healthcare providers and patients

or among members of a clinical team. This interaction can transpire through various

mediums, including oral and written forms, as well as non-verbal cues and signals. In the
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context of thesis,our primary focus is on oral communication, a prevalent yet potentially

error-prone activity in the realm of patient care.

The effective communication is essential for the provision of high-quality, patient-

centered care, especially in a team-based healthcare setting [104]. The dialogue that

takes place among healthcare professionals forms a substantial part of the information

flow within the healthcare system, impacting every facet of care delivery, from the ex-

ecution of professional skills to the determination of patient outcomes [38]. Any lapses

or errors in communication can have far-reaching consequences, including delayed or

incorrect treatment, medication errors, and in the most severe cases, increased patient

mortality [70].

In times of crisis, when the healthcare system is stretched to its limits, the role of

clinical communication becomes even more pronounced. It becomes the linchpin that

determines the efficiency of medical resource utilization. For instance, Hong Kong re-

ported more than 300,000 new confirmed cases within a single week at the peak of

the pandemic [25]. In stark contrast, the city’s public hospitals could only accommo-

date about 9,000 beds specifically for COVID-19 patients [53]. This disparity in patient

numbers and resources nearly paralyzed the medical system.

In such emergency situations, effective clinical communication becomes the lifeline

for optimal resource allocation and utilization. It ensures that despite the strain on re-

sources, patient care is not compromised, and the healthcare system continues to function

effectively [37]. Thus, the importance of clinical communication in healthcare cannot

be overstated. It is not just a tool for information exchange but a critical factor in patient

safety, healthcare efficiency, and overall system resilience.
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1.2.2 Standardized Clinical Communication Protocols

To aid clinicians in communicating accurately and succinctly during various tasks, stan-

dardized communication protocols have been developed. For example, ISBAR (Iden-

tify, Situation, Background, Assessment, Recommendation), a standardized communi-

cation framework recommended by the World Health Organization [109], has demon-

strated great potential for enhancing the accuracy and transparency of inter-professional

and non-face-to-face handover in hospitals [85].

This protocol offers a systematic approach to clinical handover by breaking it down

into essential components: ”Identify,” ”Situation,” ”Background,” ”Assessment,” and

”Recommendation”. Each component represents a discrete intent for conveying relevant

clinical information, thereby ensuring the integrity of the clinical handover procedure. A

detailed explanation of the five elements in the ISBAR Framework is provided in Table

1.1.

Element Description
Identify Identify yourself, the patient and verify the receiver.
Situation Clarify the problem or reason for contact.

Background Briefly summarize patient’s previous history relevant to the cur-
rent problem.

Assessment Share the latest clinical assessment, investigation, and your inter-
pretation of the current situation.

Recommendation Ask for advice or intervention; state your expectation.

Table 1.1: Description of ISBAR standardized communication framework.

However, the teaching of communication protocols remains in the theoretical realm,

Theoretical knowledge often fails to translate into practice [15]. These protocols have

not been successfully applied in real-world clinical scenarios due to a lack of training:

First, conducting exercises in an actual clinical setting is prohibitively expensive, re-
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quiring patient consent and professional supervision. Experienced doctors often lack

the time to practice communication with junior staff. Second, the practice processes are

difficult to monitor and assess. Practices between medical students often lack fidelity,

and they rarely receive timely and accurate feedback.

The COVID-19 outbreak has further exacerbated these challenges [6]. The pan-

demic has led to a surge in the number of junior doctors and medical volunteers requir-

ing training, while existing medical experts are overwhelmed with pandemic response

duties. Furthermore, the pandemic has given rise to new and complex clinical scenar-

ios, necessitating the development and implementation of new communication protocols

[90].

However, the overburdenedmedical system, coupledwith limited time and resources,

often prevents clinicians from collecting sufficient data or carefully designing and im-

plementing comprehensive training courses. Without adequate practice and training,

healthcare professionals may struggle to provide effective communication, especially

in emergency situations. This underscores the need for innovative solutions to more

effective and accessible communication training.

1.2.3 AI-powered Clinical Communication Training

Given the scarcity of medical resources and high demand for training, an AI-powered

conversational system emerges as a promising solution. This system can provide au-

tonomous, cost-effective, and adaptive clinical communication training, thereby ad-

dressing the existing gaps in traditional training methods. In replace of human prac-

titioners, the conversational system would simulate clinical communication scenarios,

evaluate the dialogue quality of trainees, and adapt to new training tasks, offering a
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dynamic and interactive learning environment. Figure 1.1 illustrates a diagram of a cus-

tomizable conversational system for clinical communication training.

Task
EditorCommunication

Evaluator

Dialogue
Simulator

Communication InterfaceTrainee Editing Interface Trainer

Figure 1.1: Diagram of AI-powered clinical communication training.

The system is composed of three primary modules, each designed to address a spe-

cific aspect of clinical communication training.

The first module is a dialogue simulator, essentially a task-oriented, multi-turn chat-

bot, capable of assuming various roles in practice conversations with clinical staff. This

module provides a communication interface through which junior doctors or medical

students can engage in simulated scenarios with the AI agent. By doing so, it enables

autonomous communication practice, eliminating the need for costly medical resources

and allowing for flexible, on-demand training.

The second module, termed the communication evaluator, is designed to automati-

cally evaluate and analyze the performance of trainees. This module provides real-time

feedback, thereby maximizing the effectiveness of the training and facilitating contin-

uous improvement. By automating the evaluation process, this module eliminates the

need for expert raters, a resource that is often scarce, particularly during public health

crises such as the COVID-19 pandemic.

The third module, the task editor, is designed to support user-defined tasks. This

feature allows non-IT professionals to easily customize new tasks to suit various com-

munication scenarios. With a user-friendly editing interface, medical professionals can
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create new tasks through simple editing, thereby expanding the application of the system

to different communication tasks.

1.3 Research Problems

Based on the clinical communication scenario and the proposed diagram for autonomous

communication training (Figure 1.1), we further analyze the challenges in each module

and elucidate the research problems.

1.3.1 Intent detection in Standardised Clinical Communication

The primary function of this intelligent training system is to simulate the dialogue among

the clinicians. During communication training, our conversational system typically

serves as the information receiver. Therefore, the system’s responses are designed to

be relatively simple, primarily intended to guide trainees in continuing the conversation.

Rather than pursuing realistic and diverse responses, the key objective of the dialogue

simulator is to understand the user’s intent during communication.

Although intent detection has been a central topic in Natural Language Processing

(NLP) for a long time, its application to standardised clinical communication is rela-

tively unexplored, with no publicly available datasets for this specific context. In our

work, the intents are defined by different parts of a standardized clinical communication

protocol. Unlike existing works on intent detection, sentences in standardised clinical

communication are inherently sequential and the intents derived from the standards are

interrelated. This means that the intent of each sentence is not only dependent on the

preceding dialogue but also shapes the interpretation of the subsequent intents. Given

these unique characteristics, we formulate the problem as sentence-level intent detection
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referring to the context of clinical communication standards.

1.3.2 Content Recognition with Domain Knowledge

An intelligent training system also contains a real-time assessment module, which auto-

matically evaluate the performance of individual clinical staff in a conversation. Stan-

dardized clinical communication can be evaluated from two aspects: whether it strictly

follows the communication protocol and whether it omits vital information. In addi-

tion to intent detection, we therefore need to identify the information conveyed during

the communication. For each task scenario, a document indicating the required infor-

mation will be provided, with each piece of information represented by sample words.

However, these words can only serve as examples of the elements’ expressions and can-

not fully encompass them. Therefore, the challenge of the communication evaluator is

the accurate recognition of the conversation content by integrating the information from

both the domain knowledge and the learning examples.

1.3.3 Customizable Conversational System with Insufficient Data

For a new communication task, there may be different communication protocols, re-

quired information and evaluation schemes. Designing a new model not only necessi-

tates professional IT personnel and a significant investment of time, but the vast majority

of deep learningmodels also rely on a large quantity of data and careful parameter tuning.

Users of a clinical communication training system would likely be medical practitioners

who are unable to process large amounts of data and optimize learning models. So we

need a pipeline that allows non-IT users to create newmodels by providing a small num-

ber of samples without adjusting the parameters and structure. The key research problem
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addressed here is the customizable conversational system with insufficient training data.

1.4 Organization

• Chapter 2 provides a comprehensive review of the related work on conversational

systems, the techniques, and the applications in the healthcare domain.

• Chapter 3 details the collection of a clinical handover dataset based on the IS-

BAR protocol and introduces the IA-LSTM for intent detection in standard clini-

cal communication. This chapter also presents extensive experiments to validate

the efficacy and generalizability of the intent-aware design.

• Chapter 4 proposes amethod for constructing knowledge graphs using user-defined

elements and biomedical ontology. This chapter introduces knowledge-infused

prompt tuning for content recognition in clinical communication. Leveraging

the created knowledge graph and pretrained language models, knowledge-infused

prompts achieve significant improvement in content recognition performance, par-

ticularly demonstrating their strengths when faced with limited data.

• Chapter 5 introduces UDK-DA, a method that enables non-IT users to customize

the conversational system for new tasks. This chapter also discusses the integra-

tion of the intent-aware design into the large pretrained model BioBERT. With

UDK-DA and pretrained language models, a conversational system can achieve

satisfactory performance on new tasks with a limited number of samples.

• Chapter 6 presents Heallo, a customizable conversational system for autonomous

clinical communication training. Heallo, developed as a web application, is in-

tegrated into junior staff training programs at the local hospital. In actual use,
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Heallo demonstrates performance comparable to that of clinical experts in com-

munication evaluation. User feedback indicates that Heallo is capable of provid-

ing effective clinical communication training.

• Chapter 7 provides a summary of the work and contributions of this thesis, and

discusses potential directions for future work.



Chapter 2

Related Work

In this chapter, we review the conversational systems, with a particular focus on their

application in the healthcare domain. We also explore the underlying technologies that

drive the development of these systems, providing a comprehensive overview of the

current landscape.

2.1 Conversational Systems

Conversational systems, often referred to as chatbots, dialogue systems, or virtual agents,

are computer programs designed to interact with users in natural language [115, 57].

These systems have been a subject of interest and exploration since the early days of

Artificial Intelligence (AI) [1]. The journey of conversational systems began with the

introduction of the first chatbot, ELIZA, in the 1960s [125]. This pioneering develop-

ment sparked a wave of research and innovation in the field, leading to the creation of

numerous chatbots.

Many of these early developments were driven by the desire to pass the Turing test, a

11
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challenge designed to assess a machine’s ability to exhibit intelligent behavior indistin-

guishable from that of a human [82]. Notably, PARRY, a chatbot that simulated paranoid

behavior, managed to deceive its judges, marking a significant milestone in the field [23].

In 1995, the Loebner Competition conducted the first unrestricted Turing test, devoid of

any limitations on the subject matter. The advancements in the field led to the creation

of more generalized chatbots like CONVERSE [9], A.L.I.C.E [2], and Mitsuku [50].

The advent of messaging platforms has popularized social and small talk chatbots

(e.g., A.L.I.C.E, Cleverbot, Simsim, Tay), while also increasing interest in task-oriented

chatbots [13]. Task-oriented bots such as personal assistants have seen significant adop-

tion, assisting users with practical daily tasks [22]. Renowned examples include Siri,

Alexa, and Google Assistant [3]. This growth has catalyzed the implementation of con-

versational systems across various industries, including education, social media, finance,

catering, and healthcare [26, 19, 121].

Chatbot developments generally fall into two categories: task-oriented and general-

purpose chatbots. Task-oriented chatbots are constrained to specific subjects, such as

hotel reservations or technical support services. In contrast, general-purpose chatbots

aim to pass the Turing test or engage in social chitchats without any specific theme or

objective [20]. These bots can also foster engaging user experiences in the open domain

for entertainment or emotional connection [130].

However, the advent of ChatGPT [94] has blurred the boundaries between these two

categories. Developed by OpenAI, ChatGPT is the cutting-edge application based on

the Generative Pre-trained Transformers (GPT) language model [64]. It has garnered

widespread recognition for its ability to generate coherent and realistic responses across

a broad array of topics [81]. ChatGPT not only possesses a vast knowledge range but also

exhibits understanding of numerous tasks, even those it was not specifically designed
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for. It demonstrates the capabilities of foundational large language models and presents

a possible trajectory towards general artificial intelligence.

Following the release of ChatGPT, a myriad of conversational systems based on

large languagemodels has emerged, including notablemodels like Google’s BARD [84],

Baidu’s Ernie Bot [105], and the open-sourced ChatGLM [135] from Tsinghua Univer-

sity.

The rapid evolution and robust development of conversational systems underscore

the immense potential and promising future of this technology. As we continue to har-

ness the power of AI, we can expect these systems to play an increasingly pivotal role

in various domains, including healthcare.

2.2 Conversational Systems in Healthcare

Conversational systems have also found numerous applications in the healthcare do-

main. Benifitting from their capabilities for text-based and voice-enabled interactivity,

these systems can effectively cater to diverse demographic groups, making them invalu-

able tools for health-related interventions [18]. By facilitating instant access to medical

assistance via smartphone applications or online services, they provide scalable and eco-

nomically viable health support solutions [99, 12].

Studies suggest that incorporating conversational systems in healthcare settings can

contribute to broader access to medical care, foster enhanced communication between

patients and healthcare providers, and serve as a resource to handle the escalating need

for health services [35]. This assistance can take several forms, such as facilitating

remote testing, monitoring medication adherence, and offering teleconsultations.

Conversational systems have been employed across a wide array of functionalities
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in healthcare, including treatment protocols [44], patient monitoring [106], diagnostic

aid [41], health education [91], and as support systems for healthcare services [61].

Among these diverse applications, systems conceived for healthcare education or skill

training in clinical settings share the greatest resemblance to our task.

For instance, Campillos et al. [16] provide a notable example, having designed a

conversational system that impersonates a virtual patient, thereby allowing healthcare

professionals to hone their medical history-taking skills. This system leverages a com-

bination of frame- and rule-based methodologies to orchestrate medical dialogues. In a

similar vein, Foster et al. [39] utilized virtual patients to impart empathic communica-

tion skills to medical students. Li et al. [73] introduced a mobile-based chatbot dedicated

to helping nursing students assimilate obstetric vaccination knowledge. This innovation

creates an immersive learning environment for students, fostering engagement with vac-

cination cases and offering a more effective learning experience than traditional lecture-

based teaching.

Despite the vast potential of large language models and the existence of various

successful conversational system applications in healthcare, there is a conspicuous ab-

sence of systems specifically designed for training in standardized clinical communi-

cation. Applying these models directly to our intended task—clinical communication

training—is challenging. The existing models do not cater explicitly to standardized

clinical communication and hence, fail to provide the meticulous understanding of user

interactions that a training system necessitates. Such training prioritizes the user’s abil-

ity to communicate effectively using standardized language and accurate information

transmission. Furthermore, while models like ChatGPT excel in diverse tasks, they of-

ten generate deceptive illusions by providing plausible but erroneous information, which

can potentially hinder the training process. Finally, these models do not readily support
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user customization or the integration of user-defined tasks, a feature that is crucial when

the system must adapt to new training scenarios.

Therefore, it is evident that further scholarly exploration is needed to develop con-

versational systems that can effectively facilitate training in standardized clinical com-

munication. The goal is to harness the power of AI to create a system that not only

understands and simulates clinical communication but also evaluates and provides feed-

back on the trainee’s performance, thereby enhancing the quality of healthcare delivery.

2.3 Techniques in Conversational System Development

The development of conversational systems encompasses techniques ranging from tra-

ditional rule-based methods to the latest data-driven learning models [132].

