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Abstract

Bayesian nonparametric priors are distributions on functions. In this thesis, we present sev-

eral novel Bayesian approaches based on the elicitation of a set of nonparametric priors in two

problems, change-point detection, and survival analysis. Through our success on each target,

we demonstrate the fact that appropriate Bayesian nonparametric priors can harness the power

of the data and promote statistical analysis from the perspectives of estimation, inference, pre-

diction, and computation.

In Part I, we propose NOSE and SBPCPM, two jump-size-based Bayesian approaches to

solve change-point detection. NOSE globally models the abrupt change process and identifies

change-points based on the induced posterior estimates of jump sizes. We establish posterior

inferential theories including the minimax optimality of posterior contraction, posterior consis-

tency of both number and locations of change-points, and an asymptotic zero false negative rate

in change-point discrimination under a novel Gamma-IBP weighted spike-and-slab type prior.

Comprehensive numerical studies demonstrate that NOSE outperforms existing approaches.

SBPCPM is extremely useful to detect the imperceptible change-points under a mean-shifted

model. We propose a novel Beta process mixture model for the change signal. We establish the

pointwisely asymptotic efficiency of the marginal MAP estimates of the change signal under the

hypothesis of no change-points. The induced asymptotic normality of the jump size estimators

leads to efficient hypothesis testing of change-points.

In Part II, we study the use of nonparametric priors in survival analysis. For right-censored

survival outcomes, we propose BuLTM, a novel Bayesian method for prediction under the non-

parametric transformation model. Unlike existing methods, we allow the model to be unidenti-

fied and assign weakly informative nonparametric priors to the infinite-dimensional parameters
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to facilitate efficient MCMC sampling. We show that the posterior is proper under the uniden-

tified model. For recurrent event data, we propose a generalized shared frailty model to relax

the strict proportional hazard assumption and apply the ANOVA DPP as the prior for baseline

survival functions for model estimation.



Acknowledgements

First of all, I would like to express my deepest gratitude to my supervisor, Dr. Catherine Liu.

Catherine is more than just an academic supervisor to me; she is a guiding light in navigating

various aspects of my life. Catherine is always willing to listen to all my opinions and feelings

and is open to adjusting her ideas based on mine. While she can be strict with me at times in the

course of research, her expectations are cultivating my good habits that span from conducting

research to managing tasks effectively. Under her supervision, I have undergone a remarkable

transformation from a naïve and unknowledgeable novice in academia to an individual capable

of independently completing a thesis. I will forever cherish the moments of thought-provoking

discussions and collaboration with Catherine, when we worked together to advance the frontiers

of research.

I would like to extend my heartfelt gratitude to my co-supervisor, Dr. Binyan Jiang. It was

Binyan that ignited my passion for statistical research during my master’s studies. Over the

course of three years pursuing my doctorate, Binyan was consistently encouraging me, readily

extending his assistance. I have benefited a lot from our discussions.

I would like to deliver my thank to my Ph.D. committee, Prof. Jian Huang, Prof. Xinyuan

Song, and Prof. Niansheng Tang, for their profound insights and constructive suggestions that

I can follow up to enhance the quality of the thesis.

I would also like to convey my appreciation to my tutor and collaborator in Bayesian statis-

tics, Dr. Junshan Shen. During the formative stages of my doctoral journey, Junshan provided

me with unwavering support in the realms of Bayesian computing and Bayesian nonparametric

priors. Additionally, I am sincerely grateful to my esteemed collaborators, Drs. Zhihua Ma,

Jin Yang, and Xu Zhang, with whom I shared a fruitful and enjoyable collaborative experience.

v



vi

Furthermore, I extend my gratitude to Dr. Sheng Xu and Dr. Qinyi Zhang, whose profound dis-

cussions and experiences they generously shared with me have immensely enriched my knowl-

edge. I would also like to express my profound thanks to Miss Qian Li and Mr. Zicheng Qiu for

their guidance in optimization and deep learning studies. Moreover, I am truly grateful to Miss

Lulu Zhang and Mr. Shouzheng Chen for their generous assistance and support throughout this

journey.

I acknowledge the grants that have contributed to supporting my Ph.D. study. The research

included in the thesis is partially supported by the General Research Funding (GRF) 15301519

and 15301123, Research Grants Council (RGC), UGC, Hong Kong.

I pay my tribute and appreciation toWang Xizhi, Su Shi, and ZhaoMengfu for their wisdom

and the most wonderful experience of aesthetics they bring to me.

Deep thanks are delivered to all my families. Particularly, I would like to express my sincere

gratitude to my uncle for his great meticulousness and helps. I owe my deepest thanks to my

parents who gave me the most invaluable education in my youth and always support me in

return for nothing. Finally, no words can express my appreciation and love for my kind, loving,

smart, considerate, and humorous fiancée Mengyao. If a Ph.D. degree is the greatest ideal in

my past 27 years, falling in love with Mengyao is the greatest gift I obtain in my whole life.

It is Mengyao who makes all my gain during this journey meaningful, just like a number one

followed by a long series of zeros. I dedicate this thesis to my parents and my fiancée Mengyao.



Contents

0 Introduction: Power of Bayesian nonparametrics 2

0.1 Elicitation of nonparametric priors in the thesis . . . . . . . . . . . . . . . . . 2

0.2 Organization of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

0.3 Publication status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Part I 9

1 Non-segmental change-point detection 10

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.1.1 Global curve function parameter θ(t) . . . . . . . . . . . . . . . . . . 12

1.1.2 Shrinkage prior for θ(t) . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.1.3 Discrimination of change-points . . . . . . . . . . . . . . . . . . . . . 16

1.1.4 Application scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.1.5 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Asymptotic behavior of posterior . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.2.1 Posterior contraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Posterior consistency of model selection . . . . . . . . . . . . . . . . . 24

1.2.3 False negative rate of discrimination . . . . . . . . . . . . . . . . . . . 27

1.3 Bayesian implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5.1 DRAIP data: shifts in scale . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5.2 ACGH data: shifts in mean . . . . . . . . . . . . . . . . . . . . . . . . 38

vii



CONTENTS viii

1.5.3 US age-specific fertility rate (ASFR) data: structural changes in linear

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

1.5.4 House prices in London Borough of Newham: structural changes in

AR(1) models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

1.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.7 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.7.1 Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1.7.1.1 Proof of Theorem 1.1 . . . . . . . . . . . . . . . . . . . . . 44

1.7.1.2 Proof of Theorem 1.3 . . . . . . . . . . . . . . . . . . . . . 49

1.7.1.3 Proof of Corollary 1.3 . . . . . . . . . . . . . . . . . . . . . 52

1.7.1.4 Proof of Theorem 1.4 . . . . . . . . . . . . . . . . . . . . . 53

1.7.2 Additional simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1.7.2.1 Model misspecification . . . . . . . . . . . . . . . . . . . . 54

1.7.2.2 Simulations for DRAIP data . . . . . . . . . . . . . . . . . . 56

1.7.2.3 Simulations for ACGH data . . . . . . . . . . . . . . . . . . 57

2 Detection of imperceptible change-points 59

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.1.1 Motivated example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

2.1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.1 Signed Beta process . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.2.2 Asymptotic results of posterior estimates . . . . . . . . . . . . . . . . 67

2.2.3 Lower Type I error . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.3.1 Stick-breaking construction of the SBP . . . . . . . . . . . . . . . . . 71

2.3.2 Posterior inference and post-process on change-points . . . . . . . . . 72

2.3.3 SBPCPM algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

2.4 Application to London House Index . . . . . . . . . . . . . . . . . . . . . . . 73

2.4.1 Locations of change-points . . . . . . . . . . . . . . . . . . . . . . . . 75



CONTENTS ix

2.4.2 Interpretation of estimated autocorrelations and model fitting . . . . . . 77

2.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.5.1 Setting I: simulations on synthetic London House Index data . . . . . . 80

2.5.2 Setting II: simulations on data with noticeable structural changes in au-

tocorrelations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.5.3 Setting III: simulations on data with noticeable shifts in mean . . . . . 82

2.5.4 Setting IV: simulations on data with imperceptible shifts in mean . . . 84

2.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.7 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.7.1 Proof of Theorem 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

2.7.2 Empirical evidence for Proposition 2.2 . . . . . . . . . . . . . . . . . 89

Part II 92

3 Nonparametric transformation models 93

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

3.2 Recast: multiplicative relative risk model . . . . . . . . . . . . . . . . . . . . 97

3.3 Likelihood and prior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

3.3.2 Quantile-knots I-splines prior . . . . . . . . . . . . . . . . . . . . . . 100

3.4 Posterior inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.4.1 MCMC and posterior prediction . . . . . . . . . . . . . . . . . . . . . 102

3.4.2 Posterior projection for parametric estimation . . . . . . . . . . . . . . 104

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5.1 Prediction of conditional survival probability . . . . . . . . . . . . . . 107

3.5.2 Parametric estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.6 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

3.6.1 PO case: veterans lung cancer data . . . . . . . . . . . . . . . . . . . . 110

3.6.2 PH case: heart failure clinical records data . . . . . . . . . . . . . . . 113

3.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116



CONTENTS x

3.8 Supplement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

3.8.1 Deriving H(0) = 0 from assumption (A3) . . . . . . . . . . . . . . . . 117

3.8.2 The DPM model for Sξ . . . . . . . . . . . . . . . . . . . . . . . . . . 118

3.8.3 Relationship between the quantile-knots I-splines prior and the NII pro-

cess . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.8.4 Alternative I-splines priors for H . . . . . . . . . . . . . . . . . . . . 120

3.8.4.1 Fully identified priors . . . . . . . . . . . . . . . . . . . . . 121

3.8.4.2 The shrinkage prior and comparison . . . . . . . . . . . . . 122

3.8.5 Proof of Theorem 3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

3.8.6 Additional simulation results . . . . . . . . . . . . . . . . . . . . . . . 125

3.8.6.1 Reproducibility of simulations . . . . . . . . . . . . . . . . 125

3.8.6.2 Low censoring cases . . . . . . . . . . . . . . . . . . . . . . 126

3.8.6.3 Parametric estimation under AFT models . . . . . . . . . . . 127

3.8.6.4 Effective sample size of β . . . . . . . . . . . . . . . . . . . 128

3.8.7 Sensitivity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3.8.7.1 Sensitivity of number of initial knots . . . . . . . . . . . . . 129

3.8.7.2 Sensitivity of η . . . . . . . . . . . . . . . . . . . . . . . . . 130

3.8.8 Results of parametric estimation on real datasets . . . . . . . . . . . . 131

3.8.8.1 Veterans lung cancer data . . . . . . . . . . . . . . . . . . . 131

3.8.8.2 Heart failure clinical records data . . . . . . . . . . . . . . . 132

3.8.9 Posterior checking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.8.10 Predictive evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . 134

4 DDP for generalized shared frailty models 136

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

4.2 Review of MacEachern’s DDP . . . . . . . . . . . . . . . . . . . . . . . . . . 139

4.3 Model and Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.3.1 Likelihood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

4.3.2 Survival-function based version of the ANOVA DDP . . . . . . . . . . 143

4.3.3 One-way ANOVA DDP . . . . . . . . . . . . . . . . . . . . . . . . . 144



CONTENTS xi

4.3.4 Other priors and MCMC . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.3.5 Stan and NIMBLE: programming styles . . . . . . . . . . . . . . . . . 146

4.4 Application: bladder cancer recurrences . . . . . . . . . . . . . . . . . . . . . 148

4.4.1 Model checking for baseline survival functions . . . . . . . . . . . . . 149

4.4.2 Parametric estimation I: real data . . . . . . . . . . . . . . . . . . . . 150

4.4.3 Parametric estimation II: simulation . . . . . . . . . . . . . . . . . . . 151

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

5 Future work: Bayesian tensor factor analysis 154

References 156



List of Figures

1.1 Plots of estimated locations of change-points (in red vertical lines) by different methods and

DRAIP data (in black lines). (a), SMUCE; (b), NOT; (c), PELT; (d) original data. . . . . . . 11

1.2 Flowchart of the proposed methodology. . . . . . . . . . . . . . . . . . . . . . . . . 17

1.3 Examples of generated data in simulations. (a) to (d), data stream (in points) and θ(t) (in red

lines). (e), centered absolute data stream |Yi − E(Yi)| (in dashed line) and exp{θ(t)} (in red

line). (f), data grouped by t (in polylines labeled by segments). (a), S.1 (Scenario 1); (b), S.2

(Scenario 1); (c), S.3 (Scenario 2); (d), S.5 (Scenario 4); (e), S.4 (Scenario 3); (f), S.7 (Scenario

5). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4 DRAIP data and change-point detection results by NOSE. Top, original data and locations of es-

timated change-points (in vertical lines); bottom, centered absolute data and estimated segment-

wise scale parameters (in the horizontal polyline). . . . . . . . . . . . . . . . . . . . . 37

1.5 Q-Q plot and density plot of DRAIP data on interval [207, 427]. Left, Q-Q plot; right, density

plot. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

1.6 Plot of ACGH data (in black points) and estimated locations of change-points (in red vertical

lines). (a), NOSE; (b), HSMUCE; (c), NOT; (d), R-FPOP. . . . . . . . . . . . . . . . . 39

1.7 Visualization of the pre- and post-change-points ASFR data in US. (a), relationship between

age and ASFR before year 1992; (b), the relationship between age and ASFR after year 1992. . 41

1.8 House prices in London Borough of Newham and locations of estimated change-points given

by NOSE (the red line). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

1.9 Examples of generated data in simulations. (a) to (c), settingsMS.1 toMS.3. . . . . . . . . 55

1.10 Simulated example for the DRAIP data and the true values of scale parameters (in red polyline). 57

xii



LIST OF FIGURES xiii

1.11 Simulated example for the ACGH data and the smooth signal estimated by DeCAFS (in red

curves). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2.1 (a) Plot of the Newham House Index of monthly average properties from January 2000 to Oc-

tober 2022. (b) Partial autocorrelation function plot of Newham House Index of 274 months.

(c) Change-points detected by NSP (Fryzlewicz, 2023, JASA). (d) Change-points detected by

WBSTS (Korkas and Pryzlewiczv, 2017, Statistica Sinica). . . . . . . . . . . . . . . . . 61

2.2 Point-line: the original data; vertical lines (red): locations of change-points detected by SBPCPM;

vertical lines (grey): locations of change-points detected by other approaches. . . . . . . . 75

2.3 Point-line: the original data. Vertical lines (dashed): locations of change-points in mean de-

tected by SNCP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

2.4 Synthetic data versus the original data. Point-curve: original data. Polyline (red): pointwise

mean of synthetic data. Shaded area: empirical 95% confidence band. . . . . . . . . . . . 79

2.5 An example of simulated data with noticeable structural changes. Point-line: yt; polyline: the

signal functionm(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.6 An example of simulated data with visible shifts in the mean. Discrete points: data yt. Polyline:

the signal functionm(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.7 An example of simulated data with imperceptible shifts in the mean. Discrete points: data yt.

Polyline: the signal functionm(t). . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

2.8 Change-points detect by NOT (Baranowski et al., 2019). Point-line: original data; vertical

dotted lines: locations of change-points detected by NOT. . . . . . . . . . . . . . . . . 86

2.9 (a) Posterior density of m(t) at an unchanged point t = 5 under simulation setting III. (b)

Posterior density ofm(t) at a change-point t = 50 under the same simulation setting. . . . . 90

2.10 (a) Q-Q plot of ζt under simulation setting III. (b) Plot of original process of ζt compared with

the rejection region under the same setting; dashed horizontal line: rejection upper bound under

α = 0.05; dotted and dashed horizontal line: rejection upper bound under α = 0.003. . . . . 90

2.11 (a) Q-Q plot of ζt under simulation setting IV. (b) Plot of original process of ζt compared with

the rejection region under the same setting; dashed horizontal line: rejection upper bound under

α = 0.05; dotted and dashed horizontal line: rejection upper bound under α = 0.003. . . . . 91



LIST OF FIGURES xiv

3.1 Example with 5 initial knots. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 The predicted conditional survival probability curve (S(t)) and the conditional cumulative haz-

ard function (Λ(t)) for Z = (0, 0, 0)T; (a), Case 1; (b), Case 2; (c), Case 3; (d) Case 4; real line:

true curve; dash line: estimated curve; shadow: 95% empirical point-wise confidence band. . 108

3.3 Estimated curves of survival probability given by BuLTM, spBayesSurv, and the K-M estimator

under strata categorized by celltypes; (a) the stratum of squamous; (b) the stratum of large cell. 111

3.4 (a) The box plot of the C index computed on 10 testing sets; (b) the box plot of MAE between

predicted and true survival times of uncensored observations on 10 testing sets. . . . . . . . 112

3.5 Time dependent survival AUC(t) computed by estimated relative risks. . . . . . . . . . . . 113

3.6 Estimated curves of survival probability given by BuLTM, spBayesSurv, and the K-M estimator

under high-risk and low-risk strata. . . . . . . . . . . . . . . . . . . . . . . . . . . 114

3.7 Prediction comparison between BuLTM, spBayesSurv, and TransModel; (a), C index; (b), In-

tegrated Brier score. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

3.8 Time dependent survival AUC(t) computed by estimated relative risks. (a), method “K-M”;

(b), method “NNE”. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

3.9 Pointwise mean estimated baseline survival probability curves under 100 replications. Real

line, NI = 5; dash line, NI = 6; dotted line, NI = 11. . . . . . . . . . . . . . . . . . . 130

3.10 Pointwise mean estimated baseline survival probability curves in 100 replications. Real line,

η = 1; dash line, η = 5; dotted line, η = 0.2. . . . . . . . . . . . . . . . . . . . . . . 131

3.11 Comparison between the the marginal posterior density and priors of α1, . . . , α8. Shaded re-

gion, marginal posterior density; Wide line, prior density of exp(1). . . . . . . . . . . . . 133

3.12 Comparison between the the marginal posterior density of β without posterior projection and

corresponding priors. The shaded region, posterior density; wide line, flat prior. . . . . . . . 134

4.1 The Kaplan-Meier estimator of survival functions for first recurrence time (a) and second re-

currence (b) in the bladder cancer data. . . . . . . . . . . . . . . . . . . . . . . . . . 137

4.2 Workflows of representative expansions of DDP . . . . . . . . . . . . . . . . . . . . . 141



LIST OF FIGURES xv

4.3 The estimated baseline survival curves for the first (a) and second (b) recurrence; the black

curves are estimated under the proposed generalized shared frailty model, and the pink curves

are estimated under the traditional shared frailty model; the real lines, placebo; the dash lines,

pyridoxine; the dotted lines, thiotepa. . . . . . . . . . . . . . . . . . . . . . . . . . 149



List of Tables

1.1 Results of change-points detection under settings S.1 to S.5 among 300 Monte Carlo replicates.

The best results are bold. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.2 Intervals, intervals partitioned by estimated change-points; Estimated: standard deviation es-

timated by NOSE; Sample SD: sample SDs on partitioned intervals; Jump sizes, jump sizes

calculated from true SDs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

1.3 Results of change-points detection under model mispecification settingsMS.1 toMS.3 among

300 Monte Carlo replicates. The best results are bold. . . . . . . . . . . . . . . . . . . 56

1.4 Results of change-points detection under simulations for the DRAIP data and the ACGH data. 57

2.1 Exact time segments, autocorrelation, jump sizes, intercept, and scale of model error estimated

by SBPCPM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.2 Log Bayes factor matrix given by Chib (1998). . . . . . . . . . . . . . . . . . . . . . 76

2.3 Piecewise OLS estimators under NSP segmentation. . . . . . . . . . . . . . . . . . . . 77

2.4 Comparison of model fitting residuals between SBPCPM and piecewise OLS (under NSP seg-

mentation). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

2.5 Results of change-points detection of structural changes in AR(1) models in 200 replications. . 81

2.6 Results of change-points detection of structural changes in AR(1) models in 200 replications. . 82

2.7 Results of change-points detection for mean-shifted models with noticeable jump sizes in 200

replications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

2.8 Results of change-points detection for mean-shifted models with imperceptible jump sizes in

200 replications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xvi



LIST OF TABLES 1

3.1 The RISE between true conditional survival functions and functions predicted by BuLTM and

spBayesSurv under Cases 1 to 4. . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

3.2 Results of estimation of β by BuLTM, spBayeSurv, and TransModel in Cases 1 to 3. . . . . 110

3.3 Parametric estimation results employing two nonparametric priors forH (standard deviation in

bracket) and RISE of estimated baseline survival probability functions. . . . . . . . . . . 123

3.4 TheRISEs between the conditional survival curves and true curves predicted by BuLTM, spBayesSurv,

and TransModel under LCases 1 to 4. Data size n = 200. . . . . . . . . . . . . . . . . 127

3.5 The performance of parametric estimation of BuLTM and spBayesSurv under LCases 1-3. . . 127

3.6 Results of estimation of β under AFT models. . . . . . . . . . . . . . . . . . . . . . 128

3.7 The average estimated ESS of β = (β1, β2, β3)
T in simulation studies. . . . . . . . . . . . 129

3.8 Parametric estimation results (standard deviation in bracket) and RISE of estimated baseline

survival probability functions under different choices of η . . . . . . . . . . . . . . . . . 130

3.9 Parametric estimation results (standard deviation in bracket) and RISE of estimated baseline

survival probability functions under different choices of η. . . . . . . . . . . . . . . . . 131

3.10 Results of estimatedβ for veterans administration lung cancer data. Credible intervals are given

on 95% credibility for BuLTM and spBayesSurv. The confidence interval of TransModel is a

95% Wald-type confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

3.11 Results of estimatedβ in the analysis to heart failure clinical records data. Credible intervals are

given on 95% credibility for BuLTM and spBayesSurv. The confidence interval of TransModel

is a 95% Wald-type confidence level. . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.1 Comparison of DP & DDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

4.2 The parametric estimation and theMCMC performance for the bladder cancer recurrences data.

Est, point estimation; SD, posterior standard deviation; ESS, effective sample size; PACE, the

MCMC Pace. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

4.3 Simulation results for the parametric terms. BIAS, averaged bias among the 150 simulations;

RMSE, root of mean square error of the estimation; ESD, averaged posterior estimated standard

deviation; SDE, the standard deviation of point estimate; CP, the coverage probability of 95%

credible interval. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152



Chapter 0

Introduction: Power of Bayesian

nonparametrics

Bayesian statistics has gained arising recognition in data science as it sheds light on new ap-

proaches by the spirit of updating prior belief with the information from newly emerged data.

The toolkits equipped with Bayesian statistics have effectively expanded people’s knowledge

and capability to discover the world. Inspired by the success of Bayesian approaches, in this the-

sis, in two classical statistical fields, from a Bayesian perspective, we succeed in proposing new

models and novel methods that outperform existing approaches in comprehensive comparisons.

It is well known that, in Bayesian analysis, priors play a defining role and have a substan-

tive impact on the final model results of estimation, inference, and prediction. Specifically, we

elucidate the philosophy behind the motivation and construction of various Bayesian nonpara-

metric prior processes for four specific questions addressed in the thesis.

0.1 Elicitation of nonparametric priors in the thesis

We give an instant introduction to some fundamental concepts of Bayesian nonparametrics first.

The Bayesian nonparametric priors’ origin is the need of characterizing the “uncertainty” of the

data-generating distributions (DGD). In Bayesian statistics, the data are envisioned as random

variables drawn from an unknown distribution or DGD. Consequently, one can express the in-

formation from data through an induced likelihood function. In many cases, the uncertainty of

2
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the DGD cannot be characterized by a finite number of random parameters. Rather, the DGD

itself might be an infinite dimensional parameter randomly drawn from some functional space.

For example, the infinite-dimensional parameter could be an unknown mean function without

any parametric assumptions in a regression model. Then one’s prior belief is imposed on the

infinite-dimensional parameter itself and summarized by a prior process, which is a distribu-

tion on the space of random functions. Models with infinite-dimensional parameters are called

nonparametric model and the prior processes for random functions are called nonparametric

priors.

When people discuss prior elicitation, the following three concerns are never absent.

• Support. The support of a prior distribution/process is always the foremost concern.

Only with a suitable domain can one properly assign the prior belief to the prior.

• Posterior. Priors have a profound impact on the posterior even with a pretty huge data

size. In some statistical models, poorly assigned priors may even incur an improper poste-

rior (e.g. examples in (Gelman et al., 2013, pp. 59)). Other impacts include the posterior

contraction rate, posterior consistency, and the convergence of the maximum a posteriori

(MAP) estimates; among others.

• Computation. Elicitation of nonparametric priors is often accompanied by the concern

of computational feasibility. The proposed Bayesian nonparametric priors in this thesis

are all computationally feasible. The reason is that they borrow strength from the stick-

breaking construction (Sethuraman, 1994) so that the nonparametric priors can be well-

approximated by a truncated sum of a series of products of independent random variables.

Thus, the induced Markov Chain Monte Carlo (MCMC) sampling is straightforward and

convenient.

In the following, we briefly introduce the nonparametric priors elicited in Chapter 1 to 4 of

the thesis and describes how they meet with the above concerns.

Chapter 1: Gamma-IBP model

For change-point detection in general application scenarios, we globallymodel the abrupt change
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scheme through an infinite dimensional parameter instead ofmodeling a finite vector of segment

parameters. Therefore, the support of the proposed nonparametric prior includes a collection

of pure jump functions. Meanwhile, inspired by the horizontal sparsity of the jump locations

(Frick et al., 2014), we observe a vertically nearly black (Donoho et al., 1992) nature on the

vector of jump sizes and turn the change-point detection into Bayesian model selection. Thus,

we call for a shrinkage nonparametric prior. Furthermore, to establish nice posterior inferen-

tial theories, we innovatively assign a Gamma hyperprior for the sparsity level within the IBP

stick-breaking weights (Teh et al., 2007) for the latent indicator in the spike-and-slab type jump

heights, leading to minimax optimal posterior contraction and dual posterior consistency.

Chapter 2: Signed Beta process

To detect shifts of means with imperceptible jump sizes and moderate data size, we propose a

signed Beta process (SBP) for the abrupt change signal in a mixture form of two Beta processes

since the jumps can either be upward or downward. We derive the stick-breaking representation

of the SBP and thus, the posterior sampling is straightforward. The SBP leads to pointwisely

asymptotic efficiency of the marginal MAP estimates of the abrupt change signal under the null

hypothesis of no change-points.

Chapter 3: Quantile-knots I splines

Under the unidentified nonparametric transformation model, we compress the original support

of the transformation function into a collection of nonnegative monotonic functions through an

exponential transformation. On the compressed support, we assign a weakly informative non-

parametric prior for the recast transformation so as to facilitate posterior sampling by control-

ling the posterior variance. We formulate a tuning-free quantile-knot I-splines nonparametric

prior based on the empirical quantiles of survival outcomes, leading to convenient and efficient

computation. We show that the posterior under the unidentified model is always proper and

well-converged.

Chapter 4: ANOVA DDP

We propose a generalized shared frailty model to allow dependence among different treatment

groups, where the group-wise baseline survival probability functions are dependent and un-

known. The support of the nonparametric prior is composed of a collection of dependent ran-
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dom measures. We apply the ANOVA dependent Dirichlet process (ANOVA DDP, De Iorio

et al. (2004)) to the baseline survival probability functions, where the ANOVA type dependence

is imposed on the stick-breaking weights of the Dirichlet process.

0.2 Organization of the thesis

The thesis consists of TWO parts of change-point detection and survival analysis. Each part

consists of TWO chapters.

Part I: Change-point detection

In Chapter 1, we propose an original and general NOn-SEgmental (NOSE) approach for the

detection of multiple change-points. NOSE identifies change-points by the non-negligibility

of posterior estimates of the jump heights. Alternatively, under the Bayesian paradigm, NOSE

treats the step-wise signal as a global infinite dimensional parameter drawn from a proposed

process of atomic representation, where the random jump heights determine the locations and

the number of change-points simultaneously. The random jump heights are further modeled by

a Gamma-Indian buffet process shrinkage prior under the form of discrete spike-and-slab. The

induced maximum a posteriori estimates of the jump heights are consistent and enjoy a zero-

diminishing false negative rate in discrimination under a 3-sigma rule. The success of NOSE

is guaranteed by the posterior inferential results such as the minimax optimality of the posterior

contraction rate, and posterior consistency of both locations and the number of abrupt changes.

NOSE is applicable and effective to detect scale shifts, mean shifts, and structural changes in

regression coefficients under linear or autoregression models. Comprehensive simulations and

several real-world examples demonstrate the superiority of NOSE in detecting abrupt changes

under various data settings.

Chapter 2 is motivated by the detection of multiple change-points in the London House In-

dex data, where existing methods detect inconsistently and diversely owing to the relatively

small magnitudes of jump sizes. We propose a novel jump-size-based Bayesian approach to

address the problem, which is distinct from the mainstream methods that were developed based

on modeling the locations and/or the number of change-points. We assign a nonparametric
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Bayesian prior, named signed Beta process to model the change signal process, the maximum a

posteriori estimates of which are pointwise asymptotically efficient. The induced posterior esti-

mator of the jump size is asymptotically normal so that we can conduct a Z-type test to identify

the change-point pointwisely. We have a thorough and comprehensive analysis of the proposed

method for the detection of change-points in the London House Index data. Our method is not

only applicable to data subject to imperceptible structural changes but also to the other common

mean-shifted scenarios with either noticeable or imperceptible shifts, demonstrated by abundant

experiments.

Part II: Survival analysis

In Chapter 3, we address the Bayesian prediction of survival times under a nonparametric trans-

formation model (NTM). Fitting the NTM has been hampered due to the lack of identifiability.

Existing approaches typically constrain the parameter space to ensure identifiability, but they

incur intractable computation and cannot scale up to complex data; other approaches address

the identifiability issue by making strong a priori assumptions on either of the nonparamet-

ric components and thus are subject to misspecifications. Utilizing a Bayesian workflow, we

address the challenge by constructing newweakly informative nonparametric priors for infinite-

dimensional parameters so as to remedy flat likelihoods associated with unidentified models. To

facilitate the applicability of these new priors, we subtly impose an exponential transformation

on top of NTMs, which compresses the space of infinite-dimensional parameters to positive

quadrants while maintaining interpretability. Simulations reveal that our method is robust and

outperforms the competing methods. Applications in several real datasets demonstrate the su-

perior predictive capability of the proposed method.

In Chapter 4, we aim to display the latest tendency in Bayesian computing, in the sense of

automating the posterior sampling, through Bayesian analysis of survival modeling for multi-

variate survival outcomes with a complicated data structure. Motivated by relaxing the strong

assumption of proportionality and the restriction of a common baseline population, we propose a

generalized shared frailty model which includes both parametric and nonparametric frailty ran-

dom effects so as to incorporate both treatment-wise and temporal variation for multiple events.

We develop a survival-function version of ANOVA dependent Dirichlet process to model the
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dependency among baseline survival functions. The posterior sampling is implemented by the

No-U-Turn sampler in Stan, a contemporary Bayesian computing tool, automatically. The pro-

posed model is validated by analysis of the bladder cancer recurrences data. The estimation is

consistent with existing results. Our model and Bayesian inference provide evidence that the

Bayesian paradigm fosters complex modeling and feasible computing in survival analysis and

Stan relaxes the posterior inference.

0.3 Publication status

The project in Chapter 1 is under review at Journal of the Royal Statistical Society, Series B

(Statistical Methodology). The preprint is available at arXiv:2209.14995v2 (Chong ZHONG,

Zhihua MA, Xu ZHANG, and Catherine LIU). I was the lead investigator, responsible for all

major areas of concept formation, methodology, mathematical proofs, and manuscript compo-

sition. Zhihua MA contributed the 3-sigma discriminant criterion and the case of scale-shift

in real data analysis. Xu ZHANG proved the theorem on truncation asymptotic equivalence.

Catherine LIU is the supervisory author on this project and was involved throughout the project.

The project in Chapter 2 was submitted to Bayesian Analysis on July 18, 2023. This is joint

work with Zhihua MA, Junshan SHEN, and Catherine LIU. Zhihua Ma contributed work in the

early stage. Junshan Shen contributed to the idea of the signed Beta process. I contributed to

the hypothesis testing procedure, simulations, and real data analysis, and was responsible for

the mathematical proof and manuscript composition. Catherine LIU is the supervisory author

on this project and was involved throughout the project.

The project in Chapter 3 was once submitted to Journal of the American Statistical As-

sociation on May 19, 2022, rejected and revised, pending submission again. The preprint is

available at arXiv:2205.14504v4 (Chong ZHONG, Junshan SHEN, Jin YANG, Catherine LIU,

and Zhaohai LI). I was the lead investigator, responsible for all major areas of Bayesian model-

ing, methodology, mathematical proof, data analysis, and manuscript composition. Jin YANG

contributed equallywithme in the data analysis part. Junshan SHENmonitored the nonparamet-

ric Bayesian seminar. Zhaohai LI participated in the latter half of the manuscript composition.
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Catherine LIU is the supervisory author on this project and was involved throughout the project.

A version of Chapter 4 has been published in IntechOpen Computational Statistics and

Applications (Chapter 5, link https://www.intechopen.com/chapters/79845, by far reached 152

download, Chong ZHONG, Zhihua MA, Junshan SHEN, and Catherine LIU). I was the lead

investigator, responsible for all major areas of idea, modeling, methodology, data analysis, as

well as manuscript composition. Zhihua MA contributed to the NIMBLE code demo and par-

ticipated in the discussion of NIMBLE and Stan. Junshan SHEN monitored related seminars

on the dependent Dirichlet Process. Catherine LIU is the supervisory author on this project and

was involved throughout the project.
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Chapter 1

Non-segmental Bayesian detection of

multiple change-points

1.1 Introduction

Detection of multiple change-points has long been an active research topic with a broad range

of applications in economics, health study, genetics, and finance, to name a few. The change

detection is needy in cases with mean shifts (Frick et al. (2014); Fryzlewicz (2014); Du et al.

(2016); Romano et al. (2022); among others), scale shifts (Killick et al. (2012); Haynes et al.

(2017); among others), and structural abrupt changes in regression models (Bai and Perron

(2003); Korkas and Pryzlewiczv (2017); Baranowski et al. (2019); among others). Since the

abrupt change pattern used to be mathematically expressed as a stepwise function or sum of

segment-wise functions, existing methods incline to study segmental parameters such as piece-

wise mean parameters and segment-wise log-likelihood ratios to unveil the changes such as the

number, locations, and jump sizes. In this chapter, we attempt to propose an original and gen-

eral procedure of change-point detection under a novel NOn-SEgmental (NOSE) spirit which

models the pure jump process of the change mechanism by a global infinite-dimensional pa-

rameter.

Our approach is motivated by a suspected change-point under-discrimination case arising

from asset pricing and portfolio management. Specifically, we look into the US log daily returns

10
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of agriculture industry portfolios (DRAIP) from January 2007 to December 2019, available at

http://mba.tuck.dartmouth.edu. Understanding the shifts on the scale of the recast daily return

data can help evaluate the risk of investment on these portfolios since the variation of daily

returns usually acts as a measure of the risk of a portfolio. The DRAIP dataset is displayed as a

black line in Figure 1.1. One can observe noticeably that, i) the data have no shifts on the mean

since all data are centered around zero stably; ii) the variations of daily returns have uneven

shifts, most of which are modest except the apparent variation on time interval (400, 500). Ex-

isting methods such as NOT (Baranowski et al., 2019), SMUCE (Frick et al., 2014), and PELT

(Killick et al., 2012) can work on this dataset to detect scale changes, summarized in Figures

1.1(a)-1.1(c). The numbers of change-points detected are 4, 4, and 5, respectively. Nonethe-

less, one may suspect the possibility of under-detection of change-points for areas highlighted

in, a) the orange rectangle between (200, 400) that is bouncing-visible and b) the blue rect-

angle between (0, 200) that is bouncing-mild. Note that the aforementioned methods share

the same spirit of modeling the local segment parameters directly, and may lose the structural

information. Instead, we are driven to formulate a global process for the underneath abrupt

change mechanism to discover the possible changes. Our approach is introduced in subsections

1.1.1-1.1.3.
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Figure 1.1: Plots of estimated locations of change-points (in red vertical lines) by different methods and DRAIP
data (in black lines). (a), SMUCE; (b), NOT; (c), PELT; (d) original data.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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1.1.1 Global curve function parameter θ(t)

The abrupt change, in almost all literature, is characterized as a pure jump process
∑K+1

k=1 θk

I(τk−1 ≤ t < τk), and have been dealt with by focusing on segment parameters θk directly.

HereK denotes the unknown total number of change-points, τk denotes the k-th change-point,

and the argument t is defined on a state space T that is not limited to a temporal or spatial state.

Let τ1:K = {τ1, . . . , τK}, where τ can be a placeholder. We assume that the adjacent θk’s are

distinguishable in the sense that θk ̸= θk+1 for all 1 ≤ k ≤ K. Rather than looking into local

segmental parameters θk, we globally denote the pure jump process or the stepwise function

as θ(t). Consequently, our approach starts from an atomic representation of the curve function

θ(t) from the perspective of jump sizes and locations of change-points.

Let (h1, ξ1), (h2, ξ2), . . . be a countably infinite collection of atoms and heights at locations.

