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Abstract

In this research, we focus on data-driven distributionally robust controls for the

quantity-based network revenue management (NRM) problem in which the de-

cision maker accepts or rejects each arriving customer request irrevocably with

the goal of maximizing the total expected revenue over a finite selling horizon

given limited resources. Instead of the deterministic linear programming (DLP)

formulation widely adopted in literature, we approximate the value function of dy-

namic programming (DP) for NRM problem as probabilistic nonlinear program-

ming (PNLP) in order to capture the randomness in demand. We further take the

uncertainty in distribution estimation resulting from either the limited informa-

tion or the changing environment into account by incorporating the distribution

ambiguity into the PNLP formulation. We therefore solve a distributionally ro-

bust optimization (DRO) problem to determine an optimal partitioned allocation

of capacity to each product against a worst-case distribution in the ambiguity set.

We assume that the decision maker does not know the distribution of demand but

has access to historical data, which is assumed to be independent and identically

distributed (i.i.d.). In this setting, we define our data-driven ambiguity set as a

confidence region of a goodness-of-fit (GoF) hypothesis test and then formulate a

tractable robust static model.
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Furthermore, we extend our robust static NRMmodel to a multi-stage version.

More specifically, we formulate the multi-stage robust NRM model as a robust

DP and solve this robust DP using approximate dynamic programming (ADP)

approach. The resulting robust ADP model generates robust dynamic bid prices

from a conic optimization to help us construct capacity allocation policies. We also

provide a constraint generation procedure for solving this robust ADP. To improve

the efficiency of problem-solving, we further derive an equivalent reformulation

for the robust ADP model, which is computationally tractable and of practical

interpretation. By solving this reformulation that approximates the evolution of

the selling system under demand uncertainty, we can construct a robust dynamic

booking limit policy. We also verify the performance of both our robust static and

dynamic policy via numerical experiments.
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Chapter 1

Introduction

The area of revenuemanagement (RM) arose in the 1980s from the airline industry.

The airlines tactically allocate limited capacity to various classes of customers in

order to maximize revenues. Since then, it has been widely studied and combined

with other tactics such as dynamic pricing. Also, its spirit has been successfully

applied to many industries including railways, hotels and rental cars. The book

(K. T. Talluri, Van Ryzin, and Van Ryzin 2004) provides a thorough overview

and numerous instances of this area. In cases where there are several different

products and each product may consume multiple types of resources (e.g., raw

materials, travel legs or hotel booking horizons), the problem described above

is often referred to as network revenue management (NRM) (Williamson 1992;

Gallego and Van Ryzin 1997).

In the NRM problem, a set of resources with limited capacities are waiting

to be allocated to various customers who arrive sequentially over a finite time

horizon. Customers are divided into different classes according to their usage of

resources and the prices (which are assumed to remain unchanged) that they pay
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3

for the corresponding products. Once a customer arrives, the decision maker has

to immediately make a decision, either accept or reject the customer. No waiting,

backlog or later adjustment is allowed. If the customer is accepted and the re-

maining capacity is enough to serve, she consumes certain units of each resource

requested and pays the corresponding price associated with her class. Otherwise,

no resources are consumed while no revenue is generated. The resources are com-

monly assumed perishable in NRM problem so that unused resources at the end of

selling horizon have no salvage value. The decision maker devotes himself to ex-

ploring an effective admission control policy to maximize the cumulative expected

revenue under the capacity constraints.

Note that the formulation we discussed above is more specifically referred

to as the “quantity-based” NRM problem. Another widely studied formulation is

known as “price-based” NRM problemwhere the decision maker tactically adjusts

product prices instead of controlling product allocation. (Maglaras and Meissner

2006) showed that these two formulations are actually equivalent to each other

in some special cases, such as the single resource multi-product model. In this

research, we work on the quantity-based NRM formulation, which is also known

as network capacity control, and we will drop the “quantity-based” through the

remaining part of this thesis for simplicity of notations.

The NRM problem can be formulated as a dynamic programming (DP). For

any network of realistic size, however, a crucial challenge is that computing the

value function exactly is impractical because the state space grows exponentially

with the size of resources. Consequently, one often approximate the value func-

tion. Most approximation methods proposed in the literature are based on one of

two basic strategies. One is to decompose the network problem into a collection of
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single-resource problems. The other strategy is to simplify the network model by

posing the problem as a static mathematical programming problem. Notice that the

first strategy cannot be appropriately applied to some problems because separat-

ing the problems by resources can result in losing important network information.

For example, the airline seat inventory control problem we stated above cannot

be decomposed for each individual flight leg since some itineraries use multiple

resources simultaneously. For the second strategy, three types of approximations

are popularly used, which are the deterministic linear program (DLP), probabilis-

tic nonlinear program (PNLP) and randomized linear program (RLP) method. The

solutions of these (N)LP-based approximations are usually leveraged to construct

heuristic admission control policies and then guide online decision making. Due

to its simplicity and computational efficiency, the DLP formulation is fairly pop-

ular in literature and practice. An optimal solution to the DLP has been lever-

aged to design booking limit controls, nested controls (K. Talluri and Van Ryzin

2004), and probabilistic allocation policies (Reiman and Q. Wang 2008; Jasin and

Kumar 2012; Bumpensanti and H. Wang 2020). Also, the optimal dual solution

of the DLP can serve as bid prices for bid-price control policies (K. Talluri and

Van Ryzin 1998). The DLP formulation is obtained by replacing all random de-

mands with their expectations. This exactly makes the DLP simple and efficient

while also leads to an upper bound on the optimal revenue since the capacity con-

straints here are only satisfied in expectation. Instead of ignoring all uncertainty

in the forecasts, PNLP captures the randomness in demand by incorporating the

expected sales of product j, E[min {Dj, yj}], into the objective function under this

partitioned allocation. This actually leads to a lower bound on the optimal revenue

since partitioned allocations are certainly one type of the feasible policies for the
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network problem. Another approach that can incorporate stochastic information

into the DLP is RLP method, where the expectation of demand in the demand con-

straint of DLP is replaced by the random demand vector itself. The main idea of

this approach is to estimate the gradient of approximate value function via demand

simulation.

In addition, to include updated information, re-solving heuristics are widely

used. This category of techniques re-optimizes the approximate (N)LP formula-

tion over time while substituting the initial capacity with the real remaining capac-

ity at each re-solving epoch. One might expect that re-solving the DLP would lead

to higher revenue as it incorporates themost recently updated information acquired

through time. However, someworks point out that re-solving the DLPmayworsen

the revenue result (Cooper 2002; L. Chen and Homem-de-Mello 2010; Jasin and

Kumar 2013). In general, the performance of re-solving depends heavily on the

network type, the demand estimation, and the frequency of re-optimization.

On the other hand, accurate forecasting is key to the success of almost all RM

problems. In real-world situations, complete information about the distribution of

customer demand is unknown. In this case, most NRM models assume that de-

mand can be characterized by either a stochastic process depicting the customer

arrival pattern or a probability distribution describing the aggregate number of de-

mand. However, it is quite often that the actual distribution is not consistent with

our assumption when the information about demand is limited. This can result

in significant forecasting error and then ineffective RM. One approach taken in

the literature to correct such model uncertainty is so-called distributionally robust

optimization (DRO). In the framework of DRO, one assumes that the unknown dis-

tribution of the random variable belongs to an ambiguity set A of possible prob-



6

ability distributions and solves the minimax or maximin problem of computing

the decision variable, which is optimal against a worst-case distribution in this set.

Such a DRO approach is motivated by the reality that perfect knowledge of the

exact distribution of a given random process is rarely available (Scarf, Arrow, and

Karlin 1957; Žáčková 1966; Dupačová 1987; Prekopa 1995), and we refer the

reader to (Rahimian and Mehrotra 2019) for a recent survey on such approaches.

Depending on what type of distribution information is available, different forms

of ambiguity sets can be constructed. Ambiguity sets having been studied include

moment-based, probabilistic metric-based, and goodness-of-fit test-based ambi-

guity sets, which are not strictly exclusive to other types. More detailed reviews

and connections with this research will be provided in Chapter 2.

Combining these, in this study, we investigate the distributionally robust con-

trols for the NRM problem with historical data. Instead of the DLP formulation

widely used in literature, we approximate the value function of DP for NRM prob-

lem as PNLP in order to capture the randomness in demand. We further take the

uncertainty in distribution estimation resulting from either the limited information

or the changing environment into account by incorporating the distribution ambi-

guity into the PNLP formulation. We therefore solve a DRO problem to determine

an optimal partitioned allocation of capacity to each product against a worst-case

distribution in the ambiguity set. In this study, we assume that the decision maker

does not know the distribution of demand but has access to historical data, which

is assumed to be independent and identically distributed (i.i.d.). In this setting,

we define our data-driven ambiguity set as confidence region of goodness-of-fit

(GoF) hypothesis tests and then formulate a tractable robust static model. Fur-

thermore, we extend this robust static NRM model to a multi-stage version. More
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specifically, we formulate the multi-stage model as a robust DP and solve this ro-

bust DP using approximate dynamic programming (ADP) approach. This robust

ADP model generates robust dynamic bid prices from a conic optimization to help

us construct capacity allocation policies. We also provide a constraint generation

procedure for solving this robust ADP. To improve the efficiency of problem-

solving, we further derive an equivalent reformulation for the robust ADP model,

which is computationally tractable and of practical interpretation. By solving this

reformulation that approximates the evolution of the selling system under demand

uncertainty, we can construct a robust dynamic booking limit policy. We finally

verify the performance of both our robust static and dynamic policy via numerical

experiments. To the best of our knowledge, this is the first endeavor to address the

demand distribution ambiguity by incorporating distributionally robust approach

in the context of quantity-based NRM and further to study the multi-stage robust

NRM model.



Chapter 2

Literature Review

Our study is mainly related to two streams of research in the literature: NRM and

DRO. In what follows, we review each stream separately and then mention the

most related works to our research.

2.1 Network Revenue Management

In Chapter 1, we actually have reviewed certain amount of works for NRM.Hence,

we just make some complements in this section. We study in this research the

NRM problem, which can be solved using DP. Because of the curse of dimen-

sionality, however, computing the exact DP solution is often intractable. There-

fore, NRM problem is often solved heuristically, either by approximating the value

function in the DP (Bertsimas and Popescu 2003; Adelman 2007) or by narrow-

ing down the set of feasible policies. Popular approximate methods have been

reviewed in Chapter 1 and here, we briefly review commonly used control poli-

cies: partitioned booking limit and bid price control. Partitioned booking limit

8



2.1. NETWORK REVENUE MANAGEMENT 9

sets a predetermined quota for requests that can be accepted for each product and

accepts customers in a first-come-first-serve (FCFS) fashion (Williamson 1992).

The partitioned booking limit is given by DLP solution if the random demands

are replaced by their expectations or by PNLP solution if we conserve the ran-

domness in demand. Bid price control leverages the optimal dual variable of the

approximate mathematical program to make allocation decisions. Bid prices are

defined as the Lagrangian multipliers associated with the capacity constraints of

the approximate mathematical program and value the opportunity cost of a unit of

capacity. A request for one product is accepted if and only if the collected revenue

exceeds the estimated cost of consuming all the requested resources. Although bid

price control is in general not optimal (K. Talluri and Van Ryzin 1998), it is widely

used in practice.

To take system dynamics into account when studying NRM problem, one

widely adopted dynamic framework is approximate dynamic programming (ADP)

(Adelman 2007; D. Zhang andAdelman 2009; Topaloglu 2009; Tong and Topaloglu

2014; Kunnumkal and K. Talluri 2016). More specifically, this approach first re-

formulates the DP of NRM problem as a linear program (LP), where the number

of variables and constraints grow exponentially with the number of resources and

products. Then the main idea of this approach is approximating the value function

as a weighted sum of a collection of basis functions, by which the LP is with far

fewer variables. Especially, (Adelman 2007) approximates the value function as

an affine function of the state. Furthermore, the coefficients of the affine function

are interpreted by Adelman as the marginal resource value in each time period

and used to construct bid price control policy where the bid prices are dynami-

cally changing over time. This work laid a foundation for many research focus on
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methods for computing dynamic bid prices under different problem settings(Tong

and Topaloglu 2014; Vossen and D. Zhang 2015; R. Zhang, Samiedaluie, and D.

