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Abstract
Since its emergence as a formal science in the 1970s, mod-

ern cryptography has experienced remarkable progress. A no-

table milestone is the introduction of public-key cryptography

by Diffie and Hellman in 1976, which has revolutionized secure

communication and computation. It is now an indispensable

aspect of our digital life, providing a range of security and pri-

vacy solutions.

Modern public-key schemes are designed to meet diverse

functionality and security demands, and must be rigorously

validated within security models that accurately reflect real-

world attack scenarios. However, with the continual advance-

ment of computer science and its widespread applications, there

is a dual effect: it provides personalized services and conve-

nience, but also brings new challenges in security and function-

ality for existing public-key cryptographic systems. For exam-

ple, today’s growing complexity in interaction and deployment

environments enables adversaries to gain additional informa-

tion and launch novel attacks on existing protocols. There-

fore, it becomes essential to develop enhanced security models

that consider the influence of these additional entities. Further-

more, the extensive collection and use of personal information

by various companies and organizations, aimed at improving

service quality and convenience, raise critical security and pri-

vacy challenges when making use of sensitive and distributed
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data.

This dissertation focuses on making public-key cryptogra-

phy more practical in the face of functionality and security chal-

lenges raised in real-world applications. At the same time, we

assess the overheads associated with integrating cryptographic

protocols into systems, ensuring efficient deployment in prac-

tical settings. Our research concentrates on three representa-

tive areas of public-key cryptography: digital signatures, zero-

knowledge proofs, and blockchain applications.

In more detail, we address new security demands by inves-

tigating enhanced models within the context of strong desig-

nated verifier signature (SDVS) schemes and propose a generic

framework that meets these enhanced models. Addressing func-

tionality demands in two-party data analysis, we introduce a

zero-knowledge argument of knowledge protocol for the Pail-

lier cryptosystem, offering active security in data aggregation.

Lastly, we explore the development of a fully decentralized

electronic voting system, integrating blockchain technology and

other public-key primitives to reduce dependency on trust and

ensure comprehensive security and functionality.

More specifically, we present the following results.

• We introduce two enhanced models in strong designated

verifier signatures that account for potential security in-

fluences from more entities, namely, multi-user and multi-

user+. We also provide a generic construction utilizing a
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key encapsulation mechanism and a pseudorandom func-

tion, proving its security under our new models. Addi-

tionally, we offer several instantiations. Each is based on

different security assumptions, allowing us to achieve dis-

tinct characteristics. Furthermore, diverse key encapsula-

tion mechanisms can be employed to tailor SDVS schemes

to specific needs.

• We propose an efficient zero-knowledge argument of knowl-

edge system for the Paillier cryptosystem. Our system fea-

tures sub-linear proof size, low verification cost, and man-

ageable proof time, while also supporting batch proof gen-

eration and verification. We instantiate our system in vari-

ous scenarios and conduct comprehensive experiments to

assess its practicality. Scenario 1 is Paillier with packing.

When we pack 25.6K bits into 400 ciphertexts, a proof that

all these ciphertexts are correctly computed is 17 times smaller

and is 3 times faster to verify compared with the naive

implementation: using 25.6K OR-proofs without packing.

Furthermore, we can prove additional statements almost

for free, e.g., one can prove that the sum of a subset of the

witness bits is less than a threshold t. Another scenario

is range proof. To prove that each plaintext in 200 Pail-

lier ciphertexts is of size 256 bits, our proof size is 10 times

smaller than the state-of-the-art. Results demonstrate that
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our system is asymptotically more efficient than the state-

of-the-art and is particularly well-suited for situations in-

volving a large number (over 100) of Paillier ciphertexts,

which frequently occur in real-world applications.

• We present an electronic voting system based on blockchain

technology that features fully distributed authorities. To

distribute trust in the registration process, we employ thresh-

old blind signatures while maintaining the anonymity of

the voters. We also utilize a threshold decryption scheme

to distribute authorities in the tallying phase. By integrat-

ing these techniques with using a blockchain as the public

bulletin board, our system attains verifiability, eligibility,

fairness, and anonymity properties. We also implement

our system to evaluate its efficiency and overall perfor-

mance. Our experimental results show that our proposed

system is efficient enough for real deployment while main-

taining the common security guarantees required in an e-

voting system.
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Chapter 1

Introduction

Cryptography has been utilized for thousands of years. Ini-

tially, it relied predominantly on creativity rather than rigorous

theory during the period known as “classical cryptography”.

However, starting in the 1970s, a rich body of theory emerged,

enabling cryptography to evolve into a science, which we now

refer to as “modern cryptography”.

Public-key cryptography (PKC), introduced by Diffie and

Hellman [Dif76] in 1976, is a prominent branch of modern cryp-

tography. It is extensively used in our daily lives. Generally, it

has a public and secret key pair, where the public key is dissem-

inated publicly while the secret key is only known to the owner.

PKC requires different keys in distinct phases of a public-key

scheme, and popular PKC schemes include digital signatures,

zero-knowledge proof (ZKP) systems, and encryptions. Addi-

tionally, blockchain, one of the most prevalent contemporary

systems, extensively incorporates these PKC techniques in its

architecture to attain various security assurances.
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PKC has been extensively applied and has brought signifi-

cant benefits to our everyday lives, particularly in this era dom-

inated by digital computation. For instance, in blockchain sys-

tems, an individual’s address is replaced by its public key, and

a transaction links public keys of the payers and payees. Au-

thorizing a transaction requires the owner to attach a corre-

sponding signature using its secret key. However, as the num-

ber of transactions on the blockchain grows, it becomes infeasi-

ble to place all transactions on-chain. To address this scalability

problem, zero-knowledge proofs can be utilized by placing the

proof, instead of the whole transaction, on-chain, as exempli-

fied in Zcash [Zca]. Furthermore, another recent application

is to use zero-knowledge proof systems to prove the integrity

of machine learning predictions. That is, the owner of a con-

volutional neural network model can prove that the prediction

of a data sample is computed from the model without leaking

additional information [LXZ21].

Modern cryptography necessitates that PKC schemes should

achieve provable security. To ensure this, generally, we begin

by identifying the security requirements that a desired scheme

should satisfy. Subsequently, we propose a cryptographic prim-

itive or protocol. Finally, we prove that the newly proposed

construction indeed fulfills our predefined security criteria.

To be more specific, to define security in the first step, we

usually define a game between an adversary and the challenger

by abstracting potential attacks happen in the real life, together
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with defining what kind of information that the attacker could

obtain through their interaction. To prove the security, we usu-

ally do a security reduction by utilizing some mathematical

problems that are widely believed to be hard. After proving

its security correctly, the proposed scheme is provably secure

under some computation assumptions as the underlying prob-

lem (e.g., the problem of prime factorization of large numbers)

is believed to be infeasible to be solved in polynomial time.

However, as technology continues to advance and become

more integrated into daily life, the deployment environments

for PKC schemes are also undergoing significant changes. Con-

sequently, new security and functionality demands are raised.

For example, the increasing complexity of real-world deploy-

ment environments necessitates the development of new and

enhanced security models to accurately capture these intricate

interactions. Moreover, in an era where data is extensively col-

lected by a variety of distributed sources, including compa-

nies, devices, and organizations, there emerges a critical de-

mand to securely utilize this distributed data without compro-

mising privacy. Consequently, the development of novel PKC

schemes that cater to these evolving security models and func-

tionality demands becomes imperative. Such advancements

are crucial for enhancing the practicality and effectiveness of

PKC schemes in our rapidly evolving digital landscape.

This thesis explores the evolving security and functionality
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requirements in public-key cryptography, specifically concen-

trating on digital signatures, ZKPs, and blockchain systems.

We introduce innovative constructions that are provably se-

cure, tailored to meet the contemporary challenges posed by

recent practical applications, to make PKC schemes more prac-

tical.

Digital Signatures. Digital signature schemes are one of the most

widely adopted public-key cryptographic infrastructures, de-

signed to guarantee the authenticity of a message. To sign a

message, a secret key is required, while verifying the signa-

ture requires the associated public key. Since its introduction,

digital signature schemes have found numerous applications

in real-life scenarios, and a rich body of research has explored

their different variants and security models.

Traditionally, a digital signature scheme allows anyone hold-

ing the public key to verify the validity of a signature signed

by the corresponding private key. This property is advanta-

geous in scenarios such as the dissemination of announcements

where the more distributed the better. However, it may not be

suitable in cases where the signature relates to commercially

sensitive information. Direct transfer of such signatures may

lead to industrial espionage.

Designated verifier signature (DVS) schemes [JSI96a] offer a

solution to the limitation of traditional digital signature schemes

where a signature can be easily transferred to any third party. A
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DVS scheme allows the signer to convince a designated verifier

that a message has been endorsed without the ability to trans-

fer that conviction to any other party. This is achieved through

the property that the signature can be generated by either the

signer or the verifier, making it publicly verifiable. However,

anyone can tell that a signature is generated from two potential

signers (i.e., the signer and the designated verifier). To enhance

signer’s privacy, a variant of the DVS scheme called strong des-

ignated verifier signature (SDVS) scheme [JSI96a, SKM03a] is

proposed, by disallowing public verification. This is accom-

plished by requiring the designated verifier’s secret key to ver-

ify the signature’s validity, ensuring that only the verifier can

determine the real signer’s identity.

The standard abstract model for a SDVS scheme assumes

only one signer and one verifier. However, real-life applica-

tions may involve multiple signers and verifiers, which requires

rethinking the security model and potential threats posed by

multiple dishonest participants. Malicious actors may forge a

dishonest signer or verifier, which can compromise the security

of SDVS schemes designed for the previous model. Therefore,

it is crucial to develop new SDVS schemes that are secure in the

presence of multiple cheating participants.

Consider the following SDVS scheme. Let G, GT be cyclic

groups of the same order and ê : G ⇥ G ! GT be a bilinear

pairing between these groups. Let g be a generator of G. Fur-

ther assume H : {0, 1}⇤ ! G, be a hash function from {0, 1}⇤ to
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G. The public-secret key pair of our example scheme is set as

(pk, sk) = (gx, x).

When the signer (with public/secret key (pks, sks)) generates

a signature s for the designated verifier (with public/secret key

(pkv, skv)) on message m, it computes signature s = ê(pksks
v , H(m)).

This signature’s validity can be verified by the verifier through

checking if s
?
= ê(pkskv

s , H(m)). It can be proven easily that the

scheme is unforgeable in the single-user setting under the BDH

hardness assumption, where H is a random oracle. In addition,

it enjoys signer’s privacy since identifying the actual signer im-

plies solving the DBDH problem.

In practice, the signer may generate signatures for different

designated verifiers. However, this introduces new security

challenges. If an attacker gains control of the keys of the veri-

fiers for which the signer has generated signatures, the security

of the above example scheme may be compromised. To fur-

ther illustrate, suppose the attacker aims to forge a signature

on the message m intended for the verifier pkv. The attacker

may first creates a “rouge key” of the form pk0v = (pkv)
k for

some randomly chosen k. He may request a signature from the

signer on message m with respect to pk0v. The signature is of the

form s = ê(pk0sks
v , H(m)). The attacker can compute s0 = s

1
k

as a valid forgery on m under pkv. Therefore, it is necessary to

re-evaluate the security model of SDVS schemes in situations

where multiple users are involved, as a scheme that is secure in

the existing model may not be sufficient considering practical
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applications.

To address the security challenges with having multiple po-

tentially malicious signers and verifiers, raised in a more com-

plex deployment environment in practice, it is imperative to

enhance the security guarantees for SDVS schemes. Moreover,

exploring novel constructions to satisfy these new security mod-

els and rigorously proving their security is essential. This ad-

vancement is crucial for ensuring the efficacy of SDVS schemes

in real-world applications, where numerous users are involved,

and the likelihood of malicious attacks is elevated.

Zero-knowledge Argument for Paillier Systems. In today’s intercon-

nected world, data is collected and distributed across differ-

ent individuals, companies and organizations. On one hand,

making use of all these distributed data will improve analy-

sis quality and help to provide personalized service. On the

other hand, since these data may include private information,

disclosing them to other collaborators may break their privacy

guarantees. The new demand for functionality requires collab-

orative use of all these distributed data to improve service qual-

ity, while maintaining privacy guarantees.

To address these concerns in cryptography, we can leverage

homomorphic encryption (HE). Generally, it allows operations

over encrypted messages without decryption or the knowledge
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of secret keys. Additive homomorphic encryption (AHE) is of-

ten sufficient for practical deployment due to its efficiency, al-

lowing for the addition operations. It is widely used in feder-

ated learning [ZLX+20, NWI+13], private information retrieval [GH19,

FIPR05], oblivious transfer [Lin08], and electronic voting (e-

voting) [KY04, DJ01a] for privacy guarantee. Its characteris-

tic also facilitates data flow across mutually distrusted orga-

nizations. Based on it, many privacy-preserving data aggre-

gation schemes1 [JK12, RN10, SCR+11, PBBL11, JL13, SCR+11,

BIK+17, CGB17, EDG14, MDDC15, ET12] have been proposed

recently.

However, a malicious party may behave dishonestly, attempt-

ing to obtain private information by deviating from the pre-

scribed protocol through interaction in real-world applications.

To counteract such malicious behavior, one possible approach

requires participants to prove that they have correctly com-

pleted each step. To achieve this objective without compromis-

ing privacy, a zero-knowledge proof (ZKP) system [MR+89] is

typically employed to provide active security for the existing

schemes.

ZKP systems serve as fundamental building blocks in nu-

merous cryptographic protocols. They enable a prover to per-

suade a verifier of a statement’s validity without revealing any
1We refer to a large number of aggregation scenarios here, including but not limited

to computing sum, mean, minimum or maximum value, and counting frequency among
other advanced statistics in machine learning.
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additional information. A ZKP system must satisfy the follow-

ing properties: 1) Completeness - the prover can convince a

verifier of a true statement with high probability; 2) Soundness

- a malicious prover cannot persuade a verifier of a false state-

ment, except with negligible probability; 3) Zero-knowledge - a

malicious verifier cannot glean any extra information through

the proof. Additionally, if the ZKP system achieves soundness

regarding computationally bounded verifiers, it is called an ar-

gument; while a proof can achieve soundness without computa-

tional boundaries2.

In this dissertation, we focus on a 2-party aggregation sce-

nario involving two data providers, denoted as A and B, where

A and B hold a binary vector and weight for each entity, respec-

tively. Specifically, data provider A holds a set of binary vec-

tors, {bi} = {(bi,1, bi,2,. . . , bi,F)} while B holds {Wi} for each

entity i. The objective is for A to analyze its data with the as-

sistance of B. Such aggregation is fundamental in constructing

secure machine learning algorithms [CGB17], network traffic

statistics [EDG14], recommendation systems [MDDC15], and

other applications.

We can consider A as a proxy possessing data collected from

multiple users, organizations, or devices while treating B as a

weight provider. We use bi,j to indicate a particular record of

entity i towards unit j and Wi to denote ‘weight’ for each entity,
2In the following, we interchangeably use proof and argument without further explana-

tion. Our construction is a zero-knowledge argument of knowledge protocol.
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where i 2 [1, M] and j 2 [1, F]. They aim to jointly and securely

compute the weighted sum for each unit j as,

Sj = Â
i

bi,j ⇤Wi = b1,j ⇤W1 + b2,j ⇤W2 + · · · bM,j ⇤WM.

Here, we restrict bi,j to be Boolean and Wi to be an integer. If the

i-th entity supports/owns the j-th unit, then bi,j = 1; otherwise

bi,j = 0. Using a binary vector to represent the possession of

attributes is quite common. It can be used, for example, to in-

dicate whether a user has a certain disease [CGB17], whether a

phone has installed an app [CGB17], whether one is in some

country [EDG14], presence in a certain restaurant [PBBL11],

browsing history and so on.

AHE for Secure Data Analytics - An Example. We take voter

analysis (or an election exit/entrance poll analysis) as an ex-

ample. Pollster company A (e.g., CNN and Fox News) con-

ducts interviews with voters on their voting wills in different

polling stations or through telephone interviews. The other

data provider, B, holds voters’ personal information such as

age and salary. A aims to gain an indication of the average

age or the income group that opts for each candidate with the

help of B, without revealing data in-the-clear to each other. In

this example, each entity indicates a voter while each unit in-

dicates a candidate. bi,j = 1 means that the i-th voter has the

will to vote for the j-th candidate. Wi is used to denote age or

salary of the i-th voter. A intends to compute Sj. This can be
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viewed as frequency estimation [ZWC+22, BS15], which gen-

eralizes boolean predicate of attribute-weighted sum [AGW20]

in which Wi is Boolean.

To preserve data privacy, the aforementioned voter analysis

can be conducted securely by utilizing AHE. A generates the

key of the AHE, encrypts {bi} and sends the ciphertext to B.

B computes the weighted sum (in the ciphertext domain) and

returns the result to A. A decrypts the result to get the sum of

the age of the voter for each candidate and then divides the sum

by the number of voters who aims to support that candidate to

get the average.

Paillier cryptosystem [Pai99] is a prominent example of AHE

and has been standardized by ISO [Hom19]. Since Paillier sup-

ports a very large message space, typically 2048-bit, packing

is often used [ABMR20, GZ07] to reduce ciphertext expansion.

In more detail, assume that M · max{Wi}  U. A packs all

records associated with the same entity into one Paillier plain-

text mi such that mi := Âj 2U⇤(j�1)bi,j.A encrypts each mi into ci

and sends them to B. B then computes C̄ = ’i cWi
i and sends

the result back. A decrypts C̄ and obtains m̄. It can parse m̄ to

obtain Sj = Âi bi,j · Wi.

The Need for Proofs of Well-formedness. While the above

approach protects the privacy of A’s data, it does not guarantee

the privacy of B’s data. Specifically, a malicious A⇤ can obtain

the weight of a specific entity, say, the i⇤-th entity, by biasing the

message structure. A⇤ computes mi⇤ as, mi⇤ = Âj 2U⇤(j�1)+U/2bi⇤,j.
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Consequently, the value of Wi⇤ appears in the higher part of Sj

(provided that U >> Sj). In other words, the above approach

only provides honest-but-curious security. To guard against

this kind of attack, B should require A⇤ to prove that all cipher-

texts are well-formed. We listed three requirements regarded

the well-formedness in our running example of voter analysis.

• Packing with Binary Messages. To support Paillier with pack-

ing, A needs to prove that each bi,j is binary and it should

be located in the correct position.

• Equality Proof for Sum of Records. In a plurality-at-large elec-

tion, there are multiple, say, t, seats to be elected. Each

voter can vote for at most t candidates. This kind of elec-

toral system is utilized for electing Senate nominees in Canada

(Alberta) [nom], Federal Senate in Brazil [elec], Council of

States in Switzerland (2019) [eleb], and the election com-

mittee in Hong Kong [elea]. To prove that ci is the correct

encryption of entity i’s preference, A should prove that

there are at most t 1’s in each voter’s vote mi.

• Range Proof for Sum of Units. Even if the protocol is secure,

weight may be leaked from the output of the analysis. For

example, if there is only one voter who votes for candidate

j, Sj reveals the weight of that voter. B will additionally re-

quires a proof that there are more than T 1’s in the records

{bi,j} towards each candidate (i.e., unit) j.



Chapter 1. Introduction 13

The challenge here is that the proof should leak no infor-

mation about A’s data. Otherwise, it will compromise A’s data

privacy. Zero-knowledge proof/argument (ZKP) systems [GMR85]

allow a prover to convince a verifier of the truth of a statement,

without revealing additional information, making it an ideal

tool to mitigate the above tension.

Limitations of Existing ZKPs for Paillier. Developing ZKPs

for different relations among Paillier plaintexts is valuable. There

has been a rich body of work focusing on range proofs [Lin17,

LN18], proving the plaintext is 0 [CDN01], multiplication [DJ01a]

and a sequence of power relations [HL09], and so on. How-

ever, none of the existing works focus on Paillier with packing.

Furthermore, even without packing, proof size and verification

time are linear in the number of entities, making them unfit for

data analytics involving data from hundreds or thousands of

entities. We note that in many cases, A may collaborate with

multiple weight providers. Thus, it is desirable to have proof

that is non-interactive, small, and efficient in verification.

One may consider utilizing existing zk-SNARKs. Significant

progress has been made recently on constructing efficient ZKPs

supporting statements expressed in arithmetic (over a prime

field) or Boolean circuits [Gro09, PHGR13, BSCG+13, JKO13,

Gro16, BCC+16, GMO16, BCG+17, BBB+18, MBKM19, HKR19,

ZXZS20]. However, directly applying these ZKPs to our prob-

lem results in proof of unacceptable efficiency. The main prob-

lem is that an arithmetic or Boolean circuit representing Paillier
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encryption is huge. Specifically, Paillier Encryption involves

modular exponentiations over N2, and it is unclear how to rep-

resent this operation efficiently using Boolean gates or addi-

tion/multiplication gates over a prime field. Thus, represent-

ing the well-formedness of Paillier ciphertext (with packing)

will lead to an impractical circuit size. For example, proving

one single plaintext-ciphertext pair is valid involves a circuit

with 13335083 gates, even in the modest setting of |N| = 10243.

Therefore, there is a need to construct efficient zero-knowledge

proof systems suitable for Paillier, providing active security to-

wards the above (or other related) scenarios. Considering the

previous scenario, as the provider A may re-analyze its data

with the help of different B’s that may empower distinct levels

of computation resources, the proof size should be small and

the verification cost should be low enough. In summary, the

objectives of this proof system are 1). small proof size 2). low

verification cost 3). affordable proof time.

Blockchain. Since Satoshi Nakamoto’s seminal introduction of

blockchain technology [Nak08] in 2008, it has emerged as an in-

dispensable platform for a multitude of privacy-centric appli-

cations, owing to its decentralized and anonymous attributes.

The rise in security requirements is evident, as numerous real-

world applications are transitioning to blockchain-enabled sys-

tems. This trend is particularly notable in sectors where privacy
3We are unable to generate the circuit for |N| = 2048 on our PC with Intel Core i9-

12900K CPU and 160 GB of memory (32 GB RAM and 128 GB swap).
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and trust are paramount, such as healthcare systems [SJZ+19,

GSM+20], finance [SLL+22, Tak20], IoT [MO18], transportation

[LTK+22, WZZ+22], and many others. Blockchain provides an

abstraction of a public append-only ledger that achieves full

decentralization without requiring a single authority, as every

on-chain transaction can be verified by its robust inherent con-

sensus mechanism. By transitioning into blockchain systems,

many applications can avoid traditional trusted intermediaries,

thereby reducing security dependencies. Additionally, the de-

centralized framework of blockchain significantly mitigates the

risks associated with single-node failures.

Voting, as a crucial social function, has also undergone a sig-

nificant transformation in the digital era. Traditional voting ap-

proaches, including physically voting and mail-in ballots, suf-

fer from various limitations. For example, in-person voting

is not friendly for disabled individuals, while the mail-in bal-

lots are susceptible to tampering during transit. Consequently,

there has been a growing interest in devising an electronic vot-

ing (e-voting) system that preserves the security integrity of

traditional voting methods. First proposed by David Chaum in

1981 [Cha81], the development of e-voting systems has rapidly

evolved [Adi08, CGGI13, HKLD17]. The transition of e-voting

to blockchain platforms is an active area of exploration, partic-

ularly for its potential to enable decentralized voting processes.

This approach has garnered increased attention in recent years

as a means to prevent COVID-19 transmission during elections.
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In general, the fundamental security and functionality de-

mands for an e-voting scheme involve privacy and accuracy

[FOO93]. On one hand, it is not desirable to reveal the vote

will of a voter before the tallying phase; On the other hand, the

final tallying result should be accurate. To achieve the above

requirements, e-voting schemes usually utilize distinct crypto-

graphic techniques, for example, mix-net [Cha81], homomor-

phic encryption [RAD78], linkable ring signature [LWW04a]

and blind signature [Cha83] schemes to provide various fea-

tures.

A mix-net protocol[Cha81] is usually deployed by a series

of mixers where its output is secretly permuted (i.e., shuffled)

among them. It provides anonymity for e-voting schemes by

removing the link between ballots and voters. Another ap-

proach, homomorphic encryption, provides privacy as it al-

lows one to operate the ballots in ciphertext domain without

decryption. Thus the single real voting will cannot be revealed

to the taller. Besides, it enables fast tallying by adding all votes

in encrypted forms together, followed by a single decryption to

obtain the final result. However, a subtle issue involved in the

use of above approaches is the need for a trusted third party

(TTP) to produce proof of correctness for those hidden opera-

tions. Therefore their computation cost is usually very high.

A linkable ring signature [LWW04b] is also usually deployed

to construct an e-voting system. As a ring signature, it allows

a member to sign messages anonymously on behalf of a group
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of signers, while hiding its actual identity. The linkability prop-

erty guarantees that any two signatures generated by the same

entity can be determined by anyone. Thus it can prevent unau-

thorized voters from casting ballots and malicious voters from

casting multiple votes, while maintaining privacy of legitimate

voters. However, it always requires at least one operation that

has computation complexity linear to the size of anonymity set

(i.e., the number of legitimate voters in the case of e-voting) in

all existing schemes. Therefore when the number of legitimate

voters is large, the resulting scheme will be inefficient in prac-

tice.

Blind signature [Cha83] is another typical approach to pro-

vide anonymity. It usually involves two parties in the protocol,

allowing one party say, A, to get a valid signature of his mes-

sage from another party, B, without revealing the actual con-

tent in the message to B. When applying in the e-voting sce-

nario, each voter (i.e., A) can obtain its certified ballots from an

authority (i.e., B) in a privacy-preserving manner without dis-

closing the contents (its votes) to the authority. However, once

the single authority becomes malicious, he can create as many

ballots as he wish without being detected. That is, the success-

ful run of an e-voting campaign also relies on a TTP (authority).

Besides, a public bulletin board is usually needed to publish

the final results in an e-voting system and it has to be trusted

by all participants. Blockchain, due to its decentralization na-

ture, is usually deployed to instantiate this role. McCorry et al.



18 Chapter 1. Introduction

[MSH17] presented the first implementation of a decentralized

and self-tallying e-voting protocol. Some companies like The

Blockchain Voting Machine [Her], FollowMyVote [Ara] also pro-

posed solutions of adopting blockchain as a ballot box. How-

ever, all these solutions are platform dependent. More recently,

Yu et al. [YLS+18] proposed a new approach to construct platform-

independent secure voting system based on blockchain. How-

ever, the need for a trusted third party remains.

