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Abstract 

Quality is a critical metric for evaluating the value of a construction project since it 

directly impacts the building resilience against accidents (e.g., floods and earthquakes) 

and pertains to public property and lives. Unfortunately, quality failures seem to be an 

ever-present reality in the construction industry. Researchers have proposed various 

approaches for construction quality management, such as adopting quality management 

theories like total quality management and lean construction and implementing cutting-

edge digital technologies, e.g., building information modelling, computer vision, and 

sensing techniques. However, the following three issues persistently impede quality 

performance improvement in construction practices: (1) labor-intensive construction 

conventions, which pose difficulties in quality control. Specifically, workers often 

experience fatigue due to physically demanding tasks and harsh working conditions. 

Fatigued workers are more prone to making mistakes, thereby degrading workmanship; 

(2) manual postconstruction quality inspection, which brings difficulties to effective 

quality control. Manual quality defect inspection (QDI) is time-consuming, subjective, 

and inefficient, thus reducing the reliability of quality inspection results; (3) easy-to-

manipulate quality information records, which create obstacles in dispute resolution, 

accountability, and traceability. Quality is not determined by a single organization but 

by the joint work of several parties. Unfortunately, opportunistic behaviors, e.g., cutting 

corners and using inferior materials, are usually observed in construction collaborations, 

which will significantly degrade quality performance. An effective traceability system 

recording quality information records is required to mitigate opportunistic behaviors.  

 

The rapid development of digital technologies, especially worker-robot collaboration 



II  

(WRC) and decentralized blockchains, provides creative solutions to tackle the above 

quality issues. WRC can integrate the robots’ advantages in strength and accuracy with 

human ability in intuitive decision-making and adaptability, reducing workers’ physical 

fatigue and minimizing quality errors. Similarly, a multi-robot system can be developed 

to ensure the reliability of quality inspections. Moreover, blockchain, a cryptography-

based decentralized system, can meet the information management requirements for 

quality traceability. However, there are some gaps when utilizing these technologies. 

First, very few studies noticed the reliable interaction between workers and robots for 

safe WRC. Second, previous studies neglect the data availability and privacy in robot-

based defect inspections. Third, limited attempts have been made to explore blockchain-

based information management for construction process quality traceability. Finally, 

although blockchain seems to be a transformative tool for construction applications, we 

have seen very few implementations from the practices, and it is unclear related to its 

adoption barriers. 

 

This research aims to introduce methods to tackle these gaps and then facilitate the 

implementation of WRC teams and blockchains in construction quality management. 

Notably, this is motivated by practical industry problems rather than mere interest in 

new technology. The specific objectives of this research are as follows: (1) To develop 

a user-friendly and reliable interaction method for facilitating the transition from 

human-based construction to WRC; (2) To develop a multi-robot-based framework for 

automatic QDI; (3) To develop a blockchain-based framework for process quality 

traceability and accountability; and (4) To investigate barriers hindering blockchain 

implementation in the construction industry and identify key ones. 
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This research first provided a comprehensive literature review on each research 

objective and highlighted gaps in the body knowledge. In light of these gaps, specific 

solutions were proposed. Specifically, this project proposed a safe and efficient method 

to support worker-robot interactions in WRC based on the thermal modality. An image 

dataset containing seven types of hand gestures was established using the thermal 

camera. A lightweight deep learning algorithm was developed to accurately (high 

accuracy) and efficiently (low latency) recognize hand gestures, even in resource-

constrained mobile construction robots. Experimental results demonstrated the 

superiority of the proposed model compared to other lightweight algorithms and 

validated the feasibility of thermal image-based WRC. Subsequently, this dissertation 

proposed a hierarchical federated learning (FL) framework for multi-robot based QDI, 

allowing different construction robots to train the defect detection model collaboratively 

without sharing their local data. Crack detection was selected as a case study, and a 

lightweight segmentation algorithm was proposed to reduce communication costs. 

Experimental results indicated that the proposed FL method utilizes the potential of big 

data analysis while addressing data security and privacy concerns. After that, this thesis 

introduced a Hyperledger Fabric blockchain framework for extracting and recording 

construction process information. A consortium prototype was established using a 

general Blockchain as a Service (BaaS) platform. The performance was evaluated with 

throughput and latency metrics. Finally, this dissertation explored barriers to blockchain 

adoption in the construction industry, employing the technology-organization-

environment (TOE) framework and identifying key obstacles through the fuzzy 

Decision-Making Trial and Evaluation Laboratory (DEMATEL) method. Twenty 

experts were invited to the survey process. Seven key barriers were identified, and 
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corresponding policy suggestions were proposed at the government, industry, and 

organizational levels. 

 

This research makes contributions to the knowledge by firstly introducing a thermal 

image-based interaction method for safe WRC applications, exploring the potential of 

FL in QDI tasks, developing a blockchain framework for construction process 

information management, and enhancing the understanding of barriers to blockchain 

adoption. Moreover, the practical implications of this research include the potential to 

enhance quality performance by transitioning from human-based construction to WRC 

teams, improving the reliability of inspection results through the implementation of a 

robot-based QDI system, and mitigating opportunistic behaviors through blockchain-

based quality traceability.  
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CHAPTER 1  Introduction 

1.1 Introduction 

This chapter briefly introduces the research background of the thesis, which discusses 

the main issues hindering the quality performance improvement of construction projects. 

Then, focusing on these issues, this study determines possible solutions, research gaps, 

and research objectives. Finally, the overall structure is illustrated. 

1.2 Research Background 

Construction quality is widely defined as adherence to contractual requirements, 

industry standards, and permissible specifications (Harris et al., 2021). It is a matter of 

concern for governments, stakeholders, and the public, as it directly impacts the delivery 

resilience against accidents such as fires, floods, and earthquakes, thus pertaining to 

public property and lives (He and Wu, 2016). Unfortunately, the construction industry 

has long been associated with poor-quality performance. Evidence of this can be found 

in alarming quality-related accidents worldwide. For instance, in 2022, a 39-story 

apartment building in Gwangju, South Korea, experienced a collapse during the 

construction process, resulting in the tragic death of six workers. In December 2018, 

cracks appeared in the structure of the “Opal Tower” in Sydney Olympic Park, Australia, 

forcing the evacuation of 3,000 residents. Similarly, in 2016, the early removal of 

formwork by a contractor led to the collapse of the Fengcheng power station in China, 

causing the loss of more than 74 lives. Another devastating incident occurred in 2016 

when the Weiguan-Jinlong building in southwestern Taiwan collapsed rapidly during 



2  

an earthquake, resulting in over 100 death. This serious accident can be attributed to 

poor quality stemming from contractors taking shortcuts during construction. Similar 

incidents include the Grenfell Tower fire in London, United Kingdom. These accidents 

indicate that quality failures seem to be an ever-present reality in the construction 

industry, which usually causes significant economic and societal repercussions. 

 

Today, construction quality management is of particular importance under global 

competition. We acknowledge that construction quality is a complex system that 

requires the integration of various management theories, such as total quality 

management (TQM), lean construction, and plan-do-check-action (PDCA) control 

along with the utilization of diverse digital technologies. Recently, researchers have 

been actively exploring the utilization of various digital technologies to achieve quality 

goals (Luo et al., 2022), such as Building Information Modeling (BIM), Internet of 

Things (IoT), Computer Vision (CV), and others. These technologies provide great 

opportunities for quality management. BIM, for instance, addresses information 

asymmetries by facilitating exchanges across different stages and enabling the 3D 

simulation of construction plans (Chen and Luo, 2014; Lee et al., 2016; Ma et al., 2018a). 

CV can automatically detect quality defects or unsafe behaviors from visual inputs (Ai 

et al., 2023; Liu et al., 2020a; Wu et al., 2021a). The advancement of IoT sensors allows 

for the easy collection of diverse types of quality data from the physical world (Han et 

al., 2022). While these efforts greatly enhance quality performance, achieving 

excellence remains a challenge. Several factors restrict the improvement of construction 

quality performance throughout the entire lifecycle of construction processes. 
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Firstly, labor-intensive construction conventions result in uncertainties and difficulties 

in quality control. The automation levels of the construction industry are deficient. On-

site construction jobs, e.g., bricklaying, painting, and concreting, are completed by 

human workers. However, high-physical demanding tasks make workers, particularly 

older workers, easily experience physical fatigue (Anwer et al., 2021). Note that the 

proportion of older workers in the construction industry is rising dramatically due to an 

aging population globally and the reluctance of younger people to join the construction 

workforce (Kim et al., 2020; Kamardeen and Hasan, 2022). For example, 37.7% of 

skilled and semi-skilled construction workers in Hong Kong were over 55 years old 

(CIC, 2019). Similarly, 80% of general contractors face challenges in hiring sufficient 

young craft workers (AGC, 2018). As workers age, they quickly enter fatigue conditions 

in physical activities. Fatigued workers may make mistakes and take unsafe behaviors, 

degrading craft and quality performance. 

 

Secondly, post-construction quality inspection is conducted manually, suffering from 

low reliability. Manual inspections are subjective, inefficient, and unreliable since they 

depend on an individual’s knowledge, experience, and responsibilities (Ai et al., 2023; 

Liu et al., 2019). Inherent human opportunism further diminishes the reliability of 

quality inspection results. Contractors and supervisors may collude to deceive the owner. 

The American Society of Civil Engineers reports approximately $340 billion in 

corruption costs annually in the global construction industry (Sohail and Cavill, 2008). 

Furthermore, manual inspections struggle with handling large amounts of data, leading 

to errors and time-consuming processes (Wu et al., 2021b). Kopsida et al. (2015) 

discovered a lack of consistency among inspection reports from different inspectors. 
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Manual quality inspections can also be tedious and pose safety hazards, such as when 

inspectors must work at heights during the surface defect inspection of bridge stay cables 

(Liu et al., 2019).  

 

Thirdly, the poor reliability of quality information (e.g., construction process 

information and quality inspection results) hampers traceability. The quality of final 

construction products is not solely determined by a single organization but relies on the 

collaborative efforts of multiple firms, including owners, contractors, sub-contractors, 

and supervisors. However, inter-organizational collaboration in the construction 

industry is challenging and often fails. Construction projects are characterized by their 

enormous scale, extended timeframes, and non-repetitive nature, resulting in high levels 

of complexity and uncertainty (Galvin et al., 2021). According to Ho et al. (2015), higher 

complexity and/or uncertainty transactions are more susceptible to opportunism. 

Contractors may engage in opportunistic behaviors, such as cutting corners, using 

inferior materials, and hiring unqualified workers, to compensate for shortfalls in 

expected profits arising from fierce competitive bidding (Mohamed et al., 2011). An 

effective traceability system can mitigate opportunism by enabling construction 

stakeholders to demonstrate compliance with regulations and achieve accountability 

(Lee et al., 2021b). Successful practices in the manufacturing industry demonstrate the 

potential of traceability. For example, platforms like “Lazada,” “eBay,” and “Tmall 

Global” have already implemented blockchain technology for high-end products, such 

as diamond jewelry and luxury handbags, enabling customers to access product 

information instantly through their mobile phones. However, achieving traceability 

requires recording quality information in a secure, transparent, and reliable manner, 



5  

which traditional information and communication technologies struggle to meet. In 

construction practices, quality managers usually tend to record quality information on 

paper (e.g., drawings and checklists) while walking around the construction site and 

then upload the information to a centralized information system like the PMIS (Project 

Management Information System) at the office (Ma et al., 2018a). However, recording 

quality information on paper documents or in a centralized server poses challenges 

regarding transparency, equivalence, fairness, and verifiability (Wu et al., 2021b). If 

data fraud or tampering occurs, the centralized system becomes untrustworthy (Wu et 

al., 2022c).  

 

Addressing the issues above is crucial for enhancing the quality performance of 

construction deliverables. The rapid involvement of digital technology, especially 

robots and blockchains, offers solutions for the above quality issues. Firstly, robotics-

driven automation can alleviate persistent construction issues, such as stagnant 

productivity, high accident rates, and young labor scarcity (Ma et al., 2022). Various 

single-task construction robots have been developed for specific industry tasks, 

including the Semi-Automated Mason (SAM) 100, Hadrian X, and rebar-tying (TyBot) 

robots. However, adopting robots is not straightforward. The adoption of construction 

robots remains limited on construction sites. Current robots are technically incapable of 

autonomously completing construction tasks in unstructured and dynamic working 

environments (Liang et al., 2021). Today’s construction robots are designed as pre-

programmed machines that perform simple and repetitive actions (Wu et al., 2022a). 

They cannot tackle new problems in a complex environment. The tacit and skilled 

knowledge possessed by human workers presents a challenge in measurement and 
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programming. Complex construction tasks require human decision-making (Brosque et 

al., 2020). Moreover, pursuing full automation creates anxiety that it will replace a 

sizable portion of the workforce and may lead to unanticipated consequences on quality 

management (e.g., negative attitudes to work). Thus, workers continue to play a crucial 

role on-site, leveraging their talents, procedural knowledge, tactile sensibility, and 

ability to adapt to unforeseen challenges (Loveridge and Coray, 2017). In this context, 

worker-robot collaboration (WRC) teams will emerge as a critical component of future 

construction, allowing robots to perform tasks they excel at (e.g., lifting bricks or 

moving drywall sheets) while workers focus on their areas of expertise, e.g., task 

planning and monitoring (Wu et al., 2023a). Adopting WRC teams could reduce worker 

physical workloads and minimize errors during construction.  

 

Secondly, the advancements in robots and deep learning (DL) algorithms have opened 

up possibilities for an autonomous quality inspection scheme. Various robots, such as 

unmanned ground vehicles (UGVs) and unmanned aerial vehicles (UAVs), can form a 

robotic system to collect quality defects based on different sensors. DL algorithms can 

automatically extract defects from the raw data, improving quality inspections' 

efficiency and reliability. Hence, multi-robot-based quality inspections could be 

implemented in future construction sites to avoid limitations in current manual quality 

inspections.  

 

Thirdly, blockchains provide a creative solution for information management among 

various parties. Blockchain is a cryptography-based decentralized system characterized 

by information immutability (almost), transparency, and traceability (Wu et al., 2021b). 
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Compared with traditional information exchange methods, blockchain guarantees data 

transparency, shares data control rights, and significantly reduces data fraud risks (Wu 

et al., 2023b). Each party in the blockchain system has a unified view of the data, and 

such trustworthy data can serve as evidence in the case of ex-post accountability. Thus, 

blockchain-based quality information management can meet traceability requirements.  

 

In summary, in the context of Industry 4.0, current quality issues during the whole 

construction process could be tackled by the implementation of WRC teams and 

decentralized blockchains (Figure 1.1). We limited our research scope to these identified 

issues and aimed to proposed research solutions to facilitate the transition from current 

construction quality management to future construction methods. 

 

 

Figure 1.1. Current construction quality management issues and relevant  technical 

solutions. 

1.3 Research Problem Statement 

Focusing on the potential of WRC and blockchain technologies in addressing the above 

quality management issues, several research problems in existing studies were identified. 
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Firstly, although WRC teams offer numerous benefits to construction, it also introduces 

unexpected safety concerns. Unlike manufacturing automation, construction robots are 

required to work closely with human workers. The implementation of WRC teams in 

unstructured and dynamic construction sites introduces collision risks (Cai et al., 2022). 

Note that collaboration is impossible until workers’ safety is sufficiently guaranteed (Li 

et al., 2022a; Mazhar et al., 2019). Unfortunately, there is a lack of discussion on 

achieving safe and efficient interactions in the construction industry. Therefore, a user-

friendly and reliable communication method is essential for efficient interactions 

between on-site workers and robots. 

 

Secondly, although numerous DL models have been proposed to help robots detect 

quality defects, they neglect the data availability issue. In terms of quality and quantity, 

obtaining sufficient data to train DL models for robots is often expensive and complex 

(Zhong et al., 2019). Specifically, in the case of multi-robot-based quality defect 

inspection (QDI), a powerful DL model is required to help the robotic client efficiently 

detect various defects. In practice, developing a cross-project quality defect database is 

challenging. Quality defect information is considered private, and construction parties 

are hesitant to share such information. This is because the leakage of quality defect data 

(e.g., images) will bring negative reviews and potential damage to their image, resulting 

in a poor reputation in the market (Lee et al., 2016). Hence, useful data becomes 

fragmented as “data islands” that cannot be utilized for collaborative training for 

construction robots. Insufficient data leads to unsatisfactory performance of DL models 

(Li et al., 2021a). Existing methods fail to achieve ideal performance when construction 

robots are solely trained using their data. Therefore, a novel model training approach 
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that allows different robots to collaboratively train a power DL model is required for 

multi-robot based QDI. 

 

Thirdly, blockchain technology has the potential to create a decentralized, transparent, 

and tamper-proof transaction ledge and act as a trustworthy platform for information 

exchange and quality traceability among different project actors. Existing studies also 

noticed its potential in quality information management (Zhong et al., 2020; Wu et al., 

2021b; Lu et al., 2021a, b); however, they mainly focused on the recording of textual 

inspection information or construction supply chain information (Wu et al., 2023c). 

Very limited attempts have been made to explore blockchain-based construction activity 

traceability during construction processes. The lack of such traceability systems may 

induce contractors’ opportunistic behaviors that usually negatively impact quality. 

Therefore, a decentralized blockchain-based construction activity information 

management method is required for process traceability. 

 

Finally, we noticed that blockchain is more than a digital technology to the construction 

industry. Instead, blockchain is an institution technology for organizing economic 

activities and inter-organizational collaborations (Wu et al., 2023d). There is a key 

difference between blockchains and other digital technologies, e.g., robots, CV, and 

BIM. Specifically, blockchain acts as a self-contained and autonomous platform to 

handle business transactions (e.g., payments) in construction projects based on form 

rules. Interactions among project actors are governed by deployed smart contracts, and 

“once smart contracts are successfully deployed, the terms will be executed 

automatically” (Wu et al., 2022b; 2021a). Other digital technology mainly serves as a 
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support tool for construction management rather than a governance mechanism per se 

(Lumineau et al., 2021). Hence, blockchain effects exist at the application level and in 

organizational collaborations among different firms. Its adoption requires the collective 

agreements of project actors and will encounter more resistances than other technologies 

(e.g., robots, BIM), including technical difficulties (Wu et al., 2021b), costs (Zhong et 

al., 2020), and policy and regulatory uncertainties (Li and Kassem, 2021). We have seen 

very few successful blockchain implementations in the industry practices. Most case 

studies remain in the pilot or planned use stage (Yang et al., 2020a). We must know 

blockchain adoption barriers to make this transformative technology real in the 

construction industry. Therefore, it is crucial to understand the potential blockchain 

adoption barriers and identify key ones. 

1.4 Research Objectives 

Against this backdrop, the primary objective of this research is to explore the feasibility 

of construction quality improvement through the utilization of worker-robot 

collaboration (WRC) teams and decentralized blockchains. We focused on the above 

research gaps and have tried to propose different research methods. This thesis is a 

compilation of several scientific manuscripts which illustrate these proposed research 

methods. Specifically, the thesis aims to achieve the following research objectives (RO):  

• RO1: Develop a user-friendly and reliable interaction  method to help workers 

control the robot assistant, propose a lightweight algorithm to efficiently 

recognize worker commands, and demonstrate its feasibility for safe WRC; 

• RO2: Propose a federated learning scheme to help different robots 

collaboratively train the DL model without sharing the local data, develop a 
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defect detection algorithm, and test the performance of the proposed method in 

the case of crack detection; 

• RO3: Investigate the suitable blockchain architecture to record construction 

process information for quality traceability, develop a blockchain prototype, and 

evaluate its performance; 

• RO4: Identify blockchain adoption barriers with theoretical frameworks, analyze 

their interrelationships, determine key barriers based on expert evaluations, and 

propose policy suggestions for promoting blockchain implementation in the 

construction industry. Investigate the barriers that hinder blockchain adoption in 

the construction industry and identify key ones. 

1.5 Overview of the Thesis 

Figure 1.2 depicts the overall structure and the research path of this thesis. Note that this 

thesis is a compilation of peer-reviewed and under-reviewed scientific manuscripts. 

These manuscripts focused on the knowledge gaps mentioned above, aiming to promote 

the transition from traditional construction quality management to future construction 

supported by WRC and blockchains. The first two chapter aims to identify issues 

hindering the quality performance from the whole lifecycle of construction processes, 

state that adopting WRC and blockchains could tackle these issues, and then discuss 

existing gaps when utilizing WRC and blockchains to address these issues. These 

discussions allow us to understand existing research gaps. Then, several research studies 

were conducted to tackle these gaps. These proposed methods will lead to Chapter 3 to 

Chapter 6 of the thesis. 
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Figure 1.2. Research path of this thesis. 

 

More specifically, Chapter 3 aims to address the challenges inherent in traditional 

human-based construction practices by developing a reliable WRC interaction method. 

We introduce a novel hand gesture recognition method that can accurately and quickly 

understand worker commands by identifying hand gestures from images. Several 

experiments are conducted in this research. Results show that the proposed method can 

reduce collision risks and achieve safe and efficient WRC, which will, in turn, promote 

the implementation of WRC teams in which the robotic assistant can reduce worker 

physical workloads and errors during construction.  

 

Chapter 4 aims to propose a multi-robot-based method to reduce human opportunism 
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and errors in post-construction quality defect inspections. We mainly focus on data 

availability and privacy concerns when training a powerful DL model for robotic clients 

in different construction projects. Crack detection is utilized as the evaluation case. 

Several comparative studies are performed to demonstrate the feasibility of the proposed 

methods. Experimental results indicate that the developed method allows robots to train 

the DL algorithm collaboratively without sharing the local data. Hence, the proposed 

method has the potential to facilitate the implementation of a multi-robot quality 

inspection system since it tackles data privacy concerns. 

