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Abstract

The planning of distributed energy resources has been challenged by the significant uncertain-

ties and complexities of distribution systems. To ensure system reliability, one often employs

chance-constrained programs to seek a highly likely feasible solution while minimizing certain

costs. The traditional sample average approximation (SAA) is commonly used to represent

uncertainties and reformulate a chance-constrained program into a deterministic optimization

problem. However, the SAA introduces additional binary variables to indicate whether a sce-

nario sample is satisfied and thus brings great computational complexity to the already chal-

lenging distributed energy resource planning problems. In this thesis, we introduce a new

paradigm, i.e., the partial sample average approximation (PSAA) using real data, to improve

computational tractability. The innovation is that we sample only a part of the random parame-

ters and introduce only continuous variables corresponding to the samples in the reformulation,

which is a mixed-integer convex quadratic program. Our extensive experiments on the IEEE

33-Bus and 123-Bus systems show that the PSAA approach performs better than the SAA

because the former provides better solutions in a shorter time in in-sample tests and provides

better guaranteed probability for system reliability in out-of-sample tests. All the data used in

the experiments are real data acquired from Pecan Street Inc. and ERCOT. More importantly,

our proposed chance-constrained model and PSAA approach are general enough and can be

applied to solve other valuable problems in power system planning and operations.
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Chapter 1

Introduction

With technological development and governments’ support, renewable energy has drawn sig-

nificant attention and investment. A widely used strategy to exploit renewable energy is to

integrate renewable distributed generation (RDG) units into existing power distribution grids.

Correct installation of RDG units can help power distribution grids provide customers with

affordable and reliable energy, while improper placement may result in many problems, e.g.,

system instability and power losses [21], due to the intermittency of renewable energy. Such

intermittency from RDG units may lead to cascading problems such as an imbalance of elec-

tricity supply and demand and system blackouts [19]. Therefore, proper siting (i.e., location)

and sizing (i.e., capacity) decisions of the RDG units are of great significance to ensure the

benefits of renewable energy and maintain reliable operations of the power distribution grids.

Besides RDG units, energy storage (ES) has also been considered for use in power distribution

grids. It is because ES units can provide a buffer against an imbalance of supply and demand,

thereby reducing operating costs and increasing a power distribution grid’s probability of meet-

ing demand. Such benefits may offset the installation and operating costs of ES units and even

lead to profits. For example, [2] adopts ES to help support wind energy applications and [5]

uses ES to increase the penetration of more general renewable generation by smoothing out

the effects of intermittency. The positive results from these studies indicate the necessity to

integrate ES units into a power distribution grid with RDG units. Thus, it is important to

determine the optimal siting and sizing decisions of both the RDG and ES units.
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Chapter 1. Introduction

For ease of exposition, we refer to the problem of siting and sizing both RDG and ES units in

a power distribution grid as the planning problem thereafter. Such a problem largely relies on

accurate power flow analysis. Two mathematical models are often considered to calculate the

optimal power flow in power grids: the direct current optimal power flow (DCOPF) and the

alternating current optimal power flow (ACOPF) models. The DCOPF model is composed of

linear constraints and thus is easier to solve, while it oversimplifies the physical features. In

contrast, the ACOPF model is relatively accurate by considering active and reactive power-

generation limits, demand limits, bus voltage limits, and network flow limits [22], while it is

nonlinear and nonconvex. The DCOPF model provides a linear approximation of the ACOPF

model, with systematic errors though. Such inaccuracy is acceptable for large-scale power

networks but is often unacceptable for local distribution grids. Therefore, this thesis uses the

ACOPF model to accurately simulate a power distribution grid.

Different variants of the planning problem have recently drawn much attention from academia

and industry. The paper [14] provides a review of related studies on the RDG planning in

the power distribution network, and [30] reviews related studies on more general generation

expansion planning. Specifically, [11] plans the locations and capacity sizes of RDG units

based on simplified load flow calculation in a multiobjective optimization model that is further

solved by a genetic algorithm, while ES units are not considered. Similarly, without ES units

included, [27] considers the siting and sizing of RDG units in a power distribution grid in a

two-stage robust optimization model. The paper [34] makes the siting and sizing decisions for

the ES units in a power transmission grid via a three-stage mixed-integer linear program, while

the DCOPF model is adopted. A recent work can be found in [16], which considers only the

sizing of RDG units in a two-stage distributionally robust optimization model and makes the

siting decisions via sensitivity analyses. The above existing efforts demonstrate the significance

of siting and sizing RDG and ES units.

However, the large-scale installation of RDG units adds significant uncertainties to a power

distribution grid due to the intermittency of renewable energy, requiring methodological inno-

vation to deal with the already challenging operations of a power distribution grid. To that

end, many stochastic programming models dealing with uncertainties have been developed to

support effective distribution grid operations. For example, [53] proposes a two-stage stochas-

2



tic programming model for the optimal planning of distributed energy systems under demand

and supply uncertainties. The paper [45] proposes a two-stage stochastic programming-based

optimal power flow model for the operation of distribution networks with uncertainties from

wind power.

In this thesis, we adopt chance-constrained programming to model the planning and operational

decisions under uncertainties, including renewable generation and load uncertainties, to ensure

the feasibility of the distribution system under a high probability. Specifically, we note that,

due to such uncertainties, a power distribution grid may face various reliability issues. For

instance, power outages often happen when the power supply is insufficient, such as facing

a natural disaster like a typhoon. A load bus that is far away from the upper stream grid

may not receive the power injected from the upper stream grid or local distributed generators

because of distribution line capacity limit and line loss. The distribution line contingency may

also happen. Therefore, to help relieve such pressure and ensure system reliability, we build

a two-stage chance-constrained (TCC) model (where the siting and sizing decisions are in the

first stage and operational decisions are in the second stage) to solve the planning problem.

More importantly, considering various reliability issues, we adopt a chance constraint to ensure

all the operational constraints in the second stage are satisfied simultaneously, rather than

ensuring load satisfaction only. As such, our proposed TCC model becomes extremely difficult

to solve, requiring further innovation in solution approaches.

We note that the chance-constrained model is a risk-averse decision-making tool that can help

grid operators actively control the probability of unfavorable outcomes (e.g., system blackouts).

The chance-constrained model is widely used for power system operations. For instance, [41]

solves the chance-constrained ACOPF problems to ensure that operational constraints are

satisfied with the desired probability. The paper [25] further provides convex approximations via

second-order conic programming, and [17] provides asymptotically tight conic approximations

for the chance-constrained ACOPF problems. Similarly, [31] studies the chance-constrained unit

commitment formulations, and [47] investigates the chance-constrained day-ahead scheduling.

Several studies use TCC models, which are much more complex than single-stage chance-

constrained models. For instance, [46] is among the first to propose a TCC model for the unit

commitment problem, while it considers a single chance constraint to ensure load satisfaction
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Chapter 1. Introduction

only. The paper [52] considers a similar TCC model for the unit commitment problem while

presenting a bilinear mixed-integer reformulation solved by Benders decomposition following

the study in [50]. The paper [37] formulates the chance constraints based on the definition of

conditional value at risk in a TCC model for the unit commitment problem and reformulates

these constraints using sampling-based approaches. The paper [48] specifically considers wind

uncertainty in the chance-constrained unit commitment model. However, to the best of our

knowledge, few studies apply the TCC models in the planning of RDG and ES units together

in a distribution system considering the ACOPF model. More importantly, different from the

existing studies above, this thesis considers all the operational constraints simultaneously in a

difficult joint chance constraint.

Nevertheless, the TCC model is intractable in general, specifically when the random param-

eters follow an underlying continuous (yet unknown) probability distribution and are of high

dimensions, posing severe computational challenges [29]. The existing studies primarily adopt

two approximation approaches to solve a chance-constrained model: a convex (or tractable) ap-

proximation approach [25] and a sampling-based approach [46]. The former is not applicable to

a TCC model because the second-stage recourse decision is a function of the first-stage decision

and random parameters and it is impossible to algebraically characterize this function. Thus,

this thesis uses the latter. Specifically, we propose two sampling techniques to reformulate our

TCC model: the standard sample average approximation (SAA) method and a new partial

sample average approximation (PSAA) method. Both approximations lead to mixed-integer

convex quadratic programs. However, the SAA introduces many additional binary variables

corresponding to the samples, creating computational complexity to the already challenging

distributed energy resource planning problem. In contrast, the PSAA samples only a part of

the random parameters, and we use a non-parametric estimation method to approximate the

probability distribution of the remainder, leading to an efficient data-driven approach. We only

need to introduce additional continuous variables corresponding to the samples to reformulate

the model, reducing the computational complexity. Thus, the reformulation can be scaled up

to solve large-scale instances.

The main contributions of the thesis are as follows.

• We develop a novel TCC model for the distributed energy resource planning problem

4



that considers both the placement and capacity of RDG and ES units under uncertainty,

combined with the ACOPF model, in a distribution grid with multiple periods. We

consider all the operational constraints in the second stage to be satisfied simultaneously

in a joint chance constraint.

• We are the first to develop the PSAA approach using historical data to solve the above

TCC model for a significant industry problem. We extend the PSAA idea that solves

single-stage chance-constrained models.

• Our extensive experiments on the IEEE 33-Bus and 123-Bus systems using real data show

that the PSAA approach performs better than the standard SAA approach because the

former provides better solutions in a shorter time in in-sample tests and provides better

guaranteed probability for system reliability in out-of-sample tests. The effectiveness of

ES units in reducing total costs and improving system balance is also demonstrated.

The remainder of this thesis is organized as follows. A two-stage model and its TCC counterpart

for the planning problem are presented in Chapter 2. The TCC model is then approximated

using the SAA and PSAA methods in Chapter 3. We provide computational results and

explanations in Chapter 4. Chapter 5 concludes this thesis.

5



Chapter 2

Mathematical Model

In this chapter, we present a two-stage stochastic programming model and its TCC counterpart

for the planning problem.

2.1 Physical Model

In the planning problem, we consider the siting and sizing of RDG and ES units in the radial

distribution system. This kind of network has a tree structure and connects to a transmission

network via a single bus (Bus 0). We use G = (N , E), which is a connected graph, to represent

this power network. Each node in N represents a bus and each link in E represents a line.

Then, we can model the distribution system in two stages.

Assume that DDG units and reactive sources have been placed, in the first stage, we plan

to place the RDG and ES units. We let zkn be a binary variable indicating whether the kth

candidate RDG unit is located at bus n and wrn be a binary variable indicating whether the rth

candidate ES unit is located at Bus n. Besides, xk and yr are continuous variables indicating

the capacities of kth candidate RDG unit and rth candidate ES unit, respectively. Now, the

aim of the first stage is to minimize the setup costs and investment/maintenance costs of RDG

and ES units. At the same time, we consider the following constraints in the first stage,

∑
n∈N

zkn ≤ 1, ∀ k ∈ [K], (2.1)
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2.1. Physical Model

K∑
k=1

∑
n∈N

zkn ≤ K̄, (2.2)

xk =
L∑
l=1

uklx̄l, ∀ k ∈ [K], (2.3)

L∑
l=1

ukl =
∑
n∈N

zkn, ∀ k ∈ [K], (2.4)

∑
n∈N

wrn ≤ 1, ∀ r ∈ [R], (2.5)

∑
n∈N

wrnyr ≤ yr ≤
∑
n∈N

wrnȳr, ∀ r ∈ [R]. (2.6)

Constraints (2.1) show that a given kth candidate RDG unit, if installed, should be in one of

the buses in N . Constraint (2.2) enforces that the total number of RDG units installed should

not exceed the limit K̄.

In constraints (2.3) and (2.4), ukl is a binary variable indicating whether the capacity of the kth

candidate RDG unit is the lth element in X , x̄l. Thus, constraints (2.3) and (2.4) ensure that if

a given kth candidate RDG unit is installed, then the capacity of this RDG unit should be one

of the pre-defined values in X . For any given kth candidate RDG unit, the summation
∑L

l=1 ukl

is equivalent to the
∑

n∈N zkn, which may take only the value 0 or 1. Such equivalence is not

related to the locations of candidate RDG units. Constraints (2.3) and (2.4) are motivated by

the practice where various regions and institutions have different regulations on the capacity

of distributed generation, and thus the capacity of RDG units vary [3].

Similar to (2.1), constraints (2.5) show that a given rth candidate ES unit, if installed, should

be in one of the buses in N . Constraints (2.6) show that if a given rth candidate ES unit is

installed (i.e., wrn = 1 for a bus n), then its capacity should be between the lower bound y
r

and the upper bound ȳr. Note that multiple new assets (including RDG and ES units) may be

installed eventually.

In the second stage, we minimize the operating costs and consider the ACOPF constraints such

that the system can operate normally. The bus injection model and the branch flow model

are two standard models for power flow analysis. The bus injection model focuses on nodal

variables such as voltages, current and power injections and does not directly deal with power

flows on individual branches. The branch flow model focuses on currents and powers on the

7



Chapter 2. Mathematical Model

branches, which have been used mainly for modeling distribution systems. In this thesis, we

focus on the radial network (because most distribution systems are radial) and use the branch

flow model to analyze the power flow.

For each (m,n) ∈ E , we let Imn be the complex current form buses m to n, zmn = Rmn + iXmn

be the complex impedance on the line, and Smn = Pmn + iQmn be the sending-end complex

power from buses m to n. For each node n ∈ N , we let Vn be the complex voltage on bus n,

sn = pn + iqn be the net complex power injection, which is generation minus load on bus n.

