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Abstract

Image classification is a fundamental task in visual recognition. Deep learning-

based methods, i.e., Deep Neural Networks (DNNs), are state-of-the-art approach

that achieves remarkable performance. Besides, DNNs pre-trained on image clas-

sification tasks with large-scale datasets show excellent transferability for solving

downstream tasks, such as semantic segmentation, object detection, etc. There-

fore, image classification becomes one of the fundamental but critical tasks in

visual recognition. However, DNNs easily overfit and are hard to optimize, as

they have billions or millions of parameters. To tackle this challenge, regulariza-

tion techniques such as data augmentations and auxiliary learning are introduced

to auxiliary supervise DNNs to achieve better generalization and robustness.

In this thesis, we first review existing regularization techniques in terms of data

augmentation and auxiliary learning. Thenwe conduct two research works for reg-

ularizing DNNs on the classification task. More specifically, in the first work, we

study the problem of computational color naming (CCN). We explore utilizing do-

main knowledge of the RGB Color Model as auxiliary supervision to regularize

the model. Based on this, we expand CCN’s application to data augmentation by

designing a new data augmentation method named Partial Color Jittering(PCJ).

PCJ performs the color jittering on a subset of pixels of the same image color,
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which significantly increases images’ diversity, thereby consistently improving

image classification performance. In the second work, we study the problem in

vision loss estimation. We first explore that vanilla models easily overfit and fall

into trivial solutions in vision loss estimation. To tackle this challenge, we propose

a novel method for vision loss estimation. In detail, we formulate VF estimation

as an ordinal classification problem, following the ordinal properties of the stud-

ied data. Besides, we introduce an auxiliary task to assist the generalization of

the model, where the auxiliary task explicitly regularizes the model. Finally, we

conclude this thesis, discuss the open challenges and address future directions.
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Chapter 1

Introduction

1.1 Background and Motivation

Image classification is a fundamental task in visual recognition that aims to clas-

sify images into different categories. Before the era of deep learning, hand-crafted

feature extraction is the dominant approach that manually extracts informative or

descriptive features from images [1]. Then, extracted features are utilized to form

a definition of each category. At inference/prediction time, a new image is classi-

fied into a category if its extracted features overlap significantly with an existing

definition. The main difficulty in feature extraction is determining or choosing the

extracted features from a given image [1]. As the number of categories increases,

this difficulty becomes more troublesome.

With the rise of deep learning [2], deep neural networks (DNNs) achieve new

state-of-the-art performance. DNNs are generally composed of the feature extrac-

tor and classifier. The feature extractor consists of deep combinations of opera-

tors (e.g., convolution, self-attention), activation functions (e.g., ReLU, GELU),
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Chapter 1. Introduction

etc., for extracting the feature representations from images. After that, the clas-

sifier is to classify the feature representations into different categories by linear

combination or non-linear transformation. As learning from a large amount of

data with human-annotated labels, DNNs achieve remarkable performance, e.g.,

comparable accuracy to humans on ImageNet [3], [4]. Besides, DNNs trained on

large-scale image classification datasets show excellent transferability for solving

downstream tasks, such as semantic segmentation, object detection, etc.

Therefore, DNNs with high performance on image classification tasks are al-

ways desired. Thereafter, how to boost the performance of DNNs on image clas-

sification tasks becomes a fundamental problem. To tackle this challenge, regu-

larization [5], [6] is introduced to make the DNNs generalize better. Apart from

the standard optimization procedure for training DNNs, extensive research works

focus on different regularization techniques that aim to make the DNNs generalize

better, such as data augmentation, auxiliary tasks, etc. These regularization tech-

niques involve auxiliary supervision for regularizing DNNs to generalize better.

For example, MAXL [7] introduces auxiliary tasks for supervising DNNs to better

generalization. Besides, Mixup [8] augments the training data and introduces an

extra supervision signal as it linearly interpolates both training data and related

labels. In addition, the success of larger DNNs is strongly linked to regularization

techniques. Because the larger DNNs are typically millions or billions of param-

eters and are difficult to optimize, whereas these techniques significantly regular-

ize DNNs during training. Besides, even the ‘classic’ DNNs can be revived by

these regularization techniques, e.g., ResNet-50 strikes back with improved train-

ing procedure [9], thereby further demonstrating the effectiveness and necessity

of regularization.
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1.2. Research Challenges

1.2 Research Challenges

The main challenge in improving performance through regularization as auxiliary

supervision lies in how to design a regularization.

Data augmentation is one efficient method for regularizing DNNs. Designing

a data augmentation is mainly based on prior knowledge. For instance, geometric

transformations, such as cropping, rotating, and flipping, are performed to encode

invariant priors so that trained DNNs can generalize better with these invariant pri-

ors. However, these priors are not always helpful in some cases that conflict with

domain knowledge. For example, in the fine-grained classification where DNNs

are trained to classifier hard-to-distinguish objects, such as flowers [10] and birds

[11], data augmentations such as color jittering would hurt the model’s general-

ization [12]–[14]. The main reason is that the color is sufficiently correlated to

its categories, e.g., two flowers with the same shape but with different colors are

classified into two categories, and after color jittering, the primary distinguish-

able characteristic is lost. Besides, data augmentation introduces a new bias to

the model. For instance, ImageNet pre-trained models are biased to the image’s

texture [15], such that the model is easily attacked by the textures. Then, a nat-

ural way to improve the model’s robustness and generalization is to de-bias it to

textures by introducing shape bias from data augmentation [15].

Auxiliary learning is another effective regularization, which improves the gen-

eralization of primary tasks by introducing auxiliary tasks. It is usually assumed

that the auxiliary task should be related to the primary task in some way, and thus

solving it can be helpful for the primary task [16]. The main challenge in auxiliary

learning is to find the auxiliary tasks that are sufficiently related to the primary
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Chapter 1. Introduction

task. Utilizing the domain or prior knowledge to manually find auxiliary tasks is

the most commonly adopted approach when given the domain knowledge of the

main task. However, it is costly to manually examine whether each auxiliary task

is helpful or not. Besides, how to properly utilize the auxiliary task is another

challenge. The auxiliary task is not always helpful for the primary task, because

sometimes a negative transfer exists from the auxiliary task to the primary task

[17]–[19].

1.3 Thesis Contributions

The contributions of this thesis mainly lie in designing novel regularization meth-

ods to auxiliary supervise DNNs in order to achieve better generalization.

Firstly, we study the problem in computational color naming (CCN). Compu-

tational color naming (CCN) aims to learn a mapping from pixels into semantic

color names. Existing research on CCN mainly studies pixels collected in labo-

ratory settings or images collected from the web. However, laboratory pixels are

in a limited data size such that the learned mapping may not generalize well on

unseen pixels, and the mapping discovered from images is usually data-specific.

Therefore, we aim to learn a universal mapping by studying pixels collected from

the web. To achieve this objective, we formulate a novel classification problem

that incorporates both the pixels and the RGB color model. The RGB color model

is beneficial for learning the mapping because it characterizes the production of

colors, e.g., adding red and green produces yellow. However, the characterization

is rather qualitative. To solve this problem, we propose ColorMLP, a multilayer

perceptron (MLP) embedded with graph attention networks (GATs). Here, the
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1.3. Thesis Contributions

GATs are designed to capture color relations that we construct by referring to the

RGB color model. In this way, the parameters of the MLP can be regularized to

comply with the RGB model. We conduct extensive experiments to demonstrate

the superiority of ColorMLP to alternative methods. Besides, we design a novel

data augmentation method named partial color jitter (PCJ) to expand the applica-

tion of CCN. PCJ performs color jitter (CJ) on a subset of pixels of the same image

color. In this way, PCJ partially changes the color properties of images, thereby

significantly increasing images’ diversity. We conduct extensive experiments on

CIFAR-10/100 and ImageNet datasets, showing that PCJ can consistently improve

classification performance.

Second, we study the problem in vision loss estimation. Visual field (VF) sen-

sitivity is a commonly used metric to quantify vision loss; it is a crucial criterion

for diagnosing high myopia (HM) complications. However, measuring VF is pro-

hibitively time-consuming and subjective as it highly depends on patient compli-

ance. Consequently, utilizing machine learning models to estimate VF becomes

a feasible alternative. Fundus photographs have become the preferred modality

for studying HM, due to their convenience of acquisition and incorporation of

structural information. Conversely, estimating VF with vanilla regression using

fundus photographs falls into trivial solutions. To tackle this challenge, we pro-

pose a novel method for VF estimation. In detail, we formulate VF estimation as

an ordinal classification problem, where each VF point is interpreted as an ordinal

variable rather than a continuous one, given that any VFS point is a discrete inte-

ger with a relative ordering. Besides, we introduce an auxiliary task for myopic

maculopathy classification to assist the generalization of VFS estimation. Myopic

maculopathy (MM) is strongly associated with vision loss, and its symptoms can
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be observed from the fundus photographs directly; therefore, the model will be ex-

plicitly regularized by the auxiliary information if utilized properly. Not only does

our method outperform vanilla baseline by 15% on a clinic-collected real-world

dataset, but it can also be utilized to detect potential vision loss for HM cases in

large-scale preliminary selection.

1.4 Thesis Organization

The rest of this thesis includes a literature review on regularization and auxiliary

supervision, two research works for designing novel regularization methods to

auxiliary supervise DNNs in practical applications, conclusions, and a discussion

of open challenges and future directions.

More specifically, the rest chapters of the thesis are organized as follows:

• In Chapter 2, we first review the related literature on regularization and

auxiliary supervision. Besides, we review data augmentation and auxiliary

learning in terms of regularization and auxiliary supervision.

• In Chapter 3, we present our first work on computational color naming

(CCN) and further expand CCN’s application to data augmentation. We

first review the problem in CCN; then, we propose a novel model named

ColorMLP for CCN by additionally utilizing the RGB Color Model as reg-

ularization. Besides, we expand CCN’s application to data augmentation by

designing a color jittering-based data augmentation method, namely Partial

Color Jitter, which performs CJ on a subset of pixels belonging to the same

color of an image. In this way, PCJ partially changes the color properties

6



1.4. Thesis Organization

of images, thereby significantly increasing images’ diversity. We conduct

experiments to show that PCJ has a remarkable regularization effect on the

image classification tasks.

• In Chapter 4, we present our second work on vision loss estimation. We

first review the problem in vision loss estimation and find out that existing

vanilla baselines produce trivial solutions and thus fail to estimate vision

loss accurately. To tackle this challenge, we propose a novel method based

on the characteristics of Visual field (VF) sensitivity data. Besides, we in-

troduce an auxiliary task for myopic maculopathy classification to assist the

generalization of vision loss estimation. Finally, we conduct experiments to

evaluate our method on a clinic-collected real-world dataset.