A draw of an atomic random measure is written as

q(·) ≡
∞∑
ℓ=1

hℓδξℓ(·), (1.1)

where δξℓ is an atom at ξℓ with hℓ being its height of the jump in q. Then, we propose a prior

processQ for θ(t) in the form of the cumulative integral of q

θ(t) ∼ Q ≡
∫ t

−∞
q(u)du =

∞∑
ℓ=1

hℓI(ξℓ ≤ t). (1.2)

As the jumps may be downward or upward, the jump sizes hℓ ∈ R are allowed to be sign-

varying and may be dependent rather than being non-negative and independent in the atomic

representation in a completely random measure (Kingman, 1967).

Since those jumps with negligible heights are not considered to be abrupt changes, one may

approximate the prior processQ in a truncation formQL,

QL =

∫ t

−∞
qL(u)du =

L∑
ℓ=1

hℓI(ξℓ ≤ t) with qL =
L∑

ℓ=1

hℓδξℓ . (1.3)

In practice, one may assume the number of change-points K is bounded by some sufficiently

large numberL, say,L = [n/D], the integer part of the ratio between the number of observations
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n andD. HereD reflects one’s prior belief on the minimum distance between any two adjacent

change-points. For example, the PELTmethod sets the default minimum segment length asD =

2 in the R package changepoint (Killick and Eckley, 2014). In Theorem 1.4 of Section 1.3,

we will state the asymptotic equivalence of the truncation form (1.3) to the atomic expression

(1.2) under the Gamma-IBP prior model proposed in (1.5).

1.1.2 Shrinkage prior for θ(t)

Let θ(t) ≡ θ. The underlying distribution for drawing a sample sequence y = (y1, . . . , yn) is

denoted by f(·|θ,γ), where θ is the abrupt change parameter that determines the abrupt changes

and γ is the nuisance parameters that does not contribute to the abrupt change mechanism.

Suppose that the n samples y are observed at t1:n. Then the likelihood is

l(y|θ,γ) =
n∏

i=1

f(yi|θ(ti),γ).

This brings us to the posterior estimate of θ(t) under prior (1.3). Once we obtain a posterior

estimate based on the observed data y, we immediately have the increments of θ(t) between

ti and ti+1, denoted as di = θ(ti+1) − θ(ti). The increment sequence di acts as a KEY sig-

nal of change-points in our methodology: clearly, the jump height vector d = (d1, . . . , dn−1)

represents the jump heights/sizes at all states. Thus, those locations with non-negligible jump

sizes are naturally segregated from those ignorable and thus, identified as change-points. Con-

sequently, we tend to employ posterior estimates of di sequence as the features to discriminate

change-points based on some criterion rule that will be presented in subsection 1.1.3.

Note that drawing a random trajectory of θ(t) is equivalent to randomly drawing vectors

ξ = (ξ1, . . . , ξL) and h = (h1, . . . , hL). Since h are heights of atoms at ξ, we sample ξ first

and then sampleh, and randomly assignh to the atoms. Since one can only observey at discrete

states t1:n, it is meaningless to assume that the change-points take place between two adjacent

data points. Hence, we assume that all jumps of θ(t) only take place on ti, i = 1, . . . , (n − 1)

without loss of generality (the last data point is omitted as a change-point). Then the prior for
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atoms ξℓ is naturally defined as

ξ1 ∼ U(t1:(n−1)), ξℓ|ξ1, . . . , ξℓ−1 ∼ U(t1:(n−1) \ ξ1:(ℓ−1)), ℓ ≥ 2, (1.4)

where Z \ A denotes the complement of set A given the universe Z. In other words, ξℓ are

sampled from t1:(n−1) uniformly without replacement. As a result, ξ is just a subset of t1:(n−1)

for any L < (n− 1).

Note that under prior (1.4), h is a subset of d containing all non-zero entries of d. Hence

we will discuss the sparseness of the jump height vector d before the prior elicitation of h.

Nearly black vector: Kn-sparsity

In general, we allow the number of change-pointsK to be arbitrarily large but requireK << n

as n → ∞. One may select a sufficiently large truncation number L so that K << L too.

Then the jump height vector d belongs to l0[Kn], a class of nearly black vectors (Donoho et al.

(1992); Castillo and van der Vaart (2012)), explicitly expressed as

l0[Kn] = {v ∈ Rp :

p∑
i=1

I(|vi| > 0) ≤ Kn},

where vi is the ith entry of v andKn(≥ K) is a given integer so thatKn = o(L), as n, L→∞.

We call that d possesses Kn-sparsity. Note that h is also Kn-sparse since d and h share the

same cardinality.

Under the above Kn sparsity, we transfer change-point detection to searching for a sparse

posterior solution to the jump height vector d andh. Therefore, we will introduce next a shrink-

age prior for the random vectorh in model (1.5). OurKn-sparsity is inspired by the “horizontal”

sparsity of the vector of jump locations in Frick et al. (2014, subsection 6.3) under Gaussian

linear models, though we take a “vertical” view on the jump heights instead. By penalizing the

number of change points, the SMUCE method by Frick, Munk, and Sieling attains a minimax

optimal rate up to a logarithm term on the distance between locations of true and estimated

change-points; by a constructed shrinkage prior, our proposed NOSE achieves the minimax

optimal posterior contraction rate over the l0[Kn] class within the Bayesian context. Nonethe-
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less, these two different kinds of views on sparsity lead to different estimation procedures and

consistency. SMUCE has to estimate the number and locations of change-points sequentially

and obtains the consistency of the number of change-points only. In contrast, NOSE estimates

the number and the locations of change-points simultaneously because, under the jump-size-

weighted atomic representation (1.3), a non-negligible jump size certainly indicates a change-

point. As a result, NOSE achieves consistency of both the number and locations of change-

points.

Prior for h: Gamma-IBP model

The prior for h is expressible as follows.

hℓ|Zℓ ∼ (1− Zℓ)δ0 + ZℓF0, F0 = Laplace(0, λ),

Zℓ|ηℓ ∼ Bernoulli(ηℓ), ηℓ =
ℓ∏

j=1

pj, pj|α ∼ Beta(α, 1), α ∼ Gamma(a, b),
(1.5)

where Zℓ are latent binary variables determined by the sparsity parameters ηℓ, δ0 denotes the

mass function at 0, Laplace(0, λ) represents a zero-centered Laplace distribution with precision

parameter λ, and Gamma(a, b) represents the Gamma distribution with density {Γ(a)ba}−1xa−1

exp(−x/b). Prior (1.5) is a special class of discrete spike-and-slab priorwith a surely-zero spike

δ0 and a Laplace slab F0. Specifically, the sparsity parameters ηℓ are exponentially decreasing

products of a series of Beta variables with a mass parameter α, which is modeled by a Gamma

hyperprior for the purpose of dominating the whole sparsity of prior (1.5). Consequently, Z =

(Z1, . . . , ZL) can be viewed as a stick-breaking representation of an L-truncated single row in

the Indian buffet process (IBP) (Teh et al., 2007). Therefore, prior h is named as the Gamma-

IBP model hereafter.

The nest of the IBP construction and the Gamma hyperprior results in a strict exponential

decrease on the dimensionality |Z|, and maintains sufficient weight on the true sparsity level

Kn. Therefore, it suffices to reach the minimax optimal posterior contraction rate (Castillo and

van der Vaart, 2012). On the other hand, the IBP construction further controls the tail probability

Pr{|Z| > k} for any k > 0, and hence, obtains consistent posterior model selection with a
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smaller cut-off compared to Castillo et al. (2015). The detailed justifications and results are

summarized in Section 1.2.

1.1.3 Discrimination of change-points

After the prior elicitation in subsection 1.1.2, we propose a change-point discrimination pro-

cedure based on the induced posterior. We first obtain posterior estimates of the increments d

and then simply compare the value of the estimates with some data-driven threshold. Under

the priors (1.4) and (1.5), the posterior of ξ and h are sampled through Markov Chain Monte

Carlo (MCMC). Suppose one has drawn N posterior samples of h and ξ, denoted as jhℓ and
jξℓ, j = 1, . . . , N . Then for any ti, the marginal posterior samples of θ(ti) are determined as
jθ(ti) =

∑L
ℓ=1

jhℓI(
jξℓ ≤ ti).

WithN marginal posterior samples of θ(ti), one can approximate the maximum of a poste-

riori (MAP) estimate of θ(ti) as the mode of sample density of {jθ(ti)}Nj=1, denoted as θ̂(ti)MAP.

Let {ζi}ni=2 be

ζi = θ̂(ti+1)
MAP − θ̂(ti)MAP, i = 1, . . . , (n− 1),

the diffed series of θ̂(ti)MAP. Note that ζi is a posterior estimate of di i.e. a posterior estimate

of the jump size at ti. Nevertheless, ζi is not the MAP estimate d̂MAP
i = { ̂θ(ti+1)− θ(ti)}MAP

but an approximation to d̂MAP
i in practice. The reason why we do not employ d̂MAP

i directly

is that the marginal posterior of di is poorly approximated by MCMC samples due to high

auto-correlation between samples of jdi = {jθ(ti+1) −j θ(ti)}, j = 1, . . . , N . Therefore, the

density of di estimated from MCMC samples of θ(ti) is useless and so is the mode. Let σ̂ ≡

(Var{ζi}n−1
i=1 )

1/2 be the sample standard deviation of {ζi}ni=2. Then we determine change-point

locations τk, k ∈ 1, . . . , K based on the following discrimination rule.

Discrimination rule

3-sigma If at ti, the absolute posterior estimate of jump size |ζi| > 3σ̂, then ti is discriminated

as a change-point; otherwise, not a change-point.

It is intuitive to employ the above 3-sigma rule for change-point discrimination due to
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the nearly black nature of d. The 3-sigma rule has been widely used in outlier detection

(Pukelsheim, 1994), where the outliers are considered to be far away from the center of the

population. In our case, the nearly black d indicates that the population of ζi concentrates at

zero except for some outliers. Hence, those points that are sufficiently far away from zero are

naturally discriminated as outliers, i.e. change-points.

The threshold for negligibility takes the value 3σ̂. It is a kind of “global” threshold based

on all entries of the posterior estimates of vector d. In existing approaches, most thresholds

for spike-and-slab priors are “local”. Some local thresholds shrink those coordinates whose

posterior estimates are under some prespecified values to zero (Pati et al. (2014); Ročková and

George (2016); Ročková (2018); among others), and the others shrink those coordinates whose

posterior non-zero probability is smaller than 0.5 (Barbieri and Berger (2004); Scheipl et al.

(2012); Cappello et al. (2023); among others). However, a local threshold may be sensitive to

the ratio between jump sizes and within-segment variations in our numerical experience. The

3-sigma global criterion grants us a strong ability to recognize those even small jump sizes since

each jump size is compared with the vast majority of zeros on stationary points, regardless of

the within-segment variations. Under the 3-sigma rule, we show the near zero false negative

rate of discrimination; see Corollary 1.3 in Section 1.2.

Prior elicitation :

θ(t) ∼ QL =
∑L

ℓ=1 hℓI(ξℓ ≤ t);
ξ ∼ Uniform;

h ∼ Gamma-IBP model.

Posterior estimates :
di = θ(ti+1)− θ(t);

θ̂(ti)
MAP : marginal posterior mode of θ(ti);

ζi = θ̂(ti+1)
MAP − θ̂(ti)

MAP, i = 1, . . . , (n− 1).

Change-point discrimination (3-sigma) :
σ̂ : sample SD of ζi;

Change-points set SC = {ti : I(|ζi| > 3σ̂), i < n}.

Figure 1.2: Flowchart of the proposed methodology.
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We provide an overview of the workflow of the proposed change-point detection method in

Figure 1.2 and summarize it as follows.

Step 1: construct a truncated prior for θ(t) in the form of (1.3). Assign priors (1.4) and

(1.5) to ξ and h, respectively.

Step 2: draw N posterior samples of ξ and h. Obtain the marginal MAP estimate

of θ(t) as θ̂(ti)MAP = argmaxx fi(x), where fi is the empirical density of jθ(ti) =∑L
ℓ=1

jhℓI(
jξℓ ≤ ti), j = 1, . . . , N, i = 1, . . . , n.

Step 3: obtain ζi = θ̂(ti+1)
MAP − θ̂(ti)MAP as an estimate of di. The set of discriminated

change-points is SC = {ti : I(|ζi| > 3σ̂), i < n}.

1.1.4 Application scenarios

We illustrate some application scenarios of the proposed method here. NOSE works in the

detection of mean shifts and scale shifts such as,

Scenario 1: shifts in means of Gaussian variables (Gaussian mean-shifted model). We

have a series of real observations yi ∼ N{θ(ti), σ2}, for i = 1, . . . , n. The global param-

eter θ(t) represents the location parameter.

Scenario 2: shifts in the parameter of Poisson variables. We have a series of integer ob-

servations yi ∼ Poisson{θ(ti)}, for i = 1, . . . , n. The global parameter θ(t) characterizes

the changes in mean and variance simultaneously.

Scenario 3: shifts in the scale parameters of Gaussian variables (Gaussian scale-shifted

model). We have a series of real observations yi ∼ N{µ, exp[θ(ti)]}, for i = 1, . . . , n.

The global parameter θ(t) represents the scale parameter through an exponential trans-

formation to guarantee the non-negativity.

Meanwhile, NOSE is also applicable to detect structural changes in regression/autoregres-

sion models.
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Scenario 4: structural changes of an AR(1) model. Data are generated from the model

yt = ϕ0 + θ(t)yt−1 + ϵt,

where ϕ0 is the fixed intercept, E(ϵt) = 0 and E(ϵtϵs) = σ2I(t = s). The global

parameter θ(t) represents the autocorrelation coefficient.

Scenario 5: structural changes of a linear regression model. Data are recorded as inde-

pendent pairs of (ytj, Xtj), for j = 1, . . . , nt, t = 1, . . . , T . The association between y

and X is characterized by

ytj = β0 + θ(t)Xtj + ϵtj,

where β0 is a fixed intercept, E(ϵtj) = 0 and E(ϵtjϵsj′) = σ2I(t = s). The global

parameter θ(t) represents the regression coefficient at time t. Note that by taking nt = 1

for all t and Xt = yt−1, this scenario reduces to Scenario 4.

1.1.5 Related work

Review on segmental approaches

As we state at the very beginning, most existing methods of change-point detection are segmen-

tal approaches in the sense that they estimate multiple segment parameters or conduct a series

of tests based on segment parameters. One may summarize them into two main streams.

i) Penalized methods. Penalized methods optimize an objective function in the sum of

segment-specific costs and a penalty. The cost is versatile and chosen based on types of changes

(mean, scale, or autocorrelation for instance) while the penalty term is deterministic to the

methodology. For the penalty term, linear l0 penalization to the vector of segment parameter-

s/features to control the number of change-pointsmight be the most popular choice (Yao (1984);

Killick et al. (2012); Frick et al. (2014); Romano et al. (2022); Jula Vanegas et al. (2021); among

others). Alternatively, l1 penalization to the vector of segment parameters/features and their

jump sizes is also considered (Tibshirani et al. (2005); Chernozhukov et al. (2017); among oth-

ers). We note that Bayesian approaches can be attributed to penalized methods in the sense that
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one employs priors to automatically penalize the number of change-points (Fearnhead (2006);

Wyse et al. (2011); Ko et al. (2015); among others), or even cover ratios between observations

in segments and total sample size (Du et al., 2016).

ii) Binary-segmentation (BS) variants. The BS procedure involves the sequential partition-

ing of a given data stream into two distinct subsegments (Vostrikova, 1981). This partitioning

is carried out based on the identification of a change-point, which is determined by applying

specific testing criteria to the previously split subsegments. Under this spirit, Fryzlewicz (2014)

developed the so-called “bottom-up” strategy in the sense that one determines a change-point

from subsets of the data (local ground) and then aggregates local features as the overall model.

Baranowski et al. (2019) further enhanced the “bottom-up” strategy by a narrowest over thresh-

old (NOT) so that they draw the subsample set from the narrowest interval. There are some

other BS variants works such as Cho and Fryzlewicz (2015), Fryzlewicz (2018), Fang et al.

(2020); among others.

Spike-and-slab prior revisit

The spike-and-slab priors are usually categorized as continuous and discrete priors. The contin-

uous spike-and-slab employs two continuous densities for both spike and slab terms, with one

highly concentrated and the other dispersed (Carlstein et al. (1988); Narisetty and He (2014);

Hahn and Carvalho (2015); among others). It is convenient in MCMC sampling, while the

posterior solution may not provide sparse estimates automatically. The discrete spike-and-slab

priors (Yen (2011); Yang et al. (2016); Shin and Liu (2021); Ray and Szabó (2022); among

others) have great progress in recent years from the computational aspect. Under a special

Gaussian sequence model, Castillo and van der Vaart (2012) establishes the conditions for the

minimax optimal posterior contraction rate with discrete spike-and-slab priors while remaining

consistent model selection unsolved. Conditions for consistent posterior model selection with

discrete spike-and-slab priors are given by Castillo et al. (2015), while the posterior contraction

is not optimal. With a data-dependent slab term, Martin et al. (2017) obtains both minimax

optimality and model selection consistency under an empirical Bayes approach.

Most of the existing work for discrete spike-and-slab priors considers i.i.d. sparsity pa-
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rameters. In this chapter, our discrete spike-and-slab prior is coupled with dynamic IBP stick-

breakingweights. Such kind of dynamic spike-and-slab prior was first employed by (Williamson

et al., 2010) for topic modeling. It has been extended to factor models with possibly infinite

many factors (Knowles and Ghahramani (2011); Ročková and George (2016); James (2017);

Ma and Liu (2022); Ohn and Kim (2022); among others). We are the first to employ the IBP

discrete spike-and-slab to change-point detection, unlike existing work that employs continuous

spike-and-slab prior with invariant sparsity parameter (Cappello et al., 2023).

The rest of this chapter is organized as follows. Section 1.2 studies the asymptotic behav-

ior of the posterior and detection performance. Section 1.3 provides technical details of the

Bayesian implementation of our method. Sections 1.4 and 1.5 present comprehensive simula-

tions and applications to extensive real-world data examples, followed by a brief discussion in

Section 1.6. Mathematical proofs and results of additional simulations are included in Supple-

mentary materials. The companion R package NOSE is available online.

1.2 Asymptotic behavior of posterior

In this section, we present the theoretical results of the proposed change-point detection method

in the asymptotic regime n, L → ∞. We confine our theoretical results in Scenario 1 in

subsection 1.1.4, the Gaussian mean-shifted model with invariant variance. Such a scenario is

the most common case studied by existing change-point literature, where the invariant variance

assumption is also required (Fryzlewicz (2014); Du et al. (2016); Baranowski et al. (2019);

among others).

As we mentioned before, the jump height vector d contains all information about the jump

sizes, which are deterministic in our approach. Therefore, we will focus on the posterior of d.

We study THREE aspects of asymptotic behaviors, 1) minimax optimal posterior contraction

rate and recovery with under detection, 2) posterior consistency of model selection, and 3)

asymptotic zero false negative rate of change-point discrimination under the 3-sigma rule.

From our insight, given the scale parameter σ in Scenario 1, the Gaussian mean-shifted

model can be rewritten as a Gaussian sequence model (Castillo and van der Vaart, 2012). With-
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out loss of generality, we assume σ = (
√
2)−1. If not, one can simply transform the data and

will not change the results. Let y∗ be the differed series of y, so that y∗i = yi+1 − yi for

i = 1, . . . , n− 1. Then we obtain the following Gaussian sequence model

y∗i ∼ N (di, 1) , i = 1, . . . , (n− 1). (1.6)

Our theoretical results are given under model (1.6).

Notation

Let p = n − 1 and d0 = (d01, . . . , d0p)
T be the “true” jump height vector. We shall assume

that the d0 ∈ l0[Kn] for some given number Kn such that the number of change-points K ≤

Kn. Since the specification of L depends on n or p, we use Ln in this section. Hereafter, let

Πn,Ln(B|y∗) denotes the posterior probability on a Borel setB under priors (1.4) and (1.5) given

data y∗. Let Pd0 andEd0 denote the probability measure and the expectation operator under the

law N(d0, Ip), respectively.

1.2.1 Posterior contraction

We first give asymptotic results on the posterior contraction of the jump height vector d. This

contraction rate evaluates the capability that the posterior recover the true jump height vector

d. We have the following assumption about n = p+ 1, Ln, and Kn.

(A1) Ln < p;Kn/Ln → 0, as Ln →∞.

By selecting Ln = [n/D], whereD > 1 is some fixed constant, Assumption (A1) is satisfied as

Kn/n → 0, which is a common setting in both high-dimensional regression and change-point

literature.

The posterior contraction rate is the rate that the most mass of the posterior concentrates

around a ball of the true vector d0. In this chapter, we define the radius of the ball by the

following lq losses (Castillo and van der Vaart, 2012)

dq(d,d0) =

p∑
i=1

|di − d0i|q.
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For q ∈ (0, 2], Donoho et al. (1992) shows that the minimax optimal rate over l0[Kn] is

r∗n = Kn logq/2(p/Kn).

The following theorem gives the posterior contraction rate of d, which reaches the minimax

optimal rate under lq metrics.

Theorem 1.1 (Minimax optimal posterior contraction rate). Let a = c1L
−c3
n , b = c2L

c4
n for

some constants c1, c2 > 0 and c3 > c4 + 1 ≥ 2 in prior (1.5). Under Assumption (A1), as

n, Ln, Kn →∞, for a sufficiently large constantM , we have

sup
d0∈l0[Kn]

Ed0Πn,Ln{d : dq(d,d0) > MrqnK
1−/q/2
n |y∗} → 0,

where rn ≥
√
Kn log(Ln/Kn).

It clearly finds that for q ∈ (0, 2], the posterior contraction rate given by Theorem 1.1 is at

the same order of the minimax optimal rate r∗n. This result is similar to Castillo and van der Vaart

(2012, Theorem 2.2), though the Gamma-IBP model in (1.5) does not belong to any examples

studied by them. Actually, the nest form of the IBP prior and the Gamma hyperprior plays a key

role in the establishment of Theorem 1.1. As shown by Teh et al. (2007, subsection 3.1), with a

fixed α, as the truncation number Ln →∞, ηℓ become the order statistics of Beta(α/Ln, 1) and

hence, the distribution of the cardinality of the latent indicatorZ converges to Poisson(α). With

the Gamma hyperprior for α, the whole prior for d can be approximated by a Poisson-Gamma

model and hence has strict exponential decrease (Castillo and van der Vaart, 2012, Example

2.3). The choices of hyperparameter (a, b) are also essential but not too strict. On one hand,

the relatively large choice of b in the Gamma hyperprior further grants sufficient weight on the

true sparsity level Kn so that the posterior can contract in an optimal rate. On the other hand,

the very small choice of amakes the Gamma-IBP model sufficiently close to the approximated

Poisson-Gamma model. We defer the detailed proof to Supplement 1.7.1.1. Note that we only

require the first moment of the Gamma hyperprior ab = o(L−1
n ) here. In practice, one may

allow ab2 → ∞ as n, Ln → ∞ and hence obtain a very flat Gamma prior which is nearly
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“noninformative” or “objective”.

Theorem 1.1 requires that Kn →∞, which is not a common pattern in change-point prob-

lems. In the most existing literature, the number of change-points is assumed to be arbitrarily

large but finite (Frick et al. (2014); Du et al. (2016); Baranowski et al. (2019); Romano et al.

(2022); among others). To this end, in the following, we study the posterior behavior with a fi-

niteKn and set the true number of change-pointsK = Kn. That is, equivalently, the cardinality

of the true jump height vector is |d0| = Kn.

The following theorem tells the posterior contraction rate with under detection of change-

points for any Kn < Ln/2.

Theorem 1.2 (Recovery with under selection). Under conditions in Theorem 1.1, forM ≥ 10

and any fixedKn < Ln/2, as n, Ln →∞, we have

sup
d0∈l0[Kn]

Ed0Πn,Ln{d1(d,d0) > Mrn, |d| ≤ Kn|y∗} → 0.

Theorem 1.2 is a direct result of Proposition 5.1 in Castillo and van der Vaart (2012) by

taking A = 1. By fact that
(
Ln

Kn

)
≤ (eLn/Kn)

Kn ≤ exp(cr2n) for some sufficiently large

constant c, the right hand side of Proposition 5.1 in Castillo and van der Vaart (2012) tends to

zero and hence, Theorem 1.2 holds. The detailed proof is deferred to Castillo and van der Vaart

(2012, Section 5).

1.2.2 Posterior consistency of model selection

From the perspective of change-points detection, the model selection corresponds to the capa-

bility of correctly detecting the number of change-points, the foremost concern in change-point

detection. As mentioned before, our approach distinguishes non-negligible jumps from those

zero or near zero. Actually, those too close to zero jumps cannot be detected by any method.

Hence, it is necessary to determine a “sufficiently small ” cut-off of non-negligible jump sizes

i.e. the non-negligible entries of the true jump height vector d0. Let S0 = {i : |d0i| ̸= 0}

be the support of non-zero coordinates of d0 and Sc
0 be the support of other zero coordinates.

In our change-point context, S0 = τ1:Kn . Let S = {i : |di| ̸= 0} be the support of non-zero
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coordinates of d. Hence, we will study the model selection result on the following class of jump

sizes vectors

l̃0[Kn] = {v ∈ l0[Kn] : min
i∈S0

|d0i| ≥M
√
Kn log(Ln/Kn)},

where M is given by Theorem 1.2. The class l̃0[Kn] is similar to those classes with cut-offs

for model selection consistency in sparse regression literature. In the change-point setting,

it indicates that all the jump sizes on change-points are bounded away from zero. We will

show that when Kn is bounded, this cut-off still suffices for model selection consistency. In

this sense, our cut-off of order Kn log(Ln/Kn) is slightly better than those cut-offs of order

O(
√
Kn log p), which are commonly presented in existing Bayesian high-dimensional regres-

sion literature (Castillo et al. (2015); Jeong and Ghosal (2021); among others).

Theorem 1.2 guarantees that if d0 ∈ l̃0[Kn], the posterior dimensionality of d can cover

all change-points. Meanwhile, we would expect the risk of over-detection to be as small as

possible. The Gamma-IBP model (1.5) provides an exponentially decreasing tail probability

for the dimension of d, controlling the risk of over-detection of change-points. Besides, we

have to carefully select the precision parameter λ of the Laplace slab in prior (1.5). Roughly

speaking, we require λ to be sufficiently small so that the slab is dispersed enough to provide

sufficient mass to recover the non-zero entries of d0. Strictly, we require a precision λ, so that

λ||d0||1 < δ for some positive but finite constant δ. However, ||d0||1 is unknown in practice.

Therefore, we provide the following adaptive λn(δ) as the choice of the precision parameter of

the Laplace slab under the Gaussian sequence model (1.6).

Let ¯|y| = p−1
∑p

i=1 |y∗i |. The adaptive λn(δ) is given by

λn(δ) =
δ

p ¯|y|
. (1.7)

With the adaptive λn(δ), we obtain the following result of no supersets in model selection.

Theorem 1.3 (No supersets). Let a = c1L
−c3
n , b = c2L

c4
n for some constants c1, c2 > 0 and

c3 > c4 + 2 ≥ 3 in prior (1.5). Under Assumption (A1), for any fixed Kn < Ln and δ, with
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λn(δ) defined in (1.7), as n, Ln →∞, we have

sup
d0∈l̃0[Kn]

Ed0Πn,Ln{d : |d| > Kn|y} → 0.

In Theorem 1.3, we take a technical route that is different from the fashions of either Castillo

et al. (2015) or Martin et al. (2017), which depends on an extremely fast decreasing speed

on the prior for dimensionality and the conjugacy of data-dependent normal slab respectively.

If one adopts the conditions by Castillo et al. (2015), the posterior contraction rate may be

suboptimal. Although Martin et al. (2017) can reach both minimax optimality and no supersets

simultaneously, their empirical Bayes approach may be difficult to be extended to other change-

point scenarios. Actually, here we borrow the strength from the bound of the tail probability of

IBP weights given by factor model literature Ohn and Kim (2022). However, the prior by Ohn

and Kim is non-adaptive in the sense that it requires information about the true sparsity level

Kn. In contrast, our choice of hyperparameters here only depends on the data sizes n and the

truncation number L, and hence is adaptive. We defer the detailed proof to Supplement 1.7.1.2.

The above theorems indicate the following corollary of the posterior consistency of model

selection.

Corollary 1.1 (Consistent model selection). Under the conditions of Theorem 1.3, as n, Ln →

∞, we have

inf
d0∈l̃0[Kn]

Ed0Πn,Ln{d : S = S0|y} → 1.

Proof. According to Castillo et al. (2015), to prove Corollary 1.1, it suffices to proving the

following two assertions

inf
d0∈l̃0[Kn]

Ed0Πn,Ln{d : S ⊃ S0|y} → 1,

sup
d0∈l̃0[Kn]

Ed0Πn,Ln{d : S ⊃ S0, S ̸= S0|y} → 0.

The first assertion is a direct result of Theorem 1.2, and the second assertion is a direct result



CHAPTER 1. NON-SEGMENTAL CHANGE-POINT DETECTION 27

of Theorem 1.3 sinceK = Kn.

Note that Corollary 1.1 is about the non-zero coordinates of d. In other words, Corollary

1.1 indicates that we obtain posterior consistency of both the number and locations of change-

points.

1.2.3 False negative rate of discrimination

As mentioned in subsection 1.1.3, we regard the posterior estimator of d as the feature to dis-

criminate change-points τ1:Kn from t1:n under the 3-sigma rule. To study the asymptotic perfor-

mance of the 3-sigma discrimination, we use the marginal MAP estimator d̂MAP
i as the signal at

ti for the theoretical concern. Note that the 3-sigma criterion in subsection 1.1.3 can be viewed

as a data-driven threshold based on series {d̂MAP
i }n−1

i=1 .

The result of consistent model selection enables us to study the asymptotic performance of

d̂MAP
i for i ∈ S0. Let d̂S0 be the least square estimator of non-zero coordinates of d0 given the

correct model selection S0, that is,

d̂S0 = argmin
dS0

||y∗ −XS0dS0 ||22,

where XS ∈ Rp×|S| is the submatrix of Ip with columns on the non-zero coordinates. Clearly

XT
S0
XS0 = I|S0|. Let d̂MAP

S0
be the marginal MAP estimators of d on the true non-zero support

S0. Let d0S0 be the true non-zero entries in d0. The follow corollary states the consistency and

asymptotic normality of d̂MAP
S0

.

Corollary 1.2 (Consistency of MAP under strong model selection). Under conditions in Corol-

lary 1.1, for d0 ∈ l̃0[Kn] as n, Ln →∞, we have

d̂MAP
S0

p−→ d̂S0 ,
√
p(d̂MAP

S0
− d0S0)

d−→ N(0, I|S0|).

The proof of Corollary 1.2 is trivial. Under the correct model selection, the prior for dS0 is

reduced to the continuous Laplace slab and hence, the MAP estimator d̂MAP
S0

converges to the

maximum likelihood estimator d̂S0 almost surely (Pronzato and Pázman, 2013, Theorem 4.16).
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Since the model selection converges to be correct in probability, it suffices showing the weak

convergence of the MAP estimator d̂MAP
S0

to d̂S0 . Then the second assertion is established by

the central limit theorem.

The above distribution approximation about d̂MAP
S0

controls the false negative rate under the

3-sigma rule. Let d̄0 = p−1
∑p

i=1 d0i, d̄ = p−1
∑p

i=1 d̂
MAP
i , ψ0 =

√
p−1

∑p
i=1(d0i − d̄0)2, and

ψ =
√
p−1

∑p
i=1(d̂

MAP
i − d̄)2. The 3-sigma rule acts as a special hard threshold that shrinks all

|d̂MAP
i | < 3ψ to zero. We require an upper bound assumption on the norm of d0 ∈ l̃0[Kn].

(A2) There exists a universal constantM0, so that p−1/2||d0||2 < M0[
√
Kn log(Ln/Kn)].

Assumption (A2) implies that 3ψ0 will not exceed any non-zero entries in d0 and hence

the 3-sigma rule is suitable for the true jump sizes vector d0 is The following corollary states

that under the 3-sigma rule, the probability that a change-point is falsely discriminated as a

stationary point is asymptotically zero. We defer the proof to Supplement 1.3.

Corollary 1.3. Under the conditions in Corollary 1.1 and Assumption (A2), as n, Ln →∞, we

have

sup
d0∈l̃0[Kn]

Ed0Πn,Ln{|d̂MAP
i | < 3ψ, i ∈ S0|y∗} → 0.

Corollary 1.3 theoretically justifies the 3-sigma criterion for change-point discrimination.

In general, the 3-sigma rule is employed for outlier detection, especially for the Gaussian pop-

ulation. In general, the performance of discriminating the outliers depends on two properties,

the variation of the population and the distance between the outliers and the center. The cut-off

of the l̃0[Kn] class guarantees that those outliers (change-points) differ significantly from the

zero-center population (stationary points), while the additional Assumption (A2) avoids those

outliers from affecting the variation of all the samples too much. Corollary 1.3 implies that

even under a very high precision level (3-sigma criterion usually yields a high precision), the

recall of the discrimination is sufficiently large and asymptotically converges to one. This is

supported by our finite sample simulations under the Gaussian mean-shifted model of Scenario

(i), where NOSE enjoys higher recall than other competing approaches.
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1.3 Bayesian implementation

In this section, we introduce technical details for the Bayesian implementation of the proposed

method.

Uniform convergence of θ(t)

Recall that our methodology stands on θ(t), the truncated form of θ(t). Hence it is necessary to

check the convergence of the truncated form as L→∞. We present the uniform convergence

of θ(t) by the following theorem. We defer the proof to Supplement 1.7.1.4.

Theorem 1.4 (Uniform convergence). For any continuous density F0 with support R in (1.5),

given ξ and fixed a, b in the Gamma prior for α, the truncated QL in (1.3) converges to Q in

(1.2) uniformly for all t ∈ T in probability.

In practice, the choice of the truncation number L depends on one’s prior belief on the

minimum distance between change-points. In the case where the number of change-points K

is not large, a relatively small L is suggested to simplify MCMC sampling. In our experience,

when the truncation number exceeds a sufficiently large L, the detection result is stable with L

increasing, numerically demonstrating Theorem 1.4.

MCMC sampling

We approximate the posterior distribution through MCMC sampling. Our computation is facil-

itated by the nimble (de Valpine et al., 2017) package in R, which uses BUGS type syntax (Lunn

et al., 2000) and compiles the code into C++ to facilitate automatic posterior sampling. Sam-

plers for different parameters are automatically assigned by nimble. For conjugate parameters,

say, pℓ, nimble assigns Gibbs samplers; for parameters ξℓ and α, nimble assigns the default

Metropolis-Hasting sampler; for hℓ and the corresponding binary indicator Zℓ, we configure

a reversible jump MCMC sampler to speed up the sampling. The R package NOSE based on

nimble includes several R functions applied to application scenarios mentioned in subsection

1.1.4.
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Cauchy slab

Note that Theorem 1.4 holds for any continuous density for the slab term. This implies that

the choice of slab density for hℓ is not limited to Laplace, but also includes some polynomial-

tailed densities such as Student-t or Cauchy which prevent over-shrinkage of the non-negligible

entries (Bai et al., 2020). Though we establish the posterior inferential theories in Section 1.2

by specifying a Laplace slab in the Gamm-IBP model, we recommend a standard Cauchy slab

instead in practice for numerical concerns. We find that the MCMC efficiency of Cauchy slab

is about 20 to 50 times of that of the Laplace slab in nimble. That is, to draw the same effective

sample size of posterior, the time cost of Cauchy slab is much less than the Laplace slab. Note

that the moment of Cauchy slab is infinite and hence we do not need to figure out the adaptive

precision parameter λn for Laplace slab in subsection 1.2.2.

The reason for the lowMCMC efficiency of the Laplace slab may be due to the complicated

form of conditional posterior distribution of a Laplace prior. Give Zℓ = 1, hℓ ∼ Laplace(0, λ)

can be expressed as hℓ|τℓ ∼ N(0, λ−2τ 2ℓ ) with τℓ ∼ exp(1/2). The presence of the auxil-

iary scale parameter τℓ hinders the use of reversible jump MCMC sampler. Meanwhile, the

conditional posterior distribution is in an inverse Gaussian form (Ohn and Kim, 2022), which

can hardly be simulated from the default Metropolis-Hasting random walk sampler in nimble,

incurring a very low acceptance rate and thus, low MCMC efficiency.

In the high-dimensional regression setting, Shin and Liu (2021) numerically showed that

both the Laplace and Cauchy slab share a very similar performance, while the Cauchy slab

appears to enjoy a lower false positive rate and higher cosine similarity to the true parameter.

Their results provide a numerical justification to the use of the Cauchy slab in replace of the

Laplce slab.

Continuous ξℓ

To determine a discrete draw from states t1:n without replacement is difficult in nimble. Hence,

we have to make a continuous adjustment to adopt the programming framework of nimble.

