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ABSTRACT

Since initiated by Steinhaus at a meeting in Washington D.C. [Economet-

rica, 1948], fair allocation has been broadly studied in the fields of economics,

mathematics and computer science. A substantial body of works aimed at

understanding the theory of fairly allocating a set of items to a set of agents

have appeared consequently. In this thesis, we study the problem of fairly

allocating m indivisible chores (i.e., undesired items with non-negative disu-

tilities) to n agents, with particular focus on share-based fairness notions,

where agents evaluate the fairness of an allocation by comparing their re-

ceived disutilities with a benchmark share - a function only of her own disu-

tility function and the number of agents. This share is called a guarantee if

for any profile of disutility functions there is an allocation where every agent

receives disutility no more than her own share.

We first consider the notion of MaxMinShare (MMS) proposed by Budish

[J. Political Econ., 2011] for indivisible goods (i.e., desired items with non-

negative utilities). For indivisible chores, this notion becomes MinMaxShare,

which is also abbreciated to MMS for consistency. In the literature, the

majority of e↵ort on finding MMS fair allocations for chores is devoted to

additive disutility funtions; however, beyond additivity, very little is known.
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We prove that no algorithm can ensure better than min{n, logm
log logm} approxi-

mation if the disutility functions are submodular. This result shows a sharp

contrast to the allocation of goods where constant approximations exist as

shown by Barman and Krishnamurthy [TEAC, 2020] and Ghodsi et al. [AIJ,

2022]. We then prove that for subadditive disutilities, there always exists

an allocation that is min{n, dlogme}-approximation, and thus the approxi-

mation ratio is asymptotically tight. Besides multiplicative approximation,

we also consider the ordinal relaxation, 1-out-of-d MMS, which was recently

proposed by Hosseini et al. [JAIR and AAMAS, 2022]. Our result implies

that for any d � 2, a 1-out-of-d MMS allocation may not exist. Due to these

hardness results in the general subadditive setting, we study two specific

problems, namely, job scheduling and bin packing. For both problems, we

show that constant approximate allocations always exist for both multiplica-

tive and ordinal relaxations of MMS.

Since exact MMS fairness cannot be guaranteed as shown by Feige et

al. [WINE, 2021], we turn to another share-based notion proposed by Hill

[Ann. Probab., 1987], which is the worst-case MaxMinShare over all utility

functions with the same largest possible single-item utility. Although Hill’s

share is more conservative than the MaxMinShare, it can always be guar-

anteed and its computation is elementary, unlike that of the MaxMinShare

which involves solving an NP-hard problem. We apply Hill’s approach to the

allocation of indivisible chores, and characterise the tight closed form of the

worst-case MinMaxShare for a given disutility of the worst chore. We argue

that Hill’s share for allocating chores is e↵ective in the sense of being close to

the original MinMaxShare value, and there is much to learn about the guar-
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antee an agent can be o↵ered from the disutility of her worst single chore.

Furthermore, we prove that the monotonic cover of Hill’s share is the best

guarantee that can be achieved in Hill’s model for all allocation instances.
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CHAPTER 1

INTRODUCTION

In this chapter, we first review the history and development of the field

of fair allocation and present some real-world examples and applications to

familiarize the readers more with this field. We then briefly describe the fair

allocation problem and its major components. We next present the research

context of our works by reviewing the salient results in the literature and

describe the problems we focus on in this thesis as well as their motivations.

We also present the results we have discovered. This chapter is ended with

a description of the structure of the remaining contents of this thesis.

1.1 Background

Fair allocation is an age-old problem with a long history. The oldest story

can trace back to the Bible (Chapter 13 of the Book of Genesis): when

Abraham and Lot came to a land named Canaan, they suggested that they

divide it among them. Abraham first cut the land into a western part and
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an eastern part which were equally valuable to him. Then Lot chose the part

that he preferred more and left Abraham with the other. At last, Lot got

the eastern part which contains Sodom and Gomorrah, and Abraham got

the western part which contains Beer Sheva, Hebron, Bethel, and Shechem.

The way Abraham and Lot divided the land is the archetypal fair allocation

algorithm “Divide-and-Choose”, which admirably guaranteed that neither

Abraham nor Lot was envious of the other.

Modern research on fair allocation was regarded to proliferate after a talk

presented by a mathematician named Steinhaus at a meeting of the Econo-

metric Society in Washington D.C [135]. In the talk, Steinhaus proposed

extending the aforementioned problem in the Bible to arbitrary number of

participants, which was positively answered by Banach and Knaster with a

simple algorithm named “the last diminisher method”. Later, from the late

1950s to the early 1990s, a lot of economists started to study the problem of

fair allocation [134, 128, 69, 70, 130, 81, 50], albeit from di↵erent perspectives

from computer scientists’. They studied fair allocation in the context of Ar-

row Debreu’s economies and put forward many microeconomic theories. The

conceptual insights of these theories closely followed the results of Distribu-

tive Justice in political philosophy. Nevertheless, the settings on which these

economists focused were too general that they were short on applications.

In the past decades, considerable fresh energy from computer science

has been poured into the field of fair allocation, largely stimulated by the

emergence of the Internet. The ideas that computer scientists borrowed from

computer science brought a fresh and promising perspective to the study of

fair allocation – algorithmic fair allocation. Besides designing algorithms
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that solve specific problems of fair allocation, computer scientists also cared

about the computational complexity of these algorithms, i.e., the amount

of time, storage, communication cost and other resources to execute them.

They introduced a diversity of advanced technologies into the field of fair

allocation such as complexity theory, asymptotic analysis, approximation

algorithms, etc. They also proposed many novel and practical settings that

combine the characteristics of the Internet, and discovered many significant

results regarding these settings. The e↵ort by the computer scientists has

made the theories of fair allocation much closer to the reality in the Age of

Internet.

Nowadays, fair allocation plays a significant role in the real world, es-

pecially when more and more important decisions in our lives are made by

computer systems which makes it imperative that these decisions are made

transparently and fairly. To end this chapter and to further familiarize the

readers with the problem of fair allocation, we present several concrete ex-

amples and applications of fair allocation.

Examples. The first example is allocating resources in cloud computing.

Internet technology companies like Amazon, Google and Huawei use sched-

ulers in clouds to allocate limited amount of scarce resources (e.g., servers,

memory, GPU, CPU, etc.) among a number of self-interested users who want

to maximize the utility of their own allocations [94, 141]; the scheduler’s goal

is to fairly allocate the resources to users and also maximize the utilization

of resources. Fairness is also seen as a desired property in other areas of

computer science such as computer networks and operating systems.

The second example is splitting assets, which is a common business in life.
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When an elder dies, his assets (e.g., pensions, houses, savings, investments,

etc) will be divided among his heirs; when a couple decides to divorce, their

shared properties need to be distributed between them; when a company

goes out of business, the company’s assets and debts will be divided between

the company’s owners. More analogous scenarios can be seen in our daily

life. For all these scenarios, the assets and properties should be divided in a

fair way such that all involved parties are satisfied with the allocation.

The third and last example is combating climate change. Since 1800s,

human activities have greatly accelerated the process of global warming,

primary due to burning of fossil fuels like coal, oil and gas. To combat this

issue, one of the consensuses reached by the world organization UNFCCC

(i.e., the United Nations Framework Convention on Climate Change) is to

stabilize the worldwide emissions of greenhouse gas. One critical concern in

this consensus is how to fairly quantify the amount of greenhouse gas that

each nation could emit, which should consider the nations’ economic volumes,

economic models, total amount of greenhouse gas emissions, etc.

Applications. The first application is Course Match, an original and

innovative course registration system created by the Wharton School of the

University of Pennsylvania. This system deploys advanced fair allocation al-

gorithms to allocate courses to students based on students’ preferences and

course availability. These algorithms have made the process of allocating

courses simpler and fairer. In use since Fall 2013, Course Match has been

proven to increase student satisfaction and promote fairness in course allo-

cation.

The second application is Spliddit (spliddit.org), a platform which pro-
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vides online solutions to everyday fair allocation problems that are relevant

to the society at large [90]. For example, people can use Spliddit to allocate

rooms to housemates in the rent splitting problem, to distribute a set of

goods in the good dividing problem, and to determine scientific credit of a

paper or share credit for a project or divide a company bonus in the credit

sharing problem. The solutions o↵ered by Spliddit have been proven in the

literature to be fair, equitable and e�cient.

1.2 Literature Review

Fair allocation studies the problem of allocating a set of items to a set of

agents in a fair manner [122]. The items are either goods (i.e., ones with

non-negative utilities like natural resources) or chores (i.e., ones with non-

positive utilities or non-negative disutilities like household duties). They

can be divisible like lands which can be allocated fractionally, or indivisible

like paintings each of which must be allocated as a whole. Agents have

utility (or disutility) functions over the items, which could be binary, additive,

submodular, subadditive, etc. For example, binary functions mean that the

utility (or disutility) of each item is either 0 or 1 and additive functions

mean that the utility (or disutility) of any set of items is the sum of the

utilities (or disutilities) of these items. We say the agents are homogeneous

if their utility (or disutility) functions over the items are the same, and we

say they are heterogeneous if not. Fairness notions define the requirements

for an allocation to be deemed fair by the agents. Take the two well-studied

fairness notions (i.e., envy-freeness [83, 140] and proportionality [135]) for
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example, an envy-free allocation requires no agent to prefer the bundle of

items allocated to any other agent more than her own, and a proportional

one requires every agent to receive a utility no smaller than her average

utility for all items. Besides fairness, e�ciency is also a key concern in fair

allocation. For example, one may desire that the sum of the utilities (or

disutilities) received by the agents are maximized (or minimized), which is

called maximum utilitarian social welfare. One may desire that no agent can

improve her own utility (or disutility) without hurting other agents, which is

called Pareto optimality.

The original study of fair allocation was concentrated on allocating divisi-

ble items, which is also known as the cake-cutting problem [49, 129]. Although

this kind of problem is not the focus of this thesis, we start our literature

review from it.

1.2.1 Divisible Items

In a cake-cutting problem, there is usually one divisible item which is repre-

sented by the interval [0, 1]. Agents may have di↵erent utilities (or disutili-

ties) for di↵erent pieces of the item (even when these pieces are of the same

length). As we have mentioned in the last chapter, the cake-cutting prob-

lem was first referred in the Bible where the “Divide-and-Choose” algorithm

was deployed to allocate the divisible land to two agents. For the alloca-

tion of divisible goods, “Divide-and-Choose” remarkably guarantees both

envy-freeness and proportionality for the setting with two agents. When

the setting is extended from two agents to an arbitrary number of agents,
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the fairness notions become much harder to satisfy. Several elegant algo-

rithms were proposed to compute allocations that satisfy proportionality

[68, 80, 77, 71, 99, 27]. Nevertheless, the progress on envy-free allocations

was much slower. Selfridge and Conway first proposed an algorithm that

computes envy-free allocations for the three-agent setting (see [129]). After

three decades, Brams and Taylor [48] made a significant breakthrough: they

designed an algorithm that computes envy-free allocations for settings with

arbitrary number of agents. One critical drawback of Brams and Taylor’s

algorithm is that its running time is unbounded. This drawback was finally

resolved after another two decades by Aziz and Mackenzie [19] who proposed

an algorithm that runs in a bounded number of steps. For the allocation

of divisible chores, Dehghani et al. [66] proposed an algorithm that com-

putes an envy-free allocation of divisible chores to an arbitrary number of

agents in a bounded number of steps. Boodaghians et al. [42] designed a

polynomial-time algorithm that computes an approximate competitive equi-

librium. Chaudhury et al. [59] also studied the allocation of a mixture of

divisible goods and chores.

Connectivity was a key concern when allocating divisible items. For ex-

ample, people would not like to receive many disjoint pieces of a land. Du-

bins and Spanier [68] first proposed an algorithm that computes a connected

proportional allocation for any number of agents. Even and Paz [77], Ed-

monds and Pruhs [72] subsequently improved the results by reducing the

complexity of Dubins and Spanier’s algorithm. While a connected propor-

tional allocation is relatively easy to obtain, a connected envy-free one is not

the case. It was first shown by Stromquist [136] and Edward Su [73] that
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a connected envy-free allocation indeed exists. However, such an allocation

was proved by Stromquist [137] to require unbounded steps when there are

more than two agents. Despite this negative result, Goldberg et al. [89] and

Arunachaleswaran et al. [12] respectively designed a polynomial-time algo-

rithm that computes a connected and approximately envy-free allocation for

any number of agents.

E↵ort was also devoted to other sub-branches of fair allocation of divisible

items. For example, Varian [140] provided a competitive equilibrium from

equal incomes (CEEI) solution that simultaneously guarantees envy-freeness

and Pareto-optimality. Brams et al. [47], Chen et al. [62], Mossel and Tamuz

[121] studied the problem from a game-theoretic perspective where agents

may have incentives to manipulate the algorithm like misreporting their true

utility functions. Arzi et al. [13], Aumann and Dombb [14], Aumann et al.

[15], Bertsimas et al. [37], Caragiannis et al. [56] analyzed the cost of social

welfare it takes to guarantee fairness.

1.2.2 Indivisible Items

The recent focus in the literature is on indivisible items, which is motivated by

the fact that most items in our daily life cannot be fractionally allocated. The

cases with indivisible items are harder to deal with than those with divisible

items, in the sense that absolutely fair allocations rarely exist. Consider

the simple example where one indivisible item is allocated to two agents.

The agent who receives the item is envied by the other agent which breaks

envy-freeness, while the agent who does not receive the item gets a utility
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of zero which breaks proportionality. Consequently, exploring the extent to

which the relaxations of envy-freeness and proportionality can be satisfied

for indivisible items steps into the center of fair allocation.

Relaxations of Envy-freeness Two of the most notable relaxations of

envy-freeness are envy-free up to one item (EF1) which allows the existence

of an envy but requires that the envy could be eliminated by removing an

item from the bundle of the envied agent, and envy-free up to any item

(EFX) which requires the envy be eliminated by removing any item from the

envied agent’s bundle. Obviously, EFX is stronger than EF1 in the sense

that any EFX allocation is also EF1. The notion of EF1 was first introduced

by Budish [53] and first studied by Lipton et al. [115] who showed that an

EF1 allocation is ensured to exist even when the functions are combinatorial

and monotone.

The notion of EFX was first proposed by Caragiannis et al. [57]. Unlike

EF1, EFX is hard to satisfy and the existence of EFX allocations is still

unknown. For the case of goods, there are only results that show the ex-

istence of EFX allocations in some special cases. Plaut and Roughgarden

[125] showed that EFX could be satisfied (1) when the utility functions are

identical or combinatorial; (2) when the utility functions are IDO additive;

(3) when there are two agents. Chaudhury et al. [60] and Amanatidis et al.

[7] respectively extended the existence of EFX allocations to the cases (1)

when there are three agents and (2) when the utility functions are bi-valued.

Due to the hardness of finding exact EFX allocations, researchers relaxed the

restriction by allowing a small number of items to be donated to a charity.

Caragiannis et al. [54] showed the existence of an EFX partial allocation that
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achieves half the maximum Nash social welfare (i.e., the product of all agents’

utilities). Chaudhury et al. [61] designed a pseudo-polynomial time algorithm

that computes an EFX partial allocation where the charity receives no more

than n�1 items and no agent envies the charity (n is the number of agents).

Berger et al. [36] further improved this result by showing the existence of an

EFX partial allocation with at most one unallocated item for n = 4 and n�2

unallocated items for n � 5. Researchers also studied the multiplicative ap-

proximations of EFX. Plaut and Roughgarden [125] showed that a 0.5-EFX

allocation exists for every instance even with subadditive utility functions.

Amanatidis et al. [11] further improved the approximation ratio to 0.618 for

additive utility functions by proposing a polynomial-time algorithm. How-

ever, much less attention has been paid to the parallel problem of chores.

The existence of EFX allocations is known for only a few special instances,

e.g., IDO instances [114] and leveled preference instances [82]. For general

instances, only O(n2)-approximate EFX allocations are known to exist [145].

The existence of EFX allocations is still unknown even for simple cases with

n = 3 or bi-valued disutility functions.

Relaxations of Proportionality One extensively studied relaxation of

proportionality is MaxMinShare (MMS), which was proposed by Budish [53]

for indivisible goods. When it comes to indivisible chores, the notion becomes

MinMaxShare, which is also abbreviated to MMS for consistency. Intuitively,

MaxMinShare is motivated by an imaginary experiment where an agent is

to divide all items into n bundles but is the last one to select a bundle. The

agent’s best strategy, in the worst case, is to maximize the minimum utility

of all bundles, and this utility is named her maximin share. Then an MMS
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allocation is defined so that every agent’s utility is no smaller than her MMS.

Researchers were optimistic about the existence of MMS allocations at the

beginning. Bouveret and Lemâıtre [45] proved that if the utility functions

are additive, envy-free allocations are also MMS fair. Kurokawa et al. [111]

showed that MMS allocations exist with high probabilities through running

random experiments. However, for the allocation of goods, it was first shown

by Kurokawa et al. [111, 112] that there are instances where no allocation

is MMS fair for all agents. Accordingly, considerable e↵ort was devoted

to designing (e�cient) algorithms to compute approximately MMS fair al-

locations. Kurokawa et al. [112], Procaccia and Wang [127] proved there

exists a 2/3-approximate MMS fair allocation for additive utilities, and then

Amanatidis et al. [10] designed a polynomial-time algorithm with the same

approximation guarantee. Later, Ghodsi et al. [87] improved the approxima-

tion ratio to 3/4, and Garg and Taki [86] further improved it to 3/4 + o(1).

On the negative side, Feige et al. [79] proved that no algorithm can ensure

better than 39/40 approximation. Beyond additive utilities, Barman and

Krishnamurthy [31] initiated the study of approximate MMS fair allocation

with submodular utilities, and proved that a 0.21-approximate MMS fair al-

location can be computed by the round-robin algorithm. Ghodsi et al. [88]

improved the approximation ratio to 1/3, and moreover, they gave constant

and logarithmic approximation guarantees for XOS and subadditive utilities,

respectively. The approximations for XOS and subadditive utilities are re-

cently improved by Seddighin and Seddighin [131]. As we have seen, the ma-

jority of e↵ort on finding MMS fair allocations is devoted to indivisible goods,

but the parallel problem of chores has received less attention. Aziz et al. [21]
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first pointed out this issue, and proved that the round-robin algorithm en-

sures 2-approximation for additive disutilities. Barman and Krishnamurthy

[31] and Huang and Lu [104] respectively improved the approximation ra-

tio to 4/3 and 11/9. Recently, Feige et al. [79] proved that with additive

disutilities, no algorithm can be better than 44/43-approximate.

MaxMinShare bears some disadvantages. On the one hand, the definition

is not trivial and computing its value involves solving an NP-hard problem.

On the other hand, as we have seen, the MaxMinShare is not a feasible

guarantee in some cases. Back to 1980s, Hill [100] also investigated how the

indivisibility of the items a↵ect the agent’s guaranteed share by restricting

attention to additive utility functions v such that v(M) = 1 (without loss of

generality) and the most valuable item of v is worth ↵, 0 < ↵ < 1; we write

V(↵) for this subdomain of additive utility functions. Hill proposed to study

the worst-case MaxMinShare among all utilities in V(↵), which is referred

to as the Hill’s share. In [100], Hill computed for every n � 2 a function

Vn : [0, 1] ! [0, 1
n ], which lower-bounds Hill’s share. By definition, Vn(↵) is

also a lower bound on the MaxMinShare of every utility in V(↵). Depending

on ↵ the guarantee Vn(↵) may or may not improve upon the 3
4 -approximate

MaxMinShare guarantee, but its great advantage is that whether a given

allocation meets the guarantee for a given utility is immediately verifiable.

Furthermore, Hill proved that if every agent’s utility is in V(↵), it is always

possible to simultaneously give each agent a share worth at least Vn(↵), i.e.,

Vn(·) is a guarantee. Markakis and Psomas [117] proved a stronger result:

the share Vn(↵i) where ↵i = maxe2M vi(e) is a bona fide guarantee over the

full domain of additive and nonnegative utilities. Moreover, an allocation
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implementing these individual guarantees can be computed in polynomial

time. Gourvès et al. [93] found that Vn(↵) is not the tight characterisation

of Hill’s share and proved a tighter function. An interesting fact is that the

tight function is not monotone in ↵, whereas its exact computation is still

open.

Two other well-studied relaxations of proportionality are proportionality

up to one item (PROP1) and proportionality up to any item (PROPX),

which resemble the notions of EF1 and EFX. PROP1 allocations are known

to always exist and can be computed in polynomial time for indivisible goods

[64, 30], chores [51] and a mixed manna [20]. PROPX allocations always exist

and can be computed e�ciently for indivisible chores [123, 114]; nevertheless,

they may not exist for goods [123, 20]. Another relaxation between PROP1

and PROPX is proportionality up to the maximin item (PROPm) [25, 26]. It

was proven by Baklanov et al. [26] that a PROPm allocation can be computed

in polynomial time.

