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Abstract

Privacy-preserving technology has been actively studied lately since it is crucial

for data security. Privacy-preserving data computing, for instance, enables data

to be analyzed and at the same time protected from disclosure. Anonymous au-

thentication mechanism can effectively ensure reliability and integrity. However,

existing work suffers from problems such as low efficiency and poor performance

in specific application scenarios. This thesis mainly studies privacy-preserving

data computing and anonymous authentication protocols. Specifically, this thesis

focus on the investigations of three important mechanisms of privacy-preserving

technology, namely, private set intersection cardinality (PSI-CA), federated learn-

ing with secure aggregation and anonymous reputation system.

The contributions of this thesis are summarised as follows.

We propose a lightweight delegated PSI-CA protocol based on multi-point

oblivious pseudorandom function and collision-resistant hash function. In addi-

tion, we develop PC-CONTrace, a privacy-preserving contact tracing system by

utilizing this protocol. We evaluate the efficiency of the system under different set

sizes and compare it with related schemes from the aspects of functionality and

performance.

We propose an accountable and verifiable aggregation protocol for federated
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learning. We employ homomorphic proxy re-authenticators and homomorphic

proxy re-encryption to execute secure aggregation, while integrating the blockchain

to realize the function of penalty for malicious behavior. To demonstrate the use-

ability of the protocol, we evaluate the specific cryptography schemes and develop

a blockchain-based prototype system to test the performance of the protocol.

We propose an anonymous and publicly linkable reputation system with dis-

tributed trust (DTrustRS). We define the system model of DTrustRS, formalize

its security and give a concrete construction. We adopt the re-randomizable sig-

natures paradigm to prove the security of DTrustRS in the random oracle model

under a q-type assumption. We evaluate DTrustRS and compare it with related

works to demonstrate its validity.
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Chapter 1

Introduction

With the development of information technology, people are generating data all

the time in daily life. Examples of these data include browsing records and so-

cial data generated on the Internet, user data collected by wearable devices, and

user behavior data acquired by smart home applications. Human beings have al-

ready entered the era of big data. The progress of science and technology not only

provides more abundant means for the generation of data, but also provides more

convenient tools for the recording and preservation of data. According to the re-

search results of International Data Corporation (IDC) [81], the total amount of

data generated globally in 2019 is 45ZB, which is expected to grow to 175ZB by

2025. According to relevant research of IBM, data acquired in the past few years

accounts for 90% of all data acquired by the entire human civilization, and more

than 500 million pictures are uploaded every day around the world, and more than

20 hours of videos are shared every minute.

Facing the explosive growth of data, the use of data brings convenience to hu-

man beings, but data security incidents also occur from time to time, including

1



CHAPTER 1. INTRODUCTION 2

data loss, leakage, counterfeiting and other security issues. For example, in 2015,

about 100G of commercial data in the server of Google data center was perma-

nently removed due to power supply interruption due to weather reasons. In 2018,

Facebook leaked the personal information data of more than 50 million users to

third-party companies, which make huge profits and even affect the U.S. elec-

tion [78]. In 2019, the American medical collection organization (AMCA) was

attacked by hackers, leading to the disclosure of medical data of about 20 mil-

lion American citizens, including user names, social security numbers, addresses,

birth dates and other information [59]. In February 2020, cosmetics company Es-

tee Lauder exposed a database without protection measures on the Internet, result-

ing in the leakage of sensitive information of 440 million users, including a large

number of audit logs and email addresses [38]. In march 2020, Sina, one of the

four major portals in China, was hacked. The personal information of more than

538 million users was put up for public sale on the Deep Web and other online

sites [85]. In July 2022, the personal data of 5.4 million Twitter users was leaked.

Hackers stole the data from Twitter and put it up for sale, asking for more than

30,000 dollars [84]. It can be seen form above that the actual owner of the data

does not have true ownership of the data, and the data is vulnerable to falsifica-

tion, tampering and leaving no trace, data security faces serious challenges. These

data are related to transportation, logistics, medical care, social networking, bank-

ing and so on, which are closely related to personal privacy, national security and

even human development. Therefore, it is essential to protect the security of data.

The research of privacy-preserving technology has attracted numerous attention

since it can provide technical support for data security.

Privacy-preserving data computing, also known as "privacy computing", en-
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ables data to be analyzed and computed while being protected from disclosure,

meaning that it is possible to achieve the purpose of "available and invisible" data

and realize the transformation and release of data value on the premise of fully

protecting data privacy [58]. The numerous outstanding advantages of privacy

computing make it widely used in various fields, such as finance, government af-

fairs, medical care and operators. According to relevant surveys, taking China as

an example, the market size of privacy computing in China is 490 million CNY in

2021 and is expected to reach 14.51 billion CNY in 2025 [1]. Privacy computing is

a complex technology involving various disciplines, including hardware, cryptog-

raphy, distributed machine learning and other underlying technologies. There are

two main approaches to realise privacy computing: one is hardware-based Trusted

Execution Environment (TEE) [79], the other is cryptography and distributed sys-

tems. The core idea of the TEE is to build a secure hardware region in which data

from all parties can be collected for processing. This method provides a secure

computing environment, making it easier to adopt, but it also requires the hard-

ware provider to be trusted. Cryptography refers to using algorithms to protect

data in the process of processing, which mainly realizes privacy computing from

the level of algorithms. This method can theoretically guarantee the availability

and invisibility of data, and does not require a trusted third party and has attracted

considerable interest lately. In addition, under the background of big data applica-

tion of artificial intelligence, federated learning (FL) [19], which is quite popular

in recent years, is also the main method to promote and apply in the field of privacy

computing.

Protecting data security requires not only protecting privacy of data but also

protecting the integrity and reliability of data. Anonymous authentication [56]
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mechanism can effectively ensure the reliability and integrity of data while pro-

tecting the personal identity privacy, making it an important tool in privacy com-

puting. Current researches usually use the pseudonym system, anonymous creden-

tials and privacy-preserving signature technologies to realize anonymous authen-

tication. Pseudonym systems allow users to interact anonymously with multiple

organizations. Creating a pseudonym usually requires significant computational

and storage overhead during the pseudonym generation phase. Anonymous cre-

dentials [83] enable users to prove to service providers that their identity creden-

tials belong to a specific set of users according to the requirements of the applica-

tion services, during which service providers cannot identify the specific identity

of users. Most anonymous credential mechanisms require a centralized organi-

zation to issue certificates. Privacy-preserving signature [73] techniques mainly

include group signatures, ring signatures and etc, where signers achieve identity

anonymity by signing on behalf of group members or ring members. Privacy-

preserving signatures provide a stronger guarantee for the integrity of data, which

makes them widely used and studied in the anonymous authentication research.

1.1 Research Contents

This thesis mainly studies the privacy-preserving data computing and anonymous

authentication protocols and their applications. Specifically, the research content

can be summarized as follows.

• In order to improve the communication efficiency of privacy-preserving

contact tracing system and reduce the computation overhead of the user,

we propose a lightweight delegated private set intersection cardinality pro-
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tocol based on multi-point OPRF and collision-resistant hash function and

then we build a privacy-preserving contact tracing system by utilizing our

protocol, that is PC-CONTrace. We test the efficiency of the system under

different set sizes and compare it with related scheme from the aspects of

functionality and performance.

• To defend against malicious clients and guarantee the confidentiality and

verifiability of secure aggregation, we propose an accountable and verifi-

able secure aggregation for federated learning framework in IoT networks.

We employ a secure multiparty computation protocol to protect the confi-

dentiality and verifiability of data, which is based on homomorphic proxy

re-authenticators and homomorphic proxy re-encryption.

• To reduce the reliance on one trusted authority in anonymous reputation sys-

tems while executing distributed regulation by revoking the anonymity of

misbehavior users, we propose an anonymous and publicly linkable repu-

tation system with distributed trust (DTrustRS). To achieve the registration

function of DTrustRS, we propose a new variant of the Pointcheval-Sanders

(PS) signature named aggregatable PS signature (APS). We define the sys-

temmodel of DTrustRS, formalize its security and give a concrete construc-

tion.

1.2 Organization

The rest of this thesis is organized as follows.

Chapter 2, Literature Review. This chapter briefly reviews the related litera-
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tures, and briefly expounds the research status from four aspects: private set inter-

section, delegated private set intersection, federated learning with secure aggrega-

tion and reputation system.

Chapter 3, Preliminaries. This chapter briefly introduces some basic mathe-

matical knowledge of cryptography, introduces the cryptographic primitives used

in subsequent chapters, and summarizes the blockchain infrastructure and data

structure.

Chapter 4-6. These three chapters introduce and describe the above three re-

search specifically, including specific protocols, systems and corresponding secu-

rity and performance analysis.

Chapter 7, Conclusion. This chapter concludes this thesis and discusses the

future works.



Chapter 2

Literature Review

In this chapter, we review the literatures related to the specific research content of

this thesis. We review the related work of PSI and its variants delegated PSI in

Section 2.1. In Section 2.2, the research work of federated learning with secure

aggregation is reviewed, and we focus on blockchain-based related works. Finally,

we review the works related to reputation system in Section 2.3.

2.1 Private Set Intersection

The protocol of PSI was originally proposed based on Diffie-Hellman difficulty

hypothesis [62]. This method has high communication efficiency. There are still

some protocols constructed based on this hypothesis [50]. However, this kind of

protocol requires both parties to use their own keys to compute the exponent of

each input set element, so the computation efficiency is low. Communication effi-

ciency and computation efficiency are two major aspects that affect the efficiency

of PSI protocol, so that the deficiency of either party will limit the practicability

7
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of the protocol.

In order to reduce the computational complexity of PSI protocol, various ap-

proaches have been explored. Freedman et al. [44] convert the set intersection

into polynomial evaluation by converting the set into polynomial. They realize

PSI by realizing the oblivious polynomial evaluation with the help of the addi-

tive homomorphic encryption algorithm. Their scheme is the first homomorphic

encryption technology based PSI protocol. In addition, some scholars use other

cryptographic methods to construct some PSI protocols and extension protocols.

De Cristofaro et al. [33] use RSA blind signature to design the PSI protocol, which

can also hide the cardinality of the participant set. Chen et al. [30] use fully ho-

momorphic encryption algorithm and its acceleration technology combined with

hashing technology to construct the PSI protocol under non-equilibrium environ-

ment. However, these protocols are all based on public-key cryptography and have

high complexity. Garbled circuit as a common tool for secure multiparty compu-

tation is also used in PSI research. Huang et al. [49] proposed the PSI protocol

with the help of Yao’s circuit, they express the private set intersection function as a

circuit and use sorting to reduce the complexity of the general circuit in computing

set intersection, but the efficiency was relatively high at that time. Pinkas et al.

[68] improved the efficiency of [49] by using permutation-based hashing, which

is about 5 times faster than Huang’s. After that, Pinkas et al. [70, 71] continued to

improve the computational and communication complexity of circuit-based PSI

protocols via cuckoo hash and oblivious programmable pseudorandom function

(OPPRF), respectively. However, PSI protocols based on garbled circuit usually

contain complex circuits with a large number of gates and large circuit depths, so

their communication complexity is relatively high.
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Dong et al. [39] proposed a PSI protocol applicable to big data by means

of the oblivious transfer extension primitive, which has attracted the attention of

academia and industry. With the introduction of oblivious transfer and oblivious

transfer extension, the PSI protocol can not only meet the security requirements

of MPC, protect the privacy of participants, but also achieve a balance between

computing cost and communication cost compared with public keys and obfuscat-

ing circuits, which makes it practical. Subsequent works from the academia [68,

55, 69, 67, 28] and companies such as Google [75], Facebook [22] and Apple [5]

have also successively proposed solutions for this problem that are applicable to

different environments. Among the existing protocols, the one with the best com-

putational efficiency is the one given by Kolesnikov et al. [55], while the work

from Pinkas et al. [67] has the best communication efficiency. However, in the

process of using the protocol in reality, people pay more attention to the cost of

implementing the protocol. Therefore, the concept of monetary cost is proposed

[67], and the lowest monetary cost PSI protocol is implemented in the case of low

speed network bandwidth. The protocol constructed in [28] achieves monetary

cost optimization in medium bandwidth environment.

2.1.1 Delegated Private Set Intersection

In order to improve the computing efficiency, it is typical to delegate the compu-

tation tasks of the participants to the cloud server, then reducing the computation

complexity of the local participants and thus reducing the equipment requirements

of the local participants. Delegating PSI computation to the cloud is an important

way to reduce the computational complexity of participants.
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Kerschbaum [54] first proposed the delegated PSI protocol, which represents

the set as a Bloom filter and designs a new homomorphic encryption scheme to

realize the delegated computation. Since then, in order to optimize the commu-

nication cost of the protocol and equip the protocol with additional desirable fea-

tures, such as verifiability [2], many schemes have been proposed. Qiu et al. [76]

express the set as the root of a polynomial and encrypt the coefficients of the poly-

nomial with the homomorphic encryption algorithm, then entrust the cloud to do

the intersection of the private set. Abadi et al. [3] also express the set as the root

of a polynomial, but they used the point-value form of the polynomial and homo-

morphic encryption algorithm to delegate the computation to the cloud. By means

of hash table, polynomial point value and pre-set secure channel, they [3] also re-

alize the delegated PSI without encryption. When it comes to PSI-CA, Duong et

al. [40] use OPRF to realize the first delegated PSI-CA. This method is mainly

realized by constructing a new primitive, distributed key OPRF (Odk-PRF). Odk-

PRF is an extension of OPRF, whose PRF keys, inputs, and outputs are shared by

multiple participants. The main idea of their work is that the receiver shares its

input set to multiple cloud servers, and these cloud servers take the place of the re-

ceiver to interactively compute Odk-PRF with the sender, each cloud server gets

the Odk-PRF value of its own shared, the selected combiner computes the final

OPRF value, and the sender gets the key of the OPRF. The sender calculates the

OPRF value of the elements in its own set, packages the values and sends them

to the combiner in the cloud server, and then the combiner sends the calculated

results to the receiver, so that the receiver can obtain the final result.
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2.2 Federated Learning with Secure Aggregation

Google presented federated learning with secure aggregation in 2017 [19]. To

execute the secure aggregation, Bonawitz et al. [19] proposed a double-masking

structure, which uses Diffie-Hellman key agreement to generate the seed of a pseu-

dorandom generator (PRG), then using the PRG to protect the update parameters.

In addition, they make use of t-out-of-n secret sharing to handle the users dropouts

problem. However, this scheme relies on a semi-honest assumption for the client

and the aggregation part requires at least 4 communication rounds. To improve

the communication and computation efficiency of the aggregation, Xu et al. [89]

uses the functional encryption and Truex et al. [87] uses threshold homomorphic

encryption to realize secure aggregation that resists the dropouts of participants,

but they both rely on a trusted party who holds the master keys. So et al. [82]

presented Turbo-Aggregate, they use multi-group circular strategy to improve the

efficiency of the model aggregation, the overhead of their secure aggregation is

O(NlogN), where N is the number of users. Kadhe et al. [52] proposed Fast-

SecAgg based on the fast fourier transform multi-secret sharing scheme further

improved the efficiency of communication, which is a scalable secure aggregation

scheme for privacy-preserving federated learning. However, in order to improve

efficiency, their schemes relaxes the constraint of dropouts from supporting any

subset of clients of a bounded size to supporting only a random subset.

As a decentralized infrastructure, blockchain has been applied to FL frame-

works for privacy protection. For example, Zhang et al. [91] proposed a blockchain-

based participant selection protocol for FL. Their scheme executes numerical eval-

uation to delete the malicious devices and relies on semi-honest server to run the
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participant-selection algorithm to select the group of devices. For secure aggre-

gation, Zhang et al. [92] presented a secure aggregation scheme for FL, making

use of the consensus algorithm of blockchain, in which the client also need to

be semi-honest. However, the semi-honest assumption is vulnerable to malicious

clients. To address malicious situations, Awan et al. [8] proposed a reliable and ac-

countable privacy-preserving federated learning framework based on blockchain,

which involves two non-colluding parties: aggregator and server. They use homo-

morphic encryption and proxy re-encryption to protect the privacy of the model

updates, which is secure against the random dropouts of the malicious client. The

blockchain is used to record the user’s transactions, so that the malicious client can

be traced in their scheme.

2.3 Anonymous Reputation System

Reputation systems have been studied extensively [31], [34], [61]. Anonymity and

unforgerability, as the key attributes of reputation system, guarantee the privacy

and security of reputation system and are the most studied in the reputation system

[4, 16, 57]. In existing works, the most adopted methodologies are differential pri-

vacy, electronic cash and cryptographic signatures. Among them, the works based

on differential privacy are usually limited to special reputation functions [31], the

electronic cash based schemes cannot support fine-grained ratings [4]. Crypto-

graphic signatures, including group signature, ring signature and blind signature,

are considered to be more suitable for constructing anonymous reputation systems

[88, 90]. To provide trustworthy and honest ratings, the anonymous reputation

system with public linkability has been studied recently, also named anonymous
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and publicly linkable reputation system, which allows users to anonymously rate

services and can detect whether the users are deviating from the once-only pol-

icy in the rating service [16]. The anonymous and publicly linkable reputation

system needs to satisfy anonymity, traceability, and public linkability. In order

to satisfy these security requirements simultaneously, most of the existing works

are constructed based on group signature [29], [41], so that the research of group

signature affects the study of anonymous and publicly linkable reputation system

to some extent. The first group signature with anonymity and traceability was

proposed by Bellare et al. in [11], which are generalized by a sign-encrypt-prove

paradigm. They also proposed a formalized definition for static group signature in

this work. Later, Bellare et al. [12] formalized the security properties of dynamic

group signature in the standard model, which supports user to join the group dy-

namically. Bichsel et al. [13] proposed the re-randomizable signatures paradigm

for a group signature without encryption. However, in these schemes, the tracing

operation is done by a trusted tracer (or opener), which leads to over-reliance on the

tracer and can easily lead to a single point of failure problem. To reduce the trust in

one single tracer, Blömer et al. [17] and Ghadafi [47] considered group signatures

with threshold traceability. Zheng et al. [93] proposed democratic group signa-

tures with threshold traceability, where the group signature scheme can support

distributed issuance and threshold opening, but it is poor in anonymity guaran-

tees. Recently, Camenisch et al. [25] proposed threshold dynamic group signa-

tures by utilizing encrypt-and-prove paradigm, which supports threshold issuance

and threshold opening. For linkability, Garms et al. [46] proposed group signa-

tures with selectively linkability, where a converter can blindly convert the same

user’s signatures. Based on the group signatures, Blömer et al. [16] proposed an
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anonymous and publicly linkable reputation system, and it satisfies the proper-

ties of anonymity, traceability, and public linkability. Based on the same system

model, Blömer et al. gave two schemes successively, one is universally compos-

able secure [15], the other is instantiated with lattice [14].



