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Abstract

This thesis is devoted to theoretical and numerical analysis of inverse problems of fractional differential

equations, which have drawn much attention over the past decades due to the maybe ”mild” ill-

posedness of fractional derivatives.

In recent years, some numerical algorithms and mathematical analysis are provided and tested.

However, in most of these works, only some convergence results and semidiscrete numerical analysis

are analyzed. Then our aim is to give a thorough numerical analysis of inverse problems, where

numerical estimates are provided including noise level, regularization and discretization parameters.

The numerical estimates provide a balancing way to choose regularization and discretization parameter

from the noise level. Therefore, we could use a relevant coarser grid to obtain some optimal convergent

results.

After a background and preliminary introduction in Chapter 1 and Chapter 2, firstly in Chapter 3

we focus on the backward subdiffusion problem, with the application of quasi-boundary regularization

method, piecewise-linear finite element method and convolution quadrature, we show a total error es-

timate based on smoothing properties of (discrete) solution operators, and nonstandard error estimate

for the direct problem in terms of problem data regularity. Next in Chapter 4 when the backward

subdffision model includes a time-dependent coefficient, we use a perturbation argument of freezing

the diffusion coefficients. Similarly, we apply a quasi-boundary value method and a fully discrete

method consisting of finite element method in space and backward Euler convolution quadrature in

time. An a priori error estimate is established. Based on the motivation in subdiffusion we extend our

idea to fractional-wave equation in Chapter 5 where we want to simultaneously determine two initial

conditions based on two different observations. After a new proposed quasi-boundary value method

and a classical fully discrete method in space and time, a conditional a priori error estimate is shown.

On the other hand, we focus on the inverse potential problem in Chapter 6, to recover potential in a

fractional differential equation, with the severely ill posed nature, we construct a monotone operator

one of whose fixed points is the unknown potential. The uniqueness of the identification is theoretically

verified. Moreover, we show a conditional stability in Hilbert spaces under some suitable conditions

on the problem data. Next, a completely discrete scheme is developed by using Galerkin finite method

in space and finite difference method in time. A discrete fixed point iteration is constructed and

a thorough numerical analysis is given. Lastly in Chapter 7, we summarize our work and mention

possible future research topics.

In each chapter, various numerical experiments are provided to support our obtained numerical

error estimates. By a balancing choice of parameters, we would obtain an optimal convergence rates,
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which is strongly supported by our numerical experiments.
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CHAPTER 1.

INTRODUCTION

In this chapter, we will introduce anomalous diffusion and mathematical foundations on non-integer

order calculus in section 1.1. The development of inverse problems for systems with non-integer order,

would be presented in section 1.2. This dissertation’s contributions and organizational structure, are

then described in section 1.3.

1.1 Introduction to anomalous diffusion

In 1855, Adolf Fick introduced Fick’s first law of diffusion, which describes how the diffusive flux

travels from areas of high concentration to areas of low concentration.(see Figure 1.11) The magnitude

of the flux is proportional to the concentration gradient. Applying this law to mass concentration

leads to the classical diffusion equation, which characterizes the evolution of concentration over time:

∂tu(x, t)−D∆u(x, t) = 0,

where u represents the concentration of substances and D is the diffusion coefficient.

Figure 1.1: Figure of diffusion

Moreover, in 1905, Einstein [14] derived the classical diffusion equation from a microscopic level,

assuming a Brownian motion of the concentration movement and applying a stochastic process. The

probability density function of the particle then follows the classical diffusion equation in the macro-

scopic level.

In recent decades, many experiments and studies have reported that the diffusion observed in

complex systems no longer follows Brownian motion, but rather Lévy processes. This type of diffusion

is known as anomalous diffusion, and its main characteristic is that the mean square displacement

of particles varies superlinearly (superdiffusion) or sublinearly (subdiffusion) with time. Applying

1The figure is from https://quizlet.com/gb/519036925/diffusion-scaling-up-biology-gcse-91-flash-cards/

1



anomalous diffusion models provides a better fit to experimental data observed in many significant

practical applications. Specifically, subdiffusion models are often used to describe media with highly

heterogeneous aquifers [2, 29, 22] and fractal geometry [85]. For example in figure 1.2 the subdiffusive

motion is showed in RNA molecules in the cell, and we could see that the mean square displacement

is proportional to the fractional power(α = 0.7) of time. While superdiffusion models, also known

as diffusion-wave models, are frequently used to describe the propagation of mechanical waves in

viscoelastic media [74, 75]. Interested readers can refer to [80, 81, 109] for a long list of applications

of fractional models in biology and physics.

Figure 1.2: Subdiffusive motion of RNA molecules in the cell. Figure is from [22, Fig2(a)]

In this thesis, we will only consider the anomalous diffusion in time. The anomalous diffusion can

be represented by an equation of the form:

∂αt u = D(−∆)u

where ∂αt represents a fractional derivative related to time and α is the order. We can say that

α ∈ (0, 1) represents the subdiffusion model, α = 1 represents the classical diffusion model, and

α ∈ (1, 2) belongs to the diffusion-wave model.

From a mathematical point of view, fractional-order derivatives, and more generally, non-integer

calculus, can be traced back to Leibniz’s notes in 1695. The development of the theory of arbitrary

order derivatives and integrals originated from Leibniz and evolved over three hundred years in the

pure theoretical field of mathematics, primarily through the work of Liouville, Grünwald, Letnikov,

and Riemann, among others. The advantage of fractional derivatives is that they provide an excellent

explanation for the memory and hereditary properties of varying quantities in complex environments.

There is a large amount of mathematical background literature about fractional order calculus [87,

60, 57, 38].

2



1.2 Introduction to inverse problems

1.2.1 Inverse problems: derivation and applications

Assume that a direct problem is well-posed in the meaning of mathematical physics, that is, if we

completely know a ”physical device”, then we could describe this device with a classical mathematical

model including the existence, uniqueness and stability of a solution state of the model. The inverse

problems come from a trivial question that, given some measurement data of this device, could we

find one of the parameters describing this device.

The inverse problem exists very long in our daily life. In science, a historical example may come

from the discovery of Neptune from the perturbed trajectory of Uranus from Adams and Le Verrier.

However, the thorough study of inverse problems may initiate from 20th century to give a compre-

hensive understanding of practical problems. For example, the medical imaging [32, 79] is to seek the

hidden structure under skin and bones without any penetration and damage to our body. The method

of weather prediction [105] uses the identification and prediction to help better industry manufacture.

Oil detection [33, 7] is based on the inverse problem of diffusion in porous media. The extensive prac-

tical applications of inverse problems happens in gravimetry, computer vision, geophysics, machine

learning, etc.

1.2.2 Inverse problem in differential equations

Due to various kinds of inverse problems, there are many mathematical models describing them. The

difficulties of solving these models including differential equations mainly come from the ill-posedness

in the Hadamard sense [25]. Given the abstract equation

Ax = y,

the well-posedness of the equation is to require A has a continuous inverse A−1, in other words, the

solution x must enhance the uniqueness, stability and existence. If one of them violates, we call this

equation ”ill-posed” (in the sense of Hadamard).

It is very essential to seek the uniqueness in inverse problem which makes much sense in practical

applications. However, the existence condition would not be necessary, for even if there is no existence,

we could find an ”approximate” unique solution. The stability would imply the level of ill-posedness

of inverse problems, but it is very challenging to obtain. The importance of stability is to derived

from the noise from data measured and computed from reality. We introduce interesting readers to

some literatures like [34, 25, 12, 84, 28, 36, 92, 90, 35, 97, 94, 15].

The noisy observation data in inverse problems are unavoidable, without any preprocessing we may

3



arrive results at opposite parts. The most popular processing dealing with noisy data is regularization,

the main idea is to find the solution into another correct class [34, section 2.2], guaranteeing the

uniqueness and ”conditional stability”. It is very essential in numerical methods for inverse problems

to obtain stability. Tikhonov in 1943 firstly promotes this observation in his work, initiating the

theory of stable recovery of linear or nonlinear ill-posed problems. The general idea is to add an extra

penalty term to find minimizers of the functional [94], i.e.

x 7→ ∥Ax− yδ∥2 + α∥x− x0∥2

where α, called regularization parameter, states the level of penalty and x0 includes a priori informa-

tion about solutions. Tikhonov regularization has been investigated extensively in linear and nonlinear

ill-posed problems. By additional assumptions on operator A and initial setting for solutions, we would

arrive a stability of minimizer xδα corresponding to the noisy data yδ. Even some convergence rates

have been showed upon some more conditions on operators and solution. To solve Tikhonov regu-

larization method in nonlinear ill-posed problems, we always use iterative methods in optimization

which guarantee the convergence of iterative solutions and are easy to program on electrical device.

We recommend the following literatures of regularization and inverse problems [36, 94, 52, 95, 15].

For linear ill-posed problems, there are many direct regularization methods. For example, the

backward parabolic problems could use truncation regularization, quasi reversibility, pseudo-parabolic,

etc. [31]. The computerized tomography (cf., e.g., [84]) is also a linear problem, including the Radon

transform which is basis of CT scan.

1.2.3 Inverse problems consist of anomalous diffusion in time

Following the rising interest in anomalous diffusion, it is trivial to study the inverse problem from

anomalous diffusions. The inverse problems for classical diffusion could consist of recover diffusion

and potential coefficients, initial condition, source term, boundary conditions and domain geometry.

Not only the inverse problems for anomalous diffusion inherits these parameters, but the recovery of

non-integer order (fractional order) is more important. The second interest is to compare the impact

of new physics on the behavior of inverse problems with classical results.

The last aspect plays a more important role in our practical point, since it could infer the more or

less reconstruction of quantities of interest. Here we briefly introduce some inverse problems related

to anomalous diffusion which we use in the following chapters.
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Backward diffusion Firstly let Ω ⊂ Rd (d ≥ 1) be a bounded and convex domain with smooth

boundary ∂Ω, and consider the following backward subdiffusion equation

∂αt u−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω

(1.1)

where 0 < α < 1 and ∆ is the Laplace operator in space. Here ∂αt u(t) denotes the Caputo fractional

derivative introduced in Section 2.1.

Inverse problems for fractional diffusion have attracted much interest, and there has already been

a vast literature; see e.g., review papers [48, 66, 67, 70] and references therein. Firstly we aim at

the classical backward problem: determining the function u(x, t) with (x, t) ∈ Ω × [0, T ) from a

terminal observation u(x, T ) = g(x).

The smoothing property

c1∥u0∥L2(Ω) ≤ ∥u(T )∥L2(Ω) ≤ c2∥u0∥L2(Ω) (1.2)

given by [89, Theorem 2.1] contrasts sharply with the classical parabolic counterpart (α = 1), whose

solution is infinitely differentiable in space for all t > 0. Thus, the backward problem of subdiffusion

is far “less” ill-posed than that of normal diffusion. The existence, uniqueness and stability of the

time-fractional backward problem were analyzed by Sakamoto and Yamamoto in [89]. This work

motivates many subsequent developments of regularized algorithms. In [69], Liu and Yamamoto

proposed a numerical method based on the quasi-reversibility method, and analyze the approximation

error (in terms of noise level) under a priori smoothness assumption on u0. Then a total variation

regularization method was proposed and studied by Wang and Liu in [102]. In [100], Wang and

Wei developed and analyzed an iteration method to regularize the backward problem. The quasi-

boundary value method for solving the fractional backward problem was firstly studied in [108] for

a one-dimensional subdiffusion model, and then extended in [103] to the general case by modifying

the regularization term. See also [27] for a novel Hölder type estimate of the quasi-boundary value

methods.

To solve the regularized system, people applied different numerical approaches, e.g., finite element

method, finite different method, etc. Then some discretization error will be introduced into the system.

Therefore, it is necessary to establish an estimate to balance discretization parameter, regularization

parameter and noise level.

As Section 1.2 points out, we need to regularize the ill-posed problem. For the backward prob-

lem, there are many popular regularization methods such as quasi-reversibility [63], pseudo-parabolic

method [18] and quasi-boundary value method [31]. In this thesis we apply quasi-boundary value

method at time boundary t = T , which is
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However, when the operator −∆ in (1.1) be more general, i.e. be time dependent operator A(t) :

H1
0 (Ω) ∩H2(Ω)→ L2(Ω) defined by

A(t)ϕ = −∇ · (a(x, t)∇ϕ) (1.3)

satisfying Elliptic conditions, the PDE of (1.1) becomes

∂αt u+A(t)u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω

(1.4)

the analysis of backward subdiffusion used in Chapter 3 may be not directly applicable for subdiffusion

models with time dependent coefficients since it heavily relies on the asymptotic behaviors of Mittag-

Leffler functions. Unfortunately, this strategy is Moreover, for fractional model, the analysis is much

more challenging since many useful mathematical tools, including product rule and chain rule, are not

directly applicable.

For time-dependent elliptic operators or nonlinear problems, energy arguments [99] or perturbation

arguments [58] can be used to show existence and uniqueness of the solution. However, more refined

stability estimates, needed for numerical analysis of nonsmooth problem data, often have to be derived

separately. Mustapha [83] analyzed the spatially semidiscrete Galerkin FEM approximation of problem

(1.4) using a novel energy argument, and established optimal-order convergence rates for both smooth

and nonsmooth initial data. See also [76, 77, 78] for time-fractional advection diffusion equation. In

[45], a perturbation argument of freezing the diffusion coefficients was proposed to analyze the PDE

(1.4) and its numerical treatment. The argument was then modified and adapted to the error analysis

of high-order discretization scheme in [46]. However, the analysis for the uniqueness and stability of

backward problem is still missing in the literature. We also refer interested readers to [30, 6] for the

inverse source problem with time-dependent coefficients, where the uniqueness was proved using some

nonstandard energy argument.

After dealing cases for subdiffusion model, i.e. 0 < α < 1, there are cases related to fractional

wave case of 1 < α < 2. We consider

∂αt u−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = a, ∂tu(0) = b inΩ.

(1.5)

It is interesting to investigate the backward problem for the diffusion-wave model (1.5): we want to

simultaneously determine the initial data u(x, 0) and ut(x, 0) with x ∈ Ω (and hence the function

u(x, t) for all (x, t) ∈ Ω× (0, T )) from two terminal observations

u(x, T1) = g1(x), u(x, T2) = g2(x) for all x ∈ Ω, (1.6)
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where T1, T2 ∈ (0, T ] and T1 < T2.

The study on the backward problem for the diffusion-wave model remains fairly scarce. In [104]

Wei and Zhang studied the backward problem to recover a single initial condition u(0) or ut(0)

(with the other one known) from the single terminal data u(T ). Floridia and Yamamoto analyzed

the simultaneous recovery of two initial data from two terminal observations u(T ) and ut(T ), and

established a Lipschitz stability in [20]. In the setting of current paper, we consider two observations

u(T1) and u(T2), which are practical in many empirical experiments. As far as we know, there is no

rigorous analysis of the discretized (numerical) scheme for solving the backward problem where some

regularization error and discretization error(s) will be introduced into the system. Then there arises

a natural question: is it possible to derive an a priori error estimate, showing the way to balance

discretization error, regularization parameter and the noise.

Inverse potential problems Here we consider the following initial-boundary value problem for the

diffusion model with α ∈ (0, 1]:

∂αt u(x, t)−∆u(x, t) + q(x)u(x, t) = f(x), (x, t) ∈ Ω× (0, T ],

u(x, t) = b(x), (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = v(x), x ∈ Ω,

(1.7)

The notation ∂αt u denotes the conventional first-order derivative when α = 1, and the Djrbashian-

Caputo fractional derivative in time t for α ∈ (0, 1).

For the inverse potential problem, we study the following inverse potential problem for the

(sub)diffusion model (1.7): setting appropriate problem data v, f, b and measuring the final time data

g(x) := u(x, T ; q†), then we aim to recover the unknown potential term q†(x) ∈ L∞(Ω) such that

u(x, T ; q†) = g(x) in Ω.

This inverse potential problem arises in many practical applications, where q† represents the radiativity

coefficient in heat conduction [106] and perfusion coefficient in Pennes’ bio-heat equation in human

physiology [86].

The theoretical analysis of inverse potential problem in diffusion equation from final time observa-

tional data has a long history, see e.g, [34, 9, 10, 8, 59] and the references therein. In [34] Isakov showed

the uniqueness and (conditional) existence of the inverse potential problem for parabolic equations, by

developing a unique continuation principle and a constructive fixed point iteration. A similar strat-

egy was then adopted in [113] by Zhang and Zhou for a one-dimensional time-fractional subdiffusion

model. Using the spectrum perturbation argument ([113, Lemma 2.2] and [88]) they proved that the

fixed point iteration is a contraction, from which the uniqueness and existence followed immediately.
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Choulli and Yamamoto proved a generic well-posedness result in a Hölder space [9], and then proved

a conditional stability result in a Hilbert space setting [10] for sufficiently small T . By using refined

properties of two-parameter Mittag-Leffler functions, e.g., complete monotonicity and asymptotics, a

similar result was proved in [50] for the case that α ∈ (0, 1). Kaltenbacher and Rundell [53] proved

the invertibility of the linearized map (of the direct problem) from the space L2(Ω) to H2(Ω) under

the condition u0 > 0 in Ω and q ∈ L∞(Ω) using a Paley-Wiener type result and a type of strong

maximum principle. In [55], they studied the recovery of several parameters simultaneously from

overposed data consisting of u(T ). Chen et al. [8] considered the observational data in [T0, T1] × Ω

for the parabolic equation, and proved conditional stability of the inverse problem in negative Sobolev

spaces. Most recently, Jin et al. [47] used the same observational data and showed a weighted L2

stability which leads to a Hölder type stability in the standard L2 norm under a positivity condition.

We also refer interested readers to [56, 82, 54] and references therein for the inverse potential problem

for (sub)diffusion models from different types of observational data.

The ill-posed nature of inverse potential problems usually poses big challenges to construct accurate

and stable numerical approximations. Regularization, especially Tikhonov regularization, is designed

to overcome the ill-posed nature [16, 106, 13, 107]. In practical computation, one still needs to discretize

the continuous regularized formulation and hence introduces the discretization error. See [106] for the

convergence of the discrete approximations in the parabolic case. However, the convergence rates of

discrete approximations are generally very challenging to obtain, due to the strong non-convexity of

the regularized functional, which itself stems from the high degree nonlinearity of the parameter-to-

state map. So far there have been only very few error bounds on discrete approximations, even though

an optimal a priori estimate provides a useful guideline to choose suitable discretization parameters

according to the noise level. See [47] for an L2 estimate under a positivity condition, where the

observational data is required to be known in [T−σ, T ]×Ω for some positive parameter σ. Moreover, in

case that α ∈ (0, 1), due to the presence of the nonlocal fractional differential operator, the subdiffusion

model (6.1) differs considerably from the normal diffusion problem. For example, many powerful tools,

e.g. energy argument and product rule, are not directly applicable, and the solution has only limited

spatial and temporal regularity, even for smooth problem data. Both of them often result in additional

difficulties to the mathematical and numerical analysis for both direct and inverse problems. See a

related inverse conductivity problem in [101] and [51] respectively for normal diffusion and subdiffusion

model, where the error estimate requires the observational data in (0, T ]× Ω.
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1.3 Contributions and organizations of the thesis

In this thesis, we provide mathematical and numerical analysis for approximately solving the backward

problem and inverse potential problem of time anomalous diffusion equation. The analysis cover back-

ward subdiffusion with time dependent or independent coefficients, backward diffuion-wave problem

with two unknown initial conditions and inverse potential problem. The error estimates from nu-

merical algorithms are very useful to choose discretization parameters and regularization parameters

according to the noise level.

In Chapter 2, we provide some necessary preliminaries needed for the analysis of fractional partial

differential equations. Firstly we list some fractional calculus including integral and derivative. The

Mittag-Leffler functions which play an essential role in fractional PDEs, is clearly introduced, and

its asymptotic behavior is given in Lemma 2.1. The solution representations are also given based

on the spectral expansion and Mittag-Leffler functions. Some numerical methods including finite

element methods and convolution quadrature are illustrated. All these preliminaries form basis for

the following mathematical analysis and numerical algorithms

In Chapter 3 we provide a complete numerical analysis to the backward subdiffusion problem of

fractional order α ∈ (0, 1). After using quasi-boundary value method to regularize the problem, we

propose a fully discrete scheme by applying finite element method (FEM) in space and convolution

quadrature (CQ) in time. The analysis relies heavily on smoothing properties of (discrete) solution

operators directly from Mittag-Leffler functions and nonstandard error estimate for the direct problem.

In the past, the backward diffusion problem for a standard parabolic equation, i.e., α = 1, is

intensively studied. Due to the strong smoothing properties of solution operators E(t) = exp(−∆t),

the backward stability is at most log type. However, the limited smoothing properties of solution

operator from subdiffusion would infer the far ”less” ill-posedness of the backward stability.

Specifically, if the observation data is noisy in level δ > 0 in L2 sense. Given the regularization

parameter γ > 0, the space and time discretization h and τ . Firstly for smooth data, there holds

(Theorem 3.3 (i))

∥Ũ δ
n − u(tn)∥L2(Ω) ≤ c


γ + (h2 + τ + δ)min(γ−1, t−α

n ) + τtα−1
n , n ≥ 1;

γ + (h2 + τ + δ)γ−1, n = 0.

As for nonsmooth data we could have a convergence at n = 0 and even a convergence rate for n ≥ 1.

And this is the first work providing rigorous error analysis of numerical methods for solving the

time-fractional backward problem.

In Chapter 4, we study the backward subdiffusion problem with time dependent coefficients, i.e.

the spatial differential operator A = A(t). Since the method of Mittag-Leffler function could not
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be used, we apply a perturbation argument [44, 45] and show some smoothing properties of solution

operators. The quasi boundary regularization method is applied, then after some numerical designs

we establish a thorough error analysis.

The main contribution of this chapter is firstly to develop a conditional stability in Sobolev spaces

(Cf. Theorems 4.2 and 4.4). Next we apply piecewise linear FEM in space and CQ-BE in time, then

the complete error analysis is given for smooth (Theorem 4.7)

∥Ũ δ
0 − u0∥L2(Ω) ≤ c

(
γ

q
2 + δγ−1 + h2γ−1 + τ | log τ |(h2γ−1 + 1)

)
,

and for nonsmooth data in L2(Ω), we also show a convergence following δ → 0.

In Chapter 5 we introduce simultaneous recovery of two initial conditions from backward diffusion-

wave problem. Firstly the existence, uniqueness and Lipschitz stability are established. Moreover, we

apply regularized quasi-boundary value method and piecewise linear FEM in space and CQ-BE in time.

Then we could derive a comprehensive numerical analysis to the simultaneous recovery problem.

The simultaneous recovery is to recover initial state u0 = a and velocity ∂tu(0) = b from differ-

ent time T1, T2 In particular, using the asymptotic behavior of Mittag-Leffler functions, we show a

two-sided Lipschitz stability (Theorem 5.1) under some conditions on T1 and T2 (depending on the

spectrum of −∆). In the second part, total analyzed numerical schemes are promoted and imply the

main results in Theorem (Theorem 6.5) of

∥ãδh,τ − a∥L2(Ω) + ∥b̃δh,τ − b∥L2(Ω) ≤ c
(
γ

q
2 + τ + (h2 + δ)γ−1

)
,

if a, b ∈ Ḣq(Ω) with q ∈ (0, 2], and for n ≥ 1

∥Ũ δ
n − u(tn)∥L2(Ω) ≤ c

[
γmin(γ−(1− q

2
), t

−(1− q
2
)α

n ) + (τtα−1
n + h2 + δ

)
min(γ−1, t−α

n )
]
.

And for L2 constraints we also could obtain a convergence.

In Chapter 6, we move our focus to inverse potential problem, i.e. to recover a spatially dependent

potential in a (sub)diffusion equation from overposed final time data. We construct a monotone oper-

ator one of whose fixed points is the unknown potential. We verify the uniqueness of the identification

via the operator monotonicity and a fixed point argument. Based on an extra proved stability, we

propose a completely discrete scheme by using FEM in space and finite difference method in time and

a fixed point iteration is applied to reconstruct the potential.

Motivated by [113] for a one-dimensional time-fractional subdiffusion model, we apply a totally

different idea for high dimensional cases of inverse potential problem. To recover the potential q firstly

we construct an operator K and show its monotonicity, which is used to prove that there at most one

fixed point (Theorem 6.2). Besides under some conditions for final time T , we show a Lipschitz-type

stability in Hilbert spaces (Theorem 6.3). Based on this stability, we apply a fully discrete scheme
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by Galerkin finite element method with conforming piecewise bilinear finite elements in space and

backward Euler method in time for α = 1, and BE-CQ for α ∈ (0, 1). Under some clear numerical

analysis we obtain a priori error estimate for any parameter ϵ ∈ (0,min(1, 2− d
2)) (Theorem 6.5)

∥q† − q∗∥L2(Ω) ≤
c

1− cT−(1−ϵ)α

( δ
h2

+ h+ τ
)
≤ c
( δ
h2

+ h+ τ
)

if cT−(1−ϵ)α ≤ c0 < 1 for some constant c0.

Finally, we summarize the main results in the thesis and try to discuss possible future work in

Chapter 7. In each chapter various numerical experiments are provided to support theoretical results.
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CHAPTER 2.

Preliminary

In this Chapter, some preliminaries are introduced related to the fractional differential equations.

Firstly, in Sections 2.1 and 2.2 the basis of fractional calculus is presented followed by the corresponding

Mittag-Leffler functions arising from fractional ODEs. Next, in Section 2.3 and 2.4 the representation

of solution in fractional PDEs are given from Mittag-Leffler functions and semigroup approaches, also

some smoothing properties of solution operators are given. And finally in Section 2.5 we introduce

some numerical algorithms considering the fractional PDEs, including discretization in space and time.

2.1 Fractional calculus

In this section we would briefly introduce some basis definitions of fractional calculus. Let D = (a, b),

extending Cauchy iterative integral formula for integers to fractions, the left-sided Riemann-Liouville’s

fractional integer of order β > 0 based at t = a, for any u ∈ L1(D), is defined as ([38, Definition 2.1])

( aI
β
t u)(t) =

1

Γ(β)

∫ t

a
(t− s)β−1u(s)ds (2.1)

and the right-sided Riemann-Liouville fractional integral with order β > 0 at t = b is defined by

( tI
β
b u)(t) =

1

Γ(β)

∫ b

t
(s− t)β−1u(s)ds

here Γ(β) stands for the Gamma function. And if β = k ∈ N, we would arrive the regular k-fold

integral of u.

Moreover, based on this fractional integral we could obtain the fractional derivative. The left-sided

and right-sided Riemann-Liouville fractional derivative are defined as

R
aD

α
t u(t) =

dn

dtn
( aI

α
t u), (2.2)

R
tD

α
b u(t) = (−1)n d

n

dtn
( tI

α
b u),

where the fractional order n − 1 < α < n for any n ∈ N. However, the existence of the fractional

derivative is guaranteed by u ∈ L1(D) and u has n-th continuous derivative for t ≥ a.

Moreover, the derivative could take inside the integral, after which we could obtain the Djrbashian-

Caputo fractional derivate, i.e., [38, Definition 2.3]

C
aD

α
t u(t) = ( aI

α
t u

(n))(t), (2.3)

C
tD

α
b u(t) = (−1)n( tIαb u(n))(t),
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in left and right-hand sense and here u(n) means the n − th derivative of u. The existence of such

fractional derivatives is guaranteed by u ∈ L1(D) and u ∈ ACn(D̄), where AC(D̄) denotes the

absolutely continuous function on D̄ [38, Appendix 1].

It is very important to state the relation between Riemann-Liouville and Caputo fractional deriva-

tives [57, p. 91]:

( CaD
α
t u)(t) = (RaD

α
t u)(t)−

n−1∑
k=0

u(k)(a)

Γ(k − α+ 1)
(t− a)k−α. (2.4)

In this thesis we apply left-sided Djrbashian-Caputo derivative ∂αt := C
0D

α
t (2.3) and Riemann-

Liouville as R∂αt :=R
0D

α
t in our differential equation models from a = 0 due to its better explanation

to physical technology ([87, p. 78-79], [60, p. 10-11]).

Some properties of fractional derivatives are well-studied recently(e.g. [38, 87]). For examples, if

u ∈ L1(D) with ( aI
α−n+1
t u)(t) and ( aI

α−n+1
t u)(a) = 0 then [38, Theorem 2.13]

C
aD

α
t aI

u
t = u, a.e. in D.

Also, the Caputo fractional derivatives can commute under some conditions see more detail in [38,

Proposition 2.3]. However, the chain rule and product rule may fail which bring obstacles in applying

some classical powerful tools like energy arguments.

The Laplace transforms for fractional derivatives are well-known(e.g. [38, 87, 60]). Applying the

Laplace transform to Caputo derivative we would obtain([38, Lemma 2.9]):

L[ C0Dα
t u](z) = zαû(z)−

n−1∑
k=0

zα−k−1u(k)(0)

where n− 1 < α < n and û means the Laplace transform of u.

2.2 Mittag-Leffler functions

In this section, we would introduce the Mittag-Leffler functions, which is a basis for fractional differ-

ential equations.

2.2.1 Basic definitions and properties of Mittag-Leffler functions

The two parameter Mittag-Leffler function is defined as ([87, equation (1.56)])

Eα,β(z) =
∞∑
k=0

zk

Γ(kα+ β)
, α > 0, β > 0, ∀z ∈ C. (2.5)

The connection between Mittag-Leffler function and some well-known functions is given in various

materials ([87, 60]). For example,

E1,1(z) = ez, E2,1(z
2) = cosh(z), E2,2(z

2) =
sinh(z)

z
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The Mittag-Leffler function Eα,β(z) is a generalization of the familiar exponential function ez appearing

in normal diffusion. The next lemma provides the upper and lower bounds of Mittag-Leffler functions.

See [87, Theorem 1.4], [38, Theorem 3.2] for detailed proof.

Lemma 2.1. If 0 < α < 2, β is an arbitrary complex number and µ is an arbitrary real number such

that
πα

2
< µ < min{π, πα},

then there exists a constant C only dependent on α, β, µ such that

|Eα,β(z)| ≤
C

1 + |z|
, µ ≤ | arg(z)| ≤ π.

Moreover, for large z, there holds the following asymptotic behaviors

Eα,1 =
1

Γ(1− α)
1

z
+O(

1

z2
) and Eα,2 =

1

Γ(2− α)
1

z
+O(

1

z2
), ∀z →∞. (2.6)

The function Eα,β(−λtα) decays only polynomially like t−α as t → ∞ (cf. Lemma 2.1), which

contrasts sharply with the exponential decay for e−λt appearing in normal diffusion.

Note that the Mittag-Leffler functions appear in some fractional ordinary differential equations

([38, Proposition 4.5]), simply let w(t) = Eα,1(−λtα) be the solution to the initial value problem

∂αt w(t) + λw(t) = 0, with w(0) = 1.

By means of Laplace transform, it can be written as

w(t) = Eα,1(−λtα) =
1

2πi

∫
Γθ,σ

eztzα−1(zα + λ)−1 dz (2.7)

with integration over a contour Γθ,σ in the complex plane C (oriented counterclockwise), defined by

Γθ,σ = {z ∈ C : |z| = δ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ, ρ ≥ σ}. (2.8)

Throughout, we fix θ ∈ (π2 , π) so that zα ∈ Σα,θ ⊂ Σθ := {0 ̸= z ∈ C : arg(z) ≤ θ}, for all z ∈ Σθ.

Computing the value of Mittag-Leffler functions is well-studied in [91], they give a detailed algo-

rithm to numerically approximate generalized Mittag-Leffler functions.

2.3 Fractional subdiffusion model

In this section, we introduce the representation of the solution to the subdiffusion problem:

∂αt u−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω

(2.9)
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Here 0 < α < 1, this model coincides with classical diffusion with α = 1. And solution regularities of

the subdiffusion model may differ with classical models.

To begin with, we introduce some notation. For q ≥ 0, we denote by Ḣq(Ω) the Hilbert space

induced by the norm:

∥v∥2
Ḣq(Ω)

=

∞∑
j=1

λqj(v, φj)
2

with {λj}∞j=1 and {φj}∞j=1 being respectively the eigenvalues and the L2(Ω)-orthonormal eigenfunctions

of the negative Laplacian −∆ on the domain Ω with a homogeneous Dirichlet boundary condition.

Then {φj}∞j=1 forms orthonormal basis in L2(Ω). Further, ∥v∥Ḣ0(Ω) = ∥v∥L2(Ω) = (v, v)1/2 is the norm

in L2(Ω). Besides, it is easy to verify that ∥v∥Ḣ1(Ω) = ∥∇v∥L2(Ω) is equivalent to the norm in H1
0 (Ω)

and ∥v∥Ḣ2(Ω) = ∥∆v∥L2(Ω) is equivalent to the norm in H2(Ω) ∩ H1
0 (Ω) [93, Section 3.1]. By the

complex interpolation method [96], this implies

Ḣq(Ω) = (L2(Ω), H1
0 (Ω) ∩H2(Ω))[ q

2
], ∀ t ∈ [0, T ], ∀ γ ∈ [0, 1],

Then the solution of the forward problem (2.9) could be written as [40]

u(t) = F (t)u0 +

∫ t

0
E(t− s)f(s)ds (2.10)

where the solution operators are defined as

F (t)χ =
∞∑
j=1

Eα,1(−λjtα)(χ, φj)φj and E(t)χ =
∞∑
j=1

tα−1Eα,α(−λjtα)(χ, φj)φj . (2.11)

Next, we state a few regularity results. The proof of these results can be found in, e.g., [5, 89, 45]

Lemma 2.2. Let u(t) be defined in (2.10). Then the following statements hold.

(i) If u0 ∈ Ḣq(Ω) with s ∈ [0, 2] and f = 0, then u(t) is the solution to problem (2.9), and u(t)

satisfies

∥∂(m)
t u(t)∥Ḣp(Ω) ≤ ct

(s−p)α
2

−m∥u0∥Ḣq(Ω)

with 0 ≤ p− q ≤ 2 and any integer m ≥ 0.

(ii) If u0 = 0 and f ∈ Lp(0, T ;L2(Ω)) with 1 < p <∞, then there holds

∥u∥Lp(0,T ;Ḣ2(Ω)) + ∥∂
α
t u∥Lp(0,T ;L2(Ω)) ≤ c∥f∥Lp(0,T ;L2(Ω)).

Moreover, if f ∈ Lp(0, T ;L2(Ω)) with 1/α < p < ∞, then u(t) is the solution to problem (2.9)

such that u ∈ C([0, T ];L2(Ω)).
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2.4 Fractional diffusion-wave model

In this section we consider the following initial-boundary value problem of diffusion-wave equation

with α ∈ (1, 2)

∂αt u−∆u = f, in Ω× (0, T ],

u = 0, on ∂Ω,

u(0) = a, ∂tu(0) = b, in Ω,

(2.12)

where T > 0 is a fixed final time, f ∈ L∞(0, T ;L2(Ω)) and a, b ∈ L2(Ω) are given source term and

initial data, respectively.

Then the solution of the diffusion-wave problem (2.12) could be written as

u(t) = F(t)

a
b

+

∫ t

0
E(t− s)f(s) ds = F (t)a+ F̄ (t)b+

∫ t

0
E(t− s)f(s) ds (2.13)

where the solution operators F (t), E(t) are the same in (2.11), the new operator F̄ (t) is defined by

F̄ (t)v =
∞∑
j=1

tEα,2(−λjtα)(v, φj)φj , (2.14)

for any v ∈ L2(Ω). By Laplace Transform, we have the following integral representations of the

solution operators:

F (t) =
1

2πi

∫
Γθ,σ

eztzα−1(zα −∆)−1dz, F̄ (t) =
1

2πi

∫
Γθ,σ

eztzα−2(zα −∆)−1dz,

E(t) =
1

2πi

∫
Γθ,σ

ezt(zα −∆)−1dz.

(2.15)

Here Γθ,σ denotes the integral contour in (2.8).

The important bounds in Lemma 2.1 are directly translated into the limited smoothing property

in both space and time for the solution operators F (t), F̄ (t) and E(t). Next, we state a few regularity

results. See more details in [5, 41, 38, 89].

Lemma 2.3. Let u(t) be defined in (2.12). Then the following statements hold.

(i) If a, b ∈ Ḣq(Ω) with q ∈ [0, 2] and f = 0, then u(t) is the solution to problem (2.12), and u(t)

satisfies for any integer m ≥ 0 and q ≤ p ≤ 2 + q

∥∂(m)
t u(t)∥Ḣp(Ω) ≤ c

(
t−m−α(p−q)/2∥a∥Ḣq(Ω) + t1−m−α(p−q)/2∥b∥Ḣq(Ω)

)
.

(ii) If a = b = 0 and f ∈ Lp(0, T ;L2(Ω)) with 1/α < p < ∞, then u(t) is the solution to problem

(2.12) such that u ∈ C([0, T ];L2(Ω)) and

∥u∥Lp(0,T ;Ḣ2(Ω)) + ∥∂
α
t u∥Lp(0,T ;L2(Ω)) ≤ c∥f∥Lp(0,T ;L2(Ω)).
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2.5 Numerics

In this section, we shall briefly introduce the existing results of some discretization methods we use

in the following inverse problem, including finite element method(FEM) in space and backward Euler

convolution quadrature(BE-CQ) in time.

2.5.1 Triangular finite element method in space

Now we describe the spatial discretization by finite element method. For h ∈ (0, h0], we denote by

Th = {Kj} a triangulation of Ωh = Int(∪Kj) into mutually disjoint open face-to-face simplices Kj .

Assume that all boundary vertices of Ωh locate on ∂Ω. We also assume that {Th} is globally quasi-

uniform, i.e., |Kj | ≥ chd with a given c > 0. Let Xh be the finite dimensional space of continuous

piecewise linear functions associated with Th, that vanish outside Ωh, i.e.

Xh =
{
χ ∈ C(Ω̄) ∩H1

0 : χ|K ∈ P1(K), ∀K ∈ Th
}
. (2.16)

We need the L2(Ω) projection Ph : L2(Ω)→ Xh and Ritz projection Rh : Ḣ1(Ω)→ Xh, respectively,

defined by (recall that (·, ·) denotes the L2(Ω) inner product)

(Phψ, χ) = (ψ, χ) ∀ χ ∈ Xh, ψ ∈ L2(Ω),

(∇Rhψ,∇χ) = (∇ψ,∇χ) ∀ χ ∈ Xh, ψ ∈ Ḣ1(Ω).

The following approximation properties of Rh and Ph are well known [93, Chapter 1]:

∥Phψ − ψ∥L2(Ω) + h∥∇(Phψ − ψ)∥L2(Ω) ≤ chq∥ψ∥Hq(Ω) ∀ψ ∈ Ḣq(Ω), q = 1, 2, (2.17)

∥Rhψ − ψ∥L2(Ω) + h∥∇(Rhψ − ψ)∥L2(Ω) ≤ chq∥ψ∥Hq(Ω) ∀ψ ∈ Ḣq(Ω), q = 1, 2. (2.18)

Upon introducing the discrete Laplacian ∆h: Xh → Xh defined by

−(∆hψ, χ) = (∇ψ,∇χ), ∀ψ, χ ∈ Xh.

2.5.2 Backward Euler convolution quadrature

Here we briefly introduce the concept of convolution quadratures proposed in [71, 43]. Applying the

Laplace transform to Riemann-Liouville type fractional derivative in (2.2) with 0 < α < 1, we obtain

(LR∂αt φ(t))(z) = zα(Lφ)(z),

where L stands for the Laplace transform where Lu =
∫∞
0 e−zsu(s)ds. Suppose α = 1, there are many

stable linear multistep methods to approximate z with the characteristic polynomial δτ (ζ), including

backward differentiation formula(BDF), trapezoidal rule, Runge-Kutta methods (see more details in
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[26]). The most popular one is backward differentiation formula of order k (BDF-k), k = 1, 2, · · · , 6,

where the characteristic polynomial is given

δτ (ζ) :=
1

τ

k∑
j=1

1

j
(1− ζ)j . (2.19)

In this thesis, we would only use the BDF-1 method with δτ (ζ) = (1− ζ)/τ , where we call it backward

Euler convolution quadrature (BE-CQ), to approximate zα with the power series expansion

δτ (ζ)
α =

1

τα

∞∑
j=0

bjζ
j .

Therefore, we could approximate the Riemann-Liouville fractional derivative as (with φj = φ(tj))

R∂αt φ(tn) ≈ τ−α
n∑

j=0

bjφn−j := ∂̄ατ φn.

Then using the relation between Riemann-Liouville and Caputo fractional derivative (2.4) to approx-

imate Caputo type:

∂αt φ(tn) = ∂αt (φ(tn)− φ(0)) = R∂αt (φ(tn)− φ(0)) ≈ ∂̄ατ (φ(tn)− φ(0)).

The next lemma gives elementary properties of the kernel δτ (e
−zτ ) [43, Lemma B.1].

Lemma 2.4. For any θ ∈ (π/2, π), there exists θ′ ∈ (π/2, π) and positive constants c, c1, c2 which is

independent of τ such that for all z ∈ Γτ
θ,σ

c1|z| ≤ |δτ (e−zτ )| ≤ c2|z|, δτ (e
−zτ ) ∈ Σθ′ .

|δτ (e−zτ )− z| ≤ cτ |z|2, |δτ (e−zτ )α − zα| ≤ cτ |z|1+α.

For 1 < α < 2, the convolution quadrature could be extended into diffusion-wave case similarly,

which is deeply studied in Section 5.3.
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CHAPTER 3.

Numerical Analysis of Backward Subdiffusion Problems

We consider Ω ⊂ Rd (d ≥ 1) be a bounded and convex domain with smooth boundary ∂Ω, and

consider the following subdiffusion equation

∂αt u−∆u = f in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(0) = u0 in Ω

(3.1)

where T > 0 is a fixed terminal time, f ∈ L∞(0, T ;L2(Ω)) and u0 ∈ L2(Ω) are given source term and

initial data, respectively, and ∆ is the Laplace operator in space.