Then, we build the power flow model by the following steps.

First, these variables should satisfy Ohm’s law:

Vm − Vn = zmnImn, ∀(m,n) ∈ E , (2.7)

the definition of branch power flow:

Smn = VmI
∗
mn, ∀(m,n) ∈ E , (2.8)

and power balance at each bus:

∑
n:m→n

Smn −
∑

n:n→m

(
Snm − znm∥Inm∥2

)
= sm, ∀m ∈ N . (2.9)

These three equations are branch flow equations. Second, we impose the output constraints on

power generation:

p
¯n

≤ pn ≤ p̄n, q
¯n

≤ qn ≤ q̄n, ∀n ∈ N , (2.10)

and the voltage magnitudes must be maintained in tight ranges:

v ≤ |Vn|2 ≤ v̄, ∀n ∈ N \ {0}. (2.11)

Finally, we impose flow limits on branch currents:

∥Imn∥ ≤ LCmn, ∀(m,n) ∈ E . (2.12)

8



2.2. A Two-Stage Model

Now, (2.7)–(2.12) are constraints that we should consider in the planning problem.

Before we move to the two-stage model, we reformulate constraints (2.7)–(2.9) into convex

constraints. We first substitute (2.8) into (2.7) and obtain Vn = Vm − zmnS
∗
mn/V

∗
m. Taking the

magnitude squared, we obtain ∥Vn∥2 = ∥Vm∥2 + ∥zmn∥2∥Imn∥2 − (zmnS
∗
mn + z∗mnSmn). Consid-

ering real variables in (2.8) and (2.9), we have the following relaxed branch flow equations:

∑
n:m→n

Pmn −
∑

n:n→m

(
Pnm − znm∥Inm∥2

)
= pm, ∀m ∈ N , (2.13)

∑
n:m→n

Qmn −
∑

n:n→m

(
Qnm − znm∥Inm∥2

)
= qm, ∀m ∈ N , (2.14)

∥Vn∥2 = ∥Vm∥2 − 2 (RmnPmn + XmnQmn) +
(
R2

mn + X2
mn

)
∥Imn∥2, ∀(m,n) ∈ E , (2.15)

∥Imn∥2 =
P 2
mn +Q2

mn

∥Vm∥2
, ∀(m,n) ∈ E . (2.16)

In the end, we relax the (2.16) to inequalities:

∥Imn∥2 ≥
P 2
mn +Q2

mn

∥Vm∥2
, ∀(m,n) ∈ E . (2.17)

[15] show that all approximations and relaxations are actually exact when we consider the

radial network. Thus, we use constraints (2.13)–(2.15), (2.17), and (2.10)–(2.12) to model the

physical distribution system.

2.2 A Two-Stage Model

We focus on a typical distribution grid topology: the radial network. Such a network has a tree

structure and connects to a transmission network via a single bus (Bus 0). In our distribution

network, the power supply comes from four sources: the transmission network, the traditional

dispatchable distributed generation (DDG) units and reactive sources, the RDG units, and the

ES units. The last three sources are located in some buses of the distribution grid. While the

DDG units and reactive sources have already been placed (i.e., given system input data), the

RDG and ES units are to be installed (i.e., system decision variables). The operating costs

for the supply sources include the payment to the transmission network, the cost of power

9



Chapter 2. Mathematical Model

generation from the DDG units, and the cost of charging/discharging the ES units. Here we

investigate the optimal siting and sizing of K̄ candidate RDG units and R candidate ES units

in a distribution grid with buses N , to minimize the total cost across the planning horizon. The

cost includes deterministic investment/maintenance costs and stochastic operating costs (due

to the uncertainties in load and renewable power generation). In the following, we formulate the

planning problem as a two-stage optimization model and describe the corresponding first-stage

and second-stage objectives and constraints.

1) First-stage model: The first-stage objective minimizes the total cost of building, main-

taining, and operating the RDG and ES units, with the model formulated as follows.

min
Ω1

C1

(
Ω1
)
+ E

[
Q
(
Ω1, ξ

)]
(2.18a)

s.t.
∑
n∈N

zkn ≤ 1, ∀ k ∈ [K], (2.18b)

K∑
k=1

∑
n∈N

zkn ≤ K̄, (2.18c)

xk =
L∑
l=1

uklx̄l, ∀ k ∈ [K], (2.18d)

L∑
l=1

ukl =
∑
n∈N

zkn, ∀ k ∈ [K], (2.18e)∑
n∈N

wrn ≤ 1, ∀ r ∈ [R], (2.18f)∑
n∈N

wrnyr ≤ yr ≤
∑
n∈N

wrnȳr, ∀ r ∈ [R], (2.18g)

where Ω1 := [z,x,u,w,y]⊤ is the vector of first-stage variables. The first part in the objective

function (2.18a)

C1

(
Ω1
)
:=

K∑
k=1

(∑
n∈N

c0knzkn +
(
c1k + Tc2k

)
xk

)

+
R∑

r=1

(∑
n∈N

d0rnwrn +
(
d1r + Td2r

)
yr

)
,

represents the total deterministic cost, including the setup costs and the size-based invest-

ment/maintenance costs of the RDG and ES units. Specifically, C1 (Ω
1) includes two parts:

10



2.2. A Two-Stage Model

(i) the setup costs of the RDG and ES units,
∑K

k=1

(∑
n∈N c0knzkn

)
+
∑R

r=1

(∑
n∈N d0rnwrn

)
,

and (ii) the investment/maintenance costs of the RDG and ES units,
∑K

k=1 ((c
1
k + Tc2k)xk) +∑R

r=1 ((d
1
r + Td2r) yr). In part (i), zkn is a binary variable indicating whether the kth candidate

RDG unit is located at bus n and wrn is a binary variable indicating whether the rth candidate

ES unit is located at Bus n. In part (ii), xk and yr are continuous variables indicating the

capacities of kth candidate RDG unit and rth candidate ES unit, respectively.

The second part in the objective function (2.18a), E[Q(Ω1, ξ)], represents the expected mini-

mum operating costs over all T periods, which is defined explicitly in (2.19). Regarding the

constraints (2.18b) - (2.18g), they link the variables zkn, wrn, xk, yr, and ukl, by which the

setup costs are linked with the investment/maintenance cost. Specifically, constraints (2.18b)

show that a given kth candidate RDG unit, if installed, should be in one of the buses in N .

Constraint (2.18c) enforces that the total number of RDG units installed should not exceed the

limit K̄.

In constraints (2.18d) and (2.18e), ukl is a binary variable indicating whether the capacity of

the kth candidate RDG unit is the lth element in X , x̄l. Thus, constraints (2.18d) and (2.18e)

ensure that if a given kth candidate RDG unit is installed, then the capacity of this RDG

unit should be one of the pre-defined values in X . For any given kth candidate RDG unit,

the summation
∑L

l=1 ukl is equivalent to the
∑

n∈N zkn, which may take only the value 0 or 1.

Such equivalence is not related to the locations of candidate RDG units. Constraints (2.18d)

and (2.18e) are motivated by the practice where various regions and institutions have different

regulations on the capacity of distributed generation, and thus the capacity of RDG units vary

[3].

Similar to (2.18b), constraints (2.18f) show that a given rth candidate ES unit, if installed,

should be in one of the buses in N . Constraints (2.18g) show that if a given rth candidate ES

unit is installed (i.e., wrn = 1 for a bus n), then its capacity should be between the lower bound

y
r
and the upper bound ȳr. Note that multiple new assets (including RDG and ES units) may

be installed eventually.

From the above constraints, we can observe that zkn impacts xk and wrn impacts yr, i.e., the

binary variables indicating the location of new assets have an impact on the investment/main-

tenance cost.

11



Chapter 2. Mathematical Model

2) Second-stage model: Given a first-stage decision Ω1 and a realization ξ of the uncertain

load and renewable generation, the second-stage objective minimizes the distribution grid’s op-

erating costs Q(Ω1, ξ), where ξ := [ξ1, . . . , ξT ]⊤, while respecting a set of physical constraints

such as the ACOPF constraints. The operating costs include the cost of purchasing active/re-

active energy via Bus 0, the cost of fuel used and emissions created in generating active power

in the DDG units, and the cost of charging and discharging the stored energy. The operating

costs also include the load-shedding variables LSt
1mn, LS

t
2mn, and a penalty factor p to account

for any unsatisfied load.

As for constraints, we mainly use ACOPF constraints to model the distribution network. We

begin by representing the distribution network’s physical layout, including its components such

as buses, branches, transformers, loads, distributed generators, RDG units, and ES units. This

representation can be done using a graph-based approach, where buses represent the network

nodes, and branches represent the network edges. We then use the AC power flow equations to

describe the relationship between the voltage magnitudes, voltage angles, and power injections

at each bus in the distribution network. These equations ensure that power flow is balanced

across the network and that Kirchhoff’s laws are satisfied. Next, we consider other distribution

system constraints. These constraints can include voltage magnitude limits, current limits

on branches, power factor limits, and other operational constraints. These constraints ensure

that the distribution system operates within its physical limits and complies with operational

requirements. The output of each distributed generator is bounded below and above. In the

end, we consider the constraints of ES units. We explain the specific constraints later.

Let Ω2 be the vector of all second-stage variables and let

C2

(
Ω2
)
:=

T∑
t=1

(
ctpp

t
0 + ctqq

t
0 +

∑
n∈B1

cfnp
t
n +

∑
n∈B1

cenωp
t
n

+
R∑

r=1

e1f
t
r +

R∑
r=1

e2g
t
r +

∑
(m,n)∈E

p
(
LSt

1mn + LSt
2mn

)
be the total operating costs in the second stage. The second-stage problem, whose optimal value

is denoted by Q(Ω1, ξ), can be formulated as follows. (For ease of exposition, all constraints

12



2.2. A Two-Stage Model

with a superscript t hold for all t ∈ [T ].)

min
Ω2

C2

(
Ω2
)

(2.19a)

s.t. p
¯

t
n
≤ ptn ≤ p̄tn, ∀n ∈ B1, (2.19b)

q
¯

t
n
≤ qtn ≤ q̄tn, ∀n ∈ B2, (2.19c)

v ≤
∣∣V t

n

∣∣2 ≤ v̄, ∀n ∈ N \ {0}, (2.19d)

pt0 =
∑
n∈B0

P t
0n, qt0 =

∑
n∈B0

Qt
0n, (2.19e)

P t
mn −Rmn

∣∣Itmn

∣∣2 + LSt
1mn = dtpn −

K∑
k=1

zkns
t
kxk

− δnp
t
n +

∑
l∈Nn

P t
nl +

R∑
r=1

wrn

(
f t
r − gtr

)
,

∀ (m,n) ∈ E , (2.19f)

Qt
mn − Xmn

∣∣Itmn

∣∣2 + LSt
2mn = dtqn − τnq

t
n

+
∑
l∈Nn

Qt
nl, ∀ (m,n) ∈ E , (2.19g)

b0r = 0, ∀ r ∈ [R], (2.19h)

0 ≤ btr ≤ yr, ∀ r ∈ [R], (2.19i)

btr − bt−1
r = γf t

r − gtr/γ, ∀ r ∈ [R], (2.19j)∣∣V t
m

∣∣2 − ∣∣V t
n

∣∣2 = 2RmnP
t
mn + 2XmnQ

t
mn

−
(
R2

mn + X2
mn

) ∣∣Itmn

∣∣2 , ∀ (m,n) ∈ E , (2.19k)∥∥∥[2P t
mn, 2Q

t
mn,

∣∣V t
m

∣∣2 − ∣∣Itmn

∣∣2]∥∥∥
2
≤
∣∣V t

m

∣∣2 + ∣∣Itmn

∣∣2
∀ (m,n) ∈ E , (2.19l)(

P t
mn

)2
+
(
Qt

mn

)2 ≤ (LCmn)
2, ∀ (m,n) ∈ E , (2.19m)

pt0 ≥ 0, qt0 ≥ 0, (2.19n)

LSt
1mn ≥ 0, LSt

2mn ≥ 0, ∀ (m,n) ∈ E . (2.19o)

Here, Ω2 consists of pt0, q
t
0 for t ∈ [T ], ptn, q

t
n, V

t
n , P

t
0n, Q

t
0n for n ∈ N , t ∈ [T ], f t

r , g
t
r, b

t
r for

r ∈ [R], t ∈ [T ], P t
nl, Q

t
nl for n such that (m,n) ∈ E for some m, l ∈ Nn, t ∈ [T ], and

P t
mn, Q

t
mn, I

t
mn, LS

t
1mn, LS

t
2mn for (m,n) ∈ E , t ∈ [T ].

We explain all the constraints in the model (2.19) as follows. The power generated by the DDG

13
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units and the reactive sources is bounded by (2.19b) and (2.19c), respectively. Constraint

(2.19d) sets the bounds on the voltage of each bus. Constraint (2.19e) represents the active

and reactive balance equations at Bus 0. Constraints (2.19f) and (2.19g) are active and reactive

power balance equations from Kirchhoff’s current law. The following Fig. 2.1 illustrates the

active power flow balance for each distribution line (m,n) ∈ E . The balance of power in storage

m n
P t
mn + LSt

1mn

Rmn |Itmn|
2

dtpn

∑K
k=1 zkns

t
kxk + δnp

t
n

∑
l∈Nn

P t
nl

∑R
r=1 wrng

t
r

∑R
r=1 wrnf

t
r

Figure 2.1: Power Flow Blance.

is initialized by (2.19h) and bounded by (2.19i). ES balance between two consecutive periods is

shown in (2.19j), considering ES charging/discharging efficiency. Constraint (2.19k) represents

the voltage drop on each line. Constraint (2.19l) is the branch power-flow constraint, and the

capacity of each distribution line is limited by (2.19m). Nonnegativity constraints are listed in

(2.19n) and (2.19o).