Therefore, a truly decentralized e-voting system is required

in order to eliminate the need of a trusted third party. Be-

sides, the system should be platform-independent and efficient

enough so that it can be compatible with real-life applications.

The intended system also should utilize blockchain with var-

ious cryptographic schemes to offer different properties like

verifiability, usability and so on.

In this dissertation, we aim to provide solutions to address

the security and functionality demands that arise in real-world

applications of strong designated verifier signatures, zero-knowledge

proof systems for Paillier, and electronic voting schemes, to

make public-key cryptographic schemes more practical. Our

work is focused on the following aspects:

- Addressing the security demands of SDVS considering more

complex real-world scenarios involving multiple signers

and verifiers, and providing a generic and provably secure

construction of SDVS that meets these enhanced security
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guarantees.

- Addressing the functionality demand in two-party data

aggregation scenarios and constructing an efficient ZKP

system for Paillier system with low communication and

verification costs, as well as manageable proof generation

effort. We focus on scenarios involving hundreds of records,

which are common in real-life applications.

- Addressing the security and functionality demands in e-

voting and designing a fully decentralized e-voting sys-

tem without reliance on a single trusted third party, while

simultaneously providing privacy, accuracy, and efficiency

guarantees for its deployment in reality.

We provide solutions to the aforementioned problems in this

thesis, specifically:

• To address the security challenge of SDVS with multiple

signers and verifiers in real-life scenarios, we first formal-

ize two strengthened models: multi-user and multi-user+.

Then, we propose a generic construction of SDVS from

Key Encapsulation Mechanism (KEM) and Pseudorandom

Function (PRF) in the standard model. Our generic con-

struction is secure in the multi-user setting if the under-

lying KEM and PRF are secure. We also provide instanti-

ations based on the DDH and LWE assumptions, respec-

tively
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• To address the functionality demand of two-party aggre-

gation, we introduce an efficient zero-knowledge argument

of knowledge system customized for Paillier cryptosys-

tem. Our system is based on a constraint system defined

over the ring of residue classes modulo a composite num-

ber, and incorporates novel techniques designed for argu-

ing binary values in this setting. With sub-linear proof

size, low verification cost, and acceptable proof generation

effort, our system supports batch proof generation/verification

and is instantiated for various scenarios. Specifically, we

consider Paillier with packing in Scenario 1, where we pack

25600 bits into 400 ciphertexts, resulting in a proof that all

ciphertexts are correctly computed that is 17 times smaller

and 3 times faster to verify than the naive implementation

of using 25600 OR-proofs without packing. We conduct

extensive experiments to demonstrate the practicability of

our system.

• To address the security and functionality demand of an

e-voting system, we propose a novel blockchain-based e-

voting scheme featuring distributed authorities. We lever-

age threshold blind signature to distribute trust for reg-

istration and threshold ElGamal decryption to distribute

trust in ballot tallying. By combining these techniques with

decentralized blockchain technology, our system achieves
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verifiability, eligibility, fairness, and anonymity with re-

duced trust. We conduct experiments to examine its effi-

ciency and demonstrate the applicability of our approach.

The results validate the effectiveness and practicality of

our proposed e-voting scheme.

Next, we further illustrate the background and contribution

of each result from Section 1.1 to Section 1.3. We give their re-

lated works in Section 1.4.

1.1 Generic Constructions for Strong Designated

Verifier Signature Schemes

The concept of undeniable signature was first proposed by Chaum

et al. [CVA90]. It consists of a signer named Alice and a ver-

ifier named Bob. When Bob wants to verify the signature cre-

ated by Alice, he must interact with Alice through an interac-

tive verification protocol. This means that the verifier cannot

check the validity of signature by himself. In other words, the

signer has complete control of the signature in order to avoid

other undesirable verifiers from getting convinced of its valid-

ity. However, blackmailing [DY91] and mafia [DGB87] attacks

have raised concerns about the security of undeniable signa-

tures.

To address these issues, Jakobsson et al. [JSI96b] proposed

a designated verifier signature (DVS) scheme with briefly dis-

cussing the concept of strong designated verifier signature (SDVS).
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Their DVS scheme is the first non-interactive undeniable signa-

ture scheme by using designated verifier proof. In their scheme,

only designated verifier can be convinced by the signature’s va-

lidity or invalidity without requiring any interaction with the

presumed signer. This scheme follows a very simple approach:

each user holds two key pairs, one for generating signatures

while the other for encrypting signatures. When Alice (signer)

wants to generate a signature to Bob (verifier), she first uses

her signing key to generate a signature, followed by encrypt-

ing it under Bob’s encryption key. Once Bob receives the sig-

nature, he decrypts it first and verifies its validity. This sim-

ple approach requires an encryption followed by a verification,

which is therefore less efficient than desired.

The concept of SDVS was first formalized by Saeednia et al.

[SKM03b]. The idea of privacy of signer’s identity was then for-

malized by Laguilaumie et at. [LV04], capturing the property

of a strong designated verifier signature where no third party

can distinguish which signer generates the signature without

the verifier’s secret key.

Since the introduction of SDVS, many schemes have been

proposed. Huang et al. [HSMZ08] proposed the first short des-

ignated verifier signature scheme and its identity-based vari-

ant. Huang et al. [HYWS11] proposed the first SDVS scheme

in the standard model, based on DDH problem. Subsequently,

new schemes under various assumptions (e.g. DBDH, CDH,

GDH, R-SIS) have been proposed [TCZ+12, AVS13, CJZ+19].
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However, the security of the existing SDVS schemes heav-

ily relies on specific hardness assumptions and their security is

only guaranteed in the single-user setting. In this setting, the

attacker is given the public keys of the target signer and veri-

fier and can issue queries with respect to these two entities. The

existing models may not capture attacks in practical scenarios,

as we have described in the previous section. Therefore, in this

thesis, we aim to fill this gap by initiating the study of SDVS

in the multi-user setting, which better captures the real-world

scenarios and potential attacks

Specifically, we introduce two strengthened models. In the

first model, the adversary can issue signature queries from a list

of signers and verifiers. In the second model, the adversary can

issue queries to the verifier as of its own choice. We also give

a generic construction, based on KEM and PRF schemes. The

security of our construction relies on the underlying KEM and

PRF being secure. We provide four instantiations that are se-

cure in both standard and quantum models and compare them

with existing SDVS schemes. Our generic construction allows

for the construction of diverse SDVS schemes that satisfy dif-

ferent security requirements based on distinct KEM schemes.

Additionally, any progress made in KEM can be directly ap-

plied to improve SDVS schemes.



24 Chapter 1. Introduction

1.2 Efficient Zero-knowledge Argument of Knowl-

edge for Paillier

We introduce an efficient zero-knowledge argument of knowl-

edge system customized for Paillier cryptosystem. Our pro-

posed system exhibits sub-linear proof size, low verification

cost, and acceptable proof generation effort. Additionally, it fa-

cilitates batch proof generation and verification. In contrast, ex-

isting works specialized for Paillier cryptosystem are character-

ized by linear proof size and verification time. Employing ex-

isting sub-linear argument systems for generic statements (e.g.,

zk-SNARK) results in unaffordable proof generation cost since

it involves translating the relations to be proven into an in-

hibitive large Boolean or arithmetic circuit over a prime order

field. Our system does not suffer from these limitations.

At the heart of our argument systems lies a constraint sys-

tem defined over the ring of residue classes modulo a compos-

ite number, augmented with innovative techniques specifically

devised for arguing binary values in this context. We then build

upon the approach presented by Jonathan et al. [BCC+16] to

transform the constraint system into a sub-linear argument sys-

tem. Our constraint system is versatile and can be employed

to express a variety of relations commonly associated with the

Paillier cryptosystem, including range proof, correctness proof,
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relationships between bits of plaintext, relationships of plain-

texts among multiple ciphertexts, and more. Moreover, our ar-

gument enables batch proof generation and verification, with

the amortized cost surpassing the performance of state-of-the-

art protocols specialized for Paillier when the number of Pail-

lier ciphertexts is on the order of hundreds.

In our study, we implement our system across several sce-

narios and perform comprehensive experiments. In Scenario 1,

we focus on Paillier with packing. By packing 25,600 bits into

400 ciphertexts, we demonstrate that a proof confirming the

correct computation of all these ciphertexts is 17 times smaller

and 3 times faster to verify compared to a naive implementa-

tion that employs 25,600 OR-proofs without packing. More-

over, our system allows for the proof of additional statements

with minimal extra effort. For instance, it is possible to prove

that the sum of a subset of witness bits is less than a specified

threshold t.

Another scenario we investigate is range proof. Our sys-

tem proves that each plaintext in 200 Paillier ciphertexts has a

size of 256 bits, with a proof size that is 10 times smaller than

the state-of-the-art. Our analysis indicates that our system is

asymptotically more efficient than existing protocols and is par-

ticularly well-suited for situations involving a large number of

Paillier ciphertexts (more than 100), a common occurrence in

data analytics applications.
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1.3 Distributed Electronic Voting in Blockchain

In developing distributed blockchain-based e-voting schemes,

we prioritize computation cost and efficiency to ensure prac-

tical applicability. Our e-voting system leverages blind signa-

ture, encryption, and blockchain with threshold techniques. In

this construction, we carefully balance efficiency, anonymity,

and the necessity to eliminate trusted parties entirely.

We employ threshold blind signature for voter registration,

which proves more efficient than linkable ring signature for

large group sizes. The trade-off lies in trusting a threshold

number of registration authorities not to misuse their power

or enable the registration of unauthorized voters. In our sys-

tem, ballots are encrypted using ElGamal encryption, while the

corresponding decryption key is distributed among a set of au-

thorities using threshold techniques. Our approach achieves

rapid tallying typically associated with systems based on ho-

momorphic encryption.

We emphasize that our system’s efficiency is practical enough

for real-world deployment, as demonstrated by our experimen-

tal results.

In summary, this thesis presents an e-voting system that uti-

lizes distributed blind signature, encryption, and blockchain

technology. Our proposed system offers the following notable

features.

• Without a single trusted third party. Our system employs a
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threshold blind signature scheme, wherein the role of the

registration authority is distributed among n organizers.

Similarly, n⇤ tellers assume the role of the tallying author-

ity. By integrating these two techniques, our system ef-

fectively eliminates the reliance on a single trusted third

party.

• Distributed. The registration and tallying capabilities are

distributed in a round-efficient manner, seamlessly align-

ing with the intrinsic decentralized nature of blockchain

technology. Consequently, our system attains a truly dis-

tributed framework.

• Anonymous. We utilize blind signature to safeguard voters’

identities. This ensures that even in the event of collusion

among the set of registration authorities, they would still

be unable to link a ballot to a registered voter.

• Efficient. We conduct a practical implementation of our

system to assess its efficiency. The experimental results

demonstrate that our system’s performance is sufficiently

efficient for real-world adoption. Notably, the time and

complexity on the user side remain constant.

1.4 Related Works

In this section, we provide an overview of related works cover-

ing various research aspects addressed in this thesis.
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Strong Designated Verifier Signature. In 1989, Chaum and Van in-

troduced the concept of undeniable signatures to prevent unau-

thorized verifiers from determining the validity of signatures

[CVA90]. This is achieved by requiring the signer’s partici-

pation in the verification process, thus allowing the signer to

maintain complete control over the signature. However, a draw-

back is that the signer may not always know the identity of the

person he/she is interacting with, which led to the introduction

of designated verifier signature (DVS) in [JSI96a].

DVS schemes provide message authentication without the

non-repudiation property characteristic of traditional signature

schemes. They are designed to convince only a single verifier,

with no one else able to confirm the signature’s validity. This

is ensured by allowing the verifier to produce a signature that

is indistinguishable from the one generated by the signer. The

idea of strong designated verifier signature (SDVS) was also

discussed in [JSI96a] and its definition was initially proposed

by Shahrokh et al. [SKM03b] in 2003. The “strongness” prop-

erty requires that no third party can identify the signature’s

originator when only given public keys, with the designated

verifier’s secret key needed for verification. This property was

first formalized in [LV05a], where Laguillaumie and Vergnaud

defined the “privacy of signer’s identity” feature to capture it.

Since its introduction, numerous follow-up works have con-

sidered various additional features in the context of SDVS. Susilo

et al. [SZM04] firstly introduced a variant in the identity-based
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(ID-based) setting based on pairing. It was further enhanced in

[HSMZ06, HSMZ08] basing on Diffie-Hellman key-exchange,

with first proposing the notion of “short SDVS” and extend-

ing it to an identity-based version. Considering the property

called “non-delegatability” where it requires that anyone who

can produce a valid signature on behalf of the signer or the

designated verifier, he must knows the secret key of any one

of them. Huang et al. proposed the first ID-based SDVS with

supporting non-delegatability property [HSW09] and a SDVS

with non-delegatability [HYWS11]. [AVS13] proposed a non-

delegatable SDVS scheme relying on a trusted third party with

removing the need of bilinear pairing. [TL14] then proposed

a short non-delegatable SDVS sceme with only requiring 2 el-

ements in the signature while the concurrent SDVS signatures

contain at least 3 elements without delegatability. Geotae [NJ16]

presented the first lattice-based SDVS construction in the stan-

dard model in 2016.

A parallel research area is universal designated verifier sig-

natures (UDVS) [SBWP03], which allow the holder of a sig-

nature to designate any desired verifier. This verifier can be

convinced that the holder indeed possesses a signature, while

being unable to transfer this conviction to any other party. Nu-

merous works have been conducted in this area, such as [SWP04,

ZFI05, BSNS05, SSN08]. Zhang et al. [ZSMC05] proposed the

first ID-based UDVS scheme. In terms of non-delegatability,

[HSMW06] presented the first provably secure UDVS without
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delegatability. Hou et al. [HHL+15] introduced a designated

designated verifier transitive signature, with additional features

like non-delegatability considered in [LWY12, AVS13, TL14].

Zero-knowledge Proof Systems for Paillier. As we provide a ZKAoK

protocol for Paillier, we now review and compare existing ZKPs

customized for Paillier. Proof systems tailored for Paillier can

be primarily divided into two categories: one focusing on prov-

ing the validity of an RSA modulus (i.e., Paillier public key) and

the other on proving plaintext relations (including range). We

use pk = N to denote a Paillier public key and PL.Encpk(m; r)

to denote Paillier encryption of message m with randomness r.

We provide a detailed comparison of distinct relations related

to the Paillier cryptosystem that existing works and ours aim

to prove in Table 1.1.

Proving the Validity of A Paillier Public Key. [CM99] ini-

tially proposed a zero-knowledge proof for a number that is

the product of two safe prime integers. It can be directly used

for proving a valid Paillier public key. [HMR+19] also outlined

a folklore method of proving the validity of an RSA modulus

by demonstrating that gcd(N, f(N)) = 1. Although a standard

Paillier public key is generated from two prime numbers, this

statement still suffices to provide all Paillier properties (e.g., ad-

ditive homomorphism) through this requirement (see [Lin17]

Sec. 3.1). Moreover, [HL09] suggests combining methods in

[BFL91] and [GP87] for proving an RSA composite (for more
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detailed discussions, see [HL09]). This category of proofs is

orthogonal to ours. Indeed, in our two-party aggregation sce-

nario, party B may also request that A provides a proof that

his/her Paillier encryption key is correctly formed.

Proving Paillier Plaintexts Relation. Another category pri-

marily focuses on proving relations among Paillier plaintexts.

[CDN01] provides a construction for proving knowledge of an

encrypted plaintext. For proving that the plaintext is 0, [DJ01a]

offers constructions, which are actually proofs of the Nth power

in Paillier. To prove multiplicative relations among Paillier plain-

texts, [DJ01a] presents constructions on Pmul. In other words,

we can prove that a message is the product of two other mes-

sages. For proving a more advanced relation—a sequence of

powers—[HL09] constructs Ppow based on Pmul. In [Lin17],

they bridged two different worlds, Paillier encryption and el-

liptic curve groups, proposing a zero-knowledge proof for lan-

guage Rpl�ec. This proof shows that the message in a given

Paillier ciphertext is the discrete log of a given elliptic curve

point. Later, [LN18] gives constructions on Paillier and Peder-

sen commitment. It proves that the same value is used in en-

cryption and commitment scheme. Additionally, [Lin17] and

[LN18] also gave range proof that is customized for Paillier,

where [Lin17] was adapted from the range proof in [Bou00].

However, to achieve efficiency, both of them can only gave in-

exact range proof (i.e., with slack).

To devise an exact range proof in Paillier, one may employ
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tight range proof techniques, such as [Bou00, BBB+18], with

some adaptations. Since these range proofs are not compati-

ble with Paillier, an integer commitment scheme [FO97] is re-

quired as a bridge. In more detail, let Enc(x) represent the Pail-

lier encryption of x. Let CMTI denote an integer commitment

scheme, and let CMTR be the commitment scheme in which an

efficient range proof exists. To prove that x lies within an exact

range, the prover first generates commitments c1 := CMTI(x)

and c2 := CMTR(x). The prover then engages in the follow-

ing protocols: i) Pc1: c1 is a commitment to x; ii) Pc2: the same

value, x, is committed in c2; iii) Prange: the committed value in

c2 is within a certain range. Prange can be achieved by invoking

the existing range proof on c2. Although the range proof is ef-

ficient, auxiliary commitments may impose a lower bound on

range proof size.

Electronic Voting in Blockchain. In an e-voting scheme, vote se-

crecy and verifiability are two fundamental requirements [KV16].

Mix-net [Cha81], homomorphic encryption [RAD78], linkable

ring signature [LWW04a] and blind signature [Cha83] are the

common cryptographic approaches adopted to achieve these

two properties (i.e., anonymity and verifiability) in e-voting

systems.

Mix-net. One of the most popular anonymization approaches

adopted is the mix-net scheme, which was first proposed by

Chaum [Cha81] in 1981. Generally, the protocol consists of a
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series of mixes, which can shuffle and re-mask the ballots to

break the link between voters and their ballots. To avoid a sin-

gle mixer maliciously modifying the output or refusing to par-

ticipate in the protocol, Park, Itoh, and Kurosawa [PIK93] pro-

posed an approach named re-encryption mixes, which has be-

come the most widely studied research line. Its particular pro-

tocol was broken in [PP90, Pfi95] and later fixed in [OKST97].

Broadly speaking, this approach consists of two distinct stages:

the first stage involves shuffling and re-encrypting input ci-

phertexts, while the second stage decrypts the outputs of the

first stage.

The primary challenge in designing re-encryption mix-net

schemes lies in achieving computational efficiency when prov-

ing the correctness of servers’ operations. Some works [SK95,

OKST97, Abe98] employ cut-and-choose zero-knowledge proofs.

Although substantial efforts [Mas99, FS01, Nef01] have been

made to improve the efficiency of these proofs, their computa-

tional cost remains quite high.

In 2002, Jakobsson et al. [JJR02] introduced a new technique

called randomized partial checking (RPC) mix net to enhance

the robustness of mix nets without requiring complete correct-

ness proofs. This technique trades off some privacy for in-

creased efficiency. The core idea is to have each server prove

their operations’ complete correctness using pseudo-randomly
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selected subsets of input/output pairs. While the RPC tech-

nique is well-suited for e-voting systems, ensuring voter pri-

vacy and correct operation, generating and verifying such proofs

can be challenging due to their computational demands. The

first implementation of this technique was not realized until

2002 [FMM+03]. Although the efficiency of this approach was

further improved in [FMS10], the time consumed in proving

remains a bottleneck.

Golle et al. [GZB+02] proposed optimistic mixing, where

they aim to verify that the product of all the inputs equals to

the product of all the outputs. Besides, their protocol includes

redundancy checks, which, in conjunction with product check-

ing, ensure perfect correctness. Boneh and Golle [BG02] em-

ployed similar proof techniques while achieving different prop-

erties. The scheme presented in [BG02] results in the lowest

total computational cost, although it only guarantees “almost

entirely correct” mixing.

Homomorphic Encryption. Homomorphic encryption, which

was first proposed in [RAD78], is another commonly deployed

approach to maintain anonymity and privacy in voting sys-

tems. The application of homomorphic encryption in e-voting

schemes began with the work of [BY86, CF85], and numerous

subsequent studies have been conducted in [BFP+01, DJ01b,

FPS01]. Generally, it enables the aggregation of multiple ci-

phertexts without decrypting each one. For instance, each voter

encrypts his/her ballot using a homomorphic scheme, with the
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public key published before voting. Suppose there are two vot-

ers with ballots b1 and b2, and corresponding ciphertexts c1 and

c2. One can aggregate these encrypted ballots as c0 = c1 ⇤ c2.

After decrypting c0, the final voting result, m1 + m2, can be ob-

tained. The homomorphism property allows fast tallying with-

out decrypting individual ballots, preserving anonymity and

privacy. Protocols utilizing homomorphic encryption can be

found in [BT94, CFSY96, CGS97, HS00].

Existing e-voting systems predominantly adopt Paillier [Rya08,

XSHT08] and ElGamal [KY02, LK03] encrypting schemes. Build-

ing upon the models established by Benaloh et al. [CF85, BY86,

Ben87], Cramer proposed a novel multi-authority protocol [CFSY96]

that utilizes distributed authorities instead of a single one. The

encrypted votes are shared among multiple authorities, who

use verifiable secret sharing to ensure the posted shares gen-

uinely represent the actual vote. This scheme was further en-

hanced in [CGS97], which introduced the first optimal solution

for large-scale systems through threshold techniques.

However, this type of approach is not a general construc-

tion, as it requires voter choices to be binary (i.e., yes or no).

Consequently, it cannot be easily applied to multi-choice vot-

ing systems due to the significant computational cost. More-

over, since no single ballot is decrypted, the cast ballots must

be proven correct using zero-knowledge proof, which demands

substantial computational effort. Therefore, when compared to
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the mix-net technique, homomorphic encryption is more suit-

able for voting systems with a small number of candidates (e.g.,

yes/no voting) [ABDV03]. It can also be combined with other

primitives to provide additional properties. For instance, in

[SMPP10], homomorphic encryption was integrated with mix-

net to enhance the efficiency of the voting system.

Linkable Ring Signature. Linkable ring signature (LRS) was

proposed in [LWW04a] as a means to ensure the authenticity of

ballots in e-voting systems. It incorporates the property of link-

ability into ring signatures [RST01]. In a ring signature scheme,

any group member can anonymously sign a message on behalf

of the group without the need to reveal its identity. Further-

more, an LRS scheme enables anyone to determine whether

two ring signatures were signed by the same group member.

In other words, users can maintain anonymity if they only sign

once, but two ring signatures can be linked if signed by the

same member. This property allows for the detection of dou-

ble voting. Numerous e-voting schemes have been constructed

based on LRS, such as [CLW08, LWW04b].

Generally, the linkability is achieved by adding a linkabil-

ity tag to a ring signature, where the tag can be uniquely de-

fined by the event identifier and member’s signing key. Conse-

quently, for the same event and the same voter, only one ballot

can be cast; otherwise, anyone can detect double voting.

Early LRS constructions [LWW04b, TWC+05] typically suf-

fered from large signature sizes, which were linear to the group
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size. Subsequent research aimed to reduce the signature size,

as seen in works such as [DKNS04, TW05]. Some protocols

have achieved constant signature sizes in ID-based schemes

[CSY06, ALSY06] and PKI-based schemes [ACST06]. Despite

the numerous improvements proposed, at least one operation

consistently incurs a computation cost linear to the group size.

Consequently, LRS is not suitable for large-scale voting scenar-

ios.

Blind Signature. Blind signature, introduced by [Cha83], is

commonly used in e-voting systems. It enables a user to ob-

tain a signature on their message from the signer without re-

vealing the content. Generally, blind signature is employed in

e-voting systems in two ways. Specifically, during the registra-

tion phase of the e-voting system, a legitimate voter receives a

blind signature on a random value. This signature-value pair

can be utilized to prove the voter’s authenticity. Blind signa-

ture is considered the most promising approach for construct-

ing large-scale elections [Oka98] and offers greater computa-

tional efficiency [MZO+99]. This technique was first applied in

a secret e-voting mechanism by Fujioka et al. in 1992 [FOO93]

and later improved upon in [MZO+99].

Okamoto proposed the first practical receipt-free voting schemes

for large-scale elections in [Oka98]. Two subtle issues should

be noted when applying blind signature. First, an anonymous

channel must be implemented when voters cast their ballots.

Second, compared to linkable ring signature, blind signature
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requires the signer to be trusted. If the signer is compromised,

an attacker would be able to cast as many ballots as desired.

To address this issue, threshold techniques [DF90] can be ap-

plied to distribute authorities. Juang et al. [JLL02] proposed a

scheme to support distributed trust by applying threshold tech-

niques. Later, Mateu et al. [MSV13] introduced a threshold

voting system that achieves the property of public verifiability.

1.5 Thesis Organization and Derived Publications

The publications derived from this thesis include the following,

• Borui Gong, Man Ho Au, Haiyang Xue. Constructing Strong

Designated Verifier Signatures from Key Encapsulation Mech-

anisms. In 18th IEEE International Conference On Trust,

Security And Privacy In Computing And Communications/13th

IEEE International Conference On Big Data Science And

Engineering (TrustCom/BigDataSE), Rotorua, New Zealand,

2019, pages 586-593.

• Borui Gong, Xingye Lu, Lau Wang Fat, Man Ho Au. Blockchain-

Based Threshold Electronic Voting System. In Security and

Privacy in Social Networks and Big Data (SocialSec 2019),

pages 238–250.

• Borui Gong, Wang Fat Lau, Man Ho Au, Rupeng Yang,

Haiyang Xue, Lichun Li. Efficient Zero-Knowledge Argu-

ments For Paillier Cryptosystem. (To appear in S&P 2024).
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The rest of this thesis is organized in 6 chapters. The pre-

liminaries are given in Chapter 2. In Chapter 3, we formally

define two strengthened SDVS models and give a generic con-

struction. We present our efficient ZKP systems customized for

Paillier in Chapter 4. In Chapter 5, we present our e-voting sys-

tem based on blockchain. Chapter 6 concludes this thesis and

discusses potential research directions of future work.
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Chapter 2

Preliminaries

In this chapter, we provide the preliminaries which will be uti-

lized in the subsequent chapters. Specifically, we begin by defin-

ing notations and outlining the underlying cryptographic as-

sumptions. Following this, we describe the syntax and security

requirements necessary for various schemes.