In this chapter want to determine the function u(x, t) with (x, t) ∈ Ω × [0, T ) from a terminal

observation

u(x, T ) = g(x), for all x ∈ Ω.

Specifically, we assume that the observation data gδ is noisy such that

∥gδ − g∥L2(Ω) ≤ δ.

To regularize the ill-posed problem, we apply the quasi-boundary value method [27, 108] and consider

∂αt ũ
δ −∆ũδ = f. in Ω× (0, T ),

ũδ = 0 on ∂Ω× (0, T ),

γũδ(0) + ũδ(T ) = gδ in Ω,

(3.2)

where γ > 0 denotes the regularization parameter. In [108], Yang and Liu considered the homogeneous

problem (f ≡ 0). It was proved that the regularized problem (3.2) has a unique solution, and if

u0 ∈ L2(Ω), then for all t ∈ [0, T ] there holds

∥(ũδ − u)(t)∥L2(Ω) → 0, as γ, δ → 0 and
δ

γ
→ 0. (3.3)

Moreover, if u0 ∈ Dom(A) = H2(Ω) ∩H1
0 (Ω), there holds

∥(ũδ − u)(t)∥C([0,T ];L2(Ω)) ≤ cδγ−1 + γ,

where the constant c depends only on u0, g, gδ, but is independent of δ and γ. By choosing γ = O(
√
δ)

a priori, one obtains an approximation with accuracy O(
√
δ). The result contrasts sharply with that

for normal diffusion, and the proof relies on the linear-decay property of the Mittag-Leffler function

Eα,1(−x).
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The rest of this Chapter is organized as follows. In Section 3.1, we provide some preliminary results

about the regularization at the continuous level, which will be intensively used in error estimation.

Then in Section 3.2 and Section 3.3, we describe and analyze spatially semi-discrete scheme and

fully discrete scheme, respectively. Finally, in Section 3.4, we present illustrative numerical examples

to illustrate the theoretical analysis. Throughout, the notation c denotes a generic constant, which

may change at each occurrence, but it is always independent of the noise level δ, the regularization

parameter γ, the mesh size h and time step size τ etc.

3.1 Regularization algorithm

3.1.1 Reformulation of original problem

In this chapter, we shall study an equivalent reformulation of the original backward subdiffusion

problem (2.9). We let w(t) = u(t)−
∫ t
0 E(t− s)f(s) ds, then w satisfies the subdiffusion problem (2.9)

with trivial source term, and the terminal data is

w(T ) = u(T )−
∫ T

0
E(T − s)f(s) ds.

Meanwhile, in case that f ∈ Lp(0, T ;L2(Ω)) with 1/α < p <∞, then by Lemma 2.2 we have w(0) =

u(0) = u0. Then without loss of generality, we only consider the following backward subdiffusion

problem with trivial source data:

∂αt u−∆u = 0 in Ω× (0, T ),

u = 0 on ∂Ω× (0, T ),

u(T ) = g in Ω.

(3.4)

The solution u has the representation that

u(t) = F (t)u(0) = F (t)(F (T )−1g). (3.5)

Inspired by the estimate in [108], we defined an axillary function ũ(t), which satisfies the regularized

problem (without noise):

∂αt ũ(t)−∆ũ(t) = 0, in Ω× (0, T ),

ũ = 0 on ∂Ω× (0, T ),

γũ(0) + ũ(T ) = g, in Ω.

(3.6)

Here γ denotes the regularization parameter. The appearance of regularization term essentially im-

proves the regularity of the backward problem.
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Analogue to (3.5), the function ũ can be represented by

ũ(t) = F (t)ũ(0) = F (t)
(
γI + F (T )

)−1
g = F (t)

(
γI + F (T )

)−1(
F (T )u0

)
, (3.7)

where I denotes the identity operator.

The next lemma provides an estimate of the operator F (t)
(
γI + F (T )

)−1
.

Lemma 3.1. Let F (t) be operator defined in (2.11), then

∥F (t)
(
γI + F (T )

)−1
v∥Ḣq(Ω) ≤ cmin(γ−1, t−α)∥v∥Ḣq(Ω) ∀ q ≥ 0,

where the generic constant c may depend on T , but is always independent of γ and t.

Proof. From Lemma 2.1 we have Eα,1(−z) > 0 for any z ≥ 0, then

∥F (t)
(
γI + F (T )

)−1
v∥2

Ḣq(Ω)
=

∞∑
j=1

[
Eα,1(−λjtα)

γ + Eα,1(−λjTα)

]2
λqj(v, φj)

2.

By applying the fact that 0 ≤ Eα,1(−z) ≤ 1 with z ≥ 0, we arrive at

∥F (t)
(
γI + F (T )

)−1
v∥2

Ḣq(Ω)
≤ γ−1∥v∥2

Ḣq(Ω)
.

On the other hand, we apply Lemma 2.1 again to obtain for any t ∈ (0, T ]

Eα,1(−λjtα)
γ + Eα,1(−λjTα)

≤ Eα,1(−λjt
α)

Eα,1(−λjTα) ≤
1+Γ(1−α)(λjT

α)
1+Γ(1+α)−1(λjtα)

≤ 1 +
Γ(1−α)(λjT

α)
Γ(1+α)−1(λjtα)

≤ cT t−α

and hence

∥F (t)
(
γI + F (T )

)−1
v∥Ḣq(Ω) ≤ ct

−α∥v∥Ḣq(Ω).

This completes the proof of the lemma.

Using this lemma, we can derive the following estimate of ũ(t)− u(t) with t ∈ [0, T ).

Lemma 3.2. Let u and ũ be solutions to problems (3.4) and (3.6), respectively. Then there holds

∥ũ(0)− u(0)∥L2(Ω) ≤ cγ
q
2 ∥u0∥Ḣq(Ω) ∀ q ∈ [0, 2].

Meanwhile, for any t ∈ (0, T ), there holds

∥ũ(t)− u(t)∥L2(Ω) ≤ cγt−(1− q
2
)α∥u0∥Ḣq(Ω) ∀ q ∈ [0, 2].

where the generic constant c may depends on T , but is always independent of γ and t.
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Proof. By (3.5) and (3.7) we obtain

ũ(0)− u(0) = −
(
γI + F (T )

)−1
γu0.

Now applying (2.11) and positivity of Eα,1(z) with z ≤ 0, we derive that for any q ∈ [0, 2],

∥ũ(0)− u(0)∥2L2(Ω) = ∥(γI + F (T ))−1γu0∥2L2(Ω)

=

∞∑
j=1

( γ

γ + Eα,1(−λjTα)

)2
(u0, φj)

2

≤
∞∑
j=1

γq

λqj |Eα,1(−λjTα)|q
λqj(u0, φj)

2.

The property of Mittag-Leffler functions in Lemma 2.1 implies that

γq

λqj |Eα,1(−λjTα)|q
≤ cγq(1 + λjT )

q

λqj
≤ cTγq.

and hence

∥ũ(0)− u(0)∥2L2(Ω) ≤ cγ
q∥u0∥2Ḣq(Ω)

.

Now we turn to the second estimate, which follows from the representation

ũ(t)− u(t) = −F (t)
(
γI + F (T )

)−1
γu0.

Here we apply the definition of the solution operator and obtain

∥ũ(t)− u(t)∥2L2(Ω) = ∥F (t)(γI + F (T ))−1γu0∥2L2(Ω)

=

∞∑
j=1

(
γEα,1(−λjtα)

γ + Eα,1(−λjTα)

)2

(u0, φj)
2

≤ γ2
∞∑
j=1

(
Eα,1(−λjtα)

λ
q/2
j Eα,1(−λjTα)

)2

λqj(u0, φj)
2

Then Lemma 2.1 leads to the estimate

Eα,1(−λjtα)
λ
q/2
j Eα,1(−λjTα)

≤ c(1 + λjT
α)

λ
q/2
j (1 + λjtα)

≤ cT
λ
1−q/2
j

1 + λjtα
≤ cT t−(1−q/2)α,

and therefore there holds

∥ũ(t)− u(t)∥2L2(Ω) ≤ cγ
2t−(2−q)α∥u0∥2Ḣq(Ω)

.

This completes the proof of the lemma.

If u0 ∈ L2(Ω) = Ḣ0(Ω), the preceding lemma does not imply a convergence rate. However, one

can still show the convergence in case of nonsmooth data.
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Corollary 3.1. Assume that u0 ∈ L2(Ω). Let u and ũ be solutions to problems (3.4) and (3.6),

respectively. Then there holds that

lim
γ→0
∥ũ(0)− u(0)∥L2(Ω) = 0.

Proof. In case that u0 ∈ L2(Ω), we know that ũ, u ∈ C([0, T ];L2(Ω)). Then for any small ϵ, we choose

t0 small enough such that

∥ũ(t0)− ũ(0)∥L2(Ω) + ∥u(t0)− u(0)∥L2(Ω) < ϵ/2.

Then by Lemma 3.2, we may find γ0 small enough such that

∥ũ(t0)− u(t0)∥L2(Ω) < ϵ/2 for all γ < γ0.

By triangle inequality , we obtain that for any γ < γ0

∥ũ(0)− u(0)∥L2(Ω) < ϵ.

Therefore, ũ(0) converges to u(0) in L2-sense, as γ → 0.

3.2 Spatial semidiscrete method by finite element method

In this section, we shall propose and analyze a spatially semidiscrete scheme for solving the backward

subdiffusion problem (3.4). Even though the semidiscrete scheme is not directly implementable and

rarely used in practical computation, it is important for understanding the role of the regularity of

problem data and also for the analysis of fully discrete schemes.

3.2.1 Semidiscrete scheme for solving direct problem.

Now we let the triangulation Th, piecewise-linear finite element space Xh, L
2 projection Ph, Ritz

projection Rh and the discrete Laplacian ∆h defined in Section 2.5.

The semidiscrete Galerkin FEM for problem (2.9) is: find uh(t) ∈ Xh such that

(∂αt uh, χ) + (∇uh,∇χ) = (f, χ), ∀ χ ∈ Xh, T ≥ t > 0,

uh(0) = Phu0.
(3.8)

Let fh = Phf , we may write the spatially semidiscrete problem (3.8) as

∂αt uh(t)−∆huh(t) = fh(t) for t ≥ 0 with uh(0) = Phuh. (3.9)

Now we give a representation of the solution of (3.9) using the eigenvalues and eigenfunctions {λhj }Kj=1

and {φh
j }Kj=1 of the discrete Laplacian −∆h. Here we introduce the discrete analogue of (2.11) for
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t > 0:

Fh(t)χ =

K∑
j=1

Eα,1(−λhj tα)(χ, φh
j )φ

h
j and Eh(t)χ =

K∑
j=1

tα−1Eα,α(−λhj tα)(χ, φh
j )φ

h
j , (3.10)

Then the solution uh(t) of the semidiscrete problem (3.9) can be expressed by:

uh(t) = Fh(t)uh(0) +

∫ t

0
Eh(t− s)fh(s) ds. (3.11)

The discrete solution operator Eh(t) satisfies the following smoothing property. See [40, Lemma

3.2] for proof.

Lemma 3.3. We have Eh(t) and ψ ∈ Xh. Then we have for all t > 0 and q ∈ [0, 1]

∥∆q
hEh(t)ψ∥L2(Ω) ≤ ct(1−q)α−1∥ψ∥L2(Ω).

3.2.2 Semidiscrete scheme for solving backward problem.

In this part, we consider the semidiscrete solution ũδh(t) ∈ Xh such that

∂αt ũ
δ
h(t)−∆hũ

δ
h(t) = 0, ∀t ∈ (0, T ]

γũδh(0) + ũδh(T ) = Phgδ.
(3.12)

Then the function ũδh can be written as

ũδh(t) = Fh(t)ũ
δ
h(0) = Fh(t)(γ + Fh(T ))

−1Phgδ. (3.13)

Meanwhile, we shall use an axillary function ũh(t), which is the semidiscrete solution to (3.6), i.e.,

satisfying

∂αt ũh(t)−∆hũh(t) = 0, ∀t ∈ (0, T ]

γũh(0) + ũh(T ) = Phg,
(3.14)

Similarly, we have the representation

ũh(t) = Fh(t)ũh(0) = Fh(t)(γI + Fh(T ))
−1Phg. (3.15)

Analogue to Lemma 3.1, we have the following estimate of the operator Fh(t)(γI + Fh(T ))
−1. Note

that the error is independent of the mesh size h.

Lemma 3.4. Let Fh(t) be operator defined in (3.10), then there holds that

∥Fh(t)
(
γI + Fh(T )

)−1
v∥L2(Ω) ≤ cmin(γ−1, t−α)∥v∥L2(Ω) ∀ v ∈ Xh,

where the constant c may depend on T , but is always independent of h, γ and t.
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This Lemma together with (3.13) and (3.15) immediately leads to the following estimate of ũδh(t)−

ũh(t).

Corollary 3.2. Let ũδh and ũh be the solution to the semidiscrete problems (3.12) and (3.14), respec-

tively. Then, there holds that

∥(ũδh − ũh)(t)∥L2(Ω) ≤ cδmin(γ−1, t−α) ∀ t ∈ [0, T ],

where the generic constant c is independent of γ, δ, h and t.

Next, we shall derive a bound of ũh − ũ.

Lemma 3.5. Assume that u0 ∈ Ḣ2(Ω). Let ũ be the solution to the regularized backward subdiffusion

problem (3.6), and ũh be the solution to the corresponding semidiscrete problem (3.14). Then there

holds

∥(ũh − ũ)(t)∥L2(Ω) ≤ ch2min(γ−1, t−α)∥u0∥Ḣ2(Ω) ∀ t ∈ [0, T ],

where c might depend on T , but is always independent of h, γ and t.

Proof. We split ũh(t)− ũ(t) into two components such that

ũh(t)− ũ(t) = (ũh(t)−Rhũ(t)) + (Rhũ(t)− ũ(t)) =: ζ(t) + ρ(t),

By the approximation property of the Ritz projection in (2.18), we have

∥ρ(t)∥L2(Ω) ≤ ch2∥ũ(t)∥Ḣ2(Ω) ≤ ch
2∥u0∥Ḣ2(Ω) (3.16)

where the last inequality follows from (3.7) and Lemma 3.1 (with t = T ).

Now we turn to the bound of ζ = ũh −Rhũ, where ũh and Rhũ satisfy

γũh(0) + ũh(T ) = Phg and γRhũ(0) +Rhũ(T ) = Rhg,

respectively. By noting the fact ∆hRh = Ph∆, we have

∂αt ζ(t)−∆hζ(t) = −Ph∂
α
t ρ(t) with γζ(0) + ζ(T ) = (Ph −Rh)g. (3.17)

Then we arrive at

ζ(T ) = Fh(T )ζ(0)−
∫ T

0
Eh(T − s)Ph∂

α
s ρ(s)ds.

We add γζ(0) at both sides of the equation and use (3.17) to derive that

Phg −Rhg = (γI + Fh(T ))ζ(0)−
∫ T

0
Eh(T − s)Ph∂

α
s ρ(s)ds,
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and therefore

ζ(t) = Fh(t)
(
γI + Fh(T )

)−1
[
(Ph −Rh)g +

∫ T

0
Eh(T − s)Ph∂

α
s ρ(s)ds

]
−
∫ t

0
Eh(t− s)Ph∂

α
s ρ(s)ds

=: I1 + I2 + I3.

The properties (2.17) and (2.18), and Lemma 3.4 lead to the estimate that

∥I1∥L2(Ω) ≤ cmin(γ−1, t−α)∥(Ph −Rh)g∥L2(Ω) ≤ ch2min(γ−1, t−α)∥g∥Ḣ2(Ω)

≤ ch2min(γ−1, t−α)∥u0∥Ḣ2(Ω).

The last inequality is the direct result of the solution regularity in Lemma 2.2. Similarly, we apply

Lemmas 3.3 and 3.4, and stability of L2 projection Ph to arrive at

∥I2∥L2(Ω) ≤ cmin(γ−1, t−α)

∫ T

0
(T − s)α−1∥∂αs ρ(s)∥L2(Ω)ds.

Then (2.18) and the solution regularity in Lemma 2.2 immediately imply that

∥I2∥L2(Ω) ≤ ch2min(γ−1, t−α)

∫ T

0
(T − s)α−1∥∂αs u(s)∥Ḣ2(Ω) ds

≤ ch2min(γ−1, t−α)

∫ T

0
(T − s)α−1s−α ds∥u0∥Ḣ2(Ω)

≤ ch2min(γ−1, t−α)∥u0∥Ḣ2(Ω).

Similar argument also leads to a bound of the term I3:

∥I3∥L2(Ω) ≤ ch2
∫ T

0
(T − s)α−1∥∂αs u(s)∥Ḣ2(Ω) ds

≤ ch2
∫ T

0
(T − s)α−1s−α ds∥u0∥Ḣ2(Ω) ≤ ch

2∥u0∥Ḣ2(Ω).

As a result, we arrive at the desired estimate.

Then, Lemmas 3.2 and 3.5 and Corollary 3.2 together lead to the following theorem which providing

an error estimate of the numerical solution ũδh, in case of smooth initial data, i.e., u0 ∈ D(∆) = Ḣ2(Ω).

Theorem 3.1. Assume that u0 ∈ Ḣ2(Ω). Let u be the solution to the problem (3.4) and ũδh be the

solution to the (regularized) semidiscrete problem (3.12). Then there holds

∥ũδh(t)− u(t)∥L2(Ω) ≤ c
(
γ + (h2 + δ)min(γ−1, t−α)

)
∀ t ∈ [0, T ],

where c might depend on T and u0, but is always independent of h, γ, δ and t.
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Remark 3.1. The error estimate in Theorem 3.1 is useful, since it specifies the scale to balance the

discretization error, regularization parameter and noise level. For example, if we decide the a priori

choice of parameters: h = O(
√
δ) and γ = O(

√
δ), then there holds

∥ũδh(0)− u0∥L2(Ω) ≤ c
√
δ.

On the other hand, for any t > 0, we have

∥ũδh(t)− u(t)∥L2(Ω) ≤ cδt−α,

by the a priori choice of parameters: h = O(
√
δ) and γ = O(δ). This is the first study of the discretized

problem, and the result is consistent with the estimate in the continuous level, see e.g. [108, Theorem

3.4]. The analysis relies heavily on the nonstandard error estimate for the direct problem in terms of

problem data regularity [40].

Next, we shall consider the worse case that u0 ∈ L2(Ω).

Lemma 3.6. Assume that u0 ∈ L2(Ω). Let ũ be the solution to the regularized backward subdiffusion

problem (3.6), and ũh be the solution to the corresponding semidiscrete problem (3.14). Then there

holds for all t ∈ [0, T ] and ℓh = max(1, | lnh|)

∥(ũh − ũ)(t)∥L2(Ω) ≤ cγ−1min(γ−1, t−α)h2ℓh∥u0∥L2(Ω),

where the constant c might depend on T , but is always independent of h, γ and t.

Proof. By using the L2-projection Ph, we split ũh(t)− ũ(t) into two components:

ũh(t)− ũ(t) = (ũh(t)− Phũ(t)) + (Phũ(t)− ũ(t)) =: ζ(t) + ρ(t),

By the approximation property of the L2-projection in (2.18), we have

∥ρ(t)∥L2(Ω) ≤ ch2∥ũ(t)∥Ḣ2(Ω) ≤ cTh
2γ−1∥u0∥L2(Ω),

where the last inequality follows from the solution representation (3.7), Lemma 3.1 and Lemma 2.2,

such that

∥ũ(t)∥Ḣ2(Ω) ≤ cγ
−1∥F (T )u0∥Ḣ2(Ω) ≤ cγ

−1T−α∥u0∥L2(Ω). (3.18)

Now we turn to the bound of ζ = ũh − Phũ, where ũh and Phũ satisfy

γũh(0) + ũh(T ) = Phg and γPhũ(0) + Phũ(T ) = Phg,

respectively. By noting the fact ∆hRh = Ph∆, we have

∂αt ζ(t)−∆hζ(t) = ∆h(Ph −Rh)ũ(t) with γζ(0) + ζ(T ) = 0. (3.19)
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Then we arrive at

ζ(T ) = Fh(T )ζ(0) +

∫ T

0
Eh(T − s)∆h(Ph −Rh)ũ(s)ds.

We add γζ(0) at both sides of the equation and derive that

ζ(0) = −(γI + Fh(T ))
−1

∫ T

0
Eh(T − s)∆h(Ph −Rh)ũ(s)ds,

and hence

ζ(t) = Fh(t)ζ(0) +

∫ t

0
Eh(t− s)∆h(Ph −Rh)ũ(s)ds

= −Fh(t)
(
γI + Fh(T )

)−1
∫ T

0
Eh(T − s)∆h(Ph −Rh)ũ(s)ds

+

∫ t

0
Eh(t− s)∆h(Ph −Rh)ũ(s)ds

=: I1 + I2.

Similarly, we apply Lemmas 3.3 and 3.4, to arrive at

∥I1∥L2(Ω) ≤ cmin(γ−1, t−α)
∫ T
0 (T − s)αϵ−1∥∆ϵ

h(Ph −Rh)ũ(s)∥L2(Ω)ds

≤ cmin(γ−1, t−α)h−2ϵ
∫ T
0 (T − s)αϵ−1∥(Ph −Rh)ũ(s)∥L2(Ω)ds

where we apply the inverse estimate for FEM functions in the second inequality. The approximation

properties (2.18) and (2.17) lead to

∥I1∥L2(Ω) ≤ cmin(γ−1, t−α)h2−2ϵ

∫ T

0
(T − s)αϵ−1∥ũ(s)∥Ḣ2(Ω)ds,

and then the regularity estimate of ũ in (3.18) implies that

∥I1∥L2(Ω) ≤ cγ−1min(γ−1, t−α)h2−2ϵ
∫ T
0 (T − s)αϵ−1T−αds∥u0∥L2(Ω)

≤ cγ−1min(γ−1, t−α)h2−2ϵϵ−1∥u0∥L2(Ω).

Similar argument also leads to a bound of the term I2:

∥I2∥L2(Ω) ≤ ch2−2ϵϵ−1∥u0∥L2(Ω).

Then the desired assertion follows immediately by choosing ϵ = 1/ℓh.

Then, Lemmas 3.2 and 3.6 and Corollary 3.2 together lead to the following error estimate, in case

of nonsmooth initial data.

Theorem 3.2. Assume that u0 ∈ Ḣq(Ω) with q ∈ [0, 2]. Let u be the solution to the problem (3.4) and

ũδh be the solution to the (regularized) semidiscrete problem (3.12). Then there holds for all t ∈ [0, T ]

and ℓh = max(1, | lnh|)

∥ũδh(t)− u(t)∥L2(Ω) ≤ c
(
min(γq/2, γt−(1−q/2)α) + (γ−(1−q/2)h2ℓ

1−q/2
h + δ)min(γ−1, t−α)

)
where the constant c depends on T and u0, but is always independent of h, γ, δ and t.
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Remark 3.2. In case that u0 ∈ L2(Ω), the above estimate does not imply a convergence rate of ũδh(0).

However, we can still show the convergence, provided suitable scales of parameters. The proof is a

direct result of Corollaries 3.1 and 3.2, and Lemma 3.6.

Let u be the solution to the problem (3.4) and ũδh be the solution to the semidiscrete problem (3.12).

Then there holds

∥ũδh(0)− u(0)∥L2(Ω) → 0, as γ → 0,
δ

γ
→ 0 and

hℓ
1/2
h

γ
→ 0.

3.3 Fully discrete solution and error estimate

3.3.1 Fully discrete scheme and solution operators.

From Section 2.5, we apply backward Euler convolution quadrature(BE-CQ) here for 0 < α < 1. The

fully discrete scheme for problem (2.9) reads: find Un ∈ Xh such that

∂̄τ (Un − U0)−∆hUn = Phf(tn), n = 1, 2, . . . , N, (3.20)

with the initial condition U0 = Phu0 ∈ Xh.

By means of discrete Laplace transform, the fully discrete solution Un ∈ Xh is given by

Un = Fn
h,τU0 + τ

n∑
k=1

En−k
h,τ Phf(tk), n = 1, 2, . . . , N, (3.21)

where the fully discrete operators Fn
h,τ and En

h,τ are respectively defined by (see e.g., [43])

Fn
h,τ =

1

2πi

∫
Γτ
θ,σ

eztnδτ (e
−zτ )α−1(δτ (e

−zτ )α −∆h)
−1 dz, (3.22)

En
h,τ =

1

2πi

∫
Γτ
θ,σ

eztn(δτ (e
−zτ )α −∆h)

−1 dz, (3.23)

with δτ (ξ) = (1− ξ)/τ and the contour Γτ
θ,σ := {z ∈ Γθ,σ : |ℑ(z)| ≤ π/τ} (oriented with an increasing

imaginary part).

The fully discrete solution operators have been fully understood in [43], by using the expression

(3.22) and (3.23), resolvent estimate and properties of the kernel δτ (e
−zτ ) in Lemma 2.4. With the

spectral decomposition, we can write

Un = Fn
h,τU0 =

K∑
j=1

Fn
τ (λ

h
j )(u0, φ

h
j )φ

h
j (3.24)

where Fn
τ (λ

h
j ) is the solution to the discrete initial value problem

∂̄τ [F
n
τ (λ

h
j )− F 0

τ (λ
h
j )] + λhjF

n
τ (λ

h
j ) = 0, with F 0

τ (λ
h
j ) = 1.

From (3.22), we know that Fn
τ (λ

h
j ) could be written as

Fn
τ (λ

h
j ) =

1

2πi

∫
Γτ
θ,σ

eztnδτ (e
−zτ )α−1(δτ (e

−zτ )α + λhj )
−1 dz. (3.25)
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Lemma 3.7. Let Fn
τ (λ) be defined as in (3.25). Then for λ > 0, there holds

∣∣Eα,1(−λtαn)− Fn
τ (λ)

∣∣ ≤ c

(1 + λtαn)
n−1. (3.26)

Meanwhile, there holds

λ−1
∣∣Eα,1(−λtαn)− Fn

τ (λ)
∣∣ ≤ cτtα−1

n (3.27)

where c is a generic number independent of λ, t and τ .

Proof. It has been proved in [39] that

∣∣Eα,1(−λtαn)− Fn
τ (λ)

∣∣ ≤ cn−1.

Therefore, it suffices to show that

∣∣Eα,1(−λtαn)− Fn
τ (λ)

∣∣ ≤ cλ−1t−α
n n−1.

From (3.25) and (2.7), we know∣∣Eα,1(−λhj tα)− Fn
τ (λ

h
j )
∣∣ ≤ ∣∣ 1

2πi

∫
Γθ,σ\Γτ

θ,σ

eztnzα−1(zα + λ)−1dz
∣∣

+
∣∣ 1

2πi

∫
Γτ
θ,σ

eztn
[
zα−1(zα + λ)−1 − δτ (e−zτ )α−1(δτ (e

−zτ )α + λ)−1
]
dz
∣∣

=: I1 + I2.

First of all, we shall establish a bound of I1, which follows from the direct calculation:

I1 ≤ c
∫
Γθ,σ\Γτ

θ,σ

|eztn ||z|α−1|zα + λ|−1 |dz| ≤ cλ−1

∫ ∞

π/τ sin θ
eρ(cos θ)tnρα−1dρ

≤ cλ−1t−α
n

∫ ∞

cn
e−cρρα−1dρ ≤ cλ−1t−α

n n−1

∫ ∞

cn
e−cρραdρ ≤ cλ−1t−α

n n−1.

Next we turn to I2. By lemma 2.4, we have for all z ∈ Γτ
θ,σ∣∣∣ zα−1

zα + λ
− δτ (e

−zτ )α−1

δτ (e−zτ )α + λ

∣∣∣
=
∣∣∣zα−1δτ (e

−zτ )α−1(δτ (e
−zτ )− z)

(zα + λ)(δτ (e−zτ )α + λ)

∣∣∣+ ∣∣∣ (zα−1 − δτ (e−zτ )α−1)λ

(zα + λ)(δτ (e−zτ )α + λ)

∣∣∣
≤cτλ−1|z|α.

Therefore, with σ = t−1
n , the term I2 can be bounded as

I2 ≤ cτλ−1

∫
Γτ
θ,σ

|eztn ||z|α |dz|

≤ cτλ−1
(∫ ∞

σ
e−cρtnρα dρ+ σ1+α

∫ θ

−θ
dψ
)

≤ cτλ−1t−α−1
n ≤ cλ−1t−α

n n−1.
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Next, we turn to the estimate (3.27), which can be derived from the expressions:

Eα,1(−λtαn) = 1− λ

2πi

∫
Γθ,σ

eztnz−1(zα + λ)−1 dz,

Fn
τ (λ) = 1− λ

2πi

∫
Γτ
θ,σ

eztnδτ (e
−zτ )−1(δτ (e

−zτ )α + λ)−1 dz,

with n ≥ 1. Then we arrive at

λ−1
∣∣Eα,1(−λtαn)− Fn

τ (λ)
∣∣

≤
∣∣ 1

2πi

∫
Γτ
θ,σ

eztn
[
z−1(zα + λ)−1 − δτ (e−zτ )−1(δτ (e

−zτ )α + λ)−1
]
dz
∣∣

≤
∣∣ 1

2πi

∫
Γθ,σ\Γτ

θ,σ

eztnz−1(zα + λ)−1dz
∣∣ =: II1 + II2.

By Lemma 2.4, we have for all z ∈ Γτ
θ,σ∣∣z−1(zα + λ)−1 − δτ (e−zτ )−1(δτ (e

−zτ )α + λ)−1
∣∣ ≤ cτ |z|−α,

and therefore with the setting σ = t−1
n we have the bound for n ≥ 1

II1 ≤ cτ
∫
Γτ
θ,σ

|eztn ||z|−α |dz| ≤ cτ
(∫ ∞

σ
e−cρtnρ−α dρ+ σ1−α

∫ θ

−θ
dψ
)
≤ cτtα−1

n .

Similarly, to bound II2, we apply Lemma 2.4 to derive that for n ≥ 1

II2 ≤ c
∫
Γθ,σ\Γτ

θ,σ

|eztn ||z|−α−1 |dz| ≤ c
∫ ∞

π/τ sin θ
eρ(cos θ)tnρ−α−1dρ

≤ ctαn
∫ ∞

cn
e−cρρ−α−1dρ ≤ ctαnn−1

∫ ∞

0
e−cρρ−αdρ ≤ ctαnn−1 ≤ cτtα−1

n .

Both the estimates together with the fact that Eα,1(0) = F 0
τ (λ) = 1 lead to the desired result.

The above lemma and Lemma 2.1 lead to the following corollary.

Corollary 3.3. For any 1 ≤ n ≤ N , Fn
h,τ (λ) is positive, and there exist positive constants c0, c1 such

that
c0

1 + λtαn
≤ Fn

τ (λ
h
j ) ≤

c1
1 + λtαn

,

Then the next corollary follows immediately.

Corollary 3.4. Let Fn
h,τ (λ) be defined as (3.25), then there holds

|Fn
h,τ (λ)

(
γ + FN

h,τ (λ)
)−1| ≤ cmin(γ−1, t−α

n ),

where the generic constant c may depend on T , but is always independent of γ, λ, τ , n and h.
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Proof. By Corollary 3.3, we know that 0 ≤ Fn
τ (λ) ≤ c1, we arrive at

|Fn
h,τ (λ)

(
γ + FN

h,τ (λ)
)−1| ≤ cγ−1.

On the other hand, we apply Corollary 3.3 again to obtain

Fn
h,τ (λ)

γ + FN
h,τ (λ)

≤
Fn
h,τ (λ)

FN
h,τ (λ)

≤ c(1 + λTα)

1 + λtαn
≤ cT t−α

n .

This completes the proof of the corollary.

3.3.2 Fully discrete scheme for backward problem and error estimate.

Now we shall propose a fully discrete scheme for solving the backward subdiffusion problem. Here we

apply the semidiscrete scheme and the convolution quadrature generated by backward Euler scheme.

Then the fully discrete scheme reads: find Ũ δ
n ∈ Xh, n = 1, 2, . . . , N , such that

∂̄τ (Ũ
δ
n − Ũ δ

0 )−∆hŨ
δ
n = 0, ∀ n = 1, 2, . . . , N.

γŨ δ
0 + Ũ δ

N = Phgδ.
(3.28)

Then the solution could be written as

Ũ δ
n = Fn

h,τ Ũ
δ
0 = Fn

h,τ (γI + FN
h,τ )

−1Phgδ =
K∑
j=1

Fn
τ (λ

h
j )

γ + FN
τ (λhj )

(Phgδ, φ
h
j )φ

h
j . (3.29)

Similarly, we shall use the auxiliary solution Ũn satisfying

∂̄τ (Ũn − Ũ0)−∆hŨn = 0, ∀ n = 1, 2, . . . , N.

γŨ0 + ŨN = Phg.
(3.30)

Then Ũn could be written as

Ũn = Fn
h,τ (γI + FN

h,τ )
−1Phg =

K∑
j=1

Fn
τ (λ

h
j )

γ + FN
τ (λhj )

(Phg, φ
h
j )φ

h
j . (3.31)

The same as Corollary 3.2, we may show the following estimate of Ũ δ
n − Ũn.

Lemma 3.8. Let Ũ δ
n and Ũn be solutions to (3.28) and (3.30), respectively. Then there holds that

∥Ũ δ
n − Ũn∥L2(Ω) ≤ cδmin(γ−1, t−α

n ), for all 0 ≤ n ≤ N

where the generic constant c is independent of γ, δ, τ , n and h.

Proof. From Corollary 3.4, we have (∀v ∈ Xh)

∥Fn
h,τ

(
γ + FN

h,τ (T )
)−1

v∥2L2(Ω) =

K∑
j=1

[
Fn
τ (−λhj )

γ + FN
τ (−λhj )

]2
(v, φj)

2 ≤ cmin(γ−1, t−α
n )∥v∥L2(Ω)
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Therefore for all 0 ≤ n ≤ N

∥Ũ δ
n − Ũn∥L2(Ω) ≤ cmin(γ−1, t−α

n )∥g − gδ∥ ≤ cδmin(γ−1, t−α
n ).

Lemma 3.9. Let Ũn and ũh(t) be solutions to (3.30) and (3.14), respectively. Then there holds that

∥Ũ0 − ũh(0)∥L2(Ω) ≤ c
(
τγ−1−(1−q/2)∥u0∥Ḣq(Ω) + h2γ−1∥u0∥L2(Ω)

)
where the generic constant c is independent of γ, δ, τ , n and h.

Proof. By (3.15), we know the semidiscrete function ũh(t) can be represented as

ũh(0) = (γI + Fh(T ))
−1Phg =

K∑
j=1

(g, φh
j )

γ + Eα,1(−λhj Tα)
φh
j .

This combined with (3.31) results in the splitting

Ũ0 − ũh(0) =
(
(γI + FN

h,τ )
−1(Ph −Rh)g + (γI + Fh(T ))

−1(Rh − Ph)g
)

+
(
(γI + FN

h,τ )
−1 − (γI + Fh(T ))

−1
)
Rhg

= I1 + I2.

Using the approximation property of Ph and Rh, Lemma 3.4, Corollary 3.4, and the regularity result

in Lemma 2.2, we have an estimate of the term I1:

∥I1∥L2(Ω) ≤ ch2γ−1∥u0∥L2(Ω).

To bound the term I2, we note that

∥I2∥2L2(Ω) =
∑K

j=1

[
1

γ+FN
τ (λh

j )
− 1

γ+Eα,1(−λh
j T

α)

]2
(Rhg, φ

h
j )

2

=
∑K

j=1

∣∣∣ [Eα,1(−λh
j T

α)−FN
τ (λh

j )](λ
h
j )

−1

(γ+FN
τ (λh

j ))(γ+Eα,1(−λh
j T

α))

∣∣∣2(λhj )2(Rhg, φ
h
j )

2.

Then we apply Lemma 3.7 to obtain

∥I2∥2L2(Ω) ≤ cτ
2γ−2

K∑
j=1

∣∣∣ 1

(γ + Eα,1(−λhj Tα))(λhj )
q/2

∣∣∣2(λhj )2+q(Rhg, φ
h
j )

2. (3.32)

For q = 0, we use Lemma 2.1 to deduce that

∥I2∥2L2(Ω) ≤ cτ2γ−4
∑K

j=1(λ
h
j )

2(Rhg, φ
h
j )

2 = cτ2γ−4∥∆hRhg∥2L2(Ω).

Using fact that Ph∆ = ∆hRh and applying Lemma 2.2, we obtain

∥I2∥2L2(Ω) = cτ2γ−4∥Ph∆g∥2L2(Ω) = cτ2γ−4∥∆g∥2L2(Ω) ≤ cτ
2γ−4T−α∥u0∥L2(Ω).
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Next we turn to the case that q = 2. The estimate (3.32) and Lemma 2.1 imply that

∥I2∥2L2(Ω) ≤ cτ2γ−2
∑K

j=1

∣∣∣ 1
Eα,1(−λh

j T
α)λh

j

∣∣∣2(λhj )4(Rhg, φ
h
j )

2

≤ cτ2γ−2
∑K

j=1(λ
h
j )

4(Rhg, φ
h
j )

2 = cτ2γ−2∥∆2
hRhg∥L2(Ω).

Now we use the fact that Ph∆ = ∆hRh and triangle’s inequality to derive

∥∆2
hRhg∥L2(Ω) = ∥∆hPh∆g∥L2(Ω)

≤ ∥∆h(Ph −Rh)∆g∥L2(Ω) + ∥∆hRh∆g∥L2(Ω).
(3.33)

The second term in (3.33) can be bounded by

∥∆hRh∆g∥L2(Ω) = ∥Ph∆
2g∥L2(Ω)

= ∥∆2g∥L2(Ω) = ∥g∥Ḣ4(Ω) ≤ cT
−α∥u0∥Ḣ2(Ω)

(3.34)

while the first term in (3.33) can be bounded by using the standard inverse inequality and the ap-

proximation properties (2.17) and (2.18) as

∥∆h(Ph −Rh)∆g∥L2(Ω) ≤ ch−2∥(Ph −Rh)∆g∥L2(Ω)

≤ c∥∆g∥H2(Ω) ≤ cT−α∥u0∥Ḣ2(Ω).
(3.35)

This leads to the desired estimate with q = 2. Finally, the estimate for q ∈ (0, 2) follows immediately

from interpolation.

Using the similar argument, one can also derive an estimate of Ũn − ũh(tn) for n ≥ 1.

Lemma 3.10. Let Ũn and ũh(t) be solutions to (3.30) and (3.14), respectively. Then there holds that

∥Ũn − ũh(tn)∥L2(Ω) ≤ c
(
γ−(1−q/2)(τtα−1

n + τ min(γ−1, t−α
n ))∥u0∥Ḣq(Ω)

+ h2min(γ−1, t−α
n )∥u0∥L2(Ω)

)
where the generic constant c is independent of γ, δ, τ , n and h.

Proof. First of all, we split Ũn − ũh(tn) into two terms

Ũ0 − ũh(0) =
(
Fn
h,τ (γI + FN

h,τ )
−1(Ph −Rh)g + Fh(tn)(γI + Fh(T ))

−1(Rh − Ph)g
)

+
(
Fn
h,τ (γI + FN

h,τ )
−1 − Fh(tn)(γI + Fh(T ))

−1
)
Rhg

= I1 + I2.

The approximation property of Ph and Rh, Lemma 2.2, Lemma 3.4 and Corollary 3.4 lead to an

estimate of the term I1:

∥I1∥L2(Ω) ≤ ch2min(γ−1, t−α
n )∥u0∥L2(Ω).

34



Next, we turn to the I2, which can be split into three components:

∥I2∥2L2(Ω) =
K∑
j=1

[ Fn
τ (λ

h
j )

γ + FN
τ (λhj )

−
Eα,1(−λhj tαn)

γ + Eα,1(−λhj Tα)

]2
(Rhg, φ

h
j )

2

≤ c
K∑
j=1

∣∣ γ[Fn
τ (λ

h
j )− Eα,1(−λhj tαn)](λhj )−1

(γ + FN
τ (λhj ))(γ + Eα,1(−λhj Tα)

∣∣2(λhj )2(Rhg, φ
h
j )

2

+ c
K∑
j=1

∣∣FN
τ (λhj )[F

n
τ (λ

h
j )− Eα,1(−λhj tαn)](λhj )−1

(γ + FN
τ (λhj ))(γ + Eα,1(−λhj Tα)

∣∣2(λhj )2(Rhg, φ
h
j )

2

+ c

K∑
j=1

∣∣Fn
τ (λ

h
j )[(Eα,1(−λhj Tα)− FN

τ (λhj )](λ
h
j )

−1

(γ + FN
τ (λhj ))(γ + Eα,1(−λhj Tα)

∣∣2(λhj )2(Rhg, φ
h
j )

2

=:
3∑

k=1

I2,k.

The estimates of I2,1 and I2,2 follows directly from the proof of Lemma 3.9, i.e.,

I2,1 + I2,2 ≤ cτ2t2α−2
n γ−(2−q)∥u0∥Ḣq(Ω).

Now it remains to bound I3. Here we apply Lemma 3.7 and Corollary 3.4, and obtain

I2,3 ≤ cτ2T 2α−2min{γ−2, t−2α
n }

K∑
j=1

∣∣ 1

(γ + Eα,1(−λhj Tα))(λhj )
q/2

∣∣2(λhj )2+q(Rhg, φ
h
j )

2.

Then the estimates (3.32)–(3.35) imply

I2,3 ≤ cτ2γ−(2−q)min{γ−2, t−2α
n }∥u0∥2Ḣq(Ω)

.

This completes the proof of the lemma.

Then Lemmas 3.8–3.10 together with Theorem 3.2 and Corollary 3.1 result in the main theorem

of this section.

Theorem 3.3. Let u be the solution to the backward subdiffusion problem (3.4), and Ũ δ
n be the solution

to the (regularized) fully discrete scheme (3.28). Then we have the following error estimate:

(a) In case that u0 ∈ Ḣ2(Ω), there holds

∥Ũ δ
n − u(tn)∥L2(Ω) ≤ c


γ + (h2 + τ + δ)min(γ−1, t−α

n ) + τtα−1
n , n ≥ 1;

γ + (h2 + τ + δ)γ−1, n = 0.