Other relaxations of proportionality include pairwise MMS (PMMS) [57]

and groupwise MMS (GMMS) [28]. PMMS requires that the allocation is

MMS fair for any reduced instance with any two agents and GMMS requires

the MMS fairness for any reduced instance with any group of agents. For

PMMS, the best known approximation ratio is 0.781 by Kurokawa [110]. For

GMMS, the best known ratio is 4/7 by Amanatidis et al. [11] and Chaudhury

et al. [61]. A detailed comparison of these fairness notions was provided by

Amanatidis et al. [9].

E�ciency Finding allocations that simultaneously satisfy fairness and ef-

ficiency is also an important branch of fair allocation. Computing a fair
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allocation that maximizes the utilitarian social welfare was proved to be NP-

hard by Barman and Krishnamurthy [30]. Thus a lot of e↵ort was devoted to

studying the weaker e�ciency notion—Pareto optimality (PO). Caragiannis

et al. [57] first showed that maximized Nash social welfare implies EF1 and

PO. Subsequently, Barman et al. [32] proposed a pseudo-polynomial time al-

gorithm that computes EF1 and PO allocations. Barman and Krishnamurthy

[30] designed a polynomial-time algorithm that computes PROP1 and PO

allocations. Amanatidis et al. [7] showed for bi-valued utility functions that

the maximized Nash social welfare implies EFX and PO, which was then

improved by Garg and Murhekar [85] by proposing a polynomial-time algo-

rithm. Garg and Murhekar [85] also proved that EFX and PO allocations

may not exist for utility functions with three di↵erent values. In contrast,

Hosseini et al. [103] designed a polynomial-time algorithm that computes

EFX and PO allocations for instances with lexicographic utility functions.

For the parallel problem of chores, Aziz et al. [20] proposed an algorithm

that computes PROP1 and PO allocations in polynomial time, even for a

mixture of goods and chores. However, regarding EF1 and PROPX, very

little is known about their compatibility with PO.

1.2.3 More Complicated Settings

In the past few years, more and more attention has been paid to more com-

plicated but realistic settings, e.g., with constraints, partial information, on-

line setting, mixture of goods and chores, with subsidies, weighted agents.

These novel settings combine the characteristics of many real-life scenarios
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and bring theory closer to the needs of real-life applications.

With Constraints In some scenarios, there are constraints on items such

that some items cannot be allocated together. For example, when allocating

courses to students, it is not desired to allocate too many courses within

the same discipline to a student. Considerable e↵ort in the literature was

concentrated on the graphical constraint where the items are vertices of an

undirected graph and only those that form a connected sub-graph can be

allocated together [43, 116, 33, 38, 44, 138, 120, 106]. The budget constraint

was also widely studied [144, 84, 126, 65, 29], in which setting the items have

sizes and the agents have budgets and the total size of items allocated to

one agent cannot exceed the agent’s budget. Kyropoulou et al. [113], Biswas

and Barman [39], Hummel and Hetland [105] also studied the cardinality

constraint where the items are categorized into types and the number of items

in each type that can allocated together is limited. Other broadly-studied

constraints include matroid constraint [67, 92, 91], geometric constraint [132,

133, 74], separation constraint [76, 75], etc. We refer the readers to the survey

by Suksompong [139] for more detailed summary of works on fair allocation

with constraints.

Partial Information Sometimes, we need to allocate items when only

partial information is given. For example, when a wide heterogeneous pop-

ulation of users are involved, it becomes challenging to elicit and aggregate

every user’s cardinal values. For goods, it was proved by Amanatidis et al.

[8] and Halpern and Shah [96] that the best approximation ratio of MMS is

⌦(log n) when only ordinal preferences are known. For chores, Aziz et al.
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[18] proved constant lower bounds and upper bounds of the approximation

ratio. Recently, Hosseini et al. [101, 102] studied an ordinal approximation

of MMS for goods and chores, which is more robust to the cardinal version of

MMS. Another interesting scenario is when valuations are unknown and we

need to quantify the number of queries on the valuations for the algorithm

to compute a fair allocation. Oh et al. [124] proved that ⇥(logm) queries

are su�cient to compute EF1 allocations.

Online Setting In some scenarios, fair allocation problems are online,

where items or agents or both are coming in an online fashion, and allo-

cation decisions must be made immediately when they come which usually

cannot be revoked. Consider allocating organs to patients, the organs need

to be allocated immediately when they are donated. Also consider allocating

charging slots to cars, the slots need to be allocated as soon as cars come.

Di↵erent dimensions of the online setting problems were considered in the

literature. One dimension is whether the items are divisible [142, 107, 108]

or indivisible [1, 4, 118, 2, 3]. Another dimension is which element is online

in the problem, i.e., only the items are online [1], only the agents are online

[143], or both are online [119]. Di↵erent research topics of this setting were

also studied. Many algorithms were proposed to deal with the challenges

brought by the online nature [1, 5]. Researchers also cared about the proper-

ties that could be guaranteed in the online setting, e.g., strategy-proof which

means that agents cannot improve their utilities by manipulating [5]. One

interesting topic is to quantify the number of adjustments to the allocation to

restore desired properties [98]. For more detailed information on online fair

allocation, we refer the readers to a comprehensive survey by Aleksandrov
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and Walsh [6].

Mixture of Goods and Chores Sometimes, the items to be allocated

contain both goods and chores. One key characteristic of this setting is

that the valuations are not monotone [41, 40]. Aziz et al. [16] designed an

algorithm that computes an EF1 allocation for any number of agents. For

the special case with only two agents, they designed another algorithm that

guarantees EF1 and PO simultaneously. But it still remains an open question

where EF1 and PO can be satisfied together for any number of agents. For

other fairness notions, Aziz et al. [20] proposed an algorithm that computes

PROP1 plus PO allocations. Kulkarni et al. [109] designed an algorithm that

guarantees approximately MMS plus PO together.

With Subsidies As the desired fairness notions like envy-freeness and

proportionality can rarely be satisfied, one interesting research direction is

to compensate agents with subsidies (or money) so that those fairness notions

can be restored, whose idea can trace back to the rent division problem in

the economics literature [73]. Halpern and Shah [95] quantified the amount

of the external subsidies when the marginal value of each item is at most

one for each agent. Brustle et al. [52] proved that one unit of subsidies per

agent is su�cient to achieve envy-freeness. Caragiannis and Ioannidis [55]

improved the results by quantifying the minimum subsidies to compute envy-

free allocations. One general extension of this setting is the allocation of a

mixture of indivisible and divisible items [34, 35], where the divisible items

can be regarded as heterogeneous subsidies.

Weighted Agents Researchers also care about the setting where agents
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have unequal rights which models some real-life scenarios. For example,

people at higher positions should take more responsibilities. For goods,

Farhadi et al. [78] gave an approximation ratio of ⇥(n) for weighted MMS.

Chakraborty et al. [58] proved that weighted EF1 allocations always exist.

Nevertheless, for chores, few works have been done except that Aziz et al.

[17] studied the weighted MMS. Other fairness notions including l-out-of-d

MMS were also introduced and studied in the weighted setting [22, 24].

1.3 Our Problems and Results

1.3.1 The MinMaxShare

Motivation

As we have seen, the majority of e↵ort on finding MMS fair allocations for

indivisible chores is devoted to additive disutility functions. However, very

little is known beyond additivity, which motivates our first work:

We study the MMS fair allocation of indivisible chores with non-

additive disutility functions.

Main Results

We first show that no algorithm can ensure better than ⌦(min{n, logm
log logm})

approximation when the disutility functions are submodular1, which is a

sharp contrast to the allocation of goods. Further, we show that for gen-

eral subadditive disutility functions, there always exists an allocation that

1In this work we use log(·) to denote log2(·).
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is O(min{n, logm})-approximate MMS, and thus the approximation ratio

is asymptotically tight. Next, we consider the ordinal relaxation 1-out-of-d

MMS. It is trivial that 1-out-of-1 MMS is satisfied no matter how the chores

are allocated, and somewhat surprisingly, our impossibility result implies

that for any d � 2, there is an instance for which no allocation is 1-out-of-d

MMS.

Result 1 For general subadditive and submodular disutility functions, the

tight multiplicative approximation ratio of MMS is ⇥̃(min {n, logm}). Fur-

ther, for any d � 2, a 1-out-of-d MMS allocation may not exist.

Result 1 combines Theorems 1, 2 and Corollary 1. The strong impossi-

bility in Result 1 does not rule out the possibility of constant multiplicative

or ordinal approximation of MMS fair allocation for all subadditive disutili-

ties. We then turn to study two concrete settings that have shown successful

real-world applications. The first setting deals with a job scheduling prob-

lem, where a set of jobs need to be processed by the agents. The agents

are heterogeneous and thus each job may be of di↵erent lengths to di↵erent

agents. Each agent controls a set of machines with possibly di↵erent speeds.

Upon receiving a set of jobs, an agent’s disutility is determined by the cor-

responding minimum completion time when processing the jobs using her

own machines (i.e., makespan). As will be clear, job scheduling is a more

general setting than additive disutilities, which uncovers new research direc-

tions for group-wise fairness. Scheduling problems appear in many research

areas, including data science, big data, high-performance computing, and

cloud computing [97].
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The second setting deals with a bin packing problem, where the chores

have sizes which can be di↵erent to di↵erent agents. The agents have bins

that can be used to pack the chores allocated to them with the goal of

using as few bins as possible. Semiconductor chip design, loading vehicles

with weight capacity limits, and filling containers are all examples of the bin

packing problem [63].

Result 2 For the job scheduling setting, a 2-approximate MMS allocation

can be computed in polynomial time, and a 1-out-of bn2 c MMS allocation

always exists. For the bin packing setting, a 2-approximate MMS allocation

and a 1-out-of-bn2 c MMS allocation can be computed in polynomial time.

Result 2 combines Corollaries 2, 3 and Theorems 3, 4.

Besides the study of MMS allocations, we also provide a detailed discus-

sion about two other relaxations of proportionality, i.e., PROP1 and PROPX.

1.3.2 The Hill’s Share

Motivation

We also notice that all the aforementioned works on Hill’s share focus on

the allocation of goods, and the mirror problem of chores is not as well

understood as that of goods, which motivates our second work:

We apply Hill’s approach to the allocation of indivisible chores

and prove a set of results parallel to those for indivisible goods.
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Figure 1.1: Hill’s share ��
n (↵) when n = 2 and 3 and m is not restricted.

Main Results

We first compute the tight characterisation of Hill’s share, refined to problems

with a given numberm of chores, i.e., the exact upper bound ��
n (↵;m) of the

MinMaxShare in the domain V(↵;m), where V(↵;m) contains the disutility

functions over m items with the highest disutility being ↵. This result is

stated in Theorem 6. If m is not restricted, i.e., V(↵) =
S

m V(↵;m) and

��
n (↵) = maxm ��

n (↵;m), we illustrate the function ��
n (↵) for n = 2, 3 in

Fig. 1.1. Just like Gourvès et al. [93] observed for the problem of goods, this

function is not monotone in ↵. In passing, we tighten the bounds proposed

by Hill [100] and Gourvès et al. [93] for the worst-case MaxMinShare in the

two-agent problem of goods; see Remark 1.

Compared to the MinMaxShare, Hill’s share ��
n (↵;m) is immediately

verifiable, whereas deciding whether (a multiple of) the MinMaxShare is met

at a given allocation involves solving an NP-hard problem. Moreover, the
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Figure 1.2: The ratio between the upper and lower bounds of the Min-
MaxShare of disutilities in V(↵). 4/3 and 11/9 are two fractions of the
MinMaxShare known to be achievable.

function ↵! ��
n (↵;m) relating the guaranteed share to the disutility of the

worst chore (relative to total disutility) is a transparent hard design con-

straint of which all participants should be aware. Although ��
n (↵;m) seems

more conservative than the MinMaxShare of a specific disutility function, we

argue that ��
n (↵;m) is approximately as e↵ective as MinMaxShare. First,

��
n (↵;m) is at most twice the MinMaxShare of every disutility in V(↵;m).

We plot the exact ratio of ��
n (↵) and the best MinMaxShare of disutilities

in V(↵) for every ↵ in Fig. 1.2 when n = 2, 10 and 100. As we can see,

although the largest ratio may reach 2 (only happens when n is large), for

most values of ↵, the ratio is not far from 1. In particular, ��
n (↵) outper-

forms the fractions of the MinMaxShare known to be implementable (43 by

Barman and Krishnamurthy [31] and 11
9 by Huang and Lu [104]) for most ↵
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no matter what values n has. Besides the above worst-case comparison, in

Section 4.3, we conduct numerical experiments with synthetic and real-world

data to illustrate the real distances between Hill’s share and MinMaxShare.

The experiments show that Hill’s share is actually very close to (e.g., within

1.1 fraction of) the MinMaxShare for the majority of the instances.

Finally, we obtain the main result of this work – a counterpart for chores

of Hill’s guarantee for goods improved by Markakis and Psomas [117]. Let-

ting Vn(↵;m) denote the monotonic cover of ��
n (↵;m) with respect to ↵,

Theorem 7 shows that the share Vn(↵i;m) is a guarantee over the full do-

main of additive disutilities with m chores. We also provide an algorithm to

implement this guarantee in polynomial time. To the best of our knowledge

no other similarly simple guarantee for allocating chores has been identified.

1.4 Thesis Organization

The remainder of the thesis is organized as follows. In Chapter 2, we intro-

duce some necessary preliminaries such as the definitions and notations used

in this thesis. In Chapter 3, we present our work about fair allocation of in-

divisible chore with beyond additive disutilities. Specifically, in Section 3.1,

we first design an instance with submodular disutilities where no allocation

can be better than n-MMS and 1-out-of-d MMS for any d � 2. We then

propose an algorithm that computes a min{n, dlogme}-MMS allocation for

any instance with subadditive disutilities; in Section 3.2, we first introduce

the job scheduling model and then elaborate on the algorithms that compute

a 1-out-of-bn2 c MMS for any job scheduling instance. We also show how to
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modify the algorithms to compute a 2-MMS allocation in polynomial time;

in Section 3.3, we first introduce the bin packing model and then present

the polynomial-time algorithms that compute a 1-out-of-bn2 c MMS for any

bin packing instance. Besides, we show that a slight modification to the

algorithms gives us a 2-MMS allocation. Moreover, we show the multiplica-

tive ratio is actually tight by presenting an instance where no allocation is

better than 2-MMS. in Section 3.4, we provide a detail discussion on two

other relaxations of proportionality, i.e., PROP1 and PROPX. In Chaper 4,

we present our work about Hill’s worst-case guarantee for indivisible chores.

Specifically, in Section 4.1, we compute the tight characterisation of Hill’s

share; in Section 4.2, we show that the monotonic cover of Hill’s share is

a guarantee over the full domain of additive disutilities and design an al-

gorithm that implements the guarantee in polynomial time; in Section 4.3,

we conduct various experiments to demonstrate that Hill’s share can serve

as a good alternative of the MinMaxShare. Finally, in Chapter 5, we make

a conclusion and provide many promising future directions that extend the

works in this thesis.
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CHAPTER 2

PRELIMINARIES

In this chapter, we introduce the necessary preliminaries such as some nota-

tions and definitions, which will be used when we present the details of our

works in the following chapters.

For any integer k � 1, let [k] = {1, . . . , k}. In a fair allocation instance

I = (N,M, {vi}i2N), there are n agents denoted by N = [n] and m chores

denoted by M = {e1, . . . , em}. Each agent i has a disutility function over

the chores, vi : 2M ! R+ [ {0}. For simplicity, we abuse vi(·) to denote a

disutility function and write v(e) to represent v({e}) for each e 2 M . The

disutility functions satisfy vi(;) = 0 and vi(S1)  vi(S2) for any S1 ✓ S2 ✓

M . A disutility function vi is subadditive if for any S1, S2 ✓M ,

vi(S1 [ S2)  vi(S1) + vi(S2).
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It is submodular if for any S1 ✓ S2 ✓M and e 2M \ S2,

vi(S2 [ {e})� vi(S2)  vi(S1 [ {e})� vi(S1).

It is additive if for any S ✓M ,

vi(S) =
X

e2S

vi(e).

It is widely known that any additive function is also submodular, and any

submodular function is also subadditive.

An allocation A = (A1, . . . , An) is an n-partition of the chores where Ai

contains the chores allocated to agent i such that Ai \ Aj = ; for any i 6= j

and
S

i2N Ai = M . For any set S and integer d, let ⇧d(S) be the set of all

d-partitions of S. The MinMaxShare (MMS) of agent i is

MMS
n
i (I) = min

(X1,...,Xn)2⇧n(M)
max
j2N

vi(Xj).

We may neglect n and I in MMS
n
i (I) when there is no ambiguity. Note that

the computation of MMSi is NP-hard even when the disutilities are additive,

which can be verified by a reduction from the Partition problem. Given an

n-partition of M , X = (X1, . . . , Xn), if vi(Xj)  MMSi for any j 2 N , then

X is called an MMS-defining partition for agent i. Note that the original

definition of MMSi for chores is defined with non-positive values, where the

minimum valued bundle is maximized. In this thesis, to simplify the notions,

we choose to use non-negative numbers (representing disutiltities).
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Definition 1 (↵-MMS) An allocation A = (A1, . . . , An) is ↵-approximate

MinMaxShare (↵-MMS) fair if vi(Ai)  ↵ ·MMSi for all i 2 N . The alloca-

tion is MMS fair if ↵ = 1.

Given the definition of MMS, for any agent i with subadditive disutility

vi(·), we have the following simple bounds for MMSi,

MMSi � max
�
max
e2M

vi(e),
1

n
· vi(M)

 
. (2.1)

Following recent works [23, 102, 101], we also consider the ordinal ap-

proximation of MMS, namely, 1-out-of-d MMS fairness. Intuitively, MMS

fairness can be regarded as 1-out-of-n MMS (i.e., partitioning the chores into

n bundles but receiving the largest bundle). Since 1-out-of-n MMS alloca-

tions may not exist, we can instead find a maximum integer d  n such that

an 1-out-of-d MMS allocation is guaranteed to exist. Formally, an allocation

A is 1-out-of-d MMS fair if for every agent i 2 N , vi(Ai)  MMS
d
i . More gen-

erally, given any ↵ � 1, we have the bi-factor approximation, ↵-approximate

1-out-of-d MMS, if vi(Ai)  ↵ ·MMS
d
i for every i 2 N . By the definition, we

have the following simple observation.

Observation 1 Given 1  d  n, any 1-out-of-d MMS allocation is dnde-

MMS fair.

Proof. To prove the observation, it su�ces to show MMS
d
i  dnde ·MMS

n
i for

any agent i 2 N . Let X = (X1, . . . , Xn) be an MMS-defining partition for

agent i, which satisfies vi(Xj)  MMS
n
i for any j 2 [n]. Consider a d-partition

X0 = (X 0
1, . . . , X

0
d) built by evenly distributing the n bundles in X to the d
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bundles in X0; that is, the number of bundles distributed to the bundles in

X0 di↵ers by at most one. Clearly, X0 satisfies vi(X 0
j)  dnde ·MMS

n
i for any

j 2 [d]. By the definition of MMS, it follows that

MMS
d
i  max

j2[d]
vi(X

0
j)  d

n

d
e ·MMS

n
i ,

thus completing the proof.

We let Add(M) be the domain made of the nonnegative additive disutility

functions v on chore set M , normalised without loss of generality, as follows

v(S) =
X

e2S

v(e) for all S ✓M and v(M) = 1.

For any ↵ 2 [0, 1], the subdomain V(↵;m) ✓ Add(M) is defined by the

property maxe2M v(e) = ↵ and U(↵;m) by v(e)  ↵ for all e 2M . According

to the definitions, V(↵;m) ✓ U(↵;m) for any valid pair of ↵ and m. Note

that, since the functions are all normalised, V(↵;m) is only well defined if

↵⇥m � 1, equivalently for m � m⇤ = d 1↵e (the upper integer part of 1
↵).

We next define the upper and lower bounds of MinMaxShare among all

disutilities in V(↵;m),

��
n (↵;m) = max

v2V(↵;m)
MMSn(v); and

��
n (↵;m) = min

v2V(↵;m)
MMSn(v).

The upper bound ��
n (↵;m) (i.e., the worst-case MinMaxShare) is called

Hill’s share, and we use these terms interchangeably in this thesis.
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It is not di�cult to obtain the below formula of ��
n (↵;m).