2.1 Notations and Cryptographic Assumptions

We use l to denote the security parameter and A to denote a

PPT adversary as an interactive probabilistic polynomial time

Turing Machine, whose running time is polynomial in l. We

use r  R and r $
 � R interchangeably to denote that r is ran-

domly picked from a finite set R.

2.1.1 DL Assumption on Composite Group

Let Setup be an algorithm outputting (G, N2, g), with input 1l.

G is the description of a finite cyclic group with composite or-

der N2, where N = pq is a RSA modulus,
��N2

�� = l and g is the
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generator1.

Definition 2.1.1. (Discrete Logarithm Relation Assumption on

Composite Group). This assumption holds if for all n � 1 and any

non-uniform PPT adversaries A,

Pr

2

6664

9ai 6= 0 (G, N2, g) Setup(1l),

and g1, . . . , gn  G ,

ga0 ’n
i=1 gai

i = 1 a0, . . . , an  A(G, N2, g, {gi}i)

3

7775
⇡ 0,

relative to Setup. We say ga0 ’n
i=1 gai

i = 1 a non-trivial discrete log

relation between g1, . . . , gn. It is known that this assumption is equiv-

alent to the discrete logarithm assumption.

2.1.2 DCR Assumption

For the decisional composite residuosity assumption, roughly

speaking, it means that given an RSA modulus N with an el-

ement z 2 Z⇤N2, the adversary cannot distinguish (except with

negligible probability) whether z is an N-th residue.

Definition 2.1.2. (Decisional Composite Residuosity (DCR) As-

sumption). This assumption holds relative to the key generation

algorithm PL.Gen in Paillier system (Def. (2.6.1)), if for all non-

uniform PPT adversaries A, the following holds,

��Pr
⇥
A(N, z1) = 1

��(N, p, q) PL.Gen(1l), r1  Z⇤N, z1 = rN
1 mod N2 ⇤

�Pr
⇥
A(N, z2) = 1

��(N, p, q) PL.Gen(1l), r2  Z⇤N2, z2 = r2
⇤�� ⇡ 0.

1To find such a group G, one can use methods specified in Chapter 4
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2.1.3 GDH Groups

Let G be a cyclic group with prime order q and g is its generator.

Let a, b  Z⇤q be two random chosen elements from Z⇤q . We

consider the following two problems.

• Computational Diffie-Hellman (CDH) Problem. Given a

triple (g, ga, gb) in group G, find the element gab.

• Decisional Diffie-Hellman (DDH) Problem. Given a quadru-

ple (g, ga, gb, gc) in group G, decide whether c = ab.

We call groups like G if DDH problem can be solved in poly-

nomial time but no probabilistic algorithm can solve CDH prob-

lem, except with negligible advantage, the Gap Diffie-Hellmen

(GDH) groups.

2.2 Key Encapsulation Mechanism

Here we review the syntax and the security requirements of a

KEM scheme.

Definition 2.2.1 (KEM). A standard key encapsulation mechanism

(KEM) consists of the following three PPT algorithms.

• KeyGen: The randomized key generation algorithm returns pub-

lic/secret key pair (pk, sk) with input 1l, where l is a security

parameter. This algorithm can be expressed as, KeyGen(1l) !

(pk, sk).
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• Encap: The encapsulation algorithm takes public key as input,

returning key K with its encapsulation C. It can be written as,

Encap(pk)! (K, C) 2 Kpk ⇥ Cpk.

• Decap: The decapsulation algorithm takes secret key sk and en-

capsulation C as input. It returns corresponding key K or out-

puts ? to indicate invalid encapsulation. It can be written as,

Decap(C, sk) = K or ?.

Definition 2.2.2 (2-Phase KEM). We call a KEM scheme as a 2-

phase KEM if its Encap algorithm can be divided into the following

two phases.

• Encap
1 : It will first choose a random value w $

 � Q and output

C, it can be written as, Encap1(w)! C.

• Encap
2 : In the second phase, it takes C, public key pk and w as

input. It finally returns K, whose encapsulation is C. It can be

written as, Encap2(C, pk, w)! K.

Definition 2.2.3 (Security of KEM). We call a KEM scheme is (t, ecpa)-

CPA (resp. (t, qd, ecca)-CCA) secure if there does not exist such a PPT

adversary who can win the following game in time t with at least ecpa

(resp. ecca) advantage (resp. after making qd decryption queries). The

game between a challenger C and an adversary A is as follows.

1. Setup: By inputing security parameter l, challenger C gen-

erates a pair of keys (pk, sk) KeyGen(1l) and gives pk to

the adversary A.
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2. Phase 1 (Only in CCA game): In this phase, adversary A

submits a string Ci to decapsulation oracle Odec. The oracle

will return decapsulation result decsk(Ci).

3. Challenge: In the challenge phase, A issues encapsulation

queries to C. Encapsulation oracle Oenc randomly selects

b 2 {0, 1} and computes (C⇤, K⇤)  Encap(pk). Chal-

lenger C will return (C⇤, K⇤) if b = 0; otherwise, it will

return (C⇤, K0) where K0 $
 � {0, 1}|K⇤|. (C⇤ is called target

ciphertext)

4. Phase 2 (Only in CCA game): Phase 2 is the same as Phase

1 with the restriction that submitted encapsulation query

Ci should not be identical to C⇤.

5. Guess: A outputs a guess b0 of b and wins the game if

b0 = b. The advantage of A in winning this game is defined

as

ecpa(resp. ecca) = 2(Pr[b0 = b]�
1
2
).

The scheme is secure if ecpa (resp. ecca) is negligible.

2.3 Pseudorandom Function

Definition 2.3.1 (PRF). Assuming that the inputs of the pseudo-

random function (PRF) we considered here can be arbitrary. Let

{0, 1}l be its output. Let F = {PRFl}l2N be a function set such that

any variable PRFl assumes values in the set of {0, 1}⇤ ! {0, 1}l. F
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is called an efficiently computable pseudorandom function ensemble

if

1. (efficient computation) I and V are PPT algorithms and there

is a mapping function f, mapping from strings to functions,

such that f(I(1l)) and PRFl are identically distributed and

V(i, x) = (f(i))(x).

2. ((t, eprf)-pseudorandomness) For any PPT distinguisher D,

he can not distinguish a PRF function to a real random function

with negligible probability.

��Pr[DPRFl(1l) = 1]� Pr[DRFk(1l) = 1]
�� < eprf

where R = {RFk}l2N is the set involving RFk. RFk is uniformly

distributed over {0, 1}⇤ ! {0, 1}l.

2.4 Designated Verifier Signature

Definition 2.4.1 (DVS). A designated verifier signature (DVS) con-

sists of the following three PPT algorithms.

• KG: The key generation algorithm takes 1l as input where l

is security parameter, followed by returning a public/secret key

pair (pk, sk). This algorithm can be written as, KG(1l) !

(pk, sk).

• Sign: The signing algorithm takes message m, signer’s public

and secret keys (pks, sks) and designated verifier’s public key
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pkv as input. It will return signature s of message m, which can

be written as Sign(sks, pks, pkv, m)! s.

• Ver: The verification algorithm takes signature s, correspond-

ing message m, verifier’s public and secret keys (skv, pkv) and

signer’s public key pks as input. It will output 1 if it is a valid

signature, otherwise it will output 0. It can be written as Ver(skv, pkv,

pks, m, s)! b (b is 1 if the signature is valid, otherwise b is 0).

Correctness: The correctness of DVS requires that for any

KG(1l) ! (pks, sks), KG(1l) ! (pkv, skv) and any message

m 2 {0, 1}⇤, we have the following,

Pr[Ver(skv, pkv, pks, m, Sign(sks, pks, pkv, m)) = 1] = 1.

2.5 Pedersen Commitment

Definition 2.5.1. (Pedersen Commitment Scheme). A Pedersen

commitment scheme contains 2 polynomial algorithms, PDC =

(PDC.Gen,PDC.Com).

- PDC.Gen(1l)! ck. With security parameter l , the key gener-

ation algorithm outputs commitment key, ck, where ck = (G, g, h).

G is a cyclic group of composite order satisfying Def.2.1.1, g is

its generator and h is a randomly chosen element in this group

where their discrete log are not known to the prover. Then ck

specifies message space Mck, randomness space Rck and cipher-

text space Cck.
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- PDC.Com(ck, m) ! ct. On input ck and message m 2 Mck,

the algorithm randomly selects r 2 Rck and outputs commit-

ment as, ct = gm · hr mod Q, s.t., Q = f · N2 + 1 is a prime

where f is a random small integer.

In our protocol, what we used is a variant of the above form.

The commitment key is set as ck = (G, g, g1, g2, . . . , gn) and a

commitment of a series of messages, (m1, . . . , mn), has the form

, ct = gr · Pn
i=1gmi

i

2.6 Paillier Encryption

In the Paillier encryption, we utilize p and q of equal length,

setting N = pq and choosing (1 + N) as the base.

Definition 2.6.1. (Paillier Encryption Scheme). A Paillier cryp-

tosystem, PL, contains 3 polynomial time algorithms, (PL.Gen,

PL.Enc,PL.Dec).

- PL.Gen(1l) ! (pk, sk). With security parameter l as input,

the key generation algorithm outputs pk = N and sk = (p, q).

They satisfy |p| = |q| = l (except with negligible probability

in l) and N = pq.

- PL.Enc(pk, m) ! c. To encrypt a message m 2 ZN with re-

spect to public key N, one chooses a randomness, r  Z⇤N, and

outputs the ciphertext as,

c = (1 + N)m
· rN mod N2.
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When emphasizing randomness r, we sometimes write it as, c =

PL.Encpk(m; r) or c = PL.Enc(m; r) for simplicity.

- PL.Dec(sk, c)! m. To decrypt a ciphertext c with sk = (p, q),

one can first compute l = lcm(p� 1, q� 1). Denote function

L(x) as, L(x) = x�1
N . Then he computes m as,

m =
L(cl mod N2)

L((1 + N)l mod N2)
mod N.

Readers can refer to [Pai99] for its correctness proof and the security

of this system follows based on DCR assumption in Definition 2.1.2.

2.7 Zero-knowledge Argument of Knowledge (ZKAoK)

We aim to construct a zero-knowledge argument of knowledge.

Informally, a zero-knowledge proof of knowledge is a protocol,

involving a prover and a verifier, where the prover can con-

vince the verifier the truth of some statements without leaking

any further secret information it holds. Typically, the system is

referred to as an “argument” (i.e., ZKAoK) when its soundness

property holds against computationally bounded adversaries,

and as a “proof” (i.e., ZKPoK) when its soundness is against un-

bounded adversaries2. We now present the formal definitions.

In an argument, we consider two interactive algorithms, (P , V),

which both run in probabilistic polynomial time. We use tr  

hP(s), V(t)i to denote the transcript produced by P and V when
2Our protocol is actually an argument, and we do not specifically distinguish between

these two notions in our paper.
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interacting on their inputs s and t. We write hP(s), V(t)i = b

depending on whether verifier rejects, b = 0, or accepts, b = 1.

Let R 2 {0, 1}⇤ ⇥ {0, 1}⇤ be a polynomial-time-decidable bi-

nary relation. For a statement u, we call w a witness of it if

(u, w) 2 R.

Definition 2.7.1. (Argument of knowledge). The pair (P , V) is

called an argument of knowledge for relation R, if it satisfies perfect

completeness and statistical witness-emulation defined as below.

Definition 2.7.2. (Perfect completeness). (P , V) achieves perfect

completeness if for all non-uniform polynomial time adversaries A,

Pr
h
(u, w) /2 R or hP(u, w), V(u)i = 1 (u, w) A(1l)

i
= 1

Definition 2.7.3. (Statistical witness-extended emulation). (P , V)

has statistical witness-extended emulation if for all deterministic poly-

nomial time P⇤, there exists an expected polynomial time emulator E

such that for all interactive adversaries A we have,

Pr
h
A(tr) = 1 (u, s) A(1l), tr  hP⇤(u, s), V(u)i

i
⇡

Pr

2

4 A(tr) = 1 and (u, s) A(1l),

if tr is accepting then (u, w) 2 R (tr, w) E hP
⇤(u,s),V(u)i(u)

3

5

where E has access to oracle O =< P⇤(u, s), V(u) > which can

be rewind to a specific point and resume with verifier picking fresh

public coin challenges from this point onwards.

To define soundness, we apply the term, witness-extended

emulation, which is used in [BCC+16] and defined in [GI08,
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Lin03]. Witness-extended emulation implies both soundness

and knowledge soundness. Intuitively, it means that given an

adversary who can produce an acceptable argument with some

probability, there exists an emulator who can produce a simi-

lar argument with the same probability, but can also produce a

witness at the same time. In the definition, the value s can be

considered as the internal state of P⇤, including randomness.

Whenever P⇤, in state s, can make a convincing argument, E

can extract a witness. Therefore, we obtain an argument of

knowledge of w, such that (u, w) 2 R.

Definition 2.7.4. (Public coin). An argument of knowledge (P , V)

is called public coin if all messages sent from the verifier to the prover

are chosen uniformly at random and independently of messages sent

by the prover, i.e., the challenge values correspond to the verifier’s

randomness r.

An argument of knowledge is zero-knowledge if it does not

leak any other information about w beyond what can be de-

duced from the truth that (u, w) 2 R. We will present ar-

guments of knowledge that have special honest verifier zero-

knowledge. That is, given the verifier’s challenge values in ad-

vance, it is possible to simulate the entire argument without

knowing the witness.

Definition 2.7.5. (Perfect special honest verifier zero-knowledge).

A public coin argument of knowledge (P , V) is called a perfect special

honest verifier zero knowledge (SHVZK) argument of knowledge for
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all R if there exists a probabilistic polynomial time simulator S such

that for all interactive non-uniform polynomial time adversaries A,

Pr

2

4 (u, w) 2 R and (u, w, r) A(1l),

A(tr) = 1 tr  hP(u, w), V(u, r)i

3

5

=Pr

2

4 (u, w) 2 R and (u, w, r) A(1l),

A(tr) = 1 tr  S(u, r)

3

5

where r is the public coin randomness used by the verifier.

2.8 Threshold Blind Signature

The (t, n)-threshold blind signature [VZK02], based on GDH

hard problem, containing the following four algorithms, namely,

Setup algorithm TBU, Key Generation algorithm TBK, Signa-

ture Generation algorithm TBS and Signature Verification algo-

rithm TBV, where TBK and TBS are two interactive algorithms.

Let n players in this protocol denoted as {L1, L2, ..., Ln}.

1. Setup Algorithm TBU

On input security parameter 1l, this algorithm outputs pub-

lic parameters param = (G1, GT, q, P, H, ê). G1 is a GDH

group with order q, P is its generator and H : {0, 1}⇤ ! G1

denotes a one-way function. GT denotes a pairing group

and ê denotes the pairing operation, i.e., ê(G1, G1) ! GT.

Looking ahead, these parameters will be uploaded to the

blockchain in our e-voting system. It is an implicit input

to the following algorithms.
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2. Key Generation Protocol TBK

The interactions between the players, {Li}
n
i=1, are described

as follows.

• Li conducts the following computations.

(a) Picks up the parameters aij (j = 0, 1, 2, .., t� 1) ran-

domly in the following polynomial fi(x):

fi(x) = ai0 + ai1x + ... + ai,t�1xt�1.

(b) Computes and broadcasts Paij for j = 0, 1, ..., t� 1;

sends fi(j) to each player Lj for j = 1, 2, ..., n; j 6= i.

• Li receives the information from other players.

(a) After receiving fj(i) from Lj for j = 1, 2, ..., n; j 6= i,

player Li verifies if

P fj(i) =
t�1

’
k=0

Pajk·ik .

If the check fails, Li broadcasts a complaint against

Lj.

(b) Li computes the secret share si = Ân
k=1 fk(i) and the

public share Qi = Psi , which will be broadcasted to

other players. The public key in this algorithm will

be set as Q = ’n
i=1 Pai0, which can be computed

using Qi.

After executing TBK protocol, the public key is set as Q =

Ps where the secret key is s = Ân
i=0 ai0, which is distributed
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to the n players but does not appear explicitly in the pro-

tocol.

3. Signature Generation Protocol TBS

This protocol allows user A to obtain a blind signature on

message m from t signers. Let S = {Li|1  i  t} denote

the set of t signers. For the ease of presentation, we use wi

to denote ’j2S, j 6=i
j

j�i .

(a) User A randomly chooses r 2 Z⇤q and blinds message

m by computing m0 = H(m)r. A sends m0 to every

signer Li 2 S.

(b) Signer Li computes and sends si to user A’s address

on the blockchain after receiving m0, where

si = m0wisi .

(c) User A validates si by checking if the following equa-

tion holds.

ê(si, P) ?
= ê(m0wi , Qi).

If this does not hold, A sends m0 to the signer Li again.

Otherwise, A computes the signature s on m as,

s = (’
i2S

si)
�r.
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4. Key Verification Algorithm TBV

The signature s on the message m is accepted if

ê(s, P) = ê(H(m), Q).

2.9 Threshold ElGamal Decryption Scheme

The (t⇤,n⇤)-threshold ElGamal decryption scheme [Ped91] con-

sists of the following four algorithms, namely, TEU, TEK, TEC,

TED, where TEK and TED are interactive algorithms. It is based

on the DDH problem. Let {T1, T2, ..., Tn⇤} denote the set of n⇤

players.

1. Setup Algorithm TEU:

On input security parameter 1l, this algorithm outputs pub-

lic parameters param = (G1, GT, q, P, ê), where G1 is an el-

liptic curve group of order q with P as its generator. GT is

a pairing group and ê denotes the pairing operation, i.e.,

ê(G1, G1) ! GT. Looking ahead, param will be uploaded

to blokchain and it is an implicit input of the following al-

gorithms.

2. Key Generation Protocol TEK:

Same as the TBK protocol of the threshold blind signature

scheme, each user Ti randomly selects aij in the (t⇤ � 1)

degree polynomial fi(x), where

fi(x) = ai0 + ai1x + ... + ai,t⇤�1xt⇤�1,
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and sends fi(j) to Tj. The public share of Ti is Q⇤i = Ps⇤i ,

which will be broadcasted. Its corresponding secret is s⇤i =

Ân⇤
k=1 fk(i). The resulting public key is set as Q⇤ = ’n⇤

i=1 Pai0

and secret key is s⇤ = Ân⇤
i=0 ai0. The whole algorithm can be

written as: TEK! (Q⇤, s⇤, Q⇤i , s⇤i ), for i 2 {1, 2, .., n⇤}.

3. Encryption Algorithm TEC:

On input with message m and public key Q⇤, the cipher-

text is computed as,

C = (c1, c2) = (Pk, mQ⇤k),

where k is a random number: k $
 � Zq.

4. Decryption Protocol TED:

The decryption protocol takes ciphertext C as input. t⇤

players in list S⇤ = {Ti|1  i  t⇤} decrypt the cipher-

text as follows together.

(a) Each player computes and broadcasts mi = c�wisi
1 , where

wi = ’
j2S⇤, j 6=i

j
j� i

.

(b) After receiving mi, verifies if

ê(mi, P) = ê(c�wi
1 , Qi).

If the above equation does not hold, broadcasts a com-

plaint on Ti.
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(c) Finally, the resulting decrypted message is computed

as

M = c2 ·
t⇤

’
i=1

mi.

Correctness The decrypted message, M, has the form,

M = c2 ·
t⇤

’
i=1

mi = c2 ·
n⇤

’
i=1

c�wisi
1

= c2 ·
n⇤

’
i=1

c
�

j
j�i ·si

1

= c2 · c�s⇤
1

When we derive the above result, we use the Lagrange inter-

polation and we can see that the decrypted message is correct.
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Chapter 3

Strong Designated Verfiable

Signature from Key Encapsulation

Mechanism

The notion of strong designated verifiable signature (SDVS)

was originally formalized by Saeednia et al. [SKM03b] to en-

hance the privacy of the signer in the (designated verifiable

signature) DVS scheme. It allows the signer to generate a sig-

nature for a designated verifier without allowing the verifier to

transfer the signature to any third party. Additionally, SDVS

ensures that no third party can distinguish which party gener-

ated the signature without the verifier’s secret key. However,

existing constructions of SDVS rely on specific assumptions,

and they only analyze their schemes considering one signer

and one verifier.

We observe that existing models may not capture real attacks

in practice. For instance, an adversary may have access to sig-

natures generated for different designated verifiers. After col-

lecting these signatures, the adversary may acquire auxiliary
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information that helps him to forge the signature for the tar-

geted verifier; Furthermore, an adversary may obtain useful

information from signatures generated by other signers for the

target verifier. In summary, an adversary may produce valid

signatures through collaborating with dishonest signers or ver-

ifiers. However, these attacks are not captured by the existing

models, where the adversary is only restricted to issue queries

with respect to the target signer and verifier.

To capture more sophisticated situations that may occur in

practice, an extended model is required, involving more than

one target signer and verifier. With this new model, it is also

necessary to construct new schemes that are suitable for this

advanced model and prove their security.

Chapter Organization. We will start by providing an overview of

our contributions in Section 3.1. We introduce our strengthened

models in Section 3.2. In Section 3.3, we give our generic con-

struction towards our model, based on KEM and PRF function.

The security proof of our construction is covered in Section 3.4.

Finally, in Section 3.5, we provide several instantiations based

on different assumptions and compare them with the existing

schemes.
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3.1 Our Contribution

To address the above mentioned issues, we initiate the study of

SDVS in the multi-user setting and propose a generic construc-

tion. Specifically, we strengthen existing models and propose

two enhanced models, namely, multi-user and multi-user+. In

our first model (multi-user), the adversary can issue queries

from given lists of signers and verifiers, and also corrupt them;

In our second model (multi-user+), the adversary can obtain

signatures from the signer on any verifiers of its choice (i.e.,

the verifier’s public keys are created by the adversary). We

also propose a generic construction of SDVS based on KEM and

PRF, which is proved to be secure in our enhanced models. In

summary, we made the following contributions towards this

problem,

• We proposed two enhanced security models of SDVS to

model security requirements in the multi-user setting, namely,

multi-user and multi-user+.

• We proposed a generic construction of SDVS from KEM

and PRF. We proved that our generic construction is se-

cure, assuming the security of the underlying KEM and

PRF.

Table 3.1 summarizes differences between the existing SDVS

security models and our two strengthened models. Let S and V

denote lists of signers and verifiers’ public keys chosen by the
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challenger. We can see from Table 3.1 that in the existing mod-

els, the adversary can only issue queries with respect to the spe-

cific challenge signer and verifier. In our enhanced models, the

adversary can make additional queries beyond the challenge

identities or can issue queries on the verifier chosen by him-

self adaptively. In other words, the adversary can access more

information in our models than in the original model. Addi-

tionally, our models can corrupt queries, meaning that the ad-

versary can request for private keys of any public keys in S

and V except the challenge public keys (also chosen by the ad-

versary). Therefore, our models have more stringent security

requirements than the original model.

Table 3.1: Differences Between Existing Models and Our Models in SDVS.

S and V indicate signers and verifiers’ public key lists chosen by the challenger. pks and
pkv indicate signer and verifier’s public keys respectively.

Challenge Public Keys
(pks, pkv)

Signature Queries (pks, pkv)

Existing Model pks 2 S, pkv 2 V,
|S| = 1, |V| = 1

pks 2 S, pkv 2 V, |S| = 1, |V| = 1

Multi-user pks 2 S, pkv 2 V pks 2 S, pkv 2 V
Multi-user+ pks 2 S, pkv 2 V pks 2 S, no restriction on pkv

3.2 Our Strengthened Models

In this section, we present our strengthened models, which al-

low the attacker to issue queries with respect to multiple ver-

ifiers, some of which may be corrupted or have keys chosen

adversarially. The differences are summarized in Table 3.1. For-

mally, our strengthened models are defined as follows.



3.2. Our Strengthened Models 63

Definition 3.2.1 (Unforgeability). An SDVS scheme is unforgeable

in multi-user (resp. multi-user+) setting if no PPT adversary can

forge a valid signature on a message of its choice without knowing the

signer and verifier’s secret key.

The following game between challenger C and PPT adver-

sary A formally defines unforgeability.

1. Setup: On input security parameter l, C runs KG algo-

rithm to obtain multiple signers and the verifiers’ public-

secret key pairs. Let S = {pks1
, pks2

, ..., pksm
} and V = {pkv1

,

pkv2
, ..., pkvn

} be signers and verifiers’ public keys respec-

tively. A is given S and V.

2. Queries: A can issue queries to the following oracles. Note

that A can also issue a corrupt query to obtain the secret

keys of signer and verifier in the lists (except the challenge

public keys, i.e. pk⇤s and pk⇤v ).

• Osign: A can issue signing queries between signer pks 2

S and verifier pkv.

• Osim: A can request verifier pkv to simulate signature

on message m between signer pks 2 S.

• Over: A can request verification queries on the pair

(m, s) on the signer pks 2 S and verifier pkv.

• Restrictions: In the multi-user setting, an additional re-

striction applies, namely, pkv 2 V for queries to Osign,
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Osim, Over. In the multi-user+ setting, pkv can be any

value chosen by A.

3. Forgery: Finally, A outputs a forgery (m⇤, s⇤) on signer

and verifier from lists and wins the game if,

• Ver(sk⇤v, pk⇤v, pk⇤s , m⇤, s⇤) = 1 , and

• A has not issued Osign and Osim on input m⇤ on signer

pk⇤s and verifier pk⇤v before.

The probability of forging a valid signature is denoted by

Pr[Forge]. An SDVS scheme is unforgeable if

Pr[Forge] < e(l),

where e(l) is negligible in l.

Definition 3.2.2 (Non-Transferability). An SDVS scheme is non-

transferable if there exists a PPT simulation algorithm Sim which

takes skv, pkv, pks and message m as input. It outputs a simulated

signature that is indistinguishable from the real signature generated

by the signer on the same m.

That is, for any PPT distinguisher D, any (pks, sks) KG(1l),

(pkv, skv) KG(1l) and any message m 2 {0, 1}⇤, it holds that

������������

Pr

2

6666664

s0  Sign(sks, pks, m),

s1  Sim(skv, pkv, m),

b $
 � {0, 1},

b0  D(pks, sks, pkv, skv, sb)

: b0 = b

3

7777775
�

1
2

������������

< e(l)
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where e(l) is a negligible function with security parameter l.

The random coins consumed by D and the probability takes

over the randomness used in KG, Sign and Sim. If the prob-

ability is equal to 1
2, we say that the SDVS scheme is perfectly

non-transferable.