Note that for any ti and ti+1 with an increment di = θ(ti+1) − θ(ti) > 0, it is equivalent to

either draw an atom ξℓ at ti+1 exactly, or to draw an atom ξℓ ∈ (ti, ti+1). This motivates us to
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consider a continuous prior for ξℓ as an approximation. Without loss of generality, we assume

ti = i for i = 1, . . . , n. Then we sample ξℓ from a continuous uniform distribution U(0, n) in

nimble as the continuous prior for ξℓ.

A risk of the continuous prior ξℓ is that more than one atoms fall into the same interval

(ti, ti+1), which may lead to an ill posterior of increment di. Note that the probability that

the minimum distance between L uniform U(0, n) variables exceeds 1 is (1 − n−1)L. As n

increases to L/n → 0, the probability converges to 1, that is, the probability that an interval

(ti, ti+1) contains more than one atom converges to zero. Therefore, the continuous scheme of

ξℓ suffices to approximate prior (1.4) when n >> L.

In the finite sample case, too closely located atoms may cause over-detection of change-

points by wrongly putting increments to data points that are close to the true change-points. To

avoid over-detection, we conduct post-processing of change-point. We use the prior belief in

the minimum distance D between change-points as the lower bound of the distance between

change-points. For each two consecutive estimated change-points τ̂k, τ̂k+1, if |τ̂k − τ̂k+1| < D,

we only retain the left end-point τ̂k as a change-point but remove the rest. Such a kind of post-

processing based on the prior belief in the minimum distance between change-points is common

in most literature (Matteson and James (2014); Baranowski et al. (2019); Cappello et al. (2023);

among others). Our sensitivity analysis shows that NOSE is not sensitive to the choice ofD; see

supplement for more details. This post-processing is applied throughout all numerical studies

in this chapter.

Adjustment of σ̂

In a finite sample experiment, Assumption (A2) may no longer hold, especially if L is chosen

as a relatively small number. For a sequence {ζi}n−1
i=1 , those ζi whose absolute values exceed

three times the sample standard deviation may cause a much larger variation than the variation

of the zero-center population. To avoid a too large sample deviation, we adopt an empirically

adjusted value of σ̃ rather than using the sample standard deviation. Note that in a standard

normal case, the 3-sigma rule indicates a tail probability of 0.001. Therefore, we first obtain a

trimmed sample of ζi by cutting off the two tails of 0.0005 probability. Then we use the trimmed
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sample standard deviation as an empirical adjustment of σ̃. The adjustment σ̃ is used throughout

the numerical studies in this chapter.

1.4 Simulations

Comprehensive simulations are conducted to evaluate the performance of NOSE by comparing

it with other state-of-the-art methods available in R Archive Network. We consider examples

in Scenarios 1-5 introduced in subsection 1.1.4. For Scenario 5, since most existing approaches

are not available for this scenario when there are multiple responses observed at the same time,

we report the results given by NOSE only. Results of additional simulations under model mis-

specification settings of changes in means with autocorrelated noises, changes in means with

heavy-tailed noises, and changes in autocorrelation coefficient with model misspecification are

deferred to Supplement 1.7.2.1. All numerical studies included in this chapter are conducted

under R version 4.1.0 on a Macbook Air with an M1 CPU and 8GB RAM.

Settings

We consider the following settings. Under each simulation setting, 300 Monte Carlo replicate

datasets are generated.

(S.1) Changes in normal means on equal segments (in Scenario 1). We have n = 400

independent Gaussian observations withK = 7 change-points at (50, 100, 150, 200, 250,

300, 350), leading to 8 segments with segment mean µ = (0, 1.5, 3, 1.5, 3, 0.5, 2, 0). The

common scale parameter is set to be σ =
√
2.

(S.2) Changes of normal mean on unequal-length segments with large variations (in Sce-

nario 1). We have n = 916 independent Gaussian observations with K = 11 change-

points at (81, 134, 178, 267, 346, 413, 528, 577, 636, 741, 822), leading to 12 segmentswith

segment mean µ = (0, 1.23,−0.248, 0.861,−0.534, 1.057, 0.369, 1.331, 0.483,

1.105,−1.101, 0). The common scale parameter is set to be σ = 1. Some jump sizes

are smaller than the within-segment variation, leading to many difficulties in correctly

identifying change-points.
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(S.3) Changes of Poisson parameter (in Scenario 2). We have n = 400 independent

Poisson variables withK = 7 change-points at (50, 100, 150, 200, 250, 300, 350), leading

to 8 segments with segment parameter λ = (1, 0.25, 2, 1, 3, 1.5, 2.5, 1).

(S.4) Changes of normal scale with small variations on the mean (in Scenario 3). The data

are generated to simulate the DRAIP data. We haven = 756 independent Gaussian obser-

vations withK = 7 change-points at (150, 250, 300, 450, 550, 650, 700), leading to 8 seg-

ments with segment scales σ = (1, 1.68, 0.57, 0.20, 2.18, 3.09, 1.83, 1). Meanwhile, we

allow small variations on themean such that the segmentmean isµ = (0.056, 0.047,−0.034,

− 0.017, 0.032, 0.068,−0.042, 0.017).

(S.5) Changes of autocorrelation coefficient in an AR(1) model (in Scenario 4). The data

generating process is Yt = ϕYt−1+ϕ0+ϵt. We haveN = 450 observations with 5 change-

points at t = (50, 100, 200, 300, 400), leading to 6 segments with segment autocorrelation

coefficient ϕ = (0.5,−0.5, 0.65,−0.25,−0.85, 0.45). The model error ϵt ∼ N(0, 1).

(S.6) Changes of regression coefficient in a linear regression model (in Scenario 5). Data

are generated by ytj = β0+θ(t)Xtj+ϵtj, j = 1, 2, t = 1, . . . , 240, where β0 = 0.5, Xtj ∼

U(−2, 2), and ϵtj ∼ N(0, 1). We setK = 5 change-points at t = (40, 80, 120, 160, 200),

with the segment-wise values θ(t) = (1,−1, 0.5,−0.5, 1,−1).

Examples of simulated data are presented in Figure 1.3. Figures 1.3(a) to 1.3(c) find that

some jump sizes are relatively small and the corresponding change-points are imperceptible in

the data stream. Figure 1.3(d) finds that the data with identical signs are clustered in those seg-

ments with positive auto-correlation, and opposite signs of data appear alternately in those seg-

ments with negative auto-correlation. Figure 1.3(e) presents the centered absolute data |Y−EY |

and the true θ(t) together, where the heights of the centered absolute data reflect the changes

in the scale parameters. Figure 1.3(f) presents the covariates and the responses grouped by the

state t and labels the curves by the segments at which they are located.
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Figure 1.3: Examples of generated data in simulations. (a) to (d), data stream (in points) and θ(t) (in red lines).
(e), centered absolute data stream |Yi − E(Yi)| (in dashed line) and exp{θ(t)} (in red line). (f), data grouped by
t (in polylines labeled by segments). (a), S.1 (Scenario 1); (b), S.2 (Scenario 1); (c), S.3 (Scenario 2); (d), S.5
(Scenario 4); (e), S.4 (Scenario 3); (f), S.7 (Scenario 5).

Estimators

In all simulations, we adopt a unified setting of truncation number L = 25 and the prior belief

on the minimum distance between change-pointsD = 15 for NOSE. We also present the more

general choice of D = 2 in the supplement to validate the robustness to the choice of D. We

run 4 independent parallel MCMC chains and obtain 1200 scans in each chain thinned from a

total 15000 after a burn-in period of 3000 iterations. Finally, we get 4800 posterior samples for
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change-point discrimination. Under such a MCMC setting, in all simulation scenarios, we ob-

tain approximately 1000 average effective sample size of θ(t) in each replication, guaranteeing

the reliability of posterior inference.

Competitors vary among different settings since none of them can be applied to all the

above simulation settings. For settings S.1, S.2 and S.3, where the mean parameter changes,

we compare with the NOT method by Baranowski et al. (2019) in package not, the TUGH

method by Fryzlewicz (2018) in package breakfast (Anastasiou et al., 2022), the MOSUM

method by Birte and Claudia (2018) in package mosum (Meier et al., 2021), the FDRSeg method

by Li et al. (2016) in package FDRSeg, the SMUCE method by Frick et al. (2014) in package

StepR, the WBS method by Fryzlewicz (2014) in package wbs, and the PELT method by Kil-

lick et al. (2012) in package changepoint (Killick and Eckley, 2014), ; for setting S.4, where

the scale parameter changes, we compare with NOT, SMUCE, and PELT methods; for setting

S.5, where data are autocorrelated, we compare with the WBSTS method by Korkas and Pry-

zlewiczv (2017) in pacakge wbsts and the B-P method by Bai and Perron (2003) in package

struchchange (Zeileis et al., 2002). The tuning parameters for the competing methods are set

as the default values in the corresponding R packages. We do not present results by Bayesian

approaches such as StepSignalMargiLike (Du et al., 2016) and solo.cp (Cappello et al.,

2023) here. We find the results of StepSignalMargiLike are sensitive to the choices of a

maximum number of segments and cannot find a stable estimation of the number; solo.cp

cannot detect most of change-points in the mean under our simulation settings. We conjecture

the reason is that solo.cp identifies change-points based on the jump probability, which may

fall around 1/2 when the jump sizes are relatively small, say, our simulation settings.

Assessments and results

Several assessments are employed to measure the accuracy of the detected number of change-

points and the accuracy of locations of estimated change-points. We report the frequency table

for K̂ −K, the difference between the number of detected change-points and the true number

of change-points to evaluate the accuracy of the detected number of change-points. To measure

the accuracy in locations, three assessments are considered, precision, recall, and the scaled
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Hausdorff distance (Hausdorff). For all true change-points, we count one true positive (TP) if

there is at least one change-point identified within a window of 10 data points and compute the

number of false positive (FP) as the number of predicted changes minus TP. Let K be the true

number of change-points. Then precision is computed as TP/(TP+FP), and recall is computed

as TP/K. The scaled Hausdorff distance is computed as

dH = n−1E[max{ max
j=0,··· ,K+1

min
k=0,··· ,K̂+1

|τj − τ̂k|, min
k=0,··· ,K̂+1

min
j=0,··· ,K+1

|τ̂k − τj|}],

where t0 = τ0 < · · · < τK < τK+1 = tN and t0 = τ̂0 < τ̂1 < . . . < τ̂K̂ < τ̂K̂+1 = tN denotes

true and estimated change-points, respectively. The scaled Hausdorff distance takes values in

[0, 1] and is the smaller the better.

From Table 1.1 we find that NOSE outperforms in the frequency of correctly specifying

the number of change-points in all settings. In contrast, other competitors tend to under detect

the number of change-points except for the setting S.3, where changes take place on both the

mean and variance of data. Although the jump sizes under these simulation settings (especially

setting S.2) are not significant enough to make the changes be identified by eyes, NOSE still

enjoys the highest recall in all settings, demonstrating its capability to correctly identify change-

points. These results may be evidence that the performances of segmental approaches seem

to be less sensitive to small jump sizes than our non-segmental approach, particularly when

the nuisance parameter (say, the scale parameter σ in the mean-shifted model) has substantial

impacts on the variation of the whole data stream. The precision and Hausdorff distance given

by NOSE outperforms under setting S.3, and are competitive under other settings. Note that

other winners on precision and scaled Hausdorff distance actually underestimate the number of

change-points, while a most parsimonious estimator usually brings higher precision and lower

Hausdorff distance. Under setting S.6, NOSE correctly specifies all change-points in almost

all replications, with pretty high precision and recall. In summary, NOSE performs to be the

most competitive and robust to correctly specify the number of change-points and estimate their

locations accurately.
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Table 1.1: Results of change-points detection under settings S.1 to S.5 among 300 Monte Carlo replicates. The
best results are bold.

Setting Method Frequency of K̂ −K Precision Recall dH × 102

≤ −3 -2 -1 0 +1 +2 ≥ +3
S.1 NOSE 1 1 33 252 13 0 0 0.95 0.94 2.1

NOT 9 12 31 227 19 2 0 0.93 0.91 2.4
SMUCE 47 68 130 55 0 0 0 0.85 0.7 3.1
WBS 16 35 95 138 14 0 2 0.93 0.84 2.5

FDRSeg 6 16 63 171 29 10 5 0.90 0.88 3.0
PELT 1 6 12 210 52 16 3 0.91 0.93 2.8
TUGH 0 0 1 217 51 14 5 0.96 0.93 2.9
MOSUM 3 3 72 181 41 0 0 0.98 0.93 2.6

S.2 NOSE 15 48 77 144 15 1 0 0.93 0.87 1.5
NOT 52 91 49 101 7 0 0 0.94 0.82 1.4

SMUCE 136 113 50 1 0 0 0 0.86 0.67 2.1
WBS 68 120 74 38 0 0 0 0.95 0.79 1.2

FDRSeg 28 71 74 100 23 2 2 0.88 0.81 2.2
PELT 38 101 42 107 12 0 0 0.83 0.83 1.4
TUGH 12 37 53 129 48 17 4 0.97 0.84 2.4
MOSUM 71 97 98 30 4 0 0 1 0.80 1.2

S.3 NOSE 4 28 113 148 6 1 0 0.90 0.82 2.9
NOT 37 71 77 90 23 1 1 0.87 0.74 3.2

SMUCE 10 68 151 69 2 0 0 0.89 0.76 3.0
WBS 1 5 34 41 65 63 85 0.64 0.76 4.8

FDRSeg 0 3 6 8 20 22 241 0.47 0.83 5.7
PELT 25 50 102 61 38 15 9 0.77 0.69 3.5

S.4 NOSE 0 75 71 150 4 0 0 0.84 0.75 2.3
NOT 25 221 39 14 0 0 1 0.91 0.67 1.5

SMUCE 40 211 49 0 0 0 0 0.64 0.64 1.2
PELT 1 153 58 83 5 0 0 0.88 0.72 2.0

S.5 NOSE 0 0 98 154 46 2 0 0.85 0.82 2.6
WBSTS 4 36 74 122 48 14 2 0.61 0.47 2.8
B-P 102 68 128 2 0 0 0 0.89 0.38 1.8

S.6 NOSE 0 0 1 293 6 0 0 0.99 1 0.75

1.5 Applications

1.5.1 DRAIP data: shifts in scale

We report detection results on DRAIP data given by NOSE here. We set L = 25 and D =
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Figure 1.4: DRAIP data and change-point detection results by NOSE. Top, original data and locations of esti-
mated change-points (in vertical lines); bottom, centered absolute data and estimated segment-wise scale parame-
ters (in the horizontal polyline).
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15 in this case. As shown by Figure 1.4, NOSE detects 7 change-points. We summarize the

Intervals Estimated SD Sample SD Scale jump sizes
[1, 37] 1.000 1.173 -
[38, 137] 1.296 1.369 0.196
[138, 206] 1.778 1.873 0.504
[207, 336] 3.266 3.500 1.627
[337, 426] 2.666 2.570 -0.930
[427, 510] 5.708 5.863 3.293
[511, 630] 2.437 2.426 -3.437
[631, 756] 1.599 1.599 -0.827

Table 1.2: Intervals, intervals partitioned by estimated change-points; Estimated: standard deviation estimated
by NOSE; Sample SD: sample SDs on partitioned intervals; Jump sizes, jump sizes calculated from true SDs.

piecewise standard deviations and estimated standard deviations given byNOSE on the intervals

partitioned by the estimated change-points as well as all jump sizes in Table 1.2. The estimated

scale parameters and sample standard deviations are quite close, and both suggest a shift in the

estimated change-points, supporting the detection result by NOSE. According to Table 1.2, the

first jump size is pretty small, and no wonder why other segmental approaches miss the point.

Although the 4th jump size on t = 336 is absolute enough to be observed by eyes, it is also

missed by other segmental approaches. We conjecture the reason is that the dispersion of the

data on the interval [207, 427] is relatively large. As evidence, Figure 1.5 shows the Q-Q plot

and the density curve of the data on the interval, where we find the samples on the interval are

too dispersed to be Gaussian. It indicates that may hinder the traditional segmental approaches

detecting the change-point on the interval. The results of simulations based on the DRAIP

data are displayed in Supplement 1.7.2.2 The simulation results demonstrate the difficulty of

correctly specifying all the change-points in DRAIP data. Even so, NOSE still outperforms

other approaches.

1.5.2 ACGH data: shifts in mean

In the second example, we analyze the public dataset of DNA copy numbers using ACGH for

43 different individuals with a bladder tumor (Stransky et al., 2006), which is available in R

package ecp (James et al., 2015). For each individual, the copy number is recorded on 2215

locations. We aim to detect the changes in the mean of the copy number. Hence we employ
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Figure 1.5: Q-Q plot and density plot of DRAIP data on interval [207, 427]. Left, Q-Q plot; right, density plot.

NOSE for Gaussianmean changes under scenario (i). As the number of change-points is usually

considered to be quite large, we setL = 55 to incorporate sufficiently many change-points. The

prior belief on the minimum distance between change-points is set as D = 15. We display the

analysis result of the 37th individual in this chapter.
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Figure 1.6: Plot of ACGH data (in black points) and estimated locations of change-points (in red vertical lines).
(a), NOSE; (b), HSMUCE; (c), NOT; (d), R-FPOP.

We display detection results of NOSE, HSMUCE (Pein et al., 2017) and NOT in Figures

1.6(a), 1.6(b) and 1.6(c), where they detect 13, 16, and 15 change-points, respectively. Despite

some similarities among them, HSMUCE and NOT are more likely to create short segments gath-

ering several data points that are far away from the means of adjacent segments. We conjecture
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the points in these short segments are outliers. To eliminate the influence of outliers, we employ

the outlier-robust R-FPOP method (Fearnhead and Rigaill, 2019) equipped with the Huber loss

and penalized value 1.345 as default; see Figure 1.6(d). We find the data points in those short

segments divided by HSMUCE and NOT are treated as outliers by R-FPOP. By comparison,

NOSE and R-FPOP produce almost the same segmentation, with the only difference being the

segment (524, 583), where NOSE creates a new segment while R-FPOP does not. Since this

segment contains 60 data points, we feel that it is more appropriate to partition these points into

a new segment rather than identifying them as outliers.

We generate simulated data from the estimation results by NOSE in Figure 1.6(a). Since

the simulated data are exactly Gaussian without outliers, the results of NOSE, HSMUCE, and

R-FPOP are stable and similar to each other, while NOT slightly over-detects the change-points.

Details are deferred to Supplement 1.7.2.3.

1.5.3 US age-specific fertility rate (ASFR) data: structural changes in lin-

ear models

The declining birth rates in many developed countries arouses much interest to the analysis of

the annual Age-Specific Fertility Rate (ASFR). Given the year t, letBtj be the number of births

during the year to females of a specified age j, and Ntj be the number of females of the age j

in that reference year. In year t, the ASFR ytj is defined as the ratio between Btj and Ntj . We

collect ASFR data in the US from 1940 to 2021 at ages 22 to 35, the age period which covers

the age with the highest ASFR. Then totally we obtain 1134 responses ytj .

The relationship between the ASFR and specific ages from 22 to 35 seems to be linear.

Hence, we consider a linear model with changes in the regression coefficient to characterize

their association. We consider following linear models

ytj = β0 + θ(t)Xtj + ϵtj, t = 1, . . . , 81, j = 1, . . . , 14,

where the regressor X·j = 21 + j, the regression coefficient θ(t) may change along with time

t, β0 is a fixed intercept and ϵts ∼ N(0, σ2) are i.i.d. model errors. We apply NOSE to detect
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changes of θ(t), where the state of data is set to be the year t. We set L = 25 and the minimum

distance threshold D = 15.
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Figure 1.7: Visualization of the pre- and post-change-points ASFR data in US. (a), relationship between age and
ASFR before year 1992; (b), the relationship between age and ASFR after year 1992.

Only one change-point is detected by NOSE at t = 1992. To understand the effect of

the change-point, we plot the curves of ASFR versus age before and after 1992 in Figure 1.7.

From the figure, we can clearly see that before the change point, the ASFR decreases almost

linearly with age, and thus the ASFR is highest at age 22. However, after the change point,

the association between ASFR and age is non-linear and even non-monotonic, with ASFR first

increasing and peaking at age 29 and then decreasing.

1.5.4 House prices in London Borough of Newham: structural changes in

AR(1) models

We further explore a real dataset, the average monthly property price Pt in the London Borough

of Newham. We take the average of all properties and select the data recorded from January

2010 to November 2020 and we totally have 131 observations. This dataset was once analyzed

by Fryzlewicz (2023) to identify the shortest interval of change-points under an AR(1) model.
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We adopt the AR(1) model Pt = θ(t)Pt−1 + θ0 + ϵt, where the autocorrelation coefficient θ(t)

is treated as the global parameter that may change, the intercept θ0 is fixed, and ϵt ∼ N(0, σ2)

are independent model errors. We set L = 25 and D = 15.

As shown in Figure 1.8, NOSE detects 1 change-point located in Oct 2016 (location 82).

The date of change-point is close to the beginning of the vote of Britain’s EUmembership refer-

endum, indicating that the structural change may be caused by the event. The WBSTS method

cannot detect change-point after processing; the B-Pmethod provides a similar result of change-

point detection, where the estimated location is 79. Meanwhile, the estimated confidence in-

terval given by R package nsp (Fryzlewicz, 2021) is (24, 97), which covers the change-point

estimated by NOSE.
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Figure 1.8: House prices in London Borough of Newham and locations of estimated change-points given by
NOSE (the red line).

1.6 Discussion

In this chapter, we propose NOSE, a non-segmental change-point detection approach that glob-

ally models the abrupt change scheme rather than taking a segment-wise view. NOSE first

draws posterior inference to the process of jump sizes and then identifies the change-points

based on a 3-sigma threshold. Particularly, the proposed NOSE methodology in this chapter

has two pieces of uniqueness.

i.) NOSE models the entire abrupt change process directly through θ(t) (≡ θ) rather than

aggregating all sets of segment parameters in prevailing methods. In this sense, NOSE can

be viewed as an infinite-dimensional extension of StepSignalMargiLike (Du et al., 2016),

which represents the abrupt change scheme through a finite-dimensional vector θ1:m with each
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entry being the latent feature of a segment. Their m is the maximum number of segments and

needs to be prespecified. Thus, any misspecification of m is risky to their results of change-

point detection. In contrast, the atomic expression of θ(t) in NOSE looks as if a much “denser”

segmentation than StepSignalMargiLike so that m can go to infinity. Hence, NOSE is ex-

empted from the sensitivity of the upper bound of the number of segments.

ii.) NOSEmay be the first approach that deals with the sparsity of the vector of jump heights

(vertical), unlike existing penalized approaches that focus on the sparsity of the vector of jump

locations (horizontal). In detail, NOSE identifies change-points by the posterior estimates (ζi)

of jump heights/sizes (di) on states (i), where any non-negligible jump height/size indicates a

change. In the broad sense, NOSE may be viewed as a vertical extension of SMUCE (Frick

et al., 2014) in searching for sparse solutions under a high-dimensional regression setting. Dif-

ferent sparsity reviews lead to different theoretical properties: SMUCE reaches minimaxity

in the estimation of change locations (up to a logarithm) and consistency of estimation of the

number of change-points under the frequentist paradigm; NOSE obtains the posterior minimax

optimality in recovering the jump height vector and posterior consistency of both the number

and the locations of change-points under the Bayesian paradigm.

We may try to explain the success of NOSE from the perspective of cohesion and repulsion

in clustering (Natarajan et al., 2023). To some extent, change-point detection may be viewed

as an ordered clustering task on sequential data. Those data points within the same segment

can be viewed as a cluster. Quoting Natarajan et al. (2023), “clusters are composed of objects

which have small dissimilarities among themselves (cohesion) and similar dissimilarities to

observations in other clusters (repulsion)”. Intuitively, jump size may be viewed as a metric of

dissimilarity between data points. In our approach, the nearly black jump size vector indicates

that there are no dissimilarities within a cluster but significant dissimilarities across different

clusters, leading to an ideal clustering under the cohesion-repulsion principle.

The computation cost of NOSE consists of two parts: the time for MCMC sampling and the

time for change-point discrimination. The complexity of the latter is obvious O(n) (scanning

along then−1 jump sizes), whilemeasuring the complexity of theMCMCprocedure is difficult.

Note that the computation of NOSE is feasible, though we admit that the computation cost
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is affected by the data size n and the truncation number L. As a remedy, we tend to select a

not-too-large L in our numerical studies, corresponding to a relatively large minimum distance

D (we select L ≈ n/D). In the future, we plan to develop variational Bayes (VB) procedures

to speed up the implementation of the NOSE approach. The VB algorithms in all application

scenarios are non-trivial and case-specific, worthwhile for a separate work.

1.7 Supplement

1.7.1 Proofs

1.7.1.1 Proof of Theorem 1.1

Before proving Theorem 1.1, the necessary propositions and a lemma are given as follows.

Proposition 1.1 (Gaussian sequence prior). Let S ⊂ {1, . . . , p} be the non-zero coordinates of

the jump size vector d of cardinality |S|. Let dS be the set of non-zero values {di, i ∈ S}. Let

πLn be a prior selects a dimension s from {0, 1, . . . , L}. Under the priors for ξ and h in (1.4)

and (1.5), for a fixed truncation number L, the prior for d with non-zero coordinates S is in the

form of

π(d) ∝ 1(
Ln

|S|

)πLn(|S|)gS(dS)δ0(dSc). (1.8)

Proof. Drawing a sample of d, with non-zero coordinates set S from priors (1.4) and (1.5) can

be divided into the following steps

1. Draw ξ so that S ⊂ ξ1:Ln .

2. Given ξℓ, draw indicators Zℓ so that
∑Ln

ℓ=1 Zℓ = |S| and assign those non-zero indicators

to locations S.

3. Given the non-zero indicators Zℓ, draw dS from the slab term of hℓ and assign zeros to

other coordinates.
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In terms of step 1, recall that a draw of ξ1:L is a draw of L elements of {1, . . . , p} without

replacement. Hence we have

Pr{S ⊂ ξ1:L} =
{(

p

Ln

)(
Ln

|S|

)}−1

.

In step 2, we immediately have

πLn(|S|) = Pr {|Z| = |S|} .

In step 3, we immediately have that

gS(dS) =
∏
ℓ∈S

F0

becomes the product of Laplace density. Then the prior form in (1.8) is obtained as the product

of the above terms.

Remark 1.1. Note that in the limiting case Ln = p, the prior in the form (1.8) takes the same

form as the prior (1.2) in Castillo et al. (2015). Similarly, the dimension prior πLn in (1.8) plays

the same role of πp in their seminal work and replaces πp. Consequently, it suffices to study the

properties of πLn(s) with Ln →∞, and definitely, p = (n− 1)→∞.

In terms of the properties of dimension prior πLn , we shall show that πLn has an exponential

decrease by appropriate selection of the hyperparameters (a, b) in the Gamma prior for α, given

that Ln is sufficiently large. We start from the following lemma of Poisson approximation.

Lemma1.1 (Serfling’s Poisson approximation). LetX1, . . . , Xn be (possibly dependent) Bernoulli

random variables with p1 = Pr{X1 = 1} and

pi = Pr{Xi = 1|Fi−1},

where Fi denotes the σ-field generated by X1, . . . , Xi. LetWn =
∑n

i=1Xi and Y be Poisson
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with mean λ =
∑n

i=1E(pi). Then

1

2

n∑
k=1

|Pr{Wn = k} − P{Y = k}| ≤
n∑

i=1

E(p2i ) +
n∑

i=1

E|pi − E(pi)|.

The result of Lemma 1.1 will be used to prove the following proposition. Our assertions are

given under any fixed Ln.

Proposition 1.2 (Exponential decrease). Let a = c1L
−c3
n , b = c2L

c4
n for some constants c1, c2 >

0 and c3 > c4 + 1 ≥ 2 in prior (1.5). The following assertion holds as n, Ln →∞.

There exists a constant C0 ∈ (0, 1),

πLn(s) ≤ C0πLn(s− 1), for s = 1, . . . , Ln. (1.9)

Proof. We first determine the prior πLn in Step 2. Obviously, we have

πLn(s) =

∫
R
Pr{|d| = s|α}π(α)dα.

Hencewe study the conditional probabilityPr{|d| = s|α} first, or equivalently,Pr {|Z| = s|α}.

Note that ηℓ have a Markov structure and for ℓ > 1,

p∗ℓ = Pr{Zℓ = 1|Fℓ−1} = Pr{Zℓ = 1|ηℓ−1} = ηℓ|ηℓ−1.

Following Teh et al. (2007, Eq. 14), given fixed α, for ℓ > 1,

f(ηℓ|ηℓ−1) = αη−α
ℓ−1η

α−1
ℓ I(0 < ηℓ < ηℓ−1).
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To avoid confusion, we denote p∗1 = p1. Then, one can derive

E(p∗1) =

∫
αηα−1

1 dη1 =
α

α + 1
,

E(p∗2) =

∫ 1

0

∫ η1

0

αη−α
1 ηα2 dη1dη2 =

(
α

α + 1

)2

,

...

E(p∗Ln
) =

∫
0<ηL<···<η1<1

αLnηαLn

Ln−1∏
ℓ=1

η−1
ℓ dη1 . . . dηLn

=

(
α

α + 1

)Ln

.

Similarly, we have

E(p∗21 ) =
α

α + 2
; E(p∗2ℓ ) =

(
α

α + 2

)ℓ

, ℓ > 1.

We hence obtain the Poisson approximation of the probability Pr{|d| = s|α}, denoted as

π0
α,Ln

. As n, Ln →∞,
∑

ℓ≥1E(p
∗
ℓ) = α. We have π0

α,∞ = π0
α = Pois(α).

By integrating out α under the Gamma prior in (1.5) we obtain the approximated form

for πLn , denoted as π0. With the hyperprior Gamma(a, b), π0 becomes a truncated negative

binomial distribution

π0(s) ∝ Γ(s+ a)

s!Γ(a)

(
b

b+ 1

)s(
1

b+ 1

)a

, s = 0, 1, 2, . . . , Ln.

For some (a, b) fixed with given Ln,

π0(s+ 1)

π0(s)
=

{
1− 1− a

s+ 1

}(
b

b+ 1

)
, s = 0, . . . , Ln − 1.

And hence it naturally satisfies assertion (1.9) with C0 = b/(b+ 1).

By the fact that
∏M

m=2(1− 1/m) =M−1, with b = c2L
c4
n with c4 ≥ 1 we have

π0(s) ≥ Q−1
n,ss

−1, s ≥ 1,



CHAPTER 1. NON-SEGMENTAL CHANGE-POINT DETECTION 48

where Qn,s acting as the denominator related to Ln to guarantee that
∑Ln

s=1 π
0(s) = 1. Since

logn ≤
∑n

i=1 i
−1 ≤ 1 + logn, we have

π0(s) ≥ Q0

s(1 + logLn)
(1.10)

for some finite constant Q0 unrelated to s.

We then show that the approximated distribution π0 is sufficiently close to the true πLn and

hence assertion (1.9) holds for πLn . By Jensen’s inequality, for ℓ ≥ 1,

E|p∗ℓ − E(p∗ℓ)| ≤
√
Var(p∗ℓ)

=

√(
α

α + 2

)ℓ

−
(

α

α + 1

)2ℓ

<

√
ℓ

(
α

(α + 1)2(α + 2)

)(
α

α + 2

)ℓ

< ℓ

√(
α

(α + 1)2(α + 2)

)(
α

α + 2

)ℓ

Hence we have

Ln∑
ℓ=1

E|p∗ℓ − E(p∗ℓ)| <
∞∑
ℓ=1

E|p∗ℓ − E(p∗ℓ)|

<
α

(α + 1)(
√
α + 2−

√
α)2

<
α

(α + 1)2

Consequently, by Lemma 1.1, for any s = 0, 1, . . . , L, we have

|Pr{|d| = s|α} − π0
α,L(s)| ≤

(
1 +

1

(α + 1)2

)
α < 2α

The RHS of the above inequality is obtained by taking L→∞ on the RHS of Lemma (1.1).

Finally, we have

|πLn(s)− π0(s)| =
∫ +∞

0

|Pr{|d| = s|α} − π0
α,L(s)|π(α)dα.
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Again by Jensen’s inequality and (1.10), for a = c1L
−c3
n , b = c2L

c4 , and c3 > c4 +1, we obtain

|πLn(s)− π0(s)| ≤ 2ab = o[min
s≥0

π0(s)].

Consequently, for all s,

lim
Ln→∞

πLn(s+ 1)

πLn(s)
=
π0(s+ 1)

π0(s)
.

Since b/(b + 1) is bounded away from zero, for sufficiently large Ln, assertion (1.9) always

holds.

Since Theorem 1.1 gives the same assertion as Castillo and van der Vaart (2012, Thereom

2, recovery), we only need to check their conditions.

Proof. For the support of non-zero coordinates ofd, the density gS =
∏|S|

s=1 F0, which is product

of |S| univariate densities. Meanwhile, the Laplace density naturally satisfies condition (2.3)

in Castillo and van der Vaart (2012) with a finite second moment. The assertion (1.9) implies

that the prior πLn on dimension has a strict exponential decrease. Furthermore, assertion (1.10)

implies that

Kn log(Ln/Kn) ≥M log(
1

πLn(Kn)
)

for a universal constantM . Then all conditions required by Castillo and van der Vaart (2012,

Thereom 2, recovery) are satisfied.

1.7.1.2 Proof of Theorem 1.3

We introduce some necessary notations and present some auxiliary lemmas before proving The-

orem 1.3.

Under (1.6), for any given data y, the difference y∗ ∼ N(d0, Ip). Let fp,d be the density of

N(d, Ip). For a Borel measurable subset B of the parameter space, the posterior probability of

B is written as

Πn,Ln(B|y∗) =

∫
B

fp,d(y
∗)

fp,d0 (y
∗)
dπ(d)∫ fp,d(y∗)

fp,d0 (y
∗)
dπ(d)

=
Nn(B)
Rn

, (1.11)
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where π(d) is the prior distribution of d given by (1.8).

We have the following lemma about the lower bound of the denominator Rn.

Lemma 1.2 (Lemma 2 in Castillo et al. (2015)). For sufficiently large p and any d0 ∈ Rp, with

support S0,Kn = |S0|, and gS being the product of Laplace density with scale parameter λ, we

have, almost surely,

Rn ≥
πLn(Kn)

L2Kn
n

exp(−λ||d0||1 − 1).

Lemma 1.2 is similar to Lemma 2 in Castillo et al. (2015) by transferring p to Ln. The proof

is analogous to theirs.

We also introduce the following lemma to learn about the tail probability of the dimension

prior πLn(s).

Lemma 1.3 (Lemma 2.1 in Ohn and Kim (2022)). For any fixed α, for Zℓ following the prior

distribution in (1.5), we have for any s ≥ 0

Pr{|Z| > k|α} ≤ 14αk+1

3(α + 1)k
.

Lemma 1.3 is a special case with κ = 0 and p = 1 of the two-parameter construction of

IBP weights in Ohn and Kim (2022). Based on Lemma 1.3, we immediately have the following

corollary.

Corollary 1.4 (Tail probability of πLn(s)). Let a = c1L
−c3
n , b = c2L

c4
n with c1, c2 > 0, c3 >

c4 + 2 ≥ 3 in the Gamma hyperprior in (1.5). For any k ≥ 0, S ∼ πLn , as Ln →∞, we have

Pr{S > k} = o(L−2(k+1)
n ).

Proof.

Pr{S > k} =
∫
Pr{|Z| > k|α}Gamma(α; a, b)dα

≤ 14

3
E

(
αk+1

(α + 1)k

)
.
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For any k ≥ 1, xk+1/xk is concave and thus, by Jensen’s inequality we have

E

(
αk+1

(α + 1)k

)
≤ [E(α)]k+1

[E(α + 1)]k
= o(L−2(k+1)).

The following lemma provides the property of the adaptive precision parameter λn(δ).

Lemma 1.4 (Adaptive λn(δ)). Given δ > 0, for λn(δ) in (1.7), as Kn/p → 0, n, p, Ln → ∞,

we have

sup
d0∈l̃0[Kn]

Pd0{λn(δ)||d0||1 ≥ δ} < 1

p
.

Proof. As y∗i ∼ N(d0i, 1), |y∗i | follows a folded normal distribution so that

E(|y∗i |) =
√

2

π
exp(−d20i) + d0i(1− 2Φ(−d0i)),

Var(|y∗i |) = d20i + 1− E2(|y∗i |).

For d0i = 0, E(|y∗i |) =
√

2/π ≡ µ0,Var(|y∗i |) = 1− µ2
0.; for d0i ̸= 0, as Ln →∞, E(|y∗i |)→

d0i,Var(|y∗i |)→ 1. Therefore, for sufficiently large p, we have

E( ¯|y|)→ µ0 +
1

p
||d0||1,Var( ¯|y|)→

1

p
.

Then, by Chebyshev’s inequality, we have

Pd0{λn(δ)||d0||1 ≥ δ}

= Pd0{ ¯|y| ≥
1

p
||d0||1}

= Pd0{| ¯|y| − E( ¯|y|)| ≥ µ0}

≤ 1

pµ2
0

<
1

p
.

Now we start the proof of Theorem 1.3.



