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Abstract

Graph modification problems are significant problems in computer science that

have gained considerable attention in recent decades. In this thesis, we focus on

edge modification problems, whose task is to make an input graph satisfy some

required properties by making small changes to the edges in the graph.

We study kernelization algorithms for edge modification problems toward sev-

eral graph classes that can be characterized by a finite set of forbidden induced sub-

graphs and provide small kernels for these problems. A kernelization algorithm is

a preprocessing algorithm that reduces the input instances to an equivalent instance

with a smaller size in polynomial time. We show that the edge deletion problem

toward cluster graphs and the edge addition problem toward paw-free graphs ad-

mit linear kernels, a 2!-vertex kernel for the former one and a 38!-vertex kernel

for the latter one. In addition, we prove that the edge addition problem toward triv-

ially perfect graphs admits a quadratic kernel. We also prove that the edge addition

problem and the edge deletion problem toward (pseudo-) split graphs have a kernel

with " (!1.5) vertices.
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Chapter 1

Introduction

1.1 Motivation and formulation

Graphs are used to represent a wide range of frameworks across various fields such

as physics, biology, linguistics, sociology, and information systems [118, 1, 143,

98]. Usually, these frameworks need to satisfy certain special properties to ensure

correctness. However, in real-life situations, these properties may not be satisfied

due to data loss or errors in data. In such cases, it becomes necessary to modify the

frameworks with minimum cost to satisfy the requirements. This is where graph

modification problems arise.

Let’s see it more clearly from an example of clustering. It is known that clus-

tering is the task of partitioning instances into some number of groups (clusters)

based on their similarity, and it plays a vital role in various areas [87, 163, 90,

146]. Usually, we have two aims for clustering, instances inside a cluster are highly

similar to each other, and instances from distinct clusters are different from each

other. Then there are various optimization problems about clustering in theory,

2



CHAPTER 1. INTRODUCTION 3

such as maximizing the similarity and minimizing the difference. Let us see an-

other version of an optimization problem for clustering, which is given in [90].

We can build a graph such that its vertices correspond to instances, and there is

an edge between two vertices if the similarity of their corresponding instances is

higher than a baseline. Then we want this graph to be composed of vertex-disjoint

clusters (clusters in a graph are also called cliques, which means there is an edge

between each pair of vertices), we call such a graph a cluster graph, and classically

it should be. However, experimental errors can cause the graph to deviate from

this ideal. Therefore, we need to add or delete a set of edges with minimum size

to the graph to make it a cluster graph. We call this graph modification problem

the clustering editing problem. See Figure 1.1 for an example. Ideally, we get a

graph such that the vertices with the same color are in a clique, and there is no edge

between any two vertices with different colors. However, in practice, we may get

a graph like the one in Figure 1.1b.

(a) (b)

Figure 1.1: An example for clustering. We may get a graph like (b) when we use
a graph to represent the framework (since data errors). The edges among vertices
with diferent colors should be deleted and the missing edges among vertices with
same color should be added.

Numerous problems arising from theory and applications can be formulated as
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graphmodification problems. In theory, one of themost well-studied problems, the

vertex cover problem, can be seen as deleting a minimum number of vertices from

an input graph to make the resulting graph an edgeless graph. Another famous

problem, the feedback vertex set problem can be seen as to deleting a minimum

number of vertices from an input graph to make the resulting graph a forest.

Now, we explore several graph modification problems, discussing their appli-

cations and motivations. We have an interesting graph modification problem in

theory that asks for adding a minimum number of edges to an input graph to trans-

form it into a chordal graph, where every cycle of length greater than three contains

a chord [140, 166, 96, 69]. The relationship between the solution to this problem

and the solution of a sparse symmetric positive definite system of linear equations

by Gaussian elimination (which consists of a sequence of operations performed on

the corresponding matrix of coefficients) motivates us to study this graph modifi-

cation problem [130, 139]. During the process of Gaussian elimination, we may

turn zero entries of the matrix into non-zero entries, which would increase the cost

of space. Therefore, we want to minimize the number of zero entries turned into

non-zero entries. Rose [139] has shown that if we see the matrix of coefficients

of the system as the adjacency matrix of a graph, then minimizing the number of

zero entries coverted into non-zero entries during the process of Gaussian elimi-

nation is equivalent to making the graph to be chordal with the minimum possible

number of added edges.

The problem that asks for deleting the fewest vertices from an input graph to

make it not contain any cycle with odd length is a classical and extensively re-

searched problem in graph theory [167, 135, 97, 94]. The class of graphs with no

odd cycles, also known as bipartite graphs, is a superclass of trees and forests —
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two of the simplest nontrivial types of graphs in graph theory. Their significance

in graph theory is evident. One notable property of this graph class is that the

vertex set of a graph in it can be partitioned into two parts (vertices in every part

are nonadjacent to each other). This property makes it a useful tool for model-

ing real-world scenarios where vertices in one part represents agents, and vertices

in the other part represents resources assigned to these agents. Therefore, this

graph class is often employed in practice to simulate such situations. Moreover,

the graph modification problem related to bipartite graphs has a wide range of ap-

plications in various fields, including VLSI design [34] (corresponding to the via

minimization problem), computational biology [136] (corresponding to the single-

individual haplotyping problem), and register allocation [169] (corresponding to

the dual-bank register assignment problem). Thus, there is a strong motivation to

study and understand this problem.

In the real world, we often want to increase the network’s connectivity so that

the failure of any set of a small number of nodes or links in the network does not

affect the network’s connectivity. Driven by this demand, researchers have started

studying the connectivity augmentation problem [60, 157, 22, 71, 120], whose

task is to increase the connectivity (vertex/edge connectivity) of an input graph by

adding a set of edges with the smallest size. It is a well-known graph modification

problem with significant practical applications.

For graph modification problems, we can make modifications to the vertices or

edges of a given graph. For the vertex version, Lewis and Yannakakis [110] have

shown that the vertex deletion for every nontrivial hereditary graphs is NP-hard.

However, for the edge modification problem, we do not have such a dichotomy,

although most edge modification problems are known to be NP-complete [166,
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44, 124, 144, 20, 116, 63, 164, 46]. In this thesis, we will only consider the edge

modification problems.

1.2 A way to solve hard problems

It is known that most graph modification problems are NP-complete, which means

that it is unlikely to have a polynomial-time algorithm for solving them, unless ( =

/( (however, this hypothesis is widely believed to be false). However, in practical

scenarios, we usually only need tomake aminormodification to a structure tomake

it satisfy our requirement. As a result, the solution size for graph modification

problems tends to be relatively small, even for large input instances. For example,

consider the cluster editing problem illustrated in Figure 1.1b, which involves a

graph with 24 vertices and 41 edges. By adding two edges among the cyan vertices

and deleting five edges, we can obtain a solution of size 7, which is small compared

to the size of the input instance.

Therefore, it is natural to use a parameter ! to denote the size of a solution and

ask whether we can modify at most ! edges or vertices to an input graph to obtain

the desired graph property. We can then attempt to design an algorithm to solve

the problem with time that exponentially depends only on the parameter ! . If a

problem has such an algorithm, we call this problem a fixed-parameter tractable

(FPT) problem, and the algorithm is called a parameterized algorithm. In this

way, if we have such a parameterized algorithm, it seems that we can solve those

hard problems efficiently. For example, consider the vertex cover problem, which

is a classical NP-complete problem. Many researchers [21, 3, 52, 127, 148] have

shown an algorithm for this problem that runs in time" (6! ·>), where 6 ≤ 2. When
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! is small, those algorithms are significantly faster than the brute-force algorithm

that runs in time " (2>). Hence, the existence of such a parameterized algorithm

for a hard problem became our first concern.

In numerous works [48, 126, 80, 51, 40], lots of parameterized algorithms are

given for various problems. However, many problems have been proved that they

are unlikely to admit parameterized algorithms when the parameter is the size of

the solutions. In this case, we could change the parameter (not to denote the size of

a solution but related to some property of the input graph, e.g., maximum degree)

or add more parameters to the problem and try to design an algorithm to solve

it with time depending on those parameters [63, 119, 91, 104]. If a problem is

proved (probably) not to admit such a parameterized algorithm, then we should

spend less effort to attack it (since the hope of progress we could get is tiny). If a

parameterized algorithm exists for a problem, then the remaining task is to design

an algorithm as efficient as possible. All graph modification problems studied in

this thesis have been shown to admit parameterized algorithms, which means they

are fixed-parameter tractable.

To design an efficient algorithm for a specific graph modification problem, it

is essential to understand the characterizations of the graph class first. One fun-

damental way to characterize a graph class is through its set of obstructions. The

characterizations of numerous graph classes by obstructions have been shown to

us, such as perfect graphs, chordal graphs, interval graphs, cluster graphs, and split

graphs. We could partition those graph classes into two parts: one contains graph

classes with finite obstructions, and the other contains infinite obstructions. Graph

classes can be divided into two categories based on their obstructions: those with

finite obstructions and those with infinite obstructions. Cai [23] has shown that
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for graph classes that can be characterized by a finite set of obstructions, the edge

modification problems toward them are fixed-parameter tractable. There are many

interesting graph classes that can be characterized by a finite number of obstruc-

tions, such as cluster graphs, cographs, and trivially perfect graphs are the ones

that have been studied widely. However, several important graph classes are char-

acterized by infinite obstructions, such as bipartite graphs, chordal graphs, and

(proper) interval graphs. Therefore, Cai’s approach cannot be directly applied to

develop a fixed-parameter tractable algorithm for edge modification problems to-

ward these graph classes. Fortunately, efficient parameterized algorithms for edge

modification problems towards many of these graph classes have been given by

multitudinous excellent researchers. For more information, we recommend refer-

ring to the survey [39].

1.3 Preprocessing

One way to improve the efficiency of the parameterized algorithms for a problem

that is fixed-parameter tractable is by using some techniques, such as dynamic pro-

gramming [7, 5], tree decomposition [88, 138] and linear programming [142, 147].

Another approach to improve the efficiency of the parameterized algorithms is to

do some preprocessing to the input instance to reduce its size. Here preprocessing

means dealing with the simple parts of an input instance first and then reducing it

to an equivalent instance with a smaller size efficiently (polynomial in time with

respect to the input size). We also refer to the preprocessing as kernelization and

the minor instance we obtain after doing preprocessing exhaustively as a kernel.

The idea of kernelization is intuitive since when faced with a challenging problem,
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(a) (b)

Figure 1.2: Do some preprocessing for the cluster editing problem.

one naturally starts by addressing the simpler aspects. For example, when playing

Sudoku, we will first consider the cell such that there are enough known numbers

in the row and column to make sure which number should be filled in the cell. In

computational theory, for the vertex cover problem (given a graph, ask for finding

a set of vertices with minimum size such that every edge in the graph has an end-

point in the vertex set), we first remove vertices with no edges incident to them as

they are not part of any optimal solution. See Figure 1.2a for another example, it

is easy to see that the three olive vertices should be in a cluster, which means that

any optimal solution would not touch any one of them, then it is safe to delete them

from the input graph. In the preprocessing subroutine, we could delete the three

olive vertices (see Figure 1.2b). Then we obtain a smaller-sized instance.

There are two things we are most concerned about when we do some prepro-

cessing for a problem. One of them is that we need to ensure the correctness of

every reduction step, which means that we need to prove that the smaller-sized

instance after a reduction step is equivalent to the original instance, where two

instances are equivalent means that one instance is a yes-instance if and only if

the other instance is a yes-instance. The other one is to analyze the size of the

smaller-sized instance after all reduction steps (we want it to be as small as possi-
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ble). Usually, we aim to get an instance with a polynomial size of the parameter

! (polynomial kernel), which means a tiny instance when ! is small (it is small in

practice).

We already know that for many graph classes that can be characterized by a

finite forbidden induced subgraphs, the graph modification problems towards them

admit polynomial kernels [79, 84, 85, 33, 28, 10, 82, 54, 75, 43, 56], such as

cluster graphs, chain graphs, trivially perfect graphs, threshold graphs, (pseudo-

)split graphs, and cographs. We say that a graph isH -free if it does not contain any

graphs inH as an induced subgraph. Then a question comes naturally: whether all

H -free graphmodification problems admit polynomial kernels, whereH is a finite

set of graphs [23, 15, 62].Kratsch and Wahlström [107] answered this question

negatively by showing that for a specific graph# on seven vertices (see Figure 1.3),

both the edge deletion problem and the editing problem toward #-free graphs do

not admit polynomial kernels unless NP ⊆ coNP/poly. Moreover, Kratsch and

Wahlström asked whether the edge modification problems always have polynomial

kernels for graph classes whose forbidden induced subgraphs consist only of paths,

cycles, and cliques. Guillemot et al. [82] answered their question by showing that

the edge deletion problem toward (ℓ-free graphs has no polynomial kernel unless

NP ⊆ coNP/polywhen ℓ ≥ 7, and the edge deletion problem toward2ℓ-free graphs

has no polynomial kernel unless NP ⊆ coNP/poly when ℓ ≥ 4. They also provided

an" (!3)-vertex kernel for the editing problem toward (4-free graphs (also known

as cographs).

Then another question arises: which H -free graphs have polynomial kernels

for the edge modification problems? While this question remains open, Cai and

Cai [24] have made an outstanding contribution to it. They did comprehensive re-
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Figure 1.3: A graph # on seven vertices in [107].

search for the nonexistence of polynomial kernels of the edge modification prob-

lems for graph classes characterized by forbidding one single graph #, where #

is a 3-connected graph, a path, or a cycle. They showed that for a 3-connected

graph #, the #-free edge deletion problem and the #-free editing problem have

no polynomial kernel if and only if # is not a complete graph, and the #-free com-

pletion problem admits no polynomial kernel if and only if # misses at least two

edges. When # is a path or a cycle, they showed that the #-free edge deletion

problem, the #-free completion problem, and the #-free edge editing problem ad-

mit no polynomial kernels if and only if# has at least four edges. For graph classes

characterized by a finite set H of forbidden induced subgraphs, Cai and Cai also

proved that the H -free edge deletion problem admits no polynomial kernels if all

graphs in H are 3-connected and there is a graph # ∈ H with fewest edges such

that one can obtain a graph not inH by adding an edge to #. More recently, Marx

and Sandeep provided additional insights into the existence of polynomial kernels

of #-free edge modification problems [117]. They proved that there is a set F of

nine graphs, each with five vertices, such that if the @-free edge editing problem

does not admit a polynomial kernel unless NP ⊆ coNP/poly for every @ ∈ F , then

for a graph # with at least five vertices the #-free edge editing problem admits a

polynomial kernel if and only if # is either empty or complete. They also show

that there exists a set F of nineteen graphs, each with either five or six vertices,

such that if the @-free edge deletion problem does not admit a polynomial kernel
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unless NP ⊆ coNP/poly for every @ ∈ F , then for a graph # with at least five

vertices, the #-free edge deletion problem does not admit a polynomial kernel un-

less NP ⊆ coNP/poly if and only if # is a graph with at least two edges but not

complete. For the #-free completion problem, they provided a similar result for it

as for the #-free deletion problem.

Based on the results presented in [24, 117], there are very few graphs # such

that the edge modification problems toward #-free graphs admit polynomial ker-

nels. However, we still need to work on a general answer to the question of char-

acterizing the graph classes such that the edge modification problems have poly-

nomial kernels.

Naturally, we are also concerned about the efficiency of a preprocessing sub-

routine (the total time it is used). It is not necessary to do the preprocessing if it

is very time-consuming. Therefore, we define a preprocessing algorithm as use-

ful only when it works in polynomial time and returns a minor instance that is

equivalent to the given instance [40].

1.4 Our contributions

In this thesis, we study several graph classes that are characterized by a set of finite

forbidden induced subgraphs and show polynomial kernels for edge modification

problems towards these classes. Let H denote a set of graphs. We study H -free

graphs, where H is a set of graphs with a size smaller than five (see Figure 1.4).

We summarize our contributions in Table 1.1, where the kernels are measured by

the number of vertices.

When H contains one single graph, we use # to replace H . When # is a
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(a) (3 (b) (4 (c) 24 (d) 2'2 (e) paw (f) 25

Figure 1.4: Some small graphs.

H completion deletion editing
{(3} trivial 2! 2! [28]
{paw} " (!) " (!4) " (!6) [58]
{(4,24} " (!2) " (!3) [57] " (!3) [57]
{2'2,24,25} " (!1.5) " (!1.5) –
{2'2,24} " (!1.5) " (!1.5) –

Table 1.1: The compressibility results we obtained for edge modification problems
toward H -free graphs. We use ‘–’ to denote that the H -free edge modification
problem is in P.

graph with at most two vertices, the edge modification problems for #-free graphs

are trivial. When # is a three-vertex graph, then {(3}-free edge modification

problems are the simplest of all nontrivial edge modification problems on #-free

graphs. In Chapter 3, we study the kernelization algorithm for the {(3}-free edge

modification problem. We also call {(3}-free graphs as cluster graphs, which

is a disjoint union of cliques. The edge modification problems towards cluster

graphs are well-studied. It is easy to see that the cluster completion problem can

be solved in polynomial time (add edges to make every component of the input

graph complete). There are several papers to show that the cluster editing problem

is NP-hard [108, 99, 144]. The cluster editing problem is fixed-parameter tractable

by Cai’s result [23], and its FPT algorithm has been improved many times [79,

62, 132, 13]. For the kernelization algorithms for this problem, there are also

numerous results [79, 133, 83, 13, 33, 28]. Cao andChen [28] provided a 2!-vertex
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kernel for the cluster editing problem. Their algorithm actually implies a 2!-vertex

kernel for the cluster deletion problem. We record this simple result for future

reference. The cluster deletion problem is also studied widely and has been shown

to be NP-complete in [122]. The parameterized complexity of this problem is

studied in [79, 78, 45]. We study the kernelization algorithm for this problem. We

show a kernelization algorithm for it that produces a 2!-vertex kernel, improving

on the 4!-vertex kernel [81]. We also show that the same algorithm produces

a kernel of the same size for the strong triadic closure problem, which, though

originally not posed as an edge modification problem, is closely related to the

cluster edge deletion problem [101].

We provide our results as follows.

Theorem 1.4.1. The cluster deletion problem admits a 2!-vertex kernel.

Theorem 1.4.2. The strong triadic closure problem admits a 2!-vertex kernel.

When # is a four-vertex graph, it is one of the graphs in Figure 1.5 (some four-

vertex graphs are omitted because they are the complement of the ones presented

here). We summarize the known results of kernelization algorithms for #-free

edge modification problems in Table 1.2, where # is a four-vertex graph. The

kernelization algorithms for edge modification problems toward claw-free graphs

have been unknown to us until now.

(a) (4 (b) 24 (c) '4 (d) claw (e) paw (f) diamond

Figure 1.5: Graphs on four vertices.
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# completion deletion editing
'4 trivial " (!3) " (!3) [152]
(4 " (!3) " (!3) " (!3) [82]
diamond trivial " (!3) " (!8) [31]
paw " (!) (our result) " (!4) (our result) " (!6) [58]
claw unknown unknown unknown
24 no no no [82]

Table 1.2: The compressibility results of H-free edge modification problems for
H being four-vertex graphs, where the kernels are measured by the number of ver-
tices. Note that the results for the complement of # are implied; e.g., the answers
are also no when # is 2'2, the complement of 24.

In Chapter 4, we show polynomial kernels for #-free completion problem

when # is a paw; see Figure 1.5(e). They answer open problems posed by Sandeep

and Sivadasan [141].

Theorem 1.4.3. The paw-free completion problem admits a 38!-vertex kernel.

WhenH contains several graphs, we consider the edge modification problems

toward three well-studied H -free graphs.

The first one is {(4,24}-free graphs, also called trivially perfect graphs. All

three edge modification problems (completion, edge deletion, editing) toward triv-

ially perfect graphs areNP-complete [121, 145, 166] and are fixed-parameter tractable

by Cai’s result [23]. Drange et al. [56] showed that the trivially perfect editing

problem could not be solved in subexponential time under the Exponential Time

Hypothesis (ETH). For the edge deletion problem towards trivially perfect graphs,

Liu et al. [112] provided the best-known FPT algorithm for it, whose running time

is" (2.42! ), and Drange et al. [55] showed that there is no parameterized subexpo-

nential algorithm for the problem under ETH. For the trivially perfect completion
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problem, Drange et al. [55] showed that it could be solved in parameterized subex-

ponential time 2" (
√
! log !) · >" (1) , and Bliznets et al. [12] showed that it could not

be solved in time 2" (!1/4/log! !) · >" (1) under ETH, for some integer 6. Regarding

kernelization algorithms for the edge modification problems toward trivially per-

fect graphs, Drange et al. [56] gave an " (!7)-vertex kernel for the trivially perfect

editing problem, and Dumas et al. [57] improved the kernel to " (!3). Note that

their algorithms imply the existence of kernels with the same size for the trivially

perfect deletion problem and the trivially perfect completion problem. In Chap-

ter 5, we study the trivially perfect completion problem. Guo [84] has claimed an

" (!3)-vertex kernel for it, but the details have never been published. We propose

a very simple kernelization algorithm for the problem, which produces a kernel

with at most 2!2 + 2! vertices.

Theorem 1.4.4. The trivially perfect completion problem admits a 2!2+2!-vertex

kernel.

Another one is {2'2,24, (5}-free graphs, also called split graphs. Split graphs

also can be defined as graphs whose vertices can be partitioned into a clique and an

independent set. By this definition, we can get that split graphs are closed under

complementation, and the split completion problem and the split edge deletion

problem are equivalent. Hammer and Simeone [89] showed that the split editing

problem could be solved in polynomial time. We are concerned about the split edge

deletion problem, which is shown to be NP-complete in [124]. Ghosh et al. [75]

gave the first subexponential algorithm for it, whose running time is 2" (
√
! log !) ·

>" (1) , and had been improved to 2" (
√
!) by Cygan et al. [40]. For the kernelization

algorithm for this problem, the best-known result is an " (!2)-vertex kernel [75].
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In Chapter 6, we provide a kernel with " (!1.5) vertices for it.

Theorem 1.4.5. The split edge deletion problem has a kernel with" (!1.5) vertices.

Theorem 1.4.6. The split completion problem admits a kernel with " (!1.5) ver-

tices and " (!2.5) edges.

The last one is {2'2,24}-free graphs, also called pseudo-split graphs. A pseudo-

split graph is either a split graph or a split graph plus a 25 such that every vertex in

the 25 is adjacent to all vertices in the clique part of the split graph and nonadja-

cent to any vertex in the independent set part of the split graph. Also, pseudo-split

graphs are closed under complementation. Drange [53] showed that the pseudo-

split editing problem is solvable in polynomial time. For the convenience of pre-

sentation, we work on the edge deletion problem. The parameterized subexponen-

tial algorithm for it that runs in 2" (
√
! log !) ·>" (1) time is given in [55]. In Chapter 6,

we use the same algorithm for the split edge deletion problem to get a kernel with

" (!1.5) vertices for the pseudo-split completion problem.

Theorem 1.4.7. The pseudo-split completion problem and the pseudo-split edge

deletion problem have a kernel with " (!1.5) vertices.



Chapter 2

Preliminaries

In this chapter, we introduce all the notations and basic definitions that are used in

this thesis.

2.1 Basic notions

All graphs discussed in this thesis are undirected and simple. A graph$ is defined

as a pair (A , )), A ($) and ) ($) the vertex set and edge set of a graph $, respec-

tively. Every edge in $ is an unordered pair of vertices. We use 01 to denote an

edge {0, 1} and refer to 0 and 1 as the endpoints of the edge 01, and we call 01 a

non-edge if it is not an element of ) ($). A vertex 1 and an edge 8 are incident if

1 is one of the endpoints of 8. Two vertices 0 and 1 are adjacent if 01 ∈ ) ($).

The sizes of the vertex set and the edge set are denoted by > and B, respectively.