• In Chapter 5, we conclude the thesis and discuss the open challenges and

the directions of future works. The open challenges are mainly about data

augmentation and auxiliary learning. For data augmentation, theoretical re-

search for analysis data augmentation is an open challenge. Besides, ana-

lyzing the effect of data augmentation on the transferability of pre-trained

DNNs is an open challenge. And how to efficiently design a general data

augmentation that does not rely on prior knowledge is also an open chal-

lenge. For auxiliary learning, finding sufficient related auxiliary tasks is

a basic challenge. Besides, eliminating the negative transfer from auxil-

iary tasks is another open challenge. Based on the above open challenges,

future directions are as follows. From the representation learning perspec-

tive to analyze data augmentation is one interesting future direction. In ad-

dition, based on the representation learning perspective, latent space data
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Chapter 1. Introduction

augmentation is a promising future direction, which is modality agnostic

and more general, as it decouples from input modality and only generates or

augments deep features in the latent space. In terms of auxiliary learning,

self-supervised auxiliary learning is a promising future direction to explore,

where the auxiliary labels are obtained from the data itself, then the man-

ual procedure is no longer needed, hence it will be more efficient and more

general.
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Chapter 2

Literature Review

In this chapter, we first review the definition of regularization and auxiliary super-

vision, then discuss two representative techniques, including data augmentation

and auxiliary learning. Besides, we review the existing works on computational

color naming and visual field sensitivity estimation.

2.1 Regularization and Auxiliary Supervision

The term “regularization” is first used as a penalty term in the loss function [20].

Goodfellow et al. have broadened its meaning as: “any modification we make

to a learning algorithm that is intended to reduce its test error but not its training

error” [5]. Then, a slightly restrictive definition is “Regularization is any supple-

mentary technique that aims at making the model generalize better, i.e., produce

better results on the test set” [6]. In conclusion, we define “regularization” as the

technique that improves the model’s generalization.

To formalize auxiliary supervision, let’s consider a supervised learning setting.
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Chapter 2. Literature Review

We are given a training data D = {(xi, yi)}ni=0 where xi denotes input data, yi

denotes the supervision signal, a deep neural network f(·; θ) where θ denotes its

parameters. The overall objective is to find a target θ∗ by minimizing a designed

loss function L on D, which is generally formulated as follows:

θ∗ = argmin
θ

1

|D|
∑

L(xi,yi)∈D(f(xi; θ), yi) +R(θ) (2.1)

According to the above objective, the following components are naturally con-

nected to θ∗, thus determining the final performance:

• D: the training data.

• f(·; θ): the model.

• L(·): the loss function.

• R(·): the penalty term/auxiliary loss function.

Therefore, “any supplementary techniques” on training data, model, loss func-

tion, and auxiliary loss function are so-called regularizations. And these regular-

izations act as auxiliary supervision, as they additionally regularize the model to

better generalization.

2.1.1 Data Augmentation

Data augmentation is a widely applied regularization for relieving the overfitting

problem by increasing the dataset size and diversity [21]. Different from the tax-

onomy in [21], we mainly review data augmentation in two aspects according to

whether it performs augmentation in the input or latent space. Specifically, data
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augmentations in input space refer to these directly operating on the raw images.

Besides, data augmentations in latent space generate augmented/transformed fea-

tures in the deep latent space.

2.1.1.1 Data Augmentation in Input Space

Basic manipulations, including geometric and color transformations, are applied

to the input space of the image, which changes the geometric and color properties

of an image. These manipulations are directly applied to images, making them

simple to implement. For geometric transformations, such as cropping, rotating,

and flipping are performed to encode in-variance priors, which have been widely

adopted as standard augmentation for training DNNs, especially for convolutional

neural networks (CNNs). Besides, color transformations such as hue jittering,

etc, are also frequently utilized. These basic transformations are usually applied

sequentially during training.

After that, finding effective combinations of basic manipulations becomes a

research problem. Different from manually finding combinations, AutoAugment

[22] is proposed to automatically search the best combinations(/policies) accord-

ing to the highest validation accuracy with Reinforcement Learning. AutoAug-

ment has achieved amazing performance on both large-scale and tiny datasets.

However, such a search algorithm typically takes too much time, although it can

be run in parallel. Fast AutoAugment [23] proposes to find effective combina-

tions by density matching, which reduces the search space and thus saves time.

Besides, Population Based Augmentation (PBA) [24] generates dynamic augmen-

tation policies instead of fixed ones. In addition, TrivialAugment [25] proposes

a trivial yet efficient method, which uniformly selects one augmentation from a
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given polices during the training. TrivialAugment achieves comparable perfor-

mance compared to AutoAugment.

Erasing-based data augmentations also show remarkable performance. These

augmentations typically erase one or some sub-regions of raw images. For exam-

ple, Cutout [26] randomly erases a square sub-region of the raw image with con-

stant values, which regularizes the model and improves its robustness. Besides,

RandomErasing [27] first randomly chooses a rectangle region, then replaces this

region with random values. RandomErasing has shown better performance than

Cutout. In addition, GirdMask [28] generates a gird-like squared mask to mask

out the raw image, which is based on the deletion of regions of the input image.

In addition, Mixup [8] style-like data augmentations perform data augment

by mixing two input images. Specifically, Mixup [8] proposes to combine two

images as well as their labels in a convex manner. Mixup not only regularizes

DNN to better performance but also increases its robustness to adversarial exam-

ples. Instead of mixing the whole images, CutMix [29] proposes to cut and paste

patches, thereby efficiently using training pixels and retaining the regularization

effect of regional dropout. Unlike mixing different training samples, AugMix [30]

proposes to mix three augmented samples from a single image in a convex com-

bination. Besides, AugMix additionally utilizes Jensen-Shannon divergence con-

sistency loss to enforce smoother neural network responses. AugMix improves

DNNs’ robustness and helps them withstand unforeseen corruption.

2.1.1.2 Data Augmentation in Latent Space

Unlike data augmentations in input space, data augmentations in latent space do

not explicitly manipulate the raw image, as they typically operate on deep features
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in latent space. Besides, these augmentations can generate different semantic sam-

ples, such as changing the view angle, changing the background color, etc., which

usually cannot achieve by basic manipulations. For example, ISDA [31] achieves

implicit semantic data augmentation by transforming deep features along seman-

tic directions in latent space. Besides, [32] proposes a unified viewpoint between

data augmentation and loss variations incurred by logit perturbation. In short,

ISDA is formulated as a specific logit perturbation. Moreover, logit perturba-

tion achieves better when facing imbalanced data compare to ISDA. Furthermore,

generative adversarial networks (GANs) [33] are also introduced for generating

more data. For example, [34] utilizes GANs to synthesize more training sam-

ples to improve liver lesion classification. GANs-based data augmentations can

be formulated as special data augmentation in latent space because these methods

first generate semantic features in latent space and then transform them back to

the input image space. Moreover, Manifold Mixup [35] generalizes Mixup to the

latent space, which mixes deep features in latent space and their corresponding

labels. MODALS [36] propose an automated latent data augmentation method by

searching the best data augmentation policies with PBA in latent space. MODALS

achieves comparable performance to Mixup on different modalities data.

2.1.2 Auxiliary Learning

Auxiliary learning is a special type of multi-task learning in which the auxiliary

tasks are introduced only to help generalize the primary task [7], [16]. Specifically,

auxiliary learning only pays attention to the performance of the primary tasks,

whereas multi-task learning aims to achieve comparable performance among all
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tasks [16].

Auxiliary learning has succeeded in many applications, including computer

vision, natural language processing, and speech recognition. For example, ROCK

[37] utilizes auxiliary tasks for predicting scene labels and evaluating depth and

surface orientation at a pixel level. Besides, [38] proposes to predict words based

on their neighborhood as an auxiliary task, such that the model can learn efficient

word representations. In addition, [39] utilizes phoneme recognition at intermedi-

ate low-level representations as an auxiliary task to improve conversational speech

recognition performance. Besides, Auxiliary learning has been applied in Rein-

forcement Learning. For instance, [40] proposes two auxiliary tasks, including

pixel changes and network features, to promote faster training, more robust learn-

ing, and ultimately higher performance. Besides, [41] proposes to use different

feature spaces for computing prediction errors as auxiliary tasks to improve the

model’s generalization in Curiosity-Driven Learning.

The main challenge in auxiliary learning is to find the related auxiliary tasks.

However, finding an auxiliary task is largely based on the assumption that the

auxiliary task should be related to the primary task in some way; thus, solving it

can be helpful for the primary task [16]. Unlike utilizing domain or prior knowl-

edge to find auxiliary tasks manually, MAXL [7] proposes a self-supervisor label

generator for generating auxiliary labels to assist the generalization of the primary

task. Besides, the auxiliary task is not always helpful for the primary task, because

sometimes there exists a negative transfer from the auxiliary task to the primary

task. Therefore, quantifying whether the auxiliary task is helpful for the primary

task becomes a crucial problem. [17] proposes that the cosine similarity between

gradients from the auxiliary task and primary task can provide a signal to detect
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when an auxiliary task is helpful to the primary task. Based on this, [17] demon-

strates the negative transfer when such cosine similarity becomes negative. Then,

a natural strategy for blocking the negative transfer is to mitigate harmful auxil-

iary gradients [17]. In detail, [17] proposes a weighted and unweighted strategy

for mitigating harmful auxiliary gradients. Besides, [18] proposes to project the

auxiliary gradients to the primary gradients, then remove the harmful ones. In ad-

dition, [19] proposes to decompose auxiliary gradients into directions that help,

damage, or leave the primary task loss unchanged. Based on this decomposition,

an efficient algorithm is proposed to re-weight the auxiliary gradients differently

depending on their impact on the problem of interest.

2.2 Existing Works on Computational Color Nam-

ing

Computational color naming (CCN) aims to learn a mapping from pixels into

semantic color names. CCN has wide applications. First, it can assist color-

deficiency people in recognizing colors in the digital world. Second, CCN can

help improve the performance of many visual recognition tasks such as image re-

trieval [42], object detection [43], visual tracking [44], and texture recognition

[45]. According to the studied data, existing works on CCN are mainly two types.

The first type studies pixel-color pairs collected under laboratory settings [46]–

[50]. In general, they ask several observers with no color deficiencies to distribute

a total score of 10 points among the possible color names according to the certainty

they had about each pixel belonging to the different categories. Therefore, only a
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small number (e.g., hundreds) of pixel-color pairs is available, which may result

in a poor generalization of the discovered mapping to unseen pixels.

The second type studies images collected from the web [51]–[53]. They typ-

ically collect color images from the Google image search engine by utilizing the

input search key and its corresponding images, e.g., red rose. Such a process is

more convenient than the first type in laboratory settings. However, collected im-

ages contain the target color and other irrelevant ones, which are not described

by the target color name. Therefore, learning models based on these image-color

pairs may lead to poor generalization, as there exist unwanted spurious correlations

among image-color pairs.

2.3 Existing Works on Visual Field Sensitivity Esti-

mation

Visual field (VF) sensitivity is a commonly used metric to quantify vision loss

which can be measured by the visual field test. The visual field test is prohibitively

time-consuming and subjective due to its high dependence on patient compliance

[54]. Consequently, utilizing DNNs to estimate VF becomes a feasible alternative,

because DNNs are capable of making fast predictions.

Existing works on VF estimation mainly utilize pre-trained DNNs to learn

mappings from eye-related modalities to VF. These modalities contain potential

vision loss information, such as retinal thickness and fundus photographs. Retinal

thickness reflects the eye’s functionality, typically degraded by vision loss diseases

such as glaucoma. Besides, fundus photographs capture structural information
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such as retinal vascular, and myopic macular, which can be utilized to diagnose

myopic maculopathy, a myopia-related disease causing irreversible vision loss.