 

Chapter 5 focuses on the poor traceability of construction process information and 

introduces a blockchain-based solution. The design science method is used to guide the 

whole research process. We develop a conceptual framework integrating computer 

vision and blockchain techniques for worker activity recording during construction 

processes. A consortium blockchain prototype is developed, and its performance is 

evaluated in a laboratory environment. Experimental results indicate the feasibility. The 

proposed method can guarantee the reliability and traceability of construction process 

information, support ex-post quality accountability, and, in turn, mitigate contractors’ 

opportunistic behaviors that usually have significant effects on quality performance.  

 

After the above research, we notice that blockchains go beyond other digital 

technologies (e.g., robots, BIM) since they make it possible for collective agreements to 

be automatically executed based on smart contracts. It may induce an institutional 

revolution to project collaborations. Hence, promoting blockchain implementation in 

construction practices is important. In Chapter 6, we identify adoption barriers based on 
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a literature review, analyze the interrelationships among these barriers, and identify key 

ones. This research can improve the comprehension of blockchain adoption barriers and 

then facilitate the diffusion of blockchains in real practices.  

 

Finally, Chapter 7 provides a comprehensive summary of this study's key findings, 

theoretical and practical contributions, and significance. The limitations and 

recommendations for future works are discussed.  

1.6 Chapter Summary 

This chapter discusses issues affecting construction quality, including labor-intensive 

construction conventions, manual post-construction quality inspections, and the lack of 

quality information traceability. Digital technologies that could address these quality 

issues were identified, termly WRC teams and decentralized blockchains. Then, this 

chapter introduces the knowledge gaps when implementing WRC and blockchain 

solutions. Subsequently, the research objectives of the thesis are outlined, followed by 

an overview of the overall structure of the thesis. 
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CHAPTER 2  Literature Review1 

2.1 Introduction 

This chapter provides a comprehensive literature review of the research problems 

identified in this study. It begins by examining recent studies on robotic applications in 

the construction industry (Section 2.2). Next, the chapter investigates current practices 

related to quality information management in construction, introduces key concepts and 

technologies of the blockchain, and reviews blockchain studies in construction (Section 

2.3). Finally, blockchain adoption barriers are discussed (Section 2.4). The main content 

of this chapter is presented in Figure 2.1. 

 
1 This chapter is based on a published study and being reproduced with the permission of 

Elsevier, ASCE publishers. 

Wu, H., Li, H., Fang, X., & Luo, X. (2022). A Survey on teaching workplace skills to 

construction  robots. Expert Systems with Applications, 117658. 

https://doi.org/10.1016/j.eswa.2022.117658. 

Wu, H., Zhang, P., Li, H., Zhong, B., Fung, I. W., & Lee, Y. Y. R. (2022). Blockchain 

technology in the construction industry: Current status, challenges, and future directions. 

Journal of Construction Engineering and Management. 148(10), 03122007. 

https://doi.org/10.1061/(ASCE)CO.1943-7862.0002380. 

 

https://doi.org/10.1016/j.eswa.2022.117658
https://doi.org/10.1061/(ASCE)CO.1943-7862.0002380
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Figure 2.1. Structure of the literature review chapter. 

2.2 Robot Applications in Construction Quality Management 

Previous works have developed numerous digital methods to tackle these two problems, 

including on-site robots, computer vision (CV) techniques, and modular integrated 

construction (MiC) methods. In particular, robotics is regarded as a promising solution 

to address inherent challenges in conventional construction works, such as low 

productivity, errors in work, high injury rates, and labor shortages. For example, 

Brosque and Fischer (2022) quantified the impacts of ten on-site construction robots on 

quality, safety, progress, and cost in 12 projects. Their findings revealed a reduction of 

over 50% in rework and a 55% improvement in accuracy on average with the adoption 

of robots. Brosque et al. (2023) also found on-site robots minimized the 3% traditional 

rework to 0.15% in framing and drywall installation tasks. Moreover, various types of 
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robotic devices have been proposed and applied in detecting defects due to their 

advantages of ease to use, high mobility, and capability of capturing images of hard-to-

access areas (Tian et al., 2022). In summary, construction robots can reduce human 

errors in the construction process and support postconstruction quality inspections. 

Hence, we reviewed recent robotic works in the construction industry in following 

subsections. 

2.2.1 On-site Construction Robots 

Existing works primarily focuses on: (1) designing various robotic systems for 

construction tasks, and (2) enhancing robot automation capabilities. Recent studies can 

be categorized into three types based on their application scenarios: (1) automation of 

heavy construction equipment, such as autonomous excavator (Zhang et al., 2021) and 

bulldozer (You et al., 2022), with the aim of replacing operators who work in extreme 

conditions and hazardous environments; (2) special construction robots designed for 

specific tasks, such as wall climbing (Hu et al., 2022), cleaning (Do et al., 2022), and 

pipe inspections (Zhu et al., 2022). These robots usually have unique mechanical 

structures that enable them to operate effectively in challenging environments. Thus, 

research in this group mainly focused on the structure designing of robots; and (3) on-

site general robots, which feature a general structure consisting of a mobile platform, 

robotic arms, and end-effectors. In this group, researchers mainly focused on the robot 

perception at dynamic construction sites and the decision-making abilities. 
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Figure 2.2. On-site construction robot classification. 

 

Construction robots can also be divided into three categories based on the controlling 

mechanism: fully autonomous robots, teleoperated systems, and programmable 

construction robots (Gharbia et al., 2020). Autonomous robots are attractive for 

automating construction processes. According to Olivares-Alarcos et al. (2019), robot 

autonomy is defined as: “the extent to which a robot can sense its environment, plan 

based on that environment, and act upon that environment with the intent of reaching 

some task-specific goal without external control.” Based on the Level of Autonomy 

(LoA) provided by the Society of Automotive Engineers, Melenbrink et al. (2020) 

classified present construction robots into five classes ranging from LoA 1 to LoA 5 and 

concluded that none of the current robots are capable of autonomously completing 

construction tasks under all site conditions. 

 

Most current construction robots are pre-programmed for specific tasks such as drilling, 
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painting, and excavating (Liang et al., 2020). These robots are designed to conduct 

certain actions in highly controlled environments using pre-programmed instructions 

(Kim et al., 2021a). For robots to be widely deployed on construction sites, they need to 

be able to handle differences and variations between the designed and built versions of 

structures. However, current construction robots do not have such ability. Completely 

replacing human workers with fully autonomous robots is not currently feasible. Current 

artificial intelligence struggles to effectively address the complexities and uncertainties 

present in real-world construction environments. Reinforcement learning and imitation 

learning algorithms were regarded as potential approaches to help robots learn new skills 

(Manuel Davila Delgado and Oyedele, 2022). Nevertheless, human reasoning remains 

crucial, particularly for complex tasks (Brosque et al., 2020; Ma et al., 2022). Moreover, 

the sole pursuit of full automation raises concerns about job loss, which can lead to 

resistance against such technologies. 

2.2.2 Worker-robot collaboration (WRC) in Construction  

Worker-robot collaboration (WRC) emerges as a crucial aspect of future construction 

practices (Ma et al., 2022; Wu et al., 2022a; 2022f), which could be defined as “workers 

cooperated with robots for accomplishing a specific construction task, and each role 

must be capable of making contributions to the task.” Wu et al. (2022f) stated that WRC 

is important for conducting complex construction tasks and developed an agent-based 

method to simulate WRC influences. Ma et al. (2022) also discussed the economic and 

technical feasibility of construction robots and stated that WRC would remain for a long 

time in the construction industry. A recent WRC review can be found in the works of 

Liang et al. (2021), Brosque et al. (2020; 2021), and Zhang et al. (2023). Specifically, 
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Liang et al. (2021) categorized WRC applications into six groups based on the level of 

robot autonomy, with human workers transitioning from being “planners and executors” 

to “supervisors” as robot autonomy increases. Brosque et al. (2021) developed a haptic-

based collaboration interface for complex tasks that require precise human teleoperation, 

surpassing the capabilities of pre-programmed robots. In summary, WRC enables 

human workers to transition from performing physical tasks to engaging in task planning 

and supervision, benefiting from the capabilities of robots (Zhang et al., 2023). In WRC 

teams, robots usually have two types of roles (Kim et al., 2022): (1) (sub)task executing 

role; and (2) assistive role. Specifically, some robots replace a part of human work and 

perform (sub)tasks, e.g., painting, while others are used to help workers in task 

execution, such as preparation and handling materials. 

 

However, there is a lack of discussions on how to achieve safe and efficient interactions 

in the construction industry. For example, WRC has collision risks because the robot 

and the worker share the same physical space on the dynamic construction site (Cai et 

al., 2022; You et al., 2018). Workers often feel unsafe when working alongside robots. 

To address this issue, Cai et al. (2022) employed an uncertainty-aware long short-term 

memory (LSTM) network to predict worker trajectories and avoid collision risks. Liu et 

al. (2021a) formulated worker safety as a Markov decision process, utilizing deep 

reinforcement learning algorithms to learn collision avoidance policies. In addition to 

safety concerns, WRC can lead to mental stress and excessive cognitive workload due 

to potential “misunderstandings” (Liu et al., 2021b). Safety and health concerns in WRC 

make it necessary to design a user-friendly communication manner to support efficient 

interactions between human workers and robots (Czarnowski et al., 2018). Specifically, 
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the robotic teammate should be capable of quickly and accurately understanding 

workers’ commands, even in dynamic site conditions.  

2.2.3 Robot-based Quality Defect Inspection (QDI) 

Quality defects, including cracks, rebar exposure, and wall deformation, usually lead to 

reworks, project delays, disputes, and cost overruns during the construction process 

(Love and Matthews, 2020). Quality defect inspection (QDI) is a crucial component of 

quality control in construction projects. The objective of QDI is to identify unqualified 

products and defects in a timely manner and ensure the final quality of construction 

products in accordance with regulations and contracts. Various standards have been 

established to ensure the quality performance of a project, emphasizing the necessity of 

conducting inspections after major construction procedures for compliance checking 

and defect inspection (Ma et al., 2018a). Typically, quality inspectors of the contractor 

should develop a quality inspection plan containing inspection lots, checking items, and 

corresponding target objects. Following the quality inspection plan, the contractor’s 

quality inspectors need to conduct a self-check first and record the inspection result on 

paper-based forms after construction procedures are completed. Subsequently, the 

inspectors would complete an inspection lot checklist and sign on it for submitting a re-

check request to the inspectors or supervisors. For essential inspection lots, the owner 

may conduct double re-checks. However, manual QDI is characterized as time-

consuming, error-prone, and low reliability. For example, manual inspectors may get 

tired, and the inspection accuracy may decrease over time (Yan et al., 2018). Robots 

equipped with various sensors were proposed to detect detections, including cracks, 

rebar corrosion, and degradation. In this research, we limited the research scope to 
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cracks since crack is the most common damage and would cause severe problems with 

the integrity and safety of civil structures (Jiang and Zhang, 2020). Existing robot-based 

crack detection mainly focused on two aspects: (1) how to design a proper robot 

mechanism for efficiently collecting defect data; and (2) how to automatically detect 

defects from the raw data. In this research, we limited the literature review to crack 

defects since cracks will significantly affect the whole structure’s safety. 

 

Industry and academia have developed various types of robots for crack detection, 

which can be broadly divided into climbing robots, underwater robots, unmanned aerial 

vehicles (UAVs), and ground mobile robots. Climbing robots have been proposed for 

detecting defects in bridges and concrete walls. For instance, Jiang and Zhang (2020) 

developed a ring-type climbing robot to detect cracks in bridge piers. Xu et al. (2021) 

designed a climbing robot to test and maintain cables on cable-stayed bridges. Liu et al. 

(2013) created a wall-climbing robot with a negative-pressure adhesion mechanism for 

the automatic crack identification of bridge towers. Underwater robots have been used 

to inspect underwater infrastructures, such as dams (Li et al., 2022b). The critical 

research content for climbing and underwater robots is to design proper robotic 

mechanisms to help the robot collect data from challenging environments. For example, 

wall-climbing robots can be classified into two types based on their climbing 

mechanisms: pneumatic robots or magnetic robots (Tian et al., 2022). 

  

In contrast to climbing robots, ground mobile robots, and UAVs have similar structures. 

Ground mobile robots can be classified into three categories: wheel, tracked, and 

quadruped. Although ground mobile robots have limited operation space since they are 
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required to be contacted with the ground, they can usually offer comparative payloads 

(Lee et al., 2023). Therefore, they have been deployed for quality inspections of paved 

roads, bridge decks, and tunnels. For example, Halder et al. (2023) utilized a quadruped 

robot to assist human inspectors in completing on-site inspections. Several industrial 

robots have been created, such as the Husky UGV (Unmanned Ground Vehicle), Boston 

Dynamics Spot, and UAVs (shown in Figure 2.4). Compared with ground mobile robots, 

UAVs have a higher degree of freedom and perform well in construction scenarios with 

high headroom and/or poor ground mobility (Song et al., 2022b). Hence, UAVs have 

been used to support QDI in bridges (Liu et al., 2020a), building walls (Tan et al., 2022), 

and roads (Zhang and Elaksher, 2012). It is reasonable to state that, in the future, a multi-

robot-based system can be developed for quality defect inspections, in which various 

types of robots are used to collect different types of defect data.  

 

 

Figure 2.3. Example of industrial robots for quality defect inspection. 

2.3 Blockchain Technology and Applications in Construction 

2.3.2 Key Concepts and Technologies of Blockchains 

Blockchain, as one type of distributed ledger technology (DLT), is a decentralized 

system that maintains transactional data or other information in chronological order, 
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controlled by the consensus algorithm and secured by cryptography (Wu et al., 2022b). 

It consists of blocks chained together and secured by cryptography techniques. Figure 

2.4 introduces the structure of the block, consisting of two parts: (1) a block header; and 

(2) a list of transactions. More specifically, information was transferred into the 

transaction (Tx) that will be packed into the block. As shown in Figure 2.4, the block 

header represents the basic information of a block, including the version number (the 

version of block validation rules), previous hash value (the hash of the previous block 

header), timestamp (the time of block generating), and Merkle root (the hierarchical 

hash results of recorded transactions). Note that each block has two hash values, and 

blocks are chained together via these values. The hashing algorithm has two main 

characteristics: 1) the encrypted content is difficult to reason through the hash value; 2) 

the hash value of each block will always be different even if there is a small change in 

the inputs (Farouk et al., 2020). Hence, through the connection of hashing values, blocks 

are chained together and even impossible to be tampered with. 

 

Figure 2.4. Typical structure of blocks. 
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Moreover, transactions recorded in the block are controlled by multiple parties in the 

Peer to Peer (P2P) network according to a decentralized consensus, which can guarantee 

transparency and avoid single-point attacks. Smart contracts enable the automatic 

execution of collective agreements, bypassing human actors’ opportunism and errors. 

(Wu et al., 2022b; Zhong et al., 2022). All the nodes in the blockchain system are 

connected on a flat topology without a hierarchy, central authority, or main server, 

making the network purely decentralized. Therefore, a consensus mechanism is used to 

ensure that the block is valid before it is recorded on the ledger. In the blockchain, 

consensus algorithms are used to approve and confirm transactions in the distributed 

environment through a series of procedures, such as Proof of Work (PoW), Proof of 

Stake (PoS), Practical Byzantine Fault Tolerance (PBFT), Delegated Proof of Stake 

(DPoS), and so on (Wu et al., 2021b). That is, information is controlled and verified by 

several independent parties instead of the signal one in the centralized system. Figure 

2.5 summarizes the technology components of a blockchain and corresponding technical 

features in terms of information management. 

 

 

Figure 2.5. Blockchain technical components and fundamental features. 
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The development of blockchain technology has gone through three stages: 1.0, 2.0, and 

3.0 (Jiang et al., 2021a). Blockchain 1.0 brought about cryptocurrency widely used in 

financial applications; an example is Bitcoin. The adoption of smart contracts promoted 

blockchain technology to enter the 2.0 era with the representative application Ethereum 

(Chen et al., 2020). Smart contracts, a computerized transaction protocol that executes  

the terms of a contract, enable the blockchain to be a self-enforcement platform that 

automatically executes transactions (Zheng et al., 2017). Since then, blockchain research 

has dramatically increased attention from different domains, and enterprises have tried 

to propose blockchain-based solutions. The enterprise-customized blockchain solutions 

termed the 3.0 era, in which Hyperledger Fabric (HLF) was the representative project 

(Androulaki et al., 2018). Blockchain 3.0 has the following fundamental properties: 

immutability, transparency, traceability, and automated business transactions. With the 

popularity of blockchain technology, the concept of Blockchain as a Service (BaaS) was 

proposed by technology giants (e.g., IBM, Microsoft, Amazon, and Oracle) to reduce 

blockchain implementation complexities. BaaS refers to cloud-based blockchain 

infrastructure developed by a vendor, allowing users to develop their blockchain 

applications even without enough hardware. That’s why BaaS was regarded as a 

promising solution for facilitating blockchain implementation. For example, Microsoft 

provided Ethereum BaaS (EBassS) on Microsoft Azure which allows financial 

customers to quickly build private, public, or consortium blockchain applications. 

 

According to the openness level of the participants (“Who can join the network?”) and 

governance (“Who is responsible for the consensus process?”), blockchain can be 

divided into three categories: public, private, and consortium blockchains (Zhong et al., 
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2020). The public blockchain (also referred to as the permissionless blockchain) is open 

to anyone, which means that anyone can read transactions and write into the ledger 

without any control. It is fully decentralized, and all members are anonymous. Bitcoin 

is an example of a public blockchain. In contrast to the public, private and consortium 

blockchains can only be accessed by authorized participants. Therefore, artificial 

incentives are not required to guarantee the system’s operation because validator nodes 

are known. The private blockchain (e.g., R3’s Corda) is applied to a specific 

organization, while the consortium blockchain (e.g., IBM’s HLF) is usually governed 

by a set of organizations (Zhong et al., 2020). The characteristics of different blockchain 

types are shown in Table 2.1.  

 

Table 2.1 Comparison of different blockchain types 

 Public blockchain Consortium blockchain Private blockchain 

Decentralized 

degree 

Complete 

decentralization 

Partial decentralization Centralized 

Management 

principals 

All participants 

Pre-agreed participants in 

a consortium consisting of 

several organizations 

Participants in a 

specific 

organization 

Data access Anyone Only authorized users 

Only authorized 

users 

Transaction speed Low Medium High 

Identity Anonymous Identifiable Identifiable 

Examples Bitcoin IBM’s HLF R3’s Corda 

 

2.3.3 Blockchain Research in the Construction Industry 
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Blockchain technical features enable this technology to have the potential to bring a 

paradigm shift in the construction industry toward trust, coordination, and cooperation. 

The construction industry is becoming increasingly interested in blockchains, and 

relevant publications have blossomed in recent years. As shown in Figure 2.6, 

blockchain research in construction can be divided into three stages: (1) conceptual 

analysis; (2) blockchain applications in specific scenarios; and (3) the integration with 

other digital technologies, e.g., BIM. 

 

 

Figure 2.6. Blockchian research in the construction industry. 

 

Specifically, early research concentrated on qualitatively illustrating blockchain 

potential. For example, Wang et al. (2017) discussed three types of blockchain-enabled 

applications in the construction sector: contract management, supply chain management, 

and equipment leasing. After reviewing policy papers from China and Europe, Belle 

(2017) highlighted how the architecture, engineering, and construction industry may 
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benefit from blockchain technology and found several issues impeding the digitization 

process. According to Heiskanen (2017), combining blockchain with the Internet of 

Things (IoT) might increase the productivity of construction projects. These studies 

contribute to a better understanding of blockchains, and more scholars are becoming 

interested in this game-changing technology.  

 

Various studies try to provide a comprehensive analysis of blockchains in the 

construction industry. Li et al. (2019) identified seven types of blockchain applications 

in the construction industry and studied three use cases, including automated project 

bank accounts, compliance checking, and a single shared-access BIM model. Perera et 

al. (2020) explored whether blockchain is just hype in the construction business or has 

real-world uses, such as property administration, asset management, and construction 

management, among others. Hunhevicz and Hall (2020) classified use cases of 

blockchain described in the literature into many categories based on the specific value 

propositions of blockchain technology. Scott et al. (2021) claimed that an expansive 

literature review has only recently been possible since 2021, as there is now a substantial 

body of study on the blockchain. In Scott et al. (2021), 31 application categories of 

blockchain technology were identified from 121 publications. Nevertheless, as the 

author pointed out, only one scientific database (Scopus) was used, which may have 

impacted the sample’s comprehensiveness. In our previous study (Wu et al., 2022e), we 

conduct a systematic blockchain review to clearly show blockchain research status, 

challenges, and future directs. Table 2.2 displays these reviews. 

 

 



30  

Table 2.2. Summarization of blockchain reviews in the construction industry. 

Reference Study design Research focus Research outcome 

Li et al. 

(2019) 

A coherent approach 

integrating systematic 

review, focus group 

discussions, interviews, 

and the socio-technical 

theory. 

Identify the state of 

distributed ledger 

technologies (DLTs) 

in the built 

environment 

Three specific use cases 

were appraised, and two 

conceptual models were 

proposed to show DLT 

challenges and involved 

participants in its 

development. 

Perera et al. 

(2020) 
A qualitative review 

Examine whether 

blockchain will 

create just hype or 

real disruption in the 

construction 

industry. 

Applications of Blockchain 

1.0, 2.0, and 3.0 were 

introduced from different 

domains, such as healthcare, 

food and architecture, and 

the construction industry. 

 

Hunhevicz 

and Hall 

(2020) 

A qualitative review 

Review DLT use 

cases proposed in the 

construction 

industry and propose 

a design framework 

for DLT design 

options. 

 

DLT use cases were 

summarized based on the 

technical properties; An 

integrated framework was 

presented to help select 

proper design options of 

DLTs. 

Scott et al. 

(2021) 

A systematic review 

integrating qualitative and 

quantitative analysis 

Investigate the 

expansion of the 

blockchain in the 

construction 

industry 

Blockchain research was 

classified into seven topics. 

Wu et al. 