Definition 3.2.3 (Privacy of Signer’s Identity). We call a scheme

that satisfies privacy of signer’s identity in the multi-user (resp.

multi-user+) setting if a third party cannot tell whether the signature

generated by signer S0 or by signer S1 correctly without knowing

signer’s and verifier’s secret key.

The game below, which is played by a challenger C and a

distinguisher D, formally defines privacy of signer’s identity

in the multi-user setting. Let S and V denote the lists of signers

and verifiers’ public keys generated by C, same as the unforge-

ability game.

1. Setup: C generates public and secret keys for signers and

verifiers. The corresponding public key lists, namely, S

and V, are given to distinguisher D.

2. Queries: D can adaptively issue Osign, Osim and Over queries

on signer pksi
and verifier pkvi

, same as in the unforgeabil-

ity game. D can also corrupt secret keys on signer and

verifier from the lists.

3. Challenge: D chooses two signers, e.g. S⇤0 and S⇤1, from S

and one verifier pk⇤v from V to be the challenge identities.
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D submits a message m⇤ and C tosses a coin b 2 {0, 1} and

computes challenge signature s⇤  Sign(sk⇤sb
, pk⇤sb

, pk⇤v, m⇤).

C then returns s⇤ to D.

4. Queries: D continues to issue queries as in step 2 with the

restriction that no verification queries on (m⇤, s⇤, pk⇤si
) for

any pk⇤si
2 {S⇤0, S⇤1}. Note that D cannot corrupt challenge

identities’ secret keys.

5. Guess: Finally, D outputs a guess b0 of b and wins the

game if b0 = b. The probability of D in winning this game

is defined as Pr[PSI]. An SDVS scheme possesses PSI if

����Pr[PSI]�
1
2

���� < e(l),

where e(l) is negligible.

Definition 3.2.4 (SDVS). An SDVS scheme is secure in the multi-

user (resp. multi-user+) setting if it possesses unforgeability, non-

transferability and privacy of signer’s identity.

3.3 Our Construction

In this section, we give our generic construction towards our

strengthened models. We first give a high-level overview, fol-

lowed by a detailed description.
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3.3.1 Overview of Our Construction

Our generic construction of SDVS relies on KEM and PRF, where

KEM must be 2-phase as discussed in Definition 2.2.2. This

is not too restrictive since most KEM schemes can satisfy this

requirement. Our generic construction is secure in the multi-

user setting (resp. multi-user+ setting) if PRF is secure and the

underlying KEM is IND-CPA secure (resp. IND-CCA secure).

Below we give a high-level description of our generic construc-

tion.

In our construction, we use KeyGen in KEM to generate signer’s

keys, i.e. (pks, sks)  KeyGen(1l). We use the first phase in

KEM’s Encap, C  Encap1(w), to generate verifier’s keys, i.e.

pkv  C, skv  w (w is the randomness used in Encap1). To

sign a message, the signer uses his secret key to decapsulate C

to obtain the session key, i.e. Ksv  Decap(C, sks). He then uses

this key in PRF to sign message m, i.e. s  PRFKsv(m). For

verification, verifier executes the second phase in Encap to ac-

quire the same session key, i.e. Ksv  Encap2(C, pks, skv := w),

followed by checking s
?
= PRFKsv(m).

3.3.2 Details of Our Generic Construction

Given a KEM scheme K = (K.KeyGen, K.Encap, K.Decap), which

is a 2-phase encapsulation mechanism, and a PRF function, we

can construct a secure SDVS scheme D = (D.KG, D.Sign, D.Ver).

The construction is as follows.
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1. D.KG: The key generation algorithm takes 1l as input where

l is the security parameter. It invokes KeyGen in KEM to

obtain signer’s keys, namely, K.KeyGen(1l)! (D.pks, D.sks).

It also invokes the first phase in Encap to obtain verifier’s

keys, namely, K.Encap1(w)! C, (C, w)! (D.pkv, D.skv).

2. D.Sign: The signing algorithm takes the signer’s keys, the

verifier’s public key and the message as input, namely,

(D.sks, D.pks, D.pkv, m). It first runs the decapsulation al-

gorithm in KEM to obtain the key, i.e. K.Decap(D.pkv, D.sks)!

Ksv. It then takes key Ksv and message m into PRF algo-

rithm with returning signature s, PRFKsv(m) ! s. The

signing algorithm can be written as, D.Sign(D.sks, D.pks,

D.pkv, m)! s.

3. D.Ver: The verification algorithm takes the verifier’s keys,

public key of signer, the message and signature as input,

namely, (D.skv, D.pkv, D.pks, m, s). It first runs the sec-

ond phase of encapsulation algorithm in KEM to compute

key Ksv, namely, K.Encap2(D.pkv, D.pks, D.skv) ! Ksv. It

will then invoke Ksv and message m into PRF to obtain

its signature s0. If s0 = s, it returns 1; otherwise, it re-

turns 0. The whole verification algorithm can be written

as, D.Ver(D.skv, D.pkv, D.pks, m, œ)! b.
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3.4 Security Analysis of Our Construction

In this section, we give security analysis of the above generic

construction. We prove that our SDVS scheme is secure if the

underlying KEM and PRF schemes are secure.

Theorem 3.4.1. If the underlying KEM scheme is IND-CPA (resp.

IND-CCA) secure and PRF function achieves pseudoramdomness,

then we can construct a secure SDVS scheme in the multi-user set-

ting (resp. multi-user+ setting).

The proof of Theorem 3.4.1 is divided into the proof of the

following three lemmas, which stated that our generic construc-

tion possesses unforgeability, non-transferability and privacy

of signer’s identity.

Lemma 3.4.1. If the underlying KEM scheme is IND-CPA (resp.

IND-CCA) secure and PRF is a pseudorandom function, then our

constructed scheme D achieves the property of unforgeability (in the

multi-user setting) (resp. multi-user+ setting). That is, PrSDVS
A,D [Forge]

is negligible.

Lemma 3.4.2. If the underlying KEM is IND-CPA (resp. IND-

CCA) secure and PRF achieves pseudorandomness, our constructed

scheme D is perfectly non-transferable.

Lemma 3.4.3. If the underlying KEM scheme is IND-CPA (resp.

IND-CCA) secure and PRF is a pseudorandom function, then our

constructed scheme D (with multi-user setting) (resp. multi-user+

setting) achieves the property of privacy of signer’s identity. That is,
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PrSDVS
A,D [PSI] is no larger than 1

2 , indicating that the adversary has no

advantage compared with randomly guessing the bit.

As we will see in the proof of Lemma 3.4.2, the scheme is per-

fectly non-transferable so the queries to Osim can be perfectly

handled by Osign in the game of unforgeability and privacy of

signer’s identity. Hence, we only consider signing and verifi-

cation queries in these two games.

Proof. (of Lemma 3.4.1) For any PPT forger A, Pr[Forge] in the

multi-user (resp. multi-user+) setting is negligible assuming

KEM scheme is IND-CPA (resp. IND-CCA) secure and PRF

achieves pseudorandomness.

We prove this lemma by using a sequence of games played

between a challenger C and an adversary A. Let Gi denote the

i-th game and Xi imply the event that A outputs a valid forgery

in game Gi. Let S and V denote two lists for signers and veri-

fiers, with m and n entities respectively.

G0: This game is with multi-user setting (resp. multi-user+).

Challenger C invokes adversary with S and V lists. Adversary

A can issue signing and verification queries on the signer and

verifier from the lists (resp. no restrictions on the verifier in

multi-user+). We can have that,

SDVS
Pr
A,D

[Forge(multi-user)](resp. multi-user+) = Pr[X0]. (3.1)
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G1: In this game, the key used in PRF between challenge

identities pk⇤s and pk⇤v is randomly chosen, i.e. K0 $
 � N. When

A issues signing and verification queries between them, C uses

this key K0 to response. The only difference between this game

and game 0 is the key used in PRF. If the adversary can dis-

tinguish these two games, we can construct an adversary A1 to

break the IND-CPA (resp. IND-CCA) game in KEM. Therefore,

we have,

|Pr[X1]� Pr[X0]|  mn · ecpa(resp. ecca). (3.2)

We construct adversary A1 in CPA (resp. CCA) game where

A1 is given challenge ciphertext (C⇤, K⇤) and public key pk⇤.

A1 will simulate the game for the adversary in SDVS. He ran-

domly guesses a signer-verifier pair from the two lists as chal-

lenge identities and sets, pk⇤s = pk⇤, pk⇤v = C⇤. The key used

between these identities is K⇤. Note that A1 will abort if he

cannot guess the challenge identities correctly.

• In the multi-user+ setting, A can issue queries on verifier

pkvi
beyond the V list. To response this query, A1 will make

decapsulation queries on Ci  pkvi
in CCA game (under

pk⇤s ) and get the corresponding key Ki. He then uses this

key to response signing and verification queries.

If the SDVS’s adversary successfully forges the signature, A1

outputs 0, indicating that K⇤ is the correct shared key; Other-

wise A1 randomly outputs a bit b0. Hence his probability to
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win the game is mn · ecpa (resp. mn · ecca). Therefore, the dif-

ference between game 0 and game 1 is equal to mn times the

advantage that A1 can distinguish them in CPA (resp. CCA)

game.

G2: In this game, we replace PRF with a truly random func-

tion. It means that the signature is randomly chosen from {0, 1}l

in this game. We have,

|Pr[X2]� Pr[X1]|  eprf. (3.3)

To obtain the above equation, we construct an adversary A2

to break the pseudorandomness of PRF with advantage eprf.

Given an oracle function F(·) which is either a pseudorandom

function chosen from F or a truly random function. Here, A2

maintains a table T, which is initially empty.

When responding to signing queries on mi between pk⇤s and

pk⇤v, A2 returns si if (mi, si) exists in T; Otherwise, A2 submits

message mi to function F and returns si, followed by storing it

in table. When responding to verification queries on (mi, si),

A2 will just return s0i
?
= si if mi exists in the table with s0i ; Oth-

erwise, A2 forwards message mi to function F with obtaining

a signature s0i . He then returns s0i
?
= si to adversary A with

storing (mi, s0i ) in table T. The pseudorandom function is de-

terministic so that our simulation is perfect. Finally, A outputs

a forgery (m⇤, s⇤) on pk⇤s and pk⇤v. A2 submits m⇤ to function

F with obtaining s⇤0 and outputs 1 if s⇤0 = s⇤, indicating that
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function F is chosen from F; Otherwise, he outputs 0.

Note that if F is chosen from F, this is actually game 1; If F is a

truly random function, this is game 2. Therefore, the difference

between these two games is whether function F is chosen from

F. Thus we can obtain equation (3.3). In game 2, the signature

between pk⇤s and pk⇤v is a truly random string. After querying

qsign, qsim and qver queries, the probability that A outputs a valid

forgery is up to

Pr[X2]  (2l
� qsign� qsim� qver)

�1

< (qsign + qsim + qver)2�l,
(3.4)

which is negligible. Combing equations (3.2) to (3.4), we have,

SDVS
Pr
A,D

[Forge(multi-user)](resp. multi-user+)

= Pr[X0] 
2

Â
i=1

|Pr[Xi]� Pr[Xi�1]|+ Pr[X2]

< mn · ecpa(resp. ecca) + eprf + (qsign + qsim + qver)2�l.

(3.5)

We can see from equation (3.5) that the probability of breaking

the unforgeability in multi-user setting (resp. multi-user+ set-

ting) is negligible, which completes our proof.

Proof. (of Lemma 3.4.2) To simulate the signer’s signature on

message m, the designated verifier does the following, namely,

K.Encap2(pkv, pks, skv)! Ksv, PRFKsv(m)! s.



74
Chapter 3. Strong Designated Verfiable Signature from Key Encapsulation

Mechanism

The verifier can simulate the signature by running the sec-

ond phase in Encap algorithm with inputting pkv, pks and skv.

The key Ksv that he can obtain is the same as the key that the

signer uses to generate signatures. Since both the signer and

the verifier can compute the same key, they can generate the

same signature on message m, i.e. tag = PRFKsv(m). Therefore,

our constructed D scheme is perfectly non-transferability.

Proof. (of Lemma 3.4.3) For any PPT distinguisher A in SDVS’s

PSI game, Pr[PSI] in the multi-user (resp. multi-user+) setting

is negligibly close to 1/2 assuming KEM scheme is IND-CPA

(resp. IND-CCA) secure and PRF achieves property of pseudo-

randomness.

Let A be the distinguisher and C be the challenger against

privacy of signer’s identity game. Let K0 denote the shared key

between signer pk⇤s0
and verifier pk⇤v, K1 denote shared key be-

tween pk⇤s0
and verifier pk⇤v. We consider the following games

played between A and C. Let Xi denote the event that A out-

puts the correct guess bit in game Gi.

G0: This game is the PSI game with multi-user (resp. multi-

user+) setting. We can have,

SDVS
Pr
A,D

[PSI(multi-user)](resp. multi-user+) = Pr[X0]. (3.6)

G1: In this game, the key shared between pk⇤s0
and pk⇤v used
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in PRF is randomly chosen, i.e. K00
$
 � N. When A issues sign-

ing and verification queries on these identities, C uses K00 to

response. The only difference between this game and game 0 is

the key used in PRF when responding oracles between S0 and

V. Thus we can have,

|Pr[X1]� Pr[X0]|  mn · ecpa(resp. ecca). (3.7)

To obtain the above equation, we can construct an adversary

A1 to break the IND-CPA (resp. IND-CCA)’s game and the

analysis is identical to the game 1 of unforgeability and we omit

the details here.

G2: In this game, we replace key K1 between pk⇤s1
and pk⇤v

used in PRF to a random string, i.e. K01
$
 � N. Similar to game

1, we can have that,

|Pr[X2]� Pr[X1]|  (m� 1)n · ecpa(resp. ecca)

< mn · ecpa(resp. ecca).
(3.8)

This is the same as the transition from G0 to G1.

G3: In game 3, we replace PRFK0 function used between pk⇤s0

and pk⇤v to a truly random function . For every signing query

on message mi with pk⇤s0
, the signer’s signature is chosen at ran-

dom from (0, 1)l instead of computing PRFK0(mi). We can have

the following equation,

|Pr[X3]� Pr[X2]|  eprf. (3.9)
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To prove equation (3.9), we can construct an adversary A2 to

break the pseudorandomness of PRF with (t2, eprf), where t2 ⇡

t. The analysis is identical to the game 2 in lemma 3.4.1.

G4: In this game, we replace function PRFK1 with a truly ran-

dom function used between signer pk⇤s1
and verifier pk⇤v. Simi-

larly, we can have that,

|Pr[X4]� Pr[X3]|  eprf. (3.10)

To obtain the above equation, we can use the same proof strat-

egy as in the transition between G2 and G3. Note that signature

s⇤ that distinguisher A receives in this game is generated by

truly random functions, therefore, he can only randomly guess

bit b with 1
2 probability. Hence, we have the following equation,

Pr[X4] =
1
2

. (3.11)

Combining equations from (3.6) to (3.11), we obtain that,

SDVS
Pr
A,D

[PSI(multi-user)](resp.multi-user+)

= Pr[X0] 
4

Â
i=1

|Pr[Xi]� Pr[Xi�1]|+ Pr[X4]

< 2mn · ecpa(resp. ecca) + 2eprf +
1
2

.

(3.12)

Because ecpa (resp. ecca) and eprf are all negligible. It’s easy to

see that the probability of breaking PSI game in multi-user set-

ting (resp. multi-user+ setting) is negligibly close to 1
2, which

completes our proof.
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3.5 Instantiation and Comparison

In this section, we give two instantiations called SDVS1 and

SDVS2, which base on DDH assumption. Besides, we give an-

other two post-quantum safe instantiations, namely, SDVS3 and

SDVS4, based on LWE assumption.

We employ the well-known Diffie-Hellman key exchange

scheme and PRF function [NR04] to instantiate our first SDVS

scheme (SDVS1). Note that this key exchange scheme satis-

fies our 2-phase KEM requirement. Following our construc-

tion, the resulting SDVS1 is the same as the first scheme pro-

posed in [HSW09]. Based on previous analysis, the scheme

in [HSW09] is actually secure in multi-user setting. However,

since Diffie-Hellman key exchange is not known to be CCA-

secure, this scheme is not secure in multi-user+ setting. As for

the instantiation in multi-user+ setting, we use a CCA-secure

KEM scheme proposed in [BSLZ09] and a PRF function [NR04]

to construct SDVS2, based on DDH assumption. Specifically,

KeyGen outputs (gx, x) as receiver’s keys; Encap1 outputs C : gw

on input w; Encap2 outputs pkw given a receiver’s public key;

Decap outputs Cx using receiver’s secret key x. Besides, The de-

tailed construction of DDH-based PRF can be found in [NR04],

we omit its details here.

Following our generic construction, the resulting SDVS is

given below for clarify. The keys are generated as, pks = gxs ,
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sks = xs; pkv = gxv , skv = xv. Signer first generates sign-

ing key as, namely, Ksv = (pkv)
xs and uses this key to sign on

message m: s  PRFKsv(m). When the verifier obtains sig-

nature s, he first generates the verification key, namely, Kvs =

(pks)
xv and uses this key to compute s0  PRFKvs(m). He then

outputs s0
?
= s to indicate validity or invalidity of the signa-

ture. This resulting scheme is actually the same as the first

scheme presented in [HSW09]. Following our security analysis,

the scheme in [HSW09] is actually secure in multi-user setting.

However, since Diffie-Hellman key exchange is not known to

be CCA-secure, this scheme is not secure in multi-user+ setting.

To instantiate our two SDVS models with multi-uer (resp.

multi-user+) setting, we use the scheme called SDVS1 in [HSW09]

as our initiation in the multi-user setting and we also call it as

SDVS1. Brifly speaking, the public key and secret keys in this

scheme are set as: pk = gx, sk = x for both signer and verifier,

and the signing or verification keys are set as: Ksv = gxsxv where

the underlying hardness assumption is DDH problem. When

we set the scheme like this, it is actually the scheme proposed

in [HSW09] and we just skip the details here.

Note that this scheme also satisfies our 2-phase KEM require-

ment. The construction of DDH-based PRF can also be found

in [NR04]. The resulting SDVS scheme following our generic

construction is denoted by SDVS2. It is explicitly stated as fol-

lows. We pick a group G of prime order q, with g1 and g2 being

its generators. Choose a target-collision resistant hash function
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H : {0, 1}⇤ ! Z⇤q , a key derivation function KDF, a pseudo-

random function PRF and randomly pick (x1, x2, y1, y2) 2 Z4
q .

Then we have, c = gx1
1 gx2

2 , d = gy1
1 gy2

2 . Set public key and secret

keys for the signer as, pks = (g1, g2, c, d), sks = (x1, x2, y1, y2).

Randomly pick r 2 Z⇤q and compute, u1 = gr
1, u2 = gr

2, a =

H(u1, u2) and v = crdra. Verifier’s public and secret keys are set

as, pkv = (u1, u2, v), skv = r. When the signer generates signa-

tures, he first generates signing key Ksv by running Decap algo-

rithm and uses PRF to compute signatures on message m as fol-

lows, a = H(u1, u2), v0 = ux1+y1a
1 ux2+y2a

2 , Ksv = KDF(u1, ux1
1 ux2

2 ), s =

PRFksv(m). If v0 = v then returns s; otherwise, returns?. When

the verifier obtains message-signature pair (m, s), he computes,

Ksv = KDF(u1, cr) and s0 = PRFKsv(m), where u1 = pkv, r = skv.

Verifier will then return s0
?
= s to indicate signature’s validity

or invalidity.

As for the lattice-based versions, we construct SDVS3 scheme,

based on a KEM [BCD+16] and a PRF function [BPR12]. The

constructed SDVS4 scheme derives from [ZYFZ19] and [BPR12],

based on LWE assumption. We omit details of these construc-

tions here due to page limitation.

We construct SDVS3 based on CPA secure scheme proposed

in [BCD+16] where parameter is set as FrodoKEM-976. The

corresponding construction of LWE-based PRF function can be

found in [BPR12]. Let n, m̄, n̄ denote the integer matrix dimen-

sions with n ⌘ 0 (mod 8). The scheme is stated as follows.

We choose a hash function H and a uniformly random seed
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seedA
$
 U{0, 1}s with using it to generate a matrix A 2 Zn⇥n

q

as, A Frodo.Gen(seedA). Let c denote a distribution over a set

S, generate two n⇥ n̄ matrices by sampling each of its entries

independently from S according to c: S, E  c(Zn⇥n̄
q ), and

generate matrix B 2 Zn⇥n̄
q as, B  AS + E. Signer’s keys are

set as, pks  (seedA, B), sks  S. Use the same way to gener-

ate the following four matrices, namely, A Frodo.Gen(seedA),

S0, E0 $
 c(Zm̄⇥n

q ), E00  c(Zm̄⇥n̄
q ), and compute B0  S0A + E0,

V  S0B + E00, C  (C1, C2) = (B0, V + Frodo.Encode(µ)),

where µ is randomly chosen. The verifier’s keys are set as,

pkv  C, skv  (S0, E0, E00). When the signer wants to generate

signatures, he first computes M = C2�C1S, µ Frodo.Decode(M),

and uses H(µ) to sign on message m, i.e. s PRFH(µ)(m).

The constructed SDVS4 scheme derives from [ZYFZ19], based

on LWE assumption. The construction of underlying LWE-

based PRF can be found in [BPR12]. It’s straightforward to see

that CCA-secure PKE scheme in [ZYFZ19] can be easily trans-

formed into a KEM to construct SDVS.

In Table 3.2, we compare our four instantiations in multi-

user (resp. multi-user+) setting with the existing SDVS schemes.

We consider pairing, hash, PRF and exponentiation operations,

denoted by P, H, R and E respectively. Please be noted that the

figures of our constructed SDVS2 come from [BSLZ09] whose

conclusion relies on the multi-exponential with a sliding win-

dow algorithm described in [M.05].
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Table 3.2: Comparison Between Our Instantiations and Existing SDVS
schemes

SDVS1 SDVS2 [HSMZ08] [TOO05] [LV05b] SDVS3 SDVS4 [NJ16]
Signing Cost 1E+1R 2.78E+1R+1H 1E+1H 2E+1H 2H+1P PK Size (MB) 2.99⇥10�2 21.82 1.34

Verification Cost 1E+1R 1E+1R 1E+1H 2E+1H 2H+1P SK Size (MB) 1.49 ⇥10�2 8.44 49.59
Hardness Assumption DDH DDH GDH CDH+DDH GBDH Hardness Assumption LWE LWE LWE

Standard Model
p p

⇥ ⇥ ⇥ Standard Model
p p p

Multi-user+ ⇥
p

⇥ ⇥ ⇥ Multi-user+ ⇥
p

⇥

We can see from Table 3.2 that our schemes, SDVS1 and SDVS2,

are secure in multi-user and multi-user+ setting respectively in

the standard model. As for SDVS3 and SDVS4, they are quite

efficient compared with the lattice-based SDVS scheme under

the same security requirement.
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Chapter 4

Zero-knowledge Arguments for

Paillier

Considering the widespread use of the Paillier cryptosystem

in various applications, it is crucial to develop zero-knowledge

proof (ZKP) systems for Paillier, thereby ensuring active secu-

rity for these applications. Generally, there are two approaches

for constructing ZKP systems for Paillier. The first one involves

customizing proof systems for Paillier using algebraic meth-

ods, as exemplified by [Lin17, LN18, DJ01a]. However, existing

works constructed in this manner exhibit linear proof size and

verification time concerning the number of problem instances

to be proved, rendering them less practical for real-world appli-

cations. For instance, in the voter analysis scenario introduced

in Chapter 1, there are typically thousands of records in one

polling station, thus the resulting proof size and verification

cost are quite large. Although some existing schemes may offer

efficient verification time, using existing tools to prove thou-

sands of records could result in an inefficient proof cost.

Another potential approach entails using existing sub-linear
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argument systems for generic statements (e.g., zk-SNARK). How-

ever, this leads to prohibitive proof generation costs, as it re-

quires translating the relation to be proven into an excessively

large Boolean or arithmetic circuit over a prime order field.

Specifically, the source of inefficiency in using existing zk-SNARKs

stems from representing statements related to Paillier encryp-

tion using an arithmetic circuit over a prime field.

In this thesis, we investigate a different approach - repre-

senting the statement being proven using an arithmetic circuit

over the ring of residue classes modulo a composite number

(ZN2), which matches the ciphertext space of the Paillier cryp-

tosystem. Modular arithmetic can then be represented using a

simple gate which greatly simplifies the representation of Pail-

lier encryption. Subsequently, we investigate how to adapt ex-

isting ZKPs for arithmetic circuits over a prime field into our

setting.

The primary obstacle when working in ZN2 instead of a prime

field is that it is unclear how one can prove a message is binary.

In a prime field, b ⇤ (b� 1) = 0 implies b is binary. Yet, in our

setting, there are non-trivial roots because N2 is not a prime

number. To solve this problem, we develop an innovative ap-

proach: the prover additionally provides the sum of a random

subset (of the verifier’s choice) of the witness “bits”. If the sum

is small, the verifier is convinced that all witness “bits” are bi-

nary1. To offer zero-knowledge, the sum is not provided in the
1To sustain the claim, one needs to show that all non-trivial roots are large.
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clear but is masked by some small “noise” value.

Chapter Organization. We give a summary of our contribution

in Section 4.1. We then give an overview of our approach in

Section 4.2. Our main protocol is given in Section 4.3 where

we can use our method to prove that multiple bits “packed” in

specific positions of Paillier messages, along with other require-

ments of these bits. We then extend this protocol into a range

proof protocol in Section 4.4. The underlying security proof for

our main protocol is given in Section 4.5. Besides, we give the

experimental results in Section 4.6 to examine its practicability.

4.1 Our Contribution

We present an efficient zero-knowledge argument of knowl-

edge system customized for Paillier cryptosystem. Our system

enjoys sub-linear proof size, low verification cost, and accept-

able proof generation effort, while also supporting batch proof

generation/verification. More specifically, we propose several

zero-knowledge argument of knowledge for various relations

for Paillier cryptosystem, including (1) the well-formedness of

multiple Paillier ciphertexts with packing of binary messages;

(2) an extension that proves additionally the number of one’s

in each ciphertext is no larger than a certain threshold and the

number of one’s in each unit exceeds a certain threshold; and
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(3) range proof of multiple Paillier ciphertexts. Our proof sys-

tem features sub-linear proof size and efficient verification time,

while maintain an acceptable proof generation time. Specifi-

cally, we made the following contributions.