There are mainly two types of existing works according to their studied modal-

ity. The first one estimate VF only for the glaucomatous population by using

different combinations of retinal thicknesses [54], [55]. The second one estimates

quantitative measurements (e.g., MD value) in glaucoma by utilizing various types

of fundus photographs [56], [57]. Notably, all these existingworks are limited only

to glaucoma.
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Chapter 3

RGB Color Model Aware

Computational Color Naming

and Its Application to Data

Augmentation

Computational color naming (CCN) aims to learn a mapping from pixels into se-

mantic color names, e.g., red, green and blue. CCN has wide applications includ-

ing color vision deficiency assistance and color image retrieval. Existing research

on CCN mainly studies pixels collected under laboratory settings or studies im-

ages collected from the web. However, laboratory pixels are very limited such

that the learned mapping may not generalize well on unseen pixels, and the map-

ping discovered from images is usually data-specific. In this work, we aim to learn

a universal mapping by studying pixels collected from the web. To this end, we

formulate a novel classification problem that incorporates both the pixels and the
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RGB color model. The RGB color model is beneficial for learning the mapping

because it characterizes the production of colors, e.g., the addition of red and green

produces yellow. However, the characterization is rather qualitative. To solve this

problem, we propose ColorMLP, which is a multilayer perceptron (MLP) embed-

ded with graph attention networks (GATs). Here, the GATs are designed to capture

color relations that we construct by referring to the RGB color model. In this way,

the parameters of the MLP can be regularized to comply with the RGBmodel. We

conduct comprehensive experiments to demonstrate the superiority of ColorMLP

to alternative methods.

To expand the application of CCN,we design a novel data augmentationmethod

named partial color jitter (PCJ), which performs color jitter (CJ) on a subset of pix-

els belonging to the same color of an image. In this way, PCJ partially changes the

color properties of images, thereby significantly increasing images’ diversity. We

conduct extensive experiments on CIFAR-10/100 and ImageNet datasets, showing

that PCJ can consistently improve the classification performance.

3.1 Introduction

Computational color naming (CCN) aims to learn a mapping from pixels into se-

mantic color names. According to linguistics studies [58], color names vary in

different languages, but most languages share 11 basic color names, i.e., black,

white, red, green, yellow, blue, brown, orange, pink, purple, and gray. CCN has

wide applications. First, it can assist color-deficiency people in recognizing col-

ors in the digital world. Studies have discovered that the prevalence of color de-

ficiency in European Caucasians is about 8% in men and about 0.4% in women
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and between 4% and 6.5% in men of Chinese and Japanese ethnicity [59]. Such

a prevalence of color deficiency worldwide can lead to great demands for color-

deficiency assistance. Second, CCN can help improve the performance of many

visual recognition tasks such as image retrieval [42], object detection [43], visual

tracking [44], and texture recognition [45].

There aremainly two types of existing approaches to CCN according to studied

data. The first type studies pixel-color pairs collected under laboratory settings

[46]–[50]. In the laboratory, several observers with no color deficiencies were

asked to distribute a total score of 10 points among the 11 possible color names

according to the certainty they had about each pixel belonging to the different

categories. It is worth mentioning that there are several Apps for color-deficiency

assistance, e.g., ColorBlindPal andWhatColor. They also have a set of pixel-color

pairs whose source is unclear to us. The second type studies images collected from

the web [51]–[53]. One way to collect such images can be as follows: Google

image search uses the image filename and surrounding web page text to retrieve

the images [51].

However, both the two types of existing approaches have limitations. For the

pixel-based approach, it is expensive to collect pixel-color pairs under laboratory

settings. Therefore, only a small number (e.g., hundreds) of pixel-color pairs is

available, which may result in a poor generalization of the discovered mapping to

unseen pixels. For those color-deficiency assistance Apps, to our best knowledge,

they usually find the nearest match to any given pixel. In other words, they employ

the nearest neighbor approach. The performance of the nearest neighbor approach

highly depends on their set of pixel-color pairs. For the image-based approach, it

is more convenient to collect data from the web in which a color name is usually
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given to the object of interest of an image (e.g., a red car). However, the object

boundary is not given. Moreover, there can be a considerable number of pixels that

are not parts of the object and that are not described by the color name. Therefore,

the discovered mapping is usually data-specific.

In this work, we study pixel-color pairs collected from the web with the objec-

tive of learning a universal mapping. In particular, we collect a set of pixel-color

pairs from multiple sources including some color standards and a survey. The ob-

jective is to learn a mapping for all the pixels in the RGB color space, i.e., the RGB

cube as illustrated in Fig. 3.1. However, the set is still limited compared to all the

pixels in the RGB cube that has as many as 256×256×256 pixels. Therefore, in-

stead of purely learning from the limited data, we propose to further incorporate the

characteristics of the RGB color model. Based on the human perception of colors,

the RGB color model [60] is an additive color model and characterizes how colors

are produced, e.g., the addition of red and green produces yellow. However, it is

challenging to inform a machine learning model of the RGB color model’s char-

acteristics since a machine learning model deals with quantitative computations

while the characteristics are rather qualitative.

To address the challenge, we propose ColorMLP, which is a multilayer percep-

tron (MLP) embedded with graph attention networks (GATs) [61]. In particular,

we construct graphs with colors as vertices by referring to the RGB color model.

The GATs are designed to turn the graphs into the representations of colors, which

are then used as parameters in the MLP. In this way, the parameters of the MLP

are regularized to comply with the RGB model.

We further expand the application of CCN to data augmentation. Data aug-

mentation plays a crucial role in regularizing deep neural networks. Color jitter
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B

R G

Blue(0, 0, 255)

Green(0, 255, 0)Red(255, 0, 0)

White(255, 255, 255)

Figure 3.1: The illustration of the RGB cube. The bold-faced R, G, and B represent
the red channel, the green channel, and the blue channel, respectively. Any point
in the cube, e.g., (255, 255, 255), is a pixel.

(CJ) is the most commonly used color-involved augmentation methods. Specif-

ically, CJ randomly changes the brightness, contrast and saturation of an image,

thereby increasing the diversity of images. However, some existing studies [12],

[13] have shown that CJ may degrade the performance of image classification.

One potential reason is that CJ changes the color patterns of an image arbitrarily,

which may introduce unrealistic color patterns of objects. To reduce the risk of un-

realistic color patterns, we propose a new method named partial color jitter (PCJ),

which only performs CJ on a subset of pixels with the same color of an image. In

this way, PCJ can also improve the diversity brought by the color changes.

Our contributions are summarized as follows:

• We consolidate a dataset of pixel-color pairs for computational color nam-

ing. The dataset consists of pixels from different sources 1 including some

color standards and a survey conducted on the web.

1All the sources grant a free license. URLs are included in section 3.6.
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• We formulate CCN as a novel classification problemwhere pixel-color pairs

and the RGB color model are given, and propose ColorMLP to solve the

problem. We provide both qualitative and quantitative evaluations to demon-

strate that ColorMLP significantly performs better than alternative classi-

fiers that can only learn from the pixel-color pairs.

• We divide the entire RGB data space into 11 color regions corresponding to

the 11 color names. The 11 color regions can be utilized to develop color-

deficiency assistance applications.

• We expand the application of CCN to data augmentation by designing PCJ

for image classification. We conduct extensive experiments on CIFAR-

10/100 and ImageNet to demonstrate that PCJ can obtain the state-of-the-art

performance.

The rest of this chapter is organized as follows. Section 3.2 introduces the

related work. Section 3.3 presents the studied problem. Section 3.4 presents Col-

orMLP. Section 3.5 describes PCJ. Section 3.6 and 3.7 provide empirical evalu-

ations of ColorMLP and PCJ, respectively. Section 3.8 concludes this work and

introduces future work.

3.2 Literature Review

We discuss three types of related work w.r.t. to three topics, respectively, which

are CCN, the integration of graph neural network (GNN) into MLP, and data aug-

mentation.
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In terms of CCN, there are mainly two types of related work according to the

format of the data studied. The first type [46]–[50] studies pixel-color pairs. We

also study pixel-color pairs but of a different kind. In particular, the related work

studies pixel-color pairs collected under laboratory settings while we study pixel-

color pairs collected from the web. Moreover, the color information for each pixel

in the related work contains a membership value to each of the 11 colors such that

related work performs fuzzy modeling of the data. By contrast, the data in our

study specify a single color category for each pixel, and therefore we perform the

conventional classification. The second type [51]–[53], [62] studies image-color

pairs. This type focuses more on specific image applications such that the learned

pixel-to-color mapping is data set specific. By contrast, we aim to learn a universal

mapping. It is worth mentioning that CCN can be used in color-deficiency assis-

tance, which can help the color blindness recognize colors in the digital world.

There are some color-deficiency assistance Apps, e.g., ColorBlindPal and What-

Color. To our best knowledge, they also have a set of pixel-color pairs, and utilize

the nearest neighbor approach. We are different from them in both the dataset and

the approach.

The integration of GNN into MLP has been studied in multi-label image

classification [63], [64]. In particular, GNNs are utilized to learn representations

of class labels, and then the representations are used as the parameters of the fully

connected layers. The main difference from us is that they deal with multi-label

classification while we deal with multi-class classification.

Data augmentation is a technique for regularizing deep neural networks [21].

Geometric transformations such as cropping and flipping are frequently methods.

Besides, color space transformations, particularly CJ, can be applied to colorful
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images. In this work, we propose PCJ that performs CJ on parts of an image. It is

worth mentioning that there are several studies related to CJ. Instead of manually

selecting augmentation methods, studies [22], [23] design algorithms to automat-

ically search over a set of augmentation methods including CJ for an improved

augmentation. Note that CJ may not consistently bring benefits as suggested by

some studies [12], [13]. We show that PCJ can consistently bring benefits. There-

fore, PCJ may replace CJ in the search base. Another study [31] realizes color

transformations through an optimization approach. In this way, it does not per-

form color transformations explicitly like PCJ.

3.3 The Studied Problem

We are given a set of pixel-color pairs {(pi, ci)}Ni=1, where pi ∈ R3 is the represen-

tation of a pixel denoted in the RGB format, ci is the color name of the pixel, and

N is the number of pixels. The RGB format denotes a pixel by a three-dimensional

representation where the three dimensions correspond to three channels, i.e., Red

channel, Green channel and Blue channel, respectively. We study the 11 basic

color names shared by most languages in this work. Our objective is to learn a

mapping from pi into ci by utilizing both {(pi, ci)}Ni=1 and the RGB color model.

More information about the RGB color model will be introduced in the following

section. The novelty of the problem is additionally regarding the characteristics

of the RGB model as input, and the challenge mainly lies in how to turn the qual-

itative characteristics into quantitative computations.
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3.4 ColorMLP

3.4.1 Design Rationale

To address the challenge, we learn that the RGB color model is an additive color

model [60] and is based on three primary colors. Hereafter, Red, Green and Blue

denote the three primary colors while red, green and blue denote the colors in the

11 basic colors. Each basic color is produced by the addition of some primary

colors, e.g., the addition of Red and Green produces yellow. We figure out that

two basic colors may be related according to whether a particular primary color

is added for their productions or not. We thus propose to construct a graph with

the 11 basic colors as vertices and color relations as edges. Afterwards, we may

conduct computations on the graph. In particular, we employ GAT [61], a popular

graph neural network, to deal with the graph.