Zhang 2022).

One increasingly popular stream of operations management (OM) and revenue

management (RM) literature studies online learning, where the underlying demand

function or other item we concerned is unknown and needs to be learned on the

fly from realized data. To the best of our knowledge, after the work of (Besbes

and Zeevi 2009), many papers consider demand learning settings using the price-

based finite-inventory revenue management model from (Gallego and Van Ryzin

1994) as the ground truth model (Besbes and Zeevi 2012; Z. Wang, Deng, and Ye

2014; Boer and Zwart 2015; Cheung, Simchi-Levi, and H. Wang 2017; Ferreira,

Simchi-Levi, and H. Wang 2018; Yiwei Chen and Shi 2023). In contrast to the

situation of works for price-based RM, to the best of our knowledge, almost no

work has been done for quantity-based RM with online learning approach.

2.2 Distributionally Robust Optimization

There is a vast body of literature on (distributionally) robust optimization ap-

proaches to operations management (OM) and RM including (network) capacity

control (Birbil et al. 2009; Perakis and Roels 2010), inventory management (Klab-

jan, Simchi-Levi, and Song 2013; Das, Dhara, and Natarajan 2021), pricing (Lim

and Shanthikumar 2007), and hospital admission (Meng et al. 2015). We refer the

reader to an excellent survey by (Lu and Shen 2021) for more information and an

overview of robust OM and RM. However, RO is thought to be too conservative in

many cases because its optimality is usually attained at the extreme values of the
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random variable that seldom occur. To circumvent this issue, the DRO approach

has received significant attention in recent years. In this framework, the objective

is to optimize the worst-case expected cost over a distribution from the ambiguity

set, which contains possible distributions of the random variable.

The ambiguity set construction relies on the information about distribution

we have. When certain distributional information such as mean and variance is

known, the DRO approach can be applied (Perakis and Roels 2008; Bertsimas,

Doan, et al. 2010; Delage and Ye 2010; Zymler, Kuhn, and Rustem 2013). This

type of ambiguity set is generally referred to moment-based ambiguity set.

An alternating way of constructing ambiguity set is commonly called proba-

bilistic metric-based or statistical distance-based ambiguity set, which generally

requires historical realizations. In this setting, the actual distribution is believed to

be close to a known nominal or most likely distribution (e.g., empirical distribution

fitted from historical data), and the ambiguity set can be constructed to contain all

distributions that are close to this distribution with respect to the prescribed prob-

abilistic metric, such as ϕ-divergence, Kullback-Leibler divergence and Wasser-

stein distance (Ben-Tal et al. 2013; Z. Wang, Glynn, and Ye 2016; Jiang and Guan

2016; Mohajerin Esfahani and Kuhn 2018). Most papers on data-driven DRO

(DD-DRO) also belong to this stream. In addition, in the DD-DRO or DD-RO

field, some literature define ambiguity sets as confidence regions of goodness-of-

fit (GoF) hypothesis tests. For example, (Klabjan, Simchi-Levi, and Song 2013)

studies a stochastic lot-sizing problem under discrete distributional uncertainty de-

scribed by Pearson’s χ2 GoF test and develops a dynamic programming approach

to this particular problem. They also establish conditions for asymptotic conver-

gence for this problem. Also, GoF test can be used to construct uncertainty set for
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data-driven robust optimization (Bertsimas, Gupta, and Kallus 2018a; Ye Chen

et al. 2022). To our knowledge, constructing ambiguity set using statistical hy-

pothesis tests attracts relatively less attention than do the other two approaches to

obtain ambiguity set stated above, yet proved to bewith nice properties (Bertsimas,

Gupta, and Kallus 2018b). More specifically, linking sample average approxima-

tion (SAA), DRO, and hypothesis testing of goodness-of-fit, (Bertsimas, Gupta,

and Kallus 2018b) systematically studies the theory and properties of DD-DRO

approach with confidence region-based ambiguity set, to which they provide a

term Robust SAA. They show that Robust SAA not only inherits SAA’s favorable

asymptotic convergence and tractability, but also enjoys a strong finite sample

performance guarantee for a wide class of optimization problems, and demon-

strate that solutions of Robust SAA are stable, even for small to moderate N . We

consider the DD-DRO procedure in our work to be Robust SAA because of its

good performance in tractability, stability, asymptotic and finite-sample guaran-

tees. Furthermore, since our approach is based on the univariate test, in terms

of methodology, there is no significant difference between the hypothesis-based

and statistical distance-based approaches. Actually, in many cases, the statistical

distance can be easily translated into a hypothesis GoF test, e.g., GoF test based

on Wasserstein distance, especially for univariate random variable. As a result,

we can easily incorporate many statistical distance-based ambiguity sets in our

framework.

We end the literature review by mentioning some most related papers on our

research. (Birbil et al. 2009) studies the robust single-leg revenue management

problem. They take into account the estimation error of the demand distribu-

tions and arrival probabilities in static and dynamic setting respectively. They
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propose efficient algorithms to compute robust booking limits under ellipsoidal

uncertainty. We note that they also use the PNLP formulation to approximate the

original single-leg problemwhereas our PNLP is amore complex network version.

(Perakis and Roels 2010) develops robust formulations for the NRM problem un-

der polyhedral uncertainty to maximize the worst-case revenue and to minimize

the worst-case regret. They also develop an efficient heuristic to compute min-

imax regret booking limits in a general network. Unlike their assumption that

the aggregate demand belongs to a polyhedral uncertainty set, we assume the true

distribution of aggregate demand to be in an ambiguity set constructed by given

historical data to circumvent the conservative issue. Last but not least, to the best

of our knowledge, our data-driven multi-stage robust NRM problem is the first

study that lies at the intersection of DRO and ADP with applications in RM field.



Chapter 3

Robust Static Model

In this chapter, we study the static model, where the random variable is the aggre-

gate demand during the whole selling horizon. In addition, the control policy is

determined at the beginning of selling and remains unchanged during the whole

time horizon.

Let the number of time periods be T . For a positive integer T , let [T ] denote

the set {1, ..., T}. Note that T is assumed to be finite to ensure our finite time

horizon setting. There are n classes of products indexed by j ∈ [n] andm classes

of resources indexed by l ∈ [m], where resource l has initial capacity Cl ∈ R+.

We denote the initial capacity vector asC = [C1, ..., Cm]
T. r = [r1, ..., rn]

T is the

revenue vector, where rj ∈ R+ is the revenue produced by selling a product j for

all j. If a customer requesting product j is accepted, Al,j ∈ R+ units of resource l

are used to satisfy this demand. We represent the information of resources required

to sell a product j as the vectorAj = [A1,j, ..., Am,j]
T, and further define the bill-

of-materials (BOM) matrix as A = [A1; ...;An], A ∈ Rm×n
+ . Let the aggregate

demand to come during selling horizon for each product j ∈ [n] be denoted by

14
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Dj (demand over the periods 1, · · · , T ) with mean µj . Let D = [D1, · · · , Dn]
T

and µ = E [D] denote the vector of demands and mean demands, respectively.

Given two real vectors a, b ∈ Rn, let a ∧ b := [min {a1, b1} , · · · ,min {an, bn}]T,

a ∨ b := [max {a1, b1} , · · · ,max {an, bn}]T, and a+ := a ∨ 0.

3.1 Approximations and Control Policies

The NRM problem can be formulated as a dynamic program (DP). Because of

the curse of dimensionality, however, computing the exact DP solution is often

intractable. Therefore, NRM problem is often solved approximately, either by ap-

proximating the value function in the DP or by narrowing down the set of feasible

policies. We review some previous work on approximations and control policies

in network revenue management applications that are the most pertinent to our

own work.

3.1.1 Deterministic Linear Program (DLP)

Treating demand as if it were deterministic and equal to its mean µ, the DLP

method uses the approximation

V DLP (C) = max
y

n∑
j=1

rjyj (3.1a)

s.t.
n∑

j=1

Al,jyj ≤ Cl, ∀l ∈ [m], (3.1b)

0 ≤ yj ≤ µj, ∀j ∈ [n]. (3.1c)
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The decision variables y = (y1, · · · , yn) represent a static partitioned allocation

of capacity for each of the n products. Capacity constraint (3.1b) specifies that

the expected consumption of allm resources cannot exceed their initial capacities,

and demand constraint (3.1c) specifies that the number of accepted requests from

product j cannot exceed the expected number of total demand, µj . Using Jensen’s

inequality, one can show that the optimal objective value of DLP approximation

is an upper bound on the optimal value function (K. T. Talluri, Van Ryzin, and

Van Ryzin 2004). Intuitively, DLP is a relaxation of the original problem, because

it only requires the capacity constraints to be satisfied in expectation.

3.1.2 Probabilistic Nonlinear Program (PNLP)

The main drawback of DLP approximation is that it treats demand as if it equals

its mean and does not account for demand uncertainty in the forecasts. Instead of

ignoring all other distributional information, the PNLP method uses the approxi-

mation

V PNLP (C) = max
y

n∑
j=1

rjE [min {Dj, yj}] (3.2)

s.t.
n∑

j=1

Al,jyj ≤ Cl, ∀l ∈ [m],

yj ≥ 0, ∀j ∈ [n].

The term E [min {Dj, yj}] in the objective function, which captures the ran-

domness in demand, is the expected sales of product j under this static partitioned

allocation. Notice that solving (3.2) needs more information than solving (3.1). In

(3.1), only the mean demands are used as inputs, while in (3.2) the distributions
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of demands are needed to formulate the objective function. Assuming we have

access to historical data samples of size N , we can apply a widely adopted and

easy-to-implement stochastic optimization method, Sample Average Approxima-

tion (SAA), to the PNLP model.

V PNLP
SAA (C) = max

x,y

1

N

N∑
i=1

n∑
j=1

rjxj,i (3.3)

s.t. y ∈ Y,

xj,i ≤ Di
j, xj,i ≤ yj, ∀i ∈ [N ], j ∈ [n],

where Di
j denotes the ith sample of demand for product j and Y is the feasible

region of problem (3.2), i.e.,

Y :=

{
y ∈ Rn

+ :
n∑

j=1

Al,jyj ≤ Cl, ∀l ∈ [m]

}
.

We use Y to represent the feasible region of problem (3.2) in the remaining part

of the thesis.

3.1.3 Control Policies

Suppose that we have obtained an optimal solution y∗ for either the DLP or PNLP

model. With this solution, we can implement the booking limit (BL) control pol-

icy, which is a commonly used admission control policy. Under this policy, the

decision maker sets a predetermined quota for each customer class j and accepts

requests up to those limits. We assume that each order is for one unit from one

customer class, which is without loss of generality since we can treat larger or-
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ders as multiple individual orders. Let y∗ be the fixed quota vector for the BL

policy. The admission policy for determining whether to serve the kj th order from

customer class j is given by:

πBL
j (kj) := I(kj ≤ y∗j ), ∀j ∈ [n], (3.4)

where I(·) is the indicator function.