Rule-based methodologies rely on predefined rules or scripts to guide the system’s

responses. For instance, ELIZA [125] utilized pattern matching techniques to analyze

user utterances, matching them against predetermined keywords, and then generating

responses based on corresponding keyword-response rules. Later developments saw the

introduction of the Artificial Intelligence Markup Language (AIML) to facilitate the ef-

ficient development of rule-based chatbots [2]. While rule-based systems are relatively

straightforward to construct and excel in handling structured dialogues, they often strug-

gle with complex and unstructured interactions, limiting their versatility and adaptabil-

ity.

The advent of neural networks and Deep Learning (DL) technologies has led to

a shift towards end-to-end learning methods for conversational system development.

Drawing from machine translation, the Sequence-to-Sequence (Seq2Seq) [120] model

has emerged as a highly-utilized structure for neural language synthesis. For exam-
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ple, [114] developed a neural answering machine employing the Seq2Seq architecture

trained with a Sina Weibo dataset. Later, neural attention mechanisms were introduced

to enhance Seq2Seq models by correlating prominent elements in the source sequence

with the generated item in the target sequence [133, 7, 95]. Zhou et al. [141] integrated

a memory mechanism to address the emotional nuances in large-scale conversation gen-

eration. Such deep learning methodologies have considerably advanced the design of

intelligent chatbots, resulting in more human-like utterances and a more natural conver-

sational style [132].

The recent trend in the field has shifted towards the utilization of large pre-trained

language models as the foundational base in conversational systems. This approach de-

velops applications by leveraging inherent capabilities of the large language models.

For instance, the globally recognized chatbot, ChatGPT, relies on the GPT-3.5 model.

When combined with Reinforcement Learning from Human Feedback (RLHF), Chat-

GPT is trained to produce responses more aligned with human preferences. Other promi-

nent large models include the Bidirectional Encoder Representations from Transformers

(BERT)[29], typically employed for language understanding tasks, and T5 (Text-to-Text

Transfer Transformer)[102], which is designed to solve text generation problems. These

models have demonstrated impressive performance across various benchmarks and can

provide a robust baseline for downstream tasks.

In addition to enhancing the capabilities of the foundational models, researchers are

also actively investigating the learning methodologies of these models and the nature

of their interactions with users. This includes exploring Learning After Deployment,

a technique that allows the model to continue learning and adapting after it has been

deployed, and studying User-chatbot Interactions to better understand how users interact

with these systems and how these interactions can be improved.
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2.3.1 Learning After Deployment

The concept of learning after deployment acknowledges the impracticality of gathering

substantial conversational data for new tasks or for interactions between a single user

and a personal chatbot. Given the novelty of task scenarios, specific knowledge and in-

teraction logic cannot always be predetermined [131]. Consequently, the most intuitive

solution is to design chatbots that evolve post-deployment.

For instance, Evorus, developed by Huang et al. [55], is a crowd-powered chatbot

that progresses to automate itself during its operational phase. Despite the innovation,

the learning process of Evorus depends on the contributions of paid crowdworkers rather

than end-users. This approach not only demands substantial human supervision, but it

also raises potential privacy issues.

Commonly, learning from users is accomplished by requiring their feedback during

engagement [138, 72]. Existing methodologies typically engage compensated annota-

tors to provide scalar rewards or to adhere to specific templates to ensure the input is

constructive for the model [107, 136, 76]. For example, some chatbots actively learn

during conversation in the question-answering (QA) scenario [127, 71].

There are also studies that allow chatbots to learn directly from natural conversations.

For instance, Hancock et al. [48] propose a self-feeding chatbot capable of generating

new training instances from its own conversations. Nevertheless, leaning heavily on

multiple paid workers or collecting feedback via crowd-sourcing does not necessarily

assure the quality of the model. This is especially true for a communication training

system, which needs to be intricately designed. And indiscriminate learning can lead

to undesirable outcomes, as demonstrated by the notorious incident with Microsoft’s

Twitter-based chatbot Tay [100]. For our communication training system, users are the
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recipients of education rather than a source of learning. The cost might be significantly

higher if we were to rely on professional physicians to incrementally train the chatbot

through feedback.

2.3.2 Chatbot-User Interactions

The majority of contemporary research on chatbot-user interactions primarily empha-

sizes on interface design to enhance usability and user experience. For instance, Jain et

al. [58] developed a context view to alleviate disparities between the chatbot’s under-

standing and the user’s perception of that understanding, offering users a straightforward

method to edit context values. Candello et al. [17] explored the influence of different

fonts on perceptions of chatbots’ humanity.

Simultaneously, there is a growing interest in multi-modal interaction, incorporating

visual data for example [56, 86, 28]. Some studies also investigate interactions under

unique circumstances, such as Seering et al. [111] examining chatbots that facilitate or

participate inmultiparty or group interactions, or [5] studying themost effectivemethods

for repairing conversational failures. Luger et al. [80] outline several design challenges

arising from the gap between user expectations and experiences, including how a chatbot

can reveal its current status or how to design system feedback to effectively convey the

system’s intent.

In many healthcare problems, emerging scenarios and requirements often result in

the inadequate performance of existing models. Developing a new conversational sys-

tem not only requires substantial resources, but it may also be impractical due to the

challenges in obtaining dialogue data within the healthcare domain, especially for newly-

emerged cases. As such, an optimal solution is to design a customizable system that
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maximizes the utilization of existing resources and minimizes the cost of redevelop-

ment.



Chapter 3

Intent Detection in Standardized

Clinical Communication

Intent detection is often regarded as a semantic utterance classification problem and tra-

ditional approaches include rule-based templates [32], support vectormachine (SVM) [46]

and Naive Bayes [87]. With the advent of Deep Learning (DL), neural networks, such as

Recurrent Neural Network (RNN) [10], have found widespread use in intent detection,

resulting in significant performance gains [77].

However, there are still obstacles to applying existing intent detection algorithms

directly to standardized clinical communication. First, these models require enormous

volumes of labeled data [11], and extending existing intent detectors to new target do-

mains is a resource-intensive process [103]. There are currently no publicly accessible

datasets on standardized clinical handover.

Second, unlike generic intents, intents derived from clinical communication proto-

cols (e.g., ISBAR) are not isolated but are contextually interconnected. This means that

the intent of a given sentence is not only determined by its content but also by its position

20
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within the sequence of the conversation. This interconnectedness of intents in standard-

ized clinical communication contrasts with most previous models and underscores the

need to consider sequence information when detecting intents.

To address the aforementioned challenges, we first collect a clinic handover dataset,

called CLINIC-ISBAR, with the help of clinical experts from the Queen Elizabeth Hos-

pital. CLINIC-ISBAR consists of 100 handover conversations from two real clinical

emergency cases (a medical and surgical case), where sentences are labeled as different

intents based on the ISBAR framework. It is worth noting that different intents in the IS-

BAR frameworkmay contain the same information. For example, as shown in Table 1.1,

the interpretation of the current situation in “Assessment” may be the same thing as the

problem in “Situation”. Therefore, the intent of a sentence can not be determined solely

by its content. Along with the content of a sentence, the order in which it is presented

is crucial for intent detection. This is because the meaning and intent of a sentence in a

conversation can change depending on its position within the dialogue sequence. Early

sentences might set the context or identify a problem, while later ones might assess the

situation or make recommendations. This dynamic nature of conversation highlights

the importance of considering the sequence of the conversation in intent detection. To

incorporate the sequential feature in ISBAR standardized communication, we further

propose a model called Intent-Aware LSTM (IA-LSTM). The Main contribution of this

work is threefold:

• To the best of our knowledge, our work is the first to explore intent detection tech-

niques for facilitating the automation of standardized clinical handover training.

• We collect a clinical handover dataset, CLINIC-ISBAR, of real-world cases with

the collaboration of clinical experts. In addition to encouraging the development
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of standardized clinical communication training systems, this dataset sheds light

on prospective NLP applications.

• Our IA-LSTMgreatly improves the performance of intent detection on the CLINIC-

ISBAR dataset. The proposed intent-aware mechanism can be expanded to other

baseline DL models, which further improves their performances.

3.1 Related Work

Traditional machine learning algorithms for intent detection include support vector ma-

chines, K-nearest neighbours, and decision trees [66]. With the development of deep

learning, neural networks began to be utilized extensively for this task [126]. In the

pipeline of DLmethods, text data is originally represented usingword embedding, which

turns sparse word representations into dense, low-dimensional vector representations

[89]. Word2vec [88], GloVe [98], and FastText [59] are examples of typical word em-

bedding techniques. Following word embedding, various neural networks can be used

for intent detection, such as convolutional neural networks [139] and recurrent neural

networks (RNN) [10]. Long Short-Term Memory (LSTM) network [52], a well-known

variation of RNN, has proven to be highly effective at modeling the temporal relation-

ship of text and identifying long-term relationships. It utilizes memory cells and gates

to control the flow of information and addresses the gradients vanishing and exploding

issues encountered in standard RNN training [52]. On the basis of the LSTM structure,

additional advancements have been made by incorporating bidirectional mechanisms

[43], attention mechanisms [8], hierarchical structures [93], and convolutional layers

[68].

Despite their superiority in processing sequential data, RNN-based models require
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input data to be processed sequentially, hence limiting training speed. Transformer [122]

resolved this problem by utilizing just self-attention blocks - all tokens are processed si-

multaneously and attention weights between them are calculated. In this manner, Trans-

former supports increased parallelization during training and permits training on larger

datasets. It is currently replacing older RNN models and resulting in the creation of

huge pre-trained models [128]. One of the most well-known pre-trained models, BERT

(Bidirectional Encoder Representations from Transformers) [29], has attained cutting-

edge performance in a wide range of NLP tasks. The BERT-base model was pre-trained

on a 3.3 billion word corpus and consists of 12 layers of transformer blocks with 100

million in parameters [29]. Then, it can be fine-tuned for the downstream tasks without

altering the architecture.

In addition to the advances in network designs, major advancements have been made

in intent detection by incorporating additional information, such as learning with exter-

nal knowledge [123], and taking slot-filling as joint tasks [63]. As described in Section

1.2.2, the sequence in which sentences appear is crucial to understanding the intent of

the present sentence in standardized clinical handover. Hence, the sequencial informa-

tion can be used as additional knowledge for intent detection. The way this sequential

information is modeled varies between classification tasks. For example, [129] devel-

oped a propagation graph to illustrate the chronology of message distribution for online

rumor detection, and [142] utilized headings and sentence positions as the sequential

information for distinguishing portions of the medical report.

ISBAR is recommended to organize the contents of a standardised clinical handover

conversation. Specifically, ISBAR divides clinical handover to five intents (i.e., Iden-

tify, Situation, Background, Assessment, and Recommendation), which are intercon-

nected in a particular order. Thus, the sequence in which these intents appear can repre-
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sent the sequential information in a clinical handover. In contrast to earlier work where

the sequential information is derived from known factors such as message chronology

or article structure [134, 142], in our task, the actual order of intents is unknown. There-

fore, order of detected intents can be used to simulate the sequential information that is

revealed as intent detection continues.

Based on this observation, we incorporate the sequential information by adding an

additional feature that indicates the detected intents. One of the most common methods

of representing intent labels is by using one-hot vectors [10]. However, one disadvantage

of using one-hot encoding is that it ignores information in the non-dominant dimensions

and may magnify errors when the intent prediction results are incorrect. To overcome

this defect, we use the probability distribution after the SoftMax layer to represent the

intent label in our proposed IA-LSTM model.

3.2 The CLINIC-ISBAR Dataset

This section presents the CLINIC-ISBARdataset, a clinical handover dataset of real clin-

ical emergency cases. This dataset serves as a foundation for the development and eval-

uation of computational models aimed at processing and analyzing standardized clinical

handover. The processes of data acquisition, annotation, and analysis are discussed in

detail in the following subsections.

3.2.1 Data Collection

Our CLINIC-ISBAR dataset was collected in Queen Elizabeth Hospital, Hong Kong,

involving two real clinical handover scenarios between junior and senior doctors. The

first scenario was a medical (MED) patient with respiratory failure who may require
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elective intubation. The second scenario was a surgical (SURG) instance in which a

patient with an acute abdominal injury would require emergent surgery.

During the handover procedure, a junior doctor conveyed the case to a senior doctor

based on medical records, notes, and testing reports (e.g., hematology reports, chemi-

cal pathology reports, CT scans). To prevent any breach of patient confidentiality, all

personally identifiable information was replaced with synthetic data. In total, 100 high-

quality audio recordings were collected, comprising 48 MED scenarios and 52 SURG

scenarios.

3.2.2 Annotation

A rigorous annotation pipeline was developed for the conversion of audio recordings

into annotated textual data. The audio recordings were first transcribed manually, with

transcriptions subsequently segmented into sentences. A panel of domain experts, with

at least three annotators per sentence, labeled each sentence according to the ISBAR

framework.

The ISBAR framework comprehensively covers the possible intents in a clinical

handover, making it unlikely for irrelevant content to appear in a handover of an emer-

gency case. However, there were instances where a sentence could be categorized under

multiple labels or did not clearly fall into any of the five intents. These sentences were

deemed controversial and were filtered out, accounting for less than 1% of the total.

The resultant dataset comprises 1895 textual sentences, each annotated and catego-

rized into one of five label classes as per the ISBAR framework. Table 3.1 provides an

overview of the distribution of samples across different intent categories. For illustra-

tive purposes, Figure 3.1 showcases snippets of annotated data from the CLINIC-ISBAR
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Intent MED (48 recordings) SURG (52 recordings)
I (Identify) 112 118
S (Situation) 49 48
B (Background) 251 262
A (Assessment) 423 339
R (Recommendation) 145 148

Table 3.1: Statistics of the CLINIC-ISBAR dataset.

dataset. It should be noted that not all conversations in the dataset strictly adhere to the

ISBAR framework in terms of the sequence or inclusion of all five components. This

variation is reflective of real-world clinical communication.

… I wanted to call you to discuss this 
problem is because I would like to see if an 
urgent operation has to be booked or not…

… so I would like to see because of the 
clinical deterioration, shall we proceed with 
the emergency operation for this patient? …

Hello, I'm doctor Lee, the on-call surgical 
doctors. Now I'm in a ward surgical  …

… latest blood test showed that electrolyte 
is normal with mild renal derangement …

… initially this patient was admitted 
because of the diffuse abdominal pain …

S

R

A

B

I

Figure 3.1: Fragments of a conversation in CLINIC-ISBAR with corresponding intents.
I: Identity; S: Situation; B: Background; A: Assessment; R: Recommendation.

3.2.3 Analysis

A range of baseline DL models are investigated on the CLINIC-ISBAR dataset (see

Section 3.4 for details).Among these, BERT [29] yields the best classification accuracy,
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scoring 84%. However, there is still considerable room for improvement. We attribute

this to several intrinsic challenges associatedwith intent detection on the CLINIC-ISBAR

dataset:

• Our CLINIC-ISBAR dataset is relatively small and it contains many domain-

specific terminologies, making it challenging to scale existing intent detectors

from other domains to our target domain.

• The content within one conversation in our dataset is semantically concentrated,

meaning that the sentences are all related to the same biomedical case and thus

share similar themes and vocabulary. This is in contrast to other intent detection

tasks, such as those for a personal assistant, where intents like ’search a restaurant’

and ’play music’ can be very different and easy to distinguish. The similarity of

the content within a conversation and the variety of expressions across different

conversations require a more accurate and precise understanding of the sentences.

• Five intents of ISBAR (i.e., identify, situation, background, assessment, and rec-

ommendation) have semantically-vague boundaries and are sequentially related

to each other.

In addition to the content, we also observe that the sequential position of the sentence

in a clinical handover is essential for intent detection. To illustrate how a sentence’s po-

sition influences sentence understanding, we highlight two sentences in a sample con-

versation #48 (see Figure 3.1). The highlighted sentences are very similar in terms of

vocabularies, patterns and even semantics, but are labelled as different intents. The green

sentence at the top of the handover conversation (behind intent I) can be interpreted as

the reason for calling (labeled as S). While located at the end of the handover conver-
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sation (behind intent A), the red part intends to express the clinician’s recommendation

(labeled as R).