For a vertex 1 in $, the neighborhood of 1 is denoted as /$ (1), is the set of

vertices adjacent to 1, i.e., /$ (1) = {0 | 01 ∈ ) ($)}. The closed neighborhood of

1 is denoted as /$ [1], is /$ (1) alongwith 1 itself, i.e., /$ [1] = /$ (1)∪{1}. The

18



CHAPTER 2. PRELIMINARIES 19

degree of a vertex 1 in $, denoted as 7$ (1), is the number of vertices in /$ (1).

A vertex of degree 0 in a graph is called an isolated vertex. The degree sequence

of a graph is a list of its vertex degrees, usually written in nonincreasing order.

Given a vertex subset - of A ($), the neighborhood of - , denoted as /$ (-), is

the set of vertices adjacent to any vertex in - , but not in - itself, i.e., /$ (-) =
⋃
1∈- /$ (1) \ - . The closed neighborhood of - , denoted as /$ [-], is /$ (-)

along with - itself, i.e., /$ [-] = /$ (-) ∪ - . The degree of - , denoted as

7$ (-), is the number of vertices in /$ (-), i.e., 7$ (-) = |/$ (-) |. We write

7$ (1) instead of 7$ ({1}) for a singleton set. We may omit the subscript when the

context is clear.

A clique is a set of pairwise adjacent vertices, and an independent set is a set of

pairwise nonadjacent vertices. For a positive integer ! , a !-partite graph is a graph

whose vertices can be partitioned into ! different independent sets, called parts. A

!-partite graph is complete if there is an edge between every pair of vertices from

different parts. A complete multipartite graph is a graph that is complete !-partite

(see an example in Figure 2.1).

Figure 2.1: A complete multipartite graph.

A vertex 1 is simplicial if / [1] is a clique, and a vertex 1 is universal if / [1] =

A ($). Two vertices 0 and 1 are true twins in $ if their closed neighborhoods

/ [0] and / [1] are identical, and false twins if their neighborhoods / (0) and
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/ (1) are identical. A vertex set - is a module if every vertex in - has the same

neighborhood outside - , i.e., / (0) \ - = / (1) \ - for every pair of vertices 0 and

1 in - .

For two disjoint vertex subsets - and C of A ($), we say - is complete to C if

every vertex in - is adjacent to every vertex in C , and use ) (- ,C ) to denote the

set of edges of which one endpoint is in - and the other in C .

The complement of a graph $, denoted as $, is a graph that has the same

vertex set as $ and two vertices 0 and 0 are adjacent in $ if and only if they are

nonadjacent in $. An ℓ-vertex graph is a graph with ℓ vertices. A graph $ is

complete if the vertex set of $ forms a clique. We use 'ℓ to denote a complete

graph with ℓ vertices and *ℓ to denote an ℓ-vertex graph such that its vertex set is an

independent set. A subgraph of a graph$ is a graph # with vertex setA (#) that is

a subset ofA ($) and edge set ) (#) that is a subset of ) ($). If # is a subgraph of

$, then we call $ is a supergraph of #. An induced subgraph of $ is a subgraph

# such that every edge of$ whose two endpoints are inA (#) belongs to ) (#). If

# is an induced subgraph of $ with vertex set - , then we use $ [-] to denote #.

For a subset - ⊆ A ($), we denote by $ − - the subgraph $ [A ($) \ -], which

is further shortened to $ − 1 when - = {1}.

Awalk in a graph$ of length ℓ is defined as an alternating sequence of vertices

and edges, denoted as 〈10, 81, 11, 82, . . . , 8ℓ, 1ℓ〉, where 8D = 1D−11D for 1 ≤ D ≤ ℓ.

A 0-1 walk is a walk with the first vertex 0 and the last vertex 1. A path is a walk

with no repeated vertex, and a trail is a walk with no repeated edges. A cycle in a

graph is a non-empty path in which only the first and last vertices are the same. The

length of a path or a cycle is defined as the number of edges it contains. We use (ℓ

and 2ℓ to denote an induced path and an induced cycle on ℓ vertices, respectively.
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A subgraph # of a graph is maximal, respectively minimal, with respect to

some property if there is no proper supergraph, respectively proper subgraph, of

# with that property. A graph $ is connected if there exists at least one path

connecting any two vertices in the graph. The components of a graph $ are its

maximal connected subgraphs. A component is trivial if it consists of a single

vertex and is nontrivial otherwise.

A set - can be divided into subsets -1, -2, . . . , -ℓ, forming a partition of -

if the union of the subsets equals - and no two sets in the partition have any ele-

ments in common. A graph is bipartite if its vertex set can be partitioned into two

independent sets, : and E. The vertices in : can be adjacent to some or all of the

vertices in E. A complete bipartite graph is a special type of bipartite graph where

every vertex in : is connected to all vertices in E, and it is denoted as 'F,ℓ, where

|:| = F and |E | = ℓ

We say that a vertex 1 and an edge 8 dominate each other if at least one of

endpoints of 8 is adjacent to 1. Note that an edge dominates, and is dominated by,

both endpoints of this edge. A vertex 1 dominates a vertex set 3 if 3 is a subset of

/ [1].

An isomophism from a graph $1 to a graph $2 is a bijection function 9 :

A ($1) → A ($2) such that 01 ∈ ) ($1) if and only if 9 (0) 9 (1) ∈ ) ($2). We

say that a graph $1 is isomorphic to a graph $2 if there is an isomorphism from

$1 to $2. A graph $ contains a subgraph # if there is an induced subgraph of

$ that is isomorphic to #. For a set H of graphs, called obstructions, a graph $

is H -free if $ does not contain any obstruction from H . If H contains only one

single graph #, we say that a graph $ is #-free if $ does not contain #. If every

graph # in H is minimal, i.e., not containing any #′ in H as a proper induced
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subgraph, then the set H of graphs are the minimal forbidden induced subgraphs

of this graph class.

For a set @ of non-edges, we denote by $ + @ the graph with vertex set A ($)

and edge set ) ($) ∪ @. For a subset @ of ) ($), we denote by $ − @ the graph

with vertex setA ($) and edge set ) ($) \@. For @ ⊆ A ($)×A ($), we denote by

$/@ the graph with vertex setA ($) and edge set () ($) \@)∪ (@ \) ($)). For a

vertex subset - of A ($), we denote by $ − - the graph with vertex set A ($) \ -

and edge set ) ($) \ ) (- , / [-]). Let G be a graph class. The problems to be

studied are formally defined as follows.

Input: A graph $ and a nonnegative integer ! .

Output: Is there a set )+ of at most ! edges such that $+)+ is

in G?

G COMPLETION

Input: A graph $ and a nonnegative integer ! .

Output: Is there a set )− of at most ! edges such that $ − )−

is in G?

G EDGE DELETION

Input: A graph $ and a nonnegative integer ! .

Output: Is there a set )± of at most ! edges such that $/)±

is in G?

G EDITING
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Input: A graph $ and a nonnegative integer ! .

Output: Is there a set A− of at most ! vertices such that $ −A−
is in G?

G DELETION

Since it is always clear from the context what problem we are talking about,

when we mention an instance ($, !), we do not always explicitly specify the prob-

lem. We use opt($) to denote the size of optimal solutions of $ for the optimiza-

tion version of a certain problem. Thus, an instance ($, !) is a yes-instance if and

only if opt($) ≤ ! .

For each problem, we apply a sequence of reduction rules. Each rule transforms

an instance ($, !) to a new instance ($′, !′). We say that a rule is safe if ($, !)

is a yes-instance if and only if ($′, !′) is a yes-instance. Since all of our reduction

rules are very simple and obviously doable in polynomial time, we omit the details

of their implementation and the analysis of their running time.

2.2 Graph classes

We first introduce some general notations and then describe the graph classes we

studied in this thesis. A property is said to be non-trivial if it holds for at least one

graph, but not for all graphs. If a property is preserved under vertex deletion, it

is called hereditary. A graph class is hereditary if given a graph $ in the class,

then every induced subgraph of $ is also in the class. A large number of graph

classes we have learned are hereditary, such as forests, bipartite graphs, planar

graphs, perfect graphs, and chordal graphs. Let H be a set of graphs. We use GH
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to denote the graph class of all H -free graphs and say that GH is characterized by

H . Cai [23] has shown another way to look at hereditary graph classes.

Theorem 2.2.1 ([23]). A graph class G is hereditary if and only if it can be char-

acterized by a (possible infinite) set of graphs.

In our work, we only study some hereditary graph classes GH where H is a

finite set of graphs. We partition them into two parts: H consist of only one graph

or not. When H consists of one graph {#}, we write it as #.

2.2.1 #-free graphs

For#-free graphs, we are interested in#-free edgemodification problems when#

is a small graph, andwe list all small graphs with at most four vertices in Figure 2.2.

(a) '1 (b) *2 (c) '2 (d) *3 (e) '2 + *1 (f) (3 (g) '3

(h) *4 (i) '2 + *2 (j) 2'2 (k) (3 + *1 (l) (4 (m) claw (n) '3 + *1

(o) 24 (p) paw (q) diamond (r) '4

Figure 2.2: Graphs with at most four vertices.

We do not consider edge modification problems toward #-free graphs when

# is a one-vertex graph, which is '1, because we cannot get a '1-free graph by

modifying edges on a given graph. There are two two-vertex graphs (see Fig-

ure 2.2(b)(c)). Since the #-free completion problem is equivalent to the #-free
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edge deletion problem and '2 = *2, we only need to consider the edge modi-

fication problems toward '2-free graphs. Then the edge modification problems

for '2-free graphs can be solved by deleting all edges in polynomial time. When

# is a three-vertex graph, there are four candidates for it (see Figure 2.2(d)–(g)).

Since '3 = *3 and (3 = '2 + *1, we only need to consider the edge modification

problems towards '3-free graphs and (3-free graphs. In this thesis, we study the

(3-free graphs, also called cluster graphs.

The cluster graphs is a simple and vital graph class that has been studiedwidely.

A graph is a cluster graph if the vertex set of it can be partitioned into a set of

disjoint cliques. The complement of a cluster graph isz a complete multipartite

graph or a 2-leaf power [128].

When # is a four-vertex graph, there are eleven graphs (see Figure 2.2(h)–(r)).

For #-free edge modification problems, we only need to consider six four-vertex

graphs (since we do not consider the complement of a graph). We can see that

*4 = '4, diamond= '2 + *2, 24 = 2'2, paw=(3 + *1, claw= '3 + *1, and (4 = (4.

We study paw-free graphs here.

Proposition 2.2.2 ([129]). A graph is paw-free if and only if every component of

it is triangle-free or a complete multipartite graph with at least three parts.

In other words, if a connected paw-free graph contains a triangle, then it is

necessarily a complete multipartite graph.

2.2.2 H -free graphs

WhenH contains more than one graph, we study severalH -free graphs whereH

is a set of small graphs with at most five vertices.
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The first one is {(4,24}-free graphs, also called trivially perfect graphs [77].

A graph is a trivially perfect graph if, for every induced subgraph, the size of the

maximum independent set equals the number of maximal cliques. Trivially per-

fect graphs are also known as comparability graphs of trees [161], quasi-threshold

graphs [165], or intersection graphs of nested intervals [19], here a set of nested in-

tervals is a set of intervals such that every two intervals in the set either are disjoint

or one contains the other (see Figure 2.3).

4

5 6 7

8 9 G

ℎ

ℎ
G9

65
8

4
7

Figure 2.3: An example to show a trivially perfect graph is an intersection graph
of nested intervals.

Another H -free graph we studied is {2'2,24,25}-free graphs, which is also

called split graphs [64]. A graph is a split graph if its vertex set can be partitioned

into a clique and an independent set. We use2# *, where2 being a clique and * an

independent set, to denote a split partition of a split graph. Note that a split graph

may have more than one split partition; e.g, a complete graph '> has >+1 different

split partitions. The class of split graphs has many characterizations, and some of

them are introduced here. Foldes and Hammer [64] showed that a graph$ is a split

graph if and only if$ and$ are chordal graphs. Brandstädt et al. [19] showed that

a graph is a split graph if and only if $ is an intersection graph of a set of distinct

substars of a star, where a star is a bipartite graph such that one side of its partition

has only one vertex. The degree-sequence characterization is one of the most nice
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characterizations of split graphs [89, 155]. A graph $ with the degree sequence

71 ≥ 72 ≥ . . . ≥ 7> is a split graph if and only if
I∑
D=1
7D = I ( I − 1) +

>∑
D= I+1

7D,

where I is the largest index in the degree sequence such that 7 I ≥ I − 1. From the

definition, we can see that the complement of a split graph is also a split graph.

Thus, the split completion problem is polynomially equivalent to the split edge

deletion problem.

The last H -free graph class we studied is {2'2, (4}-free graphs, also called

pseudo-split graphs [115]. The class of pseudo-split graphs is a superclass of split

graphs. In particular, split graphs are precisely 25-free pseudo-split graphs. A

pseudo-split graph is a graph whose vertex set can be partitioned into a clique 2,

an independent set *, and a set 3 such that (1) 3 induces a 25; (2) 2 ⊆ / (1) for

every 1 ∈ 3; and (3) * ∩ / (1) = ∅ for every 1 ∈ 3, where 3 may or may not be

empty. We say that 2 # * # 3 is a pseudo-split partition of the graph, where 3 may

or may not be empty. If 3 is empty, then the graph is a split graph and2# * is a split

partition of it. Otherwise, the graph has a unique pseudo-split partition. (One may

also verify that 3 is amodule.) Similar as split graphs, the complement of a pseudo-

split graph remains a pseudo-split graph. Thus, the completion problem and the

edge deletion problem toward pseudo-split graphs are polynomially equivalent.

Note that a pseudo-split graph contains at most one 25. In case that a pseudo-split

graph does contain a 25, removing any vertex from the 25 leaves a split graph.

Therefore, those two classes are very “close.”
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2.2.3 Other classes

There are several graph classes that will be mentioned in this thesis and are closely

related to the graph classes we introduced above.

A chordal graph is a graph that every cycle of length larger than three in it

has a chord. The forbidden induced subgraphs of chordal graphs are all induced

cycles with lengths larger than three. From the forbidden induced subgraphs of

chordal graphs and split graphs (every induced cycle with a length larger than five

contains a 2'2), we can easily get that split graphs is a subclass of chordal graphs.

A graph is an interval graph if its vertices can be assigned to intervals on a real line

such that there is an edge between two vertices if and only if their corresponding

intervals intersect. A graph is a unit interval graph if it is an interval graph and all

the intervals have the same length. We can get that interval graphs is a subclass of

chordal graphs from another definition of chordal graphs and interval graphs, i.e.,

chordal graphs are intersection graphs of subtrees of a tree, and interval graphs

are intersection graphs of sub-paths of a path. Lekkerkerker and Boland [109]

showed that a graph is an interval graph if and only if it is chordal and contains

no asteroidal triple (Three independent vertices construct an asteroidal triple if

there exists a path between each pair of them avoiding every neighbor of the third

one).We get that trivially perfect graphs is a subclass of interval graphs since a

trivially perfect graph can be represented as a set of nested intervals. A graph is

a complete split graph if every vertex in the clique side is adjacent to all vertices

in the independent set side of a split partition. A graph $ is a threshold graph if

there is a real number J (called threshold) and an assignment 9 : A ($) → R such

that 01 is an edge in ) ($) if and only if 9 (0) + 9 (1) ≥ J [36]. The forbidden



CHAPTER 2. PRELIMINARIES 29

induced subgraphs of threshold graphs are 2'2, 24, and (4 [37]. For a complete

split graph $ with a split partition 2 # *, we can get that $ is a threshold graph

by assigning 9 (1) = J for every vertex 1 in 2 and 9 (0) = 0 for every vertex in

*. Therefore, complete split graphs is a subclass of split graphs. For a threshold

graph$ with threshold J, we can partition every vertex 1 with 9 (1) not less than J
2

into a set and other vertices into another set, then we can get a threshold partition.

Hence, threshold graphs is a subclass of split graphs. For a threshold graph$ with

a split partition 2 # *, where 2 = {11, 12, . . . , 1 |2 | } and * = {01, 02, . . . , 0 |* | }. If

we order the vertices in A ($) such that 9 (01) ≤ 9 (02) ≤ . . . ≤ 9 (0 |* |) < J
2 and

J
2 ≤ 9 (11) ≤ 9 (12) ≤ . . . ≤ 9 (1 |2 |), then we can get the inclusion relation of

neighbors of vertices in the clique part and the independent set part that / (01) ⊆

/ (02) ⊆ . . . ⊆ / (0 |* |) and / (11) ⊆ / (12) ⊆ . . . ⊆ / (1 |2 |).

Recall that a bipartite graph is a graph whose vertices can be partitioned into

two independent sets. The relationship between split graphs and bipartite graphs is

that we can obtain a split graph from a bipartite graph by adding edges to make one

side of the bipartite graph into a clique. A similar relationship also exists between

threshold graphs and chain graphs, i.e., we can get a chain graph by deleting all

edges in the clique side of a threshold graph [168, 166].

2.2.4 Graph modification problems on (subclasses of) chordal

graphs

As stated before, most graph modification problems are NP-complete, where the

input graphs are general graphs. There are several things we could do for NP-

complete problems if we do not want to give up. One is to try to find a solution



CHAPTER 2. PRELIMINARIES 30

that is good enough but not optimal, which means finding an approximation algo-

rithm [159]. One way is to design better exact algorithms for them [6, 160, 66,

65], which is to design an algorithm to obtain exact solutions with good exponen-

tial running times. Restricting the input graph classes to smaller classes is also an

approach we could use to deal with those NP-complete problems [150, 95, 74, 42,

30]. Another classical way to deal with NP-complete problems is to design param-

eterized algorithms [47, 48]. In this thesis, we will study the last two methods.

For an NP-complete graph modification problem, restricting the input graph

as a special graph is also a way to understand the hardness of the problem more

deeply. We have studied some vertex deletion problems such that both the input

graph and the target graph are a graph in subclasses of chordal graphs [30], where

those problems are NP-complete when the input graph is a general graph. We get

that some of them are still NP-complete, and some of them become polynomial-

time solvable. Figure 2.4 shows the results and major graph classes studied in [30]

and the relationship among these graph classes. In Figure 2.4, a solid edge between

two classes means that the lower one is a subclass of the higher one, and a directed

dashed edge from G1 to G2 is used when G2 is not an immediate subclass of G1.

The cyan, violet, and black edges indicate that the complexity of the representing

problems is in P, NP-complete, and unknown, respectively.

As we can see, some of these problems are still NP-complete. We first recall

several results from [30] here.

Theorem 2.2.3. The vertex deletion problem from split graphs to threshold graphs

is NP-complete.

Since split graphs and threshold graphs can be recognized in polynomial time [76],
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Figure 2.4: A summary of results and major graph classes studied in [30].

the vertex deletion problem from split graphs to threshold graphs is in NP. Now

we prove it is NP-hard by using a reduction in [168] that is used to prove the NP-

hardness of the vertex deletion problem from bipartite graphs to chain graphs. Let

$ be a bipartite graph with partition 2 and *. By adding all possible edges among

2 to make it a clique, we can get a split graph with split partition 2 # *, and we

use $′ to denote it. We claim that for every vertex set - that $ [-] is a chain

graph, i.e., being 2'2-free, if and only if $′[-] is a threshold graph, i.e., being

(4-free. Let - be a set of four vertices. If $ [-] is a 2'2, then we can get that

|- ∩ 2 | = |- ∩ * | = 2, then $′[-] is a (4. Similarly, if $′[-] is a (4, then we

can get that $ [-] is a 2'2 (since |- ∩ 2 | = |- ∩ * | = 2). Therefore, we can get

that this problem is NP-complete.

We also proved that the vertex deletex problem from split graphs to interval

graphs is NP-complete. Here we use threshold graphs, which is a commom sub-

class of split graphs and interval graphs, to help us to complete our proof. Recall
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that threshold graphs is a subclass of interval graphs, and this can be generalized

as follows. Let $1 and $2 be two threshold graphs with split partitions 2 # * and

2′ # *′, respectively. We use $1 ⊲⊳(2,2′) $2, or simply $1 ⊲⊳ $′ in the rest of the

paper if it does not cause any ambiguity, denote the graph obtained from $1 and

$2 by adding all possible edges between2 and 2′—i.e., its vertex set and edge set

are A ($1) ∪A ($2) and ) ($1) ∪ ) ($2) ∪ (2 ×2′) respectively. This is clearly a

split graph with the split partition 2 ∪2′ and * ∪ *′. See an example in Figure 2.5.

One can verify that $1 ⊲⊳ $2 is also an interval graph by their obstructions as

follows. A split graph that is not an interval graph has to contain a tent, a net, or

a rising sun (see Figure 2.6). Each of them has three independent vertices, which

have to be from * ∪ *′. Suppose that there is a net {4, 5, 6, ;, <, =} in $1 ⊲⊳ $2,

where 4, 5, 6 are three independent vertices in it and ;, <, = are neighbors of 4, 5, 6,

respectively. At least two of {;, <, =} come from same graph ($1 or $2), suppose

; and < are from $1. Then we can see that the subgraph induced by {4, 5, ;, <} is

not a threshold graph, which contradict that $1 is a threshold graph. All of these

three graphs cannot be contained in $1 ⊲⊳ $2 by using similar observation.

$1 $2

Figure 2.5: An example for the graph $1 ⊲⊳ $2.

Proposition 2.2.4. For any two threshold graphs $1,$2, the graph $1 ⊲⊳ $2 is

an interval graph.
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(a) net (b) tent (c) rising sun

Figure 2.6: Minimal split graphs that are not interval graphs.

A better way to look at Proposition 2.2.4 is probably through interval models.

Recall that an interval model for an interval graph is a set of intervals representing

its vertices. In this thesis, all intervals are closed. An interval model can be spec-

ified by the 2> endpoints for the > intervals. We use [lp(1), rp(1)] to denote an

interval for vertex 1.

Let $ be a threshold graph with split partition 2 # *, and let vertices in * be

ordered in a way that / (11) ⊆ / (12) ⊆ · · · ⊆ / (1 |* |). We can build an interval

model for $ by setting intervals

[D, D + 0.5] for every 1D ∈ *,
[
min{D : 1D ∈ / (1)}, |* | + 2

]
for every 1 ∈ / (*), and (2.1)

[
|* | + 1, |* | + 2

]
otherwise (D.8., 1 ∈ 2 \ / (*)).

See Figure 2.7 for illustration.

An interval model for $1 ⊲⊳ $2 can be built from the interval models for

$1 and $2 by (i) keeping the intervals for $1, and (ii) setting the interval to be[
|* | + |*′| + 3 − rp(1), |* | + |*′| + 3 − lp(1)

]
for each 1 ∈ A ($2). See Figure 2.8

for illustration.

Theorem 2.2.5. The vertex deletion problem from split graphs to interval graphs

is NP-complete.
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Figure 2.7: The interval model for a threshold graph given by (2.1).

1 2 3 4 5

· · ·

|$ | − 2 |$ | |$ | + 2

··
·

|$ | + |$ ′ | + 2

· · ·

··
·

Figure 2.8: The interval model for $1 ⊲⊳ $2.

Since split graphs and interval graphs can be recognized in polynomial time [76,

18, 102, 93, 86, 38, 27], the vertex deletion problem from split graphs to interval

graphs is in NP. Let $ be a split graph with split partition 2 # *. We take a com-

plete split graph $′ with split partition 2′ # *′, where |2′| = |*′| = |2 |, and let

# = $ ⊲⊳ $′. We argue that ($, !) is a yes-instance of the vertex deletion prob-

lem from split graphs to threshold graphs if and only if (#, !) is a yes-instance of

the vertex deletion problem from split graphs to interval graphs. When ! ≥ |2 |,

it is trivial to get that these two problems are yes-instance. Now we assume that

! < |2 |.