Another widely adopted admission control policy is bid price control (BP),

which leverages bid prices to represent the marginal value or opportunity cost of a

unit of capacity. Prior to delving into this policy, we introduce the following dual

problems of DLP and the SAA version of PNLP, respectively:

min
P ,W

m∑
l=1

PlCl +
n∑

j=1

Wjµj (3.5a)

s.t.
m∑
l=1

Al,jPl +Wj ≥ rj, ∀j ∈ [n], (3.5b)

P ,W ≥ 0, (3.5c)

and

min
P ,W

m∑
l=1

PlCl +
n∑

j=1

N∑
i=1

Wj,iD
i
j (3.6a)

s.t.
m∑
l=1

Al,jPl +
N∑
i=1

Wj,i ≥ rj, ∀j ∈ [n], (3.6b)

0 ≤ Wj,i ≤
rj
N
, ∀i ∈ [N ], j ∈ [n], (3.6c)

P ≥ 0. (3.6d)
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In the dual formulation of DLP or PNLP, Pl are dual prices on capacity constraints,

i.e.,
∑n

j=1 Al,jyj ≤ Cl, ∀l ∈ [m], and Wj or Wj,i are dual prices on demand con-

straints, i.e., yj ≤ µj, ∀j ∈ [n] or xj,i ≤ Di
j, ∀i ∈ [N ], j ∈ [n]. Typically, the

bid prices are computed as optimal dual prices on capacity constraints, which we

denote P ∗. Based on the optimal dual prices P ∗
l for each resource l, the decision

maker can set the BP policy as

πBP
j (kj) := I

(
rj ≥

m∑
l=1

Al,jP
∗
l ,Ckj ≥ Aj

)
, ∀j ∈ [n], (3.7)

where Ckj represents the remaining capacity when the kj
th customer requesting

product j arrives. Under this control policy, once a customer for product j arrives,

the decision maker accepts the request only if the price the customer pays, rj , is

higher than the aggregated bid price,
∑m

l=1 Al,jP
∗
l , and the remaining capacity is

enough to serve this request.

3.2 Distributionally Robust Approach

In practice, the business environment is complex and real demand can be affected

by many factors that may change over time. Hence, although we can collect many

historical data samples, if nonstationarity is taken into account, there may be only

a few samples effective for the coming selling horizon. Under the setting that the

only information about demand we have is the limited historical data, to estimate

the probability distributions of the total demand for each product while taking into

account the inaccurate estimate, we use the framework of distributionally robust

optimization (DRO). More specifically, a data-driven (DD) distributionally robust
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extension of the PNLP model, where instead of assuming knowing the true distri-

bution or simply adopting the empirical distribution, we assume the true distribu-

tion lies in a certain ambiguity set F constructed from the historical data. More

specifically, the ambiguity set F is determined based on a goodness-of-fit (GoF)

hypothesis test with respect to the given realized data. Consider the objective to

find a static partitioned allocation decision that maximizes the worst-case expected

revenue over the ambiguity set F . We obtain the following DRO model:

V DRO(C) = max
y∈Y

inf
F0∈F

n∑
j=1

rjE [min {Dj, yj}] . (3.8)

Similar to the approaches presented in Section 3.1, the corresponding robust ad-

mission control policies rely on the optimal solution to our robust optimization

model (3.8).

3.2.1 Ambiguity Set

Let the support of D be Ξ ⊆ Rn, which is assumed to be compact. Let P(Ξ)

be the set of all probability distributions over Ξ. For any probability distribution

F0 ∈ P(Ξ), we denote F0(E) as the probability of the event D ∈ E. For the

case n = 1, let F0(a) = F ((−∞, a]). When n > 1, let F0,j be the univariate

marginal distribution of the j th component, i.e., the marginal distribution of de-

mand on product j, F0,j(E) = F0({D : Dj ∈ E}).

The tractability of the robust formulation is essential for success in practical

applications, and it depends significantly on the choice of the ambiguity set F . In

the data-driven setting, as shown in (Bertsimas, Gupta, and Kallus 2018b), if the

ambiguity set is conic representable, then the DD-DRO problem can be formulated
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as a conic optimization problem, which can be practically solved using commercial

solvers such as Gurobi. Therefore, in this research, we utilize the canonical conic

representable ambiguity set determined bymultiple GoF tests concerning the given

observations.

Assuming we have access to independent and identically distributed (i.i.d.)

samplesD1, · · · ,DN and a hypothetical distribution F0 that is chosen a priori and

not based on the given demand data samples, we utilize a GoF test that examines

the null hypothesis

H0: The samplesD1, · · · ,DN were drawn from F0 ,

and the alternative hypothesis

H1: The samplesD1, · · · ,DN were not drawn from F0.

We choose a significance level α for the GoF test, which means the probability of

incorrectly rejecting H0 is at most α. For our GoF test, we specify a statistic

SN = SN(F0,D
1, · · · ,DN)

that depends on the given samples D1, · · · ,DN and chosen hypothetical distri-

bution F0. We also specify a threshold QSN
(α) that does not depend on either the

samples or the hypothetical distribution . The GoF test rejectsH0, i.e., rejects F0 if

SN > QSN
(α). To determineQSN

(α), we can either refer to the tables or compute

by simulation.

The set of all distributions F0 that pass a GoF test is called the confidence

region of the test and is denoted by

Fα
SN

(D1, · · · ,DN) =
{
F0 ∈ P(Ξ) : SN(F0,D

1, · · · ,DN) ≤ QSN
(α)
}
.

(3.9)
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It is used as the data-driven ambiguity set in our DRO model. Note that if the data

D1, · · · ,DN is indeed drawn from F0, the probability of incorrectly rejecting F0

is at most α. Hence, this ambiguity set contains the true, unknown distribution F

with probability at least 1 − α with respect to the distribution of the data drawn

from F .

To treat the random demand vector in our model, we adopt the approach based

on marginal test in (Bertsimas, Gupta, and Kallus 2018b), which enjoys finite-

sample and asymptotic properties under mild assumptions, since our cost func-

tion is separable over the components of random demand vectorD. Assume that

each component of the random vector, i.e., the demand of each product, is a gen-

eral univariate continuous random variable. For univariate distributions, the com-

monly used GoF tests are, among others, the Kolmogorov-Smirnov(KS) test, the

Kuiper test, the Cramér-von Mises(CvM) test, the Watson test, and the Anderson-

Darling(AD) test. We let SN be a statistic of a GoF test for univariate distribution

and QSN
(α) the corresponding threshold. Recall that we can either refer to the

tables or compute by simulation to determine QSN
(α).

Let the significance levels for each product be α1, · · · , αn > 0 such that

α = α1 + · · · + αn < 1. Under the approach based on marginal test, we test

the hypothesis for joint distribution, i.e., F = F0, by testing the marginal hy-

potheses Fj = F0,j for each product j ∈ [n]. For each marginal hypothesis, we

apply a certain GoF test with the test statistic SN at significance level αj to the

given samples D1
j , · · · , DN

j (the historical demand for product j). The hypothet-

ical distribution F0 will be rejected if any of the marginal hypotheses fail. The
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corresponding confidence region is

Fα
marginals =

{
F0 ∈ P(Ξ) : F0,j ∈ F

αj

j (D1
j , · · · , DN

j ), ∀j ∈ [n]
}
, (3.10)

where Fαj

j is the confidence region of the test applied on the product j.

When we set our ambiguity set F to Fα
marginals, i.e., F = Fα

marginals, (3.8) can be

written as

V DRO(C) =max
y∈Y

inf
F0∈F

n∑
j=1

rjE [min {Dj, yj}]

=max
y∈Y

n∑
j=1

inf
F0,j∈F

αj
j

EF0,j
[rj min {Dj, yj}] (3.11)

Hence we convert the inner problem of (3.8),i.e., the worst-case expected revenue

over GoF test-based ambiguity set, to the summation of n minimization problem.

For any j ∈ [n], the j th minimization problem is the worst-case expected revenue

from selling product j over the ambiguity set Fαj

j .

3.2.2 Tractable Reformulation

For any j ∈ [n], with Dj univariate, we use D
(i)
j to denote the observation of

demand on product j that is the ith smallest so that D(1)
j ≤ · · · ≤ D

(N)
j . In other

words, D(i)
j for all i ∈ [N ] can be obtained by sorting D1

j , · · · , DN
j in ascending

order. In addition, for any product j, let the lower and upper bounds of random

variableDj beD
(0)
j andD(N+1)

j , respectively, which are determined before solving

our optimization problem and therefore serve as inputs of our model.

We define ζj,i as F0,j(D
(i)
j ), and ζj as the vector [ζj,1, · · · , ζj,N ]T. Given the
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observations D(1)
j , · · · , D(N)

j , the test statistic SNj
for an aribitrarily univariate

GoF test chosen for Dj can be expressed as a function of ζj , and we denote it as

SNj
(ζj). The following lemma shows that the ambiguity set of each minimization

problem based on any univariate GoF test can be represented as a canonical cone.

Lemma 1 ((Bertsimas, Gupta, and Kallus 2018b), Theorem 10). Given j ∈ [n],

for any univariate GoF test with test statistic SNj
(ζj), the condition SNj

(ζj) ≤

QSNj
(αj) is equivalent to

BSNj
ζj − bSNj

,αj
∈ KSNj

,

where the convex cone KSNj
, the matrix BSNj

, and the vector bSNj
,αj

are defined

in Theorem 10 of (Bertsimas, Gupta, and Kallus 2018b).

By Lemma 1 we can reformulate the ambiguity set with respect to demand on

product j into a canonical cone. In particular, for any j ∈ [n], the j th minimization

problem in (3.11), i.e., inf
F0,j∈F

αj
j

EF0,j
[rj min {Dj, yj}], is equivalent to

min
ζj

Eζj [rj min {Dj, yj}] (3.12a)

s.t. BSNj
ζ − bSNj

,αj
∈ KSNj

, (3.12b)

ζj,i − ζj,i−1 ≥ 0, ∀i ∈ [N + 1], (3.12c)

where we have ζj,0 = 0 and ζj,N+1 = 1 according to the definition of ζj,i. Model

(3.12) is not yet directly solvable because of the nonlinear term min {Dj, yj}. Fol-

lowing the Theorem 11 of (Bertsimas, Gupta, and Kallus 2018b), we further refor-

mulate problem (3.12) into a solvable conic optimization problem in the following
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theorem.

Theorem 1. The optimization problem (3.12) is equivalent to the following opti-

mization problem:

max
λj ,cj

bTSNj
,αj

λj + cj,N+1 (3.13a)

s.t. λj ∈ K∗
SNj

, cj ∈ RN+1, (3.13b)(
BT

SNj
λj

)
i
= cj,i − cj,i+1, ∀i ∈ [N ], (3.13c)

cj,i ≤ rjD
(i−1)
j , cj,i ≤ rjyj, ∀i ∈ [N + 1], (3.13d)

whereK∗
SNj

denotes the dual cone ofKSNj
.

Proof. Please see Appendix A.

This theorem offers a tractable reformulation, which yields an explicit conic

maximization formulation for each minimization component of the DRO model

(3.11). As a result, we can express model (3.11) as a single-level conic optimiza-

tion problem by inserting all the reformulations of minimization components and

changing the order of maximization and summation. The final reformulation of

(3.11), which is problem (3.8) with the ambiguity set defined by the confidence

region of GoF tests, is presented below.

V DRO(C)
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= max
y,λ,c

n∑
j=1

(
bTSNj

,αj
λj + cj,N+1

)
(3.14a)

s.t. y ∈ Y, λj ∈ K∗
SNj

, cj ∈ RN+1, ∀j ∈ [n], (3.14b)(
BT

SNj
λj

)
i
= cj,i − cj,i+1, ∀i ∈ [N ], j ∈ [n], (3.14c)

cj,i ≤ rjD
(i−1)
j , cj,i ≤ rjyj, ∀i ∈ [N + 1], j ∈ [n]. (3.14d)

Our robust PNLP (3.11) is now solvable by commercial solvers like Gurobi using

the conic optimization formulation in (3.14). In addition, the theoretical tractabil-

ity and statistical properties including asymptotic convergence and finite-sample

performance are guaranteed by applying Theorem 13, Theorem 5, Proposition 5

and Proposition 1 of (Bertsimas, Gupta, and Kallus 2018b) to our DD-DRO prob-

lem.

Let
{
yDRO∗,λDRO∗, cDRO∗} be an optimal solution of the robust PNLP re-

formulation (3.14). Note that yDRO∗ can be interpreted as an optimal partitioned

allocation of capacity to each product against a worst-case distribution in the am-

biguity set. Similar to the approaches of DLP and PNLP, we can construct a BL

control policy by using yDRO∗ as the fixed partitioned allocation quota vector. The

allocation yDRO∗ is referred to as the robust optimal PNLP booking limits.