Considering the sequential structure of the ISBAR framework, we propose to in-

corporate previous intent information into intent detection and design an intent-aware

method based on LSTM structure.

3.3 Intent-Aware LSTM (IA-LSTM) Model

In this section, we formulate the problem of sentence-level intent detection during an

ongoing clinical handover and describe in detail our proposed IA-LSTM model.

3.3.1 Problem Formulation

Given a conversation with N sentences from the clinician’s side, we denote it as D =

{(s(n), y(n)) | n ∈ Z, 1 ≤ n ≤ N}, where s(n) is the n-th sentence and y(n) is the

corresponding intent label represented in one-hot encoding. We further denote the n-th

sentence as a sequence of word embedding s(n) = (w1, . . . , wt, . . . , wT ), where T is

the number of words in s(n), and wt ∈ RD is a D-dimensional word embedding of the

t-th word. In the ongoing setting, we only have the first n sentences of the conversation

when s(n) is given out. Thus, we formulate the problem as an objective of learning a

model G for intent detection on a subset of the conversation, which can be written as

ŷ(n) = G(s(n),Θ) (3.1)

where Θ is the parameters of the model G, ŷ(n) = (ŷ(1), . . . , ŷ(n)) is the model predic-

tions given the input sentences s(n) = (s(1), . . . , s(n)) in the conversation D.
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As depicted in Figure 3.2, applying Deep Learning (DL) models to intent detection

typically entails three key stages: preprocessing, vectorization, and classification. In

the preprocessing stage, raw input sentences undergo transformation through standard

techniques such as capitalization normalization, noise removal, and tokenization, con-

verting the text into a series of tokens. These tokens collectively form the vocabulary for

the subsequent stages. During the vectorization stage, each token is mapped to a vector

through word embeddings, resulting in a sequence of vectors. Using embedded vectors

as input, the final step classifies the intent using neural networks like RNN and CNN. In

a clinical handover dialogue, sentences are given consecutively in the ongoing manner,

corresponding to a chain of intents.

Hello, I’m Dr. Lee ...

Could you please co...

 Chest X-ray showe... 

Preprocessing

chest

x-ray

zone

consolidation

0.9, 0.2, ... 0.5

0.8, 0.7, ... 0.4

0.1, 0.2, ... 0.6

0.4, 0.2, ... 0.3

Detected 
Intents

He was admitted ye...

Vectorization ClassificationSentences

I

B
A

0.8, 0.7, ... 0.4 0.0
0.1
0.2
0.6
0.1

Figure 3.2: Procedures of intent detection. There are three phases involved: preprocess-
ing, vectorization, and classification. Under the ongoing setting, we predict the intent
vector of the first n sentences in the clinical handover.

3.3.2 Intent-Aware LSTM

3.3.2.1 Sentence Representation

Given the vectorized word embedding s(n) = (w1, ..., wt, ..., wT ), many DL models

could be adopted to learn representations of the input sentences. It is still debatable
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which DL model performs better, particularly on relatively small datasets [34]. For the

ease of understanding, we adopt a basic LSTM [52] as the backbone model. The LSTM

unit regulates the flow of information from past stages to the present phase using three

gates: an input gate, an output gate, and a forget gate. At each time step t ∈ [1, ..., T ] for

its corresponding embedding wt, LSTM calculates its current hidden state output vector

ht based on a memory cell ct and an output gate go as

go = σ(W oht−1 + Iowt)

ht = tanh(go # ct)
(3.2)

where W o and Io are weight and projection matrices, respectively. σ represents the

logistic sigmoid function, and # is the element-wise multiplication. While the memory

cell ct is calculated with three gates that can be defined as

gc = σ(W cht−1 + Icwt)

gf = σ(W fht−1 + Ifwt)

gu = σ(W uht−1 + Iuwt)

ct = gf # ct−1 + gu # gc

(3.3)

where gc, gf , and gu are the activation vectors of the cell state, output, and input gates,

respectively; The recurrent weight matrices are denoted by W c, W f , and W u; The

projection matrices are represented as Ic, If , and Iu. For the input sequence s(n) =

(w1, ..., wt, ..., wT ), the latest hidden state hTof the LSTMmodel is used as the sentence

representation ŝ(n) for intent detection.
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3.3.2.2 Intent-Aware Design
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Figure 3.3: Structure of IA-LSTM. The intent-aware mechanism incorporates intent
information (i.e., p(n−1), the probability distribution following the SoftMax layer) of
the preceding sentence s(n−1) with the current sentence representation ŝ(n) learnt from
the LSTM backbone model (i.e., the last hidden state hT ).

Figure 3.3 outlines the architecture of the proposed IA-LSTM model, which incor-

porates an intent-aware mechanism. Unlike standard intent detection, our approach ac-

counts for the contextual relationship between consecutive intents in clinical handover

dialogues. By incorporating the probability distribution of the preceding intent into the

current intent detection process, IA-LSTM encapsulates this relationship.

Let p(n) ∈ RC denote the probability distribution vector of the intent information for

the n-th sentence s(n) ∈ RD×T , whereC is the number of intent labels. Given the current

input sentence s(n), its preceding intents are denoted asp(n−1) = (p(n−k), . . . , p(n−1)), 1 ≤

k < n− 1 in a probability distribution format.

Figure 3.3 illustrates the model structure when k = 1 (i.e., p(n−1) = p(n−1)). To

compute p(n), the model first concatenates the most recent intent probability distribution

vector p(n−1) with the current sentence representation ŝ(n). Then, the IA-LSTM makes
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predictions using a fully connected layer and a SoftMax layer based on this concatenated

representation. This process can be formulated as

p(n) = SoftMax(F ([p(n−1), ŝ(n)])) (3.4)

where F is the fully-connected layer. For the beginning sentence in conversationD, the

preceding intent information is specified as a C-dimensional zero vector.

3.3.2.3 Optimization

Given the proposed IA-LSTM model G as defined in Equation 3.4, we use the cross-

entropy loss to optimize it, which can be written as

argmin
Θ
−
∑N

n=1

∑C

c=1
y(n)c log(p(n)c ) (3.5)

3.4 Experiments

In this section, we evaluate our IA-LSTM on the CLINIC-ISBAR dataset from three

aspects:

• Effectiveness on intend detection: We run a number of representative baseline

models on the CLINIC-ISBAR dataset and compare their performance with IA-

LSTM. This is to verify the effectiveness of using proceeding intents as sequential

information.

• Generalization to other models: We investigate the generalization ability of the

intent-aware design by expanding it to other DL models.
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• Robustness of the probability representation: We conduct experiments to verify

whether the probability distribution is a better representation of intent information

than one-hot encoding.

3.4.1 Baselines

LSTM [52] is identical to the backbone model utilized in IA-LSTM. We use 1 layer and

a hidden size of 16 for LSTM and all of its variants.

Bidirectional LSTM (BiLSTM) [43] employs two LSTMs that receive input in both

the forward and reverse directions.

Attention-based LSTM (AttLSTM) [8] learns attention information from the embed-

ding representation to direct the model’s attention to particular areas of the sequence for

the classification task.

TextCNN [139] is an implementation of CNN for NLP applications in which the word

embeddings are fed into three distinct convolutional layers and their output concatenated

to a linear layer. In accordance with the configuration in the original work, we employ

three kernel sizes (2, 3, 4) and five kernels for each.

Recurrent CNN (RCNN) [68] represents a sentence with a concatenation of GloVe [98]

word embedding and the output of BiLSTM .

Transformer [122] is amulti-head self-attention structure that has outperformedRNN/CNN

based models on machine translation tasks with faster training speed. We used a 1-layer

two-head encoder and averaged the output layer of the encoder before connecting it to

the fully connected layer.

BERT [29] is a deep bidirectional Transformer architecture that has been pre-trained

using a 3.3 billion word corpus.It has demonstrated cutting-edge performance on nu-
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merous NLP tasks. Here we fine-tune on the BERT-base model and connect the output

of the first token (the [CLS] token) to a fully connected layer.

Concatenate BiLSTM (CLSTM) [142] uses the nearby sentences processed by BiL-

STM to aid classification of the current sentence. In our experiment, k sentences before

the current sentence are employed to model interdependencies at the sentence level.

3.4.2 Experimental Settings

Here we introduce the experimental setting for CLINIC-ISBAR in terms of dataset splits,

hyper-parameter selection, and evaluation metrics.

Dataset Splits. To ensure the integrity of the clinical handover, we split the dataset by

conversation. Specifically, We separated all sentences in a ratio of 6 : 2 : 2 into train,

valid, and test sets. Table 3.2 depicts the distribution of sentences for each intent.

Split Item Total I S B A R

#Train 1159 141 61 327 455 175
#Valid 366 40 18 91 151 66
#Test 370 49 18 95 156 52

Table 3.2: Dataset splits of CLINIC-ISBAR.

Hyper-parameters Selection. For embedding initialization, we employ glove.6B.50d

[98] (save for BERT), which is trained on Wikipedia 2014 and Gigaword5 with 6B

tokens and 400K vocabularies. For Transformer and BERT, the sentence length is set at

32, whereas other models accept inputs with various sentence lengths. We use a batch

size of 16 to train BERT and 1 for other models. And k = 1 is set for CLSTM and

IA-LSTM. During the training process, Adam optimizer is utilized for all models. We

set the learning rate at 0.003 and the dropout rate at 0.02. We set the learning rate to

1e− 5 for parameters in the original BERT model.
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To provide a fair comparison, we execute five rounds of trials for all models using

five random seeds (1, 12, 123, 1234, and 12345) and record the test accuracy when each

model performs best on the validation set within 50 epochs. We report the five-round

average test accuracy for all models.

Evaluation Metrics. We report the Accuracy and Macro F1-Score as performance

measures. The Accuracy is calculated as

Accuracy =
# of correct predictions

Total # of intents
(3.6)

ForMacro F1-Score, it averages F1-Score of each intent class:

Macro F1-Score =
1

C

C∑

i=0

F1-scorei (3.7)

where i is the intent index and C the number of intents. The F1-Score for the given

intent class of i can be calculated based on the harmonic mean of precision and recall

F1-Scorei = 2 ∗ TPi

TPi + 0.5(FPi + FNi)
(3.8)

where TPi, FPi, and FNi denote the number of True Positive, False Positive and False

Negative cases of intent i, respectively.

3.4.3 Results and Discussion

In this section, we present and discuss the experimental results from the three aspects

introduced in the beginning of this section.
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Model Accuracy F1-Score
LSTM [52] 81.84 77.47
BiLSTM [43] 79.78 74.47
AttLSTM [8] 81.62 78.04
TextCNN [139] 79.90 74.14
RCNN [68] 82.86 78.51
Transformer [122] 78.92 73.39
BERT [29] 84.86 81.09
CLSTM [142] 83.68 84.36
Our IA-LSTM 88.43 85.76

Table 3.3: Performance of baselines and IA-LSTM (%).

3.4.3.1 Effectiveness on Intent Detection

Table 3.3 shows a comparison of baseline models and the proposed IA-LSTM on the

CLINIC-ISBAR dataset. Among all baseline models, BERT achieves the highest ac-

curacy, 84.86%. And CLSTM improves BiLSTM by considering the interdependen-

cies of nearby sentences, reaching an accuracy of 83.68%. Representing the sequential

information by intent labels, our IA-LSTM outperforms all baselines with noticeable

improvements: our model’s performance surpasses the state-of-the-art BERT with an

enhanced accuracy of 3.57%. Our IA-LSTM also significantly improves the results of

its backbone model LSTM (from 81.84% to 88.43%), demonstrating the effectiveness

of our intent-aware design. With an accuracy of 88.43%, our model can feasibly be

deployed to a standardized clinical communication training system.

One interesting finding here is the performance of BERT. A large DL model with

millions of parameters like BERT tends to overfit on small datasets, resulting in limited

advantages [119]. Work of [34] has shown that the simplest LSTM architecture con-

sistently outperforms BERT with small datasets. However, on our CLINIC-ISBAR – a

relatively small dataset – BERT yields the best performance among all baselines when
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Figure 3.4: Confusion matrices of LSTM and IA-LSTM on CLINIC-ISBAR.

sequential information is not involved. This evidences the complexity of our dataset

from another side. More concretely, the sentences in a clinical handover are seman-

tically similar – they all provide information related to a specific clinical case. Thus,

detecting the intent behind them requires a precise and comprehensive understanding.

A huge and deep structure like BERT can thus detect subtler differences and deeper

meaning, leading to better performance on our dataset.

Discussion: how does LSTM benefit from the intent-aware design? We present the

confusion matrices for LSTM and IA-LSTM to study further how IA-LSTM enhances

intent detection in each class (see Figure 3.4). These matrices demonstrate that all detec-

tion accuracies are improved along the diagonal, with the detection accuracies of intents

A and S exhibiting the most notable enhancements. This result is consistent with the fact

that S and A are closely related and difficult to differentiate. Our intent-aware design

enables the model to look at the preceding sequences and infer the difference.

Sentence Intent
(Previous) “And I have revealed the CT scan ...” A

(Target)
“So I think the problem is that the patient suffered from an acute
gangrenous appendicitis and probably and very likely perfora-
tion.”

A

Table 3.4: Two consecutive sentences in a conversation.
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Table 3.4 exhibits two consecutive sentences from a conversation that LSTM incor-

rectly classifies. Without knowing the intent of the previous sentence, LSTM classifies

the target sentence as S (Situation). Indeed, this sentence could serve as a summary of

the patient’s situation or a reason for calling. Nevertheless, it is evident from the pre-

ceding statement that the next sentence presents an assessment. IA-LSTM is able to

correctly classify the target sentence as A (Assessment) when provided with the intent

information.

We have analyzed the performance of IA-LSTMwhen k = 1, which outperforms all

baseline models (see Table 3.3). To further validate the effectiveness of our IA-LSTM,

we perform ablation on the value of k, which is the number of preceding intents incor-

porated in the model. Figure 3.5 shows the performance of IA-LSTM when choosing

different values of k. With varing values of k, the model maintains a stable performance

that is much superior to when no intents are incorporated (Accuracy 81.84%, F1-Score

77.47%). Observations indicate that raising the value of k can further enhance per-

formance, with the best accuracy and F1-Score being being 90.91% and 90.51% when

k = 4. This again highlights the effectiveness and potential of intent-aware design.

From the sharp improvement before k = 4 and the slight decline after, we can infer

that the most recent preceding intents are more crucial to understanding the current sen-

tence, whereas the farther-off intents only provide a limited amount of information. This

conforms to the characteristics of typical human communication.

3.4.3.2 Generalization to other DL Models

Given the efficacy of our intent-aware design, we intend to apply it to more baseline

models. Most DL models for text classification contain a fully connected layer as the

final layer taht predicts the label. We refer the input of the final layer as a sentence rep-
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Figure 3.5: The performance of IA-LSTM with varing k values (%). The nodes on the
lines indicate the average results of implementations with 5 different seeds. The shaded
regions represent the results’ upper and lower bands.

resentation ŝ. Based on the same idea in IA-LSTM, we extend our intent-aware design

to general DL models by concatenating the intent vector with ŝ and passing it to a fully

connected neural network. For the ease of comparison, we set k to 1 for all the expanded

implementations.

Model
Without Intent-aware With Intent-aware (k = 1)

Accuracy F1-Score Accuracy F1-Score

LSTM 81.81 77.51 88.41 (↑6.61) 85.81 (↑8.31)
BiLSTM 79.81 74.51 88.41 (↑8.61) 86.61 (↑12.11)
AttLSTM 81.61 78.01 90.11 (↑8.41) 87.91 (↑9.91)
TextCNN 79.91 74.11 88.41 (↑8.51) 86.71 (↑12.61)
RCNN 82.91 78.51 90.31 (↑7.51) 88.81 (↑10.31)
Transformer 78.91 73.41 88.11(↑9.21) 85.81 (↑12.41)
BERT 84.91 81.11 88.21 (↑3.31) 86.41 (↑5.31)

Table 3.5: Performances of baselines with and without the intent-aware design (%).