Suppose that a vertex set A− is a solution of ($, !), then $ −A− is a threshold

graph. According to Proposition 2.2.4, the graph ($ − A−) ⊲⊳ $′ is an interval

graph. It is the same graph as # −A−. Therefore, the solution A− is also a solution
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of (#, !). This verifies the only if direction.

Now suppose that # − A−, where |A− | ≤ ! , is an interval graph. Let $′′ =

$ −
(
A− ∩A ($)

)
. Suppose for contradiction that $′′ is not a threshold graph, then

$′′must contain some (4. Assume that 11010212 is a (4 in$′′. Since$′′ is a split

graph, wemust have 01, and 02 are vertices in2 and 11, and 12 are vertices in *. On

the other hand, by the assumption ! < |2 |, neither2′\A− nor *′\A− can be empty.

Let 0 ∈ 2′ \A− and 1 ∈ *′ \A−. By the construction, the only edges between {0, 1}

and {11, 01, 02, 12} are 001 and 002, but then these six vertices together induce a

net in # − A−, which is a contradiction. Then by Theorem 2.2.3, we can ge that

the vertex deletion problem from split graphs to interval graphs is NP-complete.

We also find that several graph modification problems become easier when the

input graph is a graph in a subclass of chordal graphs, which means these problems

could be solved in polynomial time. Next we recall some polynomial-time algo-

rithms from [30]. Our focus would be laid on the use of structural properties, and

if possible, we would present the simplest algorithms without explaining on the

implementation details. These problems may have more efficient algorithms, and

with more complex data structures and algorithmic finesses, some of them may

even be solved in linear time.

We present two algorithms on split graphs in detail, for which we need to put

split partitions under scrutiny. It is a trouble to us that a split graph can have many

different partitions. Hence the first thing we need to do is to restrict split partitions

that a split graph could have. Let 2 # * be a split partition of a split graph $. If

some vertex in * is completely adjacent to2, then we can move such a vertex 1 to2

to make another split partition2′ = 2∪ {1} and *′ = * \ {1}. Note that the vertex 1

may not be unique, and the resulting graphs by moving them would be isomorphic.
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Moreover, after such a move, no vertex of *′ can be completely adjacent to2′. The

following proposition fully characterizes split graphs with more than one different

split partition.

Proposition 2.2.6. Let $ be a split graph with at least two split partitions, and let

2 # * and 2′ # *′ be two different split partitions of $.

(i) The difference between |2 | and |2′| is at most one.

(ii) If |2 | = |2′| +1, then 2 is a maximum clique, and *′ is a maximum indepen-

dent set of $; moreover, 2′ ⊂ 2.

(iii) If |2 | = |2′|, then $ − ) (2) and $ − ) (2′) are isomorphic.

As a result, a split graph has either one or two essentially distinct split parti-

tions. On the other hand, of all split partitions of a complete bipartite graph, only

one, whose independent set is the largest, satisfies the definition of complete bipar-

tite graphs, and we will exclusively refer to it when we are discussing a complete

split graph.

Let $ be a split graph with split partition 2 # * and let $′ be a {2'2, (3}-free

subgraph of $. Note that {2'2, (3}-free graphs are cluster graphs with only one

nontrivial clique. If$′ has edges, all of themmust be in the same nontrivial clique.

At most one vertex of this clique can be from *; therefore, all other vertices of *

either are deleted or become isolated in $′. In other words, for each other vertex

1 in *, either 1 or all its neighbors have to be deleted.

Theorem 2.2.7. The vertex deletion problem from split graphs to {2'2, (3}-free

graphs is in P.
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0. S ← ∅;
1. build a bipartite graph $′ by removing all edges among 2 from $;
2. find a minimum vertex cover of $′, and add it to S;
3. for each 1 ∈ * do

find a minimum vertex cover - of $′ − (2 \ / (1)) − 1;
add - ∪ (2 \ / (1)) to S;

4. return a set in S with the minimum cardinality.

Figure 2.9: An algorithm for the vertex deletion problem from split graphs to
{2'2, (3}-free graphs.

Let $ be the input graph to the vertex deletion problem from split graphs to

{2'2, (3}-free graphs. Let 2 # * be a split partition of $. We use the algorithm in

Figure 2.9 to find a minimum solution to$. To argue its correctness, we show that

(i) every set inS, added in step 2 or 3, is a solution to$, and (ii) at least one of them

is minimum. For (i), it is easy to verify that any vertex cover of $′ = $ − ) (2)

is a solution: There is no edge between 2 and * after its deletion. The situation in

step 3 is similar; note that / [1] # (* \ {1}) is a split partition of $ −
(
2 \ / (1)

)
.

Let A− be a minimum solution to $. In the first case, every vertex 1 ∈ * \A− is

isolated in $ −A−. In other words, A− contains a vertex cover of $′ = $ − ) (2),

and then the solution found by step 2 is already the minimum. Henceforth we

assume that there exists a vertex 1 ∈ * \A− such that / (1) ! A−. Since any vertex

0 ∈ / (1) and K ∈ 2 \/ (1) induce a (3 with 1, in this case all vertices in2 \/ (1)

must be in A−. Note that the vertex 1 is unique: If two vertices in * \ A− have

neighbors in 2 \ A−, then they are in a non-clique component. Therefore, after

removing 2 \ / (1) and 1 from the graph, it reduces to the first case. This justifies

step 3.

The algorithm in Figure 2.9 makes " (>) calls to an algorithm for the bipartite

vertex cover problem, each taking " (B√>) time, and hence the whole algorithm
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runs in " (B>√>) time. Therefore, we get that the vertex deletion problem from

split graphs to {2'2, (3}-free graphs is in (.

Since {2'2, (3}-free graphs is a common subclass of split graphs and clus-

ter graphs, we can apply the algorithm of Theorem 2.2.7 to the vertex deletion

problem from split graphs to cluster graphs. Moreover, since split graphs is self-

complementary, while the complement a {2'2, (3}-free graph is a complete split

graph, we get that the vertex deletion problem from split graphs to complete split

graphs is also in P.

Corollary 2.2.8. The vertex deletion problem from split graphs to cluster graphs

and the vertex deletion problem from split graphs to complete split graphs are in

(.

A similar observation can be used to solve the vertex deletion problem from

split graphs to unit interval graphs. We start from a simple property of connected

graphs in a common subclass of split graphs and unit interval graphs. Figure 2.10

shows a unit interval model of a connected split graph with a split partition 2 # *

that is also a unit interval graph, where violet intervals are for vertices in 2 and

cyan for *. Note that the vertex 1 from * is completely adjacent to 2.

%ℓ

%"
&1

&2

&

Figure 2.10: An intervalmodel for a connected split graph that is also a unit interval
graph.

Proposition 2.2.9. Let$ be a connected split graph and let2#* be a split partition

of $. If $ is a unit interval graph, then |* | ≤ 3, and the equality holds only when

there is a vertex 1 ∈ * adjacent to all vertices in 2.
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Proof. We prove |* | ≤ 2 if 2 is a maximum clique of $, and then the proposition

follows from Proposition 2.2.6(i). Let 0ℓ and 0L be the vertices in 2 with respec-

tively the leftmost and rightmost intervals. Suppose for contradiction that |* | > 2.

Let 11 and 12 be the vertices in * with respectively the leftmost and rightmost in-

tervals. Then lp(0ℓ) < rp(11) < lp(0L) < rp(0ℓ) < lp(12) < rp(0L), where the

second and the fourth inequalities follow from that2 is a maximum clique, and the

others from the selections of the four vertices. Since $ is connected, the interval

for any other vertex 1 in * \ {11, 12}, which is nonempty, has to lie in between

rp(11) and lp(12). But then it has to contain [lp(0L), rp(0ℓ)], and 2 ∪ {1} is a

clique, contradicting that 2 is a maximum clique of $. !

Similar as Theorem 2.2.7, our algorithm for the vertex deletion problem from

split graphs to unit interval graphs separates into two cases, based on whether there

is a vertex in * \A− adjacent to all vertices in 2 \A−.

Theorem 2.2.10. The vertex deletion problem from split graphs to unit interval

graphs is in (.

Let $ be the input graph to the vertex deletion problem from split graphs to

unit interval graphs and let 2 # * be a split partition of $. We use the algorithm

in Figure 2.11 to find a solution. To argue its correctness, we show that all sets put

into S in steps 1–4 are solutions to $, and at least one of them is minimum. It is

clear for step 1. After the deletion of a solution found in step 2, only the vertex 1

in * remains adjacent to the remaining vertices of 2. In step 3, only the vertices 11

and 12 from * can remain adjacent to vertices in 2. In step 3.2, no vertex in 2 is

adjacent to both 11 and 12; in step 3.3, every vertex in 2 is adjacent to at least one

of 11 and 12. In either case, it is easy to verify that the graph is a unit interval graph
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0. S ← ∅;
1. solve the vertex deletion problem from split graphs to {2'2, (3}-free

graphs on $, and add the solution to S;
case 1:

2. for each 1 ∈ * do
find a minimum vertex cover of $ − 1 − ) (2), and add it to S;

3. for each 11, 12 ∈ * do
3.1. $′ ← $ − {11, 12} − ) (2);
3.2. find a minimum vertex cover of $′ − / (11) ∩ / (12),

and add its union with / (11) ∩ / (12) to S;
3.3. find a minimum vertex cover of $′ − 2 \

(
/ (11) ∪ / (12)

)
,

and add its union with 2 \
(
/ (11) ∪ / (12)

)
to S;

case 2:
4. for each 1 ∈ * do

$′′ ← $ −
(
2 \ / (1)

)
with split partition / [1] and * \ {1};

solve $′′ as case 1, but append 2 \ / (1) to each solution found;
5. return a set in S with the minimum cardinality.

Figure 2.11: An algorithm for the vertex deletion problem from split graphs to unit
interval graphs.

by building a unit interval model directly. Step 4 follows from the same argument

as above: After the deletion of 2 \ / (1), it reduces to one of the three previous

steps.

Let A− be a minimum solution to $. If $ −A− is a {2'2, (3}-free graph, then

the solution found by step 1 is the minimum. Henceforth we assume that $ − A−
contains a component$ [M] such thatM is not a clique; note that such a component

contains all vertices in 2 \A− and hence is unique.

In the first case, every vertex 1 ∈ M∩ * has at least one non-neighbor in 2 \A−,

i.e., / (1) \ A− ⊂ 2 \ A−. According to Proposition 2.2.9, we have |M ∩ * | ≤ 2. If

M ∩ * = {1}, then $ − (A− ∪ {1}) is a {2'2, (3}-free graph and the only nontrivial

clique M \ {1} is a subset of 2; hence step 2 always find a minimum solution. In

the rest of this case, the setM ∩ * has two different vertices; let them be 11 and 12.
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Since any 01 ∈ / (11) ∩ / (12) and 02 ∈ 2 \
(
/ (11) ∪ / (12)

)
induce a claw with

{11, 12}, at least one of the two sets needs to be empty or completely contained in

A−. Steps 3.2 and 3.3 take care of these two situations separately.

We are now in the second case, where2\A− ⊆ / (1) for some vertex 1 ∈ *\A−;

in other words, A− contains all vertices in 2 \ / (1). There might be two of such

vertices, when we can take 1 to be either of them. Clearly, / [1] and * \ {1} is then

a split partition of $′′ = $ −
(
2 \ / (1)

)
, which has a solution A− \

(
2 \ / (1)

)
.

Moreover, under this new split partition, we reduce it to the first case.

The algorithm in Figure 2.11 makes" (>3) calls to the algorithm for the bipar-

tite vertex cover problem, each taking " (B√>) time, and hence the whole algo-

rithm runs in " (B>3.5) time. Therefore, we have that the vertex deletion problem

from split graphs to unit interval graphs is in (.

2.3 Parameterized algorithms

Parameterized complexity is a framework in computer science that aims to analyze

the computational complexity of problems beyond the traditional polynomial time

complexity analysis. Downey and Fellows [47, 48, 49, 50, 51] initially studied

the theory of parameterized complexity, and they gave a systematic complexity

analysis of parameterized problems. In parameterized complexity, we want to find

a parameter that really affects the complexity of the problem. Note that there may

be several choices of parameters for the same problem.

A parameterized problem is a language + ⊆ Σ∗ × N, where Σ is a fixed, finite

alphabet. An input of a parameterized problem is an instance (;, !) ∈ Σ∗ × N,

where ! is called the parameter. A parameterized problem + ⊆ Σ∗ × N is fixed-
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parameter tractable (FPT) if given an instance (;, !) of it there is an algorithm

that can correctly determine whether (;, !) is in + in time 9 (!) · | (;, !) |6, where

9 : N→ N is a computable function and 6 is a constant.

2.4 Kernelization algorithms

A kernelization algorithm, or in short, kernelization is a polynomial-time algo-

rithm that takes an instance (;, !) of a parameterized problem as input and pro-

duces an equivalent instance (;′, !′) such that (;, !) is a yes-instance if and only

if (;′, !′) is a yes-instance, where !′ ≤ ! and the size of $′ is bounded by a com-

putable function of !′. The output instance (;′, !′) is a polynomial kernel if the

size of $′ is bounded from above by a polynomial function of !′.

It is known that a parameterized problem is fixed-parameter tractable if and

only if it admits a kernelization. If a parameterized problem admits a kernelization,

we can apply a polynomial-time kernelization algorithm to every instance of the

problem to obtain an equivalent instance whose size is bounded by a function of

the parameter. We can then use an algorithm to determine whether the resulting

instance is a yes-instance, and the running time depends only on the parameter.

This enables us to quickly establish that the problem is fixed-parameter tractable.

For the other direction, it is not immediately apparent but not difficult to see, as

demonstrated in [67].

We will focus on the kernelization of edge modification problems in this the-

sis. Many techniques have been used to design a kernelization algorithm for an

FPT problem, as shown in [114, 68, 103, 67]. These techniques include crown

decomposition [35, 113], linear programming [125, 32], sunflower lemma [59],
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modular decomposition [9, 82], matroids [105, 106], and rainbow matching [8].

In this chapter, we introduce the most intuitive method used in kernelization algo-

rithms for both vertex modification problems and edge modification problems in a

hereditary graph class G that is characterized by finite obstructions.

2.4.1 The sunflower lemma for vertex modification

Let G be a hereditary graph class with finite obstructions. The sunflower lemma

was first introduced by Erdös and Rado [59], which is a most intuitive and simple

method used in kernelization algorithms for vertex modification problems. Let us

first introduce the definition of the sunflower. A sunflower is a collection of ! sets

31, 32, . . ., 3! such that the intersection of any pair of distinct sets is identical

(use C to denote it) and every set minus the intersection is nonempty, we call the

intersection as the core of the sunflower and 3D \ C for every 1 ≤ D ≤ ! as a petal

of the sunflower.

Theorem 2.4.1 ([59]). LetS be a family of distinct sets over a universeM, and each

set has cardinality at most 7. If |S| > 7!(! − 1)7 , then S contains a sunflower

with ! petals.

For the vertex deletion problem to G, we need to hit all of the obstructions in

the input graph. Then we can reduce the vertex deletion problem to the 7-hitting

set problem, where 7 is the size of an obstruction for G with a maximum number

of vertices. By Theorem 2.4.1, we can easily get an" (!7)-vertex kernel for the 7-

hitting set problem, which means that the vertex deletion problem to G also admits

an " (!7)-vertex kernel.
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2.4.2 The modulator approach

For edge modification problems, the sunflower lemma cannot be used to get a poly-

nomial kernel since we may get a new obstruction by deleting or adding an edge,

which means that it is not sufficient only to hit the original obstructions. Here we

introduce one of the most common methods, the modulator method, used for the

kernelization algorithm of the G edge modification problems (also used for the

vertex deletion problems).

A modulator for a G edge modification problem is a set of vertices whose re-

moval results in a graph in G. Given an instance ($, !) of a G edge modification

problem, we can get a modulator by packing a maximal set of obstructions if G

is a graph class characterized by finite obstructions, or calling a constant approxi-

mation algorithm of the problem if it exists. Suppose . is a modulator of ($, !),

then $ −. is a graph in G, and then the properties of this graph class can be used

to reduce the size of $ − . . To reduce the size of $ − . as much as possible,

usually, we can add more vertices in the modulator and make it satisfy some par-

ticular property. In [56], the modulator must contain at least one edge of every

obstruction, and in [2], the modulator must contain at least nine vertices of every

obstruction.

Given an instance ($, !) of a G edge modification problem, we define that a

set . ⊆ A ($) of vertices is a 2-modulator of a graph $ if every obstruction in $

intersects . by at least two vertices.



Chapter 3

Cluster Graphs

In this chapter, we introduce a 2!-vertex kernel for the cluster edge deletion prob-

lem. Also, we show that the same algorithm produces a kernel of the same size for

the strong triadic closure problem, which, though originally not posed as an edge

modification problem, is closely related to cluster edge deletion [101]. As in [28],

both algorithms work for the weighted versions of the problems as well.

Cluster graphs is a graph class that is widely used in many applications. In

computational biology [146], the genes that manifest similar expression pattern

would be identified as a group in the analysis of genes expression data. We can

build a cluster graph whose vertices correspond to the genes and there is an edge

between two vertices if and only if their corresponding genes manifest similar ex-

pression pattern.

45
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3.1 Edge deletion

Our first problem is the cluster edge deletion problem. It is easy to see that the

cluster completion problem is trivial: the minimum solution is to add edges to

make every component of the input graph complete. Both cluster edge editing

and cluster edge deletion are NP-complete and have received wide attentions. The

cluster edge deletion problem is NP-hard even on some special graph classes, such

as graphs with maximum degree four [100] and {2'2, 3'1}-free graphs [73]. It

could be solvable in polynomial time on cographs [73] (where a cograph is a graph

that does not contain a (4 as an induced subgraph) and in time " (1.42! + B) on

general graphs [14].

3.1.1 Previous results

Gruttemeier and Komusiewicz [81] showed a 4!-vertex kernel for the cluster edge

deletion problem. As we have mentioned before, Cao and Chen [28] devised a

2!-vertex kernel for the cluster edge editing problem and their algorithm actually

implies a 2!-vertex kernel for the cluster edge deletion problem.

3.1.2 The reduction rule

We only have one reduction rule for our kernelization algorithm, which is stated

as below.

Rule 3.1.1. If there is a simplicial vertex 1 such that 7 (/ [1]) ≤ 7 (1), then remove

/ [1] and decrease ! by 7 (/ [1]).

Now, we show the safeness of Rule 3.1.1.
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Lemma 3.1.1. The Rule 3.1.1 is safe.

Proof. We show that NFJ ($) = NFJ ($ − / [1]) + 7 (/ [1]). Let )− be an optimal

solution to the graph $. We have nothing to show if / [1] makes a separate com-

ponent of$ −)−. In the rest of the proof, / [1] is not a component of$ −)−. Let

$ [-] denote the component of $ − )− that contains 1. Since - is a clique and

/ [1] ≠ - , we have - ⊆ / [1]. In other words, neither - nor / [1] \ - is empty.

Since any induced subgraph of $ − )− is a cluster graph, the subset of edges in

)− with both endpoints in A ($) \/ [1] is a solution to $ −/ [1]. Noting that this

solution is disjoint from ) (- ,A ($) \ -), we have

NFJ ($) ≥ |)− ∩ ) ($ − / [1]) | + 7 (-)

≥ NFJ ($ − / [1]) + |- | · |/ [1] \ - |

≥ NFJ ($ − / [1]) + |- | + |/ [1] \ - | − 1

= NFJ ($ − / [1]) + 7 (1),

(3.1)

where the third inequality holds because both |- | and |/ [1] \ - | are positive in-

tegers. For any solution )′− of $ − / [1], the set )′− ∪ ) (/ [1],A ($) \ / [1]) is a

solution of $. Thus, we have

opt($) ≤ opt($ − / [1]) + 7 (/ [1]) ≤ opt($ − / [1]) + 7 (1). (3.2)

Therefore, all the inequalities in (3.1) and (3.2) are tight. In other words, if we

remove all the edges between / [1] and A ($) \ / [1], and then delete an optimal

solution to $ − / [1], then we have an optimal solution to the graph $. !

Let us mention that the condition of Rule 3.1.1 can be weakened to 7 (/ [1]) <



CHAPTER 3. CLUSTER GRAPHS 48

27 (1) − 1. We do not prove the stronger statement because it does not improve

the analysis of the kernel size, but let us briefly explain why it is true. The bound

opt($) ≥ opt($−/ [1])+27 (1)−1 holds unless |- | = 1 or |/ [1] \- | = 1; see the

third inequality of (3.1). In the first case, 1 itself makes a trivial component, and all

the vertices in / (1) are in the same component; this can only happen when there

exists another vertex 0 with / (1) ⊆ / (0). In the second case, a vertex 0 ∈ / (1) is

incident to all the edges between / (1) and A ($) \/ [1]. If 7 (/ [1]) < 27 (1) − 1,

then opt($) ≥ opt($ − / [1]) + 27 (1) − 1 holds in both cases.

3.2 An improved kernel

With Rule 3.1.1, we can prove Theorem 1.4.1, which we recall here.

Theorem 3.2.1. The cluster deletion problem admits a 2!-vertex kernel.

Proof. Let $ be a graph to which Rule 3.1.1 is not applicable. We show that if

($, !) is a yes-instance, then |A ($) | ≤ 2! . Let )− be an optimal solution to $,

and let {11, 12, . . . , 1L} be the vertices that are not incident to any edge in )−; they

have to be simplicial. For D = 1, . . . , L , the set / [1D] forms a component of$−)−.

Note that for distinct D, I ∈ {1, . . . , L}, the sets / [1D] and / [1 I ] are either the same

(when 1D and 1 I are true twins) or mutually disjoint: if / [1D] ≠ / [1 I ] and there

exists ; ∈ / [1D]∩/ [1 I ], then one of ;1D and ;1 I needs to be in )−. We divide the

cost of each edge 01 ∈ )− and assign them to 0 and 1 equally. For D = 1, . . . , L , the

total cost attributed to all the vertices in / [1D] is 7 (/ [1D])/2, because Rule 3.1.1

does not apply to 1D. Each of the vertices not in
⋃L
D=1 / [1D] is an endpoint of at

least one edge in )− and therefore bears cost at least 1/2. Summing them up, we

get a lower bound for the total cost:
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|)− | ≥
1
2

L∑
D=1

7 (/ [1D]) +
1
2 |A ($) \

L⋃
D=1

/ [1D] |

≥1
2

L∑
D=1

|/ [1D] | +
1
2 |A ($) \

L⋃
D=1

/ [1D] |

≥1
2 |A ($) |.

The second inequality holds since Rule 3.1.1 does not apply to 1D for 1 ≤ D ≤ L.

Thus, |A ($) |/2 ≤ |)− | ≤ ! for a yes-instance, and we can return a trivial no-

instance if |A ($) | > 2! . This concludes the proof. !

We provide the algorithm in Figure 3.1, whose running time is " (>4). Step

1 can be done in O(1) time. In Step 2, we can find a simplical vertex 1 such that

7 (/ [1]) < 7 (1) in " (>3) time and do Rule 3.1.1 in " (>) time. Since we delete

at least one vertex when we apply Rule 3.1.1, we apply Rule 3.1.1 at most > times.

Therefore, Step 2 would take" (>4) time. Steps 3 and 4 can be completed in" (>)

time. Hence, we conclude that the running time of the kernelization algorithm for

the cluster edge deletion problem is " (>4).

procedure reduce($, !)

1. if ! < 0 then return a trivial no-instance;
2. if there is a simplicial vertex 0 such that 7 (/ [1]) ≤ 7 (1) then

apply Rule 3.1.1 and return reduce($, !);
3. if |A ($) | ≤ 2! then return ($, !);
4. else return a trivial no-instance.

Figure 3.1: The kernelization algorithm for CLUSTER EDGE DELETION.
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3.3 Strong triadic closure

In the original definition, which was motivated by applications in social networks,

the strong triadic closure problem asks for a partition of the edge set of the input

graph into strong edges and weak ones, such that for every two vertices that are

linked to a common neighbor with strong edges are adjacent. The objective is to

maximize the number of strong edges. For our purpose, it is more convenient to

define the problem as follows.