Chapter 3

Preliminaries

This chapter briefly introduces the basic concepts involved in subsequent chapters.

Firstly, the basic mathematical knowledge of cryptography is introduced in 3.1-

3.2, including bilinear mapping and hardness assumptions. Secondly, message

authentication code, hash function, digital signature, encryption system, oblivi-

ous transfer, oblivious pseudorandom function, zero-knowledge proof system and

other cryptographic primitives and their instances are introduced in 3.3-3.10. Fi-

nally, the blockchain infrastructure and blockchain data structure are briefly intro-

duced in 3.11.

3.1 Pairing Groups

A pairing group consists of (G1,G2,GT ) with the same order q, such that e :

G1 ×G2 → GT is a bilinear mapping.

1. For ∀ g1 ∈ G1, g2 ∈ G2, e(g1, g2) ̸= 1.

2. For ∀ x, y ∈ Zq, ∃ e(gx1 , g
y
2) = e(g1, g2)

xy.

15
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If G1 = G2, we say that Φ = (q,G1,GT , g, e) is a type-1 pairing group. If

G1 ̸= G2 and there is an isomorphism between G1 and G2, we say that Φ =

(q,G1,G2,GT , g1, g2, e) is a type-2 pairing group. If G1 ̸= G2 and there is no an

isomorphism between G1 and G2, we say that Φ = (q,G1,G2,GT , g1, g2, e) is a

type-3 pairing group [73].

3.2 Hardness Assumptions

Assumption 1.(eBCDH) Given a type-1 pairing group and a tuple of 4 group ele-

ments (g1/u, gu, gv, gw)where u, v, w are randomly selected fromZq, the extended

bilinear computational Diffie-Hellman (eBCDH) assumption holds, if no adver-

sary can compute h, such that h = e(g, g)uvw with non-negligible probability [20].

Assumption 2.(PS-2) The PS assumption 2 (PS-2) introduced in [73]. In type-

3 pairing group setting, randomly choose x, y ∈ Zq, generate X̂ = gx2 , Ŷ = gy2 .

Define an oracle O(m) on input m ∈ Zq that choose a random element h ∈ G1

and output a pair P = (h, hx+ym). Given (g2, X̂, Ŷ ) and unlimited access to the

oracle O(m), no adversary can generate a pair P with non-negligible probability,

for h ̸= 1G1 and a newm∗ not asked to the oracle.

Assumption 3.(XDH/SXDH) Given a type-3 pairing group (g1, g
µ
1 , g

ν
1 , g

ω
1 )

with µ, ν ∈ Zq, it is hard to decide whether ω = µν mod p or random. We

say XDH holds, if DDH is hard in G1. We say SXDH to hold in type-3 pairing

group, if DDH is hard in both G1 and G2 [13].

Assumption 4.(SDL) Given a type-3 pairing group and a tuple of 2 group

elements (gx1 , gx2 ) ∈ G1×G2 computing x is a hard problem. We call it symmetric

discrete logarithm assumption. [13].
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Assumption 5.(q-MSDH-1)Given a type-3 pairing groupΦ = (q,G1,G2,GT , e),

where g1 and g2 are generator of G1 and G2, respectively. Given two tuples

(gx
l

1 , g
xl

2 )ql=0 and (ga1 , g
a
2 , g

ax
2 ) with x, a ∈ Z∗

q , and no adversary can generate a tu-

ple (w,P, h1/w+x, ha/P (x)) with non-negligible probability, where h ∈ G1, P is a

polynomial in Zq[X] with degree at most q, and w ∈ Zq such that the polynomials

X + w and P are coprime [72].

3.3 Message Authentication Code

Message authentication code (MAC) protects the integrity and authenticability of

data, which is a symmetric cryptography [20]. A message authentication code

scheme includes three algorithms, Keygen, Mac and Verify.

• Keygen(1λ) algorithm generates the secret key k of the authentication.

• Mac(k,m) algorithm generates a tag T with the inputs k and a messagem.

• Verify(k,m, T ) algorithm checks the validity of the tag T with inputting the

tag T , a messagem and the key k.

A homomorphic message authentication code scheme has an additional function

f , which can generate a new Tag t on message m1, · · ·,mn with the inputs tag

t1, · · ·, tn.

3.4 Hash Function

The hash function maps the input of any length to the output of a fixed length [53].

Let H : {0, 1}∗ → {0, 1}λ be a hash function. We say H is collision-resistant if
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for any pair x, x′ ∈ {0, 1}∗, no efficient algorithm can find a collision such that

H(x) = H(x
′
) and x ̸= x

′ .

3.5 Digital Signature

Digital signature, an alternative to handwritten signature, can protect the integrity

and authenticability of data. A digital signature scheme includes four algorithms.

• Setup(1λ) algorithm generates a public parameter pp.

• Keygen(pp) algorithm generates a pair of keys of a signer, the public key pk

and private key sk.

• Sign(sk,m) algorithm enables a signer to sign on a messagem with sk and

generate a signature σ.

• Verify(σ,m) algorithm enables a verifier to check the correctness of the sig-

nature σ on messagem, then, returns true or false.

The digital signature scheme shouldmeet the security of Existential Unforgeabilities-

chosen Message Attack (EUF-CMA) [37].

3.5.1 Pointcheval-Sanders Multi-signatures

We review the Pointcheval-Sanders Multi-signature scheme (PSM) [25], which

works in type-3 pairing group. The PSM construction is as follows:

• (pp)← Setup(1λ, n, k,Φ): Take security parameter λ, n, k and Φ as input,

where n is the number of signers and k is the number of message blocks.
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Return the public parameters pp = (Φ, g1, g2, H0, H1), where g1 and g2 are

the generator of G1 and G2, respectively. H0 : {0, 1}∗ → Zq × G1 and

H1 : {0, 1}∗ → Zn
q are collision-resistant hash functions.

• (sk, pk) ← Keygen(pp): Take the public parameters pp as input, and gen-

erate a key pair (sk, pk). Randomly choose x, y1, · · ·, yk+1 ∈ Z∗
q and com-

pute X̂ = gx2 , Ŷ1 = gy12 , · · ·, Ŷk+1 = g
yk+1

2 . Set sk = (x, y1, · · ·, yk+1),

pk = (X̂, Ŷ1, · · ·, Ŷk+1).

• (apk) ← KAggreg(pp, pk1, · · ·, pkn): Take pp and pk1, · · ·, pkn as input,

and output an aggregated public key apk. Compute H1(pk1, · · ·, pkn) →

(r1, · · ·, rn) and return apk =
∏n

i=1 pk
ri
i .

• (σ) ← Sign(pp, sk,M = (m1, · · ·,mk)): Take pp, private key sk and

message blocksM as input, and output a signature σ. Compute H0(M)→

(m′, h) and return σ = (a, b, c) = (m′, h, hx+
∑k

i=1 yimi+yk+1m
′
).

• (σ) ← SAggreg(pp, (pki)ni=1, (σi)
n
i=1,M = (m1, · · ·,mk)): Take pp, the

public key (pki)ni=1, the signatures (σi)ni=1 and messageM = (m1, · · ·,mk)

as input, and output an aggregate signature σ. Parse σi = (ai, bi, ci). If

a1 = a2 = · · · = an and b1 = b2 = · · · = bn, computeH1(pk1, · · ·, pkn)→

(r1, · · ·, rn) and

c =
n∏

i=1

crii = b
∑

xiri+
∑k

j=1 vjmj+vk+1a1
1 ,

where vj =
∑n

i=1 yi,jri and vk+1 =
∑n

i=1 yi,k+1ri. Output theσ = (a, b, c) =

(a1, b1, c).
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• (b′) ← Verify(pp, apk,M = (m1, · · ·,mk), σ): Take pp, the aggregated

public key apk, messageM = (m1, · · ·,mk) and aggregate signature σ as

input, and output a bit b′ ∈ {0, 1}. Parse σ = (a, b, c). If b ̸= 1G1 and the

equation

e(b, X̂
k∏

i=1

Ŷi
mi
Ŷ a
k+1) = e(c, g2),

holds, return b′ = 1; otherwise, return b′ = 0.

The PSM signature is proved to be EUF-CMA under the q-MSDH-1 assumption

in [25].

3.6 Homomorphic Proxy Re-Encryption

Proxy re-encryption (PRE) is a key conversion mechanism applied on ciphertexts

[6]. In a PRE scheme, an agent who is semi-trusted converts the ciphertext en-

crypted with the public key pku into ciphertext encrypted with a delegated public

key pkD. In this process, the agent does not have access to the encrypted mes-

sage, which reduces the risk of data leakage. Homomorphic proxy re-encryption

(HPRE) means that there exists an additional evaluation algorithm which can exe-

cute homomorphic operation [36]. An homomorphic proxy re-encryption scheme

as follows:

• Setup(1λ): This algorithm inputs security parameter λ, outputs the public

parameter pp, where pp = (q, g, g = e(g, g),G, e).

• Keygen(pp): This algorithm inputs public parameter pp, outputs public key

and private key (rpki, rski). Randomly select (ai,1, ai,2 ∈ Zq) and compute

rpki = (gai,1 , gai,2), rski = (ai,1, ai,2).
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• RKeygen(rski, rpkj): This algorithm inputs rski and rpkj , outputs the trans-

formation key rk. Parse rski = (ai,1, ai,2) and rpkj = (gaj,1 , gaj,2), compute

rk = (gaj,2)ai,1 .

• Enc1(rpk,m): This algorithm inputs rpk and m, outputs the ciphertext c.

Parse rpki = (gai,1 , gai,2), random select k ∈ Zq and compute c = (gk, gm ·

(gai,1)k, 1).

• Enc2(rpk,m): This algorithm inputs rpk and m, outputs the ciphertext c.

Parse rpki = (gai,1 , gai,2), random select k ∈ Zq and compute c = (gk, gm ·

(gai,1)k, 2).

• REnc(rk, c): This algorithm inputs rk and ciphertext c, outputs the re-encryption

ciphertext c. Parse c = (c1, c2, 2) and compute c = (e(c1, rk), c2, R).

• Dec1(rsk, c): This algorithm inputs rsk and ciphertext c, outputs the plain-

text. Parse rsk = (a1, a2) and c = (c1, c2, c3). If c3 = 1, compute

gm = c2 · c−a1
1 and if c3 = R, compute gm = c2 · c−1/a2

1 .

• Dec2(rsk, c): This algorithm inputs rsk and ciphertext c, outputs the plain-

text. Parse rsk = (a1, a2) and c = (c1, c2, 2), compute gm = c2 · e(g, c−a1
1 ).

• EV(f,−→c ): This algorithm inputs the function f and the vector −→c , outputs

the aggregated ciphertexts c. Parse f as (w1, · · ·, wn) and −→c as (ci)i∈[n],

compute c = Πn
i=1c

wi
i .
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3.7 Homomorphic Proxy Re-Authenticators

Homomorphic proxy re-authenticator (HPRA) enables multiple users to sign on

data with their own keys, and an aggregator can convert these users’ signatures

into one MAC under a server’s key without having any knowledge of it [36].

Meanwhile, there is a function that can be evaluated by the aggregator, where the

resulting MAC is the evaluation corresponding to the respective function. The ho-

momorphic proxy re-authenticators (HPRAs) have become an important building

block for data aggregation and authentication.

There are three entities in a HPRA scheme, namely, User, Aggregator and

Server.

• User: The user generates its public key and private key. Then, it signs on

the data it collects and sends the authenticated data and its signature to the

aggregator.

• Aggregator: The aggregator converts the users’ signatures into a MAC un-

der a server’s key.

• Server: The server initializes the system and sends the secret key of MAC

to each user. It can check the MAC received from the aggregator and verify

the data received from the users.

We review a HPRA scheme [36].

• Setup(1λ): This algorithm inputs security parameter λ, outputs the public

parameter pp, where pp = (q, (gi)i∈[l] ∈ Gl, g = e(g, g), e,H),H : Zq → G

is a collision-resistant hash function.
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• Keygen(pp): This algorithm inputs public parameter pp, outputs public key

and private key (pk, sk). Randomly choose x ∈ Zq and compute pk =

(gx, g1/x). Set id = gx and sk = x.

• VGen(pp):This algorithm inputs public parameter pp, outputs a MAC key

mk. Randomly choose α ∈ Zq, setmk = α.

• Sign(sk, (m1, ...,ml), τ): This algorithm inputs private key sk, message

blocks (m1, ...,ml), and a public parameter τ , outputs a signature σ′ onmes-

sages (m1, ...,ml). Compute σ′ = (H(τ ||gx) · Πl
i=1g

mi
i )x.

• Verify(pk, (m1, ...,ml), τ, σ): This algorithm inputs public key pk, (m1, ...,ml),

τ and signature σ. Compute

e(H(τ ||gx) · Πl
i=1g

mi
i , gx)

?
= e(σ, g) ∧ (m1, ...,ml)

?
= (m′

1, ...,m
′
l).

• SRGen(sk, aux): This algorithm inputs sk and auxiliary parameter aux,

outputs rk. Return rk ← ∅.

• VRGen(pki,mk, rki): This algorithm inputs pk, the Mac key mk, and rki,

outputs the rotation key aki. Parse pki = (gxi , g1/xi), mk = α, compute

aki = (g1/xi)α.

• Agg((aki)i∈[n], (σi)i∈[n], τ, f): This algorithm inputs (aki)i∈[n], (σi)i∈[n], τ ,

f , outputs aggregated signature µ. Parse f asw1, ···, wn and for i ∈ [n] parse

σi as (σ′
i, (m1, ...,ml)i) and computeΛ = (Eval(f, ((m1, ...,ml)i)i∈[n]), µ, τ ),

where µ = Πi∈[n]e(σ
′wi
i , aki).
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• AVerify(mk,Λ, ID, f): This algorithm inputs Mac keymk, the aggregated

signatureΛ, ID, and f , check the validity of signature. Parse ID = (gxi)i∈[n]

and f as w1, · · ·, wn. Compute

µ′ ?
= (Πn

i=1e(g
wi , H(τ ||gxi)) · e(Πl

i=1g
mi
i , g))α.

3.8 Oblivious Transfer

A classic t-out-of-n oblivious transfer (OT) [21] protocol consists of two partici-

pants, a sender and a receiver. The sender inputs its messages (m1, ...,mn) while

the receiver inputs its t choices b1, ..., bt. After the OT protocol, the receiver out-

puts mb1 , ...,mbt and the sender has no outputs. The security of OT requires that

the sender learns nothing about the choices of the sender and the sender cannot

learn anything aboutmi if i /∈ {b1, ..., bt}.

3.9 Oblivious PRF

An oblivious pseudorandom function (OPRF) [43] is a protocol involving two

parties, the sender and the receiver. The receiver selects a single value x as its

input, while the sender does not need any input. At the end of the protocol, the

sender gets a PRF key k which means the sender can compute Fk(y) for any y,

the receiver learns and only learns the PRF evaluation of its own input Fk(x). The

security of OPRF requires that if x ̸= y, the PRF value Fk(y) looks random to the

receiver.
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3.9.1 Multi-Point Oblivious PRF

A multi-point OPRF [28] is a protocol where the receiver selects multiple values

x1, x2, ...xn as its input and learns multiple PRF values Fk(x1), Fk(x2), ..., Fk(xn)

under the same PRF key k, while the sender still does not need any input and

gets the PRF key k at the end of the protocol. The security of multi-point OPRF

requires that the receiver can only learns Fk(x1), Fk(x2), ..., Fk(xn), in addition,

for any y /∈ {x1, x2, ..., xn}, Fk(y) looks random to the receiver. The multi-point

OPRF seems to be more suitable for addressing the PSI and related problems since

all PRF evaluations are based on the same key k, which means that there is no need

to worry about misjudgments caused by the difference of the corresponding key.

CM’smulti-point oblivious PRF.Thework of [28] presents an efficientmulti-

point OPRF base on OT extension [51], in which the PRF key is anm× ω binary

matrix Q where m is the number of receiver’s input elements |X|, and ω is a se-

cure parameter. At the beginning of their OPRF protocol, the receiver generates

two m × ω binary matrices T and U , where T is a random matrix while U is

generated according to T and the input elements. Specifically, denote the col-

umn vectors of U and T by Ui and Ti respectively, and let v = Fk(x) in which

F : {0, 1}λ×{0, 1}l1 → [m]ω is a pseudorandom function and k is known to both

parties. For all i ∈ [ω], the receiver sets Ui[v[i]] = Ti[v[i]], then for all remaining

blank spaces sets U [] = T []. After the precomputation, the receiver runs ω oblivi-

ous transfers with the sender taking these two matrices as input, while the sender’s

inputs are ω choices s[1], ..., s[ω]. As a result, the sender obtains a new m × ω

matrix Q where Qi is either equal to Ui or Ti, which is key of this oblivious PRF.

When the sender wants to do OPRF evaluation on some y, it computes u = Fk(y)
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and its OPRF value is H(Q1[u[1]]||...||Qω[u[ω]]) where H is a hash function. For

each x ∈ X , the receiver can gets its OPRF value through a similar way, which

is H(T1[v[1]||...||Tω[v[ω]]). It can be seen that the receiver can only computes

OPRF values on its own input elements since the receiver knows nothing about

s[1], ..., s[ω], while the sender can learn nothing about the receiver’s private input.

The details are shown in Table 3.1.

3.10 Non-Interactive Zero-Knowledge Proof Systems

The non-interactive zero-knowledge proof system (NIZK) [37] includes the fol-

lowing three algorithms.

• (CRS) ← Setup(1λ): Input a security parameter λ, and output a common

reference string CRS.

• (π) ← Proof(CRS, h, w): Input CRS, a statement h and a witness w, and

output a proof π.

• (1/0) ← Verify(CRS, π, h): Inputs CRS, a statement h and a proof π, if

the verification holds, output 1; otherwise, output 0.

A non-interactive zero-knowledge proof system should satisfy completeness, sound-

ness and zero-knowledge. In this thesis, we follow the conception of NIZK in [24]

which can proof the relation over discrete logarithm values.

3.10.1 Proving Knowledge of PSM Signature

The PSM signatures allow that one can efficiently prove in the knowledge of a

PSM signature, as mentioned in [25]. Here, we give a concrete description. The
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Parameters:

• The sender S and the receiver R agree on two security parameters that
are λ, σ, four protocol parameters that are m,ω, l1, l2, H1 : 0, 1∗ →
0, 1l1 and H2 : 0, 1ω → 0, 1l2 are hash functions, F : 0, 1λ × 0, 1l1 →
[m]ω is a pseudorandom function.