A comparison of baseline models and their intent-aware versions is shown in Ta-

ble 3.5. Notably, our method for adding proceeding intent information is adaptable to

a variety of model topologies and model sizes. The performance of all models improve
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significantly, with RCNN achieving the highest accuracy of 90.31%. Consistent with

our observation, this general improvement is attributable to substantial sentence corre-

lations.

Discussion: why is the improvement of BERT not that significant? The BERT-base

model used in this paper contains 110M parameters, which is about a thousand times

more than the other baselines. In order to extend our intent-aware design to BERT,

we concatenate the intent vector p with ŝ generated by BERT (the output of the [CLS]

token) and pass it to a fully connected layer. It is worth noting that different models

may have different dimensions of ŝ, but the same dimension of p (i.e., 5). For other

DL models in the experiment, the dimension of ŝ is between 16 to 50: LSTM has ŝ of

dimension 16, BiLSTM 32, AttLSTM 16, TextCNN 15, RCNN 16, and Transformer 50.

However, BERT generates a ŝ of dimension 768, which is significantly larger than other

baseline models. When confronted with this dominant vector size (768 vs. 5), the intent-

aware design still increases BERT’s accuracy by 3.3%, confirming the effectiveness and

generalizability of our intent-aware design.
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ID Sentence True P O

#859 Mr. Chan is 69-year-old gentleman admitted under medical
for shortness of breath and ankle oedema for two days. B A A

#860
Basically he has signs and symptoms of CHF with orthopnea
and PND and he was admitted on the 14th which was two
days ago.

B B A

#861
He has a background history of type 2 diabetes, hypertension,
ischemic heart disease with previous PCI done in 2015 and
mild renal impairment.

B B A

#862 He has previous follow up in the QEH medical. B B A

Table 3.6: Continuous sentences predicted by IA-LSTMs. Three columns on the right
indicate true intents, intents predicted by IA-LSTMwith the probability distribution (P),
and intents predicted by IA-LSTM with one-hot encoding (O).

3.4.3.3 Robustness of the Probability Distribution

In previous work, the intent vector is usually derived from the intent label, using one-hot

encoding [10]. Figure 3.6 depicts the performance of all intent-aware models using the

intent vector represented by one-hot encoding and the probability distribution. Findings

show that the probability representation is consistently better than one-hot representation

for all models, potentially due to two reasons. First, the probability distribution reserves

more sequential information than the one-hot representation [51] – it contains leaked

information of non-dominant intents. Second, the probability distribution is more false-

tolerant because it could smooth the prediction error of its former sentence.

Discussion: how the probability distribution functions differently from one-hot en-

coding? Table 3.6 lists the result of continuous sentences predicted by implementations

of IA-LSTM with the probability distribution (P) and one-hot encoding (O). When both

models predict the wrong intent for sentence #859, with the probability distribution,

this classification error does not influence the subsequent predictions. However, with

one-hot encoding, this error is passed on and leads to a series of wrong predictions.
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By examining the output after the SoftMax layer of both models (see Figure 3.7), we can

see how the probability distribution and one-hot encodingworks differently. When using

the probability distribution as the intent vector, the classification error was gradually

eliminated in the subsequent predictions; however, when the one-hot vector is used, there

is little chance to correct the wrong prediction because the error is constantly enlarged

every time one-hot encoding is performed.

  
Sentence Value in SoftMax Output Predict 

ID Label I S B A R Result Correct 

Pr
ob

ab
ili

ty
 #862 B 0.012 0.053 0.003 0.932 0.000 A   

#863 B 0.000 0.000 0.348 0.652 0.000 B   
#864 B 0.000 0.000 0.599 0.401 0.000 B   
#865 B 0.000 0.000 0.988 0.012 0.000 B   

O
ne

-h
ot

 #862 B 0.005 0.010 0.007 0.978 0.000 A   
#863 B 0.000 0.000 0.176 0.823 0.000 A   
#864 B 0.000 0.000 0.016 0.984 0.000 A   
#865 B 0.000 0.000 0.034 0.966 0.000 A   

Figure 3.7: Output after the SoftMax layer when detecting continuous sentences using
the probability distribution and one-hot encoding.

3.5 Conclusion

In conclusion, we collect a standardized clinical handover dataset, CLINIC-ISBAR, of

real-world cases, and propose a novel intent-aware algorithm IA-LSTM based on the

sequential structure of the ISBAR framework. Extensive experiments and comparisons

on our dataset have verified the effectiveness, generalization ability and robustness of

our intent-aware design. The collected dataset and proposed algorithm lay a foundation

for the deployment of clinical communication training systems.

Looking ahead, we see potential for further refining our approach. One possible
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direction is to extend our model to handle multi-label intent detection, which would

allow a sentence to be associated with multiple intents. Another promising avenue is

to adapt our model for outlier detection, enhancing its ability to recognize and handle

sentences that do not belong to any of the intent labels, thereby increasing its robustness

and adaptability to real-world scenarios.

We hope that this initial attempt of integrating NLP technology into clinical com-

munication training will encourage the creation of intelligent tools for communication

training and motivate NLP researchers.



Chapter 4

Content Recognition with

Knowledge-Infused Prompt

A standardized clinical communication are usually evaluated from two aspects: whether

the conversation follows the steps specified in the communication protocol; and whether

all pertinent information is mentioned in the dialogue. We have already identified the

sentence-level intents in chapter 3, which correspond to the steps in a communication

protocol. And this chapter focuses on detecting the information conveyed in the dia-

logue.

For each clinical communication scenario, a document is provided by the clinical

experts indicating the essential information that need to be conveyed in this case. Ta-

ble 4.1 illustrates some essential information that should be included in the clinical han-

dover case of a patient with respiratory failure. Essential information is presented as a

list of components, and the “Sample Words” column contains example expressions cor-

responding to each component. Unlike the unified communication protocol, different

communication scenarios usually have different required components.

44
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No. Components Sample Words

1 Patient’s name Mr. Wong Hong Kin
2 Ward location Ward E6, Bed 15
3 Patient’s age 69 years old
4 Admission time 14th February
5 Respiratory failure Respiratory failure, Increase breath
6 Ischemic heart disease Ischemic heart disease, IHD
7 Blood test ABG, CBC, CRP
8 Diabetes mellitus Diabetes mellitus
9 Saturation Saturation, 91%
... ... ...

Table 4.1: Examples of required components and corresponding sample words in the
medical scenario.

The examples provided reveal the dissimilar form and granularity of the enumerated

components. Certain components closely resemble entities within the general domain,

such as names and ages, whereas others align with concepts in the biomedical domain,

such as a specific disease or a kind of symptom. Due to the varying granularity of these

components, their coverage may differ significantly, and there may even be inclusion

relationships between them. Furthermore, certain components refer to descriptive state-

ments, which may not have clear boundaries.

Instead of explicitly marking the precise location of a component within a conver-

sation, the objective of this task is to detect a particular component within a sentence.

Intuitively, one might compare the words in the document to those in the conversation

(i.e., lexical matching) to determine the presence of corresponding components. How-

ever, this approach suffers from two noteworthy limitations. Firstly, lexical matching

is extremely sensitive, as even slight changes in morphology or word order may result

in failed mappings. Secondly, sample words only serve as examples of the expressions

for corresponding components, and thus cannot encompass all possible cases. For ex-



CHAPTER4. CONTENTRECOGNITIONWITHKNOWLEDGE-INFUSEDPROMPT46

ample, as depicted in Table 4.1, “diabetes mellitus” may also be expressed as “diabetes”

or “DM.”

Nevertheless, this intuitive approach provides insights to the formulation of the prob-

lem into a task of classifying sentence-component pairs. This entails identifying whether

a given component is present within a specific sentence. However, the limited amount

of training data and the diverse forms of components pose a significant challenge to the

model’s comprehension ability. To address this challenge, in addition to utilizing sample

words from the document, we aim to incorporate external knowledge to assist in the task.

Prompts, which serve as cues for language models, can be used to reformat the down-

stream task and make it more familiar to the language model. Previous research has

demonstrated that prompts can enhance the exploitation of knowledge embedded within

large-scale pre-trained language models [78, 117]. However, a substantial proportion

of the component list comprises clinical terms that may not be adequately addressed

by a language model trained on general corpora. In this regard, we propose integrating

Knowledge-Infused Prompt with pre-trained language model for content recognition.

Initially, we utilize biomedical ontology to augment the sample words and establish a

local knowledge graph. Then the proposed infusing method infuses knowledge into

prompts by transforming the vertices and edges in the structured graph into textual de-

scriptions.

Our experimental results indicate that using knowledge-infused prompt with large

language models can significantly enhance content detection accuracy by leveraging

both pretrained language models and knowledge graphs. Particularly in the case of lim-

ited training data, knowledge-infused prompt can facilitate faster convergence of the

model and achieve superior performance.
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4.1 Related work

This section provides an overview of the developments in prompt learning and knowl-

edge graphs, and their relevance to our research.

4.1.1 Prompt Learning

The introduction of large-scale pretrained language models (PLMs) such as BERT [30],

GPT [101], and T5 [102], has catalyzed a significant paradigm shift in the domain of

natural language processing. The erstwhile fully supervised learning approach has been

progressively replaced by the pretrain and fine-tune paradigm. In recent times, the emer-

gent trend of prompt learning has garnered considerable interest within the research

community [78].

Prompt learning, by providing task-specific prompts or cues, has demonstrated its ef-

ficacy in enhancing the performance of PLMs across a broad spectrum of NLP tasks [79,

47, 14]. As illustrated in Figure 4.1, a typical prompt template consists of the original

input, prompt words (which serve as conditions or cues for the language model), and

a masking token 〈X〉. The prediction is based on the probability that label words are

filled in the 〈X〉 token. Now that the task follows the same format as the PLM pre-

trained, prompt-oriented tuning does not necessitate additional neural layers and make

the turning process more efficient.

Despite being a nascent field, the construction and utilization of prompts have been

subjects of gradual exploration. For instance, Gu et al. [45] proposed pretraining prompts

by incorporating prompts into the pretraining stage, thereby achieving a more effective

initialization of soft prompts. And Li and Liang [75] proposed prefix-tuning, which

learns “virtual tokens” for a prompt.
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He required 2 litre oxygen at the time of admission. Is oxygen requirement mentioned? <X>

Original Input Prompt Words

Yes
No

Label Words

Figure 4.1: An example of a prompt. The yellow rectangles in the figure are prompt
tokens, where 〈X〉 represents the masking token.

Recent research endeavors have also sought to integrate external knowledge into the

design of prompts. For example, Hu et al. [54] incorporated external knowledge into

the verbalizer (the mapping from label words to the specific class). And Han et al. [47]

designed prompts based on rules extracted from the prior knowledge of a classification

task. Chen et al. [21] incorporated knowledge among relation labels into prompt-tuning

for relation extraction, utilizing learnable virtual type words and answer words.

These pioneering works underscore the potential of prompts in bolstering the per-

formance of pre-trained language models and offer valuable insights into the design of

prompts and the application of knowledge. However, there is a conspicuous absence of

studies exploring the integration of knowledge from the biomedical domain for clinical

content recognition. The field of prompt tuning is still in its early stages, and there is

much room for exploration and improvement.

4.1.2 Knowledge Graph

The term Knowledge Graph (KG) is fist coined by Google when they used semantic

knowledge in web search; it has since been adopted by the scientific community [49].

Knowledge graph represents structured information as a semantic graph composed of in-
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terconnected nodes and edges [92]. Nodes in a knowledge graph are entities or literals,

while edges between nodes represent their semantic relationships. Due to its ability to

provide semantically structured information, it has been explored in a variety of applica-

tions, including question answering and information retrieval [143]. DBpedia, Google’s

Knowledge Vault, Wikidata, Microsoft Satori, and Facebook’s entity graph are examples

of well-known knowledge graphs [97, 33, 92].

These knowledge graphs cannot be directly applied to our problems, because the

specific relations between entities needed for content recognition cannot be reflected

in those knowledge graphs. Many researchers also investigate mining knowledge from

medical documents and constructing knowledge graphs [140, 116, 74]. It typically re-

quires multiple processes, such as named entity recognition, relation extraction, graph

embedding, etc [74]. Different from the common process of constructing knowledge

graphs from documents, our data sources are relatively structured: one is user-provided

documents with defined entities and the other is existing biomedical ontology; and the

relations in our knowledge graph are known.

Compared with generic conversation, clinical communication involves complicated

medical terminology, posing additional challenges for language modeling [60]. A com-

mon approach is to integrate domain knowledge to increase the model’s adaptability to

a particular field. Ontology, a structured way to represent terminologies with relations

and symptoms, can capture biomedical knowledge in a formal and straightforward man-

ner [110]. A prominent ontology in the medical domain is Systematized Nomenclature

of Medicine - Clinical Terms (SNOMED-CT) [31], which provides structured relation-

ships for more than 300,000 medical concepts. The Human Phenotype Ontology (HPO)

[65] contains roughly 12,000 terms describing phenotypes of human genetic diseases.

Experimental Factor Ontology (EFO) [83] provides a systematic description of exper-
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imental variables, covering aspects of disease, anatomy, cell type, cell lines, chemical

compounds and assay information. As a single ontology may contain limited terms and

miss valid synonyms, we propose blending concepts from multiple ontologies to create

a more comprehensive knowledge graph.

4.2 Dataset Annotation

As previously discussed in section 3.2, we have curated the CLINIC-ISBAR dataset and

annotated the sentence-level intent based on the ISBAR communication protocol. For

the purpose of this study, we concentrated on the medical cases within the CLINIC-

ISBAR dataset and manually annotated the required information based on the compo-

nents list provided by clinical experts.

Initially, a document analogous to Table 4.1 was provided by the clinical expert.

This document contained 22 required components alongwith their corresponding sample

words. Subsequently, each sentence in the clinical handover was meticulously examined

to ascertain the presence of a specific component. If a component was identified within

a sentence, that particular sentence-component pair was labeled as ‘True’; otherwise, it

was labeled as ‘False’.

Through this rigorous process, we have annotated a total of 21625 sentence-component

pairs. The distribution of these components is visually illustrated in Figure 4.2. The

figure reveals a considerable variation in the frequency of different components. Fur-

thermore, when juxtaposed with the overall size of the dataset, the frequency of each

component appears relatively small. This observation underscores the extreme imbal-

ance within the dataset, characterized by a predominance of ‘False’ labels and a scarcity

of ‘True’ labels. This imbalance presents a unique challenge that will need to be care-
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fully considered in subsequent analyses and modeling stages.

Figure 4.2: Distribution of components.

4.3 Method

In this section, we present how to construct a local knowledge graph based on the

given examples and external biomedical ontology. Then we introduce our proposed

Knowledge-Infused Prompt Learning (KIPL) which incorporates external biomedical

knowledge into a prompt templates.
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4.3.1 Knowledge Graph Construction

Our methodology employs an automatically constructed knowledge graph, formulated

in the conventional triple format, denoted as KG =< S, P,O >. Here, S and O de-

note entities, and P represents relations between entities. These variables—S, P , and

O—are aligned with the conventional notion of a knowledge graph, serving as sub-

ject, predicate, and object, respectively. Hence, the knowledge graph is defined as

G = (s, p, o) | s ∈ S, p ∈ P, o ∈ O.

Figure 4.3 depicts the procedure of constructing the knowledge graph. Given a doc-

ument containing required information, we consider its components and sample words

as entities. The relation between these entities is encapsulated by the term “includes.”