(b) In case that u0 ∈ L2(Ω), there holds for n ≥ 1

∥Ũ δ
n − u(tn)∥L2(Ω) ≤ c

(
γt−α

n +
(
δ + γ−1(h2ℓh + τ)

)
min(γ−1, t−α

n ) + γ−1τtα−1
n

)
.

Meanwhile, for n = 0, there holds

∥Ũ δ
0 − u(0)∥L2(Ω) → 0, as γ → 0,

δ

γ
→ 0,

hℓ
1
2
h

γ
→ 0 and

τ
1
2

γ
→ 0.
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Remark 3.3. For the intermediate case that u0 ∈ Ḣq(Ω), q ∈ (0, 2), the error estimate follows from

Lemma 3.8–3.10, Theorem 3.2, and the real interpolation. In particular, for n = 0, we have

∥Ũ δ
0 − u(0)∥L2(Ω) ≤ c

(
γq/2 + δγ−1 + γ−2+q/2(h2ℓ

1−q/2
h + τ)

)
.

Then one may obtain the optimal convergence rate O(δ
q

q+2 ) by the a priori choices:

γ = O(δ
2

q+2 ), hℓ
1
2
− q

4
h = O(δ

2
q+2 ) and τ = O(δ

2
q+2 ).

Meanwhile, for n ≥ 1, there holds the estimate

∥Ũ δ
n − u(tn)∥L2(Ω) ≤ c

(
min(γq/2, γt

−(1−q/2)α
n ) +

(
γ−(1−q/2)(h2ℓ

1−q/2
h + τ) + δ

)
min(γ−1, t−α

n )

+γ−(1−q/2)τtα−1
n

)
.

Asymptotically, the a priori choice, that γ = O(δ), hℓ
1
2
− q

4
h = O(δ1−

q
4 ) and τ = O(δ2−

q
2 ), leads to the

optimal convergence rate O(δ).

Remark 3.4. Theorem 3.3 and Remark 3.3 indicates the correct way to scale noise level δ, regulariza-

tion parameter γ, and mesh sizes h and τ , with different types of problem data. The novel argument

uses the smoothing properties of fully discrete solution operators, and the nonstandard error estimate

for the direct problem [43, 45].

3.4 Numerical results

In this section, we shall illustrate the theoretical results by presenting some 1-D and 2-D examples.

Throughout, we consider the observation data

gδ = u(T ) + εδ sup
x∈Ω

u(x, T ),

ε is generated following the standard Gaussian distribution and δ denotes the (relative) noise level.

Throughout this section, we fix T = 1.

We consider the one-dimensional subdiffusion problem in the unit interval Ω = (0, 1). We use the

standard piecewise linear FEM with uniform mesh size h = 1/(K+1) for the space discretization, and

the BE-CQ method with uniform step size τ = T/N for the time discretization. Although the fully

discrete solution can be efficiently computed by using conjugate gradient method, in 1-D example we

apply the following direct method by spectral decomposition to avoid any iteration error.

For the uniform mesh size h = 1/(K + 1), the eigenpairs of −∆h has the closed form:

λhj =
6

h2
1− cos(jπh)

2 + cos(jπh)
, φh

j (xi) =
√
2 sin(jπxi), i, j = 1, 2, · · · ,K. (3.36)
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The semidiscrete solution of the forward problem can be computed by using the solution representation

(3.11) involving the Mittag-Leffler function (2.5), which could be evaluated by the algorithm developed

in [91]. We compute the observation data u(T ) and reference solution u(t) with t ∈ [0, T ) by using

the semidiscrete scheme with a very fine mesh size, i.e., h = 1/2000.

For each example, we measure the accuracy of the approximation ũδh(t) and Ũ
δ
n by the normalized

error ∥u(t)− ũδh(t)∥L2(Ω)/∥u(t)∥L2(Ω) and ∥u(tn)− Ũ δ
n∥L2(Ω)/∥u(tn)∥L2(Ω). The normalization enables

us to observe the behaviour of the error with respect to α and t.

Example (a): Smooth initial data. We start with the smooth initial condition

u0(x) = x(1− x) ∈ Ḣ2(Ω) = H2(Ω) ∩H1
0 (Ω),

and source term f ≡ 0. We compute the solution of the (regularized) semidiscrete scheme (3.12) by

ũδh(t) =

K∑
j=1

Eα,1(λ
h
j t

α)

γ + Eα,1(λhj T
α)

(gδ, φ
h
j )φ

h
j , (3.37)

where the eigenpairs (λhj , φ
h
j ), for j = 1, . . . ,K − 1, are given by (3.36). In Figure 3.1, we plot the

error of numerical solution (3.37), with different fractional order α and at different time. By Theorem

3.1 and Remark 3.1, we compute the ũδh(0) with h =
√
δ, γ =

√
δ for a given δ; and compute the ũδh(t)

for t > 0 with h =
√
δ, γ = δ for a given δ. Numerical experiments show an empirical convergence

rate of O(
√
δ) for t = 0, and O(δ) for t > 0. This coincides with our theoretical result (Theorem 3.1).

10
-4
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-3

10
-4

10
-2

10
0

t=0, =0.25

t=0, =0.5

t=0, =0.75

t=0.1, =0.25

t=0.5, =0.25

t=0.9, =0.25

t=0.1, =0.5

t=0.5, =0.5

t=0.9, =0.5

t=0.1, =0.75

t=0.5, =0.75

t=0.9, =0.75

Figure 3.1: Plot of ∥u(t)− ũδh(t)∥L2(Ω)/∥u(t)∥L2(Ω) with h = γ =
√
δ for t = 0;

and h =
√
δ, γ = δ for tn > 0.

In Figure 3.2, we plot the error of numerical reconstruction by the fully scheme (3.28), with different

α and at different time. In our experiments, we compute fully discrete solution Ũ δ
n by

Ũ δ
n =

K∑
j=1

Fn
τ (λ

h
j )

γ + FN
τ (λhj )

(Phgδ, φ
h
j )φ

h
j .
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Then Theorem 3.3 (i) implies for u0 ∈ Ḣ2(Ω)

∥Ũ δ
n − u(tn)∥L2(Ω) ≤ c


γ + (h2 + τ + δ)min(γ−1, t−α

n ) + τtα−1
n , n ≥ 1;

γ + (h2 + τ + δ)γ−1, n = 0.

For t = 0, we let h = γ =
√
δ and τ = δ, and then we observe that the empirical convergence rate

is O(
√
δ). Meanwhile, for t > 0, and we let h =

√
γ =

√
δ =
√
τ . The empirical convergence rate is

O(δ). These observation agrees well with our theoretical results in Theorem 3.3 (i).
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Figure 3.2: Plot of ∥u(tn)− Ũ δ
n(tn)∥L2(Ω)/∥u(tn)∥L2(Ω) with h =

√
δ, τ = δ

and γ =
√
δ for tn = 0; and h =

√
δ, τ = δ, γ = δ for tn > 0.

Example (b): Nonsmooth initial data. Now we test numerical experiments with a step initial

condition:

u0(x) =


0, 0 ≤ x ≤ 1

2
,

1,
1

2
< x < 1.

Since u0 is discontinuous and piecewise smooth, it is easy to see that u0 ∈ H
1
2
−ϵ(Ω) for any ϵ ∈ (0, 12 ].

According to Theorem 3.2, we have the error estimate of the semidiscrete solution at t = 0:

∥ũδh(t)− u(t)∥L2(Ω) ≤ c
(
γq/2 + h2ℓ

1−q/2
h γ−(2−q/2) + δγ−1

)
, with u0 ∈ Ḣq(Ω).

This implies that the convergence rate may deteriorate when the initial data gets worse. This is fully

supported by empirical results showed in Table 3.1, where we present the L2-error of the semidiscrete

solution at t = 0. In the computation, we let h = O(δ
4
5 ) and γ = O(δ

4
5 ) in order to balance to noise

level, regularization parameter and the discretization error. Then the empirical convergence rate is

O(δ
1
5 ), which is consistent with the theoretical results.

Meanwhile, for a fixed t > 0, we have the error estimate (cf. Theorem 3.2)

∥ũδh(t)− u(t)∥L2(Ω) ≤ c
(
γ tqα/2 + γ−(1−q/2)h2ℓ

1−q/2
h + δ

)
t−α.
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This implies the almost optimal scaling h = O(δ
7
8 ) and γ = O(δ), and the resulting optimal conver-

gence rate O(δ). This is supported by the numerical results shown in Table 3.2.

For the numerical reconstruction by the fully discrete scheme (3.28), we recall the result in Remark

3.3. To compute Ũ δ
0 , we let γ = O(δ

4
5 ), h = O(δ

4
5 ) and τ = O(δ

8
5 ), for a given δ. Then our theory

indicates a convergence rate of O(δ
1
5 ), which agrees well with the numerical results in Table 3.3. On

the other hand, to compute Ũ δ
n for a fixed tn > 0 and δ > 0, we let h = δ

7
4 , τ = O(δ

7
8 ) and γ = O(δ).

Then the empirical convergence rate is close to O(δ), which fully supports our theoretical estimates

in Table 3.4.

Table 3.1: Example (b): error of ũδh(0), with δ = 1/M , h = γ = δ
4
5 .

α\M 40 80 160 320 Rate(δ)

0.25 4.68e-1 4.07e-1 3.48e-1 2.95e-1 0.22(0.20)

0.5 5.07e-1 4.46e-1 3.84e-1 3.27e-1 0.21(0.20)

0.75 5.70e-1 5.18e-1 4.59e-1 3.98e-1 0.17(0.20)

Table 3.2: Example (b): error of ũδh(t) at different t with δ = 1/M , h = δ
7
8 , γ = δ/5.

α t\M 40 80 160 320 Rate(δ)

0.1 7.91e-3 4.34e-3 2.30e-3 1.20e-3 0.91(1.00)

0.5 0.5 3.51e-3 1.93e-3 1.02e-3 5.33e-4 0.91(1.00)

0.9 2.41e-3 1.33e-3 7.13e-4 3.73e-4 0.90(1.00)

Table 3.3: Example (b): error of Ũ δ
0 , with δ = 1/M , h = γ = δ

4
5 , τ = δ

8
5 .

α\M 40 80 160 320 Rate(δ)

0.25 4.70e-1 4.07e-1 3.48e-1 2.96e-1 0.22(0.20)

0.5 5.08e-1 4.47e-1 3.85e-1 3.28e-1 0.21(0.20)

0.75 5.70e-1 5.17e-1 4.59e-1 3.98e-1 0.17(0.20)
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Table 3.4: Example(b): error of Ũ δ
n, with δ = 1/M , h = δ

7
8 , τ = δ

7
4 , and γ = δ/5.

α tn\M 40 80 160 320 Rate(δ)

0.1 6.76e-3 3.82e-3 2.06e-3 1.08e-3 0.88(1.00)

0.5 0.5 3.46e-3 1.90e-3 1.01e-3 5.24e-4 0.91(1.00)

0.9 2.55e-3 1.40e-3 7.47e-4 3.89e-4 0.90(1.00)

Example (c): 2D problem. Now we consider a two-dimensional problem in a unit square domain

Ω = (0, 1)2. We choose the smooth initial condition

u0(x, y) = x(1− x)y(1− y) ∈ Ḣ2(Ω),

and zero source term f ≡ 0. In the computation, we divided Ω into regular right triangles with

K equal subintervals of length h = 1/K on each side of the domain. Here, we apply the conjugate

gradient method to numerically solve the discrete system, instead of the direct approach by the spectral

decomposition in Example (a) and (b).

For t = 0, we let h = γ =
√
δ =
√
τ , and we observe that the convergence rate is O(

√
δ), see Table

3.5. Moreover, In Table 3.6, we test the convergence rate for t = T/2. By letting h =
√
γ =
√
δ =
√
τ ,

the experiments show that the convergence rate is O(δ). All empirical results agree well with our

theoretical finding in Theorem 3.3. 1

Table 3.5: Example(c): error of Ũ δ
0 , with δ = 1/M , h =

√
δ, τ = δ, and γ =

√
δ.

α\M 800 1600 3200 6400 Rate(δ)

0.25 1.27e-2 9.57e-3 6.61e-3 3.96e-3 0.56(0.50)

0.5 1.57e-2 1.27e-2 9.53e-3 6.57e-3 0.42(0.50)

0.75 2.28e-3 1.96e-3 1.57e-3 1.11e-3 0.34(0.50)

Table 3.6: Example(c): error of Ũ δ
n, with tn = T/2, δ = 1/M , h =

√
δ, τ = δ, and γ = δ.

α\M 800 1600 3200 6400 Rate(δ)

0.25 5.09e-5 2.59e-5 1.31e-5 6.59e-6 0.98(1.00)

0.5 6.00e-5 3.08e-5 1.56e-5 7.90e-6 0.98(1.00)

0.75 7.06e-5 3.71e-5 1.89e-5 9.55e-6 0.96(1.00)

1Chapter 3 is reprinted with permission from ”Numerical analysis of backward subdiffusion problems”, Zhengqi Zhang

and Zhi Zhou, 2020, Inverse Problems 36 105006. The contribution of candidate mainly focus on the proof and coding.
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CHAPTER 4.

STABILITY AND NUMERICAL ANALYSIS OF BACKWARD

SUBDIFFUSION WITH TIME-DEPENDENT COEFFICIENTS

In this chapter, let Ω ⊂ Rd (d = 1, 2, 3) be a convex polyhedral domain with boundary ∂Ω, we are

interested in the fractional evolution model with time-dependent coefficient:

∂αt u(x, t) +∇ · (a(x, t)∇u) = f(x, t), in Ω× (0, T ],

u(x, t) = 0, on ∂Ω,

u(x, 0) = u0(x), in Ω,

(4.1)

where T > 0 is a fixed final time, f ∈ L∞(0, T ;L2(Ω)) and u0 ∈ L2(Ω) are given source term and

initial data, respectively. a(x, t) ∈ Rd×d is a symmetric matrix-valued diffusion coefficient such that

for constants c0 ≥ 1 and c1 > 0

c−1
0 |ξ|

2 ≤ a(x, t)ξ · ξ ≤ c0|ξ|2, ∀ ξ ∈ Rd, ∀ (x, t) ∈ Ω× R+, (4.2)

|∂ta(x, t)|+ |∇xa(x, t)|+ |∇x∂ta(x, t)| ≤ c1, ∀ (x, t) ∈ Ω× R+. (4.3)

Here · and | · | denote the standard Euclidean inner product and norm, respectively, and R+ = [0,∞).

In this Chapter We focus on backward problem for the subdiffusion model (4.1): to recover the initial

data u0(x) with x ∈ Ω from terminal observation

u(x, T ) = g(x), for all x ∈ Ω.

In practice, the observational data often involves random noise. Here we denote the empirical obser-

vation by gδ and assume it is noisy with a level δ > 0 in the sense that

∥gδ − g∥L2(Ω) = δ. (4.4)

The rest of this Chapter is organized as follows. In section 4.1 we provide some preliminary results

about solution regularity, smoothing properties of solution operators and derive conditional stability

of the inverse problem. In section 4.2 we discuss the regularization scheme by quasi-boundary value

method. In section 4.3 we propose and analyze a fully discrete scheme for solving the backward

problem. Finally, in section 4.4 we present some numerical examples to illustrate and complete the

theoretical analysis.

Here we introduce some notations used throughout the paper. Under conditions (4.2)–(4.3), the

abstract time-dependent elliptic operator A(t) : H1
0 (Ω) ∩H2(Ω)→ L2(Ω) is defined by

A(t)ϕ = −∇ · (a(x, t)∇ϕ)
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with the domain Dom(A(t)) = H1
0 (Ω)∩H2(Ω) for all t ∈ [0, T ]. By the complex interpolation method

[96], this implies

Dom(A(t)γ) = Ḣ2γ(Ω) = (L2(Ω), H1
0 (Ω) ∩H2(Ω))[γ], ∀ t ∈ [0, T ], ∀ γ ∈ [0, 1],

Equivalently, it relates to the definition via spectral introduced in Section 2.3. Let {(λj , φj)}nj=1 be

the eigenpairs of A(t∗) for a fixed t∗ ∈ [0, T ] with multiplicity counted and {φj}∞j=1 be an orthonormal

basis in L2(Ω). Then the Hilbert space Ḣγ(Ω) can be equivalently defined as

Ḣγ(Ω) =
{
v ∈ L2(Ω) :

∞∑
j=1

λγj (v, φj)
2 <∞

}
.

For γ ∈ [0, 2] we also denote by Ḣ−γ(Ω) the dual space of Ḣγ(Ω). Then the norm of Ḣ−γ(Ω) satisfies

∥v∥Ḣ−γ(Ω) ∼ ∥A(t)
− γ

2 v∥L2(Ω) ∀ v ∈ Ḣ−γ(Ω), ∀ t ∈ [0, T ].

4.1 Stability of the backward subdiffusion in Sobolev spaces

First we recall basic properties of the subdiffusion model with a time-independent diffusion coefficient,

i.e., a(x, t∗) for some t∗ ≥ 0. Accordingly, consider the problem

∂αt u(t) +A(t∗)u(t) = f(t) ∀t ∈ (0, T ], with u(0) = u0. (4.5)

By means of Laplace transform, the solution u(t) can be represented by [44, Section 4]

u(t) = F (t; t∗)u0 +

∫ t

0
E(t− s; t∗)f(s)ds, (4.6)

where the solution operators F (t; t∗) and E(t; t∗) are defined by

F (t; t∗) =
1

2πi

∫
Γθ,κ

eztzα−1(zα +A(t∗))
−1 dz, and E(t; t∗) =

1

2πi

∫
Γθ,κ

ezt(zα +A(t∗))
−1 dz (4.7)

with integration over a contour Γθ,κ ⊂ C (oriented with an increasing imaginary part):

Γθ,κ = {z ∈ C : |z| = κ, | arg z| ≤ θ} ∪ {z ∈ C : z = ρe±iθ, ρ ≥ κ}.

Throughout, we fix θ ∈ (π2 , π) so that zα ∈ Σαθ ⊂ Σθ := {0 ̸= z ∈ C : arg(z) ≤ θ}, for all z ∈ Σθ.

The next lemma gives smoothing properties and asymptotics of F (t; t∗) and E(t; t∗). The proof

follows from the resolvent estimate[4, Example 3.7.5 and Theorem 3.7.11]:

∥(z +A)−1∥ ≤ cϕ(|z|−1, λ−1) ∀z ∈ Σϕ, ∀ϕ ∈ (0, π), (4.8)

where ∥ · ∥ denotes the operator norm from L2(Ω) to L2(Ω), and λ denotes the smallest eigenvalue

of −∆ with homogeneous Dirichlet boundary condition. The proof of (i) and (ii) were given in [38,

Theorems 6.4 and 3.2], and (iii) were proved by Sakamoto and Yamamoto in [89, Theorem 4.1].
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Lemma 4.1. Let F (t; t∗) and E(t; t∗) be the solution operators defined in (4.7) for any t∗ ≥ 0 Then

they satisfy the following properties for all t > 0

(i) ∥A(t∗)F (t; t∗)v∥L2(Ω) + t1−(2−k)α∥A(t∗)kE(t; t∗)v∥L2(Ω) ≤ ct−α∥v∥L2(Ω) with k = 1, 2;

(ii) ∥F (t; t∗)v∥L2(Ω) + t1−α∥E(t; t∗)v∥L2(Ω) ≤ cmin(1, t−α)∥v∥L2(Ω);

(iii) ∥F (t; t∗)−1v∥L2(Ω) ≤ c(1 + tα)∥v∥Ḣ2(Ω) for all v ∈ Ḣ2(Ω).

The constants in all above estimates are uniform in t, but they are only dependent of t∗ and T .

Next, we turn to the subdiffusion with a time-dependent coefficient. The overall proof strategy is

to employ a perturbation argument [45], and then to properly resolve the singularity. Specifically, for

any fixed t∗ ∈ (0, T ], we rewrite problem (4.1) into
∂αt u(t) +A(t∗)u(t) = (A(t∗)−A(t))u(t) + f(t), ∀t ∈ (0, T ],

u(0) = u0.
(4.9)

By (4.6), the solution u(t) of (4.9) is given by

u(t) = F (t; t∗)u0 +

∫ t

0
E(t− s; t∗)(f(s) + (A(t∗)−A(s))u(s))ds. (4.10)

The following perturbation estimate will be used extensively. See similar results in [45, Corollary

3.1].

Lemma 4.2. Under conditions (4.2)–(4.3), there holds that

∥(A(t)−A(s))v∥Ḣp(Ω) ≤ cmin(1, |t− s|)∥v∥Ḣp+2(Ω), p ∈ [−2, 0].

Proof. The condition (4.3) implies the case that p = 0. The case p = −2 has been proved in [45,

Corollary 3.1]. Then the intermediate case follows from the interpolation [37, Section 2.5].

Next, we state a few regularity results. The proof of these results can be found in, e.g., [5, 89, 45].

Theorem 4.1. Let u(t) be the solution to (4.1). Then the following statements hold.

(i) If u0 ∈ Ḣq(Ω) with s ∈ [0, 2] and f = 0, then there holds

∥∂(m)
t u(t)∥Ḣp(Ω) ≤ ct

(s−p)α
2

−m∥u0∥Ḣq(Ω)

with 0 ≤ p− q ≤ 2 and m = 0, 1. The constant c in the estimate depends on T and α.

(ii) If u0 = 0 and f ∈ Lp(0, T ;L2(Ω)) with 1 < p <∞, then there holds

∥u∥Lp(0,T ;Ḣ2(Ω)) + ∥∂
α
t u∥Lp(0,T ;L2(Ω)) ≤ c∥f∥Lp(0,T ;L2(Ω)).

Moreover, if f ∈ Lp(0, T ;L2(Ω)) with 1/α < p < ∞, then u(t) is the solution to problem (4.1)

such that u ∈ C([0, T ];L2(Ω)). The constant c in the estimate depends on T and α.
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The next lemma provides an a priori estimate similar to Theorem 4.1 (i). Note that the generic

constant in the new estimate is independent of T .

Lemma 4.3. Suppose that u0 ∈ L2(Ω) and f = 0. Let u(t) be the solution to the subdiffusion problem

(4.1). Under conditions (4.2)–(4.3), there holds

∥u(t)∥L2(Ω) ≤ cmin(1, t−α)∥u0∥L2(Ω) and ∥u(t)∥Ḣ2(Ω) ≤ c e
ctt−α∥u0∥L2(Ω) for all t > 0 (4.11)

Meanwhile, for any ϵ ∈ (0, 1/α− 1) and t > 0, there holds that

∥u(t)∥Ḣ2(Ω) ≤ ct
−(1−ϵ)α∥u0∥L2(Ω). (4.12)

All the positive constants c in above estimates are independent of t and T .

Proof. We define an operator A = −c0∆. Then by condition 4.2, the operator A(t)−A is self-adjoint

and positive semidefinite for all t ≥ 0. Then we rewrite the equation (4.1) as

∂αt u(t) +Au(t) = (A−A(t))u(t) for all t ∈ (0,∞).

Taking inner product with u(t) on the above equation and integrating by parts, we obtain

(∂αt u(t), u(t)) + c0∥∇u(t)∥2L2(Ω) =
(
(c0 − a(·, t))∇u(t),∇u(t)

)
≤ 0 for all t ∈ (0,∞).

Using the facts that (∂αt u(t), u(t)) ≥ ∥u(t)∥L2(Ω)∂
α
t ∥u(t)∥L2(Ω) [38, Lemma 6.1(iii)] and Poincaré in-

equality we arrive at

∂αt ∥u(t)∥L2(Ω) + c∥u(t)∥L2(Ω) ≤ 0 for all t ∈ (0,∞),

for some constant c uniform in t. Then the comparison principle for fractional ODEs [61, Theorem

2.3] leads to

∥u(t)∥L2(Ω) ≤ Eα,1(−ctα)∥u0∥ ≤
c

1 + ctα
∥u0∥L2(Ω).

This immediately leads to the desired claim (4.11).

Next, we apply the relation (4.10), Lemmas 4.1 and 4.2 (with p = 2) to obtain for any t∗ ∈ (0, T ]

∥u(t∗)∥Ḣ2(Ω) ≤ ∥F (t∗; t∗)u0∥Ḣ2(Ω) + c

∫ t∗

0
∥A(t∗)E(t∗ − s; t∗)∥ ∥(A(t∗)−A(s))u(s)∥L2(Ω) ds

≤ ct−α
∗ ∥u0∥L2(Ω) + c

∫ t∗

0
∥u(s)∥Ḣ2(Ω) ds.

Then the Gronwall’s inequality implies for any t > 0

∥u(t)∥Ḣ2(Ω) ≤ c e
ctt−α∥u0∥L2(Ω).
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Meanwhile, Lemma 4.2 leads to the estimate for β = (1 + ϵ)α with ϵ ∈ (0, 1/α− 1)

∥u(t∗)∥Ḣ2(Ω) ≤ ∥F (t∗; t∗)u0∥Ḣ2(Ω) +

∫ t∗

0
∥A(t∗)2E(t∗ − s; t∗)∥ ∥I −A(t∗)−1A(s)∥ ∥u(s)∥L2(Ω) ds

≤ ct−α
∗ ∥u0∥L2(Ω) +

∫ t∗

0
(t∗ − s)−1+ϵαs−α ds ≤ cϵt−(1−ϵ)α

∗

for any t∗ > 0. This completes the proof of (4.12).

Using the superposition principle, we consider the homogeneous source condition, i.e., f ≡ 0,

without loss of generality. Then the corresponding backward subdiffusion problem reads: find u(0)

such that

∂αt u+A(t)u = 0 ∀ t ∈ (0, T ] with u(T ) = g in Ω. (4.13)

The next theorem provides a stability estimate for the backward problem of (4.13) when T is

sufficiently small.

Theorem 4.2. Suppose that u0 ∈ L2(Ω) and f = 0. Let u(t) be the solution to (4.1). Under conditions

(4.2)–(4.3), there exists a positive constant T0 such that for any T ≤ T0 there holds

∥u0∥L2(Ω) ≤ c(1 + Tα)∥u(T )∥H2(Ω),

where the constant c depends on T0 and T .

Proof. We rearrange the terms in relation (4.10) with t∗ = T to obtain

u0 = F (T ;T )−1
[
u(T )−

∫ T

0
E(T − s;T )(A(T )−A(s))u(s)ds

]
. (4.14)

Taking L2(Ω) norm on both sides of the above relation, we apply Lemma 4.1 (iii) to obtain

∥u0∥L2(Ω) ≤ C(1 + Tα)
(
∥u(T )∥Ḣ2(Ω) +

∫ T

0
∥A(T )E(T − s;T )∥ ∥(A(T )−A(s)))u(s)∥L2(Ω) ds

)
.

According to Lemmas 4.2 with p = 0 and 4.1 (i) we arrive at

∥u0∥L2(Ω) ≤ c(1 + Tα)
(
∥u(T )∥Ḣ2(Ω) +

∫ T

0
∥u(s)∥Ḣ2(Ω) ds

)
.

Then this together with the estimate (4.11) implies

∥u0∥L2(Ω) ≤ c(1 + Tα)
(
∥u(T )∥Ḣ2(Ω) +

∫ T

0
ecss−α ds∥u0∥L2(Ω)

)
≤ c(1 + Tα)

(
∥u(T )∥Ḣ2(Ω) + cecTT 1−α∥u0∥L2(Ω)

)
Let be the constant that

c(1 + Tα
0 )e

cT0T 1−α
0 <

1

2
, T0 < 1. (4.15)

Then for any T ≤ T0

∥u0∥L2(Ω) ≤ c(1 + Tα)∥u(T )∥Ḣ2(Ω).

This completes the proof of the lemma.
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Next, we derive a stability estimate for a large T . To this end, we need the following assumption.

Assumption 4.3. There exists constants c2 > 0 and κ > 0 such that

|∂t∇xa(x, t)|+ |∂ta(x, t)| ≤ c2t−κ ∀ (x, t) ∈ Ω× (0,∞).

Under the condition, we have the following perturbation estimate. The proof is similar to that of

Lemma 4.2. The proof is provided in Appendix A for completeness.

Lemma 4.4. Under Conditions (4.2)-(4.3) and Assumption 4.3, there holds for all t, s ≥ 1

∥(A(t)−A(s))v∥Ḣp(Ω) ≤ cmin
(
1,min(t, s)−κ|t− s|

)
∥v∥Ḣp+2(Ω), ∀ p ∈ [−2, 0]

The next theorem provides a stability result in case of sufficiently large T.

Theorem 4.4. Suppose that u0 ∈ L2(Ω) and f = 0. Let conditions (4.2)-(4.3) and Assumption 4.3

be valid. Let u(t) be the solution to the subdiffusion problem (4.1). Then there exists positive T1 > 1

such that for any T ≥ T1 there holds

∥u0∥L2(Ω) ≤ c(1 + Tα)∥u(T )∥H2(Ω),

where the constant c depends on T1 and T .

Proof. Using (4.14) and taking L2 norm on both sides, we apply again Lemma 4.1 (iii) to obtain

∥u0∥L2(Ω) ≤ c(1 + Tα)
(
∥u(T )∥Ḣ2(Ω) +

∥∥∥∫ T

0
A(T )E(T − s;T )

(
A(T )−A(s)

)
u(s) ds

∥∥∥
L2(Ω)

)
.

Applying Lemma 4.4 with p = −2, we have for sufficiently small ϵ > 0

∥(I −A(t)−1A(s))v∥L2(Ω) ≤ cmin(t, s)−κα(1+ϵ)|t− s|α(1+ϵ)∥v∥L2(Ω)

This together with Lemma 4.1 (i) and the a priori estimate (4.12), imply

∥A(T )E(T − s;T )
(
A(T )−A(s)

)
u(s)∥L2(Ω)

≤ ∥A(T )2E(T − s;T )∥ ∥(I −A(T )−1A(s))u(s)∥L2(Ω)

≤ cT−κα(1+ϵ)(T − s)−1+ϵα ∥u(s)∥L2(Ω)

≤ cT−κα(1+ϵ)(T − s)−1+ϵα s−(1−ϵ)α∥u(0)∥L2(Ω)

for all s ∈ [T/2, T ]. Then we arrive at∥∥∥∫ T

T/2
A(T )E(T − s;T )

(
A(T )−A(s)

)
u(s) ds

∥∥∥
L2(Ω)

≤ cT−α−κα(1+ϵ)+2ϵα∥u0∥L2(Ω).

Meanwhile, we apply Lemmas 4.2 and 4.1 again to derive

∥A(T )2E(T − s;T )∥ ∥I −A(T )−1A(s)∥ ≤ c(T − s)−1−α for all s ∈ (0, T/2].
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This together with the estimate (4.11) leads to∫ T/2

0
∥A(T )2E(T − s;T )∥ ∥I −A(T )−1A(s)∥ ∥u(s)∥L2(Ω) ds

≤ c
∫ T/2

0
(T − s)−1−αs−(1−ϵ)α ds∥u(0)∥L2(Ω) ≤ cT−(2−ϵ)α∥u(0)∥Ḣ2(Ω).

To sum up, we arrive at the estimate

∥u0∥L2(Ω) ≤ c(1 + Tα)∥u(T )∥Ḣ2(Ω) + c(1 + Tα)(T−κα(1+ϵ)−α+2ϵα + T−(2−ϵ)α)∥u0∥L2(Ω)

Then choosing a sufficiently small ϵ, there exists T1 > 1 sufficiently large such that

c(1 + Tα
1 )(T

−κα(1+ϵ)−α+2ϵα
1 + T

−(2−ϵ)α
1 ) =

1

2
(4.16)

and hence for any T ≥ T1, there holds the desired stability estimate.

In Sections 4.2 and 4.3, we shall discuss respectively the regularization and a fully discrete scheme

with rigorous numerical analysis. The stability estimate in Theorems 4.2 and 4.4 provides a key tool

in the coming numerical analysis. Therefore, from now on, we suppose the following assumption are

valid.

Assumption 4.5. Suppose Conditions (4.2)–(4.3) and one of the following conditions are valid.

(i) T ≤ T0, where T0 be a sufficiently small constant;

(ii) Assumption 4.3 holds and T ≥ T1 where T1 be a sufficiently large constant.

4.2 Regularization and convergence analysis

In practice, the observational data often suffers from noise, i.e., (4.4). In this section, we study a

simple regularization scheme by using the quasi boundary value method. Let uδγ(t) ∈ Ḣ1(Ω) be the

regularizing solution such that

∂αt u
δ
γ(t) +A(t)uδγ(t) = 0 ∀ t ∈ (0, T ] with γuδγ(0) + uδγ(T ) = gδ (4.17)

where γ denotes a positive regularization parameter. To derive an error estimate for uδγ(0)− u(0), we

introduce an auxiliary function uγ(t) ∈ Ḣ1(Ω) satisfying

∂αt uγ(t) +A(t)uγ(t) = 0 ∀ t ∈ (0, T ] with γuγ(0) + uγ(T ) = g. (4.18)

Then using the solution representation

uγ(T ) = F (T ;T )uγ(0) +

∫ T

0
E(T − s;T )(A(T )−A(s))uγ(s) ds
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we have the relation

γuγ(0) + F (T ;T )uγ(0) +

∫ T

0
E(T − s;T )(A(T )−A(s))uγ(s) ds = g.

Therefore, we derive

uγ(0) = (γI + F (T ;T ))−1
[
g −

∫ T

0
E(T − s;T )(A(T )−A(s))uγ(s) ds

]
. (4.19)

Similarly, we have

uδγ(0) = (γI + F (T ;T ))−1
[
gδ −

∫ T

0
E(T − s;T )(A(T )−A(s))uδγ(s) ds

]
. (4.20)

We begin with the following lemma on solution operator with fixed-time operator A(T ). These

estimates have been proved in [112, Lemma 3.3] by means of spectral decomposition.

Lemma 4.5. Let 0 ≤ p ≤ q ≤ 2 + p. Then there holds the estimates for any γ ∈ (0, 1]

∥(γI + F (T ;T ))−1∥Ḣp(Ω) ≤ c(1 + Tα)
q−p
2 γ−(1+ p−q

2
)∥v∥Ḣq(Ω), and

∥F (T ;T )(γI + F (T ;T ))−1∥ ≤ c.

All the constants are independent of p, q, T and γ.

Also, we need the following regularity of the regularized solution.

Lemma 4.6. Let uγ(t) be the solution to (4.18). Suppose Conditions (4.2)–(4.3) and one of the

following conditions are valid.

(i) T ≤ T0, where T0 be a sufficiently small constant;

(ii) Assumption 4.3 holds and T ≥ T1 where T1 be a sufficiently large constant.

Then there holds for any p ∈ [0, 2],

∥uγ(0)∥Ḣp(Ω) ≤ cγ
− p

2 ∥u0∥L2(Ω)

where the constant c depends on T0 and T1.

Proof. By means of the representation (4.19), Theorem 4.1 and Lemma 4.5,

∥uγ(0)∥L2(Ω) =
∥∥∥(γI + F (T ;T ))−1

(
g −

∫ T

0
E(T − s;T )(A(T )−A(s))uγ(s)ds

)∥∥∥
L2(Ω)

≤ c(1 + Tα)∥g∥Ḣ2(Ω) + ∥F (T ;T )
−1

∫ T

0
E(T − s;T )(A(T )−A(s))uγ(s)ds∥L2(Ω)

≤ cT ∥u0∥L2(Ω) + ∥F (T ;T )−1

∫ T

0
E(T − s;T )(A(T )−A(s))uγ(s)ds∥L2(Ω).

Then the desired result with p = 0 follows immediately from the proof of Theorems 4.2 and 4.4.
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Next, we turn to the case that p = 2. Similarly, we apply the representation (4.19) and Lemma

4.5 again to obtain

∥uγ(0)∥Ḣ2(Ω)

≤ c
∥∥∥A(T )(γI + F (T ;T ))−1

(
g −

∫ T

0
E(T − s;T )(A(T )−A(s))uγ(s)ds

)∥∥∥
L2(Ω)

≤ cγ−1∥g∥Ḣ2(Ω) +

∫ T

0
∥F (T ;T )−1A(T )E(T − s;T )(A(T )−A(s))uγ(s)∥L2(Ω)ds

≤ cTγ−1∥u0∥L2(Ω) + c(1 + Tα)

∫ T

0
∥A(T )2E(T − s;T )(A(T )−A(s))uγ(s)∥L2(Ω)ds.

Using Lemma 4.3 and Poincare inequality, we have

∥uγ(t)∥Ḣ2(Ω) ≤ ce
ctt−α∥uγ(0)∥Ḣ2(Ω) and ∥uγ(t)∥Ḣ2(Ω) ≤ ct

−(1−ϵ)α∥uγ(0)∥Ḣ2(Ω), (4.21)

with any small parameter ϵ > 0 and t > 0, and all the positive constants c in above estimates are

independent of t and T . Next, we repeat the argument in Theorems 4.2 and 4.4. Now Lemmas 4.1

and 4.2 (with p = 0) imply that

∥uγ(0)∥Ḣ2(Ω)

≤ cγ−1T−α∥u0∥L2(Ω) + c(1 + Tα)

∫ T

0
∥A(T )2E(T − s;T )(A(T )−A(s))uγ(s)∥L2(Ω)ds

≤ cγ−1T−α∥u0∥L2(Ω) + c(1 + Tα)

∫ T

0
(T − s)−α∥uγ(s)∥Ḣ2(Ω)ds

≤ cγ−1T−α∥u0∥L2(Ω) + c(1 + Tα)

∫ T

0
(T − s)−αecss−α∥uγ(0)∥Ḣ2(Ω)ds.

We combine this and (4.21) to arrive at

∥uγ(0)∥Ḣ2(Ω) ≤ cγ
−1T−α∥u0∥L2(Ω) + c(1 + Tα)T 1−2αecT ∥uγ(0)∥Ḣ2(Ω).

Then by choosing small T0 such that c(1 + Tα
0 )T

1−2α
0 ecT0 < 1

2 , we arrive at

∥uγ(0)∥Ḣ2(Ω) ≤ cγ
−1T−α∥u0∥L2(Ω) for all T ∈ (0, T0).

Next we consider the case that T is sufficiently large, and we let Assumption 4.3 be valid. Then we

apply Lemma 4.4 with p = 0 to arrive at

∥(A(t)−A(s))v∥L2(Ω) ≤ cmin(t, s)−κα(1+ϵ)|t− s|α(1+ϵ)
)
∥v∥Ḣ2(Ω)

for sufficiently small ϵ. This together with Lemma 4.1 and the estimate (4.21) lead to

∥A(T )2E(T − s;T )
(
A(T )−A(s)

)
uγ(s)∥L2(Ω)

≤ ∥A(T )2E(T − s;T )∥ ∥
(
A(T )−A(s)

)
uγ(s)∥L2(Ω)

≤ cT−κα(1+ϵ)(T − s)−1+ϵα ∥uγ(s)∥Ḣ2(Ω)

≤ cT−κα(1+ϵ)(T − s)−1+ϵα s−(1−ϵ)α∥uγ(0)∥Ḣ2(Ω)
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for all s ∈ [T/2, T ]. Then we arrive at∫ T

T/2

∥∥A(T )2E(T − s;T )
(
A(T )−A(s)

)
uγ(s)

∥∥
L2(Ω)

ds ≤ cT−α−κα(1+ϵ)+2ϵα∥uγ(0)∥Ḣ2(Ω).

Meanwhile, we apply Lemmas 4.2 and 4.1 again to derive

∥A(T )2E(T − s;T )(A(t)−A(s))v∥ ≤ c(T − s)−1−α∥v∥Ḣ2(Ω) for all s ∈ (0, T/2].

This together with the estimate (4.21) leads to∫ T/2

0

∥∥A(T )2E(T − s;T )
(
A(T )−A(s)

)
uγ(s)

∥∥
L2(Ω)

ds

≤ c
∫ T/2

0
(T − s)−1−αs−(1−ϵ)α ds∥uγ(0)∥Ḣ2(Ω) ≤ cT

−(2−ϵ)α∥uγ(0)∥Ḣ2(Ω).

To sum up, we arrive at the estimate

∥uγ(0)∥L2(Ω) ≤ cγ−1T−α∥u0∥L2(Ω) + c(1 + Tα)(T−κα(1+ϵ)−α+2ϵα + T−(2−ϵ)α)∥u0∥L2(Ω)

Then choosing a sufficiently small ϵ, there exists T1 > 1 sufficiently large such that

c(1 + Tα
1 )(T

−κα(1+ϵ)−α+2ϵα
1 + T

−(2−ϵ)α
1 ) =

1

2
(4.22)

and hence for any T ≥ T1, there holds the desired stability estimate for p = 2.

The following lemma is about the estimate of the regularization with the backward solution.

Lemma 4.7. Let u and uγ be the solutions to the backward problem (4.13) and regularized problem

(4.18), respectively. Suppose Assumption 4.5 is valid. Then if u0 ∈ Ḣq(Ω) with q ∈ (0, 2] there holds

∥uγ(0)− u(0)∥L2(Ω) ≤ cγ
q
2 ∥u0∥Ḣq(Ω)

where the constant c depends on T0 and T1. Moreover, for u0 ∈ L2(Ω), there holds

lim
γ→0+

∥uγ(0)− u(0)∥L2(Ω) = 0.

Proof. We let e := uγ − u, it would satisfy

∂αt e+A(t)e = 0, γe(0) + e(T ) = −γu0,

which further implies

e(0) = (γI + F (T ;T ))−1
[
− γu(0)−

∫ T

0
E(T − s;T )(A(T )−A(s))e(s) ds

]
, (4.23)

Lemma 4.5 implies its estimate that

∥e(0)∥L2(Ω) ≤ cγ
q
2 ∥u0∥Ḣq(Ω) + ∥(γI + F (T ;T ))−1

∫ T

0
E(T − s;T )(A(T )−A(s))e(s)ds∥L2(Ω)

≤ cγ
q
2 ∥u0∥Ḣq(Ω) + ∥F (T ;T )

−1

∫ T

0
E(T − s;T )(A(T )−A(s))e(s)ds∥L2(Ω).
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Then the desired result follows immediately from the proof of theorems 4.2 and 4.4.