Input: A graph $ and a nonnegative integer ! .

Output: Is there a set )− of at most ! edges such that the

missing edge of every (3 of $ − )− is in ) ($)?

Strong triadic closure

Thus, we call the set of weak edges as the solution to the strong triadic closure

problem. For any set )− ⊆ ) ($), if $ − )− is a cluster graph, then )− is also a

solution to the strong triadic closure problem: setting all edges in )− weak, and

all other edges strong is a feasible partition of ) ($). As illustrated in Figure 3.2,

however, a strong triadic closure of a graph can have fewer weak edges than an

optimal solution to the cluster edge deletion problem on the same graph.

Surprisingly, Rule 3.1.1 works for the strong triadic closure problem without

change.

Lemma 3.3.1. Rule 3.1.1 is safe for the strong triadic closure problem.

Proof. We show that opt($) = opt($ − / [1]) + 7 (/ [1]). Let )− be an opti-

mal solution to the graph $. We have nothing to show if / [1] makes a sepa-

rate component of $ − )−. In the rest of the proof, / [1] is not a component of
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(a) (b) (c)

Figure 3.2: The example given by Konstantinidis et al. [101]: (a) the input graph;
(b) a maximum cluster subgraph with seven edges; and (c) a maximum strong
triadic closure with eight edges.

$ − )−. Let - denote the set of vertices with / [-] = / [1], and C ⊆ / [1] the

ends of these edges in ) (/ [1],A ($) \ / [1]) \ )− (i.e., edges between / [1] and

A ($) \ / [1] that are not in )−). Note that - ≠ ∅ because 1 ∈ - , and C ≠ ∅

because ) (/ [1],A ($) \ / [1]) ! )− (otherwise / [1] is a component of $ − )−
by the minimality of )−).

By definition, the subset of edges in )− with both ends in$−/ [1] is a solution

to$−/ [1]. By the selection of - andC , every vertex in / [1] \ (-∪C ) is incident

to at least one edge in )− ∩ ) (/ [1],A ($) \ / [1]). For every ; ∈ - and every

< ∈ C , there exists = ∈ A ($) \ / [1] that is adjacent to < but not ;; hence, ;<= is a

(3. As a result, all the edges between - and C have to be in )−. Thus,

opt($) =|)− ∩ ) ($ − / [1]) | + |)− ∩ ) (/ [1],A ($) \ / [1]) | + |)− ∩ ) (/ [1]) |

≥opt($ − / [1]) + |/ [1] \ (- ∪ C ) | + |- | · |C |

≥opt($ − / [1]) + |/ [1] | − |- | − |C | + |- | + |C | − 1 (3.3)

≥opt($ − / [1]) + |/ [1] | − 1

=opt($ − / [1]) + 7 (1),

where |- | · |C | ≥ |- | + |C | − 1 because both |- | and |C | are positive integers. For



CHAPTER 3. CLUSTER GRAPHS 52

any solution )′− of $ − / [1], the set )′− ∪ ) (/ [1],A ($) \ / [1]) is a solution of

$. Thus,

opt($) ≤ opt($ − / [1]) + 7 (/ [1]) ≤ opt($ − / [1]) + 7 (1). (3.4)

Therefore, all the inequalities in (3.3) and (3.4) are tight. In other words, if we

remove all the edges between / [1] and A ($) \ / [1], and then delete an optimal

solution to $ − / [1], then we have an optimal solution to the graph $. !

The proof of the following theorem is exactly same as that for Theorem 1.4.1,

hence omitted.

Theorem 3.3.2. There is a 2!-vertex kernel for the strong triadic closure problem.

For the strong triadic closure problem, we may alternatively state Rule 3.1.1 as

follows.

Rule 3.3.1. If there is a simplicial vertex 1 such that 7 (/ [1]) ≤ 7 (1), then set

all the edges in $ [/ [1]] strong, set all the edges between / [1] and A ($) \ / [1]

weak, and delete / [1].

We should remark that our kernelization algorithms for the cluster edge dele-

tion problem and the strong triadic closure problemwork for the weighted versions

as well; see [28]. By using the cutting lemma, we could modify the Rule 3.1.1 to

that if there is a simplicial vertex 1 such that
∑
0∈/ [1],K∈/ (/ [1]) KJ (0,K) ≤ 7 (1),

then remove / [1] and decrease ! by
∑
0∈/ [1],K∈/ (/ [1]) KJ (0,K).



Chapter 4

Paw-free Graphs

In this chapter, we study the kernelization algorithm for the paw-free completion

problem. By Proposition 2.2.2, we get that each component of a paw-free graph

is either triangle-free or a complete multipartite graph with at least three parts,

which motivates us to use the modulator approach. Note that the deletion of all

the vertices in the modulator leaves the graph paw-free. Given an instance ($, !)

of the paw-free completion problem, we first construct a 2-modulator . such that

any isolated vertex 1 in $ − . cannot dominate all the edges of $1 where $1 is

the component of $ containing 1, and then study the interaction between . and

the components of $ − . , which are triangle-free or complete multipartite.

Independent of our work, Eiben et al. [58] obtain similar results for edge mod-

ification problems to paw-free graphs. They also develop a polynomial kernel

for the editing problem. They also take the modulator approach and construct a

modulator . by finding a maximal packing of edge-disjoint paws. They first ap-

ply several simple rules to bound the number of vertices in complete multipartite

components in $ − . by " (!3). The gist is to bound the size of triangle-free

53
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components of $ − . . They proved that for any component $′ of $, the number

of vertices in the triangle-free components of $′ − . is at most 4! + 6. It is easy

to bound by ! the number of components containing a paw of $, implying that

the number of vertices in the triangle-free components of $ − . is " (!2). In our

method, we construct a specific modulator and prove that for a component $′ of

$, the order of $′ −. is 6 · |$′ ∩. | where 6 is a constant, hence we get an " (!)

kernel.

4.1 Observations

Given an instance ($, !) of the paw-free completion problem, let. be a 2-modulator

of $. Before going details of our kernelization algorithm, we give several simple

observations we get for this problem. A simple fact is on the adjacency between a

vertex and a (maximal) clique in a paw-free graph.

Proposition 4.1.1. Let ' be a clique in a paw-free graph. If a vertex 1 is adjacent

to ' , then |' \ / [1] | ≤ 1.

Proof. It is trivially true when |' | ≤ 2. For |' | ≥ 3, any two vertices in ' \/ [1],

a vertex in ' ∩ / (1), and 1 itself induce a paw if |' \ / [1] | > 1. !

Note that $. is paw-free. The following three propositions characterize the

interaction between the modulator . and the components of $. .

Proposition 4.1.2. If a vertex 1 ∈ . forms a triangle with two vertices in a com-

ponent 2 of $ − . , then / (1) ⊆ . ∪ 2.

Proof. Suppose that 01K is a triangle with 0,K ∈ A (2). Suppose for contrary that

there is a vertex ; in / (1) that is not in . ∪ 2, which means that ; is in another
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component of $ − . . Then {0, 1,K, ;} induces a paw with only one vertex in .

(see Figure 4.1), contradicting the definition of the 2-modulator. !

0 K

2

;

1

$ \ (. ∪ 2)

Figure 4.1: Illustration for Proposition 4.1.2.

In other words, if a vertex 1 in . forms a triangle with a component of$ −. ,

then we can see 1 as a “private” neighbor of this component. As we will see, these

components (forming triangles with a single vertex from .) are the focus of our

algorithms.

Proposition 4.1.3. If a vertex 1 ∈ . forms a triangle with an edge in a triangle-

free component 2 of $ − . , then (i) 1 is adjacent to all the vertices of 2; and (ii)

2 is complete bipartite.

Proof. Let 01K be the triangle with 0,K ∈ A (2). Suppose that there is a vertex

in 2 nonadjacent to 1. We can find a path ( in 2 from this vertex to 0, and let ;

be the last vertex on this path nonadjacent to 1. If ; is the neighbor of 0 on this

path, we extend the path by appending K after 0; otherwise, every vertex on the

subpath of ( that from 0′ to 0 is adjacent to 1, where 0′ is the neighbor of ; on this

subpath, and the length of this subpath is at least two. Therefore, we always have

three consecutive vertices ;, 0′,K′, of which only ; is nonadjacent to 1. Since 2

is triangle-free, ;K′ ∉ ) ($). But then {;, 0′, 1,K′} induces a paw with only one
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vertex in . (see Figure 4.2), a contradiction to the definition of the 2-modulator.

Therefore, every vertex in 2 is adjacent to 1.

; 0′ K′ 0 K

1

. . .

2

Figure 4.2: Illustration for Proposition 4.1.3.

For the second assertion, suppose that there are three vertices ;, <, = in 2 with

only one edge among them, assume it is ;<. By the first assertion, we know that 1

is adjacent to ;, < and =. Then they induce a paw with 1, where 1 is the only vertex

of the paw that is in. , again contradicting the definition of the 2-modulator. Then

2 is a triangle-free and (3-free component. Thus, 2 is complete bipartite. !

We say that a triangle-free component of $ − . is of type I if there exist two

vertices in it that form a triangle with a vertex in . , or type II otherwise. By

Proposition 4.1.3, for each type-I triangle-free component, all its vertices have a

common neighbor in . . Note that all trivial components of $ − . are type-II

triangle-free components.

Proposition 4.1.4. For any complete multipartite component 2 of $ − . and

vertex 1 ∈ . adjacent to 2, the set of vertices in 2 that are nonadjacent to 1 is

either empty or precisely one part of 2.

Proof. Suppose that the parts of 2 areM1, . . .,MF. We have nothing to prove if all

the vertices in 2 are adjacent to 1. In the following we assume that, without loss

of generality, 1 is adjacent to a vertex 0 ∈ M1 and nonadjacent to a vertex K ∈ MF.
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We need to argue that 1 is adjacent to all vertices in the first F − 1 parts but none

in the last part. Any vertex ; ∈ MD with 1 < D < F makes a clique with 0 and K.

It is adjacent to 1 by the definition of the 2-modulator ({0, 1,K, ;} cannot induce

a paw) and Proposition 4.1.1 (see Figure 4.3(a)). Now that 1 is adjacent to some

vertex from another part (F ≥ 3), the same argument implies M1 ⊆ / (1). To see

MF ∩/ (1) = ∅, note that a vertex K′ ∈ MF ∩/ (1) would form a paw together with

0, 1,K (see Figure 4.3(b)), contradicting the definition of the 2-modulator. !

0 ; K

1

2

M1

M2

M3

(a)

0 K

K′

1

2

M1

M2

M3

(b)

Figure 4.3: Illustration for Proposition 4.1.4.

A false twin class of a graph$ is a vertex set in which every vertex has the same

open neighborhood. It is necessarily independent. The following is immediate

from Proposition 4.1.4.

Corollary 4.1.5. Let2 be a complete multipartite component of$−. . Each part

of 2 is a false twin class of $.

Proof. Since2 is a complete multipartite component, each part of2 is a false twin

class of 2. By Proposition 4.1.4, we get that the vertices in every part of 2 have

the same neighbors in . . Therefore, each part of 2 is a false twin class of $. !
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We say that a paw-free graph $̂ is a paw-free completion of$ ifA ($) = A ($̂)

and ) ($) ⊆ ) ($̂). The preservation of false twins by all minimum paw-free

completions could be of interest to our kernelization algorithm.

Lemma 4.1.6. Let $ be a graph and let )+ be a minimum set of edges such that

$ +)+ is paw-free. Any false twin class of $ remains a false twin class of $ +)+.

Proof. Let * be a false twin class of $. If * consists of the isolated vertices, then

they remain isolated in $ + )+ because )+ is minimum. Hence it remains false

twin class. In the rest we may assume that $ is connected; otherwise we consider

the component of $ that contains *. Moreover, if $ is paw-free, then )+ is empty

and the claim holds vacuously. Now that $ is connected and contains a paw, by

Proposition 2.2.2, $ +)+ is complete multipartite. It suffices to show that vertices

in * are in the same part of $ + )+. Suppose for contradiction that 0, 1 ∈ * are in

different parts of $ + )+; let (0 and (1 be the parts of $ + )+ that contain 0 and

1 respectively, and assume without loss of generality that |(0 | ≥ |(1 |.

Observe that every vertex in (0 \ {0} is nonadjacent to 0 in $ + )+, hence

nonadjacent to 0 in$, which further implies that it is nonadjacent to 1 in$ because

0 and 1 are false twins. Then $ + ()+ \ )1) ∪ )2, where )1 = {1; | ; ∈ (0}

and )2 = {1; | ; ∈ (1 \ {1}}, is also paw-free: Parts (0 and (1 are replaced by

(0 ∪ {1} and (1 \ {1}, while the others remain unchanged. Since |)1 | = |(0 | >

|(1 |−1 = |)2 |, this contradicts that )+ is minimum. This concludes the proof. !

Since all of our reduction rules in this section are very simple and obviously

doable in polynomial time, we omit the analysis of their running time.
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4.2 Paw-free completion

For the kernelization algorithm for the paw-free completion problem, it is easy to

see that the components of $ that are paw-free are the easy part to deal with, we

could just delete them. Hence, we can do the following reduction rule safely.

Rule 4.2.1. If a component of $ contains no paw, delete it.

Behind our kernelization algorithm for the paw-free completion problem is the

following simple and crucial observation. After Rule 4.2.1 is applied, each remain-

ing component of$ contains a paw, hence a triangle, and by Proposition 2.2.2, we

need to make it complete multipartite. We say that a vertex 1 is major if 1 dom-

inates all the edges in the component containing 1; note that we always mean the

component of the input graph. Recall that a vertex 1 and an edge ;< dominate

each other if at least one of ; and < is adjacent to 1. In a complete multipartite

graph, every vertex is major and every edge dominates all its vertices, and hence

in a yes-instance, every edge “almost” dominates all the vertices in the component.

Proposition 4.2.1. Let $ be a connected graph containing a paw. For any edge

01 and a vertex K that does not dominate 01 in $, we need to add at least one of

0K and 1K to $ to make it paw-free.

Proof. Let )+ be a set of edges such that$ +)+ is paw-free. By Proposition 2.2.2,

$+)+ is a complete multipartite graph. Since 01 ∈ ) ($), vertices 0 and 1 belong

to different parts of $ + )+. Thus, at least one of them is not in the same part as

K, and the edge between it and K is in )+. !

In other words, for each edge 01, the number of edges we need to add to 0 and

1 is at least the number of vertices 01 does not dominate. As hinted by Proposi-
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tion 4.2.1, the way we bound the kernel size for the paw-free completion problem

is to show that, after applying some reductions, the minimum number of edges we

need to add to $ to make it paw-free is linear in |A ($) |. We need to tweak the

modulator for this problem: We also take the degree-one vertices of all paws in $,

and the purpose is to simplify the disposal of triangle-free components of $ −. .

As a result of Proposition 4.2.1, if there are more than 2! non-major vertices, then

we know ($, !) is a no-instance. Hence, we focus on major vertices, for which

we consider the components $′ of $ one by one. If too many isolated vertices in

$′ − . are major, then we can remove most of them (Rule 4.2.2). No vertex in

$′ − . can be major if there are two or more nontrivial components in $′ − . .

In the rest, there is precisely one type-I triangle-free component or precisely one

complete multipartite component, but not both, in$′−. . In this case, no isolated

vertex in$′−. can bemajor (Proposition 4.2.4), and hence we are concerned with

the only nontrivial component of $′ − . . For a type-I triangle-free component 2

of$′ −. , we show that if2 satisfies any of the six simple conditions stipulated in

Lemma 4.2.8, then we need to add at least |A (2) |/32 edges to $′. Otherwise, we

can apply Rule 4.2.3 to reduce$′. The disposal of a complete multipartite compo-

nent is very similar (Lemma 4.2.10 and Rule 4.2.4). We summarize the algorithm

in Figure 4.7 and use it to prove Theorem 1.4.3. Formally, the 2-modulator . for

the completion problem is constructed as in Figure 4.4.

It is easy to see that the modulator constructed in Figure 4.4 is a 2-modulator.

Now we show some properties of a 2-modulator.

Lemma 4.2.2. For each component$′ of$, we need to add at least |.∩A ($′) |/4

edges to $′ to make it paw-free.
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1. F ← ∅; . ← ∅;
2. for each paw @ of $ do
2.1. if |@ ∩ @′ | ≤ 1 for each paw @′ in F then

F ← F ∪ {@};
add the vertices of @ to .;

2.2. else add the degree-one vertex of @ to .;
3. return . .

Figure 4.4: The construction of the 2-modulator for $.

Proof. Let : be the set of vertices of those paws in$′we greedily added to. , and

E the set of degree-one vertices of all other paws in $′; thus, :∪ E = . ∩A ($′).

For each paw @ added to :, at least one of its missing edges needs to be added to

$′ to make it paw-free. This edge is not in any previous selected paw, as otherwise

we should not have added @ to :. Therefore, we need to add at least |:|/4 edges to

$ [:] to make it paw-free. On the other hand, each vertex 1 in E is the degree-one

vertex of some paw @, (it is possible that all other three vertices of @ are in :)

and therefore we need to add at least one edge incident to 1. Therefore, we need to

add at least |E|/2 edges incident to vertices in E to $′ to make it paw-free. Note

that these two sets of edges we need to add are disjoint (since the paws we forbid

by adding edges are different). The total number of edges we need to add to $′ to

make it paw-free is at least

|:|
4 + |E |

2 ≥
|: ∪ E |

4 =
|. |
4 .

This concludes the proof. !

Corollary 4.2.3. If ($, !) is a yes-instance, then . contains at most 4! vertices.

Proof. Let 21,22, . . . ,2ℓ be the components of $ and . the 2-modulator con-
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structed in Figure 2. Let )+ be a solution to ($, !), and let )D ⊆ )+ be the edges

that need to be added to 2D to make it paw-free. By Lemma 4.2.2, we get that

|)D | ≥ |. ∩ A (2D) |/4 and then |)+| =
∑ℓ
D=1 |)D | ≥

∑ℓ
D=1 |. ∩ A (2D) |/4 = |. |/4.

Since |)+| ≤ ! , therefore |. | ≤ 4! . !

We proceed only when |. | ≤ 4! . Recall that a vertex 1 is major if 1 dominates

all the edges in the component containing 1. By Proposition 4.2.1, for each non-

major vertex 1, we need to add at least one edge incident to 1 to make the graph

paw-free. Therefore, after the application of Rule 4.2.1, the total number of non-

major vertices in a yes-instance is at most 2! . It remains to deal with major vertices

in A ($) \ . , for which we consider the components $′ of $ one by one; let

.′ = . ∩A ($′).

Proposition 4.2.4. The following hold for major vertices of $′.

(i) No vertex in a nontrivial type-II triangle-free component of $′ − .′ can be

major.

(ii) If two components in $′ − .′ are nontrivial, then no vertex in $′ − .′ is

major.

(iii) If there is an isolated vertex in $′ − .′ that is major, then all vertices in

$′ − .′ are isolated.

Proof. Let 2 be a nontrivial type-II triangle-free component of $′ −.′. Since $′

contains a paw, there must be a triangle in .′ (by the construction of .); let it be

01K. If a vertex ; in 2 is major, then ; is adjacent to at least two of 0, 1, and K;

assume without loss of generality, 0, 1 ∈ / (;). Since2 is a nontrivial component,

we can find a neighbor < of ;. Since 2 is a type-II triangle-free component, the
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vertex < is adjacent to neither of 0 and 1. Then < is a degree-one vertex of the paw

induced by {0, 1, ;, <}, and should be in .′. This contradicts to the construction

of . , and thus (i) holds.

Let 21 and 22 be two nontrivial components of $′ − .′. Then there is an

edge in each of 21 and 22. If there is a major vertex 1 in $′ − .′, then 1 must be

adjacent to both 21 and 22, which is impossible. This concludes assertion (ii).

Suppose that an isolated vertex 1 in$′−.′ is major. By definition, every edge

in$′ has one end adjacent to 1, and this end must be in .′, which means that there

is no edge in $′ − .′. This concludes assertion (iii). !

By Proposition 4.2.4(ii), we may assume that there is at most one nontrivial

component in $′ −.′. The next two propositions are on independent sets * of $′.

The first is about the cost of separating vertices in * into more than one part; it also

means that a sufficiently large independent set cannot be separated.

Proposition 4.2.5. Let $′ be a connected graph containing a paw, and let * be an

independent set of $′. If we do not add all the missing edges between * and / (*),

then we need to add at least |* | − 1 edges among * to $′ to make it paw-free.

Proof. Let )+ be a set of edges such that $′ + )+ is paw-free. Since $′ contains a

paw, $′ + )+ is a complete multipartite graph by Proposition 2.2.2. If all vertices

in * are in the same part of $′+)+, then all the missing edges between * and / (*)

are in )+ and we are done. Otherwise, vertices in * are in at least two parts of

$′ + )+ (see Figure 4.5), and the number of edges among them in )+ is at least

|* | − 1 (when one part has one vertex and the rest are in another part). !

Let * be an independent set of $′ such that every vertex in * is adjacent to

all vertices not in *. If A ($′) \ * is also an independent set, then $′ is complete
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...

...

...

...

...

...

. . .

*

Figure 4.5: Illustration for Lemma 4.2.5. The graph $′ + )+ is a complete multi-
partite graph, all violet edges should be in )+ when vertices in * are in more than
one part of $′ + )+.

bipartite and paw-free. Hence, we assume that$′ contains a triangle, and we need

to make it complete multipartite. Clearly, the set * has to form a separate part by

itself. If A ($′) \ * is connected and contains a triangle, then any solution to $′ − *

is a solution to $′, and thus we can remove *. Otherwise, we need to keep one

vertex in * to make sure the component contains a triangle. The second assertion

of the following proposition is not used in this thesis.

Proposition 4.2.6. Let * be an independent set in a component $′ of a graph $.

If every vertex in * is adjacent to every vertex in A ($′) \ *, then ($, !) is a yes-

instance if and only if ($ − (* \ {1}), !) is a yes-instance for any 1 ∈ *. Moreover,

if $ − * is connected, then ($, !) is a yes-instance if and only if ($ − *, !) is a

yes-instance.

Proof. It suffices to show the if direction. Suppose that ($ − (* \ {1}), !) is a yes-

instance for any 1 ∈ *, then we show that ($, !) is a yes-instance. It is vacuously

true when $ is paw-free, and henceforth we assume otherwise. Suppose that )+

is a solution to ($ − *′, !), where *′ = * \ {1}. Note that $′ − *′ is connected

because every other vertex is adjacent to 1. By Proposition 2.2.2, ($′ − *′) + )+

is a complete multipartite graph; letM1, . . .,Mℓ be its parts. Since 1 is adjacent to

every other vertex, it is in a size-one part; without loss of generality, let it be Mℓ.
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On the other hand, * remains an independent set and adjacent to every vertex in

A ($′) \ * in$ +)+. Therefore, $′+)+ is a complete multipartite graph with parts

M1, . . .,Mℓ−1, *, hence paw-free. The proof of the second assertion is very similar

and omitted. !

We are now ready for our reduction rules. We start from type-II triangle-free

components of $′ − .′. If there is a nontrivial type-II triangle-free component in

$′ −.′, then by Proposition 4.2.4(i, iii), no vertex in $′ −.′ can be major. Now

suppose that all vertices in $′ − .′ are isolated and some of them are major. We

observe that if toomany of them aremajor, then any optimal solution puts themajor

ones of them and their non-neighbors in the same part. Thus, by Proposition 4.2.6,

we can remove all but one of these vertices, after adding certain edges.

Rule 4.2.2. Let * be the set of isolated vertices in $′ − .′ that are major. If |* | ≥

|.′|, then add all the missing edges between A ($′) \ / (*) and / (*); decrease !

accordingly; and remove all but one vertex in A ($′) \ / (*) from $′.