In the meantime, we can consider the following dual problem of the robust
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PNLP reformulation (3.14):

min
P ,W ,u

m∑
l=1

PlCl +
n∑

j=1

N+1∑
i=1

Wj,irjD
(i−1)
j (3.15a)

s.t.
m∑
l=1

Al,jPl +
N+1∑
i=1

Wj,irj ≥ rj, ∀j ∈ [n], (3.15b)

BSNj
ζj − bSNj

,αj
∈ KSNj

, ∀j ∈ [n], (3.15c)

0 ≤ Wj,i ≤ ζj,i − ζj,i−1, ∀i ∈ [N + 1], j ∈ [n], (3.15d)

P ≥ 0, (3.15e)

where ζj,0 = 0 and ζj,N+1 = 1, ∀j ∈ [n]. A robust BP admission policy can be

constructed by substituting P ∗
l in (3.7) with PDRO∗

l , which represents the optimal

Pl obtained from solving the optimization problem (3.15). We refer to PDRO∗
l as

the robust optimal PNLP bid prices. These prices capture the robust marginal re-

source values and are used to evaluate the opportunity cost of a unit of resource

l inventory requested when considering inaccurate estimates of demand distribu-

tions.



Chapter 4

Robust Dynamic Model

The robust models in Chapter 3 are all static models that ignore time dynamics.

In those cases, the robust PNLP booking limits and bide prices are determined

by a one-time, static rule and therefore do not change as a function of time. In

practical applications, static approximation model is usually re-solved frequently

to create a dynamic decision rule that changes through time as the system evolves.

In this chapter, we aim at exploring a tractable model from which we can derive a

dynamically changing robust decision rule as the remaining capacity changes over

time.

4.1 Robust Dynamic BP Control

To address the curse of dimensionality associated with the dynamic programming

(DP) formulation of the NRM problem, one commonly used approach is to use

an affine approximation to the value function to obtain a dynamic admission pol-

icy. Therefore, in this section, we utilize an affine linear approximation to find

28
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a tractable reformulation for our multi-period robust NRM problem. Let Dt =

[Dt,1, · · · , Dt,n]
T and yt = [yt,1, · · · , yt,n]T be the demand vector and partitioned

booking limit vector during time period t, respectively. Note that Dt,j, yt,j ∈ R+

for all j ∈ [n], t ∈ [T ]. We assume that the demand during each time period is

i.i.d. We denote the remaining capacity at the beginning of time period t asCt. Let

Ft denote the ambiguity set of Dt and Ft be any distribution in Ft. The optimal

worst-case expected revenue from time period t to T given remaining capacityCt

at the beginning of time t is

Vt(Ct) = max
πt∈Πt

inf
F[t]∈F[t]

EF[t]

[
T∑

τ=t

rT(Dτ ∧ yτ ) + VT+1(CT+1)

]
, (4.1)

whereCτ+1 = Cτ −A(Dτ ∧yτ ), τ = t, · · · , T and we assume that VT+1(·) = 0.

Furthermore, πt := {ωt, · · · , ωT} is defined as the policy we adopt at the period

t and ωτ , ∀τ ∈ {t, · · · , T} is the policy for each time periods starting from t

respectively;Πt is the set of all admissible policies at period t;F[t] := Ft×· · ·×FT

is the ambiguity set from period t to T and F[T ] is any distribution in the ambiguity

set F[t]. As shown in Theorem 2.1 and Theorem 2.2 of (Iyengar 2005), the multi-

stage distributionally robust NRM model can be expressed using the following

robust Bellman equation:

Vt(Ct) = max
yt

inf
Ft∈Ft

EFt

[
rT(Dt ∧ yt) + Vt+1(Ct −A(Dt ∧ yt))

]
,

∀t ∈ [T ],Ct ∈ Ct, (4.2)
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where

Ct =

 {C1} , if t = 1,

{Ct ∈ Rm : 0 ≤ Ct ≤ C1} , if t ≥ 2.

The boundary condition is VT+1(C) = 0 for all C ∈ CT+1. This formulation can

be further equivalently written as follows:

min
{Vt(·)}∀t

V1(C1) (4.3a)

s.t. Vt(Ct) ≥ inf
Ft∈Ft

EFt

[
rT(Dt ∧ yt) + Vt+1(Ct −A(Dt ∧ yt))

]
,

∀t ∈ [T ],Ct ∈ Ct,yt ∈ Y(Ct), (4.3b)

where

Y(Ct) = {yt ∈ Rn : Ayt ≤ Ct,yt ≥ 0} , ∀t ∈ [T ],Ct ∈ Ct.

The following proposition shows that any feasible solution to (4.3) provides an

upper bound on the optimal worst-case expected revenue starting from any period,

which is obtained by solving (4.2).

Proposition 1. Suppose that Vt(·) solves the robust Bellman equation (4.2) and

V̂t(·) is a feasible solution to (4.3). Then

V̂t(Ct) ≥ Vt(Ct), ∀t ∈ [T ],Ct ∈ Ct.

Proof. We prove this by induction. For all CT ∈ CT ,yT ∈ Y(CT ), constraint
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(4.3b) implies

V̂T (CT ) ≥ inf
FT∈FT

EFT

[
rT(DT ∧ yT ) + VT+1(CT −A(DT ∧ yT ))

]
.

As VT+1(C) = 0 for all C ∈ CT+1, we obtain

V̂T (CT ) ≥ max
yT∈Y(CT )

inf
FT∈FT

EFT

[
rT(DT ∧ yT )

]
= VT (CT ),

where the equality follows from the robust Bellman equation (4.2) for period t =

T . Now suppose the result is true for period t + 1. Then, for all Ct ∈ Ct,yt ∈

Y(Ct), constraint (4.3b) yields

V̂t(Ct) ≥ inf
Ft∈Ft

EFt

[
rT(Dt ∧ yt) + V̂t+1(Ct −A(Dt ∧ yt))

]
≥ inf

Ft∈Ft

EFt

[
rT(Dt ∧ yt) + Vt+1(Ct −A(Dt ∧ yt))

]
.

As a result,

V̂t(Ct) ≥ max
yt∈Y(Ct)

inf
Ft∈Ft

EFt

[
rT(Dt ∧ yt) + Vt+1(Ct −A(Dt ∧ yt))

]
= Vt(Ct),

where the equality is exactly the robust Bellman equation for time period t.

In general, formulation (4.3) is not computationally tractable when the state

and action spaces are continuous, as it involves an infinite number of decision

variables and constraints. However, formulation (4.3) provides a starting point for

exploring approximations to value function. In order to find a tractable reformu-

lation of problem (4.3), we approximate the value function Vt(Ct) with a linear
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function of the form

Vt(Ct) ≈ θt +
m∑
l=1

Pt,lCt,l ∀t ∈ [T ],Ct ∈ Ct, (4.4)

where {Pt,l : t ∈ [T ], l ∈ [m]} estimates the marginal value of a unit of each re-

source l in period t, and {θt : t ∈ [T ]} is a constant offset. Since VT+1(C) = 0

for all C ∈ CT+1, we have θT+1 = 0, PT+1,l = 0 for all l ∈ [m]. The affine

linear approximation approach is aimed at computing dynamic bid prices and is

actually commonly used in revenue management to address the issue of computa-

tional tractability.

Plugging the approximation (4.4) into the reformulation (4.3) of the robust

Bellman equation (4.2), we have

min
{θt,Pt}∀t

θ1 +
m∑
l=1

P1,lC1,l (4.5a)

s.t. θt − θt+1 +
m∑
l=1

(Pt,l − Pt+1,l)Ct,l ≥

inf
Ft∈Ft

EFt

[
n∑

j=1

(
rj −

m∑
l=1

Al,jPt+1,l

)
(Dt,j ∧ yt,j)

]
,

∀t ∈ [T ],Ct ∈ Ct,yt ∈ Y(Ct). (4.5b)

By substituting the approximation (4.4) into problem (4.3), we restrict (4.3) into

an optimization problem over only the parameters {Pt,l : t ∈ [T ], l ∈ [m]} and

{θt : t ∈ [T ]}. Let
{
P ∗
t,l : t ∈ [T ], l ∈ [m]

}
and {θ∗t : t ∈ [T ]} be the optimal so-

lution of problem (4.5). Proposition 1 immediately yields that θ1 +
∑m

l=1 P
∗
1,lC1,l

is an upper bound on the optimal worst-case expected revenue. Furthermore, we
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can use the optimal robust solution to construct an approximate dynamic admis-

sion policy. Specifically, we use
{
P ∗
t,l : t ∈ [T ], l ∈ [m]

}
as the optimal robust

dynamic bid prices. The admission control policy for deciding whether to accept

the kj th unit of demand for product j in period t is given by:

πDROBP
t,j (kj) := I

(
rj ≥

m∑
l=1

Al,jP
∗
t+1,l, Ckj ≥ Aj

)
, ∀t ∈ [T ], j ∈ [n],

(4.6)

where Ckj is the vector of available capacities when the kthj order of product j

arrives. This robust policy obtained from the optimal solution of problem (4.5)

compares the revenue from selling product j with the total value, or opportunity

cost, of the resources consumed by this product. We open product j for sale at time

period t if the corresponding revenue justifies the value of the required resources

and the remaining capacities are sufficient.

For the rest of this section, we focus on efficient solution techniques for the

reformulation (4.5). The following result develops an equivalent formulation of

(4.5).

Proposition 2. Problem (4.5) is equivalent to the following problem:

min
{θt,Pt}∀t

θ1 +
m∑
l=1

P1,lC1,l (4.7a)

s.t. θt − θt+1 +
m∑
l=1

(Pt,l − Pt+1,l)Ct,l ≥

inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)+

(Dt,j ∧ yt,j)

]}
,

∀t ∈ [T ],Ct ∈ Ct,yt ∈ Y(Ct). (4.7b)
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Proof. Note that

EFt

[
n∑

j=1

(
rj −

m∑
l=1

Al,jPt+1,l

)
(Dt,j ∧ yt,j)

]

=
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)
(Dt,j ∧ yt,j)

]
,

by which we can rewrite formulation (4.5) as

min
{θt,Pt}∀t

θ1 +
m∑
l=1

P1,lC1,l (4.8a)

s.t. θt − θt+1 +
m∑
l=1

(Pt,l − Pt+1,l)Ct,l ≥

inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)
(Dt,j ∧ yt,j)

]}
,

∀t ∈ [T ],Ct ∈ Ct,yt ∈ Y(Ct). (4.8b)

Next, we show the equivalence between (4.7) and (4.8) through the following two

parts:

First, consider an arbitrarily feasible solution {θt, Pt,l : t ∈ [T ], l ∈ [m]} to (4.7).

For any t ∈ [T ], Ct ∈ Ct, yt ∈ Y(Ct), the feasibility to (4.7) yields

θt − θt+1 +
m∑
l=1

(Pt,l − Pt+1,l)Ct,l

≥ inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)+

(Dt,j ∧ yt,j)

]}

≥ inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)
(Dt,j ∧ yt,j)

]}
,
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where the second inequality follows fromDt,j ≥ 0 and yt ≥ 0 for all yt ∈ Y(Ct).

It is straightforward that {θt, Pt,l : t ∈ [T ], l ∈ [m]} is also feasible to (4.8).

Next, let {θt, Pt,l : t ∈ [T ], l ∈ [m]} be an arbitrary feasible solution to (4.8).

Consider any t ∈ [T ], Ct ∈ Ct, yt ∈ Y(Ct). Note that

inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)+

(Dt,j ∧ yt,j)

]}

= inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)
(Dt,j ∧ y′t,j)

]}
, (4.9)

where

y′t,j =


yt,j, if rj −

m∑
l=1

Al,jPt+1,l ≥ 0,

0, otherwise.

for any j ∈ [n]. Since y′
t =

[
y′t,1, · · · , y′t,n

]T is in Y(Ct), we obtain from the

feasibility to (4.8) that

θt − θt+1 +
m∑
l=1

(Pt,l − Pt+1,l)Ct,l

≥ inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)
(Dt,j ∧ y′t,j)

]}

= inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)+

(Dt,j ∧ yt,j)

]}
,

where the equality follows from (4.9). As the above inequality holds for all t ∈ [T ],

Ct ∈ Ct, yt ∈ Y(Ct), {θt, Pt,l : t ∈ [T ], l ∈ [m]} is also feasible to (4.7). This

complete the proof.
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For each time period t, we can construct the ambiguity set Ft using the same

method based onmarginal test as that used to constructF in the robust staticmodel.