Next, we consider the case that u0 ∈ L2(Ω). For an arbitrary ũ0 ∈ Ḣ2(Ω), let ũ(t) and ũγ(t) be

the functions respectively satisfying

∂αt ũ(t) +A(t)ũ(t) = 0 ∀ t ∈ (0, T ] with ũ(0) = ũ0,

and

∂αt ũγ(t) +A(t)ũγ(t) = 0 ∀ t ∈ (0, T ] with γũγ(0) + ũγ(T ) = ũ(T ).

We have proved that

∥ũγ(0)− ũ(0)∥L2(Ω) ≤ cγ∥ũ0∥Ḣ2(Ω).

Meanwhile, using the argument in theorems 4.2 and 4.4, we have

∥ũγ(0)− uγ(0)∥L2(Ω) ≤ c∥u0 − ũ0∥L2(Ω) ≤ cϵ.

As a result, we apply triangle inequality to obtain

∥uγ(0)− u0∥L2(Ω) ≤ ∥u0 − ũ0∥L2(Ω) + ∥uγ(0)− ũγ(0)∥L2(Ω) + ∥ũγ(0)− ũ0∥L2(Ω)

≤ c∥u0 − ũ0∥L2(Ω) + cγ∥ũ0∥Ḣ2(Ω).

Let ϵ be an arbitrarily small number. Using the density of Ḣ2(Ω) in L2(Ω), we choose ũ0 such that

c∥u0 − ũ0∥L2(Ω) ≤ ϵ
2 . Moreover, let γ0 be the constant that cγ0∥ũ0∥Ḣ2(Ω) <

ϵ
2 . Therefore, for all

γ ≤ γ0, we have ∥uγ(0)− u(0)∥L2(Ω) ≤ ϵ. Then the proof is complete.

Then we are ready to state our main theorem to show the error for the regularizing solution uδγ(0).

Theorem 4.6. Let u and uδγ be the solutions to the backward problem (4.13) and regularized problem

(4.17), respectively. Suppose Assumption 4.5 is valid. Then if ∥u0∥Ḣq(Ω) ≤ c with q ∈ (0, 2] there holds

∥uδγ(0)− u(0)∥L2(Ω) ≤ c
(
δγ−1 + γ

q
2

)
.

Moreover, for u0 ∈ L2(Ω), there holds

∥uδγ(0)− u(0)∥L2(Ω) → 0 as δ, γ → 0 and
δ

γ
→ 0.

Proof. To show the error estimate, we consider the splitting

uδγ(t)− u(t) = (uδγ(t)− uγ(t)) + (uγ(t)− u(t)) = ϑ(t) + ϱ(t).

Using the solution representation (4.19) and (4.20), we have

∥ϑ(0)∥L2(Ω) ≤ ∥(γI + F (T ;T ))−1(g − gδ)∥L2(Ω)

+ ∥(γI + F (T ;T ))−1

∫ T

0
E(T − s;T )(A(T )−A(s))θ(s) ds∥L2(Ω).
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Using Lemma (4.5), we derive

∥ϑ(0)∥L2(Ω) ≤ cγ−1∥g − gδ∥L2(Ω) + ∥F (T ;T )−1

∫ T

0
E(T − s;T )(A(T )−A(s))θ(s) ds∥L2(Ω)

≤ cγ−1δ + ∥F (T ;T )−1

∫ T

0
E(T − s;T )(A(T )−A(s))θ(s) ds∥L2(Ω).

Applying the argument in theorems 4.2 and 4.4, we conclude that ∥ϑ(0)∥L2(Ω) ≤ cγ−1δ. This estimate

and Lemma 4.7 lead to the desired result.

4.3 Fully discretization scheme and error analysis

In this section, we shall propose and analyze a completely discrete scheme for solving the backward

problem. To begin with, we study the semidiscrete scheme using the finite element methods. The

semidiscrete solution plays an important role in the analysis of completely discrete scheme.

4.3.1 Semidiscrete scheme for solving the problem

To begin with, we study the semidiscrete scheme using the finite element methods studied in Section

2.5, where we define the piece-linear finite element space Xh, the L
2(Ω) projection Ph.

The semidiscrete standard Galerkin FEM of problem (4.1) reads: find uh ∈ Xh such that

(∂αt uh(t), χ) + (a(·, t)∇uh(t),∇χ) = (f(·, t), χ), ∀χ ∈ Xh, t ∈ (0, T ], with uh(0) = Phu0. (4.24)

We also need a time-dependent discrete elliptic operator Ah(t) : Xh → Xh by

(Ah(t)vh, χ) = (a(·, t)∇vh,∇χ), ∀vh, χ ∈ Xh.

With conditions (4.2)-(4.3), Ah(t) is bounded and invertible on Xh, and problem (4.24) can be written

as

∂αt uh +Ahuh = Phf, ∀t ∈ (0, T ], uh(0) = Phu0. (4.25)

Besides, we have the following perturbation result, which has been proved in [45, Remark 3.1].

Lemma 4.8. Under condition (4.2)-(4.3), there holds

∥(I −Ah(t)
−1Ah(s))vh∥L2(Ω) ≤ cmin(1, |t− s|)∥vh∥L2(Ω)

Next, we introduce a time-dependent Ritz projection operator Rh(t) : H
1
0 (Ω)→ Xh:

(a(·, t)∇Rh(t)φ,∇χ) = (a(·, t)∇φ,∇χ), ∀φ ∈ H1
0 (Ω), χ ∈ Xh. (4.26)

It is well-known that the Ritz projection satisfies the following approximation property [73, p.99]:

∥Rh(t)v − v∥L2(Ω) + h∥∇(Rh(t)v − v)∥L2(Ω) ≤ chq∥v∥Hq(Ω), ∀v ∈ Ḣq(Ω), q = 1, 2. (4.27)

Next, with Assumption 4.3, we have an updated version of the discrete perturbation estimate.
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Lemma 4.9. With conditions (4.2)-(4.3) and Assumption 4.3, we have for all vh ∈ Xh

∥(I −Ah(t)
−1Ah(s))vh∥L2(Ω) ≤ cmin(1,min(t, s)−κ|t− s|)∥vh∥L2(Ω), ∀t, s > 1.

Proof. Let wh = Ah(t)
−1Ah(s)vh. Then we have Ah(t)wh = Ah(s)vh and hence

(a(·, t)∇wh,∇χh) = (a(·, s)∇vh,∇χh), ∀χh ∈ Xh.

This further implies the relation

(a(·, t)∇(vh − wh),∇χh) = ((a(·, t)− a(·, s))∇vh,∇χh), ∀χ ∈ Xh.

Let ϕ be the weak solution to the following elliptic problem:

(a(·, t)∇ϕ,∇χ) = ((a(·, t)− a(·, s))∇vh,∇χ), ∀χ ∈ Ḣ1(Ω).

Then Lax-Milgram lemma and Assumption 4.3 implies the following a priori estimate

∥ϕ∥Ḣ1(Ω) ≤ c∥(a(·, t)− a(·, s))∇vh∥L2(Ω) ≤ cmin(1,min(t, s)−κ|t− s|)∥vh∥Ḣ1(Ω),

Using the fact that wh − vh = Rh(t)ϕ, the approximation property (4.27), and the inverse inequality,

we derive

∥wh − vh − ϕ∥L2(Ω) ≤ ch∥φ∥Ḣ1(Ω) ≤ chmin(1,min(t, s)−κ|t− s|)∥vh∥Ḣ1(Ω)

≤ cmin(1,min(t, s)−κ|t− s|)∥vh∥L2(Ω).

According triangle inequality we have

∥wh − vh∥L2(Ω) ≤ cmin(1,min(t, s)−κ|t− s|)∥vh∥L2(Ω) + ∥ϕ∥L2(Ω).

Next, we apply the duality argument to derive a bound for ∥ϕ∥L2(Ω). Let ξ ∈ Ḣ2(Ω) be the function

such that A(t)ξ = ϕ. Then

∥ϕ∥2L2(Ω) = |(a(·, t)∇ϕ,∇ξ)| = |((a(·, t)− a(·, s))∇vh,∇ξ)|

≤ |(vh, (a(·, t)− a(·, s))∆ξ)|+ |(vh,∇(a(·, t)− a(·, s)) · ∇ξ)|

≤ cmin(1,min(t, s)−κ|t− s|)∥vh∥L2(Ω)∥ξ∥Ḣ2(Ω)

≤ cmin(1,min(t, s)−κ|t− s|)∥vh∥L2(Ω)∥ϕ∥L2(Ω).

This completes the proof of the lemma.

Next we derive some semidiscrete solution representation analogue to (4.10), that is given any

t∗ ∈ (0, T ],

uh(t) = Fh(t; t∗)uh(0) +

∫ t

0
Eh(t− s; t∗)(Phf(s) + (Ah(t∗)−Ah(s))uh(s))ds (4.28)
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where the solution operators Fh(t; t∗) and Eh(t; t∗) can be written as

Fh(t; t∗) =
1

2πi

∫
Γθ,κ

eztzα−1(zα +Ah(t∗))
−1 dz, and Eh(t; t∗) =

1

2πi

∫
Γθ,κ

ezt(zα +Ah(t∗))
−1 dz.

(4.29)

For any fixed t∗, the discrete operators Fh(t; t∗) and Eh(t; t∗) satisfy the following smoothing property,

whose proof is identical to that of Lemma 4.1.

Lemma 4.10. Let Fh(t; t∗) and Eh(t; t∗) be the discrete solution operators defined in (4.29) for any

t∗ ∈ [0, T ]. Then they satisfy the following properties for all t > 0 and vh ∈ Xh

(i) ∥Ah(t∗)Fh(t; t∗)vh∥L2(Ω) + t1−(2−k)α∥Ah(t∗)
kEh(t; t∗)vh∥L2(Ω) ≤ ct−α∥vh∥L2(Ω), with k = 1, 2;

(ii) ∥Fh(t; t∗)vh∥L2(Ω) + t1−α∥Eh(t; t∗)vh∥L2(Ω) ≤ cmin(1, t−α)∥vh∥L2(Ω);

(iii) ∥Fh(t; t∗)
−1vh∥L2(Ω) ≤ c(1 + tα)∥Ah(t∗)vh∥L2(Ω).

The constants in all above estimates are uniform in t, but they are only dependent of t∗ and T .

Analogue to Lemma 4.5, we have the following result.

Lemma 4.11. Let Fh(t; t∗) be the discrete solution operator defined in (4.29). For all 0 < t ≤ T ,

t∗ ∈ (0, T ] and vh ∈ Xh, we have

∥(γI + Fh(T ;T ))
−1vh∥ ≤ cγ−1∥vh∥L2(Ω) and ∥Fh(T ;T )(γI + Fh(T ;T ))

−1vh∥L2(Ω) ≤ c∥vh∥L2(Ω),

where the constant c is independent of t, γ and h.

The following Lemma provides an error estimate for the semidiscrete error of the direct problem,

see [45, Theorem 3.2] for a detailed proof.

Lemma 4.12. Let u and uh be the solutions to (4.1) and (4.24) respectively. If u0 ∈ L2 and f ≡ 0,

then there holds that

∥(uh − u)(t)∥L2(Ω) ≤ ch2t−α∥u0∥L2(Ω) for all t ∈ (0, T ],

where the constant c is independent of t and h.

After proposing many results about solving direct problem, we shall propose a semidiscrete scheme

for solving the backward problem.

We apply the regularized semidiscrete scheme: find uγ,h(t) ∈ Xh such that

∂αt uγ,h(t) +Ah(t)uγ,h(t) = 0, 0 < t ≤ T, γuγ,h(t) + uγ,h(T ) = Phg. (4.30)

Then analogue to (4.19) we have

uγ,h(0) = (γI + Fh(T ;T ))
−1

[
Phg −

∫ T

0
Eh(T − s;T )(Ah(T )−Ah(s))uγ,h(s)ds

]
. (4.31)

Next we shall derive a preliminary estimate for the proof of the semidiscrete error uγ,h − uγ .
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Lemma 4.13. Let uγ(t) be the solution to the backward regularized problem (4.30). Then fix any

t∗ ∈ (0, T ] there holds that

∥
∫ t∗

0
Eh(t∗ − s; t∗)Ah(s)(Rh(s)− Ph)uγ(s)ds∥L2(Ω) ≤ ch2max{t−α

∗ , t1−α
∗ }∥uγ(0)∥L2 .

The constant c is independent of t and t∗.

Proof. Let φh be the solution to the following semidiscrete problem

∂αt φh(t) +Ah(t)φh(t) = 0, φh(0) = Phuγ(0).

Lemma 4.12 implies that

∥(φh − uγ)(t)∥L2(Ω) ≤ ch2t−α∥uγ(0)∥L2(Ω).

Then we consider the splitting

(φh − uγ)(t) = (φh − Phuγ)(t) + (Phuγ − uγ)(t) := ζh(t) + ρ(t).

The approximation property (2.17) and the regularity estimate in Theorem 4.1 give that

∥ρ(t)∥L2(Ω) ≤ ch2∥uγ(t)∥Ḣ2(Ω) ≤ ch
2t−α∥uγ(0)∥L2(Ω).

Then by triangle’s inequality, we obtain

∥ζh(t)∥L2(Ω) ≤ ∥ρ(t)∥L2(Ω) + ∥(φh − uγ)(t)∥L2(Ω) ≤ ch2t−α∥uγ(0)∥L2(Ω). (4.32)

Meanwhile, notice that

∂αt ζh(t) +Ah(t)ζh(t) = Ah(t)(Rh(t)− Ph)uγ(t), T ≥ t > 0, ζ(0) = 0.

Then for any t∗ ∈ (0, T ], ζh(t∗) could be written as

ζh(t∗) =

∫ t∗

0
Eh(t∗ − s; t∗)Ah(s)(Rh(s)− Ph)uγ(s)ds+

∫ t∗

0
Eh(t∗ − s; t∗)(Ah(t∗)−Ah(s))ζh(s)ds.

We apply Lemmas 4.9 and 4.10, and the estimate (4.32) to derive

∥
∫ t

0
Eh(t− s; t∗)Ah(s)(Rh(s)− Ph)uγ(s)ds∥L2(Ω)

≤ ∥ζh(t)∥L2(Ω) + c

∫ t∗

0
∥ζh(s)∥L2(Ω) ds ≤ c(t−α

∗ + t1−α
∗ )h2∥uγ(0)∥L2(Ω)

≤ ch2max{t−α
∗ , t1−α

∗ }∥uγ(0)∥L2(Ω).

Next, we state a key lemma providing an estimate for the discretization error uγ,h − uγ .
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Lemma 4.14. Let uγ(t), uγ,h(t) be the solutions to problem (4.18) and (4.30) respectively. Suppose

Assumption 4.5 is valid. Then there holds

∥uγ,h(0)− uγ(0)∥ ≤ ch2γ−1∥u0∥L2(Ω),

where the constant c is independent on γ, h and t.

Proof. We use the splitting

(uγ,h − uγ)(0) = (uγ,h − Phuγ)(0) + (Phuγ − uγ)(0) := ζh(0) + ρ(0).

From the approximation property (2.17) and Lemma 4.6, we obtain

∥ρ(0)∥L2(Ω) ≤ ch2∥uγ(0)∥Ḣ2(Ω) ≤ ch
2γ−1∥u0∥L2(Ω).

Now we turn to the bound of ζh(t). Using the fact Ah(t)Rh(t)v = PhA(t)v, we observe that

∂αt ζh(t) +Ah(t)ζh(t) = Ah(t)(Rh(t)− Ph)uγ(t) for t ∈ (0, T ], with γζh(0) + ζh(T ) = 0. (4.33)

For any t∗ ∈ (0, T ], we have the solution representation from (4.28) that

ζh(t) = Fh(t; t∗)ζh(0) +

∫ t

0
Eh(t− s; t∗)Ah(s)(Rh(s)− Ph)uγ(s) ds

+

∫ t

0
Eh(t− s; t∗)(Ah(t∗)−Ah(s))ζh(s) ds.

Then with t = t∗ = T we apply γζh(0) + ζh(T ) = 0 to derive

ζh(0) = (γI + Fh(T ;T ))
−1

∫ T

0
Eh(T − s;T )(Ah(s)(Ph −Rh(s))uγ(s) ds

− (γI + Fh(T ;T ))
−1

∫ T

0
Eh(T − s;T )(Ah(T )−Ah(s))ζ(s) ds.

Now we apply Lemmas 4.11 and 4.13 to obtain

∥ζh(0)∥L2(Ω)

≤ cγ−1

∫ T

0
∥Eh(T − s;T )Ah(s)(Ph −Rh(s))uγ(s)∥L2(Ω)ds

+ ∥Fh(T ;T )
−1

∫ T

0
Eh(T − s;T )(Ah(T )−Ah(s))ζ(s)ds∥L2(Ω)

≤ cTh2γ−1∥uγ(0)∥L2(Ω) + c(1 + Tα)

∫ T

0
∥Ah(T ;T )Eh(T − s;T )(Ah(T )−Ah(s))ζh(s)∥L2(Ω)ds.

Next, we split ζh(s) into homogeneous part and inhomogeneous part. Let ζh(t) := ζ1(t) + ζ2(t) where

∂αt ζ1(t) +Ah(t)ζ1(t) = 0 for t ∈ (0, T ], with ζ1(0) = ζh(0),

∂αt ζ2(t) +Ah(t)ζ2(t) = Ah(t)(Rh(t)− Ph)uγ(t) for t ∈ (0, T ], with ζ2(0) = 0.
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First of all, we fixed t∗ ∈ (0, T ] and apply the solution representation in (4.28) and Lemmas 4.10, 4.13

and 4.8, and hence derive

∥ζ2(t∗)∥L2(Ω) ≤
∫ t∗

0
∥Eh(t∗ − s; t∗)Ah(s)(Rh(s)− Ph)uγ(s)∥L2(Ω)ds

+

∫ t∗

0
∥Eh(t∗ − s; t∗)(Ah(t∗)−Ah(s))ζ2(s)∥L2(Ω)ds

≤ ct−α
∗ h2∥uγ(0)∥L2(Ω) +

∫ t∗

0
∥ζ2(s)∥L2(Ω)ds.

Then Gronwall’s inequality leads to

∥ζ2(t)∥L2(Ω) ≤ ch2ectt−α∥uγ(0)∥L2(Ω). (4.34)

For ζ1(t), we apply the similar argument in Lemma 4.3 to obtain

∥ζ1(t)∥L2(Ω)

≤ cmin(1, t−α)∥ζh(0)∥L2(Ω), and

∥Ah(T )ζ1(t)∥L2(Ω) ≤ c ectt−α∥ζh(0)∥L2(Ω) for all t > 0.

All the positive constants c in above estimates are independent of t and T . As a result, we have

∥ζh(0)∥L2(Ω) ≤ ch2γ−1∥uγ(0)∥L2(Ω)

+
2∑

i=1

c(1 + Tα)

∫ T

0
∥Ah(T ;T )Eh(T − s;T )(Ah(T )−Ah(s))ζi(s)ds∥L2(Ω)

≤ ch2γ−1∥uγ(0)∥L2(Ω)

+ c(1 + Tα)

∫ T

0
∥Ah(T )Eh(T − s;T )(Ah(T )−Ah(s))ζ1(s)∥L2(Ω)ds.

Applying the argument in theorems 4.2 and 4.4, we conclude that

∥ζh(0)∥L2(Ω) ≤ ch2γ−1∥uγ(0)∥L2(Ω).

This completes the proof of the lemma.

4.3.2 Fully discrete scheme and error analysis

To begin with, we apply the backward Euler convolution quadrature in Section 2.5. With φj = φ(tj)

we have

∂αt φ(tn) ≈ ∂̄ατ (φ(tn)− φ(0)) =
1

τα

n∑
j=0

bjφn−j .

The fully discrete scheme for problem (4.25) reads: find Un
h ∈ Xh such that

∂̄ατ U
n
h +Ah(tn)U

n
h = Phf(tn), n = 1, 2, . . . , N, with U0

h = Phu0, (4.35)
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By means of Laplace transform and perturbation argument, with 1 ≤ n∗ ≤ N , the fully discrete

solution Un can be written as [45, 111]

Un
h = Fn

h,τ (n∗)U
0
h + τ

n∑
k=1

En−k
h,τ (n∗)Phf(tk) + τ

n∑
k=1

En−k
h,τ (n∗)(Ah(tn∗)−Ah(tk))U

k
h (4.36)

with n = 1, 2, · · · , N . Here the fully discrete operators Fn
h,τ (n∗) and E

n
h,τ (n∗) are defined by

Fn
h,τ (n∗) =

1

2πi

∫
Γτ
θ,σ

eztne−zτδτ (e
−zτ )α−1(δτ (e

−zτ )α +Ah(tn∗))
−1 dz,

En
h,τ (n∗) =

1

2πi

∫
Γτ
θ,σ

eztn(δτ (e
−zτ )α +Ah(tn∗))

−1 dz,

(4.37)

with δτ (ξ) = (1 − ξ)/τ and the contour Γτ
θ,σ := {z ∈ Γθ,σ : |ℑ(z)| ≤ π/τ} where θ ∈ (π/2, π) is close

to π/2. (oriented with an increasing imaginary part).

The next lemma provides some approximation properties of solution operators Fn
h,τ (n∗) and E

n
h,τ (n∗).

See [110, Lemma 4.2] and [41, Theorem 3.5] for the proof of the first estimate, and [45, Lemma 4.5]

for the second estimate.

Lemma 4.15. For the operator F τ
h and Eτ

h defined in (4.37), we have

∥Ah(tn∗)
β(Fn

h,τ (n∗)− Fh(tn; tn∗))∥L2(Ω) ≤ cτt−1−βα
n ,∥∥∥τAβ

hE
n∗−k
h,τ (n∗)−

∫ tk

tk−1

Aβ
h(tn∗)Eh(tn∗ − s; tn∗))ds

∥∥∥ ≤ cτ2(tn∗ − tk + τ)−(2−(1−β)α)

for any β ∈ [0, 1].

Note that the solution operators Fn
h,τ (n∗) and E

n
h,τ (n∗) satisfy the following smoothing properties,

whose proof is identical to that of Lemma 4.1.

Lemma 4.16. Let F τ
h (n;n) and Eτ

h(n;n) be the operators defined in (4.37). Then they satisfy the

following properties for any n ≥ 1 and vh ∈ Xh,

(i) ∥Ah(t∗)F
n
h,τ (n∗)vh∥L2(Ω) + t

1−(2−k)α
n ∥Ah(t∗)

kEn
h,τ (n∗)vh∥L2(Ω) ≤ ct−α

n+1∥vh∥L2(Ω), k = 1, 2;

(ii) ∥Fn
h,τ (n∗)vh∥L2(Ω) + t1−α

n ∥En
h,τ (n∗)vh∥L2(Ω) ≤ cmin(1, t−α

n )∥vh∥L2(Ω);

(iii) ∥Fn
h,τ (n∗)

−1vh∥L2(Ω) ≤ c(1 + tαn)∥Ah(t∗)vh∥L2(Ω).

Next we introduce some a priori estimate for the discrete solution Un
h in (4.36), analogue to Lemma

4.3 for the continuous problem. We provide the proof in Appendix B for completeness.

Lemma 4.17. Let Un
h be the solution to (4.35), then we have the following a priori estimate (f ≡ 0)

∥Un
h ∥L2(Ω) ≤ cmin(1, t−α

n )∥U0
h∥L2(Ω) and ∥Ah(T )U

n
h ∥L2(Ω) ≤ cectnt−α

n ∥U0
h∥L2(Ω) for n ≥ 1.
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Moreover, for any ϵ ∈ (0, 1/α− 1), there holds

∥Ah(T )U
n
h ∥L2(Ω) ≤ ct−(1−ϵ)α

n ∥U0
h∥L2(Ω) for all n ≥ 1.

All the constants in above estimates are independent of h, n, N , τ and T .

Now we introduce the fully discrete scheme for solving the backward problem: find Un,δ
h,γ ∈ Xh for

n = 1, . . . , N such that

∂̄τU
n,δ
h,γ +Ah(tn)U

n,δ
h,γ = 0 for all 1 ≤ n ≤ N, with γU0,δ

h,γ + UN,δ
h,γ = Phgδ. (4.38)

Then Un,δ
h,γ can be written as

U0,δ
h,γ = (γI + FN

h,τ (N))−1
[
Phgδ − τ

N∑
k=1

EN−k
h,τ (N)(Ah(T )−Ah(tk))U

k,δ
h,γ

]
. (4.39)

The following lemma provides a useful estimate of the discrete operator (γI+FN
h,τ (N))−1; see a detailed

proof in [112, Lemma 4.4].

Lemma 4.18. Let F τ
h (n;n∗) and E

τ
h(n;n∗) be the operators defined in (4.37). Then there holds

∥(γI + F τ
h (N ;N))−1vh∥L2(Ω) ≤ cγ−1∥vh∥L2(Ω) and ∥F τ

h (N ;N)(γI + F τ
h (N ;N))−1vh∥L2(Ω) ≤ c

where c is uniform in T , h, τ and γ.

To show the error between UN,δ
h,γ and u0, we introduce an auxiliary function Ūn

h,γ ∈ Xh such that

∂̄τ Ū
n
h,γ +Ah(tn)Ū

n
h,γ = Phf(tn) for all 1 ≤ n ≤ N, with Ūn

h,γ = uγ,h(0), (4.40)

Then we have the following error estimate for the direct problem, according to [45, Theorem 4.1].

Lemma 4.19. Let uγ,h(t) and Ū
n
h,γ be the solution to (4.25) and (4.40) with f ≡ 0, then we have

∥Ah(0)(Ū
n
h,γ − uγ,h(tn))∥L2(Ω) ≤ cτ log(n+ 1)max(t−α−1

n , t−α
n )∥uγ,h(0)∥L2(Ω).

Proof. Let en = Ūn
h,γ − uγ,h(tn). First of all, we recall [45, Theorem 4.1] that

∥en∥L2(Ω) ≤ cτt−1
n log(n+ 1)∥uγ,h(0)∥L2(Ω). (4.41)

We then use the solution representation (4.36) to obtain

Ūn
h,γ = Fn

h,τ (n∗)uγ,h(0) + τ

n∑
k=1

En−k
h,τ (n∗)(Ah(tn∗)−Ah(tk))Ū

k
h,γ .
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Then by means of (4.28), we have for fixed tn∗

Ah(tn∗)en∗ = Ah(tn∗)(F
n
h,τ (n∗)− Fh(tn; tn∗))uγ,h(0)

+ τ

n∗∑
k=1

Ah(tn∗)E
n∗−k
h,τ (n∗)(Ah(tn∗)−Ah(tk))Ū

k
h,γ−∫ tn∗

0
Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s))uγ,h(s) ds

+ τ

n∗∑
k=1

Ah(tn∗)E
n∗−k
h,τ (n∗)(Ah(tn∗)−Ah(tk))(Ū

k
h,γ − uγ,h(tk)) = I1 + I2 + I3.

Lemma 4.15 immediately implies the bound for I1:

∥I1∥L2(Ω) ≤ cτt−1−α
n∗ ∥uγ,h(0)∥L2(Ω).

A slight modification of [45, Lemma 4.4] leads to a bound for I2. In particular, we observe

I2 =

n∗∑
k=1

[
τAh(tn∗)E

n∗−k
h,τ (n∗)(Ah(tn∗)−Ah(tk))

−
∫ tk

tk−1

Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s))ds
]
Ūk
h,γ

+

n∗∑
k=1

∫ tk

tk−1

Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s)) ds ek

+

n∗∑
k=1

∫ tk

tk−1

Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s))(uγ,h(tk)− uγ,h(s)) ds

:= I2,1 + I2,2 + I2,3,

For I2,1, by means of Lemma 4.15 with β = 1, 4.8 and 4.16 (i) with the solution representation (4.36),

we arrive at

∥I2,1∥L2(Ω) ≤
n∗∑
k=1

∥
[
τAh(tn∗)E

n∗−k
h,τ (n∗)(I −Ah(tk)Ah(tn∗)

−1)

−
∫ tk

tk−1

Ah(tn∗)Eh(tn∗ − s; tn∗)(I −Ah(s)Ah(tn∗)
−1)ds

]
∥ ∥Ah(tn∗)Ū

k
h,γ∥L2(Ω)

≤ c
n∗∑
k=1

τ2(tn∗ − tk + τ)−1t−α
k ∥uγ,h(0)∥L2(Ω)

≤ cτ log(n∗ + 1)t−α
n ∥uγ,h(0)∥L2(Ω).

For I2,2 we apply Lemmas 4.10 (i) with k = 2, Lemma 4.8 and a priori estimate (4.41) to derive

∥I2,2∥L2(Ω) ≤ cτt−α−1
n∗ log(n∗ + 1)∥uγ,h(0)∥L2(Ω).

Last, for the error term I2,3, we denote

Qk =

∫ tk

tk−1

Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s))(uγ,h(tk)− uγ,h(s)).
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For k = 1, we apply Lemmas 4.10 and 4.8 to derive the bound

∥Q1∥L2(Ω) ≤ ∥
∫ τ

0
Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s))uγ,h(τ) ds∥L2(Ω)

+ ∥
∫ τ

0
Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s))uγ,h(s) ds∥L2(Ω)

≤ c
∫ τ

0
(tn∗ − s)−αds∥uγ,h(0)∥L2(Ω) ≤ cτt−α

n∗ ∥uγ,h(0)∥L2(Ω).

Meanwhile, for k ≥ 2, there holds that

Qk =

∫ tk

tk−1

Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s))

∫ tk

s
u′γ,h(ξ)dξ ds.

The discrete analogue to Theorem 4.1(i) (see detail proof in [45, Theorem 2.3(i)]), u′γ,h(t) can be

bounded by

∥u′γ,h(t)∥L2(Ω) ≤ ct−1∥uγ,h(0)∥L2(Ω). (4.42)

Then by Lemmas 4.10, 4.8 and regularity estimate (4.42) there holds

∥Qk∥L2(Ω) ≤ c
∫ tk

tk−1

∥Ah(tn∗)Eh(tn∗ − s; tn∗)(Ah(tn∗)−Ah(s))∥
∫ tk

s
ξ−1dξ ds∥uγ,h(0)∥L2(Ω)

≤ c
∫ tk

tk−1

(tn∗ − s)−α

∫ tk

s
ξ−1dξ ds∥uγ,h(0)∥L2(Ω)

≤ cτ
∫ tk

tk−1

(tn∗ − s)−αs−1ds∥uγ,h(0)∥L2(Ω).

Summing those terms from k = 2 to k = n∗, we obtain

n∗∑
k=2

∥Qk∥L2(Ω) ≤ cτ∥uγ,h(0)∥L2(Ω)

∫ tn∗

τ
(tn∗ − s)−αs−1ds

≤ cτt−α−1
n∗ log(n∗ + 1)∥uγ,h(0)∥L2(Ω).

As a result, we arrive at

∥I2∥L2(Ω) ≤ cτt−α−1
n∗ log(n∗ + 1)∥uγ,h(0)∥L2(Ω).

Finally, Lemmas 4.16, 4.8 and the estimate (4.41) imply that

∥I3∥L2(Ω) ≤ cτ
n∗∑
k=1

∥Ah(tn∗)
2En∗−k

h,τ (n∗)∥ ∥I −Ah(tk)Ah(tn∗)
−1∥ ∥ek∥L2(Ω)

≤ cτ
n∗∑
k=1

(tn∗ − tk)−α∥ek∥L2(Ω)

≤ cτ2
n∗∑
k=1

(tn∗ − tk)−αt−1
k log(k + 1)∥uγ,h(0)∥L2(Ω)

≤ cτ log(n∗ + 1)t−α
n ∥uγ,h(0)∥L2(Ω).

This completes the proof of the lemma.
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Next, we introduce an auxiliary function

∂̄τU
n
h,γ +Ah(tn)U

n
h,γ = 0 for all 1 ≤ n ≤ N, with γU0

h,γ + UN
h,γ = Phg. (4.43)

Then U0
h,γ can be written as

U0
h,γ = (γI + FN

h,τ (N))−1
[
Phg − τ

N∑
k=1

FN−k
h,τ (N)(Ah(T )−Ah(tk))U

k
h,γ

]
. (4.44)

Then the next lemma provides an estimate for U0,δ
h,γ − U

0
h,γ .

Lemma 4.20. Let Un,δ
h,γ and Un

h,γ be the solution to problems (4.38) and (4.43) respectively. Suppose

Assumption 4.5 is valid. Then there holds

∥U0,δ
h,γ − U

0
h,γ∥L2(Ω) ≤ cδγ−1,

where the constant c is independent on γ, h, τ and t.

Proof. Let en = Un,δ
h,γ − U

n
h,γ . Then en satisfies the relation that

∂̄τen +Ah(tn)en = 0 for all 1 ≤ n ≤ N, with γe0 + eN = Ph(gδ − g) (4.45)

Using representations (4.39) and (4.44) we obtain

e0 = (γI + FN
h,τ (N))−1

[
Ph(gδ − g)− τ

N∑
k=1

EN−k
h,τ (N)(Ah(T )−Ah(tk))ek

]
.

Now we apply Lemmas 4.16 and 4.17 to obtain

∥e0∥L2(Ω) ≤ cδγ−1 + ∥F τ
h (N ;N)−1τ

N∑
k=1

Eτ
h(N − k;N)(Ah(T )−Ah(tk))ek∥L2(Ω)

≤ cδγ−1 + c(1 + Tα)
N∑
k=1

∥τAh(T )E
τ
h(N − tk;N)(Ah(T )−Ah(tk))ek∥L2(Ω).

Then the desired results follows immediately from the a priori estimate in Lemma 4.17 and the same

argument in theorems 4.2 and 4.4.

Time discretization would give the following fully error estimate.

Lemma 4.21. Let uγ,h(t) and Un
h,γ be the solutions to (4.30) and (4.43) respectively. Suppose As-

sumption 4.5 is valid. Then there holds

∥uγ,h(0)− U0
h,γ∥ ≤ cτ | log τ |(h2γ−1 + 1)∥u0∥L2(Ω),

where the constant c is independent on γ, h and t.
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Proof. Let Ūn
h,γ be the solution to (4.40) and en = Ūn

h,γ − Un
h,γ , which satisfies the following equation

∂̄τen +Ah(tn)en = 0 for all 1 ≤ n ≤ N, with γe0 + eN = ŪN
h,γ − uγ,h(T ) =: Q. (4.46)

Then we apply the representation of fully discrete scheme to derive

e0 = (γI + FN
h,τ (N)))−1

[
Q−

N∑
k=1

τEN−k
h,τ (N)(Ah(T )−Ah(tk))ek

]
. (4.47)

Lemmas 4.16 and 4.18 give that

∥e0∥L2(Ω) ≤
∥∥∥FN

h,τ (N)−1
[
Q−

N∑
k=1

τEτ
h(N − k;N)(Ah(T )−Ah(tk))ek

]∥∥∥
L2(Ω)

≤ cT ∥Ah(T )Q∥L2(Ω) + c(1 + Tα)∥
N∑
k=1

τAh(T )E
N−k
h,τ (N)(Ah(T )−Ah(tk))ek∥L2(Ω).

This combined with Lemma 4.19 leads to

∥e0∥L2(Ω) ≤ cT τ | log τ |∥uγ,h(0)∥L2(Ω) + c(1 + Tα)∥
N∑
k=1

τAh(T )E
N−k
h,τ (N)(Ah(T )−Ah(tk))ek∥L2(Ω).

Then by applying the a priori estimate in Lemma 4.17 and the same argument in Theorems 4.2 and

4.4, we derive

∥e0∥L2(Ω) ≤ cT τ | log τ |∥uγ,h(0)∥L2(Ω).

Finally, the Lemmas 4.6 and 4.14 leads to the desired result.

Now we are ready to state the main theorem showing the error of the numerical reconstruction

from noisy data. The proof is a direct result of Lemma 4.7, 4.14, 4.20 and 4.21.

Theorem 4.7. Let U0,δ
h,γ be the numerical reconstructed initial data using the fully discrete scheme

(4.38), and u0 be the exact initial data. Suppose Assumption 4.5 is valid. Then if ∥u0∥Ḣq(Ω) ≤ c with

q ∈ (0, 2] there holds

∥U0,δ
h,γ − u0∥L2(Ω) ≤ c

(
γ

q
2 + δγ−1 + h2γ−1 + τ | log τ |(h2γ−1 + 1)

)
Moreover, for u0 ∈ L2(Ω), there holds

∥U0,δ
h,γ − u(0)∥L2(Ω) → 0 as δ, γ, h, τ → 0,

δ

γ
→ 0 and

h2

γ
→ 0.

The a priori error estimate in Theorem 4.7 gives a useful guideline to choose the regularization

parameter γ and the discretization parameters h and τ according to the noise level δ. In particular,

if u0 ∈ Ḣq(Ω), by choosing

γ ∼ δ
2

q+2 , h ∼ δ
1
2 and τ | log τ | ∼ δ

q
q+2 ,

we obtain the optimal approximation error

∥U0,δ
h,γ − u(0)∥L2(Ω) ≤ cδ

q
q+2 .
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4.4 Numerical Experiments

Now we test several two dimensional examples with Ω = (0, 1)2 in order to illustrate our theoretical

results. Throughout the section, we apply the standard Galerkin piecewise linear FEM with uniform

mesh size h = 1/(M +1) for the space discretization, and the backward Euler convolution quadrature

method with uniform mesh size τ = T/N for time discretization. We solve the direct problem to

obtain the exact observation data by using fine meshes, i.e. h = 1/100, τ = T/500. Then we compute

the noisy observational data by

gδ = u(T ) + εδ sup
x∈Ω

u(x, T )

where ε is generated from standard Gaussian distribution and δ denotes the related noisy level.

We begin with the following time-dependent diffusion coefficient:

a1(x, y, t) =

y sin((1 + t)0.5) + 2 −0.1

−0.1 sin(πx)(t+ 1.2)−0.8 + 2

 ,

satisfying conditions (4.2)-(4.3) and Assumption 4.3. We solve the linear system (4.38) by using the

conjugate gradient method.

Example 5.1. Smooth initial data We begin with a smooth initial data:

u0 = sin(2πx) sin(2πy) ∈ Ḣ2(Ω).

According to Theorem 4.7, we compute U0,δ
h,γ with γ ∼

√
δ and h, τ ∼

√
δ, and expect a convergence

of order O(
√
δ). Numerical results presented in Figure 4.1 fully support the theoretical result. On

the other hand, our numerical results indicate that the recovery is stable for all T , might be neither

very large nor very small. This interesting phenomenon warrants further investigation in the future.

In Figure 4.2, we present profiles of solutions and errors with different noise level.
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Figure 4.1: Plot of error: a1(x, t) and smooth initial data; h =
√
δ, τ log(N +1) =

√
δ/7, γ =

√
δ/350.
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(a) δ = 1e− 2. (b) δ = 5e− 3. (c) δ = 2.5e− 3.

Figure 4.2: Profiles of Top left: Exact initial data u0. Recover with a1(x, t), α = 0.5, T = 1. The

remaining three columns are profiles of numerical reconstructions U0,δ
h,γ and theirs errors, with h =

√
δ,

τ =
√
δ/5, γ =

√
δ/350.

Example 5.2. Nonsmooth initial data. In this example we consider the following nonsmooth initial

condition

u0 =


1, if 0.5 ≤ x ≤ 1,

0, otherwise

Note that u0 ∈ Ḣ
1
2
−ε(Ω) for any ε ∈ (0, 12). Then Theorem 4.7 indicate that the optimal convergence

rate is almost O(δ0.2) provided that γ = O(δ0.8), h = O(
√
δ) and τ = O(δ0.2). This is fully supported

by the numerical results presented in Figure 4.3. In Figure 4.4 we plot the profiles of solutions and

errors, which also confirm that the numerical recovery is reliable.
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Figure 4.3: Plot of error: a1(x, t) and smooth initial data; h =
√
δ, τ = δ0.2/20, γ = δ0.8/200.
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(a) δ = 1e− 2. (b) δ = 5e− 3. (c) δ = 2.5e− 3.

Figure 4.4: Top left: Exact initial data u0. Recover with a1(x, t), α = 0.5, T = 1. The remaining three

columns are profiles of numerical reconstructions U0,δ
h,γ and theirs errors, with h =

√
δ, τ = δ0.2/20,

γ = δ0.8/200.
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Figure 4.5: Plot of error: a2(x, t) and smooth initial data; T = 10, with h =
√
δ, τ = δ0.5/5,

γ = δ0.5/350 for α = 0.25, 0.5 and γ = δ0.5/150 for α = 0.75.

Example 5.3. Diffusion coefficient violating Assumption 4.3. We also test the following diffusion

coefficient

a2(x, y, t) =

 e−x cos(t) + 2 (1.5− (t+ 1)−0.2)/10

(1.5− (t+ 1)−0.2)/10 cos(πy) sin(t) + 2

 .

Note that a2 satisfies conditions (4.2) and (4.3), but Assumption 4.3 is not fulfilled.

Numerical experiments show that the numerical reconstruction via the fully discrete scheme (4.38)

still converges under proper parameter choices. For example, we test the smooth initial data u0 =

sin(2πx) sin(2πy) and large terminal time T = 10. We choose γ, h, τ ∼
√
δ, and observe a convergence

rate around O(
√
δ), see cf. Figure 4.5. We will continue to consider the general case in our future

studies.
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Appendix

Appendix A. Proof of Lemma 4.4

For p = 0, Conditions (4.2) and (4.3) and Assumption 4.3 imply

∥(A(t)−A(s))v∥L2(Ω) ≤ c
(
∥∇(a(t)− a(s))∥L∞(Ω) + ∥a(t)− a(s)∥L∞(Ω)

)
∥v∥Ḣ2(Ω)

≤ cmin(1,min(t, s)−κ|t− s|)∥v∥Ḣ2(Ω).