Input:

• S has no input.

• R has input X = {x1, x2, ..., xn}.

1. Precomputation

• S randomly samples a string s $← {0, 1}ω

• R dose the following:

– Generate an m × ω random binary matrix T $← {0, 1}m×ω and
initialize anm×ω binary matrixD. Denote the ith column vector
of D by Di, then set D1 = ... = Dω = 1m.

– Sample a uniformly random PRF key k $← {0, 1}λ.
– For each x ∈ X , compute v = Fk(H1(x)). SetDi[v[i]] = 0 for all
i ∈ [ω].

– Generate a matrix U = T ⊕D.

2. Oblivious Transfer

• S and R run ω oblivious transfers where R takes {Ti, Ui}(i ∈ ω) as
inputs and S takes ω choices s[1], ..., s[ω] as inputs.

• As a result, S obtains the key of the OPRF that is a new m × ω matrix
Q where Qi ∈ {Ti, Ui}(i ∈ ω).

• For each x ∈ X , R gets its OPRF value OPRF (x) =
H2(T1[v[1]]||...||Tω[v[ω]]).

3. OPRF Evaluation

• R sends the key k of the PRF to S.

• For any element y, S computes v = Fk(H1(y)) and gets its OPRF value
OPRF (y) = H2(Q1[v[1]]||...||Qω[v[ω]]).

Table 3.1: CM’s multi-point oblivious PRF
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PSM signature can prove with zero-knowledge knowledge of a multi-signature

since the signature elements can be re-randomized and the verify algorithm does

not check the hash relation between a and the message blockM = (m1, · · ·,mk).

With the aggregation key apk, a prover can prove knowledge of (M,σ = (a, b, c)),

such that

e(b, X̂
k∏

i=1

Ŷi
mi
Ŷ a
k+1) = e(c, g2).

As shown in Table 3.2, the concrete construction of proving knowledge of a PSM

signature, where H as a random oracle, since the Schnorr proof [80] is zero-

knowledge with Fiat-Shamir heuristic [42].

Prover Verifier
u1, u2 ∈ Zq

(b′, c′) = (bu1 , (cbu2)u1)
b′,c′−−→

α1, · · ·, αk+2 ∈ Zq

S = Πk
i=1e(b

′, Ŷi)
αi ·

e(b′, Ŷk+1)
αk+1 ·

e(b′, g2)
αk+2

c = H(b′, c′, S)
for i ∈ [k],
si = αi − cmi,
sk+1 = αk+1 − ca
sk+2 = αk+2 + cu2

c,s1,···,sk+2−−−−−−→ Verify
c = H(b′, c′,Πk

i=1e(b
′, Ŷi)

si ·
e(b′, Ŷk+1)

sk+1 · e(b′, g2)sk+2)·
e(c′, g2)

ce(b′, X̂)−c)

Table 3.2: The proving knowledge of PSM signature
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3.11 Blockchain

Blockchain infrastructure consists of six layers: data layer, network layer, con-

sensus layer, incentive layer, contract layer and application layer. As a distributed

ledger, blockchain adopts block chain structure, including Block, Block header,

Block body andChain structure. Figure 3.1 shows the specific structure of blockchain.

The existing blockchain is divided into public blockchain, private blockchain and

consortium blockchain according to type.

Figure 3.1: The structure of blockchain

In the public blockchain, any organization, group or individual can participate

in a transaction, and participate in reaching a consensus, and the resulting transac-

tion can be validated. The public blockchain is the earliest type of blockchain, and

cryptocurrencies such as Bitcoins and Ethereum are based on the public blockchain

architecture.

In the consortium blockchain, a number of pre-selected nodes are designated

as bookkeepers within a specific organization or group, and block generation is

jointly decided by the pre-selected nodes. Other nodes can participate in the trans-

action, but are not responsible for the transaction package and generating the block.
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Any participant can query related transactions through the open port of the blockchain.

Hyperledger Fabric is the representative one.

Private blockchain only uses blockchain technology to keep accounts, which

can be companies, organizations or individuals who have exclusive access to the

blockchain and can effectively control data access and compilation. Private blockchains

can better protect the privacy of the organization itself, and the transaction data will

not be made public to the whole network.



Chapter 4

Delegated PSI-CA Protocol

In the chapter, we propose a lightweight delegated PSI-CA protocol, which does

not need to do additional pre-operations, so the computation complexity and the

communication complexity on the client side are further reduced compare to the

existing works. In addition, we build a privacy-preserving contact tracing system

by utilizing our protocol, which can be publicly checked, named PC-CONTrace.

The background of delegated PSI-CA and contact tracing system are described in

Section 4.1. The specific delegated PSI-CA protocol and its security discussion

are described in Section 4.2. Our concrete contact tracing system PC-CONTrace

is given in Section 4.3. The implementation and performance evaluation are de-

scribed in Section 4.4. Finally, we conclude the chapter in Section 4.5.

4.1 Background

Secure multiparty computation (MPC) is a significant means to realize privacy

computing, which mainly uses cryptography technology [32, 65, 66]. Private set

31
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intersection (PSI) is an important problem in MPC, it refers to that multiple partic-

ipants can jointly compute the common intersection of their private sets through

interaction without revealing any other information about their respective sets,

which means the privacy of the set of participants is guaranteed. As an important

research field of MPC, PSI not only plays a significant role in scientific compu-

tation, but also has a wide range of applications in real life since a lot of data can

be abstracted into sets. Typical application scenarios include privacy-preserving

similar documents detection [18], private contact discovery [35], secure human

gene detection [10], private proximity testing [64], privacy-preserving social net-

work relationship discovery [63], online recommendation services and matchmak-

ing websites. Under the condition that the data is held by different managers, PSI

achieves a win-win situation of privacy preserving and information sharing. How-

ever, the classic PSI is not fully applicable for some specific scenarios, so a variant

of the PSI has been widely studied, known as Private Set Intersection Cardinality

(PSI-CA). Different from PSI, PSI-CA only allows the parties learn the size of the

intersection but not the specific intersection elements. This security requirement

just meets the needs of an emerging technology, privacy-preserving contact trac-

ing, so that PSI-CA has recently been used in contact tracing to protect people’s

privacy [40].

Due to the rapid and severe spread of COVID-19 around the world, the nor-

mal life of human beings has been greatly affected. Among the many ways to fight

against the global epidemic, contact tracing is considered to be one of the most ef-

fective means. Contact tracing can identify people who have contact with the sick

people in the population, then the target population can be quickly isolated and de-

tected, so that the spread of the epidemic can be effectively controlled. At present,
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many kinds of mobile apps have been designed for contact tracing, most of which

use Bluetooth to obtain signals from nearby mobile phones. A huge amount of

personal contact information are being collected and analyzed every day, which

is an important concern for personal privacy. Therefore, some privacy-preserving

contact tracing systems have been introduced recently [86, 27, 77, 5, 75, 60], most

of them require the user to spend a large amount of mobile data for transmission or

require the user to complete heavy computation in the resource-limited mobile ter-

minal, which leads to the cost of a lot of time andmoney. In order to overcome such

problems, a delegated PSI-CA protocol is introduced by Duong et al. [40] and they

further applied it to their contact tracing system. In their delegated PSI-CA proto-

col, the client can delegate its computation to some untrusted cloud servers, so that

the client-side computation is greatly reduced. However, their work is based on a

single-point oblivious pseudorandom function [55], as a result the communication

and computation consumption on the client side is still not ideal, about 1.5 times

and 3times the size of the client’s contact set, respectively, which is still unaccept-

able for users in densely populated cities or areas. Therefore, privacy-preserving

contact tracing system with low communication overhead and faster computing

for densely populated areas is highly desirable, delegated PSI-CA with low com-

munication complexity is also a challenging research topic. In addition, during the

epidemic, inaccurate information often leads to public panic or even damages to

people’s personal rights and interests. As a result, it is essential that the results of

the contact tracing system can be publicly checked when necessary to circumvent

the problems caused by misinformation.



CHAPTER 4. DELEGATED PSI-CA PROTOCOL 34

4.1.1 Contributions

In order to improve the communication efficiency of privacy-preserving contact

tracing system and reduce the computation overhead of the user, we first pro-

pose a lightweight delegated PSI-CA protocol based on multi-point OPRF [28]

and collision-resistant hash function, which is the first multi-point OPRF based

delegated PSI-CA construction to the best of our knowledge, the computation in

this protocol is delegated to cloud servers. Our protocol does not need to do extra

pre-operations that are multiple of the set size, so the computation complexity and

the communication complexity on the client side are further reduced. In addition,

our protocol is secure under all cloud servers collusion, as long as the back-end

server does not participate in the collusion and the user does not collude with the

so-called combiner.

Then, we build a privacy-preserving contact tracing system by utilizing our

delegated PSI-CA protocol, PC-CONTrace, which can be publicly checked due

to the application of blockchain technology. We test the efficiency of the cryp-

tographic algorithms under different set sizes and compare it with related scheme

from the aspects of functionality and performance. The experimental results show

that for the same number of confirmed cases, the more people a user contacts each

day, the more advantage our system has, which means that our system is more

practical in densely populated areas.

4.2 The Construction of Delegated PSI-CA Protocol

In this section, we propose a lightweight delegated PSI-CA construction based on

multi-point OPRF [28] and collision-resistant hash function.
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4.2.1 Problem Definition

There are three kinds of participants in a delegated PSI-CA protocol [40]: a back-

end server S, a client C, a set of cloud servers CS. Let
∏

be a delegated PSI-

CA protocol,
∏

computes the PSI-CA function f as follows:
∏

: ({0, 1}∗)N ×

({0, 1}∗)n× ⊥→ f|
⋂

|× ⊥ × ⊥, where N and n are the size of back-end server’s

and client’s input set respectively, ⊥ denotes the empty input and output.

4.2.2 Security Model

Adversarial model. Informally, a semi-honest adversary follows the protocol ex-

actly as the protocol requires but may record the intermediate result and attempt

to obtain additional knowledge from transcripts of the execution. If there are n

semi-honest participants, each has private input mi(i ∈ [n]) collaborate to ex-

ecute protocol
∏

of the private computation function F and get the final result

once the protocol is complete. Let M = (m1,m2, ...,mn), and the message se-

quence obtained by each participant during the protocol execution is represented

as view
∏
i (M) = (mi, ri,Θ), where Θ represents the messages received by the ith

participant, ri is the random number generated by the ith participant during the

protocol.

Definition 4.1. Security of semi-honestMPCprotocols [48]. Let f : ({0, 1}∗)n →

({0, 1}∗)n be a function, fi(m1, ...,mn) be the ith element of f , I = {Pi1, .., Pis} ⊆

{P1, ..., Pn} be an arbitrary subset of the participants, fI(m1, ...,mn) denote the

sequence fi1(m1, ...,mn), ..., fis(m1, ...,mn), output
∏
(M) denote all the honest

parties’ outputs of the protocol
∏
. We say a protocol

∏
is securely computed in

semi-honest model if there is a probabilistic polynomial S such that for any I the
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following formula holds,

{S(I, (mi1,mi2, ...,mis), fI(M))}M∈({0,1}∗)n
c≡

{{view
∏
I (M)}M∈({0,1}∗)n , output

∏
(M)},

where c≡ denotes it is computationally indistinguishable, view
∏
I (M) = (I, view

∏
i1 (M),

..., view
∏
is (M)), which means view

∏
I (M) contains only the sequence of messages

received by the participants in I during the protocol execution, excludingmessages

passed between honest parties that are invisible to the participants in I .

A malicious adversary usually refers to the party that does not follow the pro-

tocol during the process of the protocol, they can make arbitrary attack, such as

refusing to participate in the protocol, modifying the private input as needed, and

terminating the protocol early [28].

Collusion security. Collusion usually means that two or more dishonest par-

ticipants share their information with each other in the process of the protocol, the

colluded participants usually want to obtain more information than they should or

sabotage the implementation of the protocol [40].

In this work, we consider the semi-honest model. In addition, there can be

collusion between adversaries as long as the back-end server is not corrupted in

the protocol and the client cannot collude with the so-called combiner.

4.2.3 The Construction from Multi-Point OPRF

Our delegated PSI-CA protocol is presented in Figure 4.1, which is under the

semi-honest security model. Our work is mainly based on the efficient multi-point
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Parameters:

• Set size n and N .

• A back-end server S, a client C, and β cloud servers CS1, ..., CSβ .

• A collision-resistant hash function H : {0, 1}∗ → {0, 1}l1∗β , a pseudo-
random function FC : {0, 1}λ × {0, 1}l2∗β → {0, 1}l2∗β .

• A multi-point OPRF primitive OPRF described in Table 3.1.

Input:

• Back-end server S has input Y = {y1, ..., yN}.

• Client C has input X = {x1, ..., xn}.

• Cloud server CSj∈[β] has no input.

Protocol:

I. Initialization phase

– The client randomly selects a key k′ of FC and sends k′ to S.

II. Distribution phase

– The client uses the hash function H to hash its input X .
– For each hash value H(xi), i ∈ [n], the client divides it into
β shares such that the length of the share |H(xi)j| = l1, and
H(xi)1||H(xi)2||...||H(xi)β = H(xi), then sends H(xi)j to CSj .

III. Server computation phase

1. Each cloud serverCSj takes its sharesH(x1)j, ..., H(xn)j as input
and invokes the multi-point OPRF protocol with S, where S acts
as a sender and CSj acts as a receiver.

2. After the multi-point OPRF protocol, the cloud server CSj gets n
PRF values OPRFj(H(xi)j), i ∈ [n], while the back-end server
gets β OPRF keys which are k1, ..., kβ .

3. For all j ∈ [β − 1], each CSj sends OPRFj(H(x1)j), ...,
OPRFj(H(xn)j) to the combiner CSβ .

4. For all i ∈ [n], the combiner CSβ computes OPRF (xi) =
OPRF1(H(xi)1)||... ||OPRFβ(H(xi))β), permutes these n val-
ues and sends back to C.
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5. The back-end server S uses the hash function H to hash its input Y ,
divides these hash values into β shares through the same way and com-
putes OPRF (yi) for each i ∈ [N ] via using the OPRF keys.

6. For all i ∈ [N ], S computes FC(k
′
, OPRF (xi)), and makes the final

set {FC(k
′
, OPRF (y))} public.

7. After collecting allOPRF (x) from the combiner, the clientC computes
FC(k

′
, OPRF (x)) and gets the set {FC(k

′
, OPRF (x))}.

IV. Client’s output: ψ = |{FC(k
′
, OPRF (x))} ∩ {FC(k

′
, OPRF (y))}|.

Figure 4.1: Delegated PSI-CA protocol

OPRF proposed in [28], the specific OPRF computations are delegated to the cloud

servers. In order to protect the private set of clients while delegating computation

to the cloud servers, the core idea of our protocol is to share the elements of the

set with the cloud servers in a secure and efficient manner. Due to the computing

characteristics of CM’s multi-point OPRF, we must ensure that the OPRF value

of the share of the data in the intersection after sharing is still corresponding to the

same, so as to ensure the correctness of the result after recovery. Therefore, we

choose quota distribution method to meet this requirement. To ensure that even if

all cloud servers collude, including the combiner, the user’s private input will still

not be exposed, a collision-resistant hash functionH is used before sharing, so that

each cloud server can only get a part of the hash value of the original input during

the protocol process. The security of the hash function ensures that no information

about the original input will be disclosed. After interacting with back-end server,

each cloud server only gets a portion of the OPRF value, a pseudorandom func-

tion FC is used to ensure that all cloud servers, including the combiner, cannot

know the final result, which is the cardinality of the intersection, this is because
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the key k′ of the pseudorandom function FC is shared only between the client and

the back-end server. The detailed interaction process is described in Figure 4.2.

Figure 4.2: The interaction process of delegated PSI-CA protocol

4.2.4 Security and Discussion

The PSI-CA protocol securely implements the delegated PSI-CA function defined

in 4.2.1. in the security model we mentioned in Definition 4.1.

Theorem 4.1. The delegated PSI-CA protocol described in Figure 4.1 is secure

in the semi-honest model if the OPRF described in Table 3.1 is secure, H is a

collision-resistant hash function and FC is a pseudorandom function.

Simulating client. For simulating the corrupt client I = {C}, the simula-

tor S only sees a set of n OPRF values that have been permuted by the com-

biner who cannot collude with. According to the pseudorandomness of the OPRF

protocol, all the values are indistinguishable from random elements, so for each

xi /∈ X ∩ Y we can replace the value OPRF (xi) with an independently random

element. For x ∈ X ∩ Y , we can replace them with any x′ ∈ X ∩ Y , since the
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simulator does not know the specific permutation used by the combiner. There-

fore, {S(I, (mC), fI(M))} c≡ {{view
∏
I (M)}M∈({0,1}∗)n , output

∏
(M)}, that is

the simulator can only learn the final result |X ∩ Y | and its own input X .

Simulating cloud servers. For simulating the coalition of corrupt cloud servers

I = {CSi1, ..., CSis}, s ∈ [β−1], the simulator S can see the received shares sent

by the client, randomness in the corresponding OPRF protocol and and transcripts

from the OPRF ideal functionality. Two cases need to be considered:

• Security for the client: Each cloud server receives a portion of the user’s pri-

vate input’s hash value, so even if all the cloud servers collude, they can only get

the hash of the private input but not the original input. In other words, the simulator

does not learn anything at this phase, which means the share can be replaced with

random. The security of the OPRF ensures that during the process of the OPRF

protocol, the simulator cannot learn any information other than the OPRF output.

In our security model, the back-end server cannot be involved in collusion, so that

we can replace the OPRF outputs with randoms. In the last step of the protocol, the

back-end server publishes a set of the PRF values {FC(k
′
, OPRF (y))}, where k′

is unknown to the simulator, all the values are indistinguishable from random el-

ements to the simulator, which means we can replace them with randoms. There-

fore, {S(I, (mi1, ...,mis), fI(M))} c≡ {{view
∏
I (M)}M∈({0,1}∗)n , output

∏
(M)},

that is the simulator S ultimately knows nothing about the final result |X ∩Y | and

the private X .