Note that the load-shedding variables LSt
1mn and LSt

2mn are defined over each distribution

line (m,n) ∈ E . Once the model is solved, one can also compute the load-shedding values

at each bus easily. We also note that the branch flow model is applied here to formulate the

ACOPF constraints in (2.19f) – (2.19g) and (2.19k) – (2.19m), where (2.19l) includes a set of a

second-order conic (SOC) constraints. These constraints represent the ACOPF constraints via

convex relaxation following the study in [15]. Specifically, [15] removes the voltage and current

angles while introducing squared voltage and current magnitudes, and relaxes the nonconvex

quadratic constraints with convex SOC constraints. More importantly, [15] shows that the

obtained convex relaxation is exact when the distribution network is radial. As most practical

distribution networks are radial grids [15], we also consider a radial network in this thesis.

Therefore, the constraints (2.19f) – (2.19g) and (2.19k) – (2.19m) form an exact reformulation

14



2.2. A Two-Stage Model

of the ACOPF constraints. As such, we obtain a second-order conic programming (SOCP)

formulation in (2.19), which enables large-scale applications due to the computational efficiency

of SOCP formulations.

Indeed, there are several linearized power flow models that have been developed to approximate

the behavior of distribution systems and facilitate faster analysis and optimization. Some of

these models include:

Linearized Distribution Flow (LinDistFlow) [4]: LinDistFlow is a simplified ACOPF model

that approximates the nonlinear power flow equations of distribution systems by linearizing

the relationships between voltage drop and line power flows with respect to power injections. It

considers power injections at buses, resistive and reactive line losses, and voltage drops across

the network. However, it assumes that the network’s impedance matrix remains constant and

neglects the impact of voltage magnitude and reactive power variations on line impedance. This

linearization simplifies the calculations and allows for faster analysis compared to solving the

full nonlinear equations.

Linear Optimal Power Flow for Distribution (LOPF-D) [49]: LOPF-D is another linear opti-

mization model used in distribution systems to determine the optimal operation of distributed

energy resources, such as renewable generation, energy storage, and controllable loads. This

model also linearizes the power flow equations and approximates the distribution network’s

behavior, considering the linear relationship between power injections, line losses, and voltage

variations. It formulates the problem as a linear optimization program and provides reasonably

accurate solutions when compared to ACOPF, while DCOPF tends to produce results with

larger errors.

Linearized OPF Formulation for Unbalanced Distribution Systems: This novel linearized OPF

formulation, as explored in [43], specifically focuses on unbalanced distribution systems. It

approximates the ratios of voltages across phases in the feeder and generalizes the model to use

arbitrary complex numbers to approximate voltage ratios at different locations in the system.

This approach enables linearization of the unbalanced power flow equations, making it feasible

to analyze and optimize unbalanced distribution networks.

These linearized power flow models provide efficient and computationally tractable alternatives
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to the full nonlinear ACOPF model for distribution system analysis and optimization. They

strike a balance between accuracy and computational complexity, allowing for faster solution

times while still capturing key aspects of the distribution network’s behavior. However, it’s

important to note that these linearized models are based on approximations, and their accuracy

may vary depending on the specific characteristics and operating conditions of the distribution

system. As such, their suitability should be evaluated based on the specific application and

requirements of the analysis or optimization task at hand. For more comprehensive details on

related models, the reader can refer to [28].

We summarize the two-stage stochastic programming model of the planning problem as

min
Ω1,Ω2

C1

(
Ω1
)
+ E

[
C2

(
Ω2
)]

(2.20)

s.t. (2.18b)− (2.18g), (2.19b)− (2.19o).

Note that Ω2 and constraints (2b) – (2o) are dependent on ξ. As the first-stage problem (2.18)

is an integer program and the second-stage problem (2.19) is an SOCP, the entire two-stage

problem (2.20) is a mixed-integer SOCP.

2.3 A TCC Model

In Section 2.2, we build the two-stage stochastic programming model (2.20) for the planning

problem. However, the two-stage stochastic programming model is hard to capture all features

of the planning problem. It is better to consider the two-stage chance-constrained programming

model and it has the following benefits compared with the two-stage stochastic programming

model:

• Chance constraints provide a better way to handle uncertainty. The planning problem

involves dealing with various sources of uncertainty, such as load demand and renew-

able energy generation. While two-stage stochastic programming provides a probabilistic

representation of uncertainty, it does not explicitly account for the risk associated with

constraint violations. On the other hand, a chance-constrained model allows decision-

makers to set probabilistic constraints on the system’s operation, to ensure that the risk
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of violating all constraints remains below acceptable levels. This explicit treatment of risk

is essential in the planning problem, where power flow balance constraints are crucial.

• The chance-constrained model enhances the robustness and reliability of decisions. By

setting chance constraints on one or more system constraints, decision-makers can explic-

itly manage and mitigate the risk of infeasible or unreliable decisions. This ensures that

the proposed plan has a high probability of meeting operational constraints even under

uncertain conditions. In contrast, a two-stage stochastic programming model may not

capture all possible scenarios adequately, potentially leading to suboptimal or unreliable

plans.

• Chance-constrained models facilitate trade-off analysis between conflicting objectives,

such as cost, reliability, and demand. Decision-makers can adjust the level of risk toler-

ance by modifying the probability thresholds in the chance constraints, allowing them to

explore the trade-off between minimizing costs and maintaining system reliability. This

capability enables decision-makers to make informed decisions by explicitly considering

the risk-reward trade-offs associated with different planning alternatives.

In our model, the distribution grid reliability is measured as the probability of load satisfaction.

In the second-stage model, the load is satisfied over all time periods for (Ω1, ξ,Ω2) if and only

if all the constraints in (2.19) are satisfied, such that

LSt
1mn = LSt

2mn = 0, ∀ (m,n) ∈ E , t ∈ [T ]. (2.21)

Thus, to maintain a high probability of load satisfaction, we add the following joint chance

constraint

P
(
Ω2 in (2.19) satisfies (2.21) |Ω1

)
≥ 1− η (2.22)

to the two-stage model (2.20) to strengthen the problem, where P is a probability function.

Different from some existing studies on two-stage chance-constrained programming, our chance

constraint (2.22) consider all the constraints (2.19b) – (2.19o) in the second-stage problem

(2.19) as the nominal constraints. For instance, in [46], the authors consider a single demand

satisfaction constraint in their chance constraints, see constraints (20) – (22) in [46]. In contrast,
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our chance constraint (2.22) requires that (2.21) is satisfied by any Ω2 that is feasible to all the

constraints in the second-stage model (2.19). That is, we ensure the entire system (rather than

the load satisfaction constraints only) is feasible under a high probability, which can practically

incorporate many possible reliability issues such as the distribution line capacity limit and loss.

As a result, the TCC model can be formulated as:

min
Ω1,Ω2

C1

(
Ω1
)
+ E

[
C2

(
Ω2
)]

(2.23)

s.t. (2.18b)− (2.18g), (2.19b)− (2.19o), (2.22).

However, the above problem (2.23) is difficult to solve. Specifically, constraint (2.22) is non-

convex and thus problem (2.23) becomes intractable. Next, we introduce two approximation

methods to address this challenge.

2.3.1 Extensions of TCC Model

Before we move to the solution approaches section, we want to present some different ways to

build the TCC model. One possible way is to put chance constraints on soft constraints.

Introducing chance constraints on soft constraints provides a more flexible approach in address-

ing the planning problems for distribution systems. In such cases, there are two categories of

constraints to be satisfied: hard constraints, which must be fully met with no violation, and

soft constraints, where a certain degree of violation is acceptable within predefined limits.

The hard constraints typically encompass power flow constraints, siting and sizing limits of DG,

RDG, and ES units, as well as operating limits for these units. These constraints are critical

for the stable and reliable operation of the distribution system and should be strictly adhered

to.

On the other hand, the soft constraints include voltage profile constraints and capacity con-

straints. Voltage magnitude limits for each bus are essential to maintain a safe operating con-

dition, and these limits are dependent on the specific system conditions. Capacity constraints

of power lines are also considered as soft constraints.

Incorporating chance constraints on these soft constraints allows us to model the uncertainties
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and tolerate a certain level of violation while still ensuring a high probability of satisfaction.

For instance, we can introduce chance constraints for the voltage magnitude at each bus,

ensuring that P(Ω2 satisfies (2.19d) | Ω1) ≥ 1−η, whereΩ1 represents the uncertain parameters

associated with the system.

Similarly, chance constraints can be applied to the capacity constraints of power lines, ensuring

that P(Ω2 satisfies (2.19m) | Ω1) ≥ 1 − η. This approach allows for a probabilistic evaluation

of the feasibility of the system, considering the uncertainties in the distribution system.

By incorporating chance constraints on soft constraints, we gain the advantage of obtaining a

more flexible solution space. This approach provides the ability to handle uncertainties and

accommodate minor violations in the voltage profile and line capacity limits while maintaining

a high probability of satisfying these constraints. Ultimately, it leads to more robust and

efficient planning solutions for distribution systems, striking a balance between reliability and

cost-effectiveness.
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Solution Approaches

In this chapter, we describe two approximation methods for solving the problem (2.23): the

SAA and PSAA methods.

3.1 The SAA Formulation

The SAA is a classic sampling technique that is widely used in chance-constrained problems. It

approximates the expectation of random variables using their sample means. The probability

of an event E can be reformulated as an expectation as follows:

P(E) = E [I(E)] ,

where I(·) is an indicator function that takes a value of 1 when the event happens and 0

otherwise. Let Π1 be the total number of samples of the random vector ξ and [Π1] be the set

of all the samples, and let ξπ be a specific sample for any π ∈ [Π1]. The SAA approximates

P {Ω2 in (2.19) satisfies (2.21) |Ω1} in (2.22) with

1

Π1

Π1∑
π=1

I
(
Ω2

π satisfies (2.21) |Ω1
)
,

where Ω2
π is a copy of the second-stage variables Ω2 corresponding to ξπ for each π ∈ [Π1]. Let

(2.19b)π – (2.19o)π be constraints (2.19b) – (2.19o) with ξ replaced by ξπ and Ω2 replaced by

20



3.1. The SAA Formulation

Ω2
π. The SAA approximation of (2.23) thus becomes:

min
Ω1,Ω2

π ,∀π∈[Π1]
C1

(
Ω1
)
+

1

Π1

Π1∑
π=1

C2

(
Ω2

π

)
s.t.

1

Π1

Π1∑
π=1

I
(
Ω2

π satisfies (2.21) |Ω1
)
≥ 1− η. (3.1)

(2.18b)− (2.18g), (2.19b)π − (2.19o)π, ∀π ∈ [Π1].

We further introduce a binary variable θπ ∈ {0, 1} for each sample π ∈ [Π1]. When θπ = 0,

it indicates that I(Ω2
π satisfies (2.21) |Ω1) = 1, i.e., all the constraints in the second-stage

model (2.19) are satisfied; when θπ = 1, it indicates I(Ω2
π satisfies (2.21) |Ω1) = 0, i.e., all the

constraints in the second-stage model (2.19) are not satisfied. Therefore, we can reformulate

(3.1) as the following mixed-integer quadratic program:

min
Ω1,Ω2

π ,∀π∈[Π1]
C1

(
Ω1
)
+

1

Π1

Π1∑
π=1

C2

(
Ω2

π

)
(3.2a)

s.t. (2.18b)− (2.18g), (3.2b)

(2.19b)π − (2.19o)π, ∀π ∈ [Π1], (3.2c)

LSt
1πmn ≤ θπMπ, LS

t
2πmn ≤ θπMπ,

∀ (m,n) ∈ E , ∀π ∈ [Π1], (3.2d)
Π1∑
π=1

θπ ≤ Π1η, (3.2e)

θπ ∈ {0, 1}, ∀ π ∈ [Π1], (3.2f)

where Mπ is a sufficiently large number for any π ∈ [Π1]. Specifically, with constraints (4.1d)

and (4.1e), we ensure that all but a few number (i.e., ηΠ1) of samples in [Π1] satisfy the con-

straints in the second-stage model (2.19). That is, with the probability of 1−η, the constraints

in the second-stage model (2.19) are satisfied. Moreover, [32] shows that the objective value

difference between model (3.2) (i.e., model (3.1)) and model (2.23) converges to zero with

probability one when Π1 goes to infinity. In addition, as in the second-stage model (2.19), all

constraints in (3.2) with a superscript t hold for all t ∈ [T ].

All of the constraints in (3.2) are convex except for (2.19f)π, π ∈ [Π1]. Specifically, constraints
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(4.1b) are from the first-stage model, and all of them are linear constraints. Constraints (4.1d)

- (4.1f) are also linear constraints. Constraints (4.1c), i.e., (2.19b)π − (2.19o)π, ∀ π ∈ [Π1], are

from the second-stage model, and they are either linear or second-order conic (SOC) constraints

when the first-stage decision variables are given. However, as problem (3.2) needs to optimize

both the first-stage and second-stage decision variables, constraints (2.19f)π, π ∈ [Π1] include

bilinear terms (zknukl and wrnf
t
πr), by which these constraints are nonconvex. Specifically, after

substituting xk with (2.18d), we achieve bilinear terms zknukl for k ∈ [K], n ∈ N , l ∈ [L]. The

bilinear terms can be linearized using McCormick inequalities.