Then we have

inf
Ft∈Ft

{
n∑

j=1

EFt,j

[(
rj −

m∑
l=1

Al,jPt+1,l

)+

(Dt,j ∧ yt,j)

]}

=
n∑

j=1

(
rj −

m∑
l=1

Al,jPt+1,l

)+

inf
Ft,j∈Ft,j

EFt,j
(Dt,j ∧ yt,j),

and hence problem (4.7) can be further reformulated as

min
{θt,Pt}∀t

θ1 +
m∑
l=1

P1,lC1,l (4.10a)

s.t. θt − θt+1 +
m∑
l=1

(Pt,l − Pt+1,l)Ct,l ≥

n∑
j=1

(
rj −

m∑
l=1

Al,jPt+1,l

)+

inf
Ft,j∈Ft,j

EFt,j
(Dt,j ∧ yt,j),

∀t ∈ [T ],Ct ∈ Ct,yt ∈ Y(Ct), (4.10b)

where the term infFt,j∈Ft,j
EFt,j

(Dt,j ∧ yt,j) represents the expected consumption

of product j during time period t, based on the worst-case distribution of demand

for product j in its ambiguity set Ft,j , when the pre-allocation quota yt,j is given.

Moreover, if the decision maker uses policy (4.6) to determine whether to sell

a unit of product j at time period t, the term (rj −
∑m

l=1 Al,jPt+1,l)
+ is exactly

the net difference between the revenue from selling one unit of product j at time

period t and the opportunity cost of the total capacities required to sell it. Here,

the opportunity cost of each unit of capacity l is estimated using the marginal

value approximation of this resource at time period t + 1, i.e., Pt+1,l. We refer to
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(rj −
∑m

l=1 Al,jPt+1,l)
+ as the approximate net revenue from one unit of product

j at time period t. Consequently, the right-hand side of constraint (4.10b) can

be interpreted as the worst-case expected approximate total net revenue from all

products sold during time period t.

For the left-hand side of constraint (4.10b), we have

θt − θt+1 +
m∑
l=1

(Pt,l − Pt+1,l)Ct,l

= θt +
m∑
l=1

Pt,lCt,l −

(
θt+1 +

m∑
l=1

Pt+1,lCt,l

)

= θt +
m∑
l=1

Pt,lCt,l −

(
θt+1 +

m∑
l=1

Pt+1,l (Ct+1,l − Ct+1,l + Ct,l)

)

= θt +
m∑
l=1

Pt,lCt,l −

(
θt+1 +

m∑
l=1

Pt+1,lCt+1,l

)
−

m∑
l=1

Pt+1,l (Ct,l − Ct+1,l)

≈ Vt(Ct)− Vt+1(Ct+1)−
m∑
l=1

Pt+1,l (Ct,l − Ct+1,l) ,

which is the net revenue during time period t under the affine approximation to

the robust Bellman equation. Hence, constraint (4.10b) can be interpreted as fol-

lows: for each time period t ∈ [T ], starting from any remaining capacities, we

consider the approximation of the optimal robust total net revenue generated in

this period. This value must be greater than or equal to the worst-case expected

approximate total net revenue in period t under any selected pre-allocation quo-

tas, which is obtained by summing the multiplications of the worst-case expected

product sales and the net revenue estimation for each product in the corresponding

period. Model (4.10) then seeks to find a feasible {θt, Pt,l : t ∈ [T ], l ∈ [m]} that

achieves the minimal upper bound on the worst-case expected approximate total
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net revenue for all possible pre-allocation quotas. This allows us to determine an

optimal approximate value for the robust revenue over the entire selling horizon.

Formulation (4.10) cannot be directly solved yet. One cause is the piecewise

linear functions (rj −
∑m

l=1 Al,jPt+1,l)
+ in constraint (4.10b). Introducing the pa-

rameters {zt,j : t ∈ [T ], j ∈ [n]}, we have the following equivalent reformulation

of (4.10):

min
{θt,Pt,zt}∀t

θ1 +
m∑
l=1

P1,lC1,l (4.11a)

s.t. θt − θt+1 +
m∑
l=1

(Pt,l − Pt+1,l)Ct,l ≥

n∑
j=1

zt,j inf
Ft,j∈Ft,j

EFt,j
(Dt,j ∧ yt,j),

∀t ∈ [T ],Ct ∈ Ct,yt ∈ Y(Ct), (4.11b)

zt,j ≥ rj −
m∑
l=1

Al,jPt+1,l, zt,j ≥ 0, ∀t ∈ [T ], j ∈ [n]. (4.11c)

For any given yt,j , infFt,j∈Ft,j
EFt,j

(Dt,j ∧ yt,j) can be determined using the dis-

tributionally robust solution approach discussed in Chapter 3. Therefore, for-

mulation (4.11) is actually a linear programming model with the decision vari-

ables {θt, Pt,l, zt,j : t ∈ [T ], l ∈ [m], j ∈ [n]} and an infinite number of constraints.

More specifically, while the number of constraints in (4.11c) is 2Tn, there are in-

finitely many constraints in (4.11b) due to the continuous state space Ct and action

space Y(Ct).

To summarize, linear optimization problem (4.11) has manageable variables

but an infinite number of constraints. Therefore, we use a constraint generation

algorithm to solve this problem. The approach involves iteratively solving a mas-
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ter problem that shares the same decision variables as (4.11) but contains only a

subset of the constraints. Once the master problem is solved, we check whether

the solution violates any of the constraints in the original problem (4.11). If there

are no violations, the solution to the current master problem is optimal for the

original problem and we can stop. However, if there is a violation, we add the

violated constraint to the current master problem and then start another iteration

of the algorithm using the updated master problem.

Given an optimal solution
{
θ̃t, P̃t,l, z̃t,j : t ∈ [T ], l ∈ [m], j ∈ [n]

}
to the cur-

rent master problem, we check whether the current solution is feasible to the orig-

inal problem by solving

min
Ct∈Ct,yt∈Y(Ct)

{
θ̃t − θ̃t+1 +

m∑
l=1

(P̃t,l − P̃t+1,l)Ct,l

−
n∑

j=1

z̃t,j inf
Ft,j∈Ft,j

EFt,j
(Dt,j ∧ yt,j)

}
(4.12)

for all t. According to the distributionally robust solution procedure discussed in

Chapter 3, given any t ∈ [T ] and j ∈ [n], infFt,j∈Ft,j
EFt,j

(Dt,j ∧ yt,j) can be

equivalently converted to

max
λt,j ,ct,j

bTSNj
,αt,j

λt,j + ct,j,N+1 (4.13a)

s.t. λt,j ∈ K∗
SNj

, ct,j ∈ RN+1, (4.13b)(
BT

SNj
λt,j

)
i
= ct,j,i − ct,j,i+1, ∀i ∈ [N ], (4.13c)

ct,j,i ≤ D
(i−1)
j , ct,j,i ≤ yt,j, ∀i ∈ [N + 1]. (4.13d)
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Thus,
∑n

j=1 z̃t,j infFt,j∈Ft,j
EFt,j

(Dt,j ∧ yt,j) is equivalent to

max
λt,j ,ct,j

n∑
j=1

z̃t,j

(
bTSNj

,αt,j
λt,j + ct,j,N+1

)
(4.14a)

s.t. λt,j ∈ K∗
SNj

, ct,j ∈ RN+1, ∀j ∈ [n], (4.14b)(
BT

SNj
λt,j

)
i
= ct,j,i − ct,j,i+1, ∀i ∈ [N ], j ∈ [n], (4.14c)

ct,j,i ≤ D
(i−1)
j , ct,j,i ≤ yt,j, ∀i ∈ [N + 1], j ∈ [n], (4.14d)

which is an explicit conic optimization problem. With this tractable reformulation

in (4.14), the separate problem (4.12) for any t can be rewritten as

min
Ct∈Ct,yt∈Y(Ct),
{λt,ct}∈Ω(yt)

{
θ̃t − θ̃t+1 +

m∑
l=1

(P̃t,l − P̃t+1,l)Ct,l

−
n∑

j=1

z̃t,j

(
bTSNj

,αt,j
λt,j + ct,j,N+1

)}
, (4.15)

where

Ω(yt) = {λt, ct : (4.14b), (4.14c), (4.14d)} , ∀t ∈ [T ],Ct ∈ Ct,yt ∈ Y(Ct).

Let
{
C̃t, ỹt, λ̃t, c̃t

}
be the optimal solution to (4.15). If the optimal objective value

of the single-level conic optimization problem (4.15) is less than 0 for a particular

t, the constraint corresponding to C̃t ∈ Ct, ỹt ∈ Y(Ct), and t ∈ [T ] in the original

problem (4.11) is violated by the solution to the current master problem. We then

update the master problem by adding this constraint to the current master problem

and solve the updated master problem. The detailed procedure to implement the

constraint generation algorithm is provided in Appendix B.



4.2. ROBUST DYNAMIC BL CONTROL 41

The efficiency of the constraint generation algorithm is significantly dependent

on how quickly we can solve the separate problem. As the sample size N grows

and the size of the separate program increases, the proposed constraint generation

algorithm may not be sufficiently efficient. Therefore, in the next section, we

derive a more efficient and easy-to-implement multi-period robust approximate

NRM formulation based on model (4.11).

4.2 Robust Dynamic BL Control

In this section, we construct a compact equivalent reformulation of (4.2) that yields

a robust dynamic BL policy for the multi-period robust NRM problem.

Consider any period t ∈ [T ]. Let Pt and zt denote the vectors of Pt,l for all

l ∈ [m] and zt,j for all j ∈ [n], respectively. Define

ϕt(Pt,Pt+1, zt)

=
m∑
l=1

(Pt+1,l − Pt,l)Ct,l +
n∑

j=1

zt,j inf
Ft,j∈Ft,j

EFt,j
(Dt,j ∧ yt,j)

= max
Ct∈Ct,yt∈Y(Ct),
{λt,ct}∈Ω(yt)

{
m∑
l=1

(Pt+1,l − Pt,l)Ct,l +
n∑

j=1

zt,j

(
bTSNj

,αt,j
λt,j + ct,j,N+1

)}
,

(4.16)

where the second equality is obtained becuase
∑n

j=1 z̃t,j infFt,j∈Ft,j
EFt,j

(Dt,j ∧

yt,j) is equivalent to the formulation in (4.14). Using the function ϕt(Pt,Pt+1, zt),
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we can equivalently rewrite the robust ADP formulation (4.11) as

min
{θt,Pt,zt}∀t

θ1 +
m∑
l=1

P1,lC1,l (4.17a)

s.t. θt − θt+1 ≥ ϕt(Pt,Pt+1, zt) ∀t ∈ [T ], (4.17b)

zt,j ≥ rj −
m∑
l=1

Al,jPt+1,l, zt,j ≥ 0, ∀j ∈ [n], t ∈ [T ], (4.17c)

where the decision variables are still {θt, Pt,l, zt,j : t ∈ [T ], l ∈ [m], j ∈ [n]}. Ap-

plying the above formulation, we can obtain an equivalent compact formulation

of model (4.11).