• We design a constraint system defined over ZN2 to repre-

sent correct encryption of Paillier cryptosystem with plain-

text satisfying various properties. We show how to com-

pile the constraint system into an zero-knowledge argu-

ment of knowledge (ZKAoK) which allows a prover to con-

vince a verifier the knowledge of witnesses satisfying the

constraint system without revealing extra information.

• We design new techniques to prove that a witness is binary

even if the constraint system is defined over ZN2 for an

RSA modulus N. We believe that our new techniques can

be used for other scenarios where using arithmetic con-

straints over composite order filed is desirable.

• Based on the above, we give efficient ZKAoKs useful for

data analytic applications. We conduct a series of experi-

ments to examine their practicability. For proving packed

Paillier with binary messages, our proof size is 27x smaller

than using a standard OR-proof in proving 51.2K bits when

|N| = 2048. For proving 800 messages are all 256-bit num-

bers, our proof size is 27x smaller compare with state-of-

the-art range proof. Since our system is asymptotically

more efficient the gap is even larger for more ciphertexts.
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Table 4.1: Summarization and Comparison of Our Protocol with the State-
of-the-art Approaches in Different Scenarios with |N| = 2048 bits.

Our protocol can support batch proof and the inputs of ZKAoK⇤ are packed Paillier
messages. Np and Nb denote the number of proved plaintexts and bits in our protocol.
“�00 indicates that this attribute does not apply in this protocol. In a proving many bits
scenario, the averaged cost measures the cost for a single bits while that in a range proof

measures the cost for one message.
Scenario Protocol Np Nb Ave. Proof Cost Ave. Proof Time Ave. Verification Time

multiple binary records

OR-proof 1 1 >16384 bits 35.32 ms 18.04 ms

ZKAoK⇤
800 51.2K 605.92 bits 2.53 s 4.19 ms
1M 64M 18.85 bits 2.19 s 2.02 ms
10M 640M 7.90 bits 2.19 s 1.98 ms

multiple range proofs

[Lin17, Bou00] 1 - > 128 KB 241.43 ms 199.32 ms

ZKAoK0
800 - 4.68 KB 160.21 s 230.70 ms
1M - 932.84 bits 139.43 s 97.68 ms

10M - 232.12 bits 139.42 s 95.32 ms

Let us revisit our voter analysis example introduced in Chap-

ter 1. Table 4.1 compares the performance of our system and ex-

isting systems for the aforementioned voter analysis scenario,

where there are Np voters and Nb/Np seats to be filled. We also

compare our system with existing systems for multiple range

proofs when there are Np ciphertexts (to prove that all Np ci-

phertexts correspond to 256-bit plaintexts). One can see our

system outperforms existing works in terms of proof size and

verification time when the number of ciphertexts is in the order

of hundreds.

4.2 Technical Overview of Our Results

We give a technical overview of our solution (main protocol)

that proves correctness of packed Paillier encryption of multi-

ple binary messages. We further show how we can prove cor-

rectness of polynomially many such ciphertexts.
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Representing Arithmetic Circuit. Following the terminology of [BCC+16],

the statements to be proved are represented as a list of equa-

tions known as constraints. For example, the following list of

5 constraints represents the circuit shown in Fig. 4.1. Note that

all constraints are modulo N2 unless otherwise indicated.

a1 ⇤ b1 = c1

a2 ⇤ b2 = c2

a3 ⇤ b3 = c3

3 ⇤ c1 = a3

c1 + c2 = b3

Figure 4.1: An Arithmetic Circuit

The knowledge of wire assignment to satisfy the circuit trans-

lates directly to assignment of variables satisfying the set of

constraints. There are two types of constraints, namely, mul-

tiplication and linear constraints. A multiplication constraint

is of the form ax ⇤ bx = cx while a linear constraint is of the

form Âx w(a)
x ax + Âx w(b)

x bx = Âx w(c)
x cx + c0, where constants

{w(a)
x , w(b)

x , w(c)
x , c0} depend solely on the circuit and the public

values while {ax, bx, cx} are the assignments of the wires (de-

pends on values known only to the prover, or say witness).
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Note also that only wires of multiplication gates of intermedi-

ate values are labelled. Wires of addition gates and multiplica-

tion gates with public inputs (constants) are handled by linear

constraints. To prove that the prover knows some input such

that the output of above circuit is some specific number, say 0,

one could add another linear constraint as c3 = 0.

Jonathan et al. [BCC+16] showed how to transform a circuit

into constraints, and their zero-knowledge argument system

works directly over a set of constraints.

Constraints for Correctness of Paillier Encryption. Our first contri-

bution is a (compact) set of constraints handcrafted to represent

correct encryption. The prover wants to prove that he knows a

pair, (m, r), satisfying c = (1+ N)m · rN mod N2, which can be

computed as c = (1 + mN) · rN mod N2, where N is an RSA

modulus. Note that (1 + mN) is readily a linear constraint. We

focus on our set of constraints for rN.

Let a = dlog Ne and {na, . . . , n2, n1} be the binary decom-

position of N. That is, N = 2a�1 · na + · · ·+ 2 · n2 + n1. Define

sequence R̃ = {R̃1 = r, R̃2 = r2, . . . , R̃a = r2a�1
}. Let b be the

hamming weight of N. Define index set D̃ = {g|ng = 1}. We

have |D̃| = b. We use d1, . . ., db to denote elements of D̃ with

di < dj if i < j.

Define sequence S̃ = {S̃1, . . . , S̃b} such that S̃1 = R̃d1, S̃k =

S̃k�1 · R̃dk for k 2 [2, b]. We have S̃b = rN if R̃1 = r. Note that

R̃, S̃ are the intermediate values when we calculate rN from r
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using the square-and-multiply algorithm. One can uniquely

compute (a, b, D̃) from N.

As an example, consider N = 11, which can be represented as

1011 in binary. Then a = 4 and b = 3. To compute r11, sequence

R̃ is set as, R̃ = {R̃1 = r, R̃2 = r2, R̃3 = r4, R̃4 = r8}. Sequence

D̃ is, D̃ = {d1 = 1, d2 = 2, d3 = 4}. We have S̃ = {S̃1 = R̃1 =

r, S̃2 = S̃1 · R̃2 = r3, S̃3 = S̃2 · R̃4 = r11}.

Correctness of sequence R̃ and S̃ indicates rN is computed

correctly. Thus, correct encryption of Paillier ciphertext can be

represented using the following constraints.

c = T̀ ⇤ S̃b

T̀ = 1 + m ⇤ N

R̃1 = r //for clarity

R̃i+1 = R̃i ⇤ R̃i i 2 [1, a� 1]

S̃1 = R̃d1 //for clarity

S̃k = S̃k�1 ⇤ R̃dk k 2 [2, b]

(4.1)

For ease of writing, we define the above set of constraints as

Const{c,m,r}, with respect to c, m, and r. Note that R̃1, r (resp. S̃1,

R̃d1) can be combined into one witness. Thus, Const{c,m,r} con-

tains a + b � 1 multiplication constraints and one linear con-

straint.

Proof that A Message Is Binary. Very often, we need to prove that

a variable in the constraint is binary. For example, we may need
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to prove that c is an encryption of a message m. If the con-

straints are defined over a prime field, adding the following

constraint is sufficient:

m ⇤ (m� 1) = 0.

However, we work in ZN2 and the above constraint does not

guarantee m is binary. According to the Chinese Reminder The-

orem, there are 4 values satisfying this constraint:
8
>>>>>>>>><

>>>>>>>>>:

m = 0

m = 1

m = q2 · [(q2)�1 mod p2] (= X)

m = p2 · [(p2)�1 mod q2] (= Y),

One of the core technical contributions of this work is an in-

novative statistical argument to ensure m is binary. In more

detail, our solution requires that the prover also commits a ran-

dom “noise” value,R0, chosen from a relatively small range L2,

say, L := {1, . . . , 2256}. The verifier will choose a random chal-

lenge, ` 2 {0, 1}, and the prover is required to give L0 :=

`m + R0, along with a proof that L0 is computed correctly. For

simplicity, we will also use Paillier encryption for the ‘commit-

ment’ of R0. And the proof that L0 is correctly computed can be

represented by a linear constraint.

More concretely, the prover computes and sends c0 = (1 +

2Here, we also require the prover to attach a range proof for R0.
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N)R0 ⇤ r0N mod N2 to the verifier, who replies with a challenge

bit `, and the prover sends L0 along with a proof that the fol-

lowing constraints are satisfied:

Const{c,m,r}

m ⇤ (m� 1) = 0

` ⇤m + R0 = L0

Const{c0,R0,r0}.

Besides checking the proof, the verifier also checks whether

L0 is in L. For an honest prover, standard statistical argument

ensures L0 leaks negligible information about m since R0 is much

larger than m. A cheating prover may use X or Y as a witness.

Recall that X and Y are large (of the order p2 or q2), the only

way for a cheating prover to ensure L0 := ` ⇤ m + R0 2 L is to

guess ` and pick R0 accordingly. If he/she guesses that ` = 1,

he/she should pick a large R0 such that X (or Y) plus R0 mod-

ulo N2 is within L. Likewise, if he/she guesses ` = 0, he/she

should pick a small R0, i.e., R0 2 L. Therefore, with probability

1/2, a cheating prover will be caught. To amplify soundness,

above is repeated k times (say k = 128).

Proof that Polynomially-many Messages are Binary. Our method can

be extended to prove that polynomially many witnesses are bi-

nary. Specifically, assume we would like to prove that there

are Np ciphertexts, each of which encrypts a binary message.
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We use (mi, ci) to denote one message-ciphertext pair, where

i 2 [1,Np]. Same as before, the auxiliary information generated

by the prover is {R0j}j2[1,k], encrypted in {c0j}j2[1,k] using ran-

domness {r0j}j2[1,k]. Now, the random challenges from the veri-

fier are {`(i)j }i2[1,Np],j2[1,k]. The corresponding constraints are:

Const{ci,mi,ri}, i 2 [1,Np]

mi ⇤ (mi � 1) = 0, i 2 [1,Np]

Np

Â
i=1

`(i)j ⇤mi + R0j = L0j, j 2 [1, k]

Const{c0j,R
0
j,r
0
j}

, j 2 [1, k].

Same as above, the verifier checks that L0j is in L for j 2 [1, k]

in addition to checking the proof. We would like to remark

that the amortized cost for proving one message, say m, being

binary is 1 (i.e., the constraint of m ⇤ (m� 1) = 0). Intuitively, if

any of the mi is malformed (say, mi = X or mi = Y), probability

that all L0j 2 L is 2�k, which is negligible when we set k to 128.

The actual analysis is much more involved since we need

to show no matter how a cheating prover chooses his mi’s, the

probability that it can pass the verification is bounded (in fact,

we show that it is at most 1/2) if any of the mi is X or Y (and

is independent of the number of messages). The analysis is

shown in Lemma 4.5.2.
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Proof of Messages with Correct Structure. Recall our goal is to prove

the correctness of encryption for messages with specific for-

mats such as packing. For example, we may consider packing

two binary messages into one ciphertext, where the first two

slots are 32-bit. That is,

m = 00 . . . 0| {z }
32�bit

. . . 00 . . . b32| {z }
32�bit

00 . . . b0| {z }
32�bit

.

We can make use of the constraint 232 · b2 + b1 = m to shift the

bits to the correct position. For instance, the following set of

constraints represents all i ciphertexts are encryption of 2 bits,

each occupying a 32-bit slot:

Const{ci,mi,ri}

232
· b(i)32 + b(i)0 = mi

b(i)0 ⇤ (b
(i)
0 � 1) = 0

b(i)32 ⇤ (b
(i)
32 � 1) = 0

Const{c0j,R
0
j,r
0
j}

Â
⇣

l(i)j,0 b(i)0 + l(i)j,32b(i)32

⌘
+ R0j = L0j,

for i 2 [1,Np] and j 2 [1, k].

One may wish to directly extend the above method to sup-

port Paillier with packing for an arbitrary number of slots and

plaintext, e.g.,

m = 0 . . . 0b32·63| {z }
32�bit

0 . . . 0b32| {z }
32�bit

. . . 0 . . . 0b0| {z }
32�bit

,
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where |N| = 2048, and we pack 64 bits into 64 slots. How-

ever, our analysis showed that this is not straightforward. The

reason is that we have to ensure ‘bits’ {b(i)32·63, . . . , b(i)0 } and aux-

iliary input {R0j} are fixed before random challenges {l(i)j,32(s�1)}

are chosen. However, given (1) ci = (1 + miN)rN
i mod N2; (2)

m = Âs 232(s�1)b(i)32(s�1) mod N2; and (3) b(i)32(s�1) ⇤ (b
(i)
32(s�1)� 1) =

0 mod N2, the set {b(i)32(s�1)} is not unique (despite m is fixed

due to the injective nature of encryption).

This counter-intuitive observation arises from the fact that at

this point we cannot ensure {b(i)32(s�1)} are binary and thus m =

Âs 232(s�1)b(i)32(s�1) mod N2 may have multiple solutions. There

is a possibility that a malicious prover may choose different

{b(i)32(s�1)} after seeing challenges, and the analysis in Lemma

4.5.2 crucially relies on the fact that the prover’s “bits” are fixed

before seeing the verifier’s challenges.

We tackle this subtlety by carefully identifying the condi-

tion under which the prover’s “bits” are fixed. Specifically, we

observe that if message m satisfies |m| < min{|p|, |q|} (where

p and q are two factorizations of N), fulfilling constraints (1)

m = Âs 232(s�1)b32(s�1); and (2) b32(s�1) ⇤ (b32(s�1) � 1) = 0 (for

s 2 [1, 64]), the set {b32(s�1)} is unique. The formal analysis is

shown in Lemma 4.5.3.

Since under this condition the set {b32(s�1)} satisfying the

constraints is unique, the ‘bits’ are fixed given c and above con-

straints. Consequently, when the message space is 2048-bit, it

is only safe to use 1024 bits. In other words, we can only use 32
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32-bit slots to achieve provable security. This is not ideal and

we describe our final solution below.

Our Final Solution. We construct auxiliary messages to fulfill

the above “length requirement”. Assuming |N| = 2048 and we

divide the message space into 64 slots (each of which is 32-bit),

we need to introduce one new auxiliary message m⇤t for every

15 messages. Thus there will be Np/15 auxiliary messages in

total. Here we give an example to see how we construct m⇤t
from messages m15t�14 to m15t (t 2 [1,Np/15]),

m⇤t = b(15t)
32·63 . . . b(15t)

0| {z }
from m15t

. . . b(15t�14)
32·63 . . . b(15t�14)

0| {z }
from m15t�14

,

where b(i)32(s�1) indicates the last bit in the s-th slot of message

mi, for s 2 [1, 64] and i 2 [1,Np]. Each auxiliary message is

960-bit, and they satisfy,

(2959
⇤ b(15t)

32·63 + . . . + 2896
⇤ b(15t)

0 ) + . . .

+ (263
⇤ b(15t�14)

32·63 + . . . + b(15t�14)
0 ) = m⇤t ,

for t 2 [1,Np/15]. We use c⇤t to denote Paillier ciphertexts of

m⇤t . As the length of m⇤t satisfies above requirement, we can

use our proposed method to prove that all {b(i)32(s�1)} are 0 or 1.
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Constraints in our final solution are given below:

Const{ci,mi,ri}

Â
s

232(s�1)b(i)32(s�1) = mi

b(i)32(s�1) ⇤ (b
(i)
32(s�1) � 1) = 0

Const{c0j,R
0
j,r
0
j}

Â
i,s

`(i)j,32(s�1)b
(i)
32(s�1) + R0j = L0j

Â
s

Â
k

232(k�1)+s�1
· b15(t�1)+k

32(s�1) = m⇤t

Const{c⇤t ,m⇤t ,r⇤t },

where j 2 [1, k], s 2 [1, 64], k 2 [1, 15], i 2 [1,Np] and t 2 [1, Np
15 ].

We use `(i)j,32(s�1) to indicate the random challenges. Since there

are more bits now in the computation of L0j, range L will be

slightly enlarged, say, L := {0, 2281}.

4.3 Our Main Protocol ZKAoK⇤

In this section, we give the construction of our main protocol

ZKAoK⇤ and its extension, ZKAoK+. Since the ZKP system pro-

posed in [BCC+16] requires constraints as inputs, it is sufficient

for us to specify constraints for corresponding relations under

modulo N2. t is straightforward to adapt [39] to work over ZN2

except how the cyclic group is generated with order N2 can be

generated. Here we describe one such method. Given N2, one
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first find prime Q such that Q = f N2 + 1 for some small in-

teger f . Then, choose an arbitrary element g in Z⇤Q such that

gN2
= 1 mod Q. We use g to generate G.

4.3.1 Constraints for A Valid Paillier Message Ciphertext Pair

We recall a building block, Const{c,m,r}, that specifies constraints

for proving a valid Paillier message-ciphertext pair (m, c) with

randomness r. Let a = dlog Ne and SN = {na, . . . , n2, n1} as

the set containing the binary decomposition bits of N, satisfy-

ing N = Âk2[1,a] 2k�1 · nk. Define sequence R̃ := {R̃k : 8k 2

[1, a], R̃k = r2k�1
}. Let b be the hamming weight of N. Define

index sequence as,

D̃ := {dg|8g 2 [1, b], ndg = 1 ^ ndg 2 SN

^ 8g 2 [1, b� 1], dg < dg+1}.

We have |D̃| = b. Define sequence,

S̃ := {S̃k|8k 2 [1, b], S̃k = S̃k�1 · R̃dk ^ S̃0 = 1},

where |S̃| = b and S̃b = rN (with setting R̃1 = r).
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We denote the constraints for proving that c is a valid Paillier

ciphertext of m with r as Const{m,c,r},

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

c = T̀ ⇤ S̃b

T̀ = 1 + m ⇤ N

R̃1 = r //for clarity

R̃i+1 = R̃i ⇤ R̃i i 2 [1, a� 1]

S̃1 = R̃d1 //for clarity

S̃k = S̃k�1 ⇤ R̃dk k 2 [2, b]

(4.2)

Note that R̃1, r (resp. S̃1, R̃d1) can be combined into one wit-

ness. Thus, Const{c,m,r} contains (a + b� 1) multiplication con-

straints and one linear constraint.

4.3.2 Our Main Protocol ZKAoK⇤

Relation R⇤ for Main Protocol. Our goal is to prove that given Np

ciphertexts, {ci}i2[1,Np], where ci is the encryption of mi satisfies,

mi = 0 . . . 0b(i)32·(64�1)| {z }
32�bit

0 . . . 0b(i)32·(63�1)| {z }
32�bit

. . . 0 . . . 0b(i)0| {z }
32�bit

. (4.3)

That is to say, each message contains 64 32-bit slots, and all bits

except the last bit in each slot are 0. (One can easily prove that

each message contains 32 32-bit slots when |N| = 1024 using

the same technique with s 2 [1, 32].) Formally, the relation we
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prove can be described by R⇤ defined below:

R⇤ = {({ci}i2[1,Np], N), (mi, ri, b(i)32(s�1))i2[1,Np],s2[1,64] :

8 i 2 [1,Np] and s 2 [1, 64], ci = (1 + N)mi · rN
i mod N2

^ mi = Âs2[1,64] 232(s�1) · b(i)32(s�1) mod N ^ b(i)32(s�1) 2 {0, 1}}.

(4.4)

Main Protocol ZKAoK⇤. We define,

m⇤t = b(15t)
32·31 . . . b(15t)

0| {z }
from m15t

. . . b(15t�14)
32·31 . . . b(15t�14)

0| {z }
from m15t�14

.

Then m⇤t satisfies,

m⇤t = 2959
· b(15t)

64 + · · ·+ b(15t�14)
1 mod N2

= Â
s2[1,64],k2[1,15]

264(k�1)+s�1
· b(15(t�1)+k)

s mod N2,

where t 2 [1,Np/15]. We also define c⇤t as their encryption,

c⇤t = (1 + N)m⇤t · rN mod N2.

Our main protocol, ZKAoK⇤, is shown in Fig. 4.2. We take L =

[0, 2281]. In addition, the prover should also prove that R0j is

chosen from L. This can be done by a standard range proof for

each R0j or ZKAoK0, which will be discussed in Section 4.4.

4.3.3 An Extended Protocol ZKAoK+

Relation R+. We now extend our main protocol to ZKAoK+,

proving that structured messages satisfy additional requirements

(i.e., sum of records and sum of entities). Its formal relation R+
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P : (N, {(ci, mi, ri, b(i)32(s�1))}i2[1,Np],s2[1,64]) V : (N, {ci}i2[1,Np])
8j 2 [1, k], R0j  L

8t 2 [1,Np/15], construct auxiliary messages m⇤t
8j 2 [1, k], compute c0j = PL.Encpk(R0j; r0j)
8t 2 [1,Np/15], compute c⇤t = PL.Encpk(m⇤t ; r⇤t )

({c0j}j2[1,k],{c⇤t }t2[1,Np/15])
��������������!

8i 2 [1,Np],
8s 2 [1, 64],
8j 2 [1, k],

l(i)j,32(s�1)  {0, 1}

{l(i)j,32(s�1)}i2[1,Np ],s2[1,64],j2[1,k]
 �����������������

8j 2 [1, k], compute,
L0j = Â

Np
i=1 Â64

s=1 l(i)j,32(s�1)b
(i)
32(s�1) + R0j

{L0j}j2[1,k]
������������!

8j 2 [1, k],
checks L0j 2 L+ 64 ⇤Np?
If yes, continue;

Otherwise, rejects.

compute constraints CR⇤ as,
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

8i 2 [1,Np], Const{ci,mi,ri}

8j 2 [1, k], Const{c0j,R
0

j,r
0

j}

8t 2 [1,Np/15], Const{c⇤t ,m⇤t ,r⇤t }

8i 2 [1,Np], mi = Â64
s=1 232(s�1)b(i)32(s�1)

8s 2 [1, 64], 8i 2 [1,Np], b(i)32(s�1) · (b
(i)
32(s�1) � 1) = 0

8j 2 [1, k], L0j = Âi,s `
(i)
j,32(s�1)b

(i)
32(s�1) + R0j

8t 2 [1,Np/15], m⇤t = Â64
s=1 Â15

k=1 264(k�1)+s�1 · b15(t�1)+k
32(s�1)

ZKAoK with inputs CR⇤over ZN2
 ������!

Figure 4.2: Our Main Protocol ZKAoK⇤ for Relation R⇤

is,

R+ = {({ci}i2[1,Np], N, t, T), (mi, ri, b(i)32(s�1))i2[1,Np],s2[1,64] :

8 i 2 [1,Np] and s 2 [1, 64], ci = (1 + N)mi · rN
i mod N2

^ mi = Âs2[1,64] 232(s�1) · b(i)32(s�1) mod N ^ b(i)32(s�1) 2 {0, 1}

^ Âs2[1,64] b(i)32(s�1)  t ^Âi2[1,Np] b(i)32(s�1) � T}.

(4.5)

Our Solution. The sum of records property requires that there

are at most t 1’s packed in {b(i)32(s�1)}s2[1,64] for each message

mi. Suppose t = 2x. we define ui as the summation of all

{b(i)32(s�1)}’s towards the same entity i. It is sufficient to prove

that each ui can be decomposed by x bits, {w(i)
x , . . . , w(i)

2 , w(i)
1 },

s.t., ui = Âs2[1,64] b(i)32(s�1) = Âv2[1,x] 2v�1w(i)
v , where w(i)

v 2 {0, 1}.

We define cui as the Paillier encryption of ui with randomness

rui .
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The sum of units property requires that there are at least T

1’s among {b(i)32(s�1)}i2[1,Np] towards each unit s. Assume T =

2y. We use ys to denote the summation of binary records to-

wards the same s as, ys = Âi2[1,Np] b(i)32(s�1). Suppose ys can be

decomposed into n binary bits, {y(s)
n , . . . , y(s)

2 , y(s)
1 }, s.t, ys =

Âr2[1,n] 2r�1 · y(s)
r . Define fs as the summation of decomposi-

tion bits from y(s)
n to y(s)

y+1 as, fs = Âk2[y+1,n] y(s)
k . It is sufficient

to prove that for every s 2 [1, 64], there exists an integer gs s.t.,

fs · gs = qs, where qs is a randomly chosen challenge integer

from the verifier.