Lemma 1 Given 0 < ↵ < 1, n � 2, and m � d 1↵e, �
�
n (↵;m) is as follows:

��
n (↵;m) =

8
>>>><

>>>>:

↵, if ↵ > 1
n ,

1
n , if ↵ = 1

kn , or 1
(k+1)n < ↵ < 1

kn and m � kn+ n

k↵ + 1�kn↵
m�kn , if 1

(k+1)n < ↵ < 1
kn and m  kn+ n� 1

for some integer k � 1.

Proof. For each case, we show that MMSn(v) � ��
n (↵;m) for any v 2

V(↵;m), and design a disutility function such that the MinMaxShare is ex-

actly ��
n (↵;m). By the definition of V(↵;m), there exists a chore with disu-

tility ↵, thus MMSn(v) � ↵ for any v 2 V(↵;m). Moreover, when ↵ > 1/n,

there exists a disutility function such that the MinMaxShare is exactly ↵.

Specifically, v1 contains d 1↵e chores, b
1
↵c with disutility ↵ and one with disu-

tility (1� b 1↵c · ↵) < ↵ (if 1 is indivisible by ↵). MMSn(v1) = ↵ follows from

the fact that v1 contains at most n chores.

By the definition of MinMaxShare, MMSn(v) � 1
n , where the equality

is achieved when the total disutility of M can be evenly distributed among

the n-partition. When 1/n is divisible by ↵ (i.e., ↵ = 1
kn for some positive

integer k), or 1/n is not divisible by ↵ (i.e., 1
(k+1)n < ↵ < 1

kn) and the number

of chores m is at least kn + n, there exists an disutility function such that

the MinMaxShare is exactly 1/n. For the former, the disutility function v2

contains 1/↵ = kn chores with disutility ↵. Clearly, each bundle in the best

n-partition contains k chores with disutility ↵ and MMSn(v2) = 1/n. For the

latter, intuitively, the total disutility of M can also be evenly distributed by
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letting each bundle contain b 1
n↵c = k chores with disutility ↵ and one chore

with disutility 1
n � k↵ < ↵. In total, kn+ n  m chores are needed. Hence,

the disutility function v3 contains kn chores with disutility ↵, n chores with

disutility 1
n�k↵ andm�kn�n chores with disutility 0, andMMSn(v3) = 1/n.

However, when 1/n is indivisible by ↵ but the number of chores m is

limited to kn+ n� 1, 1/n cannot be achieved since some bundles in any n-

partition contain no more than k chores, and the disutilities of these bundles

are at most k↵ < 1/n. For this case, we show that MMSn(v) � k↵ + 1�kn↵
m�kn

for any v 2 V(↵;m). Letting x be the number of bundles in the n-partition

that contain no more than k chores, it follows that x � kn + n �m. Since

the disutility of each of these bundles is at most k↵, the average disutility of

the other bundles is at least

1� k↵x

n� x
� 1� (kn+ n�m) · k↵

m� kn
= k↵ +

1� kn↵

m� kn
> k↵

where the leftmost-hand side is an increasing function of x since k↵ < 1/n,

and the last inequality is because m � d 1↵e > kn. Therefore, the largest

disutility of any n-partition is at least k↵ + 1�kn↵
m�kn ; that is, MMSn(v) �

k↵ + 1�kn↵
m�kn for any v 2 V(↵;m). Let v4 contain kn chores with disutility ↵

and m � kn chores with disutility 1�kn↵
m�kn < ↵. Clearly, the worst bundle in

the best n-partition contains k chores with disutility ↵ and one chore with

disutility 1�kn↵
m�kn , thus MMSn(v4) = k↵ + 1�kn↵

m�kn .

Computing ��
n (↵;m) is non-trivial, as shown in Section 4.1, but the

following lemma presents two simple properties.

Lemma 2 (1) ��
n (↵;m) is weakly decreasing in n; (2) ��

n (↵;m) is weakly
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increasing in m from d 1↵e to d
2
↵e � 1 and constant thereafter.

Proof. That ��
n (↵;m) decreases in n is clear by comparing the Min-

MaxShares of an arbitrary n-partition and the (n + 1)-partition obtained

by adding one empty share. The monotonicity in m (i.e., ��
n (↵;m) 

��
n (↵;m+1)) follows that every disutility in V(↵;m) can be transformed to

one in V(↵;m+1) by adding a chore with disutility 0, without changing the

MinMaxShare.

We then show when m � d 2↵e � 1, ��
n (↵;m) � ��

n (↵;m + 1), thus

��
n (↵;m) remains constant. To achieve this, we first claim that when m �

d 2↵e�1, for any v 2 V(↵;m+1) and any allocation (A1, . . . , An), there exists

one bundle such that the total disutility of two of its chores is no more than ↵.

Otherwise, for any bundle Ak, the total disutility of any two chores is larger

than ↵, which means that v(Ak) > |Ak|
2 · ↵. Upon summing up the lower

bounds over all bundles, 1 =
P

k2N v(Ak) >
↵
2 · d 2↵e � 1, a contradiction.

Now we pick any disutility v 2 V(↵;m + 1), and let (A1, . . . , An) be

the allocation that gives the MinMaxShare of v. By the claim, there exists a

bundle (w.l.o.g., A1) such that two chores e1, e2 2 A1 satisfy v(e1)+v(e2)  ↵.

We derive a disutility v0 2 V(↵;m) by merging e1 and e2 into one chore e, and

show that MMSn(v) = MMSn(v0). On one hand, letting A0
1 = A1 \ {e1, e2} [

{e}, it follows that MMSn(v) � MMSn(v0) since (A0
1, . . . , An) is an allocation

regarding v0 with the largest disutility being MMSn(v). On the other hand,

by decomposing e into e1 and e2, we can convert any allocation regarding

v0 to an allocation regarding v without changing the largest disutility, thus

MMSn(v)  MMSn(v0).

Therefore, when m � d 2↵e � 1, every disutility in V(↵;m + 1) can be
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transformed to one in V(↵;m) without changing the MinMaxShare, which

gives ��
n (↵;m) � ��

n (↵;m + 1). Combining with the monotonicity in m,

��
n (↵;m) remains constant when m � d 2↵e � 1.

By the second property in Lemma 2, and also following [100, 117, 93], we

also consider the case when m is not restricted, or equivalently, m =1. Let

V(↵) =
S

m V(↵,m) and U(↵) =
S

m U(↵;m). Accordingly, we have

��
n (↵) = max

v2V(↵)
MMSn(v); and

��
n (↵) = min

v2V(↵)
MMSn(v).

By Lemma 1, ��
n (↵) = max{↵, 1/n}.

Hill’s share ��
n (↵;m) (and ��

n (↵)) behave much like the MinMaxShare

in the following senses. First, for any v 2 V(↵;m) there is an allocation

(A1, . . . , An) such that v(Ai)  ��
n (↵;m) for all i. This follows from the

definition of the MinMaxShare plus that ��
n (↵;m) is an upper bound of the

MinMaxShare. Second, the max in the definition of ��
n (↵;m) is achieved by

some v⇤ 2 V(↵;m); that is, ��
n (↵;m) = MMSn(v⇤). This is because V(↵;m)

is a compact set and all functions are continuous. Then we know that for any

allocation (B1, . . . , Bn) there is some i such that v⇤(Bi) � ��
n (↵;m). Note

that these two facts have nothing to do with what the function ��
n (↵;m)

actually looks like and they can be easily adapted to ��
n (↵).
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CHAPTER 3

MMS ALLOCATION OF

INDIVISIBLE CHORES:

BEYOND ADDITIVE

DISUTILITY FUNCTIONS

In this chapter, we elaborate on our work about MMS allocation of indivisible

chores when the disutility functions are beyond additivity. We first focus on

the setting with general subadditive disutilities. A lower-bound instance and

an algorithm are designed to show the tightness of our approximation ratio

of MMS. We then turn to the job scheduling and the bin packing settings.

Algorithms that compute constant approximate MMS fair allocations are

designed for these two specific settings. We end this chapter by providing a

detailed discussion about two other relaxations of proportionality.
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3.1 Subadditve Disutilities

By Inequality 2.1, if the disutilities are subadditive, allocating all chores to

a single agent ensures an approximation of n, which is somehow the most

unfair algorithm. Surprisingly, such an unfair algorithm achieves the optimal

approximation ratio of MMS even if the disutilities are submodular.

Theorem 1 For any n � 2, there is an instance with submodular disutilities

for which no allocation is better than n-MMS or logm
log logm-MMS.

Proof. Since

n =
logm

log logm� log log logm+ o(1)
� logm

log logm
,

in the following, it su�ces to show no allocation can be better than n-MMS.

For any fixed n � 2, we construct the following instance with n agents and

m = nn chores. Let each chore correspond to a point in an n-dimensional

coordinate system, i.e.,

M = {(x1, x2, . . . , xn) | xi 2 [n] for all i 2 [n]}.

For each agent i 2 N , we define n covering planes {Cil}l2[n] and for each

l 2 [n],

Cil = {(x1, x2, . . . , xn) |xi = l and

xj 2 [n] for all j 2 [n] \ {i}}.

Note that {Cil}l2[n] forms an exact cover of the points in M , i.e.,
S

l Cil = M
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and Cil \ Ciz = ; for all l 6= z. For any set of chores S ✓ M , vi(S) equals

the minimum number of planes in {Cil}l2[n] that can cover S. Therefore,

vi(S) 2 [n] for all S. We first show vi(·) is submodular for every i. For any

S ✓ T ✓ M and any e 2 M \ T , if e is not in the same covering plane with

any point in T , e is not in the same covering plane with any point in S,

either. Thus, vi(T [ {e}) � vi(T ) = 1 implies vi(S [ {e}) � vi(S) = 1, and

accordingly,

vi(T [ {e})� vi(T )  vi(S [ {e})� vi(S).

Since {Cil}l2[n] is an exact cover of M , MMSi = 1 for every i, where the

MMS-defining partition is simply {Cil}l2[n]. Then to prove the theorem, it

su�ces to show that for any allocation ofM , there is at least one agent whose

disutility is n. For the sake of contradiction, we assume there is an allocation

X = (X1, . . . , Xn) where every agent has disutility at most n � 1. This

means that for every i 2 [n], there exists a plane Cili such that Xi \Cili = ;.

Consider the point b = (l1, . . . , ln), it is clear that b 2 Cili and thus b /2 Xi

for all i. Hence b is not allocated to any agent, which is a contradiction to

X being an allocation.

To facilitate the understanding of Theorem 1, we provide an instance

with 3 agents and 27 chores where no allocation is better than 3-MMS. The

instance is illustrated in Figure 3.1, where each agent has three covering

planes. Take agent 1 for example, her three covering planes contain the chores

whose x coordinates are 1, 2, 3, respectively. If there exists an allocation that

is better than 3-MMS, then each agent is allocated chores from at most 2 of

her covering planes. Without loss of generality, we assume that agent 1 (or
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Figure 3.1: An instance with 3 agents and 27 chores

agent 2 and 3 respectively) is not allocated any chore whose x (or y and z

respectively) coordinate is 1. Then, the chore (1, 1, 1) is not allocated to any

agent, a contradiction.

The hard instance in Theorem 1 also implies the following lower bound

for 1-out-of-d MMS.

Corollary 1 For any 2  d  n, there is an instance with submodular

disutility functions for which no allocation is 1-out-of-d MMS.

Proof. We consider the same instance that was designed in Theorem 1. In

this instance, we have proved that no matter how the chores are allocated

among the agents, there is at least one agent, say i, whose disutility is n.

Moreover, by the design of the disutility function, for any integer d, it can

be observed that MMS
d
i = dnde. Note that dnde is always smaller than n for

all d � 2 and thus the allocation is not 1-out-of-d MMS to i.

Theorem 2 For any instance with subadditive disutility functions, there al-

ways exists a min{n, dlogme}-MMS allocation.
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Algorithm 1 Algorithm for subadditive disutility functions
Input: A subadditive instance (N,M, {vi}i2N).
Output: An allocation A = (A1, . . . , An) such that vi(Ai)  dlogme ·MMSi

for all i 2 N .

1: Initialize Ai  ; for every i 2 N .
2: if logm � n then
3: A1  M .
4: else
5: i 1 and M0  M .
6: end if
7: while Mi�1 6= ; and i  n do
8: Let (Di

1, . . . , D
i
n) be one of i’s MMS-defining partitions over M .

9: Let Ri
j = Di

j \Mi�1 for all j 2 [n]. Re-index the bundles such that
|Ri

1| � · · · � |Ri
n|.

10: Ai  
S

j2[dlogme] R
i
j and Mi  Mi�1 \ Ai.

11: i i+ 1.
12: end while

Proof. We describe the algorithm that computes a min{n, dlogme}-MMS

allocation in Algorithm 1. First, if logm � n, then we are safe to arbitrarily

allocate the chores to the agents, which ensures n-approximation.

The tricky case is when logm < n, where we cannot allocate too many

chores to a single agent. For this case, we first look at agent 1’s MMS-

defining partition D1 = (D1
1, . . . , D

1
n), where c1(D1

j )  MMS1 for all j 2 [n]

and assume they are ordered by sizes, i.e., |D1
1| � · · · � |D1

n|. In order to

ensure agent 1’s disutility to be no more than O(logm) times her MMS, we

ask her to take away dlogme largest bundles (in terms of number of chores)

in D1, i.e., A1 =
S

j2[dlogme] D
1
j . Since the disutility function is subadditive,

v1(A1) 
X

j2[dlogme]

v1(D
1
j )  O(logm) ·MMS1.

Moreover, since on average each bundle in D1 contains m
n chores and A1
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contains the bundles with largest number of chores, |A1| � (logm) · m
n =

logm
n ·m. That is, at least logm

n fraction of the chores are taken away by agent

1. Let M1 = M \ A1 be the set of remaining chores, and we have

|M1| 
✓
1� logm

n

◆
·m.

We next ask agent 2 to take away chores in a similar way to agent 1. Let

D2 = (D2
1, . . . , D

2
n) be one of agent 2’s MMS-defining partitions, and R2 =

(R2
1, . . . , R

2
n) be the remaining chores in these bundles, i.e., R2

j = D2
j \M1.

Again, we assume R2
1, . . . , R

2
n are ordered by sizes, i.e., |R2

1| � · · · � |R2
n|.

Letting A2 =
S

j2[dlogme] R
2
j and M2 = M1 \A2, we have v2(A2)  O(logm) ·

MMS2. Moreover, since on average each bundle in R2 contains |M1|
n chores

and A2 contains the bundles with largest number of chores,

|A2| � (logm) · |M1|
n

=
logm

n
· |M1|,

|M2| 
✓
1� logm

n

◆
· |M1| 

✓
1� logm

n

◆2

·m. (3.1)

We continue with the above procedure for agents i = 3, . . . , n with the formal

description shown in Algorithm 1. It is straightforward that every agent i

who gets a bundle Ai has disutility at most O(logm) · MMSi. Further, by

induction, Equation 3.1 holds for all agents i  n, i.e.,

|Mi| 
✓
1� logm

n

◆
· |Mi�1| 

✓
1� logm

n

◆i

·m.
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To show the validity of the Algorithm, it remains to show that the algorithm

can allocate all chores, i.e., Mn = ;. This can be seen from the following

inequalities,

|Mn| 
✓
1� logm

n

◆n

·m =

✓
1� logm

n

◆ n
logm ·logm

·m

<

✓
1

e

◆logm

·m <
1

m
·m = 1.

which means that Mn must be empty, thus completing the proof of the the-

orem.

We remark that Theorem 1 does not imply a polynomial-time algorithm

and we leave this as an open problem.

Theorem 1 does not rule out the possibility of beating the approximation

ratio for specific combinatorial problems with subadditive disutilities. In the

next two sections, we turn to studying two settings, for which we are able to

beat the lower bounds in Theorem 1 and Corollary 1 by designing algorithms

that can guarantee constant multiplicative and ordinal approximations of

MMS.

Note that in the following sections, we mostly consider the ordinal ap-

proximation of MMS. By Observation 1, the ordinal approximation gives a

result of the multiplicative approximation, which we will improve by slightly

modifying the designed algorithms.
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3.2 Job Scheduling Problem

3.2.1 Model

The first specific setting encodes the job scheduling problem where the chores

are jobs that need to be processed by the agents. Each chore ej 2 M has a

size si,j � 0 to each agent i 2 N , and for a set of chores S ✓ M , si(S) =
P

ej2S si,j. Each agent i 2 N exclusively controls a set of ki machines Pi = [ki]

with possibly di↵erent speed ⇢i,j for j 2 Pi. Without loss of generality, we

assume ⇢i,1 � · · · � ⇢i,ki . Let d = bn2 c. Upon receiving a set of chores S ✓M ,

agent i’s disutility vi(S) is the minimum completion time of processing S

using her own machines Pi (i.e., the makespan of Pi). Formally,

vi(S) = min
(T1,...,Tki

)2⇧ki
(S)

max
l2[ki]

P
et2Tl

si,t

⇢i,l
.

Note that the computation of vi(S) is NP-hard if ki � 2. Moreover, for

any two sets S1 and S2, vi(S1 [ S2)  vi(S1) + vi(S2) since the makespan of

scheduling S1 [ S2 is no larger than the sum of the makespans of scheduling

S1 and S2 separately and thus vi(·) is subadditive.

Regarding the value of MMS
d
i , intuitively, it is obtained by partitioning

the chores into d · ki bundles, and allocating them to ki di↵erent types of

machines (with possibly di↵erent speeds) where each type has d identical

machines so that the makespan is minimized.1 Note that when each agent

1An alternative way to explain the scheduling model is to view each agent i as a group
of ki small agents and MMSdi as the collective maximin share for these ki small agents. We
believe this notion of collective maximin share is of independent interest as a groupwise
fairness notion. We remark that this notion is di↵erent with the groupwise (and pairwise)
maximin share defined in [28] and [57], where the max-min value is defined for each single
agent. In our definition, however, a set of agents share the same value for the chores
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controls a single machine, i.e., ki = 1 for all i, the problem degenerates

to the additive disutility case, and thus the job scheduling setting strictly

generalizes the additive setting. For each agent i and each machine j 2 Pi,

let ci,j = ⇢i,j ·MMS
d
i denote j’s capacity, which means that if the total size

of a set of chores to i does not exceed ci,j, the time it takes for j to process

the chores does not exceed MMS
d
i .

3.2.2 The IDO Reduction

For an instance I = (N,M, {vi}i2N , {si}i2N) of the job scheduling setting

or the bin packing setting, we can construct the IDO instance I 0 = (N,M,

{v0i}i2N , {s0i}i2N) where si,1 � · · · � si,m for all i. Observe that for any i 2 N ,

there exists a permutation �i : M !M such that for any ej, e0j 2M , ej  e0j

implies si,�i,j � si,�i,j0 . These permutations are used to define the sizes of the

chores in I 0 as follows: for each agent i 2 N , s0i,j = si,�i,j for every ej 2M . In

short, for each agent i 2 N and each chore ej 2M , the size of ej to i in I 0 is

the j-th largest size of the chores to i in I. Note that the above construction

runs in polynomial time.

We then apply a widely-used reduction [46, 104] to restrict our attention

on IDO instances. Specifically, it means that any algorithm that ensures ↵-

approximate 1-out-of-d MMS allocations for IDO instances can be converted

to compute ↵-approximate 1-out-of-d MMS allocations for general instances.

The reduction may not work for all subadditive valuations, but we show in

the following lemma that it does work for the job scheduling setting and the

bin packing setting.

assigned to them.
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Algorithm 2 IDO reduction for the job scheduling setting and the bin pack-
ing setting
Input: A general instance I, the IDO instance I 0 and an allocation A0 =
(A0

1, ..., A
0
n) for the IDO instance such that v0i(A

0
i)  ↵ · MMS

d
i (I

0) for all
i 2 N .
Output: An allocation A = (A1, ..., An) such that vi(Ai)  ↵ ·MMS

d
i (I) for

all i 2 N .

1: For all i 2 N and g 2 A0
i set pg := i.

2: Initialize Ai  ; for all i 2 N , and R M .
3: for g = m to 1 do
4: Pick kg 2 argming02R{spg ,g0}.
5: Apg  Apg [ {kg}, R R \ {kg}.
6: end for

Lemma 3 For the job scheduling setting or the bin packing setting, if there

exists an allocation A0 = (A0
1, . . . , A

0
n) in the IDO instance I 0 such that

v0i(A
0
i)  ↵ · MMS

d
i (I

0) for all i 2 N , then there exists an allocation A =

(A1, . . . , An) in the original instance I such that vi(Ai)  ↵ · MMS
d
i (I) for

all i 2 N . Furthermore, A can be constructed in polynomial time.

Proof. We show that given any I, I 0 and A0, Algorithm 2 computes the

desired allocation A in polynomial time. In the algorithm, we look over the

chores in descending order of their indices (i.e., in increasing order of their

sizes in I 0). For each chore, we let the agent who receives it in I 0 pick her

smallest remaining chore in I.