(2022e) 

A systematic review 

contain qualitative and 

quantitative analysis 

Understand 

blockchain research 

states, challenges, 

and future trends 

Blockchain research mainly 

focused on the construction 

stage 

 

Previous research has demonstrated several blockchain applications across the lifecycle 

of building projects. Figure 2.7 summarizes blockchain application across the whole 
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lifecycle of building projects. In particular, the majority of the work concentrated on 

potential use cases of blockchains in the construction stage, in which numerous 

enterprises (e.g., the owner, contractors, designers, and supervisors) with varying 

motives must interact over long-time horizons. Most blockchain applications rely on 

two functions provided by blockchain technology: (1) recording evidence information 

in an immutable, transparent, and traceable way, and (2) boosting the efficiency and 

credibility of business processes using smart contracts. For example, blockchain 

facilitates information sharing among different stakeholders of modular construction 

projects through decentralized data recording (Wu et al., 2021b; Jiang et al., 2021b) and 

enhances the management efficiency of construction payment (Hamledari and Fischer, 

2021). 

 

Figure 2.7. Blockchain-based applications in the whole lifecycle of building projects. 
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Concerning specific applications in construction quality management, a consortium 

blockchain was developed in our previous studies to record quality inspection 

information for future accountability (Zhong et al., 2020; Wu et al., 2021b). Several 

amazing works related to the construction supply chain come from the team of Lu 

Weisheng (Wu et al., 2022c, 2022d; Lu et al., 2021a, 2021b). For example, Wu et al. 

(2022c) indicated blockchain applicability to improving the information-sharing 

accuracy in the onsite assembly of modular construction. Considering that the execution 

of smart contracts usually requires an exchange of real-world data, Lu et al. (2021a) 

proposed a smart construction object (SCO)-enabled blockchain oracle framework to 

guarantee data authenticity. SCO represents a robust IoT model with sensing, processing, 

and communicating capacities. Recently, the integration of IoT, BIM, and blockchain 

was further investigated by Wu et al. (2022d), in which sensors like RFID collected 

material or product information of prefabricated modules. The IoT system can help 

blockchain tackle the “first mile/last mile” problem of the blockchain (Zhong et al., 

2022). Additionally, the efficient integration of BIM and blockchain got increasing 

attention from the construction industry (Xue and Lu, 2020; Tao et al., 2022). 

2.4 Blockchain Adoption Barrier Analysis in Construction 

Despite the anticipated benefits of pilot cases, we have seen very few successful 

blockchain implementations in the construction industry. This paucity of practical 

applications indicates that most construction firms still hesitate to adopt blockchain 

technology. Blockchain adaption may face several resistances from various dimensions. 

For example, one significant challenge is to simultaneously satisfy the properties of 

“decentralization,” “security,” and “scalability” for current blockchain systems (Lee et 
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al., 2021a). Existing studies have employed different architectures in different 

applications, such as the Hyperledger Fabric (Wu et al., 2021b; 2022b) and Ethereum 

(Das et al., 2020, Elghaish et al., 2023). However, lacking technical standards has led to 

interoperability issues (Choi et al., 2020). In addition, the security of smart contracts is 

another critical factor that affects blockchain reputations (Li and Kassem, 2021). Wu et 

al. (2022b) suggested that smart contracts may not be suitable for high-complexity 

construction projects with unexpected possibilities, while Sheng et al. (2020) argue that 

blockchain adoption needs to consider scalability issues, referring to the ability of 

participants in the blockchain system to process and store a large number of transactions 

efficiently. 60% of business executives stated that implementing blockchain was more 

complicated than expected owing to scalability concerns (Pawczuk et al., 2018).  

 

Moreover, blockchain adoption may face resistance from organizations, as the 

technology has the potential to eliminate intermediaries and change how people work, 

which could lead to opposition from those resistant to change (Walsh et al., 2021). 

Additionally, the high financial costs of blockchain implementation, including 

development, deployment, and maintenance costs, can be a significant barrier (Zhang et 

al., 2023). However, limited attempts have been made to examine the cost-benefit of 

real-world blockchain projects (Yang et al., 2020a). Furthermore, there is a shortage of 

trained and skilled workers who can develop and maintain blockchain systems (Sheng 

et al., 2020). Regulatory ambiguity is also seen as an essential barrier that exacerbates 

stakeholders’ reluctance to use blockchains (Wu et al., 2021b). Given these challenges, 

construction firms may be hesitant to adopt blockchain technology, despite its potential 

benefits. Thus, it is crucial to investigate and analyze blockchain adoption barriers 
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systematically. 

 

Several works have aimed to systematically illustrate the barriers to adopting blockchain 

technology and examine their relationships. For example, Olawumi et al. (2020) used a 

system dynamics approach to illustrate the causal relationships between these barriers, 

although this analysis lacked data validation. Sadeghi et al. (2021) listed 32 barriers 

affecting the adoption of distributed ledger technology (DLT) across four levels (e.g., 

project, organization, market, and industry) and then used the ordinal priority technique 

to identify critical barriers. It is important to note that blockchain and DLT are not 

synonymous, as blockchain is a subset of DLT (Li and Kassem, 2021). Similarly, Xu et 

al. (2023) reviewed 11 barriers and identified key ones, but these barriers lack insightful 

examinations and theoretical foundations. Recently, Wang et al. (2022b) conducted an 

empirical analysis to illustrate how external factors affect construction practitioners’ 

intention to adopt blockchain technology. Li et al. (2022c) used the partial least squares 

structural equation model (PLS-SEM) to identify critical barriers and then adopted the 

fuzzy-set qualitative comparative analysis (fsQCA) to explore their synergistic effects. 

The game theory has also been used to investigate blockchain adoption decisions (Zhang 

et al., 2023; Ding et al., 2023). These studies greatly facilitate the understanding of 

blockchain adoption barriers. 

 

2.5 Chapter Summary 

This chapter reviews recent works related to the identified research problem respectively. 

Section 2.2 introduces research regarding robot applications in construction quality 
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management, while the following part (Section 2.3) describes recent progress related to 

blockchain studies in construction. Additionally, Section 2.4 introduces recent works 

discussing blockchain adoption barriers.  
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CHAPTER 3  A Reliable Interaction Method for 

Safe WRC in Construction2 

3.1 Introduction 

We state that even with the assistance of robots, the construction industry cannot 

currently be totally automated. Construction tasks are complicated, extremely nonlinear, 

and unpredictable, and construction environments are dynamic and unstructured. The 

ever-changing nature of on-site environments presents great challenges to robot-based 

automation. Human workers can quickly improvise a new plan to adapt to substantial 

variations in task or environment based on domain knowledge, historical experiences, 

and perceptions. Hence, worker-robot collaboration (WRC) applications will be a 

critical part of the construction process. WRC can integrate the robots’ advantages in 

strength and accuracy with human ability in intuitive decision-making and adaptability; 

thus, it can significantly reduce workers’ physical fatigue and avoid relevant quality 

errors. However, since robots and works share the same workplace, WRC requires a 

reliable interaction method to help workers control the robots and then avoid collision 

risks. 

 

 
2 This chapter is based on a published study and being reproduced with the permission of 

Elsevier. 

 

Wu, H, Li, H, Chi, H., Peng, Z, Chang, S, & Wu, Y. (2023). Thermal Image-based Hand Signal 

Recognition for Worker-Robot Collaboration in the Construction Industry: A Feasible Study. 

Advanced Engineering Informatics. 56, 101939. https://doi.org/10.1016/j.aei.2023.101939. 
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Vision-based hand gesture recognition (HGR) is a simple but effective solution for 

WRC interactions. Although vision based HGR methods have been proposed in various 

domains, they are not appropriate for on-site WRC due to the following challenges. First, 

existing methods mainly relied on 3-channel RGB inputs, and their effectiveness was 

greatly affected by environmental light conditions, such as darkness, fog, and mist 

(Zhang et al., 2018). Unlike manufacturing robots typically placed at stationary 

locations, construction robots in WRC work at complex, unstructured, and dynamic sites 

with different lighting conditions. For example, night construction without sufficient 

lights is typical in our industry. Previous RGB-based methods would fail to recognize 

workers’ hand signals in almost total darkness accurately. The depth modality, which 

stores the Euclidean distance between the sensor and points in the scene, was used to 

provide complementary information to RGB images. However, depth sensors only allow 

measurement ranges of a limited distance (e.g., 0.5-4.5m of Kinect V2), and depth 

images usually have much noise at the edge of objects. For example, the hand region on 

the depth map usually has holes and cracks (Qin et al., 2014). Moreover, it is challenging 

to ensure real-time performance due to the significant amount of point clouds generated 

by the depth sensor, especially for resource-constrained mobile construction robots.  

 

Second, WRC’s safety demand requires the algorithm to recognize hand gestures 

accurately and quickly on mobile construction robots with limited computational 

resources. Although many DNN models were developed for HGR, they usually strive 

for higher accuracy and ignore the computational efficiency (e.g., model size and 

inference speed). Existing models have heavy architectures and require high 

computational resources beyond the capabilities of many mobile applications (Maaz et 
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al., 2023). Thus, existing methods are challenging to be implemented in WRC scenarios. 

Although cloud computing enables the robot to offload most of the computational and 

storage works to the cloud (Du et al., 2017; Wang et al., 2022e), it may fail in WRC 

applications characterized by fast processing and quick response time. Specifically, 

cloud-based methods may incur low scalability, high latency, and bandwidth congestion 

due to the massive data transmission among numerous robots and the central cloud 

server. Construction projects (e.g., tunnels and bridges) may sometimes be located in 

undeveloped or rural areas with limited or no internet connectivity. 5G networks have 

not been implemented in some remote areas. Moreover, robots may experience 

downtime in cloud-based methods (Bello et al., 2021), leading to collision risks. Hence, 

it is necessary to design a lightweight algorithm for construction robots to recognize 

gestures with computing power. 

 

Against this backdrop, this chapter aims to develop a reliable method to support worker-

robot interactions in WRC based on the thermal modality. Unlike visible cameras that 

work in the visible light spectrum from 0.4µm to 0.7µm, thermal cameras capture the 

heat humans radiate (Civilibal et al., 2023). Hence, thermal images are not sensitive to 

background lighting since they do not require lighting. In addition, thermal images 

highlight only the warmer/colder objects and do not detect objects with many details 

(e.g., cloth colors). Hence, thermal images can not only protect privacy but also reduce 

the effect caused by complex backgrounds on construction sites. However, few studies 

have discussed the potential of thermal-based HGR in on-site WRC applications. The 

objectives of this research were twofold: (1) to investigate the benefits of the thermal 

modality based HGR in WRC applications, and (2) to propose an efficient and 
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lightweight deep learning model for on-site construction robots.  

 

The contributions of this research are presented as follows: 

• To the author’s best knowledge, this is one of the first attempts to explore the 

feasibility of thermal modality in on-site WRC applications. The safety 

performance of WRC could be significantly enhanced because the proposed 

method can get accurate results when lighting conditions are not satisfied, e.g., 

dim light and total darkness, which is an advantage over the typical RGB-based 

methods. 

• We developed a lightweight DL model using structural re-parameterization, 

which can achieve comparable accuracy and latency with fewer parameters, even 

in resource-constrained edge devices like mobile construction robots.  

• We developed a thermal dataset containing seven types of hand signals in WRC-

based bricklaying tasks, evaluated our method, and conducted a comparative 

study with advanced lightweight models. Experimental results indicate the 

superiority of our method in optimizing the trade-off between accuracy and 

latency. 

The remainder of this chapter is organized as follows. Firstly, this chapter reviews recent 

works related to vision based HGR (Section 3.2). Then, research methods are presented 

in Section 3.3, followed by the implementation and training details (Section 3.4). Section 

3.5 discusses contributions and limitations. Finally, Section 3.6 shows the summary and 

future works. 

3.2 Research Background 
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Several communication methods were proposed in existing works, including voice-

based methods (Nikolaidis et al., 2018), neurophysiological signal-based methods (Liu 

et al., 2021b), gesture-based methods (Wang and Zhu, 2021a), and so on. Among these 

approaches, hand gestures are considered natural and intuitive ways to interact with 

robots (Liu and Wang, 2018). Hand gestures are simple and effective; for instance, on-

site workers with different cultural backgrounds can easily communicate using hand 

signals (Bust et al., 2008). Consequently, hand gesture recognition emerges as one of 

the most effective communication methods for WRC. 

 

Existing studies on hand gesture recognition can be broadly categorized into two classes 

based on the input data type: (1) vision-based methods that detect hand signals from 

images (Mazhar et al., 2019); and (2) sensor-based methods that identify hand gestures 

using wearable sensors (Ovur et al., 2021; Wang et al., 2022a). Despite the excellent 

performance of sensor-based recognition, these methods are usually intrusive and 

inconvenient. Specifically, humans usually need to wear special sensing equipment like 

surface electromyography (sEMG) sensors (Ovur et al., 2021). Workers may reject these 

sensors in real-world applications. Instead, vision-based methods are more user-friendly. 

Therefore, this research adopts a vision-based hand gesture recognition (HGR) method, 

given its advantages in WRC scenarios. 

 

As shown in Figure 3.1, a brief review of previous works on vision based HGR was 

introduced from two aspects: (1) data inputs; and (2) processing algorithms. Regarding 

data inputs, existing studies can be primarily classified into two categories: (1) single-

modality methods, including RGB-based, depth (D)-based, skeleton-based, and thermal 
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(T)-based approaches; and (2) multi-modality methods, such as RGB+D fusion. While 

integrating multiple modalities may enhance performance, it also introduces training 

challenges and potential latency issues, particularly for resource-constrained mobile 

construction robots. Among single-modality methods, RGB and depth (RGB-D) data 

have been widely utilized in HGR. 

 

 

Figure 3.1. Classification of vision-based hand gesture recognition methods. 

 

The performance of RGB studies will greatly degrade when the light is insufficient, as 

shown in Figure 3.2(a). In contrast, RGB-D-based HGR has gained considerable 

attention due to the availability of affordable depth cameras (e.g., Microsoft Kinect, 

Leap Motion). RGB-D data exhibits robustness against illumination variations and 

contains valuable 3D structural information (Wang et al., 2018). Nevertheless, real-time 
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performance remains challenging due to the computational burden of processing 

massive point clouds generated by depth sensors, particularly for mobile construction 

robots with limited computational resources. Additionally, RGB-D introduces unwanted 

distractions from cluttered backgrounds, as exemplified in Figure 3.2(b). Moreover, 

depth data struggles to identify small objects accurately. 

 

 

Figure 3.2. Differences among RGB, RGB-D, and thermal images. 

 

Thermal imaging has recently got attention due to its ability to maintain high imaging 

quality even under poor illumination and occlusion conditions (Breland et al., 2021; 

Song et al., 2022a; Wang et al., 2023). For instance, Song et al. (2022a) leveraged the 

compensatory effect of thermal images on RGB images and curated an RGB-T dataset 

comprising images captured under diverse illumination conditions. Unlike visible 
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cameras that operate in the 0.4µm to 0.7µm visible light spectrum, thermal cameras 

capture images based on thermal radiations emitted by objects with temperatures above 

absolute zero. This characteristic makes thermal data suitable for human action 

recognition (Akula et al., 2018), salient object detection (Song et al., 2022a), and robotic 

scene understanding (Sun et al., 2021). However, limited research has explored thermal 

image based-HGR in the construction industry. 

 

In terms of data processing algorithms in HGR, previous works can be broadly 

categorized into two groups: (1) machine learning methods; and (2) deep learning 

methods. Conventional methods include feature extraction algorithms such as 

Histogram of Oriented Gradients (HOG) and classification techniques such as Support 

Vector Machine (SVM) and K-Nearest Neighbors (KNN). However, these methods are 

constrained by the extensive workload associated with feature engineering and lengthy 

training times. DL eliminates the need for manual feature extraction by leveraging 

neural networks and can achieve higher accuracy with large-scale data samples. For 

instance, convolutional neural networks (CNNs) and their variants have been widely 

employed in image-based safety monitoring, encompassing tasks such as non-hardhat 

detection (Fang et al., 2018) and fall risk detection from heights (Wu et al., 2021a). In 

the domain of WRC, Mazhar et al. (2019) proposed a transfer learning-based CNN 

approach to ensure robustness and background independence in hand gesture detection 

from RGB-D images. Adithya and Rajesh (2020) developed a deep CNN architecture 

for hand signal recognition. Avola et al. (2022) introduced a keypoint-based framework 

to estimate the 3D pose of a hand from an RGB image. In the construction industry, 

Wang and Zhu (2021a) conducted a feasibility study to explore the potential of hand 
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signals in construction WRC, followed by the proposal of a You-Only-Look-Once 

(YOLO) v3-based framework for interpreting signalmen’s hand gestures in tower crane 

operations (Wang and Zhu, 2021b).  

 

The above-discussed works highlight the significance of hand signal recognition in 

WRC, and while numerous image-based HGR approaches have been explored, they are 

not specifically tailored for WRC applications. Nonetheless, several challenges persist 

in on-site WRC scenarios. Firstly, existing methods predominantly rely on RGB images, 

which are sensitive to background lighting conditions. Construction sites are dynamic 

and characterized by various machinery, materials, and tools. Therefore, mobile 

construction robots must possess the capability to comprehend worker commands (e.g., 

move backward) while ensuring worker safety in diverse environments, including low-

light conditions during night construction or even completely dark environments. 

Consequently, the limitations of previous approaches prevent them from fulfilling such 

requirements. Thermal sensors present a promising solution to address these challenges, 

as they detect thermal radiation and provide temperature values represented in human-

readable colors. Unfortunately, thermal image based HGR has not been investigated by 

existing studies in the construction industry. Second, although deep CNNs (e.g., ResNet, 

ResNeXt) have been widely used in image classification tasks in the construction 

industry, these models have evolved towards deeper architectures and increased network 

layers to enhance feature extraction capabilities and achieve higher accuracy. However, 

such complex architectures (e.g., residual addition in ResNet) with a multitude of 

parameters impose substantial computational requirements on hardware resources, such 

as graphic processing units (Mehta et al., 2021). Consequently, deploying these models 
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on mobile construction robots with limited computational power is challenging. 

Previous DL models often incorporated intricate multi-branch architectures to optimize 

for accuracy while neglecting computational efficiency. As a result, they may not exhibit 

fast performance, particularly on edge devices. In actual WRC applications, it is crucial 

for the robot to recognize workers’ hand gestures accurately and rapidly (Maaz et al., 

2023). 

3.3 Research Method 

This study presented a feasibility study to explore thermal image potential in supporting 

worker-robot collaboration (WRC) applications in construction, which has not been 

introduced before in our research community. Figure 3.3 presents the workflow of this 

research. Relevant tasks are the hand signal design in WRC, thermal image capturing, 

recognition algorithm development, and implementation, which are introduced in the 

following sections. 

 

 

Figure 3.3. Workflow of the proposed methodology. 

3.3.1 Hand Gesture Design 

On-site construction tasks (e.g., bricklaying) can be conducted like WRC, where the 

worker plays the critical role of task planning and supervising while the robotic assistant 

performs relevant work. Notably, the robot was equipped with a mobile platform and a 

robotic arm because robotic arms can offer greater degrees of freedom and adaptability 
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to the complexities of construction tasks (Belousov et al., 2022; Liang et al., 2020). Such 

hardware architecture can support various construction tasks. As shown in Figure 3.4, 

the mobile bricklaying robot was required to understand the worker’s hand signals (e.g., 

stopping, leaving away, picking a brick) in the WRC-based bricklaying task even under 

extreme environments (e.g., cloudy, haze, dust, or poor lighting condition during the 

night construction). Hence, hand gestures should be pre-defined to represent different 

commands. That is, each of the categories of hand gestures was assigned a specific 

command related to robotic actions in a specific task. 

 

 

Figure 3.4. WRC-based bricklaying using hand gestures. 

 

Currently, gestures representing manipulation commands have two types: (1) gestures 

with common semantics. For example, the Code of Practice for Safe Use of Tower 

Cranes was issued in Hong Kong, where 25 types of hand gestures were introduced for 

tower crane operations. In this case, the users, e.g., tower crane signalmen and operators, 

should have to learn such gestures; and (2) self-defined gestures. That is, the user 

designs a gesture to trigger a predefined event. For example, Wang et al. (2020b) defined 

ten types of gestures to guide the movement of a quadruped robot, while Mazhar et al. 
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(2019) used nine letters/numbers taken from American Sign Language to communicate 

with robots. To date, there is a lack of discussions on gestures guiding construction robot 

actions. Giving the bricklaying task as the case, we designed seven types of gestures 

that represent different collaboration commands in WRC. The designed gestures (C1 to 

C7) and their semantics are illustrated in Figure 3.5. More specifically, we introduced 

three types of gestures for controlling the robot’s working status, including C1-starting 

and following the worker, C2-emergency stop, and C3-stopping and leaving away. In 

addition, we used four numbers taken from the Hong Kong sign language to represent 

manipulation commands in practical construction. Previous studies widely adopted 

these gestures (Mazhar et al., 2019; Sharma and Singh, 2021). Notably, the semantics 

of the designed gesture can be modified to accommodate the users’ operation habits in 

practical applications. The author also acknowledges that it could be beneficial to 

determine a unified gesture dictionary that defines various gestures and corresponding 

semantics for different WRC applications. Nevertheless, developing such a gesture 

dictionary or designing gestures for different construction tasks was out of the scope of 

this research. Instead, we investigated the feasibility of thermal data-based hand gesture 

recognition and designed a lightweight recognition algorithm. 

 



48  

 

Figure 3.5. Designed hand gestures to represent WRC commands. 

3.3.2 Thermal Image Capturing 

The advancement of thermographic imaging technologies enables hand signals to be 

visible in different conditions, such as poor illumination or severe weather (e.g., under 

fog). To the author’s best knowledge, seldom research in the construction domain has 

discussed thermal image-based hand gesture recognition. Hence, we created our own 

datasets using the commercial thermal imaging camera, termly, FLIR ONE PRO. Figure 

3.6 shows the FLIR ONE PRO-based thermal image-capturing equipment. This 

equipment has a sensitivity that detects temperature differences down to 70 mK. The 

sensing temperature range of FLIR ONE PRO is between −20℃ to 120℃, while its 

operating temperature is from 0℃ to 35℃. Notably, thermal cameras are different from 

Near-Infra-Red cameras. The latter uses short-wavelength infrared light to illuminate an 

interesting area, while the thermal camera use mid- or long-wavelength energy and only 

sense differences in heat. The author also admits there are numerous types of thermal 
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cameras that have higher resolution performance; however, such equipment is usually 

expensive. Instead, FLIR ONE PRO is cheap (around HKD 3200), and it is convenient 

to use since it can be combined with smartphones. 