Thus, during the initialization of the knowledge graph, the triple “component, includes,

sample words” is inserted into graph G. As indicated in Figure 4.3, we categorize enti-

ties in sample words into two types: the green nodes represent objects or concepts, while

the blue nodes represent literals with numerical values. We associate these literals with

the relevant component by introducing a new triple, “component, has_value, literal,” to

the graph.

Following the initialization phase, the knowledge graph is expanded using three

biomedical ontologies – HPO [65], SNOMED-CT [31], and EFO [83]. These ontolo-

gies offer a structured representation of biomedical terminologies, enabling us to locate

symptoms, hypernyms, and hyponyms associated with a given clinical term. Because

hypernyms or hyponyms may bring about changes in the scope of components, only

synonym expansion is considered here. As illustrated in Figure 4.3, we search for the

synonyms of the green nodes (sample words) and insert the associated triple (“sample

words, has_synonym, synonym”) into graph G. To ensure the reliability of the syn-



CHAPTER4. CONTENTRECOGNITIONWITHKNOWLEDGE-INFUSEDPROMPT53

Patient’s 
name
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mellitus

Congestive 
heart failure

Mr. Wong 
Hong Kin
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mellitus

Congestive 
heart failure
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mellitus

Blood test

Saturation

Congestive 
heart failure

Mr. Wong 
Hong Kin

Diabetes 
mellitus

CRP, ABG, 
CBC

Saturation, 
91%

Congestive 
heart failure

…

Initialize the knowledge graph Expand the knowledge graph with biomedical ontologyDocument

Saturation
Saturation

91%

includes
has_value

Figure 4.3: Procedure of constructing the knowledge graph. First, a knowledge graph
is initialized based on the provided documents. It is then expanded using biomedical
ontology.

onyms extracted from these external resources, we only include those that appear in two

or more ontologies. During this expansion, if a synonym is found that is already in the

graph, the graph is updated such that this sample word inherits all the outgoing rela-

tionships from that synonym. Subsequently, the synonym and its associated edges are

removed from the graph. During the graph refinement process, we identify and remove

any self-referencing edges. Upon the completion of the knowledge graph construction,

the graph features a maximum of three types of edges: “includes”, “has_value”, and

“has_synonym”.

4.3.2 Knowledge-infused Prompt Learning

In our sentence-component pair classification problem, an input contains a sentence se-

quence x = (x0, x1, . . . , xn) and a component sequence z = (z0, z1, . . . , zm). The task
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He required 2 litre oxygen at the time of admission. Question: Is oxygen requirement mentioned in the report? <X>

Sentence x

Report: 

oxygen requirement such as oxygen (O2)

Function  

Constructed KG

Component z

Yes
No

Label Words

Positive
Negative

Label y

Figure 4.4: Knowledge-infused prompt learning for sentence-component pair classifi-
cation. The yellow rectangles in the figure denote prompt tokens, where 〈X〉 signifies
the masking token. The yellow rectangles are components which can be expanded using
the knowledge graph.

is to assign this pair to a specific class label y ∈ Y . In prompt learning, we need to

formulate the classification problem as a language modeling problem. As shown in fig-

ure 4.4, a prompt template is used to encapsulate the input pair into a coherent piece of

natural language text that retains the semantic essence of the original input pair while

making it interpretable for the language model.

In this example, we need to ascertainwhether the component z “oxygen requirement”

is referred to in the sentence x (“He required 2 litre oxygen at the time of admission”).

And the prompt is initially formulated as:

p = Report: x Question: Is z mentioned in the report?〈X〉 (4.1)

This formulation allows the language model to understand the task in natural lan-

guage terms and provides a focal point (”oxygen requirement”) for it to center its atten-

tion on. This mechanism can accommodate a variety of sentence-component pairs while

providing the context of classification task.
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Following this, we aim to infuse biomedical knowledge into the prompt. This is

where we introduce function f which is tasked with the expansion of the component

z by exploring entities and relationships in the knowledge graph G. Function f op-

erates by employing a breadth-first algorithm to search the graph G for each compo-

nent, transforming the obtained triples into natural language descriptions. Specifically,

“component, has_value, literal” would be transformed to “equals to literal”, “compo-

nent, includes, sample words” becomes “such as sample words”, and “sample words,

has_synonym, synonym” would be expressed as ”(synonym)”. In situations where an

entity possesses multiple outward relations of the same type, we simply concatenate the

words it points to with commas. To illustrate, consider the following examples, repre-

sented in Table 4.2:

Component Initial Prompt Knowledge-infused Prompt

Hypertension … Is hypertension men-
tioned in the report? 〈X〉

… Is hypertension (htn, high blood pres-
sure, increased blood pressure, hyper-
piesia) mentioned in the report? 〈X〉

Saturation … Is saturation mentioned
in the report? 〈X〉

… Is saturation equals to 91% mentioned
in the report? 〈X〉

Blood test … Is blood test mentioned
in the report? 〈X〉

… Is blood test such as ABG (blood gas
analysis, BGA, arterial blood gas), CBC
(blood cell count, full blood count), CRP
(C-Reactive Protein) mentioned in the re-
port? 〈X〉

Table 4.2: Examples of knowledge-infused prompts.

As shown, the function f expands the initial prompts with useful biomedical in-

formation drawn from the knowledge graph, thereby producing the knowledge-infused

prompts.Then the pre-trained languagemodel, denoted asM, processes the input f(p, G)

and outputs the probability of each word v in the 〈X〉 token:
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PM (〈X〉 = v | f(p, G)) (4.2)

The transformation of these probabilities into labels requires a mapping function, g,

which connects the label word set V to the label space Y . In our scenario, we work with

two label sets: V1 = { ”yes” } and V2 = { ”no” }. The function g maps V1 to the label

”positive” and V2 to the label ”negative”. Thus, the probability of label y is calculated

using the equation:

P (y | x, z) = g (PM (X〉 = v | f(p, G)) | v ∈ Vy) (4.3)

This mapping function g plays an essential role in bridging the model’s output space,

expressed in words (”yes” or ”no”), with the label space of the classification problem

(”positive” or ”negative”). This decoupling between the model’s output and the label

space allows for flexibility in dealing with more complex problems. For instance, it

accommodates scenarios where a single label in the classification problem might be

associated with multiple words or phrases in the model’s output.

Furthermore, it’s worth emphasizing that by excluding 〈X〉 from the prompt, the

problem can still be transformed into a conventional sentence classification task. The

methodology for infusing knowledge remains unchanged. The difference lies in the

calculation of probabilities. Rather than determining the word distribution probability

at the 〈X〉 position, we would classify based on the encoding of the whole sentence.
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4.4 Experiments

In this section, we detail the experimental setup, compare the performance of various

methods for content recognition under different constraints, and present case studies for

specific components.

4.4.1 Experiment Settings

The experiments were conducted on the annotated data from the medical case subset

of the CLINIC-ISBAR dataset, as described in Section 4.2. The data was randomly

partitioned into training, testing, and validation sets in a ratio of 3:1:1. For the pre-

trained language models, we employed BERT-base for vanilla fine-tuning and T5-base

for prompt-oriented fine-tuning. Knowledge-infused prompts were implemented in both

scenarios. The selection of most hyperparameters was guided by previous works. Both

BERT-base and T5-base were optimized using the Adam optimizer. The learning rate

was set to 1e− 5 for BERT and 1e− 4 for T5. Models were trained for 5 epochs with a

batch size of 4, and the best checkpoint was selected based on validation performance.

To ascertain the necessity of large pretrained language models for this task, we also

compared the performance with deep learning models and traditional machine learning

models. The deep learning models used in these experiments were configured similarly

to the baselines described in Section 3.4.1. A wide range of machine learning tech-

niques, namely Logistic Regression, Naive Bayes, K-Nearest Neighbors (KNN), and

Support Vector Machines (SVM), is chosen to provide a diverse array of algorithmic

principles for comparison in the context of our text classification task. An integral pre-

processing step involved the transformation of text data into a numeric format via the

Term Frequency-Inverse Document Frequency (TF-IDF) approach, with a cap placed
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on the maximum feature count at 1200, ensuring a manageable and computationally

efficient feature space.

Each machine learning method was selected and configured with due consideration

to the specific requirements and characteristics of our task. Logistic Regression, a sim-

ple and efficient method for binary classification, was applied with an L2 regularization

penalty and a regularization strength parameter of 1.0, offering a balance between com-

plexity and generalization. We utilized the Naive Bayes technique, acknowledging its

effectiveness in high-dimensional problems, and operated under the Gaussian likelihood

assumption, in line with the continuous nature of TF-IDF-transformed data. The KNN

model was configured to use the 9 closest neighbors in the training data for prediction.

For SVM, recognized for its flexibility and proficiency with high-dimensional data, we

chose the Radial Basis Function (RBF) kernel to capture potential nonlinear relationships

in the data. A regularization parameter of 1.0 and a gamma parameter set to ‘scale’ were

adopted.

Since the proportion of positive and negative labels is extremely unbalanced, Preci-

sion and Recall and F1_Score are reported as performance measures, which are calcu-

lated as follows:

Precision =
# of correctly detected components

# of detected components
,

Recall =
# of correctly detected components

# of existing components
,

F1_Score = 2 · Precision ·Recall

Precision+Recall
.

(4.4)
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4.4.2 Results and Discussion

The results of content recognition for a variety of algorithms are summarized in Ta-

ble 4.3.

Original Prompt Knowledge-Infused PromptMethod Precision Recall F1-Score Precision Recall F1-Score

BERT 0.805 0.963 0.877 0.823 0.983 0.896
T5 0.918 0.984 0.950 0.960 0.983 0.971
LSTM 0.284 0.685 0.398 0.272 0.643 0.382
BiLSTM 0.276 0.728 0.400 0.304 0.692 0.421
AttLSTM 0.275 0.681 0.388 0.299 0.696 0.413
RCNN 0.402 0.740 0.520 0.420 0.715 0.527
TextCNN 0.170 0.473 0.250 0.185 0.478 0.266
Transformer 0.151 0.426 0.221 0.151 0.461 0.226
Logistic Regression 0.136 0.362 0.198 0.145 0.388 0.211
Naive Bayes 0.065 0.833 0.121 0.065 0.829 0.120
KNN 0.131 0.742 0.222 0.136 0.865 0.235
SVM 0.153 0.433 0.226 0.261 0.554 0.355

Table 4.3: Performance of different methods on content recognition.

The results demonstrate a substantial disparity in performance between traditional

machine learning (ML)/deep learning (DL) methodologies and expansive pre-trained

models, thereby underscoring the necessity of employing pre-trained language mod-

els for our task of content recognition. In most models, the use of knowledge-infused

prompts leads to improved performance. This improvement is particularly pronounced

when integrated with pre-trained language models, despite their already superior perfor-

mance with the original prompt. This demonstrates the profound capacity of knowledge-

infused prompts to effectively employ pre-trainedmodels and assimilate external knowl-

edge, consequently achieving superior F1-scores.

In contrast, for DL andMLmodels, the enhancements associatedwith the knowledge-
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Training Data Original Prompt Knowledge-Infused Prompt
Precision Recall F1-Score Precision Recall F1-Score

1/2 0.757 0.978 0.854 0.790 0.992 0.880
1/4 0.760 0.963 0.849 0.792 0.971 0.872
1/8 0.678 0.956 0.793 0.689 0.960 0.802
1/16 0.626 0.952 0.755 0.679 0.944 0.790

Table 4.4: F1-score of T5 when using different size of the training data.

infused prompts were less significant and in certain cases, even resulted in a performance

decline. This phenomenon can be attributed to the fact that these models, being trained

from scratch, do not possess the requisite prior knowledge to effectively exploit the ben-

efits of the infused knowledge. Furthermore, the knowledge-infused prompts, which

integrate more semantically-rich data, may inadvertently induce additional ambiguity

into these models. Thus, the knowledge-infused prompts are ostensibly more advanta-

geous for models with greater learning capabilities.

The subsequent analysis focused on assessing the performance of the models upon

reducing the size of the training data. Table 4.4 delineates the F1-score of the T5 model

when employing different fractions of the training data.

From the table, it is evident that the model, when employing knowledge-infused

prompts, consistently outperforms the original prompt, irrespective of the size of the

training data, thus manifesting the efficacy of knowledge-infused prompts. Incorporat-

ing external knowledge imbues the model with robustness, allowing it to sustain rela-

tively higher precision, recall, and F1-scores across varying sizes of training data. This

is particularly apparent when only a minuscule portion of the training data is utilized

(1/16), where the application of knowledge-infused prompt tuning sustains a relatively

high score.

These results, therefore, underscore the significance of integrating knowledge-infused
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prompts with pre-trained models in our content-recognition task, especially in scenarios

where the availability of training data is limited. However, these empirical findings may

not entirely represent the efficacy of knowledge-infused prompts, considering that not

all components pertain to the clinical domain, and some clinical concepts might com-

prise limited extended words. To elucidate the potential benefits of knowledge-infused

prompts, an in-depth analysis of the individual component recognition performance was

conducted.

Figure 4.5: Learning curves of Prompt Learning (PL) and Knowledge-Infused Prompt
Learning (KIPL) in individual components.

The T5 model was fine-tuned for individual component recognition, and Figure 4.5

illustrates the learning curves of Prompt Learning (PL) and Knowledge-infused Prompt

Learning (KIPL) in the components ”Blood Test” and ”Fast Respiratory Rate”. The

concept of ”Fast Respiratory Rate” is unambiguous and comprises limited expression

variations. Consequently, both the PL andKIPLmodels converge rapidly and attain high

f1 scores. In contrast, the concept of ”Blood Test” is more convoluted, encapsulating
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both nebulous terms such as blood culture and specific tests like ABG, thereby imposing

greater challenges on the model. The figures suggest that the integration of external

knowledge in KIPL fosters quicker pattern identification.

Figure 4.6 illustrates the learning curves for individual components when a smaller

subset of the training data is used. It is clear from the figure that in the case of the ”Blood

Test” component, KIPL consistently outperforms PL, and its learning curve demon-

strates superior stability. On the other hand, for the ”Fast Respiratory Rate” component,

where the performance discrepancy between the two models was negligible in the full

data scenario, a pronounced divergence emerges when the training data set is reduced.

With the incorporation of external knowledge, KIPL not only exhibits a faster learning

rate but also achieves a higher f1-score.

Figure 4.6: Learning curves of Prompt Learning (PL) and Knowledge-Infused Prompt
Learning (KIPL) in individual components. 40% of the dataset is used for training.

These examples underline the distinctive advantage of knowledge-infused prompt

in scenarios involving complex clinical terms and limited data availability. These find-
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ings align with our expectations, as external knowledge is inherently valuable in such

contexts.

4.5 Conclusion

In this chapter, we introduced the knowledge-infused prompt as a novel approach to

content recognition in the domain of clinical communication. We initiated the process

by recasting the content recognition task as a language modeling problem. Utilizing the

biomedical ontology and the given document, we proceeded to construct a knowledge

graph. Subsequently, the biomedical knowledge was integrated into prompts through a

careful exploration of the entities and relationships within the knowledge graph.

The experimental results drawn from clinical handover data analysis provide com-

pelling evidence of the efficacy of our approach. Particularly when it comes to de-

ciphering complex clinical terms and working with limited training data, integrating

knowledge-infused prompts with pre-trained language models significantly enhances

the performance of content detection. These promising results lay the groundwork for

future research to further refine and optimize the use of knowledge-infused prompts

across various contexts.