What is left to be addressed is how to integrate the graph computation into

the pixel-to-color mapping. The mapping can be typically discovered by fitting a

classifier. We propose to design an MLP for this purpose because an MLP with

sufficient capacity can approximate any arbitrary mapping function [65]. More-

over, we find it flexible to integrate GAT into MLP. As a result, we design a model

named ColorMLP. Later on, we first give an overview of ColorMLP and then

present the design details.

3.4.2 Overview

We present Fig. 3.2 to illustrate the proposed ColorMLP, which is drawn by fol-

lowing the notations of PyTorch. ColorMLP is a specially designed MLP with
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 Linear: W2 := cat(                   ), b2

Hidden Layer(tanh)

gGAT bGAT
Linear: W1, b1

Output Layer

rGAT

W r W g W b,,

Input Layer

Figure 3.2: The illustration of ColorMLP. Following the convention of PyTorch,
Linear represents the connection between two layers and consists of a weight ma-
trix W 1 and bias vector b1. tanh is the activation function utilized in the hidden
layer. rGAT, gGAT and bGAT are three GATs we design to take three respective
color graphs as input and produce three sets of color representations concatenated
as the weight matrixW 2 through cat(W r,W g,W b).

one hidden layer. The difference of ColorMLP from the conventional MLP is just

in the weight matrix of the connection between the hidden layer and the output

layer. In particular, the weight matrix of ColorMLP is the concatenation of the

outputs of three GATs. Each GAT takes as input a distinct graph of colors, and

produces the matrix that consists of the continuous representations of the colors.

The dimensions of the matrix are specified such that the concatenation of the three

matrices is compatible with the design of the hidden layer. The three graphs share

the same set of vertices (i.e., the 11 basic colors as vertices) but have different sets

of edges. We define the edges according to the RGB color model. As a result, Col-

orMLP is an MLP embedded with domain knowledge of the RGB model, thereby

regularizing the weight matrix to reduce its overfitting on data. In the following

subsections, we present how the graphs are constructed, how the outputs of the

GATs are integrated into the MLP, and how ColorMLP is optimized, respectively.
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Table 3.1: Color and its related colors in terms of the RGB channels.

Color Related Colors
Red Channel Green Channel Blue Channel

red yellow, brown, orange, pink, purple, white blue, purple, black green, yellow, brown, orange, black
green blue, black yellow, brown, orange, pink, white red, yellow, brown, orange, black
blue green, black red, purple, black pink, purple, white
yellow red, brown, orange, pink, purple, white green, brown, orange, pink, white red, green, brown, orange, black
brown red, yellow, purple green, yellow red, green, yellow, orange, black
orange red, yellow, pink, purple, white green, yellow, pink red, green, yellow, brown, black
pink red, yellow, orange, purple, white green, yellow, orange, white blue, purple, white
purple red, yellow, brown, orange, pink, white red, blue, black blue, pink, white
white red, yellow, orange, pink, purple green, yellow, pink blue, pink, purple
gray – – –
black green, blue red, blue, purple red, green, yellow, brown, orange

3.4.3 Graph Construction

We first briefly introduce the RGB color model and then present our method for

constructing the color graphs.

3.4.3.1 Introduction to the RGB color model

The RGB model is an additive color model with three primary colors [60]. It

specifies that each primary color corresponds to a channel of a pixel and that each

channel has an integral intensity ranging from 0 to 255 inclusively. When the Red

channel has the strongest intensity, a red pixel is produced, e.g., an intensity of

200 in the Red channel and a zero intensity in both the Green channel the Blue

channel produce a red pixel (200, 0, 0). If the same intensity in the Green channel

is added, a yellow pixel (200, 200, 0) is produced. Pixels in other colors have

different addition rules, which are omitted for space consideration. These pieces

information is sufficient for us to establish the color relations.
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3.4.3.2 Color relations

According to the RGB color model, two colors may share similar intensities in

some channels, e.g., red and yellow share similar intensities in the Red channel.

We thus propose to establish the color relations according to the shared channel-

wise intensity. In particular, two colors are considered to be related in terms of a

channel if the two colors share similar intensities in the channel. However, it is

non-trivial to determine how similar the intensity should be.

To address this challenge, we propose a two-fold criterion. First, a channel

representing a primary color of interest should be added to produce both the

colors. This is based on the additive property of the RGB color model. If the

intensity of a particular channel is added to produce one color while it should be

absent in the production of the other color, the two colors are not related in terms

of the channel. For example, Red is added to produce yellow while Red should

be absent in the production of black. Then yellow and black are not related in

terms of the Red channel even though some yellow pixels and black pixels may

share similar intensities in the Red channel. Second, the range of intensities of the

channel is overlapped between the two colors. To obtain the range of intensities

for a particular color, we refer to the typical pixels of the color and observe the

pixels collected for the study in this work. The resulting ranges can be found in

our software. After applying the two-fold criterion, we can determine the color

relations in terms of each channel, and hence three different graphs as in Table

3.1.

Note that gray is specially considered not to be related to any colors. Normally,

gray would be related to the most of the colors because gray is produced by adding
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the similar intensity in all the three channels, e.g., (128, 128, 128). However,

the inclusion of the relations would make gray as a common neighbor for many

pairs of colors that are not related, e.g., brown and orange in terms of the Red

channel. To avoid bridging the difference between unrelated colors by gray, we

make gray unrelated to any colors, which is demonstrated as a good design by our

experiments.

3.4.4 Architecture Design

ColorMLP has the same kind of architecture as an MLP except for the GATs. For

anMLP, we just need to specify the number of layers and the number of neurons in

each layer. We design an MLP with one hidden layer because the 11 colors are not

linearly separable in the raw data space. We do not include additional hidden layers

in order to avoid overfitting. For the number of neurons in the hidden layer, we

propose a number of a multiple of three because we will employ the concatenation

of three matrices produced by three respective GATs as the weight matrix in the

connection between the last two layers.

For the GATs, we customize their original design for our usage. Originally,

GAT is a network with one hidden layer. Both the hidden layer and the output

layer are implemented as a graph attention layer. A graph attention layer takes as

input an adjacency matrix representing a graph and another matrix containing the

features or representations of vertices, and produces a matrix of new representa-

tions of vertices. The new representation of each vertex is a weighted average of

transformed representations of its adjacent vertices and itself, which is formally
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realized as follows:

h′
i = σ

(
∑

j∈Ni

αijWhj

)
, (3.1)

where h′
i ∈ RD′ is the new representation of vertex i, σ is the sigmoid activation

function, Ni is a set of vertices including vertices adjacent to vertex i and itself,

αij ∈ R named attention is a weight assigned to vertex j, W ∈ RD′×D is a

learnable matrix of parameters for transforming vertex representations, and hj ∈

RD is the representation of vertex j in the input. To obtain the attention weight αij ,

an attention mechanism is designed. In particular, the attention weight is obtained

by the following softmax function:

αij =
exp (LeakyReLU (a[Whi||Whj]))∑

k∈Ni
exp (LeakyReLU (a[Whi||Whk]))

, (3.2)

where a ∈ R2D′ is vector of a learnable parameters for computing attention co-

efficients, || is the operation of concatenation, and LeakyReLU is an activation

function [66]. Through stacking two graph attention layers, GAT was demon-

strated to be the state-of-the-art model on several vertex classification tasks. One

may refer to its paper [61] for more detailed explanations of the design.

To incorporate GAT into ColorMLP, wemainlymake twomodifications. First,

we only utilize a single graph attention layer. This is because in our case, we em-

ploy GAT only to learn the representations of the vertices, which is what the first

graph attention layer of the original GAT does. Second, we design a new kind

of multi-head architecture. The original multi-head architecture is designed as

parallel multiple graph attention layers for learning vertex representations in or-

der to stabilize the learning process. More specifically, the vertex representations
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are the concatenation of multiple h′
i obtained in (3.1). In our design, we do not

perform the concatenation of multiple heads, but perform the average of multiple

heads. This is because the concatenation increases the dimensionality of the ver-

tex representations, and we do not want to have a large dimensionality since the

dimensionality corresponds to the number of neurons in the hidden layer of our

MLP. Our experiments show that the proposed average strategy works well.

We then present the incorporation of the GATs into the MLP in a formal way.

TheW r ∈ RD′×11 in Fig. 3.2 contains the representations of 11 colors produced

by the rGAT, which is a single-layered GAT with multiple heads averaged. Each

column ofW r is obtained as follows:

W r
i =

∑K
k=1 σ

(∑
j∈Ni

αk
ijW

khj

)
,

K
, (3.3)

where k and K are the index of a head and total number of heads, respectively.

Similarly, W g ∈ RD′×11 and W b ∈ RD′×11 are produced by gGAT and bGAT,

respectively. rGAT, gGAT and bGAT share the same architecture, and the only

difference among them is in the input graph. As the name suggests, they take as

input the three graphs corresponding to the three channels in Table 3.1, respec-

tively. Note that there are no raw features of the 11 colors. We thus employ an

identity matrix as the raw features, which is a common practice when applying

graph neural networks to graphs without vertex features [67].
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Original CJ PCJ(Sky) PCJ(Pineapple)

Figure 3.3: An example of an original image and images after the application of
CJ or PCJ where PCJ(Sky) and PCJ(Pineapple) denote pixels of the sky and of the
pineapple are selected, respectively.

3.5 Partial Color Jitter

This section presents the application of ColorMLP to data augmentation. In par-

ticular, color jitter (CJ) is a frequently studied data augmentation technique. CJ

randomly changes the brightness, contrast, saturation and hue of an image, thereby

increasing the diversity of the image. However, some studies [12], [13] show that

CJ does not consistently improve the performance of image classification. One

reason behind the failure of CJ is that some objects only have particular color pat-

terns while CJ can make the color pattern arbitrary, resulting in objects that may

never exist in the real world.

To reduce the risk of generating images with unrealistic colors, we propose

partial color jitter (PCJ), which performs CJ only on a subset of pixels of an image.

The subset of pixels is determined by randomly choosing a color and picking all

the pixels whose label is classified as the color by ColorMLP. In this way, the

aforementioned risk can be reduced by limiting the changes in color patterns to

parts of an image. Moreover, the diversity brought by color changes is significantly

increased because the changes made to an image are the joint results of CJ and the

selection of a subset of pixels. To illustrate the difference between CJ and PCJ, we
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Table 3.2: Number of pixels from different sources.

Dataset Wikipedia 595C1 Hollasch Survey Total

red 30 33 14 15307 15384
green 68 147 20 51398 51633
blue 43 73 20 42736 42872
yellow 20 70 12 7795 7897
orange 36 32 7 9132 9207
brown 23 77 19 10504 10623
pink 48 0 0 12624 12672
purple 26 0 0 26412 26438
white 7 0 4 0 11
gray 13 63 2 0 78
black 5 0 1 1717 1723

All 319 495 99 177625 178538

present an example in Fig. 3.3. We can see that CJ may make the color patterns

of the sky and the pineapple unrealistic, but PCJ can limit the unrealistic patterns

to only the sky or only the pineapple. Besides, PCJ increases the diversity by

selecting a subset of pixels.