• Security for the back-end server: In the whole process of our protocol, back-

end server only interacts with the cloud servers in the process of OPRF protocol,

the security of the OPRF protocol ensures that the simulator cannot learn any in-

formation other than the OPRF output during this process, according to the pseu-
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dorandomness of the OPRF protocol, all the values can be replaced by random

elements. In the last step of the protocol, the back-end server publishes a set of the

PRF values {FC(k
′
, OPRF (y))}, where k′ is unknown to the simulator, all the

values are indistinguishable from random elements to the simulator, which means

we can replace them with randoms. Therefore, {S(I, (mi1, ...,mis), fI(M))} c≡

{{view
∏
I (M)}M∈({0,1}∗)n , output

∏
(M)} that is the simulator ultimately knows

nothing about the final result |X ∩ Y | and the back-end server’s private input Y .

Simulating back-end server. The simulation is elementary since we use the

abstraction of the multi-point OPRF functionality.

4.3 Privacy-Preserving Contact Tracing System

In the section, we build a privacy-preserving contact tracing system by utilizing our

delegated PSI-CA protocol, which can be publicly checked if necessary, namely

PC-CONTrace. The PC-CONTrace system consists of five entities: user, medical

centre, clouds, back-end server, Blockchain. We are inspired by the BLE-based

approaches of Apple and Google contact tracing project, but we also provide an-

other property with the applying of blockchain, which is that the results can be

publicly checked when there is any misinformation. The following is a brief defi-

nition of the entities.

• User: User exchanges tokenwith other users and executes privacy-preserving

contact tracing with back-end server via blockchain.

• Clouds: Clouds assist user to execute delegated computation and transfer

users’ data to back-end server.
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• Back-end server: Back-end server maintains the contact tracing system

and generates system parameters. Back-end server collects users diagno-

sis token and execute OPRF with Clouds. Then, it publishes the result to

blockchain.

• Medical Centre: Medical Centre distributes diagnosis certification to user.

• Blockchain: Blockchain is a distributed ledger, which records the voucher

of the combiner and the final result of back-end server. A User can confirm

whether it has been in contact with confirmed cases via the blockchain, or

make the results publicly checkable by revealing the final results and com-

bining themwith voucher. The parties of blockchain can publish transaction

to blockchain and execute smart contract.

Figure 4.3: The system model of PC-CONTrace
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The systemmodel of PC-CONTrace is shown in Figure 4.3. The systemmodel

includes four phases.

(1) Based on short-range bluetooth signal of users’ smartphone, two users can

exchange token.

(2) If anyone is diagnosed with the epidemic by the medical centre, the medical

centre will issue a certificate to user by end-to-end encryption.

(3) The diagnosed user encrypts its token and the certificate using the public

key of the back-end server and sends it the cloud server. The cloud server

permutes all the ciphertexts it received and transmits them to the back-end

server. The back-end server decrypts them and verifies the certificates of

the diagnosed users. If a certificate is valid, the back-end server store the

corresponding diagnosed token.

(4) Executing privacy-preserving contact tracing, which includes four steps.

(4.1) Cloud-assisted delegated computation, the user executes a delegated

PSI-CA algorithm with the back-end server, during which most of the

computation is done by several cloud servers.

(4.2) When the computation is complete, the combiner in the cloud server

uploads the hash value of the final result to the blockchain, which can

be viewed as a voucher.

(4.3) The back-end server inputs diagnosis token list and execute the del-

egated PSI-CA algorithm. Then, it uploads the computing results to

blockchain.
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(4.4) The user inputs tokens it received and executes check operation on

blockchain. Then, it determines if it has been in contact with con-

firmed cases.

Remark. If the user is judged to have had contact with the confirmed case by the

public health institutions due to some misinformation, the user can use its private

key kC to expose the data uploaded by the back-end server in the blockchain so that

the results can be publicly checked. It’s possible to determine if the user is lying

by comparing the hash value of the user’s local data with the uploaded voucher.

The immutability of blockchain can ensure that users’ rights and interests are not

infringed.

4.4 Implementation and Performance

In the section, to demonstrate the performance of our PC-CONTrace, we imple-

ment the delegated PSI-CA construction in C++ programming by using Clion, a

cross-platform IDE for C and C++. We develop our delegated PSI-CA protocol

based on two open-source codes on Github that are OPRF-PSI1 and delegated-psi-

ca2. We run the experiment on the Linux operation with Ubuntu 16.04 LTS oper-

ation system and AMD Ryzen 7 3700X 8-core 3.6 GHz Processor, 16GB RAM.

The implement code is available on Github3.
1https://github.com/peihanmiao/OPRF-PSI
2https://github.com/nitrieu/delegated-psi-ca
3https://github.com/xiaozhao1234/PSI-CA
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4.4.1 Implementation Analysis

All implementations of our delegated PSI-CA construction are based on setting

the security parameter λ = 128, the statistical security parameter σ = 40. At the

same time, let N be size of the back-end server’s set and n be size of the user’s

set, and β denotes the number of clouds.

Figure 4.4: The time cost of our Delegated PSI-CA at different n and N

We select the Naor-Pinkas OT as the base OT and implement it with libOTe

library4. For the instantiation of the function PRF, we apply a pseudorandom gen-

erator (PRG) on the top of cipher block chaining MAC. In particular, we chose

AES for the instantiation, which is inspired by the idea of [28].

We perform the delegated PSI-CA protocol with the range of set size N =

{216, 217, 218, 219, 220} and n = {216, 217, 218, 219, 220}, and the number of cloud

is β = 2which is in line with actual deployments. We use the exponent from 16 to

20 to denote the set of the user and the back-end server. We execute the algorithms
4https://github.com/osu-crypto/libOte



CHAPTER 4. DELEGATED PSI-CA PROTOCOL 46

of our delegated PSI-CA protocol, including the initial algorithm and the operation

for the user, the clouds and back-end server in the protocol. The time cost of the

algorithms is shown in Figure 4.4.

Specifically, with the increase of the user’s and the back-end server’s sets’

elements, time consumption increases continuously. The increase of user data set

has a greater impact on the total system time consumption than the increase of

server set, since the size of the user set affects the number of matrix calculations

in the OPRF computation process. The server only calculates the OPRF values of

its own data set locally, so there is no significant impact on the system computing

overhead.

4.4.2 Functionality and Performance Analysis

In the section, we compare the functionality and communication complexity of our

PC-CONTrace with Catalic, which is shown in Table 4.1. Due to the applying of

theMix-Net system, our PC-CONTrace can also resist linkage attack such as travel

route and infection status. With the help of blockchain, PC-CONTrace supports

publicly check property while Catilic does not. In addition, Catalic distributes the

user’s original private data to the cloud servers in the delegated computing phase,

so their scheme can only resist the collusion of β − 1 cloud servers at most. In

contrast, our scheme distributes the hash value of the user’s original data to the

cloud servers, which makes it impossible to get the user’s private data even if all

the cloud servers collude. In other words, PC-CONTrace can resist the collusion

of any number of cloud servers. Catalic takes use of the single-point OPRF in [55]

so its communication size is 1.5n, while our PC-CONTrace’s is exactly n.
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Scheme Travel route Infection Status Publicly Check Collusive Cloud Comunication Size

Catalic no no no bounded 1.5n

PC-CONTrace no no yes arbitraty n

Table 4.1: Comparison with Catalic in functionality and performance

We implement our PC-CONTrace system and compare it with the system of

Catalic. We set the cloud number β = 2 and the back-end server holds the data set

with the size 220. We control the user set’s size from 216 to 220 and compare the

time cost of Catalic with our PC-CONTrace. The implement result is shown the

Figure 4.5. We can observed that under the condition that the number of clouds

and the size of back-end server’s set remains, the larger the set of user is, the more

obvious the advantage of our system will be. Our PC-CONTrace system costs less

time than Catalic.

4.4.2.1 Blockchain Execution Analysis

For our PC-CONTrace system, we use Ethereum geth client to test back-end server

upload data to blockchain and the user retrieval process. We use Solidity to de-

velop a privacy-preserving contact tracing smart contract, which has a pre-compile

phase with Remix-IDE. We execute the ABI code on Ethereum Virtual Machine

(EVM). The gas cost of the transaction of PC-CONTrace is shown in Table 4.2,

where the number of the cloud servers is two and N = 210. The storage function

enables the back-end server to upload the data to blockchain, which costs more

gas since it is related to the size of back-end servers set N . The retrieve function

allows the user to check the values, which cost less gas.
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Figure 4.5: The time cost of our PC-CONTrace and Catalic

Function Transaction cost Execution cost
PSI contract 277923 gas 208851 gas
Voucher 23908 gas 2620 gas
Storage 2348395 gas 2293860 gas
Retrieve - 250335 gas

Table 4.2: Gas cost of the transactions of PC-CONTrace

4.5 Summary

In this chapter, we design a lightweight multi-point OPRF based delegated PSI-

CA construction, and apply it to build a privacy-preserving contact tracing sys-

tem named PC-CONTrace. Our system is more adaptable and advantageous in

densely populated areas. In addition, we carry on the system implementation

of this work, the experimental results show the practicability of our work. The

privacy-preserving contact tracing system constructed in this work provides a prac-
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tical solution to data security and personal privacy issues under the global epidemic

prevention and control.



Chapter 5

Privacy-Preserving FL with Secure

Aggregation

In the chapter, we propose an accountable and verifiable secure aggregation for

federated learning protocol (SA-FL), which guarantees the verifiability of data

provenance and is accountable for malicious client. The background of privacy-

preserving federated learning is described in Section 5.1. The system model is

described in Section 5.2. The concrete construction of SA-FL and security analysis

are given in Section 5.3. The performance evaluation is described in Section 5.4.

Finally, we conclude the chapter in Section 5.5.

5.1 Background

With the development of IoT and edge computing, large-scale IoT devices are con-

nected to internet to collect users’ data. Artificial intelligence (AI) and machine

learning (ML) have been widely applied in various fields of human society to an-

50
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alyze massive data and improve server quality (QoS). Google, IBM, Amazon and

Alibaba are all actively exploring AI and ML technology and building relevant

platforms to improve its services and make market decisions [45].

Traditional machine learning approaches usually rely on centralized manage-

ment and use the cloud platforms for the model training, so they are also known

as cloud-centric machine intelligence. In the cloud-centric machine intelligence

model, as shown in Figure 5.1, the client interacts with the cloud and generates logs

which can be used as training examples. The client collects the data and sends its

data to the cloud platform, the cloud further optimized the training model. At last,

the cloud returns the training model to clients as feedbacks which is also used to

serve future client requests. The cloud-centric machine intelligence model typ-

ically collects large amounts of client data, which increases the risk of privacy

violations, such as the Facebook and Cambridge Analytica event 1 and the Wyze

data leak event 2. Facebook provides its platforms data to Cambridge Analytica

company for making data analysis, which leaked the data of more than 50 million

people. Wyze, a provider of IoT security devices, suffered a server breach that

exposed the details of over 2.4 million customers in 2019. It can be seen that data

privacy protection is increasingly important when performing data analysis.

To protect the data security, Google introduced the conception of federated

learning [19], which imbues mobile devices with advanced machine learning sys-

tems and the data dose not need to be centralized. It collaboratively trains the

global model by utilizing large-scale distributed devices while protecting the pri-

vacy of the participants’ local data sets. In the federated learning model, clients,
1https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal
2https://www.geekwire.com/2019/wyze-data-leak-key-takeaways-server-mistake-exposed-

information-2-4m-customers/
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Figure 5.1: The cloud-centric machine intelligence model

Figure 5.2: Federated learning
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Figure 5.3: Federated learning with secure aggregation

coordinated by a central cloud server, can use their local data sets to cooperatively

train a machine learning model without revealing their respective training data

sets, as shown in Figure 5.2. A training round in federated learning consists of

three phases. First, the cloud server constructs a global machine learning model

and sends the model to a group of clients. Second, after receiving the model, the

clients train local models with their own data sets and shares the updates of the im-

proved models with the cloud server. Finally, the server aggregates the improved

models into a new global model. In the federated learning with secure aggregation

model, as shown in Figure 5.3, the aggregation of the model updates is achieved

by means of secure multiparty computation, which makes the cloud server learn

only the aggregated updates.

Many schemes have been given successively, since the concept was intro-

duced. However, the existing schemes lack validated authentication of the client

data, which is of significance in IoT scenarios. In addition, there is no systemic so-
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lution for how to confidentially provide the computation result and how to ensure

the verifiability of the computation, which is also desirable for federated learning

research.

5.1.1 Contributions

To against the malicious clients and guarantee the confidentiality and verifiability

of the secure aggregation, we propose an accountable and verifiable secure aggre-

gation for federated learning framework in IoT networks. In the framework, the

server is divided into two roles, one of which is the cloud server and the other is

the aggregator. The cloud sever verifies the aggregation results and executes the

global model updates. The aggregator executes the transformation of the cipher-

texts received from each client and secure aggregates the transformed ciphertexts.

We employ a MPC protocol to protect the confidentiality and verifiability of

data, which is based on homomorphic proxy re-authenticators and homomorphic

proxy re-encryption. The homomorphic proxy re-authenticator guarantees the in-

tegrity of the client data and the authenticability of the model updates provenance,

while the homomorphic proxy re-encryption scheme ensures the data security and

protects the local data confidentiality of each client. Our scheme ensures that the

individual local model updates are not leaked to the aggragator and the cloud server

only receives the aggrageted ciphertext. In addition, the framework is flexible and

dynamically adjustable for participants dropouts. We integrate the blockchain to

build the federated learning framework and use the smart contract of blockchain to

trace the malicious behavior clients. To demonstrate the useability of our frame-

work, we evaluate the specific cryptography schemes and develop a blockchain-



CHAPTER 5. PRIVACY-PRESERVING FL WITH SECURE AGGREGATION 55

based prototype system to test the performance of the framework.

5.2 System Framework of SA-FL

We now describe the framework of our accountable and verifiable secure aggre-

gation for federated learning.

5.2.1 The Framework Details

The framework is composed of four entities: Client (IoT devices), Server, Aggre-

gator, Blockchain. The framework includes five phases and the Figure 5.4 shows

the details:

Figure 5.4: The framework of our SA-FL

• Server: Server generates the system parameters, deploys a privacy-preserving

federated learning smart contract on blockchain, sends each client the global
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model and executes the model updates. It also traces the malicious client.

• Client: Each client registers to the aggregator and calls the smart contract

to publish a deposit transaction on blockchain. The client uses its local data

sets to collaboratively performs the model updates and sends ciphertexts of

the updated parameters to the aggregator.

• Aggregator: The aggregator selects the client set and transforms the client’s

ciphertexts. The aggregator executes the secure aggregation, during which

the aggregator cannot learn anything about the data of the client and the

server. It constructs a transaction of the aggregated ciphertext and publishes

it on blokchain.

• Blockchain: The blockchain records the transactions of each party. We

assume the blockchain is a secure decentralized infrastructure and has suf-

ficient miners to maintain the update of blockchain.

5.2.2 The General Processing of SA-FL

1. Setup. The server initializes the system and develops the smart contract for

the task model. Then, the server deploys smart contracts on blockchain. The client

registers to the aggregator and the aggregator selects a set of client and publishes

the set on blockchain. The client checks the blockchain and calls the smart contract

to submit its deposit on blockchain.

2. Training. The server sends the global training model to the client who pays

the deposit on the blockchain. When the client receives the global training model,

it executes training on local data sets and generates the model updates. Then, the
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client encrypts the updated parameters and sends the ciphertext to the aggregator,

At the same time, the client sends a transaction to blockchain.

3. Aggregation. The aggregator receives the ciphertexts from the clients and

executes the secure aggregation on these ciphertexts. Then, it generates a transac-

tion for the aggregated ciphertexts and sends a transaction to blockchain.

4. Update. The server checks the transaction on the blockchain and verifies

the integrity of the ciphertexts. Then, the server uses its secret key to decrypt the

aggregated ciphertexts and obtains the aggregated update.

5. Tracing. The server checks the updated model and interacts with the aggre-

gator to trace the client. If the client has the malicious behavior, the server will

punish the client by deducting its deposit. Then, turn to next round.

5.2.3 Design Goals

The accountable and verifiable secure aggregation for federated learning has the

following goals:

Privacy: The data of client and the aggregated data cannot be leakaged to other

participants, including the other clients, the aggregator. The server only learns the

aggregated results.

Authentication: A server can check the reliability of the data sources and

verify the integrity of the client data’s ciphertext.

Unforgeability: Amalicious client should be unable to impersonate other hon-

est clients to forge the signature of honest clients and the aggregator cannot forge

the signature of the honest clients, which is not generated by them.

Accountability: A server can trace the malicious client who may random drop
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out and submit fake local updates. The server can punish the client by deducting

its deposit.

5.3 A Concrete Construction

We present a concrete construction of accountable and verifiable secure aggrega-

tion for federated learning in this section, which is based on the HPRE, HPRA and

blockchain. We assume that each party has an account address in blockchain net-

work. They can deploy the smart contract and publish the transaction on blockchain.

Homomorphic proxy re-encryption guarantees the privacy of the client data and

the aggregated data and homomorphic proxy re-authenticator guarantees the in-

tegrity and verifiability of the client data. With the smart contract, the server can

trace the malicious clients.

5.3.1 The Scheme of SA-FL

The process of accountable and verifiable secure aggregation for federated learn-

ing is illustrated in Figure 5.5.

• Setup: The server initializes the system and generates the parameters of

HPRE andHPRA. (1)The server inputs the security parameters λ to generate

a type-1 pairing group BP = (q, g, g = e(g, g),G,GT , e) where g is a gen-

erator of G and g is a generater of GT . There is a bilinear mapping e : G×

G→ GT . Set H0 : {0, 1}∗ → G, H1 : {0, 1}∗ → Zq are collision-resistant

hash functions and there is a function f : {0, 1}∗ → {wi, i ∈ 1, · · ·, n}. The

server outputs the parameters pp = (BP,H0, H1, f). Then, the server calls
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Figure 5.5: The process of our SA-FL



CHAPTER 5. PRIVACY-PRESERVING FL WITH SECURE AGGREGATION 60

HPRE.Keygen algorithm. It randomly selects a1, a2 ∈ Zq and computes

rpk1 = ga1 , rpk2 = ga2 and set sk = (a1, a2). It randomly selects α ∈ Zq to

generate the public authenticated key pmk = gα. The server develops a fed-

erated learning task contract (FL-Contract), which includes the description

of the task model and the system parameters (pp, rpk = (rpk1, rpk2), pmk).

The server generates a contract transaction ContractTx and publishes it on

blockchain.

(2)Using the system parameters, the client gets its public and private keys

by calling HPRE.Keygen and HPRA.Keygen algorithms. The client i ran-

domly selects bi,1, bi,2 ∈ Zq and computes rpki,1 = gbi,1 , rpki,2 = gbi,2 .