Clearly, Algorithm 2 runs in polynomial time. We next show that vi(Ai) 

v0i(A
0
i) for all i 2 N . Consider the g-th iteration of the for-loop (Steps 3 to

6), where we suppose that agent i picks chore kg; that is, g 2 A0
i, kg 2 Ai

and kg is the smallest remaining chore to i. Since a chore is removed from

the set R after it is allocated, exactly g�1 chores have been allocated before

kg is allocated. Therefore, kg is among the top g smallest chores to agent
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i. Recall that g is the chore with the exactly g-th smallest size to i, hence

si,kg  s0i,g. The same reasoning can be applied to other chores in A0
i and

Ai, and to other agents. It follows that for any i 2 N , any g 2 A0
i and the

corresponding kg 2 Ai, si,kg  s0i,g. For the job scheduling setting or the

bin packing setting, this implies vi(Ai)  v0i(A
0
i). Since the maximin share

depends on the sizes of the chores but not on the order, the maximin share

of agent i in I 0 is the same as that in I, i.e., MMS
d
i (I

0) = MMS
d
i (I). Hence,

the condition that v0i(A
0
i)  ↵ ·MMS

d
i (I

0) gives vi(Ai)  ↵ ·MMS
d
i (I), which

completes the proof.

Therefore, in the job scheduling setting and the bin packing setting, we

only consider IDO instances.

3.2.3 Algorithm

Next, we elaborate on the algorithm that proves Theorem 3.

Theorem 3 A 1-out-of-bn2 cMMS allocation always exists for any job schedul-

ing instance.

In a nutshell, our algorithm consists of three parts: we first partition all

chores into d bundles. For any of the bundles and any agent, in the second

part, we present an imaginary assignment of the chores in the bundle to the

agent’s machines. These imaginary assignments are used in the third part

to guide the allocation of the chores in each of the d bundles to two agents,

such that each agent receives disutility no more than her 1-out-of-d MMS.
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Part 1: partitioning the chores into d bundles

We adopt the classic round-robin algorithm to partition the chores into d

bundles B = (B1, . . . , Bd). Specifically, we allocate the chores in descending

order of their sizes to the bundles by turns, from the first bundle to the last

one. Each time, we allocate one chore to one bundle, and when every bundle

receives a chore, we start over from the first bundle and so on. For any set

of chores S, let S[l] be the l-th largest chore, then the algorithm is formally

presented in Algorithm 3.

Algorithm 3 Round-robin algorithm
Input: An IDO job scheduling instance (N,M, {vi}i2N , {si}i2N).
Output: A d-partition of M : B = (B1, . . . , Bd).

1: Initialize Bj  ; for every j 2 [d], and r  1.
2: while r  m do
3: for j = 1 to d do
4: if r  m then
5: Bj  Bj [ {M [r]}.
6: r  r + 1.
7: end if
8: end for
9: end while

By the characteristic of the round-robin algorithm, we have the following

observation.

Observation 2 For each bundle Bj 2 B and each chore ek 2 Bj \ {Bj[1]}

(if exists), there are at least d � 1 other chores in M with at least the same

size as ek; that is, chores ek�1, ek�2, . . . , ek�d+1.
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Part 2: imaginary assignment

Consider any bundle Bj 2 B computed in the first part and any agent i 2 N ,

we imaginatively assign the chores in Bj \ Bj[1] to i’s machines as follows.

We greedily assign the chores with larger sizes to i’s machines with faster

speeds (in other words, larger capacities), as long as the total workload on

one machine does not exceed the machine’s capacity. The first time when

the workload exceeds the capacity, we move to the next machine and so on.

Algorithm 4 Imaginary assignment
Input: A bundle Bj 2 B computed in the first part and an agent i 2 N .
Output: Sets of internal chores {CI

i,1, . . . , C
I
i,ki

} and external chores
{ti,0, . . . , ti,ki}.
1: Initialize CI

i,l  ;, ti,l  null for every l 2 [ki], and r  1.
2: while r  |Bj| do
3: for l = 1 to ki do
4: ti,l�1  Bj[r], r  r + 1.
5: while r  |Bj| and si(CI

i,l [ {Bj[r]})  ci,l do
6: CI

i,l  CI
i,l [ {Bj[r]}, r  r + 1.

7: end while
8: end for
9: end while

The algorithm is formally presented in Algorithm 4 and illustrated in

Figure 3.2, where for each l 2 [ki], CI
i,l contains the chores assigned to machine

l that do not make the total workload exceed l’s capacity, and ti,l is the last

chore assigned to l that makes the total workload exceed the capacity. Note

that CI
i,l may be empty and ti,l may be null. For simplicity, let ti,0 = Bj[1];

that is, Bj[1] is assigned to an imaginary machine 0. The chores in
S

l2[ki] C
I
i,l

are called internal chores (as shown by the dark boxes in Figure 3.2), and

{ti,0, . . . , ti,ki} are called external chores (as shown by the light boxes).
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Figure 3.2: The imaginary assignment of Bj to agent i

For any bundle Bj 2 B and any agent i 2 N , the imaginary assignment

has the following properties.

• Property 1: all chores in Bj \ {Bj[1]} can be assigned to agent i’s

machines. Besides, the last machine ki does not have an external chore;

that is, ti,ki is null.

• Property 2: for any 1  l  ki, the total size of the internal chores

CI
i,l does not exceed the capacity of machine l:

si(C
I
i,l)  ci,l.

• Property 3: for any 1  l  ki, the external chore ti,l�1 (if not null)

has size no greater than the capacity of machine l:

si(ti,l�1)  ci,l.

Proof. The first property holds since otherwise, si(Bj\{Bj[1]}) >
P

l2[ki] ci,l.
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By Observation 2, it follows that

si(M) > d · si(Bj \ {Bj[1]}) > d ·
X

l2[ki]

ci,l.

However, since all chores can be assigned to i’s machines in her MMS-defining

partition, we have si(M)  d ·
P

l2[ki] ci,l, a contradiction.

The second property directly follows the algorithm. For the third prop-

erty, si(ti,0)  ci,1 follows the facts that ti,0 is assigned to some machine in

i’s MMS-defining partition and ci,1 is the largest capacity of the machines.

We then consider l 2 [ki � 1] and show si(ti,l)  ci,l+1 (if ti,l is not null).

The same reasoning can be applied to any other l0 2 [ki � 1]. Let S1 =
S

p2[l](C
I
i,p [ {ti,p}). From the algorithm, we know that si(S1) >

P
p2[l] ci,p

and ti,l is the smallest chore in S1. By Observation 2, there exist another d�1

subsets of chores {S2, . . . , Sd} such that si(Sk) � si(S1) for any k 2 [2, d] and

ti,l is also the smallest chore in
S

k2[d] Sk. Hence,
P

k2[d] si(Sk) > d ·
P

p2[l] ci,p.

This implies that in i’s MMS-defining partition, at least one chore in
S

k2[d] Sk

is assigned to machine p � l + 1. Combining with the fact that ti,l is the

smallest chore in
S

k2[d] Sk, we have si(ti,l)  ci,l+1.

By these properties, for any agent i 2 N and any of her machine l 2 Pi,

we can assign either the internal chores CI
i,l or the external chore ti,l�1 to l,

such that the completion time of l does not exceed MMS
d
i . This intuition

guides the allocation of the chores in each bundle in B to two agents in the

following part.
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Part 3: allocating the chores to the agents

For any bundle Bj 2 B, we arbitrarily choose two agents i1, i2 2 N and

allocate them the chores in Bj in the following way. Recall that in the

imaginary assignment of Bj to each agent i 2 {i1, i2}, the chores in Bj are

divided into internal chores
S

l2[ki] C
I
i,l and external chores {ti,0, . . . , ti,ki}. Let

E = {e⇤1, . . . , e⇤|E|} contain all external chores shared by i1 and i2. We allocate

the chores in Bj to agents i1 and i2 in |E| rounds. In each round q 2 [|E|],

we first find the machines of i1 and i2 to which the shared external chores

e⇤q and e⇤q+1 are assigned (denoted by l1, l2, l01 and l02, respectively. If e⇤q+1

does not exist, simply let l01 = ki1 and l02 = ki2). We then find the agent

ik 2 {i1, i2} whose machine lk + 1 has more internal chores. We allocate ik

her internal chores from machine lk +1 to machine l0k, and allocate the other

agent ik’s external chores from machine lk to machine l0k � 1. The algorithm

is formally presented in Algorithm 5.

Since 2 · d = 2 · bn2 c  n, no more than n agents are needed to allocate

all chores. Thus to prove Theorem 3, it remains to show that for each agent

who is allocated chores in Algorithm 5, the disutility of the chores allocated

to her is no more than her 1-out-of-d MMS.

Proof of Theorem 3. Consider the first round of the process when the

chores in any bundle Bj 2 B are allocated to two arbitrarily chosen agents

i1, i2 2 N . Without loss of generality, assume that the first machine of i1

contains more internal chores than that of i2, i.e., CI
i1,1 � CI

i2,1. From the

algorithm, we know that the chores i1 takes are
Sl01

l=1 C
I
i1,l. By the second

property of the imaginary assignment, these chores can be assigned to the
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Algorithm 5 Allocating the chores to the agents
Input: A d-partition B = (B1, . . . , Bd) returned by Algorithm 3.
Output: An allocation A = (A1, . . . , An) such that vi(Ai)  MMS

d
i for all

i 2 N .

1: Initialize Ai  ; for every i 2 N .
2: for j = 1 to d do
3: Arbitrarily choose 2 agents i1 and i2, N  N \ {i1, i2}.
4: {CI

i1,1, . . . , C
I
i1,ki1

}, {ti1,0, . . . , ti1,ki1} Algorithm 4(Bj, i1).

5: {CI
i2,1, . . . , C

I
i2,ki2

}, {ti2,0, . . . , ti2,ki2} Algorithm 4(Bj, i2).

6: E  {ti1,0, . . . , ti1,ki1} \ {ti2,0, . . . , ti2,ki2}. Re-label E  {e⇤1, . . . , e⇤|E|}.
7: for q = 1 to |E| do
8: Find l1 2 [0, ki1 ] and l2 2 [0, ki2 ] such that e⇤q = ti1,l1 = ti2,l2 .
9: if q < |E| then
10: Find l01 and l02 such that e⇤q+1 = ti1,l01 = ti2,l02 .
11: else
12: l01 = ki1 and l02 = ki2 .
13: end if
14: if |CI

i1,l1+1| � |CI
i2,l2+1| then

15: Ai1  
Sl01

l=l1+1 C
I
i1,l, Ai2  

Sl01�1
l=l1

ti1,l.
16: else
17: Ai2  

Sl02
l=l2+1 C

I
i2,l, Ai1  

Sl02�1
l=l2

ti2,l.
18: end if
19: end for
20: end for
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first l01 machines of i1 such that the completion time of each machine does

not exceed MMS
d
i1 . Besides, we know that the chores i2 takes are

Sl01�1
l=0 ti1,l,

which are e⇤0 and a subset of
Sl02

l=2 C
I
i2,l. By the second and third properties

of the imaginary assignment, these chores can be assigned to the first l02

machines of i2 such that each completion time does not exceed MMS
d
i2 . The

same reasoning can be applied to all the following rounds. By induction, it

follows that both i1 and i2 can process the chores allocated to them such

that the maximum completion time of their machines does not exceed their

1-out-of-d MMS, which completes the proof.

For the multiplicative relaxation of MMS, by Theorem 3 and Observation

1, a dn/bn2 ce-MMS allocation always exists for any job scheduling instance.

We next show that after a slight modification, Algorithm 3 computes a 2-

MMS allocation in polynomial time, which is better than dn/bn2 ce-MMS.

Corollary 2 A 2-MMS allocation can be computed in polynomial time for

any job scheduling instance.

Proof. We show that by replacing the value of d with n, Algorithm 3

computes a 2-MMS allocation. Particularly, in the new version of Algorithm

3, we partition the chores in M into n bundles in a round-robin fashion and

allocate each of the n bundles to one agent in N . By the properties of the

imaginary assignment, for each agent, the makespan of processing either the

internal chores or the external chores in her bundle using her machines does

not exceed MMS
n
i . This implies that for each agent the total disutility of her

bundle does not exceed 2MMS
d
i , which completing the proof.
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3.3 Bin Packing Problem

3.3.1 Model

The second setting encodes the bin packing problem where the chores have

sizes and need to be packed into bins by the agents. The chores may be of

di↵erent sizes to di↵erent agents. Specifically, each chore ej 2 M has size

si,j � 0 to each agent i 2 N . As in the job scheduling setting, it su�ces

to consider IDO bin packing instances where si,1 � · · · � si,m for all i 2 N .

For a set of chores S, si(S) =
P

ej2S si,j. Each agent i 2 N has unlimited

number of bins with the same capacity ci. Without loss of generality, we

assume c1 � · · · � cn and ci � maxej2M si,j for all i 2 N .

Upon receiving a set of chores S ✓ M , agent i’s disutility vi(S) 2 is

determined by the minimum number of bins (with capacity ci) that can pack

all chores in S. The calculation of vi(S) involves solving a classic bin packing

problem which is NP-hard. For any two sets S1 and S2, vi(S1 [ S2) 

vi(S1) + vi(S2) since the optimal packing of S1 [ S2 is no worse than the

union of packing S1 and S2 separately and thus vi(·) is subadditive. Let

d = bn2 c. Accordingly, MMS
d
i is essentially the minimum number ki such

that the chores can be partitioned into d bundles and the chores in each

bundle can be packed into no more than ki bins. The definition of MMS
d
i

gives a simple observation: MMS
d
i · ci �

si(M)
d for all i 2 N .

We say a chore ej is large for an agent i if the size of ej to i exceeds half

of the capacity of i’s bins, i.e., si,j > ci/2; otherwise, we say ej is small for

2Note that although the value of vi(S) also depends on ci, to simplify the notations,
we let the subscript i absorb ci and neglect an extra parameter in vi(·).
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i. Let Hi denote the set of i’s large chores in M , and Li denote the set of i’s

small chores:

Hi = {ej 2M | si,j > ci/2},

Li = {ej 2M | si,j  ci/2}.
(3.2)

Since two large chores cannot be put together into the same bin, the number

of chores that are large for i is at most MMS
d
i · d; that is, |Hi|  MMS

d
i · d.

We say a set of chores are acceptable for an agent i if their total size does not

exceed ci. If the total size exceeds ci, we still say these chores are passable

for i, as long as some of them are small for i and removing one of the small

chores makes the remaining chores acceptable for i.

3.3.2 Algorithm

Next, we introduce the algorithm that proves Theorem 4.

Theorem 4 A 1-out-of-bn2 c allocation can be computed in polynomial time

for any bin packing instance.

Actually, we can apply the similar idea (round-robin) in Subsection 3.2.3

to the bin packing setting, however, there will be an extra additive loss. To

avoid this loss, in the following, we introduce a new approach based on the

bag filling algorithm. In a nutshell, our algorithm contains two parts: in the

first part (the main part), we adopt the bag filling algorithm to partition

the chores into d bundles, and at the same time select at most two agents

for each bundle. In the second part, for each of the d bundles, we present

an imaginary assignment of the chores in the bundle to the bins of each of

its selected agents. We then use these imaginary assignments to allocate the
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chores in the bundles to their selected agents, such that each agent receives

disutility at most her 1-out-of-d MMS.

Part 1: modified bag filling algorithm

The algorithm (see Algorithm 6) runs in d rounds of bag initialization (Steps

5 through 8) and bag filling (Steps 12 through 18). Specifically, we call the

agents for whom the bag is not large enough and some remaining chores are

small candidate agents. Note that the set of candidate agents shrinks when

chores are added into the bag during the algorithm. In the bag initialization

procedure of round j 2 [d], we put ej and the chores every d chores after

ej (i.e., ej+d, ej+2d, . . .) into the bag, as long as the chores have not been

allocated and are large for at least one agent. Observe that since we consider

IDO instances, the agents for whom the lastly added chore is large think all

chores in the initialized bag are large. We select one such agent. If there is

at most one candidate agent after the bag initialization procedure, the round

ends and the candidate agent (if exists and has not been selected) is added

as another selected agent. Otherwise, we enter the bag filling procedure.

In the bag filling procedure, as long as there exist at least two candidate

agents, we replace the selected agents with two of the candidate agents and

put the smallest remaining chore into the bag. Note that the smallest chore

is small for all candidate agents (including the two selected). If there is

at most one candidate agent after the smallest chore is put into the bag,

the round ends and the only candidate agent (if exists and has not been

selected) replaces one of the selected agents. The way we establish the bag

and select the agents makes the following two properties satisfied for every
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round j 2 [d].

Algorithm 6 Modified bag filling algorithm.
Input: An IDO bin packing instance (N,M, {vi}i2N , {si}i2N).
Output: A d-partition of M : B = {B1, . . . , Bd}, and sets of selected agents
G = {G1, . . . , Gd}.
1: Initialize Bj  ;, Gj  ; for each j 2 [d], and R M .

2: N(Bj) = {i 2 N : si(Bj)  si(M)
d and Li \ R 6= ;}. // candidate agents

which change with Bj and R
3: for j = 1 to d do
4: t j.
5: while et 2 R and there exists an agent i 2 N for whom et is large do
6: Bj  Bj [ {et}, R R \ {et}, t t+ d.
7: Gj  {i}.
8: end while
9: if |N(Bj)| = 1 and N(Bj) * Gj then

10: Pick i 2 N(Bj), Gj  Gj [ {i}.
11: end if
12: while |N(Bj)| � 2 do
13: i1, i2 2 N(Bj), Gj  {i1, i2}.
14: Pick the smallest chore e 2 R, Bj  Bj [ {e}, R R \ {e}.
15: if |N(Bj)| = 1 and N(Bj) * Gj then
16: Pick i 2 N(Bj) and replace one arbitrary agent in Gj with agent

i.
17: end if
18: end while
19: N  N \Gj.
20: end for

• Property 1: for each selected agent i 2 Gj, there are at most MMS
d
i

chores in Bj that are large for i. Besides, letting e⇤j be the chore lastly

added to Bj, if e⇤j is small for i, we have si(Bj \ {e⇤j}) 
si(M)

d .

• Property 2: for each remaining agent i0 (i.e., i0 /2
S

l2[j] Gl), either

si0(Bj) >
si0 (M)

d or no remaining chore is small for i0. Besides, all chores

in {ej, ej+d, . . .} that are large for i0 have been allocated.
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Proof. For the first property, observe that large chores are added into the

bag only in the bag initialization procedure, where one out of every d chores

is picked. Since there are at most d ·MMS
d
i large chores for every agent i, the

bag contains at most MMS
d
i chores that are large for i. There are two cases

where e⇤j is small for an agent i 2 Gj. First, i is the only candidate agent

after e⇤j is added, for which case, we have si(Bj)  si(M)
d . Second, i is one of

the two selected candidate agents before e⇤j is added, for which case, we have

si(Bj \ {e⇤j}) 
si(M)

d . In both cases, si(Bj \ {e⇤j}) 
si(M)

d holds.

The second property is quite direct by the algorithm, since there remains

no candidate agent outside Gj at the end of round j, and all remaining large

chores in {ej, ej+d, . . .} are allocated in the bag initialization procedure of

round j.

Property 1 ensures that the chores in every bundle Bj 2 B can be allo-

cated to the agents in Gj, such that each agent i 2 Gj can use at most MMS
d
i

bins to pack all chores allocated to her, which will be shown in the following

part. Property 2 ensures the following claim.

Claim 1 all chores can be allocated in Algorithm 6.

Proof. Observe that when the last round begins, there are at least n �

(d � 1) · 2 � 2 remaining agents. If all remaining chores are large for some

remaining agent, all of them are added into the bag during the bag initial-

ization procedure of the last round and no chore remains unallocated. Now

consider the case where some remaining chore is small for any remaining

agent. By Property 2, for any j 2 [d � 1] and any remaining agent i0, we

have si0(Bj) >
si0 (M)

d . This gives that the total size of all remaining chores to
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any remaining agent i0 is smaller than si0 (M)
d . Besides, after the bag initializa-

tion procedure of the last round, no large chore remains and every remaining

chore is small for any remaining agent. Combining these two facts, we know

that there are always at least 2 candidate agents and thus all small chores

can also be allocated.

Part 2: Allocating the chores to the agents

Next, we allocate the chores in each bundle Bj 2 B to the selected agents in

Gj. Let i be any agent in Gj and B0
j = Bj \ {e⇤j} where e⇤j is the chore lastly

added to Bj. We first imaginatively assign the chores in B0
j to i’s bins. As

illustrated by Figure 3.3, we first put i’s large chores in B0
j into individual

empty bins. We then greedily put the remaining small chores in B0
j into the

bins in decreasing order of their sizes, as long as the total size of the assigned

chores does not exceed the bin’s capacity. The first time when the total size

exceeds the capacity, we move to the next bin and so on (if all bins with

large chores are filled, we move to an empty bin). We call the chore lastly

added to each bin that makes the total size exceed the capacity an extra

chore. Denote by Ji(B0
j) the set of extra chores and by Wi(B0

j) = B0
j \Ji(B0

j)

the other chores in B0
j.