CHAPTER 1. NON-SEGMENTAL CHANGE-POINT DETECTION 52

Proof. Let σ(y∗) be the sigma field generated by the data y∗. Lemma 1.4 indicates that there

exists a Borel set Bn ∈ σ(y∗) so that Pd0(Bc
n) < 1/p and λn(δ)||d0||1 < δ holds on Bn.

Note that

Ed0Πn,Ln(B|y∗) =

∫
Nn(B)
Rn

fp,d0(y
∗)dy∗

= Rn−1

∫ ∫
B
fp,d(y

∗)dπ(d)dy∗

= Rn−1

∫
B

∫
fp,d(y

∗)dy∗dπ(d)

= Rn−1π(B).

Hence, by Lemma 1.2 and Corollary 1.4, we have

Ed0Πn,Ln{d : |d| > Kn|y∗}

≤ Pd0(Bc
n) + Ed0 [π(|d| > Kn)1Bn]

<
1

p
+R−1

n π(|d| > Kn)

≤ 1

p
+Q1Kn log(Ln)L

−2
n exp(λ||d0||1),

<
1

p
+Q1Kn log(Ln)L

−2
n exp(δ),

where Q1 = (1 + logLn)(eQ0 logLn)
−1 with Q0 given by (1.10). Obviously, the RHS of the

last inequality on the above tends to zero as n, Ln →∞.

1.7.1.3 Proof of Corollary 1.3

Proof. Corollary 1.2 implies that dMAP
i is a consistent estimator of d0i. Therefore, with the

cut-off of l̃0[Kn], it suffices to showing that, forM in Theorem 1.2,

inf
d0∈l̃0[Kn]

Ed0Πn,Ln

{
ψ <

M

3

√
Kn log(Ln/Kn)|y∗

}
→ 1,

for as n, Ln →∞. Since

ψ0 = p−1/2||d0 − d̄01p||2 ≤ p−1/2||d0||2,
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therefore, 3ψ0 < M
√
Kn log(Ln/Kn) by Assumption (A2).

Corollary 1.2 indicates that d̄→ d̄0.

Then by triangle inequality, we have

Ed0Πn,Ln

{
ψ <

M

3

√
Kn log(Ln/Kn)|y∗

}
≥

Ed0Πn,Ln

{
ψ0 + p−1/2||d− d0||2 <

M

3

√
Kn log(Ln/Kn)|y∗

}
.

Theorem 1.1 indicates that the RHS of the above inequality tends to 1.

1.7.1.4 Proof of Theorem 1.4

Proof. It is trivial that

|
∞∑
ℓ=1

hℓI(ξℓ ≤ t)| ≤
∞∑
ℓ=1

|hℓ|.

Then, for any integersm1 < m2, we have

P (

m2∑
ℓ=m1+1

|hℓ| > ϵ) ≤ P

(
m2⋃

ℓ=m1+1

|hℓ| >
ϵ

m2 −m1

)

≤
m2∑

ℓ=m1+1

P

(
|hℓ| >

ϵ

m2 −m1

)

≤
m2∑

ℓ=m1+1

[
1− F0

(
ϵ

m2 −m1

)]
ηℓ

+ F0

(
−ϵ

m2 −m1

)
ηℓ

≤ 2

m2∑
ℓ=m1+1

ηℓ.

This inequality indicates that if
∑∞

ℓ=1 ηℓ is converged, then we have
∑∞

ℓ=1 |hℓ| converged ac-

cording to probability. To prove the convergence of
∑∞

ℓ=1 ηℓ, it is equivalent to prove
∑∞

ℓ=1E(ηℓ) <

∞. Firstly, we have

E(ηℓ) =
ℓ∏

j=1

E{E(pj|α)} =
{
E

(
α

1 + α

)}ℓ

.
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Then by Jensen’s inequality, for any fixed a, b in the Gamma prior,

∞∑
ℓ=1

E(ηℓ) ≤
∞∑
ℓ=1

{
ab

1 + ab

}ℓ

= ab <∞.

1.7.2 Additional simulations

1.7.2.1 Model misspecification

We conduct additional simulations under the case where our method meets with model mis-

specification, including heavy-tailed noises in mean-shifted models, auto-correlated noises in

mean-shifted models, and an AR(2) model with structural changes. We generate simulated data

under the following settings and conduct 300 Monte Carlo replicates under each setting.

(MS.1) Changes of means with heavy tailed noises. We generate n = 400 yi = µi + ϵi,

where ϵi ∼
√
2
−1
t(4) are i.i.d. heavy-tailed noises. We set K = 7 change-points at

(50, 100, 150, 200, 250, 300, 350), leading to 8 segmentswith segmentmeanµ = (0, 1.5, 3,

1.5, 3, 0.5, 2, 0). This setting is similar to setting S.1 except for the heavy-tailed noise

type.

(MS.2) Changes of means with auto-correlated noises. We generate n = 400 yt = µt+ϵt,

where ϵ1 ∼ N(0, 1), ϵt = 0.5ϵt−1 + αt, and αt ∼ N(0, 1) are i.i.d. Gaussian noises. We

take the same setting on the means µ as in setting S.1.

(MS.3) Changes of auto-correlation coefficients in mixture of AR(1) and AR(2) model.
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We generate n = 450 observations and y1 ∼ N(0, 1). For t ≥ 2,

yt =



0.5yt−1 + ϵt, t ≤ 50;

− 0.5yt−1 + ϵt, 50 < t ≤ 100;

0.65yt−1 + 0.35yt−1 + ϵt, 100 < t ≤ 200;

− 0.25yt−1 + ϵt, 300 < t ≤ 300;

− 0.85yt−1 − 0.35yt−2 + ϵt; 300 < t ≤ 400;

0.45yt−1 + ϵt, 400 < t ≤ 450.

Here ϵt ∼ N(0, 1) are i.i.d. Gaussian noises. Under this setting, K = 5 change-points

are located at (50, 100, 200, 300, 400).

Examples of the simulated data under casesMS.1 toMS.2 are presented in Figures 1.9(a)

to 1.9(c). In Figure 1.9(c), the red line denotes the first order auto-correlation coefficient. Note

that on the interval (100, 200), both the first and the second order auto-correlation coefficients

are positive and hence the signs of the data on the interval are grouped together.
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Figure 1.9: Examples of generated data in simulations. (a) to (c), settingsMS.1 toMS.3.

Besides competitors under simulation settings S.1 to S.5, we add the heavy-tailed version of

package not Baranowski et al. (2019) under settingMS.1, named NOT-HT; we also include a

nonparametric estimator of change-point changepoint.np by Haynes et al. (2017) in settings

MS.1 andMS.2.

Results are given by Table 1.3. We find that under settingMS.1, NOSE is comparable with

the best approach even though under model misspecifications. Under settingMS.2, MOSUM

outperforms since it does not require independent assumptions on the data stream with shifts in
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the mean. Under settingMS.3, although wbsts has a higher frequency of correct detection of

the number of change-points, their estimation of the locations is poor, leading to much lower

precision and recall, and higher Hausdorff distance.

Table 1.3: Results of change-points detection under model mispecification settingsMS.1 to MS.3 among 300
Monte Carlo replicates. The best results are bold.

Setting Method Frequency of K̂ −K Precision Recall dH × 102

≤ −3 -2 -1 0 +1 +2 ≥ +3
MS.1 NOSE 1 3 4 260 31 1 0 0.97 0.98 1.6

NOT-HT 0 0 0 295 4 1 0 0.99 0.98 0.9
SMUCE 0 0 1 107 63 59 70 0.84 0.99 3.8
WBS 0 0 0 34 18 59 189 0.67 0.99 5.6

FDRSeg 0 0 0 15 8 22 255 0.55 0.99 6.7
PELT 0 0 0 73 45 87 95 0.80 0.99 3.8

PELT-np 0 0 0 227 43 26 4 0.95 0.99 1.8
TUGH 0 0 0 242 48 9 1 0.97 0.99 1.8
MOSUM 0 0 3 255 41 1 0 0.98 0.99 1.9

MS.2 NOSE 0 2 19 87 89 65 38 0.70 0.80 5.2
NOT 1 0 9 57 32 49 153 0.64 0.87 6.1

SMUCE 0 0 1 2 7 27 264 0.55 0.91 7.5
WBS 0 0 0 0 4 1 295 0.43 0.94 8.4

FDRSeg 0 0 0 0 0 1 299 0.28 0.95 9.9
PELT 4 11 28 126 83 30 18 0.79 0.83 4.6

PELT-NP 0 1 2 46 76 68 107 0.66 0.84 5.8
TUGH 0 0 0 1 13 14 272 0.53 0.91 7.1
MOSUM 0 3 39 176 70 12 0 0.96 0.91 4.3

MS.3 NOSE 0 55 144 78 22 7 0 0.83 0.69 3.8
WBSTS 14 57 84 90 40 15 0 0.54 0.46 7.0
B-P 191 74 35 0 0 0 0 0.79 0.38 2.6

1.7.2.2 Simulations for DRAIP data

We generate a series of independent Gaussian data to simulate the DRAIP data. We generate

synthetic data based on the detection result given by NOSE in the real DRAIP data. That is, 7

change-points are set at (37, 137, 206, 336, 426, 510, 630). On each segment divided by these

change-points, data are i.i.d. Gaussian variables with means µ = (0.141, 0.124, 0.399, 0.214,

− 0.112,−0.093,−0.053, 0.116) (the sample mean of the DRAIP data on each segment) and

σ being the sample SDs on those segments divided by NOSE. We conduct 300 Monte Carlo

replicates for the simulation. An example is presented in Figure 1.10.
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Figure 1.10: Simulated example for the DRAIP data and the true values of scale parameters (in red polyline).

We present the detection results in Table 1.4. As expected, the small jump sizes and varying

means lead to serious under-detection of change-points for all approaches. Even so, NOSE

performs much better in correctly detecting change-points compared with other approaches.

This simulation demonstrates the reliability of detection results given by NOSE on the DRAIP

data.

Table 1.4: Results of change-points detection under simulations for the DRAIP data and the ACGH data.

Setting Method Frequency of K̂ −K Precision Recall dH × 102

≤ −3 -2 -1 0 +1 +2 ≥ +3
DRAIP NOSE 8 147 110 33 2 0 0 0.90 0.71 3.4

NOT 224 60 11 5 0 0 0 0.94 0.54 2.0
SMUCE 282 17 1 0 0 0 0 1 0.48 19.5
PELT 95 119 78 8 0 0 0 0.92 0.64 2.6

ACGH NOSE 0 0 1 108 140 44 7 0.93 0.99 2.5
HSMUCE 0 0 1 35 131 102 31 0.90 0.93 15.5
NOT 0 0 0 28 12 107 153 0.81 0.98 18.2

R-FPOP 0 53 166 21 60 0 0 0.99 0.84 3.25
SMUCE 0 0 0 0 0 0 300 0.51 0.98 20.9
WBS 0 0 0 0 0 0 300 0.52 0.98 20.9

FDRSeg 0 0 0 0 0 0 300 0.30 0.97 21.3
TUGH 1 0 0 1 0 0 298 0.48 0.96 20.2
MOSUM 0 0 0 3 5 34 258 0.74 0.94 13.1

1.7.2.3 Simulations for ACGH data

We generate a series of independent Gaussian data to simulate the ACGH data. We use the

smooth signal estimated by DeCAFS (Romano et al., 2022) as the means of Gaussian variables.

The scale parameter is set as the sum of the estimated standard deviations of the drift and the

AR(1) noise process. An example is presented in Figure 1.11. As can be found in the figure,

such a data-generating process simulates the true data quite well with an average mean square
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error of 0.0265 (0.001) among the simulated datasets (standard deviation in bracket). The Gaus-

sian scheme naturally avoids most possible outliers. For comparison, we use the detection result

on the real ACGH dataset given by NOSE as the golden standard. That is, 13 change-points

are set at (73, 123, 263, 342, 524, 583, 657, 745, 1724, 1906, 1965, 2041, 2143). Since the data

stream is long, we set the window size for true positive detection as 25 in the simulation. We

conduct 300 Monte Carlo replicates for the simulation. The simulation results combined in Ta-

ble 1.4 show that both NOSE and R-FPOP provide consistent estimation results with that of the

real-data experiment in the simulations. By removing most outliers, the results of HSMUCE

tend to more similar to that of NOSE. Compared with the real-data experiment, NOT seems to

be slightly over-detect change-points in simulations. In terms of the remaining methods, they

significantly over-detect change-points in both real-data experiments and simulations. We do

not incorporate the PELT method here since it fails to detect any change-points in most cases.
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Figure 1.11: Simulated example for the ACGH data and the smooth signal estimated by DeCAFS (in red curves).



Chapter 2

Jump-size-based Bayesian Detection of

Multiple Imperceptible Change-points

with an Application to London House

Index

2.1 Introduction

Detecting the changes of distribution properties in an ordered data series is quite common in

practice and has attracted a wealth of research interest in the past several decades (Chernoff

and Zacks (1964); Yao (1984); Frick et al. (2014); Fryzlewicz (2023); among others). In this

chapter, we consider the following canonical mean-shifted model and its variants (Fryzlewicz

(2014); Baranowski et al. (2019); Cappello et al. (2023); among others),

Yt = m(t) + σϵt, t ∈ [T ], (2.1)

where m(t) is a signal function that characterizes the scheme of abrupt changes, and [T ] =

{1, . . . , T}. The jump size at each data point t is accordingly represented by the increment of

59
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m(t) as

∆m(t) = m(t+ 1)−m(t), t ∈ [T − 1]. (2.2)

Mathematically, the signal functionm(t) used to be expressed as a piecewise constant function

m(t) ≡
K∑
k=0

θkI(τk ≤ t < τk+1), t ∈ [0, T ], (2.3)

whereK is an unknown number of change-points, θk are called segment parameters, (τ1, . . . , τK)

are unknown locations of change-points (we set τ0 = 0 and τK+1 = T for notation ease), and

ϵt are assumed to be model noises with E(ϵt) = 0 and E(ϵtϵs) = I(t = s). Model (2.1) might

be the most common pattern characterizing the change scheme with numerous research in the

past decade (Killick et al. (2012); Ko et al. (2015); Du et al. (2016); Fryzlewicz (2018); Birte

and Claudia (2018); Fearnhead and Rigaill (2019); among others).

The prevailing work above and beyond looks into locations, segment parameters, or both,

for change-point detection. Nonetheless, to the best of our knowledge, Cappello et al. (2023)

may be the first publication to detect multiple change-points from the perspective of jump size

modeling. Note that, a change-point is a point with a non-zero jump size. This implies that jump

sizes determine the number and the locations of change-points simultaneously. Inheriting the

jump-size-based spirit, we are driven to identify change-points from the insight of themagnitude

of jump sizes. Meanwhile, we are motivated by detecting change-points for London House

Index data in the past 22 years. Such index changes usually reflect the association between

economics and important public events in a country.

2.1.1 Motivated example

We target to detect possible change-points in Yt, the average monthly price (in logarithm) of all

properties in the London Borough of Newham from January 2000 to October 2022 (the latest

published data; 274 months in total). By quick general analytics, one finds there are THREE

apparent data characteristics. From Figure 2.1(a), the plot of monthly data Yt, i) the trend of
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the data has several segments, and ii) the data are overall ascending even though they have

segment-wise variation; from Figure 2.1(b), the plot of partial autocorrelation function, iii) the

data have significant order-1 autocorrelations.
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Figure 2.1: (a) Plot of the Newham House Index of monthly average properties from January 2000 to October
2022. (b) Partial autocorrelation function plot of NewhamHouse Index of 274 months. (c) Change-points detected
by NSP (Fryzlewicz, 2023, JASA). (d) Change-points detected by WBSTS (Korkas and Pryzlewiczv, 2017, Sta-
tistica Sinica).

Figures 2.1(c) and 2.1(d) present the detected change-points given by approaches NSP (Fry-

zlewicz, 2023) and WBSTS (Korkas and Pryzlewiczv, 2017), respectively. However, their re-

sults are surprisingly inconsistent: NSP detects TWO change-points A1 (Oct. 2008) and A2

(Apr. 2014) while WBSTS detects only ONE change-point A3 (Apr. 2003) located at the left

side of A1; the method SNCP (Zhao et al., 2022) even reports ZERO change-points. The reason

for the diversity might be, based on data characteristics i) and ii), imperceptible jump sizes, or

equivalently, subtle structural changes in the autocorrelations. In addition, the detection be-

comes more tricky owing to the moderate data size (274).

The following questions are the very first to ask. Which one is the real change-point? How

to detect change-points when the jump sizes are imperceptible? How tomodel the imperceptible

jump sizes? To address these questions, we propose a signed Beta process to model the signal

of abrupt changesm(t) so as to estimate the jump size process∆m(t), the posterior estimator of

which acts as the testing statistic to identify the change-points out of all data point t. Benefited
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from the newly constructed prior for the signal function m(t), the posterior estimates of the

jump sizes ∆m(t) enjoy ideal properties that they highly concentrate on zero at unchanged

points and tend to be non-zero at change-points.

2.1.2 Related work

Based on the jump size defined in (2.2), one may categorize the existing approaches into two

streams, jump-size-based or segment-based. The solocp method by Cappello et al. (2023)

models the jump sizes ∆m(t) for all t directly through a continuous spike-and-slab prior cou-

pled with a latent indicator. They identify change-points by comparing the posterior probability

of the latent indicator with some threshold. Nevertheless, if the jump sizes are imperceptible

compared to the variation of noises, the posterior probability of the latent indicator may be very

small, and thus, solocp may fail to detect such imperceptible changes. Instead, our proposed

method assigns a so-called signed Beta process (SBP) prior to the signal functionm(t) directly.

Then we implement hypothesis testing taking a posterior estimate of jump size as the testing

statistic. We establish the asymptotic efficiency of the marginal maximum a posteriori (MAP)

estimates ofm(t) and hence asymptotic normality of the testing statistic.

Among the segment-based approaches, frequentists have contributed a large proportion.

Frequentist approaches may be categorized into two strategies, model selection, and hypoth-

esis testing. Model selection approaches associate segment-wise cost functions with different

penalties on the number of change-points such as l0 penalties (Boysen et al. (2009); Killick et al.

(2012); among others) and l1 penalties (Tibshirani et al. (2005); Lee et al. (2016); among others).

Testing approaches conduct various types of segment-wise statistics including CUSUM (Ko-

rkas and Pryzlewiczv (2017); among others), multiscale (Frick et al. (2014); Jula Vanegas et al.

(2021); among others), MOSUM (Hušková and Slabỳ (2001); Birte and Claudia (2018); among

others), and self-normalization testing statistics (Zhao et al. (2022); among others). These ap-

proaches, though enjoy nice theoretical properties such as the minimax optimal localization

rate, usually require a large data size or sufficient minimum length of segments to guarantee

their performances. For example, on the detection of the structural changes of a non-stationary

time series, say, the London House Index data, frequentist approaches may encounter awkward
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model fitting as shown in our numerical studies.

Segment-based Bayesian approaches for change-point detection may be categorized by the

priors employed for change-point modeling. People may assign, i) product partition models

to the number of change-points (Barry and Hartigan (1993); Monteiro et al. (2011); Quinlan

et al. (2022); among others), ii) Hidden Markov models for the locations of change-points

(Chib (1998); Ko et al. (2015); Bardwell and Fearnhead (2017); among others), or iii) em-

pirical Bayes prior for the segment parameters (Du et al. (2016); Liu et al. (2017)). To avoid

computation burdens brought by Markov Chain Monte Carlo (MCMC) sampling, some exact

posterior computation techniques have been proposed, e.g. Fearnhead (2006) and Wyse et al.

(2011). However, in our practice, we find existing Bayesian approaches are sensitive to the

specification of the upper bound of the number of change-points. A poorly specified upper

bound has a seriously negative impact on detection. In contrast, our proposed method does not

need such kind of upper bound.

The rest of the chapter is organized as follows. Section 2.2 outlines the proposed SignedBeta

Process Change-Point Modeling (SBPCPM) methodology as well as the asymptotic results.

Section 2.3 describes the implementation of the proposedmethod. Section 2.4makes a surrogate

analytics to the London House Index data by the proposed method. Section 2.5 examines the

proposed method under different simulation settings. Section 2.6 concludes the chapter with a

brief discussion. Theoretical and empirical proofs are deferred to the Section 2.7.

2.2 Methodology

Suppose one observes a series Yt, for t ∈ [T ]. Under model (2.1), data {Yt}Tt=1 can be viewed

as a series of discrete noisy observations from a continuous signal process m(t). Recall that

in equation (2.2), a change-point is defined as a point t where the jump size ∆m(t) = m(t +

1) −m(t) ̸= 0. Hence, we transfer change-point detection to the following hypothesis testing

problem based on the magnitude of jump sizes ∆m(t),

H0 : ∆m(t) = 0 v.s. H1 : ∆m(t) ≠ 0, (2.4)
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for t ∈ [T − 1]. Clearly, the null is equivalent to the statement “t is an unchanged point”, and

the alternative one is equivalent to the statement “t is a change-point”. Then the remaining

problems are what kind of statistics and tests to be constructed.

In this section, we propose a Z-type test for the testing problem (2.4). The statistic and the

test are constructed in the following steps.

Step 1. Prior elicitation and posterior estimates. We formulate a Signed Beta process

(SBP) as the prior for the change signal function m(t) and obtain the marginal MAP

estimates ofm(t), denoted as m̂MAP(t), for t ∈ [T ].

Step 2. Testing statistic. Let ζt = m̂MAP(t+1)−m̂MAP(t) for t ∈ [T −1] be the posterior

estimate of the jump size ∆m(t). We use ζt as the testing statistic based on the result of

Corollary 2.1.

Step 3. Z-type test. For a given significance level α, the rejection region is defined as

C = {|ζt − E(ζt)| > Φ1−α/2SD(ζt)}, t = 2, . . . , (T − 1),

where SD(ζt) denotes the standard deviation of ζt andΦ1−α/2 denotes the (1−α/2) upper

quantile of a standard normal distribution.

In the following, we study the above steps in detail. In subsection 2.2.1, we introduce the

nonparametric SBP prior form(t). In subsection 2.2.2, we study the asymptotic distribution of

ζt under the null hypothesis. In subsection 2.2.3, we discuss the Type I error of the Z-type test.

2.2.1 Signed Beta process

We start from modeling the infinitesimal increments of the functionm(t), denoted as dm(t) =

m(t+) −m(t) for any t ∈ (0, T ]. Note that dm(t) should be sign-varying since the jumps at

change-points may either be upward or downward. Therefore, inspired by the commonly used

Beta process (Hjort, 1990), We formulate a so-called signed Beta process, denoted m(t) ∼

SBP(c1, c2, B1, B2, pt), such that the infinitesimal increments ofm(t) takes the following mix-
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ture form

dm(t) = ZtdB1(t) + (Zt − 1)dB2(t), (2.5)

where Zt ∼ Bernolli(pt) is a process of Bernoulli random variables with probability pt, and

dBj(t) are defined by two independent Beta processes, denoted as Bj(t) ∼ BP(cj, Bj). Here

cj is the concentration parameter and Bj is a base measure that is continuous, nonnegative, and

monotonic, for j = 1, 2. By definition, the distribution of dBj(t) is

dBj(t) ∼ Beta[cj · dBj(t), cj{1− dBj(t)}].

One may explain (2.5) as follows: the increment dm(t) either takes an upward jump with ran-

dom height drawn from Be[c1dB1(t), c1{1− dB1(t)}] at the rate pt, or takes a downward jump

with random height drawn from Be[c2dB2(t), c2{1 − dB2(t)}] at the rate (1 − pt). Therefore,

we name such a prior for m(t) as the signed Beta process in the sense that it looks like a Beta

process with random signs.

Now we specify the parameters (c1, c2, B1, B2, pt) under the change-point detection back-

ground. We first specify the probability process {pt} to make sure that the SBP is fully deter-

mined by the two Beta processes in (2.5). In other words, we search for a kind of pt so that

given B1(t) and B2(t), the indicator process Zt is not stochastic. Otherwise, the randomness of

the indicator process Zt may lead to a complicated sampling of the SBP.

Recall the atomic form of the Beta process (Paisley and Jordan, 2016)

Bj =
∞∑
h=1

πjhδξjh , (2.6)

where ξjh ∼ Bj/
∫ T

0
dBj(t)dt are the i.i.d. atoms of the process Bj(t) and πjh are the weights

on ξjh. Let {ξjh} be the collection of atoms of the processBj(t) andΩ = {ξ1h}∪{ξ2h} ⊂ (0, T )

be the union of the two collections of atoms of the two Beta processes. Since both B1 and B2
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are continuous, we have, almost surely,

{ξ1h} ∩ {ξ2h} = ∅.

That is, almost surely, the two Beta processes Bj(t) in (2.5) will not jump simultaneously.

Consequently, we set

pt = dB1(t)/{dB1(t) + dB2(t)}, t ∈ Ω, (2.7)

and set pt = 1otherwise. Under this setting, for t ∈ {ξ1h}, Zt = 1 and the SBP takes the same

upward jumps as the Beta process B1(t); for t ∈ {ξ2h}, Zt = 0 and the SBP takes the opposite

downward jumps as the Beta process B2(t); for t at other locations, neither B1(t) nor B2(t)

jumps, so does the SBP.

Accordingly, based on the atomic expression of the Beta process, under setting (2.7), the

following atomic expression of the SBP holds almost surely

m =
∞∑
h=1

π1hδξ1h −
∞∑
h=1

π2hδξ2h , (2.8)

where πjh and ξjh are the same as that in (2.6). Based on the atomic expression (2.8), we obtain

the following sampling scheme form(t) ∼ SBP(c1, c2, B1, B2).

m(t)|{B1(t), B2(t)} = B1(t)− B2(t), Bj(t) ∼ BP(cj, Bj), j = 1, 2. (2.9)

Under the sampling scheme (2.9), the sampling of the SBP is easy to conduct by introducing

the finite approximation and the stick-breaking construction of the Beta process. We defer the

sampling details to Section 2.3.

Next, we specify the remaining parameters in the SBP. From the perspective of an objective

Bayesian, we do not incorporate any prior information about the jumps of m(t) to the SBP.

Therefore, we consider a “neutral” choice of (c1, c2, B1, B2) so that c1 = c2 = c0, B1 = B2 =

B0. That is, B1(t) andB2(t) in (2.9) are two i.i.d. stochastic processes. Then the prior form(t)
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is simplified as

m(t) ∼ SBP(c0, B0).

With the above specification of the SBP, we immediately have the following proposition.

Proposition 2.1. Form(t) sampled from (2.9) with c1 = c2, B1 = B2, the prior distribution of

the jump size ∆m(t) = m(t+ 1)−m(t) for any t ∈ [T ] is symmetric and

E{∆m(t)} = 0, Var{∆m(t)} = 2Var{B1(t)}.

The proof of Proposition 2.1 is trivial since E(∆B1(t)) = E(∆B2(t)) and Var{B1(t)} <

∞. Since the jump sizes of any Beta process are independent, this proposition indicates that

under the SBP, the jump sizes ∆m(t) are independent continuous variables for all t. These

properties enable us to study the asymptotic distribution of the posterior estimates ofm(t), the

foundation of our test for change-point detection.

2.2.2 Asymptotic results of posterior estimates

In this subsection, we study the distributional approximation to m̂MAP(t), the marginal MAP

estimates of m(t) when the null hypothesis H0 : ∆m(t) = 0 in test (2.4) holds for all t. That

is, there are no change-points along [0, T ], that is,

m(t) = θ0, t ∈ [0, T ].

In this case, we show that asymptotically, m̂MAP(t) follows a Gaussian distribution with the

same center independently for all t. Hence, the distribution of the statistics ζt under the null

hypothesis H0 can be approximated by a Gaussian distribution centered at zero. That explains

why we construct a Z-type test for testing (2.4). Our asymptotic results are established under

the mean-shifted model (2.1).

We require the following general assumptions to ϵt and σ.

(A1) The noises ϵt are i.i.d continuous variables.
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(A2) σ > 0 is a known constant.

Assumptions (A1) and (A2) are widely adopted in change-point literature about mean-shifted

models, e.g. Frick et al. (2014); Baranowski et al. (2019); Cappello et al. (2023); among others.

Under the above two assumptions, we obtain the density of Yt as

fY (y) ≡ fY (y; θ0, σ) = fϵ(
y − θ0
σ

).

We further require the following assumptions on the functional form of fY (y; θ0, σ).

(A3) For any fixed σ, fY (y; θ0, σ) is twice differentible with respect to θ0; the Fisher

information of fY (θ0, σ) exists for all θ0 ∈ R, denoted as IY (θ0).

(A4) fY (y; θ0, σ) is log-concave with respect to y ∈ R.

Assumptions (A3) and (A4) are satisfied by a wide range of location-scale families including

the Gaussian, Laplace, and logistic families, etc.

Then we obtain the following asymptotic results on the marginal MAP estimates of m(t),

denoted as m̂MAP(t).

Theorem 2.1 (Asymptotic efficiency of MAP estimates). Under model (2.1), suppose the null

hypothesis H0 in (2.4) holds for all t = 2, . . . , (T − 1). That is, there are no change-points.

Under Assumptions (A1) to (A4), as T →∞, for any fixed t, we have

m̂MAP(t)
p−−→ θ0,

√
T (m̂MAP(t)− θ0)

d−−→ N(0, I−1
Y (θ0)).

Theorem 2.1 tells that when there are no change-points, themarginalMAP estimates ofm(t)

are pointwisely consistent and asymptotically normal with efficient variance. This is not sur-

prising based on the results of Proposition 2.1. The detailed proof is deferred to the subsection

2.7.1.

Based on Theorem 2.1, instantly we have the following corollary about the asymptotic dis-

tribution of the statistics ζt = m̂MAP(t+ 1)− m̂MAP(t).
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Corollary 2.1 (Asymptotic normality of the posterior estimator of jump sizes). For any fixed

t ∈ [T − 1], as T →∞,

ζt
d−−→ N(0, 2T−1I−1

Y (θ0)). (2.10)

This asymptotic normal result enables us to approximate the distribution of ζt through a

normal distribution when there are no change-points under the null hypothesis in hypotheses

(2.4).

When there exist some change-points, the asymptotic normality of the MAP estimates will

not hold. Rather, we empirically observe a mode-shifting phenomenon around change-points.

Proposition 2.2 (Mode-shifting at change-points). LetAk = (τk−δ, τk+δ) be a δ neighborhood

of the kth change-point τk for some δ > 0. Then for t ∈ Ak the marginal posterior distributions

ofm(t) are bimodal, and

m̂(t2)
MAP − m̂(t1)

MAP ̸= 0,

for t1, t2 ∈ Ak and t1 < τk < t2.

We admit we could not provide rigorous proof for the distribution of the testing statistic

under the alternative hypothesis. The phenomena of bi-modal posterior and mode-shifting on

change-points are observed and summarized in Proposition 2.2 and evidenced by simulations

in subsection 2.7.2. From our numerical results, for t1 < τk < t2, we observe that

m̂(t1)
MAP ≈ m(τk−1); m̂(t2)

MAP ≈ m(τk)

within the δ neighborhood of Ak. In this sense, Proposition 2.2 is direct since the mode of

the marginal posterior distribution of m(t) shifts from m(τk−1) to m(τk) when crossing the

change-point τk. Compared with Corollary 2.1 which derives the distributional approximation

of ζt under the null hypothesis, Proposition 2.2 tells the behavior of the testing statistic under

the alternative hypothesis. These two results explain the rationale of the aforementionedZ-type

test.
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2.2.3 Lower Type I error

When there exists at least one change-point i.e. no less than two segments, the distributional

approximation in Theorem 2.1 does not hold for all unchanged points since the segment pa-

rameters are not identical. However, we still empirically find that, as the minimum length of

segments increases, the marginal MAP estimates at unchanged points still tend to zero with

similar variance. Thus, the empirical distribution of the difference of marginal MAP estimates

ζt at unchanged points can still be roughly approximated by a normal distribution. Accordingly,

the rejection region of the Z-type test is constructed as

C = {ζt − ζ̄t > Φ1−α/2σ̂0}, (2.11)

where ζ̄ = (T − 1)−1
∑T−1

t=1 ζt and σ̂0 =
√
(T − 1)−1

∑T−1
t=1 (ζt − ζ̄)2 denote the sample mean

and standard deviation of ζt respectively.

Note that the sample standard deviation σ̂0 is easily affected by those points where ζt are ap-

parently non-zero. As a result, when there are several change-points, σ̂0 will exceed the SD(ζt)

at unchanged points. Therefore, the rejection region C in (2.4) is a kind of “parsimonious”

rejection region satisfying the following proposition.

Proposition 2.3 (Lower Type I error). The Type I error for the hypotheses (2.4)with the rejection

region (2.11) is lower than the nominal significance level α.

The Type I error and the power of the test for hypotheses (2.4) have a clear interpretation

in the context of change-point detection. On the one hand, a Type I error indicates that an

unchanged point is falsely identified as a false positive (FP) change-point. Hence, controlling

the Type I error is equivalent to controlling the risk of over-detection of change-points. In

this sense, Proposition 2.3 ensures a lower risk of over-detection than the nominal level. On

the other hand, the power of the test is equivalent to the rate of correctly detecting true positive

(TP) change-points. That is, a higher power indicates a higher capability of correctly specifying

both the number and locations of change-points. In our simulations, we find SBPCPM enjoys

sufficient power even under a pretty high significance level (lower Type I error), demonstrating

the detection performance.
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2.3 Implementation

In this section, we discuss how to implement SBPCPM in change-point detection. Subsection

2.3.1 presents the stick-breaking construction of the SBP and the choice of remaining parameters

in the chapter. Subsection 2.3.2 introduces posterior sampling and a post-process on the detected

change-points. Subsection 2.3.3 provides the estimation procedure of SBPCPM for segment

parameters.

2.3.1 Stick-breaking construction of the SBP

The form of infinite sum in (2.8) is difficult to be implemented in practice. Thus, we consider

the finite approximation in implementation. We start from following finite approximation of

the Beta process (Paisley et al., 2010). Let γ = B0(T ) be the total mass of B0 on T . The finite

approximation of Beta process Bj ∼ BP(c, B0) is

B
(M)
j =

M∑
h=1

πjhδξjh , πjh ∼ Beta(cγ/M, c(1− γ/M)).

According to Paisley et al. (2010), as M → ∞, this approximation converges to the infinite

atomic sum expression in (2.6) (Paisley et al., 2010). To simplify the computation, we fix the

variation parameter c = 1 in this chapter. Then, the stick-breaking construction of the Beta

process has a close form (Teh et al., 2007)

B =
M∑
h=1

πhδξh , π1 = v1 ∼ Beta(γ, 1), πh =
h−1∏
ℓ=1

vℓ, vℓ ∼ Beta(γ, 1). (2.12)

Consequently, based on the sampling scheme (2.9), we obtain the following stick-breaking con-

struction of the SBP(1, B0). For j = 1, 2, we have

m(M) =
M∑
h=1

π1hδξ1h −
M∑
h=1

π2hδξ2h , πj1 = vj1 ∼ Beta(γ, 1), πjh =
h−1∏
ℓ=1

vjℓ, vjℓ ∼ Beta(γ, 1),

(2.13)
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wherem(M) is a finite truncation of the atomic form (2.8). Under the stick-breaking construction

(2.13), we need to specify the base measure B0. Recall that the atoms ξjh are i.i.d. samples of

the normalized measure ∼ B0/B0(T ). Note that one is expected to assign a uniform prior

for the atoms ξjh since there is no available information about the locations of change-points.

Hence, we set the base measure B0(t) = γt as a linear function on (0, T ], where the total mass

α is a hyperparameter. We assign a Gamma hyperprior Gamma(a, b) for γ without specifying

it.

2.3.2 Posterior inference and post-process on change-points

We conduct MCMC sampling by nimble (de Valpine et al., 2017) package in R (R Core Team,

2021), which uses BUGS type syntax (Lunn et al., 2000) and compiles the code into C++ to

facilitate automatic posterior sampling. Then the marginal MAP estimates m̂MAP(t) is obtained

by the mode of the empirical density of the marginal MCMC samples.

Note that Proposition 2.2 tells that some marginal MAPs within the δ neighborhood of

change-points are non-zero. That brings the risk of over-detection in the sense that testing

(2.4) may falsely identify the points around change-points as change-points. In other words,

our testing procedure may generate consecutive change-points. To overcome this, we impose

a post-process on those change-points identified by testing (2.4). Here we adopt the common

practice in the literature that requires a minimum distance between change-points (Matteson and

James (2014); Cappello et al. (2023); among others). That is, for two change-points Ĉ1 < Ĉ2

identified by testing (2.4), if |Ĉ1 − Ĉ2| < D0, where D0 is a prespecified minimum distance

between two change-points, we remove Ĉ2 so as to avoid consecutive change-points. We set

D0 = 10 as the minimum distance between change-points throughout this chapter.

2.3.3 SBPCPM algorithm

We summarize the whole procedure of SBPCPM into Algorithm 1. The hypothesis testing

procedure is executed in line 4, the post-process on change-points is executed from lines 5 to 9,

and the estimated number and the locations of change-points, K̂ and τ̂k, are output in line 10.

If one has further interest in the segment parameters like θk, SBPCPM outputs their estimates
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in line 12.