McCormick inequalities are commonly used to linearize a bilinear term, say w = xy with

xL ≤ x ≤ xU and yL ≤ y ≤ yU , in (mixed-integer) nonlinear programming [26]. The general

form of McCormick inequalities for w = xy can be written as:

w ≥ xLy + xyL − xLyL, w ≥ xUy + xyU − xUyU ,

w ≤ xUy + xyL − xUyL, w ≤ xyU + xLy − xLyU .

When x and y are both continuous variables, the above four McCormick inequalities provide

convex and concave envelopes of the bilinear term xy. When at least one of x and y is binary,

w = xy can be implied by the above four McCormick inequalities, resulting in an equivalent

mixed-integer linear reformulation of the bilinear expression.

Thus, for all k ∈ [K], n ∈ N , l ∈ [L], we replace zknukl with βknl, and add the following

constraints

βknl ≥ 0, βknl ≥ zkn + ukl − 1,

βknl ≤ ukl, and βknl ≤ zkn,

to enforce βknl = zknukl, where both zkn and ukl are binary. Using the same technique, for all

r ∈ [R], n ∈ N , t ∈ [T ], π ∈ [Π1], we denote f̂ t
πrn := wrnf

t
πr, where wrn is binary, and add the

following constraints:

f̂ t
πrn ≥ wrnf

t

πr
, f̂ t

πrn ≥ f t
πr + wrnf

t

πr − f
t

πr,

f̂ t
πrn ≤ f t

πr + wrnf
t

πr
− f t

πr
, and f̂ t

πrn ≤ wrnf
t

πr,
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where f
t

πr and f t

πr
are the lower and upper bounds of f t

πr. The bilinear term wrng
t
πr can be

managed similarly. As a result, the SAA formulation (3.2) is transformed into a mixed-integer

convex quadratic program.

3.2 The PSAA Formulation

The SAA is relatively accurate when there are sufficient samples. However, more samples lead

to more binary auxiliary variables (i.e., θπ), greatly increasing the computational burden. Thus,

we use partial sampling to reduce the computational difficulty and improve the solution quality.

We extend the preliminary studies on partial sampling in [12] to approximate our proposed TCC

model, which is more complicated than the single-stage chance-constrained model considered

in [12], as evidenced in [23]. This leads to an extended PSAA model, referred to as the PSAA

model for simplicity. It samples a part of the random parameters and estimates the probability

distribution of the remainder. We first present the basic PSAA idea and then detail our PSAA

model.

We consider a general chance constraint

P{g(x, ξ) ≥ 0} ≥ 1− η, (3.3)

where ξ = (ξ1, ξ2) and ξ1 is independent of ξ2. Clearly, P{g(x, ξ) ≥ 0} = E[I(g(x, ξ) ≥ 0)] =

Eξ1,ξ2 [I(g(x, ξ1, ξ2) ≥ 0)] = Eξ1Eξ2 [I(g(x, ξ1, ξ2) ≥ 0)], where the third equation is because

of the independence between ξ1 and ξ2. The PSAA idea then reformulates one of the above

two expectations (i.e., Eξ1 and Eξ2) by its sample mean. For instance, if we replace the inner

expectation Eξ2 by a sample mean of N independent samples of ξ2 (denoted by ξ̂12, . . . , ξ̂
N
2 ),

then the PSAA formulation of (3.3) is as follows:

1

N

N∑
k=1

Eξ1 [I(g(x, ξ1, ξ̂k2))]

=
1

N

N∑
k=1

P{g(x, ξ1, ξ̂k2) ≥ 0} ≥ 1− η,
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which is further equivalent to the following

P{g(x, ξ1, ξ̂k2) ≥ 0} ≥ yk,∀k ∈ [N ], (3.4)∑N
k=1 yk
N

≥ 1− η, yk ≥ 0,∀k ∈ [N ]. (3.5)

In contrast to constraints (4.1d) - (4.1f) (SAA formulation), constraints (3.4)-(3.5) (PSAA

formulation) introduce only continuous variable yk, while N new chance constraints are added.

In our proposed PSAA model, We will show that (3.4) has a convex approximation for the

planning problem in this thesis, which contributes to the existing literature.

To apply the above PSAA idea, we need to have the sampled random parameters independent

of the unsampled ones. We first convert the random vector ξ into an uncorrelated random

vector ξ′ using an affine transformation, thereby approximating the independence requirement.

Specifically, let Σ be the covariance matrix of ξ and µ be the mean vector of ξ. Suppose that

Σ = UΛU⊤ is an eigenvalue decomposition of Σ, where U is an orthogonal matrix and Λ is

a diagonal matrix with the eigenvalues of Σ on the diagonal. Without loss of generality, we

assume that Λ11 is the largest eigenvalue of Σ. Let

ξ′ = Λ− 1
2U⊤(ξ − µ), or equivalently, ξ = UΛ

1
2ξ′ + µ.

It is straightforward to see that ξ′ is an uncorrelated random vector with a mean of 0.

We partition ξ′ as (ξ′1, ξ
′
2), where ξ

′
1 is the first component of ξ′ and ξ′2 is the vector of the other

components. Note that when ξ is sampled, ξ′1 is the first principal component. The PSAA then

considers Π2 Monte Carlo samples ξ′2κ, κ ∈ [Π2] of ξ
′
2 and approximates the probability of an

event E as

P(ξ′1,ξ
′
2)
(E) ≈ 1

Π2

Π2∑
κ=1

Pξ′1
(E | ξ′2κ) .

In our PSAA model, we retain the objective function of (3.1) and constraints (2.18b)− (2.18g)

and (2.19b)π − (2.19o)π. We also develop a different approximation of the chance constraint

using the PSAA. To be compatible with the PSAA framework, given the first-stage variables

Ω1, instead of requiring (2.19b) – (2.19o) and (2.21) to be satisfied with a high probability by

a specified Ω2, we relax the chance constraint (2.22) to require the consistency of (2.19b) –
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3.2. The PSAA Formulation

(2.19o) and (2.21). That is, we consider the following chance constraint:

P
(
∃ a solution satisfying (2.19b)− (2.19o), (2.21) |Ω1

)
≥ 1− η. (3.6)

Let (2.19b)κ − (2.19o)κ and (2.21)κ be a copy of (2.19b) – (2.19o) and (2.21), with ξ replaced

by (ξ′1, ξ
′
2κ) for any κ ∈ [Π2]. The PSAA approximates (3.6) with

1

Π2

Π2∑
κ=1

Pξ′1

(
ξ′1 ∈ A

(
Ω1, κ

))
≥ 1− η,

where A(Ω1, κ) := {ξ′1 | (2.19b)κ-(2.19o)κ, (2.21)κ are consistent with Ω1}. For a given Ω1 and

κ, A(Ω1, κ) is a convex set of ξ′1. That is, if ξ̂′1 < ξ̄′1 are both in A(Ω1, κ), then ξ′1 ∈ A(Ω1, κ)

for all ξ′1 ∈ [ξ̂′1, ξ̄
′
1]. Let Ψ(·) be the cumulative distribution function (CDF) of ξ′1. Then,

Pξ′1

(
ξ′1 ∈ A

(
Ω1, κ

))
= sup

Z1,Z2

{
Ψ(Z2)−Ψ(Z1) | Z1, Z2 ∈ A

(
Ω1, κ

)}
.

Therefore, our PSAA model is as follows.

min C1

(
Ω1
)
+

1

Π1

Π1∑
π=1

C2

(
Ω2

π

)
s.t. (2.18b)− (2.18g), (3.7a)

(2.19b)π − (2.19o)π, ∀ π ∈ [Π1], (3.7b)

(Ω1,Ω2
1κ) satisfies (2.19b)κ − (2.19o)κ, (2.21)κ

with (Z1κ, ξ
′
2κ), ∀κ ∈ [Π2],

(3.7c)

(Ω1,Ω2
2κ) satisfies (2.19b)κ − (2.19o)κ, (2.21)κ

with (Z2κ, ξ
′
2κ), ∀κ ∈ [Π2],

(3.7d)

Ψ(Z2κ)−Ψ(Z1κ) ≥ ηκ, ∀κ ∈ [Π2], (3.7e)
Π2∑
κ=1

ηκ ≥ Π2(1− η), (3.7f)

ηκ ≥ 0, ∀κ ∈ [Π2]. (3.7g)

Here, the decision variables are Ω1, Ω2
π for any π ∈ [Π1], and Ω2

1κ,Ω
2
2κ, Z1κ, Z2κ, ηκ for any
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κ ∈ [Π2].

For the model to be practical, we need to estimate the CDF Ψ(·) of ξ′1. Two types of methods are

primarily used for estimating distributions: parametric and nonparametric estimation methods.

Parametric estimation methods assume that the sample data conform to a parametrized family

of probability distributions, and the sample data are used to find the best-fitting parameters.

In contrast, nonparametric estimation methods do not depend on any prior assumption of the

distribution family, and they fit the distribution according to the characteristics and properties

of the data. Here we make no assumptions on the distribution of ξ′1 and estimate Ψ(·) using

the kernel density estimation, a commonly used nonparametric method proposed by Rosenblatt

[42] and Parzen [36].

Let Π3 be the total number of samples of ξ′1, and ξ
′
1τ be a specific sample for any τ ∈ [Π3]. The

kernel density estimation of the probability density function ψ of ξ′1 can be written as

ψ(ξ′1) ≈
1

Π3h

Π3∑
τ=1

ϕ

(
ξ′1 − ξ′1τ

h

)
,

where h is a user-specified bandwidth parameter and ϕ is a kernel function. Among the pop-

ular choices, we choose the standard normal density function as the kernel function for our

estimation. Thus, the CDF of ξ′1 can be estimated by

Ψ(ξ′1) ≈
1

Π3

Π3∑
τ=1

Φ

(
ξ′1 − ξ′1τ

h

)
, (3.8)

where Φ(·) is the CDF of the standard normal distribution.

We further approximate Φ(·) in (3.8) using the following piecewise linear function:

Φ(x) ≈


min
ϵ∈[∆1]

{aϵx+ αϵ} if x ≥ 0.5

max
ζ∈[∆2]

{aζx+ αζ} if x < 0.5,

(3.9)

where ∆1 and ∆2 are the numbers of pieces used to approximate the upper half and the lower

half of Φ(·), respectively. An example of such an approximation is depicted in the following

Fig. 3.1.
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3.2. The PSAA Formulation

Figure 3.1: Piecewise linear approximation of the CDF of the standard normal distribution
Φ(·) (∆1 = ∆2 = 3)

When the probability level 1 − η is close to 1, Φ(
Z2κ−ξ′1τ

h
) is usually greater than 0.5 and thus

concave, while Φ(
Z1κ−ξ′1τ

h
) is usually less than 0.5 and thus convex[20]. Therefore, with the

approximation in (3.9), we can remove the min and max operators in (3.9) and approximate

constraint (3.7e) by the following constraints:

ρκ1τ ≥ aζ

(
Z1κ − ξ′1τ

h

)
+ αζ , ∀ ζ ∈ [∆2], τ ∈ [Π3], κ ∈ [Π2],

ρκ2τ ≤ aϵ

(
Z2κ − ξ′1τ

h

)
+ αϵ, ∀ ϵ ∈ [∆1], τ ∈ [Π3], κ ∈ [Π2],

1

Π3

Π3∑
τ=1

(ρκ2τ − ρκ1τ ) ≥ ηκ, ∀κ ∈ [Π2].

Finally, the bilinear terms in (3.7b) – (3.7d) can be linearized using McCormick inequalities, as

in the SAA model. As a result, the PSAA model (3.7) is simplified to a mixed-integer convex

quadratic program.
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Numerical Results

We conduct two sets of experiments on the IEEE 33-Bus system and the IEEE 123-Bus system

using real data acquired from Pecan Street Inc. and ERCOT. We first compare the effectiveness

of the SAA and PSAA models and then investigate the potential benefits of installing ES units.

We use in-sample and out-of-sample tests to validate the quality of the obtained solutions to

the planning problem. All numerical tests are executed on the high-performance computing

(HPC) cluster of Ieria [1] with 27 computing nodes. We allocate four CPUs to every instance,

and every CPU is allocated 4 GB of memory. CPLEX 22.1.0, with its default setting, is used

to solve all optimization models. For ease of exposition, we use the following flowchart in Fig.

4.1 to summarize the sequential steps we follow to perform the numerical experiments in this

chapter.

4.1 IEEE 33-Bus System

We first consider the modified IEEE 33-Bus radial distribution network examined in [16] (see

Fig. 4.2). In the network, Bus 0 is connected to the major transmission network, from which

we can purchase active and reactive power via Bus 0 if needed. Buses 1–32 are connected to

Bus 0, directly or indirectly. Two DDG units are located at Buses 15 and 29, and three reactive

power sources are located at Buses 11, 13, and 32. The reactive power sources are of the hybrid

(capacitive and inductive) compensator type, and they can both generate and absorb reactive
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Determine the
structure and parameters
of the distribution system

Build the TCC model

Determine
the solution
approach

Obtain the
SAA/PSAA Formulation

Solve
the model
by solver

Obtain the siting and sizing plan

Out-of-sample test

Evaluate the quality of the plan

In-sample
data

Out-of-sample
data

Collect the
real industrial data

Data splitting

Figure 4.1: The Procedure of Numerical Experiments

power to stabilize the voltage. Nevertheless, our model can also consider other types. With

the fixed location of the DDG units and reactive power sources, we then focus on the location

and capacity planning of candidate RDG and ES units to be installed.