Lemma 4.2.7. Rule 4.2.2 is safe.

Proof. We argue first that * is a false twin class of $; i.e., / (11) = / (12) for

any pair of vertices 11, 12 ∈ *. Note that 11 and 12 are not adjacent. For any

vertex ; ∈ / (11), we must have ; ∈ / (12) as well because 12 dominates the edge

;11. Therefore, / (11) ⊆ / (12). For the same reason, / (12) ⊆ / (11), and then

/ (11) = / (12).

Since each vertex in * is major, A ($′) \ / [*] is an independent set. Then

A ($′)\/ (*), which is
(
A ($′)\/ [*]

)
∪*, is also an independent set. We argue that

any optimal solution )+ of$′ contains all the missing edges betweenA ($′) \/ (*)
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and / (*). By Lemma 4.1.6, the set * remains an independent set in$′+)+, which

is complete multipartite. Suppose that some vertices in A ($′) \ / (*) are not in

the same part as *; let - be the set of all such vertices. We consider another

solution )′+ obtained from )+ as follows: removing all edges incident to - and all

edges incident to *, and then adding all missing edges between - and / (*). Since

|* | ≥ |.′| ≥ |/ (*) | > |/ (*) \ / (;) | for each ; ∈ - (the last one holds because

$′ is connected and vertices in * are major), |)′+| < |) + |. This contradicts that

)+ is optimal.

After adding all themissing edges betweenA ($′)\/ (*) and / (*), every vertex

inA ($′)\/ (*) is adjacent to every vertex in / (*), and the correctness of removing

all but one vertex in A ($′) \ / (*) from $ follows from Proposition 4.2.6. !

Henceforth, the subgraph$′−.′ has precisely one type-I triangle-free compo-

nent or one complete multipartite component, but not both (by Proposition 4.2.4).

Each part of such a component is an independent set (recall that a type-I triangle-

free component is complete bipartite by Proposition 4.1.4). We try to relate the

order of this component to |.′| or the number of major vertices in $′.

Lemma 4.2.8. Let $ [M] be a type-I triangle-free component of $′ − .′ and let

+ # , be the bipartition of $ [M] with |+ | ≥ |, |. If any of the following conditions

is satisfied, then we need to add at least |M |/32 edges to $′ to make it paw-free.

(i) |+ | ≤ 4|.′|;

(ii) there is an edge in $′ − / [+];

(iii) A ($′) ≠ / [M] and |+ | ≤ 2|, |;

(iv) there are |+ |/2 or more missing edges between + and / (+);
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(v) |+ | ≤ |, | + |.′| and $′ − / [,] has an edge; or

(vi) |+ | ≤ |, | + |.′| and there are |, |/2 or more missing edges between , and

/ (,).

Proof. (i) If |+ | ≤ 4|.′|, then |M | = |+ | + |, | ≤ 2|+ | ≤ 8|.′|, and it follows from

Lemma 4.2.2.

(ii) By Proposition 4.2.1, we need to add at least |+ | ≥ |M |/2 edges.

(iii) Since$ [M] is complete bipartite and |+ | ≥ |, |, we can find a matching of

size |, | between + and ,. By Proposition 4.2.1, for each vertex 1 ∈ A ($′) \/ [M],

the number of edges between 1 and M we need to add is at least |, | = (2|, | +

|, |)/3 ≥ ( |+ | + |, |)/3 = |M |/3.

(iv) By Proposition 4.2.5, we need to add at least |+ |/2 ≥ |M |/4 edges.

In the rest, (v) and (vi), we have |+ | ≤ |, | + |.′|. We may assume none of

the previous conditions is satisfied. Therefore, we can get that |+ | > 4|.′|, which

means |+ | ≤ 2|, |. Also note that the proofs for these two conditions are almost

the same as conditions (ii) and (iv) respectively.

(v) By Proposition 4.2.1, we need to add at least |, | ≥ |M |/3 edges.

(vi) By Proposition 4.2.5, we need to add at least |, |/2 ≥ |M |/6 edges. !

We say that a type-I triangle-free component 2 of $′ −.′ is reducible if none

of the conditions in Lemma 4.2.8 holds true.

Rule 4.2.3. Let 2 be a type-I triangle-free component of $′ − .′ and let + # ,

be the bipartition of 2 with |+ | ≥ |, |. If 2 is reducible, then add all the missing

edges between + and / (+) and all the missing edges between A ($′) \ / [+] and

/ (+); decrease ! accordingly; and remove all but one vertex from A ($′) \ / (+).
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.′- / (+) ∩ .′

+
,

+′

···
···

Figure 4.6: Illustration of notations +, ,, +′, - , .′, and .′ ∩ / (+).

Lemma 4.2.9. Rule 4.2.3 is safe.

Proof. Let - = A ($′) \ / [+] and +′ = + ∪ - (see in Figure 4.6); note that +′ is

an independent set because condition (ii) of Lemma 4.2.8 is not true. We show the

existence of a solution that contains all the missing edges between +′ and / (+).

Let )+ be any solution to ($, !), we may assume that it does not contain edges

between $′ and other components of $. Let )′ = )+ ∩
(A ($′)\+′

2
)
. We show that

the set )′+, consisting of )′ together with all the missing edges between +′ and

/ (+), is also a solution of ($, !). By Proposition 2.2.2, $′ + )+ is a complete

multipartite graph, then its subgraph ($′−+′)+)′ is complete bipartite or complete

multipartite. Therefore, $′ + )′+ is a complete multipartite graph, where +′ forms

a single part. Since )+ and )′+ have the same set of edges incident to A ($′) \ +′,

to show |)′+| ≤ |)+| we may focus on their edges incident to +′.

Case 1, |+ | > |, | + |.′|. If )+ contains all the missing edges between + and

/ (+), then )+ and )′+ have the same set of edges between + and / (+). Otherwise,

by Proposition 4.2.5, )+ contains at least |+ | − 1 ≥ |+ |/2 edges among +; since

condition (iv) of Lemma 4.2.8 is not true, this is strictly more than the number of
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edges in )′+ between + and / (+). It suffices to show that the number of edges

incident to - in )+ is at least
∑
;∈- |/ (+) \ / (;) |, the number of edges incident

to - in )′+. Note that / (+) ⊆ .′ ∪ ,, and hence |/ (+) | ≤ |, | + |.′| < |+ |.

We claim that there is a matching from / (+) to + of size |/ (+) |; otherwise there

exists a vertex setC ⊆ / (+) with |/ (C )∩+ | < |C | by Hall’s theorem, but then the

missing edges between + and / (+) is at least |C | · |+ \ / (C ) | > |C | · ( |+ | − |C |) ≥

|+ |−1 ≥ |+ |/2, and condition (iv) of Lemma 4.2.8 would be true. For each vertex

; ∈ - , we can find from the matching at least |/ (+) \ / (;) | edges that are not

dominated by ;. Since these edges do not share any end, by Proposition 4.2.1, at

least |/ (+) \ / (;) | edges in )+ are incident to ;. Thus, the number of edges in

)+ incident to - is at least
∑
;∈- |/ (+) \ / (;) |.

Case 2, |+ | ≤ |, | + |.′|. Since 2 is reducible, none of the conditions in

Lemma 4.2.8 is satisfied. In particular, |+ | > 4|.′| (condition i), which means

|, | > 3|.′| and |+ | ≤ 2|, |. We must have A ($′) = / [2] (condition iii). More-

over, by conditions (ii) and (v), bothA ($′) \/ [+] andA ($′) \/ [,] are indepen-

dent sets, and by conditions (iv) and (vi), the number of missing edges between +

and / (+) and the number of missing edges between , and / (,) are smaller than

|+ |/2 and |, |/2, respectively.

If |( ∩ + | < |+ |/2 for every part ( in $′ + )+,then every vertex 1 in +′ is

incident to more than |+ |/2 edges in )+. The total number of edges in )+ that are

incident to +′ is more than 1
2 ( |+ | · |+ |/2) + |- | · |+ |/2. On the other hand, the total

number of edges in )′+ that are incident to +′ is at most the sum of the number of

missing edges between + and / (+), the number of missing edges between , and

/ (,), and the number of missing edges between - and .′ \ - , which is at most

|+ |/2 + |, |/2 + |- | · |.′ \ - |. Thus, we have |)′+| ≤ |)+|.
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Now suppose that there is a part ( in $′ + )+ with |( ∩ + | ≥ |+ |/2. If +′ = (,

then |)′+| = |)+| and we are done. In the rest +′ ≠ (. Since |( ∩ + | ≥ |+ |/2 and

there are less than |+ |/2 missing edges between / (+) and + by condition (iv) of

Lemma 4.2.8, no vertex in / (+) can be in (. Therefore ( ⊆ +′, and +′ ! (. If

there is precisely one vertex 1 in +′ \(, then all the |+′|−1 edges between 1 and (

are in )+. But the number of missing edges between 1 and .′ ∪ , (in )′+) is less

than

|.′| + |, |/2 ≤ |+ |/4 + |+ |/2 < |+ | − 1 ≤ |+′| − 1.

Otherwise, suppose that |+′ \ ( | = J > 1, then at least J ( |+′| − J) ≥ J |+ |/2 edges

among +′ are in )+. But the number of missing edges between +′ \ ( and .′ ∪ ,

(in )′+) is less than J |.′| + |, |/2 ≤ J |+ |/4 + |+ |/2 ≤ J |+ |/2.

We have thus proved that it is safe to add all the missing edges between +′

and / (+). After that, every vertex in +′ is adjacent to every vertex in $′ − +′,

and the correctness of removing all but one vertex in +′ from $ follows from

Proposition 4.2.6. !

In the last we consider the complete multipartite components of $′ − .′.

Lemma 4.2.10. Let $ [M] be a complete multipartite component of $′ − .′, and

let (∗ be a largest part of$ [M]. If any of the following conditions is satisfied, then

we need to add at least |M |/12 edges to $′ to make it paw-free.

(i) |M | ≤ 3|.′|;

(ii) there is an edge in $′ − / [M];

(iii) |(∗ | > 2|M |/3 and $′ − / [(∗] has an edge;
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(iv) |(∗ | ≤ 2|M |/3 and A ($′) ≠ / [M]; or

(v) |(∗ | ≤ 2|M |/3 and A ($′) = / [M], and for every part ( of $ [M],

• $′ − / [(] contains an edge, or

• there are at least |( | missing edges between A ($′) \ / [(] and / (().

Proof. (i) If |M | ≤ 3|.′|, then it follows from Lemma 4.2.2.

(ii) By Proposition 4.2.1, we need to add at least |M | edges.

(iii) By Proposition 4.2.1, we need to add at least |(∗ | > 2|M |/3 edges.

(iv) Let )+ be a minimum set of edges such that $ + )+ is paw-free. By

Corollary 4.1.5 and Lemma 4.1.6, the vertices in any part of $ [M] remain in the

same part in $′ + )+. Since A ($′) ≠ / [M], there is a vertex 1 ∈ A ($′) \ / [M],

and the missing edges between 1 and all but one part of $ [M] are in )+. Since (∗

is a largest part and |(∗ | ≤ 2|M |/3, we need to add at least |M |/3 edges.

For (v), we show that we need to add at least |( | edges incident to (∪ (A ($′) \

/ [(]). By Proposition 4.1.4 and the factA ($′) = / [M], the setsA ($′)\/ [(] for

different parts are disjoint. As a result, each edge is counted at most twice, and the

total number of edges we need to add is |M |/2. If there is an edge in $′ − / [(],

then it follows from Proposition 4.2.1. Now there is no edge in $′ − / [(] and

there are more than |( | missing edges between A ($′) \ / [(] and / ((). Let

- = A ($′) \ / [(], and let )+ be a minimum set of edges such that $ + )+ is

paw-free. By Corollary 4.1.5 and Lemma 4.1.6, the vertices in any part of $ [M]

remain in the same part in $′ + )+. If all vertices in - are in the same part as ( in

$′+)+, then all missing edges between - and / (() are in )+. Otherwise, there is

a vertex ; in - that is not in the same part as ( in $′+)+, and all edges between ;
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and ( are in )+. In either case, we need to add at least |( | edges incident to (∪ - .

This concludes the proof. !

We say that a complete multipartite component of $′ −.′ is reducible if none

of the conditions in Lemma 4.2.10 holds true.

Rule 4.2.4. Let $ [M] be a reducible complete multipartite component of $′ −.′

and (∗ a largest part of $ [M].

1. If |(∗ | > 2|M |/3, then add all the missing edges betweenA ($′) \/ ((∗) and

/ ((∗); decrease ! accordingly; and remove all but one vertex in A ($′) \

/ ((∗) from $′.

2. Otherwise, find a part ( such that A ($′) \ / (() is an independent set and

there are less than |( | missing edges betweenA ($′) \/ (() and / ((). Add

all the missing edges between A ($′) \ / (() and / ((); decrease ! accord-

ingly; and remove all but one A ($′) \ / (() from $′.

Lemma 4.2.11. Rule 4.2.4 is safe.

Proof. Let )+ be a minimum set of edges such that$′+)+ is paw-free; note that it

does not have edges between$′ and other components of$. By Proposition 2.2.2,

$′ + )+ is a complete multipartite graph. By Corollary 4.1.5 and Lemma 4.1.6,

vertices in the same part of $ [M] remain in the same part in $′ + )+.

Case 1: |(∗ | > 2|M |/3. Let - = A ($′)\/ [(∗]. Since$ [M] is reducible, none

of conditions in Lemma 4.2.10 is satisfied. In particular, |M | > 3|.′| (condition

i) and - is an independent set (condition iii). For each vertex ; ∈ - , if it is not in

the same part of $′ + )+ as (∗, then all the |(∗ | missing edges between ; and (∗
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are in )+. Since

|/ ((∗) | ≤ | (M \ (∗) ∪ .′| = |M \ (∗ | + |.′| < |M |/3 + |M |/3 < |(∗ |,

putting ; to the same part as (∗ minimizes the number of edges incident to it. After

adding all themissing edges between - and / ((∗), every vertex in the independent

set (∗ ∪ - is adjacent to every vertex in A ($′) \ ((∗ ∪ -) = / ((∗). It is thus safe

to remove all but one vertex in (∗ ∪ - from $′ by Proposition 4.2.6.

Case 2: |(∗ | ≤ 2|M |/3. Since the component $ [M] is reducible, none of

conditions in Lemma 4.2.10 is satisfied. In particular, we have A ($′) = / [M]

(condition iv) and we can find a part ( of $ [M] such that A ($′) \ / (() is an

independent set and the missing edges between A ($′) \ / (() and / (() is less

than |( | (condition v). Let - = A ($′) \/ [(]. For each vertex ; ∈ - , if it is not in

the same part of $′ + )+ as (, then all the |( | missing edges between ; and ( are

in )+. This is more than the total number of missing edges between - and / (().

Hence, putting - ∪ ( in the same part minimizes the number of edges incident

to it. After adding all the missing edges between - and / ((), all vertices in the

independent set ( ∪ - are adjacent to A ($′) \ (( ∪ -) = / ((). It is thus safe to

remove all but one vertex in ( ∪ - from $′ by Proposition 4.2.6. !

We summarize our kernelization algorithm for the paw-free completion prob-

lem in Figure 4.7.
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procedure reduce($, !)

0. if ! < 0 then return a trivial no-instance;
1. remove all paw-free components from $;
2. construct a 2-modulator .;
3. if |. | > 4! then return a trivial no-instance;
4. if more than 2k non-major vertices then return a trivial no-instance;
5. for each component $′ of $ do
5.1. . ′ ← A ($′) ∩ .;
5.2. if two components in $′ − . ′ are nontrivials then

skip $′ and goto 5;
5.3. if there are at least |. ′ | isolated major vertices in $′ − . ′ then

apply Rule 4.2.2 and return reduce($, !);
5.4. if $′ − . ′ has a type-I triangle-free component 2 then

if 2 is reducible then apply Rule 4.2.3 and return reduce($, !);
5.5. if $′ − . ′ has a complete multipartite component 2 then

if 2 is reducible then apply Rule 4.2.4 and return reduce($, !);
6. if |A ($) | ≤ 38! then return ($, !);
7. else return a trivial no-instance.

Figure 4.7: The kernelization algorithm for PAW-FREE COMPLETION.

4.3 A linear kernel

We use our kernelization algorithm in Figure 4.7 to prove Theorem 1.4.3, which

we recall here.

Theorem 4.3.1. The paw-free completion problem has a 38!-vertex kernel.

Proof. We use the algorithm described in Figure 4.7. The correctness of steps 0

and 1 follows from the definition of the problem and Rule 4.2.1 respectively. Steps

2 and 3 are justified by Lemma 4.2.2. Step 4 is correct because of Proposition 4.2.1,

and after that step 5 deals with the components of G separately. The cost of a

component $′ of $ is the minimum number of edges we need to add to $′ to

make it paw-free. We show that the cost of $′ is at least 1/32 of the number of
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major vertices in A ($′) \ .′.

If there are two or more nontrivial components in $′ − .′, then by Propo-

sition 4.2.4(ii) and Proposition 4.2.1, the cost of $′ is at least |.′|/4 + |A ($′) \

.′|/2 > |A ($′) |/4, and thus$′ can be skipped in step 5.2. Let L be the number of

isolated vertices in$′−.′ that are major. If L ≥ |.′|, then step 5.3 calls Rule 4.2.2

to remove most of these vertices, and the correctness is given in Lemma 4.2.7. If

0 < L < |.′|, then by Proposition 4.2.4(iii), every component of$′−.′ is trivial,

and the cost of $′ is at least |.′|/4 > L/4. Henceforth, $′ −.′ has precisely one

type-I triangle-free component or one complete multipartite component, while no

isolated vertex in $′ − .′ is major. The algorithm enters step 5.4 if there is a

type-I triangle-free component 2 in $′ − .′. If 2 is reducible, the correctness

of Rule 4.2.3 is given in Lemma 4.2.9; otherwise, the cost of $′ is at least |2 |/32

by Lemma 4.2.8. The algorithm enters step 5.5 if there is a complete multipartite

component 2 in $′ − .′. If 2 is reducible, the correctness of Rule 4.2.4 is given

in Lemma 4.2.11; otherwise, the cost of $′ is at least |2 |/12 by Lemma 4.2.10.

When the algorithm reaches step 6, none of Rules 4.2.2, 4.2.3, and 4.2.4 is

applicable. There are at most 4! vertices in . , at most 2! non-major vertices. On

the other hand, for each other vertex, there is an amortized cost of at least 1/32.

Therefore, if ($, !) is a yes-instance, then the number of vertices in $ is at most

38! , and this justifies steps 6 and 7.

We now analyze the running time of this algorithm. When each time the al-

gorithm calls itself in step 5.3, 5.4, or 5.5, it removes at least one vertex from the

graph. Therefore, the recursive calls can be made at most > times. On the other

hand, each step clearly takes polynomial time. Therefore, the algorithm returns in

polynomial time. !
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We spare little effort in getting a better kernel size and more efficient imple-

mentation. For the running time, e.g., we do not need to call the algorithm after

each reduction (application of Rules 4.2.3 and 4.2.4). We believe that, with more

careful analysis, one may show that our kernel is between 12! and 16! vertices.

However, to find a kernel of less than 10! vertices for the problem or to implement

it in linear time is quite a challenge.



Chapter 5

Trivially Perfect Graphs

In this chapter, we propose a very simple kernelization algorithm, which has only

two simple reduction rules, and the resulting kernel contains at most 2!2 + 2!

vertices. The forbidden induced subgraphs of trivially perfect graphs are (4 and

24. Note that adding the edge to connect the two ends of a (4 merely turns it into

a 24. Thus, in each (4 or 24, there are two missing edges (call them potential

missing edges) such that every solution needs to contain at least one of them. Note

that each vertex of the (4 or 24 is an end of one of the two missing edges. Our

first rule is the most routine for this kind of problems, namely, adding a missing

edge if it is one of the two possible missing edges in ! + 1 or more (4’s and 24’s.

Our second rule removes all vertices that are not contained in any (4 or 24 of $.

Now the analysis is similar as Buss and Goldsmith’s kernelization algorithm for the

vertex cover problem [21]. Since every solution contains at least one of the pair of

potential missing edges (for some (4 or 24), and since each potential edge is in at

most ! pairs, there cannot be more than !2+! potential edges in a yes-instance. On

the other hand, every vertex is in a (4 or 24, hence an endpoint of some potential

77
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edge. We are thus safe to return a trivial no-instance when the number of vertices

of the input graph is larger than 2!2 + 2! .

5.1 Properties of trivially perfect graphs

Trivially perfect graphs was first studied by Wolk [162, 161], and was named by

Golumbic [77]. Recall that trivially perfect graphs is characteized by forbidden

induced subgraphs (4 and 24. If there is a pair of adjacent vertices 0, 1 such

that neither / [0] \ / [1] nor / [1] \ / [0] is empty, then they are contained in

a (4 or 24. An additional important characterization of trivially perfect graphs is

provided in [165]. According to this characterization, a trivially perfect graph can

be generated by adding a universal vertex and performing a disjoint union with the

single-vertex graph '1. By these characterizations of trivially perfect graphs, we

can easily see that the following theorem is correct.

Theorem 5.1.1 ([162, 165]). The following are equivalent for a graph #.

(i) # is a trivially perfect graph.

(ii) Every connected induced subgraph of # contains a universal vertex.

(iii) For every pair of adjacent vertices 0 and 1, one of / [0] and / [1] is a subset

of the other.

5.2 Trivially perfect completion

We say that a trivially perfect graph $̂ is a trivially perfect completion of $ if

A ($) = A ($̂) and ) ($) ⊆ ) ($̂), and it is minimal if there is no other trivially
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perfect completion $̂′ of $ with ) ($) ⊆ ) ($̂′) ⊂ ) ($̂). The following two

observations are very simple.

Proposition 5.2.1. Let# be a connected graph, and let #̂ be a minimal (minimum)

trivially perfect completion of #. For any universal vertex 0 of #̂, the graph #̂ −0

is a minimal (minimum) trivially perfect completion of # − 0.

Proof. Adding 0 as a universal vertex to any trivially perfect completion of # −0,

we end with a trivially perfect completion of # (by Theorem 5.1.1). !

Lemma 5.2.2. Let $̂ be a minimal trivially perfect completion of a graph $, and

let 0 and 1 be two vertices of $. If /$ [0] ⊆ /$ [1], then /$̂ [0] ⊆ /$̂ [1].

Proof. Suppose for contradiction, /$̂ [0] ! /$̂ [1]. By Theorem 5.1.1(iii), /$̂ [1] ⊂

/$̂ [0]. Since /$ [0] ⊆ /$ [1] ⊆ /$̂ [1] ⊂ /$̂ [0], it follows that ;0 ∉ ) ($) for

every ; ∈ /$̂ [0] \ /$̂ [1]. Let )+ = ) ($̂) \ ) ($). We consider

)′+ = )+ \ {;0 | ; ∈ /$̂ [0] \ /$̂ [1]} and $̂′ = $ + )′+.

Then /$̂′ [0] = /$̂′ [1]. Since $̂′ − 0 = $̂ − 0, it is a trivially perfect graph. On

the other hand, since 0 and 1 are true twins of $̂′, the graph $̂′ is also a trivially

perfect graph. But since ) ($) ⊆ ) ($̂′) ⊂ ) ($̂), we have a contradiction to the

minimality of $̂. !

If a vertex 1 is not contained in any (4 or 24, then for every neighbor 0 of 1,

one of / [0] and / [1] is a subset of the other. Let ($, !) be an instance for the

trivially perfect completion problem.

Lemma 5.2.3. If a vertex 1 is not contained in any (4 or 24, then opt($ − 1) =

opt($).
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Proof. It is trivial that opt($ − 1) ≤ opt($). For the other direction, we show

a stronger statement: any minimal solution )+ to $ − 1 is also a solution to $.