For p = −2, from using the duality argument, we have

∥(A(t)−A(s))v∥Ḣ−2(Ω) = sup
φ∈Ḣ2(Ω)

⟨(A(t)−A(s))v, φ⟩
∥φ∥Ḣ2(Ω)

= sup
φ∈Ḣ2(Ω)

(v, (A(t)−A(s))φ)
∥φ∥Ḣ2(Ω)

≤ sup
φ∈Ḣ2(Ω)

∥v∥L2(Ω)∥(A(t)−A(s))φ∥L2(Ω)

∥φ∥Ḣ2(Ω)

≤ cmin(1,min(t, s)−κ|t− s|) sup
φ∈Ḣ2(Ω)

∥v∥L2(Ω)

This completes the proof of the lemma.

Appendix B. Proof of Lemma 4.17

Recalling the fact that [51, Lemma 3.3]

Un
h ∂̄τU

n
h ≥

1

2
∂̄τ |Un

h |2.

Therefore, like Lemma 4.3 we define an operator Ah = −c0∆h. Condition 4.2 gives that the operator

Ah(t)−Ah is self-adjoint and positive semidefinite for all n ≥ 1. Rewrite the equation (4.35) as

∂̄τ (U
n
h − U0

h) +AhUn = (Ah −Ah(t))U
n
h for all 1 ≤ n ≤ N.

Taking inner product with Un
h on the above equation and by definition of −∆h and Ah(t), we obtain

(∂̄τ (U
n
h − U0

h), U
n
h ) + c0∥∇Un

h ∥2L2(Ω) =
(
(c0 − a(·, t))∇Un

h ,∇Un
h

)
≤ 0 for all 1 ≤ n ≤ N.

Using the above inequality and Poincaré inequality we arrive at

∂̄τ (∥Un
h ∥L2(Ω) − ∥U0

h∥L2(Ω)) + c∥Un
h ∥L2(Ω)

≤ ∂̄τ
[
(∥Un

h ∥L(Ω) − ∥U
0
h∥L2(Ω))(1 + ∥U0

h∥L2(Ω)/∥Un
h ∥L2(Ω))

]
+ c∥Un

h ∥L2(Ω)

≤ 0 for all n ≥ 1,

for a constant c uniform in tn. Then the comparison principle for discrete fractional ODEs [65] leads

to

∥Un
h ∥L2(Ω) ≤ Fn

τ (c)∥U0
h∥L2(Ω) ≤

c

1 + ctαn
∥U0

h∥L2(Ω)
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where the definition of Fn
τ (c) can be found in [111, 112]. This immediately leads to the desired result.

Next by solution representation (4.36) we have

∥Ah(tn∗)U
n
h ∥L2(Ω)

≤ ∥Ah(tn∗)F
n
h,τ (n∗)U

0
h∥L2(Ω) + τ∥

n∑
k=1

Ah(tn∗)E
n−k
h,τ (n∗)(I −Ah(tk)Ah(tn∗)

−1)Ah(tn∗)U
k
h∥L2(Ω)

≤ ct−α
n ∥U0

h∥L2(Ω) +
n∑

k=1

∥τAh(tn∗)E
n−k
h,τ (n∗)(I −Ah(tk)Ah(tn∗)

−1)∥ ∥Ah(tn∗)U
k
h∥L2(Ω),

lemma 4.16 and 4.8 show that

∥Ah(tn∗)U
n
h ∥L2(Ω) ≤ ct−α

n ∥U0
h∥L2(Ω) +

n∑
k=1

cτ∥Ah(tn∗)U
k
h∥L2(Ω),

the discrete version of Gronwall’s inequality [93, Lemma 10.5] gives that

∥Ah(tn∗)U
n
h ∥L2(Ω) ≤ c exp(ctn)t−α

n ∥U0
h∥L2(Ω)

here c is uniform in n, τ and tn.

Meanwhile, in the other hand ∥I−A(t∗)−1A(s)∥ ≤ c|t∗−s|β for any β ∈ [0, 1]. Then if β = (1+ϵ)α

with ϵ ∈ (0, 1/α− 1) we can derive that1

∥Ah(tn∗)U
n
h ∥L2(Ω)

≤ ∥Ah(tn∗)F
n
h,τ (n∗)U

0
h∥L2(Ω) + τ∥

n∑
k=1

Ah(tn∗)E
n−k
h,τ (n∗)(I −Ah(tk)Ah(tn∗)

−1)Ah(tn∗)U
k
h∥L2(Ω)

≤ ct−α
n ∥U0

h∥L2(Ω) +
n∑

k=1

∥τA2
h(tn∗)E

n−k
h,τ (n∗)(I −Ah(tn∗)

−1Ah(tk))∥ ∥Uk
h∥L2(Ω)

≤ ct−α
n ∥U0

h∥L2(Ω) + cτ
n∑

k=1

(tn∗ − tk)−1+εαt−α
k ∥U

0
h∥L2(Ω)

≤ ct−α
n ∥U0

h∥L2(Ω) + c

∫ tn

0
(tn∗ − s)−1+ϵαs−αds∥U0

h∥L2(Ω) ≤ ct−(1−ϵ)α
n ∥U0

h∥L2(Ω).

1Chapter 4 is reprinted with permission from ”Stability and numerical analysis of backward problem for subdiffusion

with time-dependent coefficients”, Zhengqi Zhang and Zhi Zhou, 2023, Inverse Problems 39 034001. The candidate

mainly works on the research methodology discussion, the proof details and the coding and data collection in numerical

experiments.
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CHAPTER 5.

Backward Diffusion-Wave Problem: Stability and Numerical

Analysis

In this Chapter Let Ω ⊂ Rd (d = 1, 2, 3) be a convex polygonal domain with boundary ∂Ω. We

consider the following initial-boundary value problem of diffusion-wave equation with α ∈ (1, 2)

∂αt u−∆u = f, in Ω× (0, T ],

u = 0, on ∂Ω,

u(0) = a, ∂tu(0) = b, in Ω,

(5.1)

where T > 0 is a fixed final time, f ∈ L∞(0, T ;L2(Ω)) and a, b ∈ L2(Ω) are given source term and

initial data, respectively.

As Section 1.2, for the backward diffusion-wave problem, we want to simultaneously determine the

initial data u(x, 0) and ut(x, 0) with x ∈ Ω (and hence the function u(x, t) for all (x, t) ∈ Ω× (0, T ))

from two terminal observations

u(x, T1) = g1(x), u(x, T2) = g2(x) for all x ∈ Ω, (5.2)

where T1, T2 ∈ (0, T ] and T1 < T2.

The rest of this chapter is organized as follows. In section 5.1, we provide some preliminary results

about solution representation, asymptotic behaviors of Mittag-Leffler functions, and regularization for

the continuous problem. Then in sections 5.2 and 5.3, we propose and analyze spatially semi-discrete

scheme and space-time fully discrete scheme, respectively. Finally, in section 5.4, we present some

numerical examples to illustrate and complete the theoretical analysis.

The notation c denotes a generic constant, which may change at each occurrence, but it is always

independent of the noise level δ, the regularization parameter γ, the mesh size h and time step τ etc.

By using Lemma 2.3, if u(t) is the solution to the diffusion-wave equation, the function w(t) =

u(t) −
∫ t
0 E(t − s)f(s) ds satisfies the diffusion-wave equation (2.12) with the trivial source term.

Therefore, without loss of generality, throughout the paper we consider the homogeneous problem

∂αt u−∆u = 0, in Ω× (0, T ],

u = 0, on ∂Ω,

u(0) = a, ∂tu(0) = b, in Ω.

(5.3)
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5.1 Stability and regularization for the backward diffuion-wave problems

5.1.1 Stability of the backward diffusion-wave problems

In this part, we intend to examine the well-posedness of the backward problem diffusion-wave problem

for 0 < T1 < T2 ≤ T

∂αt u−∆u = 0, in Ω× (0, T ],

u = 0, on ∂Ω,

u(T1) = g1, u(T2) = g2, in Ω.

(5.4)

Using the solution representation (2.13), we have the following relationg1
g2

 = G(T1, T2)

a
b

 :=

F (T1) F̄ (T1)

F (T2) F̄ (T2)

a
b


=

∞∑
j=1

Eα,1(−λjTα
1 ) T1Eα,2(−λjTα

1 )

Eα,1(−λjTα
2 ) T2Eα,2(−λjTα

2 )

(a, φj)φj

(b, φj)φj

 .
(5.5)

In order to represent the inverse of the operator G(T1, T2), we define the function

ψ(T1, T2;λj) = T2Eα,1(−λjTα
1 )Eα,2(−λjTα

2 )− T1Eα,1(−λjTα
2 )Eα,2(−λjTα

1 ). (5.6)

Then G(T1, T2)−1 is well-defined, provided that ψ(T1, T2;λj) ̸= 0 for all j = 1, 2, . . ., and a direct

computation leads to the relationa
b

 = G(T1, T2)−1

g1
g2


=

∞∑
j=1

ψ(T1, T2;λj)
−1

T2Eα,2(−λjTα
2 ) −T1Eα,2(−λjTα

1 )

−Eα,1(−λjTα
2 ) Eα,1(−λjTα

1 )

(g1, φj)φj

(g2, φj)φj

 .
(5.7)

The next lemma clarifies the conditions for ψ(T1, T2;λj) ̸= 0 for all j = 1, 2, . . ..

Lemma 5.1. Let λ > 0 and ψ(T1, T2;λ) be the function defined in (5.6). Then there exists a constant

M(λ) such that for all T2 > T1 ≥M(λ), then

ψ(T1, T2;λ) ≤
c(T2 − T1)

Γ(1− α)Γ(2− α)
1

λ2Tα
1 T

α
2

< 0,

where the constant c is independent of λ, T1 and T2.

Proof. By means of the asymptotic property of Mittag-Leffler functions in (2.6), we have

ψ(T1, T2;λ) = (T2 − T1)
(

1

Γ(1− α)Γ(2− α)
1

λ2Tα
1 T

α
2

+O
( 1

λ4T 2α
1 T 2α

2

))
, for T1, T2 →∞. (5.8)
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For λ > 0 and T2 > T1 > 0, we know the leading term 1
Γ(1−α)Γ(2−α)

1
λ2Tα

1 Tα
2
< 0, and hence the

asymptotic behavior (5.8) implies the existence of M(λ) such that for all T2 > T1 ≥M(λ)

ψ(T1, T2;λ) ≤
T2 − T1

2Γ(1− α)Γ(2− α)
1

λ2Tα
1 T

α
2

< 0.

This completes the proof of the lemma.

Combining Lemmas 2.1 and 5.1, we have the following stability estimate.

Theorem 5.1. Let λ1 be the smallest eigenvalue of −∆ with homogeneous Dirichlet boundary condi-

tion, and M(λ1) be the constant defined in Lemma 5.1. Suppose that T2 > T1 ≥M(λ1). Then for any

g1, g2 ∈ Ḣ2(Ω), there exists a, b ∈ L2(Ω) such that the solution u to (5.3) satisfies

u(T1) = g1 and u(T2) = g2.

Meanwhile, there holds the following two-sided Lipschitz stability

c1

(
∥g1∥Ḣ2(Ω) + ∥g2∥Ḣ2(Ω)

)
≤ ∥a∥L2(Ω) + ∥b∥L2(Ω) ≤ c2

(
∥g1∥Ḣ2(Ω) + ∥g2∥Ḣ2(Ω)

)
. (5.9)

Proof. By Lemma 5.1 and the asymptotic estimate (5.8), we have for all T2 > T1 > M(λ1) and λ ≥ λ1

|ψ(T1, T2;λ)| ≥
∣∣∣∣ c(T2 − T1)
Γ(1− α)Γ(2− α)

1

λ2Tα
1 T

α
2

∣∣∣∣ > 0, (5.10)

where the constant c is independent of λj , T1 and T2. This together with (5.7) indicates the existence

and uniqueness of initial data a and b.

Next we turn to the stability estimate. Noting that the first inequality has been confirmed by

Lemma 2.3, so it suffices to verify the second one. The estimate (5.10) and the relation (5.7) imply

∥a∥2L2(Ω) + ∥b∥
2
L2(Ω) ≤

c

(T2 − T1)2
∞∑
j=1

λ4j

( (g1, φj)
2

(1 + λjTα
2 )

2
+

(g2, φj)
2

(1 + λjTα
2 )

2

)
≤ c

(T2 − T1)2
(
∥g1∥2Ḣ2(Ω)

+ ∥g2∥2Ḣ2(Ω)

)
.

Remark 5.1. Note that in the stability estimate (5.9) the constant c2 is proportional to (T2 − T1)−1.

This is reasonable since one cannot recover two initial data u(0) and ∂tu(0) from a single observation

u(T ). Throughout our numerical analysis, we shall assume that T2 > T1 ≥M(λ1) and T2−T1 ≥ c0 > 0.

5.1.2 Regularization and convergence analysis

From now on, we shall assume that our observation is noisy with noise level δ, i.e.,

∥g1 − gδ1∥L2(Ω) = ∥g2 − gδ2∥L2(Ω) = δ. (5.11)
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Note that both gδ1 and gδ2 are nonsmooth. In order to regularize the mildly ill-posed problem, we apply

the quasi-boundary value method [27, 108]: find ũδ(t) satisfies

∂αt ũ
δ −∆ũδ = 0, in Ω× (0, T ],

ũδ = 0, on ∂Ω,

−γũδ(0) + ũδ(T1) = gδ1, in Ω,

γ∂tũ
δ(0) + ũδ(T2) = gδ2, in Ω,

(5.12)

where the constant γ > 0 denotes the regularization parameter. Recalling the definition of the operator

G(T1, T2) in (5.5), the solution to the regularized problem (5.12) could be written asgδ1
gδ2

 = (γI + G(T1, T2))

 ũ(0)

∂tũ(0)


:=

∞∑
j=1

−γ + Eα,1(−λjTα
1 ) T1Eα,2(−λjTα

1 )

Eα,1(−λjTα
2 ) γ + T2Eα,2(−λjTα

2 )

 (ũδ(0), φj)φj

(∂tũ
δ(0), φj)φj


where I denotes the matrix of operators

I =

−I 0

0 I

 (5.13)

where I is the identity operator.

Now we define an auxiliary function

ψ̃(T1, T2;λj) := ψ(T1, T2;λj)− γ2 + γ[Eα,1(−λjTα
1 )− T2Eα,2(−λjTα

2 )]. (5.14)

Lemma 2.1 implies that there exists a constant z0 > 0 such that for z ≥ z0,

Eα,1(−z) ≤
1

Γ(1− α)
1

z
< 0 and Eα,2(−z) ≥

1

Γ(2− α)
1

z
> 0.

Without loss of generality, we assume that

M(λ1)
α > z0/λ1. (5.15)

Then with T2 > T1 ≥M(λ1),

ψ̃(T1, T2;λj) ≤ −c
(
λ−2
j + γλ−1

j + γ2
)
< 0, (5.16)

where c is only dependent on T1, T2 and α.

Then based the discussion in Theorem 5.1 we would have uniqueness for the regularized backward

problem (5.12).
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Lemma 5.2. Let λ1 be the smallest eigenvalue of −∆ with homogeneous Dirichlet boundary condition,

and M(λ1) be the constant satisfying (5.15). Suppose that T2 > T1 ≥ M(λ1). Then for any gδ1, g
δ
2 ∈

L2(Ω), there exists ũδ(0) ∈ L2(Ω) and ∂tũ
δ(0) ∈ L2(Ω) such that the solution ũδ to (5.12) satisfies

−γũδ(0) + ũδ(T1) = gδ1,

γ∂tũ
δ(0) + ũδ(T2) = gδ2.

Proof. From solution representation (5.7) there holds the relation ũδ(0)

∂tũ
δ(0)

 = (γI + G(T1, T2))−1

gδ1
gδ2

 (5.17)

=
∞∑
j=1

ψ̃(T1, T2;λj)
−1

γ + T2Eα,(−λjTα
2 ) −T1Eα,2(−λjTα

1 )

−Eα,1(−λjTα
2 ) −γ + Eα,1(−λjTα

1 )

(gδ1, φj)φj

(gδ2, φj)φj

 .
And from (5.15) if T2 > T1 ≥ M(λ1), (5.16) shows that (γI + G(T1, T1)) is invertible therefore the

uniqueness is followed.

Meanwhile, with F(t) = [F (t) F̄ (t)], we know

ũδ(t) = F(t)(γI + G(T1, T2))−1

gδ1
gδ2

 . (5.18)

Now we intend to establish estimates for u(0) − ũδ(0), ∂tu(0) − ∂tũδ(0) and u(t) − ũδ(t). To this

end, we need the following auxiliary function

ũ(t) = F(t)(γI + G(T1, T2))−1

g1
g2

 = F(t)(γI + G(T1, T2))−1G(T1, T2)

a
b

 , (5.19)

which is the solution to the following quasi boundary value problem:

∂αt ũ−∆ũ = 0, in Ω× (0, T ],

ũ = 0, on ∂Ω,

−γũ(0) + ũ(T1) = g1, in Ω,

γ∂tũ(0) + ũ(T2) = g2, in Ω.

(5.20)

The next lemma provides an estimate for the operator F(t)(γI + G(T1, T2))−1.

Lemma 5.3. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥ M(λ1).

Let F(t) and (γI+G(T1, T2))−1 be defined in (2.13) and (5.17), then for all 0 < t ≤ T , v, w ∈ Ḣq(Ω),

for any 0 ≤ p ≤ q ≤ 2 + p, we have∥∥∥∥∥∥
( d
dt

)ℓ
F(t)(γI + G(T1, T2))−1

v
w

∥∥∥∥∥∥
Ḣp(Ω)

≤ ct−ℓmin(γ−(1+ p−q
2

), t−α(1+ p−q
2

))(∥v∥Ḣq(Ω) + ∥w∥Ḣq(Ω)).
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Meanwhile, we have∥∥∥∥∥∥(γI + G(T1, T2))−1

v
w

∥∥∥∥∥∥
Ḣp(Ω)

≤ cγ−(1+ p−q
2

)(∥v∥Ḣq(Ω) + ∥w∥Ḣq(Ω)).

Proof. Firstly, for 0 < t ≤ T , we let

ζ(t) = F(t)(γI + G(T1, T2))−1

v
w


=

∞∑
j=1

ψ̃(T1, T2;λj)
−1
[
Eα,1(−λjtα) tEα,2(−λjtα)

]
γ + T2Eα,2(−λjTα

2 ) −T1Eα,2(−λjTα
1 )

−Eα,1(−λjTα
2 ) −γ + Eα,1(−λjTα

1 )

(v, φj)φj

(w,φj)φj

 .
By means of Lemmas 2.1, we arrive at[

|Eα,1(−λjtα)| |tEα,2(−λjtα)|
]
≤ c

1 + λjtα

[
1 t

]
. (5.21)

Similarly, by Lemma 2.1 and the estimate (5.16)

|∂tψ(T1, T2;λj)|−1

|γ + T2Eα,2(−λjTα
2 )| | − T1Eα,2(−λjTα

1 )|

| − Eα,1(−λjTα
2 )| |−γ + Eα,1(−λjTα

1 )|

 ≤ cλj
1 + γλj

1 1

1 1

 (5.22)

Combining (5.21) and (5.22) we obtain

λpj (ζ(t), φj)
2 ≤ c

 λ
1+ p−q

2
j

(1 + γλj)(1 + λjtα)

2

λqj((v, φj)
2 + (w,φj)

2)

≤ c
(
min(γ−(1+ p−q

2
), t−α(1+ p−q

2
))
)2
λqj((v, φj)

2 + (w,φj)
2).

As a result, we conclude that

∥ζ(t)∥2
Ḣp(Ω)

≤ c
(
min(γ−(1+ p−q

2
), t−α(1+ p−q

2
))
)2 ∞∑

j=1

λqj((v, φj)
2 + (w,φj)

2)

= c
(
min(γ−(1+ p−q

2
), t−α(1+ p−q

2
))
)2(
∥v∥2

Ḣq(Ω)
+ ∥w∥2

Ḣq(Ω)

)
.

Now we turn to the second estimate. Noting thatζ
ξ

 = (γI + G(T1, T2))−1

v
w


=

∞∑
j=1

ψ̃(T1, T2;λj)
−1

γ + T2Eα,(−λjTα
2 ) −T1Eα,2(−λjTα

1 )

−Eα,1(−λjTα
2 ) −γ + Eα,1(−λjTα

1 )

(v, φj)φj

(w,φj)φj

 ,
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the estimate (5.22) leads to

∥ζ∥2
Ḣp(Ω)

+ ∥ξ∥2
Ḣp(Ω)

≤ c
∞∑
j=1

( λ1+ p−q
2

j

1 + γλj

)2
λqj

(
(v, φj)

2 + (w,φj)
2
)

≤ cγ−(2+(p−q))
(
∥v∥2

Ḣq(Ω)
+ ∥w∥2

Ḣq(Ω)

)
.

This completes the proof of the lemma.

Using the similar argument, we have the following estimates for higher regularity estimate for ũ(0)

and ∂tũ(0), which will be intensively used in the next section.

Corollary 5.1. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥M(λ1).

Let ũ be the solution to(5.20). Then there holds

∥ũ(0)∥Ḣq(Ω) + ∥∂tũ(0)∥Ḣq(Ω) ≤ cγ
−q/2

(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
.

Proof. Recalling the representation (5.19), we apply the similar argument in the proof of Lemma 5.3

to derive  λqj(ũ(0), φj)
2

λqj(∂tũ(0), φj)
2

 ≤ c( λ
1+q/2
j

(1 + γλj)(1 + λjTα
1 )

)2 (
(a, φj)

2 + (b, φj)
2
)1

1


≤ c

(
λ
q/2
j

1 + γλj

)2 (
(a, φj)

2 + (b, φj)
2
)1

1


≤ cγ−q

(
(a, φj)

2 + (b, φj)
2
)1

1

 .
Then the desired result follows immediately.

Lemma 5.3 with p = q = 0 immediately leads to the estimate for ũδ − ũ.

Corollary 5.2. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥M(λ1).

Let ũδ and ũ be solutions to (5.12) and (5.20), respectively. Then for any a, b ∈ L2(Ω) we have

∥(ũδ − ũ)(t)∥L2(Ω) ≤ c δmin(γ−1, t−α) for all t ∈ (0, T ]

and

∥(ũδ − ũ)(0)∥L2(Ω) + ∥∂t(ũδ − ũ)(0)∥L2(Ω) ≤ c δγ−1.

According to Lemma 5.3 we can derive the following estimate of ũ(t)− u(t) with t ∈ [0, T ].

Lemma 5.4. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥ M(λ1).

Let u(t) and ũ(t) be the solutions of problems (5.3) and (5.20), respectively.
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(i) For a, b ∈ Ḣq(Ω) with q ∈ [0, 2], we have

∥(ũ− u)(0)∥L2(Ω) + ∥∂t(ũ− u)(0)∥L2(Ω) ≤ cγ
q
2

and for all t ∈ (0, T ]

∥(ũ− u)(t)∥L2(Ω) ≤ cγmin(γ−(1− q
2
), t−(1− q

2
)α).

(ii) In case that a, b ∈ L2(Ω), we have for any small s ∈ (0, 1]

lim
γ→0

(
∥(ũ− u)(0)∥L2(Ω) + ∥∂t(ũ− u)(0)∥Ḣ−s(Ω)

)
= 0.

Proof. Recalling the definition of the operator G(T1, T2) in (5.5), we have the representation (ũ− u)(0)

∂t(ũ− u)(0)

 = (γI + G(T1, T2))−1G(T1, T2)

a
b

−
a
b


= (γI + G(T1, T2))−1(G(T1, T2)− (γI + G(T1, T2)))

a
b


= −γ(γI + G(T1, T2))−1I

a
b

 .
From lemma 5.3 for p = 0, we have

∥(ũ− u)(0)∥L2(Ω) + ∥∂t(ũ− u)(0)∥L2(Ω) ≤ cγ
q
2 (∥a∥Ḣq(Ω) + ∥b∥Ḣq(Ω)).

Similarly, we have the following representation to (ũ− u)(t):

(ũ− u)(t) = F(t)(γI + G(T1, T2))−1G(T1, T2)

a
b

−F(t)
a
b


= −γF(t)(γI + G(T1, T2))−1I

a
b

 .
We apply Lemma 5.3 with p = 0 again to obtain

∥(ũ− u)(t)∥L2(Ω) ≤ cγmin(γ−(1− q
2
), t−(1− q

2
)α).

Now we show the estimate (ii) for q = 0. In case that a, b ∈ L2(Ω), we know that ũ, u ∈ C([0, T ];L2(Ω)).

Then for any small ϵ, we choose t0 small enough such that

∥ũ(t0)− ũ(0)∥L2(Ω) + ∥u(t0)− u(0)∥L2(Ω) < ϵ/2.

Then by the estimate in (i), we may find γ0 small enough such that

∥ũ(t0)− u(t0)∥L2(Ω) < ϵ/2 for all γ < γ0.
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By triangle inequality, we obtain that for any γ < γ0

∥ũ(0)− u(0)∥L2(Ω) < ϵ.

Therefore, ũ(0) converges to u(0) in L2-sense, as γ → 0. Finally, the convergence of ∂tũ(0) in H−s

follows from (i) and a shift argument.

Combining Corollary 5.2 and Lemma 5.4, we obtain the following convergence result.

Theorem 5.2. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥M(λ1).

Let u(t) and ũδ(t) be the solutions of problems (5.3) and (5.12), respectively.

(i) For a, b ∈ Ḣq(Ω) with q ∈ [0, 2], we have

∥(ũδ − u)(0)∥L2(Ω) + ∥∂t(ũδ − u)(0)∥L2(Ω) ≤ c
(
γ

q
2 + δγ−1

)
and for all t ∈ (0, T ]

∥(ũδ − u)(t)∥L2(Ω) ≤ c
(
γmin(γ−(1− q

2
), t−α(1− q

2
)) + δmin(γ−1, t−α)

)
.

(ii) In case that a, b ∈ L2(Ω), we have for any small s ∈ (0, 1]

∥(ũδ − u)(0)∥L2(Ω) + ∥∂t(ũδ − u)(0)∥Ḣ−s(Ω) → 0 for δ, γ → 0,
δ

γ
→ 0.

Remark 5.2. To approximate u(t) with t > 0, Theorem 5.2 indicates an optimal regularized parameter

γ ∼ δ, and the error is of the order O(δ) which is independent of the smoothness of initial data.

Meanwhile, for t = 0, the choice γ ∼ δ
2

q+2 leads to the optimal approximation O(δ
q

q+2 ) if a, b ∈ Ḣq(Ω)

with q ∈ (0, 2].

5.2 Spatially semidiscrete scheme and error analysis

In this section, we shall propose and analyze a spatially semidiscrete scheme for solving the backward

diffusion wave problem. The semidiscrete scheme would give an insight view to understand the role

of the regularity of problem data and plays an important role in the analysis of fully discrete scheme.

5.2.1 Semidiscrete scheme for solving direct problem

We would also use the piecewise linear finite element methods for space discretization. And we

introduce the space discretization parameter h, the finite element space Xh, the L
2 projection Ph and

the Ritz projection Rh in Section 2.5.
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Then the semidiscrete standard Galerkin FEM for problem (5.3) reads: find uh(t) ∈ Xh such that

(∂αt uh, χ) + (∇uh,∇χ) = (f, χ), ∀χ ∈ Xh, T ≥ t > 0,

uh(0) = Pha, ∂tuh(0) = Phb.
(5.23)

By introducing the discrete Laplacian −∆h : Xh → Xh such that

(−∆hξ, χ) = (∇ξ,∇χ), ∀ξ, χ ∈ Xh,

spatially semidiscrete problem (5.23) could be written as

∂αt uh −∆huh = fh, T ≥ t > 0,

uh(0) = Pha, ∂tuh(0) = Phb.
(5.24)

Let {λhj , φh
j }Jj=1 be eigenpairs of −∆h with λh1 ≤ λh2 ≤ . . . λhJ . By the Courant minimax principle and

the fact that Xh ⊂ H1
0 (Ω), we know

λh1 = min
ϕh∈Xh

(−∆hϕh, ϕh)

∥ϕh∥2L2(Ω)

= min
ϕh∈Xh

(∇ϕh,∇ϕh)
∥ϕh∥2L2(Ω)

≥ min
ϕ∈H1

0

(∇ϕ,∇ϕ)
∥ϕ∥2

L2(Ω)

= λ1. (5.25)

Analogue to (2.13), the solution to the semidiscrete problem (5.24) could be written as

uh(t) := Fh(t)

Pha

Phb

+

∫ t

0
Eh(t− s)Phfh(s) ds

:=
[
Fh F̄h

]Pha

Phb

+

∫ t

0
Eh(t− s)Phfh(s) ds

(5.26)

where the solution operators F (t), F̄ (t) and E(t) are respectively defined by

Fh(t)vh =
J∑

j=1

Eα,1(−λhj tα)(vh, φh
j )φ

h
j , F̄h(t)vh =

J∑
j=1

tEα,2(−λhj tα)(vh, φh
j )φ

h
j ,

Eh(t)vh =

J∑
j=1

tα−1Eα,α(−λhj tα)(vh, φh
j )φ

h
j

(5.27)

for any vh ∈ Xh. By Laplace Transform, we have the following integral representations of the solution

operators:

Fh(t) =
1

2πi

∫
Γθ,σ

eztzα−1(zα −∆h)
−1dz, F̄h(t) =

1

2πi

∫
Γθ,σ

eztzα−2(zα −∆h)
−1dz,

Eh(t) =
1

2πi

∫
Γθ,σ

ezt(zα −∆h)
−1dz.

(5.28)

The discrete solution operator Eh(t) satisfies the following smoothing property. See the proof for the

case α ∈ (0, 1) in [40, Lemma 3.2] and the proof for the diffusion wave-model is the same exactly.

Lemma 5.5. Let Eh(t) be the operator defined in (5.27). Then we have for all t > 0 and q ∈ [0, 1]

∥(−∆h)
qEh(t)vh∥L2(Ω) ≤ ct(1−q)α−1∥vh∥L2(Ω) for all vh ∈ Xh.
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The following Lemma provides an error estimate of the semidiscrete approximation (5.24) with

trivial source f ≡ 0. See [41, Theorem 3.2] for detailed proof.

Lemma 5.6. Let u and uh are the solutions to (5.3) and (5.24), respectively, with a, b ∈ Ḣq(Ω) and

f ≡ 0. Then there holds that

∥(u− uh)(t)∥L2(Ω) ≤ ch2t−α(2−q)/2
(
∥a∥Ḣq(Ω) + t∥b∥Ḣq(Ω)

)
.

5.2.2 Semidiscrete scheme for solving backward problem

In order to solve the inverse problem, we apply the following regularized semidiscrete scheme: find

ũδh(t) ∈ Xh such that

∂αt ũ
δ
h −∆hũ

δ
h = 0, T ≥ t > 0,

−γũδh(0) + ũδh(T1) = Phg
δ
1,

γ∂tũ
δ
h(0) + ũδh(T2) = Phg

δ
2.

(5.29)

We define the operator Gh(T1, T2) as

Gh(T1, T2) =

Fh(T1) F̄h(T1)

Fh(T2) F̄h(T2)

 . (5.30)

Then from (5.26) the solutions can be represented as ũδh(0)

∂tũ
δ
h(0)

 = (γI + Gh(T1, T2))−1

Phg
δ
1

Phg
δ
2

 and ũδh(t) = Fh(t)(γI + Gh(T1, T2))−1

Phg
δ
1

Phg
δ
2

 , (5.31)

where the operator I is given by (5.13). Meanwhile, we shall introduce an auxiliary function ũh(t), a

semidiscrete solution satisfying

∂αt ũh −∆hũh = 0, T ≥ t > 0,

−γũh(0) + ũh(T1) = Phg1,

γ∂tũh(0) + ũh(T2) = Phg2.

(5.32)

Then we would write the solutions as ũh(0)

∂tũh(0)

 = (γI + Gh(T1, T2))−1

Phg1

Phg2

 and ũh(t) = Fh(t)(γI + Gh(T1, T2))−1

Phg1

Phg2

 . (5.33)

The next lemma confirms the invertibility of the operator γI + Gh(T1, T2).

Lemma 5.7. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥ M(λ1).

Then the operator γI + Gh(T1, T2) is invertible. Meanwhile, there holds for all vh, wh ∈ Xh∥∥∥∥∥∥Fh(t)(γI + Gh(T1, T2))−1

vh
wh

∥∥∥∥∥∥
L2(Ω)

≤ cmin(γ−1, t−α)
(
∥vh∥L2(Ω) + ∥wh∥L2(Ω)

)
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Meanwhile, we have∥∥∥∥∥∥(γI + Gh(T1, T2))−1

vh
wh

∥∥∥∥∥∥
L2(Ω)

≤ cγ−1
(
∥vh∥L2(Ω) + ∥wh∥L2(Ω)

)1
1

 .
Proof. By (5.10) and the fact (5.25), we obtain for any 1 ≤ j ≤ J

|ψ(T1, T2;λhj )| ≥

∣∣∣∣∣ c(T2 − T1)
Γ(1− α)Γ(2− α)

1

(λhj )
2Tα

1 T
α
2

∣∣∣∣∣ > 0, (5.34)

where the constant c is independent of λhj , T1 and T2. Then by the assumption (5.15) we have

ψ̃(T1, T2;λ
h
j ) = ψ(T1, T2;λ

h
j )− γ2 + γ[Eα,1(−λhj Tα

1 )− T2Eα,2(−λhj Tα
2 )]

≤ −c
(
(λhj )

−2 + γ(λhj )
−1 + γ2

)
< 0

(5.35)

and hence the operator γI+Gh(T1, T2) is invertible. Finally, the desired two stability estimates follow

by the same argument in the proof of Lemma 5.3 with p = q = 0.

This lemma together with the representations (5.31) and (5.33) implies the following estimate

Corollary 5.3. Suppose that M(λ1) is the constant defined in Lemma 5.1, and T2 > T1 ≥ M(λ1).

Let ũδh(t) and ũh(t) be the solutions of problems (5.29) and (5.32). Then there holds for all 0 < t ≤ T

∥(ũδh − ũh)(t)∥L2(Ω) ≤ cδmin(γ−1, t−α) and

 ∥(ũδh − ũh)(0)∥L2(Ω)

∥∂t(ũδh − ũh)(0)∥L2(Ω)

 ≤ cδγ−1

1
1

 ,
where c is independent on δ, γ, h and t.

Next, we aim to derive a bound for the discretization error ũh − ũ. To this end, we need the

following preliminary estimate.

Lemma 5.8. Suppose that M(λ1) is the constant defined in Lemma 5.1, and T2 > T1 ≥ M(λ1). Let

ũ be the solution to the backward regularization problem (5.20). Then there holds for 0 ≤ q ≤ 2

∥(Eh ∗∆h(Ph −Rh)ũ)(t)∥L2(Ω) ≤ ch2t−α(2−q)/2
(
∥ũ(0)∥Ḣq(Ω) + t∥∂tũ(0)∥Ḣq(Ω)

)
.

Proof. Let wh be the solution to the semidiscrete problem

∂αt wh −∆hwh = 0, T ≥ t > 0,

wh(0) = Phũ(0), ∂twh(0) = Ph∂tũ(0).
(5.36)

Then Lemma 5.6 implies the estimate

∥(wh − ũ)(t)∥ ≤ ch2t−α(2−q)/2
(
∥ũ(0)∥Ḣq(Ω) + t∥∂tũ(0)∥Ḣq(Ω)

)
. (5.37)
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Meanwhile, we apply the following splitting

(wh − ũ)(t) = (wh − Phũ)(t) + (Phũ− ũ)(t) =: ζ(t) + ρ(t).

From the approximation of L2 projection (2.17) and the regularity estimate in Lemma 2.3, we arrive

at

∥ρ(t)∥L2(Ω) ≤ ch2∥ũ(t)∥Ḣ2(Ω) ≤ ch
2t−α(2−q)/2

(
∥ũ(0)∥Ḣq(Ω) + t∥∂tũ(0)∥Ḣq(Ω)

)
. (5.38)

Moreover, we observe that the function ζ(t) satisfies

∂αt ζ(t)−∆hζ(t) = ∆h(Ph −Rh)ũ(t), T ≥ t > 0,

ζ(0) = 0, ∂tζ(0) = 0.

Then (5.26) indicates the representation ζ(t) = (Eh∗∆h(Ph−Rh)ũ)(t). Then the desired result follows

immediately from (5.37), (5.38) and the triangle inequality.

Then we are ready to state a key lemma providing an estimate for the discretization error ũh − ũ.

Lemma 5.9. Assume that a, b ∈ L2(Ω). Let ũ be the solution to the regularized problem (5.20) and

ũh be the solution to the corresponding semidiscrete problem (5.32), then there holds for all 0 < t ≤ T

∥(ũh − ũ)(t)∥L2(Ω) ≤ ch2min(γ−1, t−α)
(
∥a∥L2 + ∥b∥L2(Ω)

)
and

∥(ũh − ũ)(0)∥L2(Ω) + ∥∂t(ũh − ũ)(0)∥L2(Ω) ≤ ch2γ−1
(
∥a∥L2 + ∥b∥L2(Ω)

)
where both c are independent on γ, h and t.

Proof. First of all, for t ∈ (0, T ], we use the splitting

(ũh − ũ)(t) = (ũh − Phũ)(t) + (Phũ− ũ)(t) =: ζ(t) + ρ(t).

From the approximation property of the L2-projection in (2.17), we arrive at

∥ρ(t)∥L2(Ω) ≤ ch2∥ũ(t)∥Ḣ2(Ω) ≤ ch
2min

(
γ−1, t−α

)(
∥g1∥Ḣ2(Ω) + ∥g2∥Ḣ2(Ω)

)
≤ ch2min

(
γ−1, t−α

)(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
where the second inequality follows from (5.19) and Lemma 5.3 (with p = q = 2), and the last

inequality follows from the regularity estimate in Lemma 2.3.

Now we turn to the term ζ = ũh − Phũ which satisfies the error equation
∂αt ζ −∆hζ = ∆h(Ph −Rh)ũ(t), T ≥ t > 0,

−γζ(0) + ζ(T1) = 0,

γ∂tζ(0) + ζ(T2) = 0.

(5.39)
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From solution representation we haveζ(T1)
ζ(T2)

 = Gh(T1, T2)

 ζ(0)

∂tζ(0)

+

(Eh ∗∆h(Ph −Rh)ũ)(T1)

(Eh ∗∆h(Ph −Rh)ũ)(T2)

 .
Then we add (−γζ(0), γ∂tζ(0))T at both sides and derive0

0

 = (γI + Gh(T1, T2))

 ζ(0)

∂tζ(0)

+

(Eh ∗∆h(Ph −Rh)ũ)(T1)

(Eh ∗∆h(Ph −Rh)ũ)(T2)

 . (5.40)

This immediately implies a representation to ζ(t):

ζ(t) = Fh(t)

 ζ(0)

∂tζ(0)

+ (Eh ∗∆h(Ph −Rh)ũ)(t)

= −Fh(t)(γI + Gh(T1, T2))−1

(Eh ∗∆h(Ph −Rh)ũ)(T1)

(Eh ∗∆h(Ph −Rh)ũ)(T2)

+ (Eh ∗∆h(Ph −Rh)ũ)(t)

=: I1(t) + I2(t).

Then Lemmas 5.7 and 5.8 lead to the estimate for all t ∈ (0, T ]

∥I1(t)∥L2(Ω) ≤ cmin(γ−1, t−α)
(
∥(Eh ∗∆h(Ph −Rh)ũ)(T1)∥L2(Ω) + ∥(Eh ∗∆h(Ph −Rh)ũ)(T2)∥L2(Ω)

)
≤ ch2min(γ−1, t−α)(∥ũ(0)∥L2(Ω) + ∥∂tũ(0)∥L2(Ω)).

Recalling Corollary 5.1 with q = 0, we derive for all t ∈ (0, T ]

∥I1(t)∥L2(Ω) ≤ ch2min(γ−1, t−α)(∥a∥L2(Ω) + ∥b∥L2(Ω)).

Similarly, using Lemma 5.8 with q = 2 and Corollary 5.1 with q = 2, we bound the term I2 by

∥I2(t)∥L2(Ω) ≤ ch2(∥ũ(0)∥Ḣ2(Ω) + ∥∂tũ(0)∥Ḣ2(Ω)) ≤ ch
2γ−1(∥a∥L2(Ω) + ∥b∥L2(Ω))

for all t ∈ (0, T ]. Meanwhile, using Lemma 5.8 with q = 0 and Corollary 5.1 with q = 0, we have

∥I2(t)∥L2(Ω) ≤ ch2t−α(∥ũ(0)∥L2 + ∥∂tũ(0)∥L2) ≤ ch2t−α(∥a∥L2(Ω) + ∥b∥L2(Ω)).

Therefore, we conclude that

∥(ũ− ũh)(t)∥L2(Ω) ≤ ch2min(γ−1, t−α)
(
∥a∥L2 + ∥b∥L2(Ω)

)
.

Similarly, for t = 0, the relation (5.40) implies ζ(0)

∂tζ(0)

 =− (γI + Gh(T1, T2))−1

(Eh ∗∆h(Ph −Rh)ũ)(T1)

(Eh ∗∆h(Ph −Rh)ũ)(T2)

 .
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Then we apply Lemmas 5.3 (with p = 0 and q = 0), 5.7 (with q = 0) and Corollary 5.8 (with q = 0)

to derive

∥ζ(0)∥L2(Ω) + ∥∂tζ(0)∥L2(Ω)

≤ cγ−1
(
∥Eh ∗∆h(Ph −Rh)ũ(T1)∥L2(Ω) + ∥Eh ∗∆h(Ph −Rh)ũ(T2)∥L2(Ω)

)
≤ ch2γ−1

(
∥ũ(0)∥L2(Ω) + ∥∂tũ(0)∥L2(Ω)

)
≤ ch2γ−1

(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
.