Chapter 5

Customizable Conversational System

with Insufficient Data

Creating a healthcare domain-specific conversational training system is a significant

undertaking, typically requiring collaboration among domain experts, extensive data

annotation, and a prolonged development cycle [96]. As with many AI applications,

such systems are often confined to specific task scenarios, and struggle to adapt quickly

to new clinical situations and training requirements. For instance, the global outbreak

of COVID-19 is affecting healthcare systems around the world: Not only are we con-

fronted with complex and changing clinical communication environments, but also with

the emergence of new communication standards. Our medical staff and volunteers are in

desperate need of training at the moment. However, this is also the time whenmanpower

and time are most scarce. In these pressing times, it’s impractical to engage in lengthy

system development involving multiple stakeholders and extensive data collection. No-

tably, the most current and relevant information often resides with frontline medical

professionals. In response to these challenges, we propose a customizable method that

64
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empowers non-expert users to quickly develop AI applications for new tasks.

Several hurdles impede non-expert users from creating new AI models for fresh

training tasks in clinical communication. Firstly, they often lack the capability to design

and debug models, which restricts the type of models available for the task. Secondly,

non-experts may find it challenging to amass, label, and process vast data quantities.

This is significant because many contemporary AI algorithms are data-driven; limited

data can result in model overfitting and decreased generalization performance. Finally,

specific tasks may require specific knowledge that, while readily expressible by humans,

cannot be directly instilled into AI models.

Regarding the intent detection task of the conversational system for clinical com-

munication training, it employs similar paradigms and data processing procedures. The

advent of large-scale pre-trained models allows serving different downstream tasks by

fine-tuning parameters without altering the structure [29]. However, for data-driven

methods, the risk of introducing significant bias increases in scenarios with insufficient

data. Therefore, we shift the focus of the problem to the construction of an appropriate

dataset, from which the model can efficiently learn more effective features.

With this aim, we proposeDataAugmentationwithUser-DefinedKnowledge (UDK-

DA), a technique that enables non-information technology (IT) professionals to design

AI tasks using limited samples and user-defined knowledge. In our intent detection

task, infuses user-defined lexical and contextual knowledge into training samples via

data augmentation, thereby increasing the robustness and generalizability of machine

learning models. Experiments show that UDK-DA can significantly boost performance

on intent detection and content recognition, demonstrating the possibility of designing

NLP tasks by non-professionals.
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5.1 Related work

A typical intent detection pipeline consists of text pre-processing, tokenization, vector-

ization, and classification. While pre-processing and tokenization can be implemented

with a set of rules, vectorization and classification are based on the statistics of the cur-

rent dataset (e.g. TF-IDF) or learned from an external corpus (pretrained models). Tak-

ing advantage of the parallel training ability of Transformers, large pretrainedmodels are

emerging. A prime example is Bidirectional Encoder Representations from Transform-

ers (BERT) [29], which has become a standard building block for training NLP models

in many tasks. BERT is pretrained on a large corpus and can be used for a variety of NLP

tasks by fine-tuning on a given task without modifying the network structure. Using the

same idea, pretrained language models in biomedical domain have been developed, such

as BioBERT [69]. BioBERT is a BERT-based model pretrained on large-scale biomed-

ical corpora and has been found to outperform earlier models on an array of biomedical

text mining tasks [69].

Inadequate or even unavailable training data from emerging classes present a major

obstacle to text classification tasks [36]. In low data settings, it is often necessary to

increase the size of training data to reduce overfitting and improve the robustness of

machine learning models [67]. Data augmentation (DA) is a frequently used technique

for increasing the size of training data without explicitly collecting new data [118]. It

also provides a simple way to inject prior knowledge into a deep learning system and to

improve models’ generalizability.

The current DA techniques in NLP can be divided into three categories: rule-based,

example interpolation-based and model-based methods. One of the most popular rule-

based methods is Easy Data Augmentation (EDA) proposed by Wei and Zou [124]. It
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contains a set of token-level random perturbation operations (including random inser-

tion, deletion, and swap) and can improve performance onmany text classification tasks.

Another class of DA technique interpolates the input examples and labels of two or more

real examples, which is also sometimes referred to as mixed sample data augmentation.

pioneered by MIXUP [137], The model-based techniques use seq2seq and language

models for DA. For instance, the popular backtranslation method [112] entails translat-

ing the source language into other languages and then back into the source language to

generate a diverse expression. Some researches also investigate domain knowledge to

assist DA in a professional field. Kang et al. [62] proposed UMLS-EDA for biomedical

named entity recognition, which extends the EDAmethod by UnifiedMedical Language

System (UMLS) [62] knowledge. The authors incorporated the UMLS knowledge by

identifying UMLS concepts and replacing them with synonyms.

However, the majority of DA methods in NLP work with a reasonable amount of

data, ranging from a few dozens to tens of thousands of samples per class. In our case,

the model may need to work with an extremely limited number of user-provided ex-

amples, possibly as few as single-digit samples per category. Additionally, the exter-

nal knowledge employed in DA methods is either broadly targeted (e.g., synonymies

in WordNet) or utilized implicitly (e.g., the translation model in backtranslation [112]),

where users cannot modify or monitor the knowledge used.
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5.2 Methods

5.2.1 IA-BioBERT

Building upon the successful application of the intent-aware mechanism for intent de-

tection in standardized clinical communication as detailed in Chapter 3, we extend this

approach to BioBERT, a pretrained language model tailored to the biomedical domain.

This extendedmodel, termed IA-BioBERT, leverages domain knowledge and contextual

information, thereby enhancing the model’s robustness and performance in the biomed-

ical context.

As discusses in Section 3.4.3.2, applying the intent-aware mechanism to large pre-

trained models only yielded limited performance improvements. This is primarily due

to the substantial dimensional discrepancy between the sentence vector and the intent

vector. To mitigate this issue, we compress the sentence representation in IA-BioBERT

using a fully connected network. The structure of the IA-BioBERT is illustrated in Fig-

ure 5.1.

The ith input sentence is initially tokenized into a series of tokens utilizing the BioBERT

Tokenizer. We then append the [CLS] token at the beginning of the token sequence

and pad the sequence to achieve a specified length. The tokens are subsequently con-

verted into numeric representations based on BioBERT’s predefined vocabulary. The

BioBERT model then processes the padded sequence, resulting in a vector representa-

tion for each token.

To condense this information, we pass the vector representation of the [CLS] token

through a fully connected layer (FC1), yielding a dense sentence representation si. This

representation is concatenated with the previous sentence’s prediction result p(i− 1)

and then passed through a second fully connected layer (FC2) and a SoftMax layer.
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Figure 5.1: Architecture of IA-BioBERT model for intent detection.

This produces the prediction result pi, which is described by:

pi = SoftMax
(
[pi−1si]W

T + b
)
, (5.1)

where vectorW and b are the parameters of the fully-connected layer FC2 and [··] is the

action of concatenation. The predicted intent is then obtained by selecting the maximum

value in the prediction result vector: yi = argmax (pi).

By employing this strategy, IA-BioBERT encapsulates the strengths of the intent-

aware mechanism and the biomedical specificity of BioBERT.
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5.2.2 Data Augmentation with User-DefinedKnowledge (UDK-DA)

DA techniques are commonly employed to increase the quantity and variety of samples,

thereby enhancing the generalizability of learning models. Although common strategies

such as Easy Data Augmentation (EDA)[124] and backtranslation[112] have been suc-

cessful in NLP tasks, they may not fully capture the characteristics of clinical commu-

nication data. Thus, we introduce User-Defined Knowledge Data Augmentation (UDK-

DA), a DA technique specifically tailored to the standardized clinical communication

data. UKD-DA augments the conversational data using user-defined knowledge from

two aspects: term replacement improves data at the lexical level, and context expansion

generates more diverse combinations at the sentence level.

• Term replacement is similar to synonym replacement, but rather than substituting

random words, it replaces specific terms with their alternative forms or synonyms

defined by users. To streamline the process and reduce manual work, a clini-

cal named entity recognition (NER) model is initially employed to extract clini-

cal entities. In our implementation, the Spark NLP for Healthcare’s NER model

is utilized. Following extraction, biomedical ontologies, including HPO [65],

SNOMED-CT [31], and EFO [83], are used to generate a synonym set for each

term. Users are then given these synonym sets as reference and define their own

alternative sets. During the augmentation phase, terms in these refined lists are

replaced with user-defined alternatives, yielding more diverse linguistic construc-

tions.

• Context expansion targets augmentation at the sentence level. Owing to the inter-

dependence of categories within a communication protocol, the sentence’s context

can substantially impact its classification. To that end, we employ user-defined
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rules to facilitate context expansion. Given the sequential nature of conversations,

we designate the preceding sentence as the context for the current one. Table 5.1

demonstrates the variability of sentence intent depending on its context; the dash

(“-”) indicates that the category cannot be determined and that we need to consider

specific content.

No Context Context I Context S Context B Context A Context R

I I I I I I
S S S - - -
B B B B - -
A S S - A -
R - - R R R

Table 5.1: Contextual relationships of five intents in the ISBAR protocol.

The process of context expansion capitalizes on the contextual relationship table,

augmenting sentences by adjusting their context and modifying their category accord-

ing to the corresponding cell in the table if the value is not a dash (“-”). For representing

the context, we select a random sentence from the conversation samples in the same cat-

egory. Algorithm 1 explicates the detailed mechanics of the context expansion process.

5.2.3 Semantic Matching

In Chapter 4, we presented knowledge-infused prompt tuning with pre-trained language

models for content recognition. This approach performs admirably with limited train-

ing data; however, it still necessitates human annotation. Under circumstances where

labeled data is not readily available, the challenge of detecting components can be re-

framed as a task of identifying corresponding sample words. The rationale behind this is
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Algorithm 1: Context expansion
Input: conversation dataset D, contextual relationship table T , label list L
Output: augmented dataset AD

1 AD ← D;
2 for (sentence, label, context, context label) in D do
3 for l ∈ L do
4 if context label *= l then
5 new label← T(label, l);
6 if new label ∈ L then
7 new context← a random sentence with label l in D ;
8 new context label← l;
9 add (sentence, new label, new context, new context label) to

AD;
10 end
11 end
12 end
13 end

that the mention of a sample word implies the mention of the corresponding component.

Traditional information retrieval systems advocate the use of exact lexical matching,

which decomposes the source text into n-gram words and subsequently assesses their

presence [108]. However, this approach may be overly rigid due to its lack of higher

semantic matching and sensitivity to morphological changes. Consequently, it might

overlook mentioned components due to an incomplete word list. To overcome these

limitations, we propose an N-gram based Semantic Matching approach, which leverages

the pre-trained word embeddings to calculate the semantic similarity between phrases

[40].

Let’s denote a sampleword k as a sequence ofword embeddings k = (ν1,…,νt,…,νT ),

where T represents the word count in k and νt ∈ RM stands for theM -dimensional word

embedding of the t−th word. The semantic embedding for the sample word k can be

calculated by averaging all the word embeddings:
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ek =
1

T

N∑

t=1

νt (5.2)

For a given input sentence, corresponding 1-gram, 2-gram, 3-gram, and 4-gram

sequences are derived. Consider the sentence “He requires 10 ml dopamine.”; its 4-

gram sequences would be (“He requires 10 ml”, “requires 10 ml dopamine”, “10 ml

dopamine.”). A set W of n-gram words is formed by collating all words across these

sequences. The semantic embedding ew of the n-gram word w can be acquired by ap-

plying the word embedding strategy and Equation 5.2. The cosine similarity of k and

w’s semantic embeddings represents the similarity between k and w:

s(k, w) = cos (ek, ew) =
ekew

‖ek‖ ‖ew‖
(5.3)

There might be instances when semantic similarity cannot be computed, such as

when a word’s semantic embedding is absent. Under these circumstances, lexical match-

ing is employed as a substitute; if the words are identical, the score is set to 1, else it

defaults to 0.

The sample word exhibiting the highest similarity to the n-gram word w can be

selected by comparing their respective similarity scores. If the similarity surpasses a

predefined threshold, w is classified as belonging to the component represented by the

sample word. Upon processing all words within the n-gram set, the semantic matching

approach yields a list of detected components in the input sentence. The specifics of this

process are delineated in Algorithm 2.



CHAPTER5. CUSTOMIZABLECONVERSATIONAL SYSTEMWITH INSUFFICIENTDATA74

Algorithm 2: Semantic matching
Input: component list C, input sentence S, similarity threshold ϑ
Output: detected component list DC

1 for n← 1 to 4 do
2 for n-gram word in S do
3 max similarity← 0;
4 for component ∈ C do
5 for sample word ∈ component do
6 similarity← s(sample word, n-gram word); // Equation 5.3
7 if similarity > max similarity then
8 max similarity← similarity;
9 detected component← component;
10 end
11 end
12 end
13 if max similarity > ϑ then
14 if detected component /∈ DC then
15 add detected component to DC;
16 end
17 end
18 end
19 end

5.3 Experiments

The efficacy of our proposed methodology is evaluated on standard clinical handovers

taken from the CLINIC-ISBAR dataset 3.2. The dataset comprises 48 clinical handover

samples totaling 980 sentences, sourced from the medical case. Figure 5.2 shows the

sentence distribution and class distribution for the handover samples. It is noteworthy

that these conversations vary significantly in length and the distribution of sentence cat-

egories is unbalanced, posing difficulties for subsequent intent detection tasks.

Our experiments are designed to emulate a scenario of limited sample availability

for intent detection tasks. We utilize a single conversation sample from the clinical
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Figure 5.2: Sentence distribution in clinical handover. (a) Distribution of the number of
sentences contained in conversation samples. (b) Sentence distribution by category.

expert as training data, while the remaining samples serve as performance evaluators.

For the content recognition task, we employ the same document outlined in Section 4.2,

which encompasses the required components. Figure 4.2 presents the distribution of

components in the clinical handover.

Apart from executing experiments on the collected clinical handover, we also illus-

trate the establishment of a new model, specifically focusing on a new case of COVID-

19.

5.3.1 Data augmentation

After acquiring data, the system augments conversation samples using EDA, backtrans-

lation, term replacement and context expansion. We adopt the original EDA implemen-

tation1, where the ratio of augmented sentences to original sentences is set to 9:1. Thus,

the data volume amplifies tenfold post-EDA. Each operation, encompassing synonym

replacement, random insertion, random swap, and random deletion, impacts 10% of the

sentence words.
1https://github.com/jasonwei20/eda_nlp
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For backtranslation, we leverage the English-Chinese and Chinese-English models

of Google Cloud’s Translation API2, with each sentence undergoing a single round of

backtranslation.

Regarding term replacement,each term is substituted with equivalent or synonymous

terms, each substitution generating a distinct sentence. And context expansion of each

sentence is executed as per Algorithm 1.

The augmented conversation samples are employed for fine-tuning the IA-BioBERT

model for intent detection. The model is trained using the Adam optimizer with a max-

imum sequence length of 32 and a batch size of 16. We set the learning rate at 1e – 5

for original BioBERT model parameters and 1e-3 for fully-connected layer parameters.

Owing to data scarcity, the dataset is not divided into training, validation, and test sub-

sets; instead, all augmented data is used for training. The stopping criteria is defined as

reaching either 50 training epochs or 100% training set accuracy.

In the context of content recognition tasks, we employ a different strategy. Instead

of substituting terms within the conversation, we leverage term replacement techniques

on the document comprising the components and their associated sample words (refer to

Table 4.1). This methodology serves to expand our repository of sample words. We also

assume a scenario wherein users are capable of identifying and marking all the compo-

nents embedded within each sentence of the provided conversation. Consequently, we

can construct a concise sentence-component pair dataset, akin to the one outlined in Sec-

tion 4.2. Subsequent to the application of term replacement, this dataset is expanded. We

then evaluate prompt tuning with the T5 model on this augmented dataset. The setting

of the hyperparameters remains consistent with those mentioned in Section 4.4.1.
2https://cloud.google.com/translate
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5.3.2 Intent detection models

In our study, we benchmark our proposed IA-BioBERT against various common neural

networks utilized in NLP classification tasks, as outlined in section 3.4. Furthermore,

we evaluate IA-BioBERT in relation to two of its variant models, aiming to substantiate

the effect of the design of the model components:

• BioBERT [69] is the backbonemodel IA-BioBERT. It has been trained on biomed-

ical corpora using the pre-trained BERTmodel. In this paper, all BioBERTmodels

utilize BioBERT-Base 1.13.