Then, it randomly chooses xi ∈ Zq and computes cpki,1 = gxi . Set ski =

(bi,1, bi,2, xi) and pki = (rpki,1, rpki,2, cpki,1). The client registers to the

aggregator by submitting its public key information pki.

(3)The aggregator checks the clients and generates a set list L, which in-

cludes n clients. Then, the aggregator constructs the set transaction SetTx

with the list L and publishes SetTx on blockchain.

(4)The client calls the federated learning task contract and submits its de-

posit transaction DepositTx to blockchain.

• Training: (1)The server checks the transaction SetTx and callsHPRA.VGen

algorithm. For pki ∈ L, parse pki = (rpki,1, rpki,2, cpki,1), then, the server

sends the global training modelM to each client in list L by using the secu-

rity channel.

(2)The client receives the global training model M and executes training

on its local data sets. The client calls HPRE.RKeygen to generate its trans-
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formation key. It pares ski = (bi,1, bi,2, xi) and rpk = (rpk1, rpk2). It

computes transformation key rki = (rpk
bi,1
2 ) and calls HPRE.Enc algo-

rithm to encrypt the updated parameters mi. The client randomly selects

ki ∈ Zq and computes ci = (ci,1, ci,2) = (gki , gmi · rpkkii,1). Then, it calls

HPRA.Sign algorithm to sign on the update parameters. The client parses

pki = (rpki,1, rpki,2, cpki,1). Then, it computes σi = (H0(L||cpki,1)·gmi)xi .

The client calls HPRA.VRGen algorithm to generate the corresponding ro-

tation key aki = (gα)1/xi . Using the signature σi and the ciphertext ci, the

client constructs the transaction of the updates UpdateTx, and publishes

UpdateTx to blockchain. At the same time, the client sends the ciphertexts

and its transform key rki and rotation key aki to the aggregator.

• Aggregation: The aggregator receives the ciphertext from each client in the

list L. It checks the UpdateTx transaction of the clients. Then, the aggre-

gator calls HPRE.REnc algortihm to generate the re-encryption ciphertext

by using the transformation key rki. The aggregator parse ci = (ci,1, ci,2)

and computes ci,r1 = e(ci,1, rki), ci,r2 = ci,2. Set ci,re = (ci,r1, ci,r2).

Then, it calls HPRE.EV algorithm to execute the secure aggregation on the

re-encryption ciphertext ci,re. The aggregator computes F (c1, · · ·, cn) =

(w1, · · ·, wn), cra = Πn
i=1c

wi
i,r1, crb = Πn

i=1c
wi
i,r2. Then, the aggregator calls

HPRA.Agg algortihm to generate the re-authenticator for the signatures re-

ceived from each client with the rotation key aki, whereµ = Πn
i=1e(σ

wi
i , aki).

The server only receives the aggregated re-encryption ciphertext (cra, crb),

which guarantees the privacy of the client data, while the re-authenticator

ensures that the ciphertext is calculated from the data of clients inL. The ag-
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gregator constructs an aggregation transaction AggregateTx and publishes

AggregateTx on blockchain.

• Update: The server checks theAggregateTx and receives the re-encryption

ciphertexts (cra, crb). The server decrypts the aggregated ciphertexts (cra, crb)

by calling HPRE.Dec1. It parses sk = (a1, a2) to computes gm = crb ·

c
−1/a2
ra and gets the model updatesm. Then the server checks the transaction

AggregateTx and verifies the reliability of the client data by using the se-

cret authenticated key smk = α of proxy re-authenticator. The server calls

HPRA.AVerify to verify authenticator. It computesµ′ = (Πn
i=1e(g

wi , H0(L||cpki,1))·

e(Πn
i=1g

mi , g))α. It checks µ′ ?
= µ.

• Tracing: The server checks the model updatesm and detects the update ex-

ceptions. The server interacts with the aggregator to trace a malicious client.

(1)The server first generates challenge set for the client, such as the index

of user identity (1,2,3,4) in List L. Then, it constructs a tracing transaction

TracingTx and publishes it to blockchain.

(2)The aggregator checks the challenge set and calls HRPE.EV algorithm

to execute the secure aggregation on re-encryption ciphertexts of index in

challenge set. The aggregator computes f(c1, · · ·, c4) = (w1, · · ·, w4),

cra = Π4
i=1c

wi
i,r1, crb = Π4

i=1c
wi
i,r2. It generates a ResponseTx transaction

and publishes the transaction ResponseTx on blockchain.

(3)The server verifies the response transaction and get the updated modelm

for (1,2,3,4). Then, it replays the process and regenerate the challenge set

(1,2,3,4,5) in ListL. The aggregator responses the request. This process can

be performed in multiple rounds. The server relies on the random challenge



CHAPTER 5. PRIVACY-PRESERVING FL WITH SECURE AGGREGATION 63

and the updated model to assert the behaviour of client. After that, the server

generates a PunishmentTx, which includes the client identification and

the proof of challenge-response. Finally, the server puts PunishmentTx

on blockchain.

5.3.2 Security Analysis

In the section, we analyze the security of accountable and verifiable secure ag-

gregation for federated learning protocol, which achieves the privacy, authenti-

cation, unforgeability and accountability. Specifically, we assume the server is

semi-honest and it cannot collude with the aggregator.

Privacy: In the protocol, we protect the privacy of data of each client, which

is hold by client itself. We also protect the privacy of the aggregated data, which

cannot be leakaged to the other clients or the aggregator, but it is transparent to

the server. For the client data mi, we execute the HPRE scheme with HPRE.Enc

algorithm to encrypt the datami. The confidentiality of HPRE scheme guarantees

the security of client data mi. The HPRE scheme is an IND-CPA secure homo-

morphic proxy re-encryption, which is proved achieve the IND-CPA security with

the eDBDH assumption holds in (G,GT ). The confidentiality of HPRE scheme

guarantees the privacy of data of each client. For the aggregated data, the aggrega-

tor calls HPRE.REnc algortihm to generate the re-encryption ciphertexts with the

transformation key rki. In the process, the client calls HPRE.RKeygen to generate

its transformation key, which is sent to the aggregator. The aggregator executes

re-encryption and secure aggregation on the re-encryption ciphertext ci,re. The

IND-CPA secure homomorphic proxy re-encryption scheme guarantees the con-
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fidentiality of the aggregated data. So the protocol guarantees the privacy of data

of each client and aggregated data.

Authentication: In the protocol, we protect the reliability of the data sources.

In the protocol, the client generates its public key and private key and registers to

the aggragator. Then, the aggregator generates a register set list L and constructs

the set transaction SetTx. It publishes SetTx on blockchain. The publicly veri-

fiable and tamper-resistant of blockchain guarantees the security of L. The client

sends the rotation key to the aggregator with security channel. Then, the client

calls HPRE.Enc to generate the ciphertexts of data and callsHPRA.Sign algorithm

to sign on the data. In the aggregation phase, the aggregator callsHPRA.Agg algo-

rithm to generate the re-authenticator for the signatures received from each client

with the rotation key, µ = Πn
i=1e(σ

wi
i , aki). The server calls HPRA.AVerify to

check the authenticator. The security of HPRA guarantees the reliability of the

data sources. Based on the re-authenticator and the client signature, the protocol

provides the authentication of data sources.

Unforgeability: In the protocol, an honest client signature is unforgeable. In

the protocol, the client generates its public key and private key and executes feder-

ated learning training model at local. For an update parametermi, the client calls

HPRA scheme to sign on it. The unforgeability of HPRA scheme guarantees the

unforgeability of client signature. Specifically, the signer unforgeability of HPRA

scheme guarantees the malicious client cannot impersonate other honest clients.

The aggregator unforgeability of HPRA scheme guarantees the aggregator can-

not forge the signature of the honest clients. The HPRA scheme is unforgeable in

eBCDH assumption under the random oracle model. So, the protocol is unforge-

able for the malicious client and the aggregator.
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Accountability: In the protocol, an honest server can trace the malicious client

and punishes it by deducting its deposit. In the tracing phase, the server interacts

with the aggregator to execute the challenge-response protocol. The server can

sample the client list to generate the challenge set and constructs a tracing trans-

action TracingTx. With the TracingTx, the aggregator checks the challenge set

and responses the secure aggregation on re-encryption ciphertexts. The aggregator

generates a ResponseTx transaction and publishes it on blockchain. The server

verifies the response and gets the updated model. Then, the server interacts with

the aggregator in multiple rounds. The server relies on the random challenge and

the updated model to assert the behaviour of client. After that, the server gener-

ates a PunishmentTx and publishes it on blockchain. With the PunishmentTx,

the smart contract executes deducting client deposit operation. So, the protocol

achieves accountability for the malicious client.

5.4 Performance Analysis

We implement the performance evaluation of our SA-FL protocol in this section.

We call the specific cryptography algorithms and evaluate its time cost. Then, we

deploy a smart contract on blockchain to evaluate the functions of the accountable

and verifiable secure aggregation for federated learning and test its efficiency.

5.4.1 Implementation Analysis

Our implementation is based on the AMDRyzen 9 5900HS with Radeon Graphics

3.30GHz, 16.00GB of RAMwith Ubuntu, we use the C++ programming language

to develop the cryptography schemes programming. For the pairing library, we
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select the BN curve for bilinear pairing. We also test the time consumption of the

cryptography schemes in a Raspberry Pi to simulate IoT device. The Raspberry

Pi 3 Model B is equipped with quad-core 64-bit CPU and 1 GB RAM.We execute

the protocol to test its time cost and execute 1000 rounds for each algorithm to

get the average running time. The time cost of the client and the server in the

Setup, Training and Update phase are shown in Table 5.1, and the time cost of

each algorithm less than 1 second.

Phase Raspberry Pi Laptop
Client Server Client Server

Setup 101ms 263ms 9.44ms 36.75ms
Training 367ms 166ms 17.78ms 5.91ms
Update - 463ms - 32.76ms

Table 5.1: Time cost of raspberry pi and laptop

We compare our construction with other scheme in terms of the functionality,

which is shown in Table 5.2. [19] is weak for the dropouts of client. SA-FL

and [8] support the random dropouts for client. SA-FL is authenticated for the

data of client identify. The communication of Bonawitz et al. [19] is O(mn +

n2), Awan et al. [8] is O(mn) and SA-FL is O(mn), where m is the size of the

data vector and n denotes the client number. We further execute the algorithm of

aggregation operation, the aggregator first executes the ciphertexts transformation,

then executes secure aggregation for the ciphertexts. We test the time cost of the

aggregation in terms of the number of the client, which is shown in the Figure 5.6.

Experimental results show that for 100 clients, the [19] costs 8.50ms, [8] costs

5.6ms aggregating the ciphertexts. We also check the aggregation operation under

similar condition where no signature algorithm is executed, so our scheme costs

5.5ms.
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Scheme Dropout Privacy Authentication Accountability
Bonawitz et al [19] bounded

√ √
×

Awan et al [8] arbitrary
√

×
√

Our SA-FL Scheme arbitrary
√ √ √

Table 5.2: Functionality comparison

Figure 5.6: The time cost of aggregation operation for different schemes

5.4.2 Experiments and Evaluation

In this section, we conduct simulation experiments to evaluate the prediction per-

formance of the global model. All simulations are implemented on the same com-

puting environment (Windows 10, Intel (R) Core (TM) i5-8400 CPU@ 2.80GHz,

NVIDIAGeForce RTX 3070, 16GB of RAM and 4T of memory) with Tensorflow,

Keras.

Experimental Settings

Dataset. In our experiments, we leverage the widespread handwritten digits

dataset, MNIST, which contains a training set of 60000 samples and a testing set

of 10000 samples. Every sample has been size-normalized and centered in a fixed-

size (28× 28) gray-level image depicting an item from one of ten different labels.
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Machine Learning Task. The ML model (deep neural network DNN) is the

Convolutional Neural Network (CNN), which contains 2 convolution layers, 2

pooling layers, and 2 fully connected layers. We also set the loss function as the

cross-entropy error and the active function as the sigmoid. Besides, the gradient

decent algorithm is set as the stochastic gradient descent (SGD) with the learning

rate of 0.001.

FL Settings. The FL system under our consider consideration involves 50

clients with local datasets extracted from the MNIST dataset. For each local

dataset, we randomly select 1200 samples with an equal probability and without

replacement. Besides, the central server aggregates local contributions (models)

every 5 epochs of local training. In addition, theMNIST testing set is directly used

for evaluating the global model performance.

Evaluation

As shown in Figure 5.7(a)(b), after 131 rounds of aggregation, the globalmodel

converges. The final loss value and the prediction accuracy on the MNIST testing

set are 0.0429 and 98.58%, respectively, which means the global model could

classify the testing samples with high accuracy. Also, Figure 5.7(c) illustrates the

receiver operating characteristic (ROC) curve and the area under the curve (AUC)

of the final converged global model on the testing set. As we can observe, the AUC

is 0.97, which reflects an outstanding model generalization the final converged

global model achieves. In summary, with the deployment of the proposed FL

system, clients could collaboratively train a global model a with rapid convergence

rate, high prediction accuracy, and good model generalization.
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(a) Loss curve. (b) Accuracy curve.

(c) ROC curve.

Figure 5.7: Performance analysis
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5.4.3 Prototype System

We develop a prototype system of the accountable and verifiable secure aggre-

gation for federated learning. We utilize the Ethereum geth client to build the

blockchain network. We use the Solidity to develop the federated learning task

contract and pre-compile it with remix IDE, then we test the gas cost of the con-

tract function when generating the transactions. We evaluate the secure aggre-

gation of the aggregator in terms of ten clients, and the estimate of the gas cost

is shown in Table 5.3. The SetTx and TracingTx transactions only contain the

set of clients identifies and the tracing challenge respectively, so the gas cost of

SetTx and TracingTx transactions are low. For a deposit transaction, the client

commits to provide real data, and the DepositTx costs 144529Gas. As shown

in the Table 5.3, the aggregator uploads the ciphertexts of the secure aggregation,

which costs 1233720Gas. In the Tracing phase, the aggregator uploads the se-

lected ciphertexts to response the challenge from the Server, so the ResponseTx

costs vast gas. The PunishmentTx uploads the parameters and the tracing data,

which costs 357626Gas.

Transaction Gas units Gas cost(ether)
ContractTx 727904 0.01455808
SetTx 43724 0.00087448
DepositTx 144529 0.00289058
UpdateTx 456367 0.00912734
AggregateTx 1233720 0.02467440
TracingTx 125677 0.00251354
ResponseTx 5735890 0.1147178
PunishmentTx 357626 0.00715252

Table 5.3: Gas cost of transactions
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5.5 Summary

In this chapter, we propose an accountable and verifiable secure aggregation for

federated learning, we realize the protection of the confidentially and verifiability

of the client data base on HPRA, HPRE and blockchain. In addition, our frame-

work is flexible and dynamically adjustable for the participants dropouts issue. To

illustrate the useability of our framework in IoT networks, we also test the perfor-

mance of it base on blockchain prototype system.



Chapter 6

Anonymous and Publicly Linkable

Reputation System

In the chapter, we propose an anonymous and publicly linkable reputation sys-

tem with distributed trust (DTrustRS), which protects the anonymity of user while

executing distributed regulation by revoking the anonymity of misbehavior users.

The motivation of DTrustRS is described in Section 6.1. The architectural model

is described in Section 6.2. The concrete construction of aggregatable PS signa-

ture is given in Section 6.3. The concrete construction of DTrustRS is described

in Section 6.4. The performance evaluation is described in Section 6.5. Finally,

we conclude the chapter in Section 6.6.

6.1 Background

Reputation system allows the users to rate transactions or services they have pre-

viously enjoyed. The rating data is being generated every day. More and more

72
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companies are committed to mining behavioral data to extract valuable informa-

tion for business benefit. However, the users’ privacy is thus under the risk of

being exposed to third-parties. Anonymous reputation system not only enables a

user to rate its services, but also protects user’s privacy, which makes it widely

concerned. In the research of anonymous reputation system, the anonymous and

publicly linkable reputation system has attracted much attention since it can pro-

vide more reliable ratings. However, an anonymous and publicly linkable repu-

tation system generally requires strong trust in one single system manager who

can revoke the anonymity of misbehavior users if necessary. Once the system

manager is corrupted, it can easily trace all the users to compromise their privacy

and further impact the reputation of the system. It can be seen that it is necessary

to reduce the trust in single authorities and further enhance the robustness of the

reputation systems.

Some of the security properties of anonymous and publicly linkable reputation

systems are studied on the conception of group signatures [29]. However, group

signatures cannot meet all the requirements of anonymous and publicly linkable

reputation systems in distributed settings. Group signatures require strong trust

in the single issuer and the single opener. We need to find a way to deal with the

single trust in anonymous reputation systemswhile guaranteeing public linkability,

that is, be able to assert two ratings for the same service were generated by the

same user, to improve the security level of the system. However, the existing

construction can not provide them simultaneously.
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6.1.1 Contributions

In this chapter, we propose an anonymous and publicly linkable reputation system

with distributed trust (DTrustRS).We define the systemmodel of DTrustRS, which

initializes with nI service providers (SP) and nO system managers (SM), who are

involved in adding registered users and opening user signatures, respectively. We

formally define the security of DTrustRS which includes anonymity, traceability,

and public linkability. The anonymity guarantees that DTrustRS does not reveal

the identity of the user. The traceability guarantees that DTrustRS is unforgeable.

The public linkability guarantees that anyone can assert two rate signatures for the

same statement created by the same user.

We give an efficient construction for DTrustRS. To achieve the registration

function of DTrustRS, we propose a new variant of the Pointcheval-Sanders (PS)

signature named aggregatable PS signature (APS). We construct the APS scheme

and prove its security, which is an independent interest. The construction ofDTrustRS

follows the re-randomizable signatures paradigm in [13]. We integrate APS and

Pointcheval-Sanders Multi-signatures (PSM) to construct the DTrustRS scheme.

The signature of DTrustRS is short in length, including 3G1 elements and 3Zq el-

ements. We prove that DTrustRS is secure in the random oracle model under a

q-type assumption. Finally, we demonstrate DTrustRS’s validity by comparing it

with related works.

6.2 Architectural Model

In this section, we define the system model of DTrustRS and its security require-

ments.
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6.2.1 System Model

The DTrustRS includes three entities: the system managers (SM), users and ser-

vice providers (SP), as shown in Figure 6.1.

Figure 6.1: The system model of DTrustRS

SM: The system manager authorizes user as a legal user. Each SM issues one

credential to legal user and reveals the identity of user.

Users: Each user interacts with SM to register as a legal user. Then, it provides

the registration information to service providers and sends a signing key request to

a set of service providers. User collects a number of shares and aggregates these

shares to form an anonymous reputation for the services of service providers.