3.6 Experiments on Computational Color Naming

In this section, we empirically evaluate the performance of the proposed Col-

orMLP on computational color naming.

3.6.1 Baselines, Implementations, and Datasets

Baselines. CCN is formulated as a classification problem in this study, and there-

fore can be solved by off-the-shelf classifiers, e.g., MLP and SVM. The objective

of CCN is to discover a universal mapping from pixels into color names. The
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nearest neighbor classifier employed by existing studies [49] on the fuzzy dataset

of pixels can also be a baseline for discovering the universal mapping.

Implementations. We implementMLP andColorMLP on PyTorch [68] frame-

work, and directly utilize the SVM in scikit-learn. The detailed configurations are

available in our source code.

Datasets. Wecollect pixel-color pairs from four sources, which areWikipedia2,

595C13, Hollasch 4 and Survey 5. 595C1 is a U.S. federal standard for colors used

in government procurement. Hollasch is popular dataset complied by a software

developer Steve Hollasch. The Survey data was collected from a color survey

in which over five million colors were named across 222,500 user sessions. The

statistics of these datasets are summarized in Table 3.2. Note that these datasets

contain pixels of color names other than the 11 names studied in this work. More-

over, there may exist other sources in the web. As a result, Table 3.2 just represents

our best efforts of data collection for the current study.

We have two observations on the data. First, the number of pixels in the Survey

dataset is much larger than that in other datasets. This is because the Survey

dataset mainly contains pixels whose color names can be easily recognized by non-

experts, e.g., (255, 255, 0) and (255, 0, 0) that are yellow and red, respectively.

This kind of pixels usually lies on the surfaces of the RGB cube as illustrated in

Fig. 3.1.

As a result, even though the Survey dataset is given by non-experts, it is highly

likely that the names of the pixels are reliable. By contrast, other datasets contain

2https://en.wikipedia.org/wiki/Basic_Color_Terms
3https://people.csail.mit.edu/jaffer/Color/FED-STD-595C1.txt
4http://steve.hollasch.net/cgindex/color/colors.txt
5https://blog.xkcd.com/2010/05/03/color-survey-results/
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pixels inside of the RGB cube whose names are given by experts. Second, the

data is class-imbalanced. This is because the RGB color space itself is class-

imbalanced. We can easily see that red pixels are many more than white pixels in

the RGB cube. The class imbalance would lead to poor learning performance for

the minority classes. An effective solution is to augment the data of the minority

classes, and we adopt the SMOTE [69] algorithm. SMOTE basically generates

synthetic data points along the line segment between two real data points. The

way to select the two data points is based on a nearest neighbor based principle.

Here, wemakemodifications to the way for selecting the real data points due to the

uniqueness of our data. In particular, the majority of our data, about 99%, is from

the Survey source, and the Survey source mainly contains pixels on the surface

of the RGB cube. Therefore, the nearest neighbor based selection will result in

synthetic pixels still lying on the surface of the cube, which may not be effective.

We modify the SMOTE algorithm as follows. For a particular minority class,

we randomly select one pixel of the class from the Survey source and randomly

select another pixel of the class from the rest of the sources. Then a synthetic

pixel is randomly drawn along the line segment between the two pixels. In this

way, synthetic pixels may not lie on the surface of the RGB cube because the pixels

in the other sources lie inside of the RGB cube.

Note that there are other color spaces, e.g., HSL and CIELAB, and pixels can

be converted among the spaces in a well-defined way. Here, we study pixels in the

RGB space because we find that the RGB color model can be elegantly utilized

as additional useful information by ColorMLP. Nevertheless, we have conducted

experiments by using pixels in other color spaces, which show no significant dif-

ferences from purely using pixels in the RGB space.
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Visualization for MLP Visualization for ColorMLP

Figure 3.4: Visualizations of the color representations obtained from the MLP and
ColorMLP in a two-dimensional space, respectively.

W r W g W b

Figure 3.5: Visualizations of the color representations W r, W g, W b in a two-
dimensional space, respectively.

3.6.2 Visualization of Color Representations

We first evaluate whether the color relations are preserved in ColorMLP or not.

The color relations are embedded into color representations through the GATs.

Each color representation is the concatenation of W r
i , W

g
i and W b

i . To demon-

strate the effectiveness of our design, we use the t-SNE [70] tool to visualize the

representations in a two-dimensional space as shown in Fig. 3.4. Besides, W r
i ,

W g
i and W b

i are separately visualized in Fig. 3.5. As a comparison, the visual-

ization of each column of the corresponding weight matrix of the baseline MLP

is also given. For this purpose, both ColorMLP and the MLP are trained on the

entire set of pixels.

In the space, the smaller the distance between two points is, the more similar
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Table 3.3: Classification accuracy of stratified five-fold cross validation from dif-
ferent models. The experiment with each model is repeated five times indepen-
dently. Mean and standard deviation (Std.) are reported.

Model Mean Accuracy ± Std. (%)

SVM 88.85 ± 0.03
MLP 90.37 ± 0.76
ColorMLP 90.37 ± 1.15

the two corresponding colors are. As we check the pair-wise distances, we can

see that the visualization for ColorMLP is more meaningful than that for the MLP.

For example, for the MLP, the distance between red and yellow is larger than that

between red and green, and is even larger than that between red and blue. We know

that the primary color Red is added to produce both red and yellow. Therefore, the

distance between red and yellow should be the smallest among the three as shown

in the visualization for colorMLP. For space consideration, we do not give more

examples. As a conclusion, the color representations learned by colorMLP are

effective in capturing the characteristics of the RGB color model.

3.6.3 Evaluation by Five-fold Cross Validation

We present the accuracy of stratified five-fold cross validation in Table 3.3. It

shows ColorMLP and the MLP perform similarly, and both outperform the SVM,

suggesting MLP is a better choice for the classification. Note that the Survey

contributing about 99% of the data contains pixels mainly on the surfaces of RGB

cube. Therefore, the evaluation by the five-fold cross validation on the pixels with

color names can only provide limited information. In the following section, we

design a better evaluation method.
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The surfaces of RGB cube

NN-Fuzzy

NN

SVM

MLP

ColorMLP

Figure 3.6: Visualization of color regions in the surface of the RGB cube. The
first row consists of original appearance of the surfaces. All the other rows consist
of color regions obtained by classification models where each region is comprised
of only a representative pixel of the respective color. NN-Fuzzy is the approach
of applying NN to the fuzzy dataset.
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NN-Fuzzy NN SVM MLP ColorMLP

The red region from different models

The green region from different models

The blue region from different models

The yellow region from different models

The orange region from different models

The brown region from different models

The pink region from different models

The purple region from different models

The white region from different models

The gray region from different models

The black region from different models

Figure 3.7: Visualization of color regions in the entire RGB cube.
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3.6.4 Evaluation by Visualization

In this section, we perform the evaluation on the entire RGB cube by classifying

all the pixels in the RGB cube. The classification is our objective of a universal

color-name mapping. We first present the classification results for the pixels on

the surfaces of the RGB cube in Fig. 3.6. In Fig. 3.6, we divide each surface into

color regions where each region is comprised of only a representative pixel of the

respective color for the purpose of evaluation.

NN-Fuzzy is the approach of applying the nearest neighbor (NN) classifier to

a fuzzy dataset [48] and the NN classifier is a commonly used model for CCN

with the fuzzy dataset [49]. In our setting, the color name of each pixel in the

fuzzy dataset is chosen as the one with the largest membership value. NN is the

approach of applying the NN classifier to our collected data. Note that NN is also

usually employed by color-deficiency assistance Apps. The difference between

the results obtained by NN-Fuzzy and NN mainly lies in whether there is a gray

region. According to the RGB color model, gray pixels have similar intensities in

all the three channels and therefore gray pixels should only exist in the diagonal

within the RGB cube. Both NN-Fuzzy and NN obtain regions of very irregular

shapes including disjoint components, which may be because the number of pix-

els with color names is quite small compared to the entire RGB space such that

the named pixels sporadically distribute over the space. According to cognitive

studies of colors [71], [72], the region of each color should have no disjoint com-

ponents. All the models trained on the known pixel-color pairs perform better, and

the proposed ColorMLP performs the best. In particular, the regions obtained by

ColorMLP have no disjoint components and no strange protuberances. These dis-
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joint components and strange protuberances of the baselines should be the results

of overfitting.

Then we present the color regions in the entire RGB cube in Fig. 3.7. We can

have similar observations as above. Note that the color regions actually consist

of hundreds of thousands of pixels. Moreover, figuring out the boundary of the

regions is the most challenging part of CCN, especially for these chromatic col-

ors. As a result, we can conclude that ColorMLP significantly outperforms all the

baselines.

3.7 Experiments on Image Classification

In this section, we evaluate the performance of the proposed PCJ on image classi-

fication.

3.7.1 Datasets, Baselines and Implementations

Datasets. We study three image classification datasets, which are CIFAR-10,

CIFAR-100 [73] and ImageNet-ILSVRC2012 [74]. 1) CIFAR-10 and CIFAR-100

consist of colorful images in 32 × 32 resolution and are categorized into 10 and

100 classes, respectively. 2) ImageNet-ILSVRC2012 is a large-scale dataset with

1000 classes and more than 1.2 million images at different resolutions.

Baselines. PCJ is compared to state-of-the-art(SoTA) color involved data aug-

mentation methods. 1) ISDA [75] regularizes a deep model with implicit semantic

data augmentation, e.g., changing the view angle and changing the object’s color,

by optimizing a novel loss function. 2) ColorJitter [12] randomly changes the

color properties including the brightness, contrast, saturation and hue of the entire
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Table 3.4: Top-1 test error rate (%) on CIFAR-10/CIFAR-100 dataset. Mean val-
ues and standard deviations are from four independent experiments. The best re-
sults are bold-faced.

Model CIFAR-10 CIFAR-100
Baseline ISDA CJ PCJ Baseline ISDA CJ PCJ

ResNet-20 7.98 ± 0.20 7.78 ± 0.16 9.06 ± 0.13 7.91 ± 0.12 30.62 ± 0.19 30.92 ± 0.18 33.00 ± 0.23 30.12 ± 0.19
ResNet-32 7.04 ± 0.24 7.01 ± 0.18 8.29 ± 0.13 6.90 ± 0.15 28.45 ± 0.47 28.67 ± 0.29 30.71 ± 0.22 27.71 ± 0.20
ResNet-44 6.36 ± 0.40 5.89 ± 0.41 7.20 ± 0.27 5.99 ± 0.26 25.44 ± 0.50 24.95 ± 0.43 27.65 ± 0.90 24.57 ± 0.20
ResNet-56 6.24 ± 0.34 6.04 ± 0.42 6.77 ± 0.39 5.79 ± 0.41 24.61 ± 0.32 24.54 ± 0.44 27.17 ± 0.56 23.84 ± 0.16
ResNet-110 5.80 ± 0.54 5.76 ± 0.46 6.64 ± 0.23 5.41 ± 0.30 22.77 ± 0.40 23.66 ± 0.23 26.71 ± 1.27 23.04 ± 0.10

ResNet-18-PreAct 5.53 ± 0.26 5.03 ± 0.09 6.19 ± 0.13 4.99 ± 0.04 23.97 ± 0.21 23.32 ± 0.48 26.17 ± 0.38 23.61 ± 0.20
DenseNet-BC-100-12 4.71 ± 0.22 4.85 ± 0.11 5.18 ± 0.15 4.35 ± 0.05 22.73 ± 0.44 21.79 ± 0.09 24.40 ± 0.23 21.72 ± 0.26
Wide-ResNet28-10 3.96 ± 0.10 3.74 ± 0.16 4.41 ± 0.14 3.59 ± 0.12 18.98 ± 0.26 18.46 ± 0.18 21.34 ± 0.17 18.48 ± 0.06

image. Besides, we also report the performances of different deep networks with-

out any augmentation methods mentioned above as the Baseline shown in Table

3.4 and Table 3.5.