This completes the proof of the lemma.

Then Lemma 5.4, Corollary 5.3 and Lemma 5.9 would lead to the following error estimate.

Theorem 5.3. Assume that a, b ∈ Ḣq(Ω), q ∈ [0, 2]. Let u be the solution to the problem (5.3) and

ũδh be the solution to the regularized semidiscrete problem (5.29), then there holds

∥(ũδh − u)(t)∥L2(Ω) ≤ c
[
γmin(γ−(1− q

2
), t−(1− q

2
)α) + (h2 + δ)min(γ−1, t−α)

]
, ∀t ∈ (0, T ],

and

∥(ũδh − u)(0)∥L2(Ω) + ∥∂t(ũδh − u)(0)∥L2(Ω) ≤ c
[
γ

q
2 + γ−1(h2 + δ)

]
where c depends on T1, T2, a and b, but is always independent of h, γ, δ and t.

Remark 5.3. For a, b ∈ Ḣq(Ω) and t ≥ t0, then Theorem 5.3 provides an estimate

∥(ũδh − u)(t)∥L2(Ω) ≤ c(γ + (h2 + δ)).

With a priori choice of parameter γ ∼ δ and h ∼
√
δ, we obtain the optimal convergence rate ∥(ũδh −

u)(t)∥L2(Ω) ≤ cδ. For t = 0, according to Theorem 5.3, we choose γ ∼ δ
2

2+q and h ∼
√
δ to obtain the

best convergence rate

∥(ũδh − u)(0)∥L2(Ω) + ∥∂t(ũδh − u)(0)∥L2(Ω) ≤ cδ
q

2+q .

In case that q = 0, we can also show the convergence, provided a suitable choice of parameters.

According to Lemma 5.4, Corollary 5.3 and Theorem 5.3, there holds for any s ∈ (0, 1]

∥(ũδh − u)(0)∥L2(Ω) + ∥∂t(ũδh − u)(0)∥Ḣ−s(Ω) → 0, as δ, γ, h→ 0,
δ

γ
→ 0 and

h2

γ
→ 0.

5.3 Fully discrete scheme and error analysis

Now we intend to propose a fully discrete scheme for approximately solving the backward diffusion-

wave problem, and derive a priori error estimate in terms of data regularity.
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5.3.1 Fully discrete scheme for the direct problem

To begin with, we introduce the fully discrete scheme for the direct problem. We divide the time

interval [0, T ] into a uniform grid, with tn = nτ , n = 0, . . . , N , and τ = T/N being the time step size.

In case that φ(0) = 0 and φ′(0) = 0, we approximate the Riemann-Liouville fractional derivative

RL∂αt φ(t) =
1

Γ(2− α)
d2

dt2

∫ t

0
(t− s)1−αφ(s)ds

by the backward Euler convolution quadrature (with φj = φ(tj)) [71, 43]:

RL∂αt φ(tn) ≈ τ−α
n∑

j=0

bjφn−j := ∂̄ατ φn, with
∞∑
j=0

bjξ
j = (1− ξ)α.

The fully discrete scheme for problem (2.12) reads: find Un ∈ Xh such that

∂̄τ (Un − Pha− tnPhb)−∆hUn = Phf(tn), n = 1, 2, . . . , N, (5.41)

with the initial condition U0 = Pha ∈ Xh. Here we use the relation between Riemann-Liouville and

Caputo fractional derivatives with α ∈ (1, 2) [57, p. 91]:

∂αt u(tn) = ∂αt (u(tn)− a− tb) = RL∂αt (u(tn)− a− tb) ≈ ∂̄ατ (u(tn)− a− tb).

By means of discrete Laplace transform, the fully discrete solution Un is given by

Un = Fn
h,τ

Pha

Phb

+ τ
n∑

k=1

En−k
h,τ Phf(tk)

:=
[
Fn
h,τ F̄n

h,τ

]Pha

Phb

+ τ

n∑
k=1

En−k
h,τ Phf(tk),

(5.42)

with n = 1, 2, . . . , N , where the fully discrete operators Fn
h,τ , F̄

n
h,τ and En

h,τ are respectively defined

by (see e.g., [43])

Fn
h,τ =

1

2πi

∫
Γτ
θ,σ

eztne−zτδτ (e
−zτ )α−1(δτ (e

−zτ )α −∆h)
−1 dz,

Fn
h,τ =

1

2πi

∫
Γτ
θ,σ

eztne−zτδτ (e
−zτ )α−2(δτ (e

−zτ )α −∆h)
−1 dz,

En
h,τ =

1

2πi

∫
Γτ
θ,σ

eztn(δτ (e
−zτ )α −∆h)

−1 dz,

(5.43)

with δτ (ξ) = (1 − ξ)/τ and the contour Γτ
θ,σ := {z ∈ Γθ,σ : |ℑ(z)| ≤ π/τ} where θ ∈ (π/2, π) is close

to π/2. (oriented with an increasing imaginary part). The next lemma gives elementary properties of

the kernel δτ (e
−zτ ). The detailed proof has been given in [43, Lemma B.1].
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Lemma 5.10. For a fixed θ′ ∈ (π/2, π/α), there exists θ ∈ (π/2, π) and positive constants c, c1, c2

(independent of τ) such that for all z ∈ Γτ
θ,σ

c1|z| ≤ |δτ (e−zτ )| ≤ c2|z|, δτ (e
−zτ ) ∈ Σθ′ .

|δτ (e−zτ )− z| ≤ cτ |z|2, |δτ (e−zτ )α − zα| ≤ cτ |z|1+α.

In case that f ≡ 0, with the spectral decomposition, we can write

Un = Fn
h,τPha+ F̄n

h,τPhb =
J∑

j=1

[
Fn
τ (λ

h
j )(a, φ

h
j )φ

h
j + F̄n

τ (λ
h
j )(b, φ

h
j )φ

h
j

]
(5.44)

where Fn
τ (λ

h
j ) and F̄

n
τ (λ

h
j ) are the solutions to the discrete initial value problems

∂̄τ [F
n
τ (λ

h
j )− 1] + λhjF

n
τ (λ

h
j ) = 0, with F 0

τ (λ
h
j ) = 1

and

∂̄τ [F̄
n
τ (λ

h
j )− tn] + λhj F̄

n
τ (λ

h
j ) = 0, with F̄ 0

τ (λ
h
j ) = 0

respectively. From (5.43), we write Fn
τ (λ

h
j ) and F̄

n
τ (λ

h
j ) as

Fn
τ (λ

h
j ) =

1

2πi

∫
Γτ
θ,σ

eztne−zτδτ (e
−zτ )α−1(δτ (e

−zτ )α + λhj )
−1 dz

F̄n
τ (λ

h
j ) =

1

2πi

∫
Γτ
θ,σ

eztne−zτδτ (e
−zτ )α−2(δτ (e

−zτ )α + λhj )
−1 dz.

(5.45)

Next we derive some useful properties of Fn
τ (λ

h
j ) and F̄

n
τ (λ

h
j ),

Lemma 5.11. Let Fn
τ (λ) and F̄

n
τ (λ) be defined as in (5.45). Then for λ > 0, there holds for 1 ≤ n ≤

N , ∣∣Eα,1(−λtαn)− Fn
τ (λ)

∣∣+ t−1
n

∣∣tnEα,2(−λtα)− F̄n
τ (λ)

∣∣ ≤ cn−1

1 + λtαn
. (5.46)

Meanwhile, there holds

λ−1
(∣∣Eα,1(−λtαn)− Fn

τ (λ)
∣∣+ t−1

n

∣∣tnEα,2(−λtαn)− F̄n
τ (λ)

∣∣) ≤ cτtα−1
n . (5.47)

Here c is the generic positive constant independent of λ, t and τ .

Proof. The estimate for Eα,1(−λtαn) − Fn
τ (λ) follows from the same argument in the proof of [111,

Lemma 4.2]. Then it suffices to establish a bound for tnEα,2(−λtα)− F̄n
τ (λ), we recall representations

(2.15) and (5.45) and derive

|tnEα,2(−λtαn)− F̄n
τ (λ)| ≤

∣∣∣∣∣ 1

2πi

∫
Γθ,σ\Γτ

θ,σ

eztnzα−2(zα + λ)−1dz

∣∣∣∣∣
+

∣∣∣∣∣ 1

2πi

∫
Γτ
θ,σ

eztn(zα−2(zα + λ)−1 − e−zτδτ (e
−zτ )α−2(δτ (e

−zτ )α + λ)−1)dz

∣∣∣∣∣
:= I1 + I2.
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With σ = t−1
n , the bound for I1 follows from the direct computation

I1 ≤ c
∫
Γθ,σ\Γτ

θ,σ

|eztn ||zα−2||(zα + λ)−1||dz| ≤ c
∫ ∞

π/(τ sin θ)

eρ(cos θ)tnρα−2

ρα
dρ

≤ ctn
∫ ∞

cn
e−cρρ−2dρ ≤ ctnn−1

and

I1 ≤ c
∫ ∞

π/(τ sin θ)

eρ(cos θ)tnρα−2

λ
dρ ≤ ctn(λtαn)−1

∫ ∞

cn
e−cρρα−2dρ

≤ ctn(λtαn)−1n−1

∫ ∞

cn
e−cρρα−1dρ ≤ ctn(λtαn)−1n−1.

As a result, we obtain I1 ≤ cn−1

(1+λtαn)
tn.

Next we turn to the term I2. According to Lemma 5.10, we have for all z ∈ Γτ
θ,σ,∣∣∣∣ zα−2

zα + λ
− e−zτδτ (e

−zτ )α−2

δτ (e−zτ )α + λ

∣∣∣∣ ≤ ∣∣∣∣ zα−2

zα + λ
− δτ (e

−zτ )α−2

δτ (e−zτ )α + λ

∣∣∣∣+ ∣∣∣∣(1− e−zτ )δτ (e
−zτ )α−2

δτ (e−zτ )α + λ

∣∣∣∣
≤
∣∣∣∣zα−2δτ (e

−zτ )α−2(δτ (e
−zτ )2 − z2)

(zα + λ)(δτ (e−zτ )α + λ)

∣∣∣∣+ ∣∣∣∣ (zα−2 − δτ (e−zτ )α−2)λ

(zα + λ)(δτ (e−zτ )α + λ)

∣∣∣∣
+ |(1− e−zτ )|

∣∣∣∣ δτ (e−zτ )α−2

δτ (e−zτ )α + λ

∣∣∣∣
≤ cτ |z|

α−1

|zα + λ|
.

Therefore, with σ = t−1
n , the term I2 can be bounded as

I2 ≤ cτ
∫
Γτ
θ,σ

|eztn | |z|
α−1

|zα + λ|
|dz| ≤ cτλ−1(

∫ ∞

σ
eρ cos θtnρα−1dρ+ σα

∫ θ

−θ
dψ) ≤ cτ(λtαn)−1

and

I2 ≤ cτ
∫
Γτ
θ,σ

|eztn ||z|−1|dz| ≤ cτ(
∫ ∞

1
eρ cos θρ−1dρ+

∫ θ

−θ
dψ) ≤ cτ.

Then (5.46) follows immediately.

For the second estimate, we note that

tnEα,2(−λtαn) = tn −
λ

2πi

∫
Γθ,σ

eztnz−2(zα + λ)−1dz,

F̄n
τ (λ) = tn −

λ

2πi

∫
Γτ
θ,σ

eztne−zτδτ (e
−zτ )−2(δτ (e

−zτ )α + λ)−1dz,

with n ≥ 1. Then we use the spliiting

λ−1|tnEα,2(−λtαn)− F̄n
τ (λ)| ≤

∣∣∣∣∣ 1

2πi

∫
Γθ,σ\Γτ

θ,σ

eztnz−2(zα + λ)−1dz

∣∣∣∣∣
+

∣∣∣∣∣ 1

2πi

∫
Γτ
θ,σ

eztn [z−2(zα + λ)−1 − e−zτδτ (e
−zτ )−2(δτ (e

−zτ )α + λ)−1]dz

∣∣∣∣∣
:= I1 + I2.
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According to Lemma 5.10 we have for all z ∈ Γτ
θ,σ ,

I1 ≤ c
∫
Γθ,σ\Γτ

θ,σ

|eztn ||z|−α−2|dz| ≤ c
∫
π/(τ sin θ)

eρ cos θtnρ−α−2dρ

≤ ctα+1
n

∫ ∞

cn
e−cρρ−α−2dρ ≤ ctα+1

n n−3

∫ ∞

0
e−cρρ−α+1dρ ≤ ctα−2

n τ3.

And also we have

|z−2(zα + λ)−1 − e−zτδτ (e
−zτ )−2(δτ (e

−zτ )α + λ)−1| ≤ cτ |z|−α−1,

and therefore with σ = t−1
n , we have the bound for n ≥ 1

I2 ≤ cτ
∫
Γτ
θ,σ

|eztn ||z|−α−1|dz| ≤ cτ
(∫ ∞

σ
e−cρtnρ−α−1dρ+ σ−α

∫ θ

−θ
dψ

)
≤ cτtαn.

This completes the proof of (5.47).

Then Lemmas 2.1 and 5.11 lead to the following asymptotic behaviors of Fn
τ (λ) and F̄

n
τ (λ).

Corollary 5.4. Let Fn
τ (λ) and F̄n

τ (λ) be defined as in (5.45). Then there exists τ0 > 0 such that for

all τ ∈ (0, τ0), λ > λ1 and tn ≥M(λ1)

−c0λ−1t−α
n ≤ Fn

τ (λ) ≤ −c1λ−1t−α
n and c̃0λ

−1t1−α
n ≤ F̄n

τ (λ) ≤ c̃1λ−1t1−α
n ,

with positive constants c0, c1, c̃0, c̃1 independent of λ, t and τ .

Now we define two integers N1 and N2 such that N1τ = T1 and N2τ = T2, and define

Gh,τ (T1, T2) =

FN1
h,τ F̄N1

h,τ

FN2
h,τ F̄N2

h,τ

 , Gτ (T1, T2;λ
h
j ) =

FN1
τ (λhj ) F̄N1

τ (λhj )

FN2
τ (λhj ) F̄N2

τ (λhj )

 . (5.48)

Then according to (5.44), we have the representationUN1

UN2

 = Gh,τ (T1, T2)

Pha

Phb

 =

J∑
j=1

Gτ (T1, T2;λ
h
j )

(a, φh
j )φ

h
j

(b, φh
j )φ

h
j


=

J∑
j=1

FN1
τ (λhj ) F̄N1

τ (λhj )

FN2
τ (λhj ) F̄N2

τ (λhj )

(a, φh
j )φ

h
j

(b, φh
j )φ

h
j

 .
The next lemma provides the invertibility of γI + Gh,τ (T1, T2).

Lemma 5.12. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥M(λ1).

Then the operator γI + Gh,τ (T1, T2) is invertible, and there holds for vh, wh ∈ Xh

∥∥∥Fn
h,τ (γI + Gh,τ (T1, T2))−1

vh
wh

∥∥∥
L2(Ω)

≤ cmin(γ−1, t−α
n )
(
∥vh∥L2(Ω) + ∥wh∥L2(Ω)

)
and ∥∥∥(γI + Gh,τ (T1, T2))−1

vh
wh

∥∥∥
L2(Ω)

≤ cγ−1
(
∥vh∥L2(Ω) + ∥wh∥L2(Ω)

)1
1

 .
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Proof. Let ψτ (T1, T2;λ
h
j ) be the determinant of Gτ (T1, T2;λ

h
j ). We define

∂tψτ (T1, T2;λ
h
j ) = ψτ (T1, T2;λ

h
j )− γ2 + γ[FN1

h,τ − F̄
N2
h,τ ],

Then from Lemma 5.11 and Corollary 5.4 we have for λ > λ1

|ψτ (T1, T2;λ)− ψ(T1, T2;λ)|

≤ |(FN1
τ (λ)− Eα,1(−λTα

1 )F̄
N2
τ (λ)|+ |Eα,1(−λTα

1 )(F̄
N2
τ (λ)− T2Eα,2(−λTα

2 ))|

+ |(T1Eα,2(−λTα
1 )− F̄N1

τ (λ))FN2
τ (λ)|+ |T1Eα,2(−λTα

1 )(Eα,1(−λTα
2 )− FN2

τ (λ))| ≤ c τ

λ2Tα
1 T

α
2

.

Combining (5.10) with the fact λhj ≥ λh1 > λ1 by (5.25) we have

ψτ (T1, T2;λ
h
j ) ≤

c

(λhj )
2Tα

1 T
α
2

< 0.

This together with the Corollary 5.4 leads to

|∂tψτ (T1, T2;λ
h
j )| ≥ c

(
(λhj )

−2 + γ(λhj )
−1 + γ2

)
> 0, (5.49)

where c is only dependent on T1, T2 and α. Therefore, the operator γI + Gh,τ (T1, T2) is invertible.

Finally, the desired stability estimates follows by an argument similar to the proof of Lemma 5.3 with

p = q = 0 and Corollary 5.4.

5.3.2 Fully discrete scheme for the inverse problem

Now, we propose a fully discrete scheme for solving the backward diffusion-wave problem. Given gδ1

and gδ2, we look for ãδh,τ , b̃
δ
h,τ and Ũ δ

n ∈ Xh with n = 1, 2, . . . , N such that

∂̄τ (Ũ
δ
n − ãδh,τ − tnb̃δh,τ )−∆hŨ

δ
n = 0, ∀ n = 1, 2, . . . , N,

−γãδh,τ + Ũ δ
N1

= Phg
δ
1,

γb̃δh,τ + Ũ δ
N2

= Phg
δ
2

(5.50)

with Ũ δ
0 = ãδh,τ . Then by Lemma 5.12, the problem (5.50) is uniquely solvable, and Ũ δ

n could be

represented as

Ũ δ
n = Fn

h,τ

ãδh,τ
b̃δh,τ

 = Fn
h,τ (γI + Gh,τ (T1, T2))−1

Phg
δ
1

Phg
δ
2

 (5.51)

while ãδh,τ and b̃δh,τ could be written asãδh,τ
b̃δh,τ

 = (γI + Gh,τ (T1, T2))−1

Phg
δ
1

Phg
δ
2

 . (5.52)
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Similarly, we could define auxiliary functions ãh,τ , b̃h,τ and Ũn ∈ Xh with n = 1, 2, . . . , N such

that

∂̄τ (Ũn − ãh,τ − tnb̃h,τ )−∆hŨn = 0, ∀ n = 1, 2, . . . , N,

−γãh,τ + ŨN1 = Phg1,

γb̃h,τ + ŨN2 = Phg2

(5.53)

with Ũ0 = ãh,τ . Then the function Ũ δ
n could be represented as

Ũn = Fn
h,τ

ãh,τ
b̃h,τ

 = Fn
h,τ (γI + Gh,τ (T1, T2))−1

Phg1

Phg2

 (5.54)

while ãh,τ and b̃h,τ could be written asãh,τ
b̃h,τ

 = (γI + Gh,τ (T1, T2))−1

Phg1

Phg2

 . (5.55)

Then Lemma 5.12 immediately implies following estimates for ãh,τ − ãδh,τ , b̃h,τ − b̃δh,τ and Ũn− Ũ δ
n.

Lemma 5.13. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥M(λ1).

Let ãδh,τ , b̃
δ
h,τ and Ũ δ

n be solutions to (5.50), and ãh,τ , b̃h,τ and Ũn be solutions to (5.53). Then there

holds

∥Ũn − Ũ δ
n∥L2(Ω) ≤ cδmin(γ−1, t−α

n )
(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
and

∥ãh,τ − ãδh,τ∥L2(Ω) + ∥b̃h,τ − b̃δh,τ∥L2(Ω) ≤ cδγ−1
(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
.

Next, we aim to compare two auxiliary problems, i.e. (5.53) and (5.32).

Lemma 5.14. Let M(λ1) be the constant defined in Lemma 5.1, and suppose T2 > T1 ≥ M(λ1).

Let ãh,τ , b̃h,τ and Ũn be the solutions to (5.53), and ũh(t) be the solution to the semidiscrete problem

(5.32). Then there holds

∥ãh,τ − ũh(0)∥L2(Ω) + ∥b̃h,τ − ∂tũh(0)∥L2(Ω) ≤ c
(
τ + h2γ−1

)(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
and

∥Ũn − ũh(tn)∥L2(Ω) ≤ c
(
τtα−1

n + h2
)
min(γ−1, t−α

n )
(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
.

Proof. Using representations (5.55) and (5.33), we derive
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 ãh,τ − ũh(0)
b̃h,τ − ∂tũ(0)


=
(
γI + Gh,τ (T1, T2)

)−1

Phg1

Phg2

− (γI + Gh(T1, T2))−1

Phg1

Phg2


=
(
γI + Gh,τ (T1, T2)

)−1

(Ph −Rh)g1

(Ph −Rh)g2

+
(
γI + Gh(T1, T2)

)−1

(Rh − Ph)g1

(Rh − Ph)g2


+
(
Gh(T1, T2)− Gh,τ (T1, T2)

)(
γI + Gh,τ (T1, T2)

)−1(
γI + Gh(T1, T2)

)−1

Rhg1

Rhg2


= I1 + I2 + I3.

Using Lemmas 5.7 and 5.12 we can obtain an estimate for I1 and I2:

∥I1∥L2(Ω) + ∥I2∥L2(Ω) ≤ ch2γ−1(∥g1∥Ḣ2(Ω) + ∥g2∥Ḣ2(Ω))

1
1


≤ ch2γ−1(∥a∥L2(Ω) + ∥b∥L2(Ω))

1
1

 ,
where in the last inequality we use the regularity estimate in Lemma 2.3. Then for the term I3, we

apply Lemma 5.11 and Corollary 5.4 again to derive

∥I3∥2L2(Ω) ≤ c
J∑

j=1

(Rhg1, φ
h
j )

2 + (Rhg2, φ
h
j )

2

∂tψτ (T1, T2;λhj )
2∂tψ(T1, T2;λhj )

2(λhj T
α
1 )

6N2
1

1
1


≤ cτ2

J∑
j=1

(λhj )
2
(
(Rhg1, φ

h
j )

2 + (Rhg2, φ
h
j )

2
)1

1

 .
Noting that ∆hRh = Ph∆, then we apply Lemma 2.3 to obtain

∥∆hRhg1∥L2(Ω) + ∥∆hRhg2∥L2(Ω) = ∥Ph∆g1∥L2(Ω) + ∥Ph∆g2∥L2(Ω)

≤ (∥∆g1∥L2(Ω) + ∥∆g2∥L2(Ω))

≤ c(∥a∥L2(Ω) + ∥b∥L2(Ω)).

(5.56)

In conclusion, we obtain

∥∂tah,τ − ũh(0)∥L2(Ω) + ∥∂tbh,τ − ∂tũh(0)∥L2(Ω) ≤ c(τ + h2γ−1)(∥a∥L2(Ω) + ∥b∥L2(Ω)).
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Next, from (5.31) and (5.54) we derive the splitting that

∂tUn − ũh(tn)

= Fn
h,τ

(
γI + Gh,τ (T1, T2)

)−1

Phg1

Phg2

−Fh(tn)
(
γI + Gh(T1, T2)

)−1

Phg1

Phg2


=

(
Fn
h,τ

(
γI + Gh,τ (T1, T2)

)−1

(Ph −Rh)g1

(Ph −Rh)g2

+ Fh(tn)
(
γI + Gh(T1, T2)

)−1

(Rh − Ph)g1

(Rh − Ph)g2

)

+

(
Fn
h,τ

(
γI + Gh,τ (T1, T2)

)−1

Rhg1

Rhg2

−Fh(tn)
(
γI + Gh(T1, T2)

)−1

Rhg1

Rhg2

)

=: I1 + I2.

To bound the first term I1, we apply approximation properties of Ph and Rh, Lemmas 5.7 and 5.12,

and the argument (5.56) to obtain

∥I1∥L2(Ω) ≤ ch2min(γ−1, t−α
n )(∥∆hRhg1∥L2(Ω) + ∥∆hRhg2∥L2(Ω))

≤ ch2min(γ−1, t−α
n )(∥g1∥Ḣ2(Ω) + ∥g2∥Ḣ2(Ω))

≤ ch2min(γ−1, t−α
n )(∥a∥L2(Ω) + ∥b∥L2(Ω)),

where in the last inequality we use the regularity estimate in Lemma 2.3. For the other term I2, we

split it into three parts

I2 = γ(Fn
h,τ −Fh(tn))I

(
γI + Gh,τ (T1, T2)

)−1(
γI + Gh(T1, T2)

)−1

Rhg1

Rhg2


+ Fn

h,τ (Gh(T1, T2)− Gh,τ (T1, T2))
(
γI + Gh,τ (T1, T2)

)−1(
γI + Gh(T1, T2)

)−1

Rhg1

Rhg2


+ Gh,τ (T1, T2)(Fn

h,τ −Fh(tn))
(
γI + Gh,τ (T1, T2)

)−1(
γI + Gh(T1, T2)

)−1

Rhg1

Rhg2


=:

3∑
i=1

I2,i.

Then we intend to establish bounds for those terms one by one. For the term I2,1, we apply the

spectral decomposition to obtain

I2,1 =

J∑
j=1

γ
[
−(Fn

τ (λ
h
j )− Eα,1(−λhj tαn)) F̄n

τ (λ
h
j )− tnEα,2(−λhj tαn)

]

∂tψτ (T1, T2;λ
h
j )

−1

γ + F̄N2
τ (λhj ) −F̄N1

τ (λhj )

−FN2
τ (λhj ) −γ + FN1

τ (λhj )


∂tψ(T1, T2;λ

h
j )

−1

γ + T2Eα,2(−λhj Tα
2 ) −T1Eα,2(−λhj Tα

1 )

−Eα,1(−λhj Tα
2 ) −γ + Eα,1(−λhj Tα

1 )

(Rhg1, φ
h
j )φ

h
j

(Rhg2, φ
h
j )φ

h
j

 .
91



Using Corollary 5.4 and the estimate (5.49), we obtain

|∂tψτ (T1, T2;φ
h
j )|−1

|γ + F̄N2
τ (λhj )| | − F̄N1

τ (λhj )|

| − FN2
τ (λhj )| |−γ + FN1

τ (λhj )|

 ≤ cλj
1 + γλj

1 1

1 1

 ≤ cmin(γ−1, λhj )

1 1

1 1

 .
The first estimate in Lemma 5.11 and the estimates (5.22) and (5.56) imply

∥I2,1∥2L2(Ω) ≤ cτ
2t−2

n

J∑
j=1

(
λhj

1 + λhj t
α
n

)2 (
(Rhg1, φ

h
j )

2 + (Rhg2, φ
h
j )

2
)

≤ cτ2t−2
n

J∑
j=1

(λhj )
2
(
(Rhg1, φ

h
j )

2 + (Rhg2, φ
h
j )

2
)
,

= cτ2t−2
n

(
∥∆hRhg1∥2L2(Ω) + ∥∆hRhg2∥2L2(Ω)

)
≤ cτ2t−2

n

(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
while the second estimate in Lemma 5.11 indicates

∥I2,1∥2L2(Ω) ≤ cτ
2t2α−2

n γ−2
J∑

j=1

(λhj )
2
(
(Rhg1, φ

h
j )

2 + (Rhg2, φ
h
j )

2
)

≤ cτ2t2α−2
n γ−2

(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
.

Combining these two estimates we arrive at

∥I2,1∥L2(Ω) ≤ cτtα−1
n min(γ−1, t−α

n )
(
∥a∥L2(Ω) + ∥b∥L2(Ω)

)
.

The estimates for I2,2 and I2,3 follows analogously.

Then we combine Lemmas 5.4, 5.9, 5.13 and 5.14 to obtain the following error estimate for the

fully discrete scheme (5.50).

Theorem 5.4. Let M(λ1) be the constant defined in Lemma 5.1, and suppose that T2 > T1 ≥M(λ1).

Let ãδh,τ , b̃
δ
h,τ and Ũ δ

n be the solutions to (5.50), and u be the exact solution to the problem (5.3). If

a, b ∈ Ḣq(Ω) with q ∈ [0, 2], then there holds

∥ãδh,τ − a∥L2(Ω) + ∥b̃δh,τ − b∥L2(Ω) ≤ c
(
γ

q
2 + τ + (h2 + δ)γ−1

)
and

∥Ũ δ
n − u(tn)∥L2(Ω) ≤ c

[
γmin(γ−(1− q

2
), t

−(1− q
2
)α

n ) + (τtα−1
n + h2 + δ

)
min(γ−1, t−α

n )
]
.

Moreover, if a, b ∈ L2(Ω), then for any s ∈ (0, 1]

∥ãδh,τ − a∥L2(Ω) + ∥b̃δh,τ − b∥H−s(Ω) → 0, as γ, τ → 0,
δ

γ
→ 0,

h

γ
→ 0.

In the estimate, the constant c may depend on T1, T2, T , a and b, but is always independent of τ , h,

γ, δ and t.
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5.4 Numerical results

In this section, we illustrate our theoretical results by presenting some one- and two-dimensional

examples. Throughout, we consider the observation data

gδ = u(T ) + εδ sup
x∈Ω

u(x, T ) and gδ = u(T ) + εδ sup
x∈Ω

u(x, T ),

ε is generated following the standard Gaussian distribution and δ denotes the (relative) noise level.

Throughout this section, we fix T1 = 1 and T2 = 1.2.

To examine a priori estimates in Sections 5.2 and 6.3, we begin with a one-dimensional diffusion-

wave model (5.3) in the unit interval Ω = (0, 1). We use the standard piecewise linear FEM with

uniform mesh size h = 1/(J + 1) for the space discretization, and the backward Euler convolution

quadrature method with uniform step size τ = T/N for the time discretization.

To solve the discrete system (5.50), we apply the following direct method by spectral decomposition.

For the uniform mesh size h = 1/(J+1), we let xi = ih for all i = 0, 1, . . . , J+1. Then the eigenvalues

and eigenfunctions of −∆h have the closed form:

λhj =
6

h2
1− cos(jπh)

2 + cos(jπh)
, φh

j (xi) =
√
2 sin(jπxi), i, j = 1, 2, · · · , J. (5.57)

We compute the observation data u(T1), u(T2) and reference solution u(t) by using the semidiscrete

scheme with a very fine mesh size, i.e., h = 1/2000.

For each example, we measure the errors of semidiscrete scheme

eini,s =
∥ũδh(0)− a∥L2(Ω)

∥a∥L2(Ω)
+
∥∂tũδh(0)− b∥L2(Ω)

∥b∥L2(Ω)
,

es(t) = ∥ũδh(t)− u(t)∥L2(Ω)/∥u(t)∥L2(Ω) for some t > 0,

and the errors of fully discrete scheme

eini,f =
∥ãδh,τ − a∥L2(Ω)

∥a∥L2(Ω)
+
∥b̃δh,τ − b∥L2(Ω)

∥b∥L2(Ω)
,

enf = ∥Ũ δ
n − u(tn)∥L2(Ω)/∥u(tn)∥L2(Ω) for some n ≥ 1.

The normalization enables us to observe the behavior of the error with respect to α and t.

Example (a): smooth initial data. We start with the smooth initial condition

a(x) = − sin(πx), b(x) = x(1− x) ∈ Ḣ2(Ω) = H2(Ω) ∩H1
0 (Ω),

and source term f ≡ 0. We compute the solution of the regularized semidiscrete scheme (5.31), ũδh(0)

∂tũ
δ
h(0)

 = (γI + Gh(T1, T2))−1

Phg
δ
1

Phg
δ
2

 and ũδh(t) = Fh(t)(γI + Gh(T1, T2))−1

Phg
δ
1

Phg
δ
2

 (5.58)
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by using the formulae ũδh(0)

∂tũ
δ
h(0)

 =
J∑

j=1

∂tψ(T1, T2;λ
h
j )

−1

γ + T2Eα,2(−λhj Tα
2 ) −T1Eα,2(−λhj Tα

1 )

−Eα,1(−λhj Tα
2 ) −γ + Eα,1(−λhj Tα

1 )

(Phg
δ
1, φ

h
j )φ

h
j

(Phg
δ
2, φ

h
j )φ

h
j

 ,
ũδh(t) =

J∑
j=1

ψ̃(T1, T2;λ
h
j )

−1
[
Eα,1(−λhj tα) tEα,2(−λhj tα)

]
γ + T2Eα,2(−λhj Tα

2 ) −T1Eα,2(−λhj Tα
1 )

−Eα,1(−λhj Tα
2 ) −γ + Eα,1(−λhj Tα

1 )

(Phg
δ
1, φ

h
j )φ

h
j

(Phg
δ
2, φ

h
j )φ

h
j


where (λhj , φ

h
j ), for j = 1, · · · , J are given by (5.57). To accurately evaluate the Mittag-Leffler func-

tions, we employ the numerical algorithm developed in [91].
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Figure 5.1: Example (a): plot of semidiscrete errors. Left: error for approximating initial data, where

h =
√
δ, and γ =

√
δ/12,

√
δ,
√
δ/2 for α = 1.25, 1.5, 1.75 respectively. Right: error for approximating

solution u(t) at t = 0.5, where h =
√
δ and γ =

√
δ/5,
√
δ/5,
√
δ/2 for α = 1.25, 1.5, 1.75 respectively.

By Theorem 5.3, we compute ũδh(0) and ∂tũ
δ
h(0) by choosing the parameters γ ∼

√
δ and h ∼

√
δ

for a given δ, and expect a convergence of order O(
√
δ). For t > 0, we compute ũδh(t) by choosing

the parameters h ∼
√
δ, γ ∼ δ for a given δ, and expect a convergence of order O(δ). In Figure 5.1,

we plot the errors of semidiscrete solutions (5.58) with different fractional order α. Our numerical

experiments fully support our theoretical results in Theorem 5.3. It is interesting to observe that the

error in case of α = 1.5 is bigger when reconstructing the initial condition, while the error for α = 1.5

becomes smaller when we compute the solution at time level t > 0.

Similarly, we compute the numerical solutions to the fully discrete scheme (5.50)ãδh,τ
b̃δh,τ

 = (γI+Gh,τ (T1, T2))−1

Phg
δ
1

Phg
δ
2

 and Ũ δ
n = Fn

h,τ (γI+Gh,τ (T1, T2))−1

Phg
δ
1

Phg
δ
2

 , for all ∀n ≥ 1.
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We compute them by using the formulae∂taδh,τ
∂tb

δ
h,τ

 =
J∑

j=1

∂tψτ (T1, T2;λ
h
j )

−1

γ + F̄N2
h,τ −F̄N1

h,τ

−FN2
h,τ −γ + FN1

h,τ

(Phg
δ
1, φ

h
j )φ

h
j

(Phg
δ
2, φ

h
j )φ

h
j

 ,
∂tU

δ
n =

J∑
j=1

ψ̃τ (T1, T2;λ
h
j )

−1
[
Fn
h,τ F̄n

h,τ

]γ + F̄N2
h,τ −F̄N1

h,τ

FN2
h,τ −γ + FN1

h,τ

(Phg
δ
1, φ

h
j )φ

h
j

(Phg
δ
2, φ

h
j )φ

h
j

 .
Then Theorem 5.4 implies that for a, b ∈ Ḣ2(Ω)

∥aδh,τ − a∥L2(Ω) + ∥bδh,τ − b∥L2(Ω) ≤ c(γ + τ + (h2 + δ)γ−1),

and

∥∂tU δ
n − u(tn)∥L2(Ω) ≤ c(γ + τ + h2 + δ), for a fixed tn > 0.

Therefore, with a given noise level δ, to recover the initial data a and b, we choose parameters h ∼
√
δ,

τ ∼
√
δ and γ ∼

√
δ, while to approximate solution u(tn) with some tn > 0, we let h ∼

√
δ, τ ∼ δ,

γ ∼ δ. According to Theorem 5.4, we expect that the convergence rate for the error eini,f is O(
√
δ)

while the error enf converges to zero as O(δ) for any fixed tn > 0. They are fully supported by numerical

results plotted in Figure 5.2.
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(b) enf with tn = 0.5.

Figure 5.2: Example (a): fully discrete errors. Left: error for approximating initial data, where

h =
√
δ, τ =

√
δ/2 and γ =

√
δ/10,

√
δ/10,

√
δ/15 for α = 1.25, 1.5, 1.75 respectively, Right: error

for approximating solution u(tn) at tn = 0.5, where h =
√
δ, τ = 10δ and γ = δ, δ/2, δ/2 for

α = 1.25, 1.5, 1.75 respectively.

Example (b): non-smooth initial data. Next, we turn to the case of nonsmooth data and expect

to examine the influence of weak regularity of problem data. Consider

a(x) =


0, 0 ≤ x ≤ 0.5;

1, 0.5 ≤ x ≤ 1.

, b(x) =


1, 0 ≤ x ≤ 0.5;

0, 0.5 ≤ x ≤ 1
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Figure 5.3: Example (b): semidiscrete errors. Left: error for reconstructing initial data, where h =
√
δ

and γ = δ4/5/15, δ4/5/15, δ4/5/8 for α = 1.25, 1.5, 1.75 respectively. Right: error for approximately

solving u(t) at t = 0.5, where h =
√
δ and γ = δ/10, δ/5, δ/5 for α = 1.25, 1.5, 1.75 respectively

.
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Figure 5.4: Example (b): fully discrete errors. Left: error for reconstructing initial data, where

h =
√
δ, τ = δ1/5/20 and γ = δ4/5/2, δ4/5/15, δ4/5/2 for α = 1.25, 1.5, 1.75 respectively. Right:

error for approximately solving u(tn) at tn = 0.5, where h =
√
δ, τ = 10δ, γ = δ/10, δ, δ/2 for

α = 1.25, 1.5, 1.75 respectively.

96



and source term f ≡ 0. It is well-known that a, b ∈ Ḣ
1
2
−ε(Ω) for any ε ∈ (0, 12 ]. According to Theorem

5.3, the error of the semidiscrete discrete solution satisfies

∥ũδh − a∥L2(Ω) + ∥∂tũδh − b∥L2(Ω) ≤ c(γ
q
2 + (h2 + δ)γ−1),

∥(ũδh − u)(t)∥L2(Ω) ≤ c(γ + h2 + δ), for a given t > 0.

Therefore, for given δ, to numerically reconstruct the initial data a and b, we let h =
√
δ, and γ ∼ δ4/5

and expect that the error converges to zero as O(δ
1
5 ), while to approximate u(t) for some t > 0, we

let h ∼
√
δ and γ ∼ δ and expect a convergence of order O(δ). The theoretical results agree well with

the numerical results in Figure 5.3.

In Figure 5.4 we plot errors of the numerical reconstruction by fully discrete scheme (5.50). Ac-

cording to Theorem 5.4 we have the error estimate that (with q = 1
2 − ε)

∥aδh,τ − a∥L2(Ω) + ∥bδh,τ − b∥L2(Ω) ≤ c(γ
q
2 + τ + (h2 + δ)γ−1),

∥∂tU δ
n − u(tn)∥L2(Ω) ≤ c(γ + τ + h2 + δ), for any fixed tn > 0.

Therefore, we choose parameters h ∼
√
δ, τ ∼ δ1/5 and γ ∼ δ4/5 for the numerical reconstruction

of initial data, while we let h ∼
√
δ, τ ∼ δ and γ ∼ δ for approximately solving the solution u(tn)

for some tn > 0. The empirical convergence results show that eini,f ∼ δ
1
5 and enf ∼ δ, which are

consistent with our theoretical findings. Finally, in figure 5.5, we provide the profiles of solutions to

semidiscrete and fully discrete schemes with different noise levels, which show clearly the convergence

of the discrete approximation as the noise level δ decreases.

Example (c): 2D examples. Finally, we test a two dimensional diffusion-wave model in Ω = (0, 1)2

with smooth initial conditions:

a(x, y) = sin(2πx) sin(2πy), b(x, y) = 4x(1− x)y(1− y) ∈ Ḣ2(Ω) = H2(Ω) ∩H1
0 (Ω),

and source term f ≡ 0. The reference solution is computed with h = 1/150, τ = 1/1000. Noting that

the fully discrete system is not symmetric, we apply the biconjugate gradient stabilized method [98].

In Figure 5.6 and 5.7, we plot profiles of (numerical) reconstruction of initial data a, b and approx-

imation errors, with different noise level δ as well as different parameters γ, h, τ chosen according to

δ. The empirical observations are in excellent agreement with theoretical results, e.g., convergence as

the noise level δ decreases to zero.1

1Chapter 5 is reprinted with permission from ”Backward Diffusion-Wave Problem: Stability, Regularization, and

Approximation”, Zhengqi Zhang and Zhi Zhou, 2022, SIAM Journal on Scientific Computing Vol. 44 Iss. 5. The

candidate mainly works on the research idea and Methodology, the proof details, the coding and data collection in

numerical experiments.
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Figure 5.5: Example(b): profiles of semidiscrete and fully discrete solutions with α = 1.5 for δ =

4%, 1%, 0.25%. Up row: h =
√
δ/10, γ = δ4/5/5 for both (a) and (b); h =

√
δ/10, γ = δ/5 for (c).

Down row : h =
√
δ/10, τ = δ1/5/10, γ = δ4/5/15 for both (d) and (e); h =

√
δ/10, τ = δ, γ = δ/10

for (f).

(a) δ = 1e− 2. (b) δ = 5e− 3. (c) δ = 2.5e− 3.

Figure 5.6: Example(c): Top left: Exact initial data a. The remaining three columns are profiles of

numerical reconstructions aδh,τ and theirs errors, with h =
√
δ/4, τ =

√
δ/20, γ =

√
δ/4000.
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(a) δ = 1e− 2. (b) δ = 5e− 3. (c) δ = 2.5e− 3.

Figure 5.7: Example(c): Top left: Exact initial data b. The remaining three columns are profiles of

numerical reconstructions bδh,τ and their errors, with h =
√
δ/4, τ =

√
δ/20, γ =

√
δ/4000.
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CHAPTER 6.