Algorithm 1 SBPCPM algorithm
Input: Data (Y1, . . . , YT ); Confidence level α; Gamma hyperparameters (a, b); minimum dis-

tance D0.

Output: Number of change-points K̂; locations of change-points C; segment parameters θ̂k.

1: Assign SBP(1, B0) form(t), where B0(t) = γt and γ ∼ Gamma(a, b).

2: Draw posterior samples ofm(t) by MCMC and obtain marginal MAP estimates m̂MAP(t).

3: Compute the series of MAP differences ζt = m̂(t+ 1)MAP − m̂MAP(t), t = 1, . . . , (T − 1).

4: Conduct hypothesis testing (2.4) to all t and obtain the change-point set Ĉ = {τ̂1 < τ̂2 <

· · · < τ̂K0}.

5: for k = 1, . . . , (k0 − 1), do

6: if |τ̂1 − τ̂2| < D0 then

7: Remove τ̂k+1.

8: end if

9: end for

10: K̂ ← K0, τ0 ← 0, τK+1 ← T , C ← Ĉ.

11: Obtain segmentation set {Sk = (Ck, Ck+1)}K̂k=0.

12: θ̂k = T−1
k

∑
t∈Sk

m̂MAP(t), where Tk = Ck+1 − Ck.

In our numerical experience, SBPCPM is not sensitive to the choice of the significance

level α. In practice, we suggest a pretty high significance level α = 0.003. Compared with

the commonly used significance level α = 0.05, we find the higher significance level does not

impact the power too much, especially when the changes are imperceptible.

2.4 Application to London House Index

We analyze the London House Index data in this section. Based on Figure 2.1(b), the London

House Index in Newham can be modeled by an AR(1) model. Hence, we focus on a special
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case of model (2.1), a piecewise AR(1) model as follows,

Yt = a0 +m(t)Yt−1 + σϵt, t = 2, . . . , T. (2.14)

In this autoregression model, the signal functionm(t) represents the autocorrelation coefficient,

or, acts as a regression coefficient in a simple linear model, compared to the “intercept” role in

model (2.1). Therefore, in model (2.14),m(t) reflects the structural changes in the autocorrela-

tions, similar to SNCP (Zhao et al., 2022). Both WBSTS (Korkas and Pryzlewiczv, 2017) and

NSP (Fryzlewicz, 2023) allow the intercept a0 to vary along with t, which is beyond the scope

of the proposed SBPCPM. Even so, we show that SBPCPM provides a reasonable segmentation

and better model fitting with a different interpretation in (2.15).

Under model (2.14), we apply SBPCPM to analyze the London House Index in Newham.

We provide the exact segmentation result, estimated autocorrelations, jump sizes, intercept, and

the scale of model error estimated by SBPCPM in Table 2.1. According to the segmentation

given by SBPCPM, the first segment (Jan 2001 toMay 2002) includes the September 11 attacks,

the second segment (Jun 2002, Apr 2014) includes the host of the 2012 Olympic Games, the

third includes 2014 Scottish independence referendum, and the last includes the time of Britain’s

EU membership referendum. The COVID-19 pandemic seems to have little impact on the

London House Index since no change-points are detected during the pandemic.

Table 2.1: Exact time segments, autocorrelation, jump sizes, intercept, and scale of model error estimated by
SBPCPM.

σ̂ â0 Time segment estimated autocorrelation Jump size

0.0104 11.279

(Jan 2001, May 2002) 0.0246 -

(Jun 2002, Apr 2014) 0.0759 0.0513

(May 2014, Sep 2015) 0.1016 0.0257

(Oct 2015, Oct 2022) 0.1201 0.0185
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2.4.1 Locations of change-points

We present the results of change-point detection given by the prosed SBPCPM in Figure 2.2 and

compare the result with the change-points detected by NSP and WBSTS. As the picture shows,

SBPCPM detects three change-points, labeled as C1, C2, and C3. The change-point C1 is close

to the change-point A3 detected by WBSTS, and change-point C2 is the same as change-point

A2 detected by NSP. Besides the above consistent results, SBPCPM brings us two new insights.
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Change−points detected by SBPCPM

Figure 2.2: Point-line: the original data; vertical lines (red): locations of change-points detected by SBPCPM;
vertical lines (grey): locations of change-points detected by other approaches.

Insight 1: three change-points.

The change-points detected by SBPCPM participates the time period into four segments, in-

cluding a short segment from May 2014 (C2) to Sep 2015 (C3). A natural question is whether

it is reasonable to detect three change-points. To some extent, one may find that the data curve

becomes less “trending” after Sep 2015 (or sometime later) compared with the curve within the

segment betweenMay 2014 and Sep 2015. For further convincing, we consider Bayesianmodel

comparison by comparing the Bayes factor of change-point models (Chib, 1998) implemented

by R package MCMCpack (Martin et al., 2011). We specify the number of change-points from

K = 1, 2, to 3 with outer parameters set as default. The matrix of log Bayes factor is given in

Table 2.2, which provides strong evidence that the choice ofK = 3 beatsK = 2 and anecdotal

evidence that K = 3 beats K = 1. Therefore, we think the number of change-points detected

by SBPCPM is appropriate.
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Table 2.2: Log Bayes factor matrix given by Chib (1998).

K=1 K=2 K=3

K=1 0.00 16.50 -1.58

K=2 -16.50 0.00 -18.08

K=3 1.58 18.08 0.00

Insight 2: Oct 2008 may not be a structural change in the autocorrelations.

The other new insight brought by SBPCPM is that the lag in Oct 2008 (point A1 in Figure

2.2) may not be a change-point in the autocorrelations. Indeed, one may conjecture that the

lag on the data curve is induced by the shift in the intercept term since the slopes of the curve

before and after the time point seems to be similar to each other. The shift in the intercept a0

in model (2.14) actually changes the mean of Yt (see the next subsection for details). This may

be evidenced by SNCP (Zhao et al., 2022). Although SNCP reports no change-points in the

autocorrelations, it detects two change-points in the mean. As shown in Figure 2.3, the two

change-points in the mean detected by SNCP are located close to the locations of change-points

A1 and A2 detected by NSP. Note that NSP detects both the changes in auto-correlations and

the intercept. Hence, we may conclude that the structural break in Oct 2008 is induced by the

shift in the intercept.
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Changes in mean detected by SNCP

Figure 2.3: Point-line: the original data. Vertical lines (dashed): locations of change-points in mean detected
by SNCP.

Unlike NSP, SBPCPM only detects the changes in the autocorrelations while keeping the

intercept term fixed under model (2.14). Even though the model setting (2.14) seems to violate

this real data scenario, we show that SBPCPM provides a better model fitting than the piecewise

OLS fit under NSP segmentation with appropriate interpretation in the following.
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2.4.2 Interpretation of estimated autocorrelations and model fitting

Compare to the piecewise OLS estimators under NSP segmentation in Table 2.3, the segment-

wise autocorrelations estimated by SBPCPM in Table (2.1) are pretty small while the norm of

the fixed intercept term is much greater.

Table 2.3: Piecewise OLS estimators under NSP segmentation.

Time segment OLS auto-correlation OLS intercept

(Jan 2000, Oct 2008) 0.979 0.264

(Sep 2008, May 2014) 1.027 -0.331

(Jun 2014, Oct 2022) 0.962 0.489

This is not surprising since the abrupt changes take place on both the intercept a0 and the

autocorrelation signal m(t) in model (2.14) simultaneously, while the SBPCPM addresses the

detection of change-point on a univariate parameter only. As a result, the autocorrelations es-

timated by SBPCPM should have a different interpretation compared to the piecewise OLS

estimators.

Let µt = [1−m(t)]a0. Model (2.14) can be rewritten as its centered form

yt = µt +m(t)(yt−1 − µt) + σϵt, t = 2, . . . , T. (2.15)

Since E(yt) = µt, model (2.15) becomes a mean-shifted model with auto-correlated noises.

In this sense, with a fixed a0, the abrupt change signal m(t) estimated by SBPCPM actually

reflects the changes in the mean process µt. Let m̂(t), â0, and µ̂t = [1 − m̂(t)]â0 denote the

estimated change signal, estimated intercept, and estimated mean process given by SBPCPM

respectively. Since the |m̂(t)| are pretty small, the corresponding estimated mean process µ̂t

is indeed highly auto-correlated. Consequently, the noise process in model (2.15) becomes

weakly correlated and hence, stationery. That is, most of the autocorrelations are interpreted by

µ̂t given by SBPCPM. As a result, SBPCPM enjoys better model fitting compared to piecewise

OLS estimators under NSP segmentation from the following two aspects.

Residual analysis
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We summarize the model fitting results of SBPCPM and the piecewise OLS estimators un-

der NSP segmentation in Table 2.4. SBPCPM enjoys a lower Root Mean Square Error (RMSE)

between the fitted curve and the true data curve, indicating amore accurate model fitting. Mean-

while, we conduct the Augmented Dickey–Fuller test on the residual processes of SBPCPM and

OLS estimators. The ADF test on the residual process of SBPCPM rejects the null hypothesis

and is in favor of the alternative that the residual process is stationary, while the residual process

of OLS estimators is non-stationary. That explains why the OLS estimators poorly fit the trend

of the true data.

Table 2.4: Comparison of model fitting residuals between SBPCPM and piecewise OLS (under NSP segmenta-
tion).

SBPCPM OLS (under NSP)

RMSE 0.096 0.110

Residual ADF p-value 0.025 0.338

Trend fitting and inference

We present the fitted curves given by SBPCPM and the piecewise OLS estimators under NSP

segmentation in Figures 2.4(a) and 2.4(b), respectively. One clearly finds that SBPCPM cap-

tures the trend of the data well while the piecewise OLS estimators poorly fit the trend. For

inference comparison, we sequentially add i.i.d. N(0, 0.052) noises to the curves fitted by

SBPCPM and the piecewise OLS estimators respectively and obtain 200 synthetic datasets.

The 95% empirical confidence bands of the synthetic dataset generated from SBPCPM and the

piecewise OLS estimators are presented in the shaded areas of Figures 2.4(a) and 2.4(b), re-

spectively. The empirical confidence band given by SBPCPM covers the true data curve well

with a moderate width, while the confidence band given by piecewise OLS estimators is much

wider due to the properties of the non-stationary process. Hence, the fitted curve of SBCPM is

better from the perspective of inference.
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Figure 2.4: Synthetic data versus the original data. Point-curve: original data. Polyline (red): pointwise mean
of synthetic data. Shaded area: empirical 95% confidence band.

2.5 Simulations

To illustrate the proposed SBPCPM method, we carry out several simulations and compare

SBPCPM with existing approaches. For the sake of comparison, we consider the following

three assessments:

• The difference between the estimated number K̂ and true number of change-points K,

denoted as |K̂ −K|.

• Type I error or False positive rate (FPR) of change-point detection. For each change-

point, we consider the window of width 10 around it as the set of change-points. The

remaining data points are recognized as the set of unchanged points. We count a false

positive (FP) change-point when an unchanged point is falsely identified as a change-

point. The FPR of change-point detection is defined as the ratio between the FP number

and the number of unchanged points.

• Power or True positive rate (TPR) of change-point detection. For each change-point, we

count a true positive (TP) change-point if a detected change-point lies within the window

of width 10. The TPR is computed as the ratio between the number of the true positive

and the number of change-pointsK.

In subsection 2.5.1, we validate our analysis results through simulations on the synthetic data

generated from the detection results in Section 2.4. In subsection 2.5.2, we present simulation

results of detecting noticeable structural changes under piecewise AR(1) models. In subsections
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2.5.3 and 2.5.4, we carry out simulations under model (2.1) with noticeable shifts and imper-

ceptible shifts, respectively. Under all simulation settings, we examine the performance of our

method under two significance levels, α = .003 and α = .05.

2.5.1 Setting I: simulations on synthetic London House Index data

The similarity between the synthetic datasets generated from the SBPCPM fit and the real data

enables us to carry out simulations for validation purposes. We set the results in Table 2.1 as

the ground truth because the synthetic dataset is generated from the SBPCPM fit.

For comparison, we compare the following approaches implemented by corresponding R

packages.

• The NSP method (Fryzlewicz, 2023) implemented by CRAN package nsp (Fryzlewicz,

2021).

• The SNCP method (Zhao et al., 2022) implemented by package SNSeg.

• The WBSTS method (Korkas and Pryzlewiczv, 2017) implemented by CRAN package

wbsts (Korkas and Fryzlewicz, 2020).

We present the simulation results in Table 2.5. We find that SBPCPM outperforms in the

frequency of correctly specifying the number of change-points, supporting our analysis results

on the London House Index data. Meanwhile, SBPCPM enjoys the lowest Type I error and the

higher power, indicating that the locations of change-points estimated by SBPCPM are precise.

In contrast, existing approaches are difficult to correctly identify the change-points in most

cases due to the pretty low ratio between the jump sizes and the variation of noises, also called

signal-to-noise-ratio.
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Table 2.5: Results of change-points detection of structural changes in AR(1) models in 200 replications.

Method Frequency of K̂ −K Type I error/FPR (%) Power/TPR

≤ −2 -1 0 +1 ≥ +2

SBPCPM(α = 0.003) 6 30 157 4 3 0.11 0.873

SBPCPM(α = 0.05) 2 13 165 10 7 0.19 0.905

NSP 7 154 39 0 0 0.05 0.690

SNCP 185 15 0 0 0 0.19 0.300

WBSTS 94 54 50 2 0 0.28 0.487

2.5.2 Setting II: simulations on data with noticeable structural changes in

autocorrelations

Besides the synthetic data that are generated from AR(1) models with imperceptible structural

changes, we further validate the proposed SBPCPM method on simulated data with noticeable

structural changes in autocorrelations. Under model (2.14), we generate T = 200 observations

withK = 3 change-points located at t = (50, 100, 150). We generate y1 fromN(0, 0.52) and set

the intercept a0 = 1. The segment parameters θ = (θ0, θ1, θ2, θ3) = (0.5,−0.5, 0.5,−0.5). At

each change-point, the absolute jump size is 1, and hence, the changes are noticeable according

to the plot of a data sample in Figure 2.5. We replicate the Monte Carlo simulations for 200

times.
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Figure 2.5: An example of simulated data with noticeable structural changes. Point-line: yt; polyline: the signal
functionm(t).

We present the simulation results in Table 2.6. We find that SBPCPM still outperforms

when the jump sizes are noticeable. We find that neither NSP nor WBSTS performs well un-

der this simulation setting. The reason might be the moderate data size, which induces short
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segments/intervals and make correct segmentation more difficult.

Table 2.6: Results of change-points detection of structural changes in AR(1) models in 200 replications.

Method Frequency of K̂ −K Type I error/FPR (%) Power/TPR

≤ −2 -1 0 +1 ≥ +2

SBPCPM(α = 0.003) 11 30 138 20 1 0.10 0.873

SBPCPM(α = 0.05) 7 1 127 49 12 2.19 0.935

NSP 193 7 0 0 0 9.53 0.085

SNCP 22 67 104 11 0 0.16 0.721

WBSTS 170 21 9 0 0 9.43 0.117

2.5.3 Setting III: simulations on data with noticeable shifts in mean

Considering that the mean-shifted model (2.1) is the most common practice in change-point de-

tection, we further illustrate ourmethod through simulations under themean-shiftedmodels. We

first present an example with noticeable change-points. We generate T = 150 simulated data

and set set K = 2 change-points at t = (50, 100) with segment parameters θ = (θ0, θ1, θ2) =

(0, 5, 10), σ2 = 3, and ϵt ∼ N(0, 1). The jump sizes at two change-points are both 5 and ob-

viously exceed the variation parameter σ =
√
3. As a result, the shifts in mean are apparently

noticeable as shown in Figure 2.6.
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Figure 2.6: An example of simulated data with visible shifts in the mean. Discrete points: data yt. Polyline: the
signal functionm(t).

We compare the proposed SBPCPM method with other approaches implemented by the

following R packages.

• The solocpmethod (Cappello et al., 2023) implemented by the package solocp avalible

at https://github.com/lorenzocapp/solocp.

https://github.com/lorenzocapp/solocp
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• The SNCP method (Zhao et al., 2022) implemented by their package SNSeg supplied by

the authors.

• The NOT method (Baranowski et al., 2019) implemented by CRAN package not (Bara-

nowski et al., 2022).

• The TUGH method (Fryzlewicz, 2018) implemented by CRAN package breakfast

(Anastasiou et al., 2022).

• The MOSUM method (Birte and Claudia, 2018) implemented by CRAN package mosum

(Meier et al., 2021).

• The SMUCE method (Frick et al., 2014) implemented by CRAN package StepR (Pein

et al., 2022).

• The WBS method (Fryzlewicz, 2014) implemented by CRAN package wbs (Baranowski

and Fryzlewicz, 2019).

We do not compare with the PELT method (Killick et al., 2010) implemented by R package

changepoint (Killick and Eckley, 2014) since we find their results are unstable to different

choices of penalty types. Table 2.7 presents the detection results under this simulation setting,

where we find that SBPCPM correctly detects all change-points and outperforms under signif-

icance level α = 0.003. Under the significance level α = 0.05, SBPCPM is still comparable to

other approaches.

Table 2.7: Results of change-points detection for mean-shifted models with noticeable jump sizes in 200 repli-
cations.

Method Frequency of K̂ −K Type I error/FPR (%) Power/TPR
≤ −2 -1 0 +1 ≥ +2

SBPCPM(α = 0.003) 0 0 200 0 0 0 1
SBPCPM(α = 0.05) 0 5 183 11 1 0.17 1

solo.cp 22 98 80 0 0 0.20 0.645
SNCP 0 0 190 10 0 0.02 1
NOT 0 0 187 11 2 0.03 1
TUGH 0 0 157 33 10 0.14 1
MOSUM 0 0 199 1 0 0.01 1
SMUCE 0 0 193 6 1 0.01 1
WBS 0 0 149 38 13 0.18 1
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2.5.4 Setting IV: simulations on data with imperceptible shifts in mean

We here present another simulation example on the mean-shifted model with imperceptible

change-points. We again generate T = 150 simulated data. We set K = 2 change-points at

t = (50, 100) with θ = (θ0, θ1, θ2) = (1, 3, 5), σ2 = 3, and ϵt ∼ N(0, 1). Under this setting,

the jump sizes at two change-points are both 2, which is close to the within-segment variation.

Thus, the two change-points are too imperceptible to be observed by eyes, demonstrated by a

plot of a simulated example displayed in Figure 2.7.
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Figure 2.7: An example of simulated data with imperceptible shifts in the mean. Discrete points: data yt.
Polyline: the signal functionm(t).

We present the detection result under this setting in Table 2.8. We find solocp cannot detect

change-points under this setting and thus, omit their results. We find that SBPCPM outperforms

under the two significance levels. Compared to the previous noticeable setting, SBPCPM is

more robust against imperceptible jump sizes than other approaches. Although the power of

NOT and TUGH is slightly higher than SBPCPM, their cost is the apparently higher risk of

over detection. This demonstrates the superiority of SBPCPM when facing imperceptible jump

sizes.

Table 2.8: Results of change-points detection for mean-shifted models with imperceptible jump sizes in 200
replications.

Method Frequency of K̂ −K Type I error/FPR (%) Power/TRP
≤ −2 -1 0 +1 ≥ +2

SBPCPM(α = 0.003) 0 9 189 2 0 0.12 0.915
SBPCPM(α = 0.05) 0 5 183 11 1 0.17 0.928

SNCP 2 51 141 6 0 0.09 0.835
NOT 0 7 177 13 3 0.14 0.935
TUGH 0 5 156 30 9 0.23 0.935
MOSUM 0 14 143 8 1 0.3 0.890
SMUCE 0 1 163 3 1 0.14 0.828
WBS 0 16 146 25 13 0.33 0.870



CHAPTER 2. DETECTION OF IMPERCEPTIBLE CHANGE-POINTS 85

2.6 Discussion

In this chapter, for multiple change-point detection, we propose SBPCPM, a test-type Bayesian

approach, which makes full use of jump sizes, particularly when the magnitudes are impercep-

tible. Empirically, we consider those jump sizes on change-points τk to be imperceptible if the

ratio between the minimum absolute jump sizes and the noise variation does not exceed two,

expressed as

min
0≤k≤K

|θk − θk+1|
σ

< 2.

It is interesting that the ratio in the LHS is consistent with the signal-to-noise ratio defined in

Wang et al. (2020, Expression (2) in Section 1), up to a multiplier of the minimum segment

length. Note that the segment length measures the contribution of the corresponding segment

parameter to the overall likelihood of the data. However, our proposed SBPCPM does not in-

clude such a segment parameter since we model the jump size by a “global” form of ∆m(t).

Alternatively, we look into the LHS of (2.2), against the fact that the existing literature investi-

gates the RHS of (2.3), the element in the vector (θ0, . . . , θK) one by one. As a result, SBPCPM

does not rely too much on the minimum length of segments (only requires a prespecified lower

bound D0).

Recall that the convergence rate of the MAP estimates m̂MAP(t) in Theorem 2.1 is at the

order of T−1/2, the same order of convergence rate of the l0 jump-size penalized least square

(JSPLS) estimator (Boysen et al., 2009, Theorem 1). Nonetheless, the two types of estimates

take different types of convergence. The convergence of SBPCPM is pointwise, while the

convergence of JSPLS is on the l2 error of the signal function on the whole support. Since

it is trivial to show that the pointwise convergence implies the convergence of l2 error, one may

say that the MAP estimate of m(t) by SBPCPM is more accurate than the JSPLS estimator,

especially when the data size T is small. That explains why SBPCPM outperforms other JSPLS

variant approaches (e.g. PELT (Killick et al., 2012) and SMUCE (Frick et al., 2014)) under

moderate data sizes.

Here come a few remarks on the connection between the NOSEmethod in Chapter 1 and the

current SBPCPM method. Both NOSE and SBPCPM are jump-size-based and thus, they are



CHAPTER 2. DETECTION OF IMPERCEPTIBLE CHANGE-POINTS 86

more powerful to detect imperceptible change-points compared with other methods. Nonethe-

less, they are different in application. Recall that in Section 1.2, the minimax optimality of

NOSE requires that the number of change-points Kn → ∞, while the theoretical results of

SBPCPM do not require this condition. In practice, when there are several change-points (e.g.

5 or more), NOSE is preferable. In contrast, when there are sporadic change-points (see the

London HPI example), SBPCPM provides a strong supplement to NOSE.

In analyzing the structural changes of the London House Index, we model the data through

the piecewise AR(1) model (2.14), a special case of model (2.1), and then employ the proposed

SBPCPM method. Nonetheless, the time series community may address the non-stationarity

of this dataset and prefer non-time-series models to detect the change-points owing to the strict

stationary assumptions. One may consider another alternative, the continuous and piecewise

linear mean model (Baranowski et al., 2019, Eq. (b), Section 1), to fit the data by assuming

m(t) = θk,1 + θk,2t, t ∈ (τk, τK+1], (2.16)

with the additional constraint θk,1 + θk,2τk = θk+1,1 + θk+1,2τk. The NOT method (Baranowski

et al., 2019) is a most general change-point detection approach that can be widely used to detect

various kinds of changes including the changes in (2.16). Unfortunately, the change-points

presented in Figure 2.8 apparently show an over-detection of change-points. The NOT method

is quite sensitive in that it treats any fluctuations of the data curve as change-points. In this

sense, our proposed SBPCPM may be considered as an alternative to NOT for the situation of

change-points subject to imperceptible jump sizes, where NOT may not apply effectively.
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Change−points detected by NOT (Baranowski 2019, JRSSB)

Figure 2.8: Change-points detect by NOT (Baranowski et al., 2019). Point-line: original data; vertical dotted
lines: locations of change-points detected by NOT.

Finally, the construction of the signed Beta process plays a key role in SBPCPM. Hence,
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SBPCPM is mainly used to detect changes in a univariate parameter, such as the mean, autocor-

relations, and scale parameters. We leave the detection of changes in multivariate parameters

as our future work.

2.7 Supplement

2.7.1 Proof of Theorem 2.1

Proof. The proof starts from the asymptotic normality of m̂(1)MAP and extends it to all m̂(t)MAP

by the Markov property of the SBP. We separate the likelihood marginal onm(1) from the joint

likelihood first. The log likelihood of (Y1, . . . , YT ) givenm(1) and ∆m(t) for t ≤ (T − 1) is

l(Y1, . . . , YT |m(1),∆m(1), . . . ,∆m(T−1)) = log f(Y1|m(1))+
T−1∑
t=1

log f{YT |m(1)+
t∑

j=1

∆m(t)}.

Thus the posterior distribution of {m(1),∆m(1), . . . ,∆m(T − 1)}is

π(m(1),∆m(1), . . . ,∆m(T )|Y1, . . . , YT ) ∝l{Y1, . . . , YT |m(1),∆m(1), . . . ,∆m(T − 1)}×

p{m(1)}
T−1∏
t=1

p(∆m(t)),

where p(·) denotes the prior density. By integrating out all∆m(t) we have the marginal poste-

rior distribution ofm(1) as

π{m(1|Y1, . . . , YT )} ∝ p{m(1)}
∫
l{Y1, . . . , YT |m(1),∆m(1), . . . ,∆m(T − 1)}×

n∏
t=1

p(∆m(t))d∆m(1) . . . d∆m(T − 1) ≡ p{m(1)}l∗{Y1, . . . , YT |m(1)}.

And hence we call l∗{Y1, . . . , YT |m(1)} the likelihood marginal onm(1).

Then we compute the Kullback-Leibler (K-L) divergence and determine its minimum. Let

(Y1, . . . , YT ) be a possible realization of (Y1, . . . , YT ). Then the Kullback-Leibler (K-L) diver-

gence of l∗{Y1, . . . , YT |m(1)} relative to f(Y1, . . . , YT |θ0) is defined at any value m(1) = x
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by

K-L(x) = E

{
T∑
t=1

log f(Yt|θ0)− l∗{Y1, . . . , YT |x}

}

=

∫ { T∑
t=1

log f(YT |θ0)− l(Y1, . . . , YT |x,∆m(1), . . . ,∆m(T − 1))

}

×
T∏
t−1

f(Yt|θ0)
n∏

t=1

p(∆m(t))dY1 . . . dYTd∆m(1) . . . d∆m(T − 1).

Since the priors for ∆m(t)s are proper, the minuend term in the first equation can be put into

the integral in the second equation directly and (∆m(1), . . . ,∆m(T − 1)) are integrated out.

For the subtraction term in the first equation, the second equation just exchanges its order of

integral.

To find out the minimum of the K-L divergence, we first simplify l∗{Y1, . . . , YT |x} into a

log-likelihood like function. Since f is log-concave according to (A5), we have

l(Y1, . . . , YT |x,∆m(1), . . . ,∆m(T − 1)) ≤
T∑
t=1

log f(Yt|x) +
d log f
dθ

∣∣∣∣
θ=x

n∑
i=2

i∑
t=1

∆m(t).

Plug this result in the K-L divergence and we have

K-L(x) ≥
∫ T∏

t−1

f(Yt|θ0)
T∑
t=1

log f(Yt|θ0)dY1 . . . dYT −
∫ T∏

t−1

f(YT |θ0)
n∏

t=1

p(∆m(t))

×

{
T∑
t=1

log f(Yt|u) +
d log f
dθ

∣∣∣∣
θ=u

n∑
i=2

i∑
t=1

∆m(t)

}
dY1 . . . dYTd∆m(1) . . . d∆m(T − 1)

=

∫ T∏
t−1

f(Yt|θ0)
T∑
t=1

log f(Yt|θ0)dY1 . . . dYT −
∫ T∏

t−1

f(Yt|θ0)
T∑
t=1

log f(Yt|x)dY1 . . . dYT .

The second term of the RHS of the second equation holds if E(∆m(t)) = 0 because ∆m(t)s

are integrated out. According to Proposition 1, E(∆m(t)) = 0 always holds. By informa-

tion inequality (Murphy, 2012, pp.211), the minimum K-L divergence of l(Y1, . . . , YT |m(1))

relative to f(Y1, . . . , YT |θ0) is reached if and only ifm(1) = θ0.

Thenwe need to check conditions for Bernstein–vonMises theorem. It is easily to check that

p{m(1)} is twice differentiable and
∫
D f(z|θ0) log{f(z|θ0)}dz <∞, whereD is the domain of
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density f . Therefore, by Theorem 4.16 (Pronzato and Pázman, 2013, pp.98), we immediately

have that as n→∞

m̂MAP(1)
a.s−→ θ̂MLE,

√
n{m̂MAP(1)− θ̂MLE} d−→ N{0, J(θ0)−1},

where θ̂MLE a.s−→ θ0 is the maximum likelihood estimator of θ0.

Now we have constructed the asymptotic efficiency of m̂MAP(1). We then extend it to all

t ≥ 2. Take t = 2 for example. We again write the log-likelihood of (Y2, . . . , YT ) as

l(Y2, . . . , YT |m(2),∆m(2), . . . ,∆m(T−1)) = log f(Y1|m(2))+
T−1∑
t=2

log f{Yt|m(2)+
t∑

t=2

∆m(t)}.

And the following proof is similar tom(1) and we get as n→∞

m̂MAP(2)
a.s−−→ θ̂MLE,

√
T − 1{m̂MAP(2)− θ̂MLE} d−−→ N{0, J(θ0)−1},

Since θ̂MLE p−→ θ0, we obtain m̂(2)MAP p θ0. Meanwhile, by Sluskty’s theorem, as T →∞, we

obtain that
√
T (m̂MAP(2)− θ0)

d−−→ N(0, I−1
Y (θ0)).

2.7.2 Empirical evidence for Proposition 2.2

In this subsection, we present the empirical evidence for the mode-shifting proposition. We take

the simulated data in simulation settings III and IV as examples. Under simulation setting III,

we present the density plots of t = 10 (unchanged point) and t = 50 (change-point) in Figures

2.9(a) and 2.9(b), visualizing the marginal posterior densities ofm(t) at unchanged points and

change-points, respectively.
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Figure 2.9: (a) Posterior density ofm(t) at an unchanged point t = 5 under simulation setting III. (b) Posterior
density ofm(t) at a change-point t = 50 under the same simulation setting.

From Figure 2.9(a), one clearly finds that the posterior is highly concentrated on the true

value θ0 = 0, and thus the MAP estimate is consistent. From Figure 2.9(b), one observed the

mode-shifting phenomenon mentioned by Proposition 2.2. That is, the posterior density is bi-

modal and the two modes locate at the two segment parameters θ0 = 0 and θ1 = 5, respectively.

Then we check the distributional approximation to ζt = m̂(t+1)MAP− m̂(t)MAP, the differ-

ence between MAP estimates. Figure 2.10(a) presents the Q-Q plot of ζt, where we find most

of ζt are normally distributed unless two significant outliers at change-points. Figure 2.10(b)

presents the original plot of the process of ζt, where we find that two change-points fall into

the rejection regions while other points are out of the rejection regions under both significance

level α = 0.05 and α = 0.003. These results illustrate the rationale of our proposed testing

procedure.
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Figure 2.10: (a) Q-Q plot of ζt under simulation setting III. (b) Plot of original process of ζt compared with the
rejection region under the same setting; dashed horizontal line: rejection upper bound under α = 0.05; dotted and
dashed horizontal line: rejection upper bound under α = 0.003.

The same results of ζt are validated under simulation setting IV, where the jump sizes are

imperceptible compared to the noise variation; see Figures 2.11(a) and 2.11(b) for evidence.
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Figure 2.11: (a) Q-Q plot of ζt under simulation setting IV. (b) Plot of original process of ζt compared with the
rejection region under the same setting; dashed horizontal line: rejection upper bound under α = 0.05; dotted and
dashed horizontal line: rejection upper bound under α = 0.003.
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Chapter 3

On Bayesian prediction of survival

outcomes through nonparametric

transformation models

3.1 Introduction

The traditional linear transformation model raised by Cuzick (1988) is quite flexible, covering

whilst not limited to three commonly used survival models, proportional hazards (PH), propor-

tional odds (PO), and accelerated failure time (AFT), and is formulated as

h(T ) = βTZ+ ϵ, (3.1)

where T is the random censored survival outcome, Z and β are the p-dim predictor vector and

the coupled vector of regression coefficients respectively, h(·) is a strictly increasing function

that may be sign varying on R+, and ϵ is the model error with distribution function Fϵ (Cheng

et al., 1995). Model (3.1) is called the nonparametric transformation model (NTM) when both

functional forms of h and Fϵ are unknown (Horowitz, 1996; Colling and Van Keilegom, 2019).

In predicting survival outcomes, the NTM is apparently preferable because of its model ro-

bustness compared to models of PH, PO, AFT, and other survival models assuming either or

both of h, Fϵ specified. However, it also poses the challenge to estimate infinite-dimensional
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parameters h, Sϵ in the NTM owning to model unidentifiability in the sense that collections of

triplet (h, Fϵ,β) generate identical likelihood, called flat likelihood. Nevertheless, estimating

such nonparametric components is essential for the prediction of survival outcomes and con-

ditional hazards (Song et al., 2007, pp. 207; Lin et al., 2017, pp. 980), to name a few. This

motivates us to overcome the challenging problem of prediction via the NTM.

One may categorize existing approaches of predicting survival outcomes via the NTM into

two lines, i), to make the model identifiable by adding constraints. Econometricians impose

scale normalization to the parametric component (Härdle and Stoker, 1989); and under NTM

(3.1), impose location normalization to either h with specified root (Gørgens and Horowitz,

1999; Chen, 2002; among others), or Fϵ with specified mean or median (Ye and Duan, 1997;

Linton et al., 2008; Chiappori et al., 2015; among others). Such approaches focused on estab-

lishing theoretical results such as
√
n-convergence, while they did not touch upon computa-

tional feasibility in practice. As a Bayesian counterpart, Mallick and Walker (2003) evidenced

that imposing constrained priors such as the constrained Polya tree prior for Fϵ to identify the

NTM is untractable, since an inappropriate center distribution of the Polya tree incurs slow

convergence and poor mixing of posterior (Müller et al., 2015, pp.39). And ii), to make strong

priori assumptions to circumvent the identifiability issue. Frequentists either fixed h such as

the AFT model (Jin et al., 2003; Ding and Nan, 2011; among others), or made parametric as-

sumptions on Fϵ such as PH and PO models (Lu and Ying, 2004; Zeng and Lin, 2007a; among

others). Alternatively, Bayesian used a two-step procedure to estimate all models and select

the “best” (Zhao et al., 2009; de Castro et al., 2014; Zhou and Hanson, 2018). The R package

spBayesSurv (Zhou et al., 2020) based on Zhou and Hanson, as far as we know, may be the

optimal tool in prediction provided that it selected the correct model. Despite mathematical or

computational convenience, designating h or Fϵ is at the risk of misspecification, leading to

inconsistent estimation, invalid statistical inference, and erroneous predictions.

In this chapter, we attempt to seek computationally tractable and robust Bayesian prediction

under the NTM without identifying the model. The spirit of our methodology is based on two

concerns.

i. The posterior predictive distribution (PPD) of a future observation is always unique
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regardless of model identifiability. Although the parameters in triplet (h, Fϵ,β) under NTM

(3.1) are not separately identifiable, they are jointly estimable if their posterior distributions

are proper. Therefore, the unique PPD can be obtained by integrating all parameters out even

though there are multiple solutions of triplet (h, Fϵ,β) that provide the same likelihood; see

subsection 3.4.1 for details.

ii. Weakly informative priors make Markov Chain Monte Carlo (MCMC) tractable. In

Bayesian analysis, priors play a defining role, have a substantive impact on final model results

(Depaoli et al., 2020; van de Schoot et al., 2021), and are analog to constraints that make the

model identifiable. Noninformative priors hinder posterior sampling under unidentified models

since they cannot control posterior variance to be finite. In contrast, the weakly informative

prior is a kind of “stronger” proper prior in the sense that it is able to control prior variance

moderately on the unconstrained support, and thus is able to dominate the posterior variance.

Consequently, it facilitates the convergence of posterior sampling by preventing the sampler

from running to highly implausible values that are far away from its center (McElreath, 2020,

pp.262).

The aforementioned two concerns stand by our methodology. We achieve PPDs of future

observations computed from the posterior of (h, Fϵ,β) by assigning twoweakly informative pri-

ors to the infinite-dimensional parameters, a newly constructed quantile-knots I-splines prior for

h, and a common Dirichlet process mixture (DPM) model for Fϵ, together with a noninforma-

tive prior for the parametric component β. In addition, we obtain an efficient Bayes estimator

of identified β through posterior projection so as to provide sound relative risks. The predic-

tive capability of our proposed approach is superior to existing methods evaluated by various

metrics under different simulated and real data settings.

The contribution of this chapter is tri-folds. Firstly, we solve the standing problem of pre-

diction survival outcomes via the NTM (3.1) efficiently and numerically conveniently. This is

realized by the joint strength of two weakly informative priors, quantile-knots I-splines prior

for the transformation function, and the DPM model for model error distribution. It is based

on I-spline basis functions (Ramsay, 1988) and generates knots from the sample quantiles of

censored and uncensored survival times directly. Thus, a small size of knots enable us to cap-
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ture the major shape of the transformation function well rather than tuning the number of knots

in traditional I-spline-based priors that select knots from a long series of equally spaced points

(Cai and Dunson, 2007; Wang and Dunson, 2011a; among others). The proposed I-spline type

prior is applicable to modeling monotone functions that are differentiable or nondifferentiable

by adjusting the smoothness parameter.