Implementations. For convolutional neural networks, we implement ResNet

[76], DenseNet [77] and Wide-ResNet [78] on the CIFAR-10/100 dataset, and

ResNet [76], DenseNet [77] on ImageNet-ILSVRC2012. Detailed training con-

figurations for these networks are available in our source code. All the baselines

follow the original implementations respectively. Specifically, we follow the im-

plementation of CJ in [12], where we use the default value of 1.0 for the hyper-

parameter s for all experiments. For a fair comparison, PCJ uses the same hyper-

parameters as CJ.

3.7.2 Experiment Results

Main results. Table 3.4 reports the performance on the CIFAR-10 and CIFAR-

100 datasets respectively. We follow the convention of existing papers by re-

porting the test error rate (the smaller the better). In general, compared with the

baseline, CJ degrades the performance whereas PCJ consistently improve the per-

formance across different deep networks. Besides, PCJ achieves the comparable
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Table 3.5: Single crop error rates (%) on the validation set of ImageNet-
ILSVRC2012. The better results are bold-faced.

Network Top-1 / Top-5 Error Rate (%)
Baseline PCJ

ResNet-50 23.30 / 6.85 22.46 / 6.54
ResNet-101 21.41 / 5.89 21.05 / 5.62
ResNet-152 21.24 / 5.74 20.53 / 5.44

DenseNet-BC-121 23.26 / 6.70 22.97 / 6.54

SoTA performance. Table 3.5 presents the performance of PCJ on the large scale

ImageNet-ILSVRC2012 dataset. We can observe that PCJ consistently improves

the generalization of different deep networks. For example, the top-1 error rate

from ResNet-50 is reduced by 0.84%with PCJ, which is close to the performance

of ResNet-101 without PCJ.

The degradation from CJ. Similar to existing studies [12], [13], we observe

that CJ does degrade the performance of deep networks. As reported in Table

3.4, the performance of networks trained with CJ is worse than the baselines. The

potential reason for this failure has been discussed earlier in Section 3.5, i.e., CJ

arbitrarily changes the color patterns of the entire image, resulting in possibly mis-

leading augmented samples.

The improvement fromPCJ.Unlike CJ, PCJ can consistently bring improve-

ment. The potential reason has been discussed in Section 3.5. In one sentence, PCJ

increases the diversity of training images as well as has a low risk of generating

misleading images.

Comparisonwith othermethods. We also compare PCJwith the SoTA color-

involved data augmentation method, ISDA. The results are reported in Table 3.4.

We can observe that PCJ is comparable with the state-of-the-art performance.
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Table 3.6: The Ablation Study for PCJ. The baseline is ResNet-18-PreAct. Top-1
test error rate (%) are reported. Mean values and standard deviations are from four
independent experiments. The best results are bold-faced.

Setting CIFAR-10 CIFAR-100

Baseline 5.53 ± 0.26 23.97 ± 0.21

PCJ(NN) 5.12 ± 0.07 24.01 ± 0.11
PCJ(SVM) 5.18 ± 0.12 23.94 ± 0.19
PCJ(MLP) 5.18 ± 0.19 23.69 ± 0.28
PCJ(ColorMLP) 4.99 ± 0.04 23.61 ± 0.20

Specifically, PCJ almost achieves the best results with some deep networks. It

is worth mentioning that ISDA involves not only color transformations but also

other transformations whereas PCJ only does color transformations. In summary,

according to the results, we observe that PCJ is at least comparable with ISDA.

3.7.3 Ablation Study

To get a better understanding of the effectiveness of the color classification com-

ponent in PCJ, we conduct an ablation study on the image classification. Specifi-

cally, we study PCJ with different color classifiers, i.e., 1)PCJ(NN), 2)PCJ(SVM),

3) PCJ(MLP) and 4) PCJ(ColorMLP). Table 3.6 reports the results of ResNet-

18-PreAct on the CIFAR-10 and CIFAR-100 datasets, respectively. We can see

that almost all PCJs perform better than the baseline, and that PCJ(ColorMLP)

achieves the best performance. This result further demonstrates the superiority of

ColorMLP over other color classifiers.
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Table 3.7: Averaged time cost of data loading for a single batch.

Method Data Loading Time (ms)
CIFAR-10 CIFAR-100 ImageNet

Baseline 23.71 23.26 513.08
Baseline+CJ 34.53 33.82 632.80
Baseline+PCJ 37.42 36.34 637.32

3.7.4 Additional Time Cost

We show the additional time cost induced by PCJ is limited. In particular, Table 3.7

reports the averagedwall time of data loading for a single batch in our experiments.

We can see that the data loading time of PCJ is very close to that of CJ.

3.8 Chapter Summary

In this work, we have formulated a novel classification problem for CCN, and have

proposed ColorMLP to solve the problem. The problem for the first time incorpo-

rates the RGB color model that serves as domain knowledge about the production

of colors. To utilize the domain knowledge, we construct three color graphs by

following the RGB color model and design GATs to embed the three graphs into

an MLP. We have conducted experiments to demonstrate the effectiveness of Col-

orMLP. We have further expanded the application of CCN to data augmentation

by designing PCJ. Extensive experiments have shown that PCJ can consistently

improve the performance of image classification.

The limitations mainly include two aspects. First, the Survey data may have

unreliable pixel-color pairs due to the non-expert crowdsourcing. Second, Col-

orMLP is only designed for the 11 colors. Note that there can be many more color
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names used in the real world. To make ColorMLP work for other color names,

both the data and the color graphs need to be updated. Future work thus includes

addressing these two limitations.
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Chapter 4

Vision Loss Estimation using

Fundus Photograph for High

Myopia

High myopia (HM) has become a global health issue as it causes various compli-

cations, such as myopic maculopathy (MM), resulting in irreversible vision loss.

Visual field (VF) sensitivity is a commonly used metric to quantify vision loss,

which is a crucial criterion for diagnosing HM-related complications. However,

measuring VF is prohibitively time-consuming and subjective as it highly depends

on patient compliance. Consequently, utilizing machine learning models to esti-

mate VF becomes a feasible alternative. Fundus photographs have become the

preferred modality for studying HM, due to their convenience of acquisition and

incorporation of structural information. Conversely, estimating VF with vanilla

regression using fundus photographs falls into trivial solutions. To tackle this

challenge, we propose a novel method for VF estimation. In detail, we formu-
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late VF estimation as an ordinal classification problem, where each VF point is

interpreted as an ordinal variable rather than a continuous one, given that any VF

point is a discrete integer with a relative ordering. Besides, we introduce an auxil-

iary task for MM classification to assist the generalization of VF estimation. MM

is strongly associated with vision loss, and its symptoms can be observed from

the fundus photographs directly; therefore, the model will be explicitly regular-

ized by the auxiliary information if utilized properly. Not only does our method

outperform vanilla baseline by 15% on a clinic-collected real-world dataset, but

it can also be utilized to detect potential vision loss for HM cases in large-scale

preliminary selection.

4.1 Introduction

Myopia has evolved into a global health issue that endangers vision. By 2050,

50% of the global population will be myopic, and 10% will have high myopic

[79]. Various complications of high myopia (HM), such as cataract, glaucoma,

retinal detachment, and myopic maculopathy (MM) can result in irreversible vi-

sion loss [80]. Vision loss is a crucial criterion for diagnosing these complications.

Consequently, quantifying vision loss is essential so that prompt treatment can be

administered.

Visual field (VF) sensitivity is a commonly used metric to quantify vision loss

which can be measured by the visual field test. The visual field test is prohibitively

time-consuming and subjective due to its high dependence on patient compliance

[54]. During the automated static perimetry test, one type of visual field test, the

subject (patient) is requested to press a button when he sees a light. Then the
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GT Reg Ours

(a) Moderate Vision Loss
GT Reg Ours

(b) Severe Vision Loss

Figure 4.1: Visualization of predictions from different methods. GT denotes the
ground truth, Reg denotes the regression baseline, and Ours denotes our method.

machine will estimate his VF based on the lights to which he successfully and

unsuccessfully responded. Typically, such progress takes longer than 10 minutes.

Consequently, utilizing machine learning models to estimate VF becomes a

feasible alternative, because these models are capable of making fast predictions.

To the best of our knowledge, existing approaches estimate VF only for the glau-

comatous population by using different combinations of retinal thicknesses [54],

[55]. Besides, some research works propose to utilize various types of fundus

photographs to estimate quantitative measurements (e.g., MD value) in glaucoma

[56], [57]. Notably, our studied population differs from theirs; ours is HM, which

is more prevalent than glaucoma and demonstrates a global trend [79]. Besides,

the pathological of HM is different from glaucoma, where HM is the local tear and

glaucoma shows global degradation. Existing clinical research is mainly based on

fundus photographs for HM [81], as they are convenient to obtain, typically take

a few seconds to scan, and contain structural information such as retinal vascular,

myopic macular, etc.

However, estimating VFwith vanilla regression falls into trivial solutions, pro-

ducing nonsense predictions. Specifically, we implement ResNet [76] to build a

vanilla regression model to estimate VF using fundus photographs. We visualize

its predictions on two representative examples, a large and aminor vision loss case.
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As shown in Fig. 4.1, these predictions from vanilla regression exhibit a relatively

simple and consistent pattern, regardless of the severity of the vision loss.

To tackle this challenge, we propose a novel method for estimating VF for

HM using fundus photographs. In general, our method outperforms the vanilla

regression by 15% on a clinic-collected real-world dataset, and it produces more

meaningful predictions, as shown in Fig. 4.1. In detail, We first formulate VF pre-

diction as an ordinal classification problem, where each VF point is interpreted as

an ordinal variable rather than a continuous one, given that any VF point is a dis-

crete integer with a relative ordering. Besides, due to the limited data, we introduce

an auxiliary task for predicting the MM category to assist the generalization of VF

estimation. MM is strongly associated with vision loss and its symptoms can be

directly observed from fundus photographs [82]. By additionally considering the

MM category, the model will be explicitly regularized by auxiliary information if

appropriately utilized, thereby improving its performance.

Our contributions are summarized as follows:

• We propose a novel method for VF estimation based on fundus photographs

for high myopia. To the best of our knowledge, our method is the first work

to estimate VF using fundus photographs, which produces nontrivial solu-

tions, i.e., successfully detects vision loss in estimated VF.

• We evaluate our method on a clinic-collected real-world dataset. And the

experimental results demonstrate the effectiveness of our method, which

outperforms the vanilla regression by 15%.