 

 

Figure 3.6. FLIR ONE PRO-based thermal image collection. 

 

Ten volunteers (7 males and 3 females) were recruited from the Hong Kong Polytechnic 

University to develop the thermal image dataset in the indoor environment. The thermal 

camera was set in front of the subject at a short distance (e.g., around 1m). The author 

admits that the imaging distance may be longer in real applications. Notably, the focus 

of this research is to test the feasibility of thermal images in hand signal recognition. 

Moreover, the thermal radiation attenuation can be ignored in such a short distance, 

while it should be considered in long imaging distances. Subjects were required to 

perform pre-designed hand gestures. Static thermal images of hand signals were 

collected. Notably, the FLIR ONE PRO camera provides five types of color maps: iron, 

gray, rainbow, saturation, and blue-red blended. In this research, we collected both 
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grayscale and iron color images for each gesture to double the size of the dataset 

(Breland et al., 2021). Figure 3.7 describes gesture examples of thermal images collected 

by the FLIR ONE PRO. 

 

Figure 3.7.Gesture examples of collected thermal images. 

3.3.3 A Lightweight Model Recognizing Thermal Hand Gestures 

In this research, we proposed a lightweight and efficient deep learning model to help 

construction robots recognize hand signals from thermal images, which was termed as 

ThermalNet. The main goal is to optimize the trade-off between accuracy and speed in 

robots with limited computation resources.  

 

We first designed a computationally efficient network in ThermalNet, which consists of 

a 3×3 convolution (Conv) layer, a rectified linear unit (ReLU) layer, and a 1×1 Conv 

(Wang et al., 2022c). Moreover, we adopted the structural re-parameterization technique 

to improve accuracy since the plain model is challenging to reach a comparable level of 
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accuracy performance as the complicated models. Structural re-parameterization aims 

to modify the structure of CNNs to reduce the number of model parameters and required 

computational resources while preserving the accuracy of the network. Several re-

parameterization methods were proposed, including network pruning, network 

compression, network expansion, and so on. We adopted the re-parameterization 

technique proposed by Ding et al. (2021) because it has been shown to result in 

improved accuracy and is memory economical. Specifically, the main principle is to 

design a multi-branch architecture for training and a plain architecture for inference and 

then merge the multi-branch into a single network for inference via parameter 

transformation. As shown in Figure 3.8, we added a parallel 1×1 Conv branch to enrich 

the feature space and added batch normalization (BN) operations in the training block. 

Within the simple algebra, parameters in the training block can be transformed into the 

inference block. Hence, the re-parameterization operation can lead to improved 

accuracy while reducing the computational cost and memory footprint, which makes the 

ThermalNet more practical to be deployed on construction robots and meet the high 

accuracy and low latency demands in WRC applications. 
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Figure 3.8. The overall architecture of the proposed ThermalNet. 

 

As shown in Figure 3.8, collected iron and gray images were transferred to 3-channel 

gray images in ThermalNet since the hand shape is more important than the color in our 

classification tasks. These images with a resolution of 224×224 were firstly changed to 

images with the 112×112 resolution using the down-sampling module, followed by four 

stages with the same architecture. Each stage starts at the down-sampling module, 

followed by several blocks. Specifically, the inference block used the proposed 

architecture that contains the 3×3 Conv layer, ReLu, and the 1×1 Conv layer. A residual 

connection was also employed to improve network stability in the inference block. As 

shown in Figure 3.6, these two branches are integrated together by summing before the 

ReLU layer. The training block can be represented in Eq.(3.1), where x is the input and 

y is the output. Conv11 and Conv33 represents the 1×1 Conv and 3×3 Conv respectively. 

 

11(ReLU(BN(Conv33( ) BN( 11( )))))y x Conv x Conv x= + +                (3.1) 

The 3×3 Conv can be represented in Eq.(3.2), in which i and j refer to the coordinate 
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number of elements in feature maps respectively. C is the channel number of feature 

maps. Similarly, the 1×1 Conv was expressed with Eq.(3.3). 
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As to the parameter transformation process, weights of 1×1 Conv can be transferred into 

3×3 Conv by zero-padding positions of -1i  or -1j . That is, we add the 1×1 kernels 

onto the central point of 3×3 kernel and make other positions of the 3×3 Conv kernel to 

be zero. The parameter transformation process was represented as follows: 
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Hence, we combine the 3×3 Conv with 1×1 Conv during the inference process, which 

can be represented by Eq.(3-5) and Eq.(3.6). In this way, the proposed method can utilize 

multiple branches in training to enhance the accuracy and ensure the low latency 

requirement by merging multiple branches into the plain architecture during the 

inference. 
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11(ReLU( 33( )))y x Conv Conv x= +                                           (3.7) 

 

Finally, the global average pooling (GAP) layer was used to generate the feature map, 

followed by the linear layer as the head for the classification task. Table 3.1 introduces 

the description of ThermalNet network with respect to stages, layers, feature size, 

channel, expand size, and blocks, where k represents kernels and s represents stride. 

 

Table 3.1. ThermalNet architecture specification. 

Stages Layer 

Feature 

size 

Channel 

Expand 

size 

# Blocks 

Downsampling Conv k=3 s=2 112×112 8   

Stage 1 

Downsampling 

56×56 16 

  

Block 4 2 

Stage 2 

Downsampling 

28×28 32 

  

Block 4 2 

Stage 3 

Downsampling 

14×14 64 

  

Block 4 2 

Stage 4 

Downsampling 

7×7 128 

  

Block 4 2 

GAP  1×1 128   

 

3.4 Implementation and Experimental Results 

3.4.1 Implementation and Training Details 
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The training and validation process of the recognition algorithms was implemented on 

an Ubuntu Linux 64-bit operating system. The proposed and benchmark models were 

coded in Python 3.7 environment with the support of the PyTorch framework and 

PyCharm IDE. The hardware configuration was listed as follows: an Intel 9700 CPU, 

32 G memory, and a single NVIDIA GeForce RTX 3090 GPU. 

 

We hired ten volunteers to develop our own dataset in the classification experiment. The 

dataset contains thermal hand gestures in different environments and different lighting 

conditions. As shown in Figure 3.9, thermal images are robust to poor illuminations and 

complex backgrounds (e.g., different objects). In particular, the thermal camera can still 

collect human gestures in complete darkness. Moreover, several data augment steps 

were also used in this study, including gray scaling, flipping, sharpening, and 

RandAugment (Cubuk et al., 2020). Finally, a total of 19,418 thermal images were 

collected in the database, in which each person provides images for each gesture under 

different environment backgrounds, hand orientations, and illumination conditions (e.g., 

normal lighting, low lighting, complete darkness). 
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Figure 3.9. An example of collected thermal images in different conditions. 

 

The thermal dataset was divided into the training subset and the test subset. Specifically, 

images collected from 7 subjects were used as the training data, while images from the 

other three subjects were used as the test dataset. Some unsatisfied images were removed. 

Finally, Table 3.2 summarizes the number of samples for each hand signal class in the 

train and test dataset. Such a strategy can test the generalization ability of the trained 

model since different people have different body temperatures that may lead to different 

characteristics in collected thermal data. 
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Table 3.2. Images of each class in the train and test datasets. 

Hand signal 

class 

Train dataset Test dataset 

C1 3382 180 

C2 2689 180 

C3 3557 180 

C4 2354 180 

C5 2426 180 

C6 2585 180 

C7 2425 180 

All 19418 1260 

 

During the training process, the learning rate and the batch size are initially set as 0.01 

and 256, respectively. Step decay was used as the learning rate scheduler, which drops 

the learning rate by 0.1 every 30 epochs. Stochastic gradient descent (SGD) with a 

Nesterov momentum of 0.9 and weight decay of 1e-4 is employed as the optimizer. 

Figure 3.10 shows the loss reduction along with the training progress. The training for 

ThermalNet was completed after 90 epochs. 
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Figure 3.10. The loss reduction along with the training progress. 

3.4.2 Experimental Results 

The proposed lightweight achieves an average classification accuracy of 97.54% on the 

test dataset. Figure 3.11 presents the confusion matrix of the proposed model. As shown 

in Figure 3.11, the ThermalNet obtained the highest accuracy (100%) on the hand signal 

of C1 (Starting and following the worker) and C2 (Emergency stop) and got 98% 

accuracy on gestures of C3 (Stopping and leaving away) and C7 (Delivering the tool). 

The lowest classification accuracy of the ThermalNet is 94% on the gesture of C3 

(Holding the tool). 
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Figure 3.11. Confusion matrix of the proposed ThermalNet. 

 

Moreover, we created heat maps for producing visual explanations of the ThermalNet 

based on the gradient-weighted class activation mapping technique (Selvaraju et al., 

2017). Heat maps help us to know what regions of an image are important to the trained 

network. As shown in Figure 3.12, the ThermalNet model focused on figure shapes 

during the hand gesture classifying task. This is consistent with the human perception 

logic. 
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Figure 3.12. Heat map of the proposed ThermalNet. 

 

There were also some inadequacies in the experiment. As shown in Figure 3.13(a), the 

gesture of C1 was recognized as C2 due to the challenging viewpoints. The shape of the 

gesture may also affect the result accuracy. For instance, the gesture of C3 was 

recognized as C7 in Figure 3.13(b). Similarly, the gesture of C6 was wrongly classified 

as C5 and C7 in Figure 3.13(c) and (d). These failures can be attributed to the following 

causes: (1) the lightweight backbone has a smaller number of parameters; therefore, the 

calculation and extraction of features may be insufficient; (2) the same gesture may have 

different characteristics at different imaging orientations. For example, imaging 

viewpoints in Figure 3.13(a) affected the classification accuracy. 

 

 

Figure 3.13. Bad cases of the ThermalNet in hand gesture classification. 
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3.4.3 Comparative Studies 

An ablation study was conducted to evaluate the effectiveness of the re-parameterization 

technique. Specifically, comparison among the ThermalNet and its counterpart (without 

the re-parameterization). Table 3.3 presents the results in terms of the Top 1 accuracy 

among these two networks on ImageNet and our own dataset. As indicated in Table 3.3, 

results show that the ThermalNet (with the re-parameterization) obtains higher accuracy 

on these two datasets than its counterpart, which validates the effectiveness of the re-

parameterization. 

 

Table 3.3. Ablation study result in terms of Top 1 accuracy. 

Method 

Top 1 accuracy on 

ImageNet 

Top 1 accuracy on 

our dataset 

ThermalNet 

With the re-

parameterization 

46.25% 97.54% 

Without the re-

parameterization 

45.57% 96.43% 

 

Furthermore, we compared our model with state-of-the-art lightweight models to further 

demonstrate the performance of the proposed model. Currently, MobileNet and 

ShuffleNet are the most lightweight architectures in mobile applications, including 

MobileNetV2 (Sandler et al., 2018), MobileNetV3 (Howard et al., 2019), and 

ShuffleNetV2 (Ma et al., 2018b). Specifically, MobileNetV1 and MobileNetV2 used 

depth-wise separable convolutions to reduce the needed number of operations and 

memory. Similarly, ShuffleNetV2 utilized group convolution and channel shuffle 
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operation to reduce parameters. These structures are designed by human experts, while 

MobileNetV3 adopted the network architecture search method to automatically design 

the network architecture (Howard et al., 2019). Hence, these three prevailing models 

were considered due to their excellent performance on the accuracy and latency in 

mobile applications. All these benchmark methods were trained and tested with the same 

dataset in the proposed model. Three types of metrics were used to compare the 

performance of the proposed model with current prevailing lightweight models, termly, 

Top1 accuracy, latency, and parameters. Notably, we tested the latency performance in 

two devices, termly, the NVIDIA GeForce RTX 3090 GPU and Raspberry Pi 3 Model 

B+, because mobile construction robots usually have computational limits in real-world 

applications. Additionally, the proposed ThermalNet used the structural re-

parameterization method and has different architectures in the training and inference 

model. In real-world applications, we considered the performance of the inference 

model.  

 

Table 3.4 demonstrates the accuracy and parameters of the proposed ThermalNet with 

other models. As shown in Table 3.4, our model has fewer parameters (1.8 million), 

higher accuracy (97.54%), and minimum latency (7.98ms in GPU and 72.31ms in 

Raspberry Pi). The comparative results demonstrate the supervisory of the proposed 

ThermalNet to state-of-art lightweight models. Specifically, our model achieved the 

highest accuracy with the lowest latency in HGR. Hence, our model can facilitate the 

safety performance of real-world WRC applications by optimizing the trade-off between 

accuracy and latency, achieving low-latency classification even in mobile platforms 

with limited computational resources. 
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Table 3.4. Comparative results on accuracy, latency, and parameters. 

Methods Parameters/M 

Top 1 

Accuracy 

NVIDIA 

3090 

Raspberry 

Pi 

MobileNetV2 2.3M 95.87% 8.50ms 119.06ms 

MobileNetV3 4.2M 95.95% 12.40ms 88.87ms 

ShuffleNetV2 1.3M 97.06% 11.98ms 86.52ms 

ThermalNet 

(Training) 

2.0M 97.54% 8.53ms 95.77ms 

ThermalNet 

(Inference) 

1.8M↓ 97.54%↑ 7.98ms↓ 72.31ms↓ 

3.5 Discussion 

In this research, we proposed robust hand gesture recognition methods for on-site WRC 

applications using the thermal image. A lightweight model was designed to detect hand 

signals with high accuracy and speed on resource-constrained mobile platforms, e.g., 

the mobile robot. Experimental results demonstrate the feasibility and superiority of the 

proposed method. 

3.5.1 Contributions 

This research has several theoretical contributions. First, this could be one of the first 

studies that discuss workers’ intentions in WRC by recognizing hand signals from 

thermal images. A new imperative objective for real-world WRC is to assure the safety 

of human co-workers even in extreme environments (e.g., cloudy, dusty, poor lighting) 

as construction robots are gradually adopted to job sites to work with humans. Our 
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attempts can provide a robust method to obtain workers’ commands and then enhance 

the safety performance in real WRC applications. For example, even in completely dark 

conditions, the robot can avoid potential safety issues (e.g., collisions) by robustly 

understanding worker hand signals (e.g., stopping). 

 

Second, the designed ThermalNet model provides a lightweight and efficient algorithm 

for construction stakeholders to implement in real-world applications. Most existing 

studies focused on enhancing the accuracy performance, making the network 

architecture deeper and more sophisticated. These works neglected the computational 

efficiency that is important to operate on low-powered mobile devices. High latency 

was not allowed in actual WRC applications in the perspective of guaranteeing workers’ 

safety. Our proposed model utilized the structural re-parameter method to enhance the 

accuracy performance and reduce the latency. Experimental results indicate that our 

inference model only has 1.8M and achieves 97.54% accuracy with a latency of 7.98ms 

on GPU and 72.31ms on Raspberry Pi. The comparative study demonstrates the 

superiority of the proposed model to state-of-the-art lightweight models. 

3.5.2 Limitations 

This research also has some limitations. First, the proposed method was designed to 

recognize static gestures because the main aim of this research is to test the feasibility 

of thermal image-based hand gesture recognition. In real-world applications, workers’ 

hand signals may exist for several seconds, which are termed dynamic gestures. 

Compared with static gestures, dynamic gestures are closer to human expression habits. 

For the recognition of dynamic gestures, not only hand postures and shapes but also 
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spatial displacement and spatiotemporal correlation should be considered. Future studies 

can design methods to recognize consecutive gestures from thermal videos. Moreover, 

we only designed 7 simple gestures in this research. Future studies can investigate how 

to design natural gestures as well as corresponding semantics for different WRC tasks. 

 

Second, experiments are conducted in the laboratory environment to test the feasibility. 

The proposed methods may meet some technical difficulties in practical construction 

sites. For example, thermal radiation may reduce significantly under the long imaging 

distance or traversing obstacles such as glass and foil. Moreover, it is challenging to 

recognize accurate signals when there are other workers. Although thermal images are 

resistant to environmental disturbances, they usually have low resolution and poor 

texture, lack visual color patterns, and have blurry contours. The fusion of RGB and 

thermal data could be a possible solution to tackle this limitation. 

 

Third, this research limits our research scope to the hand signal understanding that acts 

as the first step in WRC applications, neglecting the robotic execution and control. 

Future studies combine our method with robotic execution modules to further test the 

feasibility of the proposed thermal-based method and the ThermalNet in real-world 

WRC experiments. 

3.6 Chapter Summery 

This chapter reports a novel framework for on-site WRC applications that integrates 

thermal imaging information to achieve robust hand gesture recognition even in 

challenging environments (e.g., dim light). Specifically, seven classes of hand gestures 
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are designed to represent normal instructions of workers. A thermal dataset is developed 

under different lighting conditions. Additionally, a lightweight model for resource-

constrained mobile construction robots is designed in this chapter. Experimental results 

demonstrate that thermal-based solutions can still capture human hand signals in 

complete darkness, while the developed model can achieve higher accuracy with fewer 

parameters. Notably, the comparative study indicated the superiority of our model on 

the accuracy, latency, and model size over the widely used lightweight algorithms, 

termly, MobileNetV2, ShuffleNetV2, and MobileNetV3. 
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CHAPTER 4  Multi-robot Collaborated QDI 

Using A Hierarchical Federated Learning (FL) 

Method 

4.1 Introduction 

Robotics is seen as a promising paradigm for bypassing human unpredictability and 

inability in quality defect inspection (QDI) tasks. Specifically, robots can extend the 

reach of human inspectors to confined and risky spaces, such as bridge decks, while 

protecting them from associated safety risks (Tian et al., 2022). For example, remotely 

operated vehicles were used to collect underwater cracks in dams (Li et al., 2022b), and 

quadruped robots are suitable for data collection tasks in construction environments 

(Halder et al., 2023). These robots, integrated with powerful deep learning (DL) 

algorithms, should have the mobility ability to perform quality inspection in specific 

areas and extract potential defects from the raw data.  

 

However, due to data leakage and privacy concerns, quality defect data usually exists as 

isolated “data islands” and cannot be utilized to support the training of DL networks for 

robotic devices. Some studies used the transfer learning (TL) technique to reduce the 

dependency on vast amounts of training data (Dais et al., 2021; Hou et al., 2020). 

However, the performance of TL is usually limited due to the significant difference 

between the prevailing image dataset (ImageNet) and quality defect images. Moreover, 

different types of projects may have different defect types. Even with the same defect, 
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different projects may have different characteristics. For example, cracks in the dataset 

of (Chun et al., 2021) are transverse and cross cracks with rough backgrounds and holes, 

while the crack data in (Xu et al., 2019) contains linear and alligator cracks with a clean 

background. Previous DL models adopting the centralized training strategy may suffer 

from the generalization problem in practical applications, especially in a data-scarce 

environment.  

 

Against this backdrop, this chapter introduces a hierarchical FL framework for QDI, 

which allows various construction robots from different projects collaboratively train 

the DL model via parameter aggregation instead of dataset aggregation. The proposed 

method allows robots to utilize the power of big data while preventing potential data 

security and leakage risks. Three objectives are designed accordingly: (1) to design a 

three-fold federated learning (FL) framework for construction robot-enabled QDI; (2) 

to develop a lightweight model for federated training at robot devices; and (3) to test 

and validate the feasibility of the proposed framework within the case of image-based 

crack segmentation. 

 

The remainder of this chapter is organized as follows: Section 4.2 introduces the recent 

works of deep learning-based defect detection and describes basic knowledge of FL. 

Section 4.3 presents the proposed hierarchical FL framework, followed by the 

implementation details with a case study (Section 4.4). Section 4.5 shows experimental 

results, while section 4.6 highlights the differences between this research and previous 

works to showcase its novelty and discusses its limitations. Section 4.7 summarizes this 

chapter and outlines future research directions. 
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Two challenges must be considered when developing a construction robot-enabled 

quality inspection system. First, current deep learning (DL) models tend to develop 

deeper and more sophisticated networks in pursuit of ever-increasing accuracy (Li et al., 

2022b). These models with heavy architectures and massive parameters require high 

computational resources on hardware (e.g., graphics processing units). However, mobile 

construction robots usually have limited computational resources and cannot efficiently 

(low latency) execute the defect recognition task (Wu et al., 2023a). 

4.2 Research Background 

4.2.1 Prevailing Deep Learning Algorithms for QDI 

The breakthrough of deep learning (DL) algorithms enables robots to automatically 

extract defects from the raw data. Different types of sensors were used in defect 

detection, such as ground-penetrating radar (Zhang et al., 2022), laser scanning (Guo et 

al., 2020), and visual cameras (Ma et al., 2021). Among these modalities, visual images 

are widely used in defect detection, including cracks (Ai et al., 2023; Dung and Anh, 

2019), leakage (Li et al., 2021b), and steel damage (Kim et al., 2021b). Hence, this 

section reviews the prevailing DL algorithms for image-based crack detection. 

 

Convolutional neural networks (CNNs) have significantly improved the performance of 

several computer vision tasks, including defect recognition, detection, and segmentation 

(Zhong et al., 2019). CNN architectures typically consist of several blocks and a linear 

layer, with each block containing a conventional layer, an activation layer, and a pooling 

layer. For example, Cha et al. (2017) developed a CNN-based classifier to detect 

concrete cracks from images, achieving an accuracy of 98%. Faster Region-based CNN 
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(Fast R-CNN) was proposed to enhance the accuracy of R-CNN, and Faster R-CNN was 

developed further to improve the accuracy performance of Fast R-CNN by introducing 

the region proposal network (RPN) to generate object proposals. Cha et al. (2018) 

utilized the Faster R-CNN method to detect concrete cracks and steel corrosion. Kong 

et al. (2021) used dual-scale CNN to detect cracks from images and match the same 

cracks according to measured crack parameters. Some other studies used the transfer 

learning strategy to enhance training efficiency and accuracy (Li et al., 2022b; Savino 

and Tondolo, 2021). 