If all chores in Bj are large for some agent i 2 Gj, we allocate all of them

to i. Otherwise, by the algorithm, we know that there are two agents in Gj

and the last chore e⇤j is small for both of them. Letting i1 be the agent who

has more large chores in Bj and i2 be the other agent, we allocate i1 the

chores in Wi1(B
0
j) and allocate i2 the chores in Ji1(B

0
j) [ {e⇤j}.

Clearly, the algorithms in the first part and the second part run in poly-
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Figure 3.3: Imaginary assignment of B0
j to agent i

nomial time. Thus to prove Theorem 4, it remains to show that any agent

i 2 N can pack all chores allocated to her with no more than MMS
d
i bins.

Proof of Theorem 4. Consider any round j 2 [d]. If all chores in Bj are

large for some agent i 2 Gj, by Property 1, we know that there are at most

MMS
d
i chores in Bj. Thus i can pack all chores in Bj using no more than

MMS
d
i bins.

For the other case, recall that the agent i1 2 Gj who has more large

chores in Bj receives the chores in Wi1(B
0
j), and the other agent i2 receives

the chores in Ji1(B
0
j) [ {e⇤j}. We first discuss agent i1. By Property 1, we

know that for each agent i 2 {i1, i2}, there are at most MMS
d
i large chores

in B0
j and si(B0

j) 
si(M)

d . These two facts imply that in the imaginative

assignment of B0
j to i1, no more than MMS

d
i1 bins are used. Since otherwise,

si1(B
0
j) > MMS

d
i1 · ci1 �

si1 (M)

d , a contradiction. Therefore, i1 can pack all

chores in Wi1(B
0
j) using no more than MMS

d
i1 bins.

Next we discuss agent i2. Observe that in the imaginary assignment of B0
j

to i1, for each extra chore in Ji1(B
0
j), there exists another chore in the same

bin with a larger size. Therefore, we have si2(Ji1(B
0
j)) 

si2 (B
0
j)

2  si2 (M)

2d .
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Combining with the fact that there are at most MMS
d
i2 large chores in B0

j for

i2, we know that i2 can use no more than MMS
d
i2 bins to pack all chores in

Ji1(B
0
j) and there exists one bin with at least half the capacity not occupied.

Since otherwise, si2(Ji1(B
0
j)) > MMS

d
i2 ·

ci2
2 �

si2 (M)

2d , a contradiction. Recall

that the last chore e⇤j is small for i2, it can be put into the bin that has enough

unoccupied capacity. Therefore, i2 can also pack all chores in Ji1(B
0
j) [ {e⇤j}

using at most MMS
d
i2 bins, which completes the proof.

For the multiplicative relaxation of MMS, by Theorem 4 and Observation

1, we can compute a dn/bn2 ce-MMS allocation in polynomial time. As the

job scheduling setting, we show that slightly modifying the algorithm gives

a 2-MMS allocation.

Corollary 3 A 2-MMS allocation can be computed in polynomial time for

any bin packing instance.

Proof. To compute a 2-MMS allocation, we replace the value of d with n in

Algorithm 6 and select only one agent in each round who receives the bag in

that round. The modified algorithm is formally presented in Algorithm 7.

Following the same reasonings in Parts 1 and 2, it is not hard to see that

all chores can be allocated in Algorithm 7 and for any i 2 N , there are at

most MMSi large chores in Ai. Besides, if the last chore e⇤i is small for i, we

have si(Ai\{e⇤i }) 
si(M)

n . Again, in the imaginary assignment of Ai\{e⇤i } to

i, no more than MMSi bins are used and at least one of them does not have

an extra chore. Therefore, agent i can use MMSi bins to pack all chores in

Wi(Ai\{e⇤i }) and another MMSi bins to pack all chores in Ji(Ai\{e⇤i })[{e⇤i },

which completes the proof.
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Algorithm 7 Computing 2-MMS allocations for bin packing setting
Input: An IDO bin packing instance (N,M, {vi}i2N , {si}i2N).
Output: An allocation A = (A1, . . . , An) such that vi(Ai)  2 · MMSi for
i 2 N .

1: Initialize R M .
2: for j = 1 to n do
3: Initialize B  ;, t j, k  an arbitrary agent in N .
4: while et 2 R and there exists an agent i1 for whom et is large do
5: B  B [ {et}, R R \ {et}, t t+ n.
6: k  i1.
7: end while
8: while there exists an agent i2 that satisfies si2(B)  si2 (M)

n and Li2 \
R 6= ; do

9: k  i2.
10: e the smallest chore in R, B  B [ {e}, R R \ {e}.
11: end while
12: Ak  B, N  N \ {k}.
13: end for

We next show that the above multiplicative ratio is actually tight in the

sense that there exists an instance where no allocation is better than 2-MMS.

We first recall the impossibility instance given by Feige et al. [79]. In this

instance there are three agents and nine chores as arranged in a three by

three matrix. The three agents’ disutilities are shown in the matrices V1, V2

and V3.

V1 =

0

BBBB@

6 15 22

26 10 7

12 19 12

1

CCCCA
V2 =

0

BBBB@

6 15 23

26 10 8

11 18 12

1

CCCCA

V3 =

0

BBBB@

6 16 22

27 10 7

11 18 12

1

CCCCA
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Feige et al. [79] proved that for this instance the MMS value of every agent is

43, however, in any allocation, at least one of the three agents gets disutility

no smaller than 44.

We can adapt this instance to the bin packing setting and obtain a lower

bound of 2. In particular, we also have three agents and nine chores. The

numbers in matrices V1, V2 and V3 are the sizes of the chores to agents 1, 2

and 3, respectively. Let the capacities of the bins of each agent be ci = 43

for all i 2 {1, 2, 3}. Accordingly, we have MMSi = 1. Since in any allocation,

there is at least one agent who gets chores with total size no smaller than

44, for this agent, she has to use 2 bins to pack the assigned chores, which

means that no allocation can be better than 2-MMS.

At last, we show that Algorithm 7 actually computes an allocation where

every agent i can use at most 3
2MMSi + 1 bins to pack all chores allocated

to her. Recall that in the proof of Corollary 3, it has been shown that each

agent i 2 N can use MMSi bins to pack all chores in Wi(Ai \ {e⇤i }) and

another MMSi bins to pack all chores in Ji(Ai \ {e⇤i })[ {e⇤i }. Actually, since

all chores in Ji(Ai \ {e⇤i })[ {e⇤i } are small for i and at least two small chores

can be put into the same bin, i only needs dMMSi
2 e bins to pack all chores in

Ji(Ai \{e⇤i })[{e⇤i }. Therefore, each agent i can use no more than 3
2MMSi+1

bins to pack all chores allocated to her.

3.4 PROP1 and PROPX

We now discuss other relaxations for proportionality, “proportional up to one

item” and “proportional up to any item”, which are also widely studied for
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additive disutilities.

Definition 2 (↵-PROP1 and ↵-PROPX) An allocation X = (X1, . . . ,

Xn) is ↵-approximate proportional up to one item (↵-PROP1) if vi(Xi\{g})

 ↵ · vi(M)
n for all agents i 2 N and some chore g 2 Xi. It is ↵-approximate

proportional up to any item (↵-PROPX) if vi(Xi\{g})  ↵ · vi(M)
n for all

agents i 2 N and any chore g 2 Xi. The allocation is PROP1 or PROPX if

↵ = 1.

It is easy to see that a PROPX allocation is also PROP1. Although exact

PROPX or PROP1 allocation is guaranteed to exist for chores with additive

disutilities, when the disutilities are subadditive, no algorithm can be better

than n-PROP1 or n-PROPX. Consider an instance with n agents and n+ 1

chores. The disutility function is vi(S) = 1 for all agents i 2 N and any

non-empty subset S ✓ M . Clearly, the disutility function is subadditive

since vi(S) + vi(T ) � vi(S [ T ) for any S, T ✓ M . By the pigeonhole

principle, at least one agent i receives two or more chores in any allocation

of M . After removing any chore g 2 Xi, Xi is still not empty. That is,

vi(Xi\{g}) = 1 = n · vi(M)
n for any g 2 Xi. This example can be easily

extended to the bin packing setting and the job scheduling setting, thus we

have the following theorem.

Theorem 5 For the bin packing setting and the job scheduling setting, no

algorithm performs better than n-PROP1 or n-PROPX.

Proof. For the bin packing setting, consider an instance with n agents and

n+1 chores. The capacity of each agent’s bins is 1, i.e, ci = 1 for any i 2 N .
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Each chore is very tiny so that every agent can pack all chores in just one bin,

e.g., si,j =
1

n+1 for any i 2 N and j 2M . Therefore, we have vi(M) = 1 and

PROPi =
1
n for each agent i 2 N . By the pigeonhole principle, at least one

agent i receives two or more chores in any allocation of M . After removing

any chore g 2 Xi, agent i stills needs one bin to pack the remaining chores.

Hence, we have vi(Xi\{g}) = 1 = n · PROPi for any g 2 Xi.

For the job scheduling setting, consider an instance with 2n agents and

2n+1 chores where each agent possesses 2n machines with the same speed of

1, and the size of each chore is 1 for every agent. It can be easily seen that for

every agent i, the maximum completion time of her machines is minimized

when assigning two chores to one machine and one chore to each of the

remaining 2n � 1 machines. Therefore, we have vi(M) = 2 and PROPi =

2
2n = 1

n for any i 2 N . Similarly, by the pigeonhole principle, at least one

agent i receives two or more chores in any allocation of M . This implies that

vi(Xi\{g}) = 1 = n · PROPi, thus completing the proof.
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CHAPTER 4

ON HILL’S WORST-CASE

GUARANTEE FOR

INDIVISIBLE CHORES

In this chapter, we present our work about Hill’s share and guarantee for in-

divisible chores. We first characterise Hill’s share, i.e., the exact upper bound

of the MinMaxShare values, ��
n (↵;m) and ��

n (↵). Thorough case-by-case

proofs are provided to show the tightness and closedness of our result. We

next show that the monotonic cover of Hill’s share is the best guarantee that

can be achieved in Hill’s model for all allocation instances. A polynomial-time

algorithm is designed to give each agent a disutility at most the monotonic

cover of Hill’s share. We also conduct numerical experiments to show Hill’s

share is very close to the MinMaxShare for the majority of instances.
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4.1 Characterising Hill’s Share

For any integers n � 2 and k � 0, define the following real intervals:

D(n, k) =

✓
1

kn+ n+ 1
,

k + 2

n(k + 1)2 + k + 2

�

I(n, k) =

✓
k + 2

n(k + 1)2 + k + 2
,

1

kn+ 1

�
.

It is not hard to check that all the intervals are well-defined, non-overlapping,

and
S

k�0(D(n, k) [ I(n, k)) = (0, 1].

Our first main theorem gives the tight characterisation of Hill’s share.

Theorem 6 For any 0 < ↵ < 1, n � 2, and m � d 1↵e,

��
n (↵;m) =

8
>>>><

>>>>:

k+2
k+1 ·

1�↵
n , if ↵ 2 D(n, k) and m � kn+ n+ 1,

(k + 1)↵, if ↵ 2 D(n, k) and m  kn+ n,

(k + 1)↵, if ↵ 2 I(n, k)

(4.1)

for any integers n � 2 and k � 0 except n = 2 and simultaneously k = 1. If

n = 2 and k = 1, ��
2 (

1
3 ; 3) =

2
3 , �

�
2 (↵; 4) = 2↵ for ↵ 2 [14 ,

1
3 ], and ��

2 (↵; 5)

is as follows:

��
2 (↵; 5) =

8
><

>:

3�3↵
4 , if ↵ 2 (15 ,

3
11 ],

2↵, if ↵ 2 ( 3
11 ,

1
3 ],

(4.2)

and for m � 6,
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��
2 (↵;m) =

8
>>>><

>>>>:

3�3↵
4 , if ↵ 2 (15 ,

7
27 ]

↵ + 2�2↵
5 , if ↵ 2 ( 7

27 ,
2
7 ]

2↵, if ↵ 2 (27 ,
1
3 ].

(4.3)

Theorem 6 directly implies the result when the number of chores is not

restricted, as shown in the following corollary.

Corollary 4 For any 0 < ↵ < 1, n � 2, ��
n (↵) = max

m�d 1
↵ e
��

n (↵;m).

Actually, Corollary 4 is a special case of Theorem 6 when m is su�ciently

large (e.g., m � d 2↵e � 1 by Lemma 2). Recall we illustrated ��
2 (↵) and

��
3 (↵) in Fig. 1.1. We observe two interesting and somewhat unintuitive

facts about Theorem 6. First, ��
n (·) is not monotone in ↵, just like Gourvès

et al. [93] observed for the problem with goods. To characterise ��
n (↵;m), we

want to understand the worst-case disutility in V(↵;m), for which the chores

can be hardly partitioned into bundles with similar disutilities. Intuitively,

when the single-chore disutility gets larger, it becomes harder to find such

a balanced partition. However, this turns out to be imprecise. Second, the

case of n = 2 makes a di↵erence from n � 3. When n = 2 and k = 1, there

are three steps in ��
n (·): the worst-case MinMaxShare has two increasing

intervals with di↵erent slops following a decreasing interval. For all the other

values of n and k, there are two intervals with one decreasing and the other

increasing.

Remark 1 When n = 2 the problem of chores and that of goods are the

same, since maximising the minimum bundle by partitioning the chores into
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two bundles is equivalent to minimising the maximum bundle. For n = 2,

Gourvès et al. [93] provided a lower bound of the MaxMinShare for goods

which is not tight. It can be verified that 1 � ��
2 (↵) is strictly larger than

their bound when ↵ 2 (15 ,
3
10) (Definition 2 in [93]). Thus, as a byproduct,

Corollary 4 improves the result in [93] for goods with n = 2 by giving the

tight worst-case bound, i.e.,

min
v2V(↵)

max
A2X2(M)

min
1`2

v(A`) = 1���
2 (↵).

In Remark 2, we show how to extend this result to two non-identical disutil-

ities.

In the following of this section, we prove Theorem 6. As we have dis-

cussed, after m reaches a certain value (e.g., m � d 2↵e � 1 by Lemma 2),

Hill’s share does not increase anymore, and thus Corollary 4 is a special case

of Theorem 6 when m is su�ciently large. Therefore, we first prove Corol-

lary 4, and then carefully discuss Hill’s share when m is not su�ciently large,

which will complete the proof of Theorem 6 accordingly.

4.1.1 Proof of Corollary 4

We prove Corollary 4 by contradiction, and assume that there exists a disutil-

ity v 2 V(↵) whose MinMaxShare is larger than��
n (↵). LetA = (A1, . . . , An)

be a lexicographical MinMax allocation of v; that is, the largest disutility of

bundles in A is the minimised over all allocations, and among these alloca-

tions the second largest disutility is minimised, and so on. Without loss of

generality, assume v(A1) � · · · � v(An) and v(A1) = MMSn(v) > ��
n (↵).
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Let E↵ denote the subset of chores whose disutilities are exactly ↵, i.e.,

E↵ = {e 2 M | v(e) = ↵}. It can be verified that ��
n (↵) � (k + 1)↵ (this is

also illustrated in Fig. 1.1), which gives v(A1) > (k + 1)↵. Moreover, since

v(e)  ↵ for any e 2M , |A1| � k + 2. We have the following property.

Claim 2 Letting j be an agent in N \ {1}, for any S1 ✓ A1 and Sj ✓ Aj

such that v(S1) > v(Sj), v(S1)� v(Sj) � v(A1)� v(Aj).

Proof. For the sake of contradiction, we assume that there exist S 0
1 ✓ A1

and S 0
j0 ✓ Aj0 such that v(S 0

1) > v(S 0
j0) and v(S 0

1)� v(S 0
j0) < v(A1)� v(Aj0).

Then we construct another allocation B = (B1, . . . , Bn) by exchanging S 0
1

and S 0
j0 , i.e., B1 = A1 \ S 0

1 [ S 0
j0 , Bj0 = Aj0 \ S 0

j0 [ S 0
1 and Bj = Aj for

any j 2 N \ {1, j0}. It follows that v(B1) < v(A1), v(Bj0) < v(A1) and

v(Bj) = v(Aj) for any j 2 N \{1, j0}, which contradicts the assumption that

A is a lexicographical MinMax allocation of v.

The contraposition of Claim 2 gives the following.

Claim 3 Letting j be an agent in N \ {1}, for any S1 ✓ A1 and Sj ✓ Aj

such that v(Aj \ Sj [ S1) < v(A1), v(Sj) � v(S1).

As a warm-up, we start from the case with large ↵, where k = 0, and

distinguish two subcases depending on the domain of ↵.

Case 1: n � 2 and k = 0

Subcase 1.1: ↵ 2 D(n, 0)

When ↵ 2 D(n, 0), 1
n+1 < ↵  2

n+2 and v(A1) > ��
n (↵) = 2�2↵

n . If

E↵ \A1 6= ;, there exists e⇤ 2 A1 such that v(e⇤) = ↵ < v(A1). Then Claim
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3 gives a lower bound of v(Aj) for any j 2 N \ {1}, i.e., v(Aj) � v(e⇤) = ↵.

Summing up these lower bounds leads to the following contradiction

1 =
X

j2N

v(Aj) >
2� 2↵

n
+ (n� 1) · ↵ =

(n+ 1)(n� 2)↵ + 2

n
> 1,

where the last inequality is because ↵ > 1
n+1 .

Therefore, E↵ \A1 = ;. Then by the definition of V(↵), there must exist

j0 2 N \ {1} such that E↵ \ Aj0 6= ;, and thus v(Aj0) � ↵. Recall that

|A1| � k + 2 = 2, this implies there exists S ✓ A1 such that v(A1) > v(S) �
1
2v(A1) > 1�↵

n . According to Claim 3, v(Aj) � v(S) > 1�↵
n holds for any

j 2 N \ {1, j0}. As a result,

1 =
X

j2N

v(Aj) >
2� 2↵

n
+ ↵ + (n� 2) · 1� ↵

n
= 1,

which is also a contradiction. Therefore, v(A1) > ��
n (↵) never holds when

↵ 2 D(n, 0).

For the other direction, the disutility function for this subcase (see Table

4.1) contains one chore with disutility ↵ and n chores with disutility 1�↵
n .

Since 1
n+1 < ↵  2

n+2 , it follows that 1�↵
n < ↵  2 · 1�↵

n . Clearly, the

MinMaxShare of this disutility function is 2 · 1�↵
n = ��

n (↵).

Chore Disutility Quantity

↵ 1

1�↵
n n

Table 4.1: Disutility function for Subcases 1.1 and 1.2.
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Subcase 1.2: ↵ 2 I(n, 0)

When ↵ 2 I(n, 0), by similar reasonings, we can show that v(A1) >

��
n (↵) does not hold, either. In this subcase, 2

n+2 < ↵  1 and ��
n (↵) = ↵.

If E↵ \ A1 6= ;, there exists e⇤ 2 A1 such that v(e⇤) = ↵ < v(A1) and Claim

3 gives a lower bound of v(Aj) for any j 2 N \ {1}, i.e., v(Aj) � v(e⇤) = ↵.

Summing up these lower bounds leads to the following contradiction

1 =
X

j2N

v(Aj) > n↵ >
2n

n+ 2
� 1,

where the last inequality is because n � 2.

Therefore, it must hold that E↵ \ A1 = ; and moreover, there exists

j0 2 N \ {1} with E↵ \ Aj0 6= ;. Thus, v(Aj0) � ↵. Since |A1| � k + 2 = 2,

there exists S ✓ A1 such that v(A1) > v(S) � 1
2v(A1) > ↵

2 . According to

Claim 3, v(Aj) � v(S) > ↵
2 holds for any j 2 N \ {1, j0}. As a result, we

have

1 =
X

j2N

v(Aj) > ↵ + ↵ + (n� 2) · ↵
2
=

n+ 2

2
↵ > 1,

which is also a contradiction.

For the other direction, the disutility function for this subcase also con-

tains one chore with disutility ↵ and n chores with disutility 1�↵
n (see Table

4.1). Since 2
n+2 < ↵  1, it follows that 2 · 1�↵

n < ↵  1. Clearly, the

MinMaxShare of this disutility function is ↵ = ��
n (↵). Up to here, the proof

regarding the case of k = 0 is completed.