Let $̂ = $ + )+. We verify that $̂ is a trivially perfect graph by showing that it

satisfies Theorem 5.1.1(ii). If 1 is universal in $, hence also in $̂, then we are

done; otherwise we show that $̂ is a trivially perfect graph if and only if a proper

induced subgraph of $̂ is.

If $ is not connected, then we can consider the only component that contains

1. If $ is connected but $ − 1 is not, then 1 has to be universal in $; otherwise,

there is a (4 containing 1. In the last and the general case, 1 is not universal in $

and $ − 1 is connected. We argue that at least one vertex in /$ (1) is universal

in $̂ − 1. Let 0 be any universal vertex of $̂ − 1. We are done if 0 ∈ /$ (1),

and henceforth we assume that 0 ∉ /$ (1). Since 1 is not in any (4, the distance

between 1 and 0 in $ is at most two. Let 0′ ∈ /$ (0) ∩ /$ (1). From that 1 is not

in any (4 or 24 it can be inferred that /$ [0] ⊂ /$ [0′] and /$−1 [0] ⊆ /$−1 [0′].

By Lemma 5.2.2, /$̂−1 [0] ⊆ /$̂−1 [0′], and hence 0′ is also universal in $̂ − 1.

In either case, we have found a vertex ; ∈ /$ (1) that is universal in $̂ − 1. By

Proposition 5.2.1, $̂−{;, 1} is a minimal trivially perfect completion of$−{;, 1}.

Since the graph is finite, the claim follows. !

As a simple result of Lemma 5.2.3, we have the following reduction rule. In

particular, all universal vertices of every component of $ can be removed.

Rule 5.2.1. If there is a vertex 1 that is not contained in any (4 or 24, then remove

1.

For each induced 4-path or 4-cycle 11121314, we call themissing edges {11, 13}

and {12, 14} the candidate edges for this path or cycle. Clearly, any solution of a
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graph $ contains at least one candidate edge of every (4 or 24; note that a (4 has

another missing edge, the addition of which merely turns the (4 into a 24.

Rule 5.2.2. If 01 is a candidate edge of ! +1 or more (4’s and 24’s in $, then add

the edge 01 and decrease ! by one.

Now we show the safeness of this reduction rule.

Lemma 5.2.4. Rule 5.2.2 is safe.

Proof. Since each (4 or 24 of $ has precisely two candidate edges, if a solution

)+ of $ does not contain 01, then )+ must contain the other candidate edge of

each of the ! + 1 (4’s and 24’s (see an example in Figure 5.1), hence we have that

|)+| > ! . !

0 1

Figure 5.1: An example to showLemma 5.2.4. The canditate edge 01 are contained
in three24’s and six (4’s, if we do not add 01, then we need to add all violet dashed
canditate edges.

5.3 A quadratic kernel

We summarize our kernelization algorithm for the trivially perfect completion

problem in Figure 5.2.

Now we are ready to proof Theorem 1.4.4, we recall it here.

Theorem 5.3.1. There is a (2!2 + 2!)-vertex kernel for the trivially perfect com-

pletion problem.
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procedure reduce($, !)

1. if ! < 0 then return a trivial no-instance;
2. if a vertex 1 is not in any (4 or 24 then

apply Rule 5.2.1 and return reduce($, !);
3. if 01 is a canditate edge of ! + 1 or more (4’s or 24’s then

apply Rule 5.2.2 and return reduce($, !);
4. if |A ($) | ≤ 2!2 + 2! then return ($, !);
5. else return a trivial no-instance.

Figure 5.2: The kernelization algorithm for TRIVIALLY PERFECT COMPLETION.

Proof. After applyingRule 5.2.2 and thenRule 5.2.1 exhaustively, we return ($, !)

if |A ($) | ≤ 2!2 + 2! , or a trivial no-instance otherwise. We consider all the can-

didate edges of $. We say that two candidate edges are associated if they belong

to the same (4 or 24; i.e., their ends are disjoint and together induce a (4 or 24.

Since Rule 5.2.2 is not applicable, each candidate edge is associated with at most

! candidate edges. On the other hand, of any two associated edges, one has to be

in any solution of $. Thus, if ($, !) is a yes-instance, there can be at most !2 + !

candidate edges. Since Rule 5.2.1 is not applicable, every vertex is in some (4 or

24, and hence is an end of a candidate edge. Thus, |A ($) | ≤ 2!2 + 2! if ($, !) is

a yes-instance. !

We now analyze the running time of this algorithm. When each time the al-

gorithm calls itself in step 2, or 3, it removes at least one vertex from the graph.

Therefore, the recursive calls can be made at most > times. On the other hand,

each step clearly " (>4) time. Therefore, the algorithm returns in " (>5) time.

The analysis of the kernel in Theorem 5.3.1 is essentially the same as Buss

and Goldsmith’s kernelization algorithm for the vertex cover problem [21]. In

a sense, we are looking for a vertex cover of an auxiliary graph in which each
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vertex corresponds to a candidate edge of $, and two vertices are adjacent if their

corresponding edges are associated. We note that the same approach implies a

simple " (!2)-vertex kernel for the threshold completion problem, matching the

result of Drange et al. [54]. The forbidden induced subgraphs of threshold graphs

are 2'2, (4, and 24. The observation on the missing edges of a (4 or 24 is the

same as above, while the four missing edges of a 2'2 can be organized as two

pairs such that each solution has to contain at least one from each pair. However,

we are not able to employ the 2!-vertex kernels for vertex cover to directly derive

a linear-vertex kernel for either of the two problems.

Before closing this section, let us mention some observations that might be of

independent interest. The first is a simple corollary of Lemma 5.2.2.

Corollary 5.3.2. If two vertices are true twins of a graph $, then they remain true

twins of any minimal trivially perfect completion of $.

A set . of vertices is a module if / (.) = / (1) \ . for every 1 ∈ . . For

example, a set of true twins is a module. Corollary 5.3.2 can be generalized to

modules. For the last lemma, we use the fact that trivially perfect graphs are inter-

section graphs of nested intervals. (It can also be derived using the characterization

by forbidden induced graphs.) A set of intervals representing an interval graph $

is called an interval representation for $, where the interval for a vertex 1 is * (1).

Lemma 5.3.3. Amodule. of a graph$ remains amodule in anyminimal trivially

perfect completion $̂ of $.

Proof. Let )+ = ) ($̂) \ ) ($). The claim follows from Corollary 5.3.2 when

$̂ [.] is a clique: $̂ is also a minimal trivially perfect completion of $′, where
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$′ is the graph obtained from $ by adding edges to make . a clique. In the rest

. is not a clique of $̂, hence not a clique of $.

Suppose for contradiction that . is not a module of $̂. Let M be the set of

common neighbors of . in $̂. Since $̂ [.] is not a clique, $̂ [M] must be a

clique. Moreover,M ⊂ /$̂ (.). We take the leftmost endpoint ℓ and the rightmost

endpoint L of
⋃
1∈. * (1). Note that [ℓ, L] ⊆ * (1) for every 1 ∈ M, and * (;) ⊆ * (1)

for every ; ∈ /$̂ (.) \ M and every 1 ∈ M. Let F = L − ℓ, and we revise the

intervals as follows. We increase each endpoint ≥ L by F + 2; and for each vertex

; ∈ /$̂ (.) \ M, we set * (;) to be * (;) + F + 1. (Informally speaking, we slide

intervals for /$̂ (.) \ M to the right so that they are disjoint from those for . .)

We consider the graph $′ represented by the revised intervals. It is easy to verify

that these interval are still nested, and ) ($̂) \ ) ($′) is precisely the set of edges

between . and /$̂ (.) \ M. Since . is a module of $, we have /$ (.) ⊆ M.

Thus, ) ($) ⊆ ) ($′) ⊂ ) ($̂), which contradicts the minimality of $̂. This

concludes the proof. !



Chapter 6

Split Graphs and Pseudo-split

Graphs

Split graphs were defined and characterized by Földers and Hammer [149]. Recall

that a graph is a split graph if its vertex set can be partitioned into a clique and

an independent set. We use 2 # *, where 2 being a clique and * an independent

set, to denote a split partition of a split graph (see an example in Figure 6.1). The

forbidden induced subgraphs of split graphs are 2'2, 24, and 25. From both the

definition and the forbidden induced subgraphs (24 = 2'2 and25 = 25) we can see

that the complement of a split graph is also a split graph. Thus, the split completion

problem is polynomially equivalent to the split edge deletion problem. For the

convenience of presentation, we work on the edge deletion problem.

Recall that a pseudo-split graph is either a split graph or a graph whose vertex

set can be partitioned into a clique 2, an independent set *, and a set 3 such that

(1) 3 induces a 25; (2) 2 ⊆ / (1) for every 1 ∈ 3; and (3) * ∩ / (1) = ∅ for every

1 ∈ 3. We use 2 # * # 3 to denote a pseudo-split partition of a pseudo-split graph,

85
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2
*

Figure 6.1: A split graph with a split partition 2 # *.

where 3 may or may not be empty (see an example in Figure 6.2). If 3 is empty,

then 2 # * is a split partition of the graph. Otherwise, the graph has a unique

pseudo-split partition. The forbidden induced subgraphs of pseudo-split graphs

are 2'2 and 24. Similar as split graphs, the complement of a pseudo-split graph

remains a pseudo-split graph. Thus, the completion problem and the edge deletion

problem toward pseudo-split graphs are polynomially equivalent. In this section,

we study the pseudo-split edge deletion problem.

2
*3

Figure 6.2: A pseudo-split graph with a pseudo-split partition 2 # * # 3.

The class of pseudo-split graphs is a superclass of split graphs. In particular,

split graphs are precisely 25-free pseudo-split graphs. We can get a split graph

from a pseudo-split graph that contains a 25 by removing any vertex from the

25 (a pseudo-split graph contains at most one 25). Actually, the important part
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in many algorithms for graph modification problems to pseudo-split graphs is to

dealing with the 25.

For the split editing problem, Hammer and Simeone [89] have presented a

polynomial-time algorithm to find a minimum solution to it. Suppose that the

vertices are sorted by their degrees from the largest to the smallest, with ties broken

arbitrarily. They showed that it suffices to find a certain number ! , and make the

first ! vertices a clique and the rest an independent set. In other words, the solution

comprises all the missing edges among the first ! vertices and all the edges among

other vertices. It does not seem to be easy, if plausible at all, to adapt this approach

to solve the pseudo-split edge editing problem. See the graph in Figure 6.3 for an

example, where the vertices are numbered by their degrees. The degree sequence

is then

〈7, 5, 4, 4, 4, 4, 4, 4, 2〉,

in which the five vertices in 3 are not consecutive.

10

11

12

14

1516

17

13 18

Figure 6.3: An example for the pseudo-split editing problem. The only optimal
solution is to add the missing edge 1112 and delete edges 1213 and 1318, with the
pseudo-split partition {10, 11} # {13, 18} # {12, 14, 15, 16, 17}.

Drange [53] has show that the pseudo-split editing problem also can be soloved
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in polynomial time. The crucial observation is that if there is a minimum solution

)± to the input graph $ such that $/)± contains a 25, then this 25 is contained

in $ and there is at most one missing edge between the clique set and the 25, and

at most one edge between the independent set and the 25. Since there is at most

one 25 in a pseudo-split graph, we can solve the pseudo-split editing problem in

polynomial time by check every 25 in $.

In this section, we study the kernelization algorithms for both of the split edge

deletion problem and the pseudo-split edge deletion problem. We consider the

partition of the vertex set after applying an optimal solution. We observe that for

most of the vertices we know to which side they have to belong. It is nevertheless

not safe to directly delete these “decided” vertices. We thus work on the annotated

version, where we mark certain vertices that have to be in the independent set.

Guo [84] has proved that it is safe to remove a vertex that is not contained in any

2'2, 24, or 25. We show that a similar rule can be applied to annotated instances,

and after its application, there can be " (!1.5) vertices in a yes-instance. Finally,

a simple step that removes the marks concludes the algorithm. Our kernel for

the split edge deletion problem has only " (!2.5) edges. With minor tweaks, our

algorithm produces a kernel of the same size for the pseudo-split ({2'2,24}-free

graphs) edge deletion problem. A pseudo-split graph is either a split graph or a

split graph plus a 25. The first difficulty toward this adaptation is that it is not

always safe to remove vertices not contained in any 2'2 or 24. We get over this

obstacle by observing that we can remove vertices not contained in any 2'2,24, or

25. As we recycle the reduction rules for split edge deletion, only the arguments

for their safeness need to be slightly revised.
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6.1 Split edge deletion (completion)

Note that an instance ($, !) is a yes-instance for the split edge deletion problem

if and only if there exists a partition {2, *} of A ($) such that 2 is a clique and

|) (*, *) | ≤ !; this is a split partition of $ − ) (*, *). We call such a partition

a valid partition of the instance ($, !) and use 2 # * to denote it, and we call

2 and * the clique set and independent set, respectively, in the valid partition.

The problem is thus equivalent to finding a valid partition. We notice that some

vertices can be easily decided to which side of a valid partition they should belong.

For example, unless the instance is trivial, a simplicial vertex always belong to the

independent set in any valid partition. Even after we know the destinations of these

vertices, however, we cannot safely delete them. This brings us to the annotated

version of the problem, where wemark certain vertices that can only be put into the

independent set in a valid partition. We use ($, *0, !) to denote such an annotated

instance, where *0 denotes the set of marked vertices. The original instance can be

viewed as ($, ∅, !), and a valid partition of an annotated instance ($, *0, !) needs

to satisfy the additional requirement that *0 ⊆ *.

We can easily retrieve back an unannotated instance from an annotated in-

stance. It suffices to add a small number of new vertices and make each of them

adjacent to all other vertices but *0.

Rule 6.1.1. Let ($, *0, !) be an annotated instance. Add a clique of
√

2! + 1 new

vertices, and make each of them adjacent to all the vertices in A ($) \ *0. Return

the result as an unannotated instance.

Now we show the safeness of Rule 6.1.1

Lemma 6.1.1. Rule 6.1.1 is safe.
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Proof. Let ' denote the clique of new vertices, and let ($′, !) be the resulting

instance. For any valid partition 2 # * of ($, *0, !), the partition (2 ∪ ') # * is

a valid partition of ($′, !) because 2 ⊆ A ($) \ * ⊆ / (;) for every ; ∈ ' . For a

valid partition2# * of ($′, !), if any vertex in *0 is in2, then we must have ' ⊆ *.

Since ' is a clique of order
√

2! + 1, we have |) (*, *) | > ! , which contradicts the

validity of the partition. !

The aforementioned observation on simplicial vertices is formalized by the

following rule.

Rule 6.1.2. Let 1 be a simplicial vertex in A ($) \ *0. If |) ($ − (/ [1] \ *0)) | ≤ ! ,

then return a trivial yes-instance. Otherwise, add 1 to *0.

Now we show the safeness of Rule 6.1.2

Lemma 6.1.2. Rule 6.1.2 is safe.

Proof. In the first case, (/ [1] \ *0) # (A ($) \ / [1] ∪ *0) is a valid partition.

Otherwise, we show by contradiction that 1 ∈ * in any valid partition 2 # * of

($, *0, !). Since 2 is a clique, if 1 ∈ 2, then 2 ⊆ / [1] \ *0. Thus, ) ($ −

(/ [1] \ *0)) ⊆ ) (*, *), but then |) (*, *) | > ! , contradicting the validity of the

partition. !

We construct a modulator. as follows. We greedily find amaximal packing of

vertex-disjoint 2'2’s, 24’s, and 25’s. Let . be the set of vertices in all subgraphs

we found. We can terminate the algorithm by returning a trivial no-instance if

we have found more than ! vertex-disjoint forbidden induced subgraphs from $.

Henceforth, we may assume that |. | ≤ 5! , and we fix a split partition 2. # *.
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of $ − . . The following simple observation enables us to know the destinations

of more vertices.

Lemma 6.1.3. For any valid partition 2 # * of ($, !), if one exists, we have

(i) |*. ∩ 2 | ≤ 1; and

(ii) |2. ∩ * | ≤
√

2! .

Proof. The first assertion follows from that *. is an independent set and 2 is a

clique. The second assertion holds because

! ≥ |) (*, *) | ≥ |) (2. ∩ *,2. ∩ *) | =
( |2. ∩ * |

2

)
. !

We say that a vertex is a c-vertex, respectively, an i-vertex, if it is in 2, respec-

tively, in *, for any valid partition 2# * of ($, *0, !). Clearly, every vertex that has

more than ! + 1 neighbors in *. is a c-vertex, while the following are i-vertices:

• every vertex with more than
√

2! non-neighbors in 2. ; and

• every vertex nonadjacent to a c-vertex.

We can indeed delete all the c-vertices, as long as we keep their non-neighbors

marked. Note that after obtaining the initial split partition 2. # *. of $ − . ,

we do not need to maintain the invariant that . is a modulator, though we do

maintain that 2. is a clique and that *. is an independent set throughout. During

our algorithm, we maintain {. ,2. , *. , *0} as a partition of A ($). Therefore,

whenever we mark a vertex, we remove it from the set that originally contains it,

and move it to *0.
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Rule 6.1.3. Let ($, *0, !) be an annotated instance.

(i) Mark every vertex that has more than
√

2! non-neighbors in 2. .

(ii) If a vertex 1 has more than ! +1 neighbors in *. ∪ *0, then mark every vertex

in A ($) \ / [1] and delete 1.

Now we show the safeness of Rule 6.1.3.

Lemma 6.1.4. Rule 6.1.3 is safe.

Proof. Let *′0 denote the set of marked vertices after the reduction. It is trivial

that if the resulting instance of (i) is a yes-instance, then the original is also a yes-

instance. For (ii), any valid partition 2′ # *′ of ($ − 1, *′0, !) can be extended to a

valid partition (2′ ∪ {1}) # *′ of ($, *0, !) because 2′ ⊆ A ($) \ *′0 ⊆ / [1].

For the other direction, let2# * be any valid partition of ($, *0, !). (i) Since2

is a clique, 2. \ / (1) ⊆ * for every 1 ∈ 2. By Lemma 6.1.3(ii), if |2. \ / (1) | >
√

2! for some vertex 1, then 1 has to be in *. Thus, we get that 2 # * is also a

valid partition of the new instance ($, *′0, !). (ii) By Lemma 6.1.3(i), we have

|*. \ * | ≤ 1. As *0 ⊆ * and |/ (1) ∩ (*. ∪ *0) | > ! + 1, there are at least ! + 1

edges between 1 and *. Since |) (*, *) | ≤ ! , we must have 1 ∈ 2. Moreover, since

2 is a clique, we get that 2 ⊆ / [1], and every vertex nonadjacent to 1 has to be in

*. This justifies the marking of A ($) \ / [1]. Clearly, the partition (2 \ {1}) # *

is a valid partition of ($ − 1, *′0, !). !

The next rule is straightforward: since *0 has to be in the independent set of a

valid partition, every solution contains all the edges in ) (*0, *0).

Rule 6.1.4. Let ($, *0, !) be an annotated instance. Remove all the edges in

) (*0, *0), and decrease ! accordingly.
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Now we show the safeness of Rule 6.1.4.

Lemma 6.1.5. Rule 6.1.4 is safe.

Proof. By the definition of the annotated instance, any solution )− of ($, *0, !)

contains all the edges in ) (*0, *0). Moreover, the edge set )− \ ) (*0, *0) is a

solution to $ − ) (*0, *0), and its size is at most ! − |) (*0, *0) |. On the other hand,

if ($−) (*0, *0), !− |) (*0, *0) |) is a yes-instance, then any solution of this instance,

together with ) (*0, *0), makes a solution of ($, *0, !) of size at most ! . !

Once there are no edges among vertices in *0, we can replace *0 with another

independent set as long as we keep track of the number of edges between every

vertex 1 ∈ A ($) \ *0 and *0. The following rule reduces the cardinality of *0.

Rule 6.1.5. Let ($, *0, !) be an annotated instance where *0 is an independent set.

Introduce F new vertices 11, 12, . . ., 1F, where F = max1∈A ($) |/ (1) ∩ *0 |. For

each vertex ; ∈ / (*0), make ; adjacent to 11, . . ., 1 |/ (;)∩*0 |. Remove all vertices

in *0, and mark the set of new vertices.

Note that if Rule 6.1.3 is not applicable, then F ≤ ! + 1. Instead of proving the

safeness of Rule 6.1.5, we prove a stronger statement.

Lemma 6.1.6. Let ($, *0, !) and ($′, *′0, !) be two annotated instances where

$ − *0 = $′ − *′0 and both *0 and *′0 are independent sets. If |/$ (;) ∩ *0 | =

|/$′ (;) ∩ *′0 | for every ; ∈ A ($) \ *0, then ($, *0, !) is a yes-instance if and only

if ($′, *′0, !) is a yes-instance.

Proof. Let {2, *} be a partition of A ($). We show that 2 # * is a valid partition

of ($, *0, !) if and only if 2# ((* \ *0)∪ *′0) is a valid partition of ($′, *′0, !). Note
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that

|) (* \ *0, *0) | =
∑
;∈*\*0

|/$ (;) ∩ *0 | =
∑
;∈*\*′0

|/$′ (;) ∩ *′0 | = |) (* \ *′0, *′0) |.

Since $ − *0 = $′ − *′0, and since there is no edge in $ [*0] or $′[*′0], the claim

follows. !

Let us recall an important observation of Guo [84].

Lemma 6.1.7 ([84]). If a vertex 1 is not contained in any 2'2, 24, or 25, then

opt($ − 1) = opt($).

Both Guo [84] and Ghosh et al. [75] used a rule derived from this observation

to delete vertices, and this is their only rule that removes vertices from the graph.

We may show that the same rule indeed works for our annotated instances, for

which however we have to go through the original argument of [84]. We note that

if a vertex 1 in *0 is adjacent to two vertices 0 and K with 0K ∉ ) ($), then any

solution has to contain at least one of edges 01 and 1K (since 0 and K cannot be

both in the clique). We say that an induced (3 is *0-centered if the degree-two

vertex of this (3 is from *0. In a sense, *0-centered (3’s are “minimal forbidden

structures” for our annotated instances. Accordingly, a 24 or 25 involving a vertex

from *0 is no longer minimal. In summary, the “minimal forbidden structures” are

24’s and 25’s in $ − *0, all 2'2’s, and *0-centered (3’s. Note that a “minimal

forbidden structure” intersecting *0 has to be a 2'2 or an *0-centered (3, and this

gives another explanation of the correctness of Lemma 6.1.6, which exchanges

these two kinds of “minimal forbidden structures” with each other. The following

rule can be viewed as the annotated version of the rule of Guo [84], and its safeness
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can be argued using Lemma 6.1.7.

Rule 6.1.6. Let ($, *0, !) be an annotated instance where *0 is an independent set,

and let 1 be a vertex in 2. . If 1 is not contained in any 2'2 or any *0-centered (3,

and every 24 and 25 that contains 1 intersects *0, then remove 1 from $.

Now we prove the safeness of Rule 6.1.6.

Lemma 6.1.8. Rule 6.1.6 is safe.

Proof. Suppose that 1 is a vertex not contained in any 2'2 or any *0-centered (3,

and every 24 and 25 that contains 1 intersects *0. We show that ($, *0, !) is a yes-

instance if and only if ($ − 1, *0, !) is a yes-instance, by establishing a sequence

of equivalent instances. For each edge ;< ∈ ) ($) with ; ∈ *0 and < ∈ A ($) \ *0,

we introduce a new vertex 1;< and make it adjacent to <. Remove all vertices in

*0, and let *′0 denote the set of new vertices (see Figure 6.4). Let ($′, *′0, !) denote

the resulting instance. The equivalence between ($′, *′0, !) and ($, *0, !) follows

from Lemma 6.1.6. Then let ($′′, !) denote the instance obtained by applying

Rule 6.1.1 to ($′, *′0, !), with ' being the added clique of size
√

2! + 1.