 

Previous works mainly focused on detecting cracks from images. However, engineering 

practices require crack features such as length, width, and branches. Hence, recent works 

have focused on pixel-wise crack segmentation (Hsieh and Tsai, 2020). For example, 

encoder-decoder fully convolutional networks (FCNs) were widely used to measure 

diverse cracks at the pixel level (Dung and Anh, 2019). FCN uses the same feature 

extraction backbone as traditional CNN models, but the fully connected layers are 

replaced with fully convolutional layers to provide a spatial map for each class. VGG16, 

VGG19, and ResNet50 were frequently used as backbone networks. U-Net was another 

prevailing segmentation network in which the encoder extracts features by convolution 

and pooling operations, and the decoder repairs the detailed features by multi-scale 

feature fusion, up-sampling, etc. (Liu et al., 2019). To further enhance the segmentation 

performance of tiny cracks, Chu et al. (2022) introduced a dual attention module to 

separate the tiny cracks from the background. Recently, the Transformer architecture 

obtained excellent results on computer vision applications since it can capture global 

semantic information. For example, Shamsabadi et al. (2022) employed the vision 
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transformer(ViT) framework in the crack detection task. Wang and Su (2022) proposed 

a crack segmentation algorithm that use a hierarchical Transformer as the encoder and 

a top-down pathway with lateral connections as the decoder. Zhou et al. (2023) 

integrated Swin Transformer and CNN in tunnel lining crack identification. In summary, 

numerous DL models were proposed for crack detection and segmentation, which 

achieved outstanding accuracy performance.  

4.2.2 FL Knowledge and Related Works in the Construction Industry 

Federated learning (FL) is a trendy technology that alleviates the constraints of data 

availability and data privacy, fully discovering and amplifying the big data’s value 

(McMahan et al., 2017). FL is first proposed by Google (Konečný et al., 2016), and it 

provides a promising method to collaboratively train the model without averaging data 

(Banabilah et al., 2022). Figure 4.1 introduces training procedures of the cloud-based 

FL, including three steps: (1) local model calculation, (2) model aggregation, and (3) 

model update. Specifically, the central server sends a global machine learning model to 

all connected devices as the initial model. Then, each client trains the initial model with 

the local data. Once the local model is trained, the updated parameters of each model 

will be sent to the central server for aggregation and updating of the global model. A 

training round of FL is completed when the global model is updated. The training will 

end when the model achieves a certain desired performance. 
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Figure 4.1. Cloud-client FL and its training procedure. 

 

FL procedures can protect users’ privacy, which has been widely used in scenarios 

involving confidential data (Li et al., 2020). The construction industry also involves 

private data, such as neurophysiological signals (Xing et al., 2020), facial features, and 

workers’ body postures (Yu et al., 2019). Construction quality defect is also private 

information, and stakeholders may refuse to share the defect data. In this case, FL 

enables construction robots from different projects to collaboratively train the quality 

defect detection/segmentation model without data aggregation. However, very few 

attempts have been made to explore FL potential in the construction domain.  

 

Li et al. (2021a) first used FL to monitor workers’ safety and health without generating 

data privacy concerns. Then, considering that finding a robust central server may be 

difficult, the author combined the blockchain with FL, in which parameters were 

aggregated in a peer-to-peer network (Li et al., 2023). These two works provide 
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insightful findings and can inspire more discussions on FL-based construction 

applications. Unfortunately, existing works adopt the typical server-client architecture, 

in which the communication between clients and the cloud server is very slow, 

especially when there are vast amounts of clients involved in the FL system (Liu et al., 

2020b). Some studies proposed edge-based FL methods in which a server was placed at 

the proximate edge to avoid network congestion issues and reduce latency (Wang et al., 

2019a; Wang et al., 2022d). However, edge-based FL has a limited number of clients 

and cannot provide the massive datasets needed for a high-performance deep learning 

model. Hence, this study proposes a hierarchical FL framework to help construction 

robots train the defect detection model collaboratively. 

4.3 Proposed Framework 

This study considers a construction robot enabled quality inspection system consisting 

of a cloud server, I edge servers deployed at different construction projects, and J on-

site construction robots (shown in Figure 4.2). Giving a specific task, e.g., crack 

segmentation from images, we aim to train a deep learning (DL) model with the 

abundant data  collected by all robots in I 

construction projects. Traditional methods need to put all data together to train the model 

in a centralized manner, suffering from data privacy and security concerns. Thus, we 

propose a three-fold hierarchical FL framework to help multi-construction robots 

collaboratively train the DL model without compromising user data privacy via 

leveraging the merits of federated learning (FL) and edge computing. The FL training 

details, as well as the proposed DL model, were introduced in the following sections. 

( )11 12 1 1 2, ,..., ,..., , ,...,j i i ijD D D D D D
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Figure 4.2. Hierarchical FL framework for multi-robot based QDI. 

4.3.1 Cloud-Edge-Robot FL Process 

As shown in Figure 4.3, the proposed hierarchical FL method contains three stages: (1) 

Construction robot initialization; (2) edge FL; and (3) cloud FL. 

 

 

Figure 4.3. Cloud-Edge-Robot FL process. 
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Details of these three stages were introduced as follows: 

• Stage 1: Construction Robot Initialization. In a standard FL scenario, the central 

server broadcasts a randomly initialized model to each client. However, the random 

initialization strategy usually led to slow convergence. In this research, we adopted 

the transfer learning strategy to avoid the above issue. Specifically, the 

aforementioned randomly initialized model (e.g., W11) can be set by the pretrained 

model of one of the robot devices (e.g., R11) which would be transported to the cloud 

server and the other robot devices (e.g., R12 … , R1j) within the same project via its 

connected edge server (e.g., E1). The cloud server will further send W11 to all robotic 

devices (e.g., R21, … , R2j , …, Ri1, …, R ij ) via their correspondingly connected edge 

servers (e.g., E2, E3, …., Ei) to initialize their local model. Finally, all having been 

initialized robots will update their local model  based on the local dataset. 

 

• Stage 2: Edge Federated Learning. Edge server (Ei) gets its local model by 

aggregating model parameters of the corresponding set of robotic clients (e.g., Ri1, 

Ri2, … , R ij), and then broadcasts the updated model to all connected robots through 

wireless communication. With a few rounds of parameters exchange, the edge server 

develops an edge local DL model that has good performance of quality defects in 

the local project. The federated averaging algorithm (FedAvg) was used to update 

the edge local model in each round, which combines local stochastic gradient descent 

(SGD) on each robotic client with the edge server that performs iterative model 

averaging (McMahan et al., 2017). The model aggregation process in edge servers 

can be represented in Eq. (4.1), in which Ji represents the number of connected robots 

,t ij
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of the edge server. Loss of each client’s model are monitored at the end of each 

round. 

                                             (4.1) 

 

• Stage 3: Cloud Federated Learning. The cloud server obtains the global model by 

aggregating model parameters still based on FedAvg policy from all connected edge 

servers, which can be represented by following Eq. (4.2), where 𝐼 means the total 

number of edge servers connected to the cloud server. 

                                            (4.2) 

 

Additionally, Algorithm 1 depicts the holistic mechanism of the proposed hierarchical 

FL, in which different construction robots train the model for quality defect detection 

with the coordination of edge servers and a cloud server by leveraging FL. 
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4.3.2 Crack Segmentation Network Design 

This section shows a lightweight crack segmentation model termed CrackNet. The 

principle of the CrackNet design is to significantly reduce network parameters and 

inference time without compromising accuracy, aiming for reduce the communication 

cost of the federated training process. Figure 4.4 describes the architecture of the 

proposed crack segmentation network. Specifically, we built our model based on the 

bilateral segmentation network (BiSeNetV2) (Yu et al., 2021). BiSeNetV2 can optimize 

the trade-off between the accuracy and inference speed by treating spatial details and 

categorical semantics separately with two branches: (1) the Detail Branch (DB), and (2) 

the Semantic Branch (SB). To further reduce the model size, we replace the DB with 
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the Landmark Branch (LB). The design principle of LB is to extract salient features or 

landmark features of crack images though using max pooling (kernel=2, stride=2) and 

convolutional (Conv) operations, which consists of the human perception process. 

Specifically, human experts mainly concentrate on salient features (e.g., crack sizes, 

types, colors) in visual inspections.  

 

 

Figure 4.4. Architecture of the proposed CrackNet for crack segmentation. 

 

The instantiation of the proposed crack segmentation network is introduced in Table 4.1. 

The instantiation of the LB contains three stages, and each stage contains the MaxPool2d 

and Conv2d operations. Each stage has numerous operations that contain a kernel size 

k, stride s and output channels c, repeated times r. e is the expansion factor for expanding 

the channel number of the operation. The SB was used to obtain the large receptive field, 

including the Stem blocks, gather-and-expansion (GE) layers, and the context 

embedding (CE) layer. Details of SB components as well as the aggregation layer can 

be found in (Yu et al., 2021). 
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Table 4.1. Instantiation detail of the proposed crack segmentation network. 

Stage 

Landmark Branch Semantic Branch Output 

operations k c s r operations k c e s r  

Input - - - - - - - - - - -  

S1 

MaxPool 2 3 2 1 

Stem 3 16 - 4 1 

 

Conv 1 32 1 1  

S2 

MaxPool 2 32 2 1  

Conv 1 64 1 1  

S3 

MaxPool 2 64 2 1 GE 3 32 6 2 1  

Conv 1 128 1 1 GE 3 32 6 1 1  

S4 - 

GE 3 64 6 2 1  

GE 3 64 6 1 1  

S5 - 

GE 3 128 6 2 1  

GE 3 128 6 1 3  

CE 3 128 - 1 1  

 

4.4 Implementation with the Case of Crack Segmentation 

4.4.1 Crack Dataset Development 

We used seven open-access crack datasets for testing the feasibility of the hierarchical 

federated learning (FL) framework. These datasets include crack images from civil 

engineering projects, such as bridges, concrete walls, pavements, and tunnels, and have 

320 320
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80 80
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pixel-wise annotations (segmentation masks) for each image. Table 4.2 presents detailed 

information on used open-access crack datasets. 

 

Table 4.2. Open-access crack segmentation datasets used in this research. 

Dataset Reference Building type Size 

3_Ren Ren et al. (2020) Tunnels 

919 images with 512 × 

512 pixels  

5_Yang 

Yang et al. 

(2018) 

Pavements and walls 

776 images with different 

pixels 

DeepCrack Liu et al. (2019b) 

Asphalt and concrete 

buildings 

443 images with 544 × 

384 pixels 

Sylvie 

Amhaz et al. 

(2016) 

Pavements 

157 images with 256 × 

256 pixels 

Eugen 

Yang et al. 

(2020b) 

Asphalt walls 

47 images with different 

pixels 

Volker Walls 

842 images with different 

pixels 

Forest Shi et al. (2016) Pavements 

90 images with different 

pixels 

 

In order to demonstrate the proposed FL method, we assume that there are seven 

construction robot clients, three edge servers, and one cloud server. Table 4.3 introduces 

the data allocation among the seven clients. Crack data within each client is similar; 

however, no client can be representative of all datasets. Such non-Independently 
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Identically Distribution (IID) and unbalanced data distribution are consistent with QDI 

practices because different building projects are likely to suffer different types of crack 

defects. For example, there are micro-cracks and linear cracks in Ren et al. (2020), while 

cracks in Yang et al. (2020b) tend to be horizontal, longitudinal, and crocodile ones. 

Implementation details are presented in the following section. 

 

Table 4.3. Data allocation in the FL experiment. 

Edge server Robotic clients Dataset Training Samples Testing Samples 

Edge #1 

#1 3_Ren 735 images 184 images 

#2 5_Yang 622 images 154 images 

Edge #2 

#3 DeepCrack 370 images 73 images 

#5 Eugen 40 images 7 images 

#7 Forest 84 images 16 images 

Edge #3 

#4 Sylvie 131 images 26 images 

#6 Volker 702 images 140 images 

 

4.4.2 Implementation Setting and Training Details 

The experimental environment was conducted in Ubuntu 20.04.1 system. The 

configurations of the computing machine and development tools are presented in Table 

4.4. 
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Table 4.4. Experimental configurations of this research. 

Configurations Specifications 

CPU AMD Ryzen 9 3900X 12-Core Processor 

GPU NVIDIA GeForce 3090 

RAM Kingston 32G 

Deep learning framework PyTorch @ 1.13.0 

CUDA 11.6 

CUDNN 8302 

 

In FL, each robot client trains the crack segmentation model locally and then weighted 

model averaging was conducted at edge servers and the cloud server. The Adaptive 

Moment Estimation (Adam) was chosen as the optimizer. Related hyperparameters are 

presented in Table 4.5. Moreover, data augmentation techniques were used to make the 

training datasets richer, such as flip, translation, and rotation. Moreover, all images were 

adjusted to the fixed size 320 320  to make it possible to train or test together. 

 

Table 4.5. Hyperparameters used in different training strategies. 

Hyperparameters Centralized learning FL 

Learning rate 1e-5 0.003 

Batch size 32 32 

Pretraining epoch - 100 

Epoch 500 500 

Edge Fed interval - 1 
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Cloud fed interval - 1 

Adam betas (0.9, 0.999) (0.9, 0.999) 

Adam Weight Decay 0 1e-4 

 

4.4.3 Evaluation Metrics 

The intersection over union (IoU), Precision, Recall, F1 and Area Under Curve (AUC) 

of the Precision-Recall (P-R) curve are used to evaluate the model’s segmentation 

performance on test dataset. IoU calculates the percentage overlap between the actual 

and predicted segmentation masks. As a result, the higher the IoU value, the better the 

proposed model’s crack segmentation ability. Considering that the Precision and Recall 

travel in opposite directions in some circumstances, we used the F1 score to properly 

evaluate the model’s performance. Moreover, AUC (Area Under the Curve) of the PR-

curve was also adopted as the evaluation metric since the positive class (crack) and the 

negative class (background) are significantly imbalanced in the crack segmentation task. 

Furthermore, the inference time and model parameters were used to assess the proposed 

model’s lightweight degree. 
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Adopted metrics were measured by the Eq. (4.3, 4.4, 4.5, 4.6), in which FP is the number 

of background pixels recognized as a crack, TP represents the number of crack pixels 

predicted as a crack, TN represents the number of background pixels detected as the 

background, and FN is the number of crack pixels recognized as the background. In our 

research, background is labelled as 0 and crack is labelled as 1 in masks included in both 

training and test datasets. N represents the total number of samples in the test dataset. 

4.5 Experimental Results 

Based on above configurations, several experiments were conducted to evaluate the 

performance of the proposed hierarchical federated learning (FL) method, including (1) 

the comparation between the designed CrackNet and other prevailing segmentation 

models; (2) the comparation with the individual learning strategy; and (3) the 

comparison with typical FL methods. 

4.5.1 Comparison between CrackNet and other segmentation models 

Aiming to demonstrate the lightweight performance of the proposed model, we compare 

the CrackNet with other state-of-the-art crack segmentation algorithms, including the 

SegNet (Badrinarayanan et al., 2017), DeepLabv3 (Chen et al., 2017), and BiSeNetV2 

(Yu et al., 2021). These networks were implemented with the same dataset and 

environment. Table 4-5 shows the comparison results based on IoU, precision, recall, 

F1, inference time, and model parameters. As indicated in Table 4-6, our model obtains 

comparative performance on IoU (35.64%), precision (40.30%), recall (78.19%), F1 
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(50.34), and inference time (0.04862s), while it has clear advantages in terms of model 

parameters (14.8 M). 

 

Table 4.6. Comparison with the prevailing crack segmentation algorithms. 

Method IoU(%) Precision(%) Recall(%) F1 
Inference 

time (s) 

Parameters 

(M) 

SegNet 43.04 47.15 85.31 58.32 0.05931 117.9 

DeepLabv3 32.49 38.51 70.78 46.87 0.05406 134.3 

BiSeNetV2 24.78 33.70 55.80 36.93 0.05521 21.0 

CrackNet 35.64 40.30 78.19 50.34 0.04862 14.8 

 

The P-R curve with AUC results also shows the outstanding performance of CrackNet 

(shown in Figure 4.5). The higher AUC value indicates a better model performance. 

Although the performance of our proposed model is a little worse than SegNet, our 

model parameters are just one-tenth of it. This is important for deploying the model in 

mobile construction robots with limited computational resources. Moreover, the 

reduction of model parameters also decreases communication costs in FL training 

processes. Huge model sizes can result in slower training times and may prevent the 

model from converging to an optimal solution. BiSeNetV2 has a similar model size to 

our model; however, our model (AUC=0.6254) obtains better performance than 

BiSeNetV2 (AUC=0. 4371). 



86  

 

Figure 4.5. PR-curve of the CrackNet and other segmentation models. 

 

We also compared their performance in FL environments. For example, FL-CrackNet 

means that CrackNet was adopted as models in the hierarchical FL training process. 

Figure 4.6 presents the AUC results of these four models in FL environments. As shown 

in Figure 4.6 (a), our model achieved the best performance with AUC=0.3852 compared 

with all other benchmarks. Figure 4.6 (b) also presents some representative results of 

different segmentation models. 
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(a) PR-curve 

 

(b) representative results of different models 

Figure 4.6. Segmentation results of different models in the FL environment. 

4.5.2 Comparison between Individual Learning and FL 

In this section, we use CrackNet as the baseline to compare federated learning (FL) with 

individual learning (IL) strategies. In this case, we assumed that there are seven robotic 

clients coming from three projects. Notably, robots in the same project can share their 

data, while robots in different projects will not share the data, which is consistent with 

3_Ren 5_Yang DeepCrack Eugen forest Sylvie Volker

Image

Mask

CrackNet

BiSeNetV2

SegNet

DeepLabv3
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construction practices. Hence, IL represents that each project was required to train the 

model based on its own data. That is, the crack segmentation model should be trained at 

the edge level in IL, while FL means that all clients participate in training. Figure 4.7 

shows the comparison results between FL and IL. As shown in Figure 4.7, the proposed 

hierarchical FL achieved high IoU and F1 score than IL using data from the edge #1, #2, 

#3. This is because cloud server meets the feature of datasets of all robotic clients while 

edge servers just involve datasets of part of robotic clients. 

 

 

Figure 4.7. Comparison between IL and FL. 

4.5.3 Comparison between the Proposed FL and Traditional FL 

In this experiment, we compared the proposed cloud-edge-device federated learning (FL) 

framework with the traditional cloud-device FL method based on the CrackNet. More 

specifically, Figure 4.8 presents the performance of these two types of methods in terms 

of IoU, precision, recall, and F1. As shown in Figure 4.8, the proposed FL and traditional 

FL methods achieve almost the same performance. Notably, our method converges 
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faster than the traditional method. This is because we used the transfer learning strategy 

rather than random initialization. 

 

 

Figure 4.8. Comparison between the proposed FL and cloud-client FL. 

 

Moreover, we compared the communication overheads in the federated training process. 

Specifically, Figure 4.9 lists the total communication overheads of the proposed 

hierarchical FL and traditional cloud-client FL. FL(4,1) means that we set the cloud  

aggregation interval as 1 and the edge aggregation interval as 4. As shown in Figure 4.9, 

communication overheads decreases in the proposed three-layer FL method. For 

example, the communication overload of the proposed FL method was 888M when the 

edger federated interval is 4 and cloud federated interval is 1, which is less than the 

traditional FL. 



90  

 

Figure 4.9. Communication overheads comparison. 

4.6 Discussion 

4.6.1 Theoretical Contributions and Managerial Implications 

A lightweight segmentation algorithm was proposed to help construction robots 

recognize cracks from images. Specifically, several state-of-the-art deep learning (DL) 

algorithms have been proposed for crack detection, classification, and segmentation 

(Chu et al., 2022; Chun et al., 2021; Li et al., 2022b). However, centralized DL methods 

require large, high-quality datasets to train a robust model. In real-world scenarios, the 

amount of data from a single project may not suffice, and construction stakeholders may 

be hesitant to share sensitive quality defect data. As the construction industry endeavors 

to harness the potential of big data while ensuring data privacy, this research proposes 

a hierarchical FL framework for multi-robot-based quality defect inspection (QDI). The 

proposed approach offers a privacy-preserving mechanism for utilizing the knowledge 

of local data from different robotic devices without compromising data privacy. This is 

3552

2486.4

1776

1184

888

0 500 1000 1500 2000 2500 3000 3500 4000

Proposed FL(1, 1)

Traditonal FL

Proposed FL(2, 1)

Proposed FL(3, 1)

Proposed FL(4, 1)

Communication  overheads@12 Epochs (Unit: M) 



91  

achieved by avoiding the sharing of privacy-sensitive crack image data across different 

projects. Compared to existing studies, the proposed hierarchical FL framework 

provides the following contributions: 

• Firstly, to the best of our knowledge, this study represents one of the earliest 

attempts to apply federated learning (FL) to support QDI tasks in the context of 

construction robots. Prior studies have explored crack detection using remote 

robots (Li et al., 2022b) or UAVs (Tan et al., 2022), but most of them rely on 

centralized training strategies that may raise concerns about data availability and 

privacy in practical applications. In contrast, our proposed FL framework 

enables construction robots from different projects to train defect detection 

models collaboratively without sharing their data. As depicted in Figure 4.7, the 

segmentation performance of FL is superior to the IL solution trained with its 

own data. 

• Secondly, our proposed three-fold hierarchical FL framework is energy-efficient 

and aligns with quality inspection practices in the construction industry. 