• IA-BERT shares IA-BioBERT’s structure, but replaces the pre-trained BioBERT-

Base v1.1 with the BERT-base model.

• IA-BioBERT without FC1 is another variant of IA-BioBERT; it circumvents

FC1 by directly combining the representation of the [CLS] token, outputted by

BioBERT, with the probability distribution of the preceding sentence’s intent.

This concatenated vector is then fed into the final fully-connected layer, FC2.

We adhere to the experimental settings outlined in section 3.4.2 during implementa-

tion and maintain the same hyperparameters.

5.3.3 Results on CLINIC-ISBAR

• Intent Detection

In scenarios where training data sets are unbalanced, the tendency of a neural

model to favor categories with abundant data samples may negatively impact the
3https://github.com/dmis-lab/biobert
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performance of categories with fewer samples. To neutralize this bias, we employ

theMacro F1-score as our performance metric.

Table 5.2 summarizes the Macro F1-score results for intent detection. As context

expansion has no effects on models that do not take context as input, we limit its

evaluation to context-based models. The four DA methods used in the task editor

module enhanced the performance of all models. When context is not considered,

BioBERT outperforms other models with augmented data due to its biomedical

corpus pre-training. In addition, our proposed IA-BioBERT — which amalga-

mates the strengths of the medical corpus and contextual relationships— achieves

leading performance under all DA methods. IA-BioBERT’s performance bene-

fits further from context expansion, yielding the highest overall Macro F1-score

(0.791).

Model DA Methods
w/o DA EDA EDA+BT EDA+BT+TR EDA+BT+TR+CE

LSTM [52] 0.475 0.527 0.553 0.566 -
BiLSTM [43] 0.423 0.484 0.505 0.520 -
AttLSTM [8] 0.551 0.569 0.611 0.602 -
RCNN [68] 0.512 0.566 0.584 0.604 -

TextCNN [139] 0.477 0.581 0.591 0.594 -
Transformer [122] 0.433 0.389 0.471 0.598 -

BERT [29] 0.368 0.600 0.612 0.670 -
BioBERT [69] 0.449 0.645 0.693 0.701 -

IA-BERT 0.470 0.615 0.652 0.682 0.769
IA-BioBERT w/o FC1 0.447 0.637 0.678 0.691 0.750

IA-BioBERT 0.473 0.671 0.682 0.690 0.791

Table 5.2: F1-scores of all intent detection models using different DA methods. BT:
backtranslation; TR: term replacement; CE: context expansion.

We notice that context-based models might overly rely on context. This reliance

becomes problematic especially when training samples are scant and lack diverse
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context relations, resulting in overfitting and suboptimal test set performance.

However, the augmentation of diverse context cases through context expansion

significantly improves the performance of all context-based models.

• Content Recognition

In the content recognition experiment, we set an empirical value of 0.9 as the

threshold for semantic matching, and evaluated the performance using precision,

recall, and F1 score as metrics. The results from various content recognition meth-

ods are displayed in Table 5.3.

Model w/o DA w/ DA
Precision Recall F1-Score Precision Recall F1-Score

Lexical Matching 0.991 0.621 0.763 0.970 0.690 0.806
Semantic Matching 0.970 0.673 0.795 0.857 0.786 0.815
T5 (Basic Prompt) 0.934 0.842 0.886 0.946 0.870 0.907
T5 (Knowledge-infused Prompt) 0.918 0.881 0.899 0.961 0.865 0.910

Table 5.3: Performance on content recognition.

The table reflects that the performance of both lexical and semantic matching out-

strips that of DL and MLmodels (Tabel 5.3) even that they’re trained on the full training

dataset. This underscores the vital role of sample words in content recognition. Despite

high precision, the traditional lexical matching method, reliant on manually provided

words, suffers from low recall. Two critical limitations are inherent to this method.

First, lexical matching is sensitive to slight modifications in morphology and order, re-

sulting in potential matching failures. Second, the sample words utilized merely serve

as component expression examples and fail to cover all possible scenarios. The incor-

poration of semantic word embedding ensures robustness in semantic matching when

matching components, resulting in an enhanced F1 score, albeit with a minor compro-
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mise in precision. By managing the threshold of semantic vector similarity, semantic

matching can adjust the matching ”looseness” of terms. Furthermore, our observations

affirm that the performance of both methods can be bolstered by augmenting sample

words through term replacement.

In an alternate setting, we presume that users can pinpoint the component in each pro-

vided conversation sample. Accordingly, we can fabricate a sentence-component pair

dataset analogous to the procedure described in section 4.2, using the provided clinical

communication sample. Although a solitary dialog sample is available for training, the

pre-trained T5 model, when tuned using designed prompts, exhibits high performance,

which is further amplified with a knowledge-infused prompt. The table also demon-

strates that the optimal F1-score is procured by integrating a knowledge-infused prompt

with data augmentation (term replacement, in this instance). This reinforces the notion

that these two methods to incorporate knowledge are not exclusive but rather work to-

gether.

5.3.4 Demonstration of a COVID-19 Case

In addition to the collected dataset, we present a case study demonstrating the methodol-

ogy employed to construct the model using a real-world example provided by the clini-

cian. Table 5.4 demonstrates a clinical handover instance involving a COVID-19 patient

potentially requiring intensive care unit (ICU) management due to respiratory failure.

This case exhibits a dialogue between the resident doctor and the ICU doctor, annotated

with the ISBAR framework to label the resident doctor’s inputs.

In our training framework, the role of the dialogue simulator mirrors the role of the

ICU doctor, primarily as the recipient of the message. Therefore, our focus is mainly on
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Speaker Content Intent

Resident doctor This is Dr. Jeffery Lee, resident of AED. Are you ICU Dr. Ng? I

ICU doctor Yes, I am.

Resident doctor We have a patient in the resuscitation room right now, Ms. Yuen Mei
Ho, a 65-year-old housewife. I

Resident doctor I am calling to ask if you can provide ICU care for Ms. Yuen. S

Resident doctor She has respiratory failure secondary to COVID infection and is now
confused. S

ICU doctor Would you please tell me more?

Resident doctor She came to the AED at 9:30 this morning because she has fever and she
finds trouble with her breathing. B

Resident doctor
She deteriorated rapidly in the AED because of the acute respiratory fail-
ure secondary to COVID-19, andwe found her saturationwas about 85%
in room air.

B

...

Resident doctor We brought her to our resuscitation room at 1 pm as her saturation had
further dropped to 85%. Now she is confused, E3M6V4. A

Resident doctor Temperature 38.6. SpO2 89% on 15L non-rebreathing mask, BP normal
but tachycardia with heart rate about 140 beat per minute. A

Resident doctor the pH of her arterial blood gas is 7.20, pCO2 is 5.0, Po2 8.0, Creatinine
is 230 umol/l, K is 4.5 mmol/l, WBC 12.1. A

Resident doctor Our impression is she has severe respiratory failure secondary to COVID
infection and we will intubate the patient. R

Resident doctor May I ask if you would like to take this patient to ICU for further care? R

ICU doctor Certainly. We will immediately get the bed ready and arrange transfer.

Table 5.4: A clinical handover case of the COVID-19 patient.
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the communication style and the content of the dialogue conveyed by the resident doctor.

The resident doctor’s statements and their associated labels are initially augmented in

accordance with the procedure outlined in Section 5.3.1. Subsequently, the IA-BioBERT

model is trained on these augmented dialogues.

To augment the data, clinicians are required to provide an equivalent list and a con-

text relationship table. Table 5.5 depicts an example of an equivalent list, where each

row contains a set of synonyms or equivalents, separated by semicolons. Given that

the COVID-19 case follows the ISBAR protocol as well, we utilize the same context

relationship as shown in Table 5.1.

Ms. Yuen; Yuen Mei Ho
Resuscitation room; AED
ICU; Intensive care unit
Diabetes mellitus; DM; Diabetes
COVID-19, COVID infection
ADL; ADLs
DTS; Deep throat saliva
...

Table 5.5: Equivalent list of the COVID-19 case.

For content recognition, a list of essential components that should be addressed dur-

ing the conversation is provided (Refer to Table 5.6). Each component contains one or

more samppe words, akin to Table 4.1. These sample words are then augmented by term

replacement.

After obtaining the intent detection model and sample words from the provided doc-

ument, we demonstrate a use case of intent detection and content recognition. Table 5.7

illustrates the model’s output when new dialogue is composed regarding the COVID-19

case.

As shown by the use case, even though only one dialog is provided as a training
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No. Component Sample Words

1 Patient’s name Ms. Yuen Mei Ho
2 Location Resuscitation room, AED
3 Age 65 years old
4 Admission time This morning, 9:30
5 COVID COVID-19, COVID infection
6 Diabetes mellitus Diabetes mellitus
7 Vaccination One dose in September 2021
… … …

Table 5.6: Required components and sample words in the COVID-19 case.

example, the domain knowledge and UDK-DA make our model robust to varying ex-

pressions. Despite the fact that the intent sequence in Table 5.7 differs from the sam-

ple dialog in Table 5.4, our model can correctly detect the intent. This can largely be

attributed to the context expansion method, which generates dialogues with various se-

quence combinations.

Input sentence Detected
Intent Recognized Components

This is Dr. Jeffery Lee, resident of AED.
Are you ICU Dr. Ng?

I Doctor’s name; Location

I’m calling about Ms. Yuen, who may re-
quire ICU care due to respiratory failure
caused by COVID infection.

S Patient’s name; Gender;
COVID; Respiratory failure

Ms. Yuen Mei Ho is 65 years old and is
currently in the resuscitation room.

I Patient’s name; Gender; Age;
Location

She was admitted earlier today for a fever
and breathing problems.

B Gender; Fever

Table 5.7: A use case of intent detection and semantic matching on the COVID-19 case.

However, our model did not capture all of the components mentioned in the input
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sentences. For instance, the phrase “earlier today” indicates “Admission time”, which

the model fails to recognize. Even though “earlier today” and our example word “this

morning’’ are semantically similar, their word embedding similarity does not surpass the

threshold, so it is not considered “admission time’’. This illustrates that our semantic

matching algorithm could still be improved.

5.4 Conclusion

Through this research, we have illustrated that even ordinary users can leverage pre-

trained models and data augmentation to build robust AI models with only a handful of

sample data. Our experiments within the realm of clinical communication reveal that

the proposed IA-BioBERT model, built on the intent-aware mechnism and a pre-trained

language model on biomedical corpus, surpasses all other baseline models in terms of

intent detection.

Moreover, we introduced UDK-DA, a novel approach that incorporates user-defined

knowledge into the conversational data. This is achieved via lexical and sentence-level

augmentation methods, namely term replacement and context expansion. For content

recognition tasks, we further integrated an n-gram semantic matching strategy. These

methodologies noticeably enhance model performance when training data is sparse.

As we look towards the future, we aspire to broaden the range of application scenar-

ios and delve into the feasibility of non-experts constructing AI models applicable to a

diverse array of tasks.



Chapter 6

Heallo: Clinical Communication

Training System

This chapter presents Heallo, a conversational system designed for clinical communi-

cation training, which supports user-defined tasks. Armed with biomedical ontologies,

pretrained languagemodels, and data augmentation techniques, Heallo is capable of sim-

ulating clinical communication scenarios, delivering timely assessments, and accommo-

dating new tasks with simple editing.

More specifically, Heallo engages with trainees through simulated communication

tasks, assuming the role of the receiver. At the conclusion of each session, the system re-

views the entire communication history and generates a detailed evaluation report. This

assessment adheres to a pre-defined grading rubric, ensuring fair and consistent feedback

for all participants. Moreover, Heallo furnishes a platform for trainers to easily modify

existing tasks or create new training scenarios. This feature provides great flexibility in

designing personalized training programs.

The following sections will provide an in-depth introduction and analysis of Heallo.

85
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First, we will explore the system’s architecture, then examine its user interface in detail.

Finally, we will discuss its practical application in hospital settings to demonstrate its

functionality and relevance in real-world scenarios.

6.1 System Design

The system design of Heallo, as shown in Figure 6.1, is founded upon clinical com-

munication tasks and the proposed structure for autonomous communication training,

depicted in Figure 1.1. The design diagram in Figure 6.1 divides the three core mod-

ules - the dialogue simulator, evaluator, and task editor - into smaller units, providing a

detailed overview of their interactions and data flow.

Evaluation Scheme

Intent Detecton

Voice Input

Response Generation

Information Resolution

Synthetic Output Evaluation Report

Module I: Dialogue Simulator Module II: Communication Evaluator

Speech Recognition

Data AugmentationExamples and shcemes

Module III: Task Editor

Memory

Figure 6.1: Framework of the conversational system for autonomous clinical communi-
cation training.

The dialogue simulator module begins by transcribing trainee’s audio input into text

through a speech recognition unit. This transcribed text is then processed by an intent

detection unit, which informs the selection of an appropriate response. The selected

response is subsequently converted back into speech and delivered to the trainee.

The communicaiton evaluator module focuses on the ongoing conversation, with

the information resolution unit storing all dialogue details and intermediate results in
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memory. When the conversation ends, the stored data is used to calculate a final score,

following a pre-established evaluation scheme, and generate a detailed feedback report.

The task editor module allows trainers to design new training tasks. Trainers can pro-

vide communication examples, list required components, and define evaluation schemes.

The system enhances the input examples and components through Data Augmentation

(DA), and these enhanced inputs are then used to train models for subsequent tasks.

6.1.1 Dialogue Simulator

The dialogue simulator simulates clinical communication scenarios, engagingwith trainees

through conversation. It first transforms voice input into text via speech recognition.

Given the ready accessibility and high performance of cloud-based automated speech

recognition systems across diverse applications, we have opted to use Google Cloud’s

speech-to-text application programming interface (API)1 for our speech recognition com-

ponent. To improve recognition accuracy within the specific context of clinical scenar-

ios, healthcare-related terms from our corpus are utilized as hot words.

Following speech recognition, the intent detector associates the transcribed sentence

with an element from the communication protocol. For this purpose, we employ the

IA-BioBERT model, which is outlined in section 5.2.1.

The conversational system primarily acts as an information receiver during the com-

munication training. As such, the system’s responses are designed to be relatively sim-

ple, primarily aimed at guiding trainees through the conversation. Expert clinicians,

acting as trainers, initially establish a set of responses for a variety of conditions within

the response pool. Subsequently, the response retriever chooses a fitting response from

this pool, based on the predicted intent yi. In instances where several responses could
1https://cloud.google.com/speech-to-text
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be suitable, the retriever selects one randomly. This selected response is then converted

into an audio clip using Google Cloud’s text-to-speech API and played back to the user.

6.1.2 Communication Evaluator

Our evaluation of communication hinges on two aspects: the adherence of the conveyed

content to the steps detailed in the protocol, and the inclusion of all predefined critical

components within the conversation. In collaboration with clinical experts at Queen

Elizabeth Hospital, we formulated three criteria:

1. Category Number (CN) irepresents the number of intent categories detected in the

dialogue. Taking the ISBAR protocol as an example, CN equals four if a dialogue

contains categories I, B, A, and R.

2. Wrong Order (WO) represents the number of incorrectly ordered intents. Similar

to the concept of edit distance, WO is determined as the least number of intents

that must be removed from a sequence in order to preserve its correct order. For

instance, theWO of intent sequence I-S-B-A-B-R-A-R under the ISBAR protocol

is 2.

3. Missed Information (MI) represents the number of required components that have

been omitted in the dialogue.

CN and WO can each be calculated using the results of intent detection in Module

I: Dialogue Simulator, while MI is calculated based on the results of semantic match-

ing 5.2.3.