Figure 4.2: IEEE 33-Bus Distribution Network

29



Chapter 4. Numerical Results

4.1.1 Data

We consider two sources of uncertainties: the weekly active/reactive load at each bus, i.e.,

dtpn/d
t
qn, and the renewable generation efficiency of each candidate RDG unit, i.e., stk ∈ [0, 1].

The active-load data are obtained from Pecan Street Inc. and the wind generation data from

ERCOT. The reactive-load data are randomly generated based on the bounds of the total

reactive-power output. Specifically, the reactive-power load is uniformly generated in the inter-

val [−0.01, 0.019]. Here [−0.01, 0.019] is an interval, which specifies a range of possible values of

reactive-power load that we can possibly generate. By using such a random data generation, we

obtain different values of reactive-power loads at different buses in different periods. All data

are for a range of 4 years, leading to 208 (= 52 weeks×4) data samples for each specific random

variable. To perform more practical tests, we randomly generate more data samples to better

demonstrate our proposed models’ effectiveness, via in-sample and out-of-sample tests. To that

end, we first calculate the mean value and covariance matrix using the given data samples, and

then generate 3792 data samples by following the multivariate log-normal distribution, which

has been widely adopted in academia and industry in similar scenarios [35, 39, 38]. Thus, we

have 4000 data samples in total.

4.1.2 Data Processing for PSAA

In the PSAA approach, we assume that random parameters ξ can be divided into independent

two parts ξ1 and ξ2. Here, we transform all data samples corresponding to ξ to uncorrelated data

samples, thereby approximating the independence requirement. We first collect all historical

data samples of ξ and then calculate its mean vector µ and covariance matrix Σ. Next, we do

an eigenvalue decomposition Σ = UΛU⊤. Now, we can represent ξ as a linear combination of

random vector ξ′,

ξ = UΛ
1
2ξ′ + µ.

Through this equation, we can transform all data samples of ξ into those corresponding to

ξ′. More importantly, the mean vector of ξ′ is 0 and the covariance matrix is I. Thus, all

data samples corresponding to ξ′ are uncorrelated and we use them in experiments. However,

this transformation is not strict and we cannot measure the gap between the irrelevance and
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4.1. IEEE 33-Bus System

independence of an arbitrary random vector. In further research, we will consider more specific

random vectors satisfying special distributions, for example, normal distribution. Then, we

may quantify the gap between irrelevance and independence.

4.1.3 Parameters

All of the parameters used in our experiments are slightly modified based on the parameters1

used in [16]. For instance, the electricity price of purchasing active/reactive power from the

main grid is mainly from ERCOT. The detailed modification is as follows. In the first stage,

the setup costs of candidate RDG units c0kn are uniformly generated in the interval [0.95 ×

2000, 1.05 × 2000]. The size-based investment costs c1k and maintenance costs c2k of candidate

RDG units are uniformly generated in the intervals [0.9× 238, 1.1× 238] and [0.9× 4, 1.1× 4],

respectively. The setup costs of candidate ES units d0rn are uniformly generated in the interval

[0.9×200, 1.1×200]. The size-based investment costs d1r and maintenance costs d2r of candidate

ES units are both uniformly generated in the interval [0.9 × 2, 1.1 × 2]. The active power

purchase prices ctp are uniformly generated in the interval [0.9 × 130, 1.1 × 130]. The reactive

power purchase prices ctq are uniformly generated in the interval [0.9× 4, 1.1× 4]. The emission

costs for the DDG units at Buses 15 and 29 are cf15 = cf29 = 630. The emission factor ω of

the DDG units is 3 kg/MWh. A maximum of K̄ = 3 out of K = 4 candidate RDG units

are to be installed in this distribution network. The maximum number of ES units to be

installed is R = 3. The active-power output bounds (pt
n
, p̄tn) of both DDG units are (0.5, 4.5).

The reactive-power output bounds (qt
n
, q̄tn) are (−0.1, 0.2), (−0.15, 0.25), and (−0.1, 0.2) for the

three reactive-power sources at Buses 11, 13, and 32, respectively. We further consider four

types of RDG units (x̄1 = 4 MW, x̄2 = 5 MW, x̄3 = 6 MW, and x̄4 = 7 MW). The maximum

capacity ȳr of an ES unit is 3 MW, and the minimum capacity y
r
is 0. The initial power level b0r

of a candidate ES unit is set to 0. When an ES unit is charged, the unit cost e1 is 0.1, whereas

the discharging cost e2 is 0.1. The energy loss factor γ is set to 0.9.

1See https://www.dropbox.com/s/psqv9yr3atg46bk. Accessed: Jul. 2022.

31



Chapter 4. Numerical Results

4.2 IEEE 123-Bus System

We then consider the commonly used IEEE 123-Bus radial distribution network [6, 13, 51] (see

Fig. 4.3). In the network, Bus 149 is connected to the major transmission network. Eight

DDG units are located at Buses 8, 25, 44, 57, 67, 87, 97, and 108, and twelve reactive power

sources are located at Buses 7, 14, 15, 25, 47, 54, 62, 68, 80, 91, 98, and 109.

Figure 4.3: IEEE 123-Bus Distribution Network

4.2.1 Data

All the data are obtained following the same process used for the IEEE 33-Bus system. The

only difference is the dimension of uncertainty. Here we consider the renewable generation

efficiency of each candidate RDG unit stk uncertain and use an estimated value for the weekly

active/reactive load at each bus, i.e., dtpn/d
t
qn. In particular, as the IEEE 123-Bus system is

of large scale, both the SAA and PSAA formulation become difficult to solve when the test

system is large. Thus, to better show the performance of these two approaches, we consider the

system loads are given and the renewable generation is uncertain, by which the computational

difficulty is relatively reduced.
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4.2.2 Parameters

We continue to use the parameters designed for the IEEE 33-Bus system, except that some

parameters are modified as follows. First, the electrical resistance (Rmn) and reactance (Xmn)

of each line (m,n) ∈ E and the upper/lower bound of voltage magnitude (i.e., v/v̄) at each bus

are obtained from the IEEE PES Test Feeders2. Second, we consider a maximum of K̄ = 6 out

of K = 8 candidate RDG units to be installed in this distribution network. We consider three

types of RDG units (x̄1 = 8 MW, x̄2 = 10 MW, and x̄3 = 12 MW). The maximum capacity ȳr

of an ES unit is 6 MW. The maximum number of candidate ES units to be installed is R = 6.

The reactive-power output bounds (qt
n
, q̄tn) are (-0.15, 0.25).

4.3 Decomposition Framework

To reduce the computational difficulty of solving both the SAA and PSAA formulations, we

adopt the Benders decomposition algorithm [8] to improve the computational efficiency. Specif-

ically, we first linearize the SOCP constraints (2.19l) and (2.19m) as [16] does by using the poly-

hedral ϵ-approximation in [7]. With such an approximation, both the SAA formulation (3.2)

and PSAA formulation (3.7) are transformed into mixed-integer linear programming (MILP)

formulations, which can be used practically in large-scale settings.

For each MILP formulation, we then decompose the problem into two parts: a master problem

and a set of subproblems. The master problem includes all the integer variables and associated

constraints, and the subproblems contain the remaining continuous variables and associated

constraints. As such, we iteratively solve the master problem and subproblems until conver-

gence. At each iteration, the master problem is solved to optimality, and its optimal solution

is then used to construct the subproblems. Feasible and optimality cuts are generated after

solving the subproblems and added back to the master problem.

Note that we have Π1 subproblems for the SAA formulation, where each sample π ∈ [Π1]

corresponds to one subproblem, as shown in (4.1c), and these subproblems can be solved in

parallel. For the PSAA formulation, we have Π1 + 1 subproblems, where each sample π ∈ [Π1]

2See https://cmte.ieee.org/pes-testfeeders/resources/. Accessed: Jul. 2022.
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corresponds to one subproblem, as shown in (3.7b), and constraints (3.7c) – (3.7g) are included

in one subproblem.

4.3.1 Further Refinement

In this thesis, we employ Benders decomposition as a means to enhance computational effi-

ciency. Specifically, we utilize the Benders decomposition package integrated within the Cplex

solver, which represents a viable approach. Additionally, we explore the possibility of leverag-

ing other advanced algorithms in the context of two-stage stochastic programming and SAA.

There are mainly two types of methods: primary method and dual method. The primary

method works with subproblems assigned to time stages, such as Benders decomposition and

L-shaped decomposition. For example, [9] combine an accelerated sample average approxima-

tion approach with an accelerated Benders’ decomposition algorithm to solve the two-stage

model with binary variables in the first stage and continuous variables in the second stage.

Another method is the dual method, which works with subproblems assigned to scenarios. By

using SAA or PSAA, we can approximate the two-stage stochastic programming into the mixed-

integer problem with Π1 scenarios (see Problem (3.2) and (3.7)). To solve problems with this

kind of structure, we can use dual decomposition and Lagrangean relaxation [44, 10, 33, 40].

We take Problem (3.2) as an example. We first introduce first-stage variables Ω1
π for each

scenario π ∈ [Π1] and add non-anticipativity constraints Ω1
1 = · · · = Ω1

Π1
. We then introduce

θπ1
π2

for any π1 ∈ [Π1] and π2 ∈ [Π1] and add non-anticipativity constraints θπ1
1 = · · · = θπ1

Π1

for any π1 ∈ [Π1]. For each π ∈ [Π1], we implement the non-anticipativity constraints by

equations
∑Π1

π=1K
πΩ1

π = 0 and
∑Π1

π=1K
πθπ1

π = 0, ∀π1 ∈ [Π1], where K1 = 1 − Π1 and

Kπ = 1, ∀π = 2, . . . ,Π1. Now, Problem (3.2) can be reformulated as:

min
Ω1

π ,Ω
2
π ,∀π∈[Π1]

1

Π1

Π1∑
π=1

(
C1

(
Ω1

π

)
+ C2

(
Ω2

π

))
(4.1a)

s.t. (2.18b)π − (2.18g)π, ∀π ∈ [Π1], (4.1b)

(2.19b)π − (2.19o)π, ∀π ∈ [Π1], (4.1c)

LSt
1πmn ≤ θπi Mπ, LS

t
2πmn ≤ θπi Mπ,

∀ (m,n) ∈ E , ∀ i ∈ [Π1],∀π ∈ [Π1], (4.1d)
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Π1∑
i=1

θiπ ≤ Π1η, ∀π ∈ [Π1], (4.1e)

θiπ ∈ {0, 1}, ∀ i ∈ [Π1], ∀ π ∈ [Π1], (4.1f)
Π1∑
π=1

KπΩ1
π = 0, (4.1g)

Π1∑
π=1

Kπθπ1
π = 0, ∀π1 ∈ [Π1]. (4.1h)

We then define λ and γ as the Lagrangean multipliers associated with the non-anticipativity

constraints and relax these. The resulting Lagrangean relaxation is

LR(λ,γ) = min
Ω1

π ,Ω
2
π ,∀π∈[Π1]

1

Π1

Π1∑
π=1

(
C1

(
Ω1

π

)
+ C2

(
Ω2

π

)
+ λKπΩ1

π +

Π1∑
π1=1

γπ1K
πθπ1

π

)
(4.2a)

s.t. (4.1b)− (4.1f). (4.2b)

Note that Problem (4.2) is separable in scenarios. Then, we can find the best lower bound for

the primary problem by solving the Lagrangean dual:

zLD = LD = max
λ,γ

LR(λ,γ).

We let P demote the list of current problems together with associated lower bound zLD =

zLD(P ). Now we can design the following branch and bound algorithm:

• Step 1: Initialization: Set z = ∞ and let P consist of primary problem.

• Step 2: Termination: If P = ∅ then the solution is optimal.

• Step 3: Node selection: Select and delete a problem P from P, solve the dual problem

that yields the bound zLD = zLD(P ). If P is infeasible, go to Step 2.

• Step 4: Bounding: If zLD(P ) ≥ z, go to Step 2. (i) The non-anticipativity constraints

are satisfied. Let z be the corresponding objective value of the primary problem and

delete from P all problem P ′ with zLD(P
′) ≥ z. Go to Step 2. (ii) The non-anticipativity

constraints are not satisfied. Compute the average solution and round it by some heuristic

to obtain x̄. If x̄ is feasible, the corresponding objective is denoted by z and delete from

P all problem P ′ with zLD(P
′) ≥ z. Go to Step 5.
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• Branching: Select a component xi and add two new problems to P by adding the con-

straints xi ≤ ⌊x̄i⌋ and xi ≥ ⌊x̄i⌋ + 1, respectively (if xi is an integer component) or

xi ≤ x̄i − ϵ and xi ≥ x̄i + ϵ, respectively.

[10] show that this branch and bound algorithm terminates in finitely many steps.

4.4 SAA vs. PSAA

Here we analyze the performance of the SAA and PSAA models using the data and parameters

mentioned above. We thus ignore ES units and consider T = 1. Specifically, terms related to

ES units, including wrn, yr, f
t
r , g

t
r, and b

t
r, are temporarily removed from the models.