Typically, existing FL methods adopt a cloud-client architecture (Li et al., 2021a; 

2023), which may be slow due to network congestion when dealing with a large 

number of involved robot clients. For example, considering that construction 

workers’ safety and health monitoring often involve personal private information, 

Li et al. (2021a) developed an FL-enabled smart working package method to 

preserve privacy and tested FL performance in three subjects. In this study, we 

assume that each project has an edge server connected to its construction robots, 

and there is a cloud server connected to all edge servers. Our proposed 

hierarchical framework, supplemented by edge-robot and client-edge updates, 
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can significantly reduce communication costs and accelerate the convergence of 

the global FL model. As shown in Figure 4.9, communication overloads in our 

proposed method are lower than in traditional FL methods. 

• Thirdly, our proposed lightweight segmentation model has a relatively low 

number of parameters (14.8 M), making it ideal for implementation in 

construction robots and enhancing communication efficiency during parameter 

aggregation in FL model training processes. Previous DL models with numerous 

parameters are typically resource-intensive, require high computing power, and 

may necessitate long training and inference times. Our designed model optimizes 

the trade-off between accuracy and latency on computational resource-

constrained construction robots. The comparative results in Figure 4.5 and 

Figure 4.6 show its superiority over other advanced segmentation algorithms. 

 

In addition to theoretical contributions, this study has managerial implications to 

postconstruction quality assessment of buildings. Although different robotic devices and 

DL solutions have been proposed for QDI, construction practitioners may not be willing 

to utilize the robot based QDI scheme since preparing enough data to train the DL model 

is usually time-consuming and costly. The proposed FL method can address this issue 

since FL does not need robots to share the local data. Using the proposed FL method, 

numerous robots from different construction projects can collaboratively train a 

powerful DL model with excellent performance on defect identification. Robotic clients 

can easily utilize the benefit of big data analysis. Hence, the proposed method may 

facilitate multi-robot based QDI implementation by addressing data privacy and 

availability concerns. Note that the proposed FL method is a generative framework, and 
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it can be used for any other applications involving data privacy issues, such as facial 

feature-based worker fatigue recognition. 

4.6.2 Limitations 

Despite the valuable contributions of this study, it is important to acknowledge its 

limitations. 

• Firstly, the proposed hierarchical federated learning (FL) method was only tested 

on a merged dataset that contained one type of quality defect, termly cracks. 

However, in real-world applications, clients may encounter a variety of quality 

defects, and incorporating significantly different defect data may have negative 

impacts on an existing federation. Techniques such as multi-task learning, model 

regularization, and client clustering, which can address this issue, were not 

explored in this study. 

• Secondly, FL clients are vulnerable to adversarial attacks, including data 

poisoning, data inference attacks, and submission of incorrect model parameters. 

Additionally, the central server may experience a single-point failure. Protecting 

client data privacy is critical, and techniques such as differential privacy, 

homomorphic encryption, and blockchain can be utilized. However, this study 

did not delve into such encryption algorithms or security analysis. 

• Thirdly, all FL clients received the same updated model regardless of their 

contributions. Since data is a crucial asset in FL, clients with fewer data may 

benefit more compared to those with more data resources. Additionally, clients 

have varying computational capabilities, and personalized incentive mechanisms 

should be investigated in future FL studies. 
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4.7 Chapter Summary 

This chapter develops a three-fold FL framework to enable multi-construction robots 

from different projects to collaboratively train a detection model without sharing local 

data. The proposed method was tested using a case study of crack segmentation. A 

lightweight model was developed specifically for the crack segmentation task in the FL 

experiment. The comparative study demonstrates the superiority of the proposed 

segmentation model over other prevailing segmentation algorithms. Notably, our model 

has fewer parameters and a faster inference speed. Moreover, FL experimental results 

show that the proposed FL is better than the centralized training strategy in terms of IoU 

and F1 scores and demonstrate the superiority of the proposed hierarchical FL to 

traditional cloud-client FL methods in terms of communication overloads.  
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CHAPTER 5  Blockchain-based Information 

Management for Construction Process Quality 

Traceability 3 

5.1 Introduction 

The lack of traceability in construction processes is a crucial factor driving opportunistic 

behaviors and quality failures (Qi et al. 2021). It is difficult to trace back to the source 

of the quality problem, which leads to difficulties in subsequent quality management. 

Traceability refers to the fact that products with quality problems can be processed from 

downstream to upstream along  the production and supply chain, which has been widely 

used in the manufacturing and food industries. Quality traceability could help 

construction stakeholders demonstrate their compliance with regulations, decrease 

disputes, and facilitate continuous improvement by learning lessons from history (Lee 

et al., 2021b). Different from products or food that can be manufactured by mass 

production within a limited period, the construction process is complex and spans long 

durations. Hence, the quality traceability of the construction process becomes more 

 
3 This chapter is based on a published study and being reproduced with the permission of ASCE, 
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complicated, time-consuming, and expensive.  

Blockchain can ensure the recorded quality data be highly reliable since on-chained data 

is not only virtually impossible to tamper with but also easily traceable. Such credible 

data provides a solid base for traceability. However, existing studies mainly focused on 

recording supply chain information (Wu et al., 2022c; d) or post-construction inspection 

texts (Wu et al., 2021b; Sheng et al., 2020), while limited attempts have been made to 

explore the traceability of on-site construction activities (OCAs). OCA is an essential 

quality component of the construction process. Numerous regulations have been 

published to regulate the  sequence of worker activities. For instance, according to GB 

50202-2018 regulation, workers should clean the joints before pouring concrete into 

underground diaphragm wall projects. OCA traceability is  crucial since it can mitigate 

project actors’ opportunistic behaviors and improve the visibility of the construction 

process. Unlike inspection texts and sensory data of materials, OCAs were usually 

recorded by video with large memory and are unsuitable for being directly stored by 

blockchains. For example, a one-hour video in 1080p resolution requires around 2GB 

of digital storage space. The blockchain system will suffer excessive latency and 

network collapse in processing such large files. Fast-evolving deep learning algorithms 

could provide a solution by automatically detecting OCA information from videos or 

images. Nevertheless, current artificial intelligence (AI) algorithms cannot achieve 

accurate and explainable results. Potential disputes may arise when using AI-detected 

information as evidence for traceability. Most previous research explored the AI and the 

blockchain separately, with little effort providing a conceptual view for possible 

convergence in the traceability of OCAs. 
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Moreover, previous research tends to develop prototypes  in the laboratory environment 

according to the application scenario. For example, several prototypes were proposed 

based on the hyperledger fabric (HLF) framework because HLF is energy-efficient and  

easily implementable compared with Ethereum [7]. However, regarding practical 

applications, it usually costs too much effort to configure, operate, and maintain a 

blockchain system. Additionally, experienced developers are in short supply for the 

construction industry. Thus, it is necessary to make blockchain more accessible for 

construction stakeholders to meet the increasing interest in blockchains. Blockchain as 

a Service (BaaS) could be an ideal  solution by allowing users to create, develop, deploy, 

and  operate blockchain applications on the cloud infrastructure. Nevertheless, seldom 

has noticed the potential of BaaS platforms in the construction industry. Such absence 

may hinder the adoption of this transformative technology in the construction industry. 

 

Against this backdrop, this chapter develops a BaaS-based conceptual framework to 

support immutable, transparent, and traceable OCA information recording during 

construction processes. More specifically, the objectives are to: (1) determine the proper 

blockchain architecture for construction quality information management; (2) develop 

a blockchain prototype; and (3) test the performance of the prototype using a case of 

worker activity recording.  

 

The remainder of this chapter is organized as follows: Section 5.2 introduces the 

research background. Section 5.3 presents the proposed conceptual framework. Section 

5.4 shows implementation details and experimental results, while Section 5.5 discusses 

contributions and limitations. Section 5.6 summarizes this chapter and outlines future 



98  

research directions. 

5.2 Research Background 

5.2.1 Current Practices of Quality Information Management 

A traceability system involves three key modules (Dong et al., 2023): (1) the data 

collection module that captures required data (e.g., what, where, who, when, and why) 

from the physical world; (2) the data transmission module that moves the digital data 

from a local source to global systems/database; and (3) the data management module 

that provides access, sharing, and control to the data. Internet of Thing (IoT) technology 

advancement in past two decades has greatly facilitated the development of traceability 

modules. For example, embedded sensors, e.g., RFID (radio frequency identification) 

technology, was used to improve tracking and managing of building materials. The 

development of internet and communication technologies improved the efficiency of 

data transmission. Unfortunately, data management remained the bottleneck of 

traceability.  

 

In construction practices, paper-based files are still the main mode of quality 

information preservation (Ma et al. 2018a), which are easy to lose and tamper with. 

Building information modeling (BIM) has been widely used to increase total project 

quality through efficient information collection and visualization (Bynum et al., 2013). 

For example, Chen and Luo (2014) developed a BIM-based construction quality model 

and explored the workflow when using this model in construction quality inspection. 

Ding et al. (2017) proposed an industrial foundation classes-based inspection process 

model to enable information exchange requirements for quality-related information to 



99  

occur in real time during construction. Lee et al. (2016) proposed a defect query model 

that used BIM and linked data technologies, in which the data search time is reduced, 

and the accuracy of search results is improved. The true potential of BIM in construction 

quality management is that it can be an information platform to share information from 

various participants throughout the whole life cycle of construction projects and 

visualize the information. Although efficient and fast, BIM systems are controlled by a 

single party and is vulnerable to risks of data leakage, tampering, loss, and single point 

of failure (Wu et al., 2021b). 

5.2.2 Blockchain-based Quality Traceability 

Blockchain is an attractive solution for quality traceability. For example, Ho et al. (2021) 

built an hyperledger fabric-based blockchain prototype to accurately record traceability 

data of aircraft spare parts. Similarly, Wang et al. (2019b) established a blockchain 

system to realize the traceability of  food products in supply chain scenarios. Garrard 

and Fielke (2020) conducted a case study of applying the blockchain to support the 

provenance of the aquaculture industry. However, compared with quality traceability in 

the manufacturing or food industry, quality traceability in the construction industry is 

more complicated because of construction complexities and the long duration of 

construction projects. Zhang et al. (2020) proposed a blockchain-based theoretical 

framework for  the quality traceability of precast components. However, it is a 

conceptual discussion and has not established a prototype. In addition, Wu et al. (2021b) 

and Zhong et al. (2020) explored  blockchain-based quality inspection text recording. 

Lu et al. (2021a) stated that IoT technologies could prevent false information from 

entering the blockchain system and developed a blockchain-based framework to support 
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the supply chain  management of prefabricated modules. Similarly, Wu et al. (2022c) 

indicated the applicability of blockchain to improve the information-sharing accuracy 

in the on-site assembly of modular components. 

5.3 Proposed Conceptual Framework 

As shown in Figure 5.1, the design science approach illustrated is adopted to guide the 

whole research progress (Peffers et al., 2007). Design science focuses on 

comprehending problems and proposing alternative solutions to describe, explain, and 

anticipate the current natural or social reality (Van Aken, 2005). Firstly, the technical 

characteristics of blockchains were identified through a systematic literature review. 

Secondly, after several group meetings, a blockchain-based conceptual framework was 

proposed to record quality-related information during the construction process. Thirdly, 

a prototype system was developed to implement the conceptual framework. Finally, a 

case study was conducted to test the latency and throughput performance of the 

developed prototype. 

 

 

Figure 5.1. Research steps of the design science method and its outcomes. 
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quality-related information during the construction process, aiming to support future 

traceability and accountability. Such a framework contains two layers: (1) the 

information collection and processing layer; (2) the blockchain layer. In the first layer, 

cameras can be mounted at a high and remote position (e.g., in the operator cab of tower 

cranes) to obtain a broad view, reduce the deployment cost, and avoid frequent repairs 

in practical applications. Such videos were termed “far-field surveillance videos” and 

contain sufficient construction process information (Luo et al., 2019), in which the pixel 

size of workers is typically small (as small as 30 pixels tall). Fast-evolving DL 

algorithms were used to extract construction process information from the videos. The 

extracted information, as well as the encryption information of the raw data, would be 

recorded in the blockchain system for future checking. 

 

 

Figure 5.2. Blockchain-based framework for quality information management. 
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Additionally, the core part of the proposed framework is the blockchain-based layer for 

decentralized data recording. Specifically, the proper blockchain architecture was 

determined by considering the characteristics of construction projects and the demands 

of quality accountability. Then, a blockchain prototype was established based on a 

general blockchain as a service (BaaS) platform. Project actors (e.g., owners, contractors, 

sub-contractors, and supervisors) can join the prototype and mutually govern the system. 

With the blockchain layer, quality-related information can be translated into transactions 

and then packaged into on-chained blocks, in which the information is almost immutable, 

transparent, and traceable. The details of these two layers were introduced in the 

following sections. 

5.3.1 Worker Activity Information Processing 

Although some deep learning (DL) algorithms can attractive performance in extracting 

information from images or videos, just relying on the DL cannot meet the demands of 

process quality traceability since it cannot achieve complete accuracy. Stakeholders may 

deflect blames because they cannot fully believe the information extracted by the 

computer vision module. Therefore, the raw data should also be safely stored in off-

chain datasets for re-checking. The extracted activity information, as well as the hash 

values of the raw data, would be uploaded to the blockchain system. The overall process 

is shown in Figure 5.3. 
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Figure 5.3. Video-based construction process information processing flow. 

As shown in Figure 5.4, a cryptographic hash function termed secure hash algorithm 

(SHA) 256 was adopted to encrypt the videos, aiming to guarantee the security and 

integrity of the raw data and avoid potential disputes on the results extracted by DL 

algorithms. After SHA256-based encryption, the raw data associated with the extracted 

activity information would be translated into hashing values, and the values would also 

be stored in blockchains. Once there are disputes on the extracted activity information, 

participants can retrieve the on-chained hashing value A and recalculate the hash value 

B based on the raw data. Cryptographic hash functions have three main characteristics: 

(1) they translate the input into hashing values with a fixed length; (2) the encrypted 

content is difficult to be reasoned through the hash value; (3) the hash value will always 

be different even if there is a small change in the inputs. That is, these hashing values 

(e.g., A and B) would be different if the content of raw data was tampered with. Thus, 

the security and integrity of videos can be guaranteed using the SHA256 algorithm. The 

process can be shown in Figure 5.4. 
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Figure 5.4. SHA 256 encryption-based integrity checking of the raw data. 
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5.3.2 Blockchain Architecture Selection 

According to the theory of the Technology Life Cycle, blockchain technology is at the 

“fermentation” stage with technological uncertainty. There are thousands of blockchain 

projects worldwide under development. However, the following two questions need to 

be answered before the development of a blockchain system in order to avoid pointless 

blockchain projects, namely, “Q1: do you need a blockchain in your application?” and 

“Q2: what types of blockchain network should be adopted?”. 

 

Precious works have presented different decision frameworks for managers to answer 

these questions. For example, the White Paper published by the World Economic Forum 

developed a decision tree containing 11 questions for blockchain adoption (Mulligan, 

2018). Turk and Klinc (2017) used eight questions to draw a conclusion that the 

consortium blockchain is suitable for the construction industry. Li et al. (2019) showed 

a path tree for blockchain’s adoption and used three construction industry use cases to 

visualize the decision process. Hunhevicz and Hall (2020) summarized eight decision 

frameworks in previous works and then proposed an integrated framework. To 

summarize, previous decision frameworks aim to answer the Q1 from two aspects: (1) 

whether the traditional can solve your problem, such as “Are there multiple writers”, 

“Can you use an always online trusted third party” from Li et al. (2019), and (2) whether 

the blockchain is suitable for your problem, such as “Do you require rapid transactions”, 

“Do you intend to store large amounts of non-transactional data” from Hunhevicz and 

Hall, (2020), and “are all participants interest aligned” from Turk and Klinc (2017). 

Furthermore, blockchain architecture can be determined by two questions: (1) who can 

access the on-chained data , such as “should transactions be public” from Li et al. (2019); 
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(2) who manages the consensus process, such as “do you need control functionality on 

protocol level” from Turk and Klinc (2017). According to these decision frameworks, 

the Hyperledger Fabric (HLF)-based consortium blockchain network is selected for 

construction quality information management. The whole decision process is shown in 

Figure 5.5. 

 

 

Figure 5.5. Decision process on the blockchain type. 

 

In this study, HLF is selected as the development architecture of the consortium 

blockchain system. Public and permissionless architectures (e.g., Ethereum, Bitcoin), 

allowing unknown identities to participate, may not be suitable for the construction 

industry when considering business competitiveness and data privacy. Participants may 
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not want to share sensitive data (e.g., pricing, financial data, quality data, etc.) with 

others who are not involved in the same project (Perera et al., 2020). HLF-based 

consortium blockchain allows participants to create their own channels in which 

information cannot be accessed by other participants who are not in the channel. As 

shown in Figure 5.6, different channels can be created to meet the demands of quality 

traceability. To illustrate, construction suppliers usually share building material 

information with the owner (who buys the materials), the owner (who manages the 

materials), the supervisor (who monitors the process), and the government (who 

monitors the process), but not sub-contractors. That is why HLF is regarded as a suitable 

platform for business requirements in the construction industry (Perera et al. 2020). In 

this research, we concentrated on the channel that records construction process 

information (Channel 1). 
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Figure 5.6. Channels in the consortium blockchain system. 

 

We also acknowledge that HLF, as the architecture of “private and permissioned” 

distributed ledger technologies, makes compromises on decentralization, transparency, 

and equal rights of participants. Therefore, HLF cannot fully be equated to “blockchains” 
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due to less decentralization and inherent security risks. Specifically, HLF architectures 

leave out decentralized consensus, and only authorized participants can create and view 

transactions. However, HLF is more energy-efficient and easily implementable 

compared to public blockchain architectures that allow anyone to participate in the 

network (Hang and Kim, 2021). It has good performance in transaction throughput and 

scalability (i.e., the ability to handle an increasing number of transactions at a time). A 

shorter time frame is needed to complete the consensus process for a new block; for 

instance, it can easily support 100,000 transactions at 200 tps (Kuzlu et al. 2019). 

Actually, it is difficult to satisfy the properties of “decentralization,” “security,” and 

“scalability” simultaneously in the development of blockchain projects, which is termed 

the “blockchain trilemma” (Lee et al. 2021a). In this study, HLF is used as the 

development architecture for the consortium blockchain prototype because it can ensure 

confidentiality for the sensitive data of construction projects and has high accessibility 

and good performance in scalability. 

5.3.3 Consortium Blockchain System Development 

Based on the Hyperledger Fabric (HLF) architecture, we develop a consortium 

blockchain system for construction process information (e.g., worker activities) 

management. As shown in Figure 5.7, system users contain the owner, the contractors, 

the supervisor, sub-contractors, and the government since they are highly related to 

construction process quality performance. Notably, the government is the regulatory 

node that can only query on-chained data, while others are federated members who are 

responsible for maintaining the blockchain system. Each node of federated members 

consists of four components: (1) application component that describes application logic 
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interacting with the users; (2) consensus component that aims to package transactions 

into blocks; (3) storage component that manages the block data after confirming the  

block; and (4) network component that aims to interact with other nodes, such as 

synchronizing transactions and blocks. Notably, each of the four components 

concentrates on one dedicated group of functionalities, achieving modularity. 
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Figure 5.7. Consortium blockchain system for construction process information 

management. 

5.4 Demonstration and Evaluation 

5.4.1 Use Case 
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A high-rise office building located in Hong Kong was adopted to validate the theoretical 

feasibility of the proposed framework. During the construction process, a pan-tilt-zoom 

camera was mounted at the operator cab of the tower crane to collect far-filed 

surveillance videos and monitor the working floor in a square shape of 48.5 48.5  m. 

Such videos are continuously filmed with a resolution of 2048 1536  pixels at 25 frames 

per second, aiming to visually record construction process information. In this research, 

we focused on worker activities during the construction process since the construction 

industry is currently labor-intensive, in which the quality of final buildings is 

inseparable from on-site productive workers. There are numerous construction 

procedure constraints in quality regulations, which regulate the sequence of worker 

activities. For example, according to the regulation of GB 50202-2018, workers should 

clean the joints before pouring concrete in underground diaphragm wall projects. 

Recording such information can enhance the visibility of construction processes.  

 

A surveillance video of approximately 30 minutes, filmed with a fixed field of view, 

was used as the validation case in this research. In this case, the conditional random field 

(CRF) method proposed by Luo et al., (2020) was used due to its amazing performance 

in identifying worker activity information from far-field surveillance videos. The author 

admits that there would be other deep learning (DL) algorithms for detecting 

construction activity information from on-site videos. However, developing a creative 

method or improving the performance of DL models has not been the focus of our 

research. Instead, we aim to develop a decentralized blockchain framework to record 

the worker activity information in a decentralized manner, considering the gap in the 

construction process traceability. Figure 5.8 shows an example of the CRF-based 
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detection result of the video. The worker types, as well as specifications of action labels 

in Figure 5.8, were explained in Table 5.1. Such detected information will be uploaded 

to the blockchain system. 

 

Figure 5.8. An example of extracted worker activity information. 

 

Table 5.1. Activity taxonomy and specifications 

Worker 

Trade 
Activity label Specification 

All (A) 

A-Checking 
Checking site stations or measuring formwork, 

purlins, and rebar with a tape. 

A-Standing 
Standing still, standing, and drinking water, or 

standing and wiping perspiration. 

A-Preparing 
Preparing auxiliary materials or setting up 

equipment for subsequent tasks. 

Concrete 

workers (C) 

C-Placing 
Placing concrete by moving the hose of a concrete 

placing boom. 

C-Transporting Pulling a concrete placing boom. 

Formwork 

workers (F) 
F-Placing-Fixing Placing and fixing formwork and purlins. 

 

5.4.2 Implementation Details of Blockchain Prototype 
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Regarding practical applications, it usually costs too much effort to configure, operate, 

and maintain a blockchain system. For example, experienced blockchain developers are 

in short supply for the construction domain. Hence, it is necessary to make blockchain 

more accessible for construction stakeholders. Blockchain as a Service (BaaS) could be 

an ideal solution to reduce stakeholders’ concerns about blockchain technical 

complexities, which allows users to create, develop, deploy, and operate blockchain 

applications on the cloud infrastructure (Song et al., 2021). In this research, we develop 

the prototype system of consortium blockchains based on the PolyChain BaaS platform. 