Next, we consider the general case of k � 1 excluding n = 2 and simulta-

neously k = 1.
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Case 2: n � 3 and k � 1 or n � 2 and k � 2

For this case, we again start with the subcases when ↵ 2 D(n, k). Recall

that when ↵ 2 D(n, k), ↵ 2 ( 1
(k+1)n+1 ,

k+2
n(k+1)2+k+2 ] and v(A1) > ��

n (↵) =

k+2
k+1 ·

1�↵
n .

Subcase 2.1: ↵ 2 D(n, k) and E(↵) \ Aj = ; for any j 2 N \ {1}

In this subcase, all chores with disutility ↵ are in A1, and thus v(e) < ↵

for any e 2 Aj and j 2 N \ {1}. Due to the normalisation, there exists an

agent j0 who receives disutility at most 1�v(A1)
n�1 , which gives the following

lower bound of the di↵erence between the disutilities that agents 1 and j0

receive

v(A1)� v(Aj0) �
n

n� 1
v(A1)�

1

n� 1
>

1� (k + 2)↵

(n� 1)(k + 1)
.

It can be shown that the rightmost-hand side of the above inequality is no

less than ↵
2 , which is equivalent to ↵  2

(k+1)n+k+3 . Since ↵  k+2
n(k+1)2+k+2 , it

su�ces to show 2
(k+1)n+k+3 �

k+2
n(k+1)2+k+2 , which holds since

2

(k + 1)n+ k + 3
� k + 2

n(k + 1)2 + k + 2

=
(k + 1)(nk � k � 2)

((k + 1)n+ k + 3)(n(k + 1)2 + k + 2)
� 0,

where the last inequality is because n � 3 and k � 1, or n � 2 and k � 2.

Therefore, v(A1) � v(Aj0) > ↵
2 . Let e⇤ be a chore in A1 with disutility

↵. Since v(A1) > (k + 1)↵ > ↵, for any S ✓ Aj0 with disutility smaller

than ↵, Claim 2 actually gives a tighter bound of its disutility, i.e., v(S) 

v(e⇤) � (v(A1) � v(Aj0)) < ↵
2 . Thus, v(e) < ↵

2 for any e 2 Aj0 . Besides,
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according to Claim 3, v(Aj0) � v(e⇤) = ↵. These two facts together imply

that there exists S 0 ✓ Aj0 such that v(S 0) 2 [↵2 ,↵), which is a contradiction

to Claim 2.

Subcase 2.2: ↵ 2 D(n, k) and E(↵) \ Aj0 6= ; for some j0 2 N \ {1}

In this subcase, some chores with disutility ↵ are in Aj0 . Before diving

into the proof for this subcase, we present the following claim, which shows

the existence of a subset of A1 whose disutility is within a specific range.

Claim 4 There exists a subset S ✓ A1 such that k
k+2v(A1)  v(S) < v(A1)�

↵.

Proof of Claim 4. When k = 1, if there exists e 2 A1 such that v(e) �
1
3v(A1), recall that v(A1) > (k + 1)↵ = 2↵, Claim 4 holds since v(e)  ↵ <

v(A1)�↵. If v(e) < 1
3v(A1) for any e 2 A1, denote by (A1

1, A
2
1) one 2-partition

of A1 that minimises the disutility di↵erence between the two bundles among

all 2-partitions. Without loss of generality, we assume v(A1
1)  v(A2

1), then

v(A1
1)  1

2v(A1) < v(A1) � ↵. Besides, v(A1
1) � 1

3v(A1) holds. Otherwise,

v(A2
1) � v(A1

1) = v(A1) � 2v(A1
1) > 1

3v(A1), implying that moving a chore

from A2
1 to A1

1 returns another 2-partition of A1 that has a smaller disutility

di↵erence, which contradicts the definition of (A1
1, A

2
1).

When k � 2, we first show that v(e) > 1
k+2↵ for any e 2 A1. If not,

v(A1) > v(A1 \ {e}) � v(A1) � 1
k+2↵. Then Claim 3 gives v(Aj) � v(A1) �

1
k+2↵ for any j 2 N \{1}. Summing up these lower bounds gives the following
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inequality

1 =
X

j2N

v(Aj) � v(A1) + (n� 1)v(A1)�
n� 1

k + 2
↵

>
k + 2

k + 1
� (k + 2)2 + (k + 1)(n� 1)

(k + 1)(k + 2)
↵.

It can be shown that the rightmost-hand side is at least 1, which constitutes

a contradiction. This is equivalent to show that ↵  k+2
(k+2)2+(k+1)(n�1) . Since

↵  k+2
n(k+1)2+k+2 , it su�ces to show that k+2

(k+1)2+(k+1)(n�1) �
k+2

n(k+1)2+k+2 , which

holds since

n(k + 1)2 + k + 2� ((k + 2)2 + (k + 1)(n� 1))

= (k + 1)(nk � k � 1) � 0,

where the last inequality is because n � 2 and k � 1.

We then let S⇤ = argminS✓A1,v(S)>↵ v(S) which is guaranteed to exist

since v(A1) > (k + 1)↵ > ↵, and show by contradiction that v(S⇤) 
2

k+2v(A1). This gives k
k+2v(A1)  v(A1 \ S⇤) < v(A1) � ↵. We assume

for the sake of contradiction that v(S⇤) > 2
k+2v(A1). Then the definition of

S⇤ gives the following lower bound of v(e) for any e 2 S⇤

v(e) > v(S⇤)� ↵ >
2

k + 2
v(A1)� ↵ >

k

k + 2
↵ � 1

2
↵,

where the second last inequality is because v(A1) > (k + 1)↵ and the last

inequality is because k � 2. This lower bound implies that S⇤ contains

exactly 2 chores. Otherwise (i.e., |S⇤| � 3), for any subset S 0 ✓ S⇤ that

contains exactly 2 chores, ↵ < v(S 0) < v(S⇤) holds, which contradicts the
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definition of S⇤.

Therefore, we can denote S⇤ = {el, es} and assume without loss of gen-

erality that v(el) � v(es). Accordingly, v(el) � 1
2v(S

⇤) > 1
k+2v(A1) >

k+1
k+2↵.

Recall that v(e) > 1
k+2↵ holds for any e 2 A1. These two facts together

imply that the total disutility of el and any other chore in A1 is larger than

↵. From the definition of S⇤, we know that es 2 argmine2A1 v(e), which gives

v(e) � v(es) > k
k+2↵ for any e 2 A1. Letting S 0 be the subset of A1 that

contains the two chores with the smallest disutilities, the following inequality

leads to a contradiction to the definition of S⇤

↵  2k

k + 2
↵ < v(S 0)  2

k + 2
v(A1) < v(S⇤),

where the first inequality is because k � 2 and the second last inequality is

because |A1| � k + 2.

We are now ready to reveal the contradiction in the subcase. Denote

by e⇤ one chore in Aj0 that has disutility ↵ and by S a subset of A1 that

satisfies Claim 4, Claim 3 gives v(Aj0 \ {e⇤}) � v(S) � k
k+2v(A1); that is,

v(Aj0) � k
k+2v(A1) + ↵. For any j 2 N \ {1, j0}, recall that |A1| � k + 2

which implies that there exists S 0 ✓ A1 such that v(A1) > v(S 0) � k+1
k+2v(A1),

Claim 3 gives v(Aj) � v(S 0) � k+1
k+2v(A1). Summing up these lower bounds

leads to the following contradiction

1 =
X

j2N

v(Aj) � v(A1) +
k

k + 2
v(A1) + ↵ + (n� 2) · k + 1

k + 2
v(A1)

=
n(k + 1)

k + 2
v(A1) + ↵ > 1� ↵ + ↵ = 1.
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For the other direction, the disutility function for the subcases when

↵ 2 D(n, k) (see Table 4.2) contains one chore with disutility ↵ and n(k+1)

chores with disutility 1�↵
n(k+1) . Since ↵ > 1

kn+n+1 , it follows that ↵ > 1�↵
n(k+1) .

Besides, it can be verified that ↵ < 2�2↵
n(k+1) , which is equivalent to ↵ < 2

nk+n+2 .

Since ↵  k+2
n(k+1)2+k+2 , it su�ces to show k+2

n(k+1)2+k+2 < 2
n(k+1)+2 , which holds

since
2

n(k + 1) + 2
� k + 2

n(k + 1)2 + k + 2

=
nk(k + 1)

(n(k + 1) + 2)(n(k + 1)2 + k + 2)
> 0.

By the pigeonhole principle, there exists a bundle that contains at least k+2

chores in any allocation. This implies that the MinMaxShare of this disutility

function is (k+2) · 1�↵
n(k+1) , which happens in the allocation where one bundle

contains k + 2 chores with disutility 1�↵
n(k+1) , one bundle contains k chores

with disutility 1�↵
n(k+1) and one chore with disutility ↵, and each of the other

bundles contains k + 1 chores with disutility 1�↵
n(k+1) .

Chore Disutility Quantity

↵ 1

1�↵
n(k+1) n(k + 1)

Table 4.2: Disutility function for subcases ↵ 2 D(n, k) with n � 3 and k � 1,

or n � 2 and k � 2.

Next we consider the subcases when ↵ 2 I(n, k). Recall that when ↵ 2

I(n, k), ↵ 2 ( k+2
n(k+1)2+k+2 ,

1
kn+1 ] and v(A1) > ��

n (↵) = (k + 1)↵.

Subcase 2.3: ↵ 2 I(n, k) and E(↵) \ Aj = ; for any j 2 N \ {1}

For this subcase, we first derive a lower bound of v(Aj) for any j 2 N\{1},
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i.e., v(Aj) � ( (k+1)2

k+2 + 1
(n�1)(k+2))↵. Letting D = (k+1)2

k+2 + 1
(n�1)(k+2) , we assume

for the sake of contradiction that v(Aj0) < D↵ for some j0 2 N \ {1}. It can

be verified that k < D < k + 1, where the first inequality is equivalent to

n > 0, and the second inequality is equivalent to (n� 1)(k + 1) > 1. Denote

by e⇤ one chore in A1 with disutility ↵ and by e0 any chore in Aj, we have

v(Aj0 \ (Aj0 \ {e0}) [ (A1 \ {e⇤})) = v(A1 \ {e⇤} [ {e0}) < v(A1).

Then from Claim 3, v(Aj0 \ {e0}) � v(A1 \ {e⇤}), which gives

v(e0)  v(Aj0)� v(A1) + v(e⇤) < D↵� (k + 1)↵ + ↵ = (D � k)↵.

However, we next show that the disutility of some chore in Aj0 must be larger

than (D � k)↵, which leads to a contradiction. To achieve this, we denote

S⇤ 2 argminS✓Aj0 ,v(S)>(D�1)↵ v(S), whose existence is guaranteed since Claim

3 gives v(Aj0) � v(A1 \ {e⇤}) > k↵ > (D � 1)↵. Notice that

v(Aj0 \ S⇤ [ (A1 \ {e⇤})) < D↵� (D � 1)↵ + v(A1)� ↵ = v(A1),

from Claim 3, v(S⇤) � v(A1 \ {e⇤}) > k↵. Then the definition of S⇤ implies

that the disutility of any chore in S⇤ is at least

v(S⇤)� (D � 1)↵ > (k �D + 1)↵ � (D � k)↵,

where the last inequality is equivalent to D � k � 1
2 = k+2�kn

2(n�1)(k+2)  0, which

holds when n � 3 and k � 1, or n � 2 and k � 2.
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Therefore, v(Aj) � ( (k+1)2

k+2 + 1
(n�1)(k+2))↵ holds for any j 2 N \ {1}.

Summing up these lower bounds leads to the following contradiction

1 =
X

j2N

v(Aj) > (k + 1)↵ + (n� 1) · ((k + 1)2

k + 2
+

1

(n� 1)(k + 2)
)↵

=
n(k + 1)2 + k + 2

k + 2
↵ > 1.

Subcase 2.4: ↵ 2 I(n, k) and E(↵) \ Aj0 6= ; for some j0 2 N \ {1}

The proof is similar to that of Subcase 2.2. First, it can be verified that

Claim 4 still holds.

Proof of Claim 4 for ↵ 2 I(n, k). Notice that Claim 4 holds as long

as k = 1, thus, we can focus on k � 2. We first show that v(e) > 1
k+2↵

for any e 2 A1. If not, v(A1 \ {e}) � v(A1) � 1
k+2↵. Then Claim 3 gives

v(Aj) � v(A1)� 1
k+2↵ for any j 2 N \ {1}. Summing up these lower bounds

gives the following formula

1 =
X

j2N

v(Aj) � v(A1)+(n�1)v(A1)�
n� 1

k + 2
↵ >

n(k + 1)(k + 2)� n+ 1

k + 2
↵.

It can be shown that the rightmost-hand side of the above inequality is

at least 1, which is a contradiction. This is equivalent to show that ↵ �
k+2

n(k+1)(k+2)�n+1 . Since ↵ �
k+2

n(k+1)2+k+2 , it su�ces to show that k+2
n(k+1)(k+2)�n+1 

k+2
n(k+1)2+k+2 , which holds since

n(k + 1)(k + 2)� n+ 1� (n(k + 1)2 + k + 2) = nk � k � 1 � 0

where the last inequality is because n � 2 and k � 1.
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We then let S⇤ = argminS✓A1,v(S)>↵ v(S), which is guaranteed to exist

since v(A1) > (k + 1)↵ > ↵. By the same proof as the counterpart in the

proof of Claim 4 for ↵ 2 D(n, k), we can show that v(S⇤)  2
k+2v(A1), which

gives k
k+2v(A1)  v(A1 \ S⇤) < v(A1)� ↵.

We are now ready to reveal the contradiction in this subcase. Denote

by e⇤ one chore in Aj0 that has disutility ↵ and by S a subset of A1 that

satisfies Claim 4, Claim 3 gives v(Aj0 \ {e⇤}) � v(S) � k
k+2v(A1); that is,

v(Aj0) � k
k+2v(A1) + ↵. For any j 2 N \ {1, j0}, recall that |A1| � k + 2

which implies that there exists S 0 ✓ A1 such that v(A1) > v(S 0) � k+1
k+2v(A1),

Claim 3 gives v(Aj) � v(S 0) � k+1
k+2v(A1). Summing up these lower bounds

leads to the following contradiction

1 =
X

j2N

v(Aj) � v(A1) +
k

k + 2
v(A1) + ↵ + (n� 2) · k + 1

k + 2
v(A1)

=
n(k + 1)

k + 2
v(A1) + ↵ >

n(k + 1)2 + k + 2

k + 2
↵ > 1.

For the other direction, the disutility function for the subcases when

↵ 2 I(n, k) (See Table 4.3) containing kn + 1 chores with disutility ↵ and

n� 1 chores with disutility 1�(nk+1)↵
n�1 . It can be verified that ↵ > 1�(kn+1)↵

n�1 ,

which is equivalent to ↵ > 1
(k+1)n . Since ↵ > k+2

n(k+1)2+k+2 , it su�ces to show

k+2
n(k+1)2+k+2 �

1
(k+1)n , which holds since

k + 2

n(k + 1)2 + k + 2
� 1

(k + 1)n
=

(k + 1)n� k � 2

(n(k + 1)2 + k + 2)(k + 1)n
� 0,

where the inequality is because n � 3 and k � 1, or n � 2 and k � 2.

By the pigeonhole principle, there exists a bundle that contains at least
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k + 1 chores with disutility ↵. This implies that the MinMaxShare of this

disutility function is (k + 1)↵, which happens in the allocation where one

bundle contains k+1 chores with disutility ↵, and each of the other bundles

contains k chores with disutility ↵ and one chore with disutility 1�(nk+1)↵
n�1 .

Chore Disutility Quantity

↵ kn+ 1

1�(nk+1)↵
n�1 n� 1

Table 4.3: Disutility function for subcases ↵ 2 I(n, k) with n � 3 and k � 1,

or n � 2 and k � 2.

Case 3: n = 2 and k = 1

We now prove Corollary 4 for the case of n = 2 and k = 1 (i.e., ↵ 2

D(2, 1)[ I(2, 1)), which makes a di↵erence from the other cases and requires

a more involved analysis.

Subcase 3.1: ↵ 2 (15 ,
7
27 ]

When ↵ 2 (15 ,
7
27 ], v(A1) > ��

2 (↵) =
3�3↵

4 . If E↵ \ A2 6= ;, A2 contains

some chores with disutility ↵. Notice that Claim 4 holds as long as k = 1,

thus there exists S ✓ A1 such that 1
3v(A1)  v(S) < v(A1)�↵. Denote by e⇤

one chore in A2 with disutility ↵, Claim 3 gives v(A2\{e⇤}) � v(S) � 1
3v(A1).

As a result, we have

1 = v(A1) + v(A2) � v(A1) +
1

3
v(A1) + ↵,

which gives v(A1)  3�3↵
4 , thus contradicting the assumption that v(A1) >

��
n (↵).
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Therefore, E↵\A2 = ;, which means that all chores with disutility ↵ are

in A1 and for any e 2 A2, v(e) < ↵. We first derive an upper bound and a

lower bound of the maximum disutility of the chores in A2. Denote by e⇤ one

chore in A1 with v(e⇤) = ↵ < v(A1), since v(A1)�v(A2) = 2v(A1)�1 > 1�3↵
2 ,

Claim 2 gives

max
e2A2

v(e)  v(e⇤)� (v(A1)� v(A2)) <
5↵� 1

2
.

Notice that 1�3↵
2 > ↵

3 since ↵  7
27 < 3

11 , v(A1) � v(A2) > ↵
3 . Then for

every S ✓ A2 with v(S) < ↵, Claim 2 actually gives a tighter bound of

v(S), i.e., v(S)  v(e⇤) � (v(A1) � v(A2)) < 2
3↵. This also implies that

for every S 0 ✓ A2 with v(S 0) � 2
3↵, v(S

0) � ↵ actually holds. Let S⇤ =

argminS✓A2,v(S)� 2
3↵

v(S) whose existence is guaranteed since Claim 3 gives

v(A2) � v(e⇤) = ↵, thus, v(S⇤) � ↵. Then from the definition of S⇤,

v(e) � v(S⇤)� 2
3↵ �

1
3↵ holds for any e 2 A2, which implies

max
e2A2

v(e) � ↵

2
.

Otherwise (i.e., maxe2A2 v(e) <
↵
2 ), the total disutility of any two chores in

A2 is at least 2
3↵ and smaller than ↵, which is a contradiction to Claim 2.

We then show that |A1| is exactly 3. Otherwise (i.e., |A1| � 4), there

exists S ✓ A1 such that v(A1) > v(S) � ↵ + 2
3(v(A1) � ↵). Then Claim 3

gives v(A2) � v(S) � ↵ + 2
3(v(A1) � ↵). Summing up the lower bounds of
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v(A1) and v(A2) leads to a contradiction as below

1 = v(A1) + v(A2) �
5

3
v(A1) +

1

3
↵ >

15� 11↵

12
> 1,

where the last inequality is because ↵  7
27 < 3

11 . Therefore, we can denote

A1 = {e11, e12, e13} and assume without loss of generality that v(e11) = ↵ �

v(e12) = x � v(e13) = y. We then derive the lower bounds of x and y, and

reveal the contradiction in this subcase. Since x � y, the following formula

holds

x � x+ y

2
=

v(A1)� ↵

2
>

3� 7↵

8
� 5↵� 1

2
> max

e2A2

v(e),

where the second last inequality is because ↵  7
27 . Then Claim 2 gives the

following lower bound of x

x � max
e2A2

v(e) + (v(A1)� v(A2)) >
↵

2
+

1� 3↵

2
=

1� 2↵

2
.

Claim 2 also gives y � v(A1)� v(A2). Notice that

2 · (v(A1)� v(A2)) >
2� 6↵

2
> ↵� 1� 3↵

2
> x� (v(A1)� v(A2)),

where the second inequality is because ↵  7
27 < 3

11 , we have the following

lower bound of y

y >
1

2
· (x� (v(A1)� v(A2))) �

1

2
·max
e2A2

v(e) � ↵

4
.
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Therefore, v(A1) = ↵ + x + y > ↵ + 1�2↵
2 + ↵

4 = 2+↵
4 , which gives v(A1) �

v(A2) = 2v(A1) � 1 > ↵
2 . However, according to Claim 2, v(A1) � v(A2) 

↵�maxe2A2 v(e)  ↵
2 , thus constituting a contradiction.

For the other direction, the disutility function for this subcase contains

one chore with disutility ↵ and four chores with disutility 1�↵
4 . Since 1

5 <

↵  7
27 , it follows that

1�↵
4 < ↵ < 2 · 1�↵

4 , where the last inequality is because

↵  7
27 < 1

3 . Clearly, the MinMaxShare of this disutility function is 3 · 1�↵
4 .