Besides, it requires to prove that all the decomposition bits

({w(i)
v }

i2[1,Np],v2[1,x], {y(s)
k }k2[y+1,n],s2[1,64]) are all bits. We use the same

technique as the main protocol here. To fix {w(i)
v }, one need

to further encrypt its summation ui to cui . {y(s)
k } doesn’t need

auxiliary encryption as the verifier can compute ’i ci and parse

the encryption of ys itself. Furthermore, one will need the sta-

tistical argument to prevent a cheating prover. We re-use the

statistical argument in ZKAoK⇤. We define constraints C 0
R⇤

by

changing the original constraints, L0j = Âi,s `
(i)
j,32(s�1)b

(i)
32(s�1) + R0j

into,

L0j = Â
i,s,v,k

`(i)j,32(s�1)b
(i)
32(s�1) + `0(i)v w(i)

v + `0(s)k y(s)
k + R0j,

where {`(i)j,32(s�1)}, {`0(i)v }, and {`0(s)k } are randomly chosen from

{0, 1} by the verifier and i 2 [1,Np], s 2 [1, 64], v 2 [1, x],
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k 2 [y+ 1, n], and j 2 [1, k]. Then constraints CR+ are as follows,

8
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

C 0
R⇤

Const{cui ,ui,rui}
8i 2 [1,Np]

ui = Â64
s=1 b(i)32(s�1) 8i 2 [1,Np]

ui = Âv2[1,x] 2v�1w(i)
v 8i 2 [1,Np]

w(i)
v (w(i)

v � 1) = 0 8v 2 [1, x], 8i 2 [1,Np]

ys = Âi2[1,Np] b(i)32(s�1) s 2 [1, 64]

ys = Âr2[1,n] 2n�1 · y(s)
r s 2 [1, 64]

fs = Âk2[y+1,n] y(s)
k s 2 [1, 64]

y(s)
k (y(s)

k � 1) = 0 8k 2 [y + 1, n], 8s 2 [1, 64]

fs · gs = qs s 2 [1, 64],
(4.6)

ZKAoK+ runs the same as our main protocol, based on the above

constraints. The verifier chooses {qs} along with {`(i)j,32(s�1)},

{`0(i)v }, and {`0(s)k }. It is noted that we only give a naive solution

towards R+ and additional optimizations are possible. One

can easily optimize it by encrypting several {ui}’s into one mes-

sage, as each ui contains at most 64 bits while a Paillier plaintext

is 2048 bits when |N| = 2048.
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4.4 A Range Proof Protocol

We further construct a range proof protocol ZKAoK0. Specifi-

cally, we are going to prove that polynomially many plaintexts

{mi} are in the same range, say, [0, 2256], the relation R0 is set as

follows,

R
0 = {({ci}i2[1,Np], N, 2256), (mi, ri, b(i)k )i2[1,Np],k2[0,255] :

8 i 2 [1,Np], ci = (1 + N)mi · rN
i mod N2

^mi  2256
}. (4.7)

We set |N| = 2048 where |p| = |q| = 1024. We use {b(i)256, . . . , b(i)2 , b(i)1 }

to denote the decomposition of mi. To prove R0 with the above

setting, it is sufficient to prove that 1) the decomposition ele-

ments of mi are all 0 or 1; 2) These 256 bits can re-construct mi;

3) ci is a valid ciphertext for mi. One thing that should be ad-

dressed is that as we consider proving 256-bit messages, which

already satisfies the length requirement, |mi| < min{|p|, |q|},

we do not have to construct auxiliary messages m⇤t here. Then

the constraints C 0 are,
8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

Const{ci,mi,ri}, 8i 2 [1,Np]

Const{c0j,R
0
j,r
0
j}

, 8j 2 [1, k]

b(i)k · (b(i)k � 1) = 0, 8i 2 [1,Np], 8k 2 [1, y]

L0j = Â256
k=1 Â

Np
i=1 l(i)j,k · b(k)k + R0j, 8j 2 [1, k]

mi = Ây
k=1 2k�1 · b(i)k , 8i 2 [1,Np],

(4.8)
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where l(i)j,k  {0, 1}, is randomly chosen from the verifier for

each b(s)k in constructing L0j and R0j  L. We can set L = [0, 2281]

to hide bits when having millions of messages in the above set-

ting. Besides, same as our main protocol, the prover should

send {c0j} before the verifier chooses challenges {l(i)j,k }.

4.5 Security Proof

In this section, we analyze the security of our main protocol as

others are similar to analyze. It is easy to verify completeness

of the protocol. Also, special honest verifier zero-knowledge

property comes from the special honest verifier zero-knowledge

property of the underlying zero-knowledge argument system

and security of the Paillier encryption scheme. In particular, as

R0j  [0, 2281] and (an honestly generated) S0j = Â
Np
i=1 Â64

s=1 l(s,i)
j ·

b(i)32(s�1)  226 (where we take Np  220), the two distributions

R0j and S0j + R0j are statistically close and thus L0j = S0j + R0j will

not leak information about S0j.

Next, we argue the special soundness of our protocol. It is

sufficient to show that R⇤ is equivalent to the constraints spec-

ified by CR⇤ specified in Fig. 4.2 . Here, we focus on showing

that if CR⇤ holds, then each b(i)32(s�1) is from {0, 1} with all but

negligible probability. The remaining parts are trivial to check.

Let q̄ = q�1 mod p, p̄ = p�1 mod q, then b(i)32(s�1) = b(i)32(s�1) ·

b(i)32(s�1) implies that b(i)32(s�1) 2 {0, 1, q · q̄, p · p̄}. Note that both

q · q̄ and p · p̄ are much larger than p, q, thus, it is sufficient to
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show that b(i)32(s�1) is small. We complete this task by revealing

a random subset sum of all b(i)32(s�1). If there exists some large

b(i)32(s�1), then at least half of the subset sums will be large (we

explain this latter in Lemma 4.5.2). Thus, we can bound b(i)32(s�1)

via showing that random subset sums of all b(i)32(s�1) are always

small. One subtle issue here is that a (malicious) prover may

use different b(i)32(s�1) to answer different challenges. We solve

this issue by committing all b(i)32(s�1) in the beginning. In partic-

ular, we show in Lemma 4.5.3 that the Paillier encryption can

play the role of commitment in this case. Specifically, we for-

malize the above proof idea in Lemma 4.5.1 to Lemma 4.5.3. We

give the whole proof of our main protocol in Theorem 4.5.1.

Lemma 4.5.1. There are 4 possible values of bi (0, 1, X and Y) satis-

fying constraint, bi(bi � 1) = 0 mod N2. There are only 2 possible

values of bi, 0 and 1, satisfying the same constraint, under modulo p

or q. N is the product of these two prime numbers, s.t., N = p · q.

Proof. (of Lemma 4.5.1) There are 4 possible values of bi satisfy-

ing the above constraint modulo N2, i.e., 0, 1, X and Y, where X

denotes q2 · [(q2)�1 mod p2] and Y denotes p2 · [(p2)�1 mod q2].

The following table shows possible values of bi under modulo

p and q respectively.

From the table we can see that there are only 2 possible values

Table 4.2: Possible values of bi

Value of bi 0 1 X Y
Value of bi mod p 0 1 1 0
Value of bi mod q 0 1 0 1
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of bi under modulo p or q , 0 or 1.

Lemma 4.5.2. Let B be a set {b1, . . . , bk}, where bi 2 {0, 1, X, Y}

for 1  i  k. Let L = b1 · l1 + b2 · l2 + · · ·+ bk · lk + R mod N2,

where li  {0, 1}, 1  i  k, and R  L. Define the event that

there exists i in B such that bi /2 {0, 1} as NonBits; Otherwise, define

the event as Bits. Let M = k + max{R}. Assuming that N is a

correctly generated RSA modulus and M < min{X, Y} < N2�M,

we have,

Pr[L  M | NonBits] 
1
2

.

Please note that L is computed modulo N2. Then for 1  j  t,

define Lj = b1 · l(j)
1 + b2 · l(j)

2 + · · · + bi · l(j)
i + · · · + bk · l(j)

k + Rj

mod N2, where l(j)
i  {0, 1} and Rj  L is chosen from the same

range as R. We have, Pr[L1  M ^ L2  M ^ · · · ^ Lt 

M | NonBiits]  1
2t .

Proof. (of Lemma 4.5.2) Firstly, we prove the first probability.

Let U = {0, 1}k be the challenge space for random challenges,

l1, l2, . . . , lk. Let M = k + max{R}, where R  L. If NonBits

happens, that is to say, there exists i, s.t., bi = {X, Y}. Let

{l1, . . . , li, . . . , lk} be challenge bits such that,

L = b1 · l1 + · · ·+ bi · li + · · ·+ bk · lk + R  M mod N2.

Then for another challenge set, {l1, . . . , l̄i, . . . , lk}, we define,
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L̄ = b1 · l1 + · · ·+ bi · l̄i + · · ·+ bk · lk + R mod N2,

where l̄i indicates the reverse of li. We can have, L̄ = L ±

X(resp. Y) > M mod N2, since X (resp. Y) is a big integer.

That is, there must exist at least half of the challenges in chal-

lenge space U such that it can satisfy L̄ > M mod N2. Thus,

Pr[L  M |NonBits]  1
2.

Similarly, for the same set B with bi 2 {X, Y}, if it can satisfy,

Lj = b1 · l(j)
1 + b2 · l(j)

2 + · · ·+ bi · l(j)
i + · · ·+ bk · l(j)

k +Rj  M mod N2.

Then for every j 2 [1, t], we can construct L̄j as,

L̄j = b1 · l(j)
1 + b2 · l(j)

2 + · · ·+ bi · l̄(j)
i + · · ·+ bk · l(j)

k +Rj > M mod N2,

where Rj  L is chosen from the same range as R. Thus for

each Lj  M mod N2, we can construct L̄j > M mod N2 as

before. Similarly, we can have,

Pr[Lj  M | NonBits] 
1
2

,

for all j. As all challenge bits are independently chosen, then

the probability that all Lj can satisfy Lj  M mod N2 is,
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Pr[L1  M ^ · · · ^ Lt  M | NonBits]

= Pr[L1  M | NonBits] · · ·Pr[Lt  M | NonBits] =
1
2
· · ·

1
2


1
2t ,

which ends the proof.

Lemma 4.5.3. For every message m < N2, there exists at most

one possible solution set {b0, b1 . . . , bu} satisfying the following con-

straints,

c = (1 + N)m
· rN mod N2, (4.9)

m = 2u
· bu + · · ·+ 2 · b1 + b0 mod N2, (4.10)

0 = bi · (bi � 1) for i 2 [0, u] mod N2, (4.11)

provided that the following inequality holds,

u + 1 < min{|p| , |q|}, (4.12)

where N = pq.

Proof. (of Lemma 4.5.3) To prove this lemma, we use contradic-

tion. Assume that there exists two different sets, {bi}
u
i=0 and

{b0i}
u
i=0, such that a j exists where bj 6= b0j for 0  j  u, sat-

isfying constraints 4.9 to 4.11. They can construct messages m

and m0 respectively, with the same encryption c. We denote

these two sets as, (c, m, {bi}
u
i=0) and (c, m0, {b0i}

u
i=0). According
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to constraint 4.9, we can get, m = m0 + kN mod N2, where

k > 0. Constraint 4.10 provides,

m = 2ubu + · · ·+ 2b1 + b0 mod N2, (4.13)

m0 = 2ub0u + · · ·+ 2b01 + b00 mod N2. (4.14)

Equation 4.13 minus equation 4.14 yields,

d = kN = 2u(bu � b0u) + · · ·+ 2(b1� b01) + b0� b00 mod N2.

(4.15)

Consequently, d = 0 mod N. With N = pq, this evolves to,

d = 0 mod p (resp. q). We use di = bi � b0i, to denote the gap

difference between each element in {bi}
u
i=0 and {b0i}

u
i=0. We can

get,

d = 2udu + · · ·+ 2d1 + d0 = 0 mod p (resp. q). (4.16)

We let ei = di mod p = (bi� b0i) mod p, and fi = di mod q.

When considering modulo p, Equation 4.16 can be rewritten as,

d = 2ueu + · · ·+ 2e1 + e0 = 0 mod p. (4.17)

According to constraint 4.11, we have bi (resp. b0i) 2 {0, 1, X, Y}.

When it goes to modulo a prime number p, they can only be

0 or 1. Thus, we can have ei 2 {�1, 0, 1}. Given u + 1 <

min{|p|, |q|}, Equation 4.17 is still satisfied without the final
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modulo operation, and we can have,

e = 2ueu + · · ·+ 2e1 + e0 = 0. (4.18)

To satisfy the above equation, ei = 0 must hold for every

i 2 [0, u]. Similarly, we can prove that fi = 0 must hold for

every i 2 [0, u]. This implies that di = 0 mod p and di = 0

mod q. Additionally, since we have bi (resp. b0i) 2 {0, 1, X, Y},

it follows that di 2 {0, 1, X, Y,�1,�X,�Y, 1 � X, 1 � Y, X �

1, X�Y, Y� 1, Y� X}.

Now, assuming di 6= 0, we prove that either di 6= 0 mod p

or di 6= 0 mod q. We first assume w.l.o.g. that X = 1 mod p,

X = 0 mod q, Y = 0 mod p, Y = 1 mod q. Then if di 2

{1, X, 1�Y, X�Y}, we will have di = 1 mod p. If di 2 {�1,�X, Y�

1, Y�X}, then we can derive di = �1 mod p. If di 2 {1, Y, 1�

X, Y � X} or di 2 {�1,�Y, X � 1, X � Y}, we can have that

di = 1 mod q or di = �1 mod q, respectively. As the above

contradicts the fact that di = 0 mod p and di = 0 mod q,

we can derive that di cannot be other variables except 0, which

ends our proof.

Looking ahead, Theorem 4.5.1 requires the condition Nb +

max{R0j} < min{X, Y} < N2 �Nb �max{R0j} (Nb denotes the

number of proved bits) in order to apply Lemma 4.5.2. Below

we show that this condition is met in our application scenario.

Let M = Nb + max{R0j}. We show that if min{p2, q2} > M

holds, the condition M < min{X, Y} < N2 � M is satisfied.
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First, recall that X = q2 · [(q2)�1 mod p2] and Y = p2 · [(p2)�1

mod q2]. We have max{X} = q2 · (p2 � 1) = N2 � q2. Like-

wise, max{Y} = N2� p2. Similarly, we have min{X} = q2 and

min{Y} = p2.

Since min{p2, q2} > M, we have min{X, Y} = min{p2, q2} >

M, i.e., the first inequality holds. For the second inequality, we

have min{X, Y} < max{X, Y} = max{N2 � p2, N2 � q2} =

N2�min{p2, q2} < N2�M, i.e., the second inequality holds.

In our application scenario, let sd and l be the statistical and

security parameters, and Np  220. Then Nb = |N| ⇤Np/32,

where N = PL.Gen(1l). We set max{R0j} = 2sd ⇤ Nb. For

l = 128, |N| = 2048, we can set sd = 255. Then Nb  226 and

M < 2400. Assuming p and q are of equal length, min{p2, q2} >

M is readily met. To ensure this is true, we can require the pri-

vate key owner to prove in zero-knowledge that N is correctly

generated (from 2 equal-length primes).

Theorem 4.5.1. If the condition Nb + max{R0j} < min{X, Y} <

N2�Nb�max{R0j} holds, the argument presented in the main pro-

tocol (ZKAoK⇤) using the protocol in [26] for relation R⇤ satisfies

perfect completeness, perfect special honest verifier zero-knowledge,

and statistical witness-extended emulation.

Proof. (of Theorem 4.5.1) Define security and statistical param-

eters as l and sd. We have k = poly(l) and Nb = |N| ⇤Np/32,

where N = PL.Gen(1l). We set max{R0j} = 2sd ⇤Nb.
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Perfect completeness is derived from the completeness prop-

erty of the underlying protocol and straightforward inspection,

as all valid witnesses satisfy the constraints specified in CR⇤ .

Special honest verifier zero-knowledge comes from the secu-

rity of Paillier encryption and the underlying zero-knowledge

argument system. Specifically, (an honestly generated) S0j al-

ways satisfies, S0j = Â
Np
i=1 Â|N|/32

s=1 l(i)j,32(s�1)b
(i)
32(s�1)  Nb (where we

fix the slot size as 32-bit). Consequently, the statistical distance

between the distributions of R0j and L0j = S0j + R0j is bounded by
1

2sd . With choosing an appropriate value of sd, the two distribu-

tions will be statistically indistinguishable ensuring that L0j will

not leak information about S0j.

For witness extended emulation, it is sufficient to prove that

R⇤ is equivalent to CR⇤ , since the underlying protocol already

satisfies this property. It is easy to check that R⇤ implies CR⇤ . To

prove that CR⇤ implies R⇤, we show that if CR⇤ holds, then each

b(i)32(s�1) is from {0, 1} with all but negligible probability. Us-

ing Lemma 4.5.3, we show that the Paillier encryption, with in-

put message satisfying |m| < min{|p| , |q|}, can be treated as a

commitment scheme with the binding property. Consequently,

all {b(i)32(s�1)}’s (which are decomposition bits of {m⇤t }’s) are fixed,

as m⇤t satisfies this length requirement. By applying Lemma

4.5.1, we can have that b(i)32(s�1) 2 {0, 1, X, Y}. Therefore, by

deploying Lemma 4.5.3, we can prove that if every L0j can sat-

isfy L0j  M, where M = Nb + max{R0j} and j 2 [1, k], then

all {b(i)32(s�1)}’s, where i 2 [1,Np] and s = |N|/32, are from 0
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or 1 except with probability 1
2k = 1

2poly(l) (i.e., soundness error),

which is negligible in l. We can, therefore, prove that our main

protocol satisfies witness extended emulation by calling the ex-

tractor in the underlying protocol to extract a valid witness.

In particular, when we set l = 128, |N| = 2048, sd = 255,

and Np  220 in our application scenario, we have Nb  226 and

max{R0j} = 2281. Therefore, the statistical distance between the

two distributions of R0j and L0j is bounded by 1
2255 , which is neg-

ligible. As a result, the zero-knowledge property can be satis-

fied. The soundness error is bounded by 1
2k = 1

2poly(128) , which is

also negligible. This implies that our protocol satisfies perfect

completeness, perfect special honest verifier zero-knowledge,

and statistical witness-extended emulation in our considered

scenario, which ends our proof.

4.6 Performance Evaluation

We implement our main protocol as a proof-of-concept to ver-

ify its practicality. Our implementation is written in C++ and

we utilize NTL [Sho96], for big integer operations. We experi-

ment on a PC with Linux version 6.0.7-arch1-1 (linux@archlinux)

12th Gen Intel(R) Core(TM) i7-12700F and 64 GB of RAM. Our

implementation is single-threaded. Our result is given in the

non-interactive form of proof.

To better facilitate our explanation, we recall notations and
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their definitions in Table 4.3. We then illustrate our main proto-

col, ZKAoK⇤, in two aspects, namely, communication and com-

putation. We give comparisons in 4.6.4, considering all our

schemes. Two sets of parameters used in this section are speci-

fied in Table 4.4.

Table 4.3: Notations and Definitions.

Notation Definition

k security parameter
U, Sb slot size, batch size
Np, Nb number of plaintext, number of binary messages to be proved
SN2 , SQ element size in ZN2 , element size in ZQ
Nl, Nm linear constraints number, multiplication constraints number
Nom number of multiplication operations
Noe number of exponentiation operations
Tm time consumed in a single multiplication operation
Te time consumed in a single exponentiation operation

Table 4.4: Parameter Sets Used in Our Experiment.

Nb/msg means the number of bits to be proved in a single plaintext.

Set No. |N| U Nb/msg Sb k

s1 1024 32 (bits) 32 15 80

s2 2048 32 (bits) 64 15 128

4.6.1 Communication Efficiency

Micro-benchmarks

We perform a series of micro-benchmarks to quantify the cost

of each basic operation involved in our protocol, including time

cost for one exponentiation or multiplication operation and the

size of an element in ZN2 and ZQ respectively. We report these

data in Table 4.5.
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Table 4.5: Micro-benchmarks.

The following data is the median by running 1000 times of corresponding opperations.

|N| Te (ms) Tm (ns) SN2 (bits) SQ (bits)
1024 2.09 1279.15 2048 2056
2048 13.96 3786.83 4096 4112

Total and Average Proof Size

To demonstrate communication complexity, we test and plot

total and average proof size in Fig. 4.3. Total proof size includes

all the communication cost from the prover to the verifier. The

average proof size is computed by dividing total proof size by

the number of proved binary messages (i.e., records).

Figure 4.3: Total and Average Proof Size.

As the total proof size is not linear to the number of proved

messages (bits), the average cost will decrease when the num-

ber of messages increases. For example, the total proof cost

for 6.4K binary messages is 1.88 MB and this cost will increase

to 3.7 MB when proving 51.2K binary messages, with setting

|N| = 2048. On the contrary, the average proof cost per binary
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message is reduced from 2460 bits to 606 bits in the same set-

ting.

Estimate Communication Cost

Here, we give estimations on communication cost. We first es-

timate the number of multiplication and linear constraints and

denote them as Nm and Nl respectively. Nm can be computed

as,

Nm =
|N|

U
· Np + (Np + k + d

|N|

Sb
e) · (dlog Ne+ h(N)� 1)

⇡
|N|

U
· Np + (Np + k + d

Np

Sb
e) · (|N|+ |N|/2).

(4.19)

The equation holds as we use the average hamming weight

of N, which is |N|/2. Additionally, the number of linear con-

straints can be calculated as, Nl = 2Nm. The proof sent from

the prover to verifier contains,

• Auxiliary ciphertexts {c0j} and {c⇤t }, and summation of bits

{L0j}, specified in CR⇤ .

• Commitment used in [BCC+16]

We estimate the total communication cost as,

SN2 ·O(Np/U +
q
Np + k) + SQ ·O(

p
Nm +

qp
Nm). (4.20)
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We compare the estimated data with the real cost in Table 4.6,

for both total and average case. The result shows our estima-

tion matches the real data quite well.

Table 4.6: Comparison of Real and Estimated Proof Cost.

The average cost is computed by dividing the whole cost by the number of proved bits.

Set No. Np Nb

Average Cost Total Cost

Real (bits) Est. (bits) Real (MB) Est. (MB)

s1

100 3.2K 1587.99 1570.28 0.61 0.60
200 6.4K 978.73 969.35 0.75 0.74
400 12.8K 632.90 626.68 0.97 0.96
800 25.6K 423.86 419.96 1.29 1.28

s2

100 6.4K 2460.35 2460.36 1.88 1.88
200 12.8K 1465.09 1464.77 2.24 2.24
400 25.6K 920.45 920.93 2.81 2.81
800 51.2K 605.92 604.96 3.70 3.69

Compare with A Baseline: Honest-but-curious Model

We further compare our main protocol with a honest-but-curious

model. Here we examine the upgrading cost for providing ac-

tive security in large scenarios (i.e., proving thousands of bi-

nary messages (i.e., records) once), utilizing the above estima-

tion methods.

In the honest-but-curious model, thanks to the use of pack-

ing, the cost of encrypting a bit is 32 ⇤ 2 = 64 bits, with U =

32 bits. When |N| = 1024, if one aims to prove ten thousand

messages (214), the cost for proving the correctness of encryp-

tion and knowledge of inserted bits will be about 355.3 bytes

per message. The amortized cost is 89 bits. That is, it takes an

additional 89 bits per bit to upgrade the protocol to offer adap-

tive security. This is readily acceptable since adaptive secure
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protocols are considered a much stronger requirement; If a sce-

nario consists of millions (220) of messages, the upgrading cost

will be about 15 bits per bit. Furthermore, by packing more bits

into one message, this average cost will be further reduced. 3

We compare and show more comparisons in Table 4.7. In

most “large-scale” (with hundred thousands of binary messages

(i.e., records)) scenarios, the cost of upgrading is less than the

cost of encrypting. Then upgrading the original protocol to ob-

tain active secure is certainly admissible.

Table 4.7: Comparison Between the Cost for Encrypting and Proving One
Bit Using Our Protocol in Large Scenarios.

Set No. Np Encryption Cost/ Bit (bits) Proof Cost/ Bit (bits)

s1
10 thousand

64
88.82

100 thousand 33.74
1 million 14.62

s2
10 thousand

64
123.26

100 thousand 45.72
1 million 18.83

* We use 214, 217 and 220 to denote 10 thousand, 100 thousand and 1 million.

Compare with the Second Baseline: Exponential ElGamal Encryption

As both exponential ElGamal and Paillier are selected as ISO

standard [Hom19] for offering homomorphism, we choose ex-

ponential ElGamal as the second baseline. In exponential Elga-

mal, at 80-bit security level (i.e., Paillier public key N is 1024

bits), the cost of encrypting each bit will be 320 bits. For proof

of correctness, it will also cost 320 bits for one bit. Thus the

proof cost for each bit is 640 bits. In comparison, the total cost
3It should be noted that choose of slot size should be careful, considering the total num-

ber of plaintexts and the range of weights.
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for one bit in Paillier is 89 bits, 34 bits, and 15 bits when we have

10 thousand, 100 thousand, and 1 million messages separately

while the average encryption cost is 64 bits. That is, using our

protocol is 4x - 8x more compact for the total cost of one bit.

4.6.2 Computation Efficiency

Time Consumed by Each Side

To analyze the computation efficiency of each side in our pro-

tocol, we first test the running time of prover and verifier sepa-

rately. The result is shown in Fig. 4.4 (a). Considering proving

25.6K bits in |N| = 1024 setting, we have to pack them into

800 Paillier plaintexts. The total time required for the prover is

2689 s while the cost for the verifier is only 30 s. The time spent

by the prover is about 89 times more than the verifier. If we con-

sider proving the same number of plaintexts when |N| = 2048,

this time gap can be enlarged to 189x. As it is fairly inefficient

on the prover side, we group the prover’s whole procedure into

4 phases and test their consumed time in Fig. 4.4 (b). Our

data is obtained when proving 800 plaintexts in |N| = 1024

and |N| = 2048.

(a) Encryption phase. The prover does Paillier encryption for

all messages {mi}, {Rj} and {c⇤t }, specified in CR⇤ of Fig.

4.2.

(b) Circuit creation phase. It generates all multiplication and

linear constraints specified in CR⇤ .
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(c) Value assign phase. This is an inner phase in [BCC+16],

where the prover assigns values to the circuit wires accord-

ing to the constraint CR⇤ .

(d) Commitment phase. This is an inner phase proposed in the

protocol of [BCC+16]. The prover mainly does Pedersen

commitment to circuit wires in this phase.

Figure 4.4: Total Time Consumed by the Prover and Verifier.
The evaluation result is given by proving 800 plaintexts in s1 and s2 settings.

We can see that the commitment phase is most expensive on

prover side. In |N| = 1024 with proving 800 plaintexts, time

consumed in this phase takes up 99.83% of the total proof time.

When it goes to |N| = 2048, 99.96% of the total proof time is

consumed in this phase. The reason that the time consumed

in this phase is so prominent is that the prover should conduct

a series of exponentiation and multiplication operations. We

provide several optimization approaches in Subsection 4.7.



122 Chapter 4. Zero-knowledge Arguments for Paillier

Estimate Poof and Verification Time

We use commitment time, the most dominant part, to denote

total proof time. This is an internal phase used in [BCC+16].

The prover mainly does commitments in this phase, resulting

in a series of exponentiation and multiplication operations, where

their required number is associated with Nm and Nl. Nm can

be estimated by Equ. 4.19. The number of exponentiation and

multiplication operations required in this phase can be com-

puted by,

Noe = (|N|/4 + 1) ⇤ (3
p
Nm + 1)/2

Nom = |N| ⇤ (3
p
Nm + 1) ⇤ (

p
Nm + 512)/4.

(4.21)

We use Test.
prf = Noe ⇤ Te +Nom ⇤ Tm to estimate the total proof

time. For verification time, its cost is about,

Test.
vrf = O(Nl +Nm) ⇤ Tm + O(2

p
Nm + 1) ⇤ Te. (4.22)

We compare our estimated proof and verify time with real

consumed time in Table 4.8. It shows that our estimation ap-

proach matches well with the real data.

For proving bits inserted into millions (about 220) of 2048-

bit Paillier messages, it will cost the prover and verifier about

0.31 s and 2.01 ms for one bit respectively. We provide more

optimization approaches in Subsection 4.7 to speed up the time

on the prover side.
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Table 4.8: Comparison between Real and Estimated Time Cost for One Bit
in Both Prover and Verifier Sides.