This is because PolyChain is a generic BaaS platform that can meet the requirements of 

modularity, flexibility, scalability, reliability, and security (Jiang et al., 2021a). Figure 

5.9 (a) presents details of a block in the prototype system. As shown in Figure 5.9 (a),  

the hash value of the raw video data and extracted worker activity information will be 

recorded in a block after reaching a consensus. Figure 5.9 (b) presents the generated 

blocks of the use case in this research. 

 

 

Figure 5.9. BaaS-based blockchain prototype: (a) Block details; (b) on-chained blocks. 
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5.4.3 Performance Analysis 

Two metrics were selected to test the performance of the prototype, termly, latency, and 

system throughout, since they are regarded as the most prevailing performance metrics 

of the blockchain (Singh et al., 2022). Transaction throughput is the number of 

committed transactions per second (TPS), while latency refers to the difference between 

the start time and the end time of publishing an operation in a blockchain network. These 

metrics were related to several parameters, such as the block generation time, the block 

size, and the number of connected nodes. Specifically, the block size, which refers to 

the number of transactions in a block, was determined by dividing the block gas limit 

by the transaction gas limit. Gas is the measurement index of the computational resource 

for one transaction, and the gas limit is the maximum amount of gas that may be utilized 

to execute transactions. Aiming to ensure universality, we tested the TPS and latency 

performance of the developed prototype using differentiated connected nodes, different 

block generation times, and differentiated block sizes (ranging [500,5000] with a 

common difference of 500). 

 

Figure 5.10 present the performance evaluation results for the blockchain prototype 

under different block generation time and block sizes. As shown in Figure 5.10(a) and 

(b), system throughput declined as block generation time increased and enhanced as 

block size increased, respectively. Figure 5.10(c) indicates that the longer the block is 

generated, the longer the delay. This is because as the time generated by the block rises, 

more requests are received during the time period, and the broadcast and verification 

time is longer, resulting in an increase in the transaction delay. Furthermore, the 

blockchain prototype can reach an acceptable throughput of around 750 with a 
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blockchain size of 2500, and the number of nodes does not have an observable influence 

on the throughout. As shown in Figure 5.10(d), the average transaction latency ranged 

from 1s to 3s. The average latency increased when there were more nodes in the 

blockchain prototype; however, the maximum latency was still controlled in 3s with ten 

nodes, which is acceptable for practical construction applications (Jiang et al., 2021b). 

 

 

Figure 5.10. Throughput and latency results of the developed prototype under 

differentiated block generation time, block size, and nodes. 

5.5 Discussion 

5.5.1. Contributions 

The following aspects of theoretical originality to the proposed method were outlined in 
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comparison to previous studies: (1) a blockchain-enabled framework was proposed to 

record activity information of on-site workers in a group for traceability. Previous 

blockchain studies mainly focused on recording inspection texts and sensory data of 

materials, while limited attempts have been made to explore how to record worker 

activities during the construction process. That’s because construction activities are 

typically recorded by videos with large memories that are not suitable for being directly 

stored in the distributed blockchain network. Thus, deep learning (DL) algorithms were 

integrated into the framework to efficiently extract worker activities from videos; (2) A 

cryptographic hash function was adopted to encrypt the raw data, aiming to ensure the 

integrity of on-site videos. It is necessary for the traceability application when the deep 

learning algorithms cannot obtain the full right results; (3) A consortium blockchain 

system was developed based on a general BaaS architecture, which can prevent the 

tampering of worker activity information and make the construction process traceable.  

 

Furthermore, this study provides several significant implications for construction 

practice. First, this study may be a beneficial attempt to provide construction 

participators (e.g., quality inspectors and project managers) with a creative way of 

construction quality management. Second, it gives an easy-to-implement blockchain 

solution for construction quality traceability by using BaaS platforms. Seldom research 

noticed the potential of BaaS in the construction industry. Such absence may hinder the 

adoption of this transformative technology in the construction industry because 

experienced blockchain developers may be scared in the construction industry, and 

construction organizations may feel confused even if they want to adopt blockchain in 

their applications. 
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5.5.2. Limitations 

However, there are still some limitations in this research. First, only three types of 

worker activity information, including time (when), worker type (who), and worker 

action label (what), were used to show the feasibility of the proposed framework. More 

types of information should be detected from the site to improve the granularity of 

quality traceability. For example, the location (where) information should be collected 

to meet traceability demands. Furthermore, although vision-based methods can enable 

worker monitoring on a large scale, their performance is often limited by the light and 

occlusions in the field. An effective framework integrating vision and sensing 

technologies, such as radio frequency identification, can be proposed to collect 

comprehensive construction process information, which is shown in Figure 5.11. 

Notably, whether collecting workers’ identity information should be further discussed. 

In this research, we only detected the worker type due to the following reasons. Firstly, 

just relying on computer vision technology is challenging to detect the identity 

information from the far-filed surveillance video. More importantly, the author believes 

construction workers belong to the most vulnerable group in the whole world, and the 

responsibility should be tracked at the organizational level instead of the personal level. 

For example, they usually need to complete highly physically demanding tasks under 

various climatic conditions. 
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Figure 5.11. A conceptual framework for vision and sensor-integrated construction 

process information extraction. 

Second, the prototype system is developed and evaluated in the laboratory environment. 

The performance of the prototype system in actual implementations should be evaluated 

with several metrics, such as storage cost, transaction latency, throughput, scalability, 

and resource utilization. In addition, a detailed analysis of blockchain’s benefits, as well 

as its cost, within a pilot project should be conducted to promote its implementation in 

the construction industry. The development and operation costs can be quantitatively 

analyzed, while the practical benefits of blockchains to construction quality 

management can be qualitatively analyzed with workshops, questionnaires, or 

structured interviews. 

5.6 Chapter Summary 

This chapter develops a blockchain-based conceptual framework for construction 

process traceability, which contains two essential modules: (1) the computer vision 

module for extracting worker activity information from far-filed surveillance videos; 

and (2) the blockchain module for guaranteeing data security, transparency, and 

traceability demands. A consortium blockchain system was developed to validate our 

approach based on the general BaaS platform-“PolyChain,” while a high-rising building 
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project was used as the case. We reveal that our proposed framework can improve the 

quality traceability of construction processes by automatically extracting activity 

information and recording such information in a trustable manner. We also suggest that 

the BaaS-based framework can be practically used by project managers to improve the 

visibility of the construction process and then reduce disputes.  
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CHAPTER 6  Barrier Identification, Analysis, 

and Solutions of Blockchain Adoption in 

Construction4 

6.1 Introduction 

Scott et al. (2021) reported that blockchain-related publications in construction have 

increased by an average of 184% per year from 2017 to 2021. However, we have seen 

very few practical blockchain implementations in the construction industry, and most 

previous blockchain systems have been created and verified in a laboratory setting 

(Hunhevicz and Hall, 2020). This indicates that construction organizations are hesitant 

to adopt blockchain technology. Hence, a comprehensive understanding on blockchain 

adoption barriers is required for promoting its implementation in construction. 

 

Although existing studies have provided insights into understanding blockchain 

adoption barriers, there is a lack of theoretical foundations during the barrier 

identification process in previous studies. Notably, theoretical frameworks such as the 

technology-organization-environment (TOE) and technology acceptance model (TAM) 

can assist in formulating adoption decisions among firms.  

 
4 This chapter is based on a published study and being reproduced with the permission of 

Emerald Publishing. 

Wu, H., Zhong, B., Zhong, W., Li, H., Guo, J., and Mehmood, I. (2023). Barrier Identification, 

Analysis, and Solutions of Blockchain Adoption in Construction: A Fuzzy DEMATEL and 

TOE integrated Method. Engineering, Construction, and Architectural Management. 

https://doi.org/10.1108/ECAM-02-2023-0168. 
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Additionally, existing studies have not thoroughly uncovered the interrelationships 

among blockchain adoption barriers. There have been very few successful blockchain 

projects in the construction industry. Given the nascent stage of blockchain technology, 

finding experts with sufficient knowledge and experience related to blockchain adoption 

decisions is challenging. Purposeful sampling in panel selection is essential, as blindly 

expanding sample sizes can affect confidence in the results. In this context, addressing 

the uncertainty and subjectivity in expert-based evaluations is critical. Previous studies 

used crisp values that cannot accurately express the vagueness and uncertainty of real-

world decision problems.  

 

To address the gaps above, we have conducted a study to determine the critical barriers 

to the adoption of blockchain in the construction industry and propose potential 

solutions. Specifically, the objectives of this study are to (1) review barriers to 

blockchain adoption, (2) identify the key barriers and explore their interrelationships, 

and (3) propose relevant solutions to promote blockchain adoption in the industry. To 

achieve these objectives, we have adopted the TOE framework to identify relevant 

barriers and subsequently applied the fuzzy Decision-Making Trial and Evaluation of 

Laboratory (DEMATEL) method to analyze their prominence and causality. TOE is the 

most comprehensive model for explaining technology adoption at the organizational 

level and can accommodate different technological, sectoral, and national situations 

(Nilashi et al., 2016). The TOE framework has been widely used in exploring innovation 

adoption among construction organizations, such as BIM (Qin et al., 2020) and 

construction robots (Pan and Pan, 2019). The fuzzy DEMATEL method suits complex 

decision problems characterized by vagueness and uncertainty since it can handle the 
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imprecision from ill-defined information and investigate the interrelationships among 

identified barriers (Qi et al., 2020). 

 

The structure of this chapter is as follows: in Section 6.2, we provide a detailed 

description of our research methodology. The main findings of our study are presented 

in Section 6.3, which includes the identification of key barriers and their 

interrelationships. Section 6.4 discusses the theoretical and practical implications of our 

findings, as well as the limitations. Section 6.5 finally summarizes conclusions. 

6.2 Research Method 

The overall methodology is presented in Figure 6.1, which contains three stages: Barrier 

identification with the technology-organization-environment (TOE) framework (Stage 

1); data collection (Stage 2); and barrier analysis using the fuzzy Decision-Making Trial 

and Evaluation of Laboratory (DEMATEL) method (Stage 3). Details of each stage 

were introduced in the following sections. 

Barrier Identification- Identify barriers 

hindering the blockchain adoption in the 

construction industry

Literature review with 

the TOE framework

Data collection- Inviting domain experts to 

evaluate identified TOE barriers
Expert evaluation

Stage 1

Stage 2

Barriers analysis- apply the fuzzy DEMATEL 

method to detect key barriers and illustrate 

the casual-effect relationships between them

Fuzzy DEMATEL 

method

Stage 3

 

Figure 6.1. Research methodology of blockchain adoption barrier analysis. 
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6.2.1 Barriers Identification 

Blockchain adoption barriers proposed by previous studies were summarized with the 

technology-organization-environment (TOE) framework based on the literature review. 

In this research, we adopt the TOE framework for barrier identification. In our previous 

work (Wu et al., 2022e), we conducted a systematic review and identified 141 journal. 

A manual review of these articles was conducted to identify initial TOE barriers. 

Moreover, aiming to ensure the completeness of the results, these initial barriers were 

compared with those identified in more recent works. Finally, the resulting set of TOE 

barriers, along with their explanations, are presented in Table 6.1.



 

Table 6.1 TOE-based blockchain adoption barriers 

TOE view Barriers Descriptions Reference 

Technological 

context 

T1- Scalability 
The blockchain system may face scalability concerns in practical 

applications, such as low throughput rate and high latency.  

Yang et al. (2020a), Perera 

et al. (2020), Li et al. 

(2019), and Wang et al. 

(2020c). 

T2- Smart contracts’ 

security 

A smart contract normally involves high-valued assets or 

transactions, which is possibly to be attacked, causing 

unacceptable losses. 

Saygili et al. (2022), Wu et 

al. (2021b), and Li and 

Kassem (2021).  

T3- Immutability 

challenge of smart 

contracts 

Smart contracts are suitable to explicit transactions and may not 

be suitable for high-dynamic-complexity construction projects in 

which there are many unexpected scenarios.  

Das et al., (2020), Sheng 

et al. (2020), and 

Lumineau et al., (2021). 

T4- Interoperability 

The information exchange between different blockchains is 

challenging. Additionally, how to integrate blockchain with 

traditional information systems should be further discussed. 

Li et al. (2019), Tao et al., 

(2022), and Xu et al. 

(2022). 



 

Organizational 

context 

O1- Lack of 

awareness and 

understanding of 

blockchains 

Blockchain is still a relatively new concept. Construction 

participants may be unaware of it potentials. 

Olawumi et al. (2020), Li 

et al. (2022), and Zhang et 

al. (2023). 

O2- Resistance in 

changing original 

management process 

Blockchain may fundamentally change existing collaboration 

and management processes, leading to resistances to change. 

Wu et al. (2022a) and 

Walsh et al., (2021) 

O3- Financial 

constraints 

Construction firms need to undertake initial development costs, 

deployment costs, and maintenance costs. 

Zhong et al. (2020) and 

Ding et al. (2023) 

O4- Lack of 

sufficiently 

skilled people 

People with related knowledge and experience are still scarce in 

the construction industry. 

Sheng et al. (2020), 

Sharma and Kumar 

(2020), and Wu et al. 

(2021b) 

 

O5-Negative 

attitudes towards data 

privacy issues and 

data disclosure 

Organizations may view information as a competitive advantage, 

making it difficult for them to share valuable and critical 

information. 

Perera et al. (2020) and Li 

et al. (2019)  



 

Environmental 

context 

E1- Lack of 

collaborative culture  

Current contractual relationships are mainly based on 

confrontational situations, revealing the lack of collaborative 

culture.  

Sadeghi et al. (2021) and 

Xu et al. (2023) 

 
E2- Lack of mature 

policy environments 

Regulatory uncertainty may increase construction stakeholders’ 

hesitation on adopting blockchain. 

Li and Kassem (2021), Wu 

et al. (2021b). 

 

E3-Industry concerns 

about technological 

maturity 

Blockchain is a fast-evolving technology and construction 

stakeholders may concern about the risks related to the 

technological uncertainty 

Sharma and Kumar 

(2020), Xu et al. (2023) 
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6.2.2 Data collection 

The selection of experts is an essential part in the proposed framework for obtaining 

reliable results. Rather than distributing questionnaires indiscriminately, we adopted a 

purposeful sampling strategy. Specifically, we invited experts from academia who have 

published research related to blockchain in the construction industry, and professionals 

from the industry who have practical experience with blockchain projects. In total, 20 

experts were invited to participate in the survey, and their details, including educational 

background and years of experience in construction management, are presented in Table 

6.2. The questionnaire (Online link: https://forms.office.com/r/TtimXqUmtU) was 

administered in either Chinese or English via email and consisted of two parts: (1) 

demographic information, and (2) an evaluation matrix in which the influence of one 

barrier on the others was measured using a Likert scale ranging from 0 to 4. The experts 

were informed that their data would be kept confidential and used solely for academic 

purposes. The original data obtained from the experts will be processed for barrier 

analysis. 

 

Table 6.2. Demographics of invited experts 

Demographics Category Count 

Education 

Bachelor 6 

Master 1 

PhD 8 

Other 5 

Years of experience 1-5 5 
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6-10 5 

11-20 2 

21-25 5 

Above 26 3 

Organizational background 

University Or Research 

Institute 

8 

Construction Company 1 

Real Estate Company 3 

Government 3 

Consulting Company 2 

Other units 3 

Country 

China 17 

Italy 1 

Switzerland 1 

Australia 1 

 

6.2.3. Fuzzy DEMATEL-based Barrier Analysis 

Based on graph theory and matrix tools, Decision-Making Trial and Evaluation of 

Laboratory (DEMATEL) can develop a visual structure to examine the causal 

relationship between various barriers using the knowledge and experience of invited 

experts (Jassbi et al., 2011). It can discover key barriers by calculating each barrier’s 

center degree and cause degree, creating the causal diagram, and establishing the 

category to which variables belong (cause group or result group) (Feng and Ma, 2020). 

Hence, DEMATEL was suitable for this study. Additionally, to address ambiguities in 
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language estimation, the fuzzy set theory was employed in the DEMATEL (Farooque 

et al., 2020). The fuzzy DEMATEL allows for the necessary flexibility to handle 

uncertainty and imprecision resulting from ill-defined information. By utilizing the 

fuzzy DEMATEL method, key barriers were identified and the causal relationships 

between them were examined using the knowledge of the invited experts, which can 

handle the bias and uncertainty of human-made judgments. The steps of the fuzzy 

DEMATEL approach are shown in Figure 6.2 and are explained in detail as follows. 

 

 

Figure 6.2. Process steps of the fuzzy DEMATEL method. 

 

• Step 1: Establishing an initial direct-relation matrix based on the identified TOE 

barriers. Each participant was asked to evaluate the influence of barrier i on barrier 

j using a linguistic scale from 0 to 4 (0 means no influence; 1-4 means the degree of 

influence from small to large). The results would be transformed into a pairwise 

comparison matrix 
n nA 

, in which n is the total number of identified TOE barriers.  
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• Step 2: Transferring the evaluation data into positive triangular fuzzy numbers. 

Triangular fuzzy numbers are widely used to deal with the ambiguities of experts’ 

assessments due to its conceptual simplicity and ease of computation (Kouhizadeh 

et al., 2021; Yadav et al., 2023). Each triangular fuzzy number can be expressed as 

a triplet (l, m, r), where the parameters l, m, and r indicate the smallest possible value, 

the most promising value, and the largest possible value, respectively. Table 3 

presents the used triangular fuzzy numbers. Hence, the matrix n nA   would be 

transformed into the fuzzy initial direct-relation matrix Ã. The opinion of each expert 

is captured in a separate fuzzy matrix presented in Eq. (6.1), where s is the number 

of experts with 1 s S   and 
,( ),s s s s

ij ij ij ija l m r=
 (1 ,i j n  ) indicates the judgement 

of the influence of barrier i on barrier j. Then, the fuzzy direct-relation matrix A  that 

aggregates the opinions from all invited experts can be obtained, with the element 

ija
 calculated by Eq. (6.2). The diagonal element (i = j) of the matrix A  is (0, 0, 0). 

 

Table 6.3. Triangular fuzzy numbers 

Linguistic term Influence score 

Triangular fuzzy 

number 

No influence 0 (0, 0, 0.25) 

low influence 1 (0, 0.25, 0.50) 

Medium influence 2 (0.25, 0.50, 0.75) 

Strong influence 3 (0.50, 0.75, 1) 

Very strong influence 4 (0.75, 1, 1) 
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• Step 3: Defuzzifying fuzzy numbers to crisp values. There is a need for 

defuzzification since the form of fuzzy numbers is not compatible with various 

matrix operations (Yadav et al., 2023). The defuzzification converts the fuzzy 

numbers to crisp values. The fuzzy numbers are defuzzied using the method adopted 

by Madhavan et al. (2021), i.e., best non-fuzzy performance (BNP). The crisp value 

of the fuzzy numbers can be computed with Eq.(6.3): 

( ) ( )
3

ij ij ij ij

ij ij

m l r l
BNP l

− + −
= +

                             (6.3) 

where ijBNP
 represents the achieved crisp value. After the defuzzification process, 

the new matrix B is obtained as 
ij n n

B BNP


 =   . 

 

• Step 4: Constructing the normalized direct-relation matrix D. The matrix B can be 

normalized through Eq.(6.4) and Eq.(6.5) to acquire the normalized direct-relation 

matrix D. A commonly utilized method for normalization is employing the 

normalization factor k calculated by Eq.(6.4). The normalized direct-relation matrix 

D is developed by multiplying the normalization factor k by the matrix B:  

( )1
1

1

max n

j ij
i n

k
BNP=

 

=


                                         (6.4) 
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D k B=                                                     (6.5) 

• Step 5: Obtaining the total-relation matrix T. Once the normalized direct-relation 

matrix D is constructed, the total-relation matrix T that reflects the overall impact 

relationship between barriers can be computed via Eq.(6.6).  

( )
1

T D I D
−

= −                                           (6.6) 

where I is the identity matrix. 

 

• Step 6: Calculating the row sums and column sums from the total-relation matrix T. 

Suppose ijt
 is the (i, j) element of matrix T, then the sum of 

thi  row iR  and sum of 

thj  column jC
 can be calculated by Eqs. (6.7)-(6.8).  

1

n

i j ijR t==                                                         (6.7) 

1

n

j i ijC t==                                                          (6.8) 

 

• Step 7: Determining the importance and net effect degree of barriers. The 

importance degree R+C measures the prominence of a barrier. The net effect degree 

R-C represents the cause-effect relationship between the barriers, which categorizes 

barriers into “cause” and “effect” groups. It can be explained that if the value of R-

C is positive, the barrier belongs to the “cause” group. In contrast, if the value of R-

C is negative, the barrier belongs to the “effect” group. 

• Step 8: Developing the causal diagram. The causal diagram is created by mapping 

the data set of (R+C, R-C), with R+C being the horizontal axis and R-C being the 
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vertical axis. 

6.3 Results 

The reliability of the questionnaires was assessed by the indices of Cronbach’s α (Pan 

et al., 2020). The value of Cronbach’s α from data on all the 132 assessed cells was 

0.975 and it revealed that the obtained results are highly reliable (α > 0.7). The results 

of the method were presented from two aspects: Importance analysis and causality 

analysis. The importance degree (R+C) and the net effect degree (R-C) of identified 

barriers are presented in Table 6.4. Furthermore, as shown in Figure 6.3, the causal 

diagram can be obtained via mapping the dataset of (R+C, R-C). Based on Table 6.4 

and Figure 6.3, key barriers can be identified with consideration of the importance 

degree, net effect degree, R and C values. Details of these two types of analysis are 

presented in the following section. 