SP: The service provider interacts with the SM to verify the registration in-

formation of the users. Then, each service provider issues a signing key to user,

which allows the user to remark the reputation.

6.2.2 The Syntax of DTrustRS

The anonymous and publicly linkable reputation systems with distributed trust

(DTrustRS) is an extension of the anonymous and publicly linkable reputation

systems. DTrustRS distributes the role of single authority over several entities.
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We initialize it with nI SP and nO SM. The DTrustRS schemeΠ consists of Setup,

KeygenI, KeygenO, KeygenAggr, ⟨ RegisterO, RegisterU ⟩, ⟨ JoinU, IssueI ⟩, Sign,

Verify, Open, Judge and Link algorithms.

• (params)← Setup(1λ, nI , nO): This algorithm takes a security parameter

λ, the number of SP nI and the number of SM nO as input and outputs the

public parameters params.

• (iski, ipki, sti) ← KeygenI(params, i ∈ nI): Service provider runs the

algorithm, which takes the public parameters params and the identify i as

input and generates a key pair (iski, ipki) of i with a statement sti.

• (oski, opki, regi)← KeygenO(params, i ∈ nO): System manager runs the

algorithm, which takes the system parameters params and the identify i as

input, and generates a key pair (oski, opki) of i and a registration list regi.

• (apk) ← KeygenAggr(params, ⟨pk1, · · ·, pkn⟩): This algorithm takes the

public parameters params and a vector of public key (pk1, · · ·, pkn) as input

to generate an aggregated key pair (apk).

The system parameters gpk consists of (ipki, apkO), where apkO is the ag-

gregated key of SM.

• ⟨Reg[id], {regi}nO
i=1 ⟩← ⟨RegisterU(params, id, gpk)⇌ {RegisterO(params,

id, oski, opki }i∈nO
⟩: An user with identity id interacts with nO SM. The

user inputs params, id and gpk and each SM inputs params, id and its

key pair (oski, opki). Output a register credential Reg[id] and updated the

registration list regi for each system manager.
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• (gsk[id])← ⟨JoinU(params,Reg[id], gpk) ⇌ {IssueI(params, id, iski, ipki}i∈nI
⟩:

An user with identity id interacts with nI SP. The user inputs params,

Reg[id] and gpk and each SP inputs params, id and its key pair (isk, ipk).

Output the signing secret key gsk[id].

• (σ) ← Sign(params, gpk, gsk[id],M, item): A sign user takes the public

parameters params, gpk, a signing secret key gsk[id], a messageM and a

specified item as input, and outputs a signature σ over messageM .

• (b)← Verify(params, gpk, σ,M, item): This algorithm is run by a verifier

who wants to verify a signature σ. It takes params, gpk, σ, the messageM

and item as input, and outputs a bit b ∈ {0, 1}.

• ⟨{id, πi}i∈nO
⟩ ← ⟨{Open(params, gpk, item, (σ,M), regi, oski)}i∈nO

⟩:

This algorithm is run by the SM. Return the identify of user identity who

computed a signature σ onM with a proof π.

• (b′) ← Judge(params, gpk, item, (σ,M), ⟨{id, πi}i∈nO
⟩): This algorithm

verifies the proof in Open algorithm. It takes params, id, item and the

proof π and gpk as input, and outputs a bit b′ ∈ {0, 1}.

• (b′′) ← Link(params, gpk, item, (M,σ), (M ′, σ′)): This algorithm checks

two signatures (M,σ) and (M ′, σ′) whether computed by the same user. It

takes params, gpk, item, (M,σ) and (M ′, σ′) as input, and outputs a bit

b′′ ∈ {0, 1}.

Correctness. A DTrustRS must satisfy the correctness.

For all (params) ← Setup(1λ, nI , nO), for all (iski, ipki, sti) ∈ KeygenI,

(oski, opki, regi) ∈ KeygenO, (apk) ← KeygenAggr, ⟨Reg[id], {regi}nO
i=1⟩ ∈
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[RegisterU]× [RegisterO], (gsk[id]) ∈ [JoinU]× [IssueI], ⟨{id, πi}i∈nO
⟩ ∈ Open:

Verify(params, gpk, Sign(params, gpk, gsk[id],M, item), M, item)) = 1∧

Judge(params, gpk, item, (M,σ), ⟨{id, πi}i∈nO
⟩) = 1∧ Link(params, gpk, item,

(M,σ), (M ′, σ′)) = 1.

6.2.3 Security Model

The security requirement of DTrustRS is similar to the threshold dynamic group

signatures [25], but DTrustRS is distributed opening and publicly linkable.

In the security experiments for DTrustRS, the challenger maintains global vari-

ables which include system parameter gpk, honest users signing key gsk, a regis-

tration table reg and

−CU denotes corrupted user set, and a corrupted user is controlled by adver-

sary.

−RU denotes the set of user in the registration phase.

−JIU denotes the set of user in the join phase.

−QSign is a set of signing queries (id,M, item).

−QOpen is a set of opening queries (σ,M, item).

Set is initialized to be empty and gpk, gsk and reg are initialized to be ⊥.

Oracle. In the security experiments, we use the following oracle.

GSK(id). The oracle returns the secret signing key gsk[id] and adds id to CU .

RegU(id). The oracle adds id to RU . An adversary plays the corrupted SM

and oracle executes honestly RegisterU protocol. Return Reg[id].

RegOi(id). The oracle adds id to RU and CU . An adversary plays the cor-

rupted user and oracle executes honestly RegisterO protocol. Save regi in the
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registration table.

JoinU(id). The oracle adds id to JIU . An adversary plays the corrupted SP

and oracle executes honestly JoinU protocol. Return a signing key gsk[id].

IssueI(Reg[id]). The oracle adds id to JIU and CU . The oracle executes

honestly IssueI protocol and the adversary plays the corrupted user.

Sign(id, item, M). An adversary queries signing oracle to get a signature on

messageM for an honest user with identity id in JIU\CU . The queried signature

is added to QSign.

Openi(item, M, σ). An adversary gets an output of the Open algorithm, and

(item,M, σ) is added to QOpen.

ReadReg(i, id). The oracle can be used by the adversary to return regi[id].

WriteReg(i, id, v). Set regi[id]← v, write v to ith SM for user id.

We define the security experiments of DTrustRS, which include anonymity,

traceability, public linkability. Anonymity experiment and traceability experiment

are based on [12], [25]. Public linkability experiment is based on [16]. The exper-

iments are defined in Table 6.1.

Definition 6.1. A DTrustRS scheme is anonymous if for every efficient ad-

versary A wins the Expano−b
DTrustRS,λ,nI ,nO

with negligible advantage. We denote the

advantage of adversary A by

AdvanoDTrustRS,nI ,nO,A(λ)
def
=| Pr[Expano−1

DTrustRS,λ,nI ,nO
(A) = 1]−Pr[Expano−0

DTrustRS,λ,nI ,nO
(A) = 1] |

Definition 6.2. ADTrustRS scheme is traceable if for all efficient adversaryA

wins the ExptraceDTrustRS,λ,nI ,nO
with negligible advantage. We denote the advantage

of adversary A by
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Experiment Expano−b
DTrustRS,λ,nI ,nO

(A)
(params)← Setup(1λ, nI , nO)
⟨{(iski, ipki, sti)}nI

i=1⟩ ← ⟨{KeygenI(params, i)}nI
i=1⟩

⟨{(oski, opki, regi)}nO
i=1⟩ ← ⟨{KeygenO(params, i)}nO

i=1⟩
(apkO)← KeygenAggr(params, ⟨opk1, · · ·, opknO

⟩)
gpk ← (ipki, apkO)
O ← {(RegU,RegO, JoinU, Sign,Open,GSK,WriteReg)}
(st′A, (id0, id1,M

∗, item∗))← A(gpk, isk, oski ̸=j,j=1 : O)
σ∗ ← Sign(params, gpk, gsk[id∗b ],M ∗, item∗)
b′ ← A(st′A, σ∗ : O)
If id∗0, id∗1 ∈ JIU\CU and
gsk[id∗0], gsk[id

∗
1] ̸=⊥ and (item∗,M ∗, σ∗) /∈ QOpen, return b′

else return 0

Experiment ExptraceDTrustRS,λ,nI ,nO
(A)

(params)← Setup(1λ, nI , nO)
⟨{(iski, ipki, sti)}nI

i=1⟩ ← ⟨{KeygenI(params, i)}nI
i=1⟩

⟨{(oski, opki, regi)}nO
i=1⟩ ← ⟨{KeygenO(params, i)}nO

i=1⟩
(apkO)← KeygenAggr(params, ⟨opk1, · · ·, opknO

⟩)
gpk ← (ipki, apkO)
O ← {RegU,RegO, JoinU, IssueI, Sign,Open,GSK,ReadReg}
(σ∗,M ∗, item∗)← A(gpk, oski ̸=j,j=1 : O)
If Verify(params, gpk, σ∗,M ∗, item∗) = 0 then return 0
⟨(id∗, πi)⟩ ← Openi(params, gpk, item∗, regi, oski, (σ

∗,M ∗))
If id∗ =⊥ or Judge(params, gpk, item∗, (M∗, σ∗),
⟨{id∗, πi}⟩) = 1 then return 1
else return 0

Experiment ExppublinkDTrustRS,λ,nI ,nO
(A)

(params)← Setup(1λ, nI , nO)
⟨{(iski, ipki, sti)}nI

i=1⟩ ← ⟨{KeygenI(params, i)}nI
i=1⟩

⟨{(oski, opki, regi)}nO
i=1⟩ ← ⟨{KeygenO(params, i)}nO

i=1⟩
(apkO)← KeygenAggr(params, ⟨opk1, · · ·, opknO

⟩)
gpk ← (ipki, apkO)
O ← {(RegO, IssueI,GSK)}
{(σi,Mi, item)}|CU |+1

i=1 )← A(gpk, oski ̸=j,j=1 : O)
For i = 1; i++; i <= |CU |+ 1
If Verify(params, gpk, σi,Mi, item) = 0 then return 0
For i, j ∈ [1, · · ·, |CU |+ 1], i ̸= j
If Link(params, gpk, item, (Mi, σi), (Mj, σj)) = 0 then return 1
else return 0

Table 6.1: The security experiments of DTrustRS
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AdvtraceDTrustRS,nI ,nO,A(λ)
def
= Pr[ExptraceDTrustRS,λ,nI ,nO

(A) = 1]

Definition 6.3. A DTrustRS scheme is publicly linkable if for any probability

polynomial time adversary A wins ExppublinkDTrustRS,λ,nI ,nO
with negligible advantage.

We denote the advantage of adversary A by

AdvpublinkDTrustRS,nI ,nO,A(λ)
def
= Pr[ExppublinkDTrustRS,λ,nI ,nO

(A) = 1]

6.3 Aggregatable PS Signature

Wepropose an aggregatable PS signature (APS), which supports the aggregation of

multiple signatures formultiplemessages into one signature and allows knowledge

of the signature to be efficiently proved like the PSM signatures.

6.3.1 The Syntax of APS

An aggregatable PS signature consists of a tuple of polynomial-time algorithms

(Setup, Keygen, AggKgen, VerifyAggKgen, Sign, AggSign, Verify).

• (params) ← Setup(1λ): Take a security parameter λ as input, and output

the system parameters params.

• (sk, pk)← Keygen(params): Take the system parameter params as input

to generate a key pair (sk, pk).

• (apk) ← AggKgen(params, pk): Take the system parameter params and

a public key pk as input to generate an aggregate key apk.
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• (b)← VerifyAggKgen(params, apk, pk): Take the system parameter params,

a public key pk and an aggregate key apk as input to output a bit b ∈ {0, 1}.

• (σ)← Sign(params, sk,m, aux): Take the system parameter params, the

secret key sk, a message m and an auxiliary information aux as input, and

compute a signature σ.

• (σ)← AggSign(params, {(σi,mi, pki)}ni=1, aux): Take the system param-

eter params, the signature-message pair (σi,mi)with corresponding public

key pki, and an auxiliary information aux as input to compute an aggregated

signature σ.

• (b′)← Verify(params, apk, (σ,m), aux): Take the system parameters params,

the aggregate key apk, a signature-message pair (σ,m) as input to output a

bit b′ ∈ {0, 1}.

Correctness. An APS must satisfy the correctness.

For all (params)← Setup(1λ) ∧ for all (sk, pk)← Keygen(params) :

VerifyAggKgen(params,AggKgen(params, pk), pk) = 1 ∧ Verify(params,

apk, (AggSign(params, {(σi,mi, pki)}ni=1, aux),m), aux)) = 1.

6.3.2 The Security Definition of APS

An aggregatable PS signature should satisfy the unforgeability.

Definition 6.4. AnAPS satisfies unforgeability if for any probability polynomial-

time adversary A such that
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Pr



VerifyAggKgen(params, apk∗, pk) = 1∧

Verify(params, apk∗, (σ∗,m∗), aux∗)) = 1

:

(params)← Setup(1λ)

(sk, pk)← Keygen(params)

(σ∗,m∗, apk∗, aux∗)← AOsign(params, pk)


≤ negl(λ),

−Osign() is a sign oracle, which responses the queries from adversary A.

We require that a forged signature-message pair must be not queried by the

adversary, and the adversary proves knowledge of the discrete log for his public

key.

6.3.3 Construction of APS

• Setup(1λ): Input a security parameter λ to generate Φ = (q,G1,G2,GT , e),

with g1 a generator of G1 and g2 a generator of G2. Set H2 : {0, 1}∗ → Zq,

H3 : {0, 1}∗ → G1 be collision-resistant hash functions. Let params =

(Φ, g1, g2, H2, H3).

• Keygen(params): Randomly choose x, y ∈ Z∗
q and compute X̂ = gx2 , Ŷ =

gy2 . Set sk = (x, y), pk = (X̂, Ŷ ).

• AggKgen(params, pk): ComputeH2(pk)→ r and apk = (pk)r = (X̂r, Ŷ r).

Then, output apk.

• VerifyAggKgen(params, apk, pk): Compute H2 (pk) → r. Parse pk =

(X̂, Ŷ ) and apk. If apk = (X̂r, Ŷ r), output 1; otherwise, output 0.
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• Sign(params, sk,m, aux): Set auxiliary information aux ∈ {0, 1}∗. Com-

pute H3(aux) → h and H3(m) → h1. Output a signature σ = (a, b) =

(hh1, (hh1)
x+ym).

• AggSign(params, {(σi,mi, pki = {X̂i, Ŷi})}ni=1, aux): Parse σi as (ai, bi).

Compute H2(pki) → ri, for i = 1, · · ·, n. a = (a1, · · ·, an), b =
∏n

i=1 b
ri
i .

Output the aggregated signature σ = (a, b).

• Verify(params, apki = {X̂r
i , Ŷ

r
i }ni=1, (σ,m), aux): Parse σ as (a, b) =

((a1, · · ·, an), b) andm = (m1, · · ·,mn). If
∏n

i=1 e(ai, X̂
r
i Ŷi

rmi
) = e(b, g2),

output 1; otherwise, output 0.

Correctness. Given the aggregate key apk and public key pk, by calling

VerifyAggKgen algorithm, we can verify the aggregated public key apk. Parse

apk = (ax, ay) and compute H2(pk) → r. If (pk)r = (ax, ay) = (X̂r, Ŷ r), out-

put 1. Given an aggregated signature σ andmessagem, by callingVerify algorithm

to check the signature. Parse σ = (a, b) = ((a1, · · ·, an), b) andm = (m1, · · ·,mn).

If
∏n

i=1 e(ai, X̂iŶi
mi
) = e(b, g2), output 1.

Theorem 6.1. The scheme above is an APS satisfying Definition 6.4 if the

q-MSDH-1 assumption holds in Φ.

Proof. Given a type-3 pairing group Φ, if an adversary A wins the unforge-

ability game with at least ε probability, then, we can construct an algorithm B,

which runsA as a subroutine to output a tuple (w,P, h1/w+x, ha/P (x))with the non-

negligible probability, for a q-MSDH-1 instance ((gxi

1 , g
xi

2 )qi=0 and (ga1 , g
a
2 , g

ax
2 )).

At the beginning of the unforgeability game, given the q-MSDH-1 instance (gxi

1 , g
xi

2 )qi=0

and (ga1 , g
a
2 , g

ax
2 ) to algorithm B. Then, B interacts with adversary A, which re-

ceives a message tuple (w1, · · ·, wq) ∈ Zq. B setups the public parameters. It
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computes f = g
∏q

i=1(x+wi)
1 , f̂ = g

∏q
i=1(x+wi)

2 , and sends (f, f̂ , n) to A. B sets

X̂ = gax2 , Ŷ = ga2 as the public key of target signer t ∈ [n] and sends it to A.

Notice that the B implicitly sets

xt =
ax∏q

i=1(x+ wi)
, yt =

a∏q
i=1(x+ wi)

.

For signature queries on message tuple (w1, · · ·, wq) ∈ Zq, B computes and stories

σi = (ai, bi) = (g
∏

j ̸=i(x+wj)
ti , (ga)ti),

where ti ∈ Z∗
q. Then, it sends the signatures {σi}

q
i=1 to adversaryA. AdversaryA

verifies the signatures

e(ai, X̂Ŷ
wi) = e(bi, g2).

A queries H3 on aux, B generates and returns h. A queries H3 on a message

w, B computes g
∏

j ̸=i(x+wj)
ti

h
as an answer to the random oracle query. Whenever

adversary A queries H2 random oracle on public key pk, B generates and returns

r ∈ Zq. Finally, A returns a forgery σ∗ on w∗ with apk that includes target public

key X̂t, Ŷt. Parse σ as (a, b),

n∏
i=1

e(ai, X̂
ri
i Ŷi

wiri
) =

n∏
i=1(i ̸=t)

e(ai, X̂
ri
i Ŷi

wiri
)e(at, X̂

rt
t Ŷt

wtrt
) = e(b, f̂).

B rewinds the hash queries onH2, and generates r′ ∈ Zq. Then,Amakes queries.

If adversary A outputs another forgery σ′ such that

n∏
i=1(i ̸=t)

e(a′i, X̂
ri
i Ŷi

wiri
)e(a′t, X̂

r′t
t Ŷt

wtr′t
) = e(b′, f̂).
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Then, B computes

e(a
′r′t
t /artt , X̂tŶt

wt

) = e(b′/b, f̂).

B outputs a forgery (wt, P, a
′r′t
t /artt , b

′/b), where (P =
∏q

i=1(x + wi)) to chal-

lenger. If ε was non-negligible, B by running A as a sub-rountine can win the q-

MSDH-1 game with non-negligible probability (ε2− ε/ | q |). Under q-MSDH-1

assumption, ε were negligible, thus, the APS is unforgeability.