Inverse Potential In Diffusion Equations from terminal Observation

In this chapter we consider an inverse potential problem for the diffusion model with a space-dependent

potential and its rigorous numerical analysis. Let Ω ⊂ Rd (d = 1, 2, 3) be a convex polyhedral domain

with a boundary ∂Ω. Fixing T > 0 as the final time, we consider the following initial-boundary value

problem for the diffusion model with α ∈ (0, 1]:
∂αt u(x, t)−∆u(x, t) + q(x)u(x, t) = f(x), (x, t) ∈ Ω× (0, T ],

u(x, t) = b(x), (x, t) ∈ ∂Ω× (0, T ],

u(x, 0) = v(x), x ∈ Ω,

(6.1)

where v denotes the initial condition, b and f are space-dependent boundary data and source term,

respectively. The function q refers to the radiativity or reaction coefficient or potential in the standard

parabolic case (α = 1), dependent of the specific applications. Throughout, we assume that the

potential q is space-dependent.

The notation ∂αt u denotes the conventional first-order derivative when α = 1, and the Djrbashian-

Caputo fractional derivative in time t for α ∈ (0, 1) defined in (2.3).

We study the following inverse potential problem for the (sub)diffusion model (6.1): setting

appropriate problem data v, f, b and measuring the final time data g(x) := u(x, T ; q†), then we aim to

recover the unknown potential term q†(x) ∈ L∞(Ω) such that

u(x, T ; q†) = g(x) in Ω.

Here we denote the solution corresponding to the potential q by u(x, t; q). We also consider the

numerical reconstruction from a noisy data

gδ(x) = u(x, T ; q†) + ξ(x) in Ω,

and ξ denotes the measurement noise. The accuracy of the observational data gδ is measured by the

noise level ∥gδ − g∥C(Ω) = δ. This inverse potential problem arises in many practical applications,

where q† represents the radiativity coefficient in heat conduction [106] and perfusion coefficient in

Pennes’ bio-heat equation in human physiology [86].

In the following, we construct an operator K from the PDE (6.1) as follows:

Kψ(x) =
f(x)− ∂αt u(x, T ;ψ) + ∆g(x)

g(x)
.
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From the observational data g(x) := u(x, T ; q), we see that the exact potential q† is one of the fixed

points of K. We show the monotonicity of K and use it to construct a decreasing sequence converging

to one fixed point. With this monotone sequence, we prove that there is at most one fixed point,

which immediately leads to the uniqueness result of the inverse problem (Theorem 6.2). Besides, this

argument also deduces a simple reconstruction algorithm. Noting that such the operator K has been

considered in [34, 113], but the argument is substantially different. For instance, in [34], the proof

of uniqueness relied on a unique continuation result of the solution u, while the proof in [113] used

some inverse spectral estimates, which are only valid in the one-dimensional case (cf. [113, Lemma

2.2]). In this work, our analysis mainly relies on the monotonicity of the operator K, which works for

convex polyhedral domains in higher dimensions. This novel argument also provides the feasibility of

applying the approach in other PDE models. Moreover, under some conditions on problem data, we

show a Lipschitz-type stability in Hilbert spaces (Theorem 6.3)

∥q1 − q2∥L2(Ω) ≤ C∥u(T ; q1)− u(T ; q2)∥H2(Ω), for all q1, q2 ∈ Q.

The proof relies heavily on the smoothing properties and asymptotics of solution operators. This

conditional stability plays an essential role in the numerical analysis of our reconstruction algorithm

with fully discretization in space and time.

The rest of the Chapter is organized as follows. In Section 6.1, we provide some preliminary

results and show the uniqueness of the inverse potential problem by constructing a monotone fixed

point iteration. Then in Section 6.2, we prove a conditional stability of the inverse problem in Hilbert

spaces by using the smoothing properties and asymptotics of solution operators. The numerical

reconstruction with fully discretization is developed and analyzed in Section 6.3, where we show

the linear convergence of the iterative algorithm and establish a priori error estimates (in terms of

discretization parameters and noise level) for the reconstructed potential. Finally, in Section 6.4, we

present illustrative one- and two-dimensional numerical results to complement the analysis.

Now we conclude with some useful notations. For any k ≥ 0 and p ≥ 1, the space W k,p(Ω)

denotes the standard Sobolev spaces of the kth order, and we write Hk(Ω) when p = 2. The notation

(·, ·) denotes the L2(Ω) inner product. We use the Bochner spaces W k,p(0, T ;B) etc., with B being

a Banach space. Throughout, the notations c and C, with or without a subscript, denote generic

constants which may change at each occurrence, but they are always independent of space mesh size

h, time step size τ and noise level δ.
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6.1 Unique identification by the monotone iteration

The aim of this section is to investigate the uniqueness of the inverse potential problem. Our approach

is to propose a monotone operator which generates a pointwise decreasing sequence converging to the

exact potential.

To begin with, we collect some preliminary setting for the controllable conditions v, b, f , and the

(unknown) exact potential q†. Throughout, we assume that the exact potential

q† ∈ Q ∩ C(Ω) with the set Q := {ψ ∈ L∞(Ω) : 0 ≤ ψ ≤M1}. (6.2)

Now we recall the maximum principle for the diffusion model (6.1). See [21] for the normal

diffusion, [72] and [38, Section 6.5] for the subdiffusion.

Lemma 6.1. Let q ∈ Q ∩ C(Ω), f ∈ L∞(0, T ;L2(Ω)), v ∈ L2(Ω) and b = 0. Assume that v and f

are non-negative functions. Then the solution u to equation (6.1) satisfies u ≥ 0 a.e. in Ω× (0, T ).

Next, we present the solution representation of the initial-boundary value problem (6.1). For the

simplicity of notations, we let I be the identity operator and A(q) be the realization of −∆+ qI with

the homogeneous Dirichlet boundary condition, where the domain is Dom(A(q)) = {ψ ∈ H1
0 (Ω) :

A(q)ψ ∈ L2(Ω)} = H1
0 (Ω) ∩H2(Ω). If q ∈ Q, for any ψ ∈ H1

0 (Ω) ∩H2(Ω), the full elliptic regularity

implies (see e.g. [64, Lemma 2.1] and [23, Theorems 3.3 and 3.4])

c1∥ψ∥H2(Ω) ≤ ∥A(q)ψ∥L2(Ω) + ∥ψ∥L2(Ω) ≤ c2∥ψ∥H2(Ω) (6.3)

with constants c1 and c2 independent of q.

Let D(q) be the Dirichlet map by ϕ = D(q)ψ with ϕ satisfying

−∆ϕ+ qϕ = 0 in Ω and ϕ = ψ in ∂Ω.

In particular, for any q ∈ Q, there exists a constant c independent of q such that

∥D(q)ψ∥H2(Ω) ≤ C∥ψ∥H 3
2 (∂Ω)

for all ψ ∈ H
3
2 (∂Ω). (6.4)

This is a direct result of the regularity of the Dirichlet operator D(0) [62, (1.2.2)] and a simple shift

argument.

Then the solution u of problem (6.1) could be represented by [62, eq. (2.2)]

u(t) = F (t; q)v +A(q)

∫ t

0
E(s; q)D(q)bds+

∫ t

0
E(s; q)fds

= F (t; q)v + (I − F (t; q))D(q)b+ (I − F (t; q))A(q)−1f,

(6.5)
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where the operators F (t; q) and E(t; q) are defined by [38, eq. (6.25) and (6.26)]

F (t; q) =
1

2πi

∫
Γθ,κ

eztzα−1(zα +A(q))−1 dz and E(t; q) =
1

2πi

∫
Γθ,κ

ezt(zα +A(q))−1 dz, (6.6)

respectively. Here Γθ,κ denotes the integral contour in the complex plane C oriented counterclockwise,

defined by Γθ,κ = {z ∈ C : |z| = κ, | arg z| ≤ θ}∪{z ∈ C : z = κe±iθ, ρ ≥ κ}, with κ ≥ 0 and θ ∈ (π2 , π).

Throughout, we fix θ ∈ (π2 , π) so that zα ∈ Σαθ ⊂ Σθ := {0 ̸= z ∈ C : arg(z) ≤ θ}, for all z ∈ Σθ.

Note that E(t; q) = −A(q) d
dtF (t; q), and in case that α = 1 there holds F (t; q) = E(t; q).

The next lemma gives smoothing properties and asymptotics of F (t; q) and E(t; q). The proof

follows from the resolvent estimate (for any q ∈ Q) [4, Example 3.7.5 and Theorem 3.7.11]:

∥(z +A(q))−1∥ ≤ cθ(|z|−1, λ−1) ∀z ∈ Σθ, ∀ θ ∈ (0, π), (6.7)

where ∥ · ∥ denotes the operator norm from L2(Ω) to L2(Ω), and λ denotes the smallest eigenvalue

of −∆ with homogeneous Dirichlet boundary condition. In case that q ∈ Q, the constant cθ can be

chosen independent of q. The full proof of the following lemma has been given in [38, Theorems 6.4

and 3.2].

Lemma 6.2. Let λ be the smallest eigenvalue of −∆ with homogeneous boundary condition. Let

F (t; q) and E(t; q) be the solution operators defined in (6.6) with potential coefficient q ∈ Q. Then

they satisfy the following properties:

(i) ∥A(q)F (t; q)v∥L2(Ω) + t1−α∥A(q)E(t; q)v∥L2(Ω) ≤ ct−α∥v∥L2(Ω), ∀ t ∈ (0, T ];

(ii) ∥F (t; q)v∥L2(Ω) + t1−α∥E(t; q)v∥L2(Ω) ≤ cmin(1, λ−1t−α)∥v∥L2(Ω), ∀ t ∈ (0, T ],

where the constants are independent of q and t.

Throughout the paper, we also need the following assumption on the problem data.

Assumption 6.1. Let the initial data v, the boundary data b and the source term f satisfy the

following conditions:

(i) v ∈ H2(Ω), v ≥M2 > 0 in Ω, v(x) = b(x) for all x ∈ ∂Ω;

(ii) b ∈ H2(∂Ω), b ≥M2 > 0 in ∂Ω;

(iii) f ∈W 1,p(Ω) ⊂ C(Ω) (with p > max(d, 2)), f ≥ 0 and f +∆v −M1v ≥ 0 in Ω.

Under Assumption 6.1, we have the following results about the solution regularity and behaviors

for the direct problem (6.1).

Lemma 6.3. Let q ∈ Q and Assumption 6.1 be valid. Let u(t) be the solution to problem (6.1) with

potential q. Then The following statements are valid.
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(i) u ∈ C([0, T ];H2(Ω)), ∂αt u ∈ C((0, T ];H2(Ω)), and there exists a constant C independent of q

such that ∥u∥C(Ω×[0,T ]) ≤ C.

Moreover, if q ∈ C(Ω) ∩Q, then

(ii) ∂αt u(x, t) ≥ 0, u(x, t) ≥M2 for all (x, t) ∈ Ω× (0, T ];

(iii) ∆u(x, t) ∈ C(Ω), f(x) + ∆u(x, t) ≥ q(x)M2 for all t > 0 and x ∈ Ω.

Proof. By the smoothing property in Lemma 6.2, we observe that

A(q)[F (t; q)v − F (t; q)D(q)b− F (t; q)A(q)−1f ] ∈ L2(Ω).

Then the elliptic regularity (see [64, Lemma 2.1] and [23, Theorems 3.3 and 3.4]) implies that F (t; q)v−

F (t; q)D(q)b − F (t; q)A(q)−1f ∈ H2(Ω). Besides, we observe that D(q)b and A(q)−1f belong to

H2(Ω) (see e.g. [1, Proposition 2.12] and [17, Theorem B.54]). These together with (6.5) imply that

u ∈ C([0, T ];H2(Ω)). Finally, we define an auxiliary function ϕ(x, t) satisfying
∂αt ϕ(x, t)−∆ϕ(x, t) = f(x), (x, t) ∈ Ω× (0, T ],

ϕ(x, t) = b(x), (x, t) ∈ ∂Ω× (0, T ],

ϕ(x, 0) = v(x), x ∈ Ω.

(6.8)

With Assumption 6.1 and the maximal Lp regularity (see e.g. [64, Lemma 2.1] for parabolic equation

and [38, Theorem 6.11] for fractional evolution equations), we know that

ϕ ∈Wα,p(0, T ;L2(Ω)) ∩ Lp(0, T ;H2(Ω)) for any p ∈ (1,∞).

Then by means of the Sobolev embedding and the interpolation between Wα,p(0, T ;L2(Ω)) and

Lp(0, T ;H2(Ω)) with p > 4/α (see e.g., [3, Theorem 5.2]), we have ϕ ∈ C([0, T ] × Ω). As a re-

sult, the comparison principle, i.e. Lemma 6.1, implies ∥u∥C([0,T ]×Ω) ≤ ∥ϕ∥C([0,T ]×Ω) ≤ C, where the

constant C is independent of potential q.

Next, we let w = ∂αt u, which is the solution to the following initial-boundary value problem
∂αt w(x, t)−∆w(x, t) + q(x)w(x, t) = 0, (x, t) ∈ Ω× (0, T ],

w(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

w(x, 0) = f(x) + ∆v(x)− q(x)v(x), x ∈ Ω.

(6.9)

Noting that w(x, 0) ∈ L2(Ω) by Assumption 6.1, then we apply Lemma 6.2 to arrive that

A(q)w(t) = A(q)F (t; q)[f +∆v − qv] ∈ L2(Ω).

Then the elliptic regularity implies ∂αt u(t) = w(t) ∈ H2(Ω)∩H1
0 (Ω) for t > 0. Then we complete the

proof of (i).
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Next, we let q ∈ C(Ω)∩Q. Recalling Assumption 6.1 (i) and (iii), we have f(x)+∆v(x)−q(x)v(x) ≥

0 a.e. in Ω. This and Lemma 6.1 indicate the ∂αt u(x, t) ≥ 0 for all (x, t) ∈ Ω × (0, T ]. This further

implies for all t > 0 and x ∈ Ω

u(x, t) = u(x, 0) +

∫ t

0

(t− s)α−1

Γ(α)
∂αs u(x, s) ds ≥ u(x, 0) ≥M2

Then we complete the proof of (ii).

Finally, the facts that u(t), ∂αt u(t), f ∈ C(Ω) and q ∈ C(Ω) lead to ∆u(t) ∈ C(Ω). By the

non-negativity of ∂αt u(x, t) we conclude that for any t > 0,

f(x) + ∆u(x, t) = ∂αt u(x, t) + q(x)u(x, t) ≥ q(x)u(x, t) ≥ q(x)M2 in Ω. (6.10)

This completes the proof of (iii).

From now on, we use the notation u(q) to denote the solution to (6.1) with the potential q. Let

q† ∈ C(Ω)∩Q be the exact potential to be reconstructed. Under Assumption 6.1, according to Lemma

6.3, the (exact) observation g(x) = u(x, T ; q†) satisfies

g ∈ C(Ω), ∆g ∈ C(Ω), f(x) + ∆g(x) ≥ 0, and g(x) ≥M2 > 0 for all x ∈ Ω. (6.11)

To show the uniqueness of the potential, we define an operator

Kq(x) =
f(x)− ∂αt u(x, T ; q) + ∆g(x)

g(x)
for q ∈ Q. (6.12)

Under Assumption 6.1, Lemma 6.3 implies that the exact potential q† belongs to C(Ω) ∩ S, where

S :=
{
ψ ∈ L∞(Ω) : 0 ≤ ψ ≤ f(x) + ∆g(x)

g(x)

}
.

Next, we intend to show that the inverse potential problem is equivalent to find a fixed point of

the operator K in the set D(K). This is given by the following lemma.

Lemma 6.4. Let Assumption 6.1 be valid and the data g satisfy the a priori estimate (6.11). The

operator K is defined by (6.12). Then we have the following equivalence.

(i) If q† ∈ Q ∩ C(Ω) satisfies u(x, T ; q†) = g(x), then q† is a fixed point of K in S.

(ii) If q∗ ∈ S is a fixed point of K, then q∗ ∈ C(Ω) and q∗ satisfies u(x, T ; q∗) = g(x).

Proof. It is obvious that u(x, T ; q†) = g(x) implies that q† is the fixed point of K. Then the relation

(6.11) and the fact that ∂αt u(x, t; q
†) ≥ 0 (by Lemma 6.3) yield that q† ∈ S.

Then it suffices to show the reversed conclusion. We assume that q∗ ∈ S is one fixed point of the

operator K. According to the a priori estimate (6.11), we have g,∆g, f ∈ C(Ω) and g ≥ M2. This

together with the fact that ∂αt u(T ; q
∗) ∈ C(Ω) in Lemma 6.3 (i) indicates

q∗ =
f(x)− ∂αt u(x, T ; q∗) + ∆g(x)

g(x)
∈ C(Ω) ∩ S.
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Moreover, we note that

f(x)− ∂αt u(x, T ; q∗) = q∗(x)g(x)−∆g(x) = −∆u(x, T ; q∗) + q∗(x)u(x, T ; q∗).

Therefore, w = u(x, T ; q∗)− g(x) satisfies the elliptic system
−∆w(x) + q∗(x)w(x) = 0, x ∈ Ω,

w(x) = 0, x ∈ ∂Ω.

Then the comparison principle of elliptic equation implies w = 0. Hence, u(x, T ; q∗) = g(x), which

implies that q∗ generates the terminal measurement g(x).

Due to the equivalence given by Lemma 6.4 and the fact that q† ∈ C(Ω)∩Q, we aim to verify that

the fixed point of K is unique in S. To this end, we intend to show that K generates a decreasing

sequence in S from an a priori chosen starting value. Then the uniqueness of the fixed point follows

immediately.

Lemma 6.5 (Monotonicity). Let Assumption 6.1 be valid and the data g satisfy the a priori estimate

(6.11). The operator K is defined by (6.12). Then K is a monotone operator, i.e., Kq1 ≤ Kq2 for

any q1, q2 ∈ C(Ω) ∩ S with q1 ≤ q2 in Ω.

Proof. First of all, we recall Lemma 6.3 which implies that ∂αt u(x, t; q2) ≥ 0 in (0, T ] × Ω. Then for

w(t) = ∂αt u(t; q1)− ∂αt u(t; q2), and note that w satisfies
(∂αt −∆+ q1(x))w(x, t) = (q2 − q1)∂αt u(x, t; q2), (x, t) ∈ Ω× (0, T ],

w(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

w(x, 0) = (q2 − q1)v(x), x ∈ Ω.

Since (q2 − q1)v(x) and (q2 − q1)∂αt u(x, t; q2) ≥ 0, using Lemma 6.1 to the above system yields that

w(x, t) = ∂αt u(x, t; q1)− ∂αt u(x, t; q2) ≥ 0 a.e. in Ω.

Note that w(T ) ∈ C(Ω) according to Lemma 6.3 (i), and hence w(T ) ≥ 0 in Ω. From the definition of

K in (6.12) and the fact that g(x) ≥M2 > 0 in Ω by (6.11), we have

Kq1 −Kq2 =
∂αt u(x, T ; q2)− ∂αt u(x, T ; q1)

g(x)
≤ 0 in Ω.

This completes the proof of the lemma.

Then the monotonicity of K immediately implies the following lemma.

Lemma 6.6. Let Assumption 6.1 be valid and the data g satisfy the a priori estimate (6.11). The

operator K is defined by (6.12). If q1, q2 ∈ C(Ω) ∩ S are both fixed points of K and q1 ≤ q2, then

q1 = q2.
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Proof. Let w(x, t) = u(x, t; q1)− u(x, t; q2) ∈ H2(Ω), then w satisfies
(∂αt −∆+ q1(x))w(x, t) = (q2 − q1)u(x, t; q2), (x, t) ∈ Ω× (0, T ],

w(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ],

w(x, 0) = 0, x ∈ Ω.

(6.13)

From Lemma 6.3 (ii), we have u(x, t; q2) ≥M2 > 0 in Ω× [0, T ], which leads to the non-negativity of

the source (q2− q1)u(x, t; q2). This yields that w(x, t) ≥ 0 in Ω× [0, T ]. From the proof of Lemma 6.5,

we have ∂αt (u(x, t; q1)− u(x, t; q2)) = ∂αt w(x, t) ≥ 0. The relation

w(t) = w(0) +

∫ t

0

(t− s)α−1

Γ(α)
∂αs w(s) dt

together with the observations

w(T ) = u(T ; q1)− u(T ; q2) = 0, w(0) = 0 and ∂αt w(t) ≥ 0

immediately yields that ∂αt w(t) = 0 a.e. in (0, T ), and hence w(t) = 0 for all t ∈ [0, T ]. This and the

equation (6.13) imply that (q2− q1)u(x, t; q2) = 0 in Ω× [0, T ]. This together with the strict positivity

of u(x, t; q2) in Ω× [0, T ] leads to q1 = q2.

The above results motivate us to define the iteration:

q0(x) =
f(x) + ∆g(x)

g(x)
∈ C(Ω) ∩ S and qn = Kqn−1 for n ∈ N+. (6.14)

Note that the initial guess q0 is set to be the upper bound of the set S. Next, we shall state the

main theorem in this section which shows that the fixed point of K must be the limit of the sequence

{qn}∞n=0 generated by (6.14) and hence it is unique.

Theorem 6.2. Suppose that v, f, b satisfy Assumption 6.1 and the exact potential q† belongs to C(Ω)∩

Q. Then the sequence {qn}∞n=0 generated by (6.14) is included in C(Ω)∩S and converges decreasingly

to q†. Moreover, the fixed point of the operator K in S is unique.

Proof. Since q† ∈ C(Ω)∩Q, we conclude that the data g satisfy the a priori estimate (6.11). According

to Lemma 6.3 (i), we know that ∂αt u(T ; qn−1) ∈ C(Ω) and hence qn ∈ C(Ω).

From the proof of Lemma 6.5, we obtain that ∂αt u(T ; q0) ≥ 0 in Ω. This further implies

q1 = Kq0 =
f(x)− ∂αt u(x, T ; q0) + ∆g(x)

g(x)
≤ f(x) + ∆g(x)

g(x)
= q0(x) in Ω.

Meanwhile, we know that q† ∈ S and so q† ≤ q0. This and Lemma 6.5 result in

0 ≤ q† = Kq† ≤ Kq0 = q1.
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As a result, we obtain 0 ≤ q† ≤ q1 ≤ q0. Using Lemma 6.5 again, we have Kq† ≤ Kq1 ≤ Kq0, namely

q† ≤ q2 ≤ q1. Continuing this argument, we can conclude that

0 ≤ q† ≤ · · · ≤ qn+1 ≤ qn ≤ · · · ≤ q0.

Now we have proved that the sequence {qn}∞n=0 is decreasing. It is bounded by q† from below and q0

from above. Therefore, this sequence is included in C(Ω) ∩ S.

Next, we show that the sequence {qn}∞n=0 converges to q†. Note that the sequence {qn}∞n=0 is

decreasing, and it has a lower bound, therefore this sequence converges pointwise, and we denote the

limit by q∗ ∈ S. Moreover, there holds q† ≤ q∗ since q† is a lower bound of {qn}∞n=0, and q
† ≤ q∗ ≤ q0

indicates that q∗ ∈ S. Then q∗ is one fixed point of the operator K in S, and we apply Lemma 6.4

(ii) to conclude that q∗ ∈ C(Ω) ∩ S. Meanwhile, Lemma 6.4 (i) implies that q† ∈ C(Ω) is also a fixed

point of K in S. Therefore, we apply Lemma 6.6 and hence conclude that q† = q∗.

6.2 Conditional stability

The aim of this section is to establish a stability of the inverse potential problem. Note that [113]

provides a conditional stability in a Hilbert space setting for one dimensional diffusion problem by

applying a spectrum perturbation argument (cf. [113, Lemma 2.2] and [88]), which is not applicable in

high dimensional cases. We refer interested readers to [9, 10, 50] for some conditional stability results

for sufficiently small T .

Let us begin with the following a priori estimate for ∂αt u(t; q).

Lemma 6.7. Let q ∈ Q and u(q) be the solution to problem (6.1). Then we have the estimate

∥∂αt u(t; q)∥Hs(Ω) ≤ cmin(t−sα/2, t−α) for all s ∈ [0, 2],

where c is independent of q and t.

Proof. According to (6.9), we have the representation

∂αt u(t; q) = F (t; q)(∆v − qv + f) ∈ H2(Ω) ∩H1
0 (Ω) for all t > 0. (6.15)

Then applying Lemma 6.2, we obtain

∥∂αt u(t; q)∥L2(Ω) ≤ ∥F (t; q)(∆v − qv + f)∥L2(Ω) ≤ cmin(1, t−α)
(
∥v∥H2(Ω) + ∥f∥L2(Ω)

)
.

Next, by applying the norm equivalence in (6.3) and the estimate in Lemma 6.2, we derive

∥∂αt u(t; q)∥H2(Ω) ≤ c
(
∥F (t; q)(∆v − qv + f)∥L2(Ω) + ∥A(q)F (t; q)(∆v − qv + f)∥L2(Ω)

)
≤ c
(
min(1, t−α)∥∆v − qv + f∥L2(Ω) + ct−α∥∆v − qv + f∥L2(Ω)

≤ ct−α
(
∥v∥H2(Ω) + ∥f∥L2(Ω)

)
.
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These together with interpolation between L2(Ω) and H2(Ω)∩H1
0 (Ω) immediately lead to the desired

result.

For different potentials q1, q2 ∈ Q, we denote the solution to (6.1) with potential qi by u(qi). Then

the following lemma provides an important a priori estimate which (and whose discrete analogue)

plays a crucial role in our error analysis.

Lemma 6.8. Let Assumption 6.1 be valid and q1, q2 ∈ Q. Then for any t > t0 and any positive

parameter ϵ < min(1, 2− d
2) there holds

∥∂αt (u(q1)− u(q2))(t)∥L2(Ω) ≤ cmax(t−α, t−(1−ϵ)α)∥q1 − q2∥L2(Ω),

where the constant c is independent of q1, q2 and t.

Proof. Let ϕ(x, t) = ∂αt (u(q1)− u(q2))(t). Then we note that ϕ(x, t) ∈ H1
0 (Ω) satisfies

(∂αt −∆+ q1(x))ϕ(x, t) = (q2 − q1)∂αt u(x, t; q2) for (x, t) ∈ Ω× (0, T ] (6.16)

with the initial condition ϕ(0) = (q2 − q1)v. We apply the solution representation (6.5) to derive

ϕ(t) = F (t; q1)ϕ(0) +

∫ t

0
E(s; q1)(q2 − q1)∂αt u(t− s; q2) ds.

Taking L2 norm on the above relation, Lemma 6.2 and Assumption 6.1 lead to for any ϵ ∈ (0, 1)

∥ϕ(t)∥L2(Ω) = ∥F (t; q1)∥ ∥(q2 − q1)v∥L2(Ω) +

∫ t

0
∥E(s; q1)∥ ∥(q2 − q1)∂αt u(t− s; q2)∥L2(Ω) ds

≤ c∥q2 − q1∥L2(Ω)

(
t−α +

∫ t

0
s−1+ϵα/2∥∂αt u(t− s; q2)∥L∞(Ω) ds

)
.

Here we use the estimate that ∥E(s; q1)∥ ≤ cs−1+ϵα/2 which is a direct result of the second assertion of

Lemma 6.2 and the interpolation. Then according to Lemma 6.7 and the Sobolev embedding theorem,

we obtain for r > d
2 and d = 1, 2, 3,

∥ϕ(t)∥L2(Ω) ≤ c∥q2 − q1∥L2(Ω)

(
t−α +

∫ t

0
s−1+ϵα/2∥∂αt u(t− s; q2)∥L∞(Ω) ds

)
≤ c∥q2 − q1∥L2(Ω)

(
t−α +

∫ t

0
s−1+ϵα/2∥∂αt u(t− s; q2)∥Hr(Ω) ds

)
≤ c∥q2 − q1∥L2(Ω)

(
t−α +

∫ t

0
s−1+ϵα/2(t− s)−rα/2 ds

)
≤ c∥q2 − q1∥L2(Ω)

(
t−α + tϵα/2−rα/2

)
.

Finally, the choice that r = 2− ϵ leads to the estimate that

∥ϕ(t)∥L2(Ω) ≤ c∥q2 − q1∥L2(Ω)

(
t−α + t−α(1−ϵ)

)
≤ cmax(t−α, t−(1−ϵ)α)∥q1 − q2∥L2(Ω).

This completes the proof of the lemma.
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Next, we state the main theorem of this section, which shows the conditional stability of the inverse

potential problem.

Theorem 6.3. Let Assumption 6.1 be valid, q1, q2 ∈ Q, and u(t; qi) be the solution to (6.1) with the

potential qi. Then there exists T0 ≥ 0 such that for any T ≥ T0 there holds

∥q1 − q2∥L2(Ω) ≤ C∥u(T ; q1)− u(T ; q2)∥H2(Ω),

where the constant C is independent of q1, q2 and T .

Proof. Recalling that, for i = 1, 2, qi could be written as

qi =
f − ∂αt u(T ; qi) + ∆u(T ; qi)

u(T ; qi)
.

Then we split q1 − q2 into three parts:

q1 − q2 = f
u(T ; q2)− u(T ; q1)
u(T ; q1)u(T ; q2)

+
u(T ; q1)∂

α
t u(T ; q2)− u(T ; q2)∂αt u(T ; q1)
u(T ; q1)u(T ; q2)

+
u(T ; q2)∆u(T ; q1)− u(T ; q1)∆u(T ; q2)

u(T ; q1)u(T ; q2)
.

Using Assumption 6.1, we conclude that ui ≥M2 > 0 and hence∥∥∥f u(T ; q2)− u(T ; q1)
u(T ; q1)u(T ; q2)

∥∥∥
L2(Ω)

≤
∥f∥L∞(Ω)

M2
2

∥u(T ; q2)− u(T ; q1)∥L2(Ω).

Besides, we use the fact that ∥ui(T )∥L∞(Ω) and ∥∂αt ui(T )∥L∞(Ω) are bounded uniformly in q (Lemma

6.3) and Lemma 6.8 to derive for any ϵ close to 0,∥∥∥u(T ; q1)∂αt u(T ; q2)− u(T ; q2)∂αt u(T ; q1)
u(T ; q1)u(T ; q2)

∥∥∥
L2(Ω)

≤ c
(
∥u(T ; q1)∥L∞(Ω)∥∂αt (u(T ; q2)− u(T ; q1))∥L2(Ω) + ∥∂αt u(T ; q1)∥L∞(Ω)∥u(T ; q1)− u(T ; q2)∥L2(Ω)

)
≤ c
(
max(T−α, T−(1−ϵ)α)∥q1 − q2∥L2(Ω) + ∥u(T ; q1)− u(T ; q2)∥L2(Ω)

)
.

Similarly, we apply the fact that ∥ui(T )∥L∞(Ω) and ∥∆ui(T )∥L∞(Ω) are bounded uniformly in qi

(Lemma 6.3) to arrive at∥∥∥u(T ; q2)∆u(T ; q1)− u(T ; q1)∆u(T ; q2)
u(T ; q1)u(T ; q2)

∥∥∥
L2(Ω)

≤ c
(
∥u(T ; q1)∥L∞(Ω)∥∆(u(T ; q2)− u(T ; q1))∥L2(Ω) + ∥∆u(T ; q1)∥L∞(Ω)∥u(T ; q1)− u(T ; q2)∥L2(Ω)

)
≤ c
(
∥∆(u(T ; q1)− u(T ; q1))∥L2(Ω) + ∥u(T ; q1)− u(T ; q2)∥L2(Ω)

)
.

As a result, we arrive at

∥q1 − q2∥L2(Ω) ≤ c1∥u(T ; q1)− u(T ; q2)∥H2(Ω) + c2max(T−α, T−(1−ϵ)α)∥q1 − q2∥L2(Ω).

Then for T0 such that c2max(T−α
0 , T

−(1−ϵ)α
0 ) ≤ c3 for some constant c3 ∈ (0, 1), and T ≥ T0, we have

∥q1 − q2∥L2(Ω) ≤
c1

1− c3
∥u(T ; q1)− u(T ; q2)∥H2(Ω).

This completes the proof of the lemma.
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6.3 Completely discrete scheme

In this section, we shall develop a fully discrete scheme for solving the inverse potential problem. To

this end, we shall introduce the time stepping method using convolution quadrature in the first part,

then discuss the spatial discretization using finite element method. A reconstruction algorithm will be

presented to recover the potential from the noisy observational data. Finally, we establish an a priori

error bound showing the way to choose the (space/time) mesh sizes according to the noise level.

6.3.1 Time stepping scheme for solving the direct problem

The literature on the numerical approximation for the nonlocal-in-time subdiffusion equation (6.1)

is vast, see e.g., [42] for an overview of existing schemes. Here we apply the convolution quadrature

to discretize the fractional derivative on uniform grids studied in Section 2.5. Let {tn = nτ}Nn=0

be a uniform partition of the time interval [0, T ], with a time step size τ = T/N . The convolution

quadrature (CQ) was first proposed by Lubich [71] for discretizing Volterra integral equations. This

approach provides a systematic framework to construct high-order numerical methods to discretize

fractional derivatives, and has been the foundation of many early works. The time stepping scheme

for problem (6.1) reads: given u0(q) = v, find un(q) ∈ H1(Ω) such that γ0(u
n(q)) = b and

∂̄ατ u
n(q)−∆un(q) + qun(q) = f with n = 1, 2, . . . , N, (6.17)

In particular, when α = 1, the operator ∂̄ατ reduces to the standard backward difference quotient:

∂̄1τφ
n = φn−φn−1

τ , and the scheme (6.17) reduces to the standard backward Euler scheme.

Using the superposition principle, the time stepping solution in (6.17) could be written in the

operational form as ([49, equation (2.5)] and [111, equations (4.3)-(4.4)])

un(q) = Fτ (n; q)(v −D(q)b) +D(q)b+ τ
n∑

j=1

Eτ (j; q)f

= Fτ (n; q)(v −D(q)b) +D(q)b+ (I − Fτ (n; q))A(q)
−1f.

(6.18)

Here the time discrete operators Fτ (n; q) and Eτ (n; q) are defined by the discrete inverse Laplace

transform

Fτ (n; q) =
1

2πi

∫
Γτ
θ,σ

eztne−zτδτ (e
−zτ )α−1(δτ (e

−zτ )α +A(q))−1 dz,

Eτ (n; q) =
1

2πi

∫
Γτ
θ,σ

eztne−zτ (δτ (e
−zτ )α +A(q))−1 dz,

(6.19)

with δτ (ξ) = (1 − ξ)/τ and the contour Γτ
θ,σ := {z ∈ Γθ,σ : |ℑ(z)| ≤ π/τ} where θ ∈ (π/2, π) is close

to π/2 (oriented with an increasing imaginary part).

For any q ∈ Q, Lemma 2.4 and resolvent estimate of elliptic operator (6.7) immediately lead to

∥(δτ (e−zτ )α +A(q))−1∥ ≤ Cmin(|z−α|, λ−1), ∀z ∈ Σϕ, ∀ϕ ∈ (0, π), (6.20)
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for a constant C independent of q. Next we give some useful properties of Fτ (n; q) and Eτ (n; q).

The first lemma provides an estimate for Fτ (n; q)−F (tn; q). It has been proved in the earlier work

[111, Lemma 4.2, eq. (4.7)], so we omit its proof here.

Lemma 6.9. Let Fτ (n; q) and Eτ (n; q) be defined as in (6.19), and λ be the smallest eigenvalue of

−∆ with homogeneous Dirichlet boundary condition. Then for q ∈ Q, there holds

∥(Fτ (n; q)− F (tn; q))v∥L2(Ω) ≤ c n−1min(1, λ−1t−α
n )∥v∥L2(Ω) for all n ≥ 1,

and

∥A(q)(Fτ (n; q)− F (tn; q))v∥L2(Ω) ≤ c n−1t−α
n ∥v∥L2(Ω) for all n ≥ 1,

where the constants are independent of q, τ and tn.

The next lemma provides some smoothing and asymptotic properties of operators Fτ (t; q) and

Eτ (t; q). This is a discrete analogue to Lemma 6.2. The proof follows from the solution representation

(6.18)-(6.19), Lemma 2.4, the resolvent estimate (6.20), and the same argument of the proof of Lemma

6.2 in [38, Theorem 6.4 and 3.2].

Lemma 6.10. Let Fτ (n; q) and Eτ (n; q) be defined as (6.19), and λ be the smallest eigenvalue of −∆

with homogeneous boundary condition. Then for q ∈ Q, there holds

∥A(q)Fτ (n; q)v∥L2(Ω) + t1−α
n ∥A(q)Eτ (n; q)v∥L2(Ω) ≤ ct−α

n ∥v∥L2(Ω)

and

∥Fτ (n; q)v∥L2(Ω) + t1−α
n ∥Eτ (n; q)v||L2(Ω) ≤ cmin(1, λ−1t−α

n )∥v∥L2(Ω), n ≥ 1.

Here c is the generic constant independent of τ , tn and q.

Proof. The asymptotics of A(q)Fτ (n; q) could be derived directly from Lemmas 6.2 and 6.9:

∥A(q)Fτ (n; q)v∥L2(Ω) ≤ ∥A(q)(Fτ (n; q)− F (tn; q))v∥L2(Ω) + ∥A(q)F (tn; q)v∥L2(Ω)

≤ c(n−1 + 1)t−α
n ∥v∥L2(Ω) ≤ ct−α

n ∥v∥L2(Ω).

Similarly, for Fτ (n; q), we apply Lemmas 6.2 and 6.9 again to derive

∥Fτ (n; q)v∥L2(Ω) ≤ ∥(Fτ (n; q)− F (tn; q))v∥L2(Ω) + ∥F (tn; q)v∥L2(Ω)

≤ c(n−1 + 1)min(1, λ−1t−α
n )∥v∥L2(Ω) ≤ cmin(1, λ−1t−α

n )∥v∥L2(Ω).

Next, we turn to the estimate of A(q)Eτ (n; q). Using the representation (6.19), resolvent estimate

(6.20) and Lemma 2.4, we derive

∥A(q)Eτ (n; q)v∥L2(Ω) ≤ c
∫
Γτ
θ,σ

|eztn ||e−zτ |∥A(q)(δτ (e−zτ )α +A(q))−1v∥L2(Ω)|dz|

≤ c
∫
Γτ
θ,σ

|eztn |
(
∥v∥L2(Ω) + |δτ (e−zτ )α|∥(δτ (e−zτ )α +A(q))−1v∥L2(Ω)

)
|dz|

≤ c∥v∥L2(Ω)

∫
Γτ
θ,σ

|eztn ||dz| ≤ c∥v∥L2(Ω)

(∫ ∞

σ
e−cρtndρ+ cσ

∫ θ

−θ
dψ

)
≤ cσ∥v∥L2(Ω).
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Then we let σ = t−1
n to derive the desired estimate for A(q)Eτ (n; q).

The estimate for Eτ (n; q) could be derived using similar argument. By letting σ = t−1
n , we apply

the resolvent estimate (6.20) and Lemma 2.4 to deduce

∥Eτ (n; q)v∥L2(Ω) ≤ c
∫
Γτ
θ,σ

|eztn |∥(δτ (e−zτ )α +A(q))−1v∥L2(Ω)|dz|

≤ c∥v∥L2(Ω)

∫
Γτ
θ,σ

|eztn |min(|z|−α, λ−1)|dz|

≤ c∥v∥L2(Ω)min(tα−1
n , λ−1t−1

n ).

Then we complete the proof of Lemma 6.10.

Next, we are ready to show some a priori estimate of the time stepping solution.

Lemma 6.11. Let Assumption 6.1 be valid and q ∈ Q. Then the solution un(q) to the time stepping

scheme (6.17) satisfies

∥un(q)∥L∞(Ω) ≤ c for all n = 1, 2, . . . , N.

Moreover, there holds for all s ∈ [0, 2],

∥∂̄ατ un(q)∥Hs(Ω) ≤ cmin(t−sα/2
n , t−α

n ) for n = 1, 2, . . . , N.

Here the generic constants are independent of τ , tn and q.

Proof. Using the solution representation (6.18) and triangle inequality we arrive at

∥un(q)∥H2(Ω) ≤ ∥Fτ (n; q)(v −D(q)b) +D(q)b+ (I − Fτ (n; q))A(q)
−1f∥H2(Ω)

≤ ∥Fτ (n; q)(v −D(q)b)∥H2(Ω) + ∥D(q)b∥H2(Ω) + ∥(I − Fτ (n; q))A(q)
−1f∥H2(Ω).

We use the norm equivalence (6.3) and Lemma 6.10 to obtain

∥Fτ (n; q)(v −D(q)b)∥H2(Ω) ≤ c
(
∥Fτ (n; q)A(q)(v −D(q)b)∥L2(Ω) + ∥Fτ (n; q)(v −D(q)b)∥L2(Ω)

)
≤ c
(
∥A(q)(v −D(q)b)∥L2(Ω) + ∥v −D(q)b∥L2(Ω)

)
≤ c∥v −D(q)b∥H2(Ω) ≤ c

(
∥v∥H2(Ω) + ∥D(q)b∥L2(Ω)

)
.

Then the estimate (6.4) implies

∥Fτ (n; q)(v −D(q)b)∥H2(Ω) ≤ c(∥v∥H2(Ω) + ∥b∥H 3
2 (∂Ω)

).

This combined with Sobolev embedding theorem yields ∥un(q)∥L∞(Ω) ≤ c where the constant c is

independent of τ , tn and q.

Next, we let wn(q) = ∂̄ατ u
n(q). By a simple computation, we obtain that wn(q) ∈ H1

0 (Ω) and

∂̄ατ w
n(q) +A(q)wn(q) = 0 for all 1 ≤ n ≤ N and w0(q) = f +∆v − qv. (6.21)
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Then the solution representation (6.18) leads to

wn(q) = ∂̄ατ u
n(q) = Fτ (n; q)(f +∆v − qv). (6.22)

Applying Lemma 6.10 and the condition q ∈ Q, we obtain

∥∂̄ατ un(q)∥L2(Ω) = ∥Fτ (n; q)(f +∆v − qv)∥L2(Ω) ≤ cmin(1, t−α)
(
∥v∥H2(Ω) + ∥f∥L2(Ω)

)
.