Proposition 3. Model (4.11) is equivalent to the following conic programming

problem:

min
P ,z,

V ,W ,v,ζ

T∑
t=1

m∑
l=1

Vt,lC1,l +
T∑
t=1

n∑
j=1

N+1∑
i=1

Wt,j,iD
(i−1)
j +

m∑
l=1

P1,lC1,l (4.18a)

s.t. Vt,l − vt,l ≥ Pt+1,l − Pt,l, ∀l ∈ [m], t ∈ [T ], (4.18b)
m∑
l=1

Al,jvt,l +
N+1∑
i=1

Wt,j,i ≥ zt,j, ∀j ∈ [n], t ∈ [T ], (4.18c)

BSNj
ζt,j − zt,jbSNj

,αt,j
∈ KSNj

, ∀j ∈ [n], t ∈ [T ], (4.18d)

0 ≤ Wt,j,i ≤ ζt,j,i − ζt,j,i−1, ∀i ∈ [N ], j ∈ [n], t ∈ [T ], (4.18e)

0 ≤ Wt,j,N+1 ≤ zt,j − ζt,j,N , ∀j ∈ [n], t ∈ [T ], (4.18f)

zt,j ≥ rj −
m∑
l=1

Al,jPt+1,l, ∀j ∈ [n], t ∈ [T ], (4.18g)

z,V ,v ≥ 0, (4.18h)

where ζt,j,0 = 0 for all j ∈ [n], t ∈ [T ].
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Proof. It is straightforward to prove that (4.17) has an optimal solution that sat-

isfies the condition θt = θt+1 + ϕt(Pt,Pt+1, zt) for all t ∈ [T ]. Also note

that θT+1 = 0. Therefore, there exists an optimal solution to (4.17) with θ1 =∑T
t=1 ϕt(Pt,Pt+1, zt). This result implies the equivalence between (4.17) and the

following optimization problem:

min
{Pt,zt}∀t

T∑
t=1

ϕt(Pt,Pt+1, zt) +
m∑
l=1

P1,lC1,l (4.19a)

s.t. zt,j ≥ rj −
m∑
l=1

Al,jPt+1,l, zt,j ≥ 0, ∀j ∈ [n], t ∈ [T ]. (4.19b)

Recall that (4.11) is equivalent to (4.17). We obtain the equivalence between (4.11)

and (4.19).

For any t ∈ [T ], observed that ϕt(Pt,Pt+1, zt) defined in (4.16) is the optimal

value of a conic programming problem. Applying strong duality, we obtain

ϕt(Pt,Pt+1, zt)

= min
Vt,Wt,vt,ζt

m∑
l=1

Vt,lC1,l +
n∑

j=1

N+1∑
i=1

Wt,j,iD
(i−1)
j (4.20a)

s.t. Vt,l − vt,l ≥ Pt+1,l − Pt,l, ∀l ∈ [m], (4.20b)
m∑
l=1

Al,jvt,l +
N+1∑
i=1

Wt,j,i ≥ zt,j, ∀j ∈ [n], (4.20c)

BSNj
ζt,j − zt,jbSNj

,αt,j
∈ KSNj

, ∀j ∈ [n], (4.20d)

0 ≤ Wt,j,i ≤ ζt,j,i − ζt,j,i−1, ∀i ∈ [N ], j ∈ [n], (4.20e)

0 ≤ Wt,j,N+1 ≤ zt,j − ζt,j,N , ∀j ∈ [n], (4.20f)

Vt,vt ≥ 0, (4.20g)
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where ζt,j,0 = 0 for all j ∈ [n]. We can obtain the desired result by substituting

the above formulation of ϕt(Pt,Pt+1, zt) into (4.19).

Then according to strong duality, problem (4.18) is equivalent to

max
y,σ,
a,λ,h

T∑
t=1

n∑
j=1

rjσt,j (4.21a)

s.t. a1,l = C1,l, ∀l ∈ [m], (4.21b)

at,l = at−1,l −
n∑

j=1

Al,jσt−1,j, ∀l ∈ [m], t ∈ {2, · · · , T} , (4.21c)

n∑
j=1

Al,jyt,j ≤ at,l, ∀l ∈ [m], t ∈ [T ], (4.21d)

yt,j ≤ D
(i−1)
j + ht,j,i, ∀i ∈ [N + 1], j ∈ [n], t ∈ [T ], (4.21e)

(BT
SNj

λt,j)i = ht,j,i+1 − ht,j,i, ∀i ∈ [N ], j ∈ [n], t ∈ [T ], (4.21f)

σt,j ≤ yt,j + bTSNj
,αt,j

λt,j − ht,j,N+1, ∀j ∈ [n], t ∈ [T ]. (4.21g)

λt,j ∈ K∗
SNj

, ∀j ∈ [n], t ∈ [T ], (4.21h)

y,σ,a,h ≥ 0. (4.21i)

Model (4.21) approximates the robust Bellman equation (4.2) based on the robust

ADP (4.11) derived in Section 4.1. When T = 1, it becomes the same as the

robust static model (3.14) discussed in Chapter 3. In the multi-period setting, it

approximates how the system evolves against a worst-case demand distribution

from the ambiguity set.

The decision variables {at,l : l ∈ [m], t ∈ [T ]} in model (4.21) correspond

to the dual variables for constraint (4.18b). They can be seen as the approximate

worst-case expected remaining capacities at the beginning of each time period t.
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The constraints (4.21b) are associated with the decision variable {P1,l : l ∈ [m]}

in (4.18), and specify the initial available capacity for each resource. Similarly,

the constraints (4.21c) correspond to the decision variables {Pt,l : l ∈ [m], t ∈

2, ..., T} in (4.18). The term
∑n

j=1 Al,jσt−1,j in constraints (4.21c) represents the

approximate worst-case expected capacity consumption for resource l during pe-

riod t − 1, where σt,j , as aforementioned, is the expected demand of product j

fulfilled in period t. Therefore, constraints (4.21b) and (4.21c) ensure the flow

balance of available capacities over time under the worst-case expectation. In ad-

dition, for any l ∈ [m] and t ∈ [T ], the constraint associated with the decision

variable Vt,l in model (4.18) is at,l ≤ C1,l. However, we can already deduce from

constraints (4.21b) and (4.21c) that C1,l = a1,l ≥ a2,l ≥ · · · ≥ aT,l. Therefore,

we can drop the redundant constraints at,l ≤ C1,l associated with the decision

variables Vt,l.

The decision variables {yt,j : j ∈ [n], t ∈ [T ]} in problem (4.21) corre-

spond to the dual variables of constraint (4.18c). They represent the approx-

imate worst-case expected pre-allocation quota for product j at time period t.

According to constraint (4.21d), which is associated with the decision variables

{vt,l : l ∈ [m], t ∈ [T ]} in (4.18), the amount of resources consumed by the

pre-allocation decision yt,j at time period t does not exceed the corresponding ex-

pected remaining capacity at,l. Constraint (4.21e) is associated with the decision

variables {Wt,j,i : j ∈ [n], i ∈ [N + 1], t ∈ [T ]}, and imposes an upper bound

D
(i−1)
j + ht,j,i on yt,j . Here, D

(i−1)
j is the (i − 1)th smallest demand data sample

for product j, and ht,j,i can be viewed as a constant offset.

The decision variables
{
λt,j ∈ K∗

SNj
: j ∈ [n], t ∈ [T ]

}
are the dual prices of

constraint (4.18d) in (4.18), which characterizes the ambiguity set for the unknown
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demand distribution. Constraint (4.21f) shows how the constant offsets ht,j,i are

determined using
{
λt,j ∈ K∗

SNj
: j ∈ [n], t ∈ [T ]

}
. Notice that constraint (4.21f)

is associated with the decision variables {ζt,j,i : j ∈ [n], i ∈ [N ], t ∈ [T ]}, which

represent the worst-case distribution function of the demand of product j in period

t.

The decision variables {σt,j : j ∈ [n], t ∈ [T ]} in model (4.21) correspond to

the dual prices of the constraints (4.18g). They represent the expected amount of

demand for product j satisfied during time period t. Constraint (4.21g), associated

with decision variables {zt,j : j ∈ [n], t ∈ [T ]} in (4.18), relates the expectation of

the fulfilled demand σt,j to the pre-allocation quota yt,j , with the demand uncer-

tainty captured by bTSNj
,αt,j

λt,j − ht,j,N+1. Based on this interpretation of σt,j , the

objective function of model (4.21) can be viewed as the approximate worst-case

total expected revenue from all products throughout the selling horizon.

The formulation (4.21) is computationally tractable, with problem size increas-

ing linearly in the number of resources m, the number of products n, the sample

size N , and the length of the selling horizon T . Furthermore, an optimal solution

to problem (4.21) can be used to construct our robust dynamic BL policy. More

specifically, our booking limits can be set to y∗, which is an optimal y to (4.21).

Under this policy, every request is accepted as long as the booking limit for that

period is not reached, and there is sufficient capacity to serve the demand. For

example, for the ktht,j demand of product j in period t, the decision to serve the

request is based on the policy:

πDROBL
t,j (kt,j) := I

(
kt,j ≤ y∗t,j,Ckt,j ≥ Aj

)
, ∀t ∈ [T ], j ∈ [n], (4.22)
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where Ckt,j is the remaining capacity when the ktht,j demand of product j occurs.

We want to emphasize that when implementing the robust dynamic BL policy,

it is necessary to check if there is enough remaining capacity to fulfill a unit of

demand for a particular product, even if the book limiting for that product has not

been reached. This is because constraint (4.21d) only ensures that the resources

consumed by the booking limits
{
y∗t,j : j ∈ [n]

}
do not exceed the expected avail-

able capacities {at,l : l ∈ [m]} in period t, but the actual available capacity may

deviate from {at,l : l ∈ [m]} due to demand uncertainty. Therefore, it may not be

possible to fulfill all demands within the booking limits. To address this issue, we

make the following adjustments to the robust booking limits y∗
t in our numerical

study. For any period t, we can observe the actual available capacity of resource l

at the beginning of the period, denoted by Ct,l, before any demands occur. Given

the robust booking limits
{
y∗t,j : j ∈ [n]

}
and the actual capacities {Ct,l : l ∈ [m]},

the following optimization problem can be solved at the beginning of period t:

max
yC

n∑
j=1

rjy
C
t,j (4.23a)

s.t.
n∑

j=1

Al,jy
C
t,j ≤ Ct,l, ∀l ∈ [m], (4.23b)

yCt,j ≤ y∗t,j, ∀j ∈ [n]. (4.23c)

Let
{
yCt,j : j ∈ [n]

}
denote an optimal solution to this problem. Instead of using{

y∗t,j : j ∈ [n]
}
as the booking limits for period t in our implementation of the

robust dynamic BL policy, we use
{
yCt,j : j ∈ [n]

}
. By doing so, there will be

enough resources to fulfill all demands within the corresponding booking limits

yCt,j .



Chapter 5

Numerical Experiments

In this chapter, we report the numerical experiments conducted to verify the contri-

bution that our distributionally robust approach can make to quantity-based NRM

problems.

We consider a line structure that is common in NRM problem and consider

the case that is, m = 5 resource classes with n = 15 product classes (line struc-

ture,
∑5

l=1 l = 15). Figure 5.1 shows the line structure. The parameter generating

Figure 5.1: Line structure with 5 classes of resources

methods for the relevant parameters in our numerical studies are detailed as fol-

lows:

r: the revenue vector from selling one product. We first generate the revenue

from selling one product that uses only one class of resource from a discrete uni-

48
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form distribution on the interval [10, 60]. Then we generate the revenues for those

products that use more than one class of resources from a discrete uniform distri-

bution on the interval [0.9R,R], where R is the summation of the revenue from

corresponding single-resource products. In practice, it is common that the price of

a bundle product is less than the sum of the prices of each component.

A: the m× n BOM matrix contains elements only 1 and 0, which represents

whether a resource class is a component of a product or not.

C: the initial capacity for each resources are all 1000.

T : the number of time periods (opportunities of changing control policies).

We consider the total selling horizon is 30 units. For the static models including

DLP, SAA and Robust Static Model, we determine a policy at the beginning of

selling and never change during these 30 units selling time. On the other hand,

for the Robust Dynamic Model, we consider T = {2, 5, 10, 30}. For example, if

T=2, we have two opportunities of changing our admission policy, one is at the

beginning of time period 1 and the other is at the beginning of time period 16, and

each policy will be adopted and unchanged during each selling horizon with 15

units selling time.