Secondly, we provide a new and convenient Bayes estimator for the identified parameter β

through posterior projection. We impose a unit-norm normalization (Härdle et al., 2004) rather

than confining the first entry of the vector parameter to be ±1 (Gørgens and Horowitz, 1999;

Chen, 2002; Song et al., 2007) to avoid specifying the sign of a treatment effect associated with

the survival outcomes. The presented posterior modification avoids extra sampling and thus

is computationally expedient. In contrast, it is inapplicable to assign constrained priors for β

directly such as the Polar system prior (Park et al., 2005) or Stan’s built-in prior since our prior

elicitation has no constraints.

Finally, for practitioners, we provide the R package BuLTM, which is computationally con-

venient and efficient to predict survival times and output estimates of predicted survival prob-

ability, conditional hazards, and relative risks. For the prediction purpose, simulation stud-

ies demonstrate that BuLTM outperforms spBayesSurv under the PH, PO models, and model

misspecification situations, and is comparable to spBayeSurv under the AFT model. For the

out-sample predictive capability, BuLTM is also competitive to spBayesSurv in application ex-

amples.

The remainder of this chapter is organized as follows. Section 3.2 introduces the recast

model of the NTM as the cornerstone of our Bayesian approach. Section 3.3 introduces weakly

informative prior elicitation for infinite-dimensional parameters. Section 3.4 introduces the

posterior inference procedures including the PPD computation and the posterior projection pro-

cedure for β. Sections 3.5 and 3.6 assess and demonstrate our method compared with existing

work by simulations and application examples, respectively. Section 3.7 concludes the chapter

with a brief discussion. Related details are collected in the online supplementary materials. The

R package BuLTM is available on GitHub https://github.com/LazyLaker.
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3.2 Recast: multiplicative relative risk model

To resolve prediction via the NTM, we first impose the exponential transformation to NTM

(3.1) and obtain a recast model

H(T ) = ξ exp(βTZ), (3.2)

where the recast transformation H(·) = exp{h(·)} and the model error ξ = exp(ϵ) with distri-

bution function Fξ. The nonparametric transformation model (3.2) with multiplicative relative

risk exp(βTZ) is abbreviated as MTM thereafter, where H is positive on R+ and the multi-

plicative random error ξ is also positive. Let SX = 1−FX , where the placeholderX represents

ϵ or ξ. MTM (3.2) is equivalent to NTM (3.1) in the sense that they share common parametric

component β, and strictly Sϵ(·) = Sξ{exp(·)} and h(·) = logH(·).

The above monotonic transformation step plays a critical role in establishing our Bayesian

solution. In the Bayesian paradigm, prior elicitation and posterior sampling are two preliminary

components of Bayesian inference. Unfortunately, the infinite-dimensional parameter h out of

NTM is faced with unprecedented difficulties in both targets.

On one hand, most existing models for sign-varyingmonotone functions are inapplicable to

h in that, h may not have an intercept such as the AFT model, preventing usage of approaches

that rely on an intercept term inmodeling a counterpart of transformationh (Neelon andDunson,

2004; Shively et al., 2009; Lenk and Choi, 2017, among others); it is also nontrivial to extend

to censored observations for those methods that impose a response-based monotonicity shape

restriction to the model (Riihimäki and Vehtari, 2010; Lin and Dunson, 2014; Wang and Berger,

2016, among others).

On the other hand, sampling for h often gives rise to trouble if h(0) → −∞ and lifetimes

are close to zero. Take the logit transformed incomplete beta function in Mallick and Walker

(2003) for instance. Sampling h may be bothered by infinity gradient caused by infinite h

under gradient-based samplers such as the Hamilton Monte Carlo and the No-U-Turn Sampler

(NUTS) in Stan (Carpenter et al., 2017), or by the poor proposal distributions whose center

may disperse to infinity under Metropolis-type samplers, leading to very slow convergence and
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a low acceptance rate.

From the insight that it brings huge expedience if one is able to confine the transforma-

tion to be nonnegative, we are driven to take the recasting as the foremost step to initiate our

methodology. Consequently, the exponential transformation compresses the space of infinite-

dimensional parameters fromMR ×SR to a reasonable subset ofMR+ ×SR+ , whereMA de-

notes the space of monotone functions with rangeA and SA denotes the space of survival func-

tions with supportA. Our spirit has allies in the literature about the transformation model where

they rewrote their transformation as the logarithm of a cumulative hazard function (Scheike,

2006; Zeng and Lin, 2006; among others).

Besides its tractability and convenience, the recastMTM (3.2) still maintains interpretability

analogous to that of NTM (3.1). Let Λ(·) be the cumulative hazard function of a time-to-event.

By some simple algebra, for MTM (3.2), the counterpart of expression (1.3) of Cheng et al.

(1995) that motivates NTM (3.1) can be represented as

G{ΛT |Z(t)} = H(t) exp(−βTZ), (3.3)

where G−1(·) = − log{1− Fξ(·)} is the link working on the conditional cumulative hazard of

the survival time. Specifically, if the link functional forms of G(s) are s and {exp(s)− 1}, or,

Fξ(s) are {1 − exp(−s)} and Fξ(s) = (1 + s)−1 in (3.2), or equivalently, the model error ϵ in

(3.1) follows a standard extreme-value distribution and a standard logistic distribution, then the

model reduces to PH and PO models respectively.

3.3 Likelihood and prior
3.3.1 Likelihood

For the real survival time T and the random censoring variable C, one denotes the observed

time-to-event as T̃ = min(T,C). The censoring indicator δ = I(T ≤ C). Let Sξ and fξ be

the survival probability and density function of ξ, respectively. In this section, we consider the

following quite mild assumptions.

(A1) The exp-transformation H is differentiable.
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(A2) The multiplicative random error ξ is continuous.

(A3) The covariate Z is independent of ξ.

(A4) The censoring variable C is independent of T given Z.

(A1) is required since there isH ′ functional in the likelihood representation below; (A2) is mild;

(A3) is general; (A4) is the general noninformative censorship condition.

With independent triplets of observed data {(T̃i,Zi, δi)}ni , one writes the complete data like-

lihood as

L(β, H, Sξ, fξ|T̃ ,Z, δ) =
n∏

i=1

[fξ{H(T̃i)e
−βTZi}H ′(T̃i)e

−βTZi ]δi [Sξ{H(T̃i)e
−βTZi}]1−δi . (3.4)

For Sξ and fξ, we consider the common DPM models as their priors. Here we employ the

truncated stick-breaking construction of the DPM, denoted as

Sξ(·) = 1−
∫
F0(·|θ)dG(θ), fξ(·) =

∫
f0(·|θ)dG(θ), G =

L∑
l=1

plδθl , θl ∼ G0,

where F0 and f0 are called kernels from a distribution family parameterized by θ, L is a trun-

cation number of the Dirichlet process, pl are corresponding sticking-breaking weights, and θl

are i.i.d. atoms from the base measure G0. More justifications about L and choice for G0 are

deferred to Supplement S.2. Note that ξ is an arbitrary continuous positive random variable. We

select the Weibull distributions as kernels out of a positive distribution family since it charac-

terizes a wide range of survival time scenarios (Kottas, 2006; Egleston et al., 2017; Shi et al.,

2019, among others). Above consideration is summarized into the expression of priors for Sξ

and fξ,

Sξ = 1−
L∑
l=1

plFw(ψl, νl), fξ =
L∑
l=1

plfw(ψl, νl), (3.5)

where Fw(ψ, ν) and fw(ψ, ν) are the CDF and the pdf of the Weibull distribution, respectively.

To model the differentiable H in (3.4), we propose a quantile-knots I-splines prior. We

introduce the details of the proposed prior in the following subsection.
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3.3.2 Quantile-knots I-splines prior

Suppose the data T̃ are observed on the intervalD = (0, τ ], where τ is the largest survival time

in the sample. Note that, H is a nonnegative strictly increasing differentiable function on D

based on transformation model (3.2) and the likelihood function (3.4). It is natural to modelH

and H ′ by monotone splines,

H(t) =
K∑
j=1

αjBj(t), H
′(t) =

K∑
j=1

αjB
′
j(t), (3.6)

where {αj}Kj=1 are positive coefficients to guarantee nondecreasing monotonicity, {Bj(t)}Kj=1

are I-spline basis functions (Ramsay, 1988) onD and {B′
j(t)}Kj=1 are corresponding derivatives.

Unlike other I-splines approaches that include an unknown intercept, we simply set the intercept

H(0) = 0 since it can be derived from assumption (A3) directly, referred to Supplement S.1.

The number of I-spline basis functions K is the sum of the number of interior knots and the

order of smoothness r with (r − 1)th order derivative existing. Empirically, r may take value

from 2 to 4 and we take the default value r = 3 in R package splines2. Interior knots cut the

time intervalD into (K− r+1) partitions. Then our concern lies in specifying the number and

locations of interior knots for modeling the exp-transformation.

We construct an I-splines type prior based on representations (3.6) by selecting interior

knots from empirical quantiles of survival times, namely quantile-knots I-splines prior. First,

we fix the initial number of interior knots NI which is much fewer than that in other typical

I-splines type models coupled with the shrinkage prior. Our insight comes from the advantage

of quantiles that a small number of quantiles quantify different “locations” of distribution and

therefore they can be viewed as alternative measures of the shape of the predictive distribution

of T . Meanwhile, the corresponding posterior is not sensitive within the range of a small number

of knots, indicating that the proposed prior is free of tuning, referred to Supplement S.7.1. It is

expedient in implementation compared to those priors requiring tuning, referred to Supplement

S.4.2.

Next, given the initial number of interior knots NI , we propose a two-step data-driven pro-

cedure to specify their locations using the information of survival times and censoring states.
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Let F̂X(t) = n−1
∑n

i=1 I(Xi ≤ t) be the empirical CDF of X and Q̂X(p) = F̂−1
X (p) = inf{t :

p ≤ F̂X(t)} be the corresponding empirical quantile function, where X is the placeholder for

T and T̃ , uncensored and observed survival times, respectively. Let j = 0, . . . , NI − 1.

Step 1: Selects NI empirical quantiles of uncensored survival times as interior knots 0 < t0 <

· · · < tNI−1 ≤ τ , where tj = Q̂T{j/(NI − 1)}.

Step 2: If |F̂T (tj) − F̂T̃ (tj)| > z0 ≥ 0.05, then interpolate a new knot t∗j = Q̂T̃ (j/(NI − 1)).

Output sorted series of {t0, . . . , tj, t∗j , . . . , tNI−1} as final interior knots.

In step 1, we choose equally spaced percentiles of uncensored survival times since information

about H ′ is provided by uncensored survival times only. In step 2, we make interpolation in

case of high censoring of survival times and insufficient uncensored observations.

Take 5 initial knots for instance i.e. it contains 3 quartiles and 2 endpoints of uncensored

survival times. In Figure 3.1, there are apparent deviations between uncensored and observed

curves on the first three interior knots. Therefore, we interpolate by three new knots t∗j =

QT̃ (j/4), for j = 0, 1, 2. Finally, we obtain (t∗0, t0, t∗1, t1, t∗2, t2, t3, t4 = τ) as our interior knots.

By the above operation, I-spline basis functions {Bj(t)}Kj=1 are specified. We further assign
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Figure 3.1: Example with 5 initial knots.

an exponential prior for {αj}Kj=1. Consequently, we have built our quantile-knots I-splines

prior for H , which is weakly informative by the fact that, given αj ∼ exp(η), E{H(t)} =

η−1
∑K

j−1Bj(t) <∞ and Var{H(t)} =
∑K

j=1 η
−2B2

j (t) <∞ for any η > 0 and t <∞.
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Remark 3.1. The quantile-knots I-splines prior can also be applied to model nondifferentiable

functions. The proposed prior can be viewed as a combination of NII processes, referred to

Supplement S.3. Particularly, when r = 1, the I-spline function reduces to a straight line on

each partition, and the proposed prior reduces to the piecewise exponential prior.

3.4 Posterior inference

3.4.1 MCMC and posterior prediction

According to above prior settings, nonparametric parameters H and Sξ in MTM (3.2) are en-

capsulated in elements ofα and (p,ψ,ν), respectively, whereα = {αj}Kj=1, p = {pl}Ll=1,ψ =

{ψl}Ll=1,, and ν = {νl}Ll=1. Consequently, the nonparametric components (h, Sϵ) in the original

NTM (3.1) are expressed as

h(t) = log{
K∑
j=1

αjBj(t)}, Sϵ(x) = 1−
L∑
l=1

plFw{exp(x)|ψl, νl}.

Then the estimators of triplet parameters (h, Sϵ,β) can be obtained from the posterior distribu-

tion of parameters Θ = (α,β,p,ψ,ν). The posterior density of Θ is

π(Θ|T̃ ,Z, δ) ∝ L(Θ|T̃ , Z, δ)p(α)p(β)p(p)
L∏
l=1

G0(ψl, νl),

where L is the likelihood for Θ defined by (3.4) and p(·) represents a prior density. For each

parameter in the posterior density, we set their priors as

αj ∼ exp(η), p(β) ∝ 1, G0(ψl, νl) = Gamma(a, b)× Gamma(a, b),

p
l
= q

l

l−1∏
L=1

(1− q
l
), q

l
∼ Beta(1, c), l = 1, . . . , L− 1; p

L
= 1−

L−1∑
l=1

p
l
.

(3.7)

Here η is the hyper-parameter of the prior for α. The prior for β is an improper uniform prior,

which is “purely” noninformative. One may either assign a hyperprior for η or fix it to a con-

stant, referred to Supplement S.7.2 for sensitivity analysis of η. Parameters {ql}Ll=1 are stick-

breaking weights of the DPM. We fix c = 1 as the default total mass parameter in BuLTM. For
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the base measure G0, we recommend fixing it as that in (3.7) rather than assigning it another

hyperprior, referred to Supplement S.2 for justification.

We note that choices of the prior for β can be relaxed to be noninformative. We suggest a

purely noninformative prior for β, such as the improper uniform prior, since it simplifies the

form of the posterior and its gradient so as to speed up the MCMC sampler. The following

result tells, even though the prior for β is improper, under very mild conditions, the posterior

in (1.11) is still proper.

Theorem 3.1. With the improper uniform prior for β in (3.7), the posterior distribution in

(1.11) is proper under the following conditions: (i) 0 < T̃i <∞, for i = 1, . . . , n, (ii) priors for

{ψl, νl}Ll=1, {pl}Ll=1 in model (3.5) and {αj}Kj=1 in model (3.6) are proper, (iii) 0 < K,L < ∞

in models (3.5) and (3.6), (iv) the kernel fw in model (3.5) satisfies that xfw(x) < ∞ for all

x > 0, (v) let Z∗ be the n1 × p matrix of the covariates of uncensored observations, where

n1 =
∑n

i=1 δi, and Z∗ is of full rank p.

This theorem indicates that the impact of the prior for β on the prediction is inferior to that of

priors for nonparametric components.

Conditions required for Theorem 1 are quite mild. Conditions (i) is a general setting for

right censored data. Conditions (ii) and (iii) are general settings for Bayesian analysis. Con-

dition (iv) is naturally satisfied when the Weibull kernel is adopted. Condition (v) is similar

to condition (ii) in de Castro et al. (2014), which is a common condition within the survival

context. In the right censoring case, condition (v) is also required by Zhou and Hanson (2018)

as their algorithm employs a Cholesky decomposition to the covariate matrix. The proof is

deferred to Supplement S.5.

We implement the NUTS in Stan as our MCMC sampler since the domain of Θ is contin-

uous. NUTS is a tuning-free extension of Hamilton Monte Carlo, which is robust and efficient

for continuous-variable models. Stan has become popular and appealing in recent years since

it provides clear automatic posterior sampling procedures. Therefore, users are released from

complicated probabilistic deriving and implementation. Our R package BuLTM is developed

based on Stan. We approximate the improper uniform prior for β through N(0, 106) to avoid

possible computational issues caused by improper priors in Stan.
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For prediction purposes, the posterior predictive survival probability of a future observation

T0 given covariates Z0, denoted by ST0|Z0(t), is an average of conditional predictions over the

posterior distribution ofΘ (Gelman et al., 2013, pp.7). Mathematically, ST0|Z0(t) is the integral

of product of conditional survival probability given Θ and π(Θ|T̃ ,Z, δ),

ST0|Z0(t) =

∫
ST0|Z0(t|Θ)π(Θ|T̃ ,Z, δ)dΘ =

∫
[Sξ{H(t) exp(−βTZ0)}]π(Θ|T̃ ,Z, δ)dΘ,

(3.8)

where Sξ and H are expressed by elements of Θ as in (3.5) and (3.6), respectively. Note that,

alternatively, (3.8) can also be expressed by (h, Sϵ,β). By definition, unidentified MTM (3.2)

means that collections of triplets (β, H, Sξ) generate unique likelihood (3.4), which has the same

form as ST0|Z0(t|Θ). The uniqueness of ST0|Z0(t|Θ) determines the uniqueness of ST0|Z0(t) if the

posterior π(Θ|T̃ ,Z, δ) is proper. Numerically, the integral (3.8) is approximated by averaging

all posterior samples. That is, once samples of β and sample paths of H and Sξ are drawn,

denoted by β(i), H(i) and S(i)
ξ respectively, for i = 1, . . . ,M , then the conditional survival

probability ST0|Z0 and the conditional cumulative hazard ΛT |Z0 are estimated by

ŜT0|Z0(t) = N−1

M∑
i=1

S
(i)
ξ {H

(i)(t) exp(β(i)TZ)}, Λ̂T0|Z0(t) = − log(ŜT0|Z0(t)). (3.9)

3.4.2 Posterior projection for parametric estimation

Note that without any constraints, we assign two weakly informative priors to nonparametric

components (H,Sξ) or (h, Sϵ) and a noninformative prior to β. Then the joint posterior (1.11)

of triplet (h, Sϵ,β) is obtained under prior settings in (3.7). Although the posterior of the full

set of parameters (h, Sϵ,β) is jointly estimable, the marginal posterior of each component is

meaningless. Nonetheless, it is essential for practitioners to have the marginal estimator of the

parametric component β and related quantities such as relative risks exp(−β̂TZ). To this end,

let β be restricted to ||β|| = 1, where || · || is the L2 norm in the Euclidean space. Our interest

focuses on marginal posterior inference and estimation of the identified unit vector β/||β||,

denoted by β∗, hereafter.



CHAPTER 3. NONPARAMETRIC TRANSFORMATION MODELS 105

We obtain a Bayes estimator of β∗ through posterior modification. This is inspired by a

state-of-the-art posterior projection technique. In essence, it is to project the marginal posterior

of unconstrained β to the constrained parameter space of β∗. Note that the parameter space of

β∗, the unit hyper-sphere ||β∗|| = 1, is exactly the Stiefel manifold St(1, p) in Rp. Define a

metric projection operator into a set A as the mapping mA : Rp → P(A), where P(A) is the

power set of A. Let dist(x,A) = inf{||x− x∗||, x∗ ∈ A} be the distance between x ∈ Rp and

A. The metric projection operatormA is determined by

mA(x) = {x∗ ∈ A : ||x− x∗|| = dist(x,A)}.

Then, the metric projection of any vector β ∈ Rp into St(1, p) is uniquely determiened as

mSt(1,p)(β) = β/||β|| (Absil and Malick, 2012, Proposition 7). Consequently, the projected

posterior distribution of β∗ is always proper by proposition 3 in Sen et al. (2022) since the

posterior of β in (1.11) is proper and absolutely continuous. Note that one only samples the

posterior of unconstrained β and obtains the posterior of β∗ by projection. Then the point

estimate of β∗ is given by mean or median of the projected posterior. Numerical studies reveal

that our estimator of β∗ enjoys excellent frequentist performance in the sense of low bias and

credible intervals that reach the nominal rate, reconciling the frequentist and Bayesian measures

of uncertainty quantification.

In summary, our whole posterior inference procedure takes the following steps,

1. Initialization. Initialize the MCMC procedure with initial values of α,p,ψ and ν sam-

pled from their priors. Randomly generate an initial for β so that ||β|| > 0.

2. MCMC. DrawM posterior samples of Θ = (α,β,p,ψ,ν) from the posterior (1.11) by

NUTS.

3. Prediction. Compute posterior predictive survival functions given z0 following (3.9).

4. Estimation of β∗. Generate the ith posterior sample of parameter β∗ as β(i)/||β(i)||,

where β(i) is the ith posterior sample of β drawn in Step 2, for i = 1, . . . ,M .
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3.5 Simulations

Extensive simulations are conducted to evaluate the robustness of prediction of survival out-

comes by the proposed BuLTM method and performance of the parametric estimation under the

nonparametric transformation model setting. We compare BuLTM with contemporary Bayesian

and frequentist methods. The Bayesian competitor is the R package spBayesSurv by Zhou

and Hanson (2018), which provides a unified two-step Bayesian route for fitting and select-

ing mainstream transformation models of PH, PO, and AFT. For the frequentist method, we

compare with the contemporary R package TransMOdel (Zhou et al., 2022b) for semiparamet-

ric transformation models with pre-specified model error, as an implementation of Chen et al.

(2002). Details about reproducibility and simulation results in low censoring cases are put into

Supplements S.6.1 and S.6.2.

Simulated survival times are generated following model (3.1). Under each setting, we gen-

erate 300 Monte Carlo replicates, each with sample size n = 200. The vector of regression

coefficients is β = (β1, β2, β3)
T = (

√
3/3,
√
3/3,
√
3/3)T such that ||β|| = 1. Therefore, the

identified β∗ estimated by BuLTM is coincided with the true β in data generation, leading to the

interpretation. For covariates Z = (z1, z2, z3), we set z1 ∼ Bin(0.5) indicating a discrete/cate-

gorical variable, z2, z3 ∼ N(0, 1) as continuous variables with correlation coefficient 0.2, and

z1 is independent of (z2, z3).

We assess the performance of BuLTM under four true model cases including PH, PO, AFT

models, and a case where none of them is the true model.

Case 1. Non- PH/PO/AFT : ϵ ∼ 0.5N(−0.5, 0.52) + 0.5N(1.5, 12),

h(t) = log[(0.8t+ t1/2 + 0.825)(0.5Φ1,0.3(t) + 0.5Φ3,0.3(t)− c1)], C ∼ U(1.5, 3);

Case 2. PH model : ϵ ∼ EV(0, 1),

h(t) = log[(0.8t+ t1/2 + 0.825)(0.5Φ0.5,0.2(t) + 0.5Φ2.5,0.3(t)− c2)], C ∼ min(exp(1), 2.5);

Case 3: PO model : ϵ ∼ Logistic(0, 1),

H(t) = log[(0.8t+ t1/2 + 0.825)(0.5Φ0.5,0.2(t) + 0.5Φ2.5,0.3(t)− c3)], C ∼ min(exp(3/4), 3.5);

Case 4: AFT model : ϵ ∼ N(0, 12), h(t) = log(t), C ∼ min(exp(3/4), 5).
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Here Φµ,σ denotes the CDF of N(µ, σ2), EV(a, b) denotes the extreme value distribution such

that its exponential followsWeibull{exp(a), 1/b}, and ck is the constant such that exp{h(0)} =

H(0) = 0, for k = 1, 2, 3. The censoring variable C is generated independent of Z, leading to

approximately 57%, 58%, 59%, and 61% censoring rates, respectively.

Case 1 can neither be expressed by any of PH, PO, and AFT models nor be incorporated by

the class of logarithmic transformations in Chen et al. (2002). In Case 2,

ST |Z(t) = exp{− exp[h(t)] exp(−βTZ)}. Therefore, the conditional hazard function is

λT |Z(t) = exp[h(t)]h′(t) exp(−βTZ),

which is exactly a PH model, corresponding to r = 0 in TransModel. In Case 3, ST |Z(t) =

{1 + exp[H(t)] exp(−βTZ)}−1. Then, the conditional odds function is

1− ST |Z(t)

ST |Z(t)
= exp[h(t)] exp(−βTZ),

which is exactly a PO model, corresponding to r = 1 in TransModel.

3.5.1 Prediction of conditional survival probability

We assess the accuracy of the prediction of survival outcomes and visualize predictive survival

probability and cumulative hazard functions. Following (3.9), BuLTM computes the PPD by pos-

terior samples of triplet (H,Sξ,β). The accuracy of prediction is assessed by the L2 distance

between real conditional survival curves and the PPD. Numerically, the L2 distance is approxi-

mated by root integrated square error (RISE) on the observed time interval. The smaller RISE,

the better the prediction. For each prediction scenario, we compare PPDs of three future obser-

vations with different sets of covariates: Z1 = (0, 0, 0)T,Z2 = (1, 1, 1)T and Z3 = (0, 1, 1)T,

respectively.

Table 3.1 shows that, under these three sets of new observations, BuLTM overwhelmingly

outruns spBayesSurv in the performance of predicting conditional survival probability under

non-PH/PO/AFT, PH, and PO models, and is comparable with spBayesSurv under the AFT

model. It is reasonable that BuLTM is superior to the other two approaches in Case 1 since the
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true model setting is beyond the application scope of spBayesSurv and TransModel; BuLTM

still outperforms the other two under in Case 2 since the PH model is a special case of the

Weibull mixture model employed by BuLTM. For the PO model, the three approaches are com-

parable; for the AFT model, spBayesSurv outperforms since it has already correctly specified

the transformation function, resulting in a much simpler problem of density estimation. We find

that TransModel does not perform well in this case even though we use the standard logistic

distribution (r = 1) to approximate the Gaussian model error.

Table 3.1: The RISE between true conditional survival functions and functions predicted by BuLTM and
spBayesSurv under Cases 1 to 4.

Case 1: Non- PH/PO/AFT Case 2: PH Case 3: PO Case 4: AFT
Z BuLTM PH PO AFT r = 0 r = 0.5 r = 1 BuLTM PH r = 0 BuLTM PO r = 1 BuLTM AFT r = 1
Z1 0.068 0.122 0.130 0.117 0.104 0.109 0.104 0.074 0.080 0.091 0.010 0.098 0.103 0.968 0.079 0.102
Z2 0.060 0.128 0.083 0.220 0.099 0.109 0.099 0.077 0.084 0.092 0.125 0.126 0.127 0.139 0.125 0.161
Z3 0.079 0.112 0.100 0.132 0.120 0.123 0.120 0.100 0.110 0.113 0.139 0.135 0.127 0.157 0.132 0.161
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Figure 3.2: The predicted conditional survival probability curve (S(t)) and the conditional cumulative hazard
function (Λ(t)) for Z = (0, 0, 0)T; (a), Case 1; (b), Case 2; (c), Case 3; (d) Case 4; real line: true curve; dash line:
estimated curve; shadow: 95% empirical point-wise confidence band.

Particularly, BuLTM is excellent to predict the survival probability of future observations
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with the zero covariate vector Z (also called baseline survival probability in Zhou and Hanson

(2018)). We present the average predicted baseline survival probability curves and baseline cu-

mulative hazard curves throughout the simulations in Figure 3.2. The average predicted curves

fit the true curves quite well and are covered by the 95% point-wise confidence band, demon-

strating the prediction capability of BuLTM.

3.5.2 Parametric estimation

We evaluate the performance of BuLTM in estimating the identified parameter β∗, which has the

same interpretation as the true unit vectorβ in all simulation settings. We consider the following

frequentist operating characteristics for evaluation, the average bias of estimates (BIAS), the

square root of the mean squared error of the estimator (RMSE), the average posterior standard

error (PSD), the standard error of the estimated values (SDE), and the coverage probability of

the 95% credible or confidence interval (CP), as usual. The pointwise bias of BuLTM should

be computed in a different way from spBayesSurv. Among all simulations, we re-scale the

mean vector of estimated β̂∗ into a unit vector and then compute the pointwise bias. Otherwise,

the result is surely biased no matter what kind of unit-norm estimator is used. The reason is

that BuLTM provides an estimate of a unit vector in each replication of simulations, while the

element-wise mean of a series of unit vectors is not a unit vector anymore since for unit vectors

v1, . . . , vn ∈ St(1, p), ||n−1
∑n

i=1 vi|| ≤ 1 by triangle inequality.

Results of parametric estimation are summarized in Table 3.2 for Cases 1-3. Results under

the AFT model are put into Supplement S.6.3. It is worth noting that the interpretation of the

true β in Case 1 is different from that of any semiparametric models fitted by spBayesSurv

and transformation models fitted by TransModel. Therefore, none of them provide reasonable

parametric estimation in Case 1, and we leave the place of their assessment results blank. In

contrast, the parametric estimation given by BuLTM has little bias, the PSD is quite close to the

SDE, and the CP is close to the nominal level in this case. In Cases 2 and 3, where the true

model is one of PH and PO models, BuLTM has a lower bias for most parameters and has lower

RMSE for all parameters than the other two methods. Since the “true” regression vector is set

to be unit-norm, the three approaches share the same interpretation for β in these two cases.
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These simulation results demonstrate that BuLTM estimates the unit-norm restricted identified

parameter quite well.

Table 3.2: Results of estimation of β by BuLTM, spBayeSurv, and TransModel in Cases 1 to 3.

Case 1: Non-PH/PO/AFT BuLTM spBayesSurv/TransModel
Parameter BIAS RMSE PSD SDE CP

β1 -0.003 0.098 0.092 0.097 94.0
β2 -0.006 0.072 0.067 0.071 92.0
β3 0.009 0.072 0.067 0.068 94.0

HCase2: PH HCase3: PO
Method Parameters BIAS RMSE PSD SDE CP BIAS RMSE PSD SDE CP
BuLTM β1 0.005 0.159 0.152 0.158 93.7 0.011 0.218 0.211 0.214 92.7

β2 -0.002 0.122 0.107 0.118 93.3 -0.000 0.148 0.146 0.138 95.3
β3 -0.003 0.109 0.108 0.105 93.3 -0.011 0.149 0.146 0.135 95.3

spBayesSurv β1 0.018 0.240 0.227 0.240 92.0 0.000 0.335 0.315 0.335 94.7
β2 0.025 0.137 0.122 0.135 92.7 0.021 0.172 0.167 0.171 94.7
β3. 0.023 0.128 0.122 0.126 93.7 0.014 0.164 0.168 0.164 95.0

TransModel β1 0.001 0.267 0.244 0.267 93.0 0.057 0.369 0.339 0.365 92.0
β2 0.008 0.140 0.132 0.140 96.0 0.021 0.196 0.179 0.195 93.0
β3 0.017 0.133 0.132 0.132 96.3 0.021 0.190 0.179 0.188 92.3

3.6 Applications

3.6.1 PO case: veterans lung cancer data

The first example is the veterans lung cancer dataset from R package survival (Therneau,

2022). It contains 137 patients from a randomized trial receiving either a standard or a test form

of chemotherapy. In the study, the survival time is one of the primary endpoints for the trial

and 128 patients were followed to death. We include six covariates, the first five of which are

Z1 = karno/10 (karnofsky score), Z2 = prior/10 (prior treatment, with 0 for no therapy and

10 otherwise), Z3 = age/100 (years), Z4 = diagtime/100 (time in months from diagnosis to

randomization), and Z5 = I(treatment = test form of chemotherapy). The remaining is the

covariate of the cell type which has four categories, adeno, squamous, small cell, and large cell.

Thus we include indicator variables to associate with time-to-death, that is, Z6 = I(cell type =

squamous), Z7 = I(celltype = small), and Z8 = I(celltype = large).

We fit the nonparametric transformation model for the veterans data by BuLTM and compare

the results with spBayesSurv and TransModel. spBayesSurv selects the PO model in this
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case and thus we use r = 1 in TransModel.

PredictionWe compare the curves of estimated survival probability given by BuLTM with that

of spBayesSurv first. We divide the dataset into four strata based on their cell types. For

each stratum, the survival curves given by BuLTM and spBayesSurv are estimated through the

predicted survival probability conditional on the mean values of covariates of all individuals

within the stratum. For comparison, we use the Kaplan-Meier (K-M) estimator of that stratum

as the baseline result. Figure 3.3(a) and 3.3(b) display the results of estimated survival curves.

For the squamous stratum, the survival curve given by BuLTM is significantly closer to the K-M

estimator than that of spBayesSurv; for the adeno stratum, the survival curve given by BuLTM is

slightly closer to the K-M estimator in themiddle range of the following-up period. Since BuLTM

and spBayesSurv perform similarly to each other on the remaining two strata, we simply omit

their results here. The comparison with the K-M estimator supports the estimation of survival

functions given by BuLTM.
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Figure 3.3: Estimated curves of survival probability given by BuLTM, spBayesSurv, and the K-M estimator
under strata categorized by celltypes; (a) the stratum of squamous; (b) the stratum of large cell.

To further compare their predictive capability, we randomly split the full dataset into the

training and testing sets with proportions 90% and 10%, respectively. We repeat this proce-

dure 10 times. We fit survival models based on the training data first and then predict survival

outcomes on the testing set. The prediction capability is assessed by the commonly used Con-

cordance index (C index, Harrell et al., 1982), which is an extension of the area under the curve

(AUC) as a measure of concordance between a predictive biomarker and the right-censored

survival time. A higher C index implies better prediction capability of a model. In this chap-
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ter, the C index is computed by R package SurvMetrics (Zhou et al., 2022a) following the

procedure in Ishwaran et al. (2008). Details about metrics for prediction evaluation of survival

models in this chapter are deferred to Supplement S.10. Since most observations in the example

are uncensored, a natural prediction of the survival time of a future observation is the median

computed from its PPD. And then we use this predicted survival time as the diagnostic marker

to compute C index. We also compute the mean of absolute error (MAE) between the predicted

survival times and the true survival times of uncensored observations.

Figure 3.4(a) presents the boxplot of C index assessed among the 10 testing sets as well as

themeanC index. From the figure we find that BuLTM provides the highest meanC index (0.729)

and the most concentrated C indices across 10 testing sets. Although TransModel provides the

highest median C index, it has large variation and encounters the worst prediction result. We

further compare their MAE of predicted survival times on testing sets in Figure 3.4(b). We find

that BuLTM shares almost the same 25% quantile and median of MAE as that of spBayesSurv,

while it enjoys a lower mean MAE. Meanwhile, BuLTM outperforms TransModel in both mean

and median MAEs. These two results demonstrate that BuLTM is competitive in out-sample

prediction on the veterans lung cancer dataset.
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Figure 3.4: (a) The box plot of the C index computed on 10 testing sets; (b) the box plot of MAE between
predicted and true survival times of uncensored observations on 10 testing sets.

Estimation of relative risks In terms of estimation of relative risks, we add the smoothed partial

rank (SPR) estimator (Song et al., 2007) into our comparison. Although quantitative interpre-

tations of β (β∗ in BuLTM) under different models are different, their qualitative interpretations

such as the relative importance of the predictors such as the relative importance of treatment
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effects are relatively stable (Solomon, 1984). Our analysis demonstrates this point of view

since the results of parametric estimation given by different methods are consistent, referred to

Supplement S.8.1.

According to the model selection result by spBayesSurv, the underlying survival model of

this dataset is more likely to be the PO model. Under the PO model, the odds given covariates

Z are proportional to the relative risk exp(−βTZ) at any time t. Hence, it is important to

evaluate the estimated relative risk exp(−β̂TZ) given by the above threemethods (exp(−β̂∗TZ)

by BuLTM). Naturally, we assess the estimated relative risk through the area under the time-

dependent ROC(t) curve (AUC) for censored survival time by treating the survival status as a

binary response. Figure 3.5 displays the dynamic AUCs using the estimated relative risks given

by BuLTM, spBayesSurv, and TransModel as diagnostics. We find BuLTM and TransModel

share almost the same survival AUC curves which are higher than that of spBayesSurv.
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Figure 3.5: Time dependent survival AUC(t) computed by estimated relative risks.

3.6.2 PH case: heart failure clinical records data

We apply BuLTM to analyze the heart failure clinical records data first published by Chicco and

Jurman (2020). The dataset records 299 heart failure patients collected at the Faisalabad In-

stitute of Cardiology and at the Allied Hospital in Faisalabad, from April to December 2015

(Ahmad et al., 2017). The dataset consists of 105 women and 194 men, with a range of ages

between 40 and 95 years old. In the dataset, 96 observations are recorded as death and the re-

maining 203 are censored, leading to a censoring rate of 67.9%, which is relatively high. The

dataset contains 11 covariates reflecting one’s clinical, body, and lifestyle information. Among
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the 11 covariates, 5 of them are binary variables: anaemia, high blood pressure, diabetes, sex,

and smoking. The dataset considers a patient having anaemia if hematocrit levels were lower

than 36%, while the criterion for high blood pressure is unclear in the study. Other contin-

uous covariates are age (year), creatinine phosphokinas (level of the creatinine phosphokinas

enzyme in the blood, mcg/L), ejection fraction (percentage of blood leaving the heart at each

contraction), platelets (platelets in blood, kiloplatelets/mL), serum creatinine (level of creati-

nine in blood, mg/dL), and serum sodium (level of sodium in blood, mEq/L). The survival

times are recorded in days. In our data pre-processing, we transfer the survival time to months

by days/30. We report the results of prediction here compared with spBayesSurv. Paramet-

ric estimation results and estimation of relative risks given by the two methods are similar and

deferred to Supplment S.8.2.