The following data is the average consumed time for each bit.

Set No. Np Nb

Prover Side (Ave. ) Verifier Side (Ave. )

real (s) est. (s) real (ms) est. (ms)

s1

100 3.2K 0.26 0.30 2.57 2.71
200 6.4K 0.17 0.20 1.80 1.88
400 12.8K 0.13 0.15 1.38 1.42
800 25.6K 0.10 0.12 1.17 1.15

s2

100 6.4K 2.14 2.46 11.42 12.69
200 12.8K 1.33 1.57 7.04 8.20
400 25.6K 0.95 1.08 5.40 5.78
800 52.6k 0.72 0.81 3.79 4.40

4.6.3 End-to-end Performance

We develop an end-to-end prototype for two-party aggrega-

tion, which leverages the voter analysis scenario discussed in

Section 1 as context. Its performance is reported in Table 4.9.

The results are given with Np = 800 under both s1 and s2 pa-

rameter sets. For ease of clarity, we retain the notations intro-

duced in Section 1. The whole protocol comprises 3 phases: 1)

P1 structures and encrypts messages for generating a proof p.

2) P2 verifies p and computes C̄ = Â
Np
i=1 cWi

i . 3) P1 decrypts C̄

and parses the result to obtain {Sj}.

Table 4.9: End-to-end Performance Evaluation with Np = 800.

Parameter Phase 1 (s) Phase 2 (s) Phase 3 (ns) Proof (MB)
s1 2689.36 30.00 5955 1.29
s2 36785.80 194.07 9896 3.69

The first three columns denote the time cost of each stage,

while the last column represents the proof size. When aggre-

gating 25.6K bits with |N| = 1024, the protocol completes in

0.76 hours, requiring a total communication cost of 1.49 MB
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(1.29 MB for proof + 0.20 MB for ciphertexts {ci}). For aggre-

gating 51.2K bits under |N| = 2048, the required time is 10.27

hours with a total communication cost of 4.08 MB.

4.6.4 Comparison

Here, we give a comparison between all our protocols and the

potential solutions utilizing state-of-the-art tools.

Compare ZKAoK⇤ with An OR-Proof

To evaluate the utility of packing used in our approach, we

compare our main protocol with a standard OR-proof [CDS94],

where the prover uses more (unpacked) Paillier ciphertexts and

proves that each plaintext encrypts a Boolean value. Further-

more, as our approach supports batch proving and verification,

we report more data on varying numbers of plaintexts (Np),

ranging from small (single or dozens) to large (hundreds), to

facilitate batch size selection in practice.

Table 4.10: Compare Ours with A Standard Or-proof.

Data under s1 / s2 parameters represent amortized values for ZKAoK⇤ and averages from
1000 repetitions for OR-proof. A “�00 indicates non-applicability of the attribute.
Schemes Para. Np Nb

Proof Size Prove Time Verify Time Enc. Size
(bits) (s) (ms) (bits)

OR-proof [CDS94] s1 / s2 – 1 >8192 / >16384 4.08*10�3 / 0.35 2.00 / 18.04 2048 / 4096

ZKAoK⇤ s1 / s2

1 32 / 64 107.69K / 187.05K 14.65 / 143.38 147.94 / 779.91

64 / 64

10 320 / 640 11.27K / 19.26K 1.55 / 14.80 15.90 / 82.42
20 640 / 1.28K 5931.65 / 9978.29 0.83 / 7.94 8.56 / 43.43
40 1.28K / 2.56K 3228.11 / 5298.84 0.47 / 4.44 4.81 / 23.40
80 2.56K / 5.12K 1851.42 / 2937.45 0.29 / 2.53 2.97 / 13.84

100 3.2K / 6.4K 1563.53 / 2453.29 0.25 / 2.14 2.57 / 11.42
200 6.4K / 12.8K 964.24 / 1461.24 0.17 / 1.33 1.80 / 7.04
400 12.8K / 25.6K 623.25 / 918.20 0.13 / 0.95 1.38 / 5.40
800 25.6K / 51.2K 422.57 / 605.08 0.10 / 0.70 1.17 / 3.79
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The comparison result is reported in Table 4.10. In the OR-

proof, the cost for each bit is constant, while in our cases, the

amortized cost decreases when proving more plaintexts (bits)

simultaneously. In both the |N| = 1024 and |N| = 2048 set-

tings, our method yields a smaller amortized proof size than

the OR-proof when more than 20 plaintexts are being proven.

In the |N| = 2048 setting, when over 100 plaintexts are being

proven, both our proof size and verification time outperform

the OR-proof.

Our method becomes significantly more efficient as the num-

ber of plaintexts increases. When proving between 25.6K and

51.2K bits under |N| = 2048 setting, our amortized proof size is

around 17.8x - 27x smaller. This gap will further expand to 133x

when proving 10 thousand messages. As a result, our amor-

tized bandwidth cost (proof+encryption) is only 982-670 bits,

which is 20x - 30x lower than that of a standard OR-proof.

Indeed, when proving a single or a small number of mes-

sages (i.e., 10-20), our cost can remain relatively high. This is

due to the need to construct auxiliary ciphertexts, c0j, to ensure

soundness. Therefore, ZKAoK⇤ is better suited when the num-

ber of plaintexts is ‘larger’, typically on the scale of hundreds.

Conversely, for proving a single bit or several bits, the naive

solution is more appropriate. Nonetheless, we underscore that

this requirement is compatible with our motivating scenarios

presented in Section 1, where each election poll gathers at least
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hundreds to thousands of messages daily. As such, our ap-

proach is ideally suited for these large-scale scenarios.

Compare ZKAoK0 with Paillier Range Proofs [Lin17, Bou00]

There are state-of-the-art methods in [Lin17, Bou00] for range

proving Paillier messages. Their implementation can be found

in [ran18]. We compare the result of range proving 256-bit

plaintexts under |N| = 2048 and k = 128 setting and plot the

result in Table 4.11.

Table 4.11: Compare Ours with [Lin17, Bou00] for Range Proving 256-bit
Paillier Plaintexts in |N| = 2048 Setting.

Scheme Np Proof Size/Message Total Proof Size Proof time/meessage Verify time/Message

[ran18] >128.00 KB >2.00 GB 241.43 ms 199.32 ms
Ours 10 thousand 0.93 KB 14.87 MB 140.45 s 120.49 ms

[ran18] >128.00 KB >128 GB 241.43 ms 199.32 ms
Ours 1 million 931.84 bit 116.48 MB 139.43 s 97.68 ms

[ran18] > 128.00 KB >2048.00 GB 241.43 ms 199.32 ms
Ours 10 million 232.12 bit 0.45 GB 139.42 s 95.31 ms

* We use 214, 220 and 224 to estimate 10 thousand, 1 million and 10 million.

The communication and computation costs for each plain-

text in method [Lin17, Bou00] are constant. For proving one

plaintext, without considering other costs (e.g., {zi}i used in

[Lin17]), it requires 4096 ⇤ 2 ⇤ 128 bits = 128 KB, which is 256

larger than encryption cost (4096 bits). Besides, it requests al-

most the same time in verification and proof.

Ours is competitive in proof size and verification time while

can provide exact range proof. Specifically, we only require

11.4 KB per message when proving 200 messages at a time.

When proving 10 million messages, their approach requires

> 2048 GB size in total while ours only requires about 0.45
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GB. The verification time for each message in our protocol is

about half of theirs, though they optimized their code by par-

allelization while ours only uses single thread. (Without paral-

lelization, theirs requires 1.67 s and 1.25 s for proof and verifica-

tion respectively.) In proving 10 million messages, they require

> 2048 GB of communication while ours only requires 0.35 GB,

which is around 5000x smaller. Besides, they can can only guar-

antee that x 2 [0, q) with input x 2 [0, bq/3c) while ours can

provide precise proof.

Compare ZKAoK+ with Existing Work

As there are no existing work designed for relations R+, we

give potential approaches other than ours.

For proving sum of records property, one should encrypt all

bits {b(i)32(s�1)}i,s as c(i)32(s�1) and prove that there are at most t 1’s

among all bits of {b(i)32(s�1)}s. We use C(i) to denote the encryp-

tion of summation of {b(i)32(s�1)}s, s.t., C(i) = Enc(Âs b(i)32(s�1)) =

’s c(i)32(s�1) = Enc(M(i)), where M(i) = Âs b(i)32(s�1). Then after

proving that each {b(i)32(s�1)} is 0 or 1 using an OR-proof, one

should further prove that M(i) is no larger than t. Suppose M(i)

can be decomposed by a set of binary bits {B(i)
n�1, . . . , B(i)

0 }. Then

one should further encrypt {B(i)
x }x2[0,n�1] and prove that each

B(i)
x is 0 or 1 using an OR-proof, together with proving that,

M(i) = 2|t|�1 · B(i)
|t|�1 + · · ·+ 21 · B(i)

1 + 20 · B(i)
0 . This relation can

be translated by a sequence of multiplication relations, Rmul,

which can be handled by [DJ01a].
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However, it is not trivial by utilizing existing tools for prov-

ing the sum of entities property. As the existing range proof

protocol is to prove that an integer, x, is in a range [0, t], with

input x 2 [0, t/3]. To provide the entity property, one possi-

ble approach is to first encrypt each bit {b(i)32(s�1)} and prove

that each bit is 0 or 1 using a standard OR-proof for each bit.

One then does integer commitment (which is usually homo-

morphic) to each {b(i)32(s�1)} as {c(i)32(s�1)} and the threshold T as

cT. One proves that the plaintext in, ’i{c(i)32(s�1)}/cT, is larger

than 0.

The above potential approaches using existing tools are much

more involved than ZKAoK+ while requiring multiple auxiliary

commitments and encryption, which may result in large proof

size. On the contrary, ours can be easily extended by adding

multiplication and linear constraints into the main protocol and

batch prove all these constraints at a time.

4.7 Potential Optimizations and Discussions

4.7.1 Potential Optimizations.

Since many workloads in the commitment phase can be pre-

computed, we can divide our protocol into online-offline phases.

Here we have a closer look at the required multiplication con-

straints. Most of them have the Paillier encryption form as, c =

(1 + N)m · rN (while others have the form, b ⇤ (b� 1) = 0). We

need to construct 1 linear constraint and (dlog Ne+ h(N)� 1)
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multiplication constraints to represent 1+ m · N and rN respec-

tively. As these multiplication constraints are only related to

randomness, not witness, we can pre-commit them before run-

ning our protocol. The number of multiplication constraints

that can be pre-computed is,

(Np + k + d
Np

Sb
e) · (dlog Ne+ h(N)� 1).

That is, over 98% commitments can be pre-computed.

Besides, as our implementation uses single-thread, we can

further optimize it by applying parallelization.

4.7.2 Discussions.

In this subsection, we provide more discussions on the poten-

tial application scenarios that can utilize our technique, as well

as how to prove other relations among Paillier plaintexts.

Discussion of More Application Scenarios. We further explore po-

tential scenarios that could benefit from our approaches. Practi-

cal applications, including transaction evaluation [Ord03, ZH08],

advertisement targeting [TNB+10, LVKF16], and social relation-

ship analysis [LWC12, AHKL12], may find our approaches ad-

vantageous. In the context of a transaction evaluation, for in-

stance, our method enables companies to identify target con-

sumers’ income groups, in collaboration with banks, where Wi

represents the consumer’s salary. Additionally, entities like Google

[adw, ads], which provide advertising campaigns for their clients
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based on online ad targeting [WRF+, YLW+], can use our ap-

proach to assess campaign effectiveness. Typically, these enti-

ties utilize binary vectors to represent various marketing strate-

gies. The effectiveness can be privately evaluated through our

method by calculating the average conversion value, where Wi

denotes the cost paid by each consumer.

Beyond these specific applications, our methodology gives

potential advantages in scenarios requiring the use of correctly-

structured binary, a common occurrence in fields such as ma-

chine learning [LFY+17, HYK10], cryptographic schemes [SW21,

HK21], image and audio processing [CYL+20, ZWDY21], graph

theorems, and so on. For instance, utilizing binary (or one-hot)

vectors to encode a label is a common practice in classifica-

tion [GHH+21, LLL+20] for regression tasks [LZF+20, DM19],

which require that each vector can only contain a ‘1’ and others

should be ‘0’. Similarly, in computing a special case of inner

product [SW21], a “selection vector” is required, where only

one coordinate is set to 1. We would like to emphasize that any

constructions involving (structured) binary vectors can gain adap-

tive security through our approach.

Discussion of Proving Other Plaintext Relations Using Our Approach.

Here we discuss how to additionally prove other Paillier plain-

text relations using our approach. For example, to prove the

relation Rmul in [DJ01a], one can use our method by adding

one constraint, m3 = m1 ⇤m2, into the system. One thing need
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to be argued is that our constraint is under modulo N2 where

the original relation is under modulo N. We now give the fol-

lowing observation.

If we have m3 = m1 · m2 mod N2, then we can rewrite it

as m3 = m1 · m2 + kN2 for some k 2 Z. Then we can have,

m3 = m1 · m2 + kN · N = m1 · m2 mod N. We use c1, c2, c3 to

denote their corresponding ciphertexts. Even if we put m1 > N,

say, m1 = m01 + k1N (resp. m2 = m02 + k2N and m3 = m03 +

k3N) into the encryption, the actual value being encrypted is

still m01 (resp. m02 and m03). So if m3 = m1 · m2 mod N2 holds

with having PL.Enc(m1; r1), PL.Enc(m2; r2) and PL.Enc(m3; r3),

we can only get m01, m02 and m03 after decryption. Therefore we

still have m03 = m01 · m02 mod N.

Discussion of Using a Generic Two-party Computation Protocol. While

generic two-party computation protocols can potentially pro-

vide similar functionality, current efficient advances [BHKR,

ZRE] can only achieve semi-honest security. To achieve mali-

cious security, one can additionally use a generic ZKP. How-

ever, this will bring in large overhead and break its efficiency

advantage. Although one might consider using adaptive-secure

two-party computation protocols, existing works such as [RR16,

WRK] fall short in terms of round and communication effi-

ciency. Customized maliciously secure OT/OLE schemes [DGN+]

could be an alternative but these require greater computation

and communication resources. We emphasize our non-interactive
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approach wherein P1 can reuse proofs across collaborations. In

contrast, a two-party computation protocol necessitates P1 to

rerun the scheme with each collaborator, increasing the com-

plexity.

Discussion of the choice of slot size and the number of slots. For ease

of concreteness, we have fixed these parameters, although they

can be adjusted according to the problem size and its require-

ments. For instance, the slot size U can be decreased or in-

creased, provided that it meets the condition, Np ⇤max{Wi} <

2U. Similarly, the number of slots (Nb/msg) in each plaintext

can also be adjusted but should satisfy Sb ⇤Nb/msg < |N|/2.

This condition is derived from Lemma 4.5.3 and is necessary

for constructing auxiliary message m⇤t .
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Chapter 5

Blockchain-based Threshold

Electronic Voting Systems

Voting, as a fundamental social function, has been considered

moving to the online mode, with providing more flexibility and

convenience to voters. However, it is not that straightforward

to move this service onlice as privacy, security and trust are

main concerns in this whole process.

To be more specific, for instance, the security of the prefer-

ence of each voter must be protected, as all processes are moved

online. It is not acceptable that the voters’ ballots could be re-

vealed (or even leaked) before publishing the final results. Ad-

ditionally, trust is also a another big issue that must be con-

sidered, for example, how to tally and publish the final result.

If a single entity is responsible for this procedure, we have to

trust this single node and it is vulnerable to be corrupted. Be-

sides, the choice of the public bulletin board is also significant

as we should guarantee that the bulletin board can always pub-

lish the correct final result without malicious modifications. In

practice, the bulletin board is always played by a trusted third
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party. However, as the third party also could also be corrupted

and this assumption is not that desirable, one fundamental re-

maining question is that how we can get rid of this assumption.

Based on above obstacles, we propose a truly decentralized

e-voting system based on Blockchain, without relying on a sin-

gle trusted third party. We employ threshold signature and en-

cryption schemes to distribute the authorization and tallying

rights to multiple players. As there are at no more than the

threshold number of malicious participants, the authority can-

not be abused. In this way, we reduce the underlying trust as-

sumption of our system. Furthermore, we also deploy blind

signature to hide voters’ identities. in order to preserve their

privacy.

Chapter Organization. We summarize our main contributions in

Section 5.1, followed by giving a high-level overview in Sec-

tion 5.2. We present the syntax of an e-voting system and its

security requirements in Section 5.3. Our detailed construction

and its security analysis are given in Section 5.4. We report the

performance evaluation in Section 5.5.

5.1 Our Contribution

In this thesis, we propose an e-voting system using distributed

blind signature, encryption and blockchain. Specifically, we

system offers the following features.



5.2. Overview of Our Solution 135

1. Our system does not rely on a single trusted third party. Using

a threshold blind signature scheme, the role of registration

authority is played by n organizers in our system. Like-

wise, n⇤ tellers play the role of tallying authority. Through

combining these two techniques, our system does not rely

on a single trusted third party.

2. Our system is distributed. We distribute the capability of

registration and tallying in a round efficient manner. This

matches the inherent decentralized nature of blockchain

perfectly. Thus, our system can is truly distributed.

3. Our system is anonymous. We use blind signature to protect

the voters’ identity. Specifically, even if the set of registra-

tion authority colludes, they will not be able to link a ballot

to a registered voter.

4. Our system is efficient. We implement our system to eval-

uate its efficiency. From the experimental results, the per-

formance of our system is efficient enough to be adopted

in practice. Notably, the time and complexity at the user

side is constant.

5.2 Overview of Our Solution

In this section, we give a high-level overview of how we con-

struct a fully distributed e-voting system based on blockchain.

In general, we construct the system by combining a (t, n)-threshold
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blind signature T B, a (t⇤, n⇤)-threshold ElGamal decryption

scheme T E with blockchain technology. The conceptual con-

struction is outlined as follows.

For registration, t organizers co-operate to issue a threshold

blind signature, using T B, for the eligible voter. When an el-

igible voter casts his/her ballot, he/she encrypts his/her bal-

lot with threshold ElGamal scheme T E , whose encryption key

is publicly available. The encrypted ballot, together with the

signature obtained from the registration phase, is submitted to

the blockchain. In the vote counting phase, co-operations of at

least t⇤ tellers is needed to decrypt the encrypted ballots. The

results are also published on the blockchain. As long as there

are less than t (resp. t⇤) malicious organizers (resp. tellers),

the votes must be casted by legitimate users. Also, thanks to

the blindness of T B, no one will be able to link the ballot to a

voter. In addition, since each user only receives one signature-

random value pair, double ballots can therefore be detected and

discarded. This ensure fairness. Looking ahead, the threshold

techniques employed in T B, T E are both one-round, mean-

ing that the communication process can be simply conducted

through the public blockchain efficiently.

In the following section, we clarify the design architecture of

our system and then present the work process.
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5.2.1 Architecture of Our System

We firstly identify the involved identities in our voting system,

followed by proposing the architecture of our system.

Entities. There are three classes of entities involved in an e-

voting system, namely, Voters, Organizers and Tellers.

• Voters. The voters have their right to vote. For simplic-

ity, we assume that each eligible voter can only votes one

ballot during voting.

• Organizers. Organizers are responsible for authorizing el-

igible voters. They can give voters voting rights through

registration.

• Tellers. Tellers will count the ballots after voting and pub-

lish the final tallying result.

Architecture. Since our system is based on the blockchain, all

participates communicate through the blockchain, as shown in

the Figure 5.1. Besides, the role of organizers and tellers are

played by some voters in the system. For example, the voter

with identifier 1 is also a teller and the voter with identifier

10 is also responsible for organization. The roles can be se-

lected randomly or based on some pre-determined discipline

through the participants before running our system. There-

fore, the voter that is also a teller should also run T E scheme
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Figure 5.1: Architecture of our blockchain-based voting system

while the one with organization responsibility should run T B

scheme, besides casting their ballots.

5.2.2 Work Process of Our System

Here we elaborate the process that how our system works. Be-

fore generating keys, we suppose that the system has selected

n voters as organizations and n⇤ voters as tellers already. Then

the voters will generate their private and public key pairs where

their public keys are published through the blockchain. Be-

sides, the organizers and tellers collaboratively generate the

public and private key pairs separately, followed by publish-

ing their public keys.

To get their voting rights, voters will register with organiza-

tions using T B scheme and getting a signature for their pub-

lic keys. To cast their ballots securely, they will encrypt their

ballots using the T E scheme. Besides, to guarantee that only

eligible voters can vote, they should also attach their signature
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Figure 5.2: Voting Process Diagram of our blockchain-based voting system

on the encrypted ballots, together with the public-key and sig-

nature pair obtained from T B to publish on-chain.

To count the voting result, tellers should firstly verify the

validity of signatures for encrypted ballots and for their public

keys (checking their eligibility for voting), followed by collab-

oratively decrypting the ballots with l⇤ honest tellers and pub-

lishing the final result on-chain. Each voter can downloads the

decrypted ballots from the blockchain and verify that whether

his/her ballot has been counted or not. Besides, no body can

link the voting ballot to the voter because of the use of blind

signature and the anonymity guaranteed by the blockchain. We

give the detailed illustration of this process in Figure 5.2.

5.3 Syntax and Security Requirements

In this section, we identify the syntax of our system and its se-

curity requirements. Besides, we give a simplified syntax of
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our building block, Psig, a signature scheme in general.

Syntax

An e-voting system consists of the following four phases, namely,

Keygen, Register, VoteCasting and VoteCounting.

1. Keygen. The voters, organizers and tellers generate their

own public and secret key pairs respectively.

2. Register. In this phase, eligible voters get voting rights

from organizers through registration.

3. VoteCasting. Each voter casts their ballot in the system.

4. VoteCounting. Tellers count the ballots and publish the

final results.

Security Requirements

The security properties of an e-voting system are summarized

as following four points.

• Verifiability. It means that individual voter can verify whether

his/her ballot has been counted correctly or not.

• Eligibility. This property requires that only eligible voters

are allowed to cast votes only once. Besides, only valid

ballots will be counted.

• Fairness. This property requires that no early results can

be obtained before the end of voting. It guarantees that
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the choice of voters cannot be influenced by current voting

results.

• Anonymity. The anonymity property requires that no one

can reveal the owner of a ballot. In other words, voters can

cast their ballots anonymously.

A Building Block Psig

A signature scheme consists of three algorithms, (KeyG, Sign,Verify),

as follows,

• KeyG: With input a security parameter l, it returns the

public and private key pair, (pk, sk). Besides, we denote

its specified message and signature space as M and S re-

spectively.

• Sign: To sign on a message m 2M with the secret key sk,

it returns the corresponding signature s from S .

• Verify: For verification of a message-signature pair (m, s),

one should use the public key as, Verify(m, s, pk)! true/false.

5.4 Our Construction and Security Analysis

We adopt blockchain technology, a (t, n) threshold blind signa-

ture T B - (TBU, TBK, TBS, TBV), a (t⇤, n⇤) threshold ElGamal

encryption scheme T E - (TEU, TEK, TEC, TED) (which are de-

fined in Chapter 2) and a signature scheme Psig� {KeyG, Sign,Verify}

to construct our blockchain-aided e-voting system.
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Entities and Their Notations

Three entities involved in our e-voting system is described as

follows.

• Voters. Assume that there are l eligible voters, i.e., Vi 2

{V1, V2, .., V`}.

• Organizers. Organizers are played by n eligible voters,

i.e., Li 2 {L1, L2, .., Ln}.

• Tellers. Tellers are played by n⇤ eligible voters, i.e., Ti 2

{T1, T2, .., Tn⇤}.

Detailed Construction

There are five phases in our voting system, namely, Setup, KeyGen,

Register, VoteCasting and VoteCounting.

1. Setup: On input security parameter 1l, it outputs param =

(G1, q, P, H) and broadcasts it. G1 is a GDH group with

order q, P is its generator. H : {0, 1}⇤ ! G1 is a one-

way function. param is an implicit input to the following

algorithms.

2. KeyGen: Each voter Vi first generates public key and se-

cret key pair in Psig, i.e., (pki, ski)  KeyG. n players in

T B will be randomly selected from all eligible voters, i.e.,

L = {L1, L2, .., Ln}. n⇤ players in T E are randomly picked

from all voters and we denote them as T = {T1, T2, .., Tn⇤}.
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Finally, run TBK with players in L and TEK with players

in T to get,

• Public and secret shares of Li are set as, Qi = Psi and

si. Qi will be broadcasted on blockchain.

• The public key in T B is set as Q = Ps, with secret key

s.

• Public and secret shares of Ti are set as, Q⇤i = Ps⇤i and

s⇤i . Q⇤i will be broadcasted on blockchain.

• The public key in T E is set as Q⇤ = Ps⇤ , with secret

key s⇤.

3. Register: Every voter Vi can get a blind signature on its

public key pki, by interacting with t players Li on TBS pro-

tocol, i.e., (si, pki).

4. VoteCasting: Each voter Vi encrypts its ballot b by running

TEC algortihm under the public key Q⇤,

TECQ⇤(b)! Ci.

Vi then uses its registered secret key ski to sign on the ci-

phertext, e.g., Signski
(Ci) ! s0i , and puts the quadruple

(pki, si, Ci, s0i ) on blockchain.

5. VoteCounting: When counting the ballots, tellers Ti first

run TBV protocol to verify the signature si on the voter’s
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public key pki, followed by validating signature s0i on ci-

phertext Ci. That is,

In T B.TBV : ê(si, P) ?
= ê(H(pki), Q);

In Psig.Verify : Verify(Ci, s0i )
?
= 1.

If all the verifications are passed, t⇤ tellers decrypt Ci to-

gether to get the ballot b. Ballot b will be added to the

quadruple, i.e.,(pki, si, Ci, s0i , b). The quadruple will then

be broadcasted on blockchain.

5.4.1 Security Analysis

Our e-voting system can achieve four properties, namely, ver-

ifiability, eligibility, fairness and anonymity. We analyze them

as follows.

• Verifiability. This property can be easily verified since the

result will be put behind the quadruple as (pki, si, Ci, s0i ,

b). As the public key will be published on-chain, each user

can verify that whether his or her ballot has been counted

correctly.