We first divide the 4000 data samples into two sets for the experiment: a training data set and

a testing data set. The former is used to obtain our planning decision in the first stage, and

the latter is used to test the effectiveness of the obtained decision. To make full use of the

real data and better simulate real-world decision-making, we ensure that the training data are

selected from the first 208 samples, as it is very straightforward to feed the available historical

real data into an optimization model to support decision-making. Each data sample is used

as a scenario in the SAA and PSAA models. We solve the SAA and PSAA models using the

training data and obtain two optimal sizing/siting plans. We then compare the performance of

the plans using the testing data. Specifically, we calculate the first-stage cost and the average

second-stage cost of all test samples for each plan. To verify our approximation formulations

and demonstrate their ability to ensure that the demand can be satisfied with a high probability,

we also calculate the actual feasible probability of the test samples. This probability is defined

as the percentage of the test samples for which constraints (2.19b) – (2.19o) and (2.21) can be

simultaneously satisfied.

The experiments are conducted using different settings for (i) the size of the training data (i.e.,

Π1 = Π2), (ii) the maximum running time (i.e., time limit) of the solver (denoted by ϑ in

hours), and (iii) the desired feasible probability of the chance constraint (i.e., 1− η), as shown

in Tables 4.1 – 4.4. The training data size Π1 = Π2 ∈ {60, 100, 140} for the IEEE 33-Bus

system and Π1 = Π2 ∈ {30, 45, 60} for the IEEE 123-Bus system. The maximum running time
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ϑ ∈ {4, 8, 12} for the IEEE 33-Bus system and ϑ ∈ {10, 13, 16} for the IEEE 123-Bus system.

The desired feasible probability 1 − η ∈ {0.8, 0.9} for both systems. These settings lead to

18 = 3 × 3 × 2 combinations in total for each system. For some instances, when both models

are too large to be solved to optimality within the given time limits, we take the incumbent

solutions returned by the solver as the optimal solutions. We also record the relative optimality

gap, (zp − zd)/zp, where zp is the primal objective bound (i.e., the incumbent objective value)

and zd is the dual objective bound (i.e., the lower bound for minimization problems). Intuitively,

a smaller gap indicates a better-quality incumbent solution.

We illustrate the performance of both models in Tables 4.1 – 4.4. The columns in the SAA/P-

SAA section represent, from left to right, the first-stage cost, the average second-stage cost

of testing samples, the average total cost, the relative optimality gap, and the actual feasible

probability.

Compared with the SAA model, the PSAA model leads to lower first-stage costs, lower second-

stage costs, and thus lower total costs in all cases. The lower costs indicate that the siting and

sizing decisions provided by the PSAA approach help more effectively satisfy the same required

demands than those provided by the SAA approach. Thus, compared to the SAA solutions,

the PSAA solutions require fewer RDG units to be installed and/or the installed RDG units

can be of smaller capacity. Moreover, the effective plans made by the PSAA approach lead to

lower operating costs for the distribution grid than the plans made by the SAA approach. A

direct comparison of the total costs is shown in Fig. 4.4, where the horizontal axis represents

the training-data size, the vertical axis represents the total cost, and different colors represent

different running times. The total costs of the SAA solutions are labeled with triangular

symbols, and the total costs of the PSAA solutions are marked with circular symbols.

Within the same time limits, we observe that the relative optimality gap of the PSAA solution

is always less than that of the SAA solution in all cases. Specifically, for the cases where

the PSAA model can solve the instance to optimality (i.e., the optimality gap is 0) within

the time limits, we report the corresponding computational time in hours used by the PSAA

model in the column “Gap” and label it by ⋆. The SAA model cannot solve any instance

to optimality within the time limits. The result clearly indicates that the PSAA model is

more computationally efficient than the SAA model. The difference is due to how the chance
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Figure 4.4: SAA vs. PSAA solutions in the total cost (η = 0.1)

constraint is dealt with in the models. The SAA model introduces Π1 binary variables (i.e.,

θπ), whereas the PSAA model introduces Π2 continuous variables (i.e., ηκ). Although there are

more continuous variables and more constraints in the PSAA model, the binary variables in

the SAA model are more difficult to manage. A direct comparison of the gap is shown in Fig.

4.5, where the vertical axis represents the relative optimality gap.

Figure 4.5: SAA vs. PSAA solutions in the optimality gap (η = 0.1)

To further illustrate the computational improvement of the PSAA approach compared with the

SAA approach, we summarize the optimality gap improvement (i.e., reduction) from the SAA

approach to the PSAA approach in Fig. 4.6 and Fig. 4.7. In the figures, the horizontal axis

represents the setting of η and Π1. For instance, “0.1− 60” means that η = 0.1 and Π1 = 60.

The vertical axis represents the optimality gap improvement in percentage, as given by:

|the gap by PSAA− the gap by SAA|
the gap by SAA

× 100%.
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From Fig. 4.6 and Fig. 4.7, we find that the improvement is mostly above 50% and even

reaches 100% when the PSAA solves an instance to optimality.

Figure 4.6: Optimality Gap Improvement (IEEE 33-Bus system)

Figure 4.7: Optimality Gap Improvement (IEEE 123-Bus system)

In each of the tested cases, the actual feasible probability of the PSAA solution is clearly

higher than that of the SAA solution and is almost equal to the desired probability. This

indicates that the PSAA performs better than the SAA as an approximation method for the

chance constraint. In fact, the actual feasible probability of the PSAA solution is less than 1%

different from the desired solution, which in practice will give the grid decision-makers more

control of the confidence level. A direct comparison is shown in Fig. 4.8, where the vertical

axis represents the actual feasible probability.

To conclude this chapter, we illustrate the performance difference between the two models with

some specific examples. When Π1 = Π2 = 140, ϑ = 8, and η = 0.1 in the IEEE 33-Bus system,

the SAA solution sites (sizes) the candidate RDG units at Buses 3 (6 MW), 9 (6 MW), and 12
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Figure 4.8: SAA vs. PSAA solutions in the actual feasible probability (η = 0.1)

(4 MW), and the PSAA solution sits (sizes) the candidate RDG units at Buses 3 (5 MW), 8 (4

MW), and 26 (6 MW). Thus, compared to the SAA solution, the PSAA solution results in a

lower first-stage cost, due to the smaller total capacities of the installed RDG units. In addition,

the output ptn of the DDG unit at Bus 29 in the PSAA solution is significantly less than that in

the SAA solution for most testing data, and the load-shedding penalties of the PSAA solution

are also much less than those of the SAA solution. The two factors above account for most of

the difference between the methods in the second-stage costs. We know that Buses 27, 29, and

30 have higher loads and that the DDG units have been installed at Buses 15 and 29. Thus,

it is reasonable to place a candidate RDG unit at Bus 26 to reduce the output pressure on

the DDG unit at Bus 29. In addition, in a distribution network structure, it is likely that the

power purchased from Bus 0 and generated by the RDG unit at Bus 3 is mainly used to fulfill

the loads at Buses 1-4 and 18-24. Given the desired feasible probability of 0.9 (i.e., the power

system operator expects to satisfy the load with a confidence level of 0.9), the PSAA solution

shows that a 5 MW RDG unit is sufficient to satisfy the load, and thus a 6 MW unit (given by

the SAA solution) may be excessive.

When considering the IEEE 33-Bus system with Π1 = Π2 = 140, we examine the effect of

computational time on the solutions while varying the parameter ϑ. We also maintain the

desired feasible probability at η = 0.1 for the chance-constrained PSAA model. The specific

results for each case are as follows:

For ϑ = 4: In the SAA solution, candidate RDG units are sited (sized) at Buses 4 (6 MW), 8

(6 MW), and 12 (5 MW). In contrast, the PSAA solution places candidate RDG units at Buses
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3 (5 MW), 9 (5 MW), and 26 (6 MW).

For ϑ = 8: In the SAA solution, candidate RDG units are sited (sized) at Buses 3 (6 MW),

9 (6 MW), and 12 (4 MW). In the PSAA solution, candidate RDG units are sited (sized) at

Buses 3 (5 MW), 8 (4 MW), and 26 (6 MW).

For ϑ = 12: In the SAA solution, candidate RDG units are sited (sized) at Buses 3 (5 MW),

9 (6 MW), and 12 (4 MW). In the PSAA solution, candidate RDG units are sited (sized) at

Buses 3 (5 MW), 8 (4 MW), and 26 (5 MW).

The results clearly indicate that as the computational time (represented by ϑ) increases, the

PSAA approach consistently yields better siting and sizing decisions compared to the SAA

approach. In each case, the PSAA solution provides more optimal locations and capacities for

the candidate RDG units, potentially resulting in enhanced system performance and reduced

operational costs.

By allowing for more computational time, the PSAA method can explore a larger solution

space and consider a broader range of possibilities, leading to improved decision-making. The

trade-off between computational resources and solution quality is evident, with the PSAA

approach providing superior results at the cost of increased computation time. Ultimately, this

demonstrates the significance of allocating sufficient computational resources to achieve more

robust and effective RDG unit siting and sizing decisions in distribution networks.

When keeping ϑ = 8 fixed and varying the number of samples Π1 = Π2, we examine how the

number of samples affects the RDG unit siting and sizing decisions in both the SAA and PSAA

models. We maintain the desired feasible probability at η = 0.1 for the PSAA model. The

specific results for each case are as follows:

For Π1 = Π2 = 60: In the SAA solution, candidate RDG units are sited (sized) at Buses 4 (6

MW), 8 (6 MW), and 12 (5 MW). The PSAA solution, however, places candidate RDG units

at Buses 5 (5 MW), 9 (6 MW), and 26 (6 MW).

For Π1 = Π2 = 100: In the SAA solution, candidate RDG units are sited (sized) at Buses 3 (6

MW), 9 (6 MW), and 11 (5 MW). In contrast, the PSAA solution sites (sizes) candidate RDG

units at Buses 3 (5 MW), 8 (4 MW), and 26 (6 MW).
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For Π1 = Π2 = 140: In the SAA solution, candidate RDG units are sited (sized) at Buses 3

(6 MW), 9 (6 MW), and 12 (4 MW). The PSAA solution sites (sizes) candidate RDG units at

Buses 3 (5 MW), 8 (4 MW), and 26 (6 MW).

The results clearly demonstrate the impact of the number of samples on the solution quality

in both SAA and PSAA models. As the number of samples increases, both methods yield

better siting and sizing decisions. The PSAA approach, in particular, requires fewer samples

to achieve superior solutions compared to the SAA approach. This indicates that the PSAA

method is more efficient in utilizing the available samples to make informed decisions and find

robust solutions.

By increasing the number of samples, the PSAA method can better capture the underlying

stochastic nature of the problem, leading to improved solution accuracy and reliability. Ad-

ditionally, the PSAA approach exhibits its ability to provide higher-quality solutions with a

reduced computational burden, making it a favorable choice for optimizing RDG unit siting

and sizing decisions in distribution networks. The findings emphasize the importance of em-

ploying an appropriate number of samples to ensure accurate and efficient solution outcomes

in stochastic optimization problems.

Table 4.1: IEEE 33-Bus System: SAA vs. PSAA (η = 0.1)

Π1 ϑ (h)
SAA PSAA

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob

60

4 10674.5 1692.8 12367.3 0.40 0.85 10226.3 1639.2 11865.5 0.08 0.90
8 10510.0 1679.4 12189.4 0.36 0.85 10184.6 1645.8 11830.4 7.33⋆ 0.89
12 10510.0 1679.4 12189.4 0.34 0.84 10184.6 1645.8 11830.4 7.33⋆ 0.89

100

4 10586.3 1713.0 12299.3 0.52 0.86 10275.5 1607.6 11883.1 0.12 0.90
8 10447.2 1708.5 12155.7 0.47 0.86 10224.5 1616.2 11840.7 0.06 0.90
12 10397.4 1721.3 12118.7 0.39 0.86 10105.6 1606.5 11712.1 0.03 0.89

140

4 10800.2 1716.0 12516.2 0.60 0.86 10231.8 1629.0 11860.8 0.21 0.90
8 10749.0 1691.2 12440.2 0.54 0.87 10209.0 1632.7 11841.7 0.16 0.90
12 10723.9 1711.9 12435.8 0.49 0.86 10173.0 1625.1 11798.1 0.11 0.90

4.5 Storage vs. No Storage

Here we compare the experimental results to show the effects of ES installation. From previous

experiments, we observe that the PSAA model produces higher-quality solutions than the SAA

model. Thus, all subsequent experiments are conducted using the PSAA model.
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Table 4.2: IEEE 33-Bus System: SAA vs. PSAA (η = 0.2)

Π1 ϑ (h)
SAA PSAA

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob

60

4 9947.9 1756.2 11704.1 0.21 0.78 9536.3 1723.3 11259.6 2.55⋆ 0.80
8 9947.9 1756.2 11704.1 0.12 0.78 9536.3 1723.3 11259.6 2.55⋆ 0.80
12 9664.2 1742.8 11407.0 0.08 0.77 9536.3 1723.3 11259.6 2.55⋆ 0.80

100

4 9772.3 1722.6 11494.9 0.35 0.78 9652.7 1720.1 11372.8 0.05 0.80
8 9651.9 1743.9 11395.8 0.27 0.78 9574.9 1652.2 11227.1 4.73⋆ 0.80
12 9633.8 1739.7 11373.5 0.21 0.77 9574.9 1652.2 11227.1 4.73⋆ 0.80