D: the demand for each product. In this research, we assume we could collect

the data which represents the demand during one selling unit and the number of

samples we can obtain is limited, 10 or 20 in this numerical study. Note that for

the robust dynamic model when T = 30, we can simply use the unit demand data

for each time period because in this case, the length of each time period equals one

unit selling time. However, for other cases in our research, we can no longer con-

duct like that. Therefore, we propose a bootstrapping method to generate some

relevant data to approximate multi-unit demand distribution. For example, sup-
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pose we have N = 10 unit demand samples and the number of time periods is

T = 2, which implies we need to estimate the total demand during 30/T = 15

unit selling time using these 10 data samples representing demand during one unit

selling time. According to the discrete uniform distribution on the interval [1, N ],

we randomly sample 15 data from these 10 data samples with replacement and then

the sum of these 15 samples will be viewed as a sample drawn from the 15− unit

demand distribution. Repeating this procedure 10 times we can obtain 10 samples

to approximate the distribution of demand during 15 selling units. In addition, for

DLP, we simply scale up the mean of one unit demand to estimate the mean of

demand during 15 selling units.

On the other hand, in our research, the historical data and test data are all

generated from normal distribution and details about the data generation will be

discussed later in the numerical performance part.

α: the significance level for our selected GoF test. In this research, we simply

use the same α for any j ∈ [n], t ∈ [T ], i.e., αt,j = α, ∀j ∈ [n], t ∈ [T ]. Also,

it is possible to set different α across different products and time periods. Note

that the choice of α is relevant to the number of product classes. More specifi-

cally, consider the case in our numerical study, we have 15 classes of products,

suppose we set our α = 0.01 for each class of product, then the total signifi-

cance level will be 0.01 × 15 = 0.15, which satisfies the definition of signifi-

cance level, i.e., 0 ≤ α ≤ 1. However, consider α = 0.1, the total significance

level exceeds 1 and therefore is not valid. According to the statistical test table,

α = 0.001, 0.01, 0.02, 0.05 are valid for our case and we choose α = 0.01, 0.02

in this numerical study. In addition, without referring tables, we can choose other

value for α and conduct simulation to compute corresponding statistics threshold
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QSN
(α), where SN is the statistics of the selected GoF test. In this research, we

use the widely adopted KS test in statistical hypothesis testing field as our GoF

test.

We computed our instances using Gurobi 10.0.1 and Table 5.1 shows the opti-

mal objective value andCPU time for eachmodel when the number of data samples

is 10. The models shown in the first column of Table 5.1 is:

• DLP: deterministic linear program (3.1);

• SAA: (3.3), sample average approximation applied to PNLP;

• RS: robust static model (3.14);

• RD: robust dynamic model (4.21).

Recall that each sample is a vector with dimension n = 15. Given any j ∈ [n],

we generate N samples from a truncated normal distribution (which ensures our

generated data are all greater than or equal to zero) whose original mean (we de-

note µG
j ) is randomly generated from a discrete uniform distribution on the in-

terval [10, 25] and whose original standard deviation (we denote stdGj ) is µG
j /ρj ,

where ρj is randomly generated from a discrete uniform distribution on the inter-

val [2, 6]. Our historical and testing data are all generated by this method. Note

that the historical observations applied to all the models in Table 5.1 are the same,

i.e., for each j, one particular sample path from the truncated normal distribution

ñ (µ̂G
j ,

ˆstd
G

j ), where µ̂G
j ,

ˆstd
G

j are one pair of generated particular mean and stan-

dard deviation for original normal distribution. Based on these generated 10 one

unit demand samples, note that again we use a bootstrapping method to generate

data for multi-unit demand samples for model SAA, RS and RD (T = 2, 5, 10)
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while we use these 10 one unit demand observations directly for RD (T = 30),

and simply scale up the mean of these 10 one unit demand samples for model DLP.

For ease of comparison, in this numerical study, we view DLP as the bench-

mark for any other models mentioned in Table 5.1 and show their ratio to DLP.

From Table 5.1, the optimal objective value of SAA is the closest to that of DLP

while the optimal objective of RS is the furthest from that of DLP. Also, the opti-

mal objective value of robust model is increasing with the number of time periods,

which actually does not hold in policy performance.

Model Optimal Objective Ratio to DLP (%) Time Used (×10−2s)

DLP 177673 100 2.337
SAA 177535 99.92 3.372

α = 0.01 α = 0.02 α = 0.01 α = 0.02 α = 0.01 α = 0.02
RS 90729 96469 51.07 54.30 2.032 2.271

RD (T=2) 133303 138698 75.03 78.06 2.862 2.791
RD (T=5) 165649 167510 93.23 94.28 6.130 5.488
RD (T=10) 171264 172149 96.39 96.89 11.818 12.508
RD (T=30) 173106 173598 97.43 97.71 39.482 43.361

Table 5.1: Optimal objective value and CPU time of each model when N=10

In Table 5.2, we provide the numerical results for policy performance with

testing data from the same distribution as historical realizations when the number

of realizations is 10. More specifically, we generate 10 more different sample

paths (each path is of size 30, which is the total units of selling time) from the

truncated normal distribution ñ (µ̂G
j ,

ˆstd
G

j ), which is actually the distribution that

we generate our historical data from. Therefore, Table 5.2 shows the numerical

testing results under the assumption that the historical data and the testing data

are exactly drawn from the same distribution, which in practice implies that the

distribution remains unchanged from the N days before our selling horizon to the
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end of our selling horizon (assuming one unit selling time is one day and we use

the most recent daily data in our numerical experiments). In addition, we use the

solution of model to construct admission control policy and therefore we name the

policies the names of the corresponding models for clarity in Table 5.2.

Although separating the whole selling horizon into more time periods gener-

ates higher revenue from the perspective of optimal objective value for our robust

approaches, we can not obtain such a result from the perspective of policy perfor-

mance. The revenue from testing experiments is actually not strictly increasing

with the number of time periods. We observe that among all the policies in Ta-

ble 5.2, the average revenue generated by RS is the highest, even beyond that of

DLP and SAA. Also, policy RS performs better than DLP and SAA in minimal

revenue and equally well in maximal revenue as SAA. However, other robust poli-

cies all perform not as well as DLP and SAA in this same distribution case, from

perspectives of average, minimal and maximal revenue. Furthermore, the average

standard deviations of the robust policies are all less than those of DLP and SAA.

Unlike we did in Table 5.2, we generate testing data from different distribution

from ñ (µ̂G
j ,

ˆstd
G

j ), which we used to generate historical observations and testing

data for Table 5.2, to conduct numerical experiments in Table 5.3. To be more

detailed, we generate 10 more different (µG
j , std

G
j ) pairs using the same generat-

ing method as (µ̂G
j ,

ˆstd
G

j ) to obtain 10 more different distributions and from each

distribution we generate randomly one sample path with size 30. Hence, we use

these 10 sets of testing data to evaluate the performance of our policies when the

demand distribution during the selling horizon is different from the distribution of

the historical data.

Table 5.3 shows the average revenue on the 10 testing instances and mini-
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mal and maximal revenue among the 10 instances. Similar to the performance

in “same distribution” case, in “different distribution” case, the RS policy per-

forms slightly better than DLP and SAA in average and minimal revenue. Re-

markably, in contrast to performing not well in “same distribution” case, RD

policies generate higher average revenue than DLP and SAA. More specifically,

for T = 2, 5, 10, 30, the average revenue generated by RD policy is 2.21 ∼

4.49 % (α = 0.01) or 2.16 ∼ 3.96 % (α = 0.02) higher than that of DLP while

SAA generates less average revenue than that of DLP. It is also noteworthy that

although RD policies generate less revenue than that of DLP from perspective of

the maximal revenue, the minimal revenue generated by RD policies is signifi-

cantly higher than that of DLP. Specifically, 9.41 ∼ 14.52 % when α = 0.01 and

8.78 ∼ 13.90 % when α = 0.02.

Model Optimal Objective Ratio to DLP (%) Time Used (×10−2s)

DLP 177635 100 1.787
SAA 177416 99.88 2.152

α = 0.01 α = 0.02 α = 0.01 α = 0.02 α = 0.01 α = 0.02
RS 114890 119102 64.68 67.05 2.519 2.467

RD (T=2) 153525 156394 86.43 88.04 4.326 3.477
RD (T=5) 171676 172321 96.65 97.01 10.174 11.093
RD (T=10) 173830 174088 97.86 98.00 45.545 33.530
RD (T=30) 174469 174687 98.22 98.34 112.366 76.903

Table 5.4: Optimal objective value and CPU time of each model when N=20

Then supposing we could collect N = 20 data samples, we conduct the same

experiments again except the number of historical data and the results are shown in

Table 5.4, 5.5, 5.6. From Table 5.4, with the number of available data increasing,

the optimal objective value of both DLP and SAA decrease while that of robust

policies increases. Also, the optimal objective value obtained with more histor-
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ical data shares the same monotonicity property in the number of time periods.

Similar to the case with 10 data samples, we conduct numerical experiments in

“same distribution” and “different distribution” settings and the testing data are

the same as those we used in experiments for N = 10. From Table 5.5 and 5.6,

the average revenue of RS is still always higher than that of DLP while sometimes

slightly less than that of SAA. Almost consistent with the results in the N = 10

setting, although RD policies generate less average revenue than that of DLP and

SAA in “same distribution” setting, they generate higher average revenue in “dif-

ferent distribution” setting except in the case T = 10, α = 0.02. Furthermore,

in “different distribution” setting, the performance on the minimal revenue of RD

policies is still significantly higher than that shown by DLP. More specifically,

6.50 ∼ 13.90 % when α = 0.01 and 3.29 ∼ 12.80 % when α = 0.02.

We also consider the case where the actual demand distribution even falls into

a different class of distribution from that of the distribution of historical data.

Specifically, we conduct more numerical experiments where the testing data for

each product is drawn from the uniform distribution on the interval [5, 30] rather

than the normal distribution we used in the experiments above and the results are

shown in Table 5.7 for N = 10 and Table 5.8 for N = 20 respectively. Note

that we generate 10 different sample paths as the testing data. When N = 10,

the performance of RS policy is better than that of both DLP and SAA policy in

terms of the average, minimal and maximal revenue. In addition, the performance

of SAA policy is even worse than that of DLP policy. However, when the avail-

able historical data increases to 20, the advantage of RS policy over SAA policy

becomes no longer clear and the performance of SAA policy surpasses that of

DLP policy. Unlike the RS policy, RD policies perform quite well in both the
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N = 10 and 20 cases. Both the average and minimal revenue produced by the

RD policies are significantly higher than those generated by DLP, SAA and RS

policy. More specifically, with respect to the average revenue, 5.13 ∼ 6.79 %

(N = 10, α = 0.01), 4.64 ∼ 6.75 % (N = 10, α = 0.02),5.37 ∼ 5.90 %

(N = 20, α = 0.01) and 4.71 ∼ 5.90 % (N = 20, α = 0.02); with respect

to the minimal revenue, 6.59 ∼ 8.35 % (N = 10, α = 0.01), 4.03 ∼ 8.26 %

(N = 10, α = 0.02),5.68 ∼ 7.33 % (N = 20, α = 0.01) and 4.66 ∼ 6.80 %

(N = 20, α = 0.02). More notably, in contrast to the results of the numerical ex-

periments using truncated normal testing data, the RD policies take an advantage

over DLP, SAA and RS policy not only in the average and minimal revenue but

also in the maximal revenue. Specifically, 3.55 ∼ 5.15 % (N = 10, α = 0.01),

3.81 ∼ 5.15 % (N = 10, α = 0.02),3.81 ∼ 4.69 % (N = 20, α = 0.01) and

3.50 ∼ 4.50 % (N = 20, α = 0.02).