• Our method has a practical application in the clinic, as it can accurately

estimate VF, therefore it can be utilized in large-scale preliminary selection
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for potential vision loss of the HM population.

4.2 Literature Review

We discuss three types of related work w.r.t. to three topics, respectively, which

are VF estimation, ordinal classification, and auxiliary learning.

In terms of VF estimation, existing works [54], [55] mainly utilize the retinal

thickness as input data to estimate VF for the glaucomatous population. Besides,

some research works [56], [57] utilize fundus photographs to estimate quantitative

measurements (e.g., MD value) in glaucoma.

Ordinal classification (aka, rank learning) is utilized for predicting labels on

the ordinal variable [83], [84]. Different from the category in classification, the or-

dinal variable contains ordinal information, i.e., there is a relative ordering among

different scales. In this work, we formulate VF estimation as an ordinal classifica-

tion problem, because each VF point follows the property of the ordinal variable.

Auxiliary learning is a special type of multi-task learning [7], [16]. Specifi-

cally, auxiliary learning typically introduces auxiliary tasks to help generalize the

primary task. Besides, auxiliary learning only pays attention to the performance

of the primary tasks, whereas multi-task learning aims to achieve comparable per-

formance among all tasks [16]. Auxiliary learning has succeeded in many ap-

plications, including computer vision [7], [37], natural language processing [38],

and speech recognition [39]. In this work, we introduce MM classification as

the auxiliary task to help the generalization of VF estimation. Because existing

clinic research [82] suggests that MM is strongly associated with vision loss and

its symptoms can be directly observed from fundus photographs. Therefore, MM
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is sufficiently related to vision loss.

4.3 Problem Formulation

Let D = {(xi,mi)} denote the training set, where xi ∈ X denotes the fundus

photography,mi ∈ M denotes its corresponded VF. AndA = {(xi, yi)} denotes

the auxiliary set, where yi ∈ Y denotes the MM category of a given xi. The objec-

tive is to learn a model f : X −→ M by utilizing bothD andA. The novelty of this

formulation is additionally utilizing the auxiliary set to improve the model’s gen-

eralization. And challenges mainly come from the following two aspects. First,

how to design the model f , as mentioned earlier, vanilla regression falls into trivial

solutions. Second, how to utilize the auxiliary set to assist the generalization of f ,

as the auxiliary information is not always helpful during the learning process, i.e.,

sometimes may interfere [17]–[19].

4.4 Proposed Method

In this section, we first present an overview of the proposed method. Then, we

introduce the details of different components.

4.4.1 Overview

We present an overview of the proposed method in Fig. 4.2. Specifically, the pri-

mary task (denoted by Tpri) is the VF estimation and the auxiliary task is MM

classification (denoted by Taux). The proposed method is to solve Tpri with the as-

sistance of Taux. We propose to parameterize the solution for Tpri and Taux by two
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Figure 4.2: An overview of the proposed method. Tpri and Taux denote the pri-
mary task and auxiliary task, respectively. And φ and ψ denote the task-specific
parameters for Tpri and Taux, seperately. Both Tpri and Taux share a same backbone
parameterized by θ.

neural networks: f(·; θ,φ) and g(·; θ,ψ), where they share the same backbone

θ and have their own task-specific parameters φ and ψ. Following the auxiliary

learning paradigm, the overall objective function is formulated as follows:

L = Lpri(θ,φ) + λLaux(θ,ψ) (4.1)

where Lpri and Laux denote the loss function for Tpri and Taux, respectively. λ ∈

(0, 1] is a hyper-parameter to control the importance of Laux.

4.4.2 Primary Task: VFS Prediction

The overall interest is only the primary task Tpri, which is to estimate the VF mi

using its fundus photograph xi. And Tpri is parameterized by f(·; θ,φ) : X −→ M.

We observe that VF mi has two distinct properties: 1) Discretization: ∀mj
i ∈

[0, 40] ∩ Z, that is, any VF value is a positive discrete integer. 2) Ordinaliza-

tion: m0
i ≺ m1

i ≺ ... ≺ mj
i , there is a relative order among VF values. There-

fore, we formulate Tpri as an ordinal classification (aka, rank learning) problem,

where mj
i represents an ordinal variable/rank rather than a continuous one. Fol-

54



4.4. Proposed Method

lowing [83], [84], we extent the ordinal variable/rank into binary labels, i.e.,

mj
i = [rj,1i , ..., rj,K−1

i ] where rj,ki ∈ {0, 1} indicates whether mj
i exceeds k-th

rank or not. To achieve rank-monotonic and guarantee prediction consistency, we

utilize the ordinal bias [84]. In detail, the task-specific parameter φ contains inde-

pendent bias for each ordinal variable. Therefore, Tpri can be solved by the binary

cross-entropy loss, which is defined as follows:

Lpri(θ,φ) = E(xi,mi)∈X×M[LBCE(f(xi; θ,φ),mi)] (4.2)

where LBCE(·) denotes the binary cross-entropy loss

In addition, we propose to reuse the features from different blocks, as they

contain distinct spatial information. Specifically, we propose Multi-scale Feature

Fusion (MFF) for aggregating features from different blocks. As highlighted in

orange in Fig. 4.2, MFF aggregates features from all blocks at the last in an addition

operation. The detailed implementation is reported in Sec. 4.5.2.

4.4.3 Auxiliary Task: MM Classification

The auxiliary task Taux is introduced only to assist the generalization of Tpri. In

detail, Taux is to predict its MM catergory yi based on fundus photograph xi, which

is parameterized by g(·; θ,ψ) : X −→ Y . MM is highly correlated to vision loss

[82], therefore the model will be explicitly regularized if additionally utilizing the

auxiliary information. And MM can be classified in order of increasing severity

into five categories [85], i.e., C0 ≺ C1... ≺ C4. Therefore, we also interpret

the MM category as the ordinal variable/rank. Similar to the label extension in

Tpri, we extend the MM catergory into binary labels yi = [r1, r2, r3, r4]. The loss
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function Laux for solving Taux is also the binary cross-entropy, which is defined as

follows:

Laux(θ,φ) = E(xi,yi)∈X×Y [LBCE(g(xi; θ,ψ),yi)] (4.3)

However, the Taux is not always helpful for Tpri because of the negative transfer

[17]–[19]. The negative transfer refers to a problem that sometimes Taux becomes

harmful for Tpri. Specifically, let ∇θL denote the gradient of Eq.(4.1) in terms of

the shared parameters θ, and it can be decomposed as follows:

∇θL = ∇θLpri + λ∇θLaux (4.4)

Taux becomes harmful for Tpri, when the cosine similarity between∇θLpri and Laux

becomes negative [17], i.e., cos(∇θLaux,∇θLpri) < 0. Negative transfer is ob-

served in our setting when optimizing Eq.(4.1) directly, as illustrated in Fig. 4.3a.

Following [17], we block negative transfer by refining ∇θLaux. Specifically,

we adapt the weighted cosine simiarily to refine ∇θLaux, which is defined as fol-

lows:

∇θLaux := max (0, cos(∇θLaux,∇θLpri)) ·∇θLaux (4.5)

4.5 Experiments

In this section, we conduct experiments on a clinic-collected real-world dataset to

evaluate the performance of our proposed method.
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4.5.1 The Studied Data

The studied data comes from a high myopia population, including 75 patients,

each with diagnosis information for 2 eyes. For each eye, there are one fundus

photograph and corresponding VF. Specifically, the fundus photograph is captured

in colorful mode, and the VF is measured in the 24-2 mode (with 52 effective

visual field sensitivity points). In addition, all fundus photographs have a label

representing the MM category. Besides, 34 patients (i.e., 68 eyes) have SD-OCT

scans in the macular region. For these eyes with SD-OCT scans, we extract the

retinal thickness with the pre-trained model from [86]. According to whether the

eye has SD-OCT scans or not, we divide the whole data into a training set and a test

set. In detail, the training data and test data contain 68 eyes (from 34 patients) and

82 eyes (from 41 patients), respectively. It is worth mentioning that the training

data and test data do not have the same patient. Besides, in the following K-fold

cross-validation experiments, we split the training data based on the patient’s ID

to ensure that there is no information leakage, i.e., one eye of the same patient is

in the training set and the other eye is in the validation set.

4.5.2 Experimental Setup

Data pre-processing. We choose the left eye pattern as our base. For fundus

photographs, VFS and retinal thickness are not in left eye pattern, we convert them

into the left eye pattern using the horizontal flip.

Data augmentation. Following [87], we consolidate a set of data augmenta-

tions for both fundus photographs and retinal thickness, respectively. The details

are reported in Table.4.1 and Table.4.2, separately. Different from applying all
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Table 4.1: Data augmentation for fundus photographs.

Augmentation Description

A No transformation Only normalize original fundus image to [0., 1.]
B Rotation Randomly rotate fundus photographs in [−15◦, 15◦].

C Shift Randomly translate horizontally and vertically by up
to 10% of the fundus image’s height and width.

D Scale Randomly scale sampled from the interval [0.9, 1.1].

E Brightness, Contrast
and Saturation

Modify the brightness, contrast
and saturation by a random factor [0.75, 1.25].

F All transformations Apply transformations from A to E

G TrivialAugment
Sample an augmentation from A to E uniformly at random
and applies it with its own strength, which is sampled
uniformly at its own range.

Table 4.2: Data augmentation for retinal thickness.

Augmentation Description

A No transformation Only normalize original fundus image to [0., 1.]
B Rotation Randomly rotate fundus image in [−15◦, 15◦].

C Shift Randomly translate horizontally and vertically by up
to 10% of the fundus image’s height and width.

D Scale Randomly scale sampled from the interval [0.9, 1.1].

E All transformations Apply transformations from A to E

F TrivialAugment
Sample an augmentation from A to F uniformly at random
and applies it with its own strength, which is sampled
uniformly at its own range.

[87] augmentations during training, we utilize the TrivialAugment [25] instead.

TrivialAugment randomly selects one from the given data augmentations, which

generates more diverse augmented data.

Evaluationmethods. For quantitative evaluation, we utilize twometrics: root

mean squared error (RMSE) and mean absolute error (MAE), following [54]–

[56], [88], [89]. For qualitative evaluation, we visualize two representative pre-

dictions on the test set, including a moderate case and a severe case, according to

58



4.5. Experiments

the degree of visual loss. More visualized results are presented in the supplemen-

tary material.

Baseline methods. We mainly compare our approach to the vanilla regres-

sion model. Specifically, we first compare our approach to the vanilla regression

model using fundus photographs. Besides, we compare our approach to the vanilla

regression model using different retinal thicknesses. In detail, we consider two

thickness variants following existing works [54], [88]: (a) the combination of the

thickness of ganglion cell and inner plexiform layer (GCIPL), retinal nerve fiber

layer (RNFL) and rod and cone layer (RCL) [88]. (b) the combination of GCIPL

and RNFL [54]. (c) only the thickness of RNFL [55]. Due to the limited data, we

compare our method with vanilla regression using different retinal thicknesses on

K-fold cross-validation on training data.

Implementation details. We utilize the ResNet-18 [76] as the baseline model.