140

4 10039.0 1740.1 11779.1 0.42 0.79 9705.0 1692.1 11397.1 0.13 0.80
8 9974.3 1748.7 11723.0 0.33 0.79 9639.5 1683.0 11322.5 0.06 0.80
12 9974.3 1748.7 11723.0 0.27 0.79 9592.1 1666.8 11258.9 0.04 0.80

Table 4.3: IEEE 123-Bus System: SAA vs. PSAA (η = 0.1)

Π1 ϑ (h)
SAA PSAA

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob

30

10 26715.3 6422.7 33138.0 0.33 0.86 25937.3 6396.0 32333.3 0.15 0.91
13 26127.5 6248.7 32376.2 0.28 0.86 25372.6 6210.7 31583.3 0.11 0.90
16 25972.4 6255.3 32227.7 0.21 0.85 25047.2 6251.8 31299.0 0.09 0.90

45

10 27019.2 6392.3 33411.5 0.42 0.87 26252.8 6305.3 32558.1 0.21 0.90
13 26407.7 6268.9 32676.6 0.39 0.86 26043.7 6365.3 32409.0 0.13 0.90
16 26149.3 6274.3 32423.6 0.34 0.86 25392.6 6216.6 31609.2 0.10 0.89

60

10 26931.0 6561.9 33492.9 0.61 0.87 25892.4 6410.8 32303.2 0.30 0.91
13 26772.4 6347.2 33119.6 0.57 0.87 25465.3 6304.3 31769.6 0.25 0.91
16 26073.5 6403.6 32477.1 0.53 0.87 25428.0 6309.8 31737.8 0.21 0.90

Table 4.4: IEEE 123-Bus System: SAA vs. PSAA (η = 0.2)

Π1 ϑ (h)
SAA PSAA

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob

30

10 25894.3 6407.1 32301.4 0.24 0.78 25283.4 6392.2 31675.6 0.14 0.80
13 25607.6 6379.2 31986.8 0.21 0.78 25076.9 6359.4 31436.3 0.11 0.80
16 25313.7 6392.4 31706.1 0.16 0.77 24764.0 6271.2 31035.2 0.07 0.79

45

10 26021.9 6307.6 32329.5 0.37 0.78 25506.3 6293.2 31799.5 0.18 0.80
13 25528.3 6517.4 32045.7 0.30 0.78 24892.6 6268.1 31160.7 0.13 0.80
16 24986.1 6492.2 31478.3 0.27 0.78 24508.3 6238.9 30747.2 0.11 0.80

60

10 26328.0 6398.2 32726.2 0.56 0.78 26017.3 6344.5 32361.8 0.26 0.81
13 26148.7 6362 32510.7 0.48 0.78 25370.4 6308.8 31679.2 0.24 0.80
16 25693.3 6417.4 32110.7 0.44 0.78 25091.2 6284.5 31375.7 0.19 0.80

Table 4.5: IEEE 33-Bus System: Storage vs. No Storage (η = 0.1)

(ϱ1, ϱ2)
without energy storage with energy storage

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) 10592.0 5243.3 15835.3 0.24 0.89 9952.0 5501.4 15453.4 0.26 0.90
(0.4,0.6) 10464.3 5372.8 15837.1 0.23 0.90 9873.8 5427.6 15301.4 0.29 0.91
(0.6,0.4) 10726.9 5194.2 15921.1 0.27 0.89 9908.2 5462.9 15371.1 0.28 0.90
(0.3,0.3) * 10143.7 5576.1 15719.8 0.38 0.89
(0.2,0.4) * 10471.5 5560.8 16032.3 0.39 0.89
(0.4,0.2) * 10239.2 5602.5 15841.7 0.43 0.89
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Table 4.6: IEEE 33-Bus System: Storage vs. No Storage (η = 0.2)

(ϱ1, ϱ2)
without energy storage with energy storage

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) 10527.7 5293.7 15821.4 0.16 0.80 9903.2 5460.4 15363.6 0.22 0.82
(0.4,0.6) 10332.5 5268.3 15600.8 0.20 0.79 9764.0 5503.9 15267.9 0.26 0.80
(0.6,0.4) 10200.4 5372.9 15573.3 0.21 0.80 9672.4 5423.5 15095.9 0.23 0.81
(0.3,0.3) * 10021.3 5690.3 15711.6 0.33 0.80
(0.2,0.4) * 10206.5 5575.1 15781.6 0.40 0.80
(0.4,0.2) * 10164.8 5625.0 15789.8 0.38 0.81

Table 4.7: IEEE 123-Bus System: Storage vs. No Storage (η = 0.1)

(ϱ1, ϱ2)
without energy storage with energy storage

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) 28274.9 19707.3 47982.2 0.44 0.89 26922.5 20311.6 47234.1 0.46 0.90
(0.4,0.6) 27944.6 19638.2 47582.8 0.37 0.89 26327.3 20610.4 46937.7 0.46 0.91
(0.6,0.4) 27826.9 19648.2 47475.1 0.39 0.89 26281.7 20409.3 46691.0 0.49 0.90
(0.3,0.3) * 28037.3 20416.3 48453.6 0.57 0.90
(0.2,0.4) * 27614.0 20882.5 48496.5 0.54 0.89
(0.4,0.2) * 27932.4 20741.3 48673.7 0.52 0.90

Table 4.8: IEEE 123-Bus System: Storage vs. No Storage (η = 0.2)

(ϱ1, ϱ2)
without energy storage with energy storage

1st ($) 2nd ($) Total cost ($) Gap Prob 1st ($) 2nd ($) Total cost ($) Gap Prob
(0.5,0.5) 27970.4 19504.8 47475.2 0.38 0.80 26392.7 19903.2 46295.9 0.37 0.81
(0.4,0.6) 27822.6 19762.4 47585.0 0.29 0.80 27041.5 20113.4 47154.9 0.41 0.81
(0.6,0.4) 28203.0 19793.0 47996.0 0.33 0.80 26808.3 20513.6 47321.9 0.35 0.81
(0.3,0.3) 29409.4 19442.7 48852.1 0.52 0.78 27751.4 19862.4 47613.8 0.45 0.79
(0.2,0.4) 29143.6 19627.1 48770.7 0.44 0.79 27948.3 20172.3 48120.6 0.48 0.79
(0.4,0.2) 29527.1 20062.6 49589.7 0.49 0.79 27684.0 20194.0 47878.0 0.38 0.80
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In the experiments, the maximum running time ϑ = 12 hours for the IEEE 33-Bus system and

ϑ = 16 hours for the IEEE 123-Bus system, and the planning horizon T = 3 weeks. Note that

our proposed TCC model (2.23) is general enough to consider a longer-term setting because

one can always set T to be years or seasons. Here our experiments consider a representative

snapshot of the long-term future by setting T to be a relatively small number. Correspondingly,

the cost parameters in the first stage of model (2.23), including the setup costs and the size-

based investment/maintenance costs of the RDG and ES units, have also been levelized over

the specific T time periods (weeks).

To match the planning horizon, we integrate every 3 of the 4000 weekly samples into a 3-week-

long sample (without repetition) to obtain 1333 new samples. For computational efficiency, the

size of the training data is set to Π1 = Π2 = 50 for the IEEE 33-Bus system and Π1 = Π2 = 30

for the IEEE 123-Bus system. As the training set is relatively small compared with the number

of random variables, we use the k -means clustering algorithm to improve the reliability of the

training samples. In particular, we randomly choose 200 of the 1333 samples and divide them

into 50 groups by the k -means algorithm. We then use the centers of the 50 groups as our

training samples. The remaining 1133 samples are used for testing.

We modify the active-power upper bounds of the DDG units (i.e., p̄tn) and the standard capac-

ities in X of the RDG units to match their designed load share in different cases. In particular,

let ϱ1 and ϱ2 be two nonnegative parameters, and let SUM be the expected total active load

(estimated from the real data and invariant to t). For each of the two DDG units, the active-

power upper bound p̄tn is adjusted to ϱ1 × SUM/2 for all t ∈ [T ]. The maximum standard

capacity of the RDG units x̄4 is adjusted from 7 MW to ϱ2 × SUM/4. The other three stan-

dard capacities in X are adjusted proportionally. For example, the minimum standard capacity

x̄1 is adjusted from 4 MW to ϱ2 × SUM/4 × 4/7. We conduct two sets of experiments with

η = 0.1 and η = 0.2, respectively. For each set of experiments, we set (ϱ1, ϱ2) to take six

different pairs of values, i.e., (0.5, 0.5), (0.4, 0.6), (0.6, 0.4), (0.3, 0.3), (0.2, 0.4), and (0.4, 0.2).

Note that (ϱ1, ϱ2) does not represent an interval. When (ϱ1, ϱ2) = (0.4, 0.6), it means that we

set ϱ1 = 0.4 and ϱ2 = 0.6. The results are shown in Tables 4.5 – 4.8.

When ϱ1 + ϱ2 = 1.0, the solutions with ES units lead to higher second-stage costs but lower

total costs than those without ES units. This indicates that ES installation is beneficial overall,
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despite leading to higher operational costs. Regarding computational efficiency, the optimality

gaps for the solutions with ES are no smaller than those without ES, but the difference is negli-

gible. Thus, considering ES installation increases the problem complexity, but not significantly.

When ϱ1 + ϱ2 = 0.6 (i.e., the DDG and RDG units may be insufficient to satisfy the load),

ES units are more crucial. Without ES units, we cannot find a feasible solution within the

time limit in any case. This indicates that the problems without ES units are likely to be

infeasible. However, with ES units, feasible solutions are found within the time limit, and the

actual feasible probabilities of the solutions are very close to the desired probabilities. This is

because more active power can be purchased or generated in advance when there are ES units,

and thus fulfill the load when the demand is high.

As an illustrative example, we consider the instance with (ϱ1, ϱ2) = (0.6, 0.4) and η = 0.2 in

the IEEE 33-Bus system. Without ES units, the solution sites (sizes) candidate RDG units at

Buses 4 (7 MW), 9 (6 MW), and 28 (7 MW). With ES units, the result shows that candidate

RDG units should be installed at Buses 3 (5 MW), 12 (3 MW), and 29 (7 MW), and that ES

units should be installed at Buses 2 (2.3 MW), 12 (1.8 MW), and 27 (2.8 MW). The latter

solution agrees with our intuition that storage units placed close to high-load buses play an

important role in balancing the supply and demand in the power grid. We also observe that ES

installation reduces the total required capacities of RDG units. This reduction lowers the first-

stage costs so much that the total costs are reduced, even though the operating costs increase

due to the operation of storage units.

Finally, all the above numerical results demonstrate that our proposed TCC model and PSAA

approach can effectively deal with the RDG and ES planning problem under significant un-

certainties. We note that, although we focus on such a planning problem in this thesis, the

proposed model and approach can also be applied to other practical problems under uncertainty

in the industry. For instance, we can apply the PSAA approach to solve the chance-constrained

unit commitment problems in [46] and chance-constrained optimal power flow problems in [41],

thereby reducing computational challenge. In general, many practical problems that consider

two-stage decision-making under uncertainty may be formulated as a TCC model and solved by

the PSAA approach. In addition, our proposed PSAA approach is a data-driven approach be-

cause (i) we use historical data to represent the possible scenarios of uncertain parameters and
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accordingly characterize chance constraints in our model; (ii) we use historical data to estimate

the cumulative distribution function of a single random parameter ξ′1 by a non-parametric esti-

mation technique; and (iii) once we obtain the first-stage solution of our model, we use real data

to test the effectiveness of the obtained solution, simulating real practices. Such an approach

can be applied to a wider range of practical problems.

4.6 Chance Constraints vs. No Chance Constraints

In this section, we conduct a comparative analysis of two models: one with chance constraints

and the other without. The stochastic programming model without chance constraints is de-

noted as (2.20), while the model with chance constraints is represented as (2.23). To facilitate

the analysis, we omit the consideration of ES units, resulting in the temporary removal of

terms related to ES units such as wrn, yr, f
t
r , g

t
r, and b

t
r from both models. The evaluation is

performed for a single time period T = 1, and we employ the same data and parameters as

used in Section 4.4.

To solve the two models, we utilize the SAA approach. The experimentation involves the IEEE

33-Bus system, and we vary the training data size Π1 = Π2 among the set 60, 100, 140. To

ensure tractability, the maximum running time for all instances is limited to 40 hours, thereby

guaranteeing the attainment of optimal solutions. For the model with chance constraints, we

specify a desired feasible probability of 1 − η, where η takes values from the set 0.1, 0.2. The

results of all instances are presented in Table 4.9, which provides a comprehensive overview of

the performance comparison between the models with and without chance constraints.

Table 4.9: IEEE 33-Bus System: Chance Constraints vs. No Chance Constraints

Π1
No Chance Constraints Chance Constraints (η = 0.2) Chance Constraints (η = 0.1)

1st ($) 2nd ($) Total cost ($) Prob 1st ($) 2nd ($) Total cost ($) Prob 1st ($) 2nd ($) Total cost ($) Prob
60 7371.8 1704.6 9076.4 0.32 9664.2 1742.8 11407.0 0.77 10510.0 1679.4 12189.4 0.84
100 7112.4 1925.0 9037.4 0.42 9633.8 1739.7 11373.5 0.77 10397.4 1721.3 12118.7 0.86
140 7676.2 1855.6 9531.8 0.35 9974.3 1748.7 11723.0 0.79 10471.3 1704.6 12175.9 0.84

Indeed, the inclusion of chance constraints in the models results in a higher probability of satis-

fying the demand, signifying an improvement in out-of-sample performance. By incorporating

chance constraints, the models provide a greater level of assurance in meeting the decision-

maker’s requirements. This increased level of reliability is particularly crucial in systems with
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inherent uncertainties, as it helps mitigate potential risks associated with demand satisfaction.