6.3.1 Results of the Importance Analysis 

The results of blockchain adoption barriers in construction were presented from two 

aspects: Importance analysis and causality analysis. The R+C value refers to how 

important a barrier is to the whole system, thus facilitating the identification of key 

factors. As shown in Table 6-.4, environmental barriers have the highest average value 

of 22.16, followed by organizational barriers at 22.09, while technological barriers have 

the lowest average of 21.47.  
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Table 6.4. Degree of blockchain adoption barriers 

TOE Barriers R C R+C 

R+C 

Rank 

R-C 

R-C 

Rank 

Class 

Technological barriers   

21.4

7 

 0.33   

T1: Scalability 

10.

56 

10.6

5 

21.2

1 

11 

-

0.09 

7 Effect 

T2: Smart contracts’ security 

11.

31 

10.6

7 

21.9

7 

6 0.64 3 Cause 

T3: Immutability challenge of smart 

contracts 

10.

84 

10.3

5 

21.1

9 

12 0.50 4 Cause 

T4: Interoperability 

11.

20 

10.3

1 

21.5

0 

9 0.89 2 Cause 

Organizational barriers   

22.0

9 

 

-

0.34 

  

O1: Lack of awareness and 

understanding of blockchains 

11.

68 

10.4

5 

22.1

3 

4 1.23 1 Cause 

O2: Resistance in changing original 

management process 

10.

56 

11.5

6 

22.1

1 

5 

-

1.00 

11 Effect 

O3: Financial constraints 

11.

05 

10.7

7 

21.8

3 

7 0.28 5 Cause 

O4: Lack of sufficiently skilled people 

10.

75 

11.0

7 

21.8

2 

8 

-

0.31 

8 Effect 

O5: Negative attitudes towards data 11. 11.5 22.5 2 - 10 Effect 
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privacy issues and data disclosure 01 5 7 0.54 

Environmental barriers   

22.1

6 

 

-

0.53 

  

E1: Lack of collaborative culture 

10.

70 

10.5

5 

21.2

5 

10 0.15 6 Cause 

E2: Lack of mature policy 

environments 

10.

60 

11.8

7 

22.4

8 

3 

-

1.27 

12 Effect 

E3: Industry concerns about 

technological maturity 

11.

14 

11.6

1 

22.7

5 

1 

-

0.47 

9 Effect 

 

As shown in Figure 6.3, these average values (22,16, 22.09, and 21.47) were used as 

thresholds for categorizing identified barriers into three classes (Pan et al.,2020). The 

right part (R+C ≥ 22.16), referred to as Class Ⅲ, contains the most critical barriers E3, 

O5, and E2. The left part (R+C ≤ 21.47), termed as Class Ⅰ, includes E1, T1, and T3. 

The remaining is Class Ⅱ (21.47<R+C<22.16), containing T2, T4, O1, O2, O3, and O4. 

Thus, E3, O5, and E2 are critical barriers according to the importance analysis. 
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Figure 6.3. The causal diagram of blockchain adoption barriers. 

6.3.2 Results of the Causality Analysis 

The R-C value reveals the influential power of each barrier. More specifically, barriers 

(R-C > 0) that may drive change and have a lasting impact on the system, while barriers 

(R-C < 0) that are reactive and tend to be influenced by other factors were placed in the 

effect group. Thus, barriers in the cause group should be prioritized when making the 

policy. According to R-C values, O1, T4, and T2 are the top three casual barriers. That 

is, these barriers have high influential impacts upon others. O3 is also the cause barrier 

in Class Ⅱ. Although T3 and E1 are in the cause group, they are not considered key 

barriers due to the low importance value. In summary, seven key barriers were identified 

based on the importance and causality analysis results: T2, T4, O1, O3, O5, E2, and E3.  
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6.4 Discussion and Implications 

6.4.1 Discussion 

The gap between increased academic interest and actual implementation necessitates a 

comprehensive grasp of the barriers to blockchain adoption. This study employed the 

technology-organization-environment (TOE) framework to identify thirteen barriers, 

among which the fuzzy Decision-Making Trial and Evaluation of Laboratory 

(DEMATEL) method identified seven key ones: T2, T4, O1, O3, O5, E2, and E3. 

Notably, except for T1, most of the technological barriers belong to the cause group, 

indicating that blockchain adoption is predominantly driven by technology. The 

identification of T4 and T2 as key barriers is consistent with previous studies (Li and 

Kassem, 2021; Wang et al., 2022b). For instance, Wang et al. (2022b) noted that 

blockchain compatibility and technological maturity affected stakeholders’ perceived 

ease of use. Moreover, smart contracts’ security is crucial given that they involve high-

value assets, and their vulnerabilities, including confidentiality, integrity, non-

repudiation, authentication, and authorization, should be considered during deployment 

(Hasan and Salah, 2018). Notably, the decentralized autonomous organization (DAO) 

incident in 2016 demonstrated the potential risks of insufficient smart contract security. 

T2 underscores the importance of interoperability, which can refer to interactions 

between blockchain and traditional information systems, such as building information 

modeling (BIM), or among different blockchain networks. Currently, blockchain is not 

ideally suited for storing large amounts of data, such as BIM models and on-site videos. 

However, recent studies have proposed solutions to address this issue, such as Tao et al. 

(2022)’s work on the first problem, while supranational standardization at different 
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levels could facilitate cross-blockchain data sharing (Ølnes et al., 2017).  

 

The study also finds that most organizational barriers (O1, O3, and O5) and 

environmental barriers (E2 and E3) have high R+C values, indicating their significance 

in promoting blockchain adoption. In particular, O1 and O3 are causal barriers with high 

R+C values. Such findings are consistent with Xu et al. (2023), in which the author 

claimed that construction firms do not understand blockchain potentials and do not know 

how to implement blockchains. For example, project managers may have 

misconceptions about blockchain’s relationship with Bitcoin. As highlighted by Li et al. 

(2022c) and Zhang et al. (2023), financial costs may also discourage construction 

companies from adopting blockchain technology.  

 

Additionally, E2 and E3 are identified as critical barriers due to their high R+C values, 

supported by recent reports and the study of Wang et al. (2020a). Wang et al. (2020a) 

found that policy support could be an essential reason for China’s success in the 

blockchain domain. The policy supports, such as the “Guidance on accelerating the 

application and industrial development of blockchain technology” in China and “The 

national blockchain roadmap: Progressing towards a blockchain-empowered future” in 

Australia, could play a vital role in promoting blockchain adoption in the construction 

industry. 

6.4.2 Theoretical Contributions and Practical Implications 

This paper has made several theoretical contributions:  

• First, the study identified and examined the blockchain adoption barriers based 
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on previous literature within the technology-organization-environment (TOE) 

framework. The proposed TOE adoption barriers can serve as a valuable resource 

for future research in this area. 

 

• Second, the fuzzy Decision-Making Trial and Evaluation of Laboratory 

(DEMATEL) method was employed to investigate the causal interrelationships 

among the identified barriers and to identify key barriers. The use of this method 

improved the reliability of the analysis by handling biases and fuzziness in 

expert-made evaluations. The study identified seven key barriers, namely T2, T4, 

O1, O3, O5, E2, and E3, through importance and causality analysis, which can 

help policymakers prioritize their efforts in decision-making. 

 

Regarding practical contributions, the study suggested that policymakers should 

prioritize the identified key barriers since tackling all barriers simultaneously is not 

feasible. The findings of this research can support the policymaking process and 

accelerate the implementation of blockchains in the construction industry. The study 

recommended the following practical implications for policymakers: 

• First, the government should issue relevant regulations for blockchain projects 

to alleviate concerns regarding policy uncertainties. Legal issues should be 

addressed, such as the admissibility of on-chain data as evidence, the right to be 

forgotten, and the legally binding status of smart contracts (Cermeño, 2016; Li 

and Kassem, 2021). Additionally, subsidies should be provided to facilitate the 

diffusion of blockchains in the construction industry (Ding et al., 2023), and 

relevant training and education programs should be established to enhance 



138  

project actors’ understanding of blockchain. 

• Second, relevant governance frameworks and technological standards based on 

the characteristics of construction projects at the industry level should be 

introduced. Governance frameworks should take into consideration participant 

liability, correction methods, and dispute resolution methods(Janssen et al., 

2020). Technical standards should be developed to reduce technical uncertainties 

related to implementing blockchains in construction projects. Modular protocols, 

for instance, can ensure that different blockchains do not become closed or 

unable to connect with each other. 

• Thirdly, construction organizations should help project managers acquire 

blockchain knowledge to reduce their bias or preference toward blockchain 

technology. According to the status quo bias theory (Samuelson and Zeckhauser, 

1988), individuals are resistant to adopting new technology when their bias 

remains with their current technology. Figure 6.4 summarizes the implications 

of this study. 

 

Figure 6.4. Implications from the government, industry, and organization level. 
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6.4.3 Limitations 

This study has several limitations: 

• First, the results of this study are based on the expert group’s subjective 

judgments. Such a limitation is frequently associated with exploratory research. 

Given the infancy of blockchain technology interventions in construction 

research and practices, a broad-based study is difficult. Few experts, especially 

from the industry, have enough knowledge of blockchains. Aiming to guarantee 

the reliability of the result, participants should be knowledgeable in construction 

project management and blockchain. In this study, we used purposeful sampling 

(e.g., searching scholars who have published blockchain articles and project 

managers involved in related projects) to ensure the quality of responses, which 

also limits the sampling size. Only 20 experts with relevant experiences were 

invited to this research, and the fuzzy set was used to reduce the influence of bias 

of a small expert group. With the development of blockchain, future studies can 

consider a large scale in terms of the number of respondents, especially industrial 

experts. Moreover, academics and practitioners (e.g., owners, contractors, 

supervisors, and so on) may hold different viewpoints on adopting this emerging 

technology. Future studies should seek feedback from a diverse range of 

stakeholders and analyze similarities and differences in their perspectives. 

• Second, most of the invited experts come from China due to the data accessibility 

and China’s leadership position in the blockchain. The author acknowledges that 

this attribute of our respondents may have an impact on the findings’ 

generalizability. For the sake of generality, a comparative analysis is required for 

multicounty comparison to assess the effect of variables on blockchain adoption 
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from different countries. 

6.5 Chapter Summary 

This chapter conducts a fuzzy Decision-Making Trial and Evaluation of Laboratory 

(DEMATEL) based analysis to identify key barriers hindering blockchain adoption in 

construction. Blockchain adoption barriers are firstly determined with the technology-

organization-environment (TOE) framework that considers technological, 

organizational, and environmental contexts. Based on the data collected from 20 

qualified experts, seven key barriers were identified through the importance analysis 

and causality analysis, termly, T2, T4, O1, O3, O5, E2, and E3. Policy suggestions were 

proposed from the governmental, industrial, and organizational levels. Overall, this 

study makes contributions to the existing body of knowledge by reviewing blockchain 

adoption barriers within the TOE framework, identifying key barriers, and proposing 

corresponding solutions to facilitate blockchain diffusion.
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CHAPTER 7  Conclusion 

7.1 Introduction 

This chapter firstly reviews the research objectives of this thesis. Then, key findings are 

highlighted, followed by their significance and contributions. Finally, the 

recommendations for future studies are discussed. 

7.2 Review of Research Objectives 

Construction quality significantly affects the structural integrity, functionality, and 

safety of occupants. Unfortunately, quality failures seem to be an ever-present reality in 

the construction industry. Three issues hindering the improvement of construction 

quality performance are highlighted in terms of the whole construction process. Firstly, 

traditional construction conventions are labor-intensive, and the quality performance of 

final products is inseparable from on-site productive workers, especially for several 

types of construction products that cannot be directly measured, like concrete grouting 

for connecting precast components. However, construction workers often endure 

physical fatigue since they need to complete highly physically demanding tasks, and 

fatigued workers easily make mistakes, degrading workmanship. Secondly, 

postconstruction quality inspection is usually conducted by quality inspectors. Manual 

quality defection inspection (QDI) has limitations in efficiency, accuracy, and reliability. 

Thirdly, the construction project is a temporary organization involving various 

stakeholders. These project actors with different objectives, expectations, and interests 

must interact over long time horizons. Conflicts and opportunistic behaviors are usually 
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observed due to the lack of credible information for quality traceability. The 

development of worker-robot collaboration (WRC) and blockchain technology could 

address these quality issues. 

 

However, several research problems should be tackled when utilizing the WRC and 

blockchain-based construction quality management in future. First, safety concerns, e.g., 

collision risks, hinder the implementation of WRC teams. Collaboration cannot be real 

until workers’ safety can be guaranteed. The worker may need a reliable and easy-to-

use interaction method to control the robotic assistant. Second, data privacy concerns 

limit the application of multi-robot-based quality defect inspections since collecting 

sufficient data for training a powerful deep learning model is usually time-consuming 

and costly in practices. Construction practitioners may encounter the data availability 

problem. Third, there is a lack of discussions related blockchain-based on-site 

construction activity information recording. Finally, considering that blockchain is an 

institutional technology and its adoption will meet more resistances than other digital 

technologies, it is necessary to investigate possible blockchain adoption barriers and 

identify key ones. 

 

In light of these questions, research objectives (RO) and chapter structures discussed 

previously are presented as follows: 

• RO1: To demonstrate the feasibility of thermal image-based hand gesture 

recognition for on-site WRC and design a lightweight network to help resource-

constrained construction robots recognize hand gestures. This RO is answered in 

Chapter 3. 
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• RO2: To develop a hierarchical federated learning (FL) framework to help 

multiple construction robots collaboratively train the defect detection model 

without sharing their local data. This RO is illustrated in Chapter 4. 

• RO3: To design a decentralized blockchain framework for recording 

construction process information and to develop a prototype for supporting 

quality traceability and accountability. This RO is tackled in Chapter 5. 

• RO4: To investigate blockchain adoption barriers, identify key ones, and 

propose policy suggestions for promoting blockchain implementation in the 

construction industry. This RO is introduced in Chapter 6. 

7.3 Summary of Main Findings 

The key findings of this research are presented below. Firstly, current construction 

robots are technically incapable of autonomously performing much useful construction 

work. Worker-robot collaboration (WRC) is a promising method in which the human 

worker carries out the planning task and supervises the robot assistant to execute tasks 

that require physical exertion. A thermal image-based hand gesture recognition method 

was proposed for safe and efficient interactions in WRC. A thermal dataset containing 

seven gestures was established, and a lightweight model, termly, ThermalNet, was 

developed. Experimental results demonstrated the superiority of the ThermalNet 

compared to other advanced lightweight models, such as MobileNetV2, MobileNetV3, 

and ShuffleNetV2. Specifically, ThermalNet has fewer parameters (1.8 million), higher 

accuracy (97.54%), and minimum latency (7.98ms in GPU and 72.31ms in Raspberry 

Pi). 
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Secondly, existing DL works concentrated on improving accuracy, and limited attempts 

have been made to investigate the data availability and privacy issues in quality defect 

inspection (QDI) tasks. A three-fold hierarchical federated learning (FL) framework was 

proposed to help different construction robots collaboratively train the defect detection 

model without averaging data. Given the crack segmentation as the case, the CrackNet 

was developed. Experimental results indicated that CrackNet with fewer parameters 

achieves comparable performance with other segmentation algorithms. The proposed 

FL training strategy has better performance than the traditional centralized training 

strategy in terms of intersection over union (IoU) and F1. Moreover, the three-fold FL 

method can reduce communication costs when compared to traditional client-device FL 

methods. 

 

Thirdly, blockchain is an ideal solution for quality information management, while 

previous studies mainly concentrated on supply chain information or quality inspection 

texts. Little is known about blockchain-based construction process information 

recording. A conceptual framework integrating computer vision and blockchain 

technology was proposed to bridge this gap. This framework contains two layers: (1) 

the information collection and processing layer; (2) the blockchain layer. Worker 

activities during the construction process are recorded by far-field surveillance videos 

and then extracted by DL models. The extracted information, as well as the raw data, 

would be recorded in the blockchain system for process quality traceability. Hyperledger 

Fabric was regarded as the proper architecture for construction quality management. 

Additionally, a consortium blockchain prototype was developed based on the 

Blockchain as a Service (BaaS) platform. Experimental results demonstrated the 
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feasibility of the prototype. Specifically, it can reach an acceptable throughput of around 

750 with a blockchain size of 2500. The maximum latency was still controlled in 3s with 

ten nodes. 

 

Fourthly, there is a paucity of blockchain implementations from real-world construction 

projects. Blockchain adoption may confront various barriers from technology-

organization-environment (TOE) contexts. Based on a systematic literature review, 13 

barriers were determined within the TOE framework. The fuzzy Decision-Making Trial 

and Evaluation of Laboratory (DEMATEL) method was used to identify key factors 

through the importance and causality analysis. The results revealed that the construction 

industry is more concerned with environmental barriers, such as policy uncertainties (E2) 

and technology maturity (E3), while most technical barriers are causal factors, such as 

“interoperability (T4)” and “smart contracts’ security (T2)”. Policy suggestions from 

the government, industry, and organization levels were proposed to promote blockchain 

adoption in the construction industry. 

7.4 Significance and Contributions 

This research has several practical implications and meanings. It can facilitate the 

improvement of construction quality performance by proposing numerous digital 

solutions to tackle current construction quality management issues. More specifically, 

the proposed method in Chapter 3 enables the transition from labor-intensive 

construction conventions to worker-robot collaboration (WRC) teams, which can in turn 

reduce quality errors in construction. The proposed method in Chapter 4 provides 

construction organizations with a feasible way to conduct quality inspection tasks with 
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robots, which can enhance inspection efficiency and result reliability. The developed 

method allows robots from different projects to form a system and collaboratively train 

the defect detection model without data privacy and leakage risks. Moreover, the 

proposed method in Chapter 5 enables worker activity information during the 

construction process to be immutably recorded. The recorded data can support quality 

traceability and accountability, reduce disputes, and mitigate opportunistic behaviors in 

inter-organizational collaborations. However, blockchain is more than an information 

innovation for a single organization and represents a wider revolution in institutions, 

organizations, and governance. Hence, its adoption will definitely meet numerous 

resistances. Thus, Chapter 6 provides policymakers, researchers, and practitioners with 

a comprehensive understanding of blockchain adoption barriers and supports policy-

making processes by identifying key barriers from the government, industry, and 

organization levels. 

 

Additionally, the theoretical contributions of each research topic are listed as follows: 

• This study provided a feasible method to support safe and efficient WRC. This is 

one of the first studies investigating thermal image-based hand gesture recognition 

(HGR) in WRC applications. Existing methods relying on 3-channel RGB images 

are prone to be affected by on-site environmental disturbances (e.g., poor 

illumination at night). Moreover, the developed lightweight model allows resource-

constrained robots to accurately recognize gestures from thermal images. This model 

inspires more attention to the practical feasibility of deep learning (DL) models. 

• This research first noticed data availability and privacy issues when applying 

construction robot systems in quality defect inspection (QDI) tasks. Existing defect 



147  

detection studies mainly concentrated on improving the performance of DL models. 

A hierarchical federated learning (FL) framework was proposed to tackle these 

issues. This is one of the first studies that explored FL potential in QDI tasks. 

Additionally, a lightweight segmentation algorithm was proposed to reduce 

communication costs in FL training processes. 

• This research provided a blockchain-enabled framework to record activity 

information of on-site workers for quality traceability. Previous studies in the 

construction industry mainly focused on the recording of supply chain information 

or quality inspection texts. Little is known about construction process traceability. 

The proposed conceptual framework bridge this knowledge gap. Moreover, a 

prototype was developed based on a general Blockchain as a Service (BaaS) 

platform. 

• This research identified blockchain adoption barriers within the technology-

organization-environment (TOE) framework, which can serve as a valuable resource 

for future research. Causal interrelationships among these barriers were examined 

through the fuzzy Decision-Making Trial and Evaluation of Laboratory (DEMATEL) 

method that can handle biases and fuzziness in expert-made evaluations and enhance 

the reliability of the results. 

7.5 Recommendations for Future Research 

This section discusses future research directions in worker-robot collaboration (WRC) 

and decentralized blockchains for enhancing the quality performance of construction 

projects. 
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Firstly, how to achieve safe and efficient WRC should be further explored. For example, 

future works will focus on thermal and RGB data fusion-based hand signal recognition. 

RGB images typically have high spatial resolution and considerable detail (e.g., color 

feature, texture information, etc.), while thermal data is robust to lighting conditions. 

The fusion is more informative than that of single-modality signals. However, how to 

leverage the useful modality information while avoiding redundant features is still a 

challenge. Moreover, worker intention prediction could be discussed. Current WRC 

methods highly rely on human-dominated communications. One-way communications 

are far away from natural, efficient, and safe WRCs because they bring additional 

cognitive overload to human workers. Giving two workers’ corporations as an example, 

both of them can know the interaction intention of the other and can give assistance in 

real time. Hence, a promising solution is to consider a new paradigm of proactive WRC, 

in which robots have the ability to understand worker intentions and then proactively 

offer physical assistance instead of just receiving instructions from human workers. That 

is, a robot can give proactive assistances that is timely, task-appropriate, and wanted by 

the worker. However, seldom has investigated the feasibility of worker intention 

recognition in construction. 

  

Secondly, future studies could investigate the feasibility of blockchain-based federated 

learning (FL) in construction quality inspection. Blockchain can ensure data privacy, 

model security, and computation auditability. Future studies can focus on blockchain-

empowered FL, especially the issues of designing high-efficiency consensus and 

incentive mechanisms. 
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Thirdly, blockchain could be a new type of governance mechanism for construction 

projects since it provides accurate and trustworthy information records for quality 

accountability and automates some transactions with smart contracts. Future studies can 

focus on (1) combining different sensing technologies to systematically extract different 

types of quality information for traceability; (2) designing smart contracts for the 

compliance checking of construction procedures during a specific period; and (3) 

automating the generation of smart contracts for quality compliance checking. 

  

Finally, in terms of blockchain adoption, future studies can collect data from different 

participants to find any differences between different groups. For example, the 

multistakeholder approach could be used to compare opinions from stakeholders (e.g., 

owners, contractors, supplies, etc.) with varying backgrounds and expectations. 

Moreover, longitudinal studies could be adopted to explore the evolution of these 

barriers and illustrate how much they may shift in specific projects. Game theories can 

also be used to test the role of specific factors in blockchain implementation. 
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