<1

<2

;2

;1

;3

*0

(a)

<1

<2

1;1<1

1;2<1

1;1<2

1;2<2

1;3<2

*′0

(b)

Figure 6.4: Illustration of Lemma 6.1.8. The transformation from $ to $′.
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We argue that 1 is not contained in any 2'2, 24, or 25 of $′′. Suppose for

contradiction that there is a set @ ⊆ A ($′′) that contains 1 and induces a 2'2, 24,

or 25 in $′′. Since neither the transformation from $ to $′ nor the transformation

from $′ to $′′ makes any change to A ($) \ *0, this set induces the same subgraph

in $ and $′′. Thus, the set @ ! A ($) \ *0. Moreover, since every vertex in ' is

universal in $′′ − *′0 and {A ($) \ *0,' , *′0} is a partition of A ($′′), it follows that

@ ∩ *′0 is not empty. Note that every vertex in *′0 has only one neighbor in $′′, we

can conclude that $′′[@] must be a 2'2 and @ ∩ ' = ∅. But then 1 is contained

in either a 2'2 or an *0-centered (3 in $, a contradiction.

It then follows from Lemma 6.1.7 that ($′′, !) is equivalent to ($′′ − 1, !). To

see the equivalence between ($′′ − 1, !) and ($ − 1, *0, !), we apply the reversed

operations from$ to$′′. We first use Rule 6.1.3, applied to ($′′−1, ∅, !), to mark

all vertices in *′0, then use Lemma 6.1.6 to replace *′0 by *0, and finally remove

vertices in ' . The resulting graph is precisely $ − 1. We can thus conclude the

proof. !

Wecall an annotated instance reduced if none of Rules 6.1.2–6.1.6 is applicable

to this instance. The following lemma bounds the cardinalities of 2. and *. in a

reduced instance.

Lemma 6.1.9. If a reduced instance ($, *0, !) is a yes-instance, then |2. | ≤

3!
√

2! and |*. | ≤ ! + 1.

Proof. Let )− be any solution to ($, *0, !) with at most ! edges. Since Rule 6.1.6

is not applicable, every vertex in 2. is contained in some 2'2 or *0-centered (3,

or some 24 or 25 in the subgraph $ − *0. Any of these structures must contain an

edge in )−. Therefore, to bound |2. |, it suffices to count howmany vertices in2.
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can form a 2'2 or *0-centered (3, or a 24 or 25 in $ − *0 with an edge ;< ∈ )−.

• If a vertex 1 ∈ 2. is in a 2'2 with the edge ;<, then either 1 ∈ {;, <} or

1 is adjacent to neither ; nor <. In the first case, no other vertex in 2. can

occur in any 2'2 with ;<. Since ;< ∈ ) ($), at least one of its endpoints

is not in *0 (Rule 6.1.4). This vertex has at most
√

2! non-neighbors in 2. .

Therefore, the total number of vertices in2. that can occur in any 2'2 with

;< is at most
√

2! .

• If ;< is an edge in any *0-centered (3, then precisely one of ; and < is in

*0. Assume without loss of generality ; ∈ *0. If a vertex 1 ∈ 2. is in an

*0-centered (3 with the edge ;<, then either 1 = <, or 1 is not adjacent to

<. Since < ∉ *0, it has at most
√

2! non-neighbors in 2. . Thus, the total

number of vertices in2. that can occur in any *0-centered (3 containing ;<

is at most
√

2! + 1.

• If a vertex 1 ∈ 2. forms a 24 or 25 in $ − *0 with the edge ;<, then 1 is

adjacent to at most one of ; and <. Since this 24 or 25 is in $ − *0, each of

; and < has at most
√

2! non-neighbors in 2. . Thus, the total number of

vertices in 2. that can occur in such a 24 or 25 is at most 2
√

2! .

Noting that an edge cannot satisfy the conditions of both the second (|{;, <}∩ *0 | =

1) and third (|{;, <} ∩ *0 | = 0) categories, we can conclude |2. | ≤ ! (
√

2! +

2
√

2!) = 3!
√

2! .

Since Rule 6.1.2 is not applicable, no vertex in *. is simplicial. Suppose that

2 # * is a valid partition of ($, !). Since 2 is a clique, for each vertex 1 ∈ *. ∩ *,

at least one neighbor of 1 is in *. Therefore, each vertex 1 ∈ *. ∩ * is incident
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to an edge in the solution ) (*, *). Noting that *. is an independent set, we have

! ≥ |*.∩ * | ≥ |*. |−1, where the second inequality follows from Lemma 6.1.3(i).

Thus, we can conclude |*. | ≤ ! + 1, and this concludes this proof. !

Note that the application of Rule 6.1.1 is different from the other ones. The

application of one of Rules 6.1.2–6.1.6 may trigger the applicable of another. After

the application of Rule 6.1.1, the instance is no longer annotated, and we will not

go back to check the other rules.

6.2 An improved kernel

We summarize the kernelization algorithm in Figure 6.5.

INPUT: an instance ($, !) of the split edge deletion problem.
OUTPUT: an equivalent instance ($′, ! ′) with |A ($′) | = " (! ′1.5).

1. *0 ← ∅;
1. . ← a maximal packing of vertex-disjoint 2'2’s, 24’s, and 25’s;
2. if |. | > 5! then return a trivial no-instance;
3. if ! < 0 then return a trivial no-instance;
4. for each simplicial vertex 1 ∈ A ($) \ *0 do (Rule 6.1.2)

if |) ($ − (/ [1] \ *0)) | ≤ ! then return a trivial yes-instance;
else *0 ← *0 ∪ {1};

5. remove c-vertices and mark i-vertices (Rule 6.1.3);
6. if ) (*0, *0) ≠ ∅ then

remove edges in ) (*0, *0) and decrease ! (Rule 6.1.4);
7. merge *0 into ≤ ! vertices (Rule 6.1.5);
8. remove vertices in 2' not contained in certain structures (Rule 6.1.6);
9. if any of Rules 6.1.2–6.1.4 and 6.1.6 made a change then goto 3;
10. if |2' | + |*' | > 3!

√
2! + ! + 1 then return a trivial no-instance;

11. add
√

2! + 1 new vertices and remove all marks (Rule 6.1.1);
12. return ($, !).

Figure 6.5: A summary of our kernelization algorithm for SPLIT EDGE DELETION.
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Now we are ready to prove Theorem 1.4.5 and Theorem 1.4.6, we recall them

here.

Theorem 6.2.1. The split edge deletion problem has a kernel with at most" (!1.5)

vertices.

Proof. We use the algorithm described in Figure 6.5. The first two steps build the

modulator, and their correctness follows from that any solution contains at least

one edge of each forbidden induced subgraph of $. Step 3 is obviously correct.

Steps 4–8 follow from the safeness of the rules; so is step 11. The correctness of

step 10 is ensured by Lemma 6.1.9.

The cardinality of . is at most 5! , and it never increases during the algorithm.

After step 7, we have |*0 | ≤ ! . We have bounded the cardinalities of 2. and *. in

Lemma 6.1.9. Step 11 increases |2. | by
√

2! + 1. Putting them together, we have

|A ($) | ≤ 5! + ! + (3!
√

2! +
√

2! + 1) + ! + 1 = " (!1.5).

It is easy to verify that each reduction rule can be checked and applied in poly-

nomial time. To see that the algorithm runs in polynomial time, note that if any of

Rules 6.1.2–6.1.4 and 6.1.6 made a change to the instance, then either ! decreases

by one (Rule 6.1.4), or the cardinality of A ($) \ *0 decreases by one (the other

three rules). !

Since the class of split graphs is self-complementary, our algorithm also im-

plies a kernel for the split completion problem. This kernel actually has fewer

edges than the one for SPLIT EDGE DELETION.
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Theorem 6.2.2. The split completion problem has a kernel with at most " (!1.5)

vertices and " (!2.5)87G8O.

Proof. Let ($, !) be the input instance of the split completion problem. We can

either take the complement of the input graph and consider it as an instance of the

split edge deletion problem, or run the “complemented versions” of the rules. In

the final result, we have an independent set of at most " (!
√
!) vertices, and at

most " (!) other vertices. The claim then follows. !

6.3 Pseudo-split edge deletion (completion)

AS we mentioned before, split graphs are precisely 25-free pseudo-split graphs.

Note that a pseudo-split graph contains at most one 25. In case that a pseudo-split

graph does contain a 25, removing any vertex from the 25 leaves a split graph.

Another way to derive a split subgraph from a pseudo-split graph is by removing

any two consecutive edges from the 25. Thus, if we use sed($) to denote the size

of the smallest edge set )− such that $ − )− is a split graph, then

opt($) ≤ sed($) ≤ opt($) + 2.

Moreover, we have opt($) = sed($) if and only if there is a minimum solution

)− of $ (for the pseudo-split edge deletion problem) such that $ − )− is a split

graph.

We say that a partition2# * #3 of the vertex set of the input graph$ is a valid

partition of the instance ($, !) if there exists a set )− of at most ! edges such that

2 # * # 3 is a pseudo-split partition of $ − )−.
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Proposition 6.3.1. Let $ be a graph with opt($) < sed($), let )− be a minimum

solution to $, and let 2 # * # 3 be the pseudo-split partition of $ − )−. Then the

subgraph $ [3] is a 25, and no vertex in * forms a triangle with two vertices in 3

in $.

Proof. Since opt($) < sed($), the set 3 cannot be empty. Let $′ = $ − )−, and

let 1112131415 be the cycle of $′[3]. We first argue that $ [3] is a 25. Suppose

otherwise, then there is a chord of the cycle $′[3], say 1113, in )−. We take

)′− = ()− \ {1113}) ∪ {1415}. Note that $ − )′− is a split graph, as evidenced by

the split partition (2∪{11, 12, 13})#(*∪{14, 15}) (see Figure 6.6). But |)′− | = |)− |

contradicts opt($) < sed($).

61

62

63

;1

;2

;3

;4
2

*

11

12

13

14

15
3

(a)

61

62

11

12

13

63

;1

;2

15

;3

14

;5

2′ *′

(b)

Figure 6.6: Illustration for Proposition 6.3.1.

For the second part, suppose for contradiction that there is a triangle of $

containing a vertex 0 ∈ * and two vertices in 3. We have seen that $ [3] is a 25.

We may assume that the triangle is 01112. We take )′− = ()− \ {011, 012}) ∪

{1314, 1415}. Note that $ − )′− is a split graph, as evidenced by the split partition

(2 ∪ {11, 12}) # (* ∪ {13, 14, 15}). But |)′− | = |)− |, which contradicts opt($) <
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sed($). !

For the pseudo-split edge deletion problem, one may expect a proposition sim-

ilar as Lemmas 5.2.3 and 6.1.7; i.e., it is safe to remove vertices not in any 2'2 or

24. As shown in Figure 6.7, this is however not true. This graph contains no 2'2,

and the only 24 is 11121314. The deletion of any edge from this cycle introduces a

new 2'2, e.g., {1114, 1216} after 1112 deleted. On the other hand, opt($ − 16) = 1

because it suffices to delete either 1112 or 1213. We manage to show that if a vertex

1 is not in any 2'2, 24, or 25, then it is safe to remove 1. This is sufficient for our

algorithm.

11
12

13

14

15 16

Figure 6.7: opt($) = 2, while opt($ − 16) = 1.

Lemma 6.3.2. If a vertex 1 is not contained in any 2'2,24, or25, then opt($−1) =

opt($).

Proof. Let $′ = $ − 1. It is trivial that any solution to $ contains a solution

to $′, hence opt($′) ≤ opt($). Let )− be a minimum solution to $′. We have

nothing to show if $ − )− is a pseudo-split graph as well. In the rest of the proof,

$ − )− is not a pseudo-split graph. We take a pseudo-split partition 2 # * # 3

of $′ − )−. If 3 = ∅, then $′ − )− is a split graph. Since every split graph is

a pseudo-split graph, )− is also a minimum split edge deletion set of $ − 1. By
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Lemma 6.1.7, there is a set )′− such that |)′− | = |)− | and $ − )′− is a split graph.

Thus, opt($) ≤ |)′− | = opt($ − 1).

Now that 3 ≠ ∅, we may assume without loss of generality that (1) $ [3] is a

25, and (2) |3∩/$ (;) | ≤ 2 for every vertex ; ∈ *; otherwise, by Proposition 6.3.1,

we can find another solution )′− of $′ such that |)′− | = |)− | and $′ − )′− is a split

graph, and then we are in the previous case. Under these assumptions we show that

the vertex 1 is either adjacent to all vertices in 2 ∪ 3, or nonadjacent to any vertex

in *∪3. Accordingly, we can get that either (2∪ {1})# *#3 or2# (*∪ {1})#3 is

a pseudo-split partition of $ − )−, and hence $ − )− is also a pseudo-split graph.

Let us start from the adjacency between 1 and 3. If 1 is adjacent to only one

vertex in 3, or two or three consecutive vertices on the 25, then 1 is contained in

a 2'2. On the other hand, if 1 is adjacent to four vertices in 3, or two or three

non-consecutive vertices on the 25, then 1 is contained in a 24. See Figure 6.8

for illustration. Therefore, we have that 1 is adjacent to either all or none of the

vertices in 3. If 3 ⊆ /$ (1), then 2 ⊆ /$ (1) as well: 1, a vertex ; ∈ 2 \ /$ (1),

and two nonadjacent vertices in 3 would induce a 24. Now that /$ (1) ∩ 3 = ∅,

we are done if /$ (1) ∩ * = ∅. Suppose otherwise, and let 0 be any vertex in

/$ (1) ∩ *. By assumption (2), we have |3 ∩ /$ (0) | ≤ 2. But then an edge in

$ [3] of which both endpoints nonadjacent to 0 form an induced 2'2 with 01 in

$. This concludes the proof. !

To adapt the algorithm in Figure 6.5 for the pseudo-split edge deletion problem,

we only need to conduct very minor adjustments. We use the samemodulator. as

the previous section, i.e., vertices of a maximal packing of vertex-disjoint 2'2’s,

24’s, and 25’s. Recall that a pseudo-split graph contains at most one 25. Thus, if
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1

(a)

1

(b)

1

(c)

1

(d)

1

(e)

1

(f)

Figure 6.8: Illustration for the proof of Lemma 6.3.2. There is a 2'2 (4, 5, 6) or
24 (7, 8, 9 ), shown as thick lines, containing 1.

we have found F vertex-disjoint 25’s from $, then we need to break at least F − 1

of them.

Lemma 6.3.3. If ($, !) is a yes-instance, then |. | ≤ 4! + 5.

Proof. Let )− be a minimum solution to $. Suppose that the numbers of vertex-

disjoint 2'2’s, 24’s, and 25’s we have put into . are F, P, and L, respectively. In

each 2'2 or24, at least one edge needs to be in )−. At most one25 can be disjoint

from )−, and on each of other 25’s, at least two edges are in )−. Thus, we have

! ≥ |)− | ≥ F + P + 2(L − 1), and |. | = 4F + 4P + 5L = 4F + 4P + 5(L − 1) + 5 ≤

4! + 5. !

As a result, if |. | > 4! + 5, then ($, !) must be a no-instance (step 2 of the

algorithm). Again, we start from a split partition 2. # *. of $ −. , and we work

on the annotated version of the problem. In an annotated instance ($, *0, !), the set

*0 of marked vertices can only be put into the independent set * in a valid partition.

We use the same rules as we have used for the split edge deletion problem. We

now verify that all of them remain safe for the pseudo-split edge deletion problem.

The first is simple.

Rule 6.3.1. Let ($, *0, !) be an annotated instance. Add a clique of
√

2! + 1 new

vertices, and make each of them adjacent to all the vertices in A ($) \ *0. Return
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as an unannotated instance.

Now we show the safeness of Rule 6.3.1.

Lemma 6.3.4. Rule 6.3.1 is safe.

Proof. Let ' denote the clique of new vertices, and let ($′, !) be the resulting

instance. For any valid partition2#*#3 of ($, *0, !), the partition (2∪')#*#3 is

a valid partition of ($′, !) because2 ⊆ A ($)\* ⊆ / (;) and 3 ⊆ A ($)\* ⊆ / (;)

for every vertex ; ∈ ' . Let )− be a set of at most ! edges such that $′ − )− is a

pseudo-split graph and2# *#3 is a pseudo-split partition of$′−)−. If any vertex

in *0 is in 2 ∪ 3, then we must have ' ⊆ *. But then |)− | > ! , which contradicts

the validity of the partition. !

Rule 6.1.2 was safe for the split edge deletion problem because a vertex is either

in 2 or *. For the pseudo-split edge deletion problem, we need to take care of the

possibility that a simplicial vertex is in 3.

Lemma 6.3.5. Let ($, *0, !) be an instance of the annotated version of the pseudo-

split edge deletion problem, and let 1 be a simplicial vertex of $. If there exists

a valid partition 2 # * # 3 with 1 ∈ 3, then there exists another valid partition

2′ # *′ # 3′ with 3′ = ∅.

Proof. Since 1 ∈ 3, the set 3 is not empty. Since 1 is simplicial, $ [3] is not a 25.

The statement follows from Proposition 6.3.1. !

As a result, for any simplicial vertex 1, it suffices to look for a valid partition

2 # * # 3 with 1 ∈ 2 ∪ *. If 1 ∈ 2, then 3 = ∅; since 2 ∪ 3 is a subset of / [1],

it is a clique, and then (2 ∪ 3) # * is a partition with a smaller solution. Thus, it

remains safe.
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Rule 6.3.2. Let 1 be a simplicial vertex in A ($) \ *0. If |) ($ − (/ [1] \ *0)) | ≤ ! ,

then return a trivial yes-instance. Otherwise, add 1 to *0.

Now we show the safeness of Rule 6.3.2.

Lemma 6.3.6. Rule 6.3.2 is safe.

Proof. If |) ($− (/ [1] \ *0)) | ≤ ! , then (/ [1] \ *0)# (A ($) \/ [1]∪ *0) is a valid

partition. Otherwise, we show that there is a minimum solution )− to ($, *0, !)

such that 2 # * # 3 is a pseudo-split partition of $ − )− and 1 ∈ *. Suppose for

contrary that 1 ∉ *, then by Lemma 6.3.5, we can suppose that 1 is in 2. Since 2

is a clique, then2 ⊆ / [1] \ *0. Since every vertex in 3 is adjacent to all vertices in

2, then 3 ⊆ / [1] \ *0. Thus, we have ) ($− (/ [1] \ *0)) ⊆ )−, but then |)− | > ! ,

contradicting the validity of the partition. !

Lemma 6.3.7. Let 2 # * # 3 be a valid partition of ($, !), if one exists, we have

(i) |*. ∩ 2 | ≤ 1;

(ii) |*. ∩ 3 | ≤ 2; and

(iii) |2. ∩ * | ≤
√

2! .

Proof. The first assertion follows from that *. is an independent set and 2 is a

clique. The second assertion holds because a 25 does not contain an independent

set of order three. The last assertion holds because

! ≥ |) (*, *) | ≥ |) (2. ∩ *,2. ∩ *) | =
( |2. ∩ * |

2

)
. !
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We say that a vertex is a c-vertex, respectively, an i-vertex, if it is in 2, re-

spectively, in *, for any valid partition 2 # * # 3 of ($, *0, !) (we do not consider

vertices in 3 since there are only five such vertices).

Lemma 6.3.8. If a vertex 1 hasmore than !+3 neighbors in *. , then 1 is a c-vertex.

Proof. Let )− be a set of at most ! edges such that $ − )− is a pseudo-split graph

and 2 # * # 3 is a pseudo-split partition of $ − )−. Suppose for contrary that 1

is not a c-vertex, then it is in * or 3. By Lemma 6.3.7 (i) and (ii), there are at least

! + 1 neighbors of 1 are in *, then |)− | > ! , which is a contradiction. !

Lemma 6.3.9. The following are i-vertices:

• every vertex nonadjacent to a c-vertex; and

• every vertex with more than
√

2! + 1 non-neighbors in 2. .

Proof. The first assertion follows from the definition of the pseudo-split graphs.

Now we proof the second assertion. Let 1 be a vertex with more than
√

2! + 1

non-neighbors in 2. , and let )− be a set of at most ! edges such that $ − )− is a

pseudo-split graph and 2 # * # 3 is a pseudo-split partition of $ − )−. Suppose

for contrary that 1 ∉ *, then 1 is in 2 or 3. If 1 ∈ 2, then all non-neighbors of

1 in 2. are in *, then we have |2. ∩ * | >
√

2! , which contradicts Lemma 6.3.7

(iii). If 1 ∈ 3, then there are at most two non-neighbors of 1 in 2. that are in 3,

then all but one edges in $ [(A ($) \ / [1]) ∩ 2.] are in )−, then |)− | > ! , a

contradiction. !
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We can indeed delete all the c-vertices, as long as we keep their non-neighbors

marked. Note that after obtaining the initial split partition 2. # *. of $ − . ,

we do not need to maintain the invariant that . is a modulator, though we do

maintain that 2. is a clique and that *. is an independent set throughout. During

our algorithm, we maintain {. ,2. , *. , *0} as a partition of A ($). Therefore,

whenever we mark a vertex, we move it to *0.

Rule 6.3.3. Let ($, *0, !) be an annotated instance.

(i) Mark every vertex that has more than
√

2! + 1 non-neighbors in 2. .

(ii) If a vertex 1 has more than ! +3 neighbors in *. ∪ *0, then mark every vertex

in A ($) \ / [1] and delete 1.

Now we show the safeness of Rule 6.3.3.

Lemma 6.3.10. Rule 6.3.3 is safe.

Proof. Let *′0 denote the set of marked vertices after the reduction. It is trivial

that if the resulting instance of (i) is a yes-instance, then the original is also a yes-

instance. For (ii), any valid partition2′# *′#3′ of ($−1, *′0, !) can be extended to

a valid partition (2′ ∪ {1}) # *′ # 3′ of ($, *0, !) because 2′ ⊆ A ($) \ *′0 ⊆ / [1]

and 3′ ⊆ A ($) \ *′0 ⊆ / [1].

For the other direction, let )− be a set of at most ! edges such that $ − )− is

a pseudo-split graph and 2 # * # 3 is a pseudo-split partition of $ − )− where

*0 ⊆ *. (i) Since |)− | ≤ ! , then |2. \ / (1) | ≤
√

2! for every 1 ∈ 2 and

|2. \ / (1) | ≤
√

2! + 1 for every 1 ∈ 3. Therefore, if |2. \ / (1) | >
√

2! + 1

for some vertex 1, then 1 has to be in *. Thus, 2 # * # 3 is also a valid partition

of the new instance ($, *′0, !). (ii) By Lemma 6.3.7(i) and (ii), |*. ∩ * | ≤ 1 and
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|*. ∩ 3 | ≤ 2. As *0 ⊆ * and |/ (1) ∩ (*. ∪ *0) | > ! + 3, there are at least ! + 1

edges between 1 and *. Since |)− | ≤ ! , we must have 1 ∈ 2. Moreover, since

2 is a clique, 2 ⊆ / [1], and every vertex nonadjacent to 1 has to be in *. This

justifies the marking of A ($) \/ [1]. Clearly, (2 \ {1}) # * # 3 is a valid partition

of ($ − 1, *′0, !). !

Rule 6.3.4. Let ($, *0, !) be an annotated instance. Remove all the edges in

) (*0, *0), and decrease ! accordingly.

Lemma 6.3.11. Rule 6.3.4 is safe.

Proof. By the definition of the annotated instance, any solution )− of ($, *0, !)

contains all the edges in ) (*0, *0). Moreover, we have that )− \ ) (*0, *0) is a

solution to $ − ) (*0, *0), and its size is at most ! − |) (*0, *0) |. On the other hand,

if ($−) (*0, *0), !− |) (*0, *0) |) is a yes-instance, then any solution of this instance,

together with ) (*0, *0), makes a solution of ($, *0, !) of size at most ! . !