Prediction Likewise, we compare the curves of estimated survival probability given by BuLTM

with that of spBatesSurv first. In this case, spBayesSurv selects the PH model. We con-

sider two strata of observations: the high-risk (HR) stratum where observations have both

anaemia and high blood pressure, and the low-risk (LR) stratum where observations have nei-

ther anaemia nor high blood pressure. For each stratum, the survival curves given by BuLTM

and spBayesSurv are estimated through the predicted survival probability conditional on the

mean values of covariates of all individuals within the stratum. We also use the K-M estimator

as the baseline result for comparison.
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Figure 3.6: Estimated curves of survival probability given by BuLTM, spBayesSurv, and the K-M estimator
under high-risk and low-risk strata.
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As shown by Figure 3.6, for the LR stratum, the survival curve estimated by BuLTM is closer

to the K-M estimator than that of spBayesSurv both at the beginning follow-up time period and

months from 5 to 6, and spBayesSurv is closer to the K-M estimator at other times. For the HR

stratum, BuLTM performs slightly better at the beginning and provides almost the same result as

spBayesSurv at the tail. It is reasonable that BuLTM performs better at the beginning time period

on this highly-censored dataset since most quantiles of survival times are distributed at the

beginning period and the quantile-knots I-splines prior generates more knots at the beginning.

For comparison of their predictive capability on this dataset, we still randomly split the full

dataset into the training and testing sets with proportions 90% and 10%, respectively, and repeat

this procedure 10 times. Again, we evaluate the predictive capability by the C index. According

to the censoring rate (68.9%), we select the 70% quantiles of PPDs to compute the C index.

Besides, we consider the Brier score (BS, Graf et al., 1999) to assess the prediction curve error

i.e. expected value of the square of the difference between the true survival state of a sample

and its predicted survival probability at some specific time points. To evaluate the BS on all

follow-up time intervals, we consider the integral of BS functions (IBS) on a given interval as

another assessment. As a kind of square error, the lower the IBS, the better the prediction. We

don’t consider the MAE as an assessment in this case since most observations are censored and

hence, the MAE loss is meaningless.
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Figure 3.7: Prediction comparison between BuLTM, spBayesSurv, and TransModel; (a), C index; (b), Integrated
Brier score.

As shown by Figure 3.7(a), among the 10 testing sets, BuLTM enjoys a higher median and a

higher 75% quantile of C indices. Meanwhile, the average C index of BuLTM (0.669) is again
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Figure 3.8: Time dependent survival AUC(t) computed by estimated relative risks. (a), method “K-M”; (b),
method “NNE”.

slightly higher than that of the PHmodel (0.664). In terms of the IBS, as shown by Figure 3.7(b),

BuLTM enjoys a lower median, 75% quantile, and the maximum value than the PHmodel among

the 10 testing sets. The average IBS of BuLTM (0.233) is lower than the average value of the

PH model (0.238) too. These results support that BuLTM has competitive out-sample predictive

capability on this dataset.

3.7 Discussion

In this chapter, instead of imposing strong restrictions to make the NTM identified, we assign

two weakly informative priors for the nonparametric components, the quantile-knots I-splines

prior to the transformation function and a Weibull kernel DPM model to the error distribution,

and employ a noninformative prior to the parametric component, to achieve prediction through

computing PPDs under NTM (3.1). We are not the daredevils to do so since existing litera-

ture has had a few explorations in other environments, where weakly informative priors were

modeled to avoid burdensome computation caused by constraints for model identification (Mc-

Culloch and Rossi, 1994; Branscum et al., 2008; Burgette et al., 2021; Berchuck et al., 2022;

among others).

We explored the use of constrained priors for H while the posterior on the constrained

support is too difficult to sample; see Supplement S.4.1 for details. For posterior inference

in BuLTM, although we admit that a few inner points of the posterior surface (percentage less
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than 0.5%) may exceed the maximum tree depth of NUTS (Hoffman et al., 2014) in MCMC

sampling, our method enjoys fast convergence and well-mixing of MCMC chains with high

effective sample size (ESS) in MCMC diagnosis; see Supplement S.6.4; the posterior is neither

sensitive to subjective choices of hyperparameters in the weakly informative priors nor similar

to priors, referred to Supplements S.7 and S.9, respectively.

Our success on the NTM provides a possible route to address the prediction under a wide

range of nonparametric models with unidentified infinite dimensional parameters, where iden-

tifying the infinite-dimensional parameters by imposing complicated constraints may encounter

computational infeasibility. In this case, one may construct weakly informative nonparametric

priors for the infinite-dimensional parameters (with specified center and finite variation, simi-

lar to our quantile-knots I-splines prior for h and DPM model for Fϵ) so as to facilitate MCMC

sampling and compute the PDDs for future observations. In the meantime, inference of iden-

tified parameters can be obtained by posterior projection to a constrained space that makes the

parameter identified. Our results in parametric estimation supply numerical justification for the

post-processing, from both aspects of point estimation and uncertainty measurement.

It is intuitive to extend the proposed BuLTM method to other types of censorship given that

the censoring is noninformative. The analysis of informative censoring or competing risk yields

a different likelihood and thus different posterior inference, requiring completely new research.

A natural next step work may use the spirit of solving the estimation of the NTM to estimate

single-index models from the Bayesian perspective; another natural extension is to study ran-

dom effects models where the nonparametric transformation acts as the functional random ef-

fect.

3.8 Supplement

3.8.1 Deriving H(0) = 0 from assumption (A3)

Proof. Suppose H(0) = a , where a is a positive constant. It is natural that Pr{T > 0} = 1.

Then we have

Pr{T > 0} =
∫
D

Pr{T > 0|Z = z}fZ(z)dz = 1,
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where D denotes the support of covariate Z and fZ denotes the density of Z. According to the

transformation model, Pr{T > 0|Z = z} = Pr{H(T ) > a|Z = z} = Pr{ξ exp(βTz) >

a} = Pr{ξ > a exp(−βTz)}. As a counterexample, we suppose the covariate Z = Z ∼

N(0, 1) is univariate, the model error ξ ∼ exp(1), and β = β1 = −1. Since ξ and Z are

independent, we have Pr{T > 0} =
∫
R

∫ +∞
a exp(z) exp(−t)ϕ(z; 0, 1)dtdz < 1, where ϕ(·; 0, 1)

denotes the density of N(0, 1). This contradicts the fact that Pr{T > 0} = 1. Therefore,

H(0) = 0.

3.8.2 The DPM model for Sξ

A regular Dirichlet process mixture (DPM) model (Lo, 1984) is assigned for Sξ, the survival

probability function of the positive random variable ξ. The DPM is a kernel convolution to the

Dirichlet process (DP). We use the stick breaking representation for G ∼ DP(c,G0) (Sethura-

man, 1994)

G(·) =
∞∑
l=1

p
l
δθ

l
(·), θ

l
∼ G0, pl

∼ SB(1, c)

where δ(·) is the point mass function, and SB is the stick-breaking representation. We call G0

as the base measure and c as the total mass parameter, acting as the center and precision of the

DP, respectively.

Following the above stick-breaking representation, we construct the truncated DPM priors

for Sξ and fξ with the Weibull kernel such that

Sξ = 1−
L∑
l=1

p
l
Fw(ψl

, ν
l
), fξ =

L∑
l=1

p
l
fw(ψl

, ν
l
), p

l
∼ SB(1, c), (ψ

l
, ν

l
) ∼ G0,

where L is the truncation number, and Fw and fw denote CDF and density of Weibull distribu-

tion, respectively. We fix the truncation number L rather than sampling it to simplify computa-

tion as a common strategy (Rodriguez et al., 2008). LetS(∞)
ξ denote the limit of the DPMmodel,

and S(L)
ξ denote the truncated form. The truncation number L is generally selected such that the

L1 error between the limit form and the truncated form, denoted as
∫ +∞
0
|S(∞)

ξ (s)−S(L)
ξ (s)|ds,

is as small as possible. As shown by Ishwaran and James (2002), this L1 error is bounded by

4n exp{−(L − 1)/c}, where n denotes the sample size. In practice, an error bound of 0.01 is
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considered to be sufficiently small (Ohlssen et al., 2007). Since we fix the total mass parameter

c = 1 as a common practice, for sample size n < 600, L = 12 is a suitable choice of truncation

number. In our numerical studies, we find that an L in the range of 10 − 15 is appropriate to

approximate the DPM model well. Users of BuLTM are free to adjust the truncation number

according to the data size.

Let G0 be the base measure for (ψl
, v

l
). We recommend choosing G0 = Gamma(1, 1) ×

Gamma(1, 1) as the specified base measure without any hyperprior for it. The setting of G0 in

our approach implies thatE{Fξ(t)} = 1−exp(−t) i.e the nonparametric transformation model

is centering around the PH model. Such elicitation of the DPM model is a weakly informative

prior for Sξ since the variance of the DP is finite (Nieto-Barajas et al., 2012). Note that it

is nontrivial to select the hyperprior for G0. For the base measure in the DPM with Weibull

kernel, Kottas (2006) proposed a Uniform-Pareto (Upar) prior, and Shi et al. (2019) proposed

a low information omnibus (LIO) prior, while neither of them is applicable to our method. The

Upar prior is not applicable to our unidentified models since the Upar prior is noninformative

to (ψ, ν); otherwise, the MCMC algorithm can hardly converge. The LIO prior is a kind of

hierarchical specification, which is too complicated to be incorporated into our method with a

heavy computation burden.

3.8.3 Relationship between the quantile-knots I-splines prior and the NII

process

We summarize the relationship between the quantile-knots I-splines prior and the nonnegative

independent increment process here. Let s0 = 0 < s1 < s2 < · · · < sJ = τ and we get J

disjoint partitions [0, s1], (s1, s2], · · · , (sJ−1, sJ ] of D. Note that each I-spline function starts

at 0 in an initial flat region, increases in the mid region, and then reaches 1 a the end (Wang

and Dunson, 2011b). Therefore, the range of all I-spline functions is [0, 1]. Then we determine

the I-spline basis functions with knots s0 = 0 < s1 < s2 < · · · < sJ = τ and smoothness

order r > 1 as {Bj(t)}K=J+r
j=1 . We call two I-spline functions Bj1(t) and Bj2(t) are “joint” on a

certain interval Di for i = 1, · · · , J , if ∃t′ ∈ Di such that Bj1(t
′), Bj2(t

′) ∈ (0, 1). Otherwise,

they are “disjoint” on Di. We also call an I-spline function Bj(t) “crosses” an interval Di if
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∃t′ ∈ Di such that 0 < Bj(t0) < 1.

We divide allK I-spline basis functions into r groups. Among the r groups, for ι = 1, . . . , r,

the ιth group consists of Bι, Bι+r, Bι+2r, . . . such that all I-spline functions in this group are

disjoint. That is, for any Di, only one of the I-spline functions within the ιth group crosses the

interval Di. We define the combination of I-spline functions within the ιth group as

Hι(t) =
∑
k≥1

αι+krBι+kr(t).

Then Hι(t) has independent increments among all knots s0 = 0 < s1 < s2 < · · · < sJ = τ , if

the coefficients {αι+kr}k≥1 are independent positive variables. Therefore,Hι, the combination

of I-splines functions within the ιth group is an NII process with independent increment on

fixed locations (Phadia, 2015, pp.129). Then we rewrite the equation (6) in the manuscript, the

I-splines model into the sum of Hι

H(t) =
K=J+r∑
j=1

αjBj(t) =
r∑

ι=1

Hι(t).

This equation clearly shows that the quantile-knots I-splines prior is a combination of r groups

of NII processes. Specifically, when r = 1, all I-spline functions are disjoint and therefore, the

combination of them reduces to the piecewise exponential model if αj ∼ exp(η) independently.

Actually, the first step of determining the initial knots in the quantile-knots I-splines prior is sim-

ilar to the construction of the piecewise exponential prior in survival models, where partitions

of time axis are often taken on empirical quantiles of uncensored survival times (de Castro et al.,

2014).

3.8.4 Alternative I-splines priors for H

Onemay consider other alternative choices of parametric and nonparametric priors for the triplet

(β, H, Sξ). Here we introduce some alternative choices of priors. It includes how to construct

constrained priors to make the MTM identified. Another construction of I-splines prior with

shrinkage prior for H is also given here.
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3.8.4.1 Fully identified priors

In this subsection, we discuss the construction of identified priors. Our spirit is fromHorowitz’s

normalization conditions. Like the manuscript, we use the unit scale condition that ||β|| = 1

as an equivalent condition of Horowitz’s scale normalization. Rather than applying posterior

projection, we assign the uniform distribution on the p-dim unit hypersphere as the prior for the

fully identified β. It is conducted by the following transformation

β∗ ∼ N(0, I),β = β∗/||β∗||1/2.

Still, we need the location normalization, which assumes that the H(t0) = 1 or h(t0) = 0 for

some finite t0 (Horowitz, 1996). We adopt the I-spline priors as our initial. We formulateH by

H(t) =
K∑
j=1

αjBj(t),

where K = J + r is the number of I-spline functions; see Section 3.8.3. By the characteristic

of I-spline functions on intervalD = (0, τ ], if
∑K

j=1 αj = 1,H will surely pass the point (τ, 1).

That is, for h = logH , we have h(τ) = 0. Therefore, the location normalization condition is

transferred to a sum-to-one restriction, that is, (α1, . . . , αK) is a K-dim simplex. We consider

two choices of priors for the p-dim simplex. The first one is the Dirichlet prior

(α1, . . . , αK) ∼ Dir(a1, . . . , aK),

where {aj}Kj=1 are hyperparameters of Dirichlet distribution. Alternatively, we may consider a

kind of transformed prior. For j = 1, . . . , K ,

α∗
j ∼ exp(η), αj = α∗

j

/ K∑
j=1

α∗
j .

Both these two priors normalize the location of H and therefore, fully identify the transforma-

tion function.

The above priors make the transformation model fully identified. However, with these pri-
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ors, we find that the MCMC procedure by NUTS converges very slowly and suffers from poor

mixing. What’s worse, the prediction accuracy is poor. These two drawbacks force us not to

work on a fully identified model.

3.8.4.2 The shrinkage prior and comparison

We here introduce the commonly used shrinkage priors for I-spline functions as an alternative

to the proposed quantile-knots I-splines prior for H . All I-splines variant priors for H and H ′

have the same shell

H(t) =
K∑
j=1

αjBj(t), H
′(t) =

K∑
j=1

αjB
′
j(t).

However, unlike the proposed prior which selects knots from empirical quantiles of observed

survival times, the traditional I-splines prior selects sufficiently many (usually from 10 to 30)

equally spaced knots from the observed time interval (Cai andDunson, 2007;Wang andDunson,

2011a; among others). Then, to avoid overfitting due to using too many knots, one has to

incorporate a shrinkage prior for the coefficients αj to select appropriate I-spline functions. We

here consider the truncated generalized double Pareto prior :

αj ∼ N+(0, σ2
j ), σj ∼ exp(ηj), ηj ∼ Ga(θ, ζ),

where N+ denotes the truncated Gaussian distribution such that αj > 0. This is a truncated

form of the widely used generalized double Pareto prior as shrinkage prior for coefficients of

basis functions (Gelman et al., 2013). In general, θ = ζ = 1 are typical default hyperparam-

eters. In BuLTM, we further simplify this prior as σj ∼ exp(1). The use of shrinkage prior for

I-splines functions may be sensitive to the number of knots (Perperoglou et al., 2019). In our

experience, as the number of knots increases, the computation burden of the shrinkage prior

becomes heavier while it may not improve the accuracy of final model results. Therefore, the

use of shrinkage priors may be accompanied by a time-consuming tuning procedure to deter-

mine the best number of equally spaced knots. We compare the shrinkage prior using 15 equally

spaced knots and the proposed quantile-knots I-splines prior under model setting Case 1 in the

manuscript. Table 3.3 shows the parametric estimation and root integrated square error (RISE)
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of estimated baseline survival probability functions using these two nonparametric priors in 100

Monte Carlo replications. We find that both priors provide similar estimation results whereas

the proposed quantile-knots I-splines prior perform slightly better.

Table 3.3: Parametric estimation results employing two nonparametric priors for H (standard deviation in
bracket) and RISE of estimated baseline survival probability functions.

Quantile-knots Shrinkage

β1 = 0.577 0.579(0.070) 0.581(0.069)

β2 = 0.577 0.578(0.050) 0.576(0.049)

β3 = 0.577 0.575(0.050) 0.574(0.050)

RISE 0.063 0.064

3.8.5 Proof of Theorem 3.1

Proof. Let Θ = (α,β,p,ψ,ν) and p(Θ) be the product of priors of elements in Θ. To show

the posterior π(Θ) is proper is equivalent to show that
∫
DΘ

π(Θ)dΘ < ∞, where DΘ is the

domain of Θ.

Let Bj be the I-splines functions, for j = 1, . . . , K . Let fw{·;ψl
, ν

l
} be the Weibull PDFs

with parameters ψ
l
and ν

l
, for l = 1, . . . , L. By condition (v), let n1 be the number of uncen-

sored observations and n0 be the number of censored observations such that n = n1 + n0, and

then we have

L(Θ) < L∗(Θ) ≡
n1∏
i=1

fξ{H(Ti) exp(−βTZi)}H ′(Ti) exp(−βTZi)

=

n1∏
i=1

K∑
j=1

αjB
′
j(Ti) exp(−βTZi)

L∑
l=1

p
l
fw{exp(−βTZi)

K∑
j=1

αjBj(Ti);ψl
, ν

l
}.

By condition (ii), we first integrate out all pl and it remains to show that
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A
l
=

∫
DΘ|−p

l

{
n1∏
i=1

[exp(−βTZi)fw{exp(−βTZi)
K∑
j=1

αjBj(Ti);ψl
, ν

l
}

K∑
j=1

αjB
′
j(Ti)]

× p(Θ| − pl)d(Θ| − pl)

}
<∞,

for all l, where Θ| − p
l
denotes all parameters except p

l
s and DΘ|−p

l
denotes corresponding

domains.

Let α = (α1, · · · , αK)
T ,ϕi = (B′

1(Ti), · · · , B′
K(Ti))

T and Φi = (B1(Ti), · · · , BK(Ti))
T .

For any 0 < Ti <∞, by the definition of I-splines function, we have 0 < αTϕi <∞ and 0 <

αTΦi <∞. Therefore, we have 0 < αTϕi/α
TΦi <∞. LetM0 = max(αTϕ1/α

TΦ1, . . . ,

αTϕn1/α
TΦn1). Then by condition (iv),

exp(x)fw{exp(x)αTϕi;ψl
, ν

l
}αTΦi ≤M0{exp(x)αTϕi}fw{exp(x)αTϕi;ψl

, ν
l
} <∞

for all x ∈ R.

By condition (v), we can find p uncensored observations such that the p× p matrix of their

covariates, with each row being the vector of covariates of one observation, is full rank. Let

Z∗ denote that full rank p matrix and let γ = −Z∗β = (γ1, · · · , γp)T . Thus, any −βTZi can

be expressed as a linear combination of (γ1, . . . , γp) i.e −βTZi =
∑p

h=1 cihγh. That is, for

i = 1, . . . , n1

f(γ1, . . . , γp) = exp(
p∑

h=1

cihγh)fw{exp(
p∑

h=1

cihγh)α
Tϕi;ψl

, ν
l
}αTΦi <∞.

Meanwhile, since Z∗ is a one-on-one linear operation of β, the integrand β can be transferred

to γ = (γ1, . . . , γp). Let T ∗ = (T ∗
1 , . . . , T

∗
p ) denote the survival outcomes of the p subjects with
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covariates (Z∗
1 , . . . , Z

∗
p)

T = Z∗. By simple algebra, we have

A
l
≤M1

∫
D(Θ|−p

l
,β∗)

p(Θ| − p
l
)[

∫
Rp

p∏
h=1

exp(γh)fw{exp(γh)αTΦh;ψl
, ν

l
}

×αTϕhdγ1 · · · dγp]d(Θ| − pl
)

≤M1

∫
D(Θ|−p

l
,β∗)

p(Θ| − p
l
)d(Θ| − p

l
)

p∏
h=1

∫ +∞

−∞
exp(γh)fw{exp(γh)

K∑
j=1

αTΦh;ψl
, ν

l
}

×αTϕhdγh ≡ Bl
,

whereM1 is a constant. The first inequality can be derived directly from previous results and

the second inequality is the Cauchy–Schwarz inequality.

Finally, we have

B
l
≤M1M

p
0

∫
D(Θ|−pl)

p(Θ| − p
l
)d(Θ| − p

l
)

p∏
h=1

∫ +∞

∞
exp(γh)fw{exp(γi);ψl

, ν
l
}dγh

=M1M
p
0

∫
D(Θ|−pl)

p(Θ| − p
l
)d(Θ| − p

l
)

p∏
h=1

∫ +∞

0

fw{exp(γh);ψl
, ν

l
}d{exp(γh)}

=M1M
p
0 <∞.

The first equation includes product of (p+1) integrals of PDFs p(Θ|−p
l
) and fw{exp(γh);ψl

, ν
l
},

l = 1, . . . , p. Therefore, the posterior is proper.

3.8.6 Additional simulation results

We report additional simulations here. We first introduce the reproducibility of all simulations,

and report the results of simulations in highly-censored cases, results of parametric estimation

under AFT models, and results of effective sample size (ESS) given by BuLTM in simulations.

3.8.6.1 Reproducibility of simulations

This subsection is about details for the reproducibility of our simulation results. In all simula-

tions, we run four independent parallel chains in BuLTM as the default setting in Stan. The length

of each chain is 2500with the first 500 iterations burn-in and we aggregate four chains to obtain
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total 8000 posterior samples without any thinning. The MCMC procedure in spBayesSurv

draws the same number of samples as ours. In all simulations, we set L = 12 for the truncation

number of DPM v = 1 for the total mass parameter, and r = 3 for the order of smoothness of

I-spline functions. In case the censoring rate is higher than 50%, we use 5 initial knots; when

the censoring rate is less than 50% we use 6 initial knots in constructing the quantile-knots I-

splines prior. The coefficients {αj}Kj=1 are assigned exponential prior with parameter 1. The

credible interval of estimates given by BuLTM is the default central posterior interval in Stan;

the credible interval of estimates given by spBayesSurv is the highest posterior density in-

terval computed by R package HDInterval; the confidence intervals of TransModel are 95%

Wald-type intervals. All numerical studies are realized in R version 4.1.0 with rstan version

2.26.4.

3.8.6.2 Low censoring cases

We assess BuLTM under four cases with high censoring rates. These model settings are similar

to the model settings used in the manuscript while the censoring rates are all less than 50%.

Simulated data are generated under the following settings.

LCase 1. Non-PH/PO/AFT : ϵ ∼ 0.5N(0.5, 0.52) + 0.5N{1, 1},

h(t) = log[(0.6t+ 0.78t1/2 + 0.745){0.5Φ0.5,1(t) + 0.5Φ4,0.5(t)− c1}], C ∼ U(3.5, 5);

LCase 2. PH model : ϵ ∼ EV(0, 1),

h(t) = log[(t+ 1.213t1/2 + 1.5){0.5Φ0.5,1(t) + 0.5Φ3.5,0.3(t)− c2}], C ∼ U(1, 5);

LCase 3: PO model : ϵ ∼ Logistic(0, 1),

h(t) = log[(t+ 1.213t1/2 + 1.5){0.5Φ1,0.5(t) + 0.5Φ4.5,0.3(t)− c3}], C ∼ U(3.5, 5);

LCase 4: AFT model : ϵ ∼ N(0, 12), h(t) = log(t), C ∼ U(2.5, 5).

The censoring variable C is generated independent of Z, leading to approximately 39%, 29%,

24%, and 25% censoring rates respectively. For each prediction scenario, we compare the PPDs

of three new observations with sets of covariates: Z1 = (0, 0, 0)T ,Z2 = (1, 1, 1)T and Z3 =

(0, 1, 1)T , respectively.
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Table 3.4: The RISEs between the conditional survival curves and true curves predicted by BuLTM,
spBayesSurv, and TransModel under LCases 1 to 4. Data size n = 200.

Case 1: Non- PH/PO/AFT Case 2: PH Case 3: PO Case 4: AFT

Z BuLTM PH PO AFT r = 0 r = 0.5 r = 1 BuLTM PH r = 0 BuLTM PO r = 1 BuLTM AFT r = 1

Z1 0.100 0.147 0.132 0.156 0.159 0.141 0.127 0.065 0.073 0.067 0.078 0.083 0.083 0.074 0.060 0.094

Z2 0.076 0.163 0.087 0.107 0.152 0.114 0.094 0.138 0.229 0.117 0.118 0.122 0.104 0.104 0.090 0.114

Z3 0.103 0.207 0.139 0.179 0.189 0.156 0.134 0.133 0.220 0.112 0.120 0.128 0.104 0.113 0.095 0.114

Table 3.4 shows that BuLTM still works well when the censoring rate goes high. We find

that when the censoring rate is lower than 50%, BuLTM outperforms spBayesSurv under Non-

PH/PO/AFT and PH models, is comparable under the PO and the AFT models. This result

is in line with the results we report in the manuscript. Results of parametric estimation are

summarized in Table 3.5 for LCases 1-3, which are also consistent with the results given by

low-censoring cases.

Table 3.5: The performance of parametric estimation of BuLTM and spBayesSurv under LCases 1-3.

Case 1: Non-PH/PO/AFT BuLTM spBayesSurv/TransModel
Parameter BIAS RMSE PSD SDE CP

β1 0.016 0.090 0.082 0.090 92.0
β2 -0.015 0.070 0.063 0.066 90.3
β3 -0.001 0.069 0.062 0.068 91.7

Case 2: PH Case 3: PO
Method Parameter BIAS RMSE PSD SDE CP BIAS RMSE PSD SDE CP
BuLTM β1 -0.013 0.123 0.123 0.121 94.7 0.012 0.169 0.174 0.167 94.0

β2 0.006 0.083 0.087 0.081 95.0 -0.008 0.130 0.123 0.123 92.3
β3 0.006 0.086 0.088 0.085 95.0 -0.005 0.130 0.122 0.124 94.0

spBayesSurv β1 -0.032 0.172 0.175 0.170 95.0 0.002 0.258 0.256 0.259 94.7
β2 -0.026 0.088 0.095 0.084 95.3 0.010 0.142 0.136 0.142 94.7
β3. -0.027 0.102 0.095 0.098 93.0 0.013 0.135 0.136 0.135 95.0

TransModel β1 -0.004 0.172 0.173 0.172 94.3 -0.011 0.283 0.275 0.283 94.3
β2 0.007 0.094 0.095 0.094 95.7 0.008 0.146 0.145 0.146 95.7
β3 0.005 0.010 0.010 0.010 96.7 0.003 0.148 0.144 0.148 92.3

3.8.6.3 Parametric estimation under AFT models

Results of parametric estimation are given by Table 3.6, where we find BuLTM has lower RMSE

than spBayesSurv for all parameters. In terms of BIAS, BuLTM outperforms spBayesSurv

in the highly-censored case and is comparable in the case with the lower censoring rate. This

result as well as results of prediction demonstrate that BuLTM performs robustly under the AFT
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model. We omit the results of TransModel here since they cannot correctly specify the model

and hence the results of parametric estimation are meaningless.

Table 3.6: Results of estimation of β under AFT models.

LCase4: AFT1, 25% Censored Case4: AFT2, 61% Censored
Method Parameter BIAS RMSE PSD SDE CP BIAS RMSE PSD SDE CP
BuLTM β1 0.017 0.107 0.102 0.107 92.3 0.011 0.138 0.130 0.138 94.0

β2 -0.009 0.079 0.076 0.076 92.3 -0.004 0.101 0.095 0.098 93.0
β3 -0.008 0.079 0.077 0.081 92.7 -0.007 0.101 0.094 0.093 95.0

spBayesSurv β1 0.000 0.159 0.150 0.159 90.3 0.016 0.207 0.194 0.206 92.0
β2 0.002 0.078 0.079 0.078 92.3 0.016 0.105 0.103 0.104 91.0
β3 0.003 0.084 0.079 0.084 92.0 0.014 0.101 0.103 0.100 93.7

3.8.6.4 Effective sample size of β

The effective sample size (ESS) is useful as a first-level check when analyzing the reliability of

inference. It measures how many independent draws contain the same amount of information

as the dependent posterior samples obtained by the MCMC procedure. ESS is usually accom-

panied by R̂, the diagnostics of convergence of MCMC. In an MCMC procedure, especially

the case where multiple chains are used, very low ESS may be caused by divergent chains or

poor mixing and hence, large R̂. If one obtains sufficient ESS (ESS that is greater than 400 is

considered to be sufficient by Vehtari et al. (2021)) after sampling, it is highly possible that all

chains are converged and well mixed. Therefore, we report ESS of β in our simulation studies

here as the diagnosis of MCMC.

Results of the average estimated ESS of β in all the simulation studies in the manuscript are

given by Table 3.7, from which we find in each simulation the ESS of β is sufficiently large.

This is owed to the NUTS used by Stan, which is more possible to sample nearly independent

draws (Hoffman et al., 2014). In terms of other parameters, only a few parameters suffer from

low ESS in sporadic Monte Carlo replications as a drawback of the analysis of unidentified

models. Even so, the MCMC algorithm is still well converged and mixed examined by R̂

in Stan and thus the final model results are reasonable. Therefore, when using BuLTM, one

can simply increase the length of MCMC chains to obtain sufficient ESS for all parameters

in all situations regardless of the lack of identifiability. Particularly, if one’s interest falls on

estimating β, the vector of regression parameters, the length of chains needed is quite small,
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and the required computation burden is mild.

Table 3.7: The average estimated ESS of β = (β1, β2, β3)
T in simulation studies.

Case 1 HCase 1 Case 2 HCase 2 Case 3 HCase 3 Case 4 HCase 4

β1 5935.29 6201.22 6697.80 6187.15 6026.63 5744.58 7014.90 6431.38

β2 5573.79 6243.93 7305.17 6800.33 6697.69 6302.88 7497.02 6900.31

β3 5591.05 6193.69 7307.38 6757.07 6689.56 6263.12 7487.56 7053.08

3.8.7 Sensitivity analysis

We analyze the sensitivity of the proposed quantile-knots I-splines prior for H in this section.

There are two pre-specified hyperparameters in the prior, the hyperparameter η for the expo-

nential prior, and the number of initial knots. Here we show that the final prediction results are

not sensitive to either the initial number of initial knots or the hyperparameter η.

3.8.7.1 Sensitivity of number of initial knots

Sensitivity analysis of the choice of the initial number of basic knots (NI) in the quantile-knots

I-splines prior is conducted by 100Monte Carlo studies under Case 1 setting in the manuscript.

Candidates for the number of initial knots are taken from the range 5 to 11, where we display

results of using 5, 6, and 11 initial knots here for comparison. Results of parametric estimation

and the RISE of estimated baseline survival probability curves among different numbers of

initial knots are shown in Table 3.8, where we find with different choices of NI , both results

of parametric estimation and RISE of estimated survival probability curves have very mild

variation. Figure 3.9 displays plots of average estimated baseline survival probability curves

under three choices of the number of initial knots, where we find they are close to each other.

This sensitivity analysis numerically demonstrates that the quantile-knots I-splines prior is not

sensitive to its choice of the number of knots. And therefore, it is generally tuning-free and

computationally expedient.
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Table 3.8: Parametric estimation results (standard deviation in bracket) and RISE of estimated baseline survival
probability functions under different choices of η .

NI = 5 NI = 6 NI = 11
β1 = 0.577 0.578(0.070) 0.580(0.070) 0.586(0.069)
β2 = 0.577 0.575(0.051) 0.575(0.051) 0.572(0.052)
β3 = 0.577 0.561(0.058) 0.560(0.058) 0.557(0.058)

RISE 0.063 0.063 0.066
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Figure 3.9: Pointwise mean estimated baseline survival probability curves under 100 replications. Real line,
NI = 5; dash line, NI = 6; dotted line, NI = 11.

3.8.7.2 Sensitivity of η

Let η be the hyperparameter of exponential prior for coefficients of the quantile-knots I-splines

prior in equation (8) in the manuscript. Sensitivity analysis of η is conducted under the setting

Case1 in the manuscript. For the sensitivity of η, among 100 Monte Carlo replications, we

choose η from three candidates of η = 1, 5, and 0.2, corresponding to three levels of informative

priors. Notice that we should avoid using too small η since it implies too large prior variance,

then the prior is not sufficiently informative anymore. Similarly, too large η induces too small

variance, which is too informative to provide sufficient uncertainty.

Results of parametric estimation and RISE of estimated baseline survival curves are given

in Table 3.9. From the table, we find that estimation of the parametric component varies quite

little among all choices of η and the RISE of estimated baseline survival curves is almost the

same with different values of η. For visualization, plots of estimated survival curves given

different values of η are shown in Fig 3.10, where we find all estimated curves are close to each
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other. This sensitivity analysis numerically demonstrates that the quantile-knots I-splines prior

are not sensitive to the choice of η within the range 0.2 to 5. Therefore, it is safe to fix η rather

than to assign a hyperprior for it.

Table 3.9: Parametric estimation results (standard deviation in bracket) and RISE of estimated baseline survival
probability functions under different choices of η.

η = 1 η = 5 η = 0.2

β1 = 0.577 0.580(0.070) 0.571(0.071) 0.592(0.068)

β2 = 0.577 0.575(0.052) 0.578(0.051) 0.569(0.052)

β3 = 0.577 0.560(0.058) 0.564(0.057) 0.553(0.059)

RISE 0.063 0.064 0.065
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Figure 3.10: Pointwisemean estimated baseline survival probability curves in 100 replications. Real line, η = 1;
dash line, η = 5; dotted line, η = 0.2.

3.8.8 Results of parametric estimation on real datasets

3.8.8.1 Veterans lung cancer data

Results of parametric estimation for the veterans lung cancer data given by BuLTM, TransModel

and spBayesSurv are displayed in Table 3.10. The three methods provide similar significance

levels for all coefficients. Although some signs of estimated coefficients are different, say β3

and β7, they are not significant since their credible/confidence intervals cover zero. That implies
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qualitative interpretations of the estimates of the regression parameter under the three models

are stable.

Table 3.10: Results of estimated β for veterans administration lung cancer data. Credible intervals are given
on 95% credibility for BuLTM and spBayesSurv. The confidence interval of TransModel is a 95% Wald-type
confidence level.

BuLTM spBayesSurv TransModel

Covariate Estimate 95%CI Estimate 95%CI Estimate 95%CI

Z1 0.119 (0.045, 0.246) 0.617 (0.449, 0.800) 0.553 (0.368, 0.737)

Z2 -0.302 (-0.951, 0.897) -1.391 (-8.597, 6.028) -0.388 (-8.546, 7.768)

Z3 -0.006 (-0.700, 0.671) 1.426 (-1.643, 4.477) 0.945 (-2.441, 4.331)

Z4 0.081 (-0.693, 0.730) 0.033 (-3.533, 3.469) 0.010 (-3.475, 3.496)

Z5 -0.044 (-0.227, 0.117) -0.147 (-0.739, 0.487) -0.278 (-0.963, 0.405)

Z6 0.350 (0.093, 0.694) 1.387 (0.396, 2.334) 1.995 (0.063, 3.027)

Z7 -0.005 (-0.242, 0.205) 0.058 (-0.739, 0.916) 0.413 (-0.514, 1.342)

Z8 0.274 (0.053, 0.571) 1.367 (0.444, 2.308) 1.364 (0.343, 2.385)

3.8.8.2 Heart failure clinical records data

Results of parametric estimation for the heart failure data given by BuLTM, TransModel, and

spBayesSurvare displayed in Table 3.11. We find that BuLTM is consistent with spBayesSurv

in the detection of significance, while TransModel fails to detect the significance of the covari-

ate Z9, serum sodium. Existing medical research has evidenced that lower serum sodium was

associated with higher in-hospital and 60-day mortality for heart failure patients (Klein et al.,

2005). Hence, the results of BuLTM and spBayesSurv are more reasonable. That explains why

the two Bayesian approaches outperform in prediction.

3.8.9 Posterior checking

We assign weakly informative priors for nonparametric components H and Sξ, which are not

fully objective priors. One may worry whether these priors are so informative that the prior-to-

posterior updating is not driven by data. We conduct posterior checking on simulation studies

and application examples to check the difference between priors and marginal posterior and

obtain similar results. Here we take our application to veterans lung cancer data set as an ex-
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Table 3.11: Results of estimated β in the analysis to heart failure clinical records data. Credible intervals are
given on 95%credibility for BuLTM and spBayesSurv. The confidence interval of TransModel is a 95%Wald-type
confidence level.