For the vanilla regression baseline, we use only one linear layer at last. For our pro-

posed classification baseline, we use the combination of Conv2D, BatchNorm2D

and ReLU as the classification head for Tpri. For the multi-scale feature fusion,

we utilize the above classification head to reuse features from different blocks,

then aggregate all transformed features at last in addition operation. Note that

the features from earlier blocks have relatively large features, and we use Adap-

tiveAvgPooling2D to perform downsampling before feeding into the classification

head to reduce the computational parameters. For Taux, we use only one linear

layer as the classifier. For a fair comparison, we train all methods with the same

training configurations. Specifically, we train the models with 80 training epochs

and the SGD optimizer, where the learning rate is set to 0.01, momentum is set

to 0.9 and L2 weight decay is set to 1e−4. Besides, we utilize a cosine learning
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Table 4.3: Main results. ‘K-fold’ indicates performance from K-fold cross-
validation on training data, where we split the training data into K fold based
on the patient’s ID to ensure no data leakage. ‘Test’ indicates performance on
test data (training on training data). (↓) denotes the lower value indicates better
performance. And the better results are bold-faced.

Method Modality K-fold(K=5) Test
RMSE (↓) MAE (↓) RMSE (↓) MAE (↓)

Regression Thickness-(a) 4.94 ± 0.23 3.12 ± 0.05 - -
Regression Thickness-(b) 4.80 ± 0.17 3.04 ± 0.12 - -
Regression Thickness-(b) 4.86 ± 0.22 3.13 ± 0.18 - -
Regression Fundus 4.62 ± 0.07 2.95 ± 0.07 4.28 ± 0.03 2.89 ± 0.06
Ours(λ=0.1) Fundus 4.44 ± 0.27 2.78 ± 0.10 3.69 ± 0.03 2.41 ± 0.04

rate decay [90] to adjust the learning rate per epoch. Finally, we fix all input res-

olutions to 384 × 384 for both training and evaluation. All experiments are run

independently with four seeds: 0, 1, 2, and 3. As for hyper-parameters, we search

them on training data withK-fold cross-validation.

4.5.3 Experimental Results

Main results. Table 4.3 reports the performance of our methods and different

baselines. In general, compared to baselines, our approach achieves the best per-

formance. Compared to the baseline using fundus, our method outperforms it

by 13.79% and 16.61% according to the RMSE and MAE on test data. Besides,

our method achieves better performance than vanilla regression models using dif-

ferent retinal thicknesses, as demonstrated by the performance on K-fold cross-

validation on training data. In addition, we observe that the regression baseline

using fundus photographs achieves better performance than those using different

retinal thicknesses, which follows the argument from [81].

Visualization of predictions. As shown in Fig. 4.1, we visualize two rep-
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Table 4.4: Ablation study on main components. OR denotes the ordinal classifica-
tion baseline. MFF denotes multi-scale feature fusion. AUX denotes the auxiliary
task. BNT denotes blocking negative transfer from Eq.(4.5).

OR MFF AUX BNT RMSE(↓) MAE(↓)

! ! ! ! 3.69 ± 0.03 2.41 ± 0.04
! ! ! 3.74 ± 0.02 2.46 ± 0.03
! ! 3.73 ± 0.04 2.45 ± 0.02
! 3.77 ± 0.02 2.49 ± 0.03

resentative cases from the test data, one with moderate vision loss and one with

severe vision loss. In general, we find that our method outperforms the vanilla

regression baseline in terms of estimating vision loss, whereas vanilla regression

fails. In particular, the predictions from the vanilla regression baseline share a

simple and trivial pattern for both cases. Both predictions appear to be very simi-

lar, but neither predicts actual vision loss. In contrast, our method estimates more

precisely, as its predictions are accurate to the ground truth, revealing the actual

vision loss.

4.5.4 Ablation Study

To get a better understanding of the effectiveness of the main components in our

proposed method, we conduct a series of ablation studies.

Effectiveness of main components. We first examine the effectiveness of the

main components by ablating them. The results are reported in Table 4.4. In gen-

eral, we can observe that all components can improve performance. Specifically,

MFF aggregates the distinct spacial information frommulti-scale features, thereby

improving themodels’ performance. Besides, simply adding auxiliary tasks brings

a degradation, because of the existence of negative transfer. Meanwhile, with the
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(a) Negative transfer (b) Impact of λ (c) Blocking negative transfer

Figure 4.3: Visualization of (a) Negative transfer when optimizing Eq.(4.1) di-
rectly, (b) Impact of hyper-parameter λ, and (c) Different methods for blocking
the negative transfer.

help of blocking negative transfer by gradient refinement from Eq.(4.5), the im-

provements from the auxiliary task can be significantly improved.

Impact of hyper-parameter λ. We study the impact of the hyper-parameter

λ with K-fold cross validation on training data. We choose λ ∈ {1.0, 0.1, 0.01,

0.001, 0.0001}. According to the results shown in Fig. 4.3b, we observe that

λ = 0.1 achieves the best performance because at this time RMSE and MAE are

the lowest.

Different methods for blocking the negative transfer. We also study differ-

ent methods for blocking the negative transfer from the auxiliary task. We consider

three alternative criteria for refining the auxiliary gradient: (1) weighted cosine

(WC) similarity [17] (2) unweighted cosine (UC) similarity [17] (3) projection (P)

[18]. In general, both of them are utilized to quantify whether the negative trans-

fer from the auxiliary task exists or not. In detail, both (1) WC and (UC) modify

the gradients from the auxiliary task by referring to the cosine similarity between

gradients from the primary and auxiliary tasks. And (3) P projects gradients from

the auxiliary task to the primary task, then removes the gradients whose direction

is different from the primary task. For a fair comparison, we set λ = 0.1, then
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conduct experiments on training data with K-fold cross-validation. The results

are shown in Fig. 4.3c. We observe that (1) WC achieves the best performance

among these methods.

4.6 Chapter Summary

In this work, we propose a novel method for estimating VF based on fundus pho-

tographs, which achieves superior performance and produces more meaningful

predictions than the vanilla baseline. Besides, our method has a practical applica-

tion in the clinic, that is, it can be utilized in large-scale preliminary selection for

potential vision loss of the HM population. The major limitations of our method

are two aspects. First, we utilize each eye from a patient as unique input, which

neglects the similarity of the eyes, as they come from the same patient. Besides,

we only utilize the MM category in the auxiliary task. Based on these limitations,

further work can be improved in the following directions. First, exploring regu-

larization for modeling the relationship between two eyes from the same patient

is one of the future directions, which can further improve the model’s general-

ization. Second, discovering more helpful auxiliary labels for the auxiliary tasks

could be a new future direction. In addition, self-supervised auxiliary learning

may be a more promising direction, because it performs auxiliary learning in a

self-supervised manner, eliminating the need for manually discovering auxiliary

labels.
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Conclusions, Open Challenges and

Future Directions

5.1 Conclusion

In this thesis, We study auxiliary supervision for regularizing deep learning-based

image classification. We first review the background and motivations, then We

investigate the challenges. The challenges mainly lie in two regularizations, in-

cluding data augmentation and auxiliary learning. Besides, We review existing

works on data augmentation and auxiliary learning. In addition, We review the

applications for computational color naming and vision loss estimation.

In Chapter 3, We present the first work on computational color naming (CCN)

and further expand CCN’s application to data augment. In detail, We propose a

novel model named ColorMLP for CCN by additionally utilizing the RGB Color

Model as regularization. Besides,We expandCCN’s application to data augmenta-

tion by designing a color jittering-based data augmentation method, namely Partial
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Color Jitter, which performs CJ on a subset of pixels belonging to the same color

of an image. In this way, PCJ partially changes the color properties of images,

thereby significantly increasing images’ diversity. At last, We conduct experi-

ments to show that PCJ has a remarkable regularization effect on image classifi-

cation tasks.

In Chapter 4, We present the second work on vision loss estimation. We first

review the problem in vision loss estimation and find out that existing vanilla base-

lines produce trivial solutions and thus fail to estimate vision loss accurately. To

tackle this challenge, we propose a novel method based on the characteristics of

Visual field (VF) sensitivity data. In order to achieve better performance, We in-

troduce an auxiliary task for myopic maculopathy classification to assist the gen-

eralization of vision loss estimation. Finally, we conduct experiments to evaluate

our method on a clinic-collected real-world dataset.

5.2 Open Challenges

There are several open challenges remaining to be addressed in terms of data aug-

mentation and auxiliary learning.

First, theoretical research on data augmentation is one open challenge. Exist-

ing theoretical works [91], [92] are limited to label-preserving data augmentation,

i.e., data augmentation does not change the label of data. For these label-covarying

data augmentations, such as Mixup [8] and its variant [35], there is no such theo-

retical framework to get deep insight and explore their benefit and functionality.

In addition, analyzing the effect of data augmentation on the transferability of

pre-trained DNNs is an open challenge. Pre-trained DNNs become the preferred
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initialization for many downstream tasks; however, data augmentation typically

introduces priors or biases, so whether it improves or decreases the transferability

of pre-trained DNNs remains a question.

Besides, designing a data augmentation mainly relies on priors, however, there

are no efficient ways to determine whether the priors are adequate or not. Existing

works mainly assume the selected priors are beneficial and helpful, then conduct

experiments to verify them, which is inevitably time-consuming. Besides, data

augmentations are usually closely connected to the data/modality’s intrinsic char-

acteristic; therefore design data augmentation also heavily relay on task-specific

domain knowledge, hence its generality is not usually guaranteed.

As for auxiliary learning, finding sufficient related auxiliary tasks is a basic

challenge. Auxiliary tasks are typically determined manually based on domain

knowledge or assumptions, and validating them is exceptionally costly. Both im-

proving the efficiency of validating auxiliary tasks and automatically finding aux-

iliary tasks are open challenges.

In addition, auxiliary tasks are not always guaranteed to have a positive impact

on the primary task, as existing works[17]–[19] have found their negative transfer.

Therefore, how to eliminate the negative transfer from auxiliary tasks becomes an

open challenge.

5.3 Future Directions

Based on the above open challenges, there are some potential future directions that

are valuable for exploration.

First, from the representation learning perspective to analyze data augmenta-

66



5.3. Future Directions

tion is one interesting future direction. Data augmentation mainly transforms or

augments the data in input space, which is a high-dimensional space. Data in high

dimensional space typically contains redundant information, whereas its features

in latent space, a relatively low dimensional space, remain compact. Therefore,

analyzing data augmentation from the representation learning perspective in latent

space is more appropriate.

In addition, based on the representation learning perspective, latent space data

augmentation is a promising future direction. Input space data augmentation aug-

ments data over the input space, where domain knowledge and priors usually need

to be validated first. Besides, input space data augmentation naturally couples with

data modality, whereas latent space data augmentation is modality-agnostic; more

specifically, latent space data augmentation generates or augments deep features

in the latent space.

In terms of auxiliary learning, self-supervised auxiliary learning is a promis-

ing future direction to explore. The basic challenge in auxiliary learning is to first

find sufficient related auxiliary tasks and then verify them, which requires domain

knowledge or assumptions and is costly. If auxiliary learning is performed in a

self-supervised manner, where the auxiliary labels are obtained from the data it-

self, then the above manual procedure is no longer needed, hence it will be more

efficient and more general.
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