• Eligibility. This property is guaranteed by the unforge-

ability property of the blind signature scheme and can be

proved by contradiction. Specifically, if a malicious illegal

adversary successfully forges a valid ballot in the form of

(pki, si, Ci, s0i ), then one can forge a valid signature pair,
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(pki, si), in the underlying blind signature scheme. Be-

sides, the other way of destroying the voting system’s el-

igibility is to vote multiple times by using the same iden-

tity. This cannot be achieved because the quadruple (pki,

si, Ci, s0i ) reveals pki of the voter. Tellers can recognize it

immediately if same voter casts ballots for multiple times.

• Fairness. This property can be guaranteed by the IND-

CPA security in threshold ElGamal decryption scheme. As

the ballots cast by voters are encrypted by using the El-

Gamal Decryption scheme, anyone cannot obtain the final

result before the vote counting phase (i.e., decryption).

• Anonymity. This property is guaranteed by the blindness

property provide in the threshold blind signature and anonymity

of the blockchain. Specifically, the blindness property guar-

antees that the real identity of every voter remains un-

known even to the organizers, since each of them gets sig-

natures on their public keys blindly. Besides, the real char-

acters of voters are hidden since we utilize blockchain to

broadcast all our information. Therefore our system achieves

highly anonymous.
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Table 5.1: Total Time Consumed in Each Phase with (7, 10) Threshold

Time Consumed (min)
Number of Voters 1000 2000 3000 4000 5000

Register 0.3 0.6 0.9 1.22 1.49
VoteCasting 0.1 0.19 0.29 0.39 0.48

VoteCounting 0.18 0.37 0.55 0.74 0.91

Table 5.2: Average Time Consumed in Each Phase with (7, 10) Threshold

Time Consumed (ms)
Number of Voters 1000 2000 3000 4000 5000

Register 18.007 17.987 18.001 18.255 17.919
VoteCasting 5.829 5.835 5.838 5.874 5.792

VoteCounting 11.058 11.011 11.060 11.084 10.973

5.5 Implementation and Performance

5.5.1 Implementation Setup

We implement our voting system on a MacBook Pro with 3.1

GHz Intel Core i5 processor and 16 GB memory. We use PBC

library [PBCa] and Crypto++ library [Cry] to implement our

system. We choose the parameters suggested in Type A inter-

nals [PBCb]. Our implementation results are given by parallel

computing to simulate the real situation.

5.5.2 Performance Evaluation

As Setup and KeyGen can be seen as the preparation process of

voting, we evaluate Register, VoteCasting and VoteCounting

phases in our system with holding (7, 10)-threshold. The re-

sults of our experiments are as follows.

The total time cost in each phase is linear to the number of

voters in the system, as shown in Table 5.1. From Table 5.2, we

can see that the time consumed in each phase for each voter is a
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roughly constant value, with maintaining parameters in thresh-

old. Besides, we also test our system by changing parameters

(t, n) in threshold blind signature scheme and threshold ElGa-

mal decryption scheme. The average time consumed in each

stage has slight linear relation with parameter t, while the ad-

ditional operation only costs little time while increasing t. The

number in n (i.e., the total number of voters) does not have im-

pact on the average consumed time in each phase.

In particular, when using a (7, 10) threshold, it takes roughly

11-ms to count one vote. For 1 million votes, it takes about

3.06 hours to complete vote counting on a laptop. We stress

that our final results are based on experiments over a laptop.

When the system is deployed on a real server, the efficiency

can be improved. Furthermore, the efficiency can be further

optimized with moving the process of validation on signature

ahead, in vote casting phase. Therefore, our whole system is

efficient and practical enough to be adopted in the real world.
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Chapter 6

Conclusions and Future Research

Directions

Public-key cryptography has been extensively employed not

only in our traditional daily lives but also in the recently intro-

duced Web3 domain. With the potential of more complex in-

teractions and security requirements in recent application sce-

narios, this thesis seeks to address some newly emerging chal-

lenges raised in the area of public-key cryptography. Specifi-

cally, contributions of this thesis can be summarized as follows.

• In Chapter 3, we concentrate on addressing the strong des-

ignated verifier signature schemes in more complex situa-

tions, by taking real-world interaction scenarios into ac-

count. Specifically, we propose two strengthened mod-

els in SDVS, namely multi-user and multi-user+. We then

provide a generic construction for these two security mod-

els, relying on Key Encapsulation Mechanism (KEM) and

Pseudorandom Function (PRF) schemes. We formally prove

the security of our constructions within these two models.
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Furthermore, we offer instantiations based on different se-

curity assumptions in these models, respectively.

• We propose an efficient zero-knowledge argument of knowl-

edge system customized for Paillier cryptosystem in Chap-

ter 4. The foundation of our system is a constraint system

defined over the ring of residue classes modulo a com-

posite integer. Our constraint system is generic and can

be utilized to express various typical relations in the Pail-

lier system. Our proof system can support range proof,

correctness proof, relations between bits of plaintexts, and

more. Our argument system facilitates batch proof genera-

tion and verification. Additionally, we provide experimen-

tal results demonstrating that its amortized cost outper-

forms state-of-the-art proof systems specialized for Paillier

when the number of Paillier ciphertexts reaches the order

of hundreds.

• In Chapter 5, we construct a fully distributed e-voting scheme

based on blockchain technology. We distribute registration

and tallying authorities among multiple parties to prevent

single node failure. Moreover, our system enjoys the fea-

ture of fast tallying with employing homomorphic encryp-

tion. We also conduct a series of experiments to examine

its practicability.
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Future Work. In addition to the problems addressed in this the-

sis, many intriguing questions remain to be explored. For in-

stance, in our first work, we only consider the strengthened sit-

uation in which an adversary may obtain signatures for any

verifier of its choice. We could further investigate the secu-

rity model wherein the adversary may issue queries from any

signer of its choice and determine how to construct a provably

secure scheme towards this model.

Regarding the construction of ZKP systems for Paillier, the

bottleneck lies in its proof generation cost. The primary chal-

lenge is that we must store a massive matrix to express vari-

ables in the constraint system and commit to them using Ped-

ersen commitments. Although multi-exponentiation can accel-

erate this process, generating commitments can still be time-

consuming when the matrix is large. A subsequent objective

is to reduce time and memory usage in the proof phase to bet-

ter accommodate large-scale application scenarios with limited

computational power.

Furthermore, numerous interesting questions also arise in

the field of blockchain. For example, as blockchain remains rel-

atively isolated from the real world for security reasons, one

cannot directly transfer real-world data to the blockchain. A

promising approach involves using so-called oracles. How-

ever, the latency of existing oracles is on the order of seconds or
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even to minutes. While this latency may be acceptable for rel-

atively stable data, it is not satisfactory when data changes fre-

quently. The method for exporting off-chain data to the blockchain

with low latency without compromising its integrity and other

security guarantees remains unknown. Furthermore, the cost

of existing approaches for exporting data on-chain is quite high,

typically requiring at least two transactions. How to reduce this

cost without sacrificing security is another compelling goal for

our future work.

Another promising direction of future work lies in how to

accelerate the two-party data aggregation/ computation pro-

cess by utilizing trusted a execution environment to meet the

efficiency requirement in real-life deployment. On one hand,

the security guarantee cannot be sacrificed by introducing trusted

hardware; On the other hand, the system must be efficient enough

to be deployed in reality.



153

References

[ABDV03] Riza Aditya, Colin Boyd, Ed Dawson, and Kapali

Viswanathan. Secure e-voting for preferential elec-

tions. In Roland Traunmüller, editor, Electronic Gov-

ernment, pages 246–249, Berlin, Heidelberg, 2003.

Springer Berlin Heidelberg.

[Abe98] Masayuki Abe. Universally verifiable mix-net

with verification work independent of the num-

ber of mix-servers. Lecture notes in computer science,

1403:437–447, 1998.

[ABMR20] Shashank Agrawal, Saikrishna Badrinarayanan,

Pratyay Mukherjee, and Peter Rindal. Game-set-

match: Using mobile devices for seamless external-

facing biometric matching. In Proceedings of the

2020 ACM SIGSAC Conference on Computer and

Communications Security, CCS’20, pages 1351–1370,

2020.

[ACST06] Man Ho Au, Sherman SM Chow, Willy Susilo, and

Patrick P Tsang. Short linkable ring signatures re-

visited. In Public Key Infrastructure: Third European

PKI Workshop: Theory and Practice, EuroPKI 2006,



154 REFERENCES

Turin, Italy, June 19-20, 2006. Proceedings 3, pages

101–115. Springer, 2006.

[Adi08] Ben Adida. Helios: Web-based open-audit vot-

ing. In USENIX security symposium, volume 17 of

USENIX’08, pages 335–348, 2008.

[ads] Google adsense. https://adsense.google.com.

[adw] Google adwords. https://ads.google.com/home/.

[AGW20] Michel Abdalla, Junqing Gong, and Hoeteck Wee.

Functional encryption for attribute-weighted sums

from k-lin. In Annual International Cryptology Con-

ference, Crypto’ 20, pages 685–716. Springer, 2020.

[AHKL12] Ashton Anderson, Daniel Huttenlocher, Jon Klein-

berg, and Jure Leskovec. Effects of user similarity

in social media. In Proceedings of the fifth ACM in-

ternational conference on Web search and data mining,

2012.

[ALSY06] Man Ho Au, Joseph K Liu, Willy Susilo, and

Tsz Hon Yuen. Constant-size id-based linkable

and revocable-iff-linked ring signature. In Progress

in Cryptology-INDOCRYPT 2006: 7th International

Conference on Cryptology in India, Kolkata, India, De-

cember 11-13, 2006. Proceedings 7, pages 364–378.

Springer, 2006.

https://adsense.google.com
https://ads.google.com/home/


REFERENCES 155

[Ara] Pradeep Aradhya. Distributed ledger visible to

all? ready for blockchain? https://www.huffpost.

com/entry/are-we-ready-for-a-global_b_

9591580.

[AVS13] Maryam Rajabzadeh Asaar, Ali Vardasbi, and

Mahmoud Salmasizadeh. Non-delegatable strong

designated verifier signature using a trusted third

party without pairings. In Proceedings of Information

Security 2013 (AISC 2013), pages 13–25. Australian

Computer Society, 2013.

[BBB+18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, An-

drew Poelstra, Pieter Wuille, and Greg Maxwell.

Bulletproofs: Short proofs for confidential transac-

tions and more. In 2018 IEEE Symposium on Security

and Privacy (SP), SP’ 18, pages 315–334. IEEE, 2018.

[BCC+16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos,

Jens Groth, and Christophe Petit. Efficient zero-

knowledge arguments for arithmetic circuits in the

discrete log setting. In Marc Fischlin and Jean-

Sébastien Coron, editors, Advances in Cryptology –

EUROCRYPT 2016, pages 327–357, Berlin, Heidel-

berg, 2016. Springer Berlin Heidelberg.

[BCD+16] Joppe Bos, Craig Costello, Leo Ducas, Ilya

Mironov, Michael Naehrig, Valeria Nikolaenko,

https://www.huffpost.com/entry/are-we-ready-for-a-global_b_9591580
https://www.huffpost.com/entry/are-we-ready-for-a-global_b_9591580
https://www.huffpost.com/entry/are-we-ready-for-a-global_b_9591580


156 REFERENCES

Ananth Raghunathan, and Douglas Stebila. Frodo:

Take off the ring! practical, quantum-secure key

exchange from lwe. In SIGSAC, pages 1006–1018.

ACM, 2016.

[BCG+17] Jonathan Bootle, Andrea Cerulli, Essam Ghadafi,

Jens Groth, Mohammad Hajiabadi, and Sune K

Jakobsen. Linear-time zero-knowledge proofs for

arithmetic circuit satisfiability. In International Con-

ference on the Theory and Application of Cryptology

and Information Security, AsiaCrypt’ 17, pages 336–

365. Springer, 2017.

[Ben87] Josh Daniel Cohen Benaloh. Verifiable Secret-ballot

Elections. PhD thesis, New Haven, CT, USA, 1987.

AAI8809191.

[BFL91] Joan Boyar, Katalin Friedl, and Carsten Lund. Prac-

tical zero-knowledge proofs: Giving hints and us-

ing deficiencies. Journal of cryptology, 4(3):185–206,

1991.

[BFP+01] Olivier Baudron, Pierre-Alain Fouque, David

Pointcheval, Jacques Stern, and Guillaume

Poupard. Practical multi-candidate election sys-

tem. In Proceedings of the twentieth annual ACM

symposium on Principles of distributed computing

(PODC), pages 274–283, 2001.



REFERENCES 157

[BG02] Dan Boneh and Philippe Golle. Almost entirely

correct mixing with applications to voting. In Pro-

ceedings of the 9th ACM conference on Computer and

communications security, CCS’02, pages 68–77, 2002.

[BHKR] Mihir Bellare, Viet Tung Hoang, Sriram

Keelveedhi, and Phillip Rogaway. Efficient

garbling from a fixed-key blockcipher. In 2013

IEEE Symposium on Security and Privacy.

[BIK+17] Keith Bonawitz, Vladimir Ivanov, Ben Kreuter, An-

tonio Marcedone, H. Brendan McMahan, Sarvar

Patel, Daniel Ramage, Aaron Segal, and Karn Seth.

Practical secure aggregation for privacy-preserving

machine learning. In Proceedings of the 2017 ACM

SIGSAC Conference on Computer and Communica-

tions Security, CCS ’17, page 1175–1191, New York,

NY, USA, 2017. Association for Computing Ma-

chinery.

[Bou00] Fabrice Boudot. Efficient proofs that a committed

number lies in an interval. In Bart Preneel, editor,

Advances in Cryptology — EUROCRYPT 2000, Euro-

crypt ’00, pages 431–444, Berlin, Heidelberg, 2000.

Springer Berlin Heidelberg.

[BPR12] Abhishek Banerjee, Chris Peikert, and Alon Rosen.



158 REFERENCES

Pseudorandom functions and lattices. In EURO-

CRYPT 2012, pages 719–737. Springer, 2012.

[BS15] Raef Bassily and Adam Smith. Local, private, effi-

cient protocols for succinct histograms. In Proceed-

ings of the forty-seventh annual ACM symposium on

Theory of computing, STOC’15, pages 127–135, 2015.

[BSCG+13] Eli Ben-Sasson, Alessandro Chiesa, Daniel Genkin,

Eran Tromer, and Madars Virza. Snarks for c: Ver-

ifying program executions succinctly and in zero

knowledge. In Annual cryptology conference, pages

90–108. Springer, 2013.

[BSLZ09] Joonsang Baek, Willy Susilo, Joseph K. Liu, and

Jianying Zhou. A new variant of the cramer-shoup

kem secure against chosen ciphertext attack. In Ap-

plied Cryptography and Network Security, pages 143–

155. Springer, 2009.

[BSNS05] Joonsang Baek, Reihaneh Safavi-Naini, and Willy

Susilo. Universal designated verifier signature

proof (or how to efficiently prove knowledge of a

signature). In International Conference on the Theory

and Application of Cryptology and Information Secu-

rity, pages 644–661. Springer, 2005.

[BT94] Josh Benaloh and Dwight Tuinstra. Receipt-free



REFERENCES 159

secret-ballot elections. In Proceedings of the twenty-

sixth annual ACM symposium on Theory of computing,

STOC’94, pages 544–553, 1994.

[BY86] Josh C Benaloh and Moti Yung. Distributing the

power of a government to enhance the privacy of

voters. In Proceedings of the fifth annual ACM sym-

posium on Principles of distributed computing, pages

52–62, 1986.

[CDN01] Ronald Cramer, Ivan Damgård, and Jesper B.

Nielsen. Multiparty computation from threshold

homomorphic encryption. In Birgit Pfitzmann, ed-

itor, Advances in Cryptology — EUROCRYPT 2001,

Eurocrypt ’01, pages 280–300, Berlin, Heidelberg,

2001. Springer Berlin Heidelberg.

[CDS94] Ronald Cramer, Ivan Damgård, and Berry Schoen-

makers. Proofs of partial knowledge and sim-

plified design of witness hiding protocols. In

Yvo G. Desmedt, editor, Advances in Cryptology —

CRYPTO ’94, pages 174–187, Berlin, Heidelberg,

1994. Springer Berlin Heidelberg.

[CF85] Josh D Cohen and Michael J Fischer. A robust

and verifiable cryptographically secure election scheme.

FOCS’85. Yale University. Department of Com-

puter Science, 1985.



160 REFERENCES

[CFSY96] Ronald Cramer, Matthew Franklin, Berry Schoen-

makers, and Moti Yung. Multi-authority secret-

ballot elections with linear work. In Eurocrypt,

volume 96 of Eurocrypt’96, pages 72–83. Springer,

1996.

[CGB17] Henry Corrigan-Gibbs and Dan Boneh. Prio: Pri-

vate, robust, and scalable computation of aggre-

gate statistics. In Proceedings of the 14th USENIX

Conference on Networked Systems Design and Im-

plementation, NSDI’17, page 259–282, USA, 2017.

USENIX Association.

[CGGI13] Véronique Cortier, David Galindo, Stéphane

Glondu, and Malika Izabachene. Distributed elga-

mal á la pedersen: application to helios. In Proceed-

ings of the 12th ACM Workshop on Workshop on Pri-

vacy in the Electronic Society, pages 131–142, 2013.

[CGS97] Ronald Cramer, Rosario Gennaro, and Berry

Schoenmakers. A secure and optimally efficient

multi-authority election scheme. 8(5):481–490,

1997.

[Cha81] David Chaum. Untraceable electronic mail, re-

turn addresses, and digital pseudonyms. Commun.

ACM, 24(2):84–90, February 1981.



REFERENCES 161

[Cha83] David Chaum. Blind signatures for untraceable

payments. In David Chaum, Ronald L. Rivest, and

Alan T. Sherman, editors, Advances in Cryptology,

pages 199–203, Boston, MA, 1983. Springer US.

[CJZ+19] Jie Cai, Han Jiang, Pingyuan Zhang, Zhihua

Zheng, Guangshi Lyu, and Qiuliang Xu. An effi-

cient strong designated verifier signature based on

r-sis assumption. IEEE Access, 7:3938–3947, 2019.

[CLW08] Sherman SM Chow, Joseph K Liu, and Duncan S

Wong. Robust receipt-free election system with

ballot secrecy and verifiability. In NDSS, volume 8

of NDSS’08, pages 81–94, 2008.

[CM99] Jan Camenisch and Markus Michels. Proving in

zero-knowledge that a number is the product of

two safe primes. In International Conference on the

Theory and Applications of Cryptographic Techniques,

pages 107–122. Springer, 1999.

[Cry] Crypto++ library. https://www.cryptopp.com/.

[CSY06] Sherman SM Chow, Willy Susilo, and Tsz Hon

Yuen. Escrowed linkability of ring signatures

and its applications. In Progress in Cryptology-

VIETCRYPT 2006: First International Conference on

Cryptology in Vietnam, Hanoi, Vietnam, September

https://www.cryptopp.com/


162 REFERENCES

25-28, 2006. Revised Selected Papers, pages 175–192.

Springer, 2006.

[CVA90] David Chaum and Hans Van Antwerpen. Un-

deniable signatures. In Gilles Brassard, editor,

CRYPTO’ 89 Proceedings, pages 212–216. Springer

New York, 1990.

[CYL+20] Dongdong Chen, Lu Yuan, Jing Liao, Nenghai Yu,

and Gang Hua. Explicit filterbank learning for neu-

ral image style transfer and image processing. IEEE

transactions on pattern analysis and machine intelli-

gence, 43(7):2373–2387, 2020.

[DF90] Yvo Desmedt and Yair Frankel. Threshold cryp-

tosystems. In Gilles Brassard, editor, Advances in

Cryptology — CRYPTO’ 89 Proceedings, pages 307–

315, New York, NY, 1990. Springer New York.

[DGB87] Yvo Desmedt, Claude Goutier, and Samy Bengio.

Special uses and abuses of the fiat-shamir passport

protocol (extended abstract). In CRYPTO ’87, pages

21–39. Springer, 1987.

[DGN+] Nico Dottling, Satrajit Ghosh, Jesper Buus Nielsen,

Tobias Nilges, and Roberto Trifiletti. Tinyole: Ef-

ficient actively secure two-party computation from

oblivious linear function evaluation. CCS’17.



REFERENCES 163

[Dif76] Whitfield Diffie. New direction in cryptography.

IEEE Trans. Inform. Theory, 22:472–492, 1976.

[DJ01a] Ivan Damgård and Mads Jurik. A generalisa-

tion, a simplification and some applications of pail-

lier’s probabilistic public-key system. In Kwangjo

Kim, editor, Public Key Cryptography, pages 119–

136, Berlin, Heidelberg, 2001. Springer Berlin Hei-

delberg.

[DJ01b] Ivan Damgård and Mads Jurik. A generalisation,

a simplification and some applications of paillier’s

probabilistic public-key system. In Public Key Cryp-

tography: 4th International Workshop on Practice and

Theory in Public Key Cryptosystems, PKC 2001 Cheju

Island, Korea, February 13–15, 2001 Proceedings 4,

PKC’01, pages 119–136. Springer, 2001.

[DKNS04] Yevgeniy Dodis, Aggelos Kiayias, Antonio Ni-

colosi, and Victor Shoup. Anonymous identifica-

tion in ad hoc groups. In Christian Cachin and

Jan L. Camenisch, editors, Advances in Cryptology -

EUROCRYPT 2004, pages 609–626, Berlin, Heidel-

berg, 2004. Springer Berlin Heidelberg.

[DM19] Raul Diaz and Amit Marathe. Soft labels for or-

dinal regression. In Proceedings of the IEEE/CVF



164 REFERENCES

conference on computer vision and pattern recognition,

CVPR’19, pages 4738–4747, 2019.

[DY91] Yvo Desmedt and Moti Yung. Weaknesses of un-

deniable signature schemes. In EUROCRYPT ’91,

pages 205–220. Springer, 1991.

[EDG14] Tariq Elahi, George Danezis, and Ian Goldberg.

Privex: Private collection of traffic statistics for

anonymous communication networks. In Proceed-

ings of the 2014 ACM SIGSAC Conference on Com-

puter and Communications Security, CCS’ 14, pages

1068–1079, 2014.

[elea] 2021 election committee subsector ordinary elec-

tions. https://www.elections.gov.hk/ecss2021/

eng/brief.html.

[eleb] Election for swiss council of states 2019. https://

www.electionguide.org/elections/id/3448/.

[elec] Election news of federative republic of brazil.

https://www.electionguide.org/countries/id/

31/.

[ET12] Zekeriya Erkin and Gene Tsudik. Private compu-

tation of spatial and temporal power consumption

https://www.elections.gov.hk/ecss2021/eng/brief.html
https://www.elections.gov.hk/ecss2021/eng/brief.html
https://www.electionguide.org/elections/id/3448/
https://www.electionguide.org/elections/id/3448/
https://www.electionguide.org/countries/id/31/
https://www.electionguide.org/countries/id/31/


REFERENCES 165

with smart meters. In Feng Bao, Pierangela Sama-

rati, and Jianying Zhou, editors, Applied Cryptog-

raphy and Network Security, pages 561–577, Berlin,

Heidelberg, 2012. Springer Berlin Heidelberg.

[FIPR05] Michael J Freedman, Yuval Ishai, Benny Pinkas,

and Omer Reingold. Keyword search and oblivi-

ous pseudorandom functions. In Theory of Cryptog-

raphy Conference, pages 303–324. Springer, 2005.

[FMM+03] Jun Furukawa, Hiroshi Miyauchi, Kengo Mori,

Satoshi Obana, and Kazue Sako. An implemen-

tation of a universally verifiable electronic voting

scheme based on shuffling. In Matt Blaze, editor,

Financial Cryptography, pages 16–30, Berlin, Heidel-

berg, 2003. Springer Berlin Heidelberg.

[FMS10] Jun Furukawa, Kengo Mori, and Kazue Sako. An

Implementation of a Mix-Net Based Network Voting

Scheme and Its Use in a Private Organization, pages

141–154. Springer Berlin Heidelberg, Berlin, Hei-

delberg, 2010.

[FO97] Eiichiro Fujisaki and Tatsuaki Okamoto. Statistical

zero knowledge protocols to prove modular poly-

nomial relations. In Annual International Cryptology

Conference, Crypto’ 97, pages 16–30. Springer, 1997.



166 REFERENCES

[FOO93] Atsushi Fujioka, Tatsuaki Okamoto, and Kazuo

Ohta. A practical secret voting scheme for large

scale elections. In Jennifer Seberry and Yu-

liang Zheng, editors, Advances in Cryptology —

AUSCRYPT ’92, pages 244–251, Berlin, Heidelberg,

1993. Springer Berlin Heidelberg.

[FPS01] Pierre-Alain Fouque, Guillaume Poupard, and

Jacques Stern. Sharing decryption in the context of

voting or lotteries. In Financial Cryptography: 4th In-

ternational Conference, FC 2000 Anguilla, British West

Indies, February 20–24, 2000 Proceedings 4, FC’01,

pages 90–104. Springer, 2001.

[FS01] Jun Furukawa and Kazue Sako. An efficient

scheme for proving a shuffle. In Advances in

Cryptology—CRYPTO 2001: 21st Annual Interna-

tional Cryptology Conference, Santa Barbara, Cali-

fornia, USA, August 19–23, 2001 Proceedings 21,

Crypto’01, pages 368–387. Springer, 2001.

[GH19] Craig Gentry and Shai Halevi. Compressible fhe

with applications to pir. In Theory of Cryptography

Conference, pages 438–464. Springer, 2019.

[GHH+21] Biyang Guo, Songqiao Han, Xiao Han, Hailiang

Huang, and Ting Lu. Label confusion learning to



REFERENCES 167

enhance text classification models. In Proceedings of

the AAAI conference on artificial intelligence, 2021.

[GI08] Jens Groth and Yuval Ishai. Sub-linear zero-

knowledge argument for correctness of a shuffle.

In Annual International Conference on the Theory and

Applications of Cryptographic Techniques, pages 379–

396. Springer, 2008.

[GMO16] Irene Giacomelli, Jesper Madsen, and Claudio Or-

landi. {ZKBoo}: Faster {Zero-Knowledge} for

boolean circuits. In 25th USENIX Security Sym-

posium (USENIX Security 16), USENIX’ 16, pages

1069–1083, 2016.

[GMR85] Shafi Goldwasser, Silvio Micali, and Charles Rack-

off. The knowledge complexity of interactive

proof-systems. In STOC ’85, pages 291–304, 1985.

[GP87] Jeroen van de Graaf and Renė Peralta. A simple
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