6.4 The Construction of DTrustRS

In this section, we construct a concrete scheme for DTrustRS, which is based on the

APS and PSM signature [25]. The APS enables SM to open a signature effectively

and PSM reduces the signature size. For public linkability, we modify a technique

in [7] by integrating the statement information to generate a link identify.

In DTrustRS scheme, we adopt APS to construct the registration protocol and

Open algorithm, each user interacts with the SM to register as a legal user. With the

registration message, SM can open a signature effectively and generate an opening

proof. We adopt PSM signature to issue the member credential. Each registered

user interacts with SP and obtains a credential. With the credential, the user can

generate a reputation signature. Then, every verifier can check two signatures

whether or not from the same user by the link identify.

6.4.1 The Scheme of DTrustRS

Given a security parameter λ to generate a type-3 pairing group Φ. Let H :

{0, 1}∗ → Zq, H0 : {0, 1}∗ → Zq × G1, H1 : {0, 1}∗ → Zn
q , H2 : {0, 1}∗ → Zq,
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H3 : {0, 1}∗ → G1 be collision-resistant hash functions. The scheme of DTrustRS

as following:

• (params) ← Setup(1λ, nI , nO): Generate (g1, g2) with g1 and g2 are gen-

erator of G1 and G2, respectively. Return public parameter params =

(Φ, g1, g2, nI , nO).

• (iski, ipki, sti) ← KeygenI(params, i ∈ nI): Each SP runs (vk, sk) ←

PSM.Keygen(params) and let (ipki, iski) ← (vk, sk). Then, initialize

statement sti ∈ {0, 1}∗. The algorithm returns (iski, ipki, sti).

• (oski, opki, regi)← KeygenO(params, i ∈ nO): Each SM runs (pk, sk)←

APS.Keygen(params) and let (opki, oski) ← (pk, sk). Then, initialize an

empty register list regi. The algorithm returns (oski, opki, regi).

• (apk) ← KeygenAggr(params, ⟨pk1, · · ·, pkn⟩): Take the params and a

public key vector of SM (pk1, · · ·, pknO
) as input to generate an aggregate

key (apkO) = ⟨{APS.AggKgen(opki)}nO
i=1⟩

The system parameter gpk is set to (ipki, apkO).

• ⟨Reg[id],{regi}nO
i=1 ⟩← ⟨RegisterU(params, id, gpk)⇌ {RegisterO (params,

id, oski, opki}i∈nO
⟩: As shown in Table 6.2, a user interacts with SM.

For i = 1, · · ·, nO, a user inputs params, idO and gpk = (ipki, apkO =

({(X̂0,i, Ŷ0,i)}nO
i=1)) to register the idO. Each system manager computes and

stores regi = reg[id], and computes and generates Reg[id] = (ξ, σ) with

idO.
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RegisterU ⇋ RegisterO
Randomly choose skid ∈ Zq

h← H3(idO), h1 = H3(skid)

hsk = (hh1)
skid , h2 = Ŷ skid

0,i

π ← NIZK.Prove{(skid) :
hsk = (hh1)

skid ∧ h2 = Ŷ skid
0,i }

hsk,h2,π−−−−→
NIZK.Verify(hsk, h2, π) ?

=1
κ ∈ Z∗

q, Z = hsk(hh1)
κ

σ = (a, b) = (hh1, (hh1)
xZy)

σ,κ←−
Reg[id] = ((ξ = skid + κ), σ) regi = (h2, κ)

Table 6.2: The registration protocol

• (gsk[id])← ⟨JoinU(params,Reg[id], gpk) ⇌ {IssueI(params, id, iski, ipki}i∈nI
⟩:

A user interacts with service providers. We assume that there is a broadcast

channel and further this protocol runs over secure channel. The user inputs

params, Reg[id] and gpk, and computes a proof with Reg[id] that user has

registration. It parses Reg[id] = (ξ, σ) = ((ξ1, · · ·, ξnO
), ((a1, · · ·, anO

), b))

and randomly chooses r ∈ Zq and computes σ′ = (σr).

πR ← NIZK.Prove{({ξ}nO
i=1) : e(b

′, g2) =

nO∏
i=1

e(a′i, X̂iŶ
ξi
i )}.

Compute (m′, h)← H0(id), hsk = hskid ,

π ← NIZK.Prove{(skid) : hsk = hskid}.

Set L[id] ← (id, πR, σ
′) and send L[id] and (hsk, π)to a SP. As shown in

Table 6.3, the user interacts with the SP. Then, output the signing secret key
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gsk[id].

JoinU ⇋ IssueI
L[id],hsk,π−→

Parse L[id] = (id, πR, σ
′)

NIZK.Verify(hsk, π) ?
=1

NIZK.Verify(σ′, πR)
?
=1

(m′, h)← H0(id),
c = (hx+y1m′

hy2sk)
c←−

Σ = (m′, h, c)

PSM.Verify(Σ, skid, ipki) ?
= 1

gsk[id] = (skid,Σ)

Table 6.3: The join protocol

• (σ) ← Sign(params, gpk, gsk[id],M, item): The user parses gsk[id] =

(skid,Σ = (m′,Σ0,Σ1)). Set item = (sti). Compute d ← H3(item),

and randomly choose µ ∈ Zq to re-randomlize Σ. Compute Σ′ = Σµ =

(Σ′
0,Σ

′
1) = (Σµ

0 ,Σ
µ
1) and S = dskid . Then, the user computes

π ← NIZK.Prove{(skid,m′) :

S = dskid ∧ PSM.Verify(ipki, skid, (m′,Σ′
0,Σ

′
1)) = 1}(M).

The user generates the Schnorr signature of knowledge [80] π on message

M such that S = dskid and

e(Σ
′skid
0 , Ŷ2)e(Σ

′m′

0 , Ŷ1) =
e(Σ′

1, g2)

e(Σ′
0, X̂)

,

output a signature σ ← (S,Σ′, π).
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• (b) ← Verify(params, gpk, σ,M, item): A verifier parses σ = (S,Σ′, π).

It computes NIZK.Verify(gpk,M , (S,Σ′, π)). If the signature σ is valid,

return 1; otherwise, return 0.

• ⟨{id, πi}i∈nO
⟩ ← ⟨{Open(params, gpk, item, (σ,M), regi, oski)}i∈nO

⟩:

The SMverifies the signature by callingVerify. IfVerify(params,gpk, σ,M, item) =

0, then return ⊥. Otherwise, SM retrieves the list L[id] and regi.

– Parses regi = (h2, κ) and computes d← H3(item).

– For all h2, it checks whether e(S, Ŷ0,i) = e(d, h2) holds. Retrieve κ to

compute h3 = h2Ŷ
κ
0,i and

Θ← NIZK.Prove{(h2, κ) : e(S, Ŷ0,i) = e(d, h2)∧
e(d, h3)

e(S, Ŷ0,i)
= e(d, Ŷ0,i)

κ}.

SMs cooperatively retrieve id in the list L[id].

Parses L[id] = (id, πR, σ
′). Return a proof (id, π = (h3, σ

′,Θ)).

• (b′) ← Judge(params, gpk, item, (σ,M), ⟨{id, πi}i∈nO
⟩): This algorithm

verifies ⟨{id, πi}i∈nO
⟩. For all (πi), it parses πi = (h3,i, σ

′,Θi) and σ′ =

(a, b) = ((a1, · · ·, anO
), b) then, computes NIZK.Verify(Θi)

?
= 1 and checks

if
nO∏
i=1

e(ai, X̂0,ih3,i) = e(b, g2).

return 1; otherwise, return 0.

• (b′′)← Link(params, gpk, item, (M0, σ0), (M1, σ1)): This algorithm checks

two signatures (M0, σ0), (M1, σ1). If Verify(params, gpk, σi,Mi, item) =
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0, for i ∈ {0, 1}, then return ⊥. Otherwise, parse σi = (Si,Σ
′
i, πi), for

i ∈ {0, 1}. If S0 = S1 then return 1; otherwise, return 0.

Correctness. The DTrustRS satisfies correctness.

Proof. The correctness of DTrustRS is based on the correctness of the APS

and PSM signature scheme, and the completeness of Schnorr proof.

By the public parameters, the SP and SM generate public key. In registra-

tion protocol, the user interacts with SM. The user generates a proof of skid as

shown in Table 6.4. Each SM calls NIZK.Verify. Then, SM randomly picks κ ∈

Prover Verifier
ρ ∈ Z∗

q

v = (hh1)
ρ, w = Ŷ ρ

0

c = H(v, w, hsk, h2)

s1 = ρ+ cskid
v,w,s1−−−→ Verify

(hh1)
s1 ?
= v · hcsk, Ŷ

s1
0

?
= w · hc2

Table 6.4: The proof of skid

Z∗
q to compute Z = hsk(hh1)

κ = (hh1)
skid+κ and sends κ and σ = (a, b) =

(hh1, (hh1)
xZy) = (hh1, ((hh1)

x+y(skid+κ))) to user. The user generates a regis-

tration credential Reg[id].

In issue protocol, the user interacts with SP to obtain gsk[id]. The user parses

Reg[id] = (ξ, σ) = ((ξ1, · · ·, ξnO
), ((a1, · · ·, anO

), b)). Randomly choose r ∈ Zq

and compute σ′ = σr = (ar1, · · ·, arnO
, br) = (a′1, · · ·, a′nO

, b′) and generate the

proof πR as shown in Table 6.5.

Then, compute (m′, h)← H0(id), hsk = hskid and generate a proof π as shown

in Table 6.6.

Set L[id] ← (id, πR, σ
′) and send L[id] and (hsk, π) to SP. SP computes
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Prover Verifier
For i = 1, · · ·, nO

Randomly choose τi ∈ Z∗
q

ui = (Ŷ0,i)
τi

c = H(σ′, u1, · · ·, unO
)

si = τi + cξi
c,(ui,si)

nO
i=1−−−−−−→ Verify∏nO

i=1 e(a
′
i, X̂0,i(

Ŷ
si
0,i

ui
)−c)

?
= e(b′, g2)

Table 6.5: The NIZK of (ξ, σ)

Prover Verifier
ρ ∈ Z∗

q , v = hρ

c = H(v, hsk)

s1 = ρ+ cskid
v,c,s1−−−→ Verify

hs1
?
= v · hcsk

Table 6.6: The NIZK of skid

NIZK.Verify and (m′, h) ← H0(id), c = (hx+y1m′
hy2sk) = (hx+y1m′+y2skid). It

sends c to user. The user sets gsk[id] = (skid,Σ). Then, the user generates a

signature. The user parses gsk[id] = (skid,Σ = (m′,Σ0,Σ1)). Set item = (sti).

It computes d ← H3(item), and randomly chooses µ to re-randomlize Σ. Com-

pute Σ′ = Σµ = (Σ′
0,Σ

′
1) = (Σµ

0 ,Σ
µ
1) and S = dskid . Then, the user computes

a Schnorr signature of knowledge as shown in Table 6.7. Then, a verifier checks

the signature by calling NIZK.Verify algorithm.

For Open algorithm, SM verifies the signature by calling Verify. SM retrieves

the list L[id] and regi. Parses regi = (h2, κ) to compute d← H3(item) and check

whether e(S, Ŷ0) = e(d, h2) holds. Then, retrieves κ to compute h3 = h2Ŷ
κ
0 and

π as shown in Table 6.8.
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Prover Verifier
ν, ω ∈ Z∗

q

a = e(Σ
′ν
0 , Ŷ2)e(Σ

′ω
0 , Ŷ1), b = dν

α = H(ipki, S,Σ
′
0,Σ

′
1,M, a, b)

β = ν − αskid, γ = ω − αm′ a,b,α,β,γ−−−−−→
a · e(Σ′α

0 , X̂) = e(Σ
′β
0 , Ŷ2)· e(Σ

′γ
0 , Ŷ1)e(Σ

′α
1 , g2),

b = dβSα

Table 6.7: The proof of a reputation signature

Prover Verifier
r1, r2, r3 ∈ Z∗

q

A = h2g
r1
2 ,

B = dr1 ,

C = Ŷ r2
0 ,

D = dr3

c = H(A,B,C,D, S, h3)
s = r3 + cr1,

r = r2 + cκ
A,B,C,D,−−−−−→
S,s,r,c−−−→ Verify

( e(d,A)

e(S,Ŷ0)
)s

?
= e(B, g2)

ce(D, g2),

( e(d,h3)

e(S,Ŷ0)
)r

?
= ( e(d,h3)

e(S,Ŷ0)
)ce(d, C)

Table 6.8: The NIZK of (h2, κ)
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By the Judge algorithm, a verifier computes NIZK.Verify and checks if

nO∏
i=1

e(ai, X̂0,ih3,i) = e(b, g2).

Link algorithm checks two signatures (M0, σ0) and (M1, σ1). ComputeVerify(params,

gpk, σi,Mi, item) = 1, for i ∈ {0, 1} and parse σi = (Si,Σ
′
i, πi), for i ∈ {0, 1}.

The verifiers can verify the linking by computing S0
?
= S1.

Remark. The DTrustRS supports batch verification, which can further com-

press the signature check time with multiple signatures. When the provider receive

the signature (σi ← (Si,Σ
′
i, πi))

n
i=1from user [1, n]. The verifier can check the

verify algorithm and executes batch verification. The verifier computes Πn
i=1ai ·

e(Πn
i=1Σ

′αi
i,0 , X̂) = e(Πn

i=1Σ
′βi

i,0 , Ŷ2)· e(Πn
i=1Σ

′γi
i,0 , Ŷ1)e(Π

n
i=1Σ

′αi
i,1 , g2),Πn

i=1bi = Πn
i=1d

βi

i S
αi
i .

With the optimized operation, we can compress the pairing group operation from

4n to constant 4.

6.4.2 Security Analysis

The security property of DTrustRS is based on the APS scheme, PSM signature

scheme, DDH assumption and SDL assumption. Before the formal proving, we

follow the lemma below to provide an argument for the proof of anonymity, trace-

ability and public linkability.

Lemma 6.1.(Forgery) If the SDL holds in type-3 pairing groups in random

oracle model, no efficient adversary A can forge a DTrustRS signature with non-

negligible probability.

Proof. An adversary A generates a DTrustRS signature σ on messagem with

a valid proof π for id∗, then, an algorithm B can solve the SDL problem. With the
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general forking lemma [74], [9], B generates an algorithm A′. A′ will output two

signatures (σ0, σ1) such that B can extract µskid∗ where skid∗ is randomly selected

by B for id∗. Then, B can compute µ to win the SDL game.

Given A′ system parameters gpk, and SDL instance g1, g2, g̃1 = gµ1 , g̃2 = gµ2 .

A′ runsA as a sub-routine. A′maintains a listListH = (str, c, count). A′ answers

the oracle queries.

−H(str ∈ {0, 1}∗) :A′ retrieves str in list ListH , and outputs c. If (str, ∗) /∈

ListH ,A′ selects c ∈ Zq and returns c. Then, it sets count← count+1 and stores

(str, c, ctr) to ListH .

−H0() : A′ queries the simulator B.

−RegisterU(id). Add id to RU and execute registration protocol. Each iden-

tity id computes and generates an APS signature, then, returns Reg[id] = (ξ, σ).

−JoinU(Reg[id], gpk). A′ plays the honest user. Add id to JIU , if id ̸= id∗,

follow the Join protocol. If id = id∗, A′ makes internal query the (m′∗, r∗) ←

H0(id
∗). Next, generate skid∗ . Compute hsk = g̃r

∗skid∗
1 and call H to simulate a

proof π. With the Reg[id] of APS signature, A′ generates the proof πR. Then, set

L[id] = (id, πR, σ
′), . For the view ofA, the distribution of L[id] is indistinguish-

able with the real protocol. Then, A′ computes the PSM signature on µskid∗ . The

PSM signature on µskid∗ is

(m
′∗,Σ∗

1 = gr
∗

1 ,Σ
∗
2 = (gr

∗

1 )x+y1µskid∗+y2m
′∗
)

Set gsk[id∗]← (⊥, (m′∗,Σ∗
1,Σ

∗
2)).

−Sign(id,M, item): For the id ∈ JIU\CU , if id ̸= id∗,A′ returns σ as an an-

swer to the sign query, add (id, item,M, σ) toQSign. If id = id∗, fetch gsk[id∗]←
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(⊥, (m′∗,Σ∗
1,Σ

∗
2)). Pick t ∈ Zq and compute Σt = (Σ′

1,Σ
′
2) = (Σt

1,Σ
t
2). Then,

simulate a proof π on µskid∗ andm
′∗, return σ. Add (id, item,M, σ) to sign query

set QSign.

−GSK(id): Add id to CU and return gsk[id].

A forges a signatureσ onmessagemwith a proof π for id. IfVerify(params, gpk,

(M,σ), item) = 0 or Judge(params, gpk, item,M, σ, id, π) = 0, abort the inter-

action with A and sends a random µ ∈ Z∗
q to the SDL challenger. If the forgery is

valid for id ̸= id∗ ∈ JIU \ CU , abort the interaction with A and sends a random

µ ∈ Z∗
q to the SDL challenger, where the A forges a signature for id∗ with prob-

ability 1/|ID|. If id = id∗ ∈ JIU \ CU and (id∗, item,M, σ) /∈ QSign, A has

forged a signature. A′ looks up the tuple (a, j, c), such a tuple exists, A′ outputs

(j, σ).

B runs algorithmA′ and answers its random oracle queries onH0. By the gen-

eralized forking lemma [74], [9], set q > 8tqH1/ε by assumption, with probability

at least ε/8 and with run time at most 8qH1/ε · In(8/ε) · τA, A′ returns (σ, σ′).

Parse σ = (S,Σ, π = (a, b, α, β, γ)) and σ′ = (S ′,Σ′, π′ = (a′, b′, α′, β′, γ′)),

where S = S ′,Σ = Σ′ and α ̸= α′ and α ≠ α′ mod q. B computes

e(Σ0, Ŷ
(β−β′)/(α′−α)
2 Ŷ

(γ−γ′)/(α′−α)
1 ) =

e(Σ1, g2)

e(Σ0, X̂)
.

Therefore,

g
y2(β−β′)/(α′−α)+y1(γ−γ′)/(α′−α)
2 = gy1m

′∗

2 g̃y2skid∗2 .

compute µ = (y2(β−β′)+y1((γ−γ′)−m
′∗(α′−α)))/(α′−α)y0skid∗ , then send

µ to challenger. A wins the non-frameability game with probability ε. Algorithm
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B then wins the SDL game with probability at least

1/|ID| · ε/8(1− 1/q)− nO|ID|Advq-MSDH-1
λ (B(A)).