BuLTM spBayesSurv TransModel
Covariate Estimate 95%CI Estimate 95%CI Estimate 95%CI
Z1 = age -0.163 (-0.433, 0.063) -4.670 (-6.182, -3.135) -4.631 (-6.474, -2.788)

Z2 = anemia -0.013 (-0.036, -0.001) -0.412 (-0.764, -0.066) -0.408 (-0.827, 0.012)
Z3 = creatinine phosphokinase -0.002 (-0.010, 0.004) -0.074 (-0.262, 0.113) -0.075 (-0.293, 0.143)

Z4 = diabetes -0.004 (-0.020, 0.008) -0.117 (-0.476, 0.256) -0.125 (-0.560, 0.310)
Z5 = ejection fraction 0.022 (0.008, 0.060) 0.586 (0.386, 0.785) 4.810 (2.773, 6.847)

Z6 = high blood pressure -0.015 (-0.042, -0.001) -0.460 (-0.807, -0.099) -0.455 (-0.879, -0.031)
Z7 = platelets 0.076 (-0.033, 0.389) 1.303 (-2.836, 5.327) 1.384 (-3.392, 6.160)

Z8 = serum creatinine -0.012 (-0.033, -0.004) -0.306 (-0.421, -0.183) -0.313 (-0.453, -0.173)
Z9 = serum sodium 0.939 (0.787, 0.997) 41.347 (3.248, 74. 256) 43.077 (-2.777, 88.931)

Z10 = sex 0.009 (-0.005, 0.033) 0.222 (-0.185, 0.625) 0.224 (-0.269, 0.716)
Z11 = smoking -0.005 (-0.024, 0.010) -0.133 (-0.542, 0.282) -0.148 (-0.641, 0.345)

ample. We take αj ∼ exp(1) for j = 1, . . . , K as weakly informative priors and p(β) ∝ 1 as

flat priors. Figure 3.11 compares the priors and marginal posterior of the first eight coefficients

of I-spline functions. For all {αj}8j=1, their variance is controlled by the weakly informative

prior, demonstrating the fact that the impact of priors remedies the flat likelihood. In addition,

most of the coefficients in the I-splines prior vary significantly from the prior, evidencing that

data drive the prior-to-posterior updating.
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Figure 3.11: Comparison between the the marginal posterior density and priors of α1, . . . , α8. Shaded region,
marginal posterior density; Wide line, prior density of exp(1).

Note that comparing the prior and posterior of the fully identified parameter β∗ is meaning-

less since the projected posterior of β is certainly different from its prior. Therefore, in terms of
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the parametric component, we compare the priors with the marginal posterior of β, the uncon-

strained parameter sampled from MCMC. Fig 3.12 shows an apparent difference between flat

priors and marginal posterior of β, demonstrating that the posterior updating is driven by data.

An interesting finding is that, even though β is unidentified, some of the parameters such as β1

and β5 have low posterior variance and posterior intervals that are short enough. This supports

the fact that MCMC sampling is workable under unidentified models with weakly informative

priors. Meanwhile, we are aware of the necessity of posterior modification by checking the

marginal posterior of β, since the posterior of β2 and β4 have heavy-tailed posterior intervals.
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Figure 3.12: Comparison between the the marginal posterior density of β without posterior projection and
corresponding priors. The shaded region, posterior density; wide line, flat prior.

3.8.10 Predictive evaluation metrics

In this chapter, we consider two classical metrics to evaluate the predictive capabilities of dif-

ferent survival models, the C index and the integrated Brier score (IBS).

C index

To compute the C-index, we follow the procedure in Ishwaran et al. (2008). We summarize the

procedure as follows:

1. Form all possible pairs of survival times over the data.
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2. Omit those pairs whose shorter survival time is censored. Omit those tied pairs unless at

least one of them is death. Let Permissible denote the total number of permissible pairs.

3. For each untied permissible pair, count 1 if the predicted result is the same as the truth;

count 0.5 if the predicted outcomes are tied. For each permissible pair where both are

deaths with the same survival time, count 1 if the predicted outcomes are tied; other-

wise, count 0.5. For each permissible pair where only one is death and the survival time

are tied, count 1 if the death has a worse predicted outcome; otherwise, count 0.5. Let

Concordance denote the sum over all permissible pairs.

4. The C index, C, is defined by C = Concordance/Permissible.

IBS

The Brier score (BS) is proposed by Graf et al. (1999) to evaluate prediction at a certain time

point t. The BS at time t is formulated as

BS(t) =
1

N

n∑
i=1

{
ST |Z(t|Zi)]

2

Ĝ(Ti)
I(Ti < t, δi = 1) +

[1− ST |Z(t|Zi)]
2

Ĝ(Ti)
I(Ti ≥ t)

}
,

where Ĝ(Ti) denotes estimated survival probability given by the K-M estimator. Then, the IBS

is defined as the integral of BS on the interval (−∞, τ) for some time τ > 0

IBS =

∫ τ

−∞
BS(t)dt.



Chapter 4

Dependent Dirichlet Processes for Analysis

of a Generalized Shared Frailty Model

4.1 Introduction

The shared frailty model, coined by Vaupel et al. (1979), has been widely used in the anal-

ysis of multivariate survival outcomes that might be associated within subgroups or clusters.

Enormous work has been devoted to the development of shared frailty model in both Bayesian

and frequency paradigms, and the reviews can be found in Ibrahim et al. (2001); Duchateau and

Janssen (2007); Balan and Putter (2020). As an extension of the well-known Cox’s proportional

hazard model, conditional on the frailty effect, the shared frailty model assumes the hazard ratio

between two subjects is proportional to their difference in relative risk scores over time. In ad-

dition to the proportional hazard assumption, the shared frailty model fixes the baseline hazard

function among all clusters.

Traditional shared frailty models provide a good framework for expediently mathematical

tackling the heterogeneity among the multivariate observations, whereas in practice it needs

modification and adaption to tolerate complex structure so as to incorporate cross information

owing to the intra- and inter-subject variability (Hanson et al. (2012); de Castro et al. (2015)).

Take the renowned data on recurrences of bladder cancer for instance (Therneau (2022)). There

are three treatment arms, placebo, thiotepa, and pyridoxine. Patients had multiple recurrences

136
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Figure 4.1: The Kaplan-Meier estimator of survival functions for first recurrence time (a) and second recurrence
(b) in the bladder cancer data.

of tumors which were sparse beyond the fourth recurrence. Figure 4.1 shows the Kaplan-Meier

estimators of the survival function for the times of the first and the second recurrences under

three treatments. One observes that, the estimated survival curves at the first recurrence are

crossed indicating a crossed hazard and that the proportional hazard assumption is suspected

(Zeng and Lin (2007b)); the survival curve of pyridoxine falls below that of placebo at the

second recurrence compared to the first recurrence, indicating the functional form of the survival

curves varies between recurrences. Neglecting such characteristics of non-proportionality and

stratification of recurrences may yield inefficiency by encumbering borrowing strength from

potentially related information sources, and consequently may jeopardize the prediction of the

global survival times. Moreover, dependency might be existing among the treatment strata and

the stratification of recurrences (De Iorio et al. (2004); Hanson et al. (2012)).

Consequently, more complex modeling is needy to characterize the dependence among the

baseline hazard functions and treatment strata due to the temporal effects of recurrences. Fre-

quentist inference and computing are pretty challenging and even infeasible. Existing Bayesian

literature considered modifications of shared frailty model based on some kind of partial aber-

rant phenomena (de Castro et al. (2014); Paulon et al. (2020); among others) but rare work has

taken bi-level stratification into account (Conlon et al. (2014)), not to mention that dependence
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among treatment strata (Hanson et al. (2012)).

We propose a generalized shared frailty model (GSFM) for multiple events time data that

allows the baseline hazard function to change along with the types of events and treatment

strata, strengthening the ability to borrow information frommany sources. The proposed model

postulates multiplier frailty including both parametric and nonparametric ones, where the para-

metric frailty random effect accounts for the within subject association by treating each subject

as a cluster; and a nonparametric frailty effect represents dependency among treatment strata

and temporal recurrences. For the proposed model GSFM, we suggest a Bayesian solution to

estimate the regression coefficient vector and the variance parameter of the frailty term, and

baseline survival functions stratified by treatments and recurrences. In a Bayesian workflow,

the posterior distribution is determined by the combination of observational data in the form of

likelihood function and the prior distribution represented based on the background knowledge.

From a Bayesian perspective, we model the dependent nonparametric prior through transfer-

ring the data context aforementioned into the ANOVA dependent Dirichlet process (ANOVA

DDP), which will be further reviewed in Section 2. The construction of No-U-Turn sampler

for Markov chain Monte Carlo (MCMC) sampling is automated by Stan (Stan Development

Team (2018)) with its R interface (Stan Development Team (2020)). The posterior inference is

conducted by Stan as well.

The rest of this chapter is organized as follows. In Section 2, under typical data scenarios of

dependence structure, we summarize several modification versions of the dependent Dirichlet

process (DDP) initiated from MacEachern’s regression spirit that nested dependent predictors

into the traditional Dirichlet Process (DP). In Section 3, we postulate the GSFM and trans-

form the dependent dual-stratified multiple events to the survival-function based version of

the ANOVA DDP. We have a short comparison between Stan and Nimble, two contemporary

Bayesian computing tools based on our user experience. In section 4, we demonstrate the va-

lidity of the GSFM and Bayesian inference and analysis of the data on recurrences of bladder

cancer. A brief conclusion is contained in Section 5.
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4.2 Review of MacEachern’s DDP

The DP is the most popular Bayesian nonparametric prior since the seminal work of Ferguson

(1974). The belief in data background that there exists some kind of dependence structure stimu-

lates construction and selection of proper dependent prior. Some dependent DPs are constructed

for unsupervised purposes such as clustering (Teh et al. (2006); Rodriguez et al. (2008)). The

DDP prior adopted in our proposed model is supervised and predictor-dependent, originated

from MacEachern (2016); Quintana et al. (2020), named as MacEachern’s DDP in two recent

review papers, which are interpretive and comprehensive (MacEachern (2016); Quintana et al.

(2020)). The key idea behind the MacEachern’s DDP is that the distributions of the random

measures are marginally DP distributed, validated by in our subsections 3.2 and 3.3. There-

fore we here confine how the MacEachern’s DDP (henceforth we use the DDP to denote the

MacEachern’s DDP if the context is clear) came into being expanded from the DP, and compare

various modification versions of the DDP under various dependent data structures.

DP vs. DDP

The DP is a distribution on distributions whereas the DDP aims to construct prior for a collec-

tion of distributions F = {Fx|x ∈ X} indexed by covariate x. In general, there are several

representations of the DP such as Polya Urn, Levy measure, and stick-breaking representations

(Phadia (2015)). Here we use Sethuraman’s stick-breaking construction to connect the DP with

the DDP. The stick-breaking construction is a kind of infinite sum representation that divides

the DP into two countable series, the weights, and the atoms. Generally, a DP is expressed

as a process with two components, the mass parameter determining the weights and the base

measure to generate atoms. Through the stick-breaking construction, the DDP can be easily

extended from the DP. We list their comparison in Table 4.1, where we can find that the depen-

dency among the covariates set X is realized by indexing the mass parameter and base measure

with the covariate x ∈ X . More specifically, the dependency can be characterized through the

dependency among the weights and atoms in the DDP.

The DDP can be widely applied to scenarios of various dependence data structures. We

review modification versions of the DDP from three categories depending on which part it
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modifies in the stick-breaking representation, weights, atoms, or both. The first is to impose

the dependency on the atoms but keep common weights, leading to two typical representatives,

ANOVA and Spatial (De Iorio et al. (2004); Gelfand et al. (2005); De Iorio et al. (2009)). The

ANOVA type DDP encoded the covariate dependence in the form of regression for the atom

processes. The Spatial DDP models for nonstationary spatial random fields with heterogeneous

variance. The second category is to modify the weights to be dependent but keep the common

atoms. The early and typical work is the time series DDP (Nieto-Barajas et al. (2012)). They

introduced a Markov Beta process on the weights to account for the temporal dependency.

The third category is to impose dependency on both weights and atoms (DeYoreo and Kot-

tas (2018)). They constructed vector autoregressive and autoregressive models for atoms and

weights, respectively. We summarize the aforementioned types of typical modifications in Fig-

ure 4.2.

Table 4.1: Comparison of DP & DDP

DP DDP
RPM F ∼ DP(M,F0) F = {Fx|x ∈ X ,Mx, F0x}

Sethuraman’s
construction

F (·) =
∑∞

h=1 phδθh(·)
ph ∼ SBW(1,M)
θh ∼ F0

Fx(·) =
∑∞

h=1 pxhδθxh(·)
pxh ∼ SBW(1,Mx)
θxh ∼ F0x

Convolution H(y) =
∫
k(y|θ)dF (θ) Hx(y) =

∫
k(y|θ)dFx(θ)

4.3 Model and Bayesian inference

Consider a clinical trial with multiple event types, for example, the time of the kth recurrence

of a certain disease. In the trial, n subjects are divided intoG strata of treatment. Our goal is to

describe the relationship between the time to the kth recurrence of a subject, and its treatment

stratum as well as its vector covariates Z. For a certain subject, the times of recurrences may

be dependent since they occur on the same individual and thus we assume an unobservable

independent shared-frailty random effectW to account for this dependence. On the other hand,
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we may allow the conditional hazard affiliated with the script pair kj implying distinct survival

distributions along with the temporal order of the recurrences of the disease and for specific

treatment. For the ith subject in the jth treatment stratum, at the kth recurrence, given the value

of frailty variable wi and its covariate vector zkji, we propose the following frailty model,

λkj(t|wi, zkji) = wiλ0kj(t) exp(βT zkji), k = 1, · · · , K, j = 1, · · · , G, i = 1, · · · , nj. (4.1)

Model (4.1) is called the generalized shared frailty model in the sense that non-proportionality

among k-varying recurrences is allowed by the fact that the right-hand baseline hazard has

footnotes k and j. We allow dependency among treatment strata in model (4.1). Therefore, the

baseline hazard function λ0kj acts as a nonparametric frailty random measure accounting for

the dependency owing to the recurrences and treatment scheme.

Model (4.1) is an extension of the classical shared frailty model (4.1.1) on page 101 of

Ibrahim et al. (2001) since the baseline hazard function there does not vary from the recurrences

and the treatment strata. Model (4.1) has the analog spirit to the frailty model (1) in de Castro

et al. (2014), whereas their treatment strata are independent.

4.3.1 Likelihood

The corresponding survival function of model (4.1) is given by:

Skj(t|wi, zkji) = {S0kj(t)}exp(β
T zkji+vi),

where S0kj denotes the baseline survival function of the kth recurrence for subjects in the jth

treatment stratum, vi = log(wi) denotes logarithm transformation of the frailty effect. Let f0kj

be the corresponding baseline density function.

Given the data sample (Ykji, δkji, zji), where Ykji = min(Ckji, Tkji), δkji = I(Tkji ≤ Ckji),

with Tkji being the gap time between the (k−1)th and kth recurrence of the ith subject in the jth

stratum and Ckij being the corresponding censoring variable that is independent of Tkji given

the covariate vector zkji, for k = 1, · · · , K, j = 1, · · · , G, i = 1, · · · , nj , and
∑G

j=1 nj = n. In

the jth stratum, suppose that there are nkj (nkj ≤ nj) subjects suffering from the kth recurrence.
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Then the likelihood is written as:

K∏
k=1

G∏
j=1

nkj∏
i=1

[exp(βT zkji + vi)f0kj(ykji){S0kj(ykji)}(exp(β
T zkji+vi)−1)]δkji

× {S0kj(ykji)}(1−δkji) exp(βT zkji+vi).

4.3.2 Survival-function based version of the ANOVA DDP

In the Bayesian workflow for the estimation, prior distributions are first determined. We here

specify appropriate nonparametric priors for S0kj and f0kj . Since they can be easily derived

from one to the other, we here only introduce the priors for S0kj .

We divide S0kj into K groups, and the kth group has G baseline survival functions of dif-

ferent treatment strata at the kth time of recurrence. That is, for a fixed k, Sk = {S0kj, j =

1, · · · , G} is a collection of baseline survival functions with length G indexed by the categor-

ical covariate j denoting the treatment stratum. The next procedures come from the spirit of

De Iorio et al. (2004). As a general example, suppose two dugs A and B will be taken in treat-

ment, with V and U levels of doses, respectively. In this case, G = V U denotes the number

of treatment strata and let the level of the jth stratum be (v, w). We write the stick-breaking

form of S0kj such that S0kj(t) = 1 −
∑∞

h=1 phI(t > θkjh), where {ph} are the strick-breaking

weights of the DP. We impose an ANOVA structure on θkjh :

θkjh = mkh + Akvh +Bkwh, (4.2)

wheremkh denotes the ANOVA effect shared by all the strata at the kth recurrence, and the rest

terms are the ANOVA effects of the jth stratum at the kth recurrence. Let the three components

be independently generated from three distributions, and marginally on j, the baseline survival

function S0kj follows a DP. The aforementioned procedure implies that Sk is a survival-function

version of the ANOVA DDP.

Since any function in the stick-breaking form is discrete almost surely, we place a con-

volution through the Dirichlet process mixture (DPM) model (Lo (1984)). Particularly, since

the baseline survival functions are defined on the positive half real line, the convolution kernel
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in DPM should be positive such as log-normal, Gamma, and Weibull. In this chapter, a log-

normal kernel is considered. For different recurrences, we treat the relationship among Sks to

be independent.

4.3.3 One-way ANOVA DDP

Considering the data of our interest, where only one drug and one level of dose is used in

each treatment stratum, we introduce the modeling of the survival-function version of one-way

ANOVA DDP. In this case the prior for the Sk reduces to a one-way ANOVA form since the

dependency among the G treatment strata is explained by only one ANOVA effect. Further-

more, if we setmkh = 0 , αkh = (θk1h, · · · , θkGh)
T reduces to aG-variate variable denoting the

locations of allG baseline distributions and thus θkjh = αT
khdj , where dj is the design vector of

the jth stratum to select the appropriate ANOVA effects corresponding to j.

With the above notations, we summarize the procedure to construct the survival-function

version of one-way ANOVA DDP prior in model (4.1) as follows:

1. Stick-breaking form. For k = 1, · · · , K, let Hk be the collection of G distribution func-

tions s.tHk = {Hkj, j = 1, · · · , G}. Hkj(·) =
∑∞

h=1 pkhδθkjh(·).

2. Convolution step. Let αkh = (θk1h, · · · , θkGh)
T , and dj be the jth design vector of length

G with the jth element being 1 and others being 0. Let H0k = (H0k1, · · · , H0kG) be the

collection of base measures, S0kj(t) =
∫
SLN(t|αT

k dj, σ
2)dHk(α, σ), where SLN denotes

the survival function of the log-normal distribution, andHk ∼ DP(Mk, H0k).

3. Determine themass parameter and the basemeasure. For simplicity, we setMk = 1 for all

k, which is a commonly used default value of the mass parameter (Gelman et al. (2013))

, H0k(θ, σ) = N(0, IG) × Cauchy(0, 5)+, where Cauchy+ denotes the half_Cauchy dis-

tribution.

Step 1 is a standard stick-breaking representation for DP. Step 2 is kernel mixture of DPwhereas

the kernel is a survival function rather than a cumulative distribution function. The realization

of Step 2 is quite straightforward in Stan as it provides the function lognormal_lccdf to be

used as the kernel of the survival function of the log-normal family.
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In Step 3, we specify the base measure as the prior for the location and shape parameters of

the log-normal kernel directly rather than adding another hyper prior distribution like De Iorio

et al. (2009) did. The main reason is to simplify the computation in Stan. Particularly, inspired

by Gelman (2006) and Gelman et al. (2008), we use the half-Cauchy distribution as the non-

informative prior for the variance parameter instead of the inverse Gamma prior. In our practice,

the choice of half-Cauchy prior significantly improves the speed of convergence and mixture

performance of the MCMC chains in our real data analysis and simulation. Another interesting

point we met in numerical studies is that the informativeness of the base measure for θ. Here

we don’t assign the non-informative distribution but a weakly informative one is considered

since we find such a weakly informative prior provides better MCMC performance than that

of non-informative one with higher effective sample size and better mixture performance. In

our other research experience, the weakly informative prior for the variance parameter in the

mixing component of the DPM seems to be more preferable.

4.3.4 Other priors and MCMC

In terms of the prior for the parametric prior wi, we choose log normal prior that vi = log(wi)

and vi ∼ N(0, τ 2), where τ > 0 is an unknown parameter. We further assign a half Cauchy prior

for τ s.t τ ∼ Cauchy+(0, 5) as a non-informative prior. The prior for the vector of regression

coefficients is β ∼ N(0, 1000I) as a non-informative prior.

We use the truncated Dirichlet process to replace the infinite summand in the DP. The se-

lection of the truncation point is often ad-hoc. Since in Stan the NUTS cannot sampler discrete

parameters, we have to fit the truncation number and the mass parameter before the MCMC

procedure. In general, the truncation number is set to be large enough s.t the truncated part

is negligible. Ohlssen et al. (2007) suggests to use a truncation number L that is greater than

5M + 5. In our computation, we set L = 12.

TheMCMC sampling for the posterior distribution is realized in Stan. Stan and itsR version

are widely used in statistical modeling and high-performance statistical computing, especially

in Bayesian. Stan realizes the MCMC sampling through the No-U-Turn sampler (NUTS). Stan

automates the deriving of the full conditional posterior distribution and NUTS is able to obtain
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high effective sample size ((Hoffman et al., 2014)).

4.3.5 Stan and NIMBLE: programming styles

The MCMC sampling procedure is implemented in Stan and we also tried to implement the

model in NIMBLE, another contemporary Bayesian computing tool in R. Stan and NIMBLE

are two contemporary Bayesian computing tools that have drawn arising interest for Bayesian

analysis but still remain under active development (Kerioui et al. (2020); Ma et al. (2021)).

The main advantage of Stan and NIMBLE is that they provide clear automatic posterior sam-

pling procedures based on their specific sampling algorithms without particular justification.

Therefore, users can be released from complicated probabilistic deriving and implementation.

There has been buzz group discussion about the comparison between Stan and NIMBLE in en-

vironments like Stan Development Team (2018) and de Valpine et al. (2021). One comparison

on their built-in samplers is demonstrated through implementing weakly informative and in-

formative estimation within the trimmed mean regression model setting (Zhang (2021)). Here

we contribute a naive comparison on their programming styles based on the first two authors’

experience in coding this project and using Stan and NIMBLE, respectively.

A Bayesian paradigm is made up of three main steps, the prior, likelihood, and the posterior.

MCMC generates samples to approximate the posterior distribution. Therefore, what one needs

to set in a Bayesian computing tool is the prior and likelihood, let alone Stan or NIMBLE.

Nevertheless, Stan and NIMBLE take different programming styles in writing likelihood. In

Stan, the default way to present the log likelihood is the syntax target and users can add log

contribution to it freely, which is similar to the natural language and straightforward to users

whatever level of mathematical background. In NIMBLE, the default way is to transfer the

likelihood into some standard distributions given by NIMBLE, which may not be friendly for

users who have a relatively less mathematical background.

We take fitting the finite mixture of Gaussian model as an example. For a fixed positive

integer L, the distribution of Y is given by FY (s) =
∑L

l=1 plN(s|µl, σ
2
l ) and the log-likelihood

is logL(p, µ, σ|Y ) =
∑n

i=1

∑L
l=1{log(pl)+logϕ(yi|µ1, σl)}, where ϕ denotes the density func-

tion of normal distribution. The code for Stan and NIMBLE to implement this model is listed
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in Listing 1.1 and 1.2, respectively. In Listing 1.1 we clearly find that the contribution to the

syntax target is just the sum of log(pl) and the logarithm of the density of normal distribu-

tion denoted by normal_lpdf. The rest is to assign a Dirichlet prior for the weights pl and

other parameters. However, in NIMBLE code shown in Listing 1.2, we have to transfer the

likelihood into some sampling procedures by IMAGING that there are L clusters of random

numbers, the random numbers are i.i.d Gaussian within each cluster, and the probability a ran-

dom number is drawn from the lth cluster is pl. Thereafter, the Dirichlet prior is assigned to pls.

Such imagine matches the Bayesian philosophy but when the likelihood function becomes to be

quite complicated, to understand this sampling procedure may not be easy anymore, especially

for practitioners not coming from a mathematics or statistics background.

Listing 4.1: Stan code for modeling mixture of Gaussian distribution

1 data{

2 int<lower=1> N;

3 vector[N] y;

4 int<lower=1> L;

5 }

6 parameters{

7 simplex[L] p;

8 vector[L] mu;

9 vector <lower=0>[L] sigma;

10 }

11 model{

12 p ~ dirichlet(rep_vector(1, L));

13 mu ~ normal(0, 100);

14 sigma ~ cauchy(0, 2.5);

15 for(i in 1:N){

16 vector[L] lp_i;

17 for(l in 1:L){

18 lp_i[l] = log(p[l]) + normal_lpdf(y[i]|mu[l], sigma[l]);

19 }

20 target += log_sum_exp(lp_i);

21 }

22 }
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Listing 4.2: NIMBLE code for modeling mixture of Gaussian distribution

1 NimbleCode <- nimbleCode({

2 for (i in 1:N) {

3 y[i] ~ dnorm(mu_y[z[i]], tau = tau_y[z[i]])

4 z[i] ~ dcat(p[1:L])

5 }

6 for (j in 1:L) {

7 mu_y[j] ~ dnorm(0, 0.01)

8 tau_y[j] ~ dgamma(0.01, 0.01)

9 }

10 p[1:L] ~ ddirch(alpha0[1:L])

11 })

12 NimbleData <- list(y = y)

13 NimbleConsts <- list(L = L, N = length(NimbleData$y), alpha0 = rep(1, L))

14 NimbleInits <- list(mu_y = rnorm(NimbleConsts$L), tau_y = rgamma(

NimbleConsts$L),p = rep(1/NimbleConsts$L, NimbleConsts$L))

4.4 Application: bladder cancer recurrences

We apply the GSFM to analyze the Bladder cancer recurrences data set contained in R package

survival. Totally 118 subjects in the clinical trial are divided into 3 treatment strata including

placebo, pyridoxine (vitamin B6), and thiotepa. Each subject may experience k (from 1 to 9)

times of recurrences and may die from or not from the recurrence of bladder cancer. We don’t

discriminate the death from cancer and the recurrence, and the death from other causes is treated

as censoring status. Our interest is the gap time between the (k − 1)th and the kth recurrences.

Besides the treatment schemes, two clinical covariates are considered: the number of tumors at

the beginning (x1) and the size of the largest tumor (x2) within a subject. The values of these

two covariates are evaluated at the beginning of each recurrence interval. This data set was
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once analyzed for the time between the first to the second recurrence as a univariate time-to-

event outcome (Zeng and Lin (2006)). In this chapter, we consider both the first and the second

recurrences and thusK = 2 here. The two covariates are scaled by divided by 100. To simplify

the computation, the follow-up time is transferred from months to years to get lower scalars.

4.4.1 Model checking for baseline survival functions
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Figure 4.3: The estimated baseline survival curves for the first (a) and second (b) recurrence; the black curves
are estimated under the proposed generalized shared frailty model, and the pink curves are estimated under the
traditional shared frailty model; the real lines, placebo; the dash lines, pyridoxine; the dotted lines, thiotepa.

Before further inference, we need to check whether the proposed model is appropriate. As

an alternative, a shared frailty model is fit by R package spBayeSurv. In the shared frailty

model, the treatment strata are considered as indicator covariates in the parametric term. We

run 4 independent MCMC chains for 5000 times with the first 2000 times burn-in and aggregate

the rest chains together as the posterior samples under the GSFM. All chains are well mixed

and convergent under the GSFM. For the shared frailty model, we run the MCMC 16000 times

with the first 6000 times burn-in through R function survregbayes using the “IID” Gaussian

frailty under “PH” model name. Other settings are default.

The plots of the estimated baseline survival functions under different models stratified by

treatment strata can be viewed in figure 4.3. From that, we find the baseline survival functions

estimated under the GSFM shows similar trends as that of the K-M estimator in each recurrence,
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and reflects the crossing survival curves at the first recurrence like the K-M estimator. However,

the curves estimated by the shared frailty model are not crossed and cannot change along with

recurrences. Therefore, the proposed GSFM is appropriate for the data.

4.4.2 Parametric estimation I: real data

We use the mean of posterior samples (median for τ ) as the estimator of parameter and we list

the estimation of vector of regression coefficients β and standard deviation parameter τ in Table

4.2.

Table 4.2: The parametric estimation and the MCMC performance for the bladder cancer recurrences data. Est,
point estimation; SD, posterior standard deviation; ESS, effective sample size; PACE, the MCMC Pace.

Est SD ESS PACE
No. tumours 13.849 11.051 1495 0.145
Tumour size -14.196 12.341 1114 0.194

τ 1.793 0.383 456 0.474

From table 4.2 we find that as the number of tumors at the start point increases, the hazard

for recurrences increases as well whereas the larger size of the largest tumor will decrease the

hazard. The signs of the effects of the number of tumors and the tumor size are similar to that

in Zeng and Lin (2006) who analyzed the first recurrence as a univariate time-to-event data by

a transformation model. A slight difference is that under the GSFM, the effect of the number

of tumors is not significant (the 95% credible interval covers zero) while the effect reported

by Zeng and Lin (2006) is significant. The reason might be that they do not distinguish the

two drugs thiotep and pyridoxine but treat them as the same group of treatment. In contrast, in

this chapter, we distinguish them and consider their effects as nonparametric components (in

baseline survival functions). We conjecture effect of treatment may dominate the performance

of therapy, and thus, the clinical effect of the number of tumors becomes less important or

significant. In the next subsection, our simulations demonstrate that our MCMC sampling can

correctly recognize the significance of the regression parameter.

Besides the parametric estimation result, we also report two metrics about the MCMC per-

formance here. The first one is the effective sample size (ESS), an approximation to the num-

ber of “independent” draws in MCMC sampling. It shows that the ESS of all parameters is
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greater than 400, which is considered to be adequate by Vehtari et al. (2021). The ESS of τ is

significantly lower than that of β, a possible reason is that the frailty random effect might be

time-dependent wi(t) rather than a time-fixed effect. Another metric of interest is the average

time needed to generate each effective sample, called MCMC Pace. Stan development team

emphasized the importance of MCMC Pace, and the definition is given by the team of NIM-

BLE in de Valpine et al. (2021) as the time-consuming of generating one effective sample. The

MCMC Pace to generate τ is much higher than that of β, and we conjecture the possible reason

is that the posterior distribution has a long upper tail leading to outliers in posterior samples,

which slows down the speed to generate effective samples.

4.4.3 Parametric estimation II: simulation

Another simulation study is considered to evaluate the performance of parametric estimation of

the MCMC procedure. Our simulation aims to simulate the occurrences of multiple events on

the same individual. We takeK = 2 andG = 3 denoting the number of types of events and the

number of treatment strata, respectively. The simulation includes two independent covariates,

xi ∼ Bin(1, 0.5) and x2 ∼ N(0, 1) to incorporate indicator variable and continuous variable as

well. For k = 1, 2, j = 1, 2, 3, the baseline survival functions S0kj are set as:

• S011 = 1− 0.5(LN(−0.25, 1) + LN(0.25, 1));

• S012 = 1− 0.5(LN(−0.5, 1) + LN(0.65, 1));

• S013 = 1− 0.5(LN(−0.65, 1) + LN(1.25, 1));

• S021 = 1− LN(0, 1);

• S022 = 1− LN(−0.5, 1);

• S023 = 1− LN(0.5, 1)

When k = 1, the three baseline survival functions are crossed whereas when k = 2, the three

curves are not. The vector of regression coefficients is β = (1, 1)T and the log frailty random

effect vi ∼ N(0, 1) independently. The survival time is generated following model (4.1). The
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censoring variable of each event is generated from Unif(4, 6) independently, leading to a cen-

soring rate of about 28%. We set the number of subjects to be 90 and they are equally divided

into three treatment strata. We repeat the simulation for 150 times.

Table 4.3 summarizes the results for regression parameters β and the standard deviation of

frailty effect τ , including the averaged bias (BIAS), root of mean square error (RMSE), posterior

estimated standard deviation (ESD) of each point estimate (posterior mean for β and median

for τ ), the standard deviation (across 150 replicated simulations) of the point estimate (SDE),

and the coverage probability (CP) of the 95% credible interval (given by a Wald-type credible

interval). The results show that the point estimates of β and τ have quite little bias with low

RMSE, ESD values are close to the corresponding SDEs, and the CP values are close to the

nominal level 95%.

Table 4.3: Simulation results for the parametric terms. BIAS, averaged bias among the 150 simulations; RMSE,
root of mean square error of the estimation; ESD, averaged posterior estimated standard deviation; SDE, the
standard deviation of point estimate; CP, the coverage probability of 95% credible interval.

Parameter BIAS RMSE ESD SDE CP
β1 = 1 -0.062 0.042 0.222 0.196 96.7
β2 = 1 -0.025 0.023 0.148 0.152 92.7
τ = 1 -0.078 0.056 0.213 0.224 96.7

4.5 Discussion

In this chapter, we show the power of Bayesian computing illustrated by successfully apply-

ing the ANOVA DDP model as the nonparametric prior for a relatively complicated shared

frailty model. Our survival-function-based version of the ANOVA DDP, modified based on

the ANOVA DDP directly in subsection 3.3, is constructed for the shared frailty model, but

can reduce to modeling the univariate dependent survival functions by involving the continu-

ous covariates into the predictor space of the ANOVA DDP. Hence, our work is an extension

of De Iorio et al. (2009) to some extent. However, the proposed GSFM is different from the

Linear DDP models, the generalization of the accelerated failure time model (Hanson and Jara

(2013); Riva-Palacio et al. (2021)). Furthermore, although we point out that there exists poten-

tial dual dependence for dual stratification of treatment strata and recurrences, we just simply
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allow dependence in treatment strata and assume that the recurrences are independent in our

methodology demonstration. The dependence across recurrences per subject is dealt with only

by the parametric frailty random effect in the proposed shared frailty model. It is more reason-

able to incorporate into the baseline survival functions so that the interaction effects between

recurrence and treatment may be accounted for. Under the one-level stratification, Hanson et al.

(2012) modeled such serial correlation among baseline hazard functions by constructing the so-

called dependent tail free process as the prior. It is non-trivial to accommodate dual temporal

and stratified dependency as a future research plan.



Chapter 5

Future work: Bayesian tensor factor

analysis

Spike-and-slab prior in Bayesian factor analysis

In Part I we propose a Gamma-IBPmodel for model selection in a high-dimensional regression-

like setting. We find that similar IBP-weighted spike-and-slab priors have been applied to

Bayesian vector factor analysis (Knowles andGhahramani (2011); Ročková andGeorge (2016);

Ohn and Kim (2022); among others). A common paradigm of Bayesian factor analysis is to

assume the potential of infinite latent factors and assign shrinkage priors such as spike-and-slab

priors for model selection. This is very different from the frequentist paradigm which needs

to pre-specify the number of factors. Hence, motivated by the emergence of multidimensional

arrays (tensors) in the current forefront of data science, we may extend our investigations to

sparse Bayesian factor analysis or tensor decomposition for tensor data objects. Specifically,

for Bayesian tensor decomposition, we notice that there have been some Bayesian successes

in applications (Xu et al. (2012); Ju et al. (2016); Billio et al. (2023); among others), while

explorations to their inferential theories seem to be rare. Although Zhou et al. (2015) studies

the posterior contraction rate of their Bayesian tensor factor model, their interest focuses on the

probability tensors but not all the real tensors.

Gap between identifiability issues and computational costs

It is well-known that factor analysis encounters identifiability issues. Most of the aforemen-
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tioned approaches employed the MCMC sampling to combat the model unidentifiability. This

is consistent with our findings in Part II that lack of identifiability does not hamper Bayesian

prediction if people use MCMC sampling to draw the posterior. Nonetheless, the computation

of MCMC sampling is prohibitively expensive when dealing with large-scale and ultrahigh-

dimensional data. Hence, considering the tremendous dimensionality of higher-order tensor

data, variational Bayes (VB) techniques seem preferable to MCMC in Bayesian factor analy-

sis. Unfortunately, the identifiability issue seems to be a real issue for VB. Take the VB-EM

algorithm by Ročková and George (2016) for the Bayesian vector factor model for example.

Even though they mitigate identifiability issues by the soft constraint of IBP weights, the pos-

terior distribution of the loading matrix encounters a “magnitude inflation” problem when the

dimensionality is much greater than the data size, incurring inconsistent posterior (Ma and Liu,

2022). A similar problem also occurs in variational Bayes matrix factorization (Nakajima and

Sugiyama, 2011).

Future work

The above discussions highlight the challenges to address, including tackling the identifiability

issue under some tensor decompositions with nice prior elicitation, developing the appropriate

VB algorithms, and establishing the posterior inferential theories. Note that in general, the

identifiability conditions may be bothersome to mean-filed VB approaches. For example, in

matrix/tensor PCA approaches (Hoff (2016); Jiang et al. (2020)), the identifiability requires

the loading matrices to be orthornormal, indicating that the posterior on each columns are not

independent anymore. Hence, VB methods that relax the mean-filed assumption are needed

(Kingma et al. (2016); Saha et al. (2020); among others). Meanwhile, the techniques for the

theories about the posterior contraction under the non-mean-filed VB approximation are also

expected. We leave them as the future work.
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