Comparing all the tables, we summarize the observations mentioned above and

provide some other findings:

(1) With the number of historical data increasing, the optimal object value of

model RS and RD become closer to that of DLP, which is the upper bound. Despite

the fact that the optimal objective value of our robust models is less than that of

DLP and SAA, the policy performance does not follow this. Since when we solve

our robust model, we are optimizing the pre-allocation quota decisions supposing

we are facing the worst-case distribution from the ambiguity set. This particular

distribution occurs with a very small probability in our testing experiments and

also the practical applications. Therefore, the revenue generated from our robust

policy is believed to be higher than the corresponding optimal objective value

of the optimization problem from which we determine the pre-allocation quota
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decisions if the ambiguity set is appropriately constructed. On the other hand, the

DLP or SAA policy does not have this guarantee and the actual revenue produced

by the DLP or SAA model in testing experiments or practice may be less than the

corresponding optimal objective value.

(2) No matter whether the demand distribution during the selling horizon is

the same as the distribution from which our historical data are drawn, in the set-

ting of limited data, RS policy performs slightly better than DLP and SAA from

perspectives of average, minimal and maximal revenue. However, with the in-

creasing amount of data, the advantages of RS over SAA become weaker or even

comparable.

(3) Although RD policies generate less average revenue than DLP, SAA and

RS in “same distribution” cases and less maximal revenue in both “same distribu-

tion” and “different distribution” cases, they generate higher average revenue than

DLP, SAA and RS policy and significantly higher minimal revenue in “different

distribution” cases. In addition, if the actual distribution falls into a different class

of distribution from that of the distribution of historical data, RD policies perform

better than DLP, SAA and RS policy in terms of the average, minimal as well as

maximal revenue.

(4) The optimal objective value of model RD is increasing with the number of

time periods while the average revenue in policy performance testing does not fol-

low this pattern. Especially, considering RD policies for T = 2, 5, 10, the average

revenue is decreasing with the number of time periods in “different distribution”

cases. One potential cause is the effect of the bootstrapping method we used to

generate multi-unit demand data based on given one unit demand data.

The numerical results also provide some implications for applying our method
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in practice. When the demand distribution during the coming selling season is be-

lieved to be different from that of the historical data (this kind of case can happen

when the business environment changes), RD policy is more recommended be-

cause of its good performance under distributional ambiguity. On the other hand,

when the environment is stationary and the demand distribution is believed to be

the same as that of the historical data, the RS policy is a more suitable method

when we have only a limited amount of historical observations since it performs

well in such a circumstance. In addition, the SAA policy is also a good choice in

stationary environment if enough amount of historical data is available.



Chapter 6

Conclusions

In this research, we incorporate demand uncertainty into the canonical quantity-

based NRM problem. Assuming we have no information about the demand dis-

tribution but limited historical data (i.i.d.), we develop a distributionally robust

PNLP model where the ambiguity set is constructed based on a statistical GoF

test with the given data. We show that this data-driven robust PNLP can be for-

mulated as a conic optimization problem, and it is tractable and enjoys the finite-

sample and asymptotic performance guarantees according to theorems from (Bert-

simas, Gupta, and Kallus 2018b). Specially, taking time dynamics into account,

we extend our robust static model to dynamic version. More specifically, we first

develop an approximate formulation, robust ADP, for DP of NRM problem that

uniquely lies at the intersection of DRO and ADP. To facilitate the computational

tractability, we further provide an equivalent reformulation of our robust ADP,

which approximates the evolution of the selling system under demand uncertainty.

Both our robust static and dynamic models are solved to determine an optimal par-

titioned allocation of capacity to each product against a worst-case distribution in

65
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the ambiguity set. Based on an optimal solution of our robust static or dynamic

model, we construct a robust static or dynamic booking limit policy to help the

firm make capacity allocation decisions.

Numerically, we conduct empirical experiments to validate the performance of

our robust approach and the main conclusions are: (1) With the number of histor-

ical data increasing, the optimal object value of model RS and RD become closer

to that of DLP, which is the upper bound. Despite the fact that the optimal ob-

jective value of our robust models is less than that of DLP and SAA, the policy

performance does not follow this; (2) No matter whether the demand distribution

during the selling horizon is the same as the distribution from which our historical

data are drawn, in the setting of limited data, RS policy performs slightly better

than DLP and SAA from perspectives of average, minimal and maximal revenue.

However, with the increasing amount of data, the advantages of RS over SAA

become weaker or even comparable; (3) Although RD policies generate less av-

erage revenue than DLP, SAA and RS in the testing instances using data drawn

from the same distribution as the historical data and less maximal revenue in both

“same distribution” and “different distribution” testing cases, they generate higher

average revenue than DLP, SAA and RS policy and significantly higher minimal

revenue in “different distribution” cases. In addition, if the actual distribution falls

into a different class of distribution from that of the distribution of historical data,

RD policies perform better than DLP, SAA and RS policy in terms of the average,

minimal as well as maximal revenue; (4) The optimal objective value of model

RD is increasing with the number of time periods while the average revenue in

policy performance testing does not follow this pattern. Especially, considering

RD policies for T = 2, 5, 10, the average revenue is decreasing with the number
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of time periods in “different distribution” cases. One potential cause is the effect

of the bootstrapping method we used to generate multi-unit demand data based on

given one unit demand data.

We finally propose some potential extensions to this work. First, we could

conduct more research on the robust dynamic policies both theoretically and em-

pirically in order to explore some interesting conclusions on the relationships be-

tween the number of time periods and the corresponding policy performance. In

addition, as mentioned above, we may have to take the effect of the bootstrap-

ping method we used to generate the data we need into consideration. Secondly,

it would be interesting to consider more types of GoF test, especially those recast

from some commonly used statistical distance and then compare the performance

of the control policies obtained from them with those of the control policies pro-

posed in our thesis. Instead of the marginal test approach adopted in our thesis,

it would be worthwhile to explore other formulations in the framework of our ap-

proach when we consider joint distribution setting, where we could capture more

information about the demand on all products. Thirdly, to include updated infor-

mation, i.e., the selling time periods left and the real remaining capacities we have

at the beginning of each time period, one commonly used approach in both theoret-

ical and practical research in RM area is re-solving. Taking system dynamics into

consideration, the new solution to the updated model is then used to adjust con-

trol policies. Therefore, we could re-solve our robust static and dynamic model

over time in experiment implementations to seek for a set of more accurate and

effective booking limits. Fourthly, it is possible to extend our approach to online

version, where we assume we have no access to the historical data or the historical

data is not suitable for us to estimate the demand distribution during the coming
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selling horizon and we could only collect the realizations coming “on the fly” af-

ter the selling horizon begins. Combing with the third potential extension above,

we could also simultaneously update the system information and ambiguity set,

which is constructed based on all the past realizations we collected till the current

decision-making time period, when we re-solve the model.
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Appendix

Appendix A: Proof of Theorem 1

Proof. To simplify notation, we omit the index j for each product in this proof.

The optimization problem (3.12) can be rewritten as follows:

min
ζ

Eζ [rmin {D, y}] (1a)

s.t. BSN
ζ − bSN ,α ∈ KSN

, (1b)

ζi − ζi−1 ≥ 0, ∀i ∈ [N + 1]. (1c)

Recall that ζi = F0(D
(i)). We can further rewrite problem (1) as

min
ζ

N+1∑
i=1

(
inf

D∈(D(i−1),D(i)]
rmin {D, y}

)
(ζi − ζi−1) (2a)

s.t. BSN
ζ − bSN ,α ∈ KSN

, (2b)

ζi − ζi−1 ≥ 0, ∀i ∈ [N + 1]. (2c)
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According to strong duality, (2) is equal to

max
λ∈K∗

SN
,µ≥0

min
ζ

N+1∑
i=1

(
inf

D∈(D(i−1),D(i)]
rmin {D, y}

)
(ζi − ζi−1)

+ λT(bSN ,α − BSN
ζ) +

N+1∑
i=1

µi(ζi−1 − ζi)

= max
λ∈K∗

SN
,µ≥0

min
ζ

N+1∑
i=1

{(
inf

D∈(D(i−1),D(i)]
rmin {D, y}

)
− µi

}
(ζi − ζi−1)

+ λT(bSN ,α − BSN
ζ)

= max
λ∈K∗

SN
,µ≥0

min
ζ

N+1∑
i=1

ci(ζi − ζi−1) + λT(bSN ,α − BSN
ζ)

s.t. ci =

(
inf

D∈(D(i−1),D(i)]
rmin {D, y}

)
− µi, ∀i ∈ [N + 1],

= max
λ∈K∗

SN
,c

min
ζ

N+1∑
i=1

ci(ζi − ζi−1) + λT(bSN ,α − BSN
ζ)

s.t. ci ≤ inf
D∈(D(i−1),D(i)]

rmin {D, y} , ∀i ∈ [N + 1],

= max
λ∈K∗

SN
,c

bTSN ,αλ+min
ζ

N+1∑
i=1

ci(ζi − ζi−1)−
N∑
i=1

(BT
SN

λ)iζi

s.t. ci ≤ inf
D∈(D(i−1),D(i)]

rmin {D, y} , ∀i ∈ [N + 1].

Note that
∑N+1

i=1 ci(ζi−ζi−1) = cN+1ζN+1+
∑N

i=1(ci−ci+1)ζi−c1ζ0with ζN+1 = 1
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and ζ0 = 0. Hence, the dual of (2) can be further reduced to

max
λ∈K∗

SN
,c

bTSN ,αλ+ cN+1 +min
ζ

N∑
i=1

[
(ci − ci+1)− (BT

SN
λ)i
]
ζi

s.t. ci ≤ inf
D∈(D(i−1),D(i)]

rmin {D, y} , ∀i ∈ [N + 1],

= max
λ∈K∗

SN
,c

bTSN ,αλ+ cN+1

s.t. (BT
SN

λ)i = ci − ci+1, ∀i ∈ [N ],

ci ≤ inf
D∈(D(i−1),D(i)]

rmin {D, y} , ∀i ∈ [N + 1].

As r ≥ 0, the constraint ci ≤ infD∈(D(i−1),D(i)] rmin {D, y} is equivalent to ci ≤

rD(i−1) and ci ≤ ry. This yields the equivalence between (1) and

max
λ,c

bTSN ,αλ+ cN+1

s.t. λ ∈ K∗
SN

, c ∈ RN+1,

(BT
SN

λ)i = ci − ci+1, ∀i ∈ [N ],

ci ≤ rD(i−1), ci ≤ ry, ∀i ∈ [N + 1].

Appendix B: Constraint Generation Algorithm

Assuming that we can add a maximum of v constraints in each iteration of the

constraint generation algorithm, the procedure is presented in Algorithm 1.
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Algorithm 1: Constraint Generation for Model (4.11)
Input: r,A,C1, θT+1,PT+1, (D

(i))∀i∈[N+1], (K
∗
SNj

, BSNj
, (bSNj

,αt,j
)∀t)∀j, v;

Output: (θ∗t ,P ∗
t , z

∗
t )∀t

1 Set C ← {(θt,Pt, zt)∀t : (4.11c)}.

2 Solve the master problem min(θt,Pt,zt)∀t∈C {θ1 +
∑m

l=1 P1,lC1,l}. Let

(θ̃t, P̃t, z̃t)∀t denote the corresponding optimal solution.

3 Set k ← 0, s← 0.

4 for t← 1 to T do

5 Solve the separation problem (4.15). Let (C̃t, ỹt, λ̃t, c̃t) and ρt denote

the corresponding optimal solution and optimal value, respectively.

6 if ρt ≥ 0 then

7 Set k ← k + 1.

8 else

9 Update C ← C ∩{
θt − θt+1 +

m∑
l=1

(Pt,l − Pt+1,l)C̃t,l ≥
n∑

j=1

zt,j

(
bTSNj

,αt,j
λ̃t,j + c̃t,j,N+1

)}
.

10 Set s← s+ 1.

11 if s = v then

12 Go to Step 16.

13 end

14 end

15 end

16 if k = T then

17 Return (θ∗t ,P ∗
t , z

∗
t )∀t ← (θ̃t, P̃t, z̃t)∀t.

18 else

19 Go to Step 2.

20 end
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