Anonymity: The DTrustRS satisfies anonymity if the DDH holds in type-3

pairing groups in the random oracle model.

Proof. If an adversaryA has a non-negligible advantage ε in the anonymity ex-

periment, then, a simulatorB can solve theDDHproblem inG1. Given (f1, f2, f3, f4) =

(g1, g
µ
1 , g

ν
1 , g

τ
1 ) to B. B will output a guess b′, where b = 1, a Diffie-Hellman tuple

τ ← µν, or b = 0, random tuple τ ∈ Zq. Proof is as follows.

Given a type-3 pairing groups Φ and a tuple (f1, f2, f3, f4) from a DDH chal-

lenger, B sets g1 = f1 and generates the other parameters of DTrustRS. By the

public parameters params, B executes the key generation algorithms with A. B

randomly selects two identities id∗0 and id∗1. B answers the oracle queries as in

Lemma 6.1 for the identity id∗b , b ∈ {0, 1}.

−RegisterU(id). Add id to RU and execute registration protocol. For each

identity id computes and generates an APS signature, return Reg[id] = (ξ, σ).

−RegisterOi(id). Add id to RU and CU and execute registration protocol.

Computes and stores regi = reg[id].

−JoinU(Reg[id], gpk). B plays the honest user. Add id to JIU , if id ̸= id∗b ,

follow the protocol and stores skid. If id = id∗b , randomly chooses r∗b ∈ Zq and

generates the H(id∗b) ← (m
′∗
b , h = f

r∗b
2 ). Next, generate skid∗b . Compute hsk =

h
skid∗

b , then, callH to simulate the proof π. With theReg[id] of APS signature, A′

generates the proof πR. Then, set L[id] = (πR, σ
′, hsk, π). For the view of A, the

distribution of L[id] is indistinguishable with the real protocol. Then, compute a
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PS signature on µskid∗b with a signature from A. The signature is

(m
′∗,Σ∗

1 = gr
∗

1 ,Σ
∗
2 = (gr

∗

1 )
x+y1µskid∗

b
+y2m

′∗
)

Set gsk[id∗b ]← (⊥, (m′∗,Σ∗
1,Σ

∗
2)).

−Sign(id∗b , item,M): For id = id∗b , fetch gsk[id∗b ] = (⊥, (m′∗,Σ∗
1,Σ

∗
2)), and

pick t to compute Σ = (Σ′
1,Σ

′
2) = (Σ∗t

1 ,Σ
∗t
2 ). Then, simulate a proof π on µskid∗

andm′∗, return σ. Add (id, item,M, σ) to sign query set QSign.

−Openi(item,M, σ): Add (item,M, σ) toQOpen, andOpen algorithm is trig-

gered for honest opener. First, by calling Verify to verify the validity of σ. If the

signature is valid, outputs a proof (id, π = (h3, σ
′,Θ)). If the signature is forged

byA, it is excluded by the Lemma 6.1. If σ is created by an honest user, which has

been queried the Sign oracle. B looks up the listQSign to search the corresponding

gsk[id]. Then, it calls H to simulate a proof

Θ← NIZK.Prove{(h2, κ) :

e(S, Ŷ0) = e(d, h2) ∧
e(d, h3)

e(S, Ŷ0)
= e(d, Ŷ0)

κ}.

Then, return (id, π = (h3, σ
′,Θ)).

−GSK(id): Add id to CU , and return gsk[id].

−WriteReg(i, id, v): Set regi[id]← v.

− For the challenge (id∗0, id
∗
1,M, item), B randomly picks b ∈ {0, 1}, and

retrieves gsk[id∗b ] to computeΣ1 = f3,Σ2 = f
x+y1m

′
0

3 f
skid∗0
4 . If the given challenge

is a DDH tuple, i.e., b = 1, it implies Σ, which has the same distribution with a

real signature. If b = 0, the Σ2 is uniformly distributed in G1. B calls oracle H to
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simulate a signature of knowledge π.

Then, A will output a guess. B outputs a guess b′. B solves the DDH game at

least ε advantage.

ε ≤ |ID|2AdvDDHB(A)(λ) +
8q

q − 1
|ID|AdvSDLB(A)(λ) + nO|ID|Advq-MSDH-1

λ (B(A)).

Therefore,

AdvanoDTrustRS,A,nI ,nO
(λ) ≤ 2(|ID|2AdvDDHB(A)(λ)+

8q

q − 1
|ID|AdvSDLB(A)(λ) + nO|ID|Advq-MSDH-1

λ (B(A))).

Traceability. The DTrustRS satisfies traceability if the q-MSDH-1 assump-

tion holds in type-3 pairing groups in the random oracle model.

Proof. If an adversary A can win the traceability game, then, existing an ad-

versary B can break the existential unforgeability of PS signature. The security of

PS signature is based on the q-MSDH-1 assumption, so we prove the traceability.

B generates an algorithm A′, and utilities the general forking lemma [74], [9]. A′

will output two signatures (σ0, σ1), then, B can forge a PS signature.

Given params, public key X̂, Ŷ1, Ŷ2 of the PS signature to A′. A′ runs A

as a subroutine, which inputs (params, X̂, Ŷ1, Ŷ2). A′ maintains a list ListH =

(str, c, count). A′ answers the oracle queries.

−H(str ∈ {0, 1}∗) :A′ retrieves str in list ListH , and outputs c. If (str, ∗) /∈

ListH ,A′ selects c ∈ Zq and returns c. Then, it sets count← count+1 and stores

(str, c, ctr) to ListH .

−H0() : A′ queries B.
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−RegisterU(id). Add id to RU and execute registration protocol. For each

identity id computes and generates an APS signature, return Reg[id] = (ξ, σ).

−RegisterO(id). Add id to RU and CU and execute registration protocol.

Compute and store regi = reg[id].

−JoinU(Reg[id]). A′ plays the honest user. Add id to JIU . Follow the pro-

tocol to test the signature Σ2 with

e(Σ1, X̂Ŷ
skid
1 Ŷ m′

2 )
?
= e(Σ2, g2).

If it holds, follow the protocol to get (sk,Σ) and set gsk[id] = (sk,Σ); Otherwise,

abort the protocol.

−IssueI(id). Add id to JIU and CU . The adversary A generate L[id]and

sends toA′. A′ internal query (m′, h)← H0(id). If verificationNIZK.Verify(π, h, hsk) ?
=

1 succeeds,A′ rewindsA to extracts sk. If the extraction fail, abort the interaction

with A. Otherwise, sends sk to challenger making signing query and receives a

signature to answer A.

−Sign(id, item,M): For the id ∈ JIU \CU , generate signature σ to answer

the signing query. Add (id, item,M, σ) to QSign and return σ.

−Open(item,M, σ): Add (item,M, σ) toQOpen and runOpen algorithm. Re-

turn a proof (id, π = (h3, σ
′,Θ)).

−GSK(id): Add id to CU and return gsk[id].

−ReadReg(i, id): Return regi[id].

A forges a signatureσ∗ onmessageM∗with item∗. IfVerify(params, gpk,M ∗,

σ∗, item∗) = 0 or Judge(params, gpk, item∗,M ∗, σ∗, id∗, π) = 0, abort the in-

teraction with A. If the signature is valid, parse σ∗ as (S∗,Σ∗, π∗). Let index j be
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jth H queries for A, A′ halts and outputs (j, σ∗) where j ≥ 1. The A wins the

traceability game of DTrustRS with

ε̃← ε− |ID|AdvDLOGλ (B(A))− 8q

q − 1
|ID|AdvSDLB(A)(λ)−

nO|ID|Advq-MSDH-1
λ (B(A))

B runs A′ and answers its random oracle queries in the assumption that q >

8tqH/ε, running time at most 8qH/ε̃ · ln(8/ε̃) ·τA, with probability at lest ε̃/8. Us-

ing generalized forking lemma,A′ returns (σ, σ′), where (σ, σ′)were forged signa-

tures which open to⊥. Parse σ = (S,Σ, π = (a, b, α, β, γ)) and σ′ = (S ′,Σ′, π′ =

(a′, b′, α′, β′, γ′)), where S = S ′,Σ = Σ′ and α ̸= α′ and α ̸= α′ mod q. B com-

putes (γ − γ′)/(α′ − α) = m′, (β − β′)/(α′ − α) = sk, then, B sends (sk,Σ)

to challenger as a forgery of PS signatures. Therefore, B then wins the existential

forgery game with probability at least ε̃/8. Therefore,

AdvtraceDTrustRS,A(λ) ≤ 8AdvEUF-CMA
PS,A (λ) + |ID|AdvDLOGλ (B(A))+

8q

q − 1
|ID|AdvSDLB(A)(λ) + nO|ID|Advq-MSDH-1

λ (B(A))

Public linkability. TheDTrustRS satisfies public linkability, if the q-MSDH-1

assumption holds in type 3 pairing groups in the random oracle model..

Proof. If an adversaryA can win the public linkability game, then, existing an

adversaryB can break the unforgeability of PS signature. The security of PS signa-

ture is based on q-MSDH-1 assumption, so we prove the traceability. B generates

an algorithmA′, and uses the general forking lemma [74], [9]. A′ will output two

different signatures (σ0, σ1), then, B can forge a PS signature.
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Given params, public key X̂, Ŷ1, Ŷ2 of the PS signature to A′. A′ runs A

as a subroutine, which inputs (params, X̂, Ŷ1, Ŷ2). A′ maintains a list ListH =

(str, c, count). A′ answers the oracle queries.

−H(str ∈ {0, 1}∗) :A′ retrieves str in list ListH , and outputs c. If (str, ∗) /∈

ListH ,A′ selects c ∈ Zq and returns c. Then, it sets count← count+1 and stores

(str, c, ctr) to ListH .

−H0() : A′ queries B.

−RegisterOi(id). Add id to RU and CU and execute registration protocol.

Compute and store regi = reg[id].

−IssueI(id). Add id to JIU and CU . Follow the protocol, adversary A gets

gsk[id].

−GSK(id): Add id to CU , and return gsk[id].

A outputs (|CU |+1) = lmessage-signature pairs ((M1, σ1, item), ···, (Ml, σl, item)).

At least one pair (Mi, σi, item) is invalid, e.g. Verify(params, gpk,Mi, σi, item) =

0 or existing at least two publicly linkable signatures for Link(params, gpk, item,

(Mi, σi), (Mj, σj)) = 1, abort the interaction with A. Otherwise, run the Verify

algorithm. Since the signatures are not publicly linkable, there be at least one

message-signature pair is valid signature. Parsing σ as (S,Σ, π). Let index j be

jth H queries for A, A′ abort and returns (j, σ) with j ≥ 1. The probability of A

wins the public linkability game of DTrustRS with

ε̃← ε− |ID|AdvDLOGλ (B(A))− 8q

q − 1
|ID|AdvSDLB(A)(λ)−

nO|ID|Advq-MSDH-1
λ (B(A))

B runs A′ and answers its random oracle queries in the assumption that q >
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8tqH/ε, running time at most 8qH/ε̃ · ln(8/ε̃) · τA, with probability at lest ε̃/8.

By forking lemma, A′ returns (σ, σ′) where (σ, σ′) were forged signatures. Parse

σ = (S,Σ, π = (a, b, α, β, γ)) and σ′ = (S ′,Σ′, π′ = (a′, b′, α′, β′, γ′)), where

S = S ′,Σ = Σ′ and α ̸= α′ and α ̸= α′ mod q. B computes (γ − γ′)/(α′ − α) =

m′, (β−β′)/(α′−α) = sk, then, B sends (sk, (m′,Σ)) to challenger as a forgery

of PS signature to win the forgery game.

6.5 Performance Evaluation

In this section, we execute performance evaluation of APS and DTrustRS, then

compare with other schemes to analyse the computation complexity.

6.5.1 Efficiency Analysis

We evaluate the cryptographic algorithms of APS and DTrustRS based on Intel(R)

Core(TM) i5-2450M CPU 2.50 GHz 4.00GB RAM by windows 7 OS with the

Miracl library 1. We execute the cryptographic algorithms for 1000 rounds to get

an execution average time. The time cost of APS is showed in Figure 6.2. The

AggSign algorithm effectively compresses the time of sign.

We test the time cost of DTrustRS scheme, as shown in Figure 6.3. The time

cost of Sign and Verify algorithms is constant and the time cost is millisecond.

6.5.2 Computation Complexity

We compare DTrustRS with the group signatures and anonymous reputation sys-

tem in the signature’s size and the computation complexity of signature algorithm
1https://certivox.org/display/EXT/MIRACL



CHAPTER6. ANONYMOUSANDPUBLICLYLINKABLEREPUTATIONSYSTEM104

Figure 6.2: The time cost of APS

Figure 6.3: The time cost of DTrustRS
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and verify algorithm. As shown in Table 6.9.

We compare APS with other signature schemes, including signature size, com-

putation cost and signature verification. The integer k is the number of message

blocks and the integer n is the number of signers. We also compare DTrustRS

with other group signatures schemes and anonymous reputation system in term

of signature size, and cost of generating and verify the signature. Gl
1 denotes

l-exponentiation in G1, Gl
2 denotes l-exponentiation in G2 and Gl

T denotes l-

exponentiation inGT . P denotes the pairing operations and P l denotes to product

l pairing values.

Due to the re-randomize property, CL signatures [23] have been applied in

many applications, such as electronic cash [26]. As a substitute of CL signatures,

PS [72] signatures have the re-randomize property and further reduce the signa-

ture size. PSM [25] provided a multi-signature version for PS signatures. Our

signature schemes APS provide similar functions, but our scheme can aggregate

multiple signatures of multiple messages, which sign size is linear with the num-

ber of signers not the message blocks for CL signatures. Bichsel et al. [13] and

Pointcheval et al. group signatures in [73] Appendix A.1 follow re-randomizable

signatures paradigm to reduce the signature size and DTrustRS sign size additional

to 1Zq and 1G1, but DTrustRS supports distributed issuance and opening. Sonnino

et al. [83] anonymous credential systems support threshold issuance but their did

not devote to distributed opening, at the same time, its signature exist additional

1G2 element. Camenisch et al. [25] proposed threshold dynamic group signatures

which support threshold/distributed issuance and threshold opening. This scheme

is shorter than DTrustRS, but DTrustRS makes sure distributed issuance and dis-

tributed opening with the function of publicly linkable. The sign size of DTrustRS
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is shorter than Garms et al. [46] group signatures and Blömer et al. scheme [16].

Blömer et al. [16] anonymous reputation system supports publicly linkable but

needs a single trusted system manager to maintain the system.

We compare and test the time cost of DTrustRS with the Blömer et al. [16]

reputation system with the different number of server providers. As shown in

Figures 6.4 and 6.5. The time cost of Sign and Verify algorithms of DTrustRS is

smooth. But the time cost of Sign and Verify algorithms of [16] increases with the

number of service providers.

Figure 6.4: The time cost of sign algorithm DTrustRS and Blömer et al. [16]

6.6 Summary

In the chapter, we propose DTrustRS, an anonymous and publicly linkable repu-

tation system with distributed trust, which frees anonymous and publicly linkable

reputation system from relying on a single authority. DTrustRS distributes the role

of system manager over several entities and enhances the robustness of reputation
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Figure 6.5: The time cost of verify algorithm DTrustRS and Blömer et al. [16]

system. We define the systemmodel of DTrustRS and formalize its security. Then,

we provide an efficient construction and prove its security in the random-oracle

model under a q-type assumption. We evaluate DTrustRS scheme and compare

with other schemes to demonstrate its validity.
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Conclusion

As a valuable resource, data has become an important factor of production. The

use of data brings convenience to human beings, but there are also some problems

to be solved, such as data privacy leakage and poor data reliability. However, we

cannot completely influence the use of data for privacy protection, thus, it is essen-

tial to make tradeoffs between data privacy and data utility. Against this backdrop,

this thesis investigate protocols and applications in privacy-preserving data com-

puting and anonymous authentication. The research of privacy-preserving tech-

nologies have been widely concerned, since it can provide technical support for

data security. Privacy-preserving data computing enables data to be analyzed and

computed while being protected from disclosure, anonymous authentication can

effectively ensure the reliability and integrity of data while protecting the personal

identity privacy. The work of this thesis is summarized as follows.

• MPC is a significant means to realize privacy computing, PSI is a widely

concerned problem in MPC. We propose a lightweight multi-point OPRF

based delegated PSI-CA protocol, and apply it to build a privacy-preserving

109
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contact tracing system named PC-CONTrace. Our system supports publicly

check property, can resist the collusion of any number of cloud servers and

is more adaptable and advantageous in densely populated areas.

• Federated learning is an important machine learning technique. Unlike tra-

ditional machine learning approaches, federated learning allows data to be

decentralized, and a group of organizations or groups within the same orga-

nization can train and improve the shared global machine learning models

in a collaborative and iterative manner. We present an accountable and ver-

ifiable secure aggregation for federated learning framework base on HPRA,

HPRE and blockchain, which realizes the protection of the confidentially

and verifiability of the client data. The use of HPRE and HPRA allows

our scheme to require only semi-honest aggregator and can be resistant to

arbitrary dropouts.

• Reputation systems help users evaluate information quality and incentivize

civilized behavior, often by tallying feedback from other users. Anonymous

reputation systems protects the user’s identity privacy in the process of eval-

uation. We introduce an anonymous and publicly linkable reputation system

with distributed trust, that is DTrustRS, the registration function of which

is achieved by our scheme APS. DTrustRS can reduce the trust in a single

authority in anonymous and publicly linkable reputation system and enable

providers to verify ratings in batches.
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7.1 Future Work

Due to the different adversaries and application environments in reality, some

problems warrant further investigations.

Facing the current complex epidemic situation, updatable PSI-CA protocol is

clearly more advantageous and desirable. It is valuable to design efficient, prac-

tical and updatable PSI-CA protocols based on appropriate data structures and

cryptographic tools and apply them to updatable contact tracing systems.

Since the research on secure aggregation for FL is still in the exploratory stage,

our construction is not yet capable of handling complex data models. In addition,

there is no protection in our scheme to against attacks such as poisoning and collu-

sion of aggregator and server. It is worth studying to combine cryptography with

TEE or other privacy-preserving technologies to construct more practical secure

aggregation schemes for different attacks and data models.

In the open environment, different application scenarios have different require-

ments for reputation system, our reputation system construction is not flexible

enough. Fine-grained, designated constructions are more realistic and practical.

How to increase the server’s effective control over reputation data, achieve fine-

grained control over tracing, and how to selectively design functionalities deserves

further research.
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