On the other hand, the model without chance constraints exhibits lower first-stage costs and

lower total costs across all instances. This finding can be attributed to the absence of proba-

bilistic constraints, allowing for more flexibility in the optimization process. Consequently, the

optimal solutions in the absence of chance constraints may necessitate the installation of fewer

RDG units or the use of RDG units with smaller capacities. However, the advantage of lower

costs in the model without chance constraints comes at the expense of potentially compromising

the system’s ability to reliably meet demand and ensure stable operation. This drawback high-

lights the necessity of considering chance-constrained models, which strike a balance between

cost-effectiveness and risk management. By incorporating chance constraints, these models pro-

vide more robust solutions that account for uncertainties and reduce the likelihood of demand

satisfaction failures or operational instabilities. In conclusion, the incorporation of chance con-

straints in the optimization models enhances their out-of-sample performance, ensuring a higher

probability of meeting demand requirements. While the model without chance constraints may

yield lower costs, it may sacrifice reliability and system stability. Therefore, the adoption of

chance-constrained models is essential to strike an optimal balance between cost efficiency and

system robustness in the presence of uncertainty.

4.7 Sensitivity Analysis

In this section, we investigate the impact of changing two key parameters on the planning results

for the distribution system. Specifically, we vary the maximum number of RDG units to be

installed, denoted as K̄, to examine its influence on the comparison between SAA and PSAA.

We also vary the total number of available ES units, denoted as R, to assess its impact on the

results with ES units. We fix all other parameters related to the distribution system, such as

setup cost, size-based cost, electricity price, fuel/emission price, capacity of the power distri-

bution line, active/reactive power output bound, and electrical resistance/reactance. Then, we

vary the maximum number of RDG units to be installed, K̄, and observe how this parameter

affects the comparison between SAA and PSAA. We analyze the solutions obtained from both

methods for different values of K̄ to understand the trade-offs between the two approaches in
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terms of cost, reliability, and feasibility. By examining the effects of these parameters, we gain

valuable insights into the behavior of the optimization models under different system configu-

rations and constraints. Understanding how changes in K̄ and R impact the planning results

will assist in making informed decisions regarding RDG unit deployment and the inclusion of

ES units in the distribution network.

4.7.1 K̄

In this experiment, we focus on the IEEE-33 Bus system, considering the impact of varying the

maximum number of RDG units to be installed, denoted as K̄. We ignore ES units and assume

a single time period T = 1 with the same data and parameters as mentioned earlier. The

training data size Π1 = Π2 is varied among the set 60, 100, 140. The desired feasible probability

is set at 1 − η = 0.9, and the maximum running time is limited to 40 hours to ensure all

instances obtain the optimal solution.

In Table 4.10, the performance of all instances is illustrated for the values of K̄ ∈ 2, 3, 4.

Notably, the model becomes infeasible when K̄ = 2, resulting in no reported results for this

case. This outcome indicates that reducing the number of RDG units to only two is insufficient

to ensure normal operation of the system.

On the other hand, the results clearly demonstrate that K̄ = 3 emerges as the most favorable

choice for the IEEE-33 Bus system. When K̄ = 3, the system achieves the best trade-off

between cost, reliability, and feasibility. Interestingly, even when K̄ = 4, the optimal number

of RDG units to be installed remains at three, indicating that adding more RDG units does

not provide any significant improvement.

Based on the experimental findings, it is evident that setting K̄ = 3 is the most suitable option

for the IEEE-33 Bus system. This decision ensures that the system can operate normally,

without the risk of infeasibility that arises when reducing the number of RDG units. Moreover,

increasing the number of RDG units beyond three does not yield any additional benefits in

terms of cost or system performance. Therefore, the optimal configuration with three RDG

units is the most efficient and reliable choice for this distribution system.
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Table 4.10: IEEE 33-Bus System: K̄ = 3 or K̄ = 4

Π1
SAA PSAA

1st ($) 2nd ($) Total cost ($) Prob 1st ($) 2nd ($) Total cost ($) Prob
60 10510.0 1679.4 12189.4 0.84 10184.6 1645.8 11830.4 0.89
100 10397.4 1721.3 12118.7 0.86 10105.6 1606.5 11712.1 0.89
140 10471.3 1704.6 12175.9 0.84 10173.0 1625.1 11798.1 0.90

4.7.2 R

In this analysis, we consider the impact of varying the total number of available ES units,

denoted as R, in the IEEE-33 Bus system. The other parameters and data remain the same

as mentioned in Section 4.5. The desired feasible probability is set at 1 − η = 0.9, and the

maximum running time is limited to 40 hours to ensure all instances obtain the optimal solution.

We illustrate the performance of all instances in Table 4.11 for the values of R ∈ 2, 3, 4. The

results highlight the trade-offs involved when installing ES units in the power system.

When ρ1 + ρ2 = 1: In this case, the increase in the number of ES units may not lead to a

significant reduction in the total cost. This is because the output in the system may already

be sufficient, and it may not be necessary to increase the number of ES units. The additional

setup costs and operating costs of ES units may offset the potential cost reduction achieved by

reducing the capacity of RDG units. When ρ1 + ρ2 = 0.6: Here, increasing the number of ES

units can result in a notable reduction in the total cost. The reason is that the output of the

system is insufficient, and installing more ES units can substantially decrease the cost of RDG

units. The costs of the additional ES units are relatively small compared to the reduced costs

of RDG units, leading to a net cost reduction.

In addition to cost considerations, the number of ES units also affects the probability of satis-

fying the demand in the testing samples. Increasing the number of ES units can enhance the

system’s ability to meet demand with a higher probability. This improvement in reliability is

an important factor to consider when making decisions about the number of ES units to install.

In conclusion, the decision to install ES units in the power system involves various trade-offs.

When the output in the system is sufficient (i.e., ρ1 + ρ2 = 1), increasing the number of ES

units may not yield significant cost reductions. However, when the output is insufficient (i.e.,

ρ1 + ρ2 = 0.6), increasing the number of ES units can lead to cost savings and improve the
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probability of satisfying the demand. Careful consideration of these factors is essential to make

informed decisions regarding the optimal number of ES units in the distribution network.

Table 4.11: IEEE 33-Bus System: Change R

(ϱ1, ϱ2)
R = 2 R = 3 R = 4

1st ($) 2nd ($) Total cost ($) Prob 1st ($) 2nd ($) Total cost ($) Prob 1st ($) 2nd ($) Total cost ($) Prob
(0.5,0.5) 10418.2 5492.0 15910.2 0.90 9952.0 5501.4 15453.4 0.90 9407.3 5641.1 15048.4 0.91
(0.4,0.6) 9741.6 5297.4 15039.0 0.89 9873.8 5427.6 15301.4 0.91 10231.4 5713.2 15944.6 0.91
(0.6,0.4) 9814.7 5620.0 15434.7 0.90 9908.2 5462.9 15371.1 0.90 9631.5 5666.0 15297.5 0.90
(0.3,0.3) 11371.7 5391.6 16763.3 0.89 10143.7 5576.1 15719.8 0.89 9613.6 5432.9 15046.5 0.89
(0.2,0.4) 10649.3 5409.2 16058.5 0.87 10471.5 5560.8 16032.3 0.89 9904.3 5409.2 15313.5 0.91
(0.4,0.2) 11027.1 5419.1 16446.2 0.88 10239.2 5602.5 15841.7 0.89 10015.0 5548.6 15563.6 0.91
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Conclusions

Distribution grid operators face great challenges in deciding the locations and capacities of

RDG and ES units due to significant uncertainties and complexities of distribution systems

(e.g., ACOPF). To support such a decision-making problem, we develop a novel TCC model to

ensure system reliability, minimize costs, and improve renewable energy penetration. One key

feature of our model is that the chance constraint ensures that all the operational constraints

are satisfied simultaneously with a high probability, leading to system reliability. We use

two sampling techniques to reformulate our developed model, leading to the standard SAA

formulation and our proposed PSAA formulation. The novelty of the PSAA formulation is

that it introduces only continuous variables corresponding to the samples (as compared to

integer variables in the SAA formulation) and uses historical data to improve its performance.

Our extensive experiments show that the PSAA formulation performs better than the SAA

formulation. The PSAA provides better locations and capacities of the RDG and ES units

in a shorter time with a lower total cost and achieves a better desired probability of ensuring

system feasibility than the SAA. The PSAA also reduces the optimality gap by more than 50%

as compared to the SAA. We finally demonstrate the significance of ES units in reducing total

costs and improving the power system balance.

This research can be extended in various directions. First, as our proposed TCC model and

PSAA approach is general enough, it would be interesting to apply the TCC model and PSAA

approach to solve other practical problems in power system planning and operations. Second,
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the PSAA approach always finds a better solution in a shorter time than the SAA approach

in our numerical experiments, but we do not have a theoretical proof for such results. A

theoretical study would be appealing. Third, although we consider a radial distribution network

in this thesis, there can be other types of distribution networks, e.g., meshed grids [15] and

multiphase grids [18]. One can apply various approximations (e.g., semidefinite programming

[24]) to formulate the corresponding ACOPF constraints. Fourth, although we adopt Bender’s

decomposition algorithms to improve computational efficiency, more advanced algorithms can

be developed. We leave them to future research.
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Nomenclature

A. Indices and Sets

n Index of buses.

k Index of renewable distributed generation (RDG) units.

r Index of energy storage (ES) units.

N Set of all the buses.

E Set of all the power distribution lines.

Nn Set of all the buses connected to a given Bus n ∈ N , i.e., Nn := {m | (n,m) ∈ E}.

B0 Set of buses that are connected to Bus 0.

B1 Set of buses installed with dispatchable distributed generation (DDG) units.

B2 Set of buses installed with reactive power sources.

X Set of standard capacities of RDG units, i.e., X := {x̄1, . . . , x̄L}.

[K] {1, 2, . . . , K}, for any K ∈ Z+.

B. Parameters

c0kn Setup cost of placing the kth RDG unit at Bus n.

d0rn Setup cost of placing the rth ES unit at Bus n.

c1k/c
2
k Size-based investment/ maintenance cost of the kth RDG unit.
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d1r/d
2
r Size-based investment/ maintenance cost of the rth ES unit.

ctp/c
t
q Electricity price of purchasing active/reactive power from the main grid via Bus 0.

cfn/c
e
n Fuel/emission price for the DDG units at Bus n.

ω Emission factor of the DDG units (kg/kWh).

K Total number of available RDG units.

R Total number of available ES units.

T All the time intervals in the planning horizon.

N Total number of all the buses.

K̄ Maximum number of RDG units to be installed.

LCmn Capacity of a power distribution line (m,n) ∈ E .

(p̄tn, p
t
n
) Active power output bounds of DDG unit n in period t.

(q̄tn, q
t
n
) Reactive power output bounds of reactive power source n in period t.

Rmn Electrical resistance of line (m,n).

Xmn Electrical reactance of line (m,n).

δn/τn Binary indicator of whether a DDG unit/ a reactive power source is at Bus n.

v/v̄ Upper/lower bound of voltage magnitude at a bus.

ȳr/yr Maximum/minimum capacity of the rth ES unit.

e1/e2 ES charging/discharging unit cost.

η Violation probability.

γ ES efficiency.

b0r Initial power level of the rth ES unit.

Πi Total number of data samples of different types.
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C. Random Variables

dtpn/d
t
qn Active/reactive load at Bus n in period t.

stk Active power output efficiency of the kth RDG unit in period t.

ξt Vector of uncertainty in compact form in period t, i.e., [dtp1, . . . , d
t
pN , d

t
q1, . . . , d

t
qN , s

t
1, . . .,

stk]
⊤.

D. Decision Variables

zkn Binary indicator of whether the kth RDG unit is located at Bus n.

ukl Binary indicator of whether the capacity of the kth RDG unit is the lth element in X .

wrn Binary indicator of whether the rth ES unit is located at Bus n.

xk Size of the kth RDG unit.

yr Capacity of the rth ES unit.

f t
r/g

t
r Active power that is charged/ discharged at the rth ES unit in period t.

pt0/q
t
0 Active/ reactive power purchased from the main grid via Bus 0 in period t.

P t
mn Active power flow from Bus m to n in period t.

Qt
mn Reactive power flow from Bus m to n in period t.

V t
n Complex voltage at Bus n in period t.

I tmn Complex current from Bus m to n in period t.

ptn/q
t
n Active/ reactive power output of the DDG unit/ reactive power source at Bus n in period

t.

btr Active power of the rth ES unit in period t.

LSt
imn Load-shedding variables.

z [zkn,∀ k ∈ [K], n ∈ N ]⊤.
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x, u [x1, . . . , xK ]
⊤, [ukl, ∀ k ∈ [K], l ∈ [L]]⊤

y,w [y1, . . . , yR]
⊤, [wrn,∀ r ∈ [R], n ∈ N ]⊤.
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