The trainer can define the evaluation scheme using the evaluation criteria CN, WO,

and MI. Table 6.1 provides an example of a categorical evaluation scheme for clinical
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handover. Based on this scheme, the system grades the communication performance and

generates evaluation reports.

CN WO MI Grade

5 0 ≤5 A

≤4 ≤1 ≤9 B

≤4 ≤3 ≤13 C

≤3 ≤5 ≤17 D

Others F

Table 6.1: Categorical evaluation scheme for clinical handover following the ISBAR
protocol.

6.1.3 Task Editor

The task editor is designed to enable non-IT professionals to generate new clinical com-

munication tasks effortlessly by providing a handful of labeled examples. For task cre-

ation, users are asked to supply conversation samples with intent labels (as shown in

Table 5.4), a list of components with sample words (as demonstrated in Table 4.1), and

an evaluation scheme (as depicted in Table 6.1). DA techniques are then applied to en-

rich the number and diversity of samples, bolstering the generalizability of downstream

models. Alongside well-established DA techniques (i.e., EDA and backtranslation), we

also deploy the augmentation methods designed for standardized clinical communica-

tion.
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6.2 Interface

The interactive interface of Heallo offers two user experiences – one for trainers and

the other for trainees. The trainer’s interface is illustrated in Figure 6.2, which enables

clinical experts to create new communication tasks and monitor trainees’ training re-

sults. It includes an administration board that enables trainers to manage the user list

and track user progress (Figure 6.2a). This section also contains a task editing platform

(Figures 6.2b–6.2d), where trainers can establish new communication tasks by providing

examples and rules.

The interface depicted in Figure 6.2b enables the uploading of conversation exam-

ples and the establishment of context relationships. For a structured clinical handover

based on the ISBARmethodology, conversation samples are inputs from the information

provider with each sentence labelled in accordance with ISBAR. Taking the COVID-19

case in Table 5.4 as an example, we can divide the resident doctor’s inputs into sen-

tences and associate each with its corresponding ISBAR labels to obtain a conversation

sample. An example of context relationships of ISBAR can be found in Table 5.1. Fig-

ure 6.2c shows the interface for adding critical components and configuring user-defined

responses. A component table is similar to Table 4.1, where each component is assigned

one or more keywords. Figure 6.2d displays the interface for defining a grading scheme

by specifying formulas based on the CN, WO, and MI criteria.

After acquiring data, the system augments conversation samples using EDA, back-

translation, term replacement and context expansion. For EDA, we follow the imple-

mentation of the original paper2. The number of generated augmented sentences per

original sentence is set to 9, resulting in tenfold the amount of original data after EDA.
2https://github.com/jasonwei20/eda_nlp



CHAPTER 6. HEALLO: CLINICAL COMMUNICATION TRAINING SYSTEM 91

Step 2/3: Components and Responses

Components

Next Step

Name Ms. Yuen Mei Ho

Entity Keywords  Add+

Location Resuscitation room, AED

Responses

Identify Hello, Dr. Lee.

Condition  Add+

General Can you tell me more?

Template response

Step 3/3: Grading Scheme

Rules

Finish

A CN = 5; WO = 0; MI ≤ 5; 

Grade Rules  Add+

Category Number (CN):  the number of intent 
categories covered during the conversation.

Indicators

Wong Order (WO):  the number of intents that are 
in the wrong order.

Missing Information (MI):  the number of critical 
components that have not been mentioned.

B CN ≥ 4; WO ≤ 1; MI ≤ 9; 

C CN ≥ 4; WO ≤ 3; MI ≤13; 

Task Editing Platform

Conversation Samples
Category Sentence

Identify

Situation

This is Dr. Jeffery Lee.

I am calling to ask if you can 
provide ICU care for Ms. Yuen. 

... ...

Responses

Identify Hello, Dr. Lee.

General Can you tell me more?

(a) (b)

(c) (d)

Heallo

Components

Name Ms. Yuen Mei Ho

Location Resuscitation room, AED

Figure 6.2: Interface of Heallo for trainers. (a) Administration board for tracking each
user’s progress. (b) Task editing interface to enter examples and contextual rules. (c)
Task editing interface to enter critical components and conditional answers. (d) Task
editing interface to define grading schemes.
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The percentage of words in the sentence that will be changed by each operation (i.e.,

synonym replacement, random insertion, random swap, and random deletion) is set to

10%. For backtranslation, we use the en-zh and zh-en models in Google Cloud’s Trans-

lation API3; each sentence is backtranslated once. Regarding term replacement, each

recognized clinical term is substituted with its equivalents or synonyms, resulting in a

new sentence each time, resulting in a new sentence each time. For context expansion,

we augment each sentence using Algorithm 1.

The augmented conversation samples are then used to fine-tune the IA-BioBERT

model for intent detection. During training, we use the Adam optimizer and iterate

over the dataset with a maximum sequence length of 32 and a batch size of 16. The

learning rate is set to 1e – 5 for parameters in the original BioBERT model and to 1e-

3 for parameters in the fully-connected layers. Due to data scarcity, we do not divide

the dataset into training, validation, and test sets; rather, we use all augmented data

for training. The stopping condition is defined as either the number of training epochs

reaching 50 or the accuracy of the training set reaching 100%.

In terms of critical components, we augment sample words with term replacement.

Then semantic matching is used to detect the components. In the semantic matching,

we use glove.6B.50d [98] for word embedding.

The trainee interface is pictured in Figure 6.3, with Figure 6.3a showing the login

screen, Figure 6.3b showing the chat box, Figure 6.3c showing the evaluation report after

a conversation, and Figure 6.3d showing the control panel containing historical training

records.

Taking clinical handover on the COVID-19 case as an example, once the communi-

cation task is created using relevant data, trainees can practice communication via the
3https://cloud.google.com/translate
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(a) (b)

(c) (d)

Figure 6.3: Interface of Heallo for trainees. (a) Login screen. (b) Chatting box. (c)
Evaluation report. (d) Control panel.
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chat interface. Table 6.2 presents a sample interaction between the user and the conver-

sational system. For each input sentence, the system detects its intent and determines the

presence of predefined components within it. The system can accurately detect intents

and components even when expressions differ from the sample data. Then the system

generates an appropriate response based on the detection results. Once the conversation

ends, the system calculates the overall score and generates a detailed evaluation report

using the results of all processing performed during the conversation and the grading

scheme.

6.3 Experiments

Heallo was incorporated into the intern simulation training program at Queen Elizabeth

Hospital. A specialized communication task was established by clinical experts, with

approximately 30 participants utilizing Heallo for their clinical communication training.

We also engagedmedical professionals to rate these conversations, comparing the results

generated by Heallo with those from human raters. The human raters were guided to ad-

here to the same grading schemes employed in our system. A tailored questionnaire was

also administered to gather information about the user experience and the effectiveness

of the training.

We finally obtained 29 training results from medical interns partaking in the intern

simulation training program at Queen Elizabeth Hospital. Table 6.3 collates the overall

grades attributed to each trainee by Heallo, two independent human raters, and a random

scoring system for comparative purposes.

Table 6.3 reveals some variance in the scores from the raters, predominantly due to

individual discrepancies in their understanding and information capture. It’s worth not-
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User Conversational System

[Input] This is Dr. Jeffery Lee, resident of
AED. Are you ICU Dr. Ng?

[Detected Intent] I
[Detected Components] Doctor’s name; Location
[Output] Hi, Dr. Lee.

[Input] I’m calling about Ms. Yuen, who
may require ICU care due to respiratory
failure caused by COVID infection.

[Detected Intent] S
[Detected Components] Patient’s name; Gender; COVID; Respiratory failure
[Output] Please go on.

[Input] Ms. Yuen Mei Ho is 65 years old
and is currently in the resuscitation room.

[Detected Intent] I
[Detected Components] Patient’s name; Gender; Age; Location
[Output] Ok.

[Input] She was admitted this morning at
9:30 a.m. for a fever and breathing
problems.

[Detected Intent] B
[Detected Components] Gender; Admission time; Fever
[Output] Well, please keep going.

[Input] Her condition is deteriorated
rapidly with saturation was 90% in
4L/min O2. Now she is confused.

[Detected Intent] A
[Detected Components] Gender; Deterioration; Saturation; Coma
[Output] Anything else?

[Input] We will intubate the patient.
Would you like to come over and assess
the patient?

[Detected Intent] R
[Detected Components]
[Output] Ok, I will come as soon as possible.

[Finished] [Output]

Evaluation Report:

Overall performance: B

Part I: Structure
Detected sequence of your handover is ISIBAR, and
the correct sequence should be ISBAR.

Part II: Completeness
You have missed the following information:
1. Diabetes mellitus
2. Activities of daily living
3. Vital signs
4. Vaccination
5. Chest X-ray

Table 6.2: Interactions between the user and the conversational system.
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Sample # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

Heallo B B A B B B B A B B B B C B C B C B B A B A A A C B B A B
Rater 1 C C C B C A C A B B B C C B C C C C B A A B B B C B B B B
Rater 2 C B A B B A B A B A A B B A C A C A B A A B B A C B C B A
Random F D D C F A B D F F F D F C C F A B A D C A A F F B B A B

Table 6.3: Overall grades from Heallo and two clinical practitioners.

ing the relatively low incidence of ’A’ grades (and the even rarer instance of unanimous

’A’ grades from all raters), suggesting ample opportunity for most medical interns to

enhance their clinical communication skills through further training.

Comparing the grading groups, the majority of Heallo’s predicted grades align with

the range between the human raters’ results, underlining the system’s reliability. To

streamline the analysis, we transformed the categorical grades into numerical scores

(i.e., A, B, C, D, and F corresponding to 5, 4, 3, 2, and 1, respectively). The average

score from Heallo (4.10) resides between that of Rater 1 (3.72) and Rater 2 (4.24), all of

which substantially outperform the random scoring average (2.93). And the number of

agreements between Heallo and human evaluators (21) matches that between two human

evaluators.

To scrutinize the difference between Heallo and human raters further, we computed

the grading difference between Heallo and Rater 1 (group 1), Heallo and Rater 2 (group

2), andRater 1 andRater 2 (group 3). The average discrepancies for groups 1, 2, and 3 are

0.52, 0.48, and 0.59, respectively, implying marginal variations between the three raters’

grades. A t-test was used to determine the significance of these differences (α = 0.05).

The results indicate no significant differences between groups 1 and 3 (p-value = 0.68),

or between groups 2 and 3 (p-value = 0.52), suggesting Heallo’s scoring precision is

comparable to that of the clinical experts.
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Throughout the experiment, Heallo provided a comprehensive evaluation report im-

mediately following each conversation, while human raters were required to listen to

recordings repeatedly to discern the intent sequence and the components discussed. Sup-

planting human raters with Heallo is projected to conserve approximately 0.5 person-

hours per training session.

Post-experiment, a follow-up questionnaire was administered to the trainees who

were conversant with the communication protocol. Of the 23 respondents, 82.6% ac-

knowledged the necessity of practicing clinical communication in simulated scenarios,

and 73.9% affirmed the importance of evaluative feedback to guide their training. These

trainees were also asked to rate Heallo using a 5-point Likert scale, with the average user

experience score being 4.00 and the average training effectiveness score being 3.83.

Based on the comparative analysis with clinical raters and the feedback from trainees,

we confidently assert that Heallo has the potential to deliver effective autonomous clin-

ical communication training on user-defined tasks. Our intention is to continue refining

the system in accordance with evolving training needs and user feedback.

6.4 Conclusion

In this research, we have presented Heallo, a pioneering system designed to facilitate

autonomous clinical communication training. Heallo is capable of simulate diverse clin-

ical communication scenarios, evaluate clinicians’ performance, and accommodate new

tasks with simple editing. When applied in a practical setting, Heallo is capable of de-

livering evaluations comparable to human raters. It has also garnered positive feedback

in terms of user experience and the impact on training outcomes.

This exploration of utilizing NLP technologies in clinical communication training
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is not merely an academic exercise but an essential step towards enhancing healthcare

communication. It’s our aspiration that this endeavor will foster progress in the devel-

opment of sophisticated communication training systems, inspiring further exploration

and innovations within the realms of NLP and intelligent healthcare.



Chapter 7

Conclusion

7.1 Summary

Healthcare has received more and more attention with the development of society and

the adoption of intelligent healthcare is on the rise. Clinical communication has always

been an integral part of healthcare education, and it is also the key to providing safe, high-

quality patient care. Faced with a scarcity of medical resources and a high demand for

training, this thesis proposes customizable conversational systems for intelligent clinical

communication training.

In Chapter 1, we bring up the framework for an autonomous, low-cost, customizable

clinical communication training system and formulate three research problems from it.

In Chapter 2, the applications and general techniques of conversational systems are

reviewed. Then, we present our preliminary work on personal chatbot customization.

Chapter 3 focuses on sentence-level intent detection in standardized clinical com-

munication. We first collect a standard clinical handover dataset, CLINIC-ISBAR, of

real-world cases in collaboration with QEH practitioners. We propose the novel Intent-

99
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aware Long Short-term Memory (IA-LSTM) model referring to the context of clinical

communication standards. Extensive experiments and comparisons on CLINIC-ISBAR

have validated effectiveness, generalizability and robustness of our intent-aware design.

The collected dataset and proposed algorithm lay the groundwork for the implementation

of clinical communication training systems.

Chapter 4 investigates the task of content recognition in clinical conversation by in-

corporating explicit knowledge from biomedical ontology and implicit knowledge from

pretrained language models. Due to the variability in expression habits among doc-

tors and the existence of multiple forms for medical terms, we constructed a knowledge

graph utilizing biomedical ontology. We proposed Knowledge-infused Prompt Learn-

ing (KIPL) to incorporate external knowledge into prompts as cues and hints for the

pre-trained language model. Our experimental results demonstrate that KIPL achieves

superior performance, particularly exhibiting significant advantages in situations with

limited data or complex components.

Chapter 5 investigates the problem of customizable conversational system with in-

sufficient training data. We propose Data Augmentation with User-Defined Knowledge

(UDK-DA), which increases the robustness and generalizability of ML models by in-

jecting user-defined lexical knowledge and context knowledge into training samples.

UDK-DA enables non-IT users to design tasks using a small number of samples and

self-defined knowledge. Experiments demonstrate that when training data is insuffi-

cient, UDK-DA can significantly improve the performance of learning models, allowing

non-professionals to design new communication tasks with minimal editing.

In Chapter 6, we present the conversational system, Heallo, for autonomous, low-

cost and customizable clinical communication training. Heallo is able to simulate clini-

cal communication scenarios, evaluate the performance of clinicians, and be customized
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to new tasks with minimal editing. In real-world practice, Heallo is able to provide

expert-level evaluations and receives positive feedback regarding the user experience

and training outcomes.

We hope that this attempt to apply NLP technologies to clinical communication

training will promote the development of intelligent healthcare and motivate NLP re-

searchers.

7.2 Future Work

Heallo can be viewed as an initial attempt at a customizable conversational system for

clinical communication training; There are still several areas that can be improved.

• In designing algorithms and experiments, we focus primarily on the clinical han-

dover task. In the future, we will collect data for additional task scenarios in an

effort to enhance the model.

• In this paper, we discuss three important parts for designing a communication

training system. There are other modules within the conversational system that

can be enhanced. For instance, the speech recognition module is not optimized

for clinical communication, and our response retriever does not provide a realistic

interactive experience. In the future, we will attempt to refine the system further.

• Currently, we only pilot in the Queen Elizabeth Hospital for the real-world usage,

and the experiment’s personnel and duration are limited. In the future, we will

promote it to hospitals in Hong Kong and other regions in order to support clinical

communication training and intelligent healthcare. In the interim, additional data

and feedback can be gathered to further enhance the system.
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• Our system currently only supports English. Future objectives also include the

creation of algorithms that support multiple languages, which will benefit more

practitioners.
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