Subcase 3.2: ↵ 2 ( 7
27 ,

2
7 ]

When ↵ 2 ( 7
27 ,

2
7 ], v(A1) > ��

2 (↵) = 2+3↵
5 . If E↵ \ A2 6= ;, the proof

is similar to that for the counterpart in Subcase 3.1. That is, we also have

v(A1)  3�3↵
4 , which contradicts v(A1) > ��

n (↵) since 3�3↵
4 < 2+3↵

5 when

↵ > 7
27 .

Therefore, we can focus on E↵ \A2 = ;. We first derive an upper bound

and a lower bound of the maximum disutility of the chores in A2, which is

similar to the counterpart of Subcase 3.1. Denote by e⇤ one chore in A1 with

v(e⇤) = ↵ < v(A1), since v(A1)� v(A2) = 2v(A1)� 1 > 6↵�1
5 , Claim 2 gives

max
e2A2

v(e)  v(e⇤)� (v(A1)� v(A2)) <
1� ↵

5
.

Notice that 6↵�1
5 > ↵

3 since ↵ > 7
27 > 3

13 , v(A1) � v(A2) > ↵
3 . Then for

every S ✓ A2 with v(S) < ↵, Claim 2 actually gives a tighter bound of

v(S), i.e., v(S)  v(e⇤) � v(A1) � v(A2) < 2
3↵. This also implies that

for every S 0 ✓ A2 with v(S 0) � 2
3↵, v(S

0) � ↵ actually holds. Let S⇤ =

argminS✓A2,v(S)� 2
3↵

v(S) whose existence is guaranteed since Claim 3 gives

v(A2) � v(e⇤) = ↵, thus, v(S⇤) � ↵. Then from the definition of S⇤,
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v(e) � v(S⇤)� 2
3↵ �

1
3↵ holds for any e 2 A2, which implies

max
e2A2

v(e) � ↵

2
.

Otherwise (i.e., maxe2A2 v(e) <
↵
2 ), the total disutility of any two chores in

A2 is at least 2
3↵ and smaller than ↵, which is a contradiction to Claim 2.

Observe that A1 contains exactly one chore with disutility ↵. Otherwise

(i.e., A1 contains at least two chores with disutility ↵), Claim 3 gives v(A2) �

2↵ which leads to the following contradiction

1 = v(A1) + v(A2) >
2 + 3↵

5
+ 2↵ > 1,

where the last inequality is because ↵ > 7
27 > 3

13 . Recall that |A1| � 3, A1

contains at least two chores with disutility smaller than ↵. For each of such

chores, we call it a medium chore if its disutility is larger than maxe2A2 v(e).

Otherwise, we call it a small chore. Then Claim 2 gives the following lower

bound of the disutility of any medium chore e

v(e) � max
e2A2

v(e)� (v(A1)� v(A2))

= max
e2A2

v(e)� (2v(A1)� 1) >
↵

2
� 6↵� 1

5
=

17↵� 2

10
,

as well as the following lower bound of the disutility of any small chore e0

v(e0) � v(A1)� v(A2) = 2v(A1)� 1 >
6↵� 1

5
.

We then reveal the contradiction by considering possible combinations of
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chores in A1 and showing that no possible combination exists.

Combination 1 : besides the chore with disutility ↵, A1 also contains at

least three small chores. Thus, v(A1) > ↵ + 3 · 6↵�1
5 = 23↵�3

5 . Then a lower

bound of the di↵erence between v(A1) and v(A2) is

v(A1)� v(A2) = 2v(A1)� 1 >
46↵� 11

5
>

↵

2
,

where the last inequality is because ↵ > 7
27 > 22

87 . However, according to

Claim 2, v(A1) � v(A2)  ↵ � maxe2A2 v(e)  ↵
2 , which is a contradiction.

Note that this also implies that except the chore with disutility ↵, the total

disutility of the other chores can not exceed that of three small chores. Since

the total disutility of one medium chore and one small chore is larger than

17↵� 2

10
+

6↵� 1

5
=

29↵� 4

10
>

18↵� 3

5
= 3 · 6↵� 1

5
,

where the inequality is because ↵ < 2
7 , the only combination that remains to

consider is that A1 contains two small chores besides the chore with disutility

↵.

Combination 2 : besides the chore with disutility ↵, A1 contains two small

chores. From the definition of small chore, v(e0)  maxe2A2 v(e) <
1�↵
5 holds

for any small chore e0 2 A1. Thus, v(A1) < ↵ + 2 · 1�↵
5 = 2+3↵

5 , which is a

contradiction to the assumption that v(A1) > ��
2 (↵).

For the other direction, the disutility function for this subcase contains

one chore with disutility ↵ and five chores with disutility 1�↵
5 . Since 1

6 <

7
27 < ↵  2

7 , it follows that
1�↵
5 < ↵  2 · 1�↵

5 . Clearly, the MinMaxShare of
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this disutility function is ↵ + 2 · 1�↵
5 .

Subcase 3.3: ↵ 2 (27 ,
1
3 ]

When ↵ 2 (27 ,
1
3 ], v(A1) > ��

2 (↵) = 2↵. If E↵ \ A2 6= ;, the proof is

similar to those for the counterparts of Subcases 3.1 and 3.2. That is, we

also have v(A1)  3�3↵
4 , which contradicts v(A1) > ��

2 (↵) since
3�3↵

4 < 2↵

when ↵ > 2
7 > 3

11 .

Then we focus on E↵ \A2 = ;. Since |A1| � 3, there exists S ✓ A1 such

that ↵+ 1
2(v(A1)�↵)  v(S) < v(A1). From Claim 3, we have a lower bound

of v(A2), i.e., v(A2) � ↵ + 1
2(v(A1) � ↵). Summing up the lower bounds of

v(A1) and v(A2) leads to a contradiction,

1 = v(A1) + v(A2) �
3

2
v(A1) +

↵

2
>

7↵

2
> 1,

where the last inequality is because ↵ > 2
7 .

For the other direction, the disutility function for this subcase contains

three chores with disutility ↵ and one chore with disutility 1� 3↵ (if ↵ < 1
3).

Since ↵ > 2
7 > 1

4 , it follows that 1 � 3↵ < ↵. Clearly, the MinMaxShare is

2↵.

Up to here, we have computed Hill’s share for unrestricted m.

4.1.2 Proof of Theorem 6

We now carefully discuss Hill’s share when m is not su�ciently large, which

completes the proof of Theorem 6. For the sake of contradiction, we assume

that there exists a disutility v 2 V(↵;m) such that MMSn(v) > ��
n (↵;m),
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and let A = (A1, . . . , An) be an allocation that gives the MinMaxShare of

v. Without loss of generality, assume v(A1) � · · · � v(An). We now split

the proof into several cases based on the values of n and k, and it su�ces to

compute the share for the case where m is smaller than the number of chores

in the worst-case disutility function in the unrestricted setting.

Case 1: n 6= 2 or k 6= 1

We consider the subcases ↵ 2 D(n, k) and ↵ 2 I(n, k), separately.

Subcase 1.1: ↵ 2 D(n, k)

Recall that when ↵ 2 D(n, k) with n 6= 2 or k 6= 1, the disutility function

constructed in the setting when m is not restricted contains kn+n+1 chores

(see Tables 4.1 and 4.2). Therefore, ifm � kn+n+1, the tight bound remains

unchanged.

Thus we can focus on m  kn+ n. Since v(A1) > ��
n (↵;m) = (k + 1)↵,

by Claim 3, v(Aj) � v(A1) � ↵ > k↵ for any j 2 N \ {1}. Moreover, since

the disutility of any chore is at most ↵, A1 contains at least k + 2 chores

and Aj contains at least k + 1 ones, i.e., |A1| � k + 2 and |Aj| � k + 1.

Accordingly, the total number of chores is at least k + 2 + (n� 1)(k + 1) =

kn+n+1 > m, a contradiction. The disutility function that shows tightness

(see Table 4.4) contains d 1↵e � 1 chores with disutility ↵, one chore with

disutility 1� (d 1↵e�1)↵, and m�d 1↵e chores with disutility 0. This disutility

function is valid sincem � d 1↵e. Since ↵ 2 D(n, k), 1
↵ �

n(k+1)2+k+2
k+2 � kn+1,

where the last inequality is because n � 0. Therefore, the disutility function

contains at least kn+1 chores with disutility ↵ By the pigeonhole principle,

the MinMaxShare is at least (k + 1)↵.
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Chore Disutility Quantity
↵ d 1↵e � 1

1� (d 1↵e � 1)↵ 1
0 m� d 1↵e

Table 4.4: Disutility function for subcase ↵ 2 D(n, k) with n 6= 2 or k 6= 1,
and m  kn+ n.

Subcase 1.2: ↵ 2 I(n, k)

The bound for ↵ 2 I(n, k) remains unchanged regardless of the value of

m, since there always exists a disutility function whose MinMaxShare is at

least ��
n (↵;m) = (k + 1)↵. Specifically, the disutility function (see Table

4.4) also contains d 1↵e � 1 chores with disutility ↵, one chore with disutility

1 � (d 1↵e � 1)↵, and m � d 1↵e chores with disutility 0. Since ↵ 2 I(n, k),

1
↵ � kn+1, which means that there are at least kn+1 chores with disutility

↵. By the pigeonhole principle, the MinMaxShare is at least (k + 1)↵.

Case 2: n = 2 and k = 1

Recall that when n = 2 and k = 1, ↵ 2 (15 ,
1
3 ], thus m � d 1↵e � 3. We

prove for this case by considering di↵erent values of m and ↵. When m = 3,

↵ can only be 1
3 . The tight bound remains unchanged (i.e., ��

2 (
1
3 ; 3) =

��
2 (

1
3)), since the disutility function constructed in the unrestricted setting

(i.e., Subcase 3.3 in Subsection 4.1.1) contains 3 chores when ↵ = 1
3 .

When m = 4, ↵ 2 [14 ,
1
3). Since v(A1) > ��

2 (↵; 4) = 2↵, by Claim 3,

v(A2) > ↵. Therefore, A1 contains at least three chores and A2 contains

at least 2 chores, a contradiction to m = 4. For the tightness, the disutility

function contains d 1↵e�1 chores with disutility ↵, and one chore with disutil-

ity 1�(d 1↵e�1)↵. Sine
1
↵ > 3, by the pigeonhole principle, the MinMaxShare
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is at least 2↵.

When m = 5, ↵ 2 (15 ,
1
3 ]. If ↵ 2 (15 ,

7
27 ] or (

2
7 ,

1
3 ], the disutility functions

constructed in the unrestricted setting (i.e., Subcases 3.1 and 3.3 in Subsec-

tion 4.1.1) contain 5 and 4 chores respectively, thus the tight bounds do not

change. If ↵ 2 ( 7
27 ,

2
7 ], since v(A1) > ��

2 (↵; 5) � 2↵, by Claim 3, v(A2) > ↵,

thus A1 contains at least 3 chores and A2 contains at least 2 chores. More

accurately, since m = 5, |A1| is exactly 3 and |A2| is exactly 2. Moreover,

it can be verified that the largest disutility in A1 is at most the smallest

disutility in A2. Since otherwise, by exchanging one chore in A1 with a

strictly larger disutility and one chore in A2 with a strictly smaller disutility,

one can get another allocation A0 = (A0
1, A

0
2) such that v(A0

1) < v(A1) and

v(A0
2)  2↵ < v(A1). Letting A2 = {e1, e2}, it follows that v(e1) = ↵ and

v(e2) � 1
3 · v(A1). Therefore,

v(A1 [ A2) > v(A1) + ↵ +
1

3
v(A1) =

4

3
· v(A1) + ↵.

If ↵ 2 ( 7
27 ,

3
11 ], v(A1) > ��

2 (↵; 5) =
3�3↵

4 , thus

v(A1 [ A2) >
4

3
· 3� 3↵

4
+ ↵ = 1,

a contradiction. If ↵ 2 ( 3
11 ,

2
7 ], v(A1) > ��

2 (↵; 5) = 2↵, also a contradiction

since

v(A1 [ A2) >
11

3
↵ > 1.

The disutility function that shows tightness for ↵ 2 ( 7
27 ,

3
11 ] is the same

as that in Subcase 3.1 in Subsection 4.1.1, i.e., one chore with disutility
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↵ and four chores with disutility 1�↵
4 . Again, since 1

5 < 7
27 < ↵  3

11 < 1
3 ,

1�↵
4 < ↵ < 2· 1�↵

4 , which gives that the MinMaxShare is 3�3↵
4 . For ↵ 2 ( 3

11 ,
2
7 ],

the disutility function is the same as that in Subcase 3.3 in Subsection 4.1.1,

i.e., three chores with disutility ↵ and one chore with disutility 1�3↵. Since

↵ > 3
11 > 1

4 , 1� 3↵ < ↵, thus the MinMaxShare is 2↵.

When m � 6, ↵ 2 (15 ,
1
3 ]. Since the disutility functions constructed in the

subcases of the unrestricted setting contain no more than 6 chores, thus the

tight bounds remain unchanged.

4.2 Hill’s Guarantee for Indivisible Chores

We next prove the counterpart result of Hill’s guarantee for indivisible chores.

Consider the general case, where each one of the n agents now has an ar-

bitrary disutility vi in Add(M) (by convention m = |M |). Given m and n,

a guarantee specifies an upper bound �n(vi;m) on agent i’s disutility when

she shares the m chores with n � 1 other agents of unknown disutilities

in Add(M). By construction the mapping �n is the same for every agent

i. As part of its definition, a guarantee must be feasible: for any profile

(vi)ni=1 2 [Add(M)]n there exists an allocation (A1, . . . , An) of M such that

vi(Ai)  �n(vi;m) for all 1  i  n. (4.4)

We know from [21] and [79] that the MinMaxShare value MMSn(vi) is

not a guarantee because at some (rare!) profiles no allocation meets all

inequalities in (4.4). By applying Inequalities (4.4) to an arbitrary guarantee
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�n at the unanimous profile vi = v for all i, we see it is lower bounded by

the MinMaxShare:

�n(v;m) � MMSn(v) for all v 2 Add(M).

Our second main theorem shows that the monotone hull of ��
n serves

as the best guarantee in Hill’s model. Recall that U(↵;m) contains all the

disutility functions v(·) on chores M such that maxe2M v(e)  ↵, and U(↵) =
S

m U(↵;m). For simplicity in the presentation and analysis, we ignore the

restriction of the number of chores m, and the result can be extended to the

setting with parameter m using the same approach in the first part of our

work. The definition of U(↵) is the same as in [100, 117, 93]. Note that

U(↵0) ✓ U(↵) if ↵0  ↵, and the di↵erence between V(↵) and U(↵) is that

the disutilities in U(↵) do not require that there must be one chore with

disutility ↵. It is straightforward that the tight guarantee regarding U(·)

must be monotone non-decreasing since any worst-case disutility in U(�) is

also a disutility in U(↵) for �  ↵. We write Vn the monotone hull of ��
n

Vn(↵) = max
0�↵

��
n (�),

as illustrated in Fig. 4.1 when n = 2, 3. In more detail, we have the following

formula of Vn:

Vn(↵) =

8
><

>:

k+2
(k+1)n+1 , if ↵ 2 NI(n, k)

(k + 1)↵, if ↵ 2 I(n, k)
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Figure 4.1: The characterisation for Heterogeneous Agents

where for any integer k � 0,

NI(n, k) =

✓
1

(k + 1)n+ 1
,

k + 2

(k + 1)((k + 1)n+ 1)

◆

and

I(n, k) =


k + 2

(k + 1)((k + 1)n+ 1)
,

1

kn+ 1

�
.

By Theorem 6 and the construction of Vn(·), Vn(·) provides the tight

bound of the worst-case MinMaxShare regarding U(·). We further prove

that Vn(·) is a guarantee and moreover an allocation satisfying Vn(·) can be

found in polynomial time.

Theorem 7 �n(v) = Vn(maxe2M v(e)) defines a canonical guarantee. That

is, given any 0  ↵i  1 and vi 2 U(↵i) for i = 1, . . . , n, there exists an
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allocation (A1, . . . , An) with

vi(Ai)  Vn(↵i) for all i = 1, . . . , n

and such an allocation can be computed in polynomial time. Moreover, for

any 0  ↵  1, there exists {v0i}ni=1 with v0i 2 U(↵) for any i 2 [n] such that

Vn(↵) is the best possible guarantee, i.e., for any allocation (B1, . . . , Bn),

there exists i 2 N such that v0i(Bi) � Vn(↵).

As for ��
n (·) in Theorem 1 the two key features of this guarantee are: its

computation is elementary and it does not depend on the number of chores

to allocate. As far as we know, no other similarly simple guarantee for the

allocation of chores has been identified.

Remark 2 By Theorem 7, Vn(↵) is the best guarantee for disutilities in

U(↵), and thus we get the tight counterpart result of [100] for chores. How-

ever, it may not be the best in the model of Gourvès et al. [93], i.e., for disutil-

ities in V(↵). For example, when n = 2, we can show that ��
2 (maxe2M vi(e))

is a tighter guarantee in the later model. Given two disutility functions v1

and v2, without loss of generality, suppose �
�
2 (maxe v1(e))  ��

2 (maxe v2(e)).

Then we find the MinMax partition of v1 so that the disutilities of both bun-

dles are no greater than ��
2 (maxe v1(e)) to agent 1. We ask agent 2 to choose

a better bundle whose disutility must be no greater than 1
2 and thus no greater

than ��
2 (maxe v2(e)) to agent 2. It is still open whether ��

n (maxe2M vi(e))

is a guarantee or not when n � 3 in Gourvès et al. [93]’s model, which is an
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interesting future research direction.

4.2.1 Proof of Theorem 7

Next, we prove Theorem 7. We derive a variation of the moving-knife algo-

rithm to compute an allocation satisfying the required bound in Theorem 7.

When the items are goods and divisible, Dubins and Spanier [68] proved that

such an algorithm (also known as Dubins-Spanier moving knife algorithm)

gives the optimal worst-case bound, i.e., every agent gets value for at least

1
n . Markakis and Psomas [117] further proved that a variation of this algo-

rithm also guarantees the optimal worst-case bound for indivisible goods. In

a nutshell, towards proving Theorem 7, we first use the reduction proved in

[46, 104] to restrict our attention to the ordered instances when agents have

the same ranking over all chores, which significantly simplifies our analysis.

Then we show that using Vn(·) to set the parameters in the moving-knife

algorithm always returns an allocation ensuring the bound in Theorem 7.

The following lemma says that it su�ces to only focus on the ordered

instances.

Lemma 4 Suppose there is an algorithm that takes any ordered instance as

input, runs in T (n,m) time and returns an allocation where each agent i’s

disutility is at most Vn(↵i). Then, we have an algorithm that takes any in-

stance as input, runs in T (n,m)+O(nm logm) time and returns an allocation

with the same disutility guarantee.

Our approach is similar to that in [117], but the detailed proof di↵ers.

Our algorithm runs in recursions. In each recursion, the algorithm allocates
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a bundle of chores to one agent in a moving-knife fashion. Each time, each

of the remaining agents moves her “knife” one chore towards the chores with

smaller disutilities, until for every agent i the total disutility of the chores

before her “knife” is larger than Vn(↵i). After that, one of the last agents

(denoted by agent k) for whom the total disutility of the chores before her

knife is larger than Vn(↵k) receives the chores except the one right before

her knife. If there remains only one agent who has not received a bundle,

she will get all remaining chores. Otherwise, all remaining agents enter the

next recursion with their disutility functions being normalised such that for

each of them the total disutility of the remaining chores is 1. The formal

description of our algorithm is presented in Algorithm 8.

Then we are going to prove Theorem 7. Without loss of generality, let

1, . . . , n be the order in which agents receive bundles in Algorithm 8. Denote

Ci = vi(A1) for every N \ {1}, the following lemma gives a lower bound of

Ci.

Lemma 5 For any agent i 2 N \ {1} with ↵i 2 NI(n, k) [ I(n, k) for some

k � 0, we have

Ci �
1� Vn(↵i)

n� 1
.

Proof. Denote by q the index such that
Pq

e=1 vi(e)  Vn(↵i) and
Pq+1

e=1 vi(e) >

Vn(↵i), whose existence is guaranteed since vi(M) > Vn(↵i). Since Vn(↵i) �

(k+1)↵i (this can be easily verified from the definition of Vn(↵) and can also

be seen from Fig. 4.1) and vi(e)  ↵i for every e 2M , q � k+1. Otherwise,
Pq+1

e=1 vi(e)  (k + 1)↵i  Vn(↵i), which contradicts the definition of q. Ac-

cording to Algorithm 8, Ci �
Pq

e=1 vi(e). Since only ordered instances are
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Algorithm 8 Algorithm for heterogeneous disutilities
Require: An ordered instance with agents N , chores M and disutility func-

tions {vi}i2N .
Ensure: An allocation A = {A1, . . . , An} with vi(Ai)  Vn(↵i) for every

i 2 N .
1: Initialize Si = ; for every i 2 N .
2: while there exists an agent j with vj(Sj)  Vn(↵j) do
3: for every i 2 N do
4: Si  Si[ {the chore in M \ Si with the largest disutility for agent i

(tie breaks arbitrarily)}.
5: end for
6: end while
7: Pick the agent k 2 N with vk(Sk \{ee})  Vn(↵k) where ee is the last chore

that k added into Sk (tie breaks arbitrarily).
8: Ak  Sk \ {ee}.
9: if |N | = 2 then

10: Allocate M \ Ak to the remaining agent.
11: else
12: Construct a new disutility function v0i for every i 2 N \ {k} by setting

v0i(e) =
vi(e)

1�vi(Ak)
for every e 2M \ Ak.