Rule 6.3.5. Let ($, *0, !) be an annotated instance where *0 is an independent set.

Introduce F new vertices 11, 12, . . ., 1F, where F = max1∈A ($)\*0 |/ (1) ∩ *0 |. For

each vertex ; ∈ / (*0), make ; adjacent to 11, . . ., 1 |/ (;)∩*0 |. Remove all vertices

in *0, and mark the set of new vertices.

The following statement ensures the safeness of Rule 6.3.5. Note that if Rule 6.3.3

is not applicable, then F ≤ ! + 2.

Lemma 6.3.12. Let ($, *0, !) and ($′, *′0, !) be two annotated instances where

$ − *0 = $′ − *′0 and both *0 and *′0 are independent sets. If |/$ (;) ∩ *0 | =

|/$′ (;) ∩ *′0 | for every ; ∈ A ($) \ *0, then ($, *0, !) is a yes-instance if and only

if ($′, *′0, !) is a yes-instance.
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Proof. We show that 2 # * # 3 is a valid partition of ($, *0, !) if and only if

2 # ((* \ *0) ∪ *′0) # 3 is a valid partition of ($′, *′0, !). Note that

|) ((* ∪ 3) \ *0, *0) | =
∑

;∈(*∪3)\*0
|/$ (;) ∩ *0 | =

∑
;∈(*∪3)\*′0

|/$′ (;) ∩ *′0 |

=|) ((* ∪ 3) \ *′0, *′0) |.

Since $ − *0 = $′ − *′0, and there is no edge in $ [*0] or $′[*′0], we conclude the

proof. !

Rule 6.3.6. Let ($, *0, !) be an annotated instance where *0 is an independent set,

and let 1 be a vertex in 2. . If 1 is not contained in any 2'2 or any *0-centered (3,

and every 24 and 25 that contains 1 intersects *0, then remove 1 from $.

Lemma 6.3.13. Rule 6.3.6 is safe.

Proof. We show that ($, *0, !) is a yes-instance if and only if ($ − 1, *0, !) is a

yes-instance, by establishing a sequence of equivalent instances. For each edge ;<

with ; ∈ *0 and < ∈ A ($) \ *0, introduce a new vertex 1;< and make it adjacent

to <. Remove all vertices in *0, and let *′0 denote the set of new vertices. Let

($′, *′0, !) denote the resulting instance. The equivalence between ($′, *′0, !) and

($, *0, !) follows from Lemma 6.3.12. Then let ($′′, !) denote the graph obtained

by applying Rule 6.3.1 to ($′, *′0, !), with ' being the added clique.

We argue that 1 is not contained in any 2'2, 24 or 25 of $′′. Suppose for

contradiction that there is a set @ ⊆ A ($′′) that contains 1 and induces a 2'2, 24,

or 25 in $′′. Since neither the transformation from $ to $′ nor the transformation

from $′ to $′′ makes any change to A ($) \ *0, this set induces the same subgraph

in $ and $′′. Thus, @ ! A ($) \ *0. Moreover, since every vertex in ' is universal
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in $′′ − *′0, it follows that @ ∩ *′0 is not empty. Note that every vertex in *′0 has

degree one in $′′, we can conclude that $′′[@] must be 2'2 and @ ∩ ' = ∅. But

then 1 is contained in either a 2'2 or an *0-centered (3 in $, a contradiction.

It then follows from Lemma 6.3.2 that ($′′, !) is equivalent to ($′′ − 1, !). To

see the equivalence between ($′′ − 1, !) and ($ − 1, *0, !), we apply the reversed

operations from$ to$′′. We first use Rule 6.3.3, applied to ($′′−1, ∅, !), to mark

all vertices in *′0, then use Lemma 6.3.12 to replace *′0 by *0, and finally remove

vertices in ' . The resulting graph is precisely $ − 1. We can thus conclude the

proof. !

Wecall an annotated instance reduced if none of Rules 6.3.2–6.3.6 is applicable

to this instance.

Lemma 6.3.14. If a reduced instance ($, *0, !) is a yes-instance, then |2. | ≤

3!
√

2! + 2! + 2 and |*. | ≤ ! + 3.

Proof. Let )− be any solution to ($, *0, !) with at most ! edges and 2 # * # 3 a

pseudo-split partition pf $ − )−. Since Rule 6.3.6 is not applicable, every vertex

in 2. is contained in some 2'2 or *0-centered (3, or some 24 or 25 in $ − *0. If

opt($) = sed($), then every minimal forbidden structure contains an edge in )−.

If opt($) < sed($), then all minimal forbidden structures except for one 25 (it is

3) contain an edge in )−, then |3 ∩ 2. | ≤ 2 (by Proposition 6.3.1). Therefore,

to bound |2. |, it suffices to count how many vertices in 2. can form a 2'2 or

*0-centered (3, or a 24 or 25 in $ − *0 with an edge ;< ∈ )−.

• If a vertex 1 ∈ 2. is in a 2'2 with edge ;<, then either 1 ∈ {;, <} or 1

is adjacent to neither ; nor <. In the first case, no other vertex in 2. can
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occur in any 2'2 with ;<. Since ;< ∈ ) ($), at least one of them is not

in *0 (Rule 6.3.4). This vertex has at most
√

2! + 1 non-neighbors in 2. .

Therefore, the total number of vertices in2. that can occur in any 2'2 with

;< is at most
√

2! + 1.

• If ;< is an edge in any *0-centered (3, then precisely one of them is in *0.

Assume without loss of generality ; ∈ *0. If a vertex 1 ∈ 2. is in an *0-

centered (3 with the edge ;<, then either 1 = <, or 1 is not adjacent to <.

If 1 = <, then there is no other vertex in 2. that can be in an *0-centered

(3 with ;<. Since < ∉ *0, it has at most
√

2! + 1 non-neighbors in 2. .

Thus, the total number of vertices in 2. that can occur in any *0-centered

(3 containing ;< is at most
√

2! + 1.

• If a vertex 1 ∈ 2. is in a 24 or 25 that contains ;<, then 1 is adjacent to at

most one of ; and <. Since this24 or25 is in$− *0, then each of ; and < has

at most
√

2! + 1 non-neighbors in 2. . Thus, the total number of vertices in

2. that can occur in such a 24 or 25 is at most 2
√

2! + 2.

Noting that an edge cannot satisfy both the second (|{;, <} ∩ *0 | = 1) and third

(|{;, <} ∩ *0 | = 0) categories, we can conclude |2. | ≤ ! (
√

2! + 2
√

2! + 2) + 2 =

3!
√

2! + 2! + 2.

Since Rule 6.3.2 is not applicable, no vertex in *. is simplicial. Let )− be a

set of at most ! edges such that $ − )− is a pseudo-split graph and 2 # * # 3 is a

pseudo-split partition of $ − )−. Since 2 is a clique, for each vertex 1 ∈ *. ∩ *,

at least one neighbor of 1 is in * ∪ 3. Therefore, each vertex 1 ∈ *. ∩ * is incident

to an edge in the solution )−. Noting that *. is an independent set, we have ! ≥

|*. ∩ * | ≥ |*. | − 1, where the second inequality follows from Lemma 6.3.7(i).
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Note that |*. ∩ 3 | ≤ 2 by Lemma 6.3.7(ii). Thus, |*. | ≤ ! + 3, and this concludes

this proof. !

We use the algorithm described in Figure 6.5. The analysis of the kernels is

the same as that of Theorem 6.2.1.

Theorem 6.3.15. There is an" (!1.5)-vertex kernel for the pseudo-split edge dele-

tion problem. There is a kernel of " (!1.5) vertices and " (!2.5) edges for the

pseudo-split completion problem.



Chapter 7

Conclusions and Future Research

In this chapter, I conclude my thesis and provide an overview of topics I plan to

pursue in the future. A summary of all the results in this thesis was listed in Sec-

tion 1.4. My future work will focus on developing kernelization algorithms for

graph modification problems, not only for graph classes characterized by finite

forbidden induced subgraphs (such as claw-free graphs and line graphs) but also

for graph classes with infinite obstructions (such as chordal graphs and interval

graphs). Additionally, I plan to investigate characterizations of circular-arc graphs

and their subclasses.

7.1 Conclusions

In this thesis, we investigate edge modification problems for several graph classes

that are characterized by finite forbidden induced subgraphs, and we provide a

polynomial kernel for each of these problems.

In Chapter 3, we study the cluster ((3-free) edge deletion problem and provide

114
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a 2!-vertex kernel for it. Additionally, we use the same kernelization algorithm to

the strong triadic closure problem and obtain a 2!-vertex kernel.

In Chapter 4, we present a kernel with 38! vertices for the paw-free completion

problem. We believe the size of the kernel can be improved to 16! by careful

analysis, but we leave an open problem of whether a kernel with a size smaller

than 10! can be obtained.

In Chapter 5, we show a very simple kernelization algorithm for the trivially

perfect ({(4,24}-free) completion problem. The resulting kernel contains at most

2!2 + 2! vertices.

In Chapter 6, we study the kernelization algorithms for the split edge deletion

(completion) problem and the pseudo-split edge deletion (completion) problem,

and show a kernel with " (!1.5) vertices for both problems.

7.2 Future Research

For decades, researchers have been intrigued by the question of which graph mod-

ification problems admit polynomial kernels. I am also eager to contribute my

efforts to this area of research.

7.2.1 Polynomial kernels for edge modification problems

For graph classes that are characterized by only one simple forbidden induced sub-

graph, denoted as #-free graphs. For these graphs, the question of whether there

exists a polynomial kernel for the corresponding edge modification problems has

been studied extensively. Specifically, it has been shown that for all graphs on

three vertices and for all graphs on four vertices except for the claw (a star on four
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vertices), a polynomial kernel exists. We use 3ℓ to denote a star with ℓ vertices. For

the 33-free (cluster) edge deletion problem, we have shown the existence of a 2!-

vertices kernel. However, for the 311-free edge deletion problem, Cai [25] proved

that a polynomial kernel does not exist unless NP ⊆ coNP/ poly. The question

of whether the 3ℓ-free edge deletion problem with 4 ≤ ℓ ≤ 10 has a polynomial

kernel remains open. Solving the following open problem is an important step to

closing the gap [41, 24, 53, 43, 39].

Open problem 7.2.1. Does the claw-free edge deletion problem admit a polyno-

mial kernel?

We are also interested in this problem, as well as the claw-free completion

problem and the claw-free editing problem.

Open problem 7.2.2. Does the claw-free completion problem admit a polynomial

kernel?

Open problem 7.2.3. Does the claw-free editing problem admit a polynomial ker-

nel?

To solve the problem of finding a polynomial kernel for the claw-free edge

deletion problem, we could explore graph classes related to the claw-free graphs.

For instance, we can examine subclasses of claw-free graphs, such as line graphs

and proper interval graphs.

A line graph is a graph that does not contain any of the nine graphs shown in

Figure 7.1 as an induced subgraph [4]. Recently, Eiben and Lochet [58] showed

that the edge deletion problem toward line graphs admits a polynomial kernel with

" (!5) vertices. However, the existence of polynomial kernels for the completion
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problem and the editing problem toward line graphs is still unknown, and it is

included in my lists of future work.

Figure 7.1: The nine minimal forbidden induced subgraphs of line graphs.

Open problem 7.2.4. Does the line graph completion problem admit a polynomial

kernel?

Open problem 7.2.5. Does the line graph editing problem admit a polynomial

kernel?

The proper interval graphs is another subclass of claw-free graphs, which is

characterized by an infinite number of minimal forbidden induced subgraphs. A

graph is a proper interval if it contains no claw, net, tent, or hole (cycles of length

larger than three) as an induced subgraph [158]. Proper interval graphs is also

known as claw-free interval graphs [137, 16]. The proper interval completion prob-

lem has been shown to admit a polynomial kernel with " (!3) vertices [10], while

the proper interval edge deletion problem and the proper interval editing problem

have not been shown to have such polynomial kernels yet.

Open problem 7.2.6. Does the proper interval edge deletion problem admit a

polynomial kernel?
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Open problem 7.2.7. Does the proper interval editing problem admit a polyno-

mial kernel?

Chordal graphs and interval graphs are two important graph classes character-

ized by an infinite number of minimal forbidden induced subgraphs. The chordal

completion problem has been shown to have a kernel with " (!2) vertices [123].

However, for the edge deletion and editing problems toward chordal graphs, no

polynomial kernel has yet been discovered.

I am interested in the interval completion problem. While it has been proven

to be FPT in [156, 26], we still do not know if a polynomial kernel exists for it.

It is known that interval graphs is a subclass of chordal graphs and a superclass

of proper interval graphs. Interestingly, the completion problem towards proper

interval graphs and chordal graphs both have polynomial kernels. This situation

makes the question of whether a polynomial kernel exists for the interval com-

pletion problem even more intriguing. To approach this problem, I plan to first

consider a simpler problem: the completion problem from a chordal graph to an

interval graph. This problem has already been proven to be NP-complete in [131].

My primary objective is to explore the existence of a polynomial kernel for this

problem.

Input: A chordal graph $ and a nonnegative integer ! .

Output: Is there a set )+ of at most ! edges such that $+)+ is

an interval graph?

CHORDAL→ INTERVAL COMPLETION

Open problem 7.2.8. Does CHORDAL→ INTERVAL COMPLETION admit a polynomial

kernel?
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For this problem, we have some observations and some ideas that have not yet

been proven. We know that a graph is a chordal graph if and only if it has a clique

tree [11], and a graph is an interval graph if and only if it has a clique path [72,

76]. Starting from a clique tree Q of a chordal graph $ with a minimum number

of leaves, we observe that the number of leaves can be reduced at most by one by

adding an edge to $. Thus, the number of leaves of Q is at most ! + 2, and the

number of nodes in Q of degree larger than two is at most ! + 1. If we can bound

the number of nodes with degree two in Q and the number of vertices contained in

every node of Q in the polynomial of ! , then we can obtain a polynomial kernel.

We hope this work could give us some hints for kernelization algorithms for

the interval completion problem.

Open problem 7.2.9. Does the interval completion problem admit a polynomial

kernel?

For the open problems we discussed above, we could try to use the modulator

method first. Regarding the edge modification problems for claw-free graphs and

line graphs, we cloud obtain a modulator by finding a maximal packing of vertex-

disjoin claws and the induced subgraphs illustrated in Figure 7.1. Since there are

infinite number of forbidden induced subgraphs for (proper) interval graphs, we

cannot obtain a modulator by finding a maximal packing of their forbidden in-

duced subgraphs. Therefore, we need to explore alternative methods to obtain the

modulator, such as utilizing approximation algorithms with a constant ratio. How-

ever, the best-known result is the " (log >) approximation algorithm for the inter-

val completion problem [134]. Hence, it is challenging to employ the modulator

methods for the kernelization algorithms to the interval completion problem.
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7.2.2 Characterizations of normal circular-arc graphs

Characterizing circular-arc graphs and its subclasses by forbidden induced sub-

graphs is also one of my main areas of focus for future work. A circular-arc graph

is an intersection graph of arcs on a circle and is a generalization of an interval

graph. Lekkerkerker and Boland [109] showed the set of forbidden induced sub-

graphs for interval graphs in the 1960s, the same is not true for circular-arc graphs,

whose set of forbidden induced subgraphs remains unkonwn after years of research

[153, 154, 61, 111, 17, 70]. On the positive side, the forbidden subgraph character-

izations of several subclasses of circular-arc graphs are known to us, such as proper

circular-arc graphs (in which no arc is properly contained in any other arc) [154],

unit circular-arc graphs (in which all arcs have the same length) [154], and normal

Helly circular-arc graphs (in which no two arcs cover the circle and every family of

pairwise intersecting arcs shares a common point) [29]. Trotter and Moore [151]

characterized two-clique circular arc graphs in terms of forbidden subgraphs. Lin

and Szwarcfiter [111] had given the minimal forbidden induced subgraphs of Helly

circular-arc graphs (in which every family of pairwise intersecting arcs shares a

common point) when the input graph is a circular-arc graph.

Normal circular-arc graphs (in which no two arcs cover the circle) is a subclass

of circular-arc graphs forwhichwe do not yet know the forbidden induced subgraph

characterization. I want to study the characterization of normal circular-arc graphs

by minimal forbidden induced subgraphs when the input graph is a circular-arc

graph.

Hell and Huang [92] showed that if $ is a co-bipartite circular-arc graph, then

$ is a normal circular-arc graph if and only if $ is an interval bigraph. They also
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provided the forbidden induced subgraph characterization of interval bigraphs.

Here we need to consider that $ is a circular-arc graph but not co-bipartite, which

means that the vertices of $ cannot be covered by two cliques.

For a minimal circular-arc graph # that is not normal, there are two arcs that

cover the circle in any arc model of #. We consider whether these two arcs are

fixed in any arc model. There are three cases to consider: (D) both of the two arcs

are fixed in any arc model, (DD) only one of them is fixed in any arc model, (DDD)

none of them is fixed.

Next, we give some definitions. A circular-arc model is an ordered pair (2,A),

where 2 is a circle, and A is a family of arcs of 2. Unless explicitly stated, we

always traverse 2 in the clockwise direction for traverses 2. For a vertex 1 in

a circular-arc graph, we write :(1) = [lp(1), rp(1)] to denote the arc of 1 that

traversing from lp(1) to rp(1), where lp(1) (rp(1)) is the beginning point (ending

point) of :(1). For a circular-arc graph $, we consider the arc model of $. Let

2 be a circle and let F and P be the two endpoints of a diameter of 2. We use (

(respectively R) to denote the open segment from F to P (respectively from P to

F), where ( = [F, P].

We begin by examining the minimal non-normal circular-arc graphs that have

two fixed arcs covering the circle in any arc model. Let # be a circular-arc graph,

and consider every arc model of # that contains eight arcs satisfying the following

conditions:

(i) Four arcs :(4), :(5), :(6), and :(7) that do not intersect each other. Two

of these arcs, :(4) and :(5), are in (, while the other two, :(6) and :(7),

are in R,
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(ii) Two arcs :(0) and :(1) that do not intersect each other. Arc :(0) is lo-

cated between lp(4) and rp(5), while arc :(1) is located between lp(6)

and rp(7).

(iii) Two arcs, :(;) and :(<), such that :(;) intersects all seven arcs but :(0)

and :(<) intersects all seven arcs but :(1).

If these conditions hold, we can conclude that # is not a normal circular-arc graph,

and arcs :(;) and :(<) cover the circle (refer to Figure 7.2).

F P

:(4) :(5)

:(7) :(6)

Figure 7.2: Two arcs :; and :< cover the circle. The two olive arcs are :0 and :1,
the two purple arcs are :; and :<.

We have discovered many such minimal non-normal circular-arc graphs, and

we believe that there is a finite number of such graphs. Figure 7.3 showcases three

of these graphs that we have discovered.

4 50

<

;

617

4

7 6

5

;

<

0

11′

4

7 6

5

1

;

<

0

Figure 7.3: Three minimal non-normal circular-arc graphs with two vertices ; and
< such that the corresponding arcs cover the circle in any arc model.

Now we consider the minimal non-normal circular-arc graphs that have only
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one fixed arc covering the circle with the other one arc in any arc model. Upon

observation, we have noticed that these graphs contain a universal vertex, and we

suspect that its corresponding arc is the fixed arc that covers the circle, although

we have not yet established proof for this.

61 62

6364

61 62

6364

11

12

13

14

Figure 7.4: Tow hole-stars (removing the universal vertices).

We define a hole-star as a graph # that contains a universal vertex and an

induced cycle2ℓ = {61, . . . , 6ℓ}, where ℓ ≥ 3, such that for any pair of consecutive

vertices 6D and 6D+1 on 2ℓ, there are either three pairwise nonadjacent vertices that

are only adjacent to 6D and 6D+1, or there is a vertex 1D only adjacent to 6D and 6D+1 and

two pairwise nonadjacent vertices that are only adjacent to 6D and 1D. Figure 7.4

illustrates two examples of hole-star graphs. It is easy to see that the arc of the

universal vertex and an arc of a vertex on the 24 (or an arc of a vertex 1D) cover the

circle. In this case, there are infinitely many such minimal non-normal circular-arc
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graphs.

To study this case more closely, we aim to determine if the number of such

minimal non-normal circular-arc graphs is finite in chordal graphs. Specifically,

we consider a chordal circular-arc graph $ which contains a universal vertex.

Suppose that$ is aminimal non-normal circular-arc graph. As$ is minimal, it

has exactly one universal vertex, which we assume is 0. Since$ is a minimal non-

normal circular-arc graph, the subgraph $ − 0 is a normal circular-arc graph. Let

M be an arc model of$−0. Because$−0 is chordal, the number of arcs covering

the circle is at most three. Since$−0 is a normal circular-arc graph, the number of

arcs cover the circle is exactly three. Let :(11), :(12), and :(13) cover the circle,

where 11, 12, and 13 are vertices in $ − 0. The six endpoints of these three arcs

divide the circle into six sections. Let -1 = :(11) ∩ :(12), -2 = :(12) ∩ :(13),

-3 = :(13)∩ :(11), C1 = :(11) \ (:(12)∪ :(13)), C2 = :(12) \ (:(11)∪ :(13)),

and C3 = :(13) \ (:(11) ∪ :(12)). See Figure 7.5 for an illustration.

C1

-3

C3

-2

C2

-1

Figure 7.5: An arc model for $ − 0.

Since $ is a minimal non-normal circular-arc graph, we can construct a non-

normal arc model for $ by adding the arc :(0) to M, let M′ to denote it. The

circle of M′ is covered by :(0) and another arc in M. Every arc in M is either



CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 125

properly contained in one of :(11), :(12), and :(13), or properly contains one of

-1, -2, and -3.

We can assume that there is no arc properly containing :(11), :(12), or :(13)

since we can replace one of :(11), :(12), and :(13) with the arc otherwise. Then

we can assume that the arc that covers the circle with :(0) is either one of :(11),

:(12), and :(13), or an arc properly contains one of -1, -2, and -3. If :(0) covers

the circle with one of :(11), :(12), and :(13), then :(0) intersects all of -1, -2,

and -3. If :(0) covers the circle with an arc that properly contains one of -1, -2,

and -3, then :(0) intersects at least two of the three segments.

If :(0) intersects -1 in any arc model of$, there is an arc :(K) that is properly

contained in -1. In this case, there is an arc at each end of -1 that intersects -1

and does not intersect :(K) (see an example in Figure 7.6(a)).

Now suppose that :(0) does not intersect -1 in an arc model of $. Then :(0)

must cover the circle with an arc :(;) that properly contains -1 in the model. Then

we can assume that there are no arcs that are properly contained in -1. Since :(0)

and :(;) cover the circle, there is at least one arc that is properly contained in

:(;) ∩ :(11) and one arc that is properly contained in :(;) ∩ :(12). Suppose

:(01) is properly contained in :(;) ∩ :(11) and :(02) is properly contained in

:(;) ∩ :(12). By assumption, we can get that both :(01) and :(02) are not

properly contained in -1. By considering the intersection of :(01) and :(02), we

obtain the graphs in Figure 7.6(b–e). Considering the intersection of -2 and :(0)

and the intersection of -3 and :(0), we can combine these five cases to obtain 35

such non-normal circular-arc graphs. It is easy to see that we can obtain a minimal

non-normal circular-arc graph by replacing the triangle 111213 with a hole.

For minimal non-normal circular-arc graphs where none of the covering arcs is
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Figure 7.6: Five minimal non-normal circular-arc graphs.

fixed, we have only found a few examples of such graphs. As shown in Figure 7.7,

the vertices ;, <, and = are adjacent to all vertices but 4, 5, and 6, respectively. In

different arc models of the graph (as depicted Figure 7.7(b–d)), the pairs of arcs

that cover the circle are different.
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Figure 7.7: A minimal forbidden subgraph. In (b), the arcs of < and ; cover the
circle. In (c), the arcs of ; and = cover the circle. In (d), the arcs of < and = cover
the circle.
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