Next, the norm equivalence (6.3) and Lemma 6.10 yield

∥∂̄ατ un(q)∥H2(Ω) ≤ c
(
∥∂̄ατ un(q)∥L2(Ω) + ∥A(q)∂̄ατ un(q)∥L2(Ω)

)
≤ ct−α

n (∥v∥H2(Ω) + ∥f∥L2(Ω)).

Here c is independent of τ , tn and q. The case that s ∈ (0, 1) follows immediately by interpolation.

This completes the proof of the lemma.

Finally, we shall provide a useful a priori error estimate for ∂̄ατ u
n(q)− ∂αt u(tn; q).

Lemma 6.12. Let Assumption 6.1 be valid and q ∈ Q. Let un(q) and u(t; q) be the solutions to (6.17)

and (6.1), respectively. Then there holds

∥∂̄ατ un(q)− ∂αt u(tn; q)∥L2(Ω) ≤ cτt−α−1
n

with the constant independent of q, τ and n.

Proof. Combining (6.15) with (6.21), we obtain

∂̄ατ u
n(q)− ∂αt u(tn; q) = (Fτ (n; q)− F (tn; q))(∆v − qv + f).

Then we apply Lemma 6.9 with s = 0 and note that q ∈ Q to derive

∥∂̄ατ un(q)− ∂αt u(tn; q)∥L2(Ω) ≤ cτt−α−1
n

(
∥v∥H2(Ω) + ∥f∥L2(Ω)

)
.

This completes the proof of the lemma.

6.3.2 Fully discrete scheme

In this section, we shall discuss the completely discrete scheme to solve the inverse potential problem.

We use the convolution quadrature for the time discretization and use Galerkin finite element method

for the space discretization. To begin with, we introduce some settings for the finite element methods.

To illustrate the main idea, we consider the square region Ω = (a, b)d ⊂ Rd, with 1 ≤ d ≤ 3

and the discussion could be extended to general convex polyhedral domain. For all i = 1, . . . , d, we

denote by a = x0 < x1 < · · · < xM = b a partition of the interval [a, b] with a uniform mesh size

h = xi−xi−1 = (b−a)/M for all i = 1, . . . ,M . Then domain Ω is now separated intoMd subrectangles
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by all grid points (xj1 , . . . , xjd), with 0 ≤ ji ≤ M and i = 1, . . . , d. We denote this partition by Th,

and note that h is the mesh size of the partition Th.

Then we apply the tensor-product Lagrange finite elements on the partition Th. Let Q1 be the

space of polynomials in the variables x1, . . . , xd, with real coefficients and of degree at most one in

each variable, i.e.,

Q1 =
{ ∑

0≤β1,β2,...,βd≤1

cβ1β2...βd
xβ1
1 · · ·x

βd
d , with cβ1β2...βd

∈ R
}
.

The H1-conforming tensor-product finite element space, denoted by Xh, is defined as

Xh = {v ∈ H1(Ω) : v|K ∈ Q1 for all K ∈ Th}. (6.23)

Besides, we define

X0
h = Xh ∩H1

0 (Ω) = {v ∈ H1
0 (Ω) : v|K ∈ Q1 for all K ∈ Th}. (6.24)

We let Ih denote the Lagrange interpolation operator associated with the finite element space Xh.

It satisfies the following error estimates for s = 1, 2 and 1 ≤ p ≤ ∞ with sp > d [17, Theorem 1.103]:

∥v − Ihv∥Lp(Ω) + h∥v − Ihv∥W 1,p(Ω) ≤ chs∥v∥W s,p(Ω), ∀v ∈W s,p(Ω). (6.25)

Similarly, we let I∂h denote the Lagrange interpolation operator on the boundary.

We define the orthogonal L2-projection Ph : L2(Ω)→ X0
h and the Ritz projection Rh(q) : H

1
0 (Ω)→

X0
h by

(Phψ, χh) = (ψ, χh), ∀χ ∈ X0
h,

(∇Rh(q)ψ,∇χh) = (∇ψ,∇χh) + (qψ, χh), ∀χ ∈ X0
h.

It is well-known that the operators Ph and Rh(q) (with q ∈ Q) have the following approximation

property, cf. [93, Lemma 1.1] or [17, Theorems 3.16 and 3.18], for s ∈ [1, 2],

∥Phψ − ψ∥L2(Ω) + ∥Rh(q)ψ − ψ∥L2(Ω) ≤ chs∥ψ∥Hs(Ω), ∀ψ ∈ Hs(Ω) ∩H1
0 (Ω). (6.26)

Noting that q ∈ Q, the constant c is independent of q.

Let γ0 be the trace operator [17, Section B.3.5], and the set X∂
h = {γ0(χh) : χh ∈ Xh} . Now we

introduce a discrete operator Dh(q) : X
∂
h → Xh such that wh = Dh(q)bh for bh ∈ X∂

h satisfies

(∇wh,∇χh) + (qwh, χh) = 0 for all χh ∈ X0
h, and γ0(wh) = bh.

Then for any q ∈ Q and b ∈ H2(∂Ω), there holds the estimate [17, Lemma 3.28]

∥D(q)b−Dh(q)I∂hb∥L2(Ω) ≤ ch2∥b∥H2(∂Ω). (6.27)
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To discretize the problem (6.1), we consider the weak formulation to find u(t) ∈ H1(Ω) such that

for all φ ∈ H1
0 (Ω) and t > 0,

(∂αt u(t), φ) + (∇u(t),∇φ) + (qu(t), φ) = (f, φ), with u(·, t) = b in ∂Ω and u(0) = v.

Then the fully discrete scheme for (6.1) reads: find unh(q) ∈ Xh for t ≥ 0 such that γ0(u
n
h(q)) = I∂hb

on ∂Ω and for all φh ∈ X0
h and n = 1, 2, . . . , N ,

(∂̄ατ u
n
h(q), φh) + (∇unh(q),∇φh) + (qunh(q), φh) = (f, φh) with u0h(q) = Ihv. (6.28)

For q ∈ Q we define the discrete operator Ah(q) : X
0
h → X0

h such that

(Ah(q)ξh, χh) = (∇ξh,∇χh) + (qξh, χh) for all ξh, χh ∈ X0
h.

Then by splitting the fully discrete solution to (6.28) as unh(q) = φn
h(q) +Dh(q)I∂hb, we observe that

φn
h(q) ∈ X0

h satisfies

∂̄ατ φ
n
h(q) +Ah(q)φ

n
h(q) = Phf for t > 0,

with φ0
h(q) = Ihv −Dh(q)I∂hb. In particular, we define ∆h = −Ah(0). Then analogue to (6.18), the

fully discrete solution in (6.28) could be written in the operational form

unh(q) = F h
τ (n; q)

(
Ihv −Dh(q)I∂hb

)
+Dh(q)I∂hb+ τ

n∑
j=1

Eh
τ (j; q)Phf

= F h
τ (n; q)

(
Ihv −Dh(q)I∂hb

)
+Dh(q)I∂hb+ (I − F h

τ (n; q))Ah(q)
−1Phf,

(6.29)

where the fully discrete operators F h
τ (n; q) and E

h
τ (n; q) are defined as

F h
τ (n; q) =

1

2πi

∫
Γτ
θ,σ

eztne−zτδτ (e
−zτ )α−1(δτ (e

−zτ )α +Ah(q))
−1 dz,

Eh
τ (n; q) =

1

2πi

∫
Γτ
θ,σ

eztne−zτ (δτ (e
−zτ )α +Ah(q))

−1 dz.

(6.30)

Let λ be the smallest eigenvalue of −∆ with the homogeneous Dirichlet boundary condition, and

λh(q) be the smallest eigenvalue of discrete operator Ah(q). Recalling that the finite element space

X0
h is conforming in H1

0 (Ω) and q ∈ Q, the Courant minimax principle implies the relation that

0 < λ ≤ λh(0) ≤ λh(q). Then we have the resolvent estimate for the (discrete) elliptic operator Ah(q):

with fixed ϕ ∈ (0, π)

∥(δτ (e−zτ )α +Ah(q))
−1∥ ≤ Cmin(|z−α|, λh(q)−1) ≤ Cmin(|z−α|, λ−1), ∀z ∈ Σϕ,

for a constant C independent of q and h. This immediately indicates the following result for the fully

discrete scheme (6.28), similar to Lemmas 6.2 and 6.10.
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Lemma 6.13. Let F h
τ (n; q) and Eh

τ (n; q) be the operators defined in (6.30). Let λ be the smallest

eigenvalue of −∆ with homogeneous boundary condition. Then for any q ∈ Q and vh ∈ X0
h, there

holds for n ≥ 1,

∥Ah(q)F
h
τ (n; q)vh∥L2(Ω) + t1−α

n ∥Ah(q)E
h
τ (n; q)vh∥L2(Ω) ≤ ct−α

n ∥vh∥L2(Ω),

∥F h
τ (n; q)v∥L2(Ω) + t1−α

n ∥Eh
τ (n; q)vh||L2(Ω) ≤ cmin(1, λ−1t−α

n )∥vh∥L2(Ω).

Here c is the generic constant independent of τ , tn and q.

Next, we recall the following useful inverse inequality of finite element functions (see e.g., [17,

Corollary 1.141]).

Lemma 6.14. Let Xh and X0
h be the finite dimensional spaces defined in (6.23) and (6.24) respectively.

Then we have the inverse estimates

∥ϕh∥Lp(Ω) ≤ Ch
d( 1

p
− 1

q
)∥ϕh∥Lq(Ω) for all 1 ≤ q ≤ p ≤ ∞ and ϕh ∈ Xh,

∥∆hϕh∥L2(Ω) + h−1∥∇ϕh∥ ≤ Ch−2∥ϕh∥L2(Ω) for all ϕh ∈ X0
h.

Next, we intend to derive an a priori estimate for ∂̄ατ u
n
h(q)− ∂̄ατ un(q).

Lemma 6.15. Let Assumption 6.1 be valid and q ∈ Q. Let un(q) and unh(q) be the solutions to (6.17)

and (6.28), respectively. Then there holds for any ϵ ∈ (0, 1),

∥∂̄ατ (unh(q)− un(q))∥L2(Ω) ≤ ch2−ϵmax(t−α
n , t−(1−ϵ)α

n ).

Here the constants are independent of q, τ and n.

Proof. First of all, we recall that wn(q) = ∂̄ατ u
n(q) ∈ H1

0 (Ω), and it satisfies (6.21). Meanwhile,

Assumption (6.4) implies that the fully discrete approximation wn
h(q) = ∂̄ατ u

n
h(q) ∈ X0

h satisfies

∂̄ατ w
n
h(q) +Ah(q)w

n
h(q) = 0, n ≥ 1, with w0

h(q) = Phf −Ah(q)(Ihv −Dh(q)I∂hb). (6.31)

To derive an estimate for wn
h(q)− wn(q), we apply the splitting

wn
h(q)− wn(q) =

(
wn
h(q)− Phw

n(q)
)
+
(
Phw

n(q)− wn(q)
)
=: θnh + ρn.

Then the bound of ρn can be derived from (6.25) and Lemma 6.11 as

∥ρn∥L2(Ω) ≤ ch2∥∂̄ατ un(q)∥H2(Ω) ≤ ch2t−α
n .

Next we turn to derive an estimate for θnh ∈ X0
h, which satisfies

∂̄ατ θ
n
h +Ah(q)θ

n
h = Ah(q)(Rh(q)− Ph)w

n(q) for all n = 1, 2, . . . , N,

θ0h = Ah(q)Rh(q)(v −D(q)b)−Ah(q)(Ihv −Dh(q)I∂hb),
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where we use the fact that Ah(q)Rh(q)ψ = PhA(q)ψ for ψ ∈ H2(Ω) ∩H1
0 (Ω). By the representation

(6.29) we have

θnh = F h
τ (n; q)θh(0) + τ

n∑
j=1

Eh
τ (j; q)Ah(q)(Rh(q)− Ph)w

n+1−j(q) =: I + II. (6.32)

From Assumption 6.1, we have v −D(q)b ∈ H2(Ω) ∩H1
0 (Ω). Then (6.25), (6.26), (6.27) and Lemma

6.13 imply

∥I∥L2(Ω) ≤ ct−α
n ∥Rh(q)(v −D(q)b)− (Ihv −Dh(q)I∂hb)∥L2(Ω)

≤ ct−α
n

(
∥(Rh(q)− I)(v −D(q)b)∥L2(Ω) + ∥v − Ihv∥L2(Ω) + ∥D(q)b−Dh(q)I∂hb∥L2(Ω)

)
≤ ch2t−α

n

(
∥v∥H2(Ω) + ∥b∥H2(∂Ω)

)
.

Now we turn to the estimate for the term II. By Lemma 6.13, we have

∥Ah(q)
sEh

τ (n; q)vh∥L2(Ω) ≤ ct(1−s)α−1
n ∥vh∥L2(Ω).

Meanwhile, the second inverse inequality in Lemma 6.14 implies

∥Ah(q)
svh∥L2(Ω) ≤ ch−2s∥vh∥L2(Ω).

The fact q ∈ Q implies that the constant c is independent of q. Then we apply the above estimates

combined with Lemma 6.11 for s = 2− ϵ, and obtain

∥II∥L2(Ω) ≤ τ
n∑

j=1

∥Eh
τ (j; q)Ah(q)

1−ϵ/2∥ ∥Ah(q)
ϵ/2(Rh(q)− Ph)w

n+1−j(q)∥L2(Ω)

≤ cτ
n∑

j=1

t
−1+ϵα/2
j ∥(Rh(q)− Ph)w

n+1−j(q)∥L2(Ω)h
−ϵ

≤ ch2−ϵτ

n∑
j=1

t
−1+ϵα/2
j ∥wn+1−j(q)∥H2−ϵ(Ω)

≤ ch2−ϵτ

n∑
j=1

t
−1+ϵα/2
j t

−α+ϵα/2
n+1−j ≤ ch2−ϵt−α+ϵα

n .

This completes the proof of the lemma.

The next result provides an a priori estimate for ∂̄ατ u
n
h(q1) − ∂̄ατ unh(q2), which plays a key role in

the stability analysis for the numerical solution of the inverse potential problem.

Lemma 6.16. Suppose that Assumption 6.1 is valid and q1, q2 ∈ Q. For i = 1, 2, let unh(qi) be the

solution to the fully discrete scheme (6.28), with potential qi, respectively. Then there holds for any

positive parameter ϵ < min(1, 2− d
2),

∥∂̄ατ (unh(q1)− unh(q2))∥L2(Ω) ≤ cmax(t−α
n , t−(1−ϵ)α

n )∥q1 − q2∥L2(Ω),

where the constant c is independent of h, τ , q1, q2 and tn.
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Proof. We let θnh = ∂̄ατ (u
n
h(q1)− unh(q2)). Note that θnh ∈ X0

h and it satisfies

∂̄ατ θ
n
h +Ah(q1)θ

n
h = Ph[(q2 − q1)∂̄ατ unh(q2)] with θ0h = Ph[(q2 − q1)Ihv].

Now we apply the stability of L2-projection Ph to obtain

∥θh(0)∥L2(Ω) ≤ ∥(q2 − q1)Ihv∥L2(Ω) ≤ ∥q2 − q1∥L2(Ω)∥Ihv∥L∞(Ω)

≤ ∥q2 − q1∥L2(Ω)∥v∥L∞(Ω).
(6.33)

Meanwhile, using the stability of Ph and the inverse inequality in Lemma 6.14 we arrive at

∥Ph[(q2 − q1)∂̄ατ un(q2)]∥L2(Ω)

≤ c∥q2 − q1∥L2(Ω)∥∂̄ατ un(q2)∥L∞(Ω)

≤ c∥q2 − q1∥L2(Ω)

(
∥∂̄ατ (unh(q2)− Ihun(q2)∥L∞(Ω) + ∥Ih∂̄ατ un(q2)∥L∞(Ω)

)
≤ c∥q2 − q1∥L2(Ω)

(
h−

d
2 ∥∂̄ατ (unh(q2)− Ihun(q2)∥L2(Ω) + ∥∂̄ατ un(q2)∥L∞(Ω)

)
.

Then we apply the Sobolev embedding theorem to derive that for ϵ < min(1, 2− d
2),

∥Ph[(q2 − q1)∂̄ατ un(q2)]∥L2(Ω)

≤ c∥q2 − q1∥L2(Ω)

(
h−

d
2 ∥∂̄ατ (unh(q2)− Ihun(q2)∥L2(Ω) + ∥∂̄ατ un(q2)∥H2−ϵ(Ω)

)
.

This together with Lemma 6.11 leads to

∥Ph[(q2 − q1)∂̄ατ un(q2)]∥L2(Ω) ≤ c∥q2 − q1∥L2(Ω)

(
h−

d
2 ∥∂̄ατ (unh(q2)− Ihun(q2))∥L2(Ω) + t−(1−ϵ/2)α

n

)
.

Then using Lemmas 6.11 and 6.15, we obtain for ϵ < min(1, 2− d
2),

h−
d
2 ∥∂̄ατ (unh(q2)− Ihun(q2)∥L2(Ω)

≤ h−
d
2

(
∥∂̄ατ (unh(q2)− un(q2)∥L2(Ω) + ∥∂̄ατ (Ihun(q2)− un(q2))∥L2(Ω)

)
≤ ch2−

d
2
−ϵ
(
t−(1−ϵ/2)α
n + ∥∂̄ατ un(q2)∥H2−ϵ(Ω)

)
≤ ch2−

d
2
−ϵt−(1−ϵ/2)α

n .

As a result, we conclude that for ϵ < min(1, 2− d
2),

∥Ph[(q2 − q1)∂̄ατ un(q2)]∥L2(Ω) ≤ ct−(1−ϵ/2)α
n ∥q2 − q1∥L2(Ω). (6.34)

Now, using the representation (6.29), we derive

θnh = F h
τ (n; q1)θ

0
h + τ

n∑
j=1

Eh
τ (j; q1)Ph[(q2 − q1)∂̄ατ u

n+1−j
h (q2)].

Then Lemma 6.13 indicates that for any ϵ < min(1, 2− d
2),

∥θnh∥L2(Ω) ≤ ∥F h
τ (n; q1)θh(0)∥L2(Ω) + τ

n∑
j=1

∥Eh
τ (j; q1)Ph[(q2 − q1)∂̄ατ u

n+1−j
h (q2)]∥L2(Ω)

≤ ct−α
n ∥θ0h∥L2(Ω) + τ

n∑
j=1

t
−1+ϵα/2
j ∥Ph[(q2 − q1)∂̄ατ u

n+1−j
h (q2)]∥L2(Ω).

This combined with (6.33) and (6.34) leads to the desired result.
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6.3.3 The inverse potential problem: numerical reconstruction and error estimate

In this part, we shall design a robust completely discrete scheme for the recovery of the potential.

Throughout this section, we need the following assumption.

Assumption 6.4. We assume that the exact potential q† and noisy observational data gδ satisfy the

following conditions:

(i) q† ∈ C(Ω̄) ∩Q ∩W 1,p(Ω) with some p > max(d, 2) and q†|∂Ω is a priori known;

(ii) gδ(x) ∈ C(Ω) is noisy and it satisfies gδ ≥M2, γ0(gδ) = γ0(g) = b and ∥gδ − g∥C(Ω) = δ.

Remark 6.1. According to the a priori estimate (6.11), the exact data g ≥M2 with an a priori known

positive constant M2. Therefore, it is reasonable to assume that the noisy data gδ ≥ M2. Otherwise,

we may revise the observational data by

g̃δ(x) = max(gδ(x),M2), for all x ∈ Ω.

Here gδ ∈ C(Ω) implies g̃δ ∈ C(Ω). Moreover, we have

∥g̃δ − g∥C(Ω) ≤ ∥gδ − g∥C(Ω) = δ.

Then we may use the function g̃δ as the observational data in our computation, where g̃δ ≥M2 > 0.

Based on Assumption 6.1 and Assumption 6.4 (i), we have f, q† ∈W 1,p(Ω) for some p > max(d, 2).

Moreover, Lemma 6.3 indicates that ∂αt u(T, q
†), u(T ; q†) ∈ H2(Ω) ⊂ W 1,p(Ω) ⊂ L∞(Ω) with p ∈

(max(d, 2), 6). Therefore, we conclude that for some p ∈ (max(d, 2), 6)

∆g(x) = ∆u(T ; q†) = −f + ∂αt u(T, q
†) + q†u(T ; q†) ∈W 1,p(Ω). (6.35)

Besides, Assumption 6.4 (i) and (ii) imply

γ0(∆g) = γ0(qg − f) = γ0(q)b− γ0(f),

which is a priori known. Note that ∆gδ might not be well-defined in L2(Ω). Therefore, we need a

numerical approximation to the unknown function ∆g. Now we define a function ψh ∈ Xh such that

γ0(ψh) = I∂h (γ0(q)b− γ0(f)) and (ψh, ϕh) = −(∇Ihgδ,∇ϕh) for all ϕh ∈ X0
h. (6.36)

Then we have ψh ≈ ∆g provided that h = O(δ
1
3 ). This is given by the following lemma.

Lemma 6.17. Suppose that Assumptions 6.1 and 6.4 are valid. Let ψh ∈ Xh be the function defined

in (6.36). Then there holds

∥ψh −∆g∥L2(Ω) ≤ c
( δ
h2

+ h
)
,

where the constant c is independent of h and δ.
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Proof. To derive the estimate, we define the auxiliary function ψ̃h ∈ Xh such that

γ0(ψ̃h) = I∂h (γ0(q)b− γ0(f)) and (ψ̃h, ϕh) = −(∇Ihg,∇ϕh) for all ϕh ∈ X0
h.

Then we consider the split

ψh −∆g = (ψh − ψ̃h) + (ψ̃h − Ih∆g) + (Ih∆g −∆g).

According to the definition of ψh and ψ̃h, we know ψh − ψ̃h ∈ X0
h. Then the inverse inequality in

Lemma 6.14 implies

∥ψh − ψ̃h∥L2(Ω) = sup
ϕh∈X0

h

(ψh − ψ̃h, ϕh)

∥ϕh∥L2(Ω)
= sup

ϕh∈X0
h

(∇(Ihg − Ihgδ),∇ϕh)
∥ϕh∥L2(Ω)

≤ ch−2∥Ihg − Ihgδ∥L2(Ω) ≤ cδh−2.

Meanwhile, using the fact that ∆g ∈W 1,p(Ω) for some p ∈ (max(2, d), 6) by (6.35), the approximation

property of Ih in (6.25) implies

∥Ih∆g −∆g∥L2(Ω) ≤ ∥Ih∆g −∆g∥Lp(Ω) ≤ ch∥∆g∥W 1,p(Ω).

Finally, according to the definition of ψ̃h, we know ψ̃h − Ih∆g ∈ X0
h, and hence

∥ψ̃h − Ih∆g∥L2(Ω) = sup
ϕh∈X0

h

(ψ̃h − Ih∆g, ϕh)
∥ϕh∥L2(Ω)

= sup
ϕh∈X0

h

(ψ̃h −∆g, ϕh) + (∆g − Ih∆g, ϕh)
∥ϕh∥L2(Ω)

= sup
ϕh∈X0

h

(∇(g − Ihg),∇ϕh)
∥ϕh∥L2(Ω)

+ ch∥∆g∥W 1,p(Ω).

Then the superconvergence [68, Theorem 4.1]

(∇(g − Ihg),∇ϕh) ≤ ch2∥g∥H3(Ω)∥ϕh∥H1(Ω),

together with the inverse inequality in Lemma 6.14 leads to

∥ψ̃h − Ih∆g∥L2(Ω) ≤ sup
ϕh∈X0

h

ch2∥ϕh∥H1(Ω)

∥ϕh∥L2(Ω)
+ ch ≤ sup

ϕh∈X0
h

ch∥ϕh∥L2(Ω)

∥ϕh∥L2(Ω)
+ ch ≤ ch.

This completes the proof of the lemma.

Now we define the operator Kh,τ : Q → Q such that

Kh,τq(x) := P[0,M1]

(f(x)− ∂̄ατ uNh (x; q) + ψh(x)

gδ(x)

)
, (6.37)

where the function P[0,M1] : R→ R denotes a truncation function defined by

P[0,M1](a) := max(min(M1, a), 0). (6.38)

The next lemma shows a contraction property of the operator Kh,τ .
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Lemma 6.18. Let q1, q2 ∈ Q. Then there holds for any positive ϵ < min(1, 2− d
2),

∥Kh,τq1 −Kh,τq2∥L2(Ω) ≤ cmax(T−α, T−(1−ϵ)α)∥q1 − q2∥L2(Ω).

Proof. By the definition (6.37) and the property that |P[0,M1](a)− P[0,M1](b)| ≤ |a− b|, there holds

|(Kh,τq1 −Kh,τq2)(x)| ≤
∣∣∣ ∂̄ατ (uNh (x; q2)− uNh (x; q1))

gδ(x)

∣∣∣ ≤ |∂̄ατ (uNh (x; q2)− uNh (x; q1))|
M2 − δ

,

where the second inequality follows from the facts that g(x) = u(x, T ) ≥ M2 (Lemma 6.3) and

∥g − gδ∥C(Ω) = δ. Then Lemma 6.16 yields for any positive ϵ < min(1, 2− d
2),

∥Kh,τq1 −Kh,τq2∥L2(Ω) ≤ c∥∂̄ατ (uNh (q2)− uNh (q1))∥L2(Ω)

≤ cmax(T−α, T−(1−ϵ)α)∥q1 − q2∥L2(Ω).

This completes the proof of the lemma.

Now we are ready to present the main theorem of this section.

Theorem 6.5. Suppose that Assumptions 6.1 and 6.4 are valid. Let Kh,τ be the operator defined in

(6.37). Then with sufficiently large T , for any q0 ∈ Q, the iteration

qn+1 = Kh,τqn, ∀ n = 0, 1, . . . , (6.39)

linearly converges to a unique fixed point q∗ ∈ L∞(Ω) of Kh,τ with 0 ≤ q∗ ≤M1 s.t.

∥q∗ − qn+1∥L2(Ω) ≤ cT−(1−ϵ)α∥q∗ − qn∥L2(Ω) for n ≥ 0.

Moreover, there holds

∥q∗ − q†∥L2(Ω) ≤ c
( δ
h2

+ h+ τ
)
,

where q† is the exact potential and the constant c is independent of τ , h and δ.

Proof. Choosing an arbitrary initial guess q0 ∈ Q, the contraction mapping theorem and Lemma 6.18

(with sufficiently large terminal time T ) imply that the iteration (6.39) generates a Cauchy sequence

{qn}∞n=1 in L2(Ω) sense. Therefore, the sequence {qn} converges to a fixed point of Kh,τ as n → ∞,

denoted by q∗ ∈ L2(Ω). Then the use of the box restriction P[0,M1] indicates 0 ≤ q∗ ≤M1.

Next, we show the error estimate between q∗ and q†. Since q† ∈ Q, it holds that

∥q† − q∗∥L2(Ω) ≤
∥∥∥f − ∂αt u(T ; q†) + ∆g

g
−
f − ∂̄ατ uNh (q∗) + ψh

gδ

∥∥∥
L2(Ω)

≤
∥∥∥f − ∂αt u(T ; q†) + ∆g

g
− f − ∂αt u(T ; q†) + ∆g

gδ

∥∥∥
L2(Ω)

+
∥∥∥f − ∂αt u(T ; q†) + ∆g

gδ
−
f − ∂̄ατ uNh (q∗) + ψh

gδ

∥∥∥
L2(Ω)

=: I + II.
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Due to the fact that f(x), ∂αt u(x, t; q
†), ∆g ∈ L2(Ω), it is straightforward to see that the first term

satisfies I ≤ cδ. So it suffices to establish a bound for II. First, we observe that for any positive

ϵ < min(1, 2− d
2),

∥∂αt u(T ; q†)− ∂̄ατ uNh (q∗)∥L2(Ω)

≤ ∥∂αt u(T ; q†)− ∂̄ατ uN (q†)∥L2(Ω) + ∥∂̄ατ uN (q†)− ∂̄ατ uNh (q†)∥L2(Ω) + ∥∂̄ατ uNh (q†)− ∂̄ατ uNh (q∗)∥L2(Ω)

≤ c(h2 + τT−1)T−(1−ϵ)α + cT−(1−ϵ)α∥q† − q∗∥L2(Ω),

where for the last inequality we apply Lemmas 6.12, 6.15 and 6.16. This combined with Lemma 6.18

implies that with T away from 0 there holds

II ≤ c
( δ
h2

+ h+ τ
)
+ cT−(1−ϵ)α∥q† − q∗∥L2(Ω).

Then we arrive at

∥q† − q∗∥L2(Ω) ≤ c1
( δ
h2

+ h+ τ
)
+ c2T

−(1−ϵ)α∥q† − q∗∥L2(Ω).

Therefore, there exists a constant T0 sufficiently large such that c2T
−(1−ϵ)α
0 ≤ c0 with some constant

c0 ∈ (0, 1) and for any T ≥ T0 there holds

∥q† − q∗∥L2(Ω) ≤
c1

1− c0

( δ
h2

+ h+ τ
)
≤ c
( δ
h2

+ h+ τ
)
.

This completes the proof of the theorem.

Remark 6.2. The error estimate in Theorem 6.5 provides useful guidelines to choose discretization

parameters h and τ according to the a priori known noise level δ. For example, the choice τ, h = O(δ
1
3 )

leads to the best convergence rate O(δ
1
3 ). This is fully supported by our numerical results in Section

6.4.

6.4 Numerical experiments

In this section, we present some two-dimensional numerical results to illustrate the theoretical results.

The noisy data gδ is generated by

gδ(xi) = u(xi, T ) + δζ(xi),

where ζ follows the standard uniform distribution in [−1, 1], and xi are grid points of a fine partition

of Ω. Then to compute the numerical reconstruction q∗, we follow the idea in Section 6.3 and design

the iterative algorithm 1. All the computations are carried out on a personal desktop with MATLAB

2021.
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Algorithm 1: An iterative algorithm for finding fixed point q∗ from gδ
Data: Order α, terminal time T , source term f , initial condition v, boundary data b, noisy

observation gδ, upper bound constant M1, discretization parameter h and τ ;

Result: Approximate potential q∗.

1 Compute ψh by (6.36); set q0 = P[0,M1]

[f + ψh

gδ

]
, k = 0 and e0 = 1;

2 while ek > tol = 10−10 do

3 Compute unh(qk), the fully discrete solution to (6.28) with potential qk;

4 Update the potential by

qk+1 = Kh,τqk = P[0,M1]

[f − ∂̄ατ uNh (qk) + ψh

gδ

]
;

5 Compute error

ek+1 = ∥qk+1 − qk∥L2(Ω);

6 k ← k + 1;

7 end

8 q∗ ← qk;

output: The approximated potential q∗.

We present numerical experiments for a two-dimensional problem with the domain (x, y) ∈ Ω =

(0, 3)2 and the problem data

f(x, y) = 10, b(x, y) =
x(3− x)

4
+ 1, v(x, y) = x(3− x)

(1
4
+
y(3− y)

10

)
+ 1. (6.40)

Note that those problem data satisfy Assumption 6.1. We test the following three (exact) potentials:

(1) Smooth potential:

q†1 = 3− cos(πx) cos(πy).

(2) Piecewise smooth potential: q†2 is a pyramid-shape function, i.e.

q†2(x, y) = 3 + 1.5× (−1)j+kψ(x− j, y − k), (x, y) ∈ [j, j + 1]× [k, k + 1], j, k = 0, 1, 2,

where for any (x, y) ∈ [0, 1]× [0, 1],

ψ(x, y) =



2y, x ≥ y, and x+ y > 1, and y < 0.5,

2x, x < y, and x+ y ≤ 1, and x < 0.5,

2(1− y), x < y, and x+ y > 1, and y > 0.5,

2(1− x), x ≥ y, and x+ y ≥ 1, and x ≥ 0.5.
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(3) Discontinuous potential: q†3 is a step function where

q†3(x, y) = 3 + (−1)j+k, (x, y) ∈ [j, j + 1]× [k, k + 1], j, k = 0, 1, 2.

We plot the profiles of these potential functions in Figure 6.1. Note that q†1 and q†2 satisfy Assumption

(6.4) (i), while q†3 ∈ H
1
2
−ϵ(Ω) for any ϵ ∈ (0, 1/2).

(a) Smooth potential q†1 (b) Piecewise smooth potential q†2 (c) Discontinuous potential q†3

Figure 6.1: Profiles of three exact potentials.

As we discussed in Section 6.3, we use the standard piecewise bilinear FEM with uniform mesh

size h for the space discretization, and apply the backward Euler (convolution quadrature) method

with uniform step size τ for the time discretization. Since the closed form of the exact solution is

unavailable, we compute the exact observational data g(x) = u(T ; q†) ≈ uNh (q†) by the fully discrete

scheme (6.28) with fine meshes, i.e. h = 10−2 and τ = 10−3.

For the a priori known noise level δ, we choose the discretization parameters h, τ ∼ δ1/3, and

examine the relative error

eq = ∥q† − q∗∥L2(Ω)/∥q†∥L2(Ω), (6.41)

where q† is the exact potential and q∗ is the numerical reconstruction by Algorithm 1. Theorem

6.5 indicates that Algorithm 1 produces a sequence {qk} linearly converging to a fixed point q∗, and

the error satisfies eq = O(δ1/3). In Figure 6.2-6.4 we present the profiles of exact potentials and

reconstructed potentials under different δ, with terminal time T = 1, α = 0.5 and h, τ ∼ δ1/3.

Meanwhile, we also plot profiles of absolute error in the second row of each figure. We observe that

the numerical reconstructions are close to the exact potentials in all cases.

Next, we test the rate of convergence of numerical reconstruction. In Figure 6.5, we plot the

relative error eq defined by (6.41) versus δ, with different α. The numerical results show that for the

q†1 and q
†
2, the convergence rate is O(δ1/3), which agrees well with our theory in Theorem 6.5. However,

if the potential is discontinuous (and hence fails to satisfy Assumption (6.4) (i)), the convergence rate

is clearly less than order 1/3 (cf. Figure 6.5 (c)). This illustrates the necessity of the Assumption on

the smoothness of exact potential. Meanwhile, the experiments indicate that the error is robust with
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(a) δ = 10−2 (b) δ = 10−3 (c) δ = 10−4

Figure 6.2: Top left: Exact potential q†1. The other three columns are profiles of numerical reconstruc-

tions q∗ and corresponding pointwise error e = |q∗ − q†2|, with T = 1, α = 0.5, h = δ
1
3 and τ = δ

1
3 /15.

(a) δ = 10−2 (b) δ = 10−3 (c) δ = 10−4

Figure 6.3: Top left: Exact potential q†2. The other three columns are profiles of numerical reconstruc-

tions q∗ and corresponding pointwise error e = |q∗ − q†2|, with T = 1, α = 0.5, h = δ
1
3 and τ = δ

1
3 /15.
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(a) δ = 10−2 (b) δ = 10−3 (c) δ = 10−4

Figure 6.4: Top left: Exact potential q†3. The other three columns are profiles of numerical reconstruc-

tions q∗ and corresponding pointwise error e = |q∗ − q†3|, with T = 1, α = 0.5, h = δ
1
3 and τ = δ

1
3 /15.

respect to the order α. Moreover, we also test the sharpness of error estimate in Theorem 6.5, i.e.,

∥q∗ − q†∥L2(Ω) ≤ c
( δ
h2

+ h+ τ
)
.

We let δ = 0 and examine that the discretization error is O(h+τ). This is supported by the numerical

results presented in Figure 6.6 and 6.7. In Figure 6.6, we fix τ = T/1000 and test the convergence

of space discretization. The empirical convergence rate is of order O(h) for potentials q†1 and q†2. For

q†3 the empirical convergence rate is of order around O(h
1
2 ). This is due to the nonsmoothness of the

discontinuous potential. In Figure 6.7, we present the convergence rate for time discretization with

fixed h = 3/200. We observe that the empirical rate of convergence is of order O(τ) for all three cases.

To test the term δ/h2 in the error estimate, we let τ =
√
δ/15 and h =

√
δ. Then Figure 6.8 shows

that the error eq hardly decays as δ → 0, it illustrates the sharpness of the term δ/h2 in the error

estimate.
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Figure 6.5: Relative error eq versus noise level δ, where T = 1, h = δ
1
3 , τ = δ

1
3 /15.

Next, we consider the continuous and piecewise smooth potential q†2 and test the convergence of

the numerical reconstruction with different terminal time T . We report the reconstruction error (6.41)
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√
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versus noise level δ, where we set h = δ
1
3 and τ = δ

1
3 × T/15. For T = 0.1 and T = 5, we clearly

observe the convergence rate O(δ
1
3 ), cf. Figure 6.9 (a) and (b). However, in case that T is very small,

i.e. T = 10−7, our numerical results show that Algorithm 1 (with tolerance δ = 10−6) does not provide

a good reconstruction q∗ with α = 0.5, 0.75 and 1, which might be due to the loss of the stability for

small T , cf. Figure 6.9 (c). Interestingly, when T = 10−7, we still observe the convergence of order

O(δ
1
3 ) for α = 0.25. This might be due to the faster decay of ∂αt u(t) for small α when t is close to

zero. The exact reason still awaits further theoretical investigation. Moreover, in Figure 6.10 (b) and

(c) we plot the numerical reconstructions for T = 10−7 and T = 1 respectively, where we set α = 0.75,

δ = 10−3, h = 0.1 and τ = T/150, here we let tol = 10−8. The numerical results show that Algorithm

1 produces an excellent reconstruction for T = 1, while the numerical reconstruction is inaccurate

when T is small. This observation shows the necessity of the assumption in Theorems 6.3 and 6.5 that

the terminal time T should be sufficiently large.
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Figure 6.9: Relative error eq versus noise level δ with q†2, where h = δ
1
3 , τ = T × δ

1
3 /15 and α =

0.25, 0.5, 0.75, 1.

(a) Exact potential q†2 (b) Reconstruction with T = 10−7 (c) Reconstruction with T = 1

Figure 6.10: Profiles of numerical reconstruction. (a): exact potential q†2; (b): T = 10−7, 2470

iterations and ∥q2470 − q2469∥L2(Ω) ≤ 10−8; (c): T = 1, 9 iterations and ∥q9 − q10∥L2(Ω) ≤ 10−8.

Finally, we test the convergence of the iteration produced by Algorithm 1, with different α and T .

In the experiments, we use the problem data (6.40) and the exact potential q† = q†2. Meanwhile, we

fix δ = 10−6, h = 0.1, τ = T/150 and q0 = 3−x(3−x)y(3− y)/3. We let qk be the numerical solution
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Figure 6.11: Convergence histories of Algorithm 1 with different T and α, where δ = 10−6, h = 0.03,

τ = T/500.

obtained by k-th iteration in Algorithm 1, and compute the error at each iteration:

ek = ∥qk − q†∥L2(Ω) for all k ≥ 0.

In Figure 6.11 (a) and (b), we report the convergence histories for T = 0.1 and T = 2 with different

α. We clearly observe that the iteration converges linearly, and the convergence factor decreases as

T becomes larger. Besides, the convergence appears to be robust to the order of time derivative.

Moreover, in Figure 6.11(c), we fix α = 0.5 and test the convergence behavior for both large T and

small T . Our experiments show that for small T , e.g. T = 10−7, the iteration does not converge to a

reasonable approximation to the exact potential.1

1Chapter 6 is reprinted with permission from ”Identification of Potential in Diffusion Equations from Terminal Ob-

servation: Analysis and Discrete Approximation”, Zhengqi Zhang Zhidong Zhang and Zhi Zhou, 2022, SIAM Journal on

Numerical Analysis Vol. 60 Iss. 5. The candidate mainly works on the Methodology, the proof details, the coding and

data collection in numerical experiments.
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CHAPTER 7.

Conclusion and future works

This thesis has provided a complete and rigorous analysis of various inverse problems related to

time-fractional differential equations, including backward diffusion of subdiffusion problem with time-

dependent and time-independent coefficients, backward diffusion-wave problem and inverse potential

problem.

Chapter 3–5 focus on the backward diffusion problems of time-fractional models. In Chapter 3,

the classical finite element method and backward Euler convolution quadrature are applied to numer-

ically approximate the time-fractional models. A quasi-boundary regularization method is used and,

we give a thorough numerical analysis to the backward subdiffusion problem with time-independent

coefficients. In Chapter 4, while the spatial diffusion coefficient is dependent on time, the spectral

method may fail, then we provide a perturbation argument in the analysis of backward diffusion.

Similarly, the discretization and regularization methods are applied. Then we extend our ideas to

the backward diffusion-wave problem in Chapter 5, to simultaneously determine two initial conditions

from two different observations. A novel quasi boundary value method is applied to this problem and,

we provide a complete analysis.

Chapter 6 considers the inverse potential problem arising in diffusion models. To overcome the

non-convergence approximation for Laplacian of observation, we apply a bilinear finite element method

and obtain a numerical convergence.

In the following, we list several perspectives of our future research:

1. In Chapter 4, we show the backward subdiffusion problem with time dependent coefficients.

However, we must assume the coefficient satisfies some assumption 4.3, 4.5. Our theoretical

results are strongly dependent on the behavior of the coefficient, which decays to a constant at

long time. However, for the high frequency coefficient, i.e., assumption 4.3 fail, the backward

stability still holds from numerical experiments. We hope to derive theoretical backward stability

for this case.

2. In Chapter 6, we give a fully numerical analysis for the inverse potential problem. However, the

observation is assumed to be continuous in assumption 6.4 since we haven’t applied regularization

in this problem. Therefore, it is still our future work to find appropriate regularization methods

for example smooth extension([113, 11]). Then we could assume the observation in L2 sense,

and we hope to derive some error estimates based on regularization.
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3. Recently, there is a rapid arising interests in machine learning. Also, learning operator in inverse

problems by Neural Networks is a popular topic these years, see [24, 19]. We hope to extend

their ideas to the inverse potential problem of time(space)-fractional PDEs.
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