13: Run Algorithm 8(N \ {k}, M \ Ak, {v0i}i2N\{k}).
14: end if
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considered, vi({q + 1})  vi({q})  Ci
k+1 , which gives

Ci +
Ci

k + 1
�

q+1X

e=1

vi(e) > Vn(↵i).

Therefore, Ci >
k+1
k+2 · Vn(↵i). We consider the following two cases regarding

the ranges of ↵i.

Case 1: ↵i 2 I(n, k). In this case, k+2
(k+1)((k+1)n+1)  ↵i  1

kn+1 and

Vn(↵i) = (k + 1)↵i. Then,

Ci >
k + 1

k + 2
· Vn(↵) �

1� Vn(↵)

n� 1
,

where the last inequality holds since ↵i � k+2
(k+1)((k+1)n+1) .

Case 2: ↵i 2 NI(n, k). In this case, Vn(↵i) =
k+2

(k+1)n+1 , which gives

Ci >
k + 1

k + 2
· Vn(↵) =

1� Vn(↵)

n� 1
,

which completes the proof.

Interestingly, the following lemma shows the connection between the

ranges of ↵i and
↵i

1� 1�Vn(↵i)
n�1

.

Lemma 6 For any ↵i 2 NI(n, k) [ I(n, k) for some k � 0, we have

↵i

1� 1�Vn(↵i)
n�1

2

8
><

>:

I(n� 1, k), if ↵i 2 I(n, k)

NI(n� 1, k), if ↵i 2 NI(n, k)

Proof. We consider the following two cases regarding the ranges of ↵i.
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Case 1: ↵i 2 I(n, k). In this case, k+2
(k+1)((k+1)n+1)  ↵i  1

kn+1 and

Vn(↵i) = (k + 1)↵i. Then, we have

↵i

1� 1�Vn(↵i)
n�1

=
(n� 1)↵i

n� 2 + (k + 1)↵i
 n� 1

(n� 2)(kn+ 1) + k + 1

=
1

k(n� 1) + 1
,

where the inequality is because ↵i  1
kn+1 . Besides,

↵i

1� 1�Vn(↵i)
n�1

=
(n� 1)↵i

n� 2 + (k + 1)↵i
� (k + 2)(n� 1)

(k + 1)((n� 2)(kn+ n+ 1) + k + 2)

=
k + 2

(k + 1)((k + 1)(n� 1) + 1)
,

where the inequality is because ↵i � k+2
(k+1)((k+1)n+1) .

Case 2: ↵i 2 NI(n, k). In this case, 1
(k+1)n+1 < ↵i <

k+2
(k+1)((k+1)n+1) and

Vn(↵i) =
k+2

(k+1)n+1 . Then, we have

↵i

1� 1�Vn(↵i)
n�1

=
((k + 1)n+ 1)↵i

(k + 1)(n� 1) + 1
<

k + 2

(k + 1)((k + 1)(n� 1) + 1)
,

where the inequality is because ↵i <
k+2

(k+1)((k+1)n+1) . Besides,

↵i

1� 1�Vn(↵i)
n�1

=
((k + 1)n+ 1)↵i

(k + 1)(n� 1) + 1
>

1

(k + 1)(n� 1) + 1
,

where the inequality is because ↵i >
1

(k+1)n+1 .

Proof of Theorem 7. We prove Theorem 7 by mathematical induction.

When n = 2, it is easy to see the correctness of Theorem 7 from Lemma 5
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since v1(A1)  V2(↵1) and v2(A2) = 1� v2(A1)  1� (1� V2(↵2)) = V2(↵2),

We assume as our induction hypothesis that Theorem 7 holds for n�1. Then

we aim to prove the correctness for n.

From Algorithm 8, v1(A1)  Vn(↵1) clearly holds for agent 1. For any

other agent i 2 N \ {1}, denote e↵i = maxe2M\A1 v
0
i(e). We know from

Algorithm 8 that e↵i  ↵i
1�Ci

and from the induction hypothesis that v0i(Ai) 

Vn�1(e↵i), which together give

vi(Ai) = (1� Ci)v
0
i(Ai)  (1� Ci)Vn�1(e↵i)  (1� Ci)Vn�1(

↵i

1� Ci
),

where the last inequality holds by recalling that Vn�1(e↵i) is an non-decreasing

function of e↵i. Therefore, it remains to show

(1� Ci)Vn�1(
↵i

1� Ci
)  Vn(↵i).

Note that (1 � Ci)Vn�1(
↵i

1�Ci
) is an non-increasing function of Ci. This

is because when ↵i
1�Ci

2 I(n � 1, k) for some k, (1 � Ci)Vn�1(
↵i

1�Ci
) = (1 �

Ci)(k + 1) ↵i
1�Ci

= (k + 1)↵i, which is a constant with respect to Ci; when

↵i
1�Ci

2 NI(n� 1, k) for some k, (1�Ci)Vn�1(
↵i

1�Ci
) = (1�Ci)

k+2
(k+1)(n�1)+1 , a

decreasing function of Ci. Then, the following formula completes the proof

of Theorem 7

(1� Ci)Vn�1(
↵i

1� Ci
)  (1� 1� Vn(↵i)

n� 1
)Vn�1(

↵i

1� 1�Vn(↵i)
n�1

),

where the first inequality is due to Ci � 1�Vn(↵i)
n�1 (according to Lemma 5),

and the second inequality can be verified by considering the following two
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cases regarding the ranges of ↵i,

Case 1: ↵i 2 I(n, k). In this case, Lemma 6 gives ↵i

1� 1�Vn(↵i)
n�1

2 I(n�1, k).

Thus, we have

(1� 1� Vn(↵i)

n� 1
)Vn�1(

↵i

1� 1�Vn(↵i)
n�1

) = (1� 1� Vn(↵i)

n� 1
) · (k + 1)

↵i

1� 1�Vn(↵i)
n�1

= (k + 1)↵i = Vn(↵i).

Case 2: ↵i 2 NI(n, k). In this case, ↵i

1� 1�Vn(↵i)
n�1

2 NI(n� 1, k). Thus, we

have

(1� 1� Vn(↵i)

n� 1
)Vn�1(

↵i

1� 1�Vn(↵i)
n�1

) = (1�
1� k+2

(k+1)n+1

n� 1
) · k + 2

(k + 1)(n� 1) + 1

=
k + 2

(k + 1)n+ 1
= Vn(↵i).

Therefore, we complete the proof of Theorem 7.

The instances provided in Section 4.1 show the tightness of Theorem 7.

4.3 Numerical Experiments

To demonstrate that ��
n (↵;m) can serve as a good alternative of Min-

MaxShare, we first evaluate the worst-case ratio of ��
n (↵;m) and ��

n (↵;m)

(recall that ��
n (↵;m) is the best-case MinMaxShare over all disutilities in

V(↵;m)). Denote by rn(↵;m) = ��
n (↵;m)

��
n (↵;m)

. It is clear that rn(↵;m) is no

smaller than the ratio between ��
n (↵;m) and the real MinMaxShare, and

we have illustrated rn(↵;1) in Fig. 1.2 for n = 2, 10, 100. As we can see,
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although the worst-case ratio can be close to 2, it only happens for su�-

ciently large n and a small range of values of ↵. For any n and most values

of ↵, the ratio is better than 4
3 and 11

9 , which are two fractions of the Min-

MaxShare that are known to be achievable. Actually, it is not hard to verify

that rn(↵;m)  2n
n+1 < 2 for all ↵, and rn(↵;m)  4

3 for all ↵ outside of

( 4
9n ,

3
2n+3). Note that 3

2n+3 �
4
9n < 7

6n .

Claim 5 For any n � 2, ↵ 2 (0, 1] and m � d 1↵e, rn(↵;m)  2n
n+1 .

Proof. Notice that by Lemma 1 and Lemma 2, rn(↵;m) is weakly increasing

in m. Therefore, it su�ces to prove the claim for the setting when m is

unrestricted, i.e., rn(↵)  2n
n+1 . We first consider the case where n = 2 and

k = 1. In this case, ↵ 2 (15 ,
1
3 ]. Since ↵ < 1

n = 1
2 , �

�
2 (↵) = 1

2 . When

↵ 2 (15 ,
7
27 ], �

�
2 (↵) = 3�3↵

4 , thus r2(↵) = 3�3↵
2 < 6

5 < 4
3 ; when ↵ 2 ( 7

27 ,
2
7 ],

��
2 (↵) =

2+3↵
5 , thus r2(↵) =

4+6↵
5  8

7 < 4
3 ; when ↵ 2 (27 ,

1
3 ], �

�
2 (↵) = 2↵,

thus r2(↵) = 4↵  4
3 .

We next consider the cases when n � 3 or k 6= 1. When ↵ > 1
n which

means ↵ 2 I(n, 0) or ↵ 2 ( 1n ,
2

n+2 ] 2 D(n, 0), ��
n (↵) = ↵. Thus, when ↵ 2

I(n, 0), ��
n (↵) = ↵ and rn(↵) = 1 < 4

3 
2n
n+1 since n � 2; when ↵ 2 ( 1n ,

2
n+2 ],

��
n (↵) =

2·(1�↵)
n and rn(↵) =

2
n · 1�↵

↵ < 2 · (1 � 1
n) <

2n
n+1 . When ↵  1

n , it

follows that ↵ 2 ( 1
n+1 ,

1
n ] 2 D(n, 0) or ↵ 2 I(n, k) with k � 1 or ↵ 2 D(n, k)

with k � 1. In these cases, ��
n (↵) =

1
n . When ↵ 2 ( 1

n+1 ,
1
n ], �

�
n (↵) =

2·(1�↵)
n

and rn(↵) = 2 · (1 � ↵) < 2n
n+1 ; when ↵ 2 I(n, k) = ( k+2

n(k+1)2+k+2 ,
1

kn+1 ] with

k � 1, ��
n (↵) = (k + 1)↵ and rn(↵) = n(k + 1) · ↵  kn+n

kn+1 
2n
n+1 ; when

↵ 2 D(n, k) = ( 1
kn+n+1 ,

k+2
n(k+1)2+k+2 ] with k � 1, ��

n (↵) = k+2
k+1 · 1�↵

n and

rn(↵) =
k+2
k+1 · (1� ↵) < kn+2n

kn+n+1 
3n

2n+1 < 2n
n+1 .
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Claim 6 rn(↵;m) > 4
3 only when ↵ 2 (29 ,

1
3) if n = 3, or ↵ 2 (16 ,

3
11) if n = 4,

or ↵ 2 ( 4
45 ,

1
9) [ ( 2

15 ,
3
13) if n = 5, or ↵ 2 ( 4

9n ,
3

2n+3) if n � 6.

Proof. Note that we actually derive the ranges of ↵ that satisfy rn(↵; +1) >

4
3 , which are necessary conditions for rn(↵;m) > 4

3 but may not be su�cient

ones. We use the formulas of rn(↵) derived in the proof of Claim 5, and only

consider the following cases when rn(↵) may be larger than 4
3 .

• When ↵ 2 ( 1n ,
2

n+2 ], rn(↵) = 2
n · 1�↵

↵ , which is larger than 4
3 when

↵ < 3
2n+3 . Since

3
2n+3 > 1

n only when n � 4, the range is ↵ 2 ( 1n ,
3

2n+3)

with n � 4.

• When ↵ 2 ( 1
n+1 ,

1
n ], rn(↵) = 2 · (1 � ↵), which is larger than 4

3 when

↵ < 1
3 . Since 1

n+1 < 1
3 only when n � 3 and 1

n 
1
3 when n � 1

3 , the

range is ↵ 2 ( 1
n+1 ,

1
n) with n � 3.

• When ↵ 2 I(n, k) = ( k+2
n(k+1)2+k+2 ,

1
kn+1 ] with k � 1, rn(↵) = n(k+1)·↵,

which is larger than 4
3 when ↵ > 4

3n(k+1) . Note that 4
3n(k+1) < 1

kn+1 is

equivalent to (3� k)n > 4, which can be satisfied only when k = 1 or

k = 2. When k = 1, (3� k)n > 4 gives n � 3, ↵ > 4
3n(k+1) is equivalent

to ↵ > 2
3n , and

k+2
n(k+2)2+k+2 = 3

4n+3 . Since 3
4n+3 �

2
3n when n � 6, the

ranges are ↵ 2 ( 2
3n ,

1
n+1) with 3  n  5, and ↵ 2 ( 3

4n+3 ,
1

n+1) with

n � 6. When k = 2, (3�k)n > 4 gives n � 5, ↵ > 4
3n(k+1) is equivalent

to ↵ > 4
9n , and

k+2
n(k+2)2+k+2 = 1

4n+1 . Since 4
9n > 1

4n+1 , the range is

↵ 2 ( 4
9n ,

1
2n+1) with n � 5.

• When ↵ 2 D(n, k) = ( 1
kn+n+1 ,

k+2
n(k+1)2+k+2 ] with k � 1, rn(↵) = k+2

k+1 ·

(1�↵), which is larger than 4
3 when ↵ < 2�k

3k+6 . Note that
2�k
3k+6 > 0 only
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when k = 1. Then, ↵  2�k
3k+6 is equivalent to ↵ < 1

9 ,
1

kn+n+1 = 1
2n+1

and k+2
n(k+2)2+k+2 = 3

4n+3 . Since 3
4n+3 

1
9 when n � 6 and 1

9 > 1
2n+1

when n � 5, the ranges are ( 1
2n+1 ,

3
4n+3) with n � 6, and ( 1

2n+1 ,
1
9) with

n = 5.

By summarising the above ranges, we complete the proof.

From the formula of rn(↵;m), as well as Fig. 1.2, we have the following

observations:

Observation 1 As n increases, the worst-case ratio of rn(↵;m), i.e., max↵

rn(↵;m), increases.

Observation 2 As n increases, large values of rn(↵;m) happen increasingly

more rarely if ↵ is randomly generated from [0, 1].

Next, we conduct numerical experiments with synthetic and real-world

data to illustrate the real distances between ��
n (↵;m) and the MinMaxShare

of specific disutility functions, which also validate the above two observations.

4.3.1 Experiments with Synthetic Data

We randomly generate a number of disutility functions, and for each of them,

we compute the ratio between the corresponding Hill’s share and the Min-

MaxShare. In particular, for each given n and m, we randomly generate 100

instances; for each instance, we randomly generate m � 1 numbers in [0, 1].

These m�1 numbers separate the interval [0, 1] into m contiguous segments,

and the lengths of these segments are used as the disutilities of the m chores.

Then we compute the ��
n (↵;m) value using the maximum of these values

101



and the MinMaxShare. For each instance, we record the ratio of these two

quantities.

The results are summarized in Fig. 4.2 and Fig. 4.3. We slice the ratios

into small intervals, each of which has a length of 0.1, and count the number

of instances falling into each interval for each setting. The figures validate

the previous two observations: when n = 2 and 3, the largest ratio can only

reach interval [1.3, 1.4) and [1.4, 1.5), but when n � 4, it reaches [1.5, 1.6);

however, looking at the number of instances, for larger n, fewer and fewer

instances fall into these large intervals, and instead, the number of instances

in [1.0, 1.1) significantly dominates the other intervals. Specifically, when

n = 6 and 7, [1.0, 1.1) contains over 80% of all random instances, and none

of them reaches a ratio beyond 1.6, while the worst-case ratio can be greater

than 1.7.

We also conduct more experiments by fixing n = 2 and increasing the

value ofm and report the change in the distribution of the ratios. We observe

that in Fig. 4.2, when n = 2, the majority of random instances fall into the

interval of [1.1, 1.2), in contrast to the other values of n that are concentrated

within [1.0, 1.1). This is in part because the ratio of m over n is larger than

n > 2, given each m. One may be curious that when m becomes larger and

larger to n, the majority may be close to the worst-case ratio. Due to this

curiosity, we further conduct the following experiment by setting m = 15± 1

and m = 20 ± 1, where n is fixed at 2. The results are shown in Fig. 4.4.

As we can see, the instances get more concentrated within [1.1, 1.2), and the

number of instances whose ratios are above 1.2 get less and less.
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(a) n = 2, m = 8, 9, 10

(b) n = 3, m = 8, 9, 10

(c) n = 4, m = 8, 9, 10

Figure 4.2: Ratios in random data when n = 2, 3, 4, m = 8, 9, 10
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(a) n = 5, m = 8, 9, 10

(b) n = 6, m = 8, 9, 10

(c) n = 7, m = 8, 9, 10

Figure 4.3: Ratios in random data when n = 5, 6, 7, m = 8, 9, 10
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(a) n = 2, m = 8, 9, 10

(b) n = 2, m = 14, 15, 16

(c) n = 2, m = 19, 20, 21

Figure 4.4: Fixing n = 2 and increasing the value of m.
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4.3.2 Experiments with Real-World Data

The real-world data set is collected from the Spliddit platform (spliddit.org)

– a well-known platform that provides implementations of fair allocation

algorithms for various practical problems [90]. The data set contains 8,409

instances created between October 2014 and May 2020, involving 22,530

agents and 42,469 chores. We randomly select 10,000 disutility functions from

the data, where the largest value of n is 14. After normalising all disutility

functions, for each of them, we record the ratio of the corresponding Hill’s

share and the MinMaxShare. The results are shown in Fig. 4.5. As we

can see, very few instances have ratios higher than 1.4, and over 65% of the

instances have ratios within [1.0, 1.1). Actually, there are only 173 (= 1.73%)

and 26 (= 0.26%) instances falling into [1.6, 1.7) and [1.7, 1.8) respectively,

and none is beyond 1.8. Note that in the 10,000 disutility functions, there

are only 14 instances with n � 9, which further amplifies the rare happening

of large ratios.

Figure 4.5: Ratios in Spliddit data.
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CHAPTER 5

CONCLUSION AND

FUTURE DIRECTIONS

In this thesis, we first study the fair allocation of indivisible chores when the

disutilities are subadditive and the fairness is measured by MMS. There are

many open problems and further directions. First, for general subadditive

and bin packing disutility functions, we provide the tight approximation

ratios, but for the job scheduling model, we only have a lower bound of

44/43 which is inherited from additive disutilities. One immediate direction

is to design better approximation algorithms or lower-bound instances for

the job scheduling disutilities. Second, we show that for the bin packing

model, there exists an allocation where everyone’s disutility is no more than

3
2 times her MMS plus 1. We suspect that the multiplicative factor can be

improved to 1. Third, for job scheduling disutilities, we restricted us on the

case of related machines, it is worth interest to consider the general model of

unrelated machines. As we mentioned, the notion of collective maximin share
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fairness in the job scheduling model can be viewed as a group-wise fairness

notion (for both goods and chores), which could be studied of independent

interest. Finally, we can investigate other combinatorial disutilities that can

better characterise real-world problems.

We next give the tight characterisation of Hill’s share for allocating indi-

visible chores, i.e., the exact upper bound of the MinMaxShare of disutility

functions with the same largest single-chore disutility. Hill’s share exhibits

several advantages including elementary computation, being close to the Min-

MaxShare, and displaying the e↵ect of an agent’s disutility on her share of

all chores. More importantly, the monotonic cover of Hill’s share serves as a

canonical guarantee; as far as we know, no other similarly simple guarantee

for the allocation of chores has been identified. There are some open prob-

lems. Hill’s guarantee is tight for the domain of disutility functions whose

largest single-chore disutility is no greater than a given parameter, but we

do not know whether it is tight when the domain only contains the disu-

tility functions whose largest single-chore disutility equals this parameter.

The same problem is also open for the mirror problem of allocating goods,

for which the tight characterisation of Hill’s share is also unknown (when

n � 3). Our work also uncovers some other related research problems, such

as the algorithmic problem of finding a Pareto optimal allocation satisfying

Hill’s share and the game-theoretic problem of designing truthful mechanisms

that incentivize the agents to report their disutility functions honestly while

achieving (approximations of) Hill’s share.

We can also study our problems under the online setting where the chores

or the agents or both are coming in an online fashion, and allocation decisions
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must be made immediately when they come. We would like to know the

extent to which fairness can be guaranteed when the decisions cannot be

revoked, and the number of swaps that are needed to guarantee better fairness

when swaps